WorldWideScience

Sample records for subcutaneous tissue vascular

  1. Subcutaneous adipose tissue classification

    Directory of Open Access Journals (Sweden)

    A. Sbarbati

    2010-11-01

    Full Text Available The developments in the technologies based on the use of autologous adipose tissue attracted attention to minor depots as possible sampling areas. Some of those depots have never been studied in detail. The present study was performed on subcutaneous adipose depots sampled in different areas with the aim of explaining their morphology, particularly as far as regards stem niches. The results demonstrated that three different types of white adipose tissue (WAT can be differentiated on the basis of structural and ultrastructural features: deposit WAT (dWAT, structural WAT (sWAT and fibrous WAT (fWAT. dWAT can be found essentially in large fatty depots in the abdominal area (periumbilical. In the dWAT, cells are tightly packed and linked by a weak net of isolated collagen fibers. Collagenic components are very poor, cells are large and few blood vessels are present. The deep portion appears more fibrous then the superficial one. The microcirculation is formed by thin walled capillaries with rare stem niches. Reinforcement pericyte elements are rarely evident. The sWAT is more stromal; it is located in some areas in the limbs and in the hips. The stroma is fairly well represented, with a good vascularity and adequate staminality. Cells are wrapped by a basket of collagen fibers. The fatty depots of the knees and of the trochanteric areas have quite loose meshes. The fWAT has a noteworthy fibrous component and can be found in areas where a severe mechanic stress occurs. Adipocytes have an individual thick fibrous shell. In conclusion, the present study demonstrates evident differences among subcutaneous WAT deposits, thus suggesting that in regenerative procedures based on autologous adipose tissues the sampling area should not be randomly chosen, but it should be oriented by evidence based evaluations. The structural peculiarities of the sWAT, and particularly of its microcirculation, suggest that it could represent a privileged source for

  2. Modular tissue engineering for the vascularization of subcutaneously transplanted pancreatic islets.

    Science.gov (United States)

    Vlahos, Alexander E; Cober, Nicholas; Sefton, Michael V

    2017-08-29

    The transplantation of pancreatic islets, following the Edmonton Protocol, is a promising treatment for type I diabetics. However, the need for multiple donors to achieve insulin independence reflects the large loss of islets that occurs when islets are infused into the portal vein. Finding a less hostile transplantation site that is both minimally invasive and able to support a large transplant volume is necessary to advance this approach. Although the s.c. site satisfies both these criteria, the site is poorly vascularized, precluding its utility. To address this problem, we demonstrate that modular tissue engineering results in an s.c. vascularized bed that enables the transplantation of pancreatic islets. In streptozotocin-induced diabetic SCID/beige mice, the injection of 750 rat islet equivalents embedded in endothelialized collagen modules was sufficient to restore and maintain normoglycemia for 21 days; the same number of free islets was unable to affect glucose levels. Furthermore, using CLARITY, we showed that embedded islets became revascularized and integrated with the host's vasculature, a feature not seen in other s.c. Collagen-embedded islets drove a small (albeit not significant) shift toward a proangiogenic CD206 + MHCII - (M2-like) macrophage response, which was a feature of module-associated vascularization. While these results open the potential for using s.c. islet delivery as a treatment option for type I diabetes, the more immediate benefit may be for the exploration of revascularized islet biology.

  3. Enhanced mitogenesis in stromal vascular cells derived from subcutaneous adipose tissue of Wagyu compared with those of Angus cattle.

    Science.gov (United States)

    Wei, S; Fu, X; Liang, X; Zhu, M J; Jiang, Z; Parish, S M; Dodson, M V; Zan, L; Du, M

    2015-03-01

    Japanese Wagyu cattle are well known for their extremely high marbling and lower subcutaneous adipose tissue compared with Angus cattle. However, mechanisms for differences in adipose deposition are unknown. The objective of this paper was to evaluate breed differences in the structure of subcutaneous adipose tissue, adipogenesis, and mitogenesis of stromal vascular (SV) cells between Wagyu and Angus cattle. Subcutaneous biopsy samples were obtained from 5 Wagyu (BW = 302 ± 9 kg) and 5 Angus (BW = 398 ± 12 kg) heifers at 12 mo of age, and samples were divided into 3 pieces for histological examination, biochemical analysis, and harvest of SV cells. Adipogenesis of SV cells was assessed by the expression of adipogenic markers and Oil Red-O staining, while mitogenesis was evaluated by an MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium dromide) test, phosphorylation of extracellular signal-regulated kinase (ERK) and protein kinase B (PKB; AKT). Based on histological analysis, Wagyu had larger adipocytes compared with Angus. At the tissue level, protein expression of peroxisome proliferator-activated receptor γ (PPARG) in Wagyu was much lower compared with that of Angus. Similarly, a lower mRNA expression of PPARG was found in Wagyu SV cells. No significant difference was observed for the zinc finger protein 423 (ZNF423) expression between Wagyu and Angus. As assessed by Oil Red-O staining, Wagyu SV cells possessed a notable trend of lower adipogenic capability. Interestingly, higher mitogenic ability was discovered in Wagyu SV cells, which was associated with an elevated phosphorylation of ERK1/2. There was no difference in AKT phosphorylation of SV cells between Wagyu and Angus. Moreover, exogenous fibroblast growth factor 2 (FGF2) enhanced mitogenesis and ERK1/2 phosphorylation of SV cells to a greater degree in Angus compared with that in Wagyu. Expression of transforming growth factor β 3 (TGFB3) and bone morphogenetic protein 2 (BMP2) in Wagyu SV

  4. Vascular infarction by subcutaneous application of tissue factor targeted to tumor vessels with NGR-peptides: activity and toxicity profile.

    Science.gov (United States)

    Dreischalück, Johannes; Schwöppe, Christian; Spieker, Tilmann; Kessler, Torsten; Tiemann, Klaus; Liersch, Ruediger; Schliemann, Christoph; Kreuter, Michael; Kolkmeyer, Astrid; Hintelmann, Heike; Mesters, Rolf M; Berdel, Wolfgang E

    2010-12-01

    tTF-NGR consists of the extracellular domain of the (truncated) tissue factor (tTF), a central molecule for coagulation in vivo, and the peptide GNGRAHA (NGR), a ligand of the surface protein aminopeptidase N (CD13). After deamidation of the NGR-peptide moiety, the fusion protein is also a ligand for integrin αvβ3 (CD51/CD61). Both surface proteins are upregulated on endothelial cells of tumor vessels. tTF-NGR showed binding to specific binding sites on endothelial cells in vitro as shown by flow cytometry. Subcutaneous injection of tTF-NGR into athymic mice bearing human HT1080 fibrosarcoma tumors induced tumor growth retardation and delay. Contrast enhanced ultrasound detected a decrease in tumor blood flow in vivo after application of tTF-NGR. Histological analysis of the tumors revealed vascular disruption due to blood pooling and thrombotic occlusion of tumor vessels. Furthermore, a lack of resistance was shown by re-exposure of tumor-bearing mice to tTF-NGR after regrowth following a first cycle of treatment. However, after subcutaneous (s.c.) push injection with therapeutic doses (1-5 mg/kg bw) side effects have been observed, such as skin bleeding and reduced performance. Since lethality started within the therapeutic dose range (LD10 approximately 2 mg/kg bw) no safe therapeutic window could be found. Limiting toxicity was represented by thrombo-embolic events in major organ systems as demonstrated by histology. Thus, subcutaneous injection of tTF-NGR represents an active, but toxic application procedure and compares unfavourably to intravenous infusion.

  5. Primary Kaposi sarcoma of the subcutaneous tissue

    Directory of Open Access Journals (Sweden)

    Dezube Bruce J

    2008-09-01

    Full Text Available Abstract Background Involvement of the subcutis by Kaposi sarcoma (KS occurs primarily when cutaneous KS lesions evolve into deep penetrating nodular tumors. Primary KS of the subcutaneous tissue is an exceptional manifestation of this low-grade vascular neoplasm. Case presentation We present a unique case of acquired immune deficiency syndrome (AIDS-associated KS manifesting primarily in the subcutaneous tissue of the anterior thigh in a 43-year-old male, which occurred without overlying visible skin changes or concomitant KS disease elsewhere. Radiological imaging and tissue biopsy confirmed the diagnosis of KS. Conclusion This is the first documented case of primary subcutaneous KS occurring in the setting of AIDS. The differential diagnosis of an isolated subcutaneous lesion in an human immunodeficiency virus (HIV-infected individual is broad, and requires both imaging and a histopathological diagnosis to guide appropriate therapy.

  6. Subcutaneous tissue flaps for hallux covering.

    Science.gov (United States)

    Vaienti, Luca; Urzola, Victor; Scotti, Andrea; Masetto, L

    2010-03-01

    With the understanding of the extensive vascular supply of the subcutaneous tissue, of its efficacy in the protection of the anatomical structures and of its capability of promoting the adequate functioning of very stressed regions of the human body, the use of subcutaneous adipose flaps has become a valid and sometimes the only reasonable therapeutic weapon in the treatment of small and medium-sized tissue loss. Such a defect represents a common complication of great toe injuries and surgery. Here subcutaneous flap reconstruction is proposed for the treatment of dorsal and medial soft tissue losses of the hallux complicated with infection. Two case are reported. To the best of the authors' knowledge, this application has not been reported in this anatomical site so far. The technique might be worth knowing both for orthopedic and plastic surgeons, as it may represent a safe, less invasive solution for most tegumentary problems of the dorso-medial side of the first ray.

  7. [Cellular subcutaneous tissue. Anatomic observations].

    Science.gov (United States)

    Marquart-Elbaz, C; Varnaison, E; Sick, H; Grosshans, E; Cribier, B

    2001-11-01

    We showed in a companion paper that the definition of the French "subcutaneous cellular tissue" considerably varied from the 18th to the end of the 20th centuries and has not yet reached a consensus. To address the anatomic reality of this "subcutaneous cellular tissue", we investigated the anatomic structures underlying the fat tissue in normal human skin. Sixty specimens were excised from the surface to the deep structures (bone, muscle, cartilage) on different body sites of 3 cadavers from the Institut d'Anatomie Normale de Strasbourg. Samples were paraffin-embedded, stained and analysed with a binocular microscope taking x 1 photographs. Specimens were also excised and fixed after subcutaneous injection of Indian ink, after mechanic tissue splitting and after performing artificial skin folds. The aspects of the deep parts of the skin greatly varied according to their anatomic localisation. Below the adipose tissue, we often found a lamellar fibrous layer which extended from the interlobular septa and contained horizontally distributed fat cells. No specific tissue below the hypodermis was observed. Artificial skin folds concerned either exclusively the dermis, when they were superficial or included the hypodermis, but no specific structure was apparent in the center of the fold. India ink diffused to the adipose tissue, mainly along the septa, but did not localise in a specific subcutaneous compartment. This study shows that the histologic aspects of the deep part of the skin depend mainly on the anatomic localisation. Skin is composed of epidermis, dermis and hypodermis and thus the hypodermis can not be considered as being "subcutaneous". A difficult to individualise, fibrous lamellar structure in continuity with the interlobular septa is often found under the fat lobules. This structure is a cleavage line, as is always the case with loose connective tissues, but belongs to the hypodermis (i.e. fat tissue). No specific tissue nor any virtual space was

  8. Bioprinting for vascular and vascularized tissue biofabrication.

    Science.gov (United States)

    Datta, Pallab; Ayan, Bugra; Ozbolat, Ibrahim T

    2017-03-15

    Bioprinting is a promising technology to fabricate design-specific tissue constructs due to its ability to create complex, heterocellular structures with anatomical precision. Bioprinting enables the deposition of various biologics including growth factors, cells, genes, neo-tissues and extra-cellular matrix-like hydrogels. Benefits of bioprinting have started to make a mark in the fields of tissue engineering, regenerative medicine and pharmaceutics. Specifically, in the field of tissue engineering, the creation of vascularized tissue constructs has remained a principal challenge till date. However, given the myriad advantages over other biofabrication methods, it becomes organic to expect that bioprinting can provide a viable solution for the vascularization problem, and facilitate the clinical translation of tissue engineered constructs. This article provides a comprehensive account of bioprinting of vascular and vascularized tissue constructs. The review is structured as introducing the scope of bioprinting in tissue engineering applications, key vascular anatomical features and then a thorough coverage of 3D bioprinting using extrusion-, droplet- and laser-based bioprinting for fabrication of vascular tissue constructs. The review then provides the reader with the use of bioprinting for obtaining thick vascularized tissues using sacrificial bioink materials. Current challenges are discussed, a comparative evaluation of different bioprinting modalities is presented and future prospects are provided to the reader. Biofabrication of living tissues and organs at the clinically-relevant volumes vitally depends on the integration of vascular network. Despite the great progress in traditional biofabrication approaches, building perfusable hierarchical vascular network is a major challenge. Bioprinting is an emerging technology to fabricate design-specific tissue constructs due to its ability to create complex, heterocellular structures with anatomical precision

  9. Injectable and inherently vascularizing semi-interpenetrating polymer network for delivering cells to the subcutaneous space.

    Science.gov (United States)

    Mahou, Redouan; Zhang, David K Y; Vlahos, Alexander E; Sefton, Michael V

    2017-07-01

    Injectable hydrogels are suitable for local cell delivery to the subcutaneous space, but the lack of vasculature remains a limiting factor. Previously we demonstrated that biomaterials containing methacrylic acid promoted vascularization. Here we report the preparation of a semi-interpenetrating polymer network (SIPN), and its evaluation as an injectable carrier to deliver cells and generate blood vessels in a subcutaneous implantation site. The SIPN was prepared by reacting a blend of vinyl sulfone-terminated polyethylene glycol (PEG-VS) and sodium polymethacrylate (PMAA-Na) with dithiothreitol. The swelling of SIPN was sensitive to the PMAA-Na content but only small differences in gelation time, permeability and stiffness were noted. SIPN containing 20 mol% PMAA-Na generated a vascular network in the surrounding tissues, with 2-3 times as many vessels as was obtained with 10 mol% PMAA-Na or PEG alone. Perfusion studies showed that the generated vessels were perfused and connected to the host vasculature as early as seven days after transplantation. Islets embedded in SIPN were viable and responsive to glucose stimulation in vitro. In a proof of concept study in a streptozotocin-induced diabetic mouse model, a progressive return to normoglycemia was observed and the presence of insulin positive islets was confirmed when islets were embedded in SIPN prior to delivery. Our approach proposes a biomaterial-mediated strategy to deliver cells while enhancing vascularization. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. miRNAs in Human Subcutaneous Adipose Tissue

    DEFF Research Database (Denmark)

    Kristensen, Malene M.; Davidsen, Peter K.; Vigelso, Andreas

    2017-01-01

    Objective Obesity is central in the development of insulin resistance. However, the underlying mechanisms still need elucidation. Dysregulated microRNAs (miRNAs; post-transcriptional regulators) in adipose tissue may present an important link. Methods The miRNA expression in subcutaneous adipose ...

  11. Browning of Subcutaneous White Adipose Tissue in Humans

    OpenAIRE

    Sidossis, Labros S.; Porter, Craig; Saraf, Manish K.; Børsheim, Elisabet; Radhakrishnan, Ravi S.; Chao, Tony; Ali, Arham; Chondronikola, Maria; Mlcak, Ronald; Finnerty, Celeste C.; Hawkins, Hal K.; Toliver-Kinsky, Tracy; Herndon, David N.

    2015-01-01

    Since the presence of brown adipose tissue (BAT) was confirmed in adult humans, BAT has become a therapeutic target for obesity and insulin resistance. We examined whether human subcutaneous white adipose tissue (sWAT) can adopt a BAT-like phenotype using a clinical model of prolonged and severe adrenergic stress. sWAT samples were collected from severely burned and healthy individuals. A subset of burn victims were prospectively followed during their acute hospitalization. Browning of sWAT w...

  12. Microwave non-contact imaging of subcutaneous human body tissues.

    Science.gov (United States)

    Kletsov, Andrey; Chernokalov, Alexander; Khripkov, Alexander; Cho, Jaegeol; Druchinin, Sergey

    2015-10-01

    A small-size microwave sensor is developed for non-contact imaging of a human body structure in 2D, enabling fitness and health monitoring using mobile devices. A method for human body tissue structure imaging is developed and experimentally validated. Subcutaneous fat tissue reconstruction depth of up to 70 mm and maximum fat thickness measurement error below 2 mm are demonstrated by measurements with a human body phantom and human subjects. Electrically small antennas are developed for integration of the microwave sensor into a mobile device. Usability of the developed microwave sensor for fitness applications, healthcare, and body weight management is demonstrated.

  13. Subcutaneous adipose tissue blood flow in the forefoot during 24 hours. Labeling pattern and reproducibility

    DEFF Research Database (Denmark)

    Jelnes, Rolf; Bülow, J; Tønnesen, K H

    1987-01-01

    Wash-out of 133xenon from a local depot in the subcutaneous adipose tissue in the forefoot was measured continuously during 24 hours on subsequent recordings in 51 feet (normal circulation: 10, intermittent claudication: 22 and ischaemic nocturnal rest pain: 19) with a mean time interval of 26 da...... was calculated to 10%, and for the ratio of blood flow from day to night to 5%. The method is thus considered apt as a monitor in the treatment of peripheral vascular disease, for example, surgery and medical therapy. As predominant source of error is the formation of oedema....

  14. Using Polymeric Scaffolds for Vascular Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Alida Abruzzo

    2014-01-01

    Full Text Available With the high occurrence of cardiovascular disease and increasing numbers of patients requiring vascular access, there is a significant need for small-diameter (<6 mm inner diameter vascular graft that can provide long-term patency. Despite the technological improvements, restenosis and graft thrombosis continue to hamper the success of the implants. Vascular tissue engineering is a new field that has undergone enormous growth over the last decade and has proposed valid solutions for blood vessels repair. The goal of vascular tissue engineering is to produce neovessels and neoorgan tissue from autologous cells using a biodegradable polymer as a scaffold. The most important advantage of tissue-engineered implants is that these tissues can grow, remodel, rebuild, and respond to injury. This review describes the development of polymeric materials over the years and current tissue engineering strategies for the improvement of vascular conduits.

  15. Additive Manufacturing of Vascular Grafts and Vascularized Tissue Constructs.

    Science.gov (United States)

    Elomaa, Laura; Yang, Yunzhi Peter

    2017-10-01

    There is a great need for engineered vascular grafts among patients with cardiovascular diseases who are in need of bypass therapy and lack autologous healthy blood vessels. In addition, because of the severe worldwide shortage of organ donors, there is an increasing need for engineered vascularized tissue constructs as an alternative to organ transplants. Additive manufacturing (AM) offers great advantages and flexibility of fabrication of cell-laden, multimaterial, and anatomically shaped vascular grafts and vascularized tissue constructs. Various inkjet-, extrusion-, and photocrosslinking-based AM techniques have been applied to the fabrication of both self-standing vascular grafts and porous, vascularized tissue constructs. This review discusses the state-of-the-art research on the use of AM for vascular applications and the key criteria for biomaterials in the AM of both acellular and cellular constructs. We envision that new smart printing materials that can adapt to their environment and encourage rapid endothelialization and remodeling will be the key factor in the future for the successful AM of personalized and dynamic vascular tissue applications.

  16. Tailoring the foreign body response for in situ vascular tissue engineering

    NARCIS (Netherlands)

    Rothuizen, T.C.; Damanik, Febriyani; Anderson, J.; Lavrijsen, T.; Cox, M.A.J.; Rabelink, T.J.; Moroni, Lorenzo; Rotmans, J.

    2015-01-01

    This study describes a screening platform for a guided in situ vascular tissue engineering approach. Polymer rods were developed that upon 3 weeks of subcutaneous implantation evoke a controlled inflammatory response culminating in encapsulation by a tube-shaped autologous fibrocellular tissue

  17. Measurement of subcutaneous adipose tissue thickness by near-infrared

    International Nuclear Information System (INIS)

    Wang, Yu; Ying, Zeqiang; Hao, Dongmei; Zhang, Song; Yang, Yimin; Zeng, Yanjun

    2013-01-01

    Obesity is strongly associated with the risks of diabetes and cardiovascular disease, and there is a need to measure the subcutaneous adipose tissue (SAT) layer thickness and to understand the distribution of body fat. A device was designed to illuminate the body parts by near-infrared (NIR), measure the backscattered light, and predict the SAT layer thickness. The device was controlled by a single-chip microcontroller (SCM), and the thickness value was presented on a liquid crystal display (LCD). There were 30 subjects in this study, and the measurements were performed on 14 body parts for each subject. The paper investigated the impacts of pressure and skin colour on the measurement. Combining with principal component analysis (PCA) and support vector regression (SVR), the measurement accuracy of SAT layer thickness was 89.1 % with a mechanical caliper as reference. The measuring range was 5–11 mm. The study provides a non-invasive and low-cost technique to detect subcutaneous fat thickness, which is more accessible and affordable compared to other conventional techniques. The designed device can be used at home and in community.

  18. 3D bioprinting for vascularized tissue fabrication

    Science.gov (United States)

    Richards, Dylan; Jia, Jia; Yost, Michael; Markwald, Roger; Mei, Ying

    2016-01-01

    3D bioprinting holds remarkable promise for rapid fabrication of 3D tissue engineering constructs. Given its scalability, reproducibility, and precise multi-dimensional control that traditional fabrication methods do not provide, 3D bioprinting provides a powerful means to address one of the major challenges in tissue engineering: vascularization. Moderate success of current tissue engineering strategies have been attributed to the current inability to fabricate thick tissue engineering constructs that contain endogenous, engineered vasculature or nutrient channels that can integrate with the host tissue. Successful fabrication of a vascularized tissue construct requires synergy between high throughput, high-resolution bioprinting of larger perfusable channels and instructive bioink that promotes angiogenic sprouting and neovascularization. This review aims to cover the recent progress in the field of 3D bioprinting of vascularized tissues. It will cover the methods of bioprinting vascularized constructs, bioink for vascularization, and perspectives on recent innovations in 3D printing and biomaterials for the next generation of 3D bioprinting for vascularized tissue fabrication. PMID:27230253

  19. Three-dimensional analysis and classification of arteries in the skin and subcutaneous adipofascial tissue by computer graphics imaging.

    Science.gov (United States)

    Nakajima, H; Minabe, T; Imanishi, N

    1998-09-01

    To develop new types of surgical flaps that utilize portions of the skin and subcutaneous tissue (e.g., a thin flap or an adipofascial flap), three-dimensional investigation of the vasculature in the skin and subcutaneous tissue has been anticipated. In the present study, total-body arterial injection and three-dimensional imaging of the arteries by computer graphics were performed. The full-thickness skin and subcutaneous adipofascial tissue samples, which were obtained from fresh human cadavers injected with radio-opaque medium, were divided into three distinct layers. Angiograms of each layer were introduced into a personal computer to construct three-dimensional images. On a computer monitor, each artery was shown color-coded according to the three portions: the deep adipofascial layer, superficial adipofascial layer, and dermis. Three-dimensional computerized images of each artery in the skin and subcutaneous tissue revealed the components of each vascular plexus and permitted their classification into six types. The distribution of types in the body correlated with the tissue mobility of each area. Clinically, appreciation of the three-dimensional structure of the arteries allowed the development of several new kinds of flaps.

  20. Subcutaneous Emphysema in Non-Necrotizing Soft Tissue Injury

    Directory of Open Access Journals (Sweden)

    Hamid Ehsani-Nia

    2017-09-01

    Full Text Available History of present illness: 63-year-old male with a history of diabetes mellitus and rheumatoid arthritis who was sent to the emergency department by his primary care provider for further evaluation of left upper extremity crepitus. The patient fell onto his left elbow two days prior to presentation resulting in immediate swelling and a small laceration. He complained of minimal pain and denied fevers or chills. His medications included metformin, tocilizumab, methotrexate and prednisone. In the ED, the patient was well-appearing, afebrile, with a normal heart rate and in no acute distress. Examination of the left upper extremity revealed no tenderness to palpation but marked crepitus with a scabbed laceration over his olecranon process and was neurovascularly intact. White blood cell count (WBC, sodium, glucose, inflammatory markers and lactate were all within normal limits. Significant findings: X-Rays of the elbow revealed diffuse striated lucencies throughout the soft tissue, consistent with extensive subcutaneous air throughout the superficial and deep tissues. There was no evidence of a fracture. Discussion: The initiating mechanism for necrotizing soft tissue infections (NSTIs is a disruption of the fascial planes, most commonly by trauma. The inoculated bacteria rapidly spread and surgical debridement is necessary.1-3 Early recognition and disposition to the operating room in 51 are correlated with increased morbidity and mortality.5 Additionally, it has been found that immunocompromised patients exhibit atypical presentations of NSTIs.6 The Laboratory Risk Indicator for Necrotizing Fasciitis (LRINEC score is often used to risk stratify patients when there is suspicion for an NSTI.7 The patient discussed here had a LRINEC score of 0. However, the physical exam finding of crepitus, coupled with his history of immunocompromised status and subcutaneous air on X-ray made the diagnosis of NSTI seem likely. However, upon surgical exploration

  1. The Tissue Response and Degradation of Electrospun Poly(ε-caprolactone/Poly(trimethylene-carbonate Scaffold in Subcutaneous Space of Mice

    Directory of Open Access Journals (Sweden)

    Tao Jiang

    2014-01-01

    Full Text Available Due to the advantage of controllability on the mechanical property and the degradation rates, electrospun PCL/PTMC nanofibrous scaffold could be appropriate for vascular tissue engineering. However, the tissue response and degradation of electrospun PCL/PTMC scaffold in vivo have never been evaluated in detail. So, electrospun PCL/PTMC scaffolds with different blend ratios were prepared in this study. Mice subcutaneous implantation showed that the continuous degradation of PCL/PTMC scaffolds induced a lasted macrophage-mediated foreign body reaction, which could be in favor of the tissue regeneration in graft.

  2. Telomere length differences between subcutaneous and visceral adipose tissue in humans

    International Nuclear Information System (INIS)

    Lakowa, Nicole; Trieu, Nhu; Flehmig, Gesine; Lohmann, Tobias; Schön, Michael R.; Dietrich, Arne; Zeplin, Philip Helge; Langer, Stefan; Stumvoll, Michael; Blüher, Matthias; Klöting, Nora

    2015-01-01

    Adipocyte hypertrophy and hyperplasia have been shown to be associated with shorter telomere length, which may reflect aging, altered cell proliferation and adipose tissue (AT) dysfunction. In individuals with obesity, differences in fat distribution and AT cellular composition may contribute to obesity related metabolic diseases. Here, we tested the hypotheses that telomere lengths (TL) are different between: (1) abdominal subcutaneous and omental fat depots, (2) superficial and deep abdominal subcutaneous AT (SAT), and (3) adipocytes and cells of the stromal vascular fraction (SVF). We further asked whether AT TL is related to age, anthropometric and metabolic traits. TL was analyzed by quantitative PCR in total human genomic DNA isolated from paired subcutaneous and visceral AT of 47 lean and 50 obese individuals. In subgroups, we analyzed TL in isolated small and large adipocytes and SVF cells. We find significantly shorter TL in subcutaneous compared to visceral AT (P < 0.001) which is consistent in men and subgroups of lean and obese, and individuals with or without type 2 diabetes (T2D). Shorter TL in SAT is entirely due to shorter TL in the SVF compared to visceral AT (P < 0.01). SAT TL is most strongly correlated with age (r = −0.205, P < 0.05) and independently of age with HbA1c (r = −0.5, P < 0.05). We found significant TL differences between superficial SAT of lean and obese as well as between individuals with our without T2D, but not between the two layers of SAT. Our data indicate that fat depot differences in TL mainly reflect shorter TL of SVF cells. In addition, we found an age and BMI-independent relationship between shorter TL and HbA1c suggesting that chronic hyperglycemia may impair the regenerative capacity of AT more strongly than obesity alone. - Highlights: • Telomere lengths (TL) differ between fat depots mainly due to different lengths in SVF. • TL is not associated with gender, BMI and T2D. • The tendency for

  3. Telomere length differences between subcutaneous and visceral adipose tissue in humans

    Energy Technology Data Exchange (ETDEWEB)

    Lakowa, Nicole; Trieu, Nhu; Flehmig, Gesine [Department of Medicine, University of Leipzig, Leipzig (Germany); Lohmann, Tobias [Municipal Clinic Dresden-Neustadt, Dresden (Germany); Schön, Michael R. [Städtisches Klinikum Karlsruhe, Clinic of Visceral Surgery, Karlsruhe (Germany); Dietrich, Arne [Department of Surgery, University of Leipzig, Leipzig (Germany); IFB AdiposityDiseases, University of Leipzig, Leipzig (Germany); Zeplin, Philip Helge; Langer, Stefan [Department of Orthopaedics, Traumatology and Plastic Surgery, University of Leipzig, Leipzig (Germany); Stumvoll, Michael; Blüher, Matthias [Department of Medicine, University of Leipzig, Leipzig (Germany); Klöting, Nora, E-mail: nora.kloeting@medizin.uni-leipzig.de [IFB AdiposityDiseases, Junior Research Group 2 “Animal Models of Obesity”, University of Leipzig, Leipzig (Germany)

    2015-02-13

    Adipocyte hypertrophy and hyperplasia have been shown to be associated with shorter telomere length, which may reflect aging, altered cell proliferation and adipose tissue (AT) dysfunction. In individuals with obesity, differences in fat distribution and AT cellular composition may contribute to obesity related metabolic diseases. Here, we tested the hypotheses that telomere lengths (TL) are different between: (1) abdominal subcutaneous and omental fat depots, (2) superficial and deep abdominal subcutaneous AT (SAT), and (3) adipocytes and cells of the stromal vascular fraction (SVF). We further asked whether AT TL is related to age, anthropometric and metabolic traits. TL was analyzed by quantitative PCR in total human genomic DNA isolated from paired subcutaneous and visceral AT of 47 lean and 50 obese individuals. In subgroups, we analyzed TL in isolated small and large adipocytes and SVF cells. We find significantly shorter TL in subcutaneous compared to visceral AT (P < 0.001) which is consistent in men and subgroups of lean and obese, and individuals with or without type 2 diabetes (T2D). Shorter TL in SAT is entirely due to shorter TL in the SVF compared to visceral AT (P < 0.01). SAT TL is most strongly correlated with age (r = −0.205, P < 0.05) and independently of age with HbA1c (r = −0.5, P < 0.05). We found significant TL differences between superficial SAT of lean and obese as well as between individuals with our without T2D, but not between the two layers of SAT. Our data indicate that fat depot differences in TL mainly reflect shorter TL of SVF cells. In addition, we found an age and BMI-independent relationship between shorter TL and HbA1c suggesting that chronic hyperglycemia may impair the regenerative capacity of AT more strongly than obesity alone. - Highlights: • Telomere lengths (TL) differ between fat depots mainly due to different lengths in SVF. • TL is not associated with gender, BMI and T2D. • The tendency for

  4. The regulation of subcutaneous adipose tissue blood flow in the ischaemic forefoot during 24 hours

    International Nuclear Information System (INIS)

    Jelnes, R.

    1988-01-01

    A method for continuous measurement of subcutaneous adipose tissue blood flow in the forefoot during 24 hours (SBF) is described. The method is based on the radioisotope wash-out principle using 133-Xenon. A portable semiconductor detector is placed just above a local depot of 1-2 μCi 133-Xenon in 0.1 ml isotonic saline injected into the subcutaneous adipose tissue in the forefoot. The detector is connected to a memory unit allowing for storage of data. Due to the short distance, the recorded elimination rate constant must be corrected for combined convection and diffusion of the radioactive indicator. After reconstructive vascular surgery, the 24-hour blood flow pattern normalized although the ankle/arm systolic blood pressure index did not come within normal range. SBF during day-time activities decreased by up to 50% postoperatively. This is caused by the reappearance of the local, sympathetic, veno-arteriolar vasoconstrictor response. During sleep SBF increased by 71%. The term postreconstructuve hyperamia seems improper, at least in a long-term context, normalization of preoperative ischaemia is a more correct notation. The coefficient of variation of nocturnal SBF was calculated to 10%. The method thus seems apt as a monitor in medical therapy for occlusive arterial disease. Changes of λ has, however, to be considered in each study. 94 refs. (EG)

  5. Microstructural inhomogeneity of electrical conductivity in subcutaneous fat tissue.

    Directory of Open Access Journals (Sweden)

    Ilja L Kruglikov

    Full Text Available Microscopic peculiarities stemming from a temperature increase in subcutaneous adipose tissue (sWAT after applying a radio-frequency (RF current, must be strongly dependent on the type of sWAT. This effect is connected with different electrical conductivities of pathways inside (triglycerides in adipocytes and outside (extra-cellular matrix the cells and to the different weighting of these pathways in hypertrophic and hyperplastic types of sWAT. The application of the RF current to hypertrophic sWAT, which normally has a strongly developed extracellular matrix with high concentrations of hyaluronan and collagen in a peri-cellular space of adipocytes, can produce, micro-structurally, a highly inhomogeneous temperature distribution, characterized by strong temperature gradients between the peri-cellular sheath of the extra-cellular matrix around the hypertrophic adipocytes and their volumes. In addition to normal temperature effects, which are generally considered in body contouring, these temperature gradients can produce thermo-mechanical stresses on the cells' surfaces. Whereas these stresses are relatively small under normal conditions and cannot cause any direct fracturing or damage of the cell structure, these stresses can, under some supportive conditions, be theoretically increased by several orders of magnitude, causing the thermo-mechanical cell damage. This effect cannot be realized in sWAT of normal or hyperplastic types where the peri-cellular structures are under-developed. It is concluded that the results of RF application in body contouring procedures must be strongly dependent on the morphological structure of sWAT.

  6. Secretion of autoimmune antibodies in the human subcutaneous adipose tissue.

    Science.gov (United States)

    Frasca, Daniela; Diaz, Alain; Romero, Maria; Thaller, Seth; Blomberg, Bonnie B

    2018-01-01

    The adipose tissue (AT) contributes to systemic and B cell intrinsic inflammation, reduced B cell responses and secretion of autoimmune antibodies. In this study we show that adipocytes in the human obese subcutaneous AT (SAT) secrete several pro-inflammatory cytokines and chemokines, which contribute to the establishment and maintenance of local and systemic inflammation, and consequent suboptimal immune responses in obese individuals, as we have previously shown. We also show that pro-inflammatory chemokines recruit immune cells expressing the corresponding receptors to the SAT, where they also contribute to local and systemic inflammation, secreting additional pro-inflammatory mediators. Moreover, we show that the SAT generates autoimmune antibodies. During the development of obesity, reduced oxygen and consequent hypoxia and cell death lead to further release of pro-inflammatory cytokines, "self" protein antigens, cell-free DNA and lipids. All these stimulate class switch and the production of autoimmune IgG antibodies which have been described to be pathogenic. In addition to hypoxia, we have measured cell cytotoxicity and DNA damage mechanisms, which may also contribute to the release of "self" antigens in the SAT. All these processes are significantly elevated in the SAT as compared to the blood. We definitively found that fat-specific IgG antibodies are secreted by B cells in the SAT and that B cells express mRNA for the transcription factor T-bet and the membrane marker CD11c, both involved in the production of autoimmune IgG antibodies. Finally, the SAT also expresses RNA for cytokines known to promote Germinal Center formation, isotype class switch, and plasma cell differentiation. Our results show novel mechanisms for the generation of autoimmune antibody responses in the human SAT and allow the identification of new pathways to possibly manipulate in order to reduce systemic inflammation and autoantibody production in obese individuals.

  7. Temperature of cutaneous and subcutaneous tissue during the application of aerosols in rats

    OpenAIRE

    Andre de Oliveira Teixeira; Cassio Noronha Martins; Antônio Marcos Vargas da Silva; Alexandro Marques Tozetti; Rodrigo Della Méa Plentz; Luis Ulisses Signori

    2014-01-01

    This study compared the thermal changes of cutaneous and subcutaneous tissues exposed to different aerosols. Thirty-six adults Wistar rats were arranged in two treatment groups, one exposed to methyl salicylate (GSM; n = 9 skin and n = 9 subcutaneous) and the other exposed to diclofenac diethylammonium (GDD; n = 9 skin and n = 9 subcutaneous) aerosols. Five jets were applied for one-second through an apparatus to reduce spray dispersion (3 cmdiameter) in the lateral left thigh of the animals....

  8. Vascularization of soft tissue engineering constructs

    DEFF Research Database (Denmark)

    Pimentel Carletto, Rodrigo

    nanotechnology-based paradigm for engineering vascularised liver tissue for transplantation”) and the Danish National Research Foundation and Villum Foundation’s Center for Intelligent Drug delivery and sensing Using microcontainers and Nanomechanics (Danish National Research Foundation (DNRF122).......Vascularization is recognized to be the biggest challenge for the fabrication of tissues and finally, organs in vitro. So far, several fabrication techniques have been proposed to create a perfusable vasculature within hydrogels, however, the vascularization and perfusion of hydrogels...... with mechanical properties in the range of soft tissues has not been fully achieved. My project focused on the fabrication and the active perfusion of hydrogel constructs with multi-dimensional vasculature and controlled mechanical properties targeting soft tissues. Specifically, the initial part of the research...

  9. Temperature of cutaneous and subcutaneous tissue during the application of aerosols in rats

    Directory of Open Access Journals (Sweden)

    Andre de Oliveira Teixeira

    2014-10-01

    Full Text Available This study compared the thermal changes of cutaneous and subcutaneous tissues exposed to different aerosols. Thirty-six adults Wistar rats were arranged in two treatment groups, one exposed to methyl salicylate (GSM; n = 9 skin and n = 9 subcutaneous and the other exposed to diclofenac diethylammonium (GDD; n = 9 skin and n = 9 subcutaneous aerosols. Five jets were applied for one-second through an apparatus to reduce spray dispersion (3 cmdiameter in the lateral left thigh of the animals. Temperatures were measured every minute (min. during 30 min., with a digital thermometer. In the skin tissue the sensor was positioned manually, in the subcutaneous tissue it was surgically inserted through the rear face and positioned in the lateral thigh. The skin temperature has homogeneously reduced in both groups. In the subcutaneous tissue the GDD has induced hypothermia from the 2nd to 20th min., the lowest temperature was recorded on the 7th min. (-3.6 ± 0.2ºC in relation to basal. Lowering the temperature by GSM took place from the 1st to 21st min, and the lowest temperature occurred on the 1st min (-9.7 ± 0.5ºC in relation to basal. In the three initial minutes the GSM had temperatures 25, 10 and 5% lower than the GDD. Aerosols have induced hypothermia in the tissues, while the GSM has decreased faster and reached lower values of temperature shown in the subcutaneous tissue.

  10. Anatomy of the subcutaneous tissue of the trunk and lower extremity.

    Science.gov (United States)

    Markman, B; Barton, F E

    1987-08-01

    Dissections on 8 fresh and 10 embalmed cadavers were used to determine the anatomy of the subcutaneous adipose tissue in the trunk and extremities. These dissections, along with CT scans, confirmed Gray's original description of the subcutaneous tissue consisting of a superficial and deep adipose layer. The superficial adipose layer is contained within organized, compact fascial septa. The deep adipose layer demonstrated regional variations with respect to its fascial framework, but was contained within a relatively loose, less organized, and more widely spaced fascial septa. We observed that the adipose layers are partitioned by a discrete subcutaneous fascia which fuses with the underlying muscle fascia at particular anatomic locations. The deep layer is thus contained by the subcutaneous fascia above and the muscle fascia below to form what we termed the deep adipose compartments. The deep adipose compartments contributed significantly to overall adipose thickness, are bilateral, and are found in the abdomen and paralumbar and gluteal-thigh regions.

  11. Diet-induced changes in subcutaneous adipose tissue blood flow in man

    DEFF Research Database (Denmark)

    Simonsen, L; Bülow, J; Astrup, A

    1990-01-01

    The effect of a carbohydrate-rich meal on subcutaneous adipose tissue blood flow was studied with and without continuous i.v. infusion of propranolol in healthy volunteers. The subcutaneous adipose tissue blood flow was measured with the 133Xe washout method in three different locations......: the forearm, the thigh and the abdomen. The subjects were given a meal consisting of white bread, jam, honey and apple juice (about 2300 kJ). The meal induced a twofold increase in blood flow in the examined tissues. Propranolol abolished the flow increase in the thigh and the abdomen and reduced...

  12. Spatial distribution of soluble insulin in pig subcutaneous tissue

    DEFF Research Database (Denmark)

    Thomsen, Maria; Rasmussen, Christian Hove; Refsgaard, Hanne H F

    2015-01-01

    in the tomographic reconstructions and the amount of drug in each tissue class was quantified. With a scan time of about 45min per sample, and a robust segmentation it was possible to analyze differences in the spatial drug distribution between several similar injections. It was studied how the drug distribution...

  13. Are there sex differences in Fetal Abdominal Subcutaneous Tissue (FAST) measurements?

    LENUS (Irish Health Repository)

    Farah, Nadine

    2012-02-01

    OBJECTIVE: To determine if Fetal Abdominal Subcutaneous Tissue (FAST) measurements using antenatal ultrasound differ between male and female fetuses. STUDY DESIGN: Women who had an ultrasound examination for fetal growth between 20 and 40 weeks gestation were studied. Women with diabetes mellitus were excluded. The fetal anterior abdominal subcutaneous tissue was measured on the anterior abdominal wall in millimetres anterior to the margins of the ribs, using magnification at the level of the abdominal circumference. The fetal sex was recorded after delivery. RESULTS: A total of 557 fetuses were measured, 290 male and 267 female. The FAST measurements increased with gestational age. The FAST increased at the same rate for both male and female fetuses and at any given week there was no sex difference. CONCLUSIONS: The increased fat composition in females reported after birth was not found in abdominal wall subcutaneous fat measurements using ultrasound during pregnancy. Antenatal centile charts for FAST do not need to be based on sex.

  14. An experimental study on tissue damage following subcutaneous injection of water soluble contrast media

    International Nuclear Information System (INIS)

    Kim, Seung Hyup; Park, Jae Hyung; Kang, Heung Sik; Kim, Chu Wan; Han, Man Chung; Kim, Yong Il

    1989-01-01

    The water soluble contrast media cause tissue necrosis infrequently by extravasation during intravenous injection in various radiological examinations. However, it has not been well documented that what kind and what concentration of contrast media can cause tissue necrosis. And also, the mechanism of tissue necrosis by extravasated contrast media has not been well known. The purpose of this experimental study was to evaluate the frequency and severity of tissue damage following subcutaneous injection of various water soluble contrast media to investigate the characteristics of the contrast media acting on the tissue damage, and to provide the basic data for the clinical application. Meglumine ioxithalamate,sodium and meglumine ioxithalamate, iopromide, iopamidol, ioxaglate,meglumine diatrizoate and sodium diatrizoate of various iodine content and osmolality were injected into subcutaneous tissue of the dorsum of 970 feet of 485 rats. The tissue reaction of injection sites were grossly examined with period from 1 day to 8 weeks after the injection. Representative gross changes were correlated with histologic findings. The results were as follows; 1. The basic tissue damage by extravasated contrast media was acute and chronic inflammatory reaction of the soft tissue with subsequent progress into the hemorrhagic and necrotizing lesion. 2. Lager volume of contrast media caused more severe tissue damage. 3. Contrast media of higher osmolality caused more severe tissue damage. 4. At same osmolality, contrast media of higher iodine content caused more severe tissue damage

  15. Increased sympathetic tone in forearm subcutaneous tissue in primary hypothyroidism

    DEFF Research Database (Denmark)

    Vagn Nielsen, H; Hasselström, K; Feldt-Rasmussen, U

    1987-01-01

    vasoconstriction normally seen after lowering the forearm 40 cm below heart level was absent since SBF only decreased by 4% (+/- 7%, P greater than 0.1) during these conditions. In head-up vertical position we noticed a diminished baroreceptor response as SBF at heart level was reduced by 11% (+/- 7%, P greater...... than 0.1) compared to supine position. After proximal local anaesthesia SBF increased by 351% (+/- 81%, P less than 0.01) and disclosed a normal vasoconstrictor response as SBF was reduced by 53% (+/- 5%, P less than 0.01) during arm lowering. Five of the treated patients were restudied.......02)). In conclusion sympathetic vasoconstrictor activity in adipose tissue is markedly increased in primary hypothyroidism. Sympathetic tone and arterial pressure are reduced during treatment....

  16. Investigation of the mechanisms that influence the accretion of bovine intramuscular and subcutaneous adipose tissue

    International Nuclear Information System (INIS)

    Miller, M.F.

    1987-01-01

    The understanding of the mechanisms that differ between breeds of cattle and their ability to deposit intramuscular adipose tissue is imperative to profitable beef production. Thus, the interactions among breeds, metabolic substrates and specific hormones in bovine intramuscular and subcutaneous adipose tissue were investigated. Subcutaneous and intramuscular adipose tissues were obtained from 10 Angus and 9 Santa Gertrudis steers immediately postmortem. The adipose tissues were incubated for 2 h and 48 h with and without 1 mU/ml insulin and 30 mg/ml bovine serum albumin (BSA) to measure the incorporation of 14 C-labeled acetate and glucose into lipid fractions. At the same chronological age, Angus steers had a more youthful lean maturity score, higher USDA marbling scores and higher USDA quality grades than carcasses from Santa Gertrudis steers

  17. Effect of dental adhesives on the exudative phase of the inflammatory process in subcutaneous tissue of rats

    Directory of Open Access Journals (Sweden)

    Nagem-Filho Halim

    2003-01-01

    Full Text Available The vascular changes in the subcutaneous connective tissue of rats induced by dentin bonding systems (one step was studied and compared to those induced by saline solution (negative control and Furacin (positive control, during the exudative phase of the inflammatory process. Twenty mg/kg of Evan's blue were injected intravenously in the vein of the rats' penises; 0.1 ml of each substance tested was inoculated in the subcutaneous tissue. After a 3 hour period the animals were sacrificed and their skins were excised and punched out with a standard steel 2.5 cm in diameter. The specimens were immediately immersed in 8 ml of formamide and taken to a double boiler for 72 hours at 37ºC, to remove the dye. The liquid containing the overflowed dye was filtered, analyzed in the spectrophotometer (620 nm and classified according to the criteria established by Nagem-Filho, Pereira (1976. After statistical analysis, the irritative potential of the substances was ranked as follows: Furacin (severe > Single Bond and Bond 1 (moderate - no significant differences between the dentin bonding systems tested > saline solution (not significant as regards the irritation degree.

  18. Patient-specific cardiovascular progenitor cells derived from integration-free induced pluripotent stem cells for vascular tissue regeneration.

    Science.gov (United States)

    Hu, Jiang; Wang, Yongyu; Jiao, Jiao; Liu, Zhongning; Zhao, Chao; Zhou, Zhou; Zhang, Zhanpeng; Forde, Kaitlynn; Wang, Lunchang; Wang, Jiangang; Baylink, David J; Zhang, Xiao-Bing; Gao, Shaorong; Yang, Bo; Chen, Y Eugene; Ma, Peter X

    2015-12-01

    Tissue-engineered blood vessels (TEBVs) are promising in regenerating a live vascular replacement. However, the vascular cell source is limited, and it is crucial to develop a scaffold that accommodates new type of vascular progenitor cells and facilitates in vivo lineage specification of the cells into functional vascular smooth muscle cells (VSMCs) to regenerate vascular tissue. In the present study, integration-free human induced pluripotent stem cells (hiPSCs) were established from patient peripheral blood mononuclear cells through episomal vector nucleofection of reprogramming factors. The established hiPSCs were then induced into mesoderm-originated cardiovascular progenitor cells (CVPCs) with a highly efficient directed lineage specification method. The derived CVPCs were demonstrated to be able to differentiate into functional VSMCs. Subcutaneous implantation of CVPCs seeded on macroporous nanofibrous poly(l-lactide) scaffolds led to in vivo VSMC lineage specification and matrix deposition inside the scaffolds. In summary, we established integration-free patient-specific hiPSCs from peripheral blood mononuclear cells, derived CVPCs through directed lineage specification, and developed an advanced scaffold for these progenitor cells to further differentiate in vivo into VSMCs and regenerate vascular tissue in a subcutaneous implantation model. This study has established an efficient patient-specific approach towards in vivo regeneration of vascular tissue. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. The use of microtechnology and nanotechnology in fabricating vascularized tissues.

    Science.gov (United States)

    Obregón, Raquel; Ramón-Azcón, Javier; Ahadian, Samad; Shiku, Hitoshi; Bae, Hojae; Ramalingam, Murugan; Matsue, Tomokazu

    2014-01-01

    Tissue engineering (TE) is a multidisciplinary research area that combines medicine, biology, and material science. In recent decades, microtechnology and nanotechnology have also been gradually integrated into this field and have become essential components of TE research. Tissues and complex organs in the body depend on a branched blood vessel system. One of the main objectives for TE researchers is to replicate this vessel system and obtain functional vascularized structures within engineered tissues or organs. With the help of new nanotechnology and microtechnology, significant progress has been made. Achievements include the design of nanoscale-level scaffolds with new functionalities, development of integrated and rapid nanotechnology methods for biofabrication of vascular tissues, discovery of new composite materials to direct differentiation of stem and inducible pluripotent stem cells into the vascular phenotype. Although numerous challenges to replicating vascularized tissue for clinical uses remain, the combination of these new advances has yielded new tools for producing functional vascular tissues in the near future.

  20. A simple tissue model for practicing ultrasound guided vascular ...

    African Journals Online (AJOL)

    Introduction: The use of ultrasound in anaesthetic practice continues to be more established and the use of ultrasound guidance in establishing vascular access is recommended by various groups. We have developed a tissue model for the practice and skills development in ultrasound vascular access. Method: The tissue ...

  1. Comparison of Intra-arterial and Subcutaneous Testicular Hyaluronidase Injection Treatments and the Vascular Complications of Hyaluronic Acid Filler.

    Science.gov (United States)

    Wang, Muyao; Li, Wei; Zhang, Yan; Tian, Weidong; Wang, Hang

    2017-02-01

    Hyaluronidase is a key preventative treatment against vascular complications of hyaluronic acid (HA) filler injection, but the degradation profile of HA to hyaluronidase is limited, and the comparison between intra-arterial and subcutaneous injections of hyaluronidase has not been studied. To evaluate HA degradation to hyaluronidase and compare different treatments between intra-arterial and subcutaneous testicular hyaluronidase injections. The authors observed HA degradation to hyaluronidase in vitro via microscopic examination and particle analysis. Rabbit ears were used for the in vivo study. There were 2 control groups receiving ligation or HA-induced embolism in the arteries, respectively, and 2 intervention groups receiving hyaluronidase treatments in different regions. The laser Doppler blood perfusion monitoring measurements were made at defined time points, and biopsies were taken on Day 2. Nearly, all of the HAs degraded in vitro at the 1-hour time point. Subcutaneous hyaluronidase treatment showed better recovery of blood perfusion. Histology showed severe inflammation in the embolism group and mild inflammation in the intervention groups. A complete enzymatic degradation of HA filler to hyaluronidase needs a certain time, and subcutaneous hyaluronidase treatment may be the better option.

  2. Synergistic actions of hematopoietic and mesenchymal stem/progenitor cells in vascularizing bioengineered tissues.

    Directory of Open Access Journals (Sweden)

    Eduardo K Moioli

    Full Text Available Poor angiogenesis is a major road block for tissue repair. The regeneration of virtually all tissues is limited by angiogenesis, given the diffusion of nutrients, oxygen, and waste products is limited to a few hundred micrometers. We postulated that co-transplantation of hematopoietic and mesenchymal stem/progenitor cells improves angiogenesis of tissue repair and hence the outcome of regeneration. In this study, we tested this hypothesis by using bone as a model whose regeneration is impaired unless it is vascularized. Hematopoietic stem/progenitor cells (HSCs and mesenchymal stem/progenitor cells (MSCs were isolated from each of three healthy human bone marrow samples and reconstituted in a porous scaffold. MSCs were seeded in micropores of 3D calcium phosphate (CP scaffolds, followed by infusion of gel-suspended CD34(+ hematopoietic cells. Co-transplantation of CD34(+ HSCs and CD34(- MSCs in microporous CP scaffolds subcutaneously in the dorsum of immunocompromised mice yielded vascularized tissue. The average vascular number of co-transplanted CD34(+ and MSC scaffolds was substantially greater than MSC transplantation alone. Human osteocalcin was expressed in the micropores of CP scaffolds and was significantly increased upon co-transplantation of MSCs and CD34(+ cells. Human nuclear staining revealed the engraftment of transplanted human cells in vascular endothelium upon co-transplantation of MSCs and CD34(+ cells. Based on additional in vitro results of endothelial differentiation of CD34(+ cells by vascular endothelial growth factor (VEGF, we adsorbed VEGF with co-transplanted CD34(+ and MSCs in the microporous CP scaffolds in vivo, and discovered that vascular number and diameter further increased, likely owing to the promotion of endothelial differentiation of CD34(+ cells by VEGF. Together, co-transplantation of hematopoietic and mesenchymal stem/progenitor cells may improve the regeneration of vascular dependent tissues such as bone

  3. The effect of irradiation on the subcutaneous fatty layer and the perirectal tissue by computed tomography

    International Nuclear Information System (INIS)

    Komatsu, Takashi

    1987-01-01

    Although it has been suggested that the subcutaneous fatty layer is affected by irradiation, the available reports have not been able to find out yet. While, it is reported that the intrapelvic fat increases in volume after whole pelvic irradiation. This paper report a study about the effect of irradiation on subcutaneous fatty layer and intrapelvic fat. The subjects studied were 20 cases treated by whole pelvic irradiation. The x-ray CT film was used to measure the subcutaneous fatty layer and the intrapelvic fat. Three slices, the lower end of sacro-iliac joint, upper end of the femoral head and upper rim of the pubic symphysis, were chosen as the cross section level, and the thickness of subcutaneous fatty layer on 6 points of the body and the presacral space (PS) were measured. Irradiation group was followed by measuring the thickness of fatty layer; before irradiation, 1 month, 3 or 4 months, 6 or 7 months and 12 months after irradiation. At the three of four points, which are included within the irradiation area, the thickness of subcutaneous fatty layer tended to increase after irradiation, though it showed increase or decrease at each period. This tendency was prominent at the lower than the upper slice of the pelvis. The other points, which are out of the irradiation field, showed no significant change and some of them even showed the tendency of decrease. Fatty layer of the presacral space tended to increase following irradiation, but there was no correlation with the irradiation dose. It is considered that the injury of subcutaneous tissue by irradiation results in the disturbance of blood flow and then it accelerates deposition of fat to the irradiated area. (author)

  4. Tissue distribution of enrofloxacin in African clawed frogs (Xenopus laevis) after intramuscular and subcutaneous administration.

    Science.gov (United States)

    Felt, Stephen; Papich, Mark G; Howard, Antwain; Long, Tyler; McKeon, Gabriel; Torreilles, Stéphanie; Green, Sherril

    2013-03-01

    As part of an enrofloxacin pharmacokinetic study, concentrations of enrofloxacin and ciprofloxacin (metabolite) were measured in various tissues (brain, heart, kidney, liver, lung, and spleen) collected from treated (subcutaneous delivery, n = 3; intramuscular delivery, n = 3; untreated controls, n = 2) adult female Xenopus laevis by using HPLC. Enrofloxacin was rapidly absorbed after administration by either route and readily diffused into all sampled tissues. Enrofloxacin and ciprofloxacin were present in the tissue samples collected at 8 h. The highest average tissue concentrations for enrofloxacin were found in kidney, with the lowest concentrations in liver. Ciprofloxacin tissue concentrations paralleled but were always lower than those of enrofloxacin for all time points and tissues except brain and kidney. These results, together with previously published pharmacokinetic data and known minimal inhibitory concentrations of common pathogenic bacteria, provide a strong evidence-based rationale for choosing enrofloxacin to treat infectious diseases in X. laevis.

  5. Increased bioactive lipids content in human subcutaneous and epicardial fat tissue correlates with insulin resistance.

    Science.gov (United States)

    Błachnio-Zabielska, Agnieszka U; Baranowski, Marcin; Hirnle, Tomasz; Zabielski, Piotr; Lewczuk, Anna; Dmitruk, Iwona; Górski, Jan

    2012-12-01

    Obesity is a risk factor for metabolic diseases. Intramuscular lipid accumulation of ceramides, diacylglycerols, and long chain acyl-CoA is responsible for the induction of insulin resistance. These lipids are probably implicated in obesity-associated insulin resistance not only in skeletal muscle but also in fat tissue. Only few data are available about ceramide content in human subcutaneous adipose tissue. However, there are no data on DAG and LCACoA content in adipose tissue. The aim of our study was to measure the lipids content in human SAT and epicardial adipose tissue we sought to determine the bioactive lipids content by LC/MS/MS in fat tissue from lean non-diabetic, obese non-diabetic, and obese diabetic subjects and test whether the lipids correlate with HOMA-IR. We found, that total content of measured lipids was markedly higher in OND and OD subjects in both types of fat tissue (for all p lipids content is greater in subcutaneous and epicardial fat tissue and the particular lipids content positively correlates with HOMA-IR.

  6. Fetal subcutaneous tissue measurements in pregnancy as a predictor of neonatal total body composition.

    Science.gov (United States)

    O'Connor, Clare; Doolan, Anne; O'Higgins, Amy; Segurado, Ricardo; Sheridan-Pereiraet, Margaret; Turner, Michael J; Stuart, Bernard; Kennelly, Máireád M

    2014-10-01

    The purpose of this study was to examine the relationship between prenatal measures of subcutaneous tissue as surrogate markers of fetal nutritional status and correlate them with neonatal total body composition. This prospective longitudinal study of 62 singleton pregnancies obtained serial biometry and subcutaneous tissue measurements at 28, 33 and 38 weeks gestation. These measurements were then correlated with neonatal body composition, which was analysed using the PEAPOD™ Infant Body Composition System (Cosmed USA, Concord, CA, USA). At 38 weeks gestation, fetal abdominal subcutaneous tissue (FAST) in millimetres was significantly associated with infant fat mass at delivery (+64 g per mm of FAST, p < 0.001). Thigh fat (TF) at 28 weeks gestation was associated with infant fat mass at delivery (+79 g/mm TF, p = 0.023). TF at 38 weeks gestation was associated with infant fat mass (+63/mm TF, p = 0.004). TF and FAST at 38 weeks were also predictive of both birth weight and increased abdominal circumference (AC) (p = 0.001) with FAST measurement predicting an additional 5.7 mm in AC per millimetre of FAST (p = 0.002) and TF predicting an additional 6.9 mm per mm of TF (p = 0.002). We believe that this study further validates the use of prenatal measures of subcutaneous tissue and may help to highlight fetuses at risk of newborn adiposity and metabolic syndrome. © 2014 John Wiley & Sons, Ltd.

  7. Subcutaneous Injections

    DEFF Research Database (Denmark)

    Thomsen, Maria

    This thesis is about visualization and characterization of the tissue-device interaction during subcutaneous injection. The tissue pressure build-up during subcutaneous injections was measured in humans. The insulin pen FlexTouchr (Novo Nordisk A/S) was used for the measurements and the pressure ...

  8. Free Fatty Acid Storage in Human Visceral and Subcutaneous Adipose Tissue

    Science.gov (United States)

    Ali, Asem H.; Koutsari, Christina; Mundi, Manpreet; Stegall, Mark D.; Heimbach, Julie K.; Taler, Sandra J.; Nygren, Jonas; Thorell, Anders; Bogachus, Lindsey D.; Turcotte, Lorraine P.; Bernlohr, David; Jensen, Michael D.

    2011-01-01

    OBJECTIVE Because direct adipose tissue free fatty acid (FFA) storage may contribute to body fat distribution, we measured FFA (palmitate) storage rates and fatty acid (FA) storage enzymes/proteins in omental and abdominal subcutaneous fat. RESEARCH DESIGN AND METHODS Elective surgery patients received a bolus of [1-14C]palmitate followed by omental and abdominal subcutaneous fat biopsies to measure direct FFA storage. Long chain acyl-CoA synthetase (ACS) and diacylglycerol acyltransferase activities, CD36, fatty acid-binding protein, and fatty acid transport protein 1 were measured. RESULTS Palmitate tracer storage (dpm/g adipose lipid) and calculated palmitate storage rates were greater in omental than abdominal subcutaneous fat in women (1.2 ± 0.8 vs. 0.7 ± 0.4 μmol ⋅ kg adipose lipid−1 ⋅ min−1, P = 0.005) and men (0.7 ± 0.2 vs. 0.2 ± 0.1, P < 0.001), and both were greater in women than men (P < 0.0001). Abdominal subcutaneous adipose tissue palmitate storage rates correlated with ACS activity (women: r = 0.66, P = 0.001; men: r = 0.70, P = 0.007); in men, CD36 was also independently related to palmitate storage rates. The content/activity of FA storage enzymes/proteins in omental fat was dramatically lower in those with more visceral fat. In women, only omental palmitate storage rates were correlated (r = 0.54, P = 0.03) with ACS activity. CONCLUSIONS Some adipocyte FA storage factors correlate with direct FFA storage, but sex differences in this process in visceral fat do not account for sex differences in visceral fatness. The reduced storage proteins in those with greater visceral fat suggest that the storage factors we measured are not a predominant cause of visceral adipose tissue accumulation. PMID:21810594

  9. Omega-6 Fat Supplementation Alters Lipogenic Gene Expression in Bovine Subcutaneous Adipose Tissue

    OpenAIRE

    Joseph, Sandeep J.; Pratt, Scott L.; Pavan, Enrique; Rekaya, Romdhane; Duckett., Susan K.

    2010-01-01

    In contrast to rodents, adipose tissue serves as the major site of lipogenesis and storage reservoir for excess dietary energy in cattle. Research in rodents shows that adding corn oil (57% C18:2 n-6) to the diet alters lipogenesis enhancing deposition of omega-6 fatty acids. This study examines changes in lipogenic gene expression of subcutaneous adipose tissue from eighteen steers fed increasing levels of dietary corn oil [0 (NONE), 0.31 kg/d (MED) and 0.62 kg/d (HI)] using two platforms, q...

  10. Magnetic resonance imaging of pediatric soft-tissue vascular anomalies

    International Nuclear Information System (INIS)

    Navarro, Oscar M.

    2016-01-01

    Magnetic resonance (MR) imaging can be used in the management of pediatric soft-tissue vascular anomalies for diagnosing and assessing extent of lesions and for evaluating response to therapy. MR imaging studies often involve a combination of T1- and T2-weighted images in addition to MR angiography and fat-suppressed post-contrast sequences. The MR imaging features of these vascular anomalies when combined with clinical findings can aid in diagnosis. In cases of complex vascular malformations and syndromes associated with vascular anomalies, MR imaging can be used to evaluate accompanying soft-tissue and bone anomalies. This article reviews the MR imaging protocols and appearances of the most common pediatric soft-tissue vascular anomalies. (orig.)

  11. [Subcutaneous transplants of juvenile rat testicular tissues continue to develop and secret androgen in adult rats].

    Science.gov (United States)

    Yu, Zhou; Wang, Tong; Cui, Jiangbo; Song, Yajuan; Ma, Xianjie; Su, Yingjun; Peng, Pai

    2017-12-01

    Objective To explore the effects of subcutaneous microenvironment of adult rats on survival, development and androgen secretion of Leydig cells of transplanted juvenile rat testis. Methods Healthy adult SD rats were randomly divided into control group, sham group, castrated group and non-castrated group. Rats in the control group were kept intact, no testis was transplanted subcutaneously after adult recipients were castrated in the sham group; 5-7-day juvenile rat testes were transplanted subcutaneously in the castrated group, with one testis per side; Testes resected from juvenile rats were directly transplanted subcutaneously on both sides of the recipients in the non-castrated group. The grafts were obtained and weighed 4 weeks later. Then the histological features of the grafts were examined by HE staining; the expression and distribution of hydroxysteroid 17-beta dehydrogenase 1 (HSD-17β1) were investigated by immunohistochemistry; and the serum androgen level was determined by ELISA. Results The average mass of grafts obtained from the castrated group was significantly higher than that of the non-castrated group. Immunohistochemistry indicated that Leydig cells were visible in the tissues from both the castrated and non-castrated groups, but the number of HSD-17β1-posotive cells in the castrated group was larger than that in the non-castrated group. ELISA results showed that the serum androgen level was higher in the control group and non-castrated group than in the sham group and castrated group, and compared with the sham group, the serum androgen level in the castrated group was significantly higher. Conclusion The juvenile rat testis subcutaneously transplanted could further develop under the adult recipient rat skin, and the Leydig cells of grafts harbored the ability to produce and secret androgen.

  12. Computer tomographic investigation of subcutaneous adipose tissue as an indicator of body composition

    DEFF Research Database (Denmark)

    McEvoy, Fintan; Madsen, Mads T.; Nielsen, Mai B.

    2009-01-01

    Background Modern computer tomography (CT) equipment can be used to acquire whole-body data from large animals such as pigs in minutes or less. In some circumstances, computer assisted analysis of the resulting image data can identify and measure anatomical features. The thickness of subcutaneous...... adipose tissue at a specific site measured by ultrasound, is used in the pig industry to assess adiposity and inform management decisions that have an impact on reproduction, food conversion performance and sow longevity. The measurement site, called "P2", is used throughout the industry. We propose...... and expressed as a proportion of total volume (fat-index). A computer algorithm was used to determined 10,201 subcutaneous adipose thickness measurements in each pig for each scan. From these data, sites were selected where correlation with fat-index was optimal. Results Image analysis correctly identified...

  13. Proinflammatory tissue response and recovery of adipokines during 4 days of subcutaneous large-pore microdialysis

    DEFF Research Database (Denmark)

    Clausen, Trine Schnedler; Kaastrup, Peter; Stallknecht, Bente

    2009-01-01

    was originally designed for sampling of small molecules but recently the availability of catheters with large-pore membranes has made it possible to recover larger molecules such as adipokines. The present study investigated tissue response towards large-pore microdialysis catheters inserted into human SAT for 4......INTRODUCTION: Subcutaneous adipose tissue (SAT) is increasingly being recognized as a highly active tissue secreting adipokines involved in many physiological and pathophysiological processes. Microdialysis is a technique used for in vivo sampling of interstitial fluid from e.g. SAT. The technique......: Insertion of a large-pore microdialysis catheter into human SAT results in tissue trauma leading to changes in the interstitial concentrations of IL-1beta, IL-6, IL-8, MCP-1, TNF-alpha and adiponectin....

  14. Visfatin mRNA expression in human subcutaneous adipose tissue is regulated by exercise

    DEFF Research Database (Denmark)

    Frydelund-Larsen, Lone; Åkerström, Thorbjörn; Nielsen, Søren

    2006-01-01

    in abdominal subcutaneous adipose tissue and skeletal muscle biopsies obtained from healthy young men at time points 0, 3, 4.5, 6, 9, and 24 h in relation to either 3 h of ergometer cycle exercise at 60% of Vo(2 max) or rest. Adipose tissue visfatin mRNA expression increased threefold at the time points 3, 4......Visfatin [pre-beta-cell colony-enhancing factor (PBEF)] is a novel adipokine that is produced by adipose tissue, skeletal muscle, and liver and has insulin-mimetic actions. Regular exercise enhances insulin sensitivity. In the present study, we therefore examined visfatin mRNA expression.......5, and 6 h in response to exercise (n = 8) compared with preexercise samples and compared with the resting control group (n = 7, P = 0.001). Visfatin mRNA expression in skeletal muscle was not influenced by exercise. The exercise-induced increase in adipose tissue visfatin was, however, not accompanied...

  15. Pattern of Bone Generation after Irradiation in Vascularized Tissue Engineered Constructs.

    Science.gov (United States)

    Eweida, Ahmad; Fathi, Ibrahim; Eltawila, Ahmed M; Elsherif, Ahmad M; Elkerm, Yasser; Harhaus, Leila; Kneser, Ulrich; Sakr, Mahmoud F

    2018-02-01

     Regenerative medicine modalities provide promising alternatives to conventional reconstruction techniques but are still deficient after malignant tumor excision or irradiation due to defective vascularization.  We investigated the pattern of bone formation in axially vascularized tissue engineering constructs (AVTECs) after irradiation in a study that mimics the clinical scenario after head and neck cancer. Heterotopic bone generation was induced in a subcutaneously implanted AVTEC in the thigh of six male New Zealand rabbits. The tissue construct was made up of Nanobone (Artoss GmbH; Rostock, Germany) granules mixed with autogenous bone marrow and 80 μL of bone morphogenic protein-2 at a concentration of 1.5 μg/μL. An arteriovenous loop was created microsurgically between the saphenous vessels and implanted in the core of the construct to induce axial vascularization. The constructs were subjected to external beam irradiation on postoperative day 20 with a single dose of 15 Gy. The constructs were removed 20 days after irradiation and subjected to histological and immunohistochemical analysis for vascularization, bone formation, apoptosis, and cellular proliferation.  The vascularized constructs showed homogenous vascularization and bone formation both in their central and peripheral regions. Although vascularity, proliferation, and apoptosis were similar between central and peripheral regions of the constructs, significantly more bone was formed in the central regions of the constructs.  The study shows for the first time the pattern of bone formation in AVTECs after irradiation using doses comparable to those applied after head and neck cancer. Axial vascularization probably enhances the osteoinductive properties in the central regions of AVTECs after irradiation. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  16. CDKN2B expression and subcutaneous adipose tissue expandability: Possible influence of the 9p21 atherosclerosis locus

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, Per-Arne; Wahlstrand, Björn; Olsson, Maja [Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg (Sweden); Froguel, Philippe; Falchi, Mario [Department of Genomics of Common Disease, School of Public Health, Imperial College London (United Kingdom); Bergman, Richard N. [Diabetes and Obesity Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA (United States); McTernan, Philip G. [Division of Metabolic and Vascular Health, Warwick Medical School, University of Warwick, Coventry (United Kingdom); Hedner, Thomas; Carlsson, Lena M.S. [Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg (Sweden); Jacobson, Peter, E-mail: peter.jacobson@medfak.gu.se [Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg (Sweden)

    2014-04-18

    Highlights: • The tumor suppressor gene CDKN2B is highly expressed in human adipose tissue. • Risk alleles at the 9p21 locus modify CDKN2B expression in a BMI-dependent fashion. • There is an inverse relationship between expression of CDKN2B and adipogenic genes. • CDKN2B expression influences to postprandial triacylglycerol clearance. • CDKN2B expression in adipose tissue is linked to markers of hepatic steatosis. - Abstract: Risk alleles within a gene desert at the 9p21 locus constitute the most prevalent genetic determinant of cardiovascular disease. Previous research has demonstrated that 9p21 risk variants influence gene expression in vascular tissues, yet the biological mechanisms by which this would mediate atherosclerosis merits further investigation. To investigate possible influences of this locus on other tissues, we explored expression patterns of 9p21-regulated genes in a panel of multiple human tissues and found that the tumor suppressor CDKN2B was highly expressed in subcutaneous adipose tissue (SAT). CDKN2B expression was regulated by obesity status, and this effect was stronger in carriers of 9p21 risk alleles. Covariation between expression of CDKN2B and genes implemented in adipogenesis was consistent with an inhibitory effect of CDKN2B on SAT proliferation. Moreover, studies of postprandial triacylglycerol clearance indicated that CDKN2B is involved in down-regulation of SAT fatty acid trafficking. CDKN2B expression in SAT correlated with indicators of ectopic fat accumulation, including markers of hepatic steatosis. Among genes regulated by 9p21 risk variants, CDKN2B appears to play a significant role in the regulation of SAT expandability, which is a strong determinant of lipotoxicity and therefore might contribute to the development of atherosclerosis.

  17. Biocompatibility of a new nanomaterial based on calcium silicate implanted in subcutaneous connective tissue of rats

    Directory of Open Access Journals (Sweden)

    Petrović Violeta

    2012-01-01

    Full Text Available The aim of the study was to investigate rat connective tissue response to a new calcium silicate system 7, 15, 30 and 60 days after implantation. Twenty Wistar albino male rats received two tubes half-filled with a new calcium silicate system (NCSS or MTA in subcutaneous tissue. The empty half of the tubes served as controls. Five animals were sacrificed after 7, 15, 30 and 60 days and samples of the subcutaneous tissue around implanted material were submitted to histological analysis. The intensity of inflammation was evaluated based on the number of inflammatory cells present. Statistical analysis was performed using one way ANOVA and Holm Sidak's multiple comparison tests. Mild to moderate inflammatory reaction was observed after 7, 15 and 30 days around a NCSS while mild inflammatory reaction was detected after 60 days of implantation. In the MTA group, mild to moderate inflammatory reaction was found after 7 and 15 days while mild inflammatory reaction was present after 30 and 60 days. There was no statistically significant difference in the intensity of inflammatory reactions between the tested materials and control groups in any experimental period (ANOVA p>0.05. Regarding the intensity of inflammatory reactions at different experimental periods, a statistically significant difference was observed between 7 and 30 days, 7 and 60 days and 15 to 60 days for both materials. For the controls, a statistically significant difference was found between 7 and 60 days and 15 and 60 days of the experiment (Holm Sidak < p 0.001. Subcutaneous tissue of rats showed good tolerance to a new calcium silicate system. Inflammatory reaction was similar to that caused by MTA. [Projekat Ministarstva nauke Republike Srbije, br. 172026

  18. Three cases of systemic amyloidosis successfully diagnosed by subcutaneous fat tissue biopsy of the hip

    Directory of Open Access Journals (Sweden)

    Arahata M

    2016-08-01

    Full Text Available Masahisa Arahata,1 Shigeru Shimadoi,1 Satosi Yamatani,1 Shin-ichi Hayashi,2 Shigeharu Miwa,2 Hidesaku Asakura,3 Shinji Nakao4 1Department of Internal Medicine, Nanto Municipal Hospital, Nanto, 2Department of Diagnostic Pathology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 3Department of Internal Medicine (III, 4Department of Cellular Transplantation Biology, Division of Cancer Medicine, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan Abstract: Fine-needle aspiration biopsy of the abdominal fat pad is considered to be a minimally invasive procedure for diagnosing systemic amyloidosis. However, this procedure is sometimes difficult and can be dangerous for elderly patients whose abdominal fat layer is thin because of malnutrition. In such cases, alternative diagnostic methods are required. We report three elderly patients with heart failure complicated by malnutrition. In all cases, electrocardiogram showed low voltage in the limb leads and a pseudoinfarct pattern in the chest leads, and echocardiography showed left ventricular wall thickening with granular sparkling appearance. These patients were suspected of having amyloid cardiomyopathy but could not undergo myocardial biopsies because of their poor conditions. After failed attempts at biopsy of the abdominal fat pad or the other organs, subcutaneous fat tissue biopsy over the hip led to the diagnosis of systemic amyloidosis with cardiomyopathy. The resultant diagnosis guided us to choose the appropriate treatment for the patients. This article illustrates that subcutaneous fat tissue biopsy of the hip could be a useful procedure for diagnosing systemic amyloidosis in elderly patients, particularly when a fat tissue biopsy of the abdomen is associated with a high risk of complications because of malnutrition. Keywords: systemic amyloidosis, amyloid cardiomyopathy, fine-needle aspiration biopsy, subcutaneous fat tissue, hip

  19. Vitamin D3 increases in abdominal subcutaneous fat tissue after supplementation with vitamin D3

    DEFF Research Database (Denmark)

    Didriksen, Allan; Burild, Anders; Jakobsen, Jette

    2015-01-01

    stored in all adipose tissue in the body, the median body store was 6.6 mg vitamin D-3 and 0.12 mg 25(OH)D-3 in those given vitamin D-3. Conclusions: Subcutaneous adipose tissue may store large amounts of vitamin D-3. The clinical importance of this storage needs to be determined.......Objective: The objective was to assess the amount of vitamin D-3 stored in adipose tissue after long-term supplementation with high dose vitamin D-3. Design: A cross-sectional study on 29 subjects with impaired glucose tolerance who had participated in a randomized controlled trial with vitamin D-3...... 20 000 IU (500 mu g) per week vs placebo for 3-5 years. Methods: Abdominal subcutaneous fat tissue was obtained by needle biopsy for the measurements of vitamin D-3 and 25-hydroxyvitamin D-3 (25(OH)D-3). Body fat was measured with dual-energy X-ray absorptiometry, and serum 25(OH)D-3 level...

  20. Design Approaches to Myocardial and Vascular Tissue Engineering.

    Science.gov (United States)

    Akintewe, Olukemi O; Roberts, Erin G; Rim, Nae-Gyune; Ferguson, Michael A H; Wong, Joyce Y

    2017-06-21

    Engineered tissues represent an increasingly promising therapeutic approach for correcting structural defects and promoting tissue regeneration in cardiovascular diseases. One of the challenges associated with this approach has been the necessity for the replacement tissue to promote sufficient vascularization to maintain functionality after implantation. This review highlights a number of promising prevascularization design approaches for introducing vasculature into engineered tissues. Although we focus on encouraging blood vessel formation within myocardial implants, we also discuss techniques developed for other tissues that could eventually become relevant to engineered cardiac tissues. Because the ultimate solution to engineered tissue vascularization will require collaboration between wide-ranging disciplines such as developmental biology, tissue engineering, and computational modeling, we explore contributions from each field.

  1. Cell sheet engineering using the stromal vascular fraction of adipose tissue as a vascularization strategy

    OpenAIRE

    Costa, M.; Cerqueira, Mariana Teixeira; Santos, T. C.; Marques, Belém Sampaio; Ludovico, Paula; Marques, A. P.; Pirraco, Rogério P.; Reis, R. L.

    2017-01-01

    Current vascularization strategies for Tissue Engineering constructs, in particular cell sheet-based, are limited by time-consuming and expensive endothelial cell isolation and/or by the complexity of using extrinsic growth factors. Herein, we propose an alternative strategy using angiogenic cell sheets (CS) obtained from the stromal vascular fraction (SVF) of adipose tissue that can be incorporated into more complex constructs. Cells from the SVF were cultured in normoxic and hypoxic conditi...

  2. Engineering vascular development for tissue regeneration

    NARCIS (Netherlands)

    Rivron, N.C.

    2010-01-01

    Tissue engineering and regenerative medicine aim at restoring a damaged tissue by recreating in vitro or promoting its regeneratin in vovo. The vasculature is central to these therapies for the irrigation of the defective tissue (oxygen, nutrients or circulating regenerative cells) and as an

  3. Comparison of fatty acid composition of subcutaneous, pericardial and epicardial adipose tissue and atrial tissue in patients with heart disease

    DEFF Research Database (Denmark)

    Eschen, Rikke Bülow; Gu, Jiwei; Andreasen, Jan Jesper

    2016-01-01

    (EPA) and docosahexaenoic acid (DHA), from three different adipose tissue compartments [epicardial (EAT), pericardial (PAT) and subcutaneous (SAT)]. Furthermore, we studied the correlation between the content of EPA and DHA in these compartments and in atrial tissue (AT). METHODS We obtained AT from......OBJECTIVES The content in adipose tissue of marine n-3 polyunsaturated fatty acids (PUFAs) is a marker of long-term fish consumption and data suggest an antiarrhythmic effect of n-3 PUFAs. We investigated the correlation between adipose tissue content of the major n-3 PUFAs, eicosapentaenoic acid...... auricles, EAT above the right ventricle, PAT, and SAT below the sternum from 50 patients undergoing cardiac surgery. Samples were frozen at -80°C and the content of n-3 PUFAs determined by gas chromatography with results given in relative weight%. RESULTS EPA and DHA were significantly correlated in EAT...

  4. Metformin Mitigates Fibrosis and Glucose Intolerance Induced by Doxorubicin in Subcutaneous Adipose Tissue

    Directory of Open Access Journals (Sweden)

    Luana A. Biondo

    2018-05-01

    Full Text Available Doxorubicin (DX is a chemotherapeutic drug that is used in clinical practice that promotes deleterious side effects in non-tumor tissues such as adipose tissue. We showed that DX leads to extensive damage in adipose tissue via a disruption in 5′-adenosine monophosphate-activated protein kinase (AMPK and PPAR-gamma signaling. Thus, we investigated whether co-treatment with the biguanide drug metformin (MET could prevent the side effects of DX through the activation of AMPK in adipose tissue. The goal of the present study was to verify the effects of DX and adjuvant MET treatment in subcutaneous adipose tissue (SAT and to determine whether MET could protect against chemotherapy-induced side effects. C57/BL6 mice received DX hydrochloride (2.5 mg/kg intraperitoneally 2 times per week for 2 weeks (DX, concomitantly or not, with MET administration (300 mg/kg oral daily (DX + MET. The control group (CTRL was pair-fed according to the food consumption of the DX group. After euthanasia, adipose tissue fat pads were collected, and SAT was extracted so that adipocytes could be isolated. Glucose uptake was then measured, and histological, gene, and protein analyses were performed. One-way analysis of variance was also performed, and significance was set to 5%. DX reduced retroperitoneal fat mass and epididymal pads and decreased glycemia. In cultured primary subcutaneous adipocytes, mice in the DX group had lower glucose uptake when stimulated with insulin compared with mice in the CTRL group. Adipocytes in the DX group exhibited a reduced area, perimeter, and diameter; decreased adiponectin secretion; and decreased fatty acid synthase gene expression. SAT from MET-treated mice also showed a reduction in collagen deposition. Treatment with MET prevented fibrosis and restored glucose uptake in SAT after insulin stimulation, yet the drug was unable to prevent other side effects of DX such as tissue loss and inflammatory response.

  5. Postprandial Responses to Lipid and Carbohydrate Ingestion in Repeated Subcutaneous Adipose Tissue Biopsies in Healthy Adults

    Directory of Open Access Journals (Sweden)

    Aimee L. Dordevic

    2015-07-01

    Full Text Available Adipose tissue is a primary site of meta-inflammation. Diet composition influences adipose tissue metabolism and a single meal can drive an inflammatory response in postprandial period. This study aimed to examine the effect lipid and carbohydrate ingestion compared with a non-caloric placebo on adipose tissue response. Thirty-three healthy adults (age 24.5 ± 3.3 year (mean ± standard deviation (SD; body mass index (BMI 24.1 ± 3.2 kg/m2, were randomised into one of three parallel beverage groups; placebo (water, carbohydrate (maltodextrin or lipid (dairy-cream. Subcutaneous, abdominal adipose tissue biopsies and serum samples were collected prior to (0 h, as well as 2 h and 4 h after consumption of the beverage. Adipose tissue gene expression levels of monocyte chemoattractant protein-1 (MCP-1, interleukin 6 (IL-6 and tumor necrosis factor-α (TNF-α increased in all three groups, without an increase in circulating TNF-α. Serum leptin (0.6-fold, p = 0.03 and adipose tissue leptin gene expression levels (0.6-fold, p = 0.001 decreased in the hours following the placebo beverage, but not the nutrient beverages. Despite increased inflammatory cytokine gene expression in adipose tissue with all beverages, suggesting a confounding effect of the repeated biopsy method, differences in metabolic responses of adipose tissue and circulating adipokines to ingestion of lipid and carbohydrate beverages were observed.

  6. Subcutaneous tissue reaction to castor oil bean and calcium hydroxide in rats

    Directory of Open Access Journals (Sweden)

    Samira Esteves Afonso Camargo

    2010-06-01

    Full Text Available Castor oil bean cement (COB is a new material that has been used as an endodontic sealer, and is a candidate material for direct pulp capping. OBJECTIVE: The purpose of this study was to evaluate the biocompatibility of a new formulation of COB compared to calcium hydroxide cement (CH and a control group without any material, in the subcutaneous tissue of rats. MATERIAL AND METHODS: The materials were prepared, packed into polyethylene tubes, and implanted in the rat dorsal subcutaneous tissue. Animals were sacrificed at the 7th and 50th days after implantation. A quantitative analysis of inflammatory cells was performed and data were subjected to ANOVA and Tukey's tests at 5% significance level. RESULTS: Comparing the mean number of inflammatory cells between the two experimental groups (COB and CH and the control group, statistically significant difference (p=0.0001 was observed at 7 and 50 days. There were no significant differences (p=0.111 between tissue reaction to CH (382 inflammatory cells and COB (330 inflammatory cells after 7 days. After 50 days, significantly more inflammatory cells (p=0.02 were observed in the CH group (404 inflammatory cells than in the COB group (177 inflammatory cells. CONCLUSIONS: These results demonstrate that the COB cement induces less inflammatory response within long periods.

  7. Thermogenic response to epinephrine in the forearm and abdominal subcutaneous adipose tissue

    DEFF Research Database (Denmark)

    Simonsen, L; Bülow, J; Madsen, Jan Lysgård

    1992-01-01

    Whole body energy expenditure, thermogenic and metabolic changes in the forearm, and intercellular glucose concentrations in subcutaneous adipose tissue on the abdomen determined by microdialysis were measured during epinephrine infusion in healthy subjects. After a control period, epinephrine...... was infused at rates of 0.2 and 0.4 nmol.kg-1 x min-1. Whole body resting energy expenditure was 4.36 +/- 0.56 (SD) kJ/min. Energy expenditure increased to 5.14 +/- 0.74 and 5.46 +/- 0.79 kJ/min, respectively (P

  8. Vascular tissue engineering by computer-aided laser micromachining.

    Science.gov (United States)

    Doraiswamy, Anand; Narayan, Roger J

    2010-04-28

    Many conventional technologies for fabricating tissue engineering scaffolds are not suitable for fabricating scaffolds with patient-specific attributes. For example, many conventional technologies for fabricating tissue engineering scaffolds do not provide control over overall scaffold geometry or over cell position within the scaffold. In this study, the use of computer-aided laser micromachining to create scaffolds for vascular tissue networks was investigated. Computer-aided laser micromachining was used to construct patterned surfaces in agarose or in silicon, which were used for differential adherence and growth of cells into vascular tissue networks. Concentric three-ring structures were fabricated on agarose hydrogel substrates, in which the inner ring contained human aortic endothelial cells, the middle ring contained HA587 human elastin and the outer ring contained human aortic vascular smooth muscle cells. Basement membrane matrix containing vascular endothelial growth factor and heparin was to promote proliferation of human aortic endothelial cells within the vascular tissue networks. Computer-aided laser micromachining provides a unique approach to fabricate small-diameter blood vessels for bypass surgery as well as other artificial tissues with complex geometries.

  9. Vascularization of soft tissue engineering constructs

    DEFF Research Database (Denmark)

    Pimentel Carletto, Rodrigo

    with mechanical properties in the range of soft tissues has not been fully achieved. My project focused on the fabrication and the active perfusion of hydrogel constructs with multi-dimensional vasculature and controlled mechanical properties targeting soft tissues. Specifically, the initial part of the research...... nanotechnology-based paradigm for engineering vascularised liver tissue for transplantation”) and the Danish National Research Foundation and Villum Foundation’s Center for Intelligent Drug delivery and sensing Using microcontainers and Nanomechanics (Danish National Research Foundation (DNRF122)....

  10. Engineering the mechanical and biological properties of nanofibrous vascular grafts for in situ vascular tissue engineering.

    Science.gov (United States)

    Henry, Jeffrey J D; Yu, Jian; Wang, Aijun; Lee, Randall; Fang, Jun; Li, Song

    2017-08-17

    Synthetic small diameter vascular grafts have a high failure rate, and endothelialization is critical for preventing thrombosis and graft occlusion. A promising approach is in situ tissue engineering, whereby an acellular scaffold is implanted and provides stimulatory cues to guide the in situ remodeling into a functional blood vessel. An ideal scaffold should have sufficient binding sites for biomolecule immobilization and a mechanical property similar to native tissue. Here we developed a novel method to blend low molecular weight (LMW) elastic polymer during electrospinning process to increase conjugation sites and to improve the mechanical property of vascular grafts. LMW elastic polymer improved the elasticity of the scaffolds, and significantly increased the amount of heparin conjugated to the micro/nanofibrous scaffolds, which in turn increased the loading capacity of vascular endothelial growth factor (VEGF) and prolonged the release of VEGF. Vascular grafts were implanted into the carotid artery of rats to evaluate the in vivo performance. VEGF treatment significantly enhanced endothelium formation and the overall patency of vascular grafts. Heparin coating also increased cell infiltration into the electrospun grafts, thus increasing the production of collagen and elastin within the graft wall. This work demonstrates that LMW elastic polymer blending is an approach to engineer the mechanical and biological property of micro/nanofibrous vascular grafts for in situ vascular tissue engineering.

  11. Subcutaneous and gonadal adipose tissue transcriptome differences in lean and obese female dogs.

    Science.gov (United States)

    Grant, Ryan W; Vester Boler, Brittany M; Ridge, Tonya K; Graves, Thomas K; Swanson, Kelly S

    2013-12-01

    Canine obesity leads to shortened life span and increased disease incidence. Adipose tissue depots are known to have unique metabolic and gene expression profiles in rodents and humans, but few comparisons of depot gene expression have been performed in the dog. Using microarray technology, our objective was to identify differentially expressed genes and enriched functional pathways between subcutaneous and gonadal adipose of lean and obese dogs to better understand the pathogenesis of obesity in the dog. Because no depot × body weight status interactions were identified in the microarray data, depot differences were the primary focus. A total of 946 and 703 transcripts were differentially expressed (FDR P metabolism and synthesis and degradation of ketone bodies. We have identified a core set of genes differentially expressed between subcutaneous and gonadal adipose tissue in dogs regardless of body weight. These genes contribute to depot-specific differences in immune function, extracellular matrix remodeling and lysosomal function and may contribute to the physiological differences noted between depots. © 2013 The Authors, Animal Genetics © 2013 Stichting International Foundation for Animal Genetics.

  12. Interstitial Matrix Prevents Therapeutic Ultrasound From Causing Inertial Cavitation in Tumescent Subcutaneous Tissue.

    Science.gov (United States)

    Koulakis, John P; Rouch, Joshua; Huynh, Nhan; Dubrovsky, Genia; Dunn, James C Y; Putterman, Seth

    2018-01-01

    We search for cavitation in tumescent subcutaneous tissue of a live pig under application of pulsed, 1-MHz ultrasound at 8 W cm -2 spatial peak and pulse-averaged intensity. We find no evidence of broadband acoustic emission indicative of inertial cavitation. These acoustic parameters are representative of those used in external-ultrasound-assisted lipoplasty and in physical therapy and our null result brings into question the role of cavitation in those applications. A comparison of broadband acoustic emission from a suspension of ultrasound contrast agent in bulk water with a suspension injected subcutaneously indicates that the interstitial matrix suppresses cavitation and provides an additional mechanism behind the apparent lack of in-vivo cavitation to supplement the absence of nuclei explanation offered in the literature. We also find a short-lived cavitation signal in normal, non-tumesced tissue that disappears after the first pulse, consistent with cavitation nuclei depletion in vivo. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  13. Concentrations of danofloxacin 18% solution in plasma, milk and tissues after subcutaneous injection in dairy cows

    International Nuclear Information System (INIS)

    Mestorino, N.; Marchetti, M.L.; Turic, E.; Pesoa, J.; Errecalde, J.

    2009-01-01

    Danofloxacin is a fluoroquinolone developed for use in veterinary medicine. Its concentrations and pharmacokinetic profile in plasma, milk and tissues of lactating dairy cows were determined, and its milk withdrawal time (WT) calculated. Twenty-one dairy cows received a single subcutaneous administration of 18% mesylate danofloxacin salt (6 mg kg -1 ). Plasma and milk samples were obtained at different times until 48 h. Groups of three animals were sacrificed at different post-administration times and tissue samples (mammary gland, uterus, duodenum, jejunum, ileum, colon and mesenteric lymph nodes) obtained. Danofloxacin concentrations were determined by liquid chromatography with fluorescence detection. The milk WT was calculated by the Time to Safe Concentration method (Software WTM 1.4, EMEA). Danofloxacin was rapidly absorbed and its distribution from plasma to all sampled tissues and milk was extensive. Milk and tissues concentrations were several times above those found in plasma. Plasma area under the curve (AUCp) was 9.69 μg h mL -1 and its elimination half life (T β 1/2 ) was 12.53 h. AUC values for the various tissues and milk greatly exceeded AUCp. T β 1/2 from milk and tissues ranged between 4.57 and 21.91 h and the milk withdrawal time was 73.48 h. The reported results support the potential use of danofloxacin in the treatment of mastitis and other infections in milk cows with 3 days of withdrawal

  14. Rat subcutaneous tissue response to MTA Fillapex® and Portland cement.

    Science.gov (United States)

    Marques, Nádia Carolina Teixeira; Lourenço Neto, Natalino; Fernandes, Ana Paula; Rodini, Camila de Oliveira; Duarte, Marco Antônio Hungaro; Oliveira, Thais Marchini

    2013-01-01

    The aim of this study was to evaluate the response of rat subcutaneous tissue to MTA Fillapex® (Angelus), an experimental root canal filling material based on Portland cement and propylene glycol (PCPG), and a zinc oxide, eugenol and iodoform (ZOEI) paste. These materials were placed in polyethylene tubes and implanted into the dorsal connective tissue of Wistar rats for 7 and 15 days. The specimens were stained with hematoxylin and eosin, and evaluated regarding inflammatory reaction parameters by optical microscopy. The intensity of inflammatory response against the sealers was analyzed by two blinded and previously calibrated examiners for all experimental periods (kappa=0.96). The histological evaluation showed that all materials caused a moderate inflammatory reaction at 7 days, which subsided with time. A greater inflammatory reaction was observed at 7 days in the tubes filled with ZOEI paste. Tubes filled with MTA Fillapex presented some giant cells, macrophages and lymphocytes after 7 days. At 15 days, the presence of fibroblasts and collagen fibers was observed indicating normal tissue healing. The tubes filled with PCPG showed similar results to those observed in MTA Fillapex. At 15 days, the inflammatory reaction was almost absent at the tissue, with several collagen fibers indicating normal tissue healing. Data were analyzed by the nonparametric Kruskal-Wallis test (α=0.05). Statistically significant difference (p0.05). MTA Fillapex and Portland cement added with propylene glycol had greater tissue compatibility than the PCPG paste.

  15. Tissue response to a new type of biomaterial implanted subcutaneously in rats

    DEFF Research Database (Denmark)

    Boennelycke, Marie; Christensen, Lise; Nielsen, Lene Feldskov

    2011-01-01

    -cellular matrix (ECM) or estrogen. Methods Ten implants of each type were tested for 3 and 8 weeks, respectively. Histological assessment of connective tissue organization, inflammation, vascularization, and thickness of regenerated tissue was undertaken. Results All implants had a high degree of biocompatibility....... ECM-enriched implants had significantly higher inflammatory scores compared to pure implants at 3 weeks. At 8 weeks, neither of the parameters differed significantly. No trace of the implants remained. Conclusions The MPEG-PLGA is highly biocompatible, degrades quickly, and seems inert in the process...

  16. Quantitative and qualitative differences in subcutaneous adipose tissue stores across lipodystrophy types shown by magnetic resonance imaging

    International Nuclear Information System (INIS)

    Al-Attar, Salam A; Pollex, Rebecca L; Robinson, John F; Miskie, Brooke A; Walcarius, Rhonda; Little, Cynthia Harper; Rutt, Brian K; Hegele, Robert A

    2007-01-01

    Lipodystrophies are characterized by redistributed subcutaneous fat stores. We previously quantified subcutaneous fat by magnetic resonance imaging (MRI) in the legs of two patients with familial partial lipodystrophy subtypes 2 and 3 (FPLD2 and FPLD3, respectively). We now extend the MRI analysis across the whole body of patients with different forms of lipodystrophy. We studied five subcutaneous fat stores (supraclavicular, abdominal, gluteal, thigh and calf) and the abdominal visceral fat stores in 10, 2, 1, 1 and 2 female subjects with, respectively, FPLD2, FPLD3, HIV-related partial lipodystrophy (HIVPL), acquired partial lipodystrophy (APL), congenital generalized lipodystrophy (CGL) and in six normal control subjects. Compared with normal controls, FPLD2 subjects had significantly increased supraclavicular fat, with decreased abdominal, gluteal, thigh and calf subcutaneous fat. FPLD3 subjects had increased supraclavicular and abdominal subcutaneous fat, with less severe reductions in gluteal, thigh and calf fat compared to FPLD2 subjects. The repartitioning of fat in the HIVPL subject closely resembled that of FPLD3 subjects. APL and CGL subjects had reduced upper body, gluteal and thigh subcutaneous fat; the APL subject had increased, while CGL subjects had decreased subcutaneous calf fat. Visceral fat was markedly increased in FPLD2 and APL subjects. Semi-automated MRI-based adipose tissue quantification indicates differences between various lipodystrophy types in these studied clinical cases and is a potentially useful tool for extended quantitative phenomic analysis of genetic metabolic disorders. Further studies with a larger sample size are essential for confirming these preliminary findings

  17. The influence of perivascular adipose tissue on vascular homeostasis.

    Science.gov (United States)

    Szasz, Theodora; Bomfim, Gisele Facholi; Webb, R Clinton

    2013-01-01

    The perivascular adipose tissue (PVAT) is now recognized as an active contributor to vascular function. Adipocytes and stromal cells contained within PVAT are a source of an ever-growing list of molecules with varied paracrine effects on the underlying smooth muscle and endothelial cells, including adipokines, cytokines, reactive oxygen species, and gaseous compounds. Their secretion is regulated by systemic or local cues and modulates complex processes, including vascular contraction and relaxation, smooth muscle cell proliferation and migration, and vascular inflammation. Recent evidence demonstrates that metabolic and cardiovascular diseases alter the morphological and secretory characteristics of PVAT, with notable consequences. In obesity and diabetes, the expanded PVAT contributes to vascular insulin resistance. PVAT-derived cytokines may influence key steps of atherogenesis. The physiological anticontractile effect of PVAT is severely diminished in hypertension. Above all, a common denominator of the PVAT dysfunction in all these conditions is the immune cell infiltration, which triggers the subsequent inflammation, oxidative stress, and hypoxic processes to promote vascular dysfunction. In this review, we discuss the currently known mechanisms by which the PVAT influences blood vessel function. The important discoveries in the study of PVAT that have been made in recent years need to be further advanced, to identify the mechanisms of the anticontractile effects of PVAT, to explore the vascular-bed and species differences in PVAT function, to understand the regulation of PVAT secretion of mediators, and finally, to uncover ways to ameliorate cardiovascular disease by targeting therapeutic approaches to PVAT.

  18. Microfluidic Bioprinting for Engineering Vascularized Tissues and Organoids.

    Science.gov (United States)

    Zhang, Yu Shrike; Pi, Qingmeng; van Genderen, Anne Metje

    2017-08-11

    Engineering vascularized tissue constructs and organoids has been historically challenging. Here we describe a novel method based on microfluidic bioprinting to generate a scaffold with multilayer interlacing hydrogel microfibers. To achieve smooth bioprinting, a core-sheath microfluidic printhead containing a composite bioink formulation extruded from the core flow and the crosslinking solution carried by the sheath flow, was designed and fitted onto the bioprinter. By blending gelatin methacryloyl (GelMA) with alginate, a polysaccharide that undergoes instantaneous ionic crosslinking in the presence of select divalent ions, followed by a secondary photocrosslinking of the GelMA component to achieve permanent stabilization, a microfibrous scaffold could be obtained using this bioprinting strategy. Importantly, the endothelial cells encapsulated inside the bioprinted microfibers can form the lumen-like structures resembling the vasculature over the course of culture for 16 days. The endothelialized microfibrous scaffold may be further used as a vascular bed to construct a vascularized tissue through subsequent seeding of the secondary cell type into the interstitial space of the microfibers. Microfluidic bioprinting provides a generalized strategy in convenient engineering of vascularized tissues at high fidelity.

  19. Glucose-dependent insulinotropic polypeptide has impaired effect on abdominal, subcutaneous adipose tissue metabolism in obese subjects

    DEFF Research Database (Denmark)

    Asmar, M; Simonsen, L; Arngrim, N

    2013-01-01

    OBJECTIVE: Glucose-dependent insulinotropic polypeptide (GIP) appears to have a role in lipid metabolism. Recently, we showed that GIP in combination with hyperinsulinemia and hyperglycemia increases triglyceride uptake in abdominal, subcutaneous adipose tissue in lean humans. It has been suggested...... that increased GIP secretion in obesity will promote lipid deposition in adipose tissue. In light of the current attempts to employ GIP antagonists in the treatment and prevention of human obesity, the present experiments were performed in order to elucidate whether the adipose tissue lipid metabolism would...... to an oral glucose challenge: (i) NGT and (ii) IGT. Abdominal, subcutaneous adipose tissue lipid metabolism was studied by conducting measurements of arteriovenous concentrations of metabolites and regional adipose tissue blood flow (ATBF) during GIP (1.5 pmol kg(-1) min(-1)) in combination with a HI...

  20. The role of subcutaneous tissue stiffness on microneedle performance in a representative in vitro model of skin.

    Science.gov (United States)

    Moronkeji, K; Todd, S; Dawidowska, I; Barrett, S D; Akhtar, R

    2017-11-10

    There has been growing interest in the mechanical behaviour of skin due to the rapid development of microneedle devices for drug delivery applications into skin. However, most in vitro experimentation studies that are used to evaluate microneedle performance do not consider the biomechanical properties of skin or that of the subcutaneous layers. In this study, a representative experimental model of skin was developed which was comprised of subcutaneous and muscle mimics. Neonatal porcine skin from the abdominal and back regions was used, with gelatine gels of differing water content (67, 80, 88 and 96%) to represent the subcutaneous tissue, and a type of ballistic gelatine, Perma-Gel®, as a muscle mimic. Dynamic nanoindentation was used to characterize the mechanical properties of each of these layers. A custom-developed impact test rig was used to apply dense polymethylmethacrylate (PMMA) microneedles to the skin models in a controlled and repeatable way with quantification of the insertion force and velocity. Image analysis methods were used to measure penetration depth and area of the breach caused by microneedle penetration following staining and optical imaging. The nanoindentation tests demonstrated that the tissue mimics matched expected values for subcutaneous and muscle tissue, and that the compliance of the subcutaneous mimics increased linearly with water content. The abdominal skin was thinner and less stiff as compared to back skin. The maximum force decreased with gel water content in the abdominal skin but not in the back skin. Overall, larger and deeper perforations were found in the skin models with increasing water content. These data demonstrate the importance of subcutaneous tissue on microneedle performance and the need for representative skin models in microneedle technology development. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Three-dimensional bioprinting of thick vascularized tissues

    Science.gov (United States)

    Kolesky, David B.; Homan, Kimberly A.; Skylar-Scott, Mark A.; Lewis, Jennifer A.

    2016-03-01

    The advancement of tissue and, ultimately, organ engineering requires the ability to pattern human tissues composed of cells, extracellular matrix, and vasculature with controlled microenvironments that can be sustained over prolonged time periods. To date, bioprinting methods have yielded thin tissues that only survive for short durations. To improve their physiological relevance, we report a method for bioprinting 3D cell-laden, vascularized tissues that exceed 1 cm in thickness and can be perfused on chip for long time periods (>6 wk). Specifically, we integrate parenchyma, stroma, and endothelium into a single thick tissue by coprinting multiple inks composed of human mesenchymal stem cells (hMSCs) and human neonatal dermal fibroblasts (hNDFs) within a customized extracellular matrix alongside embedded vasculature, which is subsequently lined with human umbilical vein endothelial cells (HUVECs). These thick vascularized tissues are actively perfused with growth factors to differentiate hMSCs toward an osteogenic lineage in situ. This longitudinal study of emergent biological phenomena in complex microenvironments represents a foundational step in human tissue generation.

  2. The regulation of HSL and LPL expression by DHT and flutamide in human subcutaneous adipose tissue.

    Science.gov (United States)

    Anderson, L A; McTernan, P G; Harte, A L; Barnett, A H; Kumar, S

    2002-05-01

    Clinical observations suggest a role for testosterone in the accumulation of central adiposity and with an associated increased risk of disease. To date, no human study has analysed the role of dihydrotestosterone (DHT) on adipose tissue mass regulation in vitro. This study investigated the role of DHT and androgen receptors (AR) in the regulation of lipolysis and lipogenesis by examining the key enzymes hormone sensitive lipase (HSL) and lipoprotein lipase (LPL) respectively. Isolated abdominal subcutaneous adipocytes (Scad) (n = 15) were treated with either DHT (10(-7)-10(-9) m), an antiandrogen, flutamide (FLT: 10(-7)-10(-9) m) or a combination of DHT (10(-7)-10(-9) m) with FLT (10(-8) m). Relative protein expression of HSL, LPL and AR was determined. In Scad, DHT inhibited HSL expression maximally at 10(-9) m (0.7 +/- 0.4**; p DHT10(-9) m (2.22 +/- 0.48*; p DHT + FLT compared with DHT alone. Androgen receptor expression studies showed an inverse correlation with DHT, whereas DHT + FLT reduced AR expression. These studies indicate that DHT may alter HSL and LPL expression, whereas only LPL expression appears mediated by AR. These findings suggest a physiological role for DHT in the control of adipose tissue mass in women, and indicate that androgens may also play an important role in regulating lipid metabolism.

  3. Measurement of subcutaneous adipose tissue blood flow in the morbidly obese using a laser Doppler velocimeter

    Science.gov (United States)

    Klassen, Gerald A.; Paton, Barry E.; Maksym, Geoff; Janigan, David; Perey, Bernard

    1992-08-01

    Using a laser Doppler velocimeter (LDV) subcutaneous adipose tissue blood flow (AF) was recorded in the upright and supine positions in the upper and lower abdomen in 22 morbidly obese patients before gastroplasty. Age was 42 +/- 3 (mean +/- SEM), weight 135 +/- 7 kg, and body mass index (BMI) 51 +/- 3. Adipose flow expressed as mV was: supine, upper abdomen 647 +/- 23, lower abdomen 604 +/- 24; upright, upper abdomen 621 +/- 27, lower abdomen 607 +/- 29. AF was significantly more in the upper than lower abdomen (supine position) and AF was significantly lower in the lower abdomen upright than the upper abdomen supine. Regression analysis of age indicates that blood flow decreases in the lower abdomen so that in the supine position the difference between upper and lower abdomen AF increases. Similar analysis of BMI did not indicate significant trends. These data indicate that with morbid obesity there is lower tissue blood flow to the lower abdomen. This may explain why such patients may develop areas of painful ischemic necrosis in the dependent region of their anterior abdominal pannus.

  4. Nanotechnology in vascular tissue engineering: from nanoscaffolding towards rapid vessel biofabrication.

    Science.gov (United States)

    Mironov, Vladimir; Kasyanov, Vladimir; Markwald, Roger R

    2008-06-01

    The existing methods of biofabrication for vascular tissue engineering are still bioreactor-based, extremely expensive, laborious and time consuming and, furthermore, not automated, which would be essential for an economically successful large-scale commercialization. The advances in nanotechnology can bring additional functionality to vascular scaffolds, optimize internal vascular graft surface and even help to direct the differentiation of stem cells into the vascular cell phenotype. The development of rapid nanotechnology-based methods of vascular tissue biofabrication represents one of most important recent technological breakthroughs in vascular tissue engineering because it dramatically accelerates vascular tissue assembly and, importantly, also eliminates the need for a bioreactor-based scaffold cellularization process.

  5. Diagnostic accuracy of subcutaneous abdominal fat tissue aspiration for detecting systemic amyloidosis and its utility in clinical practice

    NARCIS (Netherlands)

    van Gameren, Ingrid I.; Hazenberg, BPC; Bijzet, J.; van Rijswijk, M.H.

    Objective. Aspiration of subcutaneous abdominal fat is a simple and fast method for detecting systemic amyloidosis; however, the sensitivity of this approach remains undetermined. The aim of this study was to assess the accuracy of fat tissue aspiration for detecting systemic amyloidosis and the

  6. Extranodal Rosai-Dorfman disease of bone, subcutaneous tissue and paranasal sinus mucosa with a review of its pathogenesis

    International Nuclear Information System (INIS)

    Yoon, Angela J.; Parisien, May; Feldman, Frieda; Young-In Lee, Francis

    2005-01-01

    We report an unusual case of extranodal Rosai-Dorfman disease presenting in a 36-year-old man with lesions of bone, subcutaneous tissue of the arm and maxillary sinus mucosa unassociated with lymphadenopathy or systemic symptoms. These lesions appeared metachronously within a 6-month period. The diagnostic light microscopic and immunohistochemical findings and pathogenesis of this interesting disease are discussed. (orig.)

  7. Microarray analysis of subcutaneous adipose tissue from mature cows with divergent body weight gain after feed restriction and realimentation

    Science.gov (United States)

    Body weight response to periods of feed restriction and realimentation is critical and relevant to the agricultural industry. The purpose of this study was to evaluate differentially expressed genes identified in subcutaneous adipose tissue collected from cows divergent in body weight (BW) gain afte...

  8. Characterization of alendronic- and undecylenic acid coated magnetic nanoparticles for the targeted delivery of rosiglitazone to subcutaneous adipose tissue.

    Science.gov (United States)

    Saatchi, Katayoun; Tod, Sarah E; Leung, Donna; Nicholson, Kenton E; Andreu, Irene; Buchwalder, Christian; Schmitt, Veronika; Häfeli, Urs O; Gray, Sarah L

    2017-02-01

    Obesity is a state of positive energy balance where excess white adipose tissue accumulates to the detriment of metabolic health. Improving adipocyte function with systemic administration of thiazolidinediones (TZDs) improves metabolic outcomes in obesity, however TZD use is limited clinically due to undesirable side effects. Here we evaluate magnetic nanoparticles (MNPs) as a tool to target rosiglitazone (Rosi) specifically to adipose tissue. Results show Rosi can be adsorbed to MNPs (Rosi-MNPs) with hydrophobic coatings for which we present binding and release kinetics. Rosi adsorbed to MNPs retained the ability to induce PPARγ target gene expression in cells. Biodistribution analysis of radiolabeled Rosi-MNPs revealed a fat-implanted magnet significantly enhanced localization of Rosi to the targeted adipose tissue when administered by subcutaneous injection to obese mice. We propose MNPs for targeted delivery of anti-diabetic agents to superficially located subcutaneous adipose tissue. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. The influence of perivascular adipose tissue on vascular homeostasis

    Directory of Open Access Journals (Sweden)

    Szasz T

    2013-03-01

    Full Text Available Theodora Szasz,1 Gisele Facholi Bomfim,2 R Clinton Webb1 1Department of Physiology, Georgia Regents University, Augusta, USA; 2Department of Pharmacology, University of São Paulo, São Paulo, Brazil Abstract: The perivascular adipose tissue (PVAT is now recognized as an active contributor to vascular function. Adipocytes and stromal cells contained within PVAT are a source of an ever-growing list of molecules with varied paracrine effects on the underlying smooth muscle and endothelial cells, including adipokines, cytokines, reactive oxygen species, and gaseous compounds. Their secretion is regulated by systemic or local cues and modulates complex processes, including vascular contraction and relaxation, smooth muscle cell proliferation and migration, and vascular inflammation. Recent evidence demonstrates that metabolic and cardiovascular diseases alter the morphological and secretory characteristics of PVAT, with notable consequences. In obesity and diabetes, the expanded PVAT contributes to vascular insulin resistance. PVAT-derived cytokines may influence key steps of atherogenesis. The physiological anticontractile effect of PVAT is severely diminished in hypertension. Above all, a common denominator of the PVAT dysfunction in all these conditions is the immune cell infiltration, which triggers the subsequent inflammation, oxidative stress, and hypoxic processes to promote vascular dysfunction. In this review, we discuss the currently known mechanisms by which the PVAT influences blood vessel function. The important discoveries in the study of PVAT that have been made in recent years need to be further advanced, to identify the mechanisms of the anticontractile effects of PVAT, to explore the vascular-bed and species differences in PVAT function, to understand the regulation of PVAT secretion of mediators, and finally, to uncover ways to ameliorate cardiovascular disease by targeting therapeutic approaches to PVAT. Keywords: adipokines

  10. Effect of therapeutic ultrasound intensity on subcutaneous tissue temperature and ulnar nerve conduction velocity.

    Science.gov (United States)

    Kramer, J F

    1985-02-01

    Twenty subjects completed 5 min. periods of sonation, at each of six US intensities, over the ulnar nerve in the proximal forearm. All posttreatment NCV's differed significantly from the respective pretreatment velocities. The immediate posttreatment NCV associated with placebo US was significantly (p less than 0.01) less than that observed immediately pretreatment (2.81 m/s), while the five clinical US intensities produced significantly increased immediate posttreatment velocities: 0.5 w/cm2 (2.23 m/s) at (p less than 0.05), and 1.0 w/cm2 (2.78 m/s), 1.5 w/cm2 (3.15 m/s), 2.0 w/cm2 (4.47 m/s) and 2.5 w/cm2 (2.97 m/s) at (p less than 0.01). The posttreatment velocities associated with the five clinical intensities were all significantly greater (p less than 0.01) than that associated with placebo US. Subcutaneous tissue temperatures were directly related to the intensity of US. Not until US intensity had reached 1.5 w/cm2 did the heating effect of US negate the cooling effect of the US transmission gel, to produce significantly increased subcutaneous tissue temperatures after 5 min. sonation. The decreased ulnar motor NCV's associated with placebo US are attributed to the cooling effect of the US transmission gel. The increased ulnar motor NCV's associated with the clinical intensities of US are attributed to the deep heating effect of US. The breakdown of this linear relationship at 2.5 w/cm2 intensity suggests that at this point heating on the nerve and/or the mechanical effects of US were of sufficient magnitude so as to limit the increase in conduction velocity. Sonation over an area of approximately 4.5 times the soundhead for 5 min., along the proximal forearm, at clinical intensities did not have a bipositive effect on motor NCV.

  11. Real-time contrast-enhanced ultrasound determination of microvascular blood volume in abdominal subcutaneous adipose tissue in man. Evidence for adipose tissue capillary recruitment

    DEFF Research Database (Denmark)

    Tobin, L; Simonsen, L; Bülow, J

    2010-01-01

    The adipose tissue metabolism is dependent on its blood perfusion. During lipid mobilization e.g. during exercise and during lipid deposition e.g. postprandial, adipose tissue blood flow is increased. This increase in blood flow may involve capillary recruitment in the tissue. We investigated...... of ultrasound contrast agent to establish the reproducibility of the technique. In nine subjects, the effect of an oral glucose load on blood flow and microvascular volume was measured in abdominal subcutaneous adipose tissue and forearm skeletal muscle. ¹³³Xe washout and venous occlusion strain......-gauge plethysmography was used to measure the adipose tissue and forearm blood flow, respectively. Ultrasound signal intensity of the first plateau phases was 27 ± dB in the abdominal subcutaneous adipose tissue and 18 ± 2 dB (P

  12. Effect of steel and teflon infusion catheters on subcutaneous adipose tissue blood flow and infusion counter pressure in humans

    DEFF Research Database (Denmark)

    Højbjerre, Lise; Skov-Jensen, Camilla; Kaastrup, Peter

    2009-01-01

    BACKGROUND: Subcutaneous tissue is an important target for drug deposition or infusion. A local trauma may induce alterations in local microcirculation and diffusion barriers with consequences for drug bioavailability. We examined the influence of infusion catheters' wear time on local...... microcirculation and infusion counter pressure. METHODS: One steel catheter and one Teflon (Dupont, Wilmington, DE) catheter were inserted in subcutaneous, abdominal adipose tissue (SCAAT) in 10 healthy, lean men. The catheters were infused with isotonic saline at a rate of 10 microL/h for 48 h. Another steel...... catheter and a Teflon catheter were inserted contralateral to the previous catheters after 48 h. The infusion counter pressure was measured during a basal infusion rate followed by a bolus infusion. The measurements during a basal rate infusion were repeated after the bolus infusion. Adipose tissue blood...

  13. Lipid mobilization from human abdominal, subcutaneous adipose tissue is independent of sex during steady-state exercise

    DEFF Research Database (Denmark)

    Bülow, Jens; Gjeraa, Kirsten; Enevoldsen, Lotte Hahn

    2006-01-01

    The aim of the study was to elucidate whether there are sex differences of significant biological importance in the human abdominal, subcutaneous adipose tissue lipid metabolism when studied by Fick's Principle during rest and exercise in steady-state conditions. The net mobilization of fatty acids...... intensity, and for another 60 min during post-exercise recovery. The results show that there are not significant sex differences with respect to the steady-state fatty acid and glycerol mobilizations neither during resting condition nor during exercise....... and glycerol from the abdominal, subcutaneous adipose tissue was measured by arterio-venous catheterizations and simultaneous measurements of adipose tissue blood flow with the local Xe-clearance technique in 16 healthy, young normal weight men and women during rest, during 1 h of exercise at moderate...

  14. Human Subcutaneous Tissue Response to Glucose Sensors: Macrophages Accumulation Impact on Sensor Accuracy.

    Science.gov (United States)

    Rigla, Mercedes; Pons, Belén; Rebasa, Pere; Luna, Alexis; Pozo, Francisco Javier; Caixàs, Assumpta; Villaplana, Maria; Subías, David; Bella, Maria Rosa; Combalia, Neus

    2018-04-01

    Subcutaneous (s.c.) glucose sensors have become a key component in type 1 diabetes management. However, their usability is limited by the impact of foreign body response (FBR) on their duration, reliability, and accuracy. Our study gives the first description of human acute and subacute s.c. response to glucose sensors, showing the changes observed in the sensor surface, the inflammatory cells involved in the FBR and their relationship with sensor performance. Twelve obese patients (seven type 2 diabetes) underwent two abdominal biopsies comprising the surrounding area where they had worn two glucose sensors: the first one inserted 7 days before and the second one 24 h before biopsy procedure. Samples were processed and studied to describe tissue changes by two independent pathologists (blind regarding sensor duration). Macrophages quantification was studied by immunohistochemistry methods in the area surrounding the sensor (CD68, CD163). Sensor surface changes were studied by scanning electron microscopy. Seven-day continuous glucose monitoring records were considered inaccurate when mean absolute relative difference was higher than 10%. Pathologists were able to correctly classify all the biopsies regarding sensor duration. Acute response (24 h) was characterized by the presence of neutrophils while macrophages were the main cell involved in subacute inflammation. The number of macrophages around the insertion hole was higher for less accurate sensors compared with those performing more accurately (32.6 ± 14 vs. 10.6 ± 1 cells/0.01 mm 2 ; P sensor-tissue interface is related with decrease in accuracy of the glucose measure.

  15. Longitudinal Stretching for Maturation of Vascular Tissues Using Magnetic Forces

    Directory of Open Access Journals (Sweden)

    Timothy R. Olsen

    2016-11-01

    Full Text Available Cellular spheroids were studied to determine their use as “bioinks” in the biofabrication of tissue engineered constructs. Specifically, magnetic forces were used to mediate the cyclic longitudinal stretching of tissues composed of Janus magnetic cellular spheroids (JMCSs, as part of a post-processing method for enhancing the deposition and mechanical properties of an extracellular matrix (ECM. The purpose was to accelerate the conventional tissue maturation process via novel post-processing techniques that accelerate the functional, structural, and mechanical mimicking of native tissues. The results of a forty-day study of JMCSs indicated an expression of collagen I, collagen IV, elastin, and fibronectin, which are important vascular ECM proteins. Most notably, the subsequent exposure of fused tissue sheets composed of JMCSs to magnetic forces did not hinder the production of these key proteins. Quantitative results demonstrate that cyclic longitudinal stretching of the tissue sheets mediated by these magnetic forces increased the Young’s modulus and induced collagen fiber alignment over a seven day period, when compared to statically conditioned controls. Specifically, the elastin and collagen content of these dynamically-conditioned sheets were 35- and three-fold greater, respectively, at seven days compared to the statically-conditioned controls at three days. These findings indicate the potential of using magnetic forces in tissue maturation, specifically through the cyclic longitudinal stretching of tissues.

  16. Vascular thermal adaptation in tumors and normal tissue in rats

    International Nuclear Information System (INIS)

    Nah, Byung Sik; Choi, Ihl-Bohng; Oh, Won Young; Osborn, James L.; Song, Chang W.

    1996-01-01

    Purpose: The vascular thermal adaptation in the R3230 adenocarcinoma, skin and muscle in the legs of Fischer rats was studied. Methods and Materials: The legs of Fischer rats bearing the R3230 AC adenocarcinoma (subcutaneously) were heated once or twice with a water bath, and the blood flow in the tumor, skin and muscle of the legs was measured with the radioactive microsphere method. Results: The blood flow in control R3230 AC tumors was 23.9 ml/100 g/min. The tumor blood flow increased about 1.5 times in 30 min and then markedly decreased upon heating at 44.5 deg. C for 90 min. In the tumors preheated 16 h earlier at 42.5 deg. C for 60 min, reheating at 44.5 deg. C increased the tumor blood flow by 2.5-fold in 30 min. Contrary to the decline in blood flow following an initial increase during the 44.5 deg. C heating without preheating, the tumor blood flow remained elevated throughout the 90 min reheating at 44.5 deg. C. These results indicated that thermal adaptation or thermotolerance developed in the tumor vasculatures after the preheating at 42.5 deg. C for 60 min. The magnitude of vascular thermal adaptation in the tumors 24 h and 48 h after the preheating, as judged from the changes in blood flow, were smaller than that 16 h after the preheating. Heating at 42.5 deg. C for 60 min induced vascular thermal adaptation also in the skin and muscle, which peaked in 48 h and 24 h, respectively, after the heating. Conclusion: Heating at 42.5 deg. C for 1 h induced vascular thermal adaptation in the R3230 AC tumor, skin, and muscle of rats that peaked 16-48 h after the heating. When the tumor blood vessels were thermally adapted, the tumor blood flow increased upon heating at temperatures that would otherwise reduce the tumor blood flow. Such an increase in tumor blood flow may hinder raising the tumor temperature while it may increase tumor oxygenation.

  17. The effects of vascularized tissue transfer on re-irradiation

    International Nuclear Information System (INIS)

    Narayan, K.; Ashton, M.W.; Taylor, G.I.

    1996-01-01

    Purpose: Nowadays, radical re-irradiation of locally recurrent squamous cell carcinoma is being increasingly tried. The process usually involves some form of surgical excision and vascularized tissue transfer followed by re-irradiation. The aim of this study was to examine the extent of protection from the effects of re-irradiation provided by vascularized tissue transfer. Methods and Materials: One hundred Sprague Dawley rats had their left thighs irradiated to a total dose of 72Gy in 8 fractions, one fraction per day, 5 days per week. The rats were then divided into two groups: At 4 months, one half of the rats had 50% of their quadriceps musculature excised and replaced with a vascularized non-irradiated rectus abdominous myocutaneous flap. The other group served as the control. Six months following the initial radiotherapy all rats were then re-irradiated with either 75 or 90% of the original dose. Incidence of necrosis and the extent of necrosis was measured. Microvasculature of control, transplanted muscle and recipient site was studied by micro-corrosion cast technique and histology of cast specimen. tissues were sampled at pre-irradiation and at 2, 6 and 12 months post re-irradiation. Microvascular surface area was measured from the histology of cast specimen. Results: Necrosis in the control group was clinically evident at 6 weeks post re irradiation and by 10 months all rats developed necrosis. Forty per cent of the thigh that received 75% of the original dose on re-irradiation did not develop any necrosis by 13 months. Other groups developed necrosis to variable extents, however a rim of tissue around the graft always survived. The average thickness of surviving tissue was 9mm. (range being 4-25 mm). None of the transferred flap nor re-irradiated recipient quadriceps developed necrosis. Conclusion: 1. Transplanted rectus abdominus myocutaneous flap and undisturbed muscle have similar radiation tolerance. 2. Vascularized myocutaneous flap offers

  18. CYP19 gene expression in subcutaneous adipose tissue is associated with blood pressure in women with polycystic ovary syndrome.

    Science.gov (United States)

    Lecke, Sheila B; Morsch, Débora M; Spritzer, Poli M

    2011-11-01

    In polycystic ovary syndrome (PCOS), hypertension has been linked to androgen excess and insulin resistance. Aromatase, an enzyme encoded by the CYP19 gene, affects androgen metabolism and estrogen synthesis, influencing the androgen to estrogen balance. We characterized CYP19 gene expression in subcutaneous adipose tissue of women with PCOS and normal controls and evaluated the association between subcutaneous fat CYP19 mRNA, circulating hormone levels, and blood pressure. This case-control study was carried out with 31 PCOS patients and 27 BMI-matched normotensive non-hirsute women with regular cycles. Participants underwent anthropometric measurements, collection of blood samples, and adipose tissue biopsy (28 PCOS and 19 controls). Hypertension was defined as systolic blood pressure ≥ 130 mmHg and/or diastolic blood pressure ≥ 85 mmHg. PCOS patients were divided into normotensive and hypertensive. Main outcome measures were serum estrogen and androgen levels, estrogen-to-androgen ratio, and CYP19 gene expression in subcutaneous fat. Subcutaneous CYP19 mRNA was higher in hypertensive PCOS than in control and normotensive PCOS women (p = 0.014). Estrogen-to-androgen ratio was lower in hypertensive PCOS than controls (p androgen ratio ≤ 0.06 (median for the three groups) was observed in 91% of hypertensive PCOS women, vs. 37% and 61% in the control and normotensive PCOS groups (p = 0.011). CYP19 gene expression in subcutaneous fat of PCOS patient correlated positively with systolic (p = 0.006) and diastolic blood pressure (p = 0.009). Androgen excess and hyperinsulinemia may play a role in the molecular mechanisms that activate aromatase mRNA transcription in abdominal fat tissue. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. A Robust Method to Generate Mechanically Anisotropic Vascular Smooth Muscle Cell Sheets for Vascular Tissue Engineering.

    Science.gov (United States)

    Backman, Daniel E; LeSavage, Bauer L; Shah, Shivem B; Wong, Joyce Y

    2017-06-01

    In arterial tissue engineering, mimicking native structure and mechanical properties is essential because compliance mismatch can lead to graft failure and further disease. With bottom-up tissue engineering approaches, designing tissue components with proper microscale mechanical properties is crucial to achieve the necessary macroscale properties in the final implant. This study develops a thermoresponsive cell culture platform for growing aligned vascular smooth muscle cell (VSMC) sheets by photografting N-isopropylacrylamide (NIPAAm) onto micropatterned poly(dimethysiloxane) (PDMS). The grafting process is experimentally and computationally optimized to produce PNIPAAm-PDMS substrates optimal for VSMC attachment. To allow long-term VSMC sheet culture and increase the rate of VSMC sheet formation, PNIPAAm-PDMS surfaces were further modified with 3-aminopropyltriethoxysilane yielding a robust, thermoresponsive cell culture platform for culturing VSMC sheets. VSMC cell sheets cultured on patterned thermoresponsive substrates exhibit cellular and collagen alignment in the direction of the micropattern. Mechanical characterization of patterned, single-layer VSMC sheets reveals increased stiffness in the aligned direction compared to the perpendicular direction whereas nonpatterned cell sheets exhibit no directional dependence. Structural and mechanical anisotropy of aligned, single-layer VSMC sheets makes this platform an attractive microstructural building block for engineering a vascular graft to match the in vivo mechanical properties of native arterial tissue. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Subcutaneous Tissue Thickness is an Independent Predictor of Image Noise in Cardiac CT

    International Nuclear Information System (INIS)

    Staniak, Henrique Lane; Sharovsky, Rodolfo; Pereira, Alexandre Costa; Castro, Cláudio Campi de; Benseñor, Isabela M.; Lotufo, Paulo A.; Bittencourt, Márcio Sommer

    2014-01-01

    Few data on the definition of simple robust parameters to predict image noise in cardiac computed tomography (CT) exist. To evaluate the value of a simple measure of subcutaneous tissue as a predictor of image noise in cardiac CT. 86 patients underwent prospective ECG-gated coronary computed tomographic angiography (CTA) and coronary calcium scoring (CAC) with 120 kV and 150 mA. The image quality was objectively measured by the image noise in the aorta in the cardiac CTA, and low noise was defined as noise < 30HU. The chest anteroposterior diameter and lateral width, the image noise in the aorta and the skin-sternum (SS) thickness were measured as predictors of cardiac CTA noise. The association of the predictors and image noise was performed by using Pearson correlation. The mean radiation dose was 3.5 ± 1.5 mSv. The mean image noise in CT was 36.3 ± 8.5 HU, and the mean image noise in non-contrast scan was 17.7 ± 4.4 HU. All predictors were independently associated with cardiac CTA noise. The best predictors were SS thickness, with a correlation of 0.70 (p < 0.001), and noise in the non-contrast images, with a correlation of 0.73 (p < 0.001). When evaluating the ability to predict low image noise, the areas under the ROC curve for the non-contrast noise and for the SS thickness were 0.837 and 0.864, respectively. Both SS thickness and CAC noise are simple accurate predictors of cardiac CTA image noise. Those parameters can be incorporated in standard CT protocols to adequately adjust radiation exposure

  1. Subcutaneous Tissue Thickness is an Independent Predictor of Image Noise in Cardiac CT

    Energy Technology Data Exchange (ETDEWEB)

    Staniak, Henrique Lane; Sharovsky, Rodolfo [Hospital Universitário - Universidade de São Paulo, São Paulo, SP (Brazil); Pereira, Alexandre Costa [Hospital das Clínicas - Universidade de São Paulo, São Paulo, SP (Brazil); Castro, Cláudio Campi de; Benseñor, Isabela M.; Lotufo, Paulo A. [Hospital Universitário - Universidade de São Paulo, São Paulo, SP (Brazil); Faculdade de Medicina - Universidade de São Paulo, São Paulo, SP (Brazil); Bittencourt, Márcio Sommer, E-mail: msbittencourt@mail.harvard.edu [Hospital Universitário - Universidade de São Paulo, São Paulo, SP (Brazil)

    2014-01-15

    Few data on the definition of simple robust parameters to predict image noise in cardiac computed tomography (CT) exist. To evaluate the value of a simple measure of subcutaneous tissue as a predictor of image noise in cardiac CT. 86 patients underwent prospective ECG-gated coronary computed tomographic angiography (CTA) and coronary calcium scoring (CAC) with 120 kV and 150 mA. The image quality was objectively measured by the image noise in the aorta in the cardiac CTA, and low noise was defined as noise < 30HU. The chest anteroposterior diameter and lateral width, the image noise in the aorta and the skin-sternum (SS) thickness were measured as predictors of cardiac CTA noise. The association of the predictors and image noise was performed by using Pearson correlation. The mean radiation dose was 3.5 ± 1.5 mSv. The mean image noise in CT was 36.3 ± 8.5 HU, and the mean image noise in non-contrast scan was 17.7 ± 4.4 HU. All predictors were independently associated with cardiac CTA noise. The best predictors were SS thickness, with a correlation of 0.70 (p < 0.001), and noise in the non-contrast images, with a correlation of 0.73 (p < 0.001). When evaluating the ability to predict low image noise, the areas under the ROC curve for the non-contrast noise and for the SS thickness were 0.837 and 0.864, respectively. Both SS thickness and CAC noise are simple accurate predictors of cardiac CTA image noise. Those parameters can be incorporated in standard CT protocols to adequately adjust radiation exposure.

  2. Age and Spatial Peculiarities of Non-neoplastic Diseases of the Skin and Subcutaneous Tissue in Kazakhstan, 2003–2015

    OpenAIRE

    IGISSINOV, Nurbek; KULMIRZAYEVA, Dariyana; BILYALOVA, Zarina; AKPOLATOVA, Gulnur; MAMYRBAYEVA, Marzya; ZHUMAGALIYEVA, Galina

    2017-01-01

    Background: Arrangement of effective management aimed at improving dermatological services and consistent care of patients with skin diseases depends on understanding the epidemiological situation. Methods: This retrospective study presents an epidemiological assessment of non-neoplastic skin and subcutaneous tissue diseases in Kazakhstan registered in 2003–2015. Results: The yearly incidence rate of the diseases among the whole population was in average 3,341.8±121.1 per 100000 population. T...

  3. Effectiveness of Vascular Markers (Immunohistochemical Stains) in Soft Tissue Sarcomas.

    Science.gov (United States)

    Naeem, Namra; Mushtaq, Sajid; Akhter, Noreen; Hussain, Mudassar; Hassan, Usman

    2018-05-01

    To ascertain the effectiveness of IHC markers of vascular origin like CD31, CD34, FLI1 and ERG in vascular soft tissue sarcomas including angiosarcomas, Kaposi sarcomas, epithelioid hemangioendothelioma and a non-vascular soft tissue sarcoma (Epithelioid sarcoma). Descriptive study. Shaukat Khanum Memorial Cancer Hospital and Research Centre, Lahore, from 2011 to 2017. Diagnosed cases of angiosarcomas (n=48), epithelioid hemangioendothelioma (n=9), Kaposi sarcoma (n=9) and epithelioid sarcoma (n=20) were selected. Immunohistochemical staining as performed on formalin fixed paraffin embedded sections. The sections were stained for the following markers: CD34 (VENTANA clone Q Bend 10), CD31 (Leica clone 1 A 10), FLI1 (CELL MARQUE clone MRQ-1) and ERG (CELL MARQUE clone EP111). A complete panel of CD34, CD31 and ERG was applied on 8/48 cases of angiosarcomas with triple positivity in 6 cases. Eight cases showed positivity for only CD31 and ERG and 2 cases showed positivity for only ERG. A complete panel of CD34, CD31 and ERG was applied on 3/9 cases of epithelioid hemangioendothelioma with positivity for all markers in 2 cases. Combined positivity for ERG and CD34 was seen in 2 cases and on 4 cases only CD31 immunohistochemical was solely applied with 100% positivity. FLI1 was not applied on any case. Among 9 cases of Kaposi sarcoma, ERG, CD34 and CD31 in combination were applied on only 1 case with triple positivity. Remaining cases show positivity for either CD34, CD31 or FLI1. Majority of cases of epithelioid sarcomas were diagnosed on the basis of cytokeratin and CD34 positivity with loss of INI1. The other vascular markers showed negativity in all cases. Among these four markers, ERG immunohistochemical stain is highly effective for endothelial differentiation due to its specific nuclear staining pattern in normal blood vessel endothelial cells (internal control) as well as neoplastic cells of vascular tumors and lack of background staining.

  4. The surrounding tissue modifies the placental stem villous vascular responses

    DEFF Research Database (Denmark)

    Brøgger, Torbjørn; Forman, Axel; Aalkjær, Christian

    2014-01-01

    is available. In-depth understanding of the mechanisms involved in control of placental vascular tone are needed to develop new tissue targets for therapeutic intervention. Method: From fresh born placentas segments of stem villous arteries were carefully dissected. The artery branches were divided....... The surrounding trophoblast was removed from one end and left intact in the other, and the segment was divided to give two ring preparations, with or without trophoblast. The preparations were mounted in wire myographs and responses to vasoactive agents were compared. Results: pD2values for PGF2α, Tx-analog U...... or endotheline-1. These differences partly disappeared in the presence of L-NAME. Conclusion: The perivascular tissue significantly reduces sensitivity and force development of stem villous arteries, partly due to release of NO This represents a new mechanism for control of human stem villous artery tone....

  5. The blunted effect of glucose-dependent insulinotropic polypeptide in subcutaneous abdominal adipose tissue in obese subjects is partly reversed by weight loss

    DEFF Research Database (Denmark)

    Asmar, M; Arngrim, N; Simonsen, L.

    2016-01-01

    BACKGROUND: Glucose-dependent insulinotropic polypeptide (GIP) appears to have impaired effect on subcutaneous abdominal adipose tissue metabolism in obese subjects. The aim of the present study was to examine whether weight loss may reverse the impaired effect of GIP on subcutaneous abdominal...... adipose tissue in obese subjects. METHODS: Five obese males participated in a 12-week weight loss program, which consisted of caloric restriction (800 Cal day(-)(1)) followed by 4 weeks of weight-maintenance diet. Before and after weight loss, subcutaneous adipose tissue lipid metabolism was studied...... after weight loss, Pobese subjects, weight...

  6. Do very small adipocytes in subcutaneous adipose tissue (a proposed risk factor for insulin insensitivity have a fetal origin?

    Directory of Open Access Journals (Sweden)

    Mette Olaf Nielsen

    2016-08-01

    Conclusions: The present study showed that greater preponderance of very small adipocytes, increased collagen infiltration and reduced subcutaneous lipid accumulation ability, as well as altered perirenal fat preferences for accumulation of C14:0 can have a fetal origin. Disturbance of normal (subcutaneous adipose tissue development may play a key role in linking fetal malnutrition to disease risk later in life.

  7. Cell sheet engineering using the stromal vascular fraction of adipose tissue as a vascularization strategy.

    Science.gov (United States)

    Costa, Marina; Cerqueira, Mariana T; Santos, Tírcia C; Sampaio-Marques, Belém; Ludovico, Paula; Marques, Alexandra P; Pirraco, Rogério P; Reis, Rui L

    2017-06-01

    Current vascularization strategies for Tissue Engineering constructs, in particular cell sheet-based, are limited by time-consuming and expensive endothelial cell isolation and/or by the complexity of using extrinsic growth factors. Herein, we propose an alternative strategy using angiogenic cell sheets (CS) obtained from the stromal vascular fraction (SVF) of adipose tissue that can be incorporated into more complex constructs. Cells from the SVF were cultured in normoxic and hypoxic conditions for up to 8days in the absence of extrinsic growth factors. Immunocytochemistry against CD31 and CD146 revealed spontaneous organization in capillary-like structures, more complex after hypoxic conditioning. Inhibition of HIF-1α pathway hindered capillary-like structure formation in SVF cells cultured in hypoxia, suggesting a role of HIF-1α. Moreover, hypoxic SVF cells showed a trend for increased secretion of angiogenic factors, which was reflected in increased network formation by endothelial cells cultured on matrigel using that conditioned medium. In vivo implantation of SVF CS in a mouse hind limb ischemia model revealed that hypoxia-conditioned CS led to improved restoration of blood flow. Both in vitro and in vivo data suggest that SVF CS can be used as simple and cost-efficient tools to promote functional vascularization of TE constructs. Neovascularization after implantation is a major obstacle for producing clinically viable cell sheet-based tissue engineered constructs. Strategies using endothelial cells and extrinsic angiogenic growth factors are expensive and time consuming and may raise concerns of tumorigenicity. In this manuscript, we describe a simplified approach using angiogenic cell sheets fabricated from the stromal vascular fraction of adipose tissue. The strong angiogenic behavior of these cell sheets, achieved without the use of external growth factors, was further stimulated by low oxygen culture. When implanted in an in vivo model of hind limb

  8. Microarray analysis of subcutaneous adipose tissue from mature cows with divergent body weight gain after feed restriction and realimentation

    Directory of Open Access Journals (Sweden)

    H.C. Cunningham

    2018-02-01

    Full Text Available Body weight response to periods of feed restriction and realimentation is critical and relevant to the agricultural industry. The purpose of this study was to evaluate differentially expressed genes identified in subcutaneous adipose tissue collected from cows divergent in body weight (BW gain after feed restriction and realimentation. We compared adipose samples from cows with greater gain based on average daily gain (ADG during realimentation with samples from cows with lesser gain. Specifically, there were four comparisons including two comparing the high and low gain animals across each feeding period (feed restriction and realimentation and two that compared differences in feed restriction and realimentation across high or low gain classifications. Using microarray analysis, we provide a set of differentially expressed genes identified between the high and low gain at both periods of nutrient restriction and realimentation. These data identify multiple differentially expressed genes between these two phenotypes across both nutritional environments. Keywords: Beef cows, Subcutaneous fat, Transcriptome

  9. Regulation and function of FTO mRNA expression in human skeletal muscle and subcutaneous adipose tissue

    DEFF Research Database (Denmark)

    Grunnet, Louise G; Nilsson, Emma; Ling, Charlotte

    2009-01-01

    Objective. Common variants in FTO (the fat-mass and obesity-associated gene) associate with obesity and type 2 diabetes. The regulation and biological function of FTO mRNA expression in target tissue is unknown. We investigated the genetic and non-genetic regulation of FTO mRNA in skeletal muscle...... and adipose tissue, and their influence on in vivo glucose and fat metabolism. Research Design and Methods. The FTO rs9939609 polymorphism was genotyped in two twin cohorts: 1) 298 elderly twins aged 62-83 years with glucose tolerance ranging from normal to type 2 diabetes and 2) 196 young (25-32 years......) and elderly (58-66 years) non-diabetic twins examined by a hyperinsulinemic euglycemic clamp including indirect calorimetry. FTO mRNA expression was determined in subcutaneous adipose tissue (n=226) and skeletal muscle biopsies (n=158). Results. Heritability of FTO expression in both tissues was low, and FTO...

  10. The fractionation of adipose tissue procedure to obtain stromal vascular fractions for regenerative purposes

    NARCIS (Netherlands)

    van Dongen, Joris A.; Stevens, Hieronymus P.; Parvizi, Mojtaba; van der Lei, Berend; Harmsen, Martin C.

    2016-01-01

    Autologous adipose tissue transplantation is clinically used to reduce dermal scarring and to restore volume loss. The therapeutic benefit on tissue damage more likely depends on the stromal vascular fraction of adipose tissue than on the adipocyte fraction. This stromal vascular fraction can be

  11. Angiographic findings of congenital vascular malformation in soft tissue

    International Nuclear Information System (INIS)

    Choi, Dae Seob; Park, Jae Hyung; Han, Joon Koo; Chung, Jin Wook; Moon, Woo Kyung; Han, Man Chung

    1994-01-01

    We evaluated the clinical, plain radiographic, and angiographic findings of congenital vascular malformation of the soft tissue. Retrospective analysis was performed in 36 patients. Pathological diagnosis was done in 25 patients by surgery and the others were clinically and angiographically diagnosed. On the basis of angiographic findings, we classified the lesions to three groups as arteriovenous malformation (AVM), hemangioma, and venous malformation. In pathologically proven 25 cases, we compared the angiographic diagnosis with the pathologic diagnosis. By angiographic classification, AVM was 13 cases, hemangioma 16 cases, and venous malformation 7 cases. The locations of the lesions were upper extremities in 14 cases, lower extremities in 20 cases, both extremities in 1 case, and back in 1 case. Clinical findings were bruit and thrill in 13 cases(12 AVMs,1 hemangioma) and varicosities in 16 cases(11 AVMs, 3 hemangiomas and 2 venous malformations). The varicosities in AVM were pulsating nature, but not in hemangioma and venous malformation. The concordance rate of the angiographic and pathologic diagnosis was 100%(6/6) in AVM, 71%(10/14) in hemangioma and 60% (3/5) in venous malformation. We think that angiography is an essential study for accurate diagnosis and appropriate treatment of congenital vascular malformation

  12. Bioengineering vascularized tissue constructs using an injectable cell-laden enzymatically crosslinked collagen hydrogel derived from dermal extracellular matrix.

    Science.gov (United States)

    Kuo, Kuan-Chih; Lin, Ruei-Zeng; Tien, Han-Wen; Wu, Pei-Yun; Li, Yen-Cheng; Melero-Martin, Juan M; Chen, Ying-Chieh

    2015-11-01

    Tissue engineering promises to restore or replace diseased or damaged tissue by creating functional and transplantable artificial tissues. The development of artificial tissues with large dimensions that exceed the diffusion limitation will require nutrients and oxygen to be delivered via perfusion instead of diffusion alone over a short time period. One approach to perfusion is to vascularize engineered tissues, creating a de novo three-dimensional (3D) microvascular network within the tissue construct. This significantly shortens the time of in vivo anastomosis, perfusion and graft integration with the host. In this study, we aimed to develop injectable allogeneic collagen-phenolic hydroxyl (collagen-Ph) hydrogels that are capable of controlling a wide range of physicochemical properties, including stiffness, water absorption and degradability. We tested whether collagen-Ph hydrogels could support the formation of vascularized engineered tissue graft by human blood-derived endothelial colony-forming cells (ECFCs) and bone marrow-derived mesenchymal stem cells (MSC) in vivo. First, we studied the growth of adherent ECFCs and MSCs on or in the hydrogels. To examine the potential formation of functional vascular networks in vivo, a liquid pre-polymer solution of collagen-Ph containing human ECFCs and MSCs, horseradish peroxidase and hydrogen peroxide was injected into the subcutaneous space or abdominal muscle defect of an immunodeficient mouse before gelation, to form a 3D cell-laden polymerized construct. These results showed that extensive human ECFC-lined vascular networks can be generated within 7 days, the engineered vascular density inside collagen-Ph hydrogel constructs can be manipulated through refinable mechanical properties and proteolytic degradability, and these networks can form functional anastomoses with the existing vasculature to further support the survival of host muscle tissues. Finally, optimized conditions of the cell-laden collagen

  13. Lymphatic flow in humans as indicated by the clearance of 125I-labeled albumin from the subcutaneous tissue of the leg

    International Nuclear Information System (INIS)

    Fernandez, M.J.; Davies, W.T.; Owen, G.M.; Tyler, A.

    1983-01-01

    Since the removal of albumin from the extracellular space and its return to the vascular compartment is the essential function of the lymphatic system, the rate at which it is removed from the interstitial tissue may be regarded as a means of estimating lymphatic efficiency. An objective measure of lymphatic function can be obtained by monitoring the rate of clearance following injection of 125 I-labeled albumin (RIHSA) from the subcutaneous tissue of a limb. The clearance of 125 I-RIHSA from lower limb was monitored in a group of patients with normal limbs, patients with unilateral edema due to deep vein thrombosis, and patients with bilateral edema due to hypoproteinemia. The mean T1/2 in normal legs was 32.7 hr, compared to 23.7 hr in edematous limbs due to deep vein thrombosis and 19.4 in edematous limbs due to hypoproteinemia. There is a clear-cut difference in clearance rate between edematous and nonedematous limbs. This suggests that lymphatic flow is increased in edema due to venous obstruction and hypoproteinemia

  14. The dynamics of the microcirculation in the subcutaneous adipose tissue is impaired in the postprandial state in type 2 diabetes

    DEFF Research Database (Denmark)

    Tobin, L; Simonsen, L; Bülow, Jens

    2011-01-01

    that the postprandial adipose tissue blood flow (ATBF) increase is accompanied by capillary recruitment in healthy subjects. The aim of the present study was to investigate whether the postprandial capillary recruitment in adipose tissue is affected in type 2 diabetes mellitus. Eight type 2 diabetic overweight male....... No significant changes were found in the ATBF or in capillary recruitment in the type 2 diabetic subjects. There was no significant blood flow or microvascular blood volume changes in forearm skeletal muscle in either of the groups. CONCLUSION: After an oral glucose load, the abdominal ATBF and microvascular...... blood volume changes in abdominal subcutaneous adipose tissue are impaired in overweight type 2 diabetic subjects compared to weight-matched healthy subjects....

  15. Elevation of transforming growth factor beta (TGFbeta) and its downstream mediators in subcutaneous foreign body capsule tissue.

    Science.gov (United States)

    Li, Allen G; Quinn, Matthew J; Siddiqui, Yasmin; Wood, Michael D; Federiuk, Isaac F; Duman, Heather M; Ward, W Kenneth

    2007-08-01

    Foreign body encapsulation represents a chronic fibrotic response and has been a major obstacle that reduces the useful life of implanted biomedical devices. The precise mechanism underlying such an encapsulation is still unknown. We hypothesized that, considering its central role in many other fibrotic conditions, transforming growth factor beta (TGFbeta) may play an important role during the formation of foreign body capsule (FBC). In the present study, we implanted mock sensors in rats subcutaneously and excised FBC samples at day 7, 21, and 48-55 postimplantation. The most abundant TGFbeta isoform in all tissues was TGFbeta1, which was expressed minimally in control tissue. The expression of both TGFbeta1 RNA and protein was significantly increased in FBC tissues at all time points, with the highest level in day 7 FBC. The number of cells stained for phosphorylated Smad2, an indication of activated TGFbeta signaling, paralleled the expression of TGFbeta. A similar dynamic change was also observed in the numbers of FBC myofibroblasts, which in response to TGFbeta, differentiate from quiescent fibroblasts and synthesize collagen. Type I collagen, the most prominent downstream target of TGFbeta in fibrosis, was found in abundance in the FBC, especially during the latter time periods. We suggest that TGFbeta plays an important role in the FBC formation. Inhibition of TGFbeta signaling could be a promising strategy in the prevention of FBC formation, thereby extending the useful life of subcutaneous implants.

  16. Blood flow in skin, subcutaneous adipose tissue and skeletal muscle in the forearm of normal man during an oral glucose load

    DEFF Research Database (Denmark)

    Bülow, J; Astrup, A; Christensen, N J

    1987-01-01

    Blood flow to the forearm, and the subcutaneous tissue and skin in the forearm were measured by strain gauge plethysmography, 133Xe-elimination and Laser Doppler flowmetry during an oral glucose load (I g glucose kg-1 lean body mass) and during control conditions. The forearm blood flow remained...... constant during both experiments. Glucose induced a two-fold vasodilatation in subcutaneous tissue. In skin, glucose induced a relative vasodilatation and later a relative vasoconstriction compared with control experiments. When estimated from forearm blood flow and subcutaneous and skin blood flows......, muscle blood flow decreased about 20-30% during both experiments. Proximal nervous blockade did not abolish the glucose-induced vasodilatation in subcutaneous tissue. In the glucose experiment, arterial glucose concentration increased to 7.8 +/- 1.17 mmol l-1 30 min after the load was given...

  17. Estrogen receptor protein content is different in abdominal than gluteal subcutaneous adipose tissue of overweight-to-obese premenopausal women.

    Science.gov (United States)

    Gavin, Kathleen M; Cooper, Elizabeth E; Hickner, Robert C

    2013-08-01

    Premenopausal women demonstrate a distinctive gynoid body fat distribution and circulating estrogen status is associated with the maintenance of this adiposity patterning. Estrogen's role in modulation of regional adiposity may occur through estrogen receptors (ERs), which are present in human adipose tissue. The purpose of this study was to determine regional differences in the protein content of ERα, ERβ, and the G protein-coupled estrogen receptor (GPER) between the abdominal (AB) and gluteal (GL) subcutaneous adipose tissue of overweight-to-obese premenopausal women. Biopsies of the subcutaneous AB and GL adipose tissue were performed in 15 premenopausal women (7 Caucasian/8 African American, 25.1 ± 1.8 years, BMI 29.5 ± 0.5kg/m(2)). Adipose tissue protein content was measured by western blot analysis and correlation analyses were conducted to assess the relationship between ER protein content and anthropometric indices/body composition measurements. We found that ERα protein was higher in AB than GL (AB 1.0 ± 0.2 vs GL 0.67 ± 0.1 arbitrary units [AU], P=0.02), ERβ protein was higher in GL than AB (AB 0.78 ± 0.12 vs GL 1.3 ± 0.2 AU, P=0.002), ERα/ERβ ratio was higher in AB than GL (AB 1.9 ± 0.4 vs GL 0.58 ± 0.08 AU, P=0.007), and GPER protein content was similar in AB and GL (P=0.80) subcutaneous adipose tissue. Waist-to-hip ratio was inversely related to gluteal ERβ (r(2)=0.315, P=0.03) and positively related to gluteal ERα/ERβ ratio (r(2)=0.406, P=0.01). These results indicate that depot specific ER content may be an important underlying determinant of regional effects of estrogen in upper and lower body adipose tissue of overweight-to-obese premenopausal women. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Habitual dietary intake of fatty acids are associated with leptin gene expression in subcutaneous and visceral adipose tissue of patients without diabetes.

    Science.gov (United States)

    Rostami, Hosein; Samadi, Mohammad; Yuzbashian, Emad; Zarkesh, Maryam; Asghari, Golaleh; Hedayati, Mehdi; Daneshafrooz, Afsoon; Mirmiran, Parvin; Khalaj, Alireza

    2017-11-01

    The purpose of the study was to investigate the association of leptin gene expression in visceral and subcutaneous adipose tissues with habitual fatty acid intake and its subtypes in adults. Visceral and subcutaneous adipose tissues were gathered from 97 participants aged ≥ 20, who had undergone elective abdominal surgery. Dietary fatty acid intakes including total fatty acids (TFA), saturated fatty acid (SFA), monounsaturated fatty acids (MUFA), polyunsaturated fatty acids (PUFA), n-3, n-6, and n-9 fatty acids were collected using a valid and reliable food-frequency questionnaire (FFQ). The leptin gene expression in visceral and subcutaneous adipose tissues was measured by Real-Time PCR. After controlling for body mass index (BMI) and insulin, energy-adjusted dietary intake of SFA was positively and MUFA and n-3 fatty acids were negatively associated with subcutaneous and visceral adipose tissues leptin gene expression. Besides, a significant negative association of PUFA, n-6, and n-9 fatty acids with leptin mRNA from visceral adipose tissue were observed. In order to better interpretations of the results, the participants were allocated two groups including non-obese (BMI fatty acids had a negative association with visceral leptin gene expression. Habitual intake of SFA, MUFA, and n-3 fatty acids were associated with leptin gene expression in visceral and subcutaneous adipose tissues, suggesting an important role of quality and quantity of fatty acids intake in adipose tissue to regulate leptin expression. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Vascularization and tissue infiltration of a biodegradable polyurethane matrix

    Science.gov (United States)

    Ganta, Sudhakar R.; Piesco, Nicholas P.; Long, Ping; Gassner, Robert; Motta, Luis F.; Papworth, Glenn D.; Stolz, Donna B.; Watkins, Simon C.; Agarwal, Sudha

    2016-01-01

    Urethanes are frequently used in biomedical applications because of their excellent biocompatibility. However, their use has been limited to bioresistant polyurethanes. The aim of this study was to develop a nontoxic biodegradable polyurethane and to test its potential for tissue compatibility. A matrix was synthesized with pentane diisocyanate (PDI) as a hard segment and sucrose as a hydroxyl group donor to obtain a microtextured spongy urethane matrix. The matrix was biodegradable in an aqueous solution at 37°C in vitro as well as in vivo. The polymer was mechanically stable at body temperatures and exhibited a glass transition temperature (Tg) of 67°C. The porosity of the polymer network was between 10 and 2000 µm, with the majority of pores between 100 and 300 µm in diameter. This porosity was found to be adequate to support the adherence and proliferation of bone-marrow stromal cells (BMSC) and chondrocytes in vitro. The degradation products of the polymer were nontoxic to cells in vitro. Subdermal implants of the PDI–sucrose matrix did not exhibit toxicity in vivo and did not induce an acute inflammatory response in the host. However, some foreign-body giant cells did accumulate around the polymer and in its pores, suggesting its degradation is facilitated by hydrolysis as well as by giant cells. More important, subdermal implants of the polymer allowed marked infiltration of vascular and connective tissue, suggesting the free flow of fluids and nutrients in the implants. Because of the flexibility of the mechanical strength that can be obtained in urethanes and because of the ease with which a porous microtexture can be achieved, this matrix may be useful in many tissue-engineering applications. PMID:12522810

  20. The double isotope technique for in vivo determination of the tissue-to-blood partition coefficient for xenon in human subcutaneous adipose tissue--an evaluation

    DEFF Research Database (Denmark)

    Jelnes, Rolf; Astrup, A; Bülow, J

    1985-01-01

    the partition coefficient found by the double isotope technique, significantly lower values are obtained than if the in vitro determined coefficient is used. This difference is explained mainly by local dilution when injecting xenon subcutaneously. In short-term studies, utilization of the double isotope...... technique reduces the coefficient of variation on average flow determinations, thus an improvement in accuracy of local blood flow estimation can be obtained compared to the method in which an average partition coefficient is used. For long-term studies a partition coefficient of 7.5 ml g-1 seems valid.......Local subcutaneous 133xenon (133Xe) elimination was registered in the human forefoot in 34 patients. The tissue/blood partition coefficient for Xe was estimated individually by simultaneous registration of 133Xe and [131I]antipyrine ([131I]AP) washout from the same local depot. When measured...

  1. Basic Components of Vascular Connective Tissue and Extracellular Matrix.

    Science.gov (United States)

    Halper, Jaroslava

    2018-01-01

    Though the composition of the three layers constituting the blood vessel wall varies among the different types of blood vessels, and some layers may even be missing in capillaries, certain basic components, and properties are shared by all blood vessels, though each histologically distinct layer contains a unique complement of extracellular components, growth factors and cytokines, and cell types as well. The structure and composition of vessel layers informs and is informed by the function of the particular blood vessel. The adaptation of the composition and the resulting function of the extracellular matrix (ECM) to changes in circulation/blood flow and a variety of other extravascular stimuli can be characterized as remodeling spearheaded by vascular cells. There is a surprising amount of cell traffic among the three layers. It starts with endothelial cell mediated transmigration of inflammatory cells from the bloodstream into the subendothelium, and then into tissue adjoining the blood vessel. Smooth muscle cells and a variety of adventitial cells reside in tunica media and tunica externa, respectively. The latter cells are a mixture of progenitor/stem cells, fibroblasts, myofibroblasts, pericytes, macrophages, and dendritic cells and respond to endothelial injury by transdifferentiation as they travel into the two inner layers, intima and media for corrective mission in the ECM composition. This chapter addresses the role of various vascular cell types and ECM components synthesized by them in maintenance of normal structure and in their contribution to major pathological processes, such as atherosclerosis, organ fibrosis, and diabetic retinopathy. © 2018 Elsevier Inc. All rights reserved.

  2. The use of subcutaneous fat tissue for amyloid typing by enzyme-linked immunosorbent assay

    DEFF Research Database (Denmark)

    Olsen, K E; Sletten, K; Westermark, Per

    1999-01-01

    for typing the most common systemic amyloidoses of AL, AA, and transthyretin types by enzyme-linked immunosorbent assay (ELISA), using abdominal wall subcutaneous fat biopsy specimens. The method was tested on 21 abdominal fat biopsy specimens that were sent to the laboratory. Of these, 15 contained amyloid......The amyloidoses are biochemically heterogeneous diseases with pathophysiologic deposits of various proteins. The clinical course, prognosis, and therapy are different for each type of amyloidosis and, therefore, a type-specific diagnosis is demanded as early as possible. We describe a method...

  3. Acceleration of vascularized bone tissue-engineered constructs in a large animal model combining intrinsic and extrinsic vascularization.

    Science.gov (United States)

    Weigand, Annika; Beier, Justus P; Hess, Andreas; Gerber, Thomas; Arkudas, Andreas; Horch, Raymund E; Boos, Anja M

    2015-05-01

    During the last decades, a range of excellent and promising strategies in Bone Tissue Engineering have been developed. However, the remaining major problem is the lack of vascularization. In this study, extrinsic and intrinsic vascularization strategies were combined for acceleration of vascularization. For optimal biomechanical stability of the defect site and simplifying future transition into clinical application, a primary stable and approved nanostructured bone substitute in clinically relevant size was used. An arteriovenous (AV) loop was microsurgically created in sheep and implanted, together with the bone substitute, in either perforated titanium chambers (intrinsic/extrinsic) for different time intervals of up to 18 weeks or isolated Teflon(®) chambers (intrinsic) for 18 weeks. Over time, magnetic resonance imaging and micro-computed tomography (CT) analyses illustrate the dense vascularization arising from the AV loop. The bone substitute was completely interspersed with newly formed tissue after 12 weeks of intrinsic/extrinsic vascularization and after 18 weeks of intrinsic/extrinsic and intrinsic vascularization. Successful matrix change from an inorganic to an organic scaffold could be demonstrated in vascularized areas with scanning electron microscopy and energy dispersive X-ray spectroscopy. Using the intrinsic vascularization method only, the degradation of the scaffold and osteoclastic activity was significantly lower after 18 weeks, compared with 12 and 18 weeks in the combined intrinsic-extrinsic model. Immunohistochemical staining revealed an increase in bone tissue formation over time, without a difference between intrinsic/extrinsic and intrinsic vascularization after 18 weeks. This study presents the combination of extrinsic and intrinsic vascularization strategies for the generation of an axially vascularized bone substitute in clinically relevant size using a large animal model. The additional extrinsic vascularization promotes tissue

  4. Improvement of metabolic disorders by an EP2 receptor agonist via restoration of the subcutaneous adipose tissue in pulmonary emphysema.

    Science.gov (United States)

    Tsuji, Takao; Yamaguchi, Kazuhiro; Kikuchi, Ryota; Nakamura, Hiroyuki; Misaka, Ryoichi; Nagai, Atsushi; Aoshiba, Kazutetsu

    2017-05-01

    Chronic obstructive pulmonary disease (COPD) is often associated with co-morbidities. Metabolic disorders like hyperlipidemia and diabetes occur also in underweight COPD patients, although the mechanism is uncertain. Subcutaneous adipose tissue (SAT) plays an important role in energy homeostasis, since restricted capacity to increase fat cell number with increase in fat cell size occurring instead, is associated with lipotoxicity and metabolic disorders. The aim of this study is to show the protective role of SAT for the metabolic disorders in pulmonary emphysema of a murine model. We found ectopic fat accumulation and impaired glucose homeostasis with wasting of SAT in a murine model of elastase-induced pulmonary emphysema (EIE mice) reared on a high-fat diet. ONO-AE1-259, a selective E-prostanoid (EP) 2 receptor agonist, improved angiogenesis and subsequently adipogenesis, and finally improved ectopic fat accumulation and glucose homeostasis with restoration of the capacity for storage of surplus energy in SAT. These results suggest that metabolic disorders like hyperlipidemia and diabetes occured in underweight COPD is partially due to the less capacity for storage of surplus energy in SAT, though the precise mechanism is uncertained. Our data pave the way for the development of therapeutic interventions for metabolic disorders in emphysema patients, e.g., use of pro-angiogenic agents targeting the capacity for storage of surplus energy in the subcutaneous adipose tissue. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Age and Spatial Peculiarities of Non-neoplastic Diseases of the Skin and Subcutaneous Tissue in Kazakhstan, 2003-2015.

    Science.gov (United States)

    Igissinov, Nurbek; Kulmirzayeva, Dariyana; Bilyalova, Zarina; Akpolatova, Gulnur; Mamyrbayeva, Marzya; Zhumagaliyeva, Galina

    2017-11-01

    Arrangement of effective management aimed at improving dermatological services and consistent care of patients with skin diseases depends on understanding the epidemiological situation. This retrospective study presents an epidemiological assessment of non-neoplastic skin and subcutaneous tissue diseases in Kazakhstan registered in 2003-2015. The yearly incidence rate of the diseases among the whole population was in average 3,341.8±121.1 per 100000 population. This represents 4835.0±156.1 for children, 5503.2±141.8 for adolescents and 2646.6±106.7 for adults per 100000 inhabitants. Space and time incidence rate was evaluated according to the administrative division. The overall trend decreased to 3.5% in children to 2.8% in adolescents to 1.9%, and in adults to 3.9%. Considerable variation in rates was seen across the country, with highest rates in East Kazakhstan, Mangystau and Aktobe regions, the lowest - in Atyrau and South-Kazakhstan regions. Non-neoplastic diseases of skin and subcutaneous tissue continue to be an urgent public health problem, especially among children in many regions of Kazakhstan.

  6. Experimental comparison study of the tissue characteristics in transjugular intrahepatic portosystemic shunt and vascular stent

    International Nuclear Information System (INIS)

    Lu Qin; An Yanli; Deng Gang; Fang Wen; Zhu Guangyu; Niu Huanzhang; Yu Hui; Li Guozhao; Teng Gaojun; Wang Zhen; Wei Xiaoying

    2009-01-01

    Objective: To investigate the tissue characteristics within vascular stent and transjugular intrahepatic portosystemic shunt(TIPS) on swine and to provide more information for the understanding and prevention of vascular stent and TIPS restenosis. Methods: Animal models for TIPS were built in 6 swine and vascular stents were implanted in iliac veins simultaneously. 14-28 days after the operation, the 6 swine were killed to remove the TIPS and vascular stent and the pathological examinations were performed on the tissues within the shunt and stent. The similarities and differences of the tissues within the shunt and stent were analyzed with Krttskal Wallis test. Results: Restenosis of TIPS occurred in 4 models and complete occlusion were seen in 2, while all vascular stents were patent and coated with a thin layer of intimal tissue. Electron microscopic results showed that the tissues in restenotic TIPS were loose and with more extra matrix and fibers, and less smooth muscle, fibroblastic and myofibroblastic cells with different and irregular shape and rich secretory granules. The tissues in patent TIPS contained more extra fibers, smooth muscle and fibroblastic cells with normal organelle. The intimal tissues in vascular stent contained more fibers and fibroblasts cells, less smooth muscle cells. On immunohistochemical staining, the tissues in restenotic and patent TIPS as well as the intimal tissues in vascular stent had strong positive expression for anti-SMC- actin-α, the expression were gradually weakened for PCNA, the intimal tissues in vascular stent had a strong positive expression for vimentin, while the expression of the tissues in restenotic and patent TIPS were weakened gradually. For myoglobulin, the tissues in restenotic TIPS had weakly positive expression, the expression in patent TIPS and vascular stent were almost negative. Western blot results for TGF-β showed that the absorbance ratios of the intima tissues in vascular stent, normal vascular

  7. Proteome dataset of subcutaneous adipose tissue obtained from late pregnant dairy cows during summer heat stress and winter seasons

    Directory of Open Access Journals (Sweden)

    M. Zachut

    2017-06-01

    Full Text Available Adipose tissue has a central role in the regulation of metabolism in dairy cows, and many proteins expressed in this tissue are involved in metabolic responses to stress (Peinado et al., 2012 [1]. Environmental heat stress is one of the main stressors limiting production in dairy cattle (Fuquay, 1981; West, 2003 [2,3], and there is a complex interaction between heat stress and the transition period from late pregnancy to onset of lactation, which is manifested in heat-stressed late-gestation cows (Tao and Dahl, 2013 [4]. We recently defined the proteome of adipose tissue in peripartum dairy cows, identifying 586 proteins of which 18.9% were differentially abundant in insulin-resistant compared to insulin-sensitive adipose tissue (Zachut, 2015 [5]. That study showed that proteomic techniques constitute a valuable tool for identifying novel biomarkers in adipose tissue that are related to metabolic adaptation to stress in dairy cows. The objective of the present work was to examine the adipose tissue proteome under thermo-neutral or seasonal heat stress conditions in late pregnant dairy cows. We have collected subcutaneous adipose tissue biopsies from 10 late pregnant dairy cows during summer heat stress and from 8 late pregnant dairy cows during winter season, and identified and quantified 1495 proteins in the adipose tissues. This dataset of adipose tissue proteome from dairy cows adds novel information on the variety of proteins that are abundant in this tissue during late pregnancy under thermo-neutral as well as heat stress conditions. Differential abundance of 107 (7.1% proteins was found between summer and winter adipose. These results are discussed in our recent research article (Zachut et al., 2017 [6].

  8. Anthropometry, DXA and leptin reflect subcutaneous but not visceral abdominal adipose tissue by MRI in 197 healthy adolescents

    DEFF Research Database (Denmark)

    Tinggaard, Jeanette; Hagen, Casper P; Christensen, Anders Nymark

    2017-01-01

    Background Abdominal fat distribution is associated with the development of cardio-metabolic disease independently of body mass index (BMI). We assessed anthropometry, serum adipokines, and DXA as markers of abdominal subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) using...... to total abdominal volume. Results Girls had a higher SAT% than did boys in early and late puberty (16 vs. 13%, Pfat% (standard deviation score (SDS)), suprailiac skinfold...... magnetic resonance imaging (MRI). Methods We performed a cross-sectional study that included 197 healthy adolescents (114 boys) aged 10–15 years nested within a longitudinal population-based cohort. Clinical examination, blood sampling, DXA, and abdominal MRI were performed. SAT% and VAT% were adjusted...

  9. Curcuma longa extract associated with white pepper lessens high fat diet-induced inflammation in subcutaneous adipose tissue.

    Directory of Open Access Journals (Sweden)

    Audrey M Neyrinck

    Full Text Available Supra-nutritional doses of curcumin, derived from the spice Curcuma longa, have been proposed as a potential treatment of inflammation and metabolic disorders related to obesity. The aim of the present study was to test whether Curcuma longa extract rich in curcumin and associated with white pepper (Curcuma-P®, at doses compatible with human use, could modulate systemic inflammation in diet-induced obese mice. We questioned the potential relevance of changes in adiposity and gut microbiota in the effect of Curcuma-P® in obesity.Mice were fed either a control diet (CT, a high fat (HF diet or a HF diet containing Curcuma longa extract (0.1 % of curcumin in the HF diet associated with white pepper (0.01 % for four weeks. Curcumin has been usually combined with white pepper, which contain piperine, in order to improve its bioavailability. This combination did not significantly modify body weight gain, glycemia, insulinemia, serum lipids and intestinal inflammatory markers. Tetrahydrocurcumin, but not curcumin accumulated in the subcutaneous adipose tissue. Importantly, the co-supplementation in curcuma extract and white pepper decreased HF-induced pro-inflammatory cytokines expression in the subcutaneous adipose tissue, an effect independent of adiposity, immune cells recruitment, angiogenesis, or modulation of gut bacteria controlling inflammation.These findings support that nutritional doses of Curcuma longa, associated with white pepper, is able to decrease inflammatory cytokines expression in the adipose tissue and this effect could be rather linked to a direct effect of bioactive metabolites reaching the adipose tissue, than from changes in the gut microbiota composition.

  10. Curcuma longa extract associated with white pepper lessens high fat diet-induced inflammation in subcutaneous adipose tissue.

    Science.gov (United States)

    Neyrinck, Audrey M; Alligier, Maud; Memvanga, Patrick B; Névraumont, Elodie; Larondelle, Yvan; Préat, Véronique; Cani, Patrice D; Delzenne, Nathalie M

    2013-01-01

    Supra-nutritional doses of curcumin, derived from the spice Curcuma longa, have been proposed as a potential treatment of inflammation and metabolic disorders related to obesity. The aim of the present study was to test whether Curcuma longa extract rich in curcumin and associated with white pepper (Curcuma-P®), at doses compatible with human use, could modulate systemic inflammation in diet-induced obese mice. We questioned the potential relevance of changes in adiposity and gut microbiota in the effect of Curcuma-P® in obesity. Mice were fed either a control diet (CT), a high fat (HF) diet or a HF diet containing Curcuma longa extract (0.1 % of curcumin in the HF diet) associated with white pepper (0.01 %) for four weeks. Curcumin has been usually combined with white pepper, which contain piperine, in order to improve its bioavailability. This combination did not significantly modify body weight gain, glycemia, insulinemia, serum lipids and intestinal inflammatory markers. Tetrahydrocurcumin, but not curcumin accumulated in the subcutaneous adipose tissue. Importantly, the co-supplementation in curcuma extract and white pepper decreased HF-induced pro-inflammatory cytokines expression in the subcutaneous adipose tissue, an effect independent of adiposity, immune cells recruitment, angiogenesis, or modulation of gut bacteria controlling inflammation. These findings support that nutritional doses of Curcuma longa, associated with white pepper, is able to decrease inflammatory cytokines expression in the adipose tissue and this effect could be rather linked to a direct effect of bioactive metabolites reaching the adipose tissue, than from changes in the gut microbiota composition.

  11. Liver fat content is linked to inflammatory changes in subcutaneous adipose tissue in type 2 diabetes patients.

    Science.gov (United States)

    Jansen, Henry J; Vervoort, Gerald M; van der Graaf, Marinette; Stienstra, Rinke; Tack, Cees J

    2013-11-01

    Patients with type 2 diabetes mellitus (T2DM) are typically overweight and have an increased liver fat content (LFAT). High LFAT may be explained by an increased efflux of free fatty acids from the adipose tissue, which is partly instigated by inflammatory changes. This would imply an association between inflammatory features of the adipose tissue and liver fat content. To analyse associations between inflammatory features of the adipose tissue and liver fat content. A cross-sectional study. Twenty-seven obese patients with insulin-treated T2DM were studied. LFAT content was measured by proton magnetic resonance spectroscopy. A subcutaneous (sc) fat biopsy was obtained to determine morphology and protein levels within adipose tissue. In addition to fat cell size, the percentage of macrophages and the presence of crown-like structures (CLSs) within sc fat were assessed by CD68-immunohistochemical staining. Mean LFAT percentage was 11·1 ± 1·7% (range: 0·75-32·9%); 63% of the patients were diagnosed with an elevated LFAT (upper range of normal ≤5·5%). Whereas adipocyte size did not correlate with LFAT, 3 of 4 subjects with CLSs in sc fat had elevated LFAT and the percentage of macrophages present in sc adipose tissue was positively associated with LFAT. Protein concentrations of adiponectin within adipose tissue negatively correlated with LFAT. Adipose tissue protein levels of the key inflammatory adipokine plasminogen activator inhibitor-1 (PAI-1) were positively associated with LFAT. Several pro-inflammatory changes in sc adipose tissue associate with increased LFAT content in obese insulin-treated patients with T2DM. These findings suggest that inflammatory changes at the level of the adipose tissue may drive liver fat accumulation. © 2012 John Wiley & Sons Ltd.

  12. Subcutaneous adipose tissue macropage infiltration is associated with hepatic and visceral fat deposition, hyperinsulinemia, and stimulation of NF-kB stress pathway

    Science.gov (United States)

    The goal was to examine in obese young adults the influence of ethnicity and subcutaneous adipose tissue (SAT) inflammation on hepatic fat fraction (HFF), visceral adipose tissue (VAT) deposition, insulin sensitivity (SI), Beta-cell function, and SAT gene expression. SAT biopsies were obtained from...

  13. Impact of Skeletal Muscle Mass Index, Intramuscular Adipose Tissue Content, and Visceral to Subcutaneous Adipose Tissue Area Ratio on Early Mortality of Living Donor Liver Transplantation.

    Science.gov (United States)

    Hamaguchi, Yuhei; Kaido, Toshimi; Okumura, Shinya; Kobayashi, Atsushi; Shirai, Hisaya; Yagi, Shintaro; Kamo, Naoko; Okajima, Hideaki; Uemoto, Shinji

    2017-03-01

    Skeletal muscle depletion has been shown to be an independent risk factor for poor survival in various diseases. However, in surgery, the significance of other body components including visceral and subcutaneous adipose tissue remains unclear. This retrospective study included 250 adult patients undergoing living donor liver transplantation (LDLT) between January 2008 and April 2015. Using preoperative plain computed tomography imaging at the third lumbar vertebra level, skeletal muscle mass, muscle quality, and visceral adiposity were evaluated by the skeletal muscle mass index (SMI), intramuscular adipose tissue content (IMAC), and visceral to subcutaneous adipose tissue area ratio (VSR), respectively. The cutoff values of these parameters were determined for men and women separately using the data of 657 healthy donors for LDLT between 2005 and 2016. Impact of these parameters on outcomes after LDLT was analyzed. VSR was significantly correlated with patient age (P = 0.041), neutrophil-lymphocyte ratio (P mass index (P normal group. On multivariate analysis, low SMI (hazard ratio [HR], 2.367, P = 0.002), high IMAC (HR, 2.096, P = 0.004), and high VSR (HR, 2.213, P = 0.003) were identified as independent risk factors for death after LDLT. Preoperative visceral adiposity, as well as low muscularity, was closely involved with posttransplant mortality.

  14. Prefabrication of axial vascularized tissue engineering coral bone by an arteriovenous loop: A better model

    International Nuclear Information System (INIS)

    Dong Qingshan; Shang Hongtao; Wu Wei; Chen Fulin; Zhang Junrui; Guo Jiaping; Mao Tianqiu

    2012-01-01

    The most important problem for the survival of thick 3-dimensional tissues is the lack of vascularization in the context of bone tissue engineering. In this study, a modified arteriovenous loop (AVL) was developed to prefabricate an axial vascularized tissue engineering coral bone in rabbit, with comparison of the arteriovenous bundle (AVB) model. An arteriovenous fistula between rabbit femoral artery and vein was anastomosed to form an AVL. It was placed in a circular side groove of the coral block. The complex was wrapped with an expanded-polytetrafluoroethylene membrane and implanted beneath inguinal skin. After 2, 4, 6 and 8 weeks, the degree of vascularization was evaluated by India ink perfusion, histological examination, vascular casts, and scanning electron microscopy images of vascular endangium. Newly formed fibrous tissues and vasculature extended over the surfaces and invaded the interspaces of entire coral block. The new blood vessels robustly sprouted from the AVL. Those invaginated cavities in the vascular endangium from scanning electron microscopy indicated vessel's sprouted pores. Above indexes in AVL model are all superior to that in AVB model, indicating that the modified AVL model could more effectively develop vascularization in larger tissue engineering bone. - Highlights: ► A modified arteriovenous loop (AVL) model in rabbit was developed in this study. ► Axial prevascularization was induced in a larger coral block by using the AVL. ► The prefabrication of axial vascularized coral bone is superior as vascular carrier.

  15. Osteogenic Differentiation of Mesenchymal Stromal Cells: A Comparative Analysis Between Human Subcutaneous Adipose Tissue and Dental Pulp.

    Science.gov (United States)

    D'Alimonte, Iolanda; Mastrangelo, Filiberto; Giuliani, Patricia; Pierdomenico, Laura; Marchisio, Marco; Zuccarini, Mariachiara; Di Iorio, Patrizia; Quaresima, Raimondo; Caciagli, Francesco; Ciccarelli, Renata

    2017-06-01

    White adipose tissue is a source of mesenchymal stromal/stem cells (MSCs) that are actively studied for their possible therapeutic use in bone tissue repair/remodeling. To better appreciate the osteogenic potential of these cells, we compared some properties of MSCs from human subcutaneous adipose tissue [subcutaneous-adipose stromal cells (S-ASCs)] and dental pulp stem cell (DPSCs) of third-impacted molars, the latter representing a well-established MSC source. Both undifferentiated cell types showed similar fibroblast-like morphology and mesenchymal marker expression. However, undifferentiated S-ASCs displayed a faster doubling time coupled to greater proliferation and colony-forming ability than DPSCs. Also, the osteogenic differentiation of S-ASCs was greater than that of DPSCs, as evaluated by the higher levels of expression of early osteogenic markers Runt-related transcription factor-2 (RUNX2) and alkaline phosphatase at days 3-14 and of extracellular matrix mineralization at days 14-21. Moreover, S-ASCs showed a better colonization of the titanium scaffold. In addition, we investigated whether S-ASC osteogenic commitment was enhanced by adenosine A1 receptor (A1R) stimulation, as previously shown for DPSCs. Although A1R expression was constant during DPSC differentiation, it increased in S-ASC at day 21 from osteogenesis induction. Accordingly, A1R stimulation by the agonist 2-chloro-N 6 -cyclopentyl-adenosine, added to the cultures at each medium change, stimulated proliferation only in differentiating DPSC and enhanced the osteogenic differentiation earlier in DPSCs than in S-ASCs. These effects were counteracted by cell pretreatment with a selective A1R antagonist. Thus, our findings suggest that S-ASCs could be advantageously used in regenerative orthopedics/dentistry, and locally released or exogenously added purines may play a role in bone repair/remodeling, even though this aspect should be more thoroughly evaluated.

  16. Reaction of rat subcutaneous tissue to mineral trioxide aggregate and Portland cement: a secondary level biocompatibility test.

    Science.gov (United States)

    Karanth, P; Manjunath, M K; Kuriakose, E S

    2013-01-01

    This secondary-level animal study was conducted to assess and compare the subcutaneous tissue reaction to implantation of white mineral trioxide aggregate (MTA) and white Portland cement. Polyethylene tubes filled with either freshly mixed white MTA (Group I) or white Portland cement (Group II) were implanted subcutaneously into 12 Wistar Albino rats. Each animal also received an empty polyethylene tube as the control (Group III). After 7, 14, 21 and 30 days, the implants, together with surrounding tissues were excised. Two pathologists blinded to the experimental procedure, evaluated sections taken from the biopsy specimens for the severity of the inflammatory response, calcification and the presence and thickness of fibrous capsule surrounding the implant. Statistical analysis was performed using the Cross-tabs procedure, Univariate analysis of the variance two-way and the Pearson product moment correlation to assess inter-rater variability between the two evaluators. At 7 days, there was no significant difference in the severity of inflammation between the control group, white MTA, and white Portland cement groups. In the 14 day, 21 day and 30 day test periods, control group had significantly less inflammation than white MTA and white Portland cement. There was no significant difference in the grading of inflammation between white MTA and white Portland cement. All materials exhibited thick capsule at 7 days and thin capsule by 30 days. Both white MTA and white Portland cement were not completely non-irritating at the end of 30 days as evidenced by the presence of mild inflammation. However, the presence of a thin capsule around the materials, similar to the control group, indicates good tissue tolerance. White MTA and white Portland cement seem to be materials of comparable biocompatibility.

  17. Scintigraphic assessment of vascularity and blood-tissue barrier of human brain tumours

    International Nuclear Information System (INIS)

    Front, D.

    1978-01-01

    Assessment of vascularity and blood-tissue barrier was performed by sequential scintigraphy in 43 patients with brain tumours. The blood-tumour barrier was evaluated by use of sup(99m)Tc-pertechnetate, and vascularity using sup(99m)Tc-labelled red blood cells. Three groups of tumours were found: tumours with low vascularity and permeable barrier, tumours with high vascularity and permeable barrier, and tumours with low vascularity and relatively impermeable barrier. The first group indicates that when vessels are permeable, there may be a rapid penetration of large amounts of pertechnetate into the tumour even when vascularity is not increased. In the other two groups penetration of pertechnetate into the tumour is affected by vascularity, as it determines the total area where passage of the radiopharmaceutical takes place. It is suggested that the permeability of the blood-tumour barrier and the amount of vascularity may have an effect on the success of chemotherapy in brain tumours. (author)

  18. Subcutaneous inguinal white adipose tissue is responsive to, but dispensable for, the metabolic health benefits of exercise.

    Science.gov (United States)

    Peppler, Willem T; Townsend, Logan K; Knuth, Carly M; Foster, Michelle T; Wright, David C

    2018-01-01

    Exercise training has robust effects on subcutaneous inguinal white adipose tissue (iWAT), characterized by a shift to a brown adipose tissue (BAT)-like phenotype. Consistent with this, transplantation of exercise-trained iWAT into sedentary rodents activates thermogenesis and improves glucose homeostasis, suggesting that iWAT metabolism may contribute to the beneficial effects of exercise. However, it is yet to be determined if adaptations in iWAT are necessary for the beneficial systemic effects of exercise. To test this, male C57BL/6 mice were provided access to voluntary wheel running (VWR) or remained as a cage control (SED) for 11 nights after iWAT removal via lipectomy (LIPX) or SHAM surgery. We found that SHAM and LIPX mice with access to VWR ran similar distances and had comparable reductions in body mass, increased food intake, and increased respiratory exchange ratio (RER). Further, VWR improved indexes of glucose homeostasis and insulin tolerance in both SHAM and LIPX mice. The lack of effect of LIPX in the response to VWR was not explained by compensatory increases in markers of mitochondrial biogenesis and thermogenesis in skeletal muscle, epididymal white adipose tissue, or interscapular brown adipose tissue. Together, these data demonstrate that mice with and without iWAT have comparable adaptations to VWR, suggesting that iWAT may be dispensable for the metabolic health benefits of exercise.

  19. Meal fat storage in subcutaneous adipose tissue: comparison of pioglitazone and glipizide treatment of type 2 diabetes.

    Science.gov (United States)

    Basu, Ananda; Basu, Rita; Pattan, Vishwanath; Rizza, Robert A; Jensen, Michael D

    2010-10-01

    Treatment of type 2 diabetes (T2DM) with pioglitazone changes abdominal fat in the opposite direction as treatment with glipizide. To determine whether these two medications affect adipose tissue meal fatty acid storage differently we studied 19 T2DM treated with either pioglitazone (n = 8) or glipizide (n = 11) and 11 non-DM control subjects matched for age, BMI, abdominal and leg fat. A breakfast mixed meal containing [1-(14)C]triolein was given and abdominal and femoral subcutaneous (sc) adipose tissue biopsies were collected 6 and 24 h later to measure meal fatty acid storage. The portion of meal fatty acids stored in upper body sc and lower body sc adipose tissue did not differ between non-DM and T2DM subjects either at 6 or 24 h. Likewise, meal fatty acid storage did not differ between the T2DM participants treated with pioglitazone or glipizide. We conclude that meal fatty acid storage in upper body and lower body sc adipose tissue is not abnormal in T2DM patients treated with pioglitazone or glipizide.

  20. Continuous glucose monitoring in subcutaneous tissue using factory-calibrated sensors: a pilot study.

    Science.gov (United States)

    Hoss, Udo; Jeddi, Iman; Schulz, Mark; Budiman, Erwin; Bhogal, Claire; McGarraugh, Geoffrey

    2010-08-01

    Commercial continuous subcutaneous glucose monitors require in vivo calibration using capillary blood glucose tests. Feasibility of factory calibration, i.e., sensor batch characterization in vitro with no further need for in vivo calibration, requires a predictable and stable in vivo sensor sensitivity and limited inter- and intra-subject variation of the ratio of interstitial to blood glucose concentration. Twelve volunteers wore two FreeStyle Navigator (Abbott Diabetes Care, Alameda, CA) continuous glucose monitoring systems for 5 days in parallel for two consecutive sensor wears (four sensors per subject, 48 sensors total). Sensors from a prototype sensor lot with a low variability in glucose sensitivity were used for the study. Median sensor sensitivity values based on capillary blood glucose were calculated per sensor and compared for inter- and intra-subject variation. Mean absolute relative difference (MARD) calculation and error grid analysis were performed using a single calibration factor for all sensors to simulate factory calibration and compared to standard fingerstick calibration. Sensor sensitivity variation in vitro was 4.6%, which increased to 8.3% in vivo (P glucose monitoring is feasible with similar accuracy to standard fingerstick calibration. Additional data are required to confirm this result in subjects with diabetes.

  1. Altered Protein Composition of Subcutaneous Adipose Tissue in Chronic Kidney Disease

    Directory of Open Access Journals (Sweden)

    Joanna Gertow

    2017-11-01

    Discussion: These findings demonstrate that adipose tissue of CKD patients shows signs of inflammation and disturbed functionality, thus potentially contributing to the unfavorable metabolic profile and increased risk of CVD in these patients.

  2. Lipid mobilization in subcutaneous adipose tissue during exercise in lean and obese humans. Roles of insulin and natriuretic peptides

    DEFF Research Database (Denmark)

    Koppo, Katrien; Larrouy, Dominique; Marques, Marie A

    2010-01-01

    The aim of this study was to evaluate the relative contributions of various hormones involved in the regulation of lipid mobilization in subcutaneous adipose tissue (SCAT) during exercise and to assess the impact of obesity on this regulation. Eight lean and eight obese men performed a 60-min cycle...... phentolamine and propranolol while another probe was perfused with the phosphodiesterase and adenosine receptor inhibitor aminophylline. Compared with the control condition, infusion of octreotide reduced plasma insulin levels in lean (from approximately 3.5 to 0.5 microU/ml) and in obese (from approximately 9...... to 2 microU/ml), blunted the exercise-induced rise in plasma GH and epinephrine levels in both groups, and enhanced the exercise-induced natriuretic peptide (NP) levels in lean but not in obese subjects. In both groups, octreotide infusion resulted in higher exercise-induced increases in dialysate...

  3. Adrenaline but not noradrenaline is a determinant of exercise-induced lipid mobilization in human subcutaneous adipose tissue

    DEFF Research Database (Denmark)

    Glisezinski, I. de; Larrouy, D.; Bajzova, M.

    2009-01-01

    The relative contribution of noradrenaline (norepinephrine) and adrenaline (epinephrine) in the control of lipid mobilization in subcutaneous adipose tissue (SCAT) during exercise was evaluated in men treated with a somatostatin analogue, octreotide. Eight lean and eight obese young men matched...... of octreotide suppressed plasma insulin and growth hormone levels at rest and during exercise. It blocked the exercise-induced increase in plasma adrenaline while that of noradrenaline was unchanged. Plasma natriuretic peptides (NPs) level was higher at rest and during exercise under octreotide infusion in lean...... individuals. In conclusion, blockade of beta-adrenergic receptors during exercise performed during infusion of octreotide (blocking the exercise-induced rise in adrenaline but not that of noradrenaline) does not alter the exercise-induced lipolysis. This suggests that adrenaline is the main adrenergic agent...

  4. Determination of the tissue-to-blood partition coefficient for 131iodo-antipyrine in human subcutaneous adipose tissue

    DEFF Research Database (Denmark)

    Jelnes, R; Astrup, A

    1985-01-01

    131Iodo-antipyrine (131I-AP) is commonly used for blood flow measurements in adipose tissue. These estimations have been based on the assumption of the tissue-to-blood partition coefficient being 1 ml g-1. No exact determination of the tissue-to-blood partition coefficient for 131I-AP in adipose...... tissue has been carried out. In the present study a partition coefficient of 1.12 +/- 0.06 (mean +/- S.D.) for 131I-AP in adipose tissue has been determined based on the partition coefficient for 131I-AP between lipid-saline (1.24 ml g-1), red blood cells-plasma (0.64 ml g-1), protein-saline (0.19 ml g-1...

  5. Effect of topical anaesthetics on interstitial colloid osmotic pressure in human subcutaneous tissue sampled by wick technique.

    Directory of Open Access Journals (Sweden)

    Hans Jørgen Timm Guthe

    Full Text Available To measure colloid osmotic pressure in interstitial fluid (COP(i from human subcutaneous tissue with the modified wick technique in order to determine influence of topical application of anaesthetics, dry vs. wet wick and implantation time on COP(i.In 50 healthy volunteers interstitial fluid (IF was collected by subcutaneous implantation of multi-filamentous nylon wicks. Study subjects were allocated to two groups; one for comparing COP(i obtained from dry and saline soaked wicks, and one for comparing COP(i from unanaesthetized skin, and skin after application of a eutectic mixture of local anaesthetic (EMLA®, Astra Zeneca cream. IF was sampled from the skin of the shoulders, and implantation time was 30, 60, 75, 90 and 120 min. Colloid osmotic pressure was measured with a colloid osmometer. Pain assessment during the procedure was compared for EMLA cream and no topical anaesthesia using a visual analogue scale (VAS in a subgroup of 10 subjects.There were no significant differences between COP(i obtained from dry compared to wet wicks, except that the values after 75 and 90 min. were somewhat higher for the dry wicks. Topical anaesthesia with EMLA cream did not affect COP(i values. COP(i decreased from 30 to 75 min. of implantation (23.2 ± 4.4 mmHg to 19.6 ± 2.9 mmHg, p = 0.008 and subsequently tended to increase until 120 min. EMLA cream resulted in significant lower VAS score for the procedure.COP(i from subcutaneous tissue was easily obtained and fluid harvesting was well tolerated when topical anaesthetic was used. The difference in COP(i assessed by dry and wet wicks between 75 min. and 90 min. of implantation was in accordance with previous reports. The use of topical analgesia did not influence COP(i and topical analgesia may make the wick technique more acceptable for subjects who dislike technical procedures, including children.ClinicalTrials.gov NCT01044979.

  6. Tissue-Engineered Vascular Rings from Human iPSC-Derived Smooth Muscle Cells

    Directory of Open Access Journals (Sweden)

    Biraja C. Dash

    2016-07-01

    Full Text Available There is an urgent need for an efficient approach to obtain a large-scale and renewable source of functional human vascular smooth muscle cells (VSMCs to establish robust, patient-specific tissue model systems for studying the pathogenesis of vascular disease, and for developing novel therapeutic interventions. Here, we have derived a large quantity of highly enriched functional VSMCs from human induced pluripotent stem cells (hiPSC-VSMCs. Furthermore, we have engineered 3D tissue rings from hiPSC-VSMCs using a facile one-step cellular self-assembly approach. The tissue rings are mechanically robust and can be used for vascular tissue engineering and disease modeling of supravalvular aortic stenosis syndrome. Our method may serve as a model system, extendable to study other vascular proliferative diseases for drug screening. Thus, this report describes an exciting platform technology with broad utility for manufacturing cell-based tissues and materials for various biomedical applications.

  7. Self-Condensation Culture Enables Vascularization of Tissue Fragments for Efficient Therapeutic Transplantation

    Directory of Open Access Journals (Sweden)

    Yoshinobu Takahashi

    2018-05-01

    Full Text Available Summary: Clinical transplantation of tissue fragments, including islets, faces a critical challenge because of a lack of effective strategies that ensure efficient engraftment through the timely integration of vascular networks. We recently developed a complex organoid engineering method by “self-condensation” culture based on mesenchymal cell-dependent contraction, thereby enabling dissociated heterotypic lineages including endothelial cells to self-organize in a spatiotemporal manner. Here, we report the successful adaptation of this method for generating complex tissues from diverse tissue fragments derived from various organs, including pancreatic islets. The self-condensation of human and mouse islets with endothelial cells not only promoted functionalization in culture but also massively improved post-transplant engraftment. Therapeutically, fulminant diabetic mice were more efficiently treated by a vascularized islet transplant compared with the conventional approach. Given the general limitations of post-transplant vascularization associated with 3D tissue-based therapy, our approach offers a promising means of enhancing efficacy in the context of therapeutic tissue transplantation. : Takahashi et al. report on generating vascularized islet tissue from humans and mice. After transplantation, vascularized islets significantly improve survival of diabetic mice, demonstrating the quick normalization of blood glucose compared with conventional islet transplantation. Keywords: tissue engineering, tissue-based therapy, vascularization, islet transplantation, organoid

  8. Liver X receptor β controls thyroid hormone feedback in the brain and regulates browning of subcutaneous white adipose tissue.

    Science.gov (United States)

    Miao, Yifei; Wu, Wanfu; Dai, Yubing; Maneix, Laure; Huang, Bo; Warner, Margaret; Gustafsson, Jan-Åke

    2015-11-10

    The recent discovery of browning of white adipose tissue (WAT) has raised great research interest because of its significant potential in counteracting obesity and type 2 diabetes. Browning is the result of the induction in WAT of a newly discovered type of adipocyte, the beige cell. When mice are exposed to cold or several kinds of hormones or treatments with chemicals, specific depots of WAT undergo a browning process, characterized by highly activated mitochondria and increased heat production and energy expenditure. However, the mechanisms underlying browning are still poorly understood. Liver X receptors (LXRs) are one class of nuclear receptors, which play a vital role in regulating cholesterol, triglyceride, and glucose metabolism. Following our previous finding that LXRs serve as repressors of uncoupling protein-1 (UCP1) in classic brown adipose tissue in female mice, we found that LXRs, especially LXRβ, also repress the browning process of subcutaneous adipose tissue (SAT) in male rodents fed a normal diet. Depletion of LXRs activated thyroid-stimulating hormone (TSH)-releasing hormone (TRH)-positive neurons in the paraventricular nucleus area of the hypothalamus and thus stimulated secretion of TSH from the pituitary. Consequently, production of thyroid hormones in the thyroid gland and circulating thyroid hormone level were increased. Moreover, the activity of thyroid signaling in SAT was markedly increased. Together, our findings have uncovered the basis of increased energy expenditure in male LXR knockout mice and provided support for targeting LXRs in treatment of obesity.

  9. Glyceroneogenesis is inhibited through HIV protease inhibitor-induced inflammation in human subcutaneous but not visceral adipose tissue

    Science.gov (United States)

    Leroyer, Stéphanie; Vatier, Camille; Kadiri, Sarah; Quette, Joëlle; Chapron, Charles; Capeau, Jacqueline; Antoine, Bénédicte

    2011-01-01

    Glyceroneogenesis, a metabolic pathway that participates during lipolysis in the recycling of free fatty acids to triglycerides into adipocytes, contributes to the lipid-buffering function of adipose tissue. We investigated whether glyceroneogenesis could be affected by human immunodeficiency virus (HIV) protease inhibitors (PIs) responsible or not for dyslipidemia in HIV-infected patients. We treated explants obtained from subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) depots from lean individuals. We observed that the dyslipidemic PIs nelfinavir, lopinavir and ritonavir, but not the lipid-neutral PI atazanavir, increased lipolysis and decreased glyceroneogenesis, leading to an increased release of fatty acids from SAT but not from VAT. At the same time, dyslipidemic PIs decreased the amount of perilipin and increased interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) secretion in SAT but not in VAT. Parthenolide, an inhibitor of the NFκB pathway, counteracted PI-induced increased inflammation and decreased glyceroneogenesis. IL-6 (100 ng) inhibited the activity of phosphoenolpyruvate carboxykinase, the key enzyme of glyceroneogenesis, in SAT but not in VAT. Our data show that dyslipidemic but not lipid-neutral PIs decreased glyceroneogenesis as a consequence of PI-induced increased inflammation in SAT that could have an affect on adipocytes and/or macrophages. These results add a new link between fat inflammation and increased fatty acids release and suggest a greater sensitivity of SAT than VAT to PI-induced inflammation. PMID:21068005

  10. Association of adipocyte genes with ASP expression: a microarray analysis of subcutaneous and omental adipose tissue in morbidly obese subjects

    Directory of Open Access Journals (Sweden)

    Lu HuiLing

    2010-01-01

    Full Text Available Abstract Background Prevalence of obesity is increasing to pandemic proportions. However, obese subjects differ in insulin resistance, adipokine production and co-morbidities. Based on fasting plasma analysis, obese subjects were grouped as Low Acylation Stimulating protein (ASP and Triglyceride (TG (LAT vs High ASP and TG (HAT. Subcutaneous (SC and omental (OM adipose tissues (n = 21 were analysed by microarray, and biologic pathways in lipid metabolism and inflammation were specifically examined. Methods LAT and HAT groups were matched in age, obesity, insulin, and glucose, and had similar expression of insulin-related genes (InsR, IRS-1. ASP related genes tended to be increased in the HAT group and were correlated (factor B, adipsin, complement C3, p Results HAT adipose tissue demonstrated increased lipid related genes for storage (CD36, DGAT1, DGAT2, SCD1, FASN, and LPL, lipolysis (HSL, CES1, perilipin, fatty acid binding proteins (FABP1, FABP3 and adipocyte differentiation markers (CEBPα, CEBPβ, PPARγ. By contrast, oxidation related genes were decreased (AMPK, UCP1, CPT1, FABP7. HAT subjects had increased anti-inflammatory genes TGFB1, TIMP1, TIMP3, and TIMP4 while proinflammatory PIG7 and MMP2 were also significantly increased; all genes, p Conclusion Taken together, the profile of C5L2 receptor, ASP gene expression and metabolic factors in adipose tissue from morbidly obese HAT subjects suggests a compensatory response associated with the increased plasma ASP and TG.

  11. Development of the mouse dermal adipose layer occurs independently of subcutaneous adipose tissue and is marked by restricted early expression of FABP4.

    Directory of Open Access Journals (Sweden)

    Kamila Wojciechowicz

    Full Text Available The laboratory mouse is a key animal model for studies of adipose biology, metabolism and disease, yet the developmental changes that occur in tissues and cells that become the adipose layer in mouse skin have received little attention. Moreover, the terminology around this adipose body is often confusing, as frequently no distinction is made between adipose tissue within the skin, and so called subcutaneous fat. Here adipocyte development in mouse dorsal skin was investigated from before birth to the end of the first hair follicle growth cycle. Using Oil Red O staining, immunohistochemistry, quantitative RT-PCR and TUNEL staining we confirmed previous observations of a close spatio-temporal link between hair follicle development and the process of adipogenesis. However, unlike previous studies, we observed that the skin adipose layer was created from cells within the lower dermis. By day 16 of embryonic development (e16 the lower dermis was demarcated from the upper dermal layer, and commitment to adipogenesis in the lower dermis was signalled by expression of FABP4, a marker of adipocyte differentiation. In mature mice the skin adipose layer is separated from underlying subcutaneous adipose tissue by the panniculus carnosus. We observed that the skin adipose tissue did not combine or intermix with subcutaneous adipose tissue at any developmental time point. By transplanting skin isolated from e14.5 mice (prior to the start of adipogenesis, under the kidney capsule of adult mice, we showed that skin adipose tissue develops independently and without influence from subcutaneous depots. This study has reinforced the developmental link between hair follicles and skin adipocyte biology. We argue that because skin adipocytes develop from cells within the dermis and independently from subcutaneous adipose tissue, that it is accurately termed dermal adipose tissue and that, in laboratory mice at least, it represents a separate adipose depot.

  12. Fatty acid metabolism and deposition in subcutaneous adipose tissue of pasture and feedlot finished cattle

    Science.gov (United States)

    An experiment was conducted to evaluate the effects of pasture finishing versus high-concentrate finishing, over time, on fatty acid metabolism in Angus crossbred (n = 24) steers. Ruminal fluid, serum, and adipose tissue biopsies were obtained on d 0, 28, 84, and 140. Pasture forages and diet ingr...

  13. Vascular Tissue Reaction to Acute Malapposition in Human Coronary Arteries Sequential Assessment With Optical Coherence Tomography

    NARCIS (Netherlands)

    Gutiérrez-Chico, Juan Luis; Wykrzykowska, Joanna; Nüesch, Eveline; van Geuns, Robert Jan; Koch, Karel T.; Koolen, Jacques J.; Di Mario, Carlo; Windecker, Stephan; van Es, Gerrit-Anne; Gobbens, Pierre; Jüni, Peter; Regar, Evelyn; Serruys, Patrick W.

    2012-01-01

    Background-The vascular tissue reaction to acute incomplete stent apposition (ISA) is not well known. The aim of this study was to characterize the vascular response to acute ISA in vivo and to look for predictors of incomplete healing. Methods and Results-Optical coherence tomography studies of 66

  14. Vascular tissue reaction to acute malapposition in human coronary arteries sequential assessment with optical coherence tomography

    NARCIS (Netherlands)

    J.L. Gutiérrez-Chico; J.J. Wykrzykowska (Joanna); E. Nüesch (Eveline); R.J.M. van Geuns (Robert Jan); K. Koch (Karel); J.J. Koolen (Jacques); C. di Mario (Carlo); S.W. Windecker (Stephan); G.A. van Es (Gerrit Anne); P. Gobbens (Pierre); P. Jüni (Peter); E.S. Regar (Eveline); P.W.J.C. Serruys (Patrick)

    2012-01-01

    textabstractBackground-The vascular tissue reaction to acute incomplete stent apposition (ISA) is not well known. The aim of this study was to characterize the vascular response to acute ISA in vivo and to look for predictors of incomplete healing. Methods and Results-Optical coherence tomography

  15. Low-level laser therapy (LLLT) does not reduce subcutaneous adipose tissue by local adipocyte injury but rather by modulation of systemic lipid metabolism.

    Science.gov (United States)

    Jankowski, Marek; Gawrych, Mariusz; Adamska, Urszula; Ciescinski, Jakub; Serafin, Zbigniew; Czajkowski, Rafal

    2017-02-01

    Low-level laser (light) therapy (LLLT) has been applied recently to body contouring. However the mechanism of LLLT-induced reduction of subcutaneous adipose tissue thickness has not been elucidated and proposed hypotheses are highly controversial. Non-obese volunteers were subject to 650nm LLLT therapy. Each patient received 6 treatments 2-3 days apart to one side of the abdomen. The contralateral side was left untreated and served as control. Subjects' abdominal adipose tissue thickness was measured by ultrasound imaging at baseline and 2 weeks post-treatment. Our study is to the best of our knowledge, the largest split-abdomen study employing subcutaneous abdominal fat imaging. We could not show a statistically significant reduction of abdominal subcutaneous adipose tissue by LLLT therapy. Paradoxically when the measurements of the loss of fat thickness on treated side was corrected for change in thickness on non treated side, we have observed that in 8 out of 17 patients LLLT increased adipose tissue thickness. In two patients severe side effect occurred as a result of treatment: one patient developed ulceration within appendectomy scar, the other over the posterior superior iliac spine. The paradoxical net increase in subcutaneous fat thickness observed in some of our patients is a rationale against liquefactive and transitory pore models of LLLT-induced adipose tissue reduction. LLLT devices with laser diode panels applied directly on the skin are not as safe as devices with treatment panels separated from the patient's skin.

  16. Interstitial concentrations of adipokines in subcutaneous abdominal and femoral adipose tissue

    DEFF Research Database (Denmark)

    Nielsen, Ninna Bo; Højbjerre, Lise; Sonne, Mette P

    2009-01-01

    Adipokines play important regulatory roles in the pathophysiology of obesity and insulin resistance. We measured plasma and interstitial concentrations of the adipokines adiponectin, resistin, leptin, monocyte chemoattractant protein-1 (MCP-1), interleukin-6 (IL-6) and interleukin-8 (IL-8...... plasma (approximately 100-fold, approximately 200-fold and approximately 1000-fold, respectively, PResistin concentrations did not differ significantly between compartments. Adipose tissue blood flow (ATBF) showed no regional difference (P>0.05). The intra- and inter-subject variations of all...

  17. Short-and long-term glucocorticoid treatment enhances insulin signalling in human subcutaneous adipose tissue

    OpenAIRE

    Gathercole, LL; Morgan, SA; Bujalska, IJ; Stewart, PM; Tomlinson, JW

    2011-01-01

    Background: Endogenous or exogenous glucocorticoid (GC) excess (Cushing's syndrome) is characterized by increased adiposity and insulin resistance. Although GCs cause global insulin resistance in vivo, we have previously shown that GCs are able to augment insulin action in human adipose tissue, contrasting with their action in skeletal muscle. Cushing's syndrome develops following chronic GC exposure and, in addition, is a state of hyperinsulinemia. Objectives: We have therefore compared the ...

  18. Prefabrication of axial vascularized tissue engineering coral bone by an arteriovenous loop: a better model.

    Science.gov (United States)

    Dong, Qing-shan; Shang, Hong-tao; Wu, Wei; Chen, Fu-lin; Zhang, Jun-rui; Guo, Jia-ping; Mao, Tian-qiu

    2012-08-01

    The most important problem for the survival of thick 3-dimensional tissues is the lack of vascularization in the context of bone tissue engineering. In this study, a modified arteriovenous loop (AVL) was developed to prefabricate an axial vascularized tissue engineering coral bone in rabbit, with comparison of the arteriovenous bundle (AVB) model. An arteriovenous fistula between rabbit femoral artery and vein was anastomosed to form an AVL. It was placed in a circular side groove of the coral block. The complex was wrapped with an expanded-polytetrafluoroethylene membrane and implanted beneath inguinal skin. After 2, 4, 6 and 8 weeks, the degree of vascularization was evaluated by India ink perfusion, histological examination, vascular casts, and scanning electron microscopy images of vascular endangium. Newly formed fibrous tissues and vasculature extended over the surfaces and invaded the interspaces of entire coral block. The new blood vessels robustly sprouted from the AVL. Those invaginated cavities in the vascular endangium from scanning electron microscopy indicated vessel's sprouted pores. Above indexes in AVL model are all superior to that in AVB model, indicating that the modified AVL model could more effectively develop vascularization in larger tissue engineering bone. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Fabrication and preliminary study of a biomimetic tri-layer tubular graft based on fibers and fiber yarns for vascular tissue engineering.

    Science.gov (United States)

    Wu, Tong; Zhang, Jialing; Wang, Yuanfei; Li, Dandan; Sun, Binbin; El-Hamshary, Hany; Yin, Meng; Mo, Xiumei

    2018-01-01

    Designing a biomimetic and functional tissue-engineered vascular graft has been urgently needed for repairing and regenerating defected vascular tissues. Utilizing a multi-layered vascular scaffold is commonly considered an effective way, because multi-layered scaffolds can easily simulate the structure and function of natural blood vessels. Herein, we developed a novel tri-layer tubular graft consisted of Poly(L-lactide-co-caprolactone)/collagen (PLCL/COL) fibers and Poly(lactide-co-glycolide)/silk fibroin (PLGA/SF) yarns via a three-step electrospinning method. The tri-layer vascular graft consisted of PLCL/COL aligned fibers in inner layer, PLGA/SF yarns in middle layer, and PLCL/COL random fibers in outer layer. Each layer possessed tensile mechanical strength and elongation, and the entire tubular structure provided tensile and compressive supports. Furthermore, the human umbilical vein endothelial cells (HUVECs) and smooth muscle cells (SMCs) proliferated well on the materials. Fluorescence staining images demonstrated that the axially aligned PLCL/COL fibers prearranged endothelium morphology in lumen and the circumferential oriented PLGA/SF yarns regulated SMCs organization along the single yarns. The outside PLCL/COL random fibers performed as the fixed layer to hold the entire tubular structure. The in vivo results showed that the tri-layer vascular graft supported cell infiltration, scaffold biodegradation and abundant collagen production after subcutaneous implantation for 10weeks, revealing the optimal biocompatibility and tissue regenerative capability of the tri-layer graft. Therefore, the specially designed tri-layer vascular graft will be beneficial to vascular reconstruction. Copyright © 2017. Published by Elsevier B.V.

  20. Pilot study: whole body manual subcutaneous adipose tissue (SAT) therapy improved pain and SAT structure in women with lipedema.

    Science.gov (United States)

    Herbst, Karen L; Ussery, Christopher; Eekema, Alyna

    2017-09-20

    Background Lipedema is a common painful subcutaneous adipose tissue (SAT) disorder in women affecting the limbs. SAT therapy is a manual therapy to improve soft tissue quality. Objective Determine if SAT therapy improves pain and structure of lipedema SAT. Design Single arm prospective pilot study. Setting Academic medical center. Patients Seven women, 46 ± 5 years, weight 90 ± 19 kg, with lipedema. Intervention Twelve 90-min SAT therapy sessions over 4 weeks. Outcomes Dual X-ray absorptiometry (DXA) scans, SAT ultrasound (Vevo 2100), leg volumetrics, skin caliper assessment, tissue exam, weight, resting metabolic rate, pain assessment, lower extremity functional scale (LEFS) and body shape questionnaire (BSQ) at baseline and end of study. Results Weight, resting metabolic rate and BSQ did not change significantly. Limb fat over total body fat mass (p = 0.08) and trunk fat over total body mass trended down from baseline (p = 0.08) by DXA. Leg volume and caliper assessments in eight of nine areas (p < 0.007), LEFS (p = 0.002) and average pain (p = 0.007) significantly decreased from baseline. Fibrosis significantly decreased in the nodules, hips and groin. Ultrasound showed improved SAT structure in some subjects. Side effects included pain, bruising, itching, swelling and gastroesophageal reflux disease. All women said they would recommend SAT therapy to other women with lipedema. Limitations Small number of subjects. Conclusion SAT therapy in 4 weeks improved tissue structure, perceived leg function, and volume although shape was not affected. While side effects of SAT therapy were common, all women felt the therapy was beneficial.

  1. Marrow Adipose Tissue in Older Men: Association with Visceral and Subcutaneous Fat, Bone Volume, Metabolism, and Inflammation.

    Science.gov (United States)

    Bani Hassan, Ebrahim; Demontiero, Oddom; Vogrin, Sara; Ng, Alvin; Duque, Gustavo

    2018-03-26

    Marrow (MAT) and subcutaneous (SAT) adipose tissues display different metabolic profiles and varying associations with aging, bone density, and fracture risk. Using a non-invasive imaging methodology, we aimed to investigate the associations between MAT, SAT, and visceral fat (VAT) with bone volume, bone remodeling markers, insulin resistance, and circulating inflammatory mediators in a population of older men. In this cross-sectional study, 96 healthy men (mean age 67 ± 5.5) were assessed for anthropometric parameters, body composition, serum biochemistry, and inflammatory panel. Using single-energy computed tomography images, MAT (in L2 and L3 and both hips), VAT, and SAT (at the level of L2-L3 and L4-L5) were measured employing Slice-O-Matic software (Tomovision), which enables specific tissue demarcation applying previously reported Hounsfield unit thresholds. MAT volume was similar in all anatomical sites and independent of BMI. In all femoral regions of interest (ROIs) there was a strong negative association between bone and MAT volumes (r = - 0.840 to - 0.972, p strong inverse correlations between MAT and bone mass, which have been previously observed in women, were also confirmed in older men. However, MAT volume in all ROIs was interrelated and unlike women, mainly independent of VAT or SAT. The lack of strong association between MAT vs VAT/SAT, and its discordant associations with metabolic and inflammatory mediators provide further evidence on MAT's distinct attributes in older men.

  2. Biocompatibility of RealSeal, its primer and AH Plus implanted in subcutaneous connective tissue of rats

    Directory of Open Access Journals (Sweden)

    Fabiana Soares Grecca

    2011-02-01

    Full Text Available OBJECTIVE: This study tested rat connective tissue response to RealSeal, RealSeal primer or AH Plus after 7, 15, 30, 60 and 90 days of implantation. MATERIAL AND METHODS: Thirty Wistar rats had subcutaneous sockets created on their back and received four implants each of polyethylene tubes containing one of the materials tested according to the groups: AH (AH Plus Sealer; RS (RealSeal Sealer; RP (RealSeal Primer; CG (control group - empty tube. After histological processing, sections were analyzed to identify the presence of neutrophils, lymphocytes and plasma cells, eosinophils, macrophages and giant cells, as well as fibrous capsule and abscesses, by an examiner using light microscope. Kruskal-Wallis and multiple-comparisons test were used for statistical analysis. Significance level was set at 5%. RESULTS: Lymphoplasmacytic infiltrate scores significantly higher than those of the control group were observed at 14 and 60 days in AH group, and at 90 days in RS group (p<0.05. There were no differences in terms of presence of macrophages, giant cells, eosinophils, neutrophils or fibrosis. AH Plus group scored higher for abscesses at 7 days than after any other period (p=0.031. RP group scored higher for lymphoplasmacytic infiltrate at 14 days than at 90 days (p=0.04. CONCLUSION: The main contribution of this study was to demonstrate that issues involved with tissue tolerance of a Resilon-containing sealer, RealSeal Sealer, cannot be attributed to its primer content.

  3. Differential alterations of the concentrations of endocannabinoids and related lipids in the subcutaneous adipose tissue of obese diabetic patients

    Directory of Open Access Journals (Sweden)

    Verde Roberta

    2010-04-01

    Full Text Available Abstract Background The endocannabinoids, anandamide and 2-AG, are produced by adipocytes, where they stimulate lipogenesis via cannabinoid CB1 receptors and are under the negative control of leptin and insulin. Endocannabinoid levels are elevated in the blood of obese individuals and nonobese type 2 diabetes patients. To date, no study has evaluated endocannabinoid levels in subcutaneous adipose tissue (SAT of subjects with both obesity and type 2 diabetes (OBT2D, characterised by similar adiposity and whole body insulin resistance and lower plasma leptin levels as compared to non-diabetic obese subjects (OB. Design and Methods The levels of anandamide and 2-AG, and of the anandamide-related PPARα ligands, oleoylethanolamide (OEA and palmitoylethanolamide (PEA, in the SAT obtained by abdominal needle biopsy in 10 OBT2D, 11 OB, and 8 non-diabetic normal-weight (NW subjects, were measured by liquid chromatography-mass spectrometry. All subjects underwent a hyperinsulinaemic euglycaemic clamp. Results As compared to NW, anandamide, OEA and PEA levels in the SAT were 2-4.4-fold elevated (p Conclusions The observed alterations emphasize, for the first time in humans, the potential different role and regulation of adipose tissue anandamide (and its congeners and 2-AG in obesity and type 2 diabetes.

  4. Visceral and Subcutaneous Adipose Tissue Assessed by Magnetic Resonance Imaging in Relation to Circulating Androgens, SHBG, and LH in Young Men

    DEFF Research Database (Denmark)

    Nielsen, Torben Leo; Hagen, Claus; Wraae, Kristian

    2007-01-01

    Context: No large studies have examined the relation between circulating androgen levels and regional, abdominal adiposity in young men using magnetic resonance imaging (MRI). Objective: To study the role of visceral and subcutaneous adipose tissue (VAT and SAT) on circulating androgens...

  5. Effect of red and infrared low-level laser therapy in endodontic sealer on subcutaneous tissue

    Science.gov (United States)

    Sivieri-Araujo, G.; Berbert, F. L. C. V.; Ramalho, L. T. O.; Rastelli, A. N. S.; Crisci, F. S.; Bonetti-Filho, I.; Tanomaru-Filho, M.

    2011-12-01

    This study evaluated the reactions of connective tissue after the implant of one endodontic sealer (Endofill) that was irradiated with low-level laser therapy (LLLT). Sixty mice were distributed into three Groups ( n = 20): GI—the tubes filled with Endofill were implanted in the animals and were not irradiated with LLLT; GII—the tubes containing Endofill were implanted in the animals and then irradiated with red LLLT (InGaAlP, λ = 685 nm, P = 35 mW, t = 58 s, D = 72 J/cm2, E = 2 J, Ø = 0.60 mm, continuous mode) and GIII—the tubes with Endofill were implanted and irradiated with infrared LLLT (AsGaAl, λ = 830 nm, P = 50 mW, t = 40 s, D = 70 J/cm2, E = 2 J, Ø = 0.60 mm, continuous wave) both are semiconductor diode laser device. The animals were killed after 7 and 30 days. Series sections of 6 μm thickness were obtained and stained with Hematoxylin-Eosin and Masson Trichrome. The data of the histopathological evaluation were submitted to Kruskal-Wallis and Dunn's tests at 5% significance level. At the 7th day: GI showed the presence of inflammation; GII and GIII reduced inflammation. At 30th day: GI showed low inflammation; GII and GII the absence of inflammation. It was possible show that LLLT reduced the irritating effect promoted by the Endofill, in the period of 7 days ( p > 0.05). The tissue repair occurred in 30 days, regardless of the use of LLLT.

  6. The skeletal vascular system - Breathing life into bone tissue.

    Science.gov (United States)

    Stegen, Steve; Carmeliet, Geert

    2017-08-26

    During bone development, homeostasis and repair, a dense vascular system provides oxygen and nutrients to highly anabolic skeletal cells. Characteristic for the vascular system in bone is the serial organization of two capillary systems, each typified by specific morphological and physiological features. Especially the arterial capillaries mediate the growth of the bone vascular system, serve as a niche for skeletal and hematopoietic progenitors and couple angiogenesis to osteogenesis. Endothelial cells and osteoprogenitor cells interact not only physically, but also communicate to each other by secretion of growth factors. A vital angiogenic growth factor is vascular endothelial growth factor and its expression in skeletal cells is controlled by osteogenic transcription factors and hypoxia signaling, whereas the secretion of angiocrine factors by endothelial cells is regulated by Notch signaling, blood flow and possibly hypoxia. Bone loss and impaired fracture repair are often associated with reduced and disorganized blood vessel network and therapeutic targeting of the angiogenic response may contribute to enhanced bone regeneration. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. The Vascular Niche in Tissue Repair: A Therapeutic Target for Regeneration

    OpenAIRE

    Rivera, Francisco J.; Silva, Maria Elena; Aigner, Ludwig

    2017-01-01

    Editorial on the Research Topic The Vascular Niche in Tissue Repair: A Therapeutic Target for Regeneration In mammals, although regeneration is quite restricted to a number of tissues and organs, this particular healing process is possible through the existence of tissue-resident stem/progenitor cells. Upon injury, these cells are activated, they proliferate, migrate, and differentiate into tissue-specific cells and functionally replace the damaged or lost cells. Besides this, angio...

  8. Detection and volume estimation of artificial hematomas in the subcutaneous fatty tissue: comparison of different MR sequences at 3.0 T.

    Science.gov (United States)

    Ogris, Kathrin; Petrovic, Andreas; Scheicher, Sylvia; Sprenger, Hanna; Urschler, Martin; Hassler, Eva Maria; Yen, Kathrin; Scheurer, Eva

    2017-06-01

    In legal medicine, reliable localization and analysis of hematomas in subcutaneous fatty tissue is required for forensic reconstruction. Due to the absence of ionizing radiation, magnetic resonance imaging (MRI) is particularly suited to examining living persons with forensically relevant injuries. However, there is limited experience regarding MRI signal properties of hemorrhage in soft tissue. The aim of this study was to evaluate MR sequences with respect to their ability to show high contrast between hematomas and subcutaneous fatty tissue as well as to reliably determine the volume of artificial hematomas. Porcine tissue models were prepared by injecting blood into the subcutaneous fatty tissue to create artificial hematomas. MR images were acquired at 3T and four blinded observers conducted manual segmentation of the hematomas. To assess segmentability, the agreement of measured volume with the known volume of injected blood was statistically analyzed. A physically motivated normalization taking into account partial volume effect was applied to the data to ensure comparable results among differently sized hematomas. The inversion recovery sequence exhibited the best segmentability rate, whereas the T1T2w turbo spin echo sequence showed the most accurate results regarding volume estimation. Both sequences led to reproducible volume estimations. This study demonstrates that MRI is a promising forensic tool to assess and visualize even very small amounts of blood in soft tissue. The presented results enable the improvement of protocols for detection and volume determination of hemorrhage in forensically relevant cases and also provide fundamental knowledge for future in-vivo examinations.

  9. Multifunctional silk-heparin biomaterials for vascular tissue engineering applications

    Science.gov (United States)

    Seib, F. Philipp; Herklotz, Manuela; Burke, Kelly A.; Maitz, Manfred F.; Werner, Carsten; Kaplan, David L.

    2013-01-01

    Over the past 30 years, silk has been proposed for numerous biomedical applications that go beyond its traditional use as a suture material. Silk sutures are well tolerated in humans, but the use of silk for vascular engineering applications still requires extensive biocompatibility testing. Some studies have indicated a need to modify silk to yield a hemocompatible surface. This study examined the potential of low molecular weight heparin as a material for refining silk properties by acting as a carrier for vascular endothelial growth factor (VEGF) and improving silk hemocompatibility. Heparinized silk showed a controlled VEGF release over 6 days; the released VEGF was bioactive and supported the growth of human endothelial cells. Silk samples were then assessed using a humanized hemocompatibility system that employs whole blood and endothelial cells. The overall thrombogenic response for silk was very low and similar to the clinical reference material polytetrafluoroethylene. Despite an initial inflammatory response to silk, apparent as complement and leukocyte activation, the endothelium was maintained in a resting, anticoagulant state. The low thrombogenic response and the ability to control VEGF release support the further development of silk for vascular applications. PMID:24099708

  10. Tissue engineered vascular grafts: Origins, development, and current strategies for clinical application.

    Science.gov (United States)

    Benrashid, Ehsan; McCoy, Christopher C; Youngwirth, Linda M; Kim, Jina; Manson, Roberto J; Otto, James C; Lawson, Jeffrey H

    2016-04-15

    Since the development of a dependable and durable synthetic non-autogenous vascular conduit in the mid-twentieth century, the field of vascular surgery has experienced tremendous growth. Concomitant with this growth, development in the field of bioengineering and the development of different tissue engineering techniques have expanded the armamentarium of the surgeon for treating a variety of complex cardiovascular diseases. The recent development of completely tissue engineered vascular conduits that can be implanted for clinical application is a particularly exciting development in this field. With the rapid advances in the field of tissue engineering, the great hope of the surgeon remains that this conduit will function like a true blood vessel with an intact endothelial layer, with the ability to respond to endogenous vasoactive compounds. Eventually, these engineered tissues may have the potential to supplant older organic but not truly biologic technologies, which are used currently. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Tissue vascularization with endothelial-like mesenchymal stromal cells

    NARCIS (Netherlands)

    Portalska, K.K.

    2014-01-01

    Although most tissues in the human body have self-renewal capabilities, there are defects, e.g. caused by trauma or disease, which are beyond regenerative potential. Tissue engineering offers a possibility to heal such defects without the necessity of finding a suitable graft donor. While a number

  12. miRNAs in human subcutaneous adipose tissue: Effects of weight loss induced by hypocaloric diet and exercise.

    Science.gov (United States)

    Kristensen, Malene M; Davidsen, Peter K; Vigelsø, Andreas; Hansen, Christina N; Jensen, Lars J; Jessen, Niels; Bruun, Jens M; Dela, Flemming; Helge, Jørn W

    2017-03-01

    Obesity is central in the development of insulin resistance. However, the underlying mechanisms still need elucidation. Dysregulated microRNAs (miRNAs; post-transcriptional regulators) in adipose tissue may present an important link. The miRNA expression in subcutaneous adipose tissue from 19 individuals with severe obesity (10 women and 9 men) before and after a 15-week weight loss intervention was studied using genome-wide microarray analysis. The microarray results were validated with RT-qPCR, and pathway enrichment analysis of in silico predicted targets was performed to elucidate the biological consequences of the miRNA dysregulation. Lastly, the messenger RNA (mRNA) and/or protein expression of multiple predicted targets as well as several proteins involved in lipolysis were investigated. The intervention led to upregulation of miR-29a-3p and miR-29a-5p and downregulation of miR-20b-5p. The mRNA and protein expression of predicted targets was not significantly affected by the intervention. However, negative correlations between miR-20b-5p and the protein levels of its predicted target, acyl-CoA synthetase long-chain family member 1, were observed. Several other miRNA-target relationships correlated negatively, indicating possible miRNA regulation, including miR-29a-3p and lipoprotein lipase mRNA levels. Proteins involved in lipolysis were not affected by the intervention. Weight loss influenced several miRNAs, some of which were negatively correlated with predicted targets. These dysregulated miRNAs may affect adipocytokine signaling and forkhead box protein O signaling. © 2017 The Obesity Society.

  13. Placental vascular responses are dependent on surrounding tissue

    DEFF Research Database (Denmark)

    Brøgger, Torbjørn Halle

    -depth understanding of the mechanism regulating blood flow and perfusion is necessary if we are to come up with new ideas for intervention and treatment. Method: From fresh born placentas stem villi arteries were carefully dissected. The artery branches were divided. The surrounding tissue was removed from one end...... and was left untouched in the other end. Then using wire myography they were investigated in terms of contractility and sensitivity to physiological relevant human-like agonists. Results: Sensitivity to PGF2α, Tx-analog, 5-HT and endothelin-1 was significantly lower in arteries with intact surrounding tissue...... compared to arteries stripped of the tissue. The maximal force development was also significantly lower in arteries with surrounding tissue, when they were depolarized high extracellular [K+] or stimulated with PGF2α or endotheline-1. Conclusion: The perivascular tissue significantly alters stem villi...

  14. Placental vascular responses are dependent on surrounding tissue

    DEFF Research Database (Denmark)

    Brøgger, Torbjørn Halle

    . Materials and methods. From fresh born placentas, stem villi arteries were carefully dissected. The artery branches were divided. The surrounding tissue was removed from one end and was left untouched in the other end.Then, using wire myography, they were investigated in terms of contractility...... and sensitivity to physiological relevant human-like agonists. Results. Sensitivity to PGF2α, Tx-analog, 5-HT and endothelin-1 was significantly lower in arteries with intact surrounding tissue compared to arteries stripped of the tissue. The maximal force development was also significantly lower in arteries...... with surrounding tissue when they were depolarized high extracellular [K+] or stimulated with PGF2α or endotheline-1. Conclusion. The perivascular tissue significantly alters stem villi arteries' sensitivity and force development in a suppressive way. This implicates a new aspect of blood flow regulation...

  15. Persistent organic pollutant levels in human visceral and subcutaneous adipose tissue in obese individuals—Depot differences and dysmetabolism implications

    Energy Technology Data Exchange (ETDEWEB)

    Pestana, Diogo, E-mail: diogopestana@gmail.com [Department of Biochemistry (U38-FCT), Faculty of Medicine, University of Porto, Centro de Investigação Médica, P-4200-450 Porto (Portugal); CINTESIS—Center for Research in Health Technologies and Information Systems, P-4200-450 Porto (Portugal); Faria, Gil [General Surgery Department, S. João Hospital, Faculty of Medicine, University of Porto, P-4200-450 Porto (Portugal); Sá, Carla [Department of Biochemistry (U38-FCT), Faculty of Medicine, University of Porto, Centro de Investigação Médica, P-4200-450 Porto (Portugal); Fernandes, Virgínia C. [Chemistry Investigation Centre (CIQ), Department of Chemistry, Faculty of Sciences, University of Porto, P-4169-007 Porto (Portugal); Requimte—Instituto Superior de Engenharia, Instituto Politécnico do Porto, P-4200-072 Porto (Portugal); Teixeira, Diana; Norberto, Sónia [Department of Biochemistry (U38-FCT), Faculty of Medicine, University of Porto, Centro de Investigação Médica, P-4200-450 Porto (Portugal); Faria, Ana [Department of Biochemistry (U38-FCT), Faculty of Medicine, University of Porto, Centro de Investigação Médica, P-4200-450 Porto (Portugal); Chemistry Investigation Centre (CIQ), Department of Chemistry, Faculty of Sciences, University of Porto, P-4169-007 Porto (Portugal); Faculty of Nutrition and Food Sciences, University of Porto, P-4200-465 Porto (Portugal); and others

    2014-08-15

    Background: The role of persistent organic pollutants (POPs) with endocrine disrupting activity in the aetiology of obesity and other metabolic dysfunctions has been recently highlighted. Adipose tissue (AT) is a common site of POPs accumulation where they can induce adverse effects on human health. Objectives: To evaluate the presence of POPs in human visceral (vAT) and subcutaneous (scAT) adipose tissue in a sample of Portuguese obese patients that underwent bariatric surgery, and assess their putative association with metabolic disruption preoperatively, as well as with subsequent body mass index (BMI) reduction. Methods: AT samples (n=189) from obese patients (BMI ≥35) were collected and the levels of 13 POPs were determined by gas chromatography with electron-capture detection (GC-ECD). Anthropometric and biochemical data were collected at the time of surgery. BMI variation was evaluated after 12 months and adipocyte size was measured in AT samples. Results: Our data confirm that POPs are pervasive in this obese population (96.3% of detection on both tissues), their abundance increasing with age (R{sub S}=0.310, p<0.01) and duration of obesity (R{sub S}=0.170, p<0.05). We observed a difference in AT depot POPs storage capability, with higher levels of ΣPOPs in vAT (213.9±204.2 compared to 155.1±147.4 ng/g of fat, p<0.001), extremely relevant when evaluating their metabolic impact. Furthermore, there was a positive correlation between POP levels and the presence of metabolic syndrome components, namely dysglycaemia and hypertension, and more importantly with cardiovascular risk (R{sub S}=0.277, p<0.01), with relevance for vAT (R{sub S}=0.315, p<0.01). Finally, we observed an interesting relation of higher POP levels with lower weight loss in older patients. Conclusion: Our sample of obese subjects allowed us to highlight the importance of POPs stored in AT on the development of metabolic dysfunction in a context of obesity, shifting the focus to their

  16. Persistent organic pollutant levels in human visceral and subcutaneous adipose tissue in obese individuals—Depot differences and dysmetabolism implications

    International Nuclear Information System (INIS)

    Pestana, Diogo; Faria, Gil; Sá, Carla; Fernandes, Virgínia C.; Teixeira, Diana; Norberto, Sónia; Faria, Ana

    2014-01-01

    Background: The role of persistent organic pollutants (POPs) with endocrine disrupting activity in the aetiology of obesity and other metabolic dysfunctions has been recently highlighted. Adipose tissue (AT) is a common site of POPs accumulation where they can induce adverse effects on human health. Objectives: To evaluate the presence of POPs in human visceral (vAT) and subcutaneous (scAT) adipose tissue in a sample of Portuguese obese patients that underwent bariatric surgery, and assess their putative association with metabolic disruption preoperatively, as well as with subsequent body mass index (BMI) reduction. Methods: AT samples (n=189) from obese patients (BMI ≥35) were collected and the levels of 13 POPs were determined by gas chromatography with electron-capture detection (GC-ECD). Anthropometric and biochemical data were collected at the time of surgery. BMI variation was evaluated after 12 months and adipocyte size was measured in AT samples. Results: Our data confirm that POPs are pervasive in this obese population (96.3% of detection on both tissues), their abundance increasing with age (R S =0.310, p<0.01) and duration of obesity (R S =0.170, p<0.05). We observed a difference in AT depot POPs storage capability, with higher levels of ΣPOPs in vAT (213.9±204.2 compared to 155.1±147.4 ng/g of fat, p<0.001), extremely relevant when evaluating their metabolic impact. Furthermore, there was a positive correlation between POP levels and the presence of metabolic syndrome components, namely dysglycaemia and hypertension, and more importantly with cardiovascular risk (R S =0.277, p<0.01), with relevance for vAT (R S =0.315, p<0.01). Finally, we observed an interesting relation of higher POP levels with lower weight loss in older patients. Conclusion: Our sample of obese subjects allowed us to highlight the importance of POPs stored in AT on the development of metabolic dysfunction in a context of obesity, shifting the focus to their metabolic effects

  17. [Research progress of co-culture system for constructing vascularized tissue engineered bone].

    Science.gov (United States)

    Fu, Weili; Xiang, Zhou

    2014-02-01

    To review the research progress of the co-culture system for constructing vascularized tissue engineered bone. The recent literature concerning the co-culture system for constructing vascularized tissue engineered bone was reviewed, including the selection of osteogenic and endothelial lineages, the design and surface modification of scaffolds, the models and dimensions of the co-culture system, the mechanism, the culture conditions, and their application progress. The construction of vascularized tissue engineered bone is the prerequisite for their survival and further clinical application in vivo. Mesenchymal stem cells (owning the excellent osteogenic potential) and endothelial progenitor cells (capable of directional differentiation into endothelial cell) are considered as attractive cell types for the co-culture system to construct vascularized tissue engineered bone. The culture conditions need to be further optimized. Furthermore, how to achieve the clinical goals of minimal invasion and autologous transplantation also need to be further studied. The strategy of the co-culture system for constructing vascularized tissue engineered bone would have a very broad prospects for clinical application in future.

  18. Epicardial and Subcutaneous Adipose Tissue Fatty Acids Profiles in Diabetic and Non-Diabetic Patients Candidate for Coronary Artery Bypass Graft

    Directory of Open Access Journals (Sweden)

    Masoud Pezeshkian

    2013-01-01

    Full Text Available Introduction: We have recently shown that in high cholesterol-fed rabbits, the sensitivity of epicardial adipose tissue to changes in dietary fat is higher than that of subcutaneous adipose tissue. Although the effects of diabetes on epicardial adipose tissue thickness have been studied, the influence of diabetes on profile of epicardial free fatty acids (FFAs has not been studied. The aim of this study is to investigate the effect of diabetes on the FFAs composition in serum and in the subcutaneous and epicardial adipose tissues in patients undergoing coronary artery bypass graft (CABG. Methods: Forty non-diabetic and twenty eight diabetic patients candidate for CABG with > 75% stenosis participated in this study.Fasting blood sugar (FBS and lipid profiles were assayed by auto analyzer. Phospholipids and non-estrified FFA of serum and the fatty acids profile of epicardial and subcutaneous adipose tissues were determined using gas chromatography method. Results: In the phospholipid fraction of diabetic patients’ serum, the percentage of 16:0, 18:3n-9, 18:2n-6 and monounsaturated fatty acids (MUFAs was lower than the corresponding values of the non-diabetics; whereas, 18:0 value was higher. A 100% increase in the amount of 18:0 and 35% decrease in the level of 18:1n-11 was observed in the diabetic patients’ subcutaneous adipose tissue. In epicardial adipose tissue, the increase of 18:0 and conjugated linolenic acid (CLA and decrease of 18:1n-11, ω3 (20:5n-3 and 22:6n-3 were significant; but, the contents of arachidonic acid and its precursor linoleic acid were not affected by diabetes. Conclusion: The fatty acids’ profile of epicardial and subcutaneous adipose tissues is not equally affected by diabetes. The significant decrease of 16:0 and ω3 fatty acids and increase of trans and conjugated fatty acids in epicardial adipose tissue in the diabetic patients may worsen the formation of atheroma in the related arteries.

  19. Lymphatic Vascular Regeneration : The Next Step in Tissue Engineering

    NARCIS (Netherlands)

    Huethorst, Eline; Krebber, Merle M; Fledderus, Joost O; Gremmels, Hendrik; Xu, Yan Juan; Pei, Jiayi; Verhaar, Marianne C; Cheng, Caroline

    2016-01-01

    The lymphatic system plays a crucial role in interstitial fluid drainage, lipid absorption, and immunological defense. Lymphatic dysfunction results in lymphedema, fluid accumulation, and swelling of soft tissues, as well as a potentially impaired immune response. Lymphedema significantly reduces

  20. Blood flow responses to mild-intensity exercise in ectopic vs. orthotopic prostate tumors; dependence upon host tissue hemodynamics and vascular reactivity.

    Science.gov (United States)

    Garcia, Emmanuel; Becker, Veronika G C; McCullough, Danielle J; Stabley, John N; Gittemeier, Elizabeth M; Opoku-Acheampong, Alexander B; Sieman, Dietmar W; Behnke, Bradley J

    2016-07-01

    Given the critical role of tumor O2 delivery in patient prognosis and the rise in preclinical exercise oncology studies, we investigated tumor and host tissue blood flow at rest and during exercise as well as vascular reactivity using a rat prostate cancer model grown in two transplantation sites. In male COP/CrCrl rats, blood flow (via radiolabeled microspheres) to prostate tumors [R3327-MatLyLu cells injected in the left flank (ectopic) or ventral prostate (orthotopic)] and host tissue was measured at rest and during a bout of mild-intensity exercise. α-Adrenergic vasoconstriction to norepinephrine (NE: 10(-9) to 10(-4) M) was determined in arterioles perforating the tumors and host tissue. To determine host tissue exercise hyperemia in healthy tissue, a sham-operated group was included. Blood flow was lower at rest and during exercise in ectopic tumors and host tissue (subcutaneous adipose) vs. the orthotopic tumor and host tissue (prostate). During exercise, blood flow to the ectopic tumor significantly decreased by 25 ± 5% (SE), whereas flow to the orthotopic tumor increased by 181 ± 30%. Maximal vasoconstriction to NE was not different between arterioles from either tumor location. However, there was a significantly higher peak vasoconstriction to NE in subcutaneous adipose arterioles (92 ± 7%) vs. prostate arterioles (55 ± 7%). Establishment of the tumor did not alter host tissue blood flow from either location at rest or during exercise. These data demonstrate that blood flow in tumors is dependent on host tissue hemodynamics and that the location of the tumor may critically affect how exercise impacts the tumor microenvironment and treatment outcomes. Copyright © 2016 the American Physiological Society.

  1. Surface modification and endothelialization of biomaterials as potential scaffolds for vascular tissue engineering applications.

    Science.gov (United States)

    Ren, Xiangkui; Feng, Yakai; Guo, Jintang; Wang, Haixia; Li, Qian; Yang, Jing; Hao, Xuefang; Lv, Juan; Ma, Nan; Li, Wenzhong

    2015-08-07

    Surface modification and endothelialization of vascular biomaterials are common approaches that are used to both resist the nonspecific adhesion of proteins and improve the hemocompatibility and long-term patency of artificial vascular grafts. Surface modification of vascular grafts using hydrophilic poly(ethylene glycol), zwitterionic polymers, heparin or other bioactive molecules can efficiently enhance hemocompatibility, and consequently prevent thrombosis on artificial vascular grafts. However, these modified surfaces may be excessively hydrophilic, which limits initial vascular endothelial cell adhesion and formation of a confluent endothelial lining. Therefore, the improvement of endothelialization on these grafts by chemical modification with specific peptides and genes is now arousing more and more interest. Several active peptides, such as RGD, CAG, REDV and YIGSR, can be specifically recognized by endothelial cells. Consequently, graft surfaces that are modified by these peptides can exhibit targeting selectivity for the adhesion of endothelial cells, and genes can be delivered by targeting carriers to specific tissues to enhance the promotion and regeneration of blood vessels. These methods could effectively accelerate selective endothelial cell recruitment and functional endothelialization. In this review, recent developments in the surface modification and endothelialization of biomaterials in vascular tissue engineering are summarized. Both gene engineering and targeting ligand immobilization are promising methods to improve the clinical outcome of artificial vascular grafts.

  2. Determination of the subcutaneous tissue to blood partition coefficient in patients with severe leg ischaemia by a double isotope washout technique

    DEFF Research Database (Denmark)

    Bjerre-Jepsen, K; Faris, I; Henriksen, O

    1982-01-01

    Knowledge of the tissue to blood partition coefficient (lambda) is essential for calculation of the perfusion coefficient in a single tissue based on measurements of the washout of locally injected isotopes. No measurements of lambda for Xenon in subcutaneous tissue in the leg have been done...... in patients with occlusive arterial disease. In 12 patients with occlusive arterial disease in the legs lambda for Xenon was determined in subcutaneous tissue in the calf region and foot as the ratio between the washout rate constant of 131I-Antipyrine and 133Xe. A mixture of the two indicators was injected....... Mean value was 3.7 ml X g-1 (range: 1 X 7-10 X 7) in the calf and 2 X 7 ml X g-1 (range: 1 X 2-4 X 9) in the foot. It is concluded that lambda measurements are necessary for determination of subcutaneous blood flow from 133Xe washout curves in these patients. Determination of lambda is especially...

  3. Growth hormone receptor antagonist (GHA) transgenic mice have increased subcutaneous adipose tissue mass, altered glucose homeostasis, and no change in white adipose tissue cellular senescence

    Science.gov (United States)

    Comisford, Ross; Lubbers, Ellen R.; Householder, Lara; Suer, Ozan; Tchkonia, Tamara; Kirkland, James L.; List, Edward O.; Kopchick, John J.; Berryman, Darlene E.

    2015-01-01

    Background Growth hormone (GH) resistant/deficient mice experience improved glucose homeostasis and substantially increased lifespan. Recent evidence suggests long-lived GH resistant/deficient mice are protected from white adipose tissue (WAT) dysfunction, including WAT cellular senescence, impaired adipogenesis and loss of subcutaneous WAT in old age. This preservation of WAT function has been suggested to be a potential mechanism for the extended lifespan of these mice. OBJECTIVE The objective of this study was to examine white adipose tissue (WAT) senescence, WAT distribution, and glucose homeostasis in dwarf growth hormone receptor antagonist (GHA) transgenic mice, a unique mouse strain having decreased GH action but normal longevity. METHODS 18mo old female GHA mice and wild type (WT) littermate controls were used. Prior to dissection, body composition, fasting blood glucose, and glucose and insulin tolerance tests were performed. WAT distribution was determined by weighing four distinct WAT depots at the time of dissection. Cellular senescence in four WAT depots was assessed using senescence-associated β-galactosidase (SA-β-gal) staining to quantify the senescent cell burden and real time qPCR to quantify gene expression of senescence markers p16 and IL-6. RESULTS GHA mice had a 22% reduction in total body weight, 33% reduction in lean mass, and a 10% increase in body fat percentage compared to WT controls. GHA mice had normal fasting blood glucose and improved insulin sensitivity; however, they exhibited impaired glucose tolerance. Moreover, GHA mice displayed enhanced lipid storage in the inguinal subcutaneous WAT depot (p<.05) and a 1.7 fold increase in extra-/intraperitoneal WAT ratio compared to controls (p<.05). Measurements of WAT cellular senescence showed no difference between GHA mice and WT controls. CONCLUSIONS Similar to other mice with decreased GH action, female GHA mice display reduced age-related lipid redistribution and improved insulin

  4. Effect of Gender on the Total Abdominal Fat, Intra-Abdominal Adipose Tissue and Abdominal Sub-Cutaneous Adipose Tissue among Indian Hypertensive Patients.

    Science.gov (United States)

    Sahoo, Jaya Prakash; Kumari, Savita; Jain, Sanjay

    2016-04-01

    Abdominal obesity is a better marker of adverse metabolic profile than generalized obesity in hypertensive subjects. Further, gender has effect on adiposity and its distribution. Effect of gender on obesity and the distribution of fat in different sub-compartments of abdomen among Indian hypertensive subjects. This observational study included 278 adult subjects (Males-149 & Females-129) with essential hypertension from a tertiary care centre in north India over one year. A detailed history taking and physical examination including anthropometry were performed in all patients. Total Abdominal Fat (TAF) and abdominal adipose tissue sub-compartments like Intra-Abdominal Adipose Tissue (IAAT) and Sub-Cutaneous Adipose Tissue (SCAT) were measured using the predictive equations developed for Asian Indians. Female hypertensive subjects had higher Body Mass Index (BMI) with more overweight (BMI ≥ 23kg/m(2)), and obesity (BMI≥ 25 kg/m(2)). Additionally, they had higher prevalence of central obesity based on both Waist Circumference (WC) criteria (WC≥ 90 cm in males and WC≥ 80 cm in females) and TAF criteria {≥245.6 cm(2) (males) and ≥203.46 cm(2) (females)} than male patients. But there was no difference in the prevalence of central obesity based on Waist Hip Ratio (WHR) criteria (WHR ≥0.90 in males and WHR ≥ 0.85 in females) between two genders. High TAF & IAAT were present in more females although there was no difference in the distribution of high SCAT between two genders. Female hypertensive subjects were more obese with higher abnormal TAF & IAAT compared to male patients. However, there was no difference in the distribution of high SCAT among them.

  5. Android subcutaneous adipose tissue topography in lean and obese women suffering from PCOS: comparison with type 2 diabetic women.

    Science.gov (United States)

    Horejsi, R; Möller, R; Rackl, S; Giuliani, A; Freytag, U; Crailsheim, K; Sudi, K; Tafeit, E

    2004-07-01

    The new optical device, the lipometer, enables the noninvasive, quick, safe, and precise determination of the thickness of subcutaneous adipose tissue (SAT) layers at any given site of the human body. Fifteen anatomically well-defined body sites from neck to calf describe a SAT topography (SAT-Top) like an individual "fingerprint" of a subject. This SAT-Top was examined in 16 women with polycystic ovary syndrome (PCOS) and compared to the body fat distribution of 87 age-matched healthy controls and 20 type-2 diabetic women. SAT-Top differences of these three groups were described and, to render the possibility of visual comparison, the 15-dimensional body fat information was condensed to a two-dimensional factor plot by factor analysis. All PCOS patients had an android body fat distribution with significantly thinner SAT layers on the legs as compared to healthy controls. Moreover, a hierarchical cluster analysis resulted in two distinctly different groups of PCOS women, a lean (PCOSL) and an obese (PCOSO) cluster: compared to healthy women, lean PCOS patients had significantly lower total SAT development, even though height, weight, and body mass index did not deviate significantly. Especially on the legs, their SAT layers were significantly lowered, indicating a more "apple-like" fat distribution type. Obese PCOS women showed a SAT-Top pattern very similar to that of women with type-2 diabetes, although the mean age difference between these groups was more than 30 years. Compared to healthy controls, the SAT-Top of these obese PCOS patients was strongly shifted into the android direction, appearing as "super-apples" with a significantly increased upper trunk obesity to 237.8% and a significantly decreased leg SAT development to 79.8%. Copyright 2004 Wiley-Liss, Inc.

  6. DNA methylation map in circulating leukocytes mirrors subcutaneous adipose tissue methylation pattern: a genome-wide analysis from non-obese and obese patients

    Science.gov (United States)

    Crujeiras, A. B.; Diaz-Lagares, A.; Sandoval, J.; Milagro, F. I.; Navas-Carretero, S.; Carreira, M. C.; Gomez, A.; Hervas, D.; Monteiro, M. P.; Casanueva, F. F.; Esteller, M.; Martinez, J. A.

    2017-01-01

    The characterization of the epigenetic changes within the obesity-related adipose tissue will provide new insights to understand this metabolic disorder, but adipose tissue is not easy to sample in population-based studies. We aimed to evaluate the capacity of circulating leukocytes to reflect the adipose tissue-specific DNA methylation status of obesity susceptibility. DNA samples isolated from subcutaneous adipose tissue and circulating leukocytes were hybridized in the Infinium HumanMethylation 450 BeadChip. Data were compared between samples from obese (n = 45) and non-obese (n = 8–10) patients by Wilcoxon-rank test, unadjusted for cell type distributions. A global hypomethylation of the differentially methylated CpG sites (DMCpGs) was observed in the obese subcutaneous adipose tissue and leukocytes. The overlap analysis yielded a number of genes mapped by the common DMCpGs that were identified to reflect the obesity state in the leukocytes. Specifically, the methylation levels of FGFRL1, NCAPH2, PNKD and SMAD3 exhibited excellent and statistically significant efficiencies in the discrimination of obesity from non-obesity status (AUC > 0.80; p obesity-related adipose tissue pathogenesis through peripheral blood analysis, an easily accessible and minimally invasive biological material instead of adipose tissue. PMID:28211912

  7. Do cell based tissue engineering products for meniscus regeneration influence vascularization?

    Science.gov (United States)

    Koch, Matthias; Ehrenreich, Tobias; Koehl, Gudrun; Pattappa, Girish; Pfeifer, Christian; Loibl, Markus; Müller, Michael; Nerlich, Michael; Angele, Peter; Zellner, Johannes

    2017-01-01

    Meniscus regeneration is observed within the peripheral, vascularized zone but decreases in the inner two thirds alongside the vascularization. Within this avascular area, cell-based tissue-engineering-approaches appear to be a promising strategy for the treatment of meniscal defects. Evaluation of the angiogenic potential of cell-based tissue-engineering-products for meniscus healing. Evaluation of angiogenesis induced by rabbit meniscus-pellets, meniscus-cells (MC) or mesenchymal stem-cells (MSC) in cell-based tissue-engineering-products within a rabbit meniscus-ring was performed using a transparent dorsal skin fold chamber in nude mice. Observations were undertaken during a 14 days period. Cell preconditioning differed between experimental groups. Immunohistochemical analysis of the regenerated tissue in the meniscus-ring induced by cell loaded composite scaffolds for differentiation and anti-angiogenic factors were performed. Meniscus-pellets and MSC-/MC-based tissue-engineering-products induced angiogenesis. An accelerated vascularization was detected in the group of meniscus-pellets derived from the vascularized zone compared to avascular meniscus-pellets. In terms of cell-based tissue-engineering-products, chondrogenic preconditioning resulted in significantly increased vessel growth. MSC-constructs showed an accelerated angiogenesis. Immunohistochemical evaluation showed a progressive differentiation and lower content for anti-angiogenic endostatin in the precultured group. Preconditioning of MC-/MSC-based tissue-engineering-products is a promising tool to influence the angiogenic potential of tissue-engineering-products and to adapt these properties according to the aimed tissue qualities.

  8. Growth Hormone Receptor Antagonist Transgenic Mice Have Increased Subcutaneous Adipose Tissue Mass, Altered Glucose Homeostasis and No Change in White Adipose Tissue Cellular Senescence.

    Science.gov (United States)

    Comisford, Ross; Lubbers, Ellen R; Householder, Lara A; Suer, Ozan; Tchkonia, Tamara; Kirkland, James L; List, Edward O; Kopchick, John J; Berryman, Darlene E

    2016-01-01

    Growth hormone (GH)-resistant/deficient mice experience improved glucose homeostasis and substantially increased lifespan. Recent evidence suggests that long-lived GH-resistant/deficient mice are protected from white adipose tissue (WAT) dysfunction, including WAT cellular senescence, impaired adipogenesis and loss of subcutaneous WAT in old age. This preservation of WAT function has been suggested to be a potential mechanism for the extended lifespan of these mice. The objective of this study was to examine WAT senescence, WAT distribution and glucose homeostasis in dwarf GH receptor antagonist (GHA) transgenic mice, a unique mouse strain having decreased GH action but normal longevity. 18-month-old female GHA mice and wild-type (WT) littermate controls were used. Prior to dissection, body composition, fasting blood glucose as well as glucose and insulin tolerance tests were performed. WAT distribution was determined by weighing four distinct WAT depots at the time of dissection. Cellular senescence in four WAT depots was assessed using senescence-associated β-galactosidase staining to quantify the senescent cell burden, and real-time qPCR to quantify gene expression of senescence markers p16 and IL-6. GHA mice had a 22% reduction in total body weight, a 33% reduction in lean mass and a 10% increase in body fat percentage compared to WT controls. GHA mice had normal fasting blood glucose and improved insulin sensitivity; however, they exhibited impaired glucose tolerance. Moreover, GHA mice displayed enhanced lipid storage in the inguinal subcutaneous WAT depot (p < 0.05) and a 1.7-fold increase in extra-/intraperitoneal WAT ratio compared to controls (p < 0.05). Measurements of WAT cellular senescence showed no difference between GHA mice and WT controls. Similar to other mice with decreased GH action, female GHA mice display reduced age-related lipid redistribution and improved insulin sensitivity, but no change in cellular senescence. The similar abundance of

  9. Bioreactor-induced mesenchymal progenitor cell differentiation and elastic fiber assembly in engineered vascular tissues.

    Science.gov (United States)

    Lin, Shigang; Mequanint, Kibret

    2017-09-01

    In vitro maturation of engineered vascular tissues (EVT) requires the appropriate incorporation of smooth muscle cells (SMC) and extracellular matrix (ECM) components similar to native arteries. To this end, the aim of the current study was to fabricate 4mm inner diameter vascular tissues using mesenchymal progenitor cells seeded into tubular scaffolds. A dual-pump bioreactor operating either in perfusion or pulsatile perfusion mode was used to generate physiological-like stimuli to promote progenitor cell differentiation, extracellular elastin production, and tissue maturation. Our data demonstrated that pulsatile forces and perfusion of 3D tubular constructs from both the lumenal and ablumenal sides with culture media significantly improved tissue assembly, effectively inducing mesenchymal progenitor cell differentiation to SMCs with contemporaneous elastin production. With bioreactor cultivation, progenitor cells differentiated toward smooth muscle lineage characterized by the expression of smooth muscle (SM)-specific markers smooth muscle alpha actin (SM-α-actin) and smooth muscle myosin heavy chain (SM-MHC). More importantly, pulsatile perfusion bioreactor cultivation enhanced the synthesis of tropoelastin and its extracellular cross-linking into elastic fiber compared with static culture controls. Taken together, the current study demonstrated progenitor cell differentiation and vascular tissue assembly, and provides insights into elastin synthesis and assembly to fibers. Incorporation of elastin into engineered vascular tissues represents a critical design goal for both mechanical and biological functions. In the present study, we seeded porous tubular scaffolds with multipotent mesenchymal progenitor cells and cultured in dual-pump pulsatile perfusion bioreactor. Physiological-like stimuli generated by bioreactor not only induced mesenchymal progenitor cell differentiation to vascular smooth muscle lineage but also actively promoted elastin synthesis and

  10. Impaired autoregulation of blood flow in skeletal muscle and subcutaneous tissue in long-term Type 1 (insulin-dependent) diabetic patients with microangiopathy

    DEFF Research Database (Denmark)

    Faris, I; Vagn Nielsen, H; Henriksen, O

    1983-01-01

    Autoregulation of blood flow was studied in skeletal muscle and subcutaneous tissue in seven Type 1 (insulin-dependent) diabetic patients (median age: 36 years) with nephropathy and retinopathy and in eight normal subjects of the same age. Blood flow was measured by the local 133Xe washout...... technique. Reduction in arterial perfusion pressure was produced by elevating the limb 20 and 40 cm above heart level. Blood flow remained within 10% of control values when the limb was elevated in normal subjects. In five of the seven diabetic subjects blood flow fell significantly in both tissues when...

  11. In-depth evaluation of commercially available human vascular smooth muscle cells phenotype: Implications for vascular tissue engineering

    International Nuclear Information System (INIS)

    Timraz, Sara B.H.; Farhat, Ilyas A.H.; Alhussein, Ghada; Christoforou, Nicolas; Teo, Jeremy C.M.

    2016-01-01

    In vitro research on vascular tissue engineering has extensively used isolated primary human or animal smooth muscle cells (SMC). Research programs that lack such facilities tend towards commercially available primary cells sources. Here, we aim to evaluate the capacity of commercially available human SMC to maintain their contractile phenotype, and determine if dedifferentiation towards the synthetic phenotype occurs in response to conventional cell culture and passaging without any external biochemical or mechanical stimuli. Lower passage SMC adopted a contractile phenotype marked by a relatively slower proliferation rate, higher expression of proteins of the contractile apparatus and smoothelin, elongated morphology, and reduced deposition of collagen types I and III. As the passage number increased, migratory capacity was enhanced, average cell speed, total distance and net distance travelled increased up to passage 8. Through the various assays, corroborative evidence pinpoints SMC at passage 7 as the transition point between the contractile and synthetic phenotypes, while passage 8 distinctly and consistently exhibited characteristics of synthetic phenotype. This knowledge is particularly useful in selecting SMC of appropriate passage number for the target vascular tissue engineering application, for example, a homeostatic vascular graft for blood vessel replacement versus recreating atherosclerotic blood vessel model in vitro. - Highlights: • Ability of human smooth muscle cells to alter phenotype in culture is evaluated. • Examined the effect of passaging human smooth muscle cells on phenotype. • Phenotype is assessed based on morphology, proliferation, markers, and migration. • Multi-resolution assessment methodology, single-cell and cell-population. • Lower and higher passages than P7 adopted a contractile and synthetic phenotype respectively.

  12. In-depth evaluation of commercially available human vascular smooth muscle cells phenotype: Implications for vascular tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Timraz, Sara B.H., E-mail: sara.timraz@kustar.ac.ae [Department of Biomedical Engineering, Khalifa University, PO Box 127788, Abu Dhabi (United Arab Emirates); Farhat, Ilyas A.H., E-mail: ilyas.farhat@outlook.com [Department of Applied Mathematics and Sciences, Khalifa University, PO Box 127788, Abu Dhabi (United Arab Emirates); Alhussein, Ghada, E-mail: ghada.alhussein@kustar.ac.ae [Department of Biomedical Engineering, Khalifa University, PO Box 127788, Abu Dhabi (United Arab Emirates); Christoforou, Nicolas, E-mail: nicolas.christoforou@kustar.ac.ae [Department of Biomedical Engineering, Khalifa University, PO Box 127788, Abu Dhabi (United Arab Emirates); Department of Biomedical Engineering, Duke University, Durham, NC 27708 (United States); Teo, Jeremy C.M., E-mail: jeremy.teo@kustar.ac.ae [Department of Biomedical Engineering, Khalifa University, PO Box 127788, Abu Dhabi (United Arab Emirates)

    2016-05-01

    In vitro research on vascular tissue engineering has extensively used isolated primary human or animal smooth muscle cells (SMC). Research programs that lack such facilities tend towards commercially available primary cells sources. Here, we aim to evaluate the capacity of commercially available human SMC to maintain their contractile phenotype, and determine if dedifferentiation towards the synthetic phenotype occurs in response to conventional cell culture and passaging without any external biochemical or mechanical stimuli. Lower passage SMC adopted a contractile phenotype marked by a relatively slower proliferation rate, higher expression of proteins of the contractile apparatus and smoothelin, elongated morphology, and reduced deposition of collagen types I and III. As the passage number increased, migratory capacity was enhanced, average cell speed, total distance and net distance travelled increased up to passage 8. Through the various assays, corroborative evidence pinpoints SMC at passage 7 as the transition point between the contractile and synthetic phenotypes, while passage 8 distinctly and consistently exhibited characteristics of synthetic phenotype. This knowledge is particularly useful in selecting SMC of appropriate passage number for the target vascular tissue engineering application, for example, a homeostatic vascular graft for blood vessel replacement versus recreating atherosclerotic blood vessel model in vitro. - Highlights: • Ability of human smooth muscle cells to alter phenotype in culture is evaluated. • Examined the effect of passaging human smooth muscle cells on phenotype. • Phenotype is assessed based on morphology, proliferation, markers, and migration. • Multi-resolution assessment methodology, single-cell and cell-population. • Lower and higher passages than P7 adopted a contractile and synthetic phenotype respectively.

  13. Vascular imaging with contrast agent in hard and soft tissues using microcomputed-tomography.

    Science.gov (United States)

    Blery, P; Pilet, P; Bossche, A Vanden-; Thery, A; Guicheux, J; Amouriq, Y; Espitalier, F; Mathieu, N; Weiss, P

    2016-04-01

    Vascularization is essential for many tissues and is a main requisite for various tissue-engineering strategies. Different techniques are used for highlighting vasculature, in vivo and ex vivo, in 2-D or 3-D including histological staining, immunohistochemistry, radiography, angiography, microscopy, computed tomography (CT) or micro-CT, both stand-alone and synchrotron system. Vascularization can be studied with or without a contrast agent. This paper presents the results obtained with the latest Skyscan micro-CT (Skyscan 1272, Bruker, Belgium) following barium sulphate injection replacing the bloodstream in comparison with results obtained with a Skyscan In Vivo 1076. Different hard and soft tissues were perfused with contrast agent and were harvested. Samples were analysed using both forms of micro-CT, and improved results were shown using this new micro-CT. This study highlights the vasculature using micro-CT methods. The results obtained with the Skyscan 1272 are clearly defined compared to results obtained with Skyscan 1076. In particular, this instrument highlights the high number of small vessels, which were not seen before at lower resolution. This new micro-CT opens broader possibilities in detection and characterization of the 3-D vascular tree to assess vascular tissue engineering strategies. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  14. Tissue vascularization through 3D printing: Will technology bring us flow?

    Science.gov (United States)

    Paulsen, S J; Miller, J S

    2015-05-01

    Though in vivo models provide the most physiologically relevant environment for studying tissue function, in vitro studies provide researchers with explicit control over experimental conditions and the potential to develop high throughput testing methods. In recent years, advancements in developmental biology research and imaging techniques have significantly improved our understanding of the processes involved in vascular development. However, the task of recreating the complex, multi-scale vasculature seen in in vivo systems remains elusive. 3D bioprinting offers a potential method to generate controlled vascular networks with hierarchical structure approaching that of in vivo networks. Bioprinting is an interdisciplinary field that relies on advances in 3D printing technology along with advances in imaging and computational modeling, which allow researchers to monitor cellular function and to better understand cellular environment within the printed tissue. As bioprinting technologies improve with regards to resolution, printing speed, available materials, and automation, 3D printing could be used to generate highly controlled vascularized tissues in a high throughput manner for use in regenerative medicine and the development of in vitro tissue models for research in developmental biology and vascular diseases. © 2015 Wiley Periodicals, Inc.

  15. Relationships among Body Condition, Insulin Resistance and Subcutaneous Adipose Tissue Gene Expression during the Grazing Season in Mares.

    Directory of Open Access Journals (Sweden)

    Shaimaa Selim

    Full Text Available Obesity and insulin resistance have been shown to be risk factors for laminitis in horses. The objective of the study was to determine the effect of changes in body condition during the grazing season on insulin resistance and the expression of genes associated with obesity and insulin resistance in subcutaneous adipose tissue (SAT. Sixteen Finnhorse mares were grazing either on cultivated high-yielding pasture (CG or semi-natural grassland (NG from the end of May to the beginning of September. Body measurements, intravenous glucose tolerance test (IVGTT, and neck and tailhead SAT gene expressions were measured in May and September. At the end of grazing, CG had higher median body condition score (7 vs. 5.4, interquartile range 0.25 vs. 0.43; P=0.05 and body weight (618 kg vs. 572 kg ± 10.21 (mean ± SEM; P=0.02, and larger waist circumference (P=0.03 than NG. Neck fat thickness was not different between treatments. However, tailhead fat thickness was smaller in CG compared to NG in May (P=0.04, but this difference disappeared in September. Greater basal and peak insulin concentrations, and faster glucose clearance rate (P=0.03 during IVGTT were observed in CG compared to NG in September. A greater decrease in plasma non-esterified fatty acids during IVGTT (P<0.05 was noticed in CG compared to NG after grazing. There was down-regulation of insulin receptor, retinol binding protein 4, leptin, and monocyte chemoattractant protein-1, and up-regulation of adiponectin (ADIPOQ, adiponectin receptor 1 and stearoyl-CoA desaturase (SCD gene expressions in SAT of both groups during the grazing season (P<0.05. Positive correlations were observed between ADIPOQ and its receptors and between SCD and ADIPOQ in SAT (P<0.01. In conclusion, grazing on CG had a moderate effect on responses during IVGTT, but did not trigger insulin resistance. Significant temporal differences in gene expression profiles were observed during the grazing season.

  16. Invasion of Porphyromonas gingivalis strains into vascular cells and tissue

    Directory of Open Access Journals (Sweden)

    Ingar Olsen

    2015-08-01

    Full Text Available Porphyromonas gingivalis is considered a major pathogen in adult periodontitis and is also associated with multiple systemic diseases, for example, cardiovascular diseases. One of its most important virulence factors is invasion of host cells. The invasion process includes attachment, entry/internalization, trafficking, persistence, and exit. The present review discusses these processes related to P. gingivalis in cardiovascular cells and tissue. Although most P. gingivalis strains invade, the invasion capacity of strains and the mechanisms of invasion including intracellular trafficking among them differ. This is consistent with the fact that there are significant differences in the pathogenicity of P. gingivalis strains. P. gingivalis invasion mechanisms are also dependent on types of host cells. Although much is known about the invasion process of P. gingivalis, we still have little knowledge of its exit mechanisms. Nevertheless, it is intriguing that P. gingivalis can remain viable in human cardiovascular cells and atherosclerotic plaque and later exit and re-enter previously uninfected host cells.

  17. Screening for amyloid in subcutaneous fat tissue of Egyptian patients with rheumatoid arthritis : clinical and laboratory characteristics

    NARCIS (Netherlands)

    El Mansoury, T.M.; Hazenberg, B. P. C.; Badawy, S. A. El; Ahmed, A.H.; Bijzet, J.; Limburg, P.C.; Van Rijswijk, M.H.

    Objective: To screen for amyloid and to assess associated clinical and laboratory characteristics in Egyptian patients with rheumatoid arthritis (RA). Methods: Abdominal subcutaneous fat aspirates were consecutively collected from 112 patients (103 women, nine men) having RA for five years or more.

  18. Occurrence of ticks in the subcutaneous tissue of red foxes, Vulpes vulpes in Czech Republic and Romania

    Czech Academy of Sciences Publication Activity Database

    D'Amico, G.; Juránková, J.; Tăbăran, F. A.; Frgelecová, L.; Forejtek, P.; Matei, I.A.; Ionică, A.M.; Hodžić, A.; Modrý, David; Mihalca, A. D.

    2017-01-01

    Roč. 8, č. 2 (2017), s. 309-312 ISSN 1877-959X Institutional support: RVO:60077344 Keywords : Red fox * subcutaneous * ticks * Czech Republic * Romania Subject RIV: GJ - Animal Vermins ; Diseases, Veterinary Medicine OBOR OECD: Veterinary science Impact factor: 3.230, year: 2016

  19. Decreased expression of transient receptor potential channels in cerebral vascular tissue from patients after hypertensive intracerebral hemorrhage

    DEFF Research Database (Denmark)

    Thilo, Florian; Suess, Olaf; Liu, Ying

    2011-01-01

    , TRPC5, TRPC6, TRPM4, TRPM6, and TRPM7 channels were detected in cerebral vascular tissue by quantitative real-time RT-PCR. Control cerebral vascular tissue was obtained from normotensive patients who underwent neurosurgical operation because of brain tumor. To examine a possible relation between...

  20. An examination of the genetic control of Douglas-fir vascular tissue phytochemicals: implications for black bear foraging.

    Science.gov (United States)

    Bruce A. Kimball; G.R. Johnson; Dale L. Nolte; Doreen L. Griffin

    1999-01-01

    Silvicultural practices can influence black bear (Ursus americanus) foraging preferences for Douglas-fir (Pseudotsuga menziesii) cambial-zone vascular tissues, but little is known about the role of genetics. To study the impact of genetic selection, vascular tissue samples were collected from Douglas-fir trees in six half-sib families from five...

  1. Hand transplantation and vascularized composite tissue allografts in orthopaedics and traumatology.

    Science.gov (United States)

    Schuind, F

    2010-05-01

    Composite tissue allograft (CTA) is defined as heterologous transplantation of a complex comprising skin and subcutaneous, neurovascular and mesenchymal tissue. Such techniques allow complex reconstruction using matched tissue, without donor site morbidity. The potential indications in orthopaedics-traumatology could in the future be more frequent than the present indications of heart, lung, liver, kidney and pancreas transplantation. International clinical experience clearly demonstrates the feasibility of CTA, both surgically and immunologically. However, immunosuppression remains indispensable, exposing the patient to risks that are not acceptable for purely functional surgery, except in very particular indications. The main hope for the future lies in induction of graft-specific tolerance. Copyright 2010 Elsevier Masson SAS. All rights reserved.

  2. LC-MS/MS analysis of visceral and subcutaneous adipose tissue proteomes in young goats with focus on innate immunity and inflammation related proteins

    DEFF Research Database (Denmark)

    Restelli, Laura; Codrea, Marius Cosmin; Savoini, Giovanni

    2014-01-01

    and visceral adipose tissues of goat, focusing on proteins involved in immune and inflammatory response. A 2-D LC-MS/MS approach followed by cluster analysis shows a clear distinction between subcutaneous and visceral fat tissue proteomes, and qualitative RT-PCR based analysis of 30 potential adipokines...... further confirmed the individual expression patterns of 26 of these, including 7 whose mRNA expression was observed for the first time in adipose tissues. This study provides a first description of adipose tissue proteomes in goat, and presents observations on novel proteins related to metabolic...... inflammation, detoxification and coagulation pathways, as well as regulation of body fat mobilization in dairy animals. These findings are of particular interest in farm animals where health and production traits are important for animal welfare and for economic gains. (C) 2014 Elsevier B.V. All rights...

  3. Changes In water translocation in the vascular tissue of grape during fruit development

    International Nuclear Information System (INIS)

    Zhaosen, X.; Forney, C.F.

    2014-01-01

    The relationship between vascular water translocation in grapes and berry growth was investigated. Berry growth, firmness and turgor were measured, and the structure and function of the vascular bundles for water translocation was observed. During phase I fruit development, the dorsal and central vascular bundles rapidly translocated introduced dye in the pedicle. The speed of dye translocation was highest in the dorsal vascular bundles of phase I fruit with a speed of 0.97cm/h. After phase II, both the distribution of dye and the speed of dye translocation in the fruit vascular tissue decreased, with speeds in the dorsal and central vascular bundles being 0.08 cm/h and 0.72 cm/h, respectively. During phase III, the distribution of dye was still lower than phase I. After phase II, the walls of some xylem vessels were indistinct and broken. After phase III, even though the water translocation efficiency of the xylem decreased, sugar accumulation in the berry as well as osmoregulation increased. (author)

  4. Curcumin Protects against Cadmium-Induced Vascular Dysfunction, Hypertension and Tissue Cadmium Accumulation in Mice

    Directory of Open Access Journals (Sweden)

    Upa Kukongviriyapan

    2014-03-01

    Full Text Available Curcumin from turmeric is commonly used worldwide as a spice and has been demonstrated to possess various biological activities. This study investigated the protective effect of curcumin on a mouse model of cadmium (Cd—induced hypertension, vascular dysfunction and oxidative stress. Male ICR mice were exposed to Cd (100 mg/L in drinking water for eight weeks. Curcumin (50 or 100 mg/kg was intragastrically administered in mice every other day concurrently with Cd. Cd induced hypertension and impaired vascular responses to phenylephrine, acetylcholine and sodium nitroprusside. Curcumin reduced the toxic effects of Cd and protected vascular dysfunction by increasing vascular responsiveness and normalizing the blood pressure levels. The vascular protective effect of curcumin in Cd exposed mice is associated with up-regulation of endothelial nitric oxide synthase (eNOS protein, restoration of glutathione redox ratio and alleviation of oxidative stress as indicated by decreasing superoxide production in the aortic tissues and reducing plasma malondialdehyde, plasma protein carbonyls, and urinary nitrate/nitrite levels. Curcumin also decreased Cd accumulation in the blood and various organs of Cd-intoxicated mice. These findings suggest that curcumin, due to its antioxidant and chelating properties, is a promising protective agent against hypertension and vascular dysfunction induced by Cd.

  5. Reconstruction with vascularized composite tissue in patients with excessive injury following surgery and irradiation

    International Nuclear Information System (INIS)

    Serafin, D.; DeLand, M.; Lesesne, C.B.; Smith, P.J.; Noell, K.T.; Georgiade, N.

    1982-01-01

    The biological effects of a single high dose of radiation are examined. Both cellular injury and repair are reviewed during early, intermediate, and late phases. Anticipated composite tissue morbidity is detailed for therapeutic radiation doses administered to the head and neck, breast and thorax, and perineum. Patients who demonstrated excessive time-dose fractionation values were irradiated with lower x-ray energies. Those in whom there was an overlap of treatment fields presented a serious challenge to the reconstructive surgeon. Judicious selection of well-vascularized composite tissue outside the portals of irradiation, preferably with a long vascular pedicle, facilitated reconstruction. When possible, both donor and recipient vasculature should be outside the irradiated area to ensure uninterrupted blood flow to the transferred or transplanted tissue

  6. Changes of noradrenergic activity and lipolysis in the subcutaneous abdominal adipose tissue of hypo- and hyperthyroid patients: an in vivo microdialysis study.

    Science.gov (United States)

    Nedvidkova, Jara; Haluzik, Martin; Bartak, Vladimir; Dostalova, Ivana; Vlcek, Petr; Racek, Pavel; Taus, Michal; Behanova, Magdalena; Svacina, Stepan; Alesci, Salvatore; Pacak, Karel

    2004-06-01

    Thyroid function plays an important role in the regulation of overall metabolic rate and lipid metabolism. However, it is uncertain whether thyroid hormones directly affect lipolysis in adipose tissue and to what extent those changes contribute to overall metabolic phenotype. Our study was designed, using the microdialysis technique, to determine basal and isoprenaline-stimulated local lipolysis and to determine local concentrations of lipolysis-regulating catecholamines in abdominal subcutaneous adipose tissue in 12 patients with hypothyroidism, 6 patients with hyperthyroidism, and 12 healthy control subjects. Plasma norepinephrine (NE) concentrations in hypothyroid subjects were significantly higher than in the control and hyperthyroid groups. In contrast, systemic, adipose NE levels in hypothyroid patients were decreased relative to controls. Hyperthyroidism, on the other hand, resulted in four-fold higher adipose NE levels. Basal lipolysis measured by glycerol concentrations in adipose tissue was significantly attenuated in hypothyroid patients and markedly increased in hyperthyroid patients in comparison with the control group. In addition to differences in basal lipolysis, hypothyroidism resulted in attenuated, and hyperthyroidism in enhanced, lipolytic response to local stimulation with beta(1,2)-adrenergic agonist isoprenaline. These results demonstrate that lipolysis in abdominal subcutaneous adipose tissue is strongly modulated by thyroid function. We suggest that thyroid hormones regulate lipolysis primarily by affecting local NE concentration and/or adrenergic postreceptor signaling.

  7. Instructive role of the vascular niche in promoting tumour growth and tissue repair by angiocrine factors.

    Science.gov (United States)

    Butler, Jason M; Kobayashi, Hideki; Rafii, Shahin

    2010-02-01

    The precise mechanisms whereby anti-angiogenesis therapy blocks tumour growth or causes vascular toxicity are unknown. We propose that endothelial cells establish a vascular niche that promotes tumour growth and tissue repair not only by delivering nutrients and O2 but also through an 'angiocrine' mechanism by producing stem and progenitor cell-active trophogens. Identification of endothelial-derived instructive angiocrine factors will allow direct tumour targeting, while diminishing the unwanted side effects associated with the use of anti-angiogenic agents.

  8. Caloric Restriction and Diet-Induced Weight Loss Do Not Induce Browning of Human Subcutaneous White Adipose Tissue in Women and Men with Obesity.

    Science.gov (United States)

    Barquissau, Valentin; Léger, Benjamin; Beuzelin, Diane; Martins, Frédéric; Amri, Ez-Zoubir; Pisani, Didier F; Saris, Wim H M; Astrup, Arne; Maoret, Jean-José; Iacovoni, Jason; Déjean, Sébastien; Moro, Cédric; Viguerie, Nathalie; Langin, Dominique

    2018-01-23

    Caloric restriction (CR) is standard lifestyle therapy in obesity management. CR-induced weight loss improves the metabolic profile of individuals with obesity. In mice, occurrence of beige fat cells in white fat depots favors a metabolically healthy phenotype, and CR promotes browning of white adipose tissue (WAT). Here, human subcutaneous abdominal WAT samples were analyzed in 289 individuals with obesity following a two-phase dietary intervention consisting of an 8 week very low calorie diet and a 6-month weight-maintenance phase. Before the intervention, we show sex differences and seasonal variation, with higher expression of brown and beige markers in women with obesity and during winter, respectively. The very low calorie diet resulted in decreased browning of subcutaneous abdominal WAT. During the whole dietary intervention, evolution of body fat and insulin resistance was independent of changes in brown and beige fat markers. These data suggest that diet-induced effects on body fat and insulin resistance are independent of subcutaneous abdominal WAT browning in people with obesity. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Caloric Restriction and Diet-Induced Weight Loss Do Not Induce Browning of Human Subcutaneous White Adipose Tissue in Women and Men with Obesity

    Directory of Open Access Journals (Sweden)

    Valentin Barquissau

    2018-01-01

    Full Text Available Caloric restriction (CR is standard lifestyle therapy in obesity management. CR-induced weight loss improves the metabolic profile of individuals with obesity. In mice, occurrence of beige fat cells in white fat depots favors a metabolically healthy phenotype, and CR promotes browning of white adipose tissue (WAT. Here, human subcutaneous abdominal WAT samples were analyzed in 289 individuals with obesity following a two-phase dietary intervention consisting of an 8 week very low calorie diet and a 6-month weight-maintenance phase. Before the intervention, we show sex differences and seasonal variation, with higher expression of brown and beige markers in women with obesity and during winter, respectively. The very low calorie diet resulted in decreased browning of subcutaneous abdominal WAT. During the whole dietary intervention, evolution of body fat and insulin resistance was independent of changes in brown and beige fat markers. These data suggest that diet-induced effects on body fat and insulin resistance are independent of subcutaneous abdominal WAT browning in people with obesity.

  10. Immunophenotypical characterization of canine mesenchymal stem cells from perivisceral and subcutaneous adipose tissue by a species-specific panel of antibodies.

    Science.gov (United States)

    Ivanovska, Ana; Grolli, Stefano; Borghetti, Paolo; Ravanetti, Francesca; Conti, Virna; De Angelis, Elena; Macchi, Francesca; Ramoni, Roberto; Martelli, Paolo; Gazza, Ferdinando; Cacchioli, Antonio

    2017-10-01

    Immunophenotypical characterization of mesenchymal stem cells is fundamental for the design and execution of sound experimental and clinical studies. The scarce availability of species-specific antibodies for canine antigens has hampered the immunophenotypical characterization of canine mesenchymal stem cells (MSC). The aim of this study was to select a panel of species-specific direct antibodies readily useful for canine mesenchymal stem cells characterization. They were isolated from perivisceral and subcutaneous adipose tissue samples collected during regular surgeries from 8 dogs. Single color flow cytometric analysis of mesenchymal stem cells (P3) deriving from subcutaneous and perivisceral adipose tissue with a panel of 7 direct anti-canine antibodies revealed two largely homogenous cell populations with a similar pattern: CD29 + , CD44 + , CD73 + , CD90 + , CD34 - , CD45 - and MHC-II - with no statistically significant differences among them. Antibody reactivity was demonstrated on canine peripheral blood mononuclear cells. The similarities are reinforced by their in vitro cell morphology, trilineage differentiation ability and RT-PCR analysis (CD90 + , CD73 + , CD105 + , CD44 + , CD13 + , CD29 + , Oct-4 + gene and CD31 - and CD45 - expression). Our results report for the first time a comparison between the immunophenotypic profile of canine MSC deriving from perivisceral and subcutaneous adipose tissue. The substantial equivalence between the two populations has practical implication on clinical applications, giving the opportunity to choose the source depending on the patient needs. The results contribute to routine characterization of MSC populations grown in vitro, a mandatory process for the definition of solid and reproducible laboratory and therapeutic procedures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. The adipose tissue of origin influences the biological potential of human adipose stromal cells isolated from mediastinal and subcutaneous fat depots

    Directory of Open Access Journals (Sweden)

    Camilla Siciliano

    2016-09-01

    Full Text Available Indirect evidence suggests that adipose tissue-derived stromal cells (ASCs possess different physiological and biological variations related to the anatomical localization of the adipose depots. Accordingly, to investigate the influence of the tissue origin on the intrinsic properties of ASCs and to assess their response to specific stimuli, we compared the biological, functional and ultrastructural properties of two ASC pools derived from mediastinal and subcutaneous depots (thoracic compartment by means of supplements such as platelet lysate (PL and FBS. Subcutaneous ASCs exhibited higher proliferative and clonogenic abilities than mediastinal counterpart, as well as increased secreted levels of IL-6 combined with lower amount of VEGF-C. In contrast, mediastinal ASCs displayed enhanced pro-angiogenic and adipogenic differentiation properties, increased cell diameter and early autophagic processes, highlighted by electron microscopy. Our results further support the hypothesis that the origin of adipose tissue significantly defines the biological properties of ASCs, and that a homogeneric function for all ASCs cannot be assumed.

  12. The regulation of subcutaneous adipose tissue blood flow in the ischaemic forefoot during 24 hours. Studies using the 133-xenon wash-out technique continuously over 24 hours

    DEFF Research Database (Denmark)

    Jelnes, R

    1988-01-01

    in 0.1 ml isotonic saline injected into the subcutaneous adipose tissue in the forefoot. The detector is connected to a memory unit allowing for storage of data. Due to the short distance, the recorded elimination rate constant must be corrected for combined convection and diffusion of the radioactive...... within normal range. SBF during day-time activities decreased by up to 50% postoperatively. This is caused by the reappearance of the local, sympathetic, veno-arteriolar vasoconstrictor response. During sleep SBF increased by 71%. The term postreconstructive hyperaemia seems improper, at least in a long-term...

  13. Expression of 11beta-hydroxysteroid dehydrogenase 1 and 2 in subcutaneous adipose tissue of lean and obese women with and without polycystic ovary syndrome

    DEFF Research Database (Denmark)

    Svendsen, P F; Madsbad, S; Nilas, L

    2009-01-01

    OBJECTIVE: To investigate the expression of 11beta-hydroxysteroid dehydrogenase (11beta-HSD) type 1 and 2 and hexose-6-phosphate dehydrogenase (H6PDH) mRNA in subcutaneous abdominal tissue from lean and obese women with and without polycystic ovary syndrome (PCOS), and to investigate...... assessment insulin resistance index. Body composition was evaluated by dual X-ray absorptiometry. Adipose mRNA expression of leptin and adiponectin were determined by real-time PCR. RESULTS: Polycystic ovary syndrome (P... distribution (PPolycystic ovary syndrome and obesity are independently associated with increased expression of 11beta-HSD1. This may lead to increased conversion of cortisone to cortisol...

  14. Evaluating 3D-printed biomaterials as scaffolds for vascularized bone tissue engineering.

    Science.gov (United States)

    Wang, Martha O; Vorwald, Charlotte E; Dreher, Maureen L; Mott, Eric J; Cheng, Ming-Huei; Cinar, Ali; Mehdizadeh, Hamidreza; Somo, Sami; Dean, David; Brey, Eric M; Fisher, John P

    2015-01-07

    There is an unmet need for a consistent set of tools for the evaluation of 3D-printed constructs. A toolbox developed to design, characterize, and evaluate 3D-printed poly(propylene fumarate) scaffolds is proposed for vascularized engineered tissues. This toolbox combines modular design and non-destructive fabricated design evaluation, evaluates biocompatibility and mechanical properties, and models angiogenesis. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Blood vessel replacement: 50 years of development and tissue engineering paradigms in vascular surgery

    Czech Academy of Sciences Publication Activity Database

    Chlupáč, Jaroslav; Filová, Elena; Bačáková, Lucie

    2009-01-01

    Roč. 58, Suppl.2 (2009), S119-S139 ISSN 0862-8408 R&D Projects: GA MŠk(CZ) 1M0510; GA AV ČR(CZ) 1QS500110564 Institutional research plan: CEZ:AV0Z50110509 Keywords : small-caliber vascular grafts * tissue engineering * dynamic bioreactor Subject RIV: EI - Biotechnology ; Bionics Impact factor: 1.430, year: 2009

  16. [Free tissue transfers with lengthening of vascular pedicle using interpositional vein grafts. About 10 cases].

    Science.gov (United States)

    Yeo, S; Perrot, P; Duteille, F

    2010-04-01

    The realization of free flaps with lack of reliable vessels nearby the loss of substance is a difficult problem for plastic surgeons. We report 10 cases of free tissue transfers with a one-stage technique lengthening the vascular pedicle of the free flap with interpositional vein grafts. Taking into consideration the good results and the low rate of morbidity, the authors emphasize the use of this technique rather than a two-stage procedure. Copyright 2009 Elsevier Masson SAS. All rights reserved.

  17. Vascularization after treatment of gingival recession defects with platelet-rich fibrin or connective tissue graft.

    Science.gov (United States)

    Eren, Gülnihal; Kantarcı, Alpdoğan; Sculean, Anton; Atilla, Gül

    2016-11-01

    The aim of this study was to evaluate histologically the following treatment of bilateral localized gingival recessions with coronally advanced flap (CAF) combined with platelet-rich fibrin (PRF) or subepithelial connective tissue graft (SCTG). Tissue samples were harvested from 14 subjects either 1 or 6 months after the surgeries. The 2-mm punch biopsies were obtained from the mid-portion of the grafted sites. Neutral buffered formalin fixed, paraffin-embedded 5-μm thick tissue sections were stained with hematoxylin eosin and Masson's trichrome in order to analyze the collagen framework, epithelium thickness and rete-peg length. Multiple sequential sections were cut from paraffin-embedded blocks of tissue and immunohistochemically prepared for detection of vascular endothelial growth factor, CD31 and CD34, for the assessment of vascularization. Rete peg formation was significantly increased in the sites treated with PRF compared to the SCTG group after 6 months (p < 0.05). On the contrary, the number of vessels was increased in the SCTG group compared to the PRF group after 6 months (p < 0.05). No statistically significant differences were observed in the collagen density. Staining intensity of CD31 increased in submucosal area of PRF group than SCTG group after 1 month. Higher staining intensity of CD34 was observed in the submucosal area of PRF group compared with SCTG group after 6 months. The results of the present study suggest that in histological evaluation because of its biological compounds, PRF results earlier vessel formation and tissue maturation compared to connective tissue graft. PRF regulated the vascular response associated with an earlier wound healing.

  18. Low Immunogenic Endothelial Cells Maintain Morphological and Functional Properties Required for Vascular Tissue Engineering.

    Science.gov (United States)

    Lau, Skadi; Eicke, Dorothee; Carvalho Oliveira, Marco; Wiegmann, Bettina; Schrimpf, Claudia; Haverich, Axel; Blasczyk, Rainer; Wilhelmi, Mathias; Figueiredo, Constança; Böer, Ulrike

    2018-03-01

    The limited availability of native vessels suitable for the application as hemodialysis shunts or bypass material demands new strategies in cardiovascular surgery. Tissue-engineered vascular grafts containing autologous cells are considered ideal vessel replacements due to the low risk of rejection. However, endothelial cells (EC), which are central components of natural blood vessels, are difficult to obtain from elderly patients of poor health. Umbilical cord blood represents a promising alternative source for EC, but their allogeneic origin corresponds with the risk of rejection after allotransplantation. To reduce this risk, the human leukocyte antigen class I (HLA I) complex was stably silenced by lentiviral vector-mediated RNA interference (RNAi) in EC from peripheral blood and umbilical cord blood and vein. EC from all three sources were transduced by 93.1% ± 4.8% and effectively, HLA I-silenced by up to 67% compared to nontransduced (NT) cells or transduced with a nonspecific short hairpin RNA, respectively. Silenced EC remained capable to express characteristic endothelial surface markers such as CD31 and vascular endothelial cadherin important for constructing a tight barrier, as well as von Willebrand factor and endothelial nitric oxide synthase important for blood coagulation and vessel tone regulation. Moreover, HLA I-silenced EC were still able to align under unidirectional flow, to take up acetylated low-density lipoprotein, and to form capillary-like tube structures in three-dimensional fibrin gels similar to NT cells. In particular, addition of adipose tissue-derived mesenchymal stem cells significantly improved tube formation capability of HLA I-silenced EC toward long and widely branched vascular networks necessary for prevascularizing vascular grafts. Thus, silencing HLA I by RNAi represents a promising technique to reduce the immunogenic potential of EC from three different sources without interfering with EC-specific morphological and

  19. Female Longitudinal Anal Muscles or Conjoint Longitudinal Coats Extend into the Subcutaneous Tissue along the Vaginal Vestibule: A Histological Study Using Human Fetuses

    Science.gov (United States)

    Arakawa, Takashi; Abe, Hiroshi; Rodríguez-Vízquez, Jose Francisco; Murakami, Gen; Sugihara, Kenichi

    2013-01-01

    Purpose It is still unclear whether the longitudinal anal muscles or conjoint longitudinal coats (CLCs) are attached to the vagina, although such an attachment, if present, would appear to make an important contribution to the integrated supportive system of the female pelvic floor. Materials and Methods Using immunohistochemistry for smooth muscle actin, we examined semiserial frontal sections of 1) eleven female late-stage fetuses at 28-37 weeks of gestation, 2) two female middle-stage fetus (2 specimens at 13 weeks), and, 3) six male fetuses at 12 and 37 weeks as a comparison of the morphology. Results In late-stage female fetuses, the CLCs consistently (11/11) extended into the subcutaneous tissue along the vaginal vestibule on the anterior side of the external anal sphincter. Lateral to the CLCs, the external anal sphincter also extended anteriorly toward the vaginal side walls. The anterior part of the CLCs originated from the perimysium of the levator ani muscle without any contribution of the rectal longitudinal muscle layer. However, in 2 female middle-stage fetuses, smooth muscles along the vestibulum extended superiorly toward the levetor ani sling. In male fetuses, the CLCs were separated from another subcutaneous smooth muscle along the scrotal raphe (posterior parts of the dartos layer) by fatty tissue. Conclusion In terms of topographical anatomy, the female anterior CLCs are likely to correspond to the lateral extension of the perineal body (a bulky subcutaneous smooth muscle mass present in adult women), supporting the vaginal vestibule by transmission of force from the levator ani. PMID:23549829

  20. Modeling of heat transfer in a vascular tissue-like medium during an interstitial hyperthermia process.

    Science.gov (United States)

    Hassanpour, Saeid; Saboonchi, Ahmad

    2016-12-01

    This paper aims to evaluate the role of small vessels in heat transfer mechanisms of a tissue-like medium during local intensive heating processes, for example, an interstitial hyperthermia treatment. To this purpose, a cylindrical tissue with two co- and counter-current vascular networks and a central heat source is introduced. Next, the energy equations of tissue, supply fluid (arterial blood), and return fluid (venous blood) are derived using porous media approach. Then, a 2D computer code is developed to predict the temperature of blood (fluid phase) and tissue (solid phase) by conventional volume averaging method and a more realistic solution method. In latter method, despite the volume averaging the blood of interconnect capillaries is separated from the arterial and venous blood phases. It is found that in addition to blood perfusion rate, the arrangement of vascular network has considerable effects on the pattern and amount of the achieved temperature. In contrast to counter-current network, the co-current network of vessels leads to considerable asymmetric pattern of temperature contours and relocation of heat affected zone along the blood flow direction. However this relocation can be prevented by changing the site of hyperthermia heat source. The results show that the cooling effect of co-current blood vessels during of interstitial heating is more efficient. Despite much anatomical dissimilarities, these findings can be useful in designing of protocols for hyperthermia cancer treatment of living tissue. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Phase separation of in situ forming poly (lactide-co-glycolide acid) implants investigated using a hydrogel-based subcutaneous tissue surrogate and UV-vis imaging.

    Science.gov (United States)

    Sun, Yu; Jensen, Henrik; Petersen, Nickolaj J; Larsen, Susan W; Østergaard, Jesper

    2017-10-25

    Phase separation of in situ forming poly (lactide-co-glycolide acid) (PLGA) implants with agarose hydrogels as the provider of nonsolvent (water) mimicking subcutaneous tissue was investigated using a novel UV-vis imaging-based analytical platform. In situ forming implants of PLGA-1-methyl-2-pyrrolidinone and PLGA-triacetin representing fast and slow phase separating systems, respectively, were evaluated using this platform. Upon contact with the agarose hydrogel, the phase separation of the systems was followed by the study of changes in light transmission and absorbance as a function of time and position. For the PLGA-1-methyl-2-pyrrolidinone system, the rate of spatial phase separation was determined and found to decrease with increasing the PLGA concentration from 20% to 40% (w/w). Hydrogels with different agarose concentrations (1% and 10% (w/v)) were prepared for providing the nonsolvent, water, to the in situ forming PLGA implants simulating the injection site environment. The resulting implant morphology depended on the stiffness of hydrogel matrix, indicating that the matrix in which implants are formed is of importance. Overall, the work showed that the UV-vis imaging-based platform with an agarose hydrogel mimicking the subcutaneous tissue holds potential in providing bio-relevant and mechanistic information on the phase separation processes of in situ forming implants. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Increased PUFA Content and 5-Lipoxygenase Pathway Expression Are Associated with Subcutaneous Adipose Tissue Inflammation in Obese Women with Type 2 Diabetes

    Directory of Open Access Journals (Sweden)

    Mattijs M. Heemskerk

    2015-09-01

    Full Text Available Obese women with type 2 diabetes mellitus (T2DM have more inflammation in their subcutaneous white adipose tissue (sWAT than age-and-BMI similar obese women with normal glucose tolerance (NGT. We aimed to investigate whether WAT fatty acids and/or oxylipins are associated with the enhanced inflammatory state in WAT of the T2DM women. Fatty acid profiles were measured in both subcutaneous and visceral adipose tissue (vWAT of 19 obese women with NGT and 16 age-and-BMI similar women with T2DM. Oxylipin levels were measured in sWAT of all women. Arachidonic acid (AA and docosahexaenoic acid (DHA percentages were higher in sWAT, but not vWAT of the T2DM women, and AA correlated positively to the gene expression of macrophage marker CD68. We found tendencies for higher oxylipin concentrations of the 5-LOX leukotrienes in sWAT of T2DM women. Gene expression of the 5-LOX leukotriene biosynthesis pathway was significantly higher in sWAT of T2DM women. In conclusion, AA and DHA content were higher in sWAT of T2DM women and AA correlated to the increased inflammatory state in sWAT. Increased AA content was accompanied by an upregulation of the 5-LOX pathway and seems to have led to an increase in the conversion of AA into proinflammatory leukotrienes in sWAT.

  3. A comparison between 133Xenon washout technique and Laser Doppler flowmetry in the measurement of local vasoconstrictor effects on the microcirculation in subcutaneous tissue and skin

    International Nuclear Information System (INIS)

    Kastrup, J.; Buelow, J.; Lassen, N.A.

    1987-01-01

    Changes in skin blood flow measured by Laser Doppler flowmetry and changes in subcutaneous blood flow measured by 133 Xenon washout technique were compared during activation of the local sympathetic mediated veno-arteriolar vaso-constrictor reflex by lowering the area of investigation below heart level. The measurements were performed in tissue with and without sympathetic innervation. In five subjects, who all had been cervically sympathectomized for manual hyperhidrosis, the Laser Doppler and 133 Xenon blood flow measurements were performed simultaneously on the sympathetically denervated forearm, and on the calf with preserved sympathetic nerve supply. The Laser Doppler method registered a 23% reduction in skin blood flow during lowering of the extremities independently of the sympathetic nerve supply to the skin. The 133 Xenon method recorded a 44% decrease in blood flow in innervated and unchanged blood flow in denervated subcutaneous tissue during lowering of the extremities. Our results indicate that the Laser Doppler method and 133 Xenon method are not comparable, and that the Laser Doppler method is not useful in measuring local sympathetic mediated blood flow changes. (author)

  4. Comparison between /sup 133/Xenon washout technique and Laser Doppler flowmetry in the measurement of local vasoconstrictor effects on the microcirculation in subcutaneous tissue and skin

    Energy Technology Data Exchange (ETDEWEB)

    Kastrup, J.; Buelow, J.; Lassen, N.A.

    1987-10-01

    Changes in skin blood flow measured by Laser Doppler flowmetry and changes in subcutaneous blood flow measured by /sup 133/Xenon washout technique were compared during activation of the local sympathetic mediated veno-arteriolar vaso-constrictor reflex by lowering the area of investigation below heart level. The measurements were performed in tissue with and without sympathetic innervation. In five subjects, who all had been cervically sympathectomized for manual hyperhidrosis, the Laser Doppler and /sup 133/Xenon blood flow measurements were performed simultaneously on the sympathetically denervated forearm, and on the calf with preserved sympathetic nerve supply. The Laser Doppler method registered a 23% reduction in skin blood flow during lowering of the extremities independently of the sympathetic nerve supply to the skin. The /sup 133/Xenon method recorded a 44% decrease in blood flow in innervated and unchanged blood flow in denervated subcutaneous tissue during lowering of the extremities. Our results indicate that the Laser Doppler method and /sup 133/Xenon method are not comparable, and that the Laser Doppler method is not useful in measuring local sympathetic mediated blood flow changes.

  5. Evaluating the Use of Monocytes with a Degradable Polyurethane for Vascular Tissue Regeneration

    Science.gov (United States)

    Battiston, Kyle Giovanni

    Monocytes are one of the first cell types present following the implantation of a biomaterial or tissue engineered construct. Depending on the monocyte activation state supported by the biomaterial, monocytes and their derived macrophages (MDMs) can act as positive contributors to tissue regeneration and wound healing, or conversely promote a chronic inflammatory response that leads to fibrous encapsulation and implant rejection. A degradable polar hydrophobic iconic polyurethane (D-PHI) has been shown to reduce pro-inflammatory monocyte/macrophage response compared to tissue culture polystyrene (TCPS), a substrate routinely used for in vitro culture of cells, as well as poly(lactide- co-glycolide) (PLGA), a standard synthetic biodegradable biomaterial in the tissue engineering field. D-PHI has also shown properties suitable for use in a vascular tissue engineering context. In order to understand the mechanism through which D-PHI attenuates pro-inflammatory monocyte response, this thesis investigated the ability of D-PHI to modulate interactions with adsorbed serum proteins and the properties of D-PHI that were important for this activity. D-PHI was shown to regulate protein adsorption in a manner that produced divergent monocyte responses compared to TCPS and PLGA when coated with the serum proteins alpha2-macroglobulin or immunoglobulin G (IgG). In the case of IgG, D-PHI was shown to reduce pro-inflammatory binding site exposure as a function of the material's polar, hydrophobic, and ionic character. Due to the favourable monocyte activation state supported by D-PHI, and the importance of monocytes/macrophages in regulating the response of tissue-specific cell types in vivo, the ability of a D-PHI-stimulated monocyte/macrophage activation state to contribute to modulating the response of vascular smooth muscle cells (VSMCs) in a vascular tissue engineering context was investigated. D-PHI- stimulated monocytes promoted VSMC growth and migration through biomolecule

  6. Current Strategies for the Manufacture of Small Size Tissue Engineering Vascular Grafts

    Directory of Open Access Journals (Sweden)

    Michele Carrabba

    2018-04-01

    Full Text Available Occlusive arterial disease, including coronary heart disease (CHD and peripheral arterial disease (PAD, is the main cause of death, with an annual mortality incidence predicted to rise to 23.3 million worldwide by 2030. Current revascularization techniques consist of angioplasty, placement of a stent, or surgical bypass grafting. Autologous vessels, such as the saphenous vein and internal thoracic artery, represent the gold standard grafts for small-diameter vessels. However, they require invasive harvesting and are often unavailable. Synthetic vascular grafts represent an alternative to autologous vessels. These grafts have shown satisfactory long-term results for replacement of large- and medium-diameter arteries, such as the carotid or common femoral artery, but have poor patency rates when applied to small-diameter vessels, such as coronary arteries and arteries below the knee. Considering the limitations of current vascular bypass conduits, a tissue-engineered vascular graft (TEVG with the ability to grow, remodel, and repair in vivo presents a potential solution for the future of vascular surgery. Here, we review the different methods that research groups have been investigating to create TEVGs in the last decades. We focus on the techniques employed in the manufacturing process of the grafts and categorize the approaches as scaffold-based (synthetic, natural, or hybrid or self-assembled (cell-sheet, microtissue aggregation and bioprinting. Moreover, we highlight the attempts made so far to translate this new strategy from the bench to the bedside.

  7. Vascular Tissue Engineering: Effects of Integrating Collagen into a PCL Based Nanofiber Material

    Directory of Open Access Journals (Sweden)

    Ulf Bertram

    2017-01-01

    Full Text Available The engineering of vascular grafts is a growing field in regenerative medicine. Although numerous attempts have been made, the current vascular grafts made of polyurethane (PU, Dacron®, or Teflon® still display unsatisfying results. Electrospinning of biopolymers and native proteins has been in the focus of research to imitate the extracellular matrix (ECM of vessels to produce a small caliber, off-the-shelf tissue engineered vascular graft (TEVG as a substitute for poorly performing PU, Dacron, or Teflon prostheses. Blended poly-ε-caprolactone (PCL/collagen grafts have shown promising results regarding biomechanical and cell supporting features. In order to find a suitable PCL/collagen blend, we fabricated plane electrospun PCL scaffolds using various collagen type I concentrations ranging from 5% to 75%. We analyzed biocompatibility and morphological aspects in vitro. Our results show beneficial features of collagen I integration regarding cell viability and functionality, but also adverse effects like the loss of a confluent monolayer at high concentrations of collagen. Furthermore, electrospun PCL scaffolds containing 25% collagen I seem to be ideal for engineering vascular grafts.

  8. Treatment of Vascular Soft Tissue Sarcomas With Razoxane, Vindesine, and Radiation

    International Nuclear Information System (INIS)

    Rhomberg, Walter; Wink, Anna; Pokrajac, Boris; Eiter, Helmut; Hackl, Arnulf; Pakisch, Brigitte; Ginestet, Angela; Lukas, Peter; Poetter, Richard Prof.

    2009-01-01

    Purpose: In previous studies, razoxane and vindesine together with radiotherapy was proved to be effective in soft tissue sarcomas (STS). Because razoxane leads to a redifferentiation of pathological tumor blood vessels, it was of particular interest to study the influence of this drug combination in vascular soft tissue sarcomas. Methods and Materials: This open multicenter Phase II study was performed by the Austrian Society of Radiooncology. Among 13 evaluable patients (10 angiosarcomas and 3 hemangio-pericytomas), 9 had unresectable measurable disease, 3 showed microscopic residuals, and 1 had a resection with clear margins. They received a basic treatment with razoxane and vindesine supported by radiation therapy. Outcome measures were objective response rates, survival time, and the incidence of distant metastases. Results: In nine patients with measurable vascular soft tissue sarcomas (eight angiosarcomas and one hemangiopericytoma), 6 complete remissions, 2 partial remissions, and 1 minor remission were achieved, corresponding to a major response rate of 89%. A maintenance therapy with razoxane and vindesine of 1 year or longer led to a suppression of distant metastases. The median survival time from the start of the treatment is 23+ months (range, 3-120+) for 12 patients with macroscopic and microscopic residual disease. The progression-free survival at 6 months was 75%. The combined treatment was associated with a low general toxicity, but attention must be given to increased normal tissue reactions. Conclusions: This trimodal treatment leads to excellent response rates, and it suppresses distant metastases when given as maintenance therapy.

  9. Construction of tissue-engineered small-diameter vascular grafts in fibrin scaffolds in 30 days.

    Science.gov (United States)

    Gui, Liqiong; Boyle, Michael J; Kamin, Yishai M; Huang, Angela H; Starcher, Barry C; Miller, Cheryl A; Vishnevetsky, Michael J; Niklason, Laura E

    2014-05-01

    Tissue-engineered small-diameter vascular grafts have been developed as a promising alternative to native veins or arteries for replacement therapy. However, there is still a crucial need to improve the current approaches to render the tissue-engineered blood vessels more favorable for clinical applications. A completely biological blood vessel (3-mm inner diameter) was constructed by culturing a 50:50 mixture of bovine smooth muscle cells (SMCs) with neonatal human dermal fibroblasts in fibrin gels. After 30 days of culture under pulsatile stretching, the engineered blood vessels demonstrated an average burst pressure of 913.3±150.1 mmHg (n=6), a suture retention (53.3±15.4 g) that is suitable for implantation, and a compliance (3.1%±2.5% per 100 mmHg) that is comparable to native vessels. These engineered grafts contained circumferentially aligned collagen fibers, microfibrils and elastic fibers, and differentiated SMCs, mimicking a native artery. These promising mechanical and biochemical properties were achieved in a very short culture time of 30 days, suggesting the potential of co-culturing SMCs with fibroblasts in fibrin gels to generate functional small-diameter vascular grafts for vascular reconstruction surgery.

  10. Connective tissue growth factor is involved in structural retinal vascular changes in long-term experimental diabetes

    NARCIS (Netherlands)

    Van Geest, Rob J; Leeuwis, Jan Willem; Dendooven, Amélie; Pfister, Frederick; Bosch, Klazien; Hoeben, Kees A; Vogels, Ilse M C; Van der Giezen, Dionne M; Dietrich, Nadine; Hammes, Hans-Peter; Goldschmeding, Roel; Klaassen, Ingeborg; Van Noorden, Cornelis J F; Schlingemann, Reinier O

    Early retinal vascular changes in the development of diabetic retinopathy (DR) include capillary basal lamina (BL) thickening, pericyte loss and the development of acellular capillaries. Expression of the CCN (connective tissue growth factor/cysteine-rich 61/nephroblastoma overexpressed) family

  11. Connective tissue growth factor is involved in structural retinal vascular changes in long-term experimental diabetes

    NARCIS (Netherlands)

    van Geest, Rob J.; Leeuwis, Jan Willem; Dendooven, Amélie; Pfister, Frederick; Bosch, Klazien; Hoeben, Kees A.; Vogels, Ilse M. C.; van der Giezen, Dionne M.; Dietrich, Nadine; Hammes, Hans-Peter; Goldschmeding, Roel; Klaassen, Ingeborg; van Noorden, Cornelis J. F.; Schlingemann, Reinier O.

    2014-01-01

    Early retinal vascular changes in the development of diabetic retinopathy (DR) include capillary basal lamina (BL) thickening, pericyte loss and the development of acellular capillaries. Expression of the CCN (connective tissue growth factor/cysteine-rich 61/nephroblastoma overexpressed) family

  12. 23Na+- and 39K+-NMR studies of cation-polyanion interactions in vascular connective tissue

    International Nuclear Information System (INIS)

    Siegel, G.; Walter, A.; Bostanjoglo, M.

    1987-01-01

    The ion binding properties of vascular connective tissue as well as of substances derived therefrom were studied in dependence on cation concentration by NMR and atomic absorption techniques. 16 refs.; 8 figs

  13. Human DPSCs fabricate vascularized woven bone tissue: A new tool in bone tissue engineering

    Czech Academy of Sciences Publication Activity Database

    Paino, F.; Noce, M.L.; Giuliani, A.; de Rosa, A.; Mazzoni, F.; Laino, L.; Amler, Evžen; Papaccio, G.; Desiderio, V.; Tirino, V.

    2017-01-01

    Roč. 131, č. 8 (2017), s. 699-713 ISSN 0143-5221 Institutional support: RVO:68378041 Keywords : bone differentiation * bone regeneration * bone tissue engineering Subject RIV: FP - Other Medical Disciplines OBOR OECD: Orthopaedics Impact factor: 4.936, year: 2016

  14. Vascular and metabolic effects of adrenaline in adipose tissue in type 2 diabetes

    DEFF Research Database (Denmark)

    Tobin, L; Simonsen, L; Galbo, H

    2012-01-01

    Objective:The aim was to investigate adipose tissue vascular and metabolic effects of an adrenaline infusion in vivo in subjects with and without type 2 diabetes mellitus (T2DM).Design:Clinical intervention study with 1-h intravenous adrenaline infusion.Subjects:Eight male overweight T2DM subjects...... and eight male weight-matched, non-T2DM subjects were studied before, during and after an 1-h intravenous adrenaline infusion. Adipose tissue blood flow (ATBF) was determined by Xenon wash-out technique, and microvascular volume in the adipose tissue was studied by contrast-enhanced ultrasound imaging...... infusion. One hour post adrenaline, ATBF was still increased in overweight T2DM subjects. Adrenaline increased microvascular volume in non-T2DM subjects while this response was impaired in overweight T2DM subjects. Adrenaline-induced increase in lipolysis was similar in both groups, but NEFA output from...

  15. In situ vascular regeneration using substance P-immobilised poly(L-lactide-co-ε-caprolactone scaffolds: stem cell recruitment, angiogenesis, and tissue regeneration

    Directory of Open Access Journals (Sweden)

    M Shafiq

    2011-11-01

    Full Text Available In situ tissue regeneration holds great promise for regenerative medicine and tissue engineering applications. However, to achieve control over long-term and localised presence of biomolecules, certain barriers must be overcome. The aim of this study was to develop electrospun scaffolds for the fabrication of artificial vascular grafts that can be remodelled within a host by endogenous cell recruitment. We fabricated scaffolds by mixing appropriate proportions of linear poly (l-lactide-co-ε-caprolactone (PLCL and substance P (SP-immobilised PLCL, using electrospinning to develop vascular grafts. Substance P was released in a sustained fashion from electrospun membranes for up to 30 d, as revealed by enzyme-linked immunosorbent assay. Immobilised SP remained bioactive and recruited human bone marrow-derived mesenchymal stem cells (hMSCs in an in vitro Trans-well migration assay. The biocompatibility and biological performance of the scaffolds were evaluated by in vivo experiments involving subcutaneous scaffold implantations in Sprague-Dawley rats for up to 28 d followed by histological and immunohistochemical studies. Histological analysis revealed a greater extent of accumulative host cell infiltration and collagen deposition in scaffolds containing higher contents of SP than observed in the control group at both time points. We also observed the presence of a large number of laminin-positive blood vessels and Von Willebrand factor (vWF+ cells in the explants containing SP. Additionally, scaffolds containing SP showed the existence of CD90+ and CD105+ MSCs. Collectively, these findings suggest that the methodology presented here may have broad applications in regenerative medicine, and the novel scaffolding materials can be used for in situ tissue regeneration of soft tissues.

  16. Expression of 11beta-hydroxysteroid dehydrogenase 1 and 2 in subcutaneous adipose tissue of lean and obese women with and without polycystic ovary syndrome.

    Science.gov (United States)

    Svendsen, P F; Madsbad, S; Nilas, L; Paulsen, S K; Pedersen, S B

    2009-11-01

    To investigate the expression of 11beta-hydroxysteroid dehydrogenase (11beta-HSD) type 1 and 2 and hexose-6-phosphate dehydrogenase (H6PDH) mRNA in subcutaneous abdominal tissue from lean and obese women with and without polycystic ovary syndrome (PCOS), and to investigate the association between these enzymes and different measures of insulin sensitivity. Cross-sectional study. A total of 60 women, 36 women with PCOS, 17 lean (lean PCOS, LP) and 19 obese (obese PCOS, OP) and 24 age- and weight-matched control women, 8 lean (lean controls, LC) and 16 obese (obese controls, OC). Subcutaneous adipose tissue was collected from the abdomen. Peripheral insulin sensitivity was assessed by the euglycemic hyperinsulinemic clamp and determined as glucose disposal rate and insulin sensitivity index. Whole-body insulin sensitivity was calculated using homeostasis model assessment insulin resistance index. Body composition was evaluated by dual X-ray absorptiometry. Adipose mRNA expression of leptin and adiponectin were determined by real-time PCR. Polycystic ovary syndrome (PPCOS or obesity on11beta-HSD2 or H6PDH mRNA expression. Decreased peripheral insulin sensitivity (P<0.001) and increased upper body fat distribution (P<0.01) were associated with increased expression of 11beta-HSD1, but neither 11beta-HSD2 nor H6PDH. Polycystic ovary syndrome and obesity are independently associated with increased expression of 11beta-HSD1. This may lead to increased conversion of cortisone to cortisol in the peripheral adipose tissue and subsequently increased glucocorticoid activity. Decreased peripheral insulin sensitivity and central obesity was associated with increased expression of 11beta-HSD1.

  17. Fast and sensitive HPLC/UV method for cefazolin quantification in plasma and subcutaneous tissue microdialysate of humans and rodents applied to pharmacokinetic studies in obese individuals.

    Science.gov (United States)

    Palma, Eduardo Celia; Laureano, João Victor; de Araújo, Bibiana Verlindo; Meinhardt, Nelson Guardiola; Stein, Airton Tetelbom; Dalla Costa, Teresa

    2018-04-14

    Antimicrobial prophylactic dosing of morbidly obese patients may differ from normal weighted individuals owing to alterations in drug tissue distribution. Drug subcutaneous tissue distribution can be investigated by microdialysis patients and animals. The need for cefazolin prophylactic dose adjustment in obese patients remains under discussion. The paper describes the validation of an HPLC-UV method for cefazolin quantification in plasma and microdialysate samples from clinical and pre-clinical studies. A C 18 column with an isocratic mobile phase was used for drug separation, with detection at 272 nm. Total and unbound cefazolin lower limit of quantitation was 5 μg/mL in human plasma, 2 μg/mL in rat plasma, and 0.5 and 0.025 μg/mL in human and rat microdialysate samples, respectively. The maximum intra- and inter-day imprecisions were 10.7 and 8.1%, respectively. The inaccuracy was <9.7%. The limit of quantitation imprecision and inaccuracy were < 15%. Cefazolin stability in the experimental conditions was confirmed. Cefazolin plasma concentrations and subcutaneous tissue penetration were determined by microdialysis in morbidly obese patients (2 g i.v. bolus) and diet-induced obese rats (30 mg/kg i.v. bolus) using the method. This method has the main advantages of easy plasma clean-up and practicability and has proven to be useful in cefazolin clinical and pre-clinical pharmacokinetic investigations. Copyright © 2018 John Wiley & Sons, Ltd.

  18. Post-exercise abdominal, subcutaneous adipose tissue lipolysis in fasting subjects is inhibited by infusion of the somatostatin analogue octreotide

    DEFF Research Database (Denmark)

    Enevoldsen, Lotte H; Polak, Jan; Simonsen, Lene

    2007-01-01

    .c., abdominal adipose tissue metabolism, before, during and after exercise in healthy, fasting, young male subjects. The adipose tissue net releases of fatty acids and glycerol were measured by arterio-venous catheterizations and simultaneous measurements of adipose tissue blood flow with the local Xe....... The results show that octreotide infusion during rest increased lipolysis and fatty acid release from the abdominal, s.c. adipose tissue. The exercise-induced increase in lipolysis and fatty acid release does not seem to be affected by octreotide when compared with the control study without octreotide...... infusion while the post-exercise increase in lipolysis is inhibited by octreotide, suggesting that the exercise-induced increase in GH secretion plays a role for the post-exercise lipolysis in s.c., abdominal adipose tissue....

  19. Stem cell differentiation on electrospun nanofibrous substrates for vascular tissue engineering

    International Nuclear Information System (INIS)

    Jia, Lin; Prabhakaran, Molamma P.; Qin, Xiaohong; Ramakrishna, Seeram

    2013-01-01

    Nanotechnology has enabled the engineering of a variety of materials to meet the current challenges and requirements in vascular tissue regeneration. In our study, poly-L-lactide (PLLA) and hybrid PLLA/collagen (PLLA/Coll) nanofibers (3:1 and 1:1) with fiber diameters of 210 to 430 nm were fabricated by electrospinning. Their morphological, chemical and mechanical characterizations were carried out using scanning electron microscopy (SEM), attenuated total reflectance Fourier transform infrared (ATR-FTIR), and tensile instrument, respectively. Bone marrow derived mesenchymal stem cells (MSCs) seeded on electrospun nanofibers that are capable of differentiating into vascular cells have great potential for repair of the vascular system. We investigated the potential of MSCs for vascular cell differentiation in vitro on electrospun PLLA/Coll nanofibrous scaffolds using endothelial differentiation media. After 20 days of culture, MSC proliferation on PLLA/Coll(1:1) scaffolds was found 256% higher than the cell proliferation on PLLA scaffolds. SEM images showed that the MSC differentiated endothelial cells on PLLA/Coll scaffolds showed cobblestone morphology in comparison to the fibroblastic type of undifferentiated MSCs. The functionality of the cells in the presence of ‘endothelial induction media’, was further demonstrated from the immunocytochemical analysis, where the MSCs on PLLA/Coll (1:1) scaffolds differentiated to endothelial cells and expressed the endothelial cell specific proteins such as platelet endothelial cell adhesion molecule-1 (PECAM-1 or CD31) and Von Willebrand factor (vWF). From the results of the SEM analysis and protein expression studies, we concluded that the electrospun PLLA/Coll nanofibers could mimic the native vascular ECM environment and might be promising substrates for potential application towards vascular regeneration. - Highlights: • PLLA and PLLA/Coll nanofibers were electrospun. • Incorporation of collagen reduced fiber

  20. Stem cell differentiation on electrospun nanofibrous substrates for vascular tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Lin [Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, No. 2999 North Renmin Road, Songjiang, Shanghai 201620 (China); Center for Nanofibers and Nanotechnology, E3-05-14, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576 (Singapore); Prabhakaran, Molamma P., E-mail: nnimpp@nus.edu.sg [Center for Nanofibers and Nanotechnology, E3-05-14, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576 (Singapore); Qin, Xiaohong, E-mail: xhqin@dhu.edu.cn [Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, No. 2999 North Renmin Road, Songjiang, Shanghai 201620 (China); Ramakrishna, Seeram [Center for Nanofibers and Nanotechnology, E3-05-14, Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576 (Singapore)

    2013-12-01

    Nanotechnology has enabled the engineering of a variety of materials to meet the current challenges and requirements in vascular tissue regeneration. In our study, poly-L-lactide (PLLA) and hybrid PLLA/collagen (PLLA/Coll) nanofibers (3:1 and 1:1) with fiber diameters of 210 to 430 nm were fabricated by electrospinning. Their morphological, chemical and mechanical characterizations were carried out using scanning electron microscopy (SEM), attenuated total reflectance Fourier transform infrared (ATR-FTIR), and tensile instrument, respectively. Bone marrow derived mesenchymal stem cells (MSCs) seeded on electrospun nanofibers that are capable of differentiating into vascular cells have great potential for repair of the vascular system. We investigated the potential of MSCs for vascular cell differentiation in vitro on electrospun PLLA/Coll nanofibrous scaffolds using endothelial differentiation media. After 20 days of culture, MSC proliferation on PLLA/Coll(1:1) scaffolds was found 256% higher than the cell proliferation on PLLA scaffolds. SEM images showed that the MSC differentiated endothelial cells on PLLA/Coll scaffolds showed cobblestone morphology in comparison to the fibroblastic type of undifferentiated MSCs. The functionality of the cells in the presence of ‘endothelial induction media’, was further demonstrated from the immunocytochemical analysis, where the MSCs on PLLA/Coll (1:1) scaffolds differentiated to endothelial cells and expressed the endothelial cell specific proteins such as platelet endothelial cell adhesion molecule-1 (PECAM-1 or CD31) and Von Willebrand factor (vWF). From the results of the SEM analysis and protein expression studies, we concluded that the electrospun PLLA/Coll nanofibers could mimic the native vascular ECM environment and might be promising substrates for potential application towards vascular regeneration. - Highlights: • PLLA and PLLA/Coll nanofibers were electrospun. • Incorporation of collagen reduced fiber

  1. Increased expression of Interleukin-13 and connective tissue growth factor, and their potential roles during foreign body encapsulation of subcutaneous implants.

    Science.gov (United States)

    Ward, W Kenneth; Li, Allen G; Siddiqui, Yasmin; Federiuk, Isaac F; Wang, Xiao-Jing

    2008-01-01

    The purpose of this study was to better understand whether interleukin-13 (IL-13) and connective tissue growth factor (CTGF) are highly expressed during foreign body encapsulation of subcutaneous devices. Mock biosensors were implanted into rats for three lengths of time (7-, 21- and 48-55 days) to address different stages of the foreign body response. Using quantitative real-time PCR and immunofluorescence, the expression of IL13, CTGF, collagen 1, decorin and fibronectin were measured in this tissue. IL-13, a product of Th2 cells, was highly expressed at all time points, with greatest expression at day 21. The IL-13 expression was paralleled by increased presence of T-cells at all time points. CTGF was also found to be more highly expressed in foreign body tissue than in controls. Collagen and decorin were highly expressed at the middle and later stages. Given the increased expression of IL-13 and CTGF in foreign body tissue, and their roles in other fibrotic disorders, these cytokines may well contribute to the formation of the foreign body capsule. Since the peak gene expression of IL-13 occurred later than the previously-reported TGFbeta expression peak, IL-13 is probably not the major stimulus to TGFbeta expression during foreign body encapsulation and may contribute to fibrosis independently.

  2. Vascular smooth muscle cells for use in vascular tissue engineering obtained by endothelial-to-mesenchymal transdifferentiation (EnMT) on collagen matrices

    NARCIS (Netherlands)

    Krenning, Guido; Moonen, Jan-Renier A. J.; van Luyn, Marja J. A.; Harmsen, Martin C.

    The discovery of the endothelial progenitor cell (EPC) has led to an intensive research effort into progenitor cell-based tissue engineering of (small-diameter) blood vessels. Herein, EPC are differentiated to vascular endothelial cells and serve as the inner lining of bioartificial vessels. As yet,

  3. Mid-term clinical results of tissue-engineered vascular autografts

    International Nuclear Information System (INIS)

    Matsumura, Goki; Shin'oka, Toshiharu; Hibino, Narutoshi; Saito, Satoshi; Sakamoto, Takahiko; Ichihara, Yuki; Hobo, Kyoko; Miyamoto, Shin'ka; Kurosawa, Hiromi

    2007-01-01

    Prosthetic and bioprosthetic materials currently in use lack growth potential and therefore must be repeatedly replaced in pediatric patients as they grow. Tissue engineering is a new discipline that offers the potential for creating replacement structures from autologous cells and biodegradable polymer scaffolds. In May 2000, we initiated clinical application of tissue-engineered vascular grafts seeded with cultured cells. However, cell culturing is time-consuming, and xenoserum must be used. To overcome these disadvantages, we began to use bone marrow cells, readily available on the day of surgery, as a cell source. Since September 2001, tissue-engineered grafts seeded with autologous bone marrow cells have been implanted in 44 patients. The patients or their parents were fully informed and had given consent to the procedure. A 3 to 10 ml/kg specimen of bone marrow was aspirated with the patient under general anesthesia before the skin incision. The polymer tube serving as a scaffold for the cells was composed of a copolymer of lactide and ε-caprolactone (50:50) which degrades by hydrolysis. Polyglycolic or poly-l-lactic acid woven fabric was used for reinforcement. Twenty-six tissue-engineered conduits and 19 tissue-engineered patches were used for the repair of congenital heart defects. The patients' ages ranged from 1 to 24 years (median 7.4 years). All patients underwent a catheterization study, CT scan, or both, for evaluation after the operation. There were 4 late deaths due to heart failure with or without multiple organ failure or brain bleeding in this series; these were unrelated to the tissue-engineered graft function. One patient required percutaneous balloon angioplasty for tubular graft-stenosis and 4 patients for the stenosis of the patch-shaped tissue engineered material. Two patients required re-do operation; one for recurrent pulmonary stenosis and another for a resulting R-L shunt after the lateral tunnel method. Kaplan-Meier analysis in

  4. Vascular and micro-environmental influences on MSC-coral hydroxyapatite construct-based bone tissue engineering.

    Science.gov (United States)

    Cai, Lei; Wang, Qian; Gu, Congmin; Wu, Jingguo; Wang, Jian; Kang, Ning; Hu, Jiewei; Xie, Fang; Yan, Li; Liu, Xia; Cao, Yilin; Xiao, Ran

    2011-11-01

    Bone tissue engineering (BTE) has been demonstrated an effective approach to generate bone tissue and repair bone defect in ectopic and orthotopic sites. The strategy of using a prevascularized tissue-engineered bone grafts (TEBG) fabricated ectopically to repair bone defects, which is called live bone graft surgery, has not been reported. And the quantitative advantages of vascularization and osteogenic environment in promoting engineered bone formation have not been defined yet. In the current study we generated a tissue engineered bone flap with a vascular pedicle of saphenous arteriovenous in which an organized vascular network was observed after 4 weeks implantation, and followed by a successful repaire of fibular defect in beagle dogs. Besides, after a 9 months long term observation of engineered bone formation in ectopic and orthotopic sites, four CHA (coral hydroxyapatite) scaffold groups were evaluated by CT (computed tomography) analysis. By the comparison of bone formation and scaffold degradation between different groups, the influences of vascularization and micro-environment on tissue engineered bone were quantitatively analyzed. The results showed that in the first 3 months vascularization improved engineered bone formation by 2 times of non-vascular group and bone defect micro-environment improved it by 3 times of ectopic group, and the CHA-scaffold degradation was accelerated as well. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Healthy Nordic diet downregulates the expression of genes involved in inflammation in subcutaneous adipose tissue in individuals with features of the metabolic syndrome

    DEFF Research Database (Denmark)

    Kolehmainen, Marjukka; Ulven, Stine M; Paananen, Jussi

    2015-01-01

    BACKGROUND: Previously, a healthy Nordic diet (ND) has been shown to have beneficial health effects close to those of Mediterranean diets. OBJECTIVE: The objective was to explore whether the ND has an impact on gene expression in abdominal subcutaneous adipose tissue (SAT) and whether changes...... in gene expression are associated with clinical and biochemical effects. DESIGN: Obese adults with features of the metabolic syndrome underwent an 18- to 24-wk randomized intervention study comparing the ND with the control diet (CD) (the SYSDIET study, carried out within Nordic Centre of Excellence...... sites for the nuclear transcription factor κB. CONCLUSION: A healthy Nordic diet reduces inflammatory gene expression in SAT compared with a control diet independently of body weight change in individuals with features of the metabolic syndrome. The study was registered at clinicaltrials.gov as NCT...

  6. A comparison between 133Xenon washout technique and Laser Doppler flowmetry in the measurement of local vasoconstrictor effects on the microcirculation in subcutaneous tissue and skin

    DEFF Research Database (Denmark)

    Kastrup, J; Bülow, J; Lassen, N A

    1987-01-01

    Changes in skin blood flow measured by Laser Doppler flowmetry and changes in subcutaneous blood flow measured by 133Xenon washout technique were compared during activation of the local sympathetic mediated veno-arteriolar vasoconstrictor reflex by lowering the area of investigation below heart...... forearm, and on the calf with preserved sympathetic nerve supply. The Laser Doppler method registered a 23% reduction in skin blood flow during lowering of the extremities independently of the sympathetic nerve supply to the skin. The 133Xenon method recorded a 44% decrease in blood flow in innervated...... level. The measurements were performed in tissue with and without sympathetic innervation. In five subjects, who all had been cervically sympathectomized for manual hyperhidrosis, the Laser Doppler and 133Xenon blood flow measurements were performed simultaneously on the sympathetically denervated...

  7. Outcomes of Soft Tissue Reconstruction for Traumatic Lower Extremity Fractures with Compromised Vascularity.

    Science.gov (United States)

    Badash, Ido; Burtt, Karen E; Leland, Hyuma A; Gould, Daniel J; Rounds, Alexis D; Azadgoli, Beina; Patel, Ketan M; Carey, Joseph N

    2017-10-01

    Traumatic lower extremity fractures with compromised arterial flow are limb-threatening injuries. A retrospective review of 158 lower extremities with traumatic fractures, including 26 extremities with arterial injuries, was performed to determine the effects of vascular compromise on flap survival, successful limb salvage and complication rates. Patients with arterial injuries had a larger average flap surface area (255.1 vs 144.6 cm2, P = 0.02) and a greater number of operations (4.7 vs 3.8, P = 0.01) than patients without vascular compromise. Patients presenting with vascular injury were also more likely to require fasciotomy [odds ratio (OR): 6.5, confidence interval (CI): 2.3-18.2] and to have a nerve deficit (OR: 16.6, CI: 3.9-70.0), fracture of the distal third of the leg (OR: 2.9, CI: 1.15-7.1) and intracranial hemorrhage (OR: 3.84, CI: 1.1-12.9). After soft tissue reconstruction, patients with arterial injuries had a higher rate of amputation (OR: 8.5, CI: 1.3-53.6) and flap failure requiring a return to the operating room (OR: 4.5, CI: 1.5-13.2). Arterial injury did not correlate with infection or overall complication rate. In conclusion, arterial injuries resulted in significant complications for patients with lower extremity fractures requiring flap coverage, although limb salvage was still effective in most cases.

  8. Tissue-Engineered Vascular Graft of Small Diameter Based on Electrospun Polylactide Microfibers

    Directory of Open Access Journals (Sweden)

    P. V. Popryadukhin

    2017-01-01

    Full Text Available Tubular vascular grafts 1.1 mm in diameter based on poly(L-lactide microfibers were obtained by electrospinning. X-ray diffraction and scanning electron microscopy data demonstrated that the samples treated at T=70°C for 1 h in the fixed state on a cylindrical mandrel possessed dense fibrous structure; their degree of crystallinity was approximately 44%. Strength and deformation stability of these samples were higher than those of the native blood vessels; thus, it was possible to use them in tissue engineering as bioresorbable vascular grafts. The experiments on including implantation into rat abdominal aorta demonstrated that the obtained vascular grafts did not cause pathological reactions in the rats; in four weeks, inner side of the grafts became completely covered with endothelial cells, and fibroblasts grew throughout the wall. After exposure for 12 weeks, resorption of PLLA fibers started, and this process was completed in 64 weeks. Resorbed synthetic fibers were replaced by collagen and fibroblasts. At that time, the blood vessel was formed; its neointima and neoadventitia were close to those of the native vessel in structure and composition.

  9. Metabolomics and transcriptomics identify pathway differences between visceral and subcutaneous adipose tissue in colorectal cancer patients: the ColoCare study.

    Science.gov (United States)

    Liesenfeld, David B; Grapov, Dmitry; Fahrmann, Johannes F; Salou, Mariam; Scherer, Dominique; Toth, Reka; Habermann, Nina; Böhm, Jürgen; Schrotz-King, Petra; Gigic, Biljana; Schneider, Martin; Ulrich, Alexis; Herpel, Esther; Schirmacher, Peter; Fiehn, Oliver; Lampe, Johanna W; Ulrich, Cornelia M

    2015-08-01

    Metabolic and transcriptomic differences between visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) compartments, particularly in the context of obesity, may play a role in colorectal carcinogenesis. We investigated the differential functions of their metabolic compositions. Biochemical differences between adipose tissues (VAT compared with SAT) in patients with colorectal carcinoma (CRC) were investigated by using mass spectrometry metabolomics and gene expression profiling. Metabolite compositions were compared between VAT, SAT, and serum metabolites. The relation between patients' tumor stage and metabolic profiles was assessed. Presurgery blood and paired VAT and SAT samples during tumor surgery were obtained from 59 CRC patients (tumor stages I-IV) of the ColoCare cohort. Gas chromatography time-of-flight mass spectrometry and liquid chromatography quadrupole time-of-flight mass spectrometry were used to measure 1065 metabolites in adipose tissue (333 identified compounds) and 1810 metabolites in serum (467 identified compounds). Adipose tissue gene expression was measured by using Illumina's HumanHT-12 Expression BeadChips. Compared with SAT, VAT displayed elevated markers of inflammatory lipid metabolism, free arachidonic acid, phospholipases (PLA2G10), and prostaglandin synthesis-related enzymes (PTGD/PTGS2S). Plasmalogen concentrations were lower in VAT than in SAT, which was supported by lower gene expression of FAR1, the rate-limiting enzyme for ether-lipid synthesis in VAT. Serum sphingomyelin concentrations were inversely correlated (P = 0.0001) with SAT adipose triglycerides. Logistic regression identified lipids in patients' adipose tissues, which were associated with CRC tumor stage. As one of the first studies, we comprehensively assessed differences in metabolic, lipidomic, and transcriptomic profiles between paired human VAT and SAT and their association with CRC tumor stage. We identified markers of inflammation in VAT, which

  10. Microbeam Radiation-Induced Tissue Damage Depends on the Stage of Vascular Maturation

    International Nuclear Information System (INIS)

    Sabatasso, Sara; Laissue, Jean Albert; Hlushchuk, Ruslan; Graber, Werner; Bravin, Alberto; Braeuer-Krisch, Elke; Corde, Stephanie; Blattmann, Hans; Gruber, Guenther; Djonov, Valentin

    2011-01-01

    Purpose: To explore the effects of microbeam radiation (MR) on vascular biology, we used the chick chorioallantoic membrane (CAM) model of an almost pure vascular system with immature vessels (lacking periendothelial coverage) at Day 8 and mature vessels (with coverage) at Day 12 of development. Methods and Materials: CAMs were irradiated with microplanar beams (width, ∼25 μm; interbeam spacing, ∼200 μm) at entrance doses of 200 or 300 Gy and, for comparison, with a broad beam (seamless radiation [SLR]), with entrance doses of 5 to 40 Gy. Results: In vivo monitoring of Day-8 CAM vasculature 6 h after 200 Gy MR revealed a near total destruction of the immature capillary plexus. Conversely, 200 Gy MR barely affected Day-12 CAM mature microvasculature. Morphological evaluation of Day-12 CAMs after the dose was increased to 300 Gy revealed opened interendothelial junctions, which could explain the transient mesenchymal edema immediately after irradiation. Electron micrographs revealed cytoplasmic vacuolization of endothelial cells in the beam path, with disrupted luminal surfaces; often the lumen was engorged with erythrocytes and leukocytes. After 30 min, the capillary plexus adopted a striated metronomic pattern, with alternating destroyed and intact zones, corresponding to the beam and the interbeam paths within the array. SLR at a dose of 10 Gy caused growth retardation, resulting in a remarkable reduction in the vascular endpoint density 24 h postirradiation. A dose of 40 Gy damaged the entire CAM vasculature. Conclusions: The effects of MR are mediated by capillary damage, with tissue injury caused by insufficient blood supply. Vascular toxicity and physiological effects of MR depend on the stage of capillary maturation and appear in the first 15 to 60 min after irradiation. Conversely, the effects of SLR, due to the arrest of cell proliferation, persist for a longer time.

  11. Donor-recipient human leukocyte antigen matching practices in vascularized composite tissue allotransplantation: a survey of major transplantation centers.

    Science.gov (United States)

    Ashvetiya, Tamara; Mundinger, Gerhard S; Kukuruga, Debra; Bojovic, Branko; Christy, Michael R; Dorafshar, Amir H; Rodriguez, Eduardo D

    2014-07-01

    Vascularized composite tissue allotransplant recipients are often highly sensitized to human leukocyte antigens because of multiple prior blood transfusions and other reconstructive operations. The use of peripheral blood obtained from dead donors for crossmatching may be insufficient because of life support measures taken for the donor before donation. No study has been published investigating human leukocyte antigen matching practices in this field. A survey addressing human leukocyte antigen crossmatching methods was generated and sent to 22 vascularized composite tissue allotransplantation centers with active protocols worldwide. Results were compiled by center and compared using two-tailed t tests. Twenty of 22 centers (91 percent) responded to the survey. Peripheral blood was the most commonly reported donor sample for vascularized composite tissue allotransplant crossmatching [78 percent of centers (n=14)], with only 22 percent (n=4) using lymph nodes. However, 56 percent of the 18 centers (n=10) that had performed vascularized composite tissue allotransplantation reported that they harvested lymph nodes for crossmatching. Of responding individuals, 62.5 percent (10 of 16 individuals) felt that lymph nodes were the best donor sample for crossmatching. A slight majority of vascularized composite tissue allotransplant centers that have performed clinical transplants have used lymph nodes for human leukocyte antigen matching, and centers appear to be divided on the utility of lymph node harvest. The use of lymph nodes may offer a number of potential benefits. This study highlights the need for institutional review board-approved crossmatching protocols specific to vascularized composite tissue allotransplantation, and the need for global databases for sharing of vascularized composite tissue allotransplantation experiences.

  12. Possible role of mechanical force in regulating regeneration of the vascularized fat flap inside a tissue engineering chamber.

    Science.gov (United States)

    Ye, Yuan; Yuan, Yi; Lu, Feng; Gao, Jianhua

    2015-12-01

    In plastic and reconstructive surgery, adipose tissue is widely used as effective filler for tissue defects. Strategies for treating soft tissue deficiency, which include free adipose tissue grafts, use of hyaluronic acid, collagen injections, and implantation of synthetic materials, have several clinical limitations. With the aim of overcoming these limitations, researchers have recently utilized tissue engineering chambers to produce large volumes of engineered vascularized fat tissue. However, the process of growing fat tissue in a chamber is still relatively limited, and can result in unpredictable or dissatisfactory final tissue volumes. Therefore, detailed understanding of the process is both necessary and urgent. Many studies have shown that mechanical force can change the function of cells via mechanotransduction. Here, we hypothesized that, besides the inflammatory response, one of the key factors to control the regeneration of vascularized fat flap inside a tissue engineering chamber might be the balance of mechanical forces. To test our hypothesis, we intend to change the balance of forces by means of measures in order to make the equilibrium point in favor of the direction of regeneration. If those measures proved to be feasible, they could be applied in clinical practice to engineer vascularized adipose tissue of predictable size and shape, which would in turn help in the advancement of tissue engineering. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Higher Ratio of Abdominal Subcutaneous to Visceral Adipose Tissue Related with Preservation of Islet β-Cell Function in Healthy Individuals

    Directory of Open Access Journals (Sweden)

    Juan Liu

    2017-01-01

    Full Text Available Objective. To investigate the relationship between abdominal adipose tissue distribution, β-cell function, and insulin sensitivity (IS in a Chinese population. Methods. One hundred and eighty-eight healthy subjects (healthy group, 239 with normal glucose, and 1~4 abnormal metabolic traits (metabolic dysfunction group, MD group and 125 with hyperglycemia (hyperglycemia group were studied. HOMA-IR, HOMA-B, Matsuda index, early- (I0–30/G0–30 and late-phase (I30–120/G30–120 insulin responses and the corresponding disposition indexes (DI were calculated. The area of abdominal subcutaneous adipose tissue (ASAT and visceral adipose tissue (VAT was measured and the ratio of ASAT to VAT (SVR was calculated. Results. SVR was correlated positively with Matsuda index in healthy, MD, and hyperglycemia groups, and inversely with HOMA-IR. SVR positively related with both early- and late-phase DI in the healthy group only. In the healthy group, the hyperbolas of I0–30/G0–30 and I30–120/G30–120 versus Matsuda index in the highest quarter of SVR were significantly right shifted compared to those in the lowest (both P<0.05. Conclusions. In healthy adults, higher SVR was a protective factor for β-cell function and IS, while in those with glucometabolic abnormality, higher SVR contributed to a relative better IS, indicating SVR is possible to be an early predicator of type 2 diabetes development.

  14. Mathematical Modeling of Uniaxial Mechanical Properties of Collagen Gel Scaffolds for Vascular Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Ramiro M. Irastorza

    2015-01-01

    Full Text Available Small diameter tissue-engineered arteries improve their mechanical and functional properties when they are mechanically stimulated. Applying a suitable stress and/or strain with or without a cycle to the scaffolds and cells during the culturing process resides in our ability to generate a suitable mechanical model. Collagen gel is one of the most used scaffolds in vascular tissue engineering, mainly because it is the principal constituent of the extracellular matrix for vascular cells in human. The mechanical modeling of such a material is not a trivial task, mainly for its viscoelastic nature. Computational and experimental methods for developing a suitable model for collagen gels are of primary importance for the field. In this research, we focused on mechanical properties of collagen gels under unconfined compression. First, mechanical viscoelastic models are discussed and framed in the control system theory. Second, models are fitted using system identification. Several models are evaluated and two nonlinear models are proposed: Mooney-Rivlin inspired and Hammerstein models. The results suggest that Mooney-Rivlin and Hammerstein models succeed in describing the mechanical behavior of collagen gels for cyclic tests on scaffolds (with best fitting parameters 58.3% and 75.8%, resp.. When Akaike criterion is used, the best is the Mooney-Rivlin inspired model.

  15. Mathematical modeling of uniaxial mechanical properties of collagen gel scaffolds for vascular tissue engineering.

    Science.gov (United States)

    Irastorza, Ramiro M; Drouin, Bernard; Blangino, Eugenia; Mantovani, Diego

    2015-01-01

    Small diameter tissue-engineered arteries improve their mechanical and functional properties when they are mechanically stimulated. Applying a suitable stress and/or strain with or without a cycle to the scaffolds and cells during the culturing process resides in our ability to generate a suitable mechanical model. Collagen gel is one of the most used scaffolds in vascular tissue engineering, mainly because it is the principal constituent of the extracellular matrix for vascular cells in human. The mechanical modeling of such a material is not a trivial task, mainly for its viscoelastic nature. Computational and experimental methods for developing a suitable model for collagen gels are of primary importance for the field. In this research, we focused on mechanical properties of collagen gels under unconfined compression. First, mechanical viscoelastic models are discussed and framed in the control system theory. Second, models are fitted using system identification. Several models are evaluated and two nonlinear models are proposed: Mooney-Rivlin inspired and Hammerstein models. The results suggest that Mooney-Rivlin and Hammerstein models succeed in describing the mechanical behavior of collagen gels for cyclic tests on scaffolds (with best fitting parameters 58.3% and 75.8%, resp.). When Akaike criterion is used, the best is the Mooney-Rivlin inspired model.

  16. A Method for Combined Retinal Vascular and Tissue Oxygen Tension Imaging.

    Science.gov (United States)

    Felder, Anthony E; Wanek, Justin; Tan, Michael R; Blair, Norman P; Shahidi, Mahnaz

    2017-09-06

    The retina requires adequate oxygenation to maintain cellular metabolism and visual function. Inner retinal oxygen metabolism is directly related to retinal vascular oxygen tension (PO 2 ) and inner retinal oxygen extraction fraction (OEF), whereas outer retinal oxygen consumption (QO 2 ) relies on oxygen availability by the choroid and is contingent upon retinal tissue oxygen tension (tPO 2 ) gradients across the retinal depth. Thus far, these oxygenation and metabolic parameters have been measured independently by different techniques in separate animals, precluding a comprehensive and correlative assessment of retinal oxygenation and metabolism dynamics. The purpose of the current study is to report an innovative optical system for dual oxyphor phosphorescence lifetime imaging to near-simultaneously measure retinal vascular PO 2 and tPO 2 in rats. The use of a new oxyphor with different spectral characteristics allowed differentiation of phosphorescence signals from the retinal vasculature and tissue. Concurrent measurements of retinal arterial and venous PO 2 , tPO 2 through the retinal depth, inner retinal OEF, and outer retinal QO 2 were demonstrated, permitting a correlative assessment of retinal oxygenation and metabolism. Future application of this method can be used to investigate the relations among retinal oxygen content, extraction and metabolism under pathologic conditions and thus advance knowledge of retinal hypoxia pathophysiology.

  17. Subcutaneous rather than visceral adipose tissue is associated with adiponectin levels and insulin resistance in young men

    DEFF Research Database (Denmark)

    Frederiksen, L; Nielsen, T L; Wraae, K

    2009-01-01

    INTRODUCTION: Studies on the association between adiponectin, body composition, and insulin resistance (IR) have been conflicting. AIM: Our aim was to evaluate the impact of body composition on adiponectin and IR determined by homeostasis model assessment (HOMA) in a population-based study......, and IR was determined using HOMA. Central fat mass (CFM) and lower extremity fat mass (LEFM) was measured by dual-energy x-ray absorptiometry, and visceral adipose tissue (VAT), sc adipose tissue (SAT), and thigh fat area (TFA) were assessed by magnetic resonance imaging. RESULTS: Using multiple linear...... regression analysis, adiponectin correlated negatively with CFM (r = -0.27; P HOMA-IR (dependent variable...

  18. Insulin signaling, inflammation, and lipolysis in subcutaneous adipose tissue of transition dairy cows either overfed energy during the prepartum period or fed a controlled-energy diet.

    Science.gov (United States)

    Mann, S; Nydam, D V; Abuelo, A; Leal Yepes, F A; Overton, T R; Wakshlag, J J

    2016-08-01

    Adipose tissue mobilization is a hallmark of the transition period in dairy cows. Cows overfed energy during the dry period have higher concentrations of nonesterified fatty acids (NEFA) and β-hydroxybutyrate (BHB) compared with cows fed a controlled-energy diet prepartum. The reason for an increase in blood NEFA concentrations at the level of adipose tissue in cows overfed energy has not been fully elucidated. One hypothesis is that cows with high BHB concentrations suffer from adipose tissue-specific insulin resistance, leading to higher rates of adipose tissue mobilization in the postpartum period. To test this hypothesis, subcutaneous adipose tissue biopsies of cows overfed energy in excess of predicted requirements by 50% in the dry period, and that had high concentrations of blood BHB postpartum (group H; n=12), were used. Findings were compared with results of biopsies from cows fed a controlled-energy diet and with low BHB concentrations postpartum (group C; n=12) to create the biggest contrast in BHB concentrations. Subcutaneous adipose tissue biopsies were obtained before and 60 min after an intravenous glucose challenge (0.25 g/kg of glucose) at 28 and 10 d before expected calving as well as on d 4 and 21 postpartum. Phosphorylation of protein kinase B, extracellular signal-regulated kinase, and hormone-sensitive lipase was determined before and after glucose infusion by Western blot. Western blot was also used to assess the baseline protein abundance of peroxisome proliferator-activated receptor gamma and insulin receptor β-subunit. In addition, gene expression of fatty acid synthase, adiponectin, monocyte chemoattractant protein 1, and tumor necrosis factor α was determined by real-time quantitative reverse-transcription PCR. Backfat thickness was determined in the thurl area by ultrasonography. Cows in group H showed a greater degree of lipogenesis prepartum, but no differences were found in lipolytic enzyme activity postpartum compared with cows

  19. Diet-induced changes in subcutaneous adipose tissue blood flow in man: effect of beta-adrenoceptor inhibition

    DEFF Research Database (Denmark)

    Simonsen, L; Bülow, J; Astrup, A

    1990-01-01

    : the forearm, the thigh and the abdomen. The subjects were given a meal consisting of white bread, jam, honey and apple juice (about 2300 kJ). The meal induced a twofold increase in blood flow in the examined tissues. Propranolol abolished the flow increase in the thigh and the abdomen and reduced...

  20. Glucose-dependent insulinotropic polypeptide may enhance fatty acid re-esterification in subcutaneous abdominal adipose tissue in lean humans

    DEFF Research Database (Denmark)

    Asmar, Meena; Simonsen, Lene; Madsbad, Sten

    2010-01-01

    Glucose-dependent insulinotropic polypeptide (GIP) has been implicated in lipid metabolism in animals. In humans, however, there is no clear evidence of GIP effecting lipid metabolism. The present experiments were performed in order to elucidate the effects of GIP on regional adipose tissue metab...

  1. FDG uptake in the fatty tissues of supraclavicular and the vascular structure of the lung hilum

    International Nuclear Information System (INIS)

    Dang Yaping; Liu Gang; Li Miao

    2004-01-01

    Full text: Supraclavicular region (SR) and lung hilum (LH) are common sites for lymph node metastases. A commonly reported site of non-malignant FDG uptake on PET imaging in the SR is muscular uptake. PET/CT offers a unique technique to correlate PET findings with CT anatomy in the SR and LH. We carried out this study to investigate FDG uptake in SR and LH to find out the exact tissues of FDG uptake. From September 2002 to March 2003, 147 consecutive patients imaged by FDG PET/CT whole-body scan (GE Discovery LS, CT attenuation correction, OSEM reconstruction) were retrospectively reviewed. The presence of abnormal FDG uptake on PET images in SR and LH regions was evaluated and the corresponding CT findings on the same regions were also assessed. Of the 147 patients, 8 cases (2M, 6F and mean age 44 years) were found with increased symmetrical FDG uptake in the regions of the lower neck and shoulder as well as costo-vertebral articulations. The positive rates were 2.1% and 11.3% for men and women respectively, and the average rate was 5.4%. However, no FDG uptake was seen in the greater muscular structures of the cervical or thoracic spine. FDG uptake was seen in the fatty tissue between the shoulder muscle and the dorsal thoracic wall, but not within the muscles itself. Five patients (3M, 2F, age 56-74 years, 3.4%) showed abnormal FDG uptake in LH, which were definitely localized in the vascular structure of the lung hilum by CT. Co-registered PET/CT imaging shows that the FDG uptake, though well known in the SR and LH regions, is not fully located in greater muscular structures and lymph nodes, but in the costo-vertebral articulation complex of the thoracic spine and fatty tissue of the shoulders as well as in the vascular structure of both lung hilum. The FDG uptake in the fatty tissue of the shoulders was mostly seen in women, while the uptake in vascular structure of the lung hilum were found in aged people. (author)

  2. FDG uptake in the fatty tissues of supraclavicular and the vascular structure of the lung hilum

    International Nuclear Information System (INIS)

    Dang Yaping; Liu Gang; Li Miao

    2004-01-01

    Objectives: To investigate FDG uptake on the sites of supraclavicular region (SR) and the lung hilum (LH) and find out the exact tissues of the uptake. Methods: Supraclavicular region (SR) and lung hilum (LH) are common sites for lymph node metastases. A commonly reported site of non-malignant FDG uptake on PET imaging in the SR is muscular uptake. PET/CT offers a unique technique to correlate PET findings with CT anatomy in the SR and EH. From September 2002 to March 2003, 147 consecutive clinical patients imaged by FDG PET/CT whole-body scan (GE Discovery LS, CT attenuation correction, OSEM reconstruction) were retrospectively reviewed. The presence of abnormal FDG uptake on PET images in the sites of SR and LH regions was evaluated and the corresponding CT findings on the same regions were also assessed. Results: Of 147 patients, 8 cases (2M, 6F and mean age 44 years) were found with increased symmetrical FDG uptake in the regions of the lower neck and shoulder as well as costo-vertebral articulations, the positive rates were 2.1% and 11.3 % for men and women respectively, and the average rate was 5.4%. However, no FDG uptake was seen in the greater muscular structures of the cervical or thoracic spine. FDG uptake was seen in the fatty tissue between the shoulder muscle and the dorsal thoracic wall, but not within the muscles itself. Five patients (3M, 2F, age 56-74 years,3.4%) showed abnormal LH FDG uptake, which were definitely localized in the vascular structure of the lung hilum by CT Conclusion: Co-registered PET/CT imaging shows that the FDG uptake been well known in the SR and LH regions are not fully located in greater muscular structures and lymph nodes, but in the costo-vertebral articulation complex of the thoracic spine and fatty tissue of the shoulders as well as in the vascular structure of both lung hilum. The FDG uptake in the fatty tissue of the shoulders was mostly seen in women, while the uptake in vascular structure of the lung hilum were

  3. Structure and vascular tissue expression of duplicated TERMINAL EAR1-like paralogues in poplar.

    Science.gov (United States)

    Charon, Céline; Vivancos, Julien; Mazubert, Christelle; Paquet, Nicolas; Pilate, Gilles; Dron, Michel

    2010-02-01

    TERMINAL EAR1-like (TEL) genes encode putative RNA-binding proteins only found in land plants. Previous studies suggested that they may regulate tissue and organ initiation in Poaceae. Two TEL genes were identified in both Populus trichocarpa and the hybrid aspen Populus tremula x P. alba, named, respectively, PoptrTEL1-2 and PtaTEL1-2. The analysis of the organisation around the PoptrTEL genes in the P. trichocarpa genome and the estimation of the synonymous substitution rate for PtaTEL1-2 genes indicate that the paralogous link between these two Populus TEL genes probably results from the Salicoid large-scale gene-duplication event. Phylogenetic analyses confirmed their orthology link with the other TEL genes. The expression pattern of both PtaTEL genes appeared to be restricted to the mother cells of the plant body: leaf founder cells, leaf primordia, axillary buds and root differentiating tissues, as well as to mother cells of vascular tissues. Most interestingly, PtaTEL1-2 transcripts were found in differentiating cells of secondary xylem and phloem, but probably not in the cambium itself. Taken together, these results indicate specific expression of the TEL genes in differentiating cells controlling tissue and organ development in Populus (and other Angiosperm species).

  4. Adiposity, lipogenesis, and fatty acid composition of subcutaneous and intramuscular adipose tissues of Brahman and Angus crossbred cattle.

    Science.gov (United States)

    Campbell, E M G; Sanders, J O; Lunt, D K; Gill, C A; Taylor, J F; Davis, S K; Riley, D G; Smith, S B

    2016-04-01

    The objective of this study was to demonstrate differences in aspects of adipose tissue cellularity, lipid metabolism, and fatty and cholesterol composition in Angus and Brahman crossbred cattle. We hypothesized that in vitro measures of lipogenesis would be greater in three-fourths Angus progeny than in three-fourths Brahman progeny, especially in intramuscular (i.m.) adipose tissue. Progeny ( = 227) were fed a standard, corn-based diet for approximately 150 d before slaughter. Breed was considered to be the effect of interest and was forced into the model. There were 9 breed groups including all 4 kinds of three-fourths Angus calves: Angus bulls Angus-sired F cows ( = 32), Angus bulls Brahman-sired F cows ( = 20), Brahman-sired F bulls Angus cows ( = 24), and Angus-sired F bulls Angus cows ( = 20). There were all 4 kinds of three-fourths Brahman calves: Brahman bulls Brahman-sired F cows ( = 21), Brahman bulls Angus-sired F cows ( = 43), Brahman-sired F bulls Brahman cows ( = 26), and Angus-sired F bulls Brahman cows ( = 13). Additionally, F calves (one-half Brahman and one-half Angus) were produced only from Brahman-sired F bulls Angus-sired F cows ( = 28). Contrasts were calculated when breed was an important fixed effect, using the random effect family(breed) as the error term. Most contrasts were nonsignificant ( > 0.10). Those that were significant ( Angus > F, three-fourths Brahman > F, and three-fourths crossbred progeny combined > F), s.c. adipocyte volume (three-fourths Angus > F and three-fourths bloods combined > F), lipogenesis from acetate in s.c. adipose tissue (three-fourths Brahman calves from Brahman dams > three-fourths Brahman calves from F dams), and percentage 18:3-3 in s.c. adipose tissue (three-fourths Brahman calves from Brahman-sired F dams Angus-sired F dams). Intramuscular adipocyte volume ( Angus cattle. Additionally, several differences were observed in i.m. adipose tissue that were consistent with this being a less-developed adipose

  5. The effect of high-intensity training on mitochondrial fat oxidation in skeletal muscle and subcutaneous adipose tissue

    DEFF Research Database (Denmark)

    Larsen, Steen; Danielsen, J H; Søndergård, Stine Dam

    2015-01-01

    High-intensity interval training (HIT) is known to increase mitochondrial content in a similar way as endurance training [60-90% of maximal oxygen uptake (VO2peak )]. Whether HIT increases the mitochondria's ability to oxidize lipids is currently debated. We investigated the effect of HIT...... of HIT (three times per week at 298 ± 21 W). HIT significantly increased VO2peak from 2.9 ± 0.2 to 3.1 ± 0.2 L/min. No differences were seen in maximal fat oxidation in either skeletal muscle or adipose tissue. Km (app) for octanoyl carnitine or palmitoyl carnitine were similar after training in skeletal...... muscle and adipose tissue. Maximal OXPHOS capacity with complex I- and II-linked substrates was increased after training in skeletal muscle but not in adipose tissue. In conclusion, 6 weeks of HIT increased VO2peak . Mitochondrial content and mitochondrial OXPHOS capacity were increased in skeletal...

  6. Mechanisms of Vascular Damage by Hemorrhagic Snake Venom Metalloproteinases: Tissue Distribution and In Situ Hydrolysis

    Science.gov (United States)

    Baldo, Cristiani; Jamora, Colin; Yamanouye, Norma; Zorn, Telma M.; Moura-da-Silva, Ana M.

    2010-01-01

    Background Envenoming by viper snakes constitutes an important public health problem in Brazil and other developing countries. Local hemorrhage is an important symptom of these accidents and is correlated with the action of snake venom metalloproteinases (SVMPs). The degradation of vascular basement membrane has been proposed as a key event for the capillary vessel disruption. However, SVMPs that present similar catalytic activity towards extracellular matrix proteins differ in their hemorrhagic activity, suggesting that other mechanisms might be contributing to the accumulation of SVMPs at the snakebite area allowing capillary disruption. Methodology/Principal Findings In this work, we compared the tissue distribution and degradation of extracellular matrix proteins induced by jararhagin (highly hemorrhagic SVMP) and BnP1 (weakly hemorrhagic SVMP) using the mouse skin as experimental model. Jararhagin induced strong hemorrhage accompanied by hydrolysis of collagen fibers in the hypodermis and a marked degradation of type IV collagen at the vascular basement membrane. In contrast, BnP1 induced only a mild hemorrhage and did not disrupt collagen fibers or type IV collagen. Injection of Alexa488-labeled jararhagin revealed fluorescent staining around capillary vessels and co-localization with basement membrane type IV collagen. The same distribution pattern was detected with jararhagin-C (disintegrin-like/cysteine-rich domains of jararhagin). In opposition, BnP1 did not accumulate in the tissues. Conclusions/Significance These results show a particular tissue distribution of hemorrhagic toxins accumulating at the basement membrane. This probably occurs through binding to collagens, which are drastically hydrolyzed at the sites of hemorrhagic lesions. Toxin accumulation near blood vessels explains enhanced catalysis of basement membrane components, resulting in the strong hemorrhagic activity of SVMPs. This is a novel mechanism that underlies the difference between

  7. Effect of increasing body condition on key regulators of fat metabolism in subcutaneous adipose tissue depot and circulation of nonlactating dairy cows.

    Science.gov (United States)

    Locher, L; Häussler, S; Laubenthal, L; Singh, S P; Winkler, J; Kinoshita, A; Kenéz, Á; Rehage, J; Huber, K; Sauerwein, H; Dänicke, S

    2015-02-01

    In response to negative energy balance, overconditioned cows mobilize more body fat than thin cows and subsequently are prone to develop metabolic disorders. Changes in adipose tissue (AT) metabolism are barely investigated in overconditioned cows. Therefore, the objective was to investigate the effect of increasing body condition on key regulator proteins of fat metabolism in subcutaneous AT and circulation of dairy cows. Nonlactating, nonpregnant dairy cows (n=8) investigated in the current study served as a model to elucidate the changes in the course of overcondition independent from physiological changes related to gestation, parturition, and lactation. Cows were fed diets with increasing portions of concentrate during the first 6wk of the experiment until 60% were reached, which was maintained for 9wk. Biopsy samples from AT of the subcutaneous tailhead region were collected every 8wk, whereas blood was sampled monthly. Within the experimental period cows had an average BW gain of 243±33.3 kg. Leptin and insulin concentrations were increased until wk 12. Based on serum concentrations of glucose, insulin, and nonesterified fatty acids, the surrogate indices for insulin sensitivity were calculated. High-concentrate feeding led to decreased quantitative insulin sensitivity check index and homeostasis model assessment due to high insulin and glucose concentrations indicating decreased insulin sensitivity. Adiponectin, an adipokine-promoting insulin sensitivity, decreased in subcutaneous AT, but remained unchanged in the circulation. The high-concentrate diet affected key enzymes reflecting AT metabolism such as AMP-activated protein kinase and hormone-sensitive lipase, both represented as the proportion of the phosphorylated protein to total protein, as well as fatty acid synthase. The extent of phosphorylation of AMP-activated protein kinase and the protein expression of fatty acid synthase were inversely regulated throughout the experimental period, whereas

  8. Adult Tissue-Derived Stem Cells and Tolerance Induction in Nonhuman Primates for Vascularized Composite Allograft Transplantation

    Science.gov (United States)

    2017-10-01

    AWARD NUMBER: W81XWH-16-2-0042 TITLE: Adult Tissue-Derived Stem Cells and Tolerance Induction in Nonhuman Primates for Vascularized Composite...2017 2. REPORT TYPE Annual 3. DATES COVERED 30 Sep 2016 - 29 Sep 2017 4. TITLE AND SUBTITLE Adult Tissue-Derived Stem Cells and Tolerance Induction...Distribution Unlimited 13. SUPPLEMENTARY NOTES The utilization of adult derived adipose stem cells administration in composite tissue transplantation

  9. Effect of sodium nitroprusside-induced hypotension on the blood flow in subcutaneous and intramuscular BT4An tumors and normal tissues in rats

    International Nuclear Information System (INIS)

    Krossnes, Baard Kronen; Mella, Olav; Tyssebotn, Ingvald

    1996-01-01

    Purpose: To examine the effect of infusion of the vasodilator sodium nitroprusside (SNP) on the blood flow in normal tissues and BT 4 An tumors growing subcutaneously or intramusculary in BD IX rats. Methods and Materials: Sodium nitroprusside was given as a continuous intravenous infusion to keep the mean arterial pressure stable at 60 mmHg. The cardiac output, organ blood flow, and perfusion of the BT 4 An tumors were measured by injection of radiolabelled microspheres at control conditions and after 20 min SNP infusion in each animal. Two series of experiments were performed with two anesthetics with different mechanisms of action, Inactin and the midazolam-fentanyl-fluanisone combination (MFF), to secure reliable conclusions. Results: Cardiac output, heart rate, and blood flow to the skeletal muscles, heart, and liver increased during SNP infusion in either anesthetic group. In the kidneys and particularly in the skin, decreased blood flow by SNP was observed. When located subcutaneously on the foot, the blood flow in the tumor fell to 23.4% and 21.4% of the control values in the MFF- and Inactin-anesthetized animals, respectively. This was accompanied by a similar fall in the blood flow in the foot (tumor bed) itself. In the intramuscular tumor the blood flow fell to 24.8% of the control value in the MFF group, whereas the corresponding figure was 36.2% in the Inactin group. In the surrounding muscle (tumor bed) the blood flow increased significantly, most pronounced in the MFF experiment, where it was tripled. Conclusion: The fall in the tumor perfusion by SNP may be exploited therapeutically to increase the tumor temperature during hyperthermia. Predominant heating of the tumor compared to the tumor bed can be expected if the tumor is growing in or near skeletal muscles

  10. Tamoxifen affects glucose and lipid metabolism parameters, causes browning of subcutaneous adipose tissue and transient body composition changes in C57BL/6NTac mice

    International Nuclear Information System (INIS)

    Hesselbarth, Nico; Pettinelli, Chiara; Gericke, Martin; Berger, Claudia; Kunath, Anne; Stumvoll, Michael; Blüher, Matthias; Klöting, Nora

    2015-01-01

    Tamoxifen is a selective estrogen receptor (ER) modulator which is widely used to generate inducible conditional transgenic mouse models. Activation of ER signaling plays an important role in the regulation of adipose tissue (AT) metabolism. We therefore tested the hypothesis that tamoxifen administration causes changes in AT biology in vivo. 12 weeks old male C57BL/6NTac mice were treated with either tamoxifen (n = 18) or vehicle (n = 18) for 5 consecutive days. Tamoxifen treatment effects on body composition, energy homeostasis, parameters of AT biology, glucose and lipid metabolism were investigated up to an age of 18 weeks. We found that tamoxifen treatment causes: I) significantly increased HbA 1c , triglyceride and free fatty acid serum concentrations (p < 0.01), II) browning of subcutaneous AT and increased UCP-1 expression, III) increased AT proliferation marker Ki67 mRNA expression, IV) changes in adipocyte size distribution, and V) transient body composition changes. Tamoxifen may induce changes in body composition, whole body glucose and lipid metabolism and has significant effects on AT biology, which need to be considered when using Tamoxifen as a tool to induce conditional transgenic mouse models. Our data further suggest that tamoxifen-treated wildtype mice should be characterized in parallel to experimental transgenic models to control for tamoxifen administration effects. - Highlights: • Tamoxifen treatment causes significantly increased HbA 1c , triglyceride and free fatty acid serum concentrations. • Tamoxifen induces browning of subcutaneous AT and increased UCP-1 expression. • Tamoxifen changes adipocyte size distribution, and transient body composition

  11. Tamoxifen affects glucose and lipid metabolism parameters, causes browning of subcutaneous adipose tissue and transient body composition changes in C57BL/6NTac mice

    Energy Technology Data Exchange (ETDEWEB)

    Hesselbarth, Nico; Pettinelli, Chiara [Department of Medicine, University of Leipzig, D-04103 Leipzig (Germany); Gericke, Martin [Institute of Anatomy, University of Leipzig, D-04103 Leipzig (Germany); Berger, Claudia [IFB Adiposity Disease, Core Unit Animal Models, University of Leipzig, D-04103 Leipzig (Germany); Kunath, Anne [German Center for Diabetes Research (DZD), Leipzig (Germany); Stumvoll, Michael; Blüher, Matthias [Department of Medicine, University of Leipzig, D-04103 Leipzig (Germany); Klöting, Nora, E-mail: nora.kloeting@medizin.uni-leipzig.de [IFB Adiposity Disease, Core Unit Animal Models, University of Leipzig, D-04103 Leipzig (Germany)

    2015-08-28

    Tamoxifen is a selective estrogen receptor (ER) modulator which is widely used to generate inducible conditional transgenic mouse models. Activation of ER signaling plays an important role in the regulation of adipose tissue (AT) metabolism. We therefore tested the hypothesis that tamoxifen administration causes changes in AT biology in vivo. 12 weeks old male C57BL/6NTac mice were treated with either tamoxifen (n = 18) or vehicle (n = 18) for 5 consecutive days. Tamoxifen treatment effects on body composition, energy homeostasis, parameters of AT biology, glucose and lipid metabolism were investigated up to an age of 18 weeks. We found that tamoxifen treatment causes: I) significantly increased HbA{sub 1c}, triglyceride and free fatty acid serum concentrations (p < 0.01), II) browning of subcutaneous AT and increased UCP-1 expression, III) increased AT proliferation marker Ki67 mRNA expression, IV) changes in adipocyte size distribution, and V) transient body composition changes. Tamoxifen may induce changes in body composition, whole body glucose and lipid metabolism and has significant effects on AT biology, which need to be considered when using Tamoxifen as a tool to induce conditional transgenic mouse models. Our data further suggest that tamoxifen-treated wildtype mice should be characterized in parallel to experimental transgenic models to control for tamoxifen administration effects. - Highlights: • Tamoxifen treatment causes significantly increased HbA{sub 1c}, triglyceride and free fatty acid serum concentrations. • Tamoxifen induces browning of subcutaneous AT and increased UCP-1 expression. • Tamoxifen changes adipocyte size distribution, and transient body composition.

  12. Automatic quantitative micro-computed tomography evaluation of angiogenesis in an axially vascularized tissue-engineered bone construct.

    Science.gov (United States)

    Arkudas, Andreas; Beier, Justus Patrick; Pryymachuk, Galyna; Hoereth, Tobias; Bleiziffer, Oliver; Polykandriotis, Elias; Hess, Andreas; Gulle, Heinz; Horch, Raymund E; Kneser, Ulrich

    2010-12-01

    We invented an automatic observer-independent quantitative method to analyze vascularization using micro-computed tomography (CT) along with three-dimensional (3D) reconstruction in a tissue engineering model. An arteriovenous loop was created in the medial thigh of 30 rats and was placed in a particulated porous hydroxyapatite and beta-tricalcium phosphate matrix, filled with fibrin (10 mg/mL fibrinogen and 2 IU/mL thrombin) without (group A) or with (group B) application of fibrin-gel-immobilized angiogenetic growth factors vascular endothelial growth factor (VEGF¹⁶⁵) and basic fibroblast growth factor (bFGF). The explantation intervals were 2, 4, and 8 weeks. Specimens were investigated by means of micro-CT followed by an automatic 3D analysis, which was correlated to histomorphometrical findings. In both groups, the arteriovenous loop led to generation of dense vascularized connective tissue with differentiated and functional vessels inside the matrix. Quantitative analysis of vascularization using micro-CT showed to be superior to histological analysis. The micro-CT analysis also allows the assessment of different other, more complex vascularization parameters within 3D constructs, demonstrating an early improvement of vascularization by application of fibrin-gel-immobilized VEGF¹⁶⁵ and bFGF. In this study quantitative analysis of vascularization using micro-CT along with 3D reconstruction and automatic analysis exhibit to be a powerful method superior to histological evaluation of cross sections.

  13. Nanomaterial N-CP/DLPLG as potent1onal tissue graft in osteoreparation in combination with bone marrow cells on subcutaneous implantation model

    Directory of Open Access Journals (Sweden)

    Janićijević Jelena M.

    2008-01-01

    Full Text Available The need for bone graft materials in osteoreparation is tremendous. Many researches have shown that calcium-phosphate bioceramics have good biocompatibility and osteoconductivity. We used nanocomposite biomaterial calcium phosphate coated with poly (dl-lactide-co-glycolide or N-CP/DLPLG. The goal of this investigation was to examine weather N-CP/DLPLG has ability to sustain growth of bone marrow cells after subcutaneous implantation in Balb/c mice. For that purpose N-CP/DLPLG implants with and without bone marrow cells (control were made. Implants were extracted after eight days and eight weeks. In implants loaded with bone marrow cells after eight days and eight weeks we observed fields rich in cells, angiogenesis and collagen genesis. These results showed that N-CP/DLPLG has property of tissue scaffold which sustain bone marrow cells growth and collagen production. This represents a good way for further examination of N-CP/DLPLG as potentional tissue scaffold in osteoreparation.

  14. Risk of radiation-induced subcutaneous fibrosis in relation to single nucleotide polymorphisms in TGFB1, SOD2, XRCC1, XRCC3, APEX and ATM - a study based on DNA from formalin fixed paraffin embedded tissue samples

    DEFF Research Database (Denmark)

    Andreassen, Christian Nicolaj; Alsner, Jan; Overgaard, Marie

    2006-01-01

    Purpose: In two previously published studies, associations with risk of radiation-induced subcutaneous fibrosis were found for single nucleotide polymorphisms (SNP) in TGFB1 (transforming growth factor beta 1 gene), XRCC1 (X-ray repair cross-complementing 1 gene), XRCC3 (X-ray repair cross...... the influence of genetic variation upon normal tissue radiosensitivity...

  15. Tissue engineering of bladder using vascular endothelial growth factor gene-modified endothelial progenitor cells.

    Science.gov (United States)

    Chen, Bai-Song; Xie, Hua; Zhang, Sheng-Li; Geng, Hong-Quan; Zhou, Jun-Mei; Pan, Jun; Chen, Fang

    2011-12-01

    This study assessed the use of vascular endothelial growth factor (VEGF) gene-modified endothelial progenitor cells (EPCs) seeded onto bladder acellular matrix grafts (BAMGs), to enhance the blood supply in tissue-engineered bladders in a porcine model. Autologous porcine peripheral EPCs were isolated, cultured, expanded, characterized, and modified with the VEGF gene using an adenovirus vector. The expression of VEGF was examined using reverse transcriptase polymerase chain reaction (RT-PCR) and an enzyme-linked immunosorbent assay (ELISA). VEGF gene modified EPCs were seeded onto BAMG and cultured for 3 days before implantation into pigs for bladder tissue engineering. A partial bladder cystectomy was performed in 12 pigs. The experimental group (6 pigs) received VEGF gene-modified EPC-seeded BAMG. The control group (6 pigs) received BAMG without seeded EPCs. The resulting tissue-engineered bladders were subject to a general and histological analysis. Microvessel density (MVD) was assessed using immunohistochemistry. The ex vivo transfection efficiency of EPCs was greater than 60%-70% when concentrated adenovirus was used. The genetically modified cells expressed both VEGF and green fluorescent protein (GFP). Scanning electron microscopy (SEM) and Masson's trichrome staining of cross sections of the cultured cells seeded to BAMG showed cell attachment and proliferation on the surface of the BAMG. Histological examination revealed bladder regeneration in a time-dependent fashion. Significant increases in MVD were observed in the experimental group, in comparison with the control group. VEGF-modified EPCs significantly enhanced neovascularization, compared with BAMG alone. These results indicate that EPCs, combined with VEGF gene therapy, may be a suitable approach for increasing blood supply in the tissue engineering of bladders. Thus, a useful strategy to achieve a tissue-engineered bladder is indicated.

  16. Granulocytes and vascularization regulate uterine bleeding and tissue remodeling in a mouse menstruation model.

    Directory of Open Access Journals (Sweden)

    Astrid Menning

    Full Text Available Menstruation-associated disorders negatively interfere with the quality of life of many women. However, mechanisms underlying pathogenesis of menstrual disorders remain poorly investigated up to date. Among others, this is based on a lack of appropriate pre-clinical animal models. We here employ a mouse menstruation model induced by priming mice with gonadal hormones and application of a physical stimulus into the uterus followed by progesterone removal. As in women, these events are accompanied by menstrual-like bleeding and tissue remodeling processes, i.e. disintegration of decidualized endometrium, as well as subsequent repair. We demonstrate that the onset of bleeding coincides with strong upregulation of inflammatory mediators and massive granulocyte influx into the uterus. Uterine granulocytes play a central role in regulating local tissue remodeling since depletion of these cells results in dysregulated expression of matrix modifying enzymes. As described here for the first time, uterine blood loss can be quantified by help of tampon-like cotton pads. Using this novel technique, we reveal that blood loss is strongly reduced upon inhibition of endometrial vascularization and thus, is a key regulator of menstrual bleeding. Taken together, we here identify angiogenesis and infiltrating granulocytes as critical determinants of uterine bleeding and tissue remodeling in a mouse menstruation model. Importantly, our study provides a technical and scientific basis allowing quantification of uterine blood loss in mice and thus, assessment of therapeutic intervention, proving great potential for future use in basic research and drug discovery.

  17. Optical coherence tomography in quantifying the permeation of human plasma lipoproteins in vascular tissues

    Science.gov (United States)

    Ghosn, M. G.; Mashiatulla, M.; Tuchin, V. V.; Morrisett, J. D.; Larin, K. V.

    2012-03-01

    Atherosclerosis is the most common underlying cause of vascular disease, occurring in multiple arterial beds including the carotid, coronary, and femoral arteries. Atherosclerosis is an inflammatory process occurring in arterial tissue, involving the subintimal accumulation of low-density lipoproteins (LDL). Little is known about the rates at which these accumulations occur. Measurements of the permeability rate of LDL, and other lipoproteins such as high-density lipoprotein (HDL) and very low-density lipoprotein (VLDL), could help gain a better understanding of the mechanisms involved in the development of atherosclerotic lesions. The permeation of VLDL, LDL, HDL, and glucose was monitored and quantified in normal and diseased human carotid endarterectomy tissues at 20°C and 37°C using optical coherence tomography (OCT). The rates for LDL permeation through normal tissue at 20°C was (3.16 +/- 0.37) × 10-5 cm/sec and at 37°C was (4.77 +/- 0.48) × 10-5 cm/sec, significantly greater (plipoproteins.

  18. Subcutaneous granuloma annulare: radiologic appearance

    International Nuclear Information System (INIS)

    Kransdorf, M.J.; Murphey, M.D.; Temple, H.T.

    1998-01-01

    Objective. Granuloma annulare is an uncommon benign inflammatory dermatosis characterized by the formation of dermal papules with a tendency to form rings. There are several clinically distinct forms. The subcutaneous form is the most frequently encountered by radiologists, with the lesion presenting as a superficial mass. There are only a few scattered reports of the imaging appearance of this entity in the literature. We report the radiologic appearance of five cases of subcutaneous granuloma annulare. Design and patients. The radiologic images of five patients (three male, two female) with subcutaneous granuloma annulare were retrospectively studied. Mean patient age was 6.4 years (range, 2-13 years). The lesions occurred in the lower leg (two), foot, forearm, and hand. MR images were available for all lesions, gadolinium-enhanced imaging in three cases, radiographs in four, and bone scintigraphy in one. Results. Radiographs showed unmineralized nodular masses localized to the subcutaneous adipose tissue. The size range, in greatest dimension on imaging studies, was 1-4 cm. MR images show a mass with relatively decreased signal intensity on all pulse sequences, with variable but generally relatively well defined margins. There was extensive diffuse enhancement following gadolinium administration. Conclusion. The radiologic appearance of subcutaneous granuloma annulare is characteristic, typically demonstrating a nodular soft-tissue mass involving the subcutaneous adipose tissue. MR images show a mass with relatively decreased signal intensity on all pulse sequences and variable but generally well defined margins. There is extensive diffuse enhancement following gadolinium administration. Radiographs show a soft-tissue mass or soft-tissue swelling without evidence of bone involvement or mineralization. This radiologic appearance in a young individual is highly suggestive of subcutaneous granuloma annulare. (orig.)

  19. Elastomeric degradable biomaterials by photopolymerization-based CAD-CAM for vascular tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Baudis, Stefan; Nehl, Franziska; Ligon, S Clark; Liska, Robert [Institute of Applied Synthetic Chemistry, Vienna University of Technology, Getreidemarkt 9/163MC, A-1060 Vienna (Austria); Nigisch, Anneliese; Bernhard, David [Department of Surgery, Medical University Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Bergmeister, Helga [Core Unit for Biomedical Research, Medical University Vienna, Waehringer Guertel 18-20, A-1090 Vienna (Austria); Stampfl, Juergen, E-mail: robert.liska@tuwien.ac.at [Institute of Material Science and Technology, Vienna University of Technology, Favoritenstrasse 9-11, A-1040 Vienna (Austria)

    2011-10-15

    A predominant portion of mortalities in industrial countries can be attributed to diseases of the cardiovascular system. In the last decades great efforts have been undertaken to develop materials for artificial vascular constructs. However, bio-inert materials like ePTFE or PET fail as material for narrow blood vessel replacements (coronary bypasses). Therefore, we aim to design new biocompatible materials to overcome this. In this paper we investigate the use of photoelastomers for artificial vascular constructs since they may be precisely structured by means of additive manufacturing technologies. Hence, 3D computer aided design and manufacturing technologies (CAD-CAM) offer the possibility of creating cellular structures within the grafts that might favour ingrowth of tissue. Different monomer formulations were screened concerning their suitability for this application but all had drawbacks, especially concerning the suture tear resistance. Therefore, we chose to modify the original network architecture by including dithiol chain transfer agents which effectively co-react with the acrylates and reduce crosslink density. A commercial urethane diacrylate was chosen as base monomer. In combination with reactive diluents and dithiols, the properties of the photopolymers could be tailored and degradability could be introduced. The optimized photoelastomers were in good mechanical accordance with native blood vessels, showed good biocompatibility in in vitro tests, degraded similar to poly(lactic acid) and were successfully manufactured with the 3D CAD-CAM technology.

  20. Changes in adipose tissue stromal-vascular cells in primary culture due to porcine sera

    International Nuclear Information System (INIS)

    Jewell, D.E.; Hausman, G.J.

    1986-01-01

    This study was conducted to determine the response of rat stromal-vascular cells to pig sea. Sera were collected from unselected contemporary (lean) and high backfat thickness selected (obese) pigs. Sera from obese pigs were collected either by exsanguination or cannulation. sera from lean pigs during the growing phase (45 kg) and the fattening phase (100-110 kg) were collected. Stromal-vascular cells derived rom rat inguinal tissue were cultured on either 25 cm 2 flasks, collagen-coated coverslips or petri dishes. Cell proliferation was measured by [ 3 H]-thymidine incorporation during the fourth day of culture. Coverslip cultures were used for histochemical analysis. Petri dish cultures were used for analysis of Sn-glycerol-3-phosphate dehydrogenase (GPDH) activity. All cells were plated for 24 hours in media containing 10 fetal bovine sera. Test media contained 2.5, 5.0, 10.0% sera. Sera from obese pigs increased GPDH activity and fat cell production when compared to the lean controls. The increased concentration of sera increased esterase activity and lipid as measured with oil red O. The sera from obese pigs collected at slaughter stimulated more fat cell production than obese sera collected by cannulation. These studies show there are adipogenic factors in obese pigs sera which promote fat cell development in primary cell culture

  1. A combined strategy to reduce restenosis for vascular tissue engineering applications.

    Science.gov (United States)

    Patel, Hemang J; Su, Shih-Horng; Patterson, Cam; Nguyen, Kytai T

    2006-01-01

    Biodegradable polymers including poly(l-lactic acid) (PLLA) have been used to develop cardiovascular prostheses such as vascular grafts and stents. However, implant-associated thrombosis, inflammation, and restenosis are still major obstacles for the utility of these devices. The lack of an endothelial cell (EC) lining (endothelialization) on the implants and the responses of the immune systems toward the implants have been associated with these complications. In our research strategy, we have combined the drug delivery principle with the strategies of tissue engineering, the controlled release of anti-inflammation drugs and enhanced endothelialization, to reduce the implant-associated adverse responses. We first integrated curcumin, an anti-inflammatory drug and anti-smooth muscle cell (SMC) proliferative drug, with PLLA. This curcumin-loaded PLLA material was then modified using adsorptive coating of adhesive proteins such as fibronectin, collagen-I, vitronectin, laminin, and matrigel to improve the endothelial cell (EC) adhesion and proliferation, and ECs were seeded on top of these modified surfaces. Our results showed steady drug release kinetics over the period of 50 days from curcumin-loaded PLLA materials. Additionally, integration of curcumin in PLLA increased the roughness of the scaffold at the nanometric scale using an atomic force microscopic analysis. Moreover, coating with fibronectin on curcumin-loaded PLLA surfaces gave the highest EC adhesion and proliferation compared to other adhesive proteins using PicoGreen DNA assays. The ability of our strategy to release the curcumin for producing anti-inflammation and anti-proliferation responses and to improve EC adhesion and growth after EC seeding suggests this strategy may reduce implant-associated adverse responses and be a better approach for vascular tissue engineering applications.

  2. Enhanced elastin synthesis and maturation in human vascular smooth muscle tissue derived from induced-pluripotent stem cells.

    Science.gov (United States)

    Eoh, Joon H; Shen, Nian; Burke, Jacqueline A; Hinderer, Svenja; Xia, Zhiyong; Schenke-Layland, Katja; Gerecht, Sharon

    2017-04-01

    Obtaining vascular smooth muscle tissue with mature, functional elastic fibers is a key obstacle in tissue-engineered blood vessels. Poor elastin secretion and organization leads to a loss of specialization in contractile smooth muscle cells, resulting in over proliferation and graft failure. In this study, human induced-pluripotent stem cells (hiPSCs) were differentiated into early smooth muscle cells, seeded onto a hybrid poly(ethylene glycol) dimethacrylate/poly (l-lactide) (PEGdma-PLA) scaffold and cultured in a bioreactor while exposed to pulsatile flow, towards maturation into contractile smooth muscle tissue. We evaluated the effects of pulsatile flow on cellular organization as well as elastin expression and assembly in the engineered tissue compared to a static control through immunohistochemistry, gene expression and functionality assays. We show that culturing under pulsatile flow resulted in organized and functional hiPSC derived smooth muscle tissue. Immunohistochemistry analysis revealed hiPSC-smooth muscle tissue with robust, well-organized cells and elastic fibers and the supporting microfibril proteins necessary for elastic fiber assembly. Through qRT-PCR analysis, we found significantly increased expression of elastin, fibronectin, and collagen I, indicating the synthesis of necessary extracellular matrix components. Functionality assays revealed that hiPSC-smooth muscle tissue cultured in the bioreactor had an increased calcium signaling and contraction in response to a cholinergic agonist, significantly higher mature elastin content and improved mechanical properties in comparison to the static control. The findings presented here detail an effective approach to engineering elastic human vascular smooth muscle tissue with the functionality necessary for tissue engineering and regenerative medicine applications. Obtaining robust, mature elastic fibers is a key obstacle in tissue-engineered blood vessels. Human induced-pluripotent stem cells have

  3. Healthy Nordic diet downregulates the expression of genes involved in inflammation in subcutaneous adipose tissue in individuals with features of the metabolic syndrome.

    Science.gov (United States)

    Kolehmainen, Marjukka; Ulven, Stine M; Paananen, Jussi; de Mello, Vanessa; Schwab, Ursula; Carlberg, Carsten; Myhrstad, Mari; Pihlajamäki, Jussi; Dungner, Elisabeth; Sjölin, Eva; Gunnarsdottir, Ingibjörg; Cloetens, Lieselotte; Landin-Olsson, Mona; Akesson, Björn; Rosqvist, Fredrik; Hukkanen, Janne; Herzig, Karl-Heinz; Dragsted, Lars O; Savolainen, Markku J; Brader, Lea; Hermansen, Kjeld; Risérus, Ulf; Thorsdottir, Inga; Poutanen, Kaisa S; Uusitupa, Matti; Arner, Peter; Dahlman, Ingrid

    2015-01-01

    Previously, a healthy Nordic diet (ND) has been shown to have beneficial health effects close to those of Mediterranean diets. The objective was to explore whether the ND has an impact on gene expression in abdominal subcutaneous adipose tissue (SAT) and whether changes in gene expression are associated with clinical and biochemical effects. Obese adults with features of the metabolic syndrome underwent an 18- to 24-wk randomized intervention study comparing the ND with the control diet (CD) (the SYSDIET study, carried out within Nordic Centre of Excellence of the Systems Biology in Controlled Dietary Interventions and Cohort Studies). The present study included participants from 3 Nordic SYSDIET centers [Kuopio (n = 20), Lund (n = 18), and Oulu (n = 18)] with a maximum weight change of ±4 kg, highly sensitive C-reactive protein concentration healthy Nordic diet reduces inflammatory gene expression in SAT compared with a control diet independently of body weight change in individuals with features of the metabolic syndrome. © 2015 American Society for Nutrition.

  4. Relations of Visceral and Abdominal Subcutaneous Adipose Tissue, Body Mass Index, and Waist Circumference to Serum Concentrations of Parameters of Chronic Inflammation

    Directory of Open Access Journals (Sweden)

    Inga Schlecht

    2016-06-01

    Full Text Available Background: Different measures of body fat composition may vary in their relations to parameters of chronic inflammation. Methods: We assessed the relations of visceral (VAT and subcutaneous adipose tissue (SAT, BMI, and waist circumference (WC to serum concentrations of high-sensitive C-reactive protein (hs-CRP, tumor necrosis factor alpha (TNF-α, interleukin-6 (IL-6, resistin, and adiponectin in 97 healthy adults using multivariate linear regression models, adjusted for age, sex, smoking, physical activity, menopausal status, and use of aspirin or non-steroidal anti-inflammatory drugs (NSAIDs. Parameters of chronic inflammation were mutually adjusted. Results: VAT (β = 0.34, SAT (β = 0.43, BMI (β = 0.40, and WC (β = 0.47 were all significantly associated with hs-CRP. BMI was additionally inversely related to adiponectin (β = -0.29. In exploratory subgroup analyses defined by gender, BMI, smoking, and use of aspirin or NSAIDs, VAT was the strongest indicator for increased levels of IL-6, SAT was the most consistent indicator for increased levels of hs-CRP, and BMI was the most consistent indicator for decreased levels of adiponectin. WC showed to be a weak indicator for increased levels of hs-CRP and decreased levels of adiponectin. Conclusion: VAT, SAT, BMI, and WC show distinct associations with parameters of chronic inflammation. Whether these differences reflect differential metabolic risks requires clarification by longitudinal studies.

  5. A low-protein diet induces body weight loss and browning of subcutaneous white adipose tissue through enhanced expression of hepatic fibroblast growth factor 21 (FGF21).

    Science.gov (United States)

    Pérez-Martí, Albert; Garcia-Guasch, Maite; Tresserra-Rimbau, Anna; Carrilho-Do-Rosário, Alexandra; Estruch, Ramon; Salas-Salvadó, Jordi; Martínez-González, Miguel Ángel; Lamuela-Raventós, Rosa; Marrero, Pedro F; Haro, Diego; Relat, Joana

    2017-08-01

    Fibroblast growth factor 21 (FGF21) is considered a promising therapeutic candidate for the treatment of obesity. Since FGF21 production is regulated by various nutritional factors, we analyze the impact of low protein intake on circulating levels of this growth hormone in mice and in a sub cohort of the PREDIMED (Prevención con Dieta Mediterránea) trial. We also describe the role of hepatic FGF21 in metabolic adaptation to a low-protein diet (LPD). We fed control and liver-specific Fgf21 knockout (LFgf21KO) mice a LPD. This diet increased FGF21 production by inducing its overexpression in liver, and this correlated with a body weight decrease without changes in food intake. The LPD also caused FGF21-dependent browning in subcutaneous white adipose tissue (scWAT), as indicated by an increase in the expression of uncoupling protein 1 (UCP1). In a subgroup of 78 individuals from the PREDIMED trial, we observed an inverse correlation between protein intake and circulating FGF21 levels. Our results reinforce the involvement of FGF21 in coordinating energy homeostasis under a range of nutritional conditions. Moreover, here we describe an approach to increase the endogenous production of FGF21, which if demonstrated functional in humans, could generate a treatment for obesity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Changes in the vascular tissue of fresh Hass avocados treated with cobalt

    International Nuclear Information System (INIS)

    Arevalo, Lourdes; Bustos, Ma. Emilia; Saucedo, Cresenciano

    2002-01-01

    This research was based on fresh avocado fruit treated with gamma rays at quarantine doses and stored at room temperature. The effects of irradiation were analyzed and measured by three different types of studies: histological, biochemical and physiological. Histological studies were focused on the effect of Cobalt 60 gamma rays in the mesocarp of avocado irradiated at three different doses; 150, 250, and 350 Gy. Damage was observed principally in the parenchyma tissue where the cell membrane was plazmolized and a red color was observed due to the development of phenol compounds. Another important effect was an increase in the size of xylem and phloem cells in the vascular tissue even at the minimum dose of 150 Gy. The biochemical and the physiological studies were done on avocado fruit irradiated at 100 and 150 Gy. An increase in L-phenilalanine ammonialyase activity was observed and therefore, an increase in the concentration of phenol compounds. These changes were not perceived by panelists in a sensorial test. Irradiated fruits were accepted by panelists as well as control fruit as regards parameters of taste, internal color and external color. These results demonstrate the feasibility of using irradiation to disinfest avocado fruit using a minimum dose of 100 Gy

  7. Changes in the vascular tissue of fresh Hass avocados treated with cobalt

    Energy Technology Data Exchange (ETDEWEB)

    Arevalo, Lourdes; Bustos, Ma. Emilia; Saucedo, Cresenciano

    2002-03-01

    This research was based on fresh avocado fruit treated with gamma rays at quarantine doses and stored at room temperature. The effects of irradiation were analyzed and measured by three different types of studies: histological, biochemical and physiological. Histological studies were focused on the effect of Cobalt 60 gamma rays in the mesocarp of avocado irradiated at three different doses; 150, 250, and 350 Gy. Damage was observed principally in the parenchyma tissue where the cell membrane was plazmolized and a red color was observed due to the development of phenol compounds. Another important effect was an increase in the size of xylem and phloem cells in the vascular tissue even at the minimum dose of 150 Gy. The biochemical and the physiological studies were done on avocado fruit irradiated at 100 and 150 Gy. An increase in L-phenilalanine ammonialyase activity was observed and therefore, an increase in the concentration of phenol compounds. These changes were not perceived by panelists in a sensorial test. Irradiated fruits were accepted by panelists as well as control fruit as regards parameters of taste, internal color and external color. These results demonstrate the feasibility of using irradiation to disinfest avocado fruit using a minimum dose of 100 Gy.

  8. Degradation of S-nitrosocysteine in vascular tissue homogenates: role of divalent ions.

    Science.gov (United States)

    Kostka, P; Xu, B; Skiles, E H

    1999-04-01

    The objective of the study was to inquire about the mechanism(s) involved in the catabolism of S-nitrosothiols by vascular tissue under in vitro conditions. Incubations of S-nitrosocysteine (CYSNO) or S-nitrosoglutathione (GSNO) with homogenates isolated from porcine aortic smooth muscle resulted in only a marginal depletion of S-nitrosothiols from the reaction mixtures, which became statistically significant at relatively high concentrations of homogenate (> or =300 microg of protein/ml). Degradation of CYSNO (but not GSNO) was found to be potentiated several-fold by millimolar concentrations of either Mg2+ or Ca2+ ions. Under such conditions, the degradation of CYSNO was significantly suppressed by the removal of proteins by ultrafiltration (>80% inhibition) and eliminated completely by the alkylation of thiol groups with 1 mM N-ethylmaleimide. The potentiating effect of divalent ions on the degradation of CYSNO was insensitive to 0.1 mM neocuproine (selective chelator of Cu+ ions), although it was enhanced in the presence of 0.1 mM o-phenanthroline (selective chelator of Fe2+ ions). It is concluded that the degradation of CYSNO by tissue homogenate involves the interaction with protein-bound sulfhydryl groups, which is stimulated by Mg2+ or Ca2+ ions. The potentiating effect of o-phenanthroline suggests that the liberation of the nitrosonium moiety in such a process may be accompanied by its transfer to sulfur center(s) by transient formation of dinitrosyl-iron complexes.

  9. Longitudinal changes in visceral and subcutaneous adipose tissue and metabolic syndrome: Results from the Multicultural Community Health Assessment Trial (M-CHAT).

    Science.gov (United States)

    Tu, Andrew W; Humphries, Karin H; Lear, Scott A

    2017-12-01

    Few studies have examined whether longitudinal changes in visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT), independent of each other, are associated with the risk of developing metabolic syndrome (MetS). The objective of this study was to examine the longitudinal effects of VAT and SAT on MetS and metabolic risk factors in a multi-ethnic sample of Canadians followed for 5-years. In total, 598 adults of the Multicultural Community Health Assessment Trial (M-CHAT) were included in this study. Assessments of body composition using computed tomography (CT) and metabolic risk factors were conducted at baseline, 3-, and 5-years. Mixed-effects logistic regression was used to model the longitudinal effects of VAT and SAT on MetS and metabolic risk factors. There were significant between-person (cross-sectional) effects such that for every 10cm 2 higher VAT, the odds of MetS, high-risk fasting glucose levels and high-risk HDL-C levels significantly increased by 16% (95% CI: 9-24%), 11% (3-20%), and 7% (0-14%) respectively. Significant within-person (longitudinal) effects were also found such that for every 10cm 2 increase in VAT the odds of MetS and high-risk triglyceride levels significantly increased by 23% (9-39%) and 30% (14-48%), respectively. Cross-sectional or longitudinal changes in SAT were not associated with MetS or metabolic risk factors. This study found a direct relationship between longitudinal change in VAT and MetS risk independent of changes in SAT. Clinical practice should focus on the reduction of VAT to improve cardiovascular health outcomes. Copyright © 2017 Diabetes India. Published by Elsevier Ltd. All rights reserved.

  10. Gene expression of tumour necrosis factor and insulin signalling-related factors in subcutaneous adipose tissue during the dry period and in early lactation in dairy cows.

    Science.gov (United States)

    Sadri, H; Bruckmaier, R M; Rahmani, H R; Ghorbani, G R; Morel, I; van Dorland, H A

    2010-10-01

    Gene expression of adipose factors, which may be part of the mechanisms that underlie insulin sensitivity, were studied in dairy cows around parturition. Subcutaneous fat biopsies and blood samples were taken from 27 dairy cows in week 8 antepartum (a.p.), on day 1 postpartum (p.p.) and in week 5 p.p. In the adipose tissue samples, mRNA was quantified by real-time reverse transcription polymerase chain reaction for tumour necrosis factor alpha (TNFα), insulin-independent glucose transporter (GLUT1), insulin-responsive glucose transporter (GLUT4), insulin receptor, insulin receptor substrate 1 (IRS1), insulin receptor substrate 2 (IRS2), regulatory subunit of phosphatidylinositol-3 kinase (p85) and catalytic subunit of phosphatidylinositol-3 kinase. Blood plasma was assayed for concentrations of glucose, β-hydroxybutyric acid, non-esterified fatty acids (NEFA) and insulin. Plasma parameters followed a pattern typically observed in dairy cows. Gene expression changes were observed, but there were no changes in TNFα concentrations, which may indicate its local involvement in catabolic adaptation of adipose tissue. Changes in GLUT4 and GLUT1 mRNA abundance may reflect their involvement in reduced insulin sensitivity and in sparing glucose for milk synthesis in early lactation. Unchanged gene expression of IRS1, IRS2 and p85 over time may imply a lack of their involvement in terms of insulin sensitivity dynamics. Alternatively, it may indicate that post-transcriptional modifications of these factors came into play and may have concealed an involvement. © 2010 Blackwell Verlag GmbH.

  11. The role of subcutaneous adipose tissue in supporting the copper balance in rats with a chronic deficiency in holo-ceruloplasmin.

    Directory of Open Access Journals (Sweden)

    Ekaterina Y Ilyechova

    Full Text Available We have previously shown that (1 an acute deficiency in blood serum holo-ceruloplasmin (Cp developed in rats that were fed fodder containing silver ions (Ag-fodder for one month and (2 the deficiency in holo-Cp was compensated by non-hepatic holo-Cp synthesis in rats that were chronically fed Ag-fodder for 6 months (Ag-rats. The purpose of the present study is to identify the organ(s that compensate for the hepatic holo-Cp deficiency in the circulation. This study was performed on rats that were fed Ag-fodder (40 mg Ag·kg-1 body mass daily for 6 months. The relative expression levels of the genes responsible for copper status were measured by RT-PCR. The in vitro synthesis and secretion of [14C]Cp were analyzed using a metabolic labeling approach. Oxidase activity was determined using a gel assay with o-dianisidine. Copper status and some hematological indexes were measured. Differential centrifugation, immunoblotting, immunoelectrophoresis, and atomic absorption spectrometry were included in the investigation. In the Ag-rats, silver accumulation was tissue-specific. Skeletal muscles and internal (IAT and subcutaneous (SAT adipose tissues did not accumulate silver significantly. In SAT, the mRNAs for the soluble and glycosylphosphatidylinositol-anchored ceruloplasmin isoforms were expressed, and their relative levels were increased two-fold in the Ag-rats. In parallel, the levels of the genes responsible for Cp metallation (Ctr1 and Atp7a/b increased correspondingly. In the SAT of the Ag-rats, Cp oxidase activity was observed in the Golgi complex and plasma membrane. Moreover, full-length [14C]Cp polypeptides were released into the medium by slices of SAT. The possibilities that SAT is part of a system that controls the copper balance in mammals, and it plays a significant role in supporting copper homeostasis throughout the body are discussed.

  12. Characterization of poly (L-co-D,L Lactic Acid and a study of polymer-tissue interaction in subcutaneous implants in wistar rats

    Directory of Open Access Journals (Sweden)

    Giuliano Serafino Ciambelli

    2012-01-01

    Full Text Available Poly (L-co-D,L lactic acid (PLDLA is an important biomaterial because of its biocompatibility properties that promote cellular regeneration and growth. The aim of this study was to evaluate the polymer-tissue interaction of PLDLA implants in the dorsal subcutaneous tissue of male Wistar rats at various intervals (2, 7, 15, 30, 60 and 90 days after implantation. Physical properties such as the glass transition point (Tg, degradation behavior and other mechanical properties were characterized by differential scanning calorimetry (DSC, thermogravimetric analysis (TGA, gel permeation chromatography (GPC, scanning electron microscopy (SEM and tension tests. Analysis of the degradation of PLDLA membranes in vitro showed that the polymer became crystalline as a function of the degradation time. Mechanical tension tests showed that the polymer behaved like a ductile material: when subjected to constant tension it initially suffered deformation, then elongation and finally ruptured. TGA/MEV provided evidence of PLDLA membrane degradation. For histological analysis, samples from each group were processed in xylol/paraffin, except for the 60 - and 90 - day samples. Each of the latter samples was divided in two: one half was treated with xylol/paraffin and the other with historesin. Light microscopy showed the adhesion of cells to the biomaterial, the formation of a conjunctive capsule around the implant, the presence of epithelioid cells, the formation of foreign body giant cells and angiogenesis. During degradation, the polymer showed a 'lace' - like appearance when processed in xylol/paraffin compared to the formation of "centripetal cracks in the form of glove fingers" when embedded in historesin.

  13. Intrahepatic tissue pO2 during continuous or intermittent vascular inflow occlusion in a pig liver resection model

    NARCIS (Netherlands)

    van Wagensveld, B. A.; van Gulik, T. M.; Gabeler, E. E.; van der Kleij, A. J.; Obertop, H.; Gouma, D. J.

    1998-01-01

    BACKGROUND: Temporary vascular inflow occlusion of the liver (clamping of the hepatic pedicle) can prevent massive blood loss during liver resections. In this study, intrahepatic tissue pO2 was assessed as parameter of microcirculatory disturbances induced by ischemia and reperfusion (I/R) in the

  14. Meniscal repair by fibrocartilage in the dog : Characterization of the repair tissue and the role of vascularity

    NARCIS (Netherlands)

    Veth, RPH; Jansen, HWB; Nielsen, HKL; deGroot, JH; Pennings, AJ; Kuijer, R

    Lesions in the avascular part of 20 canine menisci were repaired by implantation of a porous polyurethane. Seven menisci were not repaired and served as controls. The repair tissue was characterized by biochemical and immunological analysis. The role of vascularity in healing was studied by

  15. The nutrition of the human meniscus: A computational analysis investigating the effect of vascular recession on tissue homeostasis.

    Science.gov (United States)

    Travascio, Francesco; Jackson, Alicia R

    2017-08-16

    The meniscus is essential to the functioning of the knee, offering load support, congruency, lubrication, and protection to the underlying cartilage. Meniscus degeneration affects ∼35% of the population, and potentially leads to knee osteoarthritis. The etiology of meniscal degeneration remains to be elucidated, although many factors have been considered. However, the role of nutritional supply to meniscus cells in the pathogenesis of meniscus degeneration has been so far overlooked. Nutrients are delivered to meniscal cells through the surrounding synovial fluid and the blood vessels present in the outer region of the meniscus. During maturation, vascularization progressively recedes up to the outer 10% of the tissue, leaving the majority avascular. It has been hypothesized that vascular recession might significantly reduce the nutrient supply to cells, thus contributing to meniscus degeneration. The objective of this study was to evaluate the effect of vascular recession on nutrient levels available to meniscus cells. This was done by developing a novel computational model for meniscus homeostasis based on mixture theory. It was found that transvascular transport of nutrients in the vascularized region of the meniscus contributes to more than 40% of the glucose content in the core of the tissue. However, vascular recession does not significantly alter nutrient levels in the meniscus, reducing at most 5% of the nutrient content in the central portion of the tissue. Therefore, our analysis suggests that reduced vascularity is not likely a primary initiating source in tissue degeneration. However, it does feasibly play a key role in inability for self-repair, as seen clinically. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Predictive model of thrombospondin-1 and vascular endothelial growth factor in breast tumor tissue.

    Science.gov (United States)

    Rohrs, Jennifer A; Sulistio, Christopher D; Finley, Stacey D

    2016-01-01

    Angiogenesis, the formation of new blood capillaries from pre-existing vessels, is a hallmark of cancer. Thus far, strategies for reducing tumor angiogenesis have focused on inhibiting pro-angiogenic factors, while less is known about the therapeutic effects of mimicking the actions of angiogenesis inhibitors. Thrombospondin-1 (TSP1) is an important endogenous inhibitor of angiogenesis that has been investigated as an anti-angiogenic agent. TSP1 impedes the growth of new blood vessels in many ways, including crosstalk with pro-angiogenic factors. Due to the complexity of TSP1 signaling, a predictive systems biology model would provide quantitative understanding of the angiogenic balance in tumor tissue. Therefore, we have developed a molecular-detailed, mechanistic model of TSP1 and vascular endothelial growth factor (VEGF), a promoter of angiogenesis, in breast tumor tissue. The model predicts the distribution of the angiogenic factors in tumor tissue, revealing that TSP1 is primarily in an inactive, cleaved form due to the action of proteases, rather than bound to its cellular receptors or to VEGF. The model also predicts the effects of enhancing TSP1's interactions with its receptors and with VEGF. To provide additional predictions that can guide the development of new anti-angiogenic drugs, we simulate administration of exogenous TSP1 mimetics that bind specific targets. The model predicts that the CD47-binding TSP1 mimetic dramatically decreases the ratio of receptor-bound VEGF to receptor-bound TSP1, in favor of anti-angiogenesis. Thus, we have established a model that provides a quantitative framework to study the response to TSP1 mimetics.

  17. Effects of topical negative pressure therapy on tissue oxygenation and wound healing in vascular foot wounds.

    Science.gov (United States)

    Chiang, Nathaniel; Rodda, Odette A; Sleigh, Jamie; Vasudevan, Thodur

    2017-08-01

    Topical negative pressure (TNP) therapy is widely used in the treatment of acute wounds in vascular patients on the basis of proposed multifactorial benefits. However, numerous recent systematic reviews have concluded that there is inadequate evidence to support its benefits at a scientific level. This study evaluated the changes in wound volume, surface area, depth, collagen deposition, and tissue oxygenation when using TNP therapy compared with traditional dressings in patients with acute high-risk foot wounds. This study was performed with hospitalized vascular patients. Forty-eight patients were selected with an acute lower extremity wound after surgical débridement or minor amputation that had an adequate blood supply without requiring further surgical revascularization and were deemed suitable for TNP therapy. The 22 patients who completed the study were randomly allocated to a treatment group receiving TNP or to a control group receiving regular topical dressings. Wound volume and wound oxygenation were analyzed using a modern stereophotographic wound measurement system and a hyperspectral transcutaneous oxygenation measurement system, respectively. Laboratory analysis was conducted on wound biopsy samples to determine hydroxyproline levels, a surrogate marker to collagen. Differences in clinical or demographic characteristics or in the location of the foot wounds were not significant between the two groups. All patients, with the exception of two, had diabetes. The two patients who did not have diabetes had end-stage renal failure. There was no significance in the primary outcome of wound volume reduction between TNP and control patients on day 14 (44.2% and 20.9%, respectively; P = .15). Analyses of secondary outcomes showed a significant result of better healing rates in the TNP group by demonstrating a reduction in maximum wound depth at day 14 (36.0% TNP vs 17.6% control; P = .03). No significant findings were found for the other outcomes of changes

  18. The parenchymo-vascular cambium and its derivative tissues in stems and roots of Bougainvillaea glabra Choisy (Nyctaginaceae

    Directory of Open Access Journals (Sweden)

    Z. Puławska

    2015-01-01

    Full Text Available In the shoots and roots of Bougainmllaea, the parenchymo-vascular cambium produces thinwalled secondary parenchyma to one side and the secondary vascular bundles embedded in the "conjunctive tissue" to the other. Periclinal division of a single cambial cell in one radial row brings about periclinal divisions of the adjacent cells of the neighbouring rows. Anticlinal division of a single cambial cell at one level, on the other hand, causes anticlinal. divisions of the adjacent cells of the overlying and underlying tiers.

  19. Enzymatic cross-linking of human recombinant elastin (HELP) as biomimetic approach in vascular tissue engineering.

    Science.gov (United States)

    Bozzini, Sabrina; Giuliano, Liliana; Altomare, Lina; Petrini, Paola; Bandiera, Antonella; Conconi, Maria Teresa; Farè, Silvia; Tanzi, Maria Cristina

    2011-12-01

    The use of polymers naturally occurring in the extracellular matrix (ECM) is a promising strategy in regenerative medicine. If compared to natural ECM proteins, proteins obtained by recombinant DNA technology have intrinsic advantages including reproducible macromolecular composition, sequence and molecular mass, and overcoming the potential pathogens transmission related to polymers of animal origin. Among ECM-mimicking materials, the family of recombinant elastin-like polymers is proposed for drug delivery applications and for the repair of damaged elastic tissues. This work aims to evaluate the potentiality of a recombinant human elastin-like polypeptide (HELP) as a base material of cross-linked matrices for regenerative medicine. The cross-linking of HELP was accomplished by the insertion of cross-linking sites, glutamine and lysine, in the recombinant polymer and generating ε-(γ-glutamyl) lysine links through the enzyme transglutaminase. The cross-linking efficacy was estimated by infrared spectroscopy. Freeze-dried cross-linked matrices showed swelling ratios in deionized water (≈2500%) with good structural stability up to 24 h. Mechanical compression tests, performed at 37°C in wet conditions, in a frequency sweep mode, indicated a storage modulus of 2/3 kPa, with no significant changes when increasing number of cycles or frequency. These results demonstrate the possibility to obtain mechanically resistant hydrogels via enzymatic crosslinking of HELP. Cytotoxicity tests of cross-linked HELP were performed with human umbilical vein endothelial cells, by use of transwell filter chambers for 1-7 days, or with its extracts in the opportune culture medium for 24 h. In both cases no cytotoxic effects were observed in comparison with the control cultures. On the whole, the results suggest the potentiality of this genetically engineered HELP for regenerative medicine applications, particularly for vascular tissue regeneration.

  20. Regulatory mechanisms of anthrax toxin receptor 1-dependent vascular and connective tissue homeostasis.

    Science.gov (United States)

    Besschetnova, Tatiana Y; Ichimura, Takaharu; Katebi, Negin; St Croix, Brad; Bonventre, Joseph V; Olsen, Bjorn R

    2015-03-01

    It is well known that angiogenesis is linked to fibrotic processes in fibroproliferative diseases, but insights into pathophysiological processes are limited, due to lack of understanding of molecular mechanisms controlling endothelial and fibroblastic homeostasis. We demonstrate here that the matrix receptor anthrax toxin receptor 1 (ANTXR1), also known as tumor endothelial marker 8 (TEM8), is an essential component of these mechanisms. Loss of TEM8 function in mice causes reduced synthesis of endothelial basement membrane components and hyperproliferative and leaky blood vessels in skin. In addition, endothelial cell alterations in mutants are almost identical to those of endothelial cells in infantile hemangioma lesions, including activated VEGF receptor signaling in endothelial cells, increased expression of the downstream targets VEGF and CXCL12, and increased numbers of macrophages and mast cells. In contrast, loss of TEM8 in fibroblasts leads to increased rates of synthesis of fiber-forming collagens, resulting in progressive fibrosis in skin and other organs. Compromised interactions between TEM8-deficient endothelial and fibroblastic cells cause dramatic reduction in the activity of the matrix-degrading enzyme MMP2. In addition to insights into mechanisms of connective tissue homeostasis, our data provide molecular explanations for vascular and connective tissue abnormalities in GAPO syndrome, caused by loss-of-function mutations in ANTXR1. Furthermore, the loss of MMP2 activity suggests that fibrotic skin abnormalities in GAPO syndrome are, in part, the consequence of pathophysiological mechanisms underlying syndromes (NAO, Torg and Winchester) with multicentric skin nodulosis and osteolysis caused by homozygous loss-of-function mutations in MMP2. Copyright © 2014 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.

  1. Multichannel optical brain imaging to separate cerebral vascular, tissue metabolic, and neuronal effects of cocaine

    Science.gov (United States)

    Ren, Hugang; Luo, Zhongchi; Yuan, Zhijia; Pan, Yingtian; Du, Congwu

    2012-02-01

    Characterization of cerebral hemodynamic and oxygenation metabolic changes, as well neuronal function is of great importance to study of brain functions and the relevant brain disorders such as drug addiction. Compared with other neuroimaging modalities, optical imaging techniques have the potential for high spatiotemporal resolution and dissection of the changes in cerebral blood flow (CBF), blood volume (CBV), and hemoglobing oxygenation and intracellular Ca ([Ca2+]i), which serves as markers of vascular function, tissue metabolism and neuronal activity, respectively. Recently, we developed a multiwavelength imaging system and integrated it into a surgical microscope. Three LEDs of λ1=530nm, λ2=570nm and λ3=630nm were used for exciting [Ca2+]i fluorescence labeled by Rhod2 (AM) and sensitizing total hemoglobin (i.e., CBV), and deoxygenated-hemoglobin, whereas one LD of λ1=830nm was used for laser speckle imaging to form a CBF mapping of the brain. These light sources were time-sharing for illumination on the brain and synchronized with the exposure of CCD camera for multichannel images of the brain. Our animal studies indicated that this optical approach enabled simultaneous mapping of cocaine-induced changes in CBF, CBV and oxygenated- and deoxygenated hemoglobin as well as [Ca2+]i in the cortical brain. Its high spatiotemporal resolution (30μm, 10Hz) and large field of view (4x5 mm2) are advanced as a neuroimaging tool for brain functional study.

  2. Iodine application increased ascorbic acid content and modified the vascular tissue in opuntia ficus-indica

    International Nuclear Information System (INIS)

    Osuna, H.T.G.; Morales, R.; Rubio, E.M.; Mendoza, A.B.; Ruvalcaba, R.M

    2014-01-01

    The objective of this study was to discern the effect of applying both iodide and iodate to Opuntia ficus indica irrigation. The effect of iodate (KIO/sub 3/, 10-4 M) and iodide (KI, 10-4 M) on plant growth, yield and morphology was studied. Experiments were carried in three samples under tunnel conditions. In the last sampling, iodine species (KIO/sub 3/, KI) caused a negative effect in biomass. The amount of ascorbic acid, however, was increased over 51% in both iodine treatments. Phosphorus (0.26%), iron (50 ppm), and magnesium (1402 ppm) increases were also observed with iodate treatment in the first sampling, and increases in potassium (46.8 ppm) were apparent in the second. Iodide treatment increased the amounts of copper (1.02 ppm) and manganese (32.80 ppm) in the first sampling. Iodate treatment modified the number of xylem vessels and increased both the mucilage area and amount of druses. In general this study shows that iodate increases the amount of ascorbic acid and the morphology of the vascular tissue. (author)

  3. Hormonal receptors and vascular endothelial growth factor in juvenile nasopharyngeal angiofibroma: immunohistochemical and tissue microarray analysis.

    Science.gov (United States)

    Liu, Zhuofu; Wang, Jingjing; Wang, Huan; Wang, Dehui; Hu, Li; Liu, Quan; Sun, Xicai

    2015-01-01

    This work demonstrated that juvenile nasopharyngeal angiofibromas (JNAs) express high levels of hormone receptors and vascular endothelial growth factor (VEGF) compared with normal nasal mucosa. The interaction between hormone receptors and VEGF may be involved in the initiation and growth of JNA. JNA is a rare benign tumor that occurs almost exclusively in male adolescents. Although generally regarded as a hormone-dependent tumor, this has not been proven in previous studies. The aim of this study was to investigate the role of hormone receptors in JNA and the relationship with clinical characteristics. Standard immunohistochemical microarray analysis was performed on 70 JNA samples and 10 turbinate tissue samples. Specific antibodies for androgen receptor (AR), estrogen receptor-α (ER-α), estrogen receptor-β (ER-β), progesterone receptor (PR), and VEGF were examined, and the relationships of receptor expression with age, tumor stage, and bleeding were evaluated. RESULTS showed that JNA expressed ER-α (92.9%), ER-β (91.4%), AR (65.7%), PR (12.8%), and VEGF (95.7%) at different levels. High level of VEGF was linked to elevated ER-α and ER-β. There was no significant relationship between hormonal receptors and age at diagnosis, tumor stage or bleeding. However, overexpression of ER-α was found to be an indicator of poor prognosis (p = 0.031).

  4. Split-dose recovery in epithelial and vascular-connective tissue of pig skin

    International Nuclear Information System (INIS)

    Peel, D.M.; Hopewell, J.W.; Simmonds, R.H.; Dodd, P.; Meistrich, M.L.

    1984-01-01

    In the first 16 weeks after irradiation, two distinct waves of reaction can be observed in pig skin; the first wave (3-9 weeks) represents the expression of damage to the epithelium while the second is indicative of primary damage to the dermis, mediated through vascular injury. Following β-irradiation with a strontium-90 applicator, a severe epithelial reaction was seen with little subsequent dermal effects. X-rays (250 kV) on the other hand, produced a minimal epithelial response at doses which led to the development of dermal necrosis after 10-16 weeks. Comparison of single doses with two equal doses separated by 24 h produced a D 2 -D 1 value of 7.0 Gy at the doses which produced moist desquamation in 50% of fields (ED 50 ) after strontium-90 irradiation. After X-irradiation comparison of ED 50 doses for the later dermal reaction suggested a D 2 -D 1 value of 4.5 Gy. Over this same dose range of X-rays the D 2 -D 1 value for the first wave epithelial reaction was 3.5 Gy. These values of D 2 -D 1 for epithelial and dermal reactions in pig skin were compared with published data and were examined in relation to the theoretical predictions of a linear quadratic model for tissue target cell survival. The results were broadly in keeping with the productions of such a model. (Auth.)

  5. Effect of flow on vascular endothelial cells grown in tissue culture on polytetrafluoroethylene grafts

    International Nuclear Information System (INIS)

    Sentissi, J.M.; Ramberg, K.; O'Donnell, T.F. Jr.; Connolly, R.J.; Callow, A.D.

    1986-01-01

    Vascular grafts lined with endothelial cells (EC) grown to confluence in culture before implantation may provide a thromboresistant flow surface. Growth of EC on and their adherence to currently available prosthetic materials under conditions of flow are two impediments remaining in the development of such a graft. To address these problems, 22 polytetrafluoroethylene grafts (PTFE) (5 cm by 4 mm inside diameter) were pretreated with collagen and fibronectin, seeded with 2 to 3 X 10(6) bovine aortic EC per graft, and placed in tissue culture (seeded grafts). Twenty-two grafts pretreated with collagen and fibronectin alone served as controls. After 2 weeks morphologic studies revealed that 20/22 seeded grafts were lined with a confluent endothelial layer. Indium 111-oxine was then used to label the EC-seeded grafts. After exposure to either low (25 ml/min) or high (200 ml/min) flow rates for 60 minutes in an in vitro circuit, examination of the luminal surface of the graft by light microscopy and scanning electron microscopy revealed minimal loss of EC. These findings were corroborated by radionuclide scans that showed an insignificant loss of the EC-associated indium label during exposure to flow (7% low flow, 11% high flow). Pretreatment of PTFE grafts with collagen and fibronectin thus promotes both attachment and adherence of EC even under flow conditions

  6. Interleukins 6 and 15 Levels Are Higher in Subcutaneous Adipose Tissue, but Obesity Is Associated with Their Increased Content in Visceral Fat Depots

    Directory of Open Access Journals (Sweden)

    Marta Izabela Jonas

    2015-10-01

    Full Text Available Excess adiposity is associated with chronic inflammation, which takes part in the development of obesity-related complications. The aim of this study was to establish whether subcutaneous (SAT or visceral (VAT adipose tissue plays a major role in synthesis of pro-inflammatory cytokines. Concentrations of interleukins (IL: 1β, 6, 8 and 15 were measured at the protein level by an ELISA-based method and on the mRNA level by real-time PCR in VAT and SAT samples obtained from 49 obese (BMI > 40 kg/m2 and 16 normal-weight (BMI 20–24.9 kg/m2 controls. IL-6 and IL-15 protein concentrations were higher in SAT than in VAT for both obese (p = 0.003 and p < 0.0001, respectively and control individuals (p = 0.004 and p = 0.001, respectively, while for IL-1β this was observed only in obese subjects (p = 0.047. What characterized obese individuals was the higher expression of IL-6 and IL-15 at the protein level in VAT compared to normal-weight controls (p = 0.047 and p = 0.016, respectively. Additionally, obese individuals with metabolic syndrome had higher IL-1β levels in VAT than did obese individuals without this syndrome (p = 0.003. In conclusion, concentrations of some pro-inflammatory cytokines were higher in SAT than in VAT, but it was the increased pro-inflammatory activity of VAT that was associated with obesity and metabolic syndrome.

  7. Independent associations of insulin resistance with high whole-body intermuscular and low leg subcutaneous adipose tissue distribution in obese HIV-infected women123

    Science.gov (United States)

    Albu, Jeanine B; Kenya, Sonjia; He, Qing; Wainwright, Marsha; Berk, Evan S; Heshka, Stanley; Kotler, Donald P; Engelson, Ellen S

    2009-01-01

    Background Obesity and insulin resistance are growing problems in HIV-positive (HIV+) women receiving highly active antiretroviral therapy (HAART). Objective The objective was to determine the contribution of adipose tissue (AT) enlargement and distribution to the presence of insulin resistance in obese HIV+ women. Design Whole-body intermuscular AT (IMAT), visceral AT (VAT), subcutaneous AT (SAT), and SAT distribution (leg versus upper body) were measured by whole-body magnetic resonance imaging. Insulin sensitivity (SI) was measured with an intravenous glucose tolerance test in obese HIV+ women recruited because of their desire to lose weight (n = 17) and in obese healthy controls (n = 32). Results The HIV+ women had relatively less whole-body SAT and more VAT and IMAT than did the controls (P < 0.05 for all). A significant interaction by HIV status was observed for the relation of total SAT with SI (P < 0.001 for the regression’s slope interactions after adjustment for age, height, and weight). However, relations of IMAT, VAT, and SAT distribution (leg SAT as a percentage of total SAT; leg SAT%) with SI did not differ significantly between groups. For both groups combined, the best model predicting a low SI included significant contributions by both high IMAT and low leg SAT%, independent of age, height, and weight, and no interaction between groups was observed (overall r2 = 0.44, P = 0.0003). Conclusion In obese HIV+ women, high whole-body IMAT and low leg SAT% distribution are independently associated with insulin resistance. PMID:17616768

  8. A Novel Strategy to Engineer Pre-Vascularized Full-Length Dental Pulp-like Tissue Constructs.

    Science.gov (United States)

    Athirasala, Avathamsa; Lins, Fernanda; Tahayeri, Anthony; Hinds, Monica; Smith, Anthony J; Sedgley, Christine; Ferracane, Jack; Bertassoni, Luiz E

    2017-06-12

    The requirement for immediate vascularization of engineered dental pulp poses a major hurdle towards successful implementation of pulp regeneration as an effective therapeutic strategy for root canal therapy, especially in adult teeth. Here, we demonstrate a novel strategy to engineer pre-vascularized, cell-laden hydrogel pulp-like tissue constructs in full-length root canals for dental pulp regeneration. We utilized gelatin methacryloyl (GelMA) hydrogels with tunable physical and mechanical properties to determine the microenvironmental conditions (microstructure, degradation, swelling and elastic modulus) that enhanced viability, spreading and proliferation of encapsulated odontoblast-like cells (OD21), and the formation of endothelial monolayers by endothelial colony forming cells (ECFCs). GelMA hydrogels with higher polymer concentration (15% w/v) and stiffness enhanced OD21 cell viability, spreading and proliferation, as well as endothelial cell spreading and monolayer formation. We then fabricated pre-vascularized, full-length, dental pulp-like tissue constructs by dispensing OD21 cell-laden GelMA hydrogel prepolymer in root canals of extracted teeth and fabricating 500 µm channels throughout the root canals. ECFCs seeded into the microchannels successfully formed monolayers and underwent angiogenic sprouting within 7 days in culture. In summary, the proposed approach is a simple and effective strategy for engineering of pre-vascularized dental pulp constructs offering potentially beneficial translational outcomes.

  9. Functionally graded electrospun scaffolds with tunable mechanical properties for vascular tissue regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Vinoy [Center for Nanoscale Materials and Biointegration (CNMB), Department of Physics, University of Alabama at Birmingham (UAB), AL 35294 (United States); Zhang Xing [Department of Biomedical Engineering, School of Engineering, University of Alabama at Birmingham (UAB), AL 35294 (United States); Catledge, Shane A [Center for Nanoscale Materials and Biointegration (CNMB), Department of Physics, University of Alabama at Birmingham (UAB), AL 35294 (United States); Vohra, Yogesh K [Center for Nanoscale Materials and Biointegration (CNMB), Department of Physics, University of Alabama at Birmingham (UAB), AL 35294 (United States)

    2007-12-15

    Electrospun tubular scaffolds (4 mm inner diameter) based on bio-artificial blends of polyglyconate (Maxon (registered) ) and proteins such as gelatin and elastin having a spatially designed multilayer structure were prepared for use as vascular tissue scaffolds. Scanning electron microscopy analysis of scaffolds showed a random nanofibrous morphology with fiber diameter in the range of 200-400 nm for protein-blended Maxon, which mimics the nanoscale dimensions of collagen (50-500 nm). The scaffolds have a well interconnected pore structure and porosity up to 82%, with protein blending and multi-layering in contrast to electrospun Maxon (registered) scaffolds (67%). Fourier-transform infrared spectroscopy, x-ray diffraction and differential scanning calorimetry results confirmed the blended composition and crystallinity of fibers. Uniaxial tensile testing revealed a strength of 14.46 {+-} 0.42 MPa and a modulus of 15.44 {+-} 2.53 MPa with a failure strain of 322.5 {+-} 10% for a pure Maxon (registered) scaffold. The blending of polyglyconate with biopolymers decreased the tensile properties in general, with an exception of the tensile modulus (48.38 {+-} 2 MPa) of gelatin/Maxon mesh, which was higher than that of the pure Maxon (registered) scaffold. Trilayered tubular scaffolds of gelatin/elastin, gelatin/elastin/Maxon and gelatin/Maxon (GE-GEM-GM) that mimic the complex trilayer matrix structure of natural artery have been prepared by sequential electrospinning. Tensile testing under dry conditions revealed a tensile strength of 2.71 {+-} 0.2 MPa and a modulus of 20.4 {+-} 3 MPa with a failure strain of 140 {+-} 10%. However, GE-GEM-GM scaffolds tested under wet conditions after soaking in a phosphate buffered saline medium at 37 {sup 0}C for 24 h exhibited mechanical properties (2.5 MPa tensile strength and 9 MPa tensile modulus) comparable to those of native femoral artery.

  10. Functionally graded electrospun scaffolds with tunable mechanical properties for vascular tissue regeneration

    International Nuclear Information System (INIS)

    Thomas, Vinoy; Zhang Xing; Catledge, Shane A; Vohra, Yogesh K

    2007-01-01

    Electrospun tubular scaffolds (4 mm inner diameter) based on bio-artificial blends of polyglyconate (Maxon (registered) ) and proteins such as gelatin and elastin having a spatially designed multilayer structure were prepared for use as vascular tissue scaffolds. Scanning electron microscopy analysis of scaffolds showed a random nanofibrous morphology with fiber diameter in the range of 200-400 nm for protein-blended Maxon, which mimics the nanoscale dimensions of collagen (50-500 nm). The scaffolds have a well interconnected pore structure and porosity up to 82%, with protein blending and multi-layering in contrast to electrospun Maxon (registered) scaffolds (67%). Fourier-transform infrared spectroscopy, x-ray diffraction and differential scanning calorimetry results confirmed the blended composition and crystallinity of fibers. Uniaxial tensile testing revealed a strength of 14.46 ± 0.42 MPa and a modulus of 15.44 ± 2.53 MPa with a failure strain of 322.5 ± 10% for a pure Maxon (registered) scaffold. The blending of polyglyconate with biopolymers decreased the tensile properties in general, with an exception of the tensile modulus (48.38 ± 2 MPa) of gelatin/Maxon mesh, which was higher than that of the pure Maxon (registered) scaffold. Trilayered tubular scaffolds of gelatin/elastin, gelatin/elastin/Maxon and gelatin/Maxon (GE-GEM-GM) that mimic the complex trilayer matrix structure of natural artery have been prepared by sequential electrospinning. Tensile testing under dry conditions revealed a tensile strength of 2.71 ± 0.2 MPa and a modulus of 20.4 ± 3 MPa with a failure strain of 140 ± 10%. However, GE-GEM-GM scaffolds tested under wet conditions after soaking in a phosphate buffered saline medium at 37 0 C for 24 h exhibited mechanical properties (2.5 MPa tensile strength and 9 MPa tensile modulus) comparable to those of native femoral artery

  11. ESKIMO1 disruption in Arabidopsis alters vascular tissue and impairs water transport.

    Directory of Open Access Journals (Sweden)

    Valérie Lefebvre

    Full Text Available Water economy in agricultural practices is an issue that is being addressed through studies aimed at understanding both plant water-use efficiency (WUE, i.e. biomass produced per water consumed, and responses to water shortage. In the model species Arabidopsis thaliana, the ESKIMO1 (ESK1 gene has been described as involved in freezing, cold and salt tolerance as well as in water economy: esk1 mutants have very low evapo-transpiration rates and high water-use efficiency. In order to establish ESK1 function, detailed characterization of esk1 mutants has been carried out. The stress hormone ABA (abscisic acid was present at high levels in esk1 compared to wild type, nevertheless, the weak water loss of esk1 was independent of stomata closure through ABA biosynthesis, as combining mutant in this pathway with esk1 led to additive phenotypes. Measurement of root hydraulic conductivity suggests that the esk1 vegetative apparatus suffers water deficit due to a defect in water transport. ESK1 promoter-driven reporter gene expression was observed in xylem and fibers, the vascular tissue responsible for the transport of water and mineral nutrients from the soil to the shoots, via the roots. Moreover, in cross sections of hypocotyls, roots and stems, esk1 xylem vessels were collapsed. Finally, using Fourier-Transform Infrared (FTIR spectroscopy, severe chemical modifications of xylem cell wall composition were highlighted in the esk1 mutants. Taken together our findings show that ESK1 is necessary for the production of functional xylem vessels, through its implication in the laying down of secondary cell wall components.

  12. Emergency repair of upper extremity large soft tissue and vascular injuries with flow-through anterolateral thigh free flaps.

    Science.gov (United States)

    Zhan, Yi; Fu, Guo; Zhou, Xiang; He, Bo; Yan, Li-Wei; Zhu, Qing-Tang; Gu, Li-Qiang; Liu, Xiao-Lin; Qi, Jian

    2017-12-01

    Complex extremity trauma commonly involves both soft tissue and vascular injuries. Traditional two-stage surgical repair may delay rehabilitation and functional recovery, as well as increase the risk of infections. We report a single-stage reconstructive surgical method that repairs soft tissue defects and vascular injuries with flow-through free flaps to improve functional outcomes. Between March 2010 and December 2016 in our hospital, 5 patients with severe upper extremity trauma received single-stage reconstructive surgery, in which a flow-through anterolateral thigh free flap was applied to repair soft tissue defects and vascular injuries simultaneously. Cases of injured artery were reconstructed with the distal trunk of the descending branch of the lateral circumflex femoral artery. A segment of adjacent vein was used if there was a second artery injury. Patients were followed to evaluate their functional recoveries, and received computed tomography angiography examinations to assess peripheral circulation. Two patients had post-operative thumb necrosis; one required amputation, and the other was healed after debridement and abdominal pedicle flap repair. The other 3 patients had no major complications (infection, necrosis) to the recipient or donor sites after surgery. All the patients had achieved satisfactory functional recovery by the end of the follow-up period. Computed tomography angiography showed adequate circulation in the peripheral vessels. The success of these cases shows that one-step reconstructive surgery with flow-through anterolateral thigh free flaps can be a safe and effective treatment option for patients with complex upper extremity trauma with soft tissue defects and vascular injuries. Copyright © 2017. Published by Elsevier Ltd.

  13. Circulating sex hormones and gene expression of subcutaneous adipose tissue oestrogen and alpha-adrenergic receptors in HIV-lipodystrophy: implications for fat distribution

    DEFF Research Database (Denmark)

    Andersen, Ove; Pedersen, Steen B; Svenstrup, Birgit

    2007-01-01

    in lipodystrophic patients compared to nonlipodystrophic patients, whereas luteinizing hormone, follicle-stimulating hormone and prolactin were similar and normal in both study groups. Ratio of subcutaneous to total abdominal fat mass, limb fat, and insulin sensitivity, which were all decreased in lipodystrophic...... patients, correlated positively with both plasma oestradiol and testosterone (n = 31). Glycerol concentration during clamp (a marker of lipolysis) correlated inversely with expression of alpha2A-adrenergic-receptor, ratio of subcutaneous to total abdominal fat mass, and limb fat, respectively. Expression......OBJECTIVE: Circulating oestradiol and testosterone, which have been shown to increase in human immunodeficiency virus (HIV)-infected patients following highly active antiretroviral therapy (HAART), may influence fat distribution and insulin sensitivity. Oestradiol increases subcutaneous adipose...

  14. Application of chitosan scaffolds on vascular endothelial growth factor and fibroblast growth factor 2 expressions in tissue engineering principles

    Directory of Open Access Journals (Sweden)

    Ariyati Retno Pratiwi

    2015-12-01

    Full Text Available Background: Tissue engineering has given satisfactory results as biological tissue substitutes to restore, replace, or regenerate tissues that have a defect. Chitosan is an organic biomaterial often used in the biomedical field. Chitosan has biocompatible, antifungal, and antibacterial properties. Chitosan is osteoconductive, suitable for bone regeneration applications. Bone defect healing begins with inflammatory phase as a response to the presence of vascular injury, so new vascularization is required. Vascular endothelial growth factor (VEGF and basic fibroblast growth factor-2 (FGF2 are indicators of the beginning of bone regeneration process, playing an important role in angiogenesis. Purpose: This research was aimed to determine the effects of chitosan scaffold application on the expressions of VEGF and FGF2 in tissue engineering principles. Method: Chitosan was dissolved in CH3COOH and NaOH to form a gel. Chitosan gel was then printed in mould to freeze dry for 24 hours. Those rats with defected bones were divided into two groups. Group 1 was the control group which defected bones were not administrated with chitosan scaffolds. Group 2 was the treatment group which defected bones were administrated with chitosan scaffolds. Those rats were sacrificed on day 14. Tissue preparations were made, and then immunohistochemical staining was conducted. Finally, a statistical analysis was conducted using Kruskal Wallis test. Result: There was no significant difference in the expressions of VEGF and FGF2 between the control group and the treatment group (p>0.05. Conclusion: Chitosan scaffolds do not affect the expressions of VEGF and FGF2 during bone regeneration process on day 14 in tissue engineering principles

  15. Methods for histochemical demonstration of vascular structures at the muscle-bone interface from cryostate sections of demineralized tissue

    DEFF Research Database (Denmark)

    Kirkeby, S

    1981-01-01

    In tissue decalcified with MgNa2EDTA at a neutral pH activity for ATPase can used be for demonstration of the vascular structures at the muscle-bone interface. The GOMORI method for alkaline phosphatase is only of value, when fresh unfixed tissue is to be examined. The azo-dye method for alkaline...... phosphatase failed to give satisfactory results, and so did the alpha-amylase PAS method. 5'-nucleotidase activity is present in both capillaries and in cells lining the surfaces of bones, while larger blood vessels are poorly stained....

  16. Is It Possible to Detect Activated Brown Adipose Tissue in Humans Using Single-Time-Point Infrared Thermography under Thermoneutral Conditions? Impact of BMI and Subcutaneous Adipose Tissue Thickness.

    Directory of Open Access Journals (Sweden)

    Sergios Gatidis

    Full Text Available To evaluate the feasibility to detect activated brown adipose tissue (BAT using single-time-point infrared thermography of the supraclavicular skin region under thermoneutral conditions. To this end, infrared thermography was compared with 18-F-FDG PET, the current reference standard for the detection of activated BAT.120 patients were enrolled in this study. After exclusion of 18 patients, 102 patients (44 female, 58 male, mean age 58±17 years were included for final analysis. All patients underwent a clinically indicated 18F-FDG-PET/CT examination. Immediately prior to tracer injection skin temperatures of the supraclavicular, presternal and jugular regions were measured using spatially resolved infrared thermography at room temperature. The presence of activated BAT was determined in PET by typical FDG uptake within the supraclavicular adipose tissue compartments. Local thickness of supraclavicular subcutaneous adipose tissue (SCAT was measured on CT. Measured skin temperatures were statistically correlated with the presence of activated BAT and anthropometric data.Activated BAT was detected in 9 of 102 patients (8.8%. Local skin temperature of the supraclavicular region was significantly higher in individuals with active BAT compared to individuals without active BAT. However, after statistical correction for the influence of BMI, no predictive value of activated BAT on skin temperature of the supraclavicular region could be observed. Supraclavicular skin temperature was significantly negatively correlated with supraclavicular SCAT thickness.We conclude that supraclavicular SCAT thickness influences supraclavicular skin temperature and thus makes a specific detection of activated BAT using single-time-point thermography difficult. Further studies are necessary to evaluate the possibility of BAT detection using alternative thermographic methods, e.g. dynamic thermography or MR-based thermometry taking into account BMI as a confounding factor.

  17. An anisotropically and heterogeneously aligned patterned electrospun scaffold with tailored mechanical property and improved bioactivity for vascular tissue engineering.

    Science.gov (United States)

    Xu, He; Li, Haiyan; Ke, Qinfei; Chang, Jiang

    2015-04-29

    The development of vascular scaffolds with controlled mechanical properties and stimulatory effects on biological activities of endothelial cells still remains a significant challenge to vascular tissue engineering. In this work, we reported an innovative approach to prepare a new type of vascular scaffolds with anisotropically and heterogeneously aligned patterns using electrospinning technique with unique wire spring templates, and further investigated the structural effects of the patterned electrospun scaffolds on mechanical properties and angiogenic differentiation of human umbilical vein endothelial cells (HUVECs). Results showed that anisotropically aligned patterned nanofibrous structure was obtained by depositing nanofibers on template in a structurally different manner, one part of nanofibers densely deposited on the embossments of wire spring and formed cylindrical-like structures in the transverse direction, while others loosely suspended and aligned along the longitudinal direction, forming a three-dimensional porous microstructure. We further found that such structures could efficiently control the mechanical properties of electrospun vascular scaffolds in both longitudinal and transverse directions by altering the interval distances between the embossments of patterned scaffolds. When HUVECs were cultured on scaffolds with different microstructures, the patterned scaffolds distinctively promoted adhesion of HUVECs at early stage and proliferation during the culture period. Most importantly, cells experienced a large shape change associated with cell cytoskeleton and nuclei remodeling, leading to a stimulatory effect on angiogenesis differentiation of HUVECs by the patterned microstructures of electrospun scaffolds, and the scaffolds with larger distances of intervals showed a higher stimulatory effect. These results suggest that electrospun scaffolds with the anisotropically and heterogeneously aligned patterns, which could efficiently control the

  18. A Unique Immunofluorescence Protocol to Detect Protein Expression in Vascular Tissues: Tacking a Long Standing Pathological Hitch

    Directory of Open Access Journals (Sweden)

    Puneet GANDHI

    2018-01-01

    Full Text Available Objective: Autofluorescence induced interference is one of the major drawbacks in immunofluorescence analysis of formalin-fixed paraffin-embedded tissues, as it decreases the signal-to-noise ratio of specific labeling. Apart from aldehyde-fixation induced artifacts; collagen and elastin, red blood cells and endogenous fluorescent pigment lipofuscin are prime sources of autofluorescence in vascular and aging tissues. We describe herein, an optimized indirect-immunofluorescence method for archival formalin-fixed paraffin-embedded tissues tissues and cryo sections, using a combination of 3-reagents in a specific order, to achieve optimal fluorescence signals and imaging. Material and Method: Human telomerase reverse transcriptase, a protein implicated as a proliferation marker, was chosen relevant to its expression in solid tumors along with 3 other intracellular proteins exhibiting nuclear and/or cytoplasmic expression. Staining was performed on 10 glioma tissue sections along with 5 of their cryo sections, 5 sections each of hepatocellular, lung, papillary-thyroid and renal cell carcinoma, with 10 non-malignant brain tissue samples serving as control. Specimens were imaged using epifluorescence microscopy, followed by software-based quantification of fluorescence signals for statistical analysis and validation. Results: We observed that the combined application of sodium-borohydride followed by crystal violet before antigen retrieval and a Sudan black B treatment after secondary antibody application proved to be most efficacious for masking autofluorescence/non-specific background in vascular tissues. Conclusion: This unique trio-methodology provides quantifiable observations with maximized fluorescence signal intensity of the target protein for longer retention time of the signal even after prolonged storage. The results can be extrapolated to other human tissues for different protein targets.

  19. Insulin resistance in multiple tissues in patients with type 1 diabetes mellitus on long-term continuous subcutaneous insulin infusion therapy

    NARCIS (Netherlands)

    Donga, Esther; van Dijk, Marieke [Leiden Univ., LUMC; Hoogma, Roel P. L. M.; Corssmit, Eleonora P. M.; Romijn, Johannes A.

    2013-01-01

    The aim of this study was to determine whether insulin resistance is present in lean patients with uncomplicated type 1 diabetes mellitus on long-term continuous subcutaneous insulin infusion (CSII), compared with matched healthy controls. We studied eight patients (four men and four women) with

  20. Non-contact radiofrequency-induced reduction of subcutaneous abdominal fat correlates with initial cardiovascular autonomic balance and fat tissue hormones: safety analysis [v1; ref status: indexed, http://f1000r.es/4pj

    Directory of Open Access Journals (Sweden)

    Jiri Pumprla

    2015-02-01

    Full Text Available Background and objective: The non-invasive reduction of subcutaneous abdominal fat became popular in the last decade. Radiofrequency (RF, non-contact, selective-field device Vanquish® has been developed to selectively induce deep fat tissue heating to reduce waist circumference. Our analysis evaluates immediate and sustained effects of this treatment on cardiovascular autonomic function and on selected metabolic parameters. Study design/patients and methods: A retrospective proof-of-concept analysis of RF treatment effects was conducted in 20 individuals with metabolic syndrome, to reduce the subcutaneous abdominal fat. Four 30-minutes treatment sessions (manufacturer´s standard protocol were performed in 1-week intervals. Vital signs, ECG, lab screening, body composition, subcutaneous fat thickness and spectral analysis of heart rate variability (HRV have been examined before, after the 1st and 4th treatment, and at follow-up visits 1 month and 3 months after the treatment. Results: The RF treatment led to a significant reduction of abdominal circumference after the 4th session (p0.59, p<0.04. Conclusions: Our analysis shows that the selective-field RF treatment is safe and efficient for reduction of subcutaneous abdominal fat. While the treatment increases the immediate sympathetic response of the body to deep tissue heating, no sustained change in autonomic function could be recorded at 1 month follow-up. The observed correlation between initial VLF spectral power and waist circumference reduction at follow-up, as well as the association of initial adiponectin values and immediate autonomic response to the treatment might be instrumental for decisions on body contouring strategies.

  1. Subcutaneous emphysema in cavitary pulmonary tuberculosis without pneumothorax or pneumomediastinum

    Directory of Open Access Journals (Sweden)

    Ramakant Dixit

    2012-01-01

    Full Text Available Extra-alveolar air in the form of subcutaneous tissue emphysema is observed in a variety of clinical settings. Spontaneous subcutaneous emphysema in the absence of pneumothorax or pneumomediastinum is very rare. We report a case of spontaneous subcutaneous emphysema secondary to cavitary pulmonary tuberculosis in the absence of pneumothorax or pneumomediastinum.

  2. Subfailure overstretch injury leads to reversible functional impairment and purinergic P2X7 receptor activation in intact vascular tissue

    Directory of Open Access Journals (Sweden)

    Weifeng Luo

    2016-09-01

    Full Text Available Vascular stretch injury is associated with blunt trauma, vascular surgical procedures, and harvest of human saphenous vein for use in vascular bypass grafting. A model of subfailure overstretch in rat abdominal aorta was developed to characterize surgical vascular stretch injury. Longitudinal stretch of rat aorta was characterized ex vivo. Stretch to the haptic endpoint where the tissues would no longer lengthen, occurred at twice the resting length. The stress produced at this length was greater than physiologic mechanical forces but well below the level of mechanical disruption. Functional responses were determined in a muscle bath and this subfailure overstretch injury led to impaired smooth muscle function that was partially reversed by treatment with purinergic receptor (P2X7R antagonists. These data suggest that vasomotor dysfunction caused by subfailure overstretch injury may be due to activation of P2X7R. These studies have implications for our understanding of mechanical stretch injury of blood vessels and offer novel therapeutic opportunities.

  3. Constitutive modeling of an electrospun tubular scaffold used for vascular tissue engineering.

    Science.gov (United States)

    Hu, Jin-Jia

    2015-08-01

    In this study, we sought to model the mechanical behavior of an electrospun tubular scaffold previously reported for vascular tissue engineering with hyperelastic constitutive equations. Specifically, the scaffolds were made by wrapping electrospun polycaprolactone membranes that contain aligned fibers around a mandrel in such a way that they have microstructure similar to the native arterial media. The biaxial stress-stretch data of the scaffolds made of moderately or highly aligned fibers with three different off-axis fiber angles α (30°, 45°, and 60°) were fit by a phenomenological Fung model and a series of structurally motivated models considering fiber directions and fiber angle distributions. In particular, two forms of fiber strain energy in the structurally motivated model for a linear and a nonlinear fiber stress-strain relation, respectively, were tested. An isotropic neo-Hookean strain energy function was also added to the structurally motivated models to examine its contribution. The two forms of fiber strain energy did not result in significantly different goodness of fit for most groups of the scaffolds. The absence of the neo-Hookean term in the structurally motivated model led to obvious nonlinear stress-stretch fits at a greater axial stretch, especially when fitting data from the scaffolds with a small α. Of the models considered, the Fung model had the overall best fitting results; its applications are limited because of its phenomenological nature. Although a structurally motivated model using the nonlinear fiber stress-strain relation with the neo-Hookean term provided fits comparably as good as the Fung model, the values of its model parameters exhibited large within-group variations. Prescribing the dispersion of fiber orientation in the structurally motivated model, however, reduced the variations without compromising the fits and was thus considered to be the best structurally motivated model for the scaffolds. It appeared that the

  4. Functional Characterization of Preadipocytes Derived from Human Periaortic Adipose Tissue

    Directory of Open Access Journals (Sweden)

    Diana Vargas

    2017-01-01

    Full Text Available Adipose tissue can affect the metabolic control of the cardiovascular system, and its anatomic location can affect the vascular function differently. In this study, biochemical and phenotypical characteristics of adipose tissue from periaortic fat were evaluated. Periaortic and subcutaneous adipose tissues were obtained from areas surrounding the ascending aorta and sternotomy incision, respectively. Adipose tissues were collected from patients undergoing myocardial revascularization or mitral valve replacement surgery. Morphological studies with hematoxylin/eosin and immunohistochemical assay were performed in situ to quantify adipokine expression. To analyze adipogenic capacity, adipokine expression, and the levels of thermogenic proteins, adipocyte precursor cells were isolated from periaortic and subcutaneous adipose tissues and induced to differentiation. The precursors of adipocytes from the periaortic tissue accumulated less triglycerides than those from the subcutaneous tissue after differentiation and were smaller than those from subcutaneous adipose tissue. The levels of proteins involved in thermogenesis and energy expenditure increased significantly in periaortic adipose tissue. Additionally, the expression levels of adipokines that affect carbohydrate metabolism, such as FGF21, increased significantly in mature adipocytes induced from periaortic adipose tissue. These results demonstrate that precursors of periaortic adipose tissue in humans may affect cardiovascular events and might serve as a target for preventing vascular diseases.

  5. Obesity-associated insulin resistance is correlated to adipose tissue vascular endothelial growth factors and metalloproteinase levels

    Directory of Open Access Journals (Sweden)

    Tinahones Francisco

    2012-04-01

    Full Text Available Abstract Background The expansion of adipose tissue is linked to the development of its vasculature, which appears to have the potential to regulate the onset of obesity. However, at present, there are no studies highlighting the relationship between human adipose tissue angiogenesis and obesity-associated insulin resistance (IR. Results Our aim was to analyze and compare angiogenic factor expression levels in both subcutaneous (SC and omentum (OM adipose tissues from morbidly obese patients (n = 26 with low (OB/L-IR (healthy obese and high (OB/H-IR degrees of IR, and lean controls (n = 17. Another objective was to examine angiogenic factor correlations with obesity and IR. Here we found that VEGF-A was the isoform with higher expression in both OM and SC adipose tissues, and was up-regulated 3-fold, together with MMP9 in OB/L-IR as compared to leans. This up-regulation decreased by 23% in OB/-H-IR compared to OB/L-IR. On the contrary, VEGF-B, VEGF-C and VEGF-D, together with MMP15 was down-regulated in both OB/H-IR and OB/L-IR compared to lean patients. Moreover, MMP9 correlated positively and VEGF-C, VEGF-D and MMP15 correlated negatively with HOMA-IR, in both SC and OM. Conclusion We hereby propose that the alteration in MMP15, VEGF-B, VEGF-C and VEGF-D gene expression may be caused by one of the relevant adipose tissue processes related to the development of IR, and the up-regulation of VEGF-A in adipose tissue could have a relationship with the prevention of this pathology.

  6. Microsecond-pulsed dielectric barrier discharge plasma stimulation of tissue macrophages for treatment of peripheral vascular disease

    Energy Technology Data Exchange (ETDEWEB)

    Miller, V., E-mail: vmiller@coe.drexel.edu; Lin, A.; Brettschneider, J.; Fridman, G.; Fridman, A. [AJ Drexel Plasma Institute, Drexel University, Camden, New Jersey 08103 (United States); Kako, F.; Gabunia, K.; Kelemen, S.; Autieri, M. [Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania 19140 (United States)

    2015-12-15

    Angiogenesis is the formation of new blood vessels from pre-existing vessels and normally occurs during the process of inflammatory reactions, wound healing, tissue repair, and restoration of blood flow after injury or insult. Stimulation of angiogenesis is a promising and an important step in the treatment of peripheral artery disease. Reactive oxygen species have been shown to be involved in stimulation of this process. For this reason, we have developed and validated a non-equilibrium atmospheric temperature and pressure short-pulsed dielectric barrier discharge plasma system, which can non-destructively generate reactive oxygen species and other active species at the surface of the tissue being treated. We show that this plasma treatment stimulates the production of vascular endothelial growth factor, matrix metalloproteinase-9, and CXCL 1 that in turn induces angiogenesis in mouse aortic rings in vitro. This effect may be mediated by the direct effect of plasma generated reactive oxygen species on tissue.

  7. Culture of equine bone marrow mononuclear fraction and adipose tissue-derived stromal vascular fraction cells in different media

    Directory of Open Access Journals (Sweden)

    Gesiane Ribeiro

    2013-12-01

    Full Text Available The objective of this study was to evaluate the culture of equine bone marrow mononuclear fraction and adipose tissue - derived stromal vascular fraction cells in two different cell culture media. Five adult horses were submitted to bone marrow aspiration from the sternum, and then from the adipose tissue of the gluteal region near the base of the tail. Mononuclear fraction and stromal vascular fraction were isolated from the samples and cultivated in DMEM medium supplemented with 10% fetal bovine serum or in AIM-V medium. The cultures were observed once a week with an inverted microscope, to perform a qualitative analysis of the morphology of the cells as well as the general appearance of the cell culture. Colony-forming units (CFU were counted on days 5, 15 and 25 of cell culture. During the first week of culture, differences were observed between the samples from the same source maintained in different culture media. The number of colonies was significantly higher in samples of bone marrow in relation to samples of adipose tissue.

  8. Low-temperature X-ray microanalysis of the differentiating vascular tissue in root tips of Lemna minor L

    Energy Technology Data Exchange (ETDEWEB)

    Echlin, P [Univ. of Cambridge, England; Lai, C E; Hayes, T L

    1982-06-01

    The fracture faces of bulk-frozen tissue offer a number of advantages for the analysis of diffusible elements. They are easy to prepare, remain uncontaminated, and, unlike most frozen-hydrated sections, can be shown to exist in a fully hydrated state throughout examination and analysis. Root tips of Lemna minor briefly treated with a polymeric cryoprotectant are quench frozen in melting nitrogen. Fractures are prepared using the AMRAY Biochamber, lightly etched if necessary to reveal surface detail and carbon coated while maintaining the specimen at 110 K. The frozen-hydrated fracture faces are analyzed at 110 K using the P/B ratio method which is less sensitive to changes in surface geometry and variations in beam current. The method has been used to investigate the distribution of seven elements (Na/sup +/, Mg/sup + +/, P, S, Cl/sup -/, K/sup +/ and Ca/sup + +/) in the developing vascular tissue of the root tip. The microprobe can measure relative elemental ratios at the cellular level and the results from this present study reveal important variations in different parts of the root. The younger, more actively dividing cells, appear to have a slightly higher concentration of diffusible ions in comparison to the somewhat older tissues which have begun to differentiate into what are presumed to be functional vascular elements.

  9. Modeling skin cooling using optical windows and cryogens during laser induced hyperthermia in a multilayer vascularized tissue

    International Nuclear Information System (INIS)

    Singh, Rupesh; Das, Koushik; Okajima, Junnosuke; Maruyama, Shigenao; Mishra, Subhash C.

    2015-01-01

    This article deals with the spatial and the temporal evolution of tissue temperature during skin surface cooled laser induced hyperthermia. Three different skin surface cooling methodologies viz., optical window contact cooling, cryogenic spray cooling and cryogen cooled optical window contact cooling are considered. Sapphire, yttrium aluminum garnet, lithium tantalate, and magnesium oxide doped lithium niobate are the considered optical windows. The cryogens considered are liquid CO_2 and R1234yf. Heat transfer in the multilayer skin tissue embedded with thermally significant blood vessels pairs is modeled using the Pennes and Weinbaum–Jiji bioheat equations. Weinbaum–Jiji bioheat equation is used for the vascularized tissue. Laser transport in the tissue is modeled using the radiative transfer equation. Axial and radial (skin surface) temperature distributions for different combinations of optical windows and cryogens are analyzed. Liquid CO_2 cooled yttrium aluminum garnet is found to be the best surface cooling mechanism. - Highlights: • Skin surface cooled laser induced hyperthermia is studied. • A multi-layer 2-D cylindrical tissue geometry is considered. • Both Pennes and Weinbaum–Jiji bioheat models are considered. • Laser transport in the tissue is modeled using discrete ordinate method. • Results for 4 optical windows and 2 cryogens for skin cooling are presented.

  10. Vascular tissue in traps of Australian carnivorous bladderworts (Utricularia) of the subgenus Polypompholyx

    Czech Academy of Sciences Publication Activity Database

    Płachno, B.J.; Kamińska, I.; Adamec, Lubomír; Świątek, P.

    2017-01-01

    Roč. 142, Sep 2017 (2017), s. 25-31 ISSN 0304-3770 Institutional support: RVO:67985939 Keywords : vascular bundles * traps * Lentibulariaceae Subject RIV: EA - Cell Biology OBOR OECD: Plant sciences, botany Impact factor: 1.714, year: 2016

  11. Vascular and hypoxic tissue lesions in cranial computerized tomography and their differential diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Kuckein, D

    1982-09-01

    CT findings and differential diagnosis in cerebral infarctions caused by vascular stenosis or occlusion, by emboli or arterial thrombosis are discussed; also in cerebral and sinus venous thrombosis. Brain damage due to hypoxia, to a combination of hypoxia and sinus venous thrombosis or to one of hypoxia and hyperpyrexia are presented.

  12. Mobilization of Circulating Vascular Progenitors in Cancer Patients Receiving External Beam Radiation in Response to Tissue Injury

    International Nuclear Information System (INIS)

    Allan, David S.; Morgan, Scott C.; Birch, Paul E.; Yang, Lin; Halpenny, Michael J.; Gunanayagam, Angelo; Li Yuhua; Eapen, Libni

    2009-01-01

    Purpose: Endothelial-like vascular progenitor cells (VPCs) are associated with the repair of ischemic tissue injury in several clinical settings. Because the endothelium is a principal target of radiation injury, VPCs may be important in limiting toxicity associated with radiotherapy (RT) in patients with cancer. Methods and Materials: We studied 30 patients undergoing RT for skin cancer (n = 5), head-and-neck cancer (n = 15), and prostate cancer (n = 10) prospectively, representing a wide range of irradiated mucosal volumes. Vascular progenitor cell levels were enumerated from peripheral blood at baseline, midway through RT, at the end of treatment, and 4 weeks after radiation. Acute toxicity was graded at each time point by use of the National Cancer Institute's Common Toxicity Criteria, version 3.0. Results: Significant increases in the proportion of CD34 + /CD133 + VPCs were observed after completion of RT, from 0.012% at baseline to 0.048% (p = 0.029), and the increase in this subpopulation was most marked in patients with Grade 2 peak toxicity or greater after RT (p = 0.034). Similarly, CD34 + /vascular endothelial growth factor receptor 2-positive VPCs were increased after the completion of radiation therapy in comparison to baseline (from 0.014% to 0.027%, p = 0.043), and there was a trend toward greater mobilization in patients with more significant toxicity (p = 0.08). The mobilization of CD34 + hematopoietic stem cells did not increase after treatment (p = 0.58), and there was no relationship with toxicity. Conclusions: We suggest that VPCs may play an important role in reducing radiation-induced tissue damage. Interventions that increase baseline VPC levels or enhance their mobilization and recruitment in response to RT may prove useful in facilitating more rapid and complete tissue healing.

  13. Subcutaneous blood flow during insulin-induced hypoglycaemia: studies in juvenile diabetics with and without autonomic neuropathy and in normal subjects

    Energy Technology Data Exchange (ETDEWEB)

    Hilsted, J; Madsbad, S; Sestoft, L

    1982-08-01

    Subcutaneous blood flow was measured preceding insulin-induced hypoglycaemia, at the onset of hypoglycaemic symptoms and 2 h later in juvenile diabetics with and without autonomic neuropathy and in normal males. In all groups subcutaneous blood flow decreased at the onset of hypoglycaemic symptoms compared with pre-hypoglycaemic flow. Two hours after onset of hypoglycaemic symptoms, subcutaneous blood flow was still significantly decreased compared with pre-hypoglycaemic flow. In normal subjects local nerve blockade had no effect on blood flow changes during hypoglycaemia, whereas local alpha-receptor blockade abolished the vasoconstrictor response. We suggest that circulating catecholamines stimulating vascular alpha-receptors are probably responsible for flow reduction in the subcutaneous tissue during hypoglycaemia.

  14. Subcutaneous phaeohyphomycosis caused by cladophialophora boppii

    Directory of Open Access Journals (Sweden)

    Pereira Rickson

    2010-01-01

    Full Text Available Subcutaneous phaeohyphomycosis is an infection of the skin and subcutaneous tissue, caused by dematiaceous fungi. An adult male presented with a history of multiple reddish nodules over the face and hands. Histopathological examination of the skin biopsies showed a dense granulomatous infiltrate of macrophages, containing intracytoplasmic basophilic bodies throughout the dermis. Gomori methenamine-silver stained sections revealed yeast cells within macrophages. Multiple cultures on Sabouraud′s dextrose agar grew Cladophialophora boppii. The patient was treated with oral itraconazole for a year and the response monitored with dermal ultrasound. This is the first case report of subcutaneous phaeohyphomycosis caused by Cl. boppii in India.

  15. Circulating sex hormones and gene expression of subcutaneous adipose tissue oestrogen and alpha-adrenergic receptors in HIV-lipodystrophy: implications for fat distribution

    DEFF Research Database (Denmark)

    Andersen, Ove; Pedersen, Steen B; Svenstrup, Birgit

    2007-01-01

    of alpha2A-adrenergic-receptor correlated positively with expression of oestrogen-receptor-alpha. CONCLUSIONS: The results fit the hypothesis that sex hormones play a role in altered fat distribution and insulin sensitivity of male patients with HIV-lipodystrophy. The effect of oestradiol...... patients, correlated positively with both plasma oestradiol and testosterone (n = 31). Glycerol concentration during clamp (a marker of lipolysis) correlated inversely with expression of alpha2A-adrenergic-receptor, ratio of subcutaneous to total abdominal fat mass, and limb fat, respectively. Expression...

  16. Caloric restriction and diet-induced weight loss do not induce browning of human subcutaneous white adipose tissue in women and men with obesity

    DEFF Research Database (Denmark)

    Barquissau, Valentin; Léger, Benjamin; Beuzelin, Diane

    2018-01-01

    Caloric restriction (CR) is standard lifestyle therapy in obesity management. CR-induced weight loss improves the metabolic profile of individuals with obesity. In mice, occurrence of beige fat cells in white fat depots favors a metabolically healthy phenotype, and CR promotes browning of white...... variation, with higher expression of brown and beige markers in women with obesity and during winter, respectively. The very low calorie diet resulted in decreased browning of subcutaneous abdominal WAT. During the whole dietary intervention, evolution of body fat and insulin resistance was independent...

  17. Ulex europaeus I lectin as a marker for vascular endothelium in human tissues.

    Science.gov (United States)

    Holthöfer, H; Virtanen, I; Kariniemi, A L; Hormia, M; Linder, E; Miettinen, A

    1982-07-01

    Ulex europaeus I agglutinin, a lectin specific for some alpha-L-fucose-containing glycocompounds, was used in fluorescence microscopy to stain cryostat sections of human tissues. The endothelium of vessels of all sizes was stained ubiquitously in all tissues studied as judged by double staining with a known endothelial marker, antibodies against human clotting factor VIII. Cultured human umbilical vein endothelial cells, but not fibroblasts, also bound Ulex lectin. The staining was not affected by the blood group type of the tissue donor. In some tissues Ulex lectin presented additional binding to epithelial structures. Also, this was independent on the blood group or the ability of the tissue donor to secrete soluble blood group substances. Lotus tetragonolobus agglutinin, another lectin specific for some alpha-L-fucose-containing moieties failed to react with endothelial cells. Our results suggest that Ulex europaeus I agglutinin is a good histologic marker for endothelium in human tissues.

  18. Enhancing the radiation response of tumors but not early or late responding normal tissues using a vascular disrupting agent

    DEFF Research Database (Denmark)

    Horsman, Michael R

    2017-01-01

    INTRODUCTION: Vascular disrupting agents (VDAs) damage tumor vasculature and enhance tumor radiation response. In this pre-clinical study, we combined radiation with the leading VDA in clinical development, combretastatin A-4 phosphate (CA4P), and compared the effects seen in tumors and relevant...... normal tissues. MATERIAL AND METHODS: Radiation was applied locally to tissues in CDF1 mice to produce full radiation dose-response curves. CA4P (250 mg/kg) was intraperitoneally (i.p.) injected within 30 minutes after irradiating. Response of 200 mm3 foot implanted C3H mammary carcinomas was assessed......% increase in ventilation rate measured by plethysmography within 9 months). A Chi-squared test was used for statistical comparisons (significance level of p 4P. The radiation...

  19. Expression of vascular endothelial factor protein in the tumor tissues of patients with Stages I-II ovarian cancer

    Directory of Open Access Journals (Sweden)

    V. L. Karapetyan

    2010-01-01

    Full Text Available To define tumor markers is presently the most interesting and promising direction for the diagnosis of malignancies. The expression of the major angiogenesis factor vascular endothelial growth factor (VEGF in primary tumor tissue was studied in ovarian cancer (OC patients to define the prognostic value of the marker.The study enrolled 48 patients with OC. The immunohistochemical technique was used to examine VEGF expression in the primary tu- mor tissue. The frequency of VEGF expression, which was associated with lower relapse-free survival rates, was found to be high (85.4% in OC patients (p > 0.05.The tumor expression of the angiogenic factor VEGF was shown to provide prognostic information in early-stage ovarian epithelial cancer.

  20. Posttransplant oxygen inhalation improves the outcome of subcutaneous islet transplantation: A promising clinical alternative to the conventional intrahepatic site.

    Science.gov (United States)

    Komatsu, H; Rawson, J; Barriga, A; Gonzalez, N; Mendez, D; Li, J; Omori, K; Kandeel, F; Mullen, Y

    2018-04-01

    Subcutaneous tissue is a promising site for islet transplantation, due to its large area and accessibility, which allows minimally invasive procedures for transplantation, graft monitoring, and removal of malignancies as needed. However, relative to the conventional intrahepatic transplantation site, the subcutaneous site requires a large number of islets to achieve engraftment success and diabetes reversal, due to hypoxia and low vascularity. We report that the efficiency of subcutaneous islet transplantation in a Lewis rat model is significantly improved by treating recipients with inhaled 50% oxygen, in conjunction with prevascularization of the graft bed by agarose-basic fibroblast growth factor. Administration of 50% oxygen increased oxygen tension in the subcutaneous site to 140 mm Hg, compared to 45 mm Hg under ambient air. In vitro, islets cultured under 140 mm Hg oxygen showed reduced central necrosis and increased insulin release, compared to those maintained in 45 mm Hg oxygen. Six hundred syngeneic islets subcutaneously transplanted into the prevascularized graft bed reversed diabetes when combined with postoperative 50% oxygen inhalation for 3 days, a number comparable to that required for intrahepatic transplantation; in the absence of oxygen treatment, diabetes was not reversed. Thus, we show oxygen inhalation to be a simple and promising approach to successfully establishing subcutaneous islet transplantation. © 2017 The American Society of Transplantation and the American Society of Transplant Surgeons.

  1. Tissue-engineered vascular grafts for use in the treatment of congenital heart disease: from the bench to the clinic and back again.

    Science.gov (United States)

    Patterson, Joseph T; Gilliland, Thomas; Maxfield, Mark W; Church, Spencer; Naito, Yuji; Shinoka, Toshiharu; Breuer, Christopher K

    2012-05-01

    Since the first tissue-engineered vascular graft (TEVG) was implanted in a child over a decade ago, growth in the field of vascular tissue engineering has been driven by clinical demand for improved vascular prostheses with performance and durability similar to an autologous blood vessel. Great strides were made in pediatric congenital heart surgery using the classical tissue engineering paradigm, and cell seeding of scaffolds in vitro remained the cornerstone of neotissue formation. Our second-generation bone marrow cell-seeded TEVG diverged from tissue engineering dogma with a design that induces the recipient to regenerate vascular tissue in situ. New insights suggest that neovessel development is guided by cell signals derived from both seeded cells and host inflammatory cells that infiltrate the graft. The identification of these signals and the regulatory interactions that influence cell migration, phenotype and extracellular matrix deposition during TEVG remodeling are yielding a next-generation TEVG engineered to guide neotissue regeneration without the use of seeded cells. These developments represent steady progress towards our goal of an off-the-shelf tissue-engineered vascular conduit for pediatric congenital heart surgery.

  2. Development of mechanically expanded gelatin-AAc-PLLA/PLCL nanofibers for vascular tissue engineering by radiation-based techniques

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jin Oh; Jeong, Sung In; Seo, Da Eun; Park, Jong Seok; Gwon, Hui Jeong; Ahn, Sung Jun; Lim, Youn Mook [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of); Shin, Young Min [Dept. of Bioengineering, Division of Applied Chemical and Bio Engineering, Hanyang University, Seoul (Korea, Republic of)

    2015-12-15

    Vascular tissue engineering has been accessed to mimic the natural composition of the blood vessel containing inmate, media, and adventitia layers. We fabricated mechanically expanded PLLA/PLCL nanofibers using electrospinning and UTM. The pore size of the meshes was increased the gelatin immobilized AAc-PLLA/PLCL nanofibers (203.30±49.62 microns) than PLLA/PLCL nanofibers (59.99±8.66 microns) after mechanical expansion. To increase the cell adhesion and proliferation, we introduced carboxyl group, and gelatin was conjugated on them. The properties of the PLLA/PLCL nanofibers were analyzed with SEM, ATR-FTIR, TBO staining, and water contact angle measurement, general cell responses on the PLLA/PLCL nanofibers such as adhesion, proliferation, and infiltration were also investigated using smooth muscle cell (SMC). During the SMC culture, the initial viability of the cells was significantly increased on the gelatin immobilized AAc-PLLA/PLCL nanofibers, and infiltration of the cells was also enhanced on them. Therefore, gelatin immobilized AAc-PLLA/PLCL nanofibers and mechanically expanded meshes may be a good tool for vascular tissue engineering application.

  3. Stem development through vascular tissues: EPFL-ERECTA family signaling that bounces in and out of phloem.

    Science.gov (United States)

    Tameshige, Toshiaki; Ikematsu, Shuka; Torii, Keiko U; Uchida, Naoyuki

    2017-01-01

    Plant cells communicate with each other using a variety of signaling molecules. Recent studies have revealed that various types of secreted peptides, as well as phytohormones known since long ago, mediate cell-cell communication in diverse contexts of plant life. These peptides affect cellular activities, such as proliferation and cell fate decisions, through their perception by cell surface receptors located on the plasma membrane of target cells. ERECTA (ER), an Arabidopsis thaliana receptor kinase gene, was first identified as a stem growth regulator, and since then an increasing number of studies have shown that ER is involved in a wide range of developmental and physiological processes. In particular, molecular functions of ER have been extensively studied in stomatal patterning. Furthermore, the importance of ER signaling in vascular tissues of inflorescence stems, especially in phloem cells, has recently been highlighted. In this review article, first we briefly summarize the history of ER research including studies on stomatal development, then introduce ER functions in vascular tissues, and discuss its interactions with phytohormones and other receptor kinase signaling pathways. Future questions and challenges will also be addressed. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  4. Subcutaneous blood flow in psoriasis

    International Nuclear Information System (INIS)

    Klemp, P.

    1985-01-01

    The simultaneously recorded disappearance rates of 133 xe from subcutaneous adipose tissue in the crus were studied in 10 patients with psoriasis vulgaris using atraumatic labeling of the tissue in lesional skin (LS) areas and symmetrical, nonlesional skin (NLS) areas. Control experiments were performed bilaterally in 10 younger, healthy subjects. The subcutaneous washout rate constant was significantly higher in LS, 0.79 +/- 0.05 min-1 x 10(2) compared to the washout rate constant of NLS, 0.56 +/- 0.07 min-1. 10(2), or the washout rate constant in the normal subjects, 0.46 +/- 0.17 min-1 x 10(2). The mean washout rate constant in NLS was 25% higher than the mean washout rate constant in the normal subjects. The difference was, however, not statistically significant. Differences in the washout rate constants might be due to abnormal subcutaneous tissue-to-blood partition (lambda) in the LS--and therefore not reflecting the real differences in the subcutaneous blood flow (SBF). The lambda for 133 Xe was therefore measured--using a double isotope washout method ( 133 Xe and [ 131 I]antipyrine)--in symmetrical sites of the lateral crus in LS and NLS of 10 patients with psoriasis vulgaris and in 10 legs of normal subjects. In LS the lambda was 4.52 +/- 1.67 ml/g, which was not statistically different from that of NLS, 5.25 +/- 2.19 ml/g, nor from that of normal subcutaneous tissue, 4.98 +/- 1.04 ml/g. Calculations of the SBF using the obtained lambda values gave a significantly higher SBF in LS, 3.57 +/- 0.23 ml/100 g/min, compared to SBF in the NLS, 2.94 +/- 0.37 ml/100 g/min. There was no statistically significant difference between SBF in NLS and SBF in the normal subjects. The increased SBF in LS of psoriatics might be a secondary phenomenon to an increased heat loss in the lesional skin

  5. Subcutaneous granuloma annulare

    Directory of Open Access Journals (Sweden)

    Dhar Sandipan

    1993-01-01

    Full Text Available Two cases of subcutaneous granuloma annulare are reported. Clinical presentation was in the form of hard subcutaneous nodules, histopathology confirmed the clinical diagnosis. The cases were unique because of onset in adult age, occurrence over unusual sites and absence of classical lesions of granuloma annulare elsewhere.

  6. Injectable agents affecting subcutaneous fats.

    Science.gov (United States)

    Chen, David Lk; Cohen, Joel L; Green, Jeremy B

    2015-09-01

    Mesotherapy is an intradermal or subcutaneous injection of therapeutic agents to induce local effects, and was pioneered in Europe during the 1950s. For the past 2 decades, there has been significant interest in the use of mesotherapy for minimally invasive local fat contouring. Based on the theorized lipolytic effects of the agent phosphatidylcholine, initial attempts involved its injection into subcutaneous tissue. With further studies, however, it became apparent that the activity attributed to phosphatidylcholine mesotherapy was due to the adipolytic effects of deoxycholate, a detergent used to solubilize phosphatidylcholine. Since then, clinical trials have surfaced that demonstrate the efficacy of a proprietary formulation of deoxycholate for local fat contouring. Current trials on mesotherapy with salmeterol, a b-adrenergic agonist and lipolysis stimulator, are underway-with promising preliminary results as well. ©2015 Frontline Medical Communications.

  7. Estimating retinal vascular permeability using the adiabatic approximation to the tissue homogeneity model with fluorescein videoangiography

    Science.gov (United States)

    Tichauer, Kenneth M.; Osswald, Christian R.; Dosmar, Emily; Guthrie, Micah J.; Hones, Logan; Sinha, Lagnojita; Xu, Xiaochun; Mieler, William F.; St. Lawrence, Keith; Kang-Mieler, Jennifer J.

    2015-06-01

    Clinical symptoms of diabetic retinopathy are not detectable until damage to the retina reaches an irreversible stage, at least by today's treatment standards. As a result, there is a push to develop new, "sub-clinical" methods of predicting the onset of diabetic retinopathy before the onset of irreversible damage. With diabetic retinopathy being associated with the accumulation of long-term mild damage to the retinal vasculature, retinal blood vessel permeability has been proposed as a key parameter for detecting preclinical stages of retinopathy. In this study, a kinetic modeling approach used to quantify vascular permeability in dynamic contrast-enhanced medical imaging was evaluated in noise simulations and then applied to retinal videoangiography data in a diabetic rat for the first time to determine the potential for this approach to be employed clinically as an early indicator of diabetic retinopathy. Experimental levels of noise were found to introduce errors of less than 15% in estimates of blood flow and extraction fraction (a marker of vascular permeability), and fitting of rat retinal fluorescein angiography data provided stable maps of both parameters.

  8. Contribution of endothelial progenitors and proangiogenic hematopoietic cells to vascularization of tumor and ischemic tissue

    Science.gov (United States)

    Kopp, Hans-Georg; Ramos, Carlos A.; Rafii, Shahin

    2010-01-01

    Purpose of review During the last several years, a substantial amount of evidence from animal as well as human studies has advanced our knowledge of how bone marrow derived cells contribute to neoangiogenesis. In the light of recent findings, we may have to redefine our thinking of endothelial cells as well as of perivascular mural cells. Recent findings Inflammatory hematopoietic cells, such as macrophages, have been shown to promote neoangiogenesis during tumor growth and wound healing. Dendritic cells, B lymphocytes, monocytes, and other immune cells have also been found to be recruited to neoangiogenic niches and to support neovessel formation. These findings have led to the concept that subsets of hematopoietic cells comprise proangiogenic cells that drive adult revascularization processes. While evidence of the importance of endothelial progenitor cells in adult vasculogenesis increased further, the role of these comobilized hematopoietic cells has been intensely studied in the last few years. Summary Angiogenic factors promote mobilization of vascular endothelial growth factor receptor 1-positive hematopoietic cells through matrix metalloproteinase-9 mediated release of soluble kit-ligand and recruit these proangiogenic cells to areas of hypoxia, where perivascular mural cells present stromal-derived factor 1 (CXCL-12) as an important retention signal. The same factors are possibly involved in mobilization of vascular endothelial growth factor receptor 2-positive endothelial precursors that may participate in neovessel formation. The complete characterization of mechanisms, mediators and signaling pathways involved in these processes will provide novel targets for both anti and proangiogenic therapeutic strategies. PMID:16567962

  9. S.E. Mitchell Vascular Anomalies Flow Chart (SEMVAFC): A visual pathway combining clinical and imaging findings for classification of soft-tissue vascular anomalies

    International Nuclear Information System (INIS)

    Tekes, A.; Koshy, J.; Kalayci, T.O.; Puttgen, K.; Cohen, B.; Redett, R.; Mitchell, S.E.

    2014-01-01

    Classification of vascular anomalies (VAs) is challenging due to overlapping clinical symptoms, confusing terminology in the literature and unfamiliarity with this complex entity. It is important to recognize that VAs include two distinct entities, vascular tumours (VTs) and vascular malformations (VaMs). In this article, we describe SE Mitchell Vascular Anomalies Flow Chart (SEMVAFC), which arises from a multidisciplinary approach that incorporates clinical symptoms, physical examination and magnetic resonance imaging (MRI) findings to establish International Society for the Study of Vascular Anomalies (ISSVA)-based classification of the VAs. SEMVAFC provides a clear visual pathway for physicians to accurately diagnose Vas, which is important as treatment, management, and prognosis differ between VTs and VaMs

  10. A synergistic approach to the design, fabrication and evaluation of 3D printed micro and nano featured scaffolds for vascularized bone tissue repair

    International Nuclear Information System (INIS)

    Holmes, Benjamin; Bulusu, Kartik; Plesniak, Michael; Zhang, Lijie Grace

    2016-01-01

    3D bioprinting has begun to show great promise in advancing the development of functional tissue/organ replacements. However, to realize the true potential of 3D bioprinted tissues for clinical use requires the fabrication of an interconnected and effective vascular network. Solving this challenge is critical, as human tissue relies on an adequate network of blood vessels to transport oxygen, nutrients, other chemicals, biological factors and waste, in and out of the tissue. Here, we have successfully designed and printed a series of novel 3D bone scaffolds with both bone formation supporting structures and highly interconnected 3D microvascular mimicking channels, for efficient and enhanced osteogenic bone regeneration as well as vascular cell growth. Using a chemical functionalization process, we have conjugated our samples with nano hydroxyapatite (nHA), for the creation of novel micro and nano featured devices for vascularized bone growth. We evaluated our scaffolds with mechanical testing, hydrodynamic measurements and in vitro human mesenchymal stem cell (hMSC) adhesion (4 h), proliferation (1, 3 and 5 d) and osteogenic differentiation (1, 2 and 3 weeks). These tests confirmed bone-like physical properties and vascular-like flow profiles, as well as demonstrated enhanced hMSC adhesion, proliferation and osteogenic differentiation. Additional in vitro experiments with human umbilical vein endothelial cells also demonstrated improved vascular cell growth, migration and organization on micro-nano featured scaffolds. (paper)

  11. A synergistic approach to the design, fabrication and evaluation of 3D printed micro and nano featured scaffolds for vascularized bone tissue repair

    Science.gov (United States)

    Holmes, Benjamin; Bulusu, Kartik; Plesniak, Michael; Zhang, Lijie Grace

    2016-02-01

    3D bioprinting has begun to show great promise in advancing the development of functional tissue/organ replacements. However, to realize the true potential of 3D bioprinted tissues for clinical use requires the fabrication of an interconnected and effective vascular network. Solving this challenge is critical, as human tissue relies on an adequate network of blood vessels to transport oxygen, nutrients, other chemicals, biological factors and waste, in and out of the tissue. Here, we have successfully designed and printed a series of novel 3D bone scaffolds with both bone formation supporting structures and highly interconnected 3D microvascular mimicking channels, for efficient and enhanced osteogenic bone regeneration as well as vascular cell growth. Using a chemical functionalization process, we have conjugated our samples with nano hydroxyapatite (nHA), for the creation of novel micro and nano featured devices for vascularized bone growth. We evaluated our scaffolds with mechanical testing, hydrodynamic measurements and in vitro human mesenchymal stem cell (hMSC) adhesion (4 h), proliferation (1, 3 and 5 d) and osteogenic differentiation (1, 2 and 3 weeks). These tests confirmed bone-like physical properties and vascular-like flow profiles, as well as demonstrated enhanced hMSC adhesion, proliferation and osteogenic differentiation. Additional in vitro experiments with human umbilical vein endothelial cells also demonstrated improved vascular cell growth, migration and organization on micro-nano featured scaffolds.

  12. Subcutaneous abdominal preadipocyte differentiation in vitro inversely correlates with central obesity

    DEFF Research Database (Denmark)

    Permana, Paska A; Nair, Saraswathy; Lee, Yong-Ho

    2004-01-01

    obesity and the level of in vitro preadipocyte differentiation in Pima Indians. Subcutaneous abdominal stromal vascular fractions containing preadipocytes were cultured from 58 nondiabetic subjects [31 M/27 F, 30 +/- 6 yr, body fat 34 +/- 8% by dual-energy X-ray absorptiometry (means +/- SD)]. The average......Expansion of adipose tissue mass results from increased number and size of adipocyte cells. We hypothesized that subcutaneous abdominal preadipocytes in obese individuals might have an intrinsically higher propensity to differentiate into adipocytes. Thus we investigated the relationship between...... percentage of preadipocyte differentiation (PDIFF; cell count by microscopy) was 11 +/- 11% (range 0.2-51%). PDIFF correlated negatively with percent body fat (r = -0.35, P = 0.006) and waist circumference (r = -0.45, P = 0.0004). Multiple regression analysis indicated that waist circumference (P = 0...

  13. Air-spun PLA nanofibers modified with reductively sheddable hydrophilic surfaces for vascular tissue engineering: synthesis and surface modification.

    Science.gov (United States)

    Ko, Na Re; Sabbatier, Gad; Cunningham, Alexander; Laroche, Gaétan; Oh, Jung Kwon

    2014-02-01

    Polylactide (PLA) is a class of promising biomaterials that hold great promise for various biological and biomedical applications, particularly in the field of vascular tissue engineering where it can be used as a fibrous mesh to coat the inside of vascular prostheses. However, its hydrophobic surface providing nonspecific interactions and its limited ability to further modifications are challenges that need to be overcome. Here, the development of new air-spun PLA nanofibers modified with hydrophilic surfaces exhibiting reduction response is reported. Surface-initiated atom transfer radical polymerization allows for grafting pendant oligo(ethylene oxide)-containing polymethacrylate (POEOMA) from PLA air-spun fibers labeled with disulfide linkages. The resulting PLA-ss-POEOMA fibers exhibit enhanced thermal stability and improved surface properties, as well as thiol-responsive shedding of hydrophilic POEOMA by the cleavage of its disulfide linkages in response to reductive reactions, thus tuning the surface properties. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Tissue Engineering at the Blood-Contacting Surface: A Review of Challenges and Strategies in Vascular Graft Development.

    Science.gov (United States)

    Radke, Daniel; Jia, Wenkai; Sharma, Dhavan; Fena, Kemin; Wang, Guifang; Goldman, Jeremy; Zhao, Feng

    2018-05-07

    Tissue engineered vascular grafts (TEVGs) are beginning to achieve clinical success and hold promise as a source of grafting material when donor grafts are unsuitable or unavailable. Significant technological advances have generated small-diameter TEVGs that are mechanically stable and promote functional remodeling by regenerating host cells. However, developing a biocompatible blood-contacting surface remains a major challenge. The TEVG luminal surface must avoid negative inflammatory responses and thrombogenesis immediately upon implantation and promote endothelialization. The surface has therefore become a primary focus for research and development efforts. The current state of TEVGs is herein reviewed with an emphasis on the blood-contacting surface. General vascular physiology and developmental challenges and strategies are briefly described, followed by an overview of the materials currently employed in TEVGs. The use of biodegradable materials and stem cells requires careful control of graft composition, degradation behavior, and cell recruitment ability to ensure that a physiologically relevant vessel structure is ultimately achieved. The establishment of a stable monolayer of endothelial cells and the quiescence of smooth muscle cells are critical to the maintenance of patency. Several strategies to modify blood-contacting surfaces to resist thrombosis and control cellular recruitment are reviewed, including coatings of biomimetic peptides and heparin. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Differential regulation of protease activated receptor-1 and tissue plasminogen activator expression by shear stress in vascular smooth muscle cells

    Science.gov (United States)

    Papadaki, M.; Ruef, J.; Nguyen, K. T.; Li, F.; Patterson, C.; Eskin, S. G.; McIntire, L. V.; Runge, M. S.

    1998-01-01

    Recent studies have demonstrated that vascular smooth muscle cells are responsive to changes in their local hemodynamic environment. The effects of shear stress on the expression of human protease activated receptor-1 (PAR-1) and tissue plasminogen activator (tPA) mRNA and protein were investigated in human aortic smooth muscle cells (HASMCs). Under conditions of low shear stress (5 dyn/cm2), PAR-1 mRNA expression was increased transiently at 2 hours compared with stationary control values, whereas at high shear stress (25 dyn/cm2), mRNA expression was decreased (to 29% of stationary control; Pmuscle cells, indicating that the effects of shear stress on human PAR-1 were not species-specific. Flow cytometry and ELISA techniques using rat smooth muscle cells and HASMCs, respectively, provided evidence that shear stress exerted similar effects on cell surface-associated PAR-1 and tPA protein released into the conditioned media. The decrease in PAR-1 mRNA and protein had functional consequences for HASMCs, such as inhibition of [Ca2+] mobilization in response to thrombin stimulation. These data indicate that human PAR-1 and tPA gene expression are regulated differentially by shear stress, in a pattern consistent with their putative roles in several arterial vascular pathologies.

  16. Differential expression of BK channel isoforms and beta-subunits in rat neuro-vascular tissues

    DEFF Research Database (Denmark)

    Poulsen, Asser Nyander; Wulf, Helle; Hay-Schmidt, Anders

    2009-01-01

    We investigated the expression of splice variants and beta-subunits of the BK channel (big conductance Ca(2+)-activated K(+) channel, Slo1, MaxiK, K(Ca)1.1) in rat cerebral blood vessels, meninges, trigeminal ganglion among other tissues. An alpha-subunit splice variant X1(+24) was found expresse...

  17. Flexible and elastic porous poly(trimethylene carbonate) structures for use in vascular tissue engineering

    NARCIS (Netherlands)

    Song, Y.; Kamphuis, Marloes; Zhang Zheng, Z.Z.; Zhang, Z.; Sterk, L.M.Th.; Vermes, I.; Poot, Andreas A.; Feijen, Jan; Grijpma, Dirk W.

    Biocompatible and elastic porous tubular structures based on poly(1,3-trimethylene carbonate), PTMC, were developed as scaffolds for tissue engineering of small-diameter blood vessels. High-molecular-weight PTMC (Mn = 4.37 × 105) was cross-linked by gamma-irradiation in an inert nitrogen atmosphere.

  18. Improving Ischemia Reperfusion Injury in Vascularized Composite Tissue Allotransplantation Via Histone Deacetylase Modulation

    Science.gov (United States)

    2017-10-01

    animal colony maintenance, tissue fixation and staining – 1 month Scott Levin – consultative support and VCA surgical advisory capacity – 0 months Seth...paraffin embedded for histopathology. • Histopathology was scored in a blinded fashion on an accepted scale for amount of muscle necrosis2, 3

  19. Characterisation of microRNAs from apple (Malus domestica 'Royal Gala') vascular tissue and phloem sap.

    Science.gov (United States)

    Varkonyi-Gasic, Erika; Gould, Nick; Sandanayaka, Manoharie; Sutherland, Paul; MacDiarmid, Robin M

    2010-08-04

    Plant microRNAs (miRNAs) are a class of small, non-coding RNAs that play an important role in development and environmental responses. Hundreds of plant miRNAs have been identified to date, mainly from the model species for which there are available genome sequences. The current challenge is to characterise miRNAs from plant species with agricultural and horticultural importance, to aid our understanding of important regulatory mechanisms in crop species and enable improvement of crops and rootstocks. Based on the knowledge that many miRNAs occur in large gene families and are highly conserved among distantly related species, we analysed expression of twenty-one miRNA sequences in different tissues of apple (Malus x domestica 'Royal Gala'). We identified eighteen sequences that are expressed in at least one of the tissues tested. Some, but not all, miRNAs expressed in apple tissues including the phloem tissue were also detected in the phloem sap sample derived from the stylets of woolly apple aphids. Most of the miRNAs detected in apple phloem sap were also abundant in the phloem sap of herbaceous species. Potential targets for apple miRNAs were identified that encode putative proteins shown to be targets of corresponding miRNAs in a number of plant species. Expression patterns of potential targets were analysed and correlated with expression of corresponding miRNAs. This study validated tissue-specific expression of apple miRNAs that target genes responsible for plant growth, development, and stress response. A subset of characterised miRNAs was also present in the apple phloem translocation stream. A comparative analysis of phloem miRNAs in herbaceous species and woody perennials will aid our understanding of non-cell autonomous roles of miRNAs in plants.

  20. Functional stability of endothelial cells on a novel hybrid scaffold for vascular tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Pankajakshan, Divya; Krishnan, Lissy K [Thrombosis Research Unit, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojapura, Trivandrum 695 012 (India); Krishnan V, Kalliyana, E-mail: lissykk@sctimst.ac.i [Division of Polymer Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojapura, Trivandrum 695 012 (India)

    2010-12-15

    Porous and pliable conduits made of biodegradable polymeric scaffolds offer great potential for the development of blood vessel substitutes but they generally lack signals for cell proliferation, survival and maintenance of a normal phenotype. In this study we have prepared and evaluated porous poly({epsilon}-caprolactone) (PCL) integrated with fibrin composite (FC) to get a biomimetic hybrid scaffold (FC PCL) with the biological properties of fibrin, fibronectin (FN), gelatin, growth factors and glycosaminoglycans. Reduced platelet adhesion on a human umbilical vein endothelial cell-seeded hybrid scaffold as compared to bare PCL or FC PCL was observed, which suggests the non-thrombogenic nature of the tissue-engineered scaffold. Analysis of real-time polymerase chain reaction (RT-PCR) after 5 days of endothelial cell (EC) culture on a hybrid scaffold indicated that the prothrombotic von Willebrand factor and plasminogen activator inhibitor (PAI) were quiescent and stable. Meanwhile, dynamic expressions of tissue plasminogen activator (tPA) and endothelial nitric oxide synthase indicated the desired cell phenotype on the scaffold. On the hybrid scaffold, shear stress could induce enhanced nitric oxide release, which implicates vaso-responsiveness of EC grown on the tissue-engineered construct. Significant upregulation of mRNA for extracellular matrix (ECM) proteins, collagen IV and elastin, in EC was detected by RT-PCR after growing them on the hybrid scaffold and FC-coated tissue culture polystyrene (FC TCPS) but not on FN-coated TCPS. The results indicate that the FC PCL hybrid scaffold can accomplish a remodeled ECM and non-thrombogenic EC phenotype, and can be further investigated as a scaffold for cardiovascular tissue engineering. (communication)

  1. Functional stability of endothelial cells on a novel hybrid scaffold for vascular tissue engineering

    International Nuclear Information System (INIS)

    Pankajakshan, Divya; Krishnan, Lissy K; Krishnan V, Kalliyana

    2010-01-01

    Porous and pliable conduits made of biodegradable polymeric scaffolds offer great potential for the development of blood vessel substitutes but they generally lack signals for cell proliferation, survival and maintenance of a normal phenotype. In this study we have prepared and evaluated porous poly(ε-caprolactone) (PCL) integrated with fibrin composite (FC) to get a biomimetic hybrid scaffold (FC PCL) with the biological properties of fibrin, fibronectin (FN), gelatin, growth factors and glycosaminoglycans. Reduced platelet adhesion on a human umbilical vein endothelial cell-seeded hybrid scaffold as compared to bare PCL or FC PCL was observed, which suggests the non-thrombogenic nature of the tissue-engineered scaffold. Analysis of real-time polymerase chain reaction (RT-PCR) after 5 days of endothelial cell (EC) culture on a hybrid scaffold indicated that the prothrombotic von Willebrand factor and plasminogen activator inhibitor (PAI) were quiescent and stable. Meanwhile, dynamic expressions of tissue plasminogen activator (tPA) and endothelial nitric oxide synthase indicated the desired cell phenotype on the scaffold. On the hybrid scaffold, shear stress could induce enhanced nitric oxide release, which implicates vaso-responsiveness of EC grown on the tissue-engineered construct. Significant upregulation of mRNA for extracellular matrix (ECM) proteins, collagen IV and elastin, in EC was detected by RT-PCR after growing them on the hybrid scaffold and FC-coated tissue culture polystyrene (FC TCPS) but not on FN-coated TCPS. The results indicate that the FC PCL hybrid scaffold can accomplish a remodeled ECM and non-thrombogenic EC phenotype, and can be further investigated as a scaffold for cardiovascular tissue engineering. (communication)

  2. Decrease of Perivascular Adipose Tissue Browning Is Associated With Vascular Dysfunction in Spontaneous Hypertensive Rats During Aging

    Directory of Open Access Journals (Sweden)

    Ling-Ran Kong

    2018-04-01

    Full Text Available Functional perivascular adipose tissue (PVAT is necessary to maintain vascular physiology through both mechanical support and endocrine or paracrine ways. PVAT shows a brown adipose tissue (BAT-like feature and the browning level of PVAT is dependent on the anatomic location and species. However, it is not clear whether PVAT browning is involved in the vascular tone regulation in spontaneously hypertensive rats (SHRs. In the present study, we aimed to illustrate the effect of aging on PVAT browning and subsequent vasomotor reaction in SHRs. Herein we utilized histological staining and western blot to detect the characteristics of thoracic PVAT (tPVAT in 8-week-old and 16-week-old SHR and Wistar-Kyoto (WKY rats. We also detected vascular reactivity analysis to determine the effect of tPVAT on vasomotor reaction during aging. The results showed that tPVAT had a similar phenotype to BAT, including smaller adipocyte size and positive uncoupling protein-1 (UCP1 staining. Interestingly, the tPVAT of 8-week-old SHR showed increased BAT phenotypic marker expression compared to WKY, whereas the browning level of tPVAT had a more dramatic decrease from 8 to 16 weeks of age in SHR than age-matched WKY rats. The vasodilation effect of tPVAT on aortas had no significant difference in 8-week-old WKY and SHR, whereas this effect is obviously decreased in 16-week-old SHR compared to WKY. In contrast, tPVAT showed a similar vasoconstriction effect in 8- or 16-week-old WKY and SHR rats. Moreover, we identified an important vasodilator adenosine, which regulates adipocyte browning and may be a potential PVAT-derived relaxing factor. Adenosine is dramatically decreased from 8 to 16 weeks of age in the tPVAT of SHR. In summary, aging is associated with a decrease of tPVAT browning and adenosine production in SHR rats. These may result in attenuated vasodilation effect of the tPVAT in SHR during aging.

  3. Identification of molecular mechanisms of radiation-induced vascular damage in normal tissues using microarray analyses

    International Nuclear Information System (INIS)

    Kruse, J.J.C.M.; Te Poele, J.A.M.; Russell, N.S.; Boersma, L.J.; Stewart, F.A.

    2003-01-01

    Radiation-induced telangiectasia, characterized by thin-walled dilated blood vessels, can be a serious late complication in patients that have been previously treated for cancer. It might cause cosmetic problems when occurring in the skin, and excessive bleeding requiring surgery when occurring in rectal mucosa. The mechanisms underlying the development of radiation-induced telangiectasia are unclear. The aim of the present study is to determine whether microarrays are useful for studying mechanisms of radiation-induced telangiectasia. The second aim is to test the hypotheses that telangiectasia is characterized by a final common pathway in different tissues. Microarray experiments were performed using amplified RNA from (sham)irradiated mouse tissues (kidney, rectum) at different intervals (1-30 weeks) after irradiation. After normalization procedures, the differentially expressed genes were identified. Control/repeat experiments were done to confirm that the observations were not artifacts of the array procedure. The mouse kidney experiments showed significant upregulation of 31 and 42 genes and downregulation of 9 and 4 genes at 10 and 20 weeks after irradiation, respectively. Irradiated mouse rectum has 278 upregulated and 537 downregulated genes at 10 weeks and 86 upregulated and 29 downregulated genes at 20 weeks. During the development of telangiectasia, 19 upregulated genes and 5 downregulated genes were common to both tissues. Upregulation of Jagged-1, known to play a role in angiogenesis, is particularly interesting in the context of radiation-induced telangiectasia. Microarrays are affective discovery tools to identify novel genes of interest, which may be involved in radiation-induced normal tissue injury. Using information from control arrays (particularly straight color, color reverse and self-self experiments) allowed for a more accurate and reproducible identification of differentially expressed genes than the selection of an arbitrary 2-fold change

  4. Polysaccharides as cell carriers for tissue engineering: the use of cellulose in vascular wall reconstruction

    Czech Academy of Sciences Publication Activity Database

    Bačáková, Lucie; Novotná, Katarína; Pařízek, Martin

    2014-01-01

    Roč. 63, Suppl.1 (2014), S29-S47 ISSN 0862-8408 R&D Projects: GA ČR(CZ) GAP108/12/1168; GA MZd(CZ) NT13297; GA ČR(CZ) GAP108/11/1857 Institutional support: RVO:67985823 Keywords : natural polymers * bioartificial tissue replacements * cell carriers and therapy * regenerative medicine Subject RIV: EI - Biotechnology ; Bionics Impact factor: 1.293, year: 2014

  5. Visualization of superparamagnetic nanoparticles in vascular tissue using XμCT and histology.

    Science.gov (United States)

    Tietze, Rainer; Rahn, Helene; Lyer, Stefan; Schreiber, Eveline; Mann, Jenny; Odenbach, Stefan; Alexiou, Christoph

    2011-02-01

    In order to increase the dose of antineoplastic agents in the tumor area, the concept of magnetic drug targeting (MDT) has been developed. Magnetic nanoparticles consisting of iron oxide and a biocompatible cover layer suspended in an aqueous solution (ferrofluid) serve as carriers for chemotherapeutics being enriched by an external magnetic field after intra-arterial application in desired body compartments (i.e., tumor). We established an ex vivo model to simulate in vivo conditions in a circulating system consisting of magnetic iron oxide nanoparticles passing an intact bovine artery and being focused by an external magnetic field to study their distribution in the vessel. Micro-computed X-ray tomography (XμCT) and histology can elucidate the arrangement of these particles after application. XμCT-analysis has been performed on arterial sections after MDT in order to determine the distribution of the nanoparticles. These measurements have been carried out with a cone X-ray source and corresponding histological sections were stained with Prussian blue. It could be shown that combining XμCT and histology offers the opportunity for a better understanding of the mechanisms of nanoparticle deposition in the vascular system after MDT.

  6. Human in vitro 3D co-culture model to engineer vascularized bone-mimicking tissues combining computational tools and statistical experimental approach.

    Science.gov (United States)

    Bersini, Simone; Gilardi, Mara; Arrigoni, Chiara; Talò, Giuseppe; Zamai, Moreno; Zagra, Luigi; Caiolfa, Valeria; Moretti, Matteo

    2016-01-01

    The generation of functional, vascularized tissues is a key challenge for both tissue engineering applications and the development of advanced in vitro models analyzing interactions among circulating cells, endothelium and organ-specific microenvironments. Since vascularization is a complex process guided by multiple synergic factors, it is critical to analyze the specific role that different experimental parameters play in the generation of physiological tissues. Our goals were to design a novel meso-scale model bridging the gap between microfluidic and macro-scale studies, and high-throughput screen the effects of multiple variables on the vascularization of bone-mimicking tissues. We investigated the influence of endothelial cell (EC) density (3-5 Mcells/ml), cell ratio among ECs, mesenchymal stem cells (MSCs) and osteo-differentiated MSCs (1:1:0, 10:1:0, 10:1:1), culture medium (endothelial, endothelial + angiopoietin-1, 1:1 endothelial/osteo), hydrogel type (100%fibrin, 60%fibrin+40%collagen), tissue geometry (2 × 2 × 2, 2 × 2 × 5 mm(3)). We optimized the geometry and oxygen gradient inside hydrogels through computational simulations and we analyzed microvascular network features including total network length/area and vascular branch number/length. Particularly, we employed the "Design of Experiment" statistical approach to identify key differences among experimental conditions. We combined the generation of 3D functional tissue units with the fine control over the local microenvironment (e.g. oxygen gradients), and developed an effective strategy to enable the high-throughput screening of multiple experimental parameters. Our approach allowed to identify synergic correlations among critical parameters driving microvascular network development within a bone-mimicking environment and could be translated to any vascularized tissue. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Biomaterials with persistent growth factor gradients in vivo accelerate vascularized tissue formation.

    Science.gov (United States)

    Akar, Banu; Jiang, Bin; Somo, Sami I; Appel, Alyssa A; Larson, Jeffery C; Tichauer, Kenneth M; Brey, Eric M

    2015-12-01

    Gradients of soluble factors play an important role in many biological processes, including blood vessel assembly. Gradients can be studied in detail in vitro, but methods that enable the study of spatially distributed soluble factors and multi-cellular processes in vivo are limited. Here, we report on a method for the generation of persistent in vivo gradients of growth factors in a three-dimensional (3D) biomaterial system. Fibrin loaded porous poly (ethylene glycol) (PEG) scaffolds were generated using a particulate leaching method. Platelet derived growth factor BB (PDGF-BB) was encapsulated into poly (lactic-co-glycolic acid) (PLGA) microspheres which were placed distal to the tissue-material interface. PLGA provides sustained release of PDGF-BB and its diffusion through the porous structure results in gradient formation. Gradients within the scaffold were confirmed in vivo using near-infrared fluorescence imaging and gradients were present for more than 3 weeks. The diffusion of PDGF-BB was modeled and verified with in vivo imaging findings. The depth of tissue invasion and density of blood vessels formed in response to the biomaterial increased with magnitude of the gradient. This biomaterial system allows for generation of sustained growth factor gradients for the study of tissue response to gradients in vivo. Published by Elsevier Ltd.

  8. Identification of longitudinal tissue pO2 gradients as one cause for vascular hypoxia in window chamber tumors

    International Nuclear Information System (INIS)

    Dewhirst, Mark W.; Ong, Edgardo T.; Braun, Rod D.; Evans, Sydney M.; Wilson, David

    1997-01-01

    Purpose: We have previously found that vascular hypoxia exists in tumors, even in vessels with active blood flow. We have also reported that the arteriolar input seems to be constrained to entry into the tumor in one surface of the tissue and that the pO2 of tumor arterioles is lower than in comparable arterioles of normal tissues. Both of these features contribute to lowered intravascular pO2 and tissue hypoxia. In this report, we investigated the hypothesis that the anatomical constraint of arteriolar supply from one side of the tumor will lead to longitudinal tissue gradients in pO2 (i.e. the farther removed one is from the arteriolar source, the more hypoxic the vasculature will be). Materials and Methods: Fischer-344 rats had dorsal flap window chambers implanted in the skin fold with simultaneous transplantation of the R3230AC tumor. Tumors were studied at 9-10 days post transplantation, at a diameter of 3-4mm; the tissue thickness was 200μm. For magnetic resonance microscopic imaging, 1.0ml of GdDTPA-BSA complex was injected i.v. into rats bearing window chamber tumors; the upper glass window was removed, and a suffusion medium of balanced salt solution added in its place, prior to injection of the contrast agent. After 15s the skin flap was immersed in 10% formalin and then removed from the animal. The sample was imaged at 9.4T, using spin warp encoding (TR=200ms, TE=6ms) and fourier transformation of the scanning data. The resultant images had a voxel size of 40μm 3 . Phosphorescence quench imaging (PQI) was used to measure vascular pO2 following i.v. administration of 3.5mg Pd-mesotetra-(4-carboxyphenyl) porphyrin. Blue and green light excitations of the upper and lower surfaces of window chambers were made (penetration depth of light ∼ 50 vs >200μm, respectively). Results: In prior studies we demonstrated that arteriolar input into window chamber tumors appeared to be constrained to the fascial surface upon which the tumor grows. 3-D magnetic

  9. Evaluation of different near-infrared spectroscopy technologies for assessment of tissue oxygen saturation during a vascular occlusion test.

    Science.gov (United States)

    Steenhaut, Kevin; Lapage, Koen; Bové, Thierry; De Hert, Stefan; Moerman, Annelies

    2017-12-01

    An increasing number of NIRS devices are used to provide measurements of peripheral tissue oxygen saturation (S t O 2 ). The aim of the present study is to test the hypothesis that despite technological differences between devices, similar trend values will be obtained during a vascular occlusion test. The devices compared are NIRO-200NX, which measures S t O 2 and oxyhemoglobin by spatially resolved spectroscopy and the Beer-Lambert law, respectively, and INVOS 5100C and Foresight Elite, which both measure S t O 2 with the Beer-Lambert law, enhanced with the spatial resolution technique. Forty consenting adults scheduled for CABG surgery were recruited. The respective sensors of the three NIRS devices were applied over the brachioradial muscle. Before induction of anesthesia, 3 min of ischemia were induced by inflating a blood pressure cuff at the upper arm, whereafter cuff pressure was rapidly released. Tissue oxygenation measurements included baseline, minimum and maximum values, desaturation and resaturation slopes, and rise time. Comparisons between devices were performed with the Kruskal-Wallis test with post hoc Mann-Whitney pairwise comparisons. Agreement was evaluated using Bland-Altman plots. Oxyhemoglobin measured with NIRO responded faster than the other NIRS technologies to changes in peripheral tissue oxygenation (20 vs. 27-40 s, p ≤ 0.01). When comparing INVOS with Foresight, oxygenation changes were prompter (upslope 311 [92-523]%/min vs. 114[65-199]%/min, p ≤ 0.01) and more pronounced (minimum value 36 [21-48] vs. 45 [40-51]%, p ≤ 0.01) with INVOS. Significant differences in tissue oxygen saturation measurements were observed, both within the same device as between different devices using the same measurement technology.

  10. Vascular and Psychophysical Effects of Topical Capsaicin Application to Orofacial Tissues

    Science.gov (United States)

    Boudreau, Shellie A.; Wang, Kelun; Svensson, Peter; Sessle, Barry J.; Arendt-Nielsen, Lars

    2011-01-01

    Aims To characterize and contrast human sensory and vascular changes produced by topical application of the algesic chemical capsaicin to the glabrous lips and tongue. Methods Applications of 1% capsaicin or vehicle cream to the glabrous lips and tongue were randomized between two two-trial sessions. The capsaicin trial followed the vehicle trial for each session. Before and 5, 15, and 30 minutes after capsaicin or vehicle cream application, six parameters were recorded from the glabrous lips or the tongue dorsum: (1) burning pain intensity, as measured on a visual analog scale; (2) burning pain area, as indicated by subjects on an orofacial drawing; (3) mechanical sensitivity, as measured by a von Frey filament; (4) visual flare; (5) blood flow and temperature, as measured by laser-Doppler imaging and thermography, respectively; and (6) areas of increased temperature (hot spots), as calculated by a digital tracer from the thermographs. Data were analyzed by ANOVAs and Pearson’s correlations. Results Compared to vehicle application, capsaicin elicited burning pain, increases in blood flow and temperature, but no change in mechanical sensitivity in the glabrous lips or tongue. Greater increases in blood flow and temperature paralleled more intense burning pain and larger areas of perceived pain for the lips compared to the tongue. The location of distinct areas of increased temperature within the orofacial area differed between the capsaicin-lip and capsaicin-tongue trials. Conclusion The several differences between these responses to noxious stimulation of the glabrous lips and tongue may have implications for examinations of orofacial somatosensory functions. PMID:19639105

  11. The THUNDERBEAT system for tissue dissection and vascular control in laparoscopic splenectomy.

    Science.gov (United States)

    Ceccanti, Silvia; Falconi, Ilaria; Frediani, Simone; Boscarelli, Alessandro; Catani, Marco; Cozzi, Denis A

    2017-08-01

    The advent of new energy sources for hemostasis has greatly facilitated advanced laparoscopic procedures. We describe a straightforward technique of laparoscopic splenectomy (LS) accomplished using the THUNDERBEAT™ system (TS) (Olympus Medical Systems Corp., Tokyo, Japan) as the sole means of tissue dissection and hemostasis in two patients aged 19 and 6 years, respectively. The specimens were removed intact via a Pfannenstiel incision. Total operative time was 165 and 150 min, and length of hospital stay was three and 4 d, respectively. The TS is an appealing and reliable alternative to currently available energy devices, allowing fast dissection and secure hemostasis during laparoscopic splenectomy.

  12. Magnesium prevents phosphate-induced vascular calcification via TRPM7 and Pit-1 in an aortic tissue culture model.

    Science.gov (United States)

    Sonou, Tomohiro; Ohya, Masaki; Yashiro, Mitsuru; Masumoto, Asuka; Nakashima, Yuri; Ito, Teppei; Mima, Toru; Negi, Shigeo; Kimura-Suda, Hiromi; Shigematsu, Takashi

    2017-06-01

    Previous clinical and experimental studies have indicated that magnesium may prevent vascular calcification (VC), but mechanistic characterization has not been reported. This study investigated the influence of increasing magnesium concentrations on VC in a rat aortic tissue culture model. Aortic segments from male Sprague-Dawley rats were incubated in serum-supplemented high-phosphate medium for 10 days. The magnesium concentration in this medium was increased to demonstrate its role in preventing VC, which was assessed by imaging and spectroscopy. The mineral composition of the calcification was analyzed using Fourier transform infrared (FTIR) spectroscopic imaging, scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) mapping. Magnesium supplementation of high-phosphate medium dose-dependently suppressed VC (quantified as aortic calcium content), and almost ablated it at 2.4 mm magnesium. The FTIR images and SEM-EDX maps indicated that the distribution of phosphate (as hydroxyapatite), phosphorus and Mg corresponded with calcium content in the aortic ring and VC. The inhibitory effect of magnesium supplementation on VC was partially reduced by 2-aminoethoxy-diphenylborate, an inhibitor of TRPM7. Furthermore, phosphate transporter-1 (Pit-1) protein expression was increased in tissues cultured in HP medium and was gradually-and dose dependently-decreased by magnesium. We conclude that a mechanism involving TRPM7 and Pit-1 underpins the magnesium-mediated reversal of high-phosphate-associated VC.

  13. [Expression and clinical significance of kisspeptin-1, matrix metalloproteinase-2 and vascular endothelial growth factor in tissue of colon cancer].

    Science.gov (United States)

    Wang, Wenhui; Qi, Yuanling; Xu, Qian; Ren, Haipeng

    2016-03-01

    To detect the expression of kisspeptin-1 (KISS-1), matrix metalloproteinase-2 (MMP-2) and vascular endothelial growth factor (VEGF) in the tissue of colon cancer, and analyze the relativity between KISS-1, MMP-2, VEGF and pathological characteristics of colon cancer. A total of 60 colon cancer patients and 60 patients with benign colorectal disease who received surgical treatment in our hospital from January 2009 to June 2010 were selected as observation group and control group respectively. The cancer tissue samples and excision samples collected from them were used to detect KISS-1, MMP-2 and VEGF with immunohistochemistry. The positive rates of KISS-1, MMP-2 and VEGF were 31.7%, 58.3% and 78.3% in observation group, and 73.3%, 16.7% and 33.3% in control group. The positive rate of KISS-1 in observation group was lower than that in control group (χ(2)=23.489, Pcolon cancer (χ(2)=8.997, P=0.011; χ(2)=6.163, P=0.013; χ(2)=8.519, P=0.014; χ(2)=9.160, P=0.002; χ(2)=16.577, Pclinical stage of colon cancer and provide evidence for clinical diagnosis and prognosis prediction by detecting KISS-1, MMP-2 and VEGF.

  14. Plasma concentrations and subcutaneous adipose tissue mRNA expression of clusterin in obesity and type 2 diabetes mellitus: the effect of short-term hyperinsulinemia, very-low-calorie diet and bariatric surgery.

    Science.gov (United States)

    Kloučková, J; Lacinová, Z; Kaválková, P; Trachta, P; Kasalický, M; Haluzíková, D; Mráz, M; Haluzík, M

    2016-07-18

    Clusterin is a heterodimeric glycoprotein with wide range of functions. To further explore its possible regulatory role in energy homeostasis and in adipose tissue, we measured plasma clusterin and its mRNA expression in subcutaneous adipose tissue (SCAT) of 15 healthy lean women, 15 obese women (OB) and 15 obese women with type 2 diabetes mellitus (T2DM) who underwent a 2-week very low-calorie diet (VLCD), 10 obese women without T2DM who underwent laparoscopic sleeve gastrectomy (LSG) and 8 patients with T2DM, 8 patients with impaired glucose tolerance (IGT) and 8 normoglycemic patients who underwent hyperinsulinemic euglycemic clamp (HEC). VLCD decreased plasma clusterin in OB but not in T2DM patients while LSG and HEC had no effect. Clusterin mRNA expression in SCAT at baseline was increased in OB and T2DM patients compared with controls. Clusterin mRNA expression decreased 6 months after LSG and remained decreased 12 months after LSG. mRNA expression of clusterin was elevated at the end of HEC compared with baseline only in normoglycemic but not in IGT or T2DM patients. In summary, our data suggest a possible local regulatory role for clusterin in the adipose tissue rather than its systemic involvement in the regulation of energy homeostasis.

  15. Aging exacerbates obesity-induced oxidative stress and inflammation in perivascular adipose tissue in mice: a paracrine mechanism contributing to vascular redox dysregulation and inflammation.

    Science.gov (United States)

    Bailey-Downs, Lora C; Tucsek, Zsuzsanna; Toth, Peter; Sosnowska, Danuta; Gautam, Tripti; Sonntag, William E; Csiszar, Anna; Ungvari, Zoltan

    2013-07-01

    Obesity in the elderly individuals is increasing at alarming rates and there is evidence suggesting that elderly individuals are more vulnerable to the deleterious cardiovascular effects of obesity than younger individuals. However, the specific mechanisms through which aging and obesity interact to promote the development of cardiovascular disease remain unclear. The present study was designed to test the hypothesis that aging exacerbates obesity-induced inflammation in perivascular adipose tissue, which contributes to increased vascular oxidative stress and inflammation in a paracrine manner. To test this hypothesis, we assessed changes in the secretome, reactive oxygen species production, and macrophage infiltration in periaortic adipose tissue of young (7 month old) and aged (24 month old) high-fat diet-fed obese C57BL/6 mice. High-fat diet-induced vascular reactive oxygen species generation significantly increased in aged mice, which was associated with exacerbation of endothelial dysfunction and vascular inflammation. In young animals, high-fat diet-induced obesity promoted oxidative stress in the perivascular adipose tissue, which was associated with a marked proinflammatory shift in the profile of secreted cytokines and chemokines. Aging exacerbated obesity-induced oxidative stress and inflammation and significantly increased macrophage infiltration in periaortic adipose tissue. Using cultured arteries isolated from young control mice, we found that inflammatory factors secreted from the perivascular fat tissue of obese aged mice promote significant prooxidative and proinflammatory phenotypic alterations in the vascular wall, mimicking the aging phenotype. Overall, our findings support an important role for localized perivascular adipose tissue inflammation in exacerbation of vascular oxidative stress and inflammation in aging, an effect that likely enhances the risk for development of cardiovascular diseases from obesity in the elderly individuals.

  16. Assessment of tissue oxygen saturation during a vascular occlusion test using near-infrared spectroscopy: the role of probe spacing and measurement site studied in healthy volunteers

    NARCIS (Netherlands)

    Bezemer, R.; Lima, A.; Myers, D.; Klijn, E.; Heger, M.; Goedhart, P.T.; Bakker, J.; Ince, C.

    2009-01-01

    INTRODUCTION: To assess potential metabolic and microcirculatory alterations in critically ill patients, near-infrared spectroscopy (NIRS) has been used, in combination with a vascular occlusion test (VOT), for the non-invasive measurement of tissue oxygen saturation (StO2), oxygen consumption, and

  17. A shift in the balance of vascular endothelial growth factor and connective tissue growth factor by bevacizumab causes the angiofibrotic switch in proliferative diabetic retinopathy

    NARCIS (Netherlands)

    van Geest, Rob J.; Lesnik-Oberstein, Sarit Y.; Tan, H. Stevie; Mura, Marco; Goldschmeding, Roel; van Noorden, Cornelis J. F.; Klaassen, Ingeborg; Schlingemann, Reinier O.

    2012-01-01

    Introduction In proliferative diabetic retinopathy (PDR), vascular endothelial growth factor (VEGF) and connective tissue growth factor (CTGF) may cause blindness by neovascularisation followed by fibrosis of the retina. It has previously been shown that a shift in the balance between levels of CTGF

  18. A prognostic model for soft tissue sarcoma of the extremities and trunk wall based on size, vascular invasion, necrosis, and growth pattern

    DEFF Research Database (Denmark)

    Carneiro, Ana; Bendahl, Par-Ola; Engellau, Jacob

    2011-01-01

    type, necrosis, and grade. METHODS:: Whole-tumor sections from 239 soft tissue sarcomas of the extremities were reviewed for the following prognostic factors: size, vascular invasion, necrosis, and growth pattern. A new prognostic model, referred to as SING (Size, Invasion, Necrosis, Growth...

  19. Eosinophils are key regulators of perivascular adipose tissue and vascular functionality

    DEFF Research Database (Denmark)

    Withers, Sarah B.; Forman, Ruth; Meza-Perez, Selene

    2017-01-01

    Obesity impairs the relaxant capacity of adipose tissue surrounding the vasculature (PVAT) and has been implicated in resultant obesity-related hypertension and impaired glucose intolerance. Resident immune cells are thought to regulate adipocyte activity. We investigated the role of eosinophils...... in mediating normal PVAT function. Healthy PVAT elicits an anti-contractile effect, which was lost in mice deficient in eosinophils, mimicking the obese phenotype, and was restored upon eosinophil reconstitution. Ex vivo studies demonstrated that the loss of PVAT function was due to reduced bioavailability...... of adiponectin and adipocyte-derived nitric oxide, which was restored after eosinophil reconstitution. Mechanistic studies demonstrated that adiponectin and nitric oxide are released after activation of adipocyte-expressed β3 adrenoceptors by catecholamines, and identified eosinophils as a novel source...

  20. Case Report Pneumomediastinum and Subcutaneous Emphysema ...

    African Journals Online (AJOL)

    oxygen may enhance faster absorption of air from extra-pulmonary tissues while needle aspiration and/ or surgical decompression may be useful if mediastinal structures are compressed [2,9,]. Conclusion. Extra-pulmonary extravasations of air manifested as subcutaneous emphysema and pneumomediastinum.

  1. Unsupervised Assessment of Subcutaneous and Visceral Fat by MRI

    DEFF Research Database (Denmark)

    Jørgensen, Peter Stanley; Larsen, Rasmus; Wraae, Kristian

    2009-01-01

    This paper presents a. method for unsupervised assessment of visceral and subcutaneous adipose tissue in the abdominal region by MRI. The identification of the subcutaneous and the visceral regions were achieved by dynamic programming constrained by points acquired from an active shape model...

  2. Design of a factorial experiment with randomization restrictions to assess medical device performance on vascular tissue.

    Science.gov (United States)

    Diestelkamp, Wiebke S; Krane, Carissa M; Pinnell, Margaret F

    2011-05-20

    Energy-based surgical scalpels are designed to efficiently transect and seal blood vessels using thermal energy to promote protein denaturation and coagulation. Assessment and design improvement of ultrasonic scalpel performance relies on both in vivo and ex vivo testing. The objective of this work was to design and implement a robust, experimental test matrix with randomization restrictions and predictive statistical power, which allowed for identification of those experimental variables that may affect the quality of the seal obtained ex vivo. The design of the experiment included three factors: temperature (two levels); the type of solution used to perfuse the artery during transection (three types); and artery type (two types) resulting in a total of twelve possible treatment combinations. Burst pressures of porcine carotid and renal arteries sealed ex vivo were assigned as the response variable. The experimental test matrix was designed and carried out as a split-plot experiment in order to assess the contributions of several variables and their interactions while accounting for randomization restrictions present in the experimental setup. The statistical software package SAS was utilized and PROC MIXED was used to account for the randomization restrictions in the split-plot design. The combination of temperature, solution, and vessel type had a statistically significant impact on seal quality. The design and implementation of a split-plot experimental test-matrix provided a mechanism for addressing the existing technical randomization restrictions of ex vivo ultrasonic scalpel performance testing, while preserving the ability to examine the potential effects of independent factors or variables. This method for generating the experimental design and the statistical analyses of the resulting data are adaptable to a wide variety of experimental problems involving large-scale tissue-based studies of medical or experimental device efficacy and performance.

  3. Analyzing Structure and Function of Vascularization in Engineered Bone Tissue by Video-Rate Intravital Microscopy and 3D Image Processing.

    Science.gov (United States)

    Pang, Yonggang; Tsigkou, Olga; Spencer, Joel A; Lin, Charles P; Neville, Craig; Grottkau, Brian

    2015-10-01

    Vascularization is a key challenge in tissue engineering. Three-dimensional structure and microcirculation are two fundamental parameters for evaluating vascularization. Microscopic techniques with cellular level resolution, fast continuous observation, and robust 3D postimage processing are essential for evaluation, but have not been applied previously because of technical difficulties. In this study, we report novel video-rate confocal microscopy and 3D postimage processing techniques to accomplish this goal. In an immune-deficient mouse model, vascularized bone tissue was successfully engineered using human bone marrow mesenchymal stem cells (hMSCs) and human umbilical vein endothelial cells (HUVECs) in a poly (D,L-lactide-co-glycolide) (PLGA) scaffold. Video-rate (30 FPS) intravital confocal microscopy was applied in vitro and in vivo to visualize the vascular structure in the engineered bone and the microcirculation of the blood cells. Postimage processing was applied to perform 3D image reconstruction, by analyzing microvascular networks and calculating blood cell viscosity. The 3D volume reconstructed images show that the hMSCs served as pericytes stabilizing the microvascular network formed by HUVECs. Using orthogonal imaging reconstruction and transparency adjustment, both the vessel structure and blood cells within the vessel lumen were visualized. Network length, network intersections, and intersection densities were successfully computed using our custom-developed software. Viscosity analysis of the blood cells provided functional evaluation of the microcirculation. These results show that by 8 weeks, the blood vessels in peripheral areas function quite similarly to the host vessels. However, the viscosity drops about fourfold where it is only 0.8 mm away from the host. In summary, we developed novel techniques combining intravital microscopy and 3D image processing to analyze the vascularization in engineered bone. These techniques have broad

  4. Comparison Of Cd And Zn Accumulation In Tissues Of Different Vascular Plants: A Radiometric Study

    Directory of Open Access Journals (Sweden)

    Dürešová Zuzana

    2015-12-01

    Full Text Available The aim of the present work was to compare the accumulation and translocation of Cd and Zn in plants of tobacco (Nicotiana tabacum L., celery (Apium graveolens L., maize (Zea mays L., giant reed (Arundo donax L., and alpine pennycress (Noccaea caerulescens L. under conditions of short-term hydroponic experiments using nutrient solutions spiked with radionuclides 109Cd or 65Zn, and direct gamma-spectrometry. It was found that the time-course of metals accumulation in studied plants was not different in terms of target metal, but it was significantly different on the level of plant species. The highest values of Cd accumulation showed plants of giant reed, whereby the accumulation decreased in the order: giant reed > tobacco > alpine pennycress >> maize and celery. On the basis of concentration ratios (CR [Me]shoot / [Me]root calculation for both metals, it was found that Cd and Zn were in prevailing part accumulated in the root tissues and only partially accumulated in the shoots, where the amount of accumulated Cd and Zn increased from the oldest developed leaves to the youngest developed leaves. The CR values corresponding to these facts were calculated in the range 0.06 – 0.27 for Cd and for Zn 0.06 – 0.48. In terms of plant species, the CR values obtained for Cd decreased in the order: maize > celery > tobacco and giant reed > alpine pennycress. The similarity between studied objects – individual plant species on the basis of the obtained variables defining Cd or Zn accumulation at different conditions of the experiments as well as the relationships between obtained variables and conditions of the experiments were subjected to multivariate analysis method – cluster analysis (CA. According to the findings and this analysis, it can be expected that plants of tobacco and giant reed will dispose with similar characteristics as plants of alpine pennycress, which are classified as Zn/Cd hyperaccumulators, in terms of Cd or Zn accumulation

  5. Subcutaneous encapsulated fat necrosis

    DEFF Research Database (Denmark)

    Aydin, Dogu; Berg, Jais O

    2016-01-01

    We have described subcutaneous encapsulated fat necrosis, which is benign, usually asymptomatic and underreported. Images have only been published on two earlier occasions, in which the necrotic nodules appear "pearly" than the cloudy yellow surface in present case. The presented image may help...

  6. Subcutaneous granuloma annulare

    Directory of Open Access Journals (Sweden)

    Dhar Sandipan

    1994-01-01

    Full Text Available Two cases of subcutaneos granuloma annulare are reported. Clinical presentation was in the form of hard subcutaneous nodules; histopathology confirmed the clinical diagnosis. The cases were unique because of onset in adult hood, occurrence over unusual sites and absence of classical lesions of granuloma annulare elsewhere.

  7. Effects of Electroacupuncture on Learning, Memory and Formation System of Free Radicals in Brain Tissues of Vascular Dementia Model Rats

    Institute of Scientific and Technical Information of China (English)

    王黎; 唐纯志; 赖新生

    2004-01-01

    In order to observe the regulative effect of electro-acupuncture on the formation system of free radicals in the brain tissues and learning and memory in vascular dementia (VD) model rats, the Morris's water labyrinth was used for testing the learning ability and memory in VD model rats made by 4-vessel occlusion method, and the activities or contents of nitric oxide (NO), NO synthase (NOS), superoxide dismutase (SOD), malondialdehyde (MDA), glutathione peroxidase (GSH-Px) were determined. Results showed that the mean escape latency in the electro-acupuncture group was markedly reduced in place test, and the times swam the place of the plate-form in the original plate-form quadrant were significantly more than those in the rest three quadrants in spatia1 probe test as compared with the model group. In the electro-acupuncture group and the nimodipine group the contents of NO and MDA and the activity of NOS were decreased, while the activities of SOD and GSH-Px were increased. It is indicated that electro-acupuncture can modulate the production and clearance of free radicals, and improve the ability of learning and memory of the VD model rats.

  8. THE USE OF A NOVEL ALDEHYDE-FUNCTIONALIZED CHITOSAN HYDROGEL TO PREPARE POROUS TUBULAR SCAFFOLDS FOR VASCULAR TISSUE ENGINEERING APPLICATIONS

    Directory of Open Access Journals (Sweden)

    Eduardo P. Azevedo

    Full Text Available In this work, porous tubular scaffolds were prepared from a novel water soluble aldehyde-functionalized chitosan (ALDCHIT hydrogel, which was obtained by dissolving this chitosan derivative in water and using oxidized dextrose (OXDEXT as the crosslinking agent at different ALDCHIT:OXDEXT mole ratios (10:1, 10:2 and 10:4. By increasing the amount of OXDEXT in respect to ALDCHIT the hydrogels became more rigid and could absorb more than 200% of its weight in water. Since the ALDCHIT:OXDEXT 10:4 was the most stable hydrogel, its ability to form porous tubular scaffolds was investigated. The tubular scaffolds were prepared by the lyophilization method, where the orientation of the pores was controlled by exposing either the internal or the external surface of the frozen hydrogel during the sublimation step. When only the inner surface of the frozen hydrogel was exposed, tubular scaffolds with a highly porous lumen and a sealed outer surface were obtained, where the orientation of the pores, their sizes and interconnectivity seem to be optimum for vascular tissue engineering application.

  9. Effects of high glucose and thiamine on the balance between matrix metalloproteinases and their tissue inhibitors in vascular cells.

    Science.gov (United States)

    Tarallo, Sonia; Beltramo, Elena; Berrone, Elena; Dentelli, Patrizia; Porta, Massimo

    2010-06-01

    Pericyte survival in diabetic retinopathy depends also on interactions with extracellular matrix (ECM) proteins, which are degraded by matrix metalloproteinases (MMP). Elevated glucose influences ECM turnover, through expression of MMP and their tissue inhibitors, TIMP. We reported on reduced pericyte adhesion to high glucose-conditioned ECM and correction by thiamine. We aimed at verifying the effects of thiamine and benfotiamine on MMP-2, MMP-9 and TIMP expression and activity in human vascular cells with high glucose. In HRP, MMP-2 activity, though not expression, increased with high glucose and decreased with thiamine and benfotiamine; TIMP-1 expression increased with high glucose plus thiamine and benfotiamine; MMP-9 was not expressed. In EC, MMP-9 and MMP-2 expression and activity increased with high glucose, but thiamine and benfotiamine had no effects; TIMP-1 expression was unchanged. Neither glucose nor thiamine modified TIMP-2 and TIMP-3 expression. TIMP-1 concentrations did not change in either HRP or EC. High glucose imbalances MMP/TIMP regulation, leading to increased ECM turnover. Thiamine and benfotiamine correct the increase in MMP-2 activity due to high glucose in HRP, while increasing TIMP-1.

  10. Endothelial Cell Migration and Vascular Endothelial Growth Factor Expression Are the Result of Loss of Breast Tissue Polarity

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Amy; Cuevas, Ileana; Kenny, Paraic A; Miyake, Hiroshi; Mace, Kimberley; Ghajar, Cyrus; Boudreau, Aaron; Bissell, Mina; Boudreau, Nancy

    2009-05-26

    Recruiting a new blood supply is a rate-limiting step in tumor progression. In a three-dimensional model of breast carcinogenesis, disorganized, proliferative transformed breast epithelial cells express significantly higher expression of angiogenic genes compared with their polarized, growth-arrested nonmalignant counterparts. Elevated vascular endothelial growth factor (VEGF) secretion by malignant cells enhanced recruitment of endothelial cells (EC) in heterotypic cocultures. Significantly, phenotypic reversion of malignant cells via reexpression of HoxD10, which is lost in malignant progression, significantly attenuated VEGF expression in a hypoxia-inducible factor 1{alpha}-independent fashion and reduced EC migration. This was due primarily to restoring polarity: forced proliferation of polarized, nonmalignant cells did not induce VEGF expression and EC recruitment, whereas disrupting the architecture of growth-arrested, reverted cells did. These data show that disrupting cytostructure activates the angiogenic switch even in the absence of proliferation and/or hypoxia and restoring organization of malignant clusters reduces VEGF expression and EC activation to levels found in quiescent nonmalignant epithelium. These data confirm the importance of tissue architecture and polarity in malignant progression.

  11. Biomimetic L-aspartic acid-derived functional poly(ester amide)s for vascular tissue engineering.

    Science.gov (United States)

    Knight, Darryl K; Gillies, Elizabeth R; Mequanint, Kibret

    2014-08-01

    Functionalization of polymeric biomaterials permits the conjugation of cell signaling molecules capable of directing cell function. In this study, l-phenylalanine and l-aspartic acid were used to synthesize poly(ester amide)s (PEAs) with pendant carboxylic acid groups through an interfacial polycondensation approach. Human coronary artery smooth muscle cell (HCASMC) attachment, spreading and proliferation was observed on all PEA films. Vinculin expression at the cell periphery suggested that HCASMCs formed focal adhesions on the functional PEAs, while the absence of smooth muscle α-actin (SMαA) expression implied the cells adopted a proliferative phenotype. The PEAs were also electrospun to yield nanoscale three-dimensional (3-D) scaffolds with average fiber diameters ranging from 130 to 294nm. Immunoblotting studies suggested a potential increase in SMαA and calponin expression from HCASMCs cultured on 3-D fibrous scaffolds when compared to 2-D films. X-ray photoelectron spectroscopy and immunofluorescence demonstrated the conjugation of transforming growth factor-β1 to the surface of the functional PEA through the pendant carboxylic acid groups. Taken together, this study demonstrates that PEAs containing aspartic acid are viable biomaterials for further investigation in vascular tissue engineering. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. Ultrasonographic Findings of Subcutaneous and Muscular Sparganosis

    International Nuclear Information System (INIS)

    Park, Hee Jin; Park, Noh Hyuck; Lee, Eun Ja; Park, Chan Sub; Lee, Sung Moon; Park, Sung Il

    2009-01-01

    This study was deigned to evaluate the ultrasonographic findings of subcutaneous and intramuscular sparganosis. Nine cases of histologically proven subcutaneous and intramuscular sparganosis lesions in seven patients (mean patient age, 59 years; M:F = 6:1) were reviewed retrospectively. Two patients had recurrent sparganosis. A color Doppler examination was performed in all cases. A prior history of ingestion of raw snake meat was noted for two patients. Patients presented with a palpable mass and induration (n = 7) and dull pain (n = 4). Lesion locations were in the thigh (n = 4), lower leg (n = 2), chest wall (n = 1), an inguinal location (n = 1) and the neck (n = 1). Five lesions were in the subcutaneous fat layer and four lesions had intramuscular locations. Calcification was noted in two cases. All cases showed heterogeneous hypoechoic serpiginous tubular-and-oval lesions. The lesions were conglomerated or discrete in appearance. All nine cases showed the presence of lesions with a multi-layered wall with variable intraluminal echogenicity, at least in one segment of the lesion. Increased vascularity was noted on color Doppler examinations in two patients with pain. Subcutaneous or intramuscular sparganosis should be included in the differential diagnosis when a serpiginous tubular-and-oval lesion is noted that is seen with a multi-layered wall with variable intraluminal echogenicity

  13. Divergent responses to thermogenic stimuli in BAT and subcutaneous adipose tissue from interleukin 18 and interleukin 18 receptor 1-deficient mice.

    Science.gov (United States)

    Pazos, Patricia; Lima, Luis; Tovar, Sulay; González-Touceda, David; Diéguez, Carlos; García, María C

    2015-12-10

    Brown and beige adipocytes recruitment in brown (BAT) or white adipose tissue, mainly in the inguinal fat pad (iWAT), meet the need for temperature adaptation in cold-exposure conditions and protect against obesity in face of hypercaloric diets. Using interleukin18 (Il18) and Il18 receptor 1- knockout (Il18r1-KO) mice, this study aimed to investigate the role of IL18 signaling in BAT and iWAT activation and thermogenesis under both stimuli. Il18-KO, extremely dietary obesity-prone as previously described, failed to develop diet-induced thermogenesis as assessed by BAT and iWAT Ucp1 mRNA levels. Overweight when fed standard chow but not HFD, HFD-fed Il18r1-KO mice exhibited increased iWAT Ucp1 gene expression. Energy expenditure was reduced in pre-obese Il18r1-KO mice and restored upon HFD-challenge. Cold exposure lead to similar results; Il18r1-KO mice were protected against acute body temperature drop, displaying a more brown-like structure, alternative macrophage activation and thermogenic gene expression in iWAT than WT controls. Opposite effects were observed in Il18-KO mice. Thus, Il18 and Il18r1 genetic ablation disparate effects on energy homeostasis are likely mediated by divergent BAT responses to thermogenic stimuli as well as iWAT browning. These results suggest that a more complex receptor-signaling system mediates the IL18 adipose-tissue specific effects in energy expenditure.

  14. Co-electrospun blends of PU and PEG as potential biocompatible scaffolds for small-diameter vascular tissue engineering

    International Nuclear Information System (INIS)

    Wang, Heyun; Feng, Yakai; Fang, Zichen; Yuan, Wenjie; Khan, Musammir

    2012-01-01

    A small-diameter vascular graft (inner diameter 4 mm) was fabricated from polyurethane (PU) and poly(ethylene glycol) (PEG) solutions by blend electrospinning technology. The fiber diameter decreased from 1023 ± 185 nm to 394 ± 106 nm with the increasing content of PEG in electrospinning solutions. The hybrid PU/PEG scaffolds showed randomly nanofibrous morphology, high porosity and well-interconnected porous structure. The hydrophilicity of these scaffolds had been improved significantly with the increasing contents of PEG. The mechanical properties of electrospun hybrid PU/PEG scaffolds were obviously different from that of PU scaffold, which was caused by plasticizing or hardening effect imparted by PEG composition. Under hydrated state, the hybrid PU/PEG scaffolds demonstrated low mechanical performance due to the hydrophilic property of materials. Compared with dry PU/PEG scaffolds with the same content of PEG, the tensile strength and elastic modulus of hydrated PU/PEG scaffolds decreased significantly, while the elongation at break increased. The hybrid PU/PEG scaffolds demonstrated a lower possibility of thrombi formation than blank PU scaffold in platelet adhesion test. The hemolysis assay illustrated that all scaffolds could act as blood contacting materials. To investigate further in vitro cytocompatibility, HUVECs were seeded on the scaffolds and cultured over 14 days. The cells could attach and proliferate well on the hybrid scaffolds than blank PU scaffold, and form a cell monolayer fully covering on the PU/PEG (80/20) hybrid scaffold surface. The results demonstrated that the electrospun hybrid PU/PEG tubular scaffolds possessed the special capacity with excellent hemocompatibility while simultaneously supporting extensive endothelialization with the 20 and 30% content of PEG in hybrid scaffolds. - Highlights: ► We develop small-diameter vascular grafts made of PU and PEG by electrospinning. ► The hybrid scaffolds could suppress the platelet

  15. A prognostic model for soft tissue sarcoma of the extremities and trunk wall based on size, vascular invasion, necrosis, and growth pattern

    DEFF Research Database (Denmark)

    Carneiro, Ana; Bendahl, Par-Ola; Engellau, Jacob

    2011-01-01

    type, necrosis, and grade. METHODS:: Whole-tumor sections from 239 soft tissue sarcomas of the extremities were reviewed for the following prognostic factors: size, vascular invasion, necrosis, and growth pattern. A new prognostic model, referred to as SING (Size, Invasion, Necrosis, Growth......), was established and compared with other clinically applied systems. RESULTS:: Size, vascular invasion, necrosis, and peripheral tumor growth pattern provided independent prognostic information with hazard ratios of 2.2-2.6 for development of metastases in multivariate analysis. When these factors were combined...... into the prognostic model SING, high risk of metastasis was predicted with a sensitivity of 74% and a specificity of 85%. Moreover, the prognostic performance of SING compared favorably with other widely used systems. CONCLUSIONS:: SING represents a promising prognostic model, and vascular invasion and tumor growth...

  16. Different Effects of Implanting Sensory Nerve or Blood Vessel on the Vascularization, Neurotization, and Osteogenesis of Tissue-Engineered Bone In Vivo

    Science.gov (United States)

    Fan, Jun-jun; Mu, Tian-wang; Qin, Jun-jun; Bi, Long; Pei, Guo-xian

    2014-01-01

    To compare the different effects of implanting sensory nerve tracts or blood vessel on the osteogenesis, vascularization, and neurotization of the tissue-engineered bone in vivo, we constructed the tissue engineered bone and implanted the sensory nerve tracts (group SN), blood vessel (group VB), or nothing (group Blank) to the side channel of the bone graft to repair the femur defect in the rabbit. Better osteogenesis was observed in groups SN and VB than in group Blank, and no significant difference was found between groups SN and VB at 4, 8, and 12 weeks postoperatively. The neuropeptides expression and the number of new blood vessels in the bone tissues were increased at 8 weeks and then decreased at 12 weeks in all groups and were highest in group VB and lowest in group Blank at all three time points. We conclude that implanting either blood vessel or sensory nerve tract into the tissue-engineered bone can significantly enhance both the vascularization and neurotization simultaneously to get a better osteogenesis effect than TEB alone, and the method of implanting blood vessel has a little better effect of vascularization and neurotization but almost the same osteogenesis effect as implanting sensory nerve. PMID:25101279

  17. Gene Electrotransfer of Plasmid with Tissue Specific Promoter Encoding shRNA against Endoglin Exerts Antitumor Efficacy against Murine TS/A Tumors by Vascular Targeted Effects.

    Directory of Open Access Journals (Sweden)

    Monika Stimac

    Full Text Available Vascular targeted therapies, targeting specific endothelial cell markers, are promising approaches for the treatment of cancer. One of the targets is endoglin, transforming growth factor-β (TGF-β co-receptor, which mediates proliferation, differentiation and migration of endothelial cells forming neovasculature. However, its specific, safe and long-lasting targeting remains the challenge. Therefore, in our study we evaluated the transfection efficacy, vascular targeted effects and therapeutic potential of the plasmid silencing endoglin with the tissue specific promoter, specific for endothelial cells marker endothelin-1 (ET (TS plasmid, in comparison to the plasmid with constitutive promoter (CON plasmid, in vitro and in vivo. Tissue specificity of TS plasmid was demonstrated in vitro on several cell lines, and its antiangiogenic efficacy was demonstrated by reducing tube formation of 2H11 endothelial cells. In vivo, on a murine mammary TS/A tumor model, we demonstrated good antitumor effect of gene electrotransfer (GET of either of both plasmids in treatment of smaller tumors still in avascular phase of growth, as well as on bigger tumors, already well vascularized. In support to the observations on predominantly vascular targeted effects of endoglin, histological analysis has demonstrated an increase in necrosis and a decrease in the number of blood vessels in therapeutic groups. A significant antitumor effect was observed in tumors in avascular and vascular phase of growth, possibly due to both, the antiangiogenic and the vascular disrupting effect. Furthermore, the study indicates on the potential use of TS plasmid in cancer gene therapy since the same efficacy as of CON plasmid was determined.

  18. Gene Electrotransfer of Plasmid with Tissue Specific Promoter Encoding shRNA against Endoglin Exerts Antitumor Efficacy against Murine TS/A Tumors by Vascular Targeted Effects.

    Science.gov (United States)

    Stimac, Monika; Dolinsek, Tanja; Lampreht, Ursa; Cemazar, Maja; Sersa, Gregor

    2015-01-01

    Vascular targeted therapies, targeting specific endothelial cell markers, are promising approaches for the treatment of cancer. One of the targets is endoglin, transforming growth factor-β (TGF-β) co-receptor, which mediates proliferation, differentiation and migration of endothelial cells forming neovasculature. However, its specific, safe and long-lasting targeting remains the challenge. Therefore, in our study we evaluated the transfection efficacy, vascular targeted effects and therapeutic potential of the plasmid silencing endoglin with the tissue specific promoter, specific for endothelial cells marker endothelin-1 (ET) (TS plasmid), in comparison to the plasmid with constitutive promoter (CON plasmid), in vitro and in vivo. Tissue specificity of TS plasmid was demonstrated in vitro on several cell lines, and its antiangiogenic efficacy was demonstrated by reducing tube formation of 2H11 endothelial cells. In vivo, on a murine mammary TS/A tumor model, we demonstrated good antitumor effect of gene electrotransfer (GET) of either of both plasmids in treatment of smaller tumors still in avascular phase of growth, as well as on bigger tumors, already well vascularized. In support to the observations on predominantly vascular targeted effects of endoglin, histological analysis has demonstrated an increase in necrosis and a decrease in the number of blood vessels in therapeutic groups. A significant antitumor effect was observed in tumors in avascular and vascular phase of growth, possibly due to both, the antiangiogenic and the vascular disrupting effect. Furthermore, the study indicates on the potential use of TS plasmid in cancer gene therapy since the same efficacy as of CON plasmid was determined.

  19. A prospective clinical study to evaluate the efficacy and safety of cellulite treatment using the combination of optical and RF energies for subcutaneous tissue heating.

    Science.gov (United States)

    Sadick, Neil S; Mulholland, R Stephen

    2004-12-01

    There have not been any published studies on the use of radiofrequency (RF)-light-based technologies for the treatment of cellulite. Only preliminary results have recently been reported (ASDS Proceedings, September 2004). This two-center study investigated the safety and effectiveness of combined energies for cellulite treatment using the VelaSmoothtrade mark system. Thirty-five female subjects with cellulite and/or skin irregularities on the thighs and/or buttocks were treated with the VelaSmooth device. Patients received from eight to 16 treatments twice weekly. All patients maintained their normal lifestyle, and diet and fluid consumption. The circumference of the right and left medial thighs was measured at both baseline and approximately 4 weeks after the last treatment. During the last follow-up visit, the physician graded the level of improvement in skin smoothing and/or cellulite improvement using pre- and post-treatment photographs. Three patients provided biopsy specimens for histological assessment. All study patients showed some level of reduction in thigh circumference after 8 weeks of treatment; indeed, 70% of all patients showed such a reduction after 4 weeks of treatment. Also, 100% of all patients showed some level of improvement in skin texture and cellulite. The mean decrease in circumference was 0.8 inches. Some patients demonstrated reductions of more than 2 inches. There were minimal complications associated with treatment. This preliminary study demonstrates that the VelaSmooth system can have a beneficial effect on cellulite appearance. Further studies are needed to better define the mechanisms by which RF and light energies affect subdermal tissues and develop a method of quantified cellulite analysis.

  20. Fabrication of viable and functional pre-vascularized modular bone tissues by coculturing MSCs and HUVECs on microcarriers in spinner flasks.

    Science.gov (United States)

    Zhang, Songjie; Zhou, Min; Ye, Zhaoyang; Zhou, Yan; Tan, Wen-Song

    2017-08-01

    Slow vascularization often impedes the viability and function of engineered bone replacements. Prevascularization is a promising way to solve this problem. In this study, a new process was developed by integrating microcarrier culture and coculture to fabricate pre-vascularized bone microtissues with mesenchymal stem cells (MSCs) and human umbilical vein endothelial cells (HUVECs). Initially, coculture medium and cell ratio between MSCs and HUVECs were optimized in tissue culture plates concerning cell proliferation, osteogenesis and angiogenesis. Subsequently, cells were seeded onto CultiSpher S microcarriers in spinner flasks and subjected to a two-stage (proliferative-osteogenic) culture process for four weeks. Both cells proliferated and functioned well in chosen medium and a 1 : 1 ratio between MSCs and HUVECs was chosen for better angiogenesis. After four weeks of culture in spinner flasks, the microtissues were formed with high cellularity, evenly distributed cells and tube formation ability. While coculture with HUVECs exerted an inhibitory effect on osteogenic differentiation of MSCs, with downregulated alkaline phosphatase activity, mineralization and gene expression of COLI, RUNX2 and OCN, this could be attenuated by employing a delayed seeding strategy of HUVECs against MSCs during the microtissue fabrication process. Collectively, this work established an effective method to fabricate pre-vascularized bone microtissues, which would lay a solid foundation for subsequent development of vascularized tissue grafts for bone regeneration. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Fabrication and characterization of electrospun poly-L-lactide/gelatin graded tubular scaffolds: Toward a new design for performance enhancement in vascular tissue engineering

    Directory of Open Access Journals (Sweden)

    A. Yazdanpanah

    2015-10-01

    Full Text Available In this study, a new design of graded tubular scaffolds have been developed for the performance enhancement in vascular tissue engineering. The graded poly-L-lactide (PLLA and gelatin fibrous scaffolds produced by electrospining were then characterized. The morphology, degradability, porosity, pore size and mechanical properties of four tubular scaffolds (graded PLLA/gelatin, layered PLLA/gelatin, PLLA and gelatin scaffolds have been investigated. The tensile tests demonstrated that the mechanical strength and also the estimated burst pressure of the graded scaffolds were significantly increased in comparison with the layered and gelatin scaffolds. This new design, resulting in an increase in the mechanical properties, suggested the widespread use of these scaffolds in vascular tissue engineering in order to prepare more strengthened vessels.

  2. In Vivo FRET Imaging of Tumor Endothelial Cells Highlights a Role of Low PKA Activity in Vascular Hyperpermeability.

    Science.gov (United States)

    Yamauchi, Fumio; Kamioka, Yuji; Yano, Tetsuya; Matsuda, Michiyuki

    2016-09-15

    Vascular hyperpermeability is a pathological hallmark of cancer. Previous in vitro studies have elucidated roles of various signaling molecules in vascular hyperpermeability; however, the activities of such signaling molecules have not been examined in live tumor tissues for technical reasons. Here, by in vivo two-photon excitation microscopy with transgenic mice expressing biosensors based on Förster resonance energy transfer, we examined the activity of protein kinase A (PKA), which maintains endothelial barrier function. The level of PKA activity was significantly lower in the intratumoral endothelial cells than the subcutaneous endothelial cells. PKA activation with a cAMP analogue alleviated the tumor vascular hyperpermeability, suggesting that the low PKA activity in the endothelial cells may be responsible for the tumor-tissue hyperpermeability. Because the vascular endothelial growth factor (VEGF) receptor is a canonical inducer of vascular hyperpermeability and a molecular target of anticancer drugs, we examined the causality between VEGF receptor activity and the PKA activity. Motesanib, a kinase inhibitor for VEGF receptor, activated tumor endothelial PKA and reduced the vascular permeability in the tumor. Conversely, subcutaneous injection of VEGF decreased endothelial PKA activity and induced hyperpermeability of subcutaneous blood vessels. Notably, in cultured human umbilical vascular endothelial cells, VEGF activated PKA rather than decreasing its activity, highlighting the remarkable difference between its actions in vitro and in vivo These data suggested that the VEGF receptor signaling pathway increases vascular permeability, at least in part, by reducing endothelial PKA activity in the live tumor tissue. Cancer Res; 76(18); 5266-76. ©2016 AACR. ©2016 American Association for Cancer Research.

  3. Serum concentrations and subcutaneous adipose tissue mRNA expression of omentin in morbid obesity and type 2 diabetes mellitus: the effect of very-low-calorie diet, physical activity and laparoscopic sleeve gastrectomy.

    Science.gov (United States)

    Urbanová, M; Dostálová, I; Trachta, P; Drápalová, J; Kaválková, P; Haluzíková, D; Matoulek, M; Lacinová, Z; Mráz, M; Kasalický, M; Haluzík, M

    2014-01-01

    Omentin is a novel adipokine with insulin-sensitizing effects expressed predominantly in visceral fat. We investigated serum omentin levels and its mRNA expression in subcutaneous adipose tissue (SCAT) of 11 women with type 2 diabetes mellitus (T2DM), 37 obese non-diabetic women (OB) and 26 healthy lean women (C) before and after various weight loss interventions: 2-week very-low-calorie diet (VLCD), 3-month regular exercise and laparoscopic sleeve gastrectomy (LSG). At baseline, both T2DM and OB groups had decreased serum omentin concentrations compared with C group while omentin mRNA expression in SCAT did not significantly differ among the groups. Neither VLCD nor exercise significantly affected serum omentin concentrations and its mRNA expression in SCAT of OB or T2DM group. LSG significantly increased serum omentin levels in OB group. In contrast, omentin mRNA expression in SCAT was significantly reduced after LSG. Baseline fasting serum omentin levels in a combined group of the studied subjects (C, OB, T2DM) negatively correlated with BMI, CRP, insulin, LDL-cholesterol, triglycerides and leptin and were positively related to HDL-cholesterol. Reduced circulating omentin levels could play a role in the etiopathogenesis of obesity and T2DM. The increase in circulating omentin levels and the decrease in omentin mRNA expression in SCAT of obese women after LSG might contribute to surgery-induced metabolic improvements and sustained reduction of body weight.

  4. Subcutaneous emphysema, a different way to diagnose

    Directory of Open Access Journals (Sweden)

    Bruno José da Costa Medeiros

    Full Text Available Summary Introduction: Subcutaneous emphysema (SE is a clinical condition that occurs when air gets into soft tissues under the skin. This can occur in any part of the body depending on the type of pathology. The most common site is under the skin that covers the chest wall or neck. It is characterized by painless swelling of tissues. The classic clinical sign is a crackling sensation upon touch, resembling that of touching a sponge beneath your fingers. Objective: To describe a new way to diagnose subcutaneous emphysema. Method: Our finding was a matter of serendipity while inspecting a patient with subcutaneous emphysema using a stethoscope. Instead only hearing the patient's chest, the stethoscope was gently pressed against the skin with SE and so we were able to detect a different sound. Results: This new way to diagnose subcutaneous emphysema consists in pressing the diaphragm part of stethoscope against the patient's skin where SE is supposed to be. Thus, we are able to hear a sound of small bubbles bursting. Crackle noise has an acoustic emission energy that varies between 750-1,200 Hz, considered high frequency. Conclusion: Although currently the use of imaging methods is widespread worldwide, we would like to strengthen the value of clinical examination. Auscultation is an essential diagnostic method that has become underestimated with the advances of healthcare and medicine as a whole. We therefore propose a different approach to diagnose SE.

  5. Tissue factor-dependent vascular endothelial growth factor production by human fibroblasts in response to activated factor VII.

    Science.gov (United States)

    Ollivier, V; Bentolila, S; Chabbat, J; Hakim, J; de Prost, D

    1998-04-15

    The transmembrane protein tissue factor (TF) is the cell surface receptor for coagulation factor VII (FVII) and activated factor VII (FVIIa). Recently, TF has been identified as a regulator of angiogenesis, tumor growth, and metastasis. This study was designed to link the binding of FVII(a) to its receptor, TF, with the subsequent triggering of angiogenesis through vascular endothelial growth factor (VEGF) production by human lung fibroblasts. We report that incubation of fibroblasts, which express constitutive surface TF, with FVII(a) induces VEGF synthesis. FVII(a)-induced VEGF secretion, assessed by a specific enzyme-linked immunosorbent assay, was time- and concentration-dependent. VEGF secretion was maximal after 24 hours of incubation of the cells with 100 nmol/L FVII(a) and represented a threefold induction of the basal VEGF level. Reverse transcriptase-polymerase chain reaction analysis of VEGF detected three mRNA species of 180, 312, and 384 bp corresponding, respectively, to VEGF121, VEGF165, and VEGF189. A 2.5- to 3.5-fold increase was observed for the 180- and 312-bp transcripts at 12 and 24 hours, respectively. FVII(a)-dependent VEGF production was inhibited by a pool of antibodies against TF, pointing to the involvement of this receptor. On specific active-site inhibition with dansyl-glutamyl-glycinyl-arginyl chloromethyl ketone, FVIIa lost 70% of its capacity to elicit VEGF production. Consistent with this, the native form (zymogen) of FVII only had a 1.8-fold stimulating effect. Protein tyrosine kinase and protein kinase C are involved in signal transduction leading to VEGF production, as shown by the inhibitory effects of genistein and GF 109203X. The results of this study indicate that TF is essential for VIIa-induced VEGF production by human fibroblasts and that its role is mainly linked to the proteolytic activity of the TF-VIIa complex.

  6. Vitamin D modulates tissue factor and protease-activated receptor 2 expression in vascular smooth muscle cells.

    Science.gov (United States)

    Martinez-Moreno, Julio M; Herencia, Carmen; Montes de Oca, Addy; Muñoz-Castañeda, Juan R; Rodríguez-Ortiz, M Encarnación; Díaz-Tocados, Juan M; Peralbo-Santaella, Esther; Camargo, Antonio; Canalejo, Antonio; Rodriguez, Mariano; Velasco-Gimena, Francisco; Almaden, Yolanda

    2016-03-01

    Clinical and epidemiologic studies reveal an association between vitamin D deficiency and increased risk of cardiovascular disease. Because vascular smooth muscle cell (VSMC)-derived tissue factor (TF) is suggested to be critical for arterial thrombosis, we investigated whether the vitamin D molecules calcitriol and paricalcitol could reduce the expression of TF induced by the proinflammatory cytokine TNF-α in human aortic VSMCs. We found that, compared with controls, incubation with TNF-α increased TF expression and procoagulant activity in a NF-κB-dependent manner, as deduced from the increased nuclear translocation of nuclear factor κ-light-chain-enhancer of activated B cells protein 65 (p65-NF-κB) and direct interaction of NF-κB to the TF promoter. This was accompanied by the up-regulation of TF signaling mediator protease-activated receptor 2 (PAR-2) expression and by the down-regulation of vitamin D receptor expression in a miR-346-dependent way. However, addition of calcitriol or paricalcitol blunted the TNF-α-induced TF expression and activity (2.01 ± 0.24 and 1.32 ± 0.14 vs. 3.02 ± 0.39 pmol/mg protein, P < 0.05), which was associated with down-regulation of NF-κB signaling and PAR-2 expression, as well as with restored levels of vitamin D receptor and enhanced expression of TF pathway inhibitor. Our data suggest that inflammation promotes a prothrombotic state through the up-regulation of TF function in VSMCs and that the beneficial cardiovascular effects of vitamin D may be partially due to decreases in TF expression and its activity in VSMCs. © FASEB.

  7. Visual Enhancement of Laparoscopic Partial Nephrectomy With 3-Charge Coupled Device Camera: Assessing Intraoperative Tissue Perfusion and Vascular Anatomy by Visible Hemoglobin Spectral Response

    Science.gov (United States)

    2010-10-01

    reliably distinguish vascular structures during hilar dissection, and detect and monitor changes in renal tissue perfus:ion dw·ing and after warm...and in 25 patients with hilar tu- mors 16 in whom perioperative outcomes were com- parable to those of peripheral tumors. In a retro- spective study...Richstone et al also reported the safe performance of LPN for hilar tumors in 17 patients.17 Repeat partial nephrectomy for ipsilat- eral tumor has

  8. Vertical leaf mass per area gradient of mature sugar maple reflects both height-driven increases in vascular tissue and light-driven increases in palisade layer thickness.

    Science.gov (United States)

    Coble, Adam P; Cavaleri, Molly A

    2017-10-01

    A key trait used in canopy and ecosystem function modeling, leaf mass per area (LMA), is influenced by changes in both leaf thickness and leaf density (LMA = Thickness × Density). In tall trees, LMA is understood to increase with height through two primary mechanisms: (i) increasing palisade layer thickness (and thus leaf thickness) in response to light and/or (ii) reduced cell expansion and intercellular air space in response to hydrostatic constraints, leading to increased leaf density. Our objective was to investigate within-canopy gradients in leaf anatomical traits in order to understand environmental factors that influence leaf morphology in a sugar maple (Acer saccharum Marshall) forest canopy. We teased apart the effects of light and height on anatomical traits by sampling at exposed and closed canopies that had different light conditions at similar heights. As expected, palisade layer thickness responded strongly to cumulative light exposure. Mesophyll porosity, however, was weakly and negatively correlated with light and height (i.e., hydrostatic gradients). Reduced mesophyll porosity was not likely caused by limitations on cell expansion; in fact, epidermal cell width increased with height. Palisade layer thickness was better related to LMA, leaf density and leaf thickness than was mesophyll porosity. Vein diameter and fraction of vascular tissue also increased with height and LMA, density and thickness, revealing that greater investment in vascular and support tissue may be a third mechanism for increased LMA with height. Overall, decreasing mesophyll porosity with height was likely due to palisade cells expanding into the available air space and also greater investments in vascular and support tissue, rather than a reduction of cell expansion due to hydrostatic constraints. Our results provide evidence that light influences both palisade layer thickness and mesophyll porosity and indicate that hydrostatic gradients influence leaf vascular and support

  9. Harnessing the Foreign Body Reaction in Marginal Mass Device-less Subcutaneous Islet Transplantation in Mice.

    Science.gov (United States)

    Pepper, Andrew R; Pawlick, Rena; Bruni, Antonio; Gala-Lopez, Boris; Wink, John; Rafiei, Yasmin; Bral, Mariusz; Abualhassan, Nasser; Shapiro, A M James

    2016-07-01

    Islet transplantation is a successful β-cell replacement therapy for selected patients with type 1 diabetes mellitus. However, despite early insulin independence, long-term graft attrition gradually reverts recipients to exogenous insulin dependency. Undoubtedly, as insulin producing stem cell therapies progress, a transplant site that is retrievable is desirable. This prerequisite is currently incompatible with intrahepatic islet transplantation. Herein, we evaluate the functional capacity of a prevascularized subcutaneous site to accommodate marginal islet mass transplantation in mice. Syngeneic mouse islets (150) were transplanted either under the kidney capsule (KC), into a prevascularized subcutaneous device-less (DL) site, or into the unmodified subcutaneous (SC) tissue. The DL site was created 4 weeks before diabetes induction and islet transplantation through the transient placement of a 5-Fr vascular catheter. Recipient mice were monitored for glycemic control and intraperitoneal glucose tolerance. A marginal islet mass transplanted into the DL site routinely reversed diabetes (n = 13 of 18) whereas all SC islet recipients failed to restore glycemic control (n = 0 of 10, P islet-KC mice (n = 15 of 16) became euglycemic posttransplant. The DL recipients' glucose profiles were comparable to KC islet grafts, postintrapertioneal glucose tolerance testing, whereas SC recipients remained hyperglycemic postglucose challenge. All normoglycemic mice maintained graft function for 100 days until graft retrieval. DL and KC islet grafts stained positively for insulin, microvessels, and a collagen scaffold. The device-less prevascularized approach supports marginal mass islet engraftment in mice.

  10. Therapeutic Vascular Targeting and Irradiation: Correlation of MRI Tissue Changes at Cellular and Molecular Levels to Optimizing Outcome

    National Research Council Canada - National Science Library

    Zhao, Dawen

    2006-01-01

    .... Research findings have shown that VTA kills cells predominantly in the more hypoxic area of the tumor, the tumor center, as a consequence of hemorrhagic necrosis after vascular collapse, whereas...

  11. Microparticle subpopulations are potential markers of disease progression and vascular dysfunction across a spectrum of connective tissue disease

    Directory of Open Access Journals (Sweden)

    E.M. McCarthy

    2017-06-01

    The association between circulating MP levels and objective assessment of macro- and microvascular dysfunction within these disease areas suggests that MPs might have a useful role as novel circulating biomarkers of vascular disease within the CTDs.

  12. Fabrication and characterisation of biomimetic, electrospun gelatin fibre scaffolds for tunica media-equivalent, tissue engineered vascular grafts

    Energy Technology Data Exchange (ETDEWEB)

    Elsayed, Y. [Advanced Materials Group, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom); Lekakou, C., E-mail: C.Lekakou@surrey.ac.uk [Advanced Materials Group, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom); Labeed, F. [Centre of Biomedical Engineering, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom); Tomlins, P. [National Physical Laboratory (NPL), Teddington, Middlesex TW11 0LW (United Kingdom)

    2016-04-01

    It is increasingly recognised that biomimetic, natural polymers mimicking the extracellular matrix (ECM) have low thrombogenicity and functional motifs that regulate cell–matrix interactions, with these factors being critical for tissue engineered vascular grafts especially grafts of small diameter. Gelatin constitutes a low cost substitute of soluble collagen but gelatin scaffolds so far have shown generally low strength and suture retention strength. In this study, we have devised the fabrication of novel, electrospun, multilayer, gelatin fibre scaffolds, with controlled fibre layer orientation, and optimised gelatin crosslinking to achieve not only compliance equivalent to that of coronary artery but also for the first time strength of the wet tubular acellular scaffold (swollen with absorbed water) same as that of the tunica media of coronary artery in both circumferential and axial directions. Most importantly, for the first time for natural scaffolds and in particular gelatin, high suture retention strength was achieved in the range of 1.8–1.94 N for wet acellular scaffolds, same or better than that for fresh saphenous vein. The study presents the investigations to relate the electrospinning process parameters to the microstructural parameters of the scaffold, which are further related to the mechanical performance data of wet, crosslinked, electrospun scaffolds in both circumferential and axial tubular directions. The scaffolds exhibited excellent performance in human smooth muscle cell (SMC) proliferation, with SMCs seeded on the top surface adhering, elongating and aligning along the local fibres, migrating through the scaffold thickness and populating a transverse distance of 186 μm and 240 μm 9 days post-seeding for scaffolds of initial dry porosity of 74 and 83%, respectively. - Highlights: • Novel crosslinked electrospun gelatin scaffolds of specific fibre layer orientation • These scaffolds have compliance equivalent to that of coronary

  13. Nova técnica para treinamento em acessos vasculares guiados por ultrassom utilizando modelo de tecido animal New technique for ultrasound-guided vascular access training using an animal tissue model

    Directory of Open Access Journals (Sweden)

    Robson Barbosa de Miranda

    2012-03-01

    Full Text Available A ultrassonografia Doppler deixou de ter seu uso apenas como método diagnóstico e vem galgando espaço nos procedimentos terapêuticos. Com maior aplicabilidade e uso de cateteres venosos centrais e procedimentos guiados por ultrassom, há preocupação com a melhora da eficácia e segurança durante o procedimento, assim como com a diminuição das potenciais complicações. Para isso, o treinamento da técnica em modelos (phantoms é desejável. Os modelos industrializados para treinamento em acesso vascular guiado por ultrassom são caros e não reproduzem adequadamente a ecotextura e a densidade dos tecidos humanos. Na tentativa de treinar e aprimorar os profissionais para o uso do ultrassom em procedimentos de acessos vasculares, desenvolveu-se um modelo animal de baixo custo, fácil confecção e excelente aplicabilidade.Duplex ultrasonography has not been used only as a noninvasive diagnostic method. Recently it has been applied for therapeutic procedures. Due to the increasing use and applicability of central venous catheters and eco-guided vascular procedures, there are concerns about improving results regarding accuracy and safety, reducing complication rates during those procedures. It would be desirable that training was accomplished using phantoms before actual procedures in human subjects. Industrialized phantoms are expensive and they do not reproduce human's ecographic density and texture. In order to train and improve ultrasound guided vascular access, we have developed a cheap animal tissue model, which is of easy preparation and applicability.

  14. Biased visualization of hypoperfused tissue by computed tomography due to short imaging duration: improved classification by image down-sampling and vascular models

    Energy Technology Data Exchange (ETDEWEB)

    Mikkelsen, Irene Klaerke; Ribe, Lars Riisgaard; Bekke, Susanne Lise; Tietze, Anna; Oestergaard, Leif; Mouridsen, Kim [Aarhus University Hospital, Center of Functionally Integrative Neuroscience, Aarhus C (Denmark); Jones, P.S.; Alawneh, Josef [University of Cambridge, Department of Clinical Neurosciences, Cambridge (United Kingdom); Puig, Josep; Pedraza, Salva [Dr. Josep Trueta Girona University Hospitals, Department of Radiology, Girona Biomedical Research Institute, Girona (Spain); Gillard, Jonathan H. [University of Cambridge, Department of Radiology, Cambridge (United Kingdom); Warburton, Elisabeth A. [Cambrigde University Hospitals, Addenbrooke, Stroke Unit, Cambridge (United Kingdom); Baron, Jean-Claude [University of Cambridge, Department of Clinical Neurosciences, Cambridge (United Kingdom); Centre Hospitalier Sainte Anne, INSERM U894, Paris (France)

    2015-07-15

    Lesion detection in acute stroke by computed-tomography perfusion (CTP) can be affected by incomplete bolus coverage in veins and hypoperfused tissue, so-called bolus truncation (BT), and low contrast-to-noise ratio (CNR). We examined the BT-frequency and hypothesized that image down-sampling and a vascular model (VM) for perfusion calculation would improve normo- and hypoperfused tissue classification. CTP datasets from 40 acute stroke patients were retrospectively analysed for BT. In 16 patients with hypoperfused tissue but no BT, repeated 2-by-2 image down-sampling and uniform filtering was performed, comparing CNR to perfusion-MRI levels and tissue classification to that of unprocessed data. By simulating reduced scan duration, the minimum scan-duration at which estimated lesion volumes came within 10 % of their true volume was compared for VM and state-of-the-art algorithms. BT in veins and hypoperfused tissue was observed in 9/40 (22.5 %) and 17/40 patients (42.5 %), respectively. Down-sampling to 128 x 128 resolution yielded CNR comparable to MR data and improved tissue classification (p = 0.0069). VM reduced minimum scan duration, providing reliable maps of cerebral blood flow and mean transit time: 5 s (p = 0.03) and 7 s (p < 0.0001), respectively. BT is not uncommon in stroke CTP with 40-s scan duration. Applying image down-sampling and VM improve tissue classification. (orig.)

  15. Biased visualization of hypoperfused tissue by computed tomography due to short imaging duration: improved classification by image down-sampling and vascular models

    International Nuclear Information System (INIS)

    Mikkelsen, Irene Klaerke; Ribe, Lars Riisgaard; Bekke, Susanne Lise; Tietze, Anna; Oestergaard, Leif; Mouridsen, Kim; Jones, P.S.; Alawneh, Josef; Puig, Josep; Pedraza, Salva; Gillard, Jonathan H.; Warburton, Elisabeth A.; Baron, Jean-Claude

    2015-01-01

    Lesion detection in acute stroke by computed-tomography perfusion (CTP) can be affected by incomplete bolus coverage in veins and hypoperfused tissue, so-called bolus truncation (BT), and low contrast-to-noise ratio (CNR). We examined the BT-frequency and hypothesized that image down-sampling and a vascular model (VM) for perfusion calculation would improve normo- and hypoperfused tissue classification. CTP datasets from 40 acute stroke patients were retrospectively analysed for BT. In 16 patients with hypoperfused tissue but no BT, repeated 2-by-2 image down-sampling and uniform filtering was performed, comparing CNR to perfusion-MRI levels and tissue classification to that of unprocessed data. By simulating reduced scan duration, the minimum scan-duration at which estimated lesion volumes came within 10 % of their true volume was compared for VM and state-of-the-art algorithms. BT in veins and hypoperfused tissue was observed in 9/40 (22.5 %) and 17/40 patients (42.5 %), respectively. Down-sampling to 128 x 128 resolution yielded CNR comparable to MR data and improved tissue classification (p = 0.0069). VM reduced minimum scan duration, providing reliable maps of cerebral blood flow and mean transit time: 5 s (p = 0.03) and 7 s (p < 0.0001), respectively. BT is not uncommon in stroke CTP with 40-s scan duration. Applying image down-sampling and VM improve tissue classification. (orig.)

  16. In vitro model of vascularized bone: synergizing vascular development and osteogenesis.

    Directory of Open Access Journals (Sweden)

    Cristina Correia

    Full Text Available Tissue engineering provides unique opportunities for regenerating diseased or damaged tissues using cells obtained from tissue biopsies. Tissue engineered grafts can also be used as high fidelity models to probe cellular and molecular interactions underlying developmental processes. In this study, we co-cultured human umbilical vein endothelial cells (HUVECs and human mesenchymal stem cells (MSCs under various environmental conditions to elicit synergistic interactions leading to the colocalized development of capillary-like and bone-like tissues. Cells were encapsulated at the 1:1 ratio in fibrin gel to screen compositions of endothelial growth medium (EGM and osteogenic medium (OM. It was determined that, to form both tissues, co-cultures should first be supplied with EGM followed by a 1:1 cocktail of the two media types containing bone morphogenetic protein-2. Subsequent studies of HUVECs and MSCs cultured in decellularized, trabecular bone scaffolds for 6 weeks assessed the effects on tissue construct of both temporal variations in growth-factor availability and addition of fresh cells. The resulting grafts were implanted subcutaneously into nude mice to determine the phenotype stability and functionality of engineered vessels. Two important findings resulted from these studies: (i vascular development needs to be induced prior to osteogenesis, and (ii the addition of additional hMSCs at the osteogenic induction stage improves both tissue outcomes, as shown by increased bone volume fraction, osteoid deposition, close proximity of bone proteins to vascular networks, and anastomosis of vascular networks with the host vasculature. Interestingly, these observations compare well with what has been described for native development. We propose that our cultivation system can mimic various aspects of endothelial cell-osteogenic precursor interactions in vivo, and could find utility as a model for studies of heterotypic cellular interactions that

  17. Monocyte Chemoattractant Protein-1 in the choroid plexus: a potential link between vascular pro-inflammatory mediators and the CNS during peripheral tissue inflammation

    Science.gov (United States)

    Mitchell, K.; Yang, H.-Y. T.; Berk, J. D.; Tran, J. H.; Iadarola, M. J.

    2009-01-01

    During peripheral tissue inflammation, inflammatory processes in the CNS can be initiated by blood-borne pro-inflammatory mediators. The choroid plexus, the site of CSF production, is a highly specialized interface between the vascular system and CNS, and thus, this structure may be an important element in communication between the vascular compartment and the CNS during peripheral tissue inflammation. We investigated the potential participation of the choroid plexus in this process during peripheral tissue inflammation by examining expression of the SCYA2 gene which codes for monocyte chemoattractant protein-1 (MCP-1). MCP-1 protein was previously reported to be induced in a variety of cells during peripheral tissue inflammation. In the basal state, SCYA2 is highly expressed in the choroid plexus as compared to other CNS tissues. During hind paw inflammation, SCYA2 expression was significantly elevated in choroid plexus, whereas it remained unchanged in a variety of brain regions. The SCYA2-expressing cells were strongly associated with the choroid plexus as vascular depletion of blood cells by whole-body saline flush did not significantly alter SCYA2 expression in the choroid plexus. In situ hybridization suggested that the SCYA2-expressing cells were localized to the choroid plexus stroma. To elucidate potential molecular mechanisms of SCYA2 increase, we examined genes in the NF-κβ signaling cascade including TNF-α, IL-1β and IκBα in choroid tissue. Given that we also detected increased levels of MCP-1 protein by ELISA, we sought to identify potential downstream targets of MCP-1 and observed altered expression levels of mRNAs encoding tight junction proteins TJP2 and claudin 5. Finally, we detected a substantial up-regulation of the transcript encoding E-selectin, a molecule which could participate in leukocyte recruitment to the choroid plexus along with MCP-1. Together, these results suggest that profound changes occur in the choroid plexus during

  18. Subcutaneous blood flow in the temporal region of migraine patients

    International Nuclear Information System (INIS)

    Jensen, K.

    1987-01-01

    Subcutaneous blood flow in the temporal region (TSBF) was measured by the local 133 Xenon washout technique in 43 migraine patients; 19 were reexamined in the course of spontaneous attacks. During attacks, TSBF was normal compared to headache-free state. In 13 unilateral attacks, the median ipsilateral to contralateral ratio TSBF was 1: 1.276, (NS). During 30 deg C passive head-up tilt, TSBF descreased by a median of 27% during headache-free intervals and by a median, 21% during migraine attacks. The difference between the 2 occasions was not significant. Head-up tilt resulted in a median 4.5% increase in mean arterial blood pressure (MAP) and a median 5.3% increase in heart rate (HR) during headache-free intervals and 3.4% and 3.2% respectively during migraine attacks. These results are evidence against a vasomotor disturbance of the extracranial tissues during attacks of migraine. The cardio-vascular response to the orthostatic stimulus indicates a normal function of this part of the autonomic nervous system during migraine attacks. (author)

  19. Subcutaneous blood flow in the temporal region of migraine patients

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, K.

    1987-01-01

    Subcutaneous blood flow in the temporal region (TSBF) was measured by the local 133 Xenon washout technique in 43 migraine patients; 19 were reexamined in the course of spontaneous attacks. During attacks, TSBF was normal compared to headache-free state. In 13 unilateral attacks, the median ipsilateral to contralateral ratio TSBF was 1: 1.276, (NS). During 30 deg C passive head-up tilt, TSBF descreased by a median of 27% during headache-free intervals and by a median, 21% during migraine attacks. The difference between the 2 occasions was not significant. Head-up tilt resulted in a median 4.5% increase in mean arterial blood pressure (MAP) and a median 5.3% increase in heart rate (HR) during headache-free intervals and 3.4% and 3.2% respectively during migraine attacks. These results are evidence against a vasomotor disturbance of the extracranial tissues during attacks of migraine. The cardio-vascular response to the orthostatic stimulus indicates a normal function of this part of the autonomic nervous system during migraine attacks.

  20. stausartikel: behandling af subcutane abscesser

    DEFF Research Database (Denmark)

    Hardgrib, Nina; Petersen, Klaus Kjær

    2017-01-01

    Simple subcutaneous abscesses are common, and we have examined the literature concerning the ideal treatment of subcutaneous abscesses. We recommend radical debridement with removal of all pus, the abscess wall and any necrosis. If primary suture is chosen, preoperative antibiotics should be admi...

  1. Model Study of the Pressure Build-Up during Subcutaneous Injection

    DEFF Research Database (Denmark)

    Thomsen, Maria; Hernandez Garcia, Anier; Mathiesen, Joachim

    2014-01-01

    In this study we estimate the subcutaneous tissue counter pressure during drug infusion from a series of injections of insulin in type 2 diabetic patients using a non-invasive method. We construct a model for the pressure evolution in subcutaneous tissue based on mass continuity and the flow laws...

  2. Time course of fibronectin in the peri-implant tissue and neointima formation after functional implantation of polyester-based vascular prostheses with different porosity in pigs

    Energy Technology Data Exchange (ETDEWEB)

    Patrzyk, Maciej; Hoene, Andreas [Department of Surgery, Ernst Moritz Arndt University Greifswald, Friedrich-Loeffler-Str. 23, D-17489 Greifswald (Germany); Jarchow, Raymond [Computation Centre, Ernst Moritz Arndt University Greifswald, Felix-Hausdorff-Str. 12, D-17489 Greifswald (Germany); Wilhelm, Lutz [Department of Surgery, Hospital Demmin, Loitzer Str. 1, D-17109 Demmin (Germany); Walschus, Uwe; Schlosser, Michael [Research Group of Predictive Diagnostics of the Department of Medical Biochemistry and Molecular Biology and Institute of Pathophysiology, Ernst Moritz Arndt University Greifswald, Greifswalder Str. 11c, D-17495 Karlsburg (Germany); Zippel, Roland, E-mail: schlosse@uni-greifswald.d [Department of Surgery, Elbland Hospital Center, Weinbergstr. 8, D-01589 Riesa (Germany)

    2010-10-01

    Intima hyperplasia, resulting from extracellular matrix (ECM) secretion, can lead to vascular prosthesis occlusion and is a major problem in vascular surgery. Fibronectin might contribute to ongoing ECM secretion. However, the exact role of fibronectin and its influence on neointima formation remains unclear. This study was aimed at investigating the time course of the fibronectin area fraction and neointima formation following the functional implantation of three different polyester vascular prostheses into pigs. The infrarenal aorta from 15 animals (n = 5/group) was replaced by prosthesis segments with low, medium and high primary porosity. After 7, 14, 21, 28 and 116 days, the prostheses were morphometrically examined. Overall, the fibronectin area fraction was inversely correlated with the neointima thickness, demonstrating high fibronectin levels in the early phase (days 7 and 14) and low levels in the later phase with almost complete neointima formation (days 21-116). Throughout the study, fibronectin levels were highest at the proximal anastomosis region. The low porosity prosthesis had the highest fibronectin area fraction and a delayed neointima formation in the middle phase (days 21 and 28) but the highest neointima lining on day 116. The results indicate a relationship between fibronectin and neointima formation with the prosthesis porosity, demonstrating the importance of the textile design for tissue reactions following implantation.

  3. Association of Habitual Patterns and Types of Physical Activity and Inactivity with MRI-Determined Total Volumes of Visceral and Subcutaneous Abdominal Adipose Tissue in a General White Population.

    Directory of Open Access Journals (Sweden)

    Karina Fischer

    Full Text Available Population-based evidence for the role of habitual physical activity (PA in the accumulation of visceral (VAT and subcutaneous (SAAT abdominal adipose tissue is limited. We investigated if usual patterns and types of self-reported PA and inactivity were associated with VAT and SAAT in a general white population. Total volumes of VAT and SAAT were quantified by magnetic resonance imaging in 583 men and women (61 ± 11.9 y; BMI 27.2 ± 4.4 kg/m2. Past-year PA and inactivity were self-reported by questionnaire. Exploratory activity patterns (APAT were derived by principal components analysis. Cross-sectional associations between individual activities, total PA in terms of metabolic equivalents (PA MET, or overall APAT and either VAT or SAAT were analyzed by multivariable-adjusted robust or generalized linear regression models. Whereas vigorous-intensity PA (VPA was negatively associated with both VAT and SAAT, associations between total PA MET, moderate-intensity PA (MPA, or inactivity and VAT and/or SAAT depended on sex. There was also evidence of a threshold effect in some of these relationships. Total PA MET was more strongly associated with VAT in men (B = -3.3 ± 1.4; P = 0.02 than women (B = -2.1 ± 1.1; P = 0.07, but was more strongly associated with SAAT in women (B = -5.7 ± 2.5; P = 0.05 than men (B = -1.7 ± 1.6; P = 0.3. Men (-1.52 dm3 or -1.89 dm3 and women (-1.15 dm3 or -2.61 dm3 in the highest (>6.8 h/wk VPA or second (4.0-6.8 h/wk VPA tertile of an APAT rich in VPA, had lower VAT and SAAT, respectively, than those in the lowest (<4.0 h/wk VPA tertile (P ≤ 0.016; P trend ≤ 0.0005. They also had lower VAT and SAAT than those with APAT rich in MPA and/or inactivity only. In conclusion, our results suggest that in white populations, habitual APAT rich in MPA might be insufficient to impact on accumulation of VAT or SAAT. APAT including ≥ 4.0-6.8 h/wk VPA, by contrast, are more strongly associated with lower VAT and SAAT.

  4. Irradiation-induced hypoxia in bones and soft tissues: an experimental study

    International Nuclear Information System (INIS)

    Aitasalo, K.; Aro, H.

    1986-01-01

    Bone marrow and subcutaneous tissue pO 2 and pCO 2 were measured by means of implanted tissue tonometers in irradiated and nonirradiated rabbit hind limbs. The x-ray dose was 500, 1000, 1500, 2000, and 3000 rads. Tissue gas tensions were measured 1 day and 5 and 11 weeks after radiation. The pCO 2 changes in both tissues were slight but not statistically significant. The subcutaneous tissue pO 2 decreased during the acute phase of irradiation injury, and the effect of irradiation was dose-dependent. Later on, irradiation had no significant effects on the subcutaneous pO 2 , although light microscopy of the affected tissues showed fibrosis and blood vessel changes. The response of the subcutaneous pO 2 to systemic hyperoxia also increased in the chronic phase of irradiation injury as a sign of improved microcirculation. The bone marrow showed a high radiosensitivity. Irradiation caused a rapid dose-dependent decrease of the marrow pO 2 , and the marrow pO 2 decreased with time during the chronic phase of irradiation injury. The marrow pO 2 responded slowly and marginally to an increment of arterial pO 2 during breathing 100% oxygen as further evidence of impaired vascular pattern. The results showed that irradiation causes only a transient impairment of tissue perfusion in the skin. However, irradiation-damaged marrow was characterized by progressive tissue hypoxia

  5. Transgene silencing of sucrose synthase in alfalfa (Medicago sativa L.) stem vascular tissue suggests a role for invertase in cell wall cellulose synthesis.

    Science.gov (United States)

    Samac, Deborah A; Bucciarelli, Bruna; Miller, Susan S; Yang, S Samuel; O'Rourke, Jamie A; Shin, Sanghyun; Vance, Carroll P

    2015-12-01

    Alfalfa (Medicago sativa L.) is a widely adapted perennial forage crop that has high biomass production potential. Enhanced cellulose content in alfalfa stems would increase the value of the crop as a bioenergy feedstock. We examined if increased expression of sucrose synthase (SUS; EC 2.4.1.13) would increase cellulose in stem cell walls. Alfalfa plants were transformed with a truncated alfalfa phosphoenolpyruvate carboxylase gene promoter (PEPC7-P4) fused to an alfalfa nodule-enhanced SUS cDNA (MsSUS1) or the β-glucuronidase (GUS) gene. Strong GUS expression was detected in xylem and phloem indicating that the PEPC7-P4 promoter was active in stem vascular tissue. In contrast to expectations, MsSUS1 transcript accumulation was reduced 75-90 % in alfalfa plants containing the PEPC7-P4::MsSUS1 transgene compared to controls. Enzyme assays indicated that SUS activity in stems of selected down-regulated transformants was reduced by greater than 95 % compared to the controls. Although SUS activity was detected in xylem and phloem of control plants by in situ enzyme assays, plants with the PEPC7-P4::MsSUS1 transgene lacked detectable SUS activity in post-elongation stem (PES) internodes and had very low SUS activity in elongating stem (ES) internodes. Loss of SUS protein in PES internodes of down-regulated lines was confirmed by immunoblots. Down-regulation of SUS expression and activity in stem tissue resulted in no obvious phenotype or significant change in cell wall sugar composition. However, alkaline/neutral (A/N) invertase activity increased in SUS down-regulated lines and high levels of acid invertase activity were observed. In situ enzyme assays of stem tissue showed localization of neutral invertase in vascular tissues of ES and PES internodes. These results suggest that invertases play a primary role in providing glucose for cellulose biosynthesis or compensate for the loss of SUS1 activity in stem vascular tissue.

  6. Effects of prolonged ingestion of epigallocatechin gallate on diabetes type 1-induced vascular modifications in the erectile tissue of rats.

    Science.gov (United States)

    Lombo, C; Morgado, C; Tavares, I; Neves, D

    2016-07-01

    Diabetes Mellitus type 1 is a metabolic disease that predisposes to erectile dysfunction, partly owing to structural and molecular changes in the corpus cavernosum (CC) vessels. The aim of this study was to determine the effects of early treatment with the antioxidant epigallocatechin gallate (EGCG) in cavernous diabetes-induced vascular modifications. Diabetes was induced in two groups of young Wistar rats; one group was treated with EGCG for 10 weeks. A reduction in smooth muscle content was observed in the CC of diabetic rats, which was significantly attenuated with EGCG consumption. No differences were observed among groups, neither in the expression of VEGF assayed by western blotting nor in the immunofluorescent labeling of vascular endothelial growth factor (VEGF) and its receptors (VEGFR1 and VEGFR2). VEGFR2 was restricted to the endothelium, whereas VEGF and VEGFR1 co-localized in the smooth muscle layer. With regard to the Angiopoietin/Tie-2 system, no quantitative differences in Angiopoietin 1 were observed among the experimental groups. Ang1 localization was restricted to the smooth muscle layer, and receptor Tie2 and Angiopoietin 2 were both expressed in the endothelium. In brief, our results suggest that EGCG consumption prevented diabetes-induced loss of cavernous smooth muscle but does not affect vascular growth factor expression in young rats.

  7. Mycobacterium fortuitum skin infections after subcutaneous injections with Vietnamese traditional medicine: a case report

    NARCIS (Netherlands)

    Lan, Nguyen Phu Huong; Kolader, Marion-Eliëtte; van Dung, Nguyen; Campbell, James I.; Tham, Nguyen Thi; Chau, Nguyen Van Vinh; van Doorn, H. Rogier; Le, Dien Hoa

    2014-01-01

    Iatrogenic skin and soft tissue infections by rapidly growing mycobacteria are described with increasing frequency, especially among immunocompromised patients. Here, we present an immunocompetent patient with extensive Mycobacterium fortuitum skin and soft tissue infections after subcutaneous

  8. Evaluation of five DNA extraction methods for purification of DNA from atherosclerotic tissue and estimation of prevalence of Chlamydia pneumoniae in tissue from a Danish population undergoing vascular repair

    Directory of Open Access Journals (Sweden)

    Lindholt Jes S

    2003-09-01

    Full Text Available Abstract Background To date PCR detection of Chlamydia pneumoniae DNA in atherosclerotic lesions from Danish patients has been unsuccessful. To establish whether non-detection was caused by a suboptimal DNA extraction method, we tested five different DNA extraction methods for purification of DNA from atherosclerotic tissue. Results The five different DNA extraction methods were tested on homogenate of atherosclerotic tissue spiked with C. pneumoniae DNA or EB, on pure C. pneumoniae DNA samples and on whole C. pneumoniae EB. Recovery of DNA was measured with a C. pneumoniae-specific quantitative real-time PCR. A DNA extraction method based on DNA-binding to spin columns with a silica-gel membrane (DNeasy Tissue kit showed the highest recovery rate for the tissue samples and pure DNA samples. However, an automated extraction method based on magnetic glass particles (MagNA Pure performed best on intact EB and atherosclerotic tissue spiked with EB. The DNeasy Tissue kit and MagNA Pure methods and the highly sensitive real-time PCR were subsequently used on 78 atherosclerotic tissue samples from Danish patients undergoing vascular repair. None of the samples were positive for C. pneumoniae DNA. The atherosclerotic samples were tested for inhibition by spiking with two different, known amounts of C. pneumoniae DNA and no samples showed inhibition. Conclusion As a highly sensitive PCR method and an optimised DNA extraction method were used, non-detection in atherosclerotic tissue from the Danish population was probably not caused by use of inappropriate methods. However, more samples may need to be analysed per patient to be completely certain on this. Possible methodological and epidemiological reasons for non-detection of C. pneumoniae DNA in atherosclerotic tissue from the Danish population are discussed. Further testing of DNA extraction methods is needed as this study has shown considerable intra- and inter-method variation in DNA recovery.

  9. Non-Immunogenic Structurally and Biologically Intact Tissue Matrix Grafts for the Immediate Repair of Ballistic-Induced Vascular and Nerve Tissue Injury in Combat Casualty Care

    National Research Council Canada - National Science Library

    Bachrach, Nathaniel

    2003-01-01

    .... This past year the source of he defects was determined to be the freeze-drying process. Ongoing efforts toward process optimization and design modifications that will provide undamaged tissue grafts are presented in this report...

  10. [Characteristics of sublingual vein and expressions of vascular endothelial growth factor and hypoxia-inducible factor 1alpha proteins in sublingual tissues of Beagle dogs with portal hypertension].

    Science.gov (United States)

    Li, Bai-yu; Wang, Li-na; Yue, Xiao-qiang; Li, Bai

    2009-05-01

    To observe sublingual vein characteristics and the expressions of vascular endothelial growth factor (VEGF) and hypoxia-inducible factor 1alpha (HIF-1alpha) proteins in sublingual tissues of Beagle dogs with cirrhotic portal hypertension. Twelve Beagle dogs were randomly divided into normal control group and cirrhotic portal hypertension group. There were 6 dogs in each group. A canine model of cirrhosis portal hypertension was established by injecting dimethylnitrosamine (DMN) into portal vein once a week for 7 weeks. The characteristics of sublingual vein were observed. Portal venous pressure was measured by using bioelectric recording techniques. The expressions of VEGF and HIF-1alpha proteins in sublingual vein were detected by immunohistochemical method. The shape and color of sublingual vein in beagle dogs in the cirrhotic portal hypertension group changed obviously as compared with the normal control group. Immunohistochemical results showed that there were almost no expressions of VEGF and HIF-1alpha proteins in sublingual tissues in the normal control group; however, the expressions of VEGF and HIF-1alpha proteins in sublingual tissues in the cirrhotic portal hypertension group significantly increased. Changes of portal pressure may lead to the formation of the abnormal sublingual vein by increasing the expressions of VEGF and HIF-1alpha proteins in sublingual tissues in Beagle dogs with portal hypertension.

  11. Construction and characterization of an electrospun tubular scaffold for small-diameter tissue-engineered vascular grafts: a scaffold membrane approach.

    Science.gov (United States)

    Hu, Jin-Jia; Chao, Wei-Chih; Lee, Pei-Yuan; Huang, Chih-Hao

    2012-09-01

    Based on a postulate that the microstructure of a scaffold can influence that of the resulting tissue and hence its mechanical behavior, we fabricated a small-diameter tubular scaffold (∼3 mm inner diameter) that has a microstructure similar to the arterial media using a scaffold membrane approach. Scaffold membranes that contain randomly oriented, moderately aligned, or highly aligned fibers were fabricated by collecting electrospun poly([epsilon]-caprolactone) fibers on a grounded rotating drum at three different drum rotation speeds (250, 1000, and 1500 rpm). Membranes of each type were wrapped around a small-diameter mandrel to form the tubular scaffolds. Particularly, the tubular scaffolds with three different off-axis fiber angles (30, 45, and 60 degree) were formed using membranes that contain aligned fibers. These scaffolds were subjected to biaxial mechanical testing to examine the effects of fiber directions as well as the distribution of fiber orientations on their mechanical properties. The circumferential elastic modulus of the tubular scaffold was closely related to the fiber directions; the larger the off-axis fiber angle the greater the circumferential elastic modulus. The distribution of fiber orientations, on the other hand, manifested itself in the mechanical behavior via the Poisson effect. Similar to cell sheet-based vascular tissue engineering, tubular cell-seeded constructs were prepared by wrapping cell-seeded scaffold membranes, alleviating the difficulty associated with cell seeding in electrospun scaffolds. Histology of the construct illustrated that cells were aligned to the fiber directions in the construct, demonstrating the potential to control the microstructure of tissue-engineered vascular grafts using the electrospun scaffold membrane. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Histological case-control study of peeling-induced skin changes by different peeling agents in surgically subcutaneous undermined skin flaps in facelift patients.

    Science.gov (United States)

    Gonser, P; Kaestner, S; Jaminet, P; Kaye, K

    2017-11-01

    A histological evaluation of peeling-induced skin changes in subcutaneous undermined preauricular facial skin flaps of nine patients was performed. There were three treatment groups: Trichloroacetic acid (TCA) 25%, TCA 40% and phenol/croton oil; one group served as control. Two independent evaluators determined the epidermal and dermal thickness and the depth of necrosis (micrometre). The percentual tissue damage due to the peeling was calculated, and a one-sample t-test for statistical significance was performed. On the basis of the histomorphological changes, peeling depth was classified as superficial, superficial-partial, deep-partial and full thickness chemical burn. The histological results revealed a progression of wound depth for different peeling agents without full thickness necrosis. TCA peels of up to 40% can be safely applied on subcutaneous undermined facial skin flaps without impairing the vascular patency, producing a predictable chemical burn, whereas deep peels such as phenol/croton oil peels should not be applied on subcutaneous undermined skin so as to not produce skin slough or necrosis by impairing vascular patency. Copyright © 2017 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  13. Gigantic subcutaneous lipoma – A case report

    Directory of Open Access Journals (Sweden)

    Christian Lyngsaa Lang

    2015-03-01

    Full Text Available Lipomas are the most common benign mesenchymal tumour. The solitary subcutaneous lipoma accounts for approximately one-quarter to one-half of all soft tissue tumours. The preferred locations include the trunk, shoulder, upper arm, and the neck. In this case report, we present a gigantic axillary lipoma weighing 23.35 kg. Due to the tumour mass and its long-term presence, the lipoma caused anatomical changes in the axilla making its removal challenging and difficult.

  14. A comparative study of vascular injection fluids in fresh-frozen and embalmed human cadaver forearms.

    Science.gov (United States)

    Doomernik, D E; Kruse, R R; Reijnen, M M P J; Kozicz, T L; Kooloos, J G M

    2016-10-01

    Over the years, various vascular injection products have been developed to facilitate anatomical dissections. This study aimed to compare the most commonly used vascular injection products in fresh-frozen and formalin-embalmed cadaver specimens. An overview of the properties, advantages and limitations of each substance was given, and a comparison of vascular infusion procedures in both preservation methods was made. A literature search was performed in order to identify the most commonly used vascular injection products. Acrylic paint, latex, gelatin, silicone, Araldite F and Batson's No. 17 were selected for the study. One fresh-frozen and one embalmed cadaver forearm were infused with each injection product according to a uniform protocol. The curing time, skin- and subcutaneous tissue penetration, degree of filling of the arterial tree, extravasations, consistency of the injected vessels during dissection, and the costs of each injection fluid were noted. There was a large variation between the injection fluids in processing- and curing time, colour intensity, flexibility, fragility, elasticity, strength, toxicity and costs. All fluids were suitable for infusion. The penetration of injection fluid into the skin and subcutaneous tissue was significantly better in fresh-frozen specimens (P = 0.002 and P = 0.009, respectively), with significantly smaller branches casted (P = 0.004). Vascular infusion of fresh-frozen cadaver specimens results in a significantly better filled coloured arterial tree, enabling more detail to be achieved and smaller branches casted. The biomechanical properties of fresh-frozen soft tissues are less affected compared with formalin fixation. All the injection fluids studied are suitable for vascular infusion, but their different properties ensure that certain products and procedures are more suitable for specific study purposes. © 2016 Anatomical Society.

  15. Circulating Vascular Basement Membrane Fragments are Associated with the Diameter of the Abdominal Aorta and Their Expression Pattern is Altered in AAA Tissue.

    Science.gov (United States)

    Holsti, Mari; Wanhainen, Anders; Lundin, Christina; Björck, Martin; Tegler, Gustaf; Svensson, Johan; Sund, Malin

    2018-04-12

    Abdominal aortic aneurysm (AAA) is characterised by enhanced proteolytic activity, and extracellular matrix (ECM) remodelling in the vascular wall. Type IV and XVIII collagen/endostatin are structural proteins in vascular basement membrane (VBM), a specialised ECM structure. Here the association between plasma levels of these collagens with the aortic diameter and expansion rate is studied, and their expression in aortic tissue characterised. This was a retrospective population based cohort study. Type IV and XVIII collagen/endostatin were analysed in plasma by ELISA assay in 615 men, divided into three groups based on the aortic diameter: 1) normal aorta ≤ 25 mm, 2) sub-aneurysmal aorta (SAA) 26-29 mm, and 3) AAA ≥ 30 mm. Follow up data were available for 159 men. The association between collagen levels and aortic diameter at baseline, and with the expansion rate at follow up were analysed in ordinal logistic regression and linear regression models, controlling for common confounding factors. Tissue expression of the collagens was analysed in normal aorta (n = 6) and AAA (n = 6) by immunofluorescence. Plasma levels of type XVIII collagen/endostatin (136 ng/mL [SD 29] in individuals with a normal aorta diameter, 154 ng/ml [SD 45] in SAA, and 162 ng/ml [SD 46] in AAA; p = .001) and type IV collagen (105 ng/mL [SD 42] normal aorta, 124 ng/ml [SD 46] SAA, and 127 ng/ml [SD 47] AAA; p = .037) were associated with a larger aortic diameter. A significant association was found between the baseline levels of type XVIII/endostatin and the aortic expansion rate (p = .035), but in the multivariable model, only the initial aortic diameter remained significantly associated with expansion (p = .005). Altered expression patterns of both collagens were observed in AAA tissue. Plasma levels of circulating type IV and XVIII collagen/endostatin increase with AAA diameter. The expression pattern of VBM proteins is altered in the aneurysm wall. Copyright

  16. 3D cell printing of in vitro stabilized skin model and in vivo pre-vascularized skin patch using tissue-specific extracellular matrix bioink: A step towards advanced skin tissue engineering.

    Science.gov (United States)

    Kim, Byoung Soo; Kwon, Yang Woo; Kong, Jeong-Sik; Park, Gyu Tae; Gao, Ge; Han, Wonil; Kim, Moon-Bum; Lee, Hyungseok; Kim, Jae Ho; Cho, Dong-Woo

    2018-06-01

    3D cell-printing technique has been under spotlight as an appealing biofabrication platform due to its ability to precisely pattern living cells in pre-defined spatial locations. In skin tissue engineering, a major remaining challenge is to seek for a suitable source of bioink capable of supporting and stimulating printed cells for tissue development. However, current bioinks for skin printing rely on homogeneous biomaterials, which has several shortcomings such as insufficient mechanical properties and recapitulation of microenvironment. In this study, we investigated the capability of skin-derived extracellular matrix (S-dECM) bioink for 3D cell printing-based skin tissue engineering. S-dECM was for the first time formulated as a printable material and retained the major ECM compositions of skin as well as favorable growth factors and cytokines. This bioink was used to print a full thickness 3D human skin model. The matured 3D cell-printed skin tissue using S-dECM bioink was stabilized with minimal shrinkage, whereas the collagen-based skin tissue was significantly contracted during in vitro tissue culture. This physical stabilization and the tissue-specific microenvironment from our bioink improved epidermal organization, dermal ECM secretion, and barrier function. We further used this bioink to print 3D pre-vascularized skin patch able to promote in vivo wound healing. In vivo results revealed that endothelial progenitor cells (EPCs)-laden 3D-printed skin patch together with adipose-derived stem cells (ASCs) accelerates wound closure, re-epithelization, and neovascularization as well as blood flow. We envision that the results of this paper can provide an insightful step towards the next generation source for bioink manufacturing. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Vascular endothelial growth factor polymorphisms and a synchronized examination of plasma and tissue expression in epithelial ovarian cancers.

    Science.gov (United States)

    Bhaskari, J; Premalata, C S; Shilpa, V; Rahul, B; Pallavi, V R; Ramesh, G; Krishnamoorthy, Lakshmi

    2016-01-01

    In this study, we have analyzed six genetic polymorphisms of the VEGF-A gene and correlated the genetic data with plasma and tissue expression of VEGF-A in epithelial ovarian carcinomas. A total of 130 cases including 95 malignant carcinomas, 17 low malignant potential and 18 benign tumours were studied. rs699947, rs833061, rs1570360, rs2010963, rs1413711 and rs3025039 were studied by polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP). Plasma levels of VEGF-A were estimated by enzyme-linked immunosorbent assay (ELISA) and tissue expression of VEGF-A by immunohistochemistry (IHC). Four polymorphisms of the above excluding rs699947 and rs3025039 showed significant association with malignancy, and we observed the presence of positive correlation between haplotype CCGGCC and increased expression of VEGF-A in both plasma and tissues which also correlated with poor prognosis and recurrence suggesting a probable increase in resistance to treatment in such carriers. Highly upregulated tissue expression of VEGF-A was seen in all epithelial ovarian carcinomas with intensity of expression increasing from benign to malignant cases. ELISA data from our study showed an increase in circulating levels of VEGF-A in malignancies. VEGF-A plasma levels can be employed as a biomarker for high-grade malignancy in epithelial ovarian cancers alongside tissue expression and CA-125 levels. This study is unique due to the fact that a simultaneous analysis of plasma and tissue expression has been demonstrated and is a first such study in epithelial ovarian cancers and representing the Indian population (South-east Asian) synchronized with genetic polymorphism data as well.

  18. Subcutaneous emphysema during third molar surgery: a case report.

    Science.gov (United States)

    Romeo, Umberto; Galanakis, Alexandros; Lerario, Francesco; Daniele, Gabriele Maria; Tenore, Gianluca; Palaia, Gaspare

    2011-01-01

    Extraction of third molars is the most common surgical procedure performed in oral surgery on a daily basis and, despite surgical skills and expertise, complications may occur. Complications observed during or after third molar removal may include pain, swelling, bleeding, infection, sinus perforation and nerve damage. Fortunately, with a proper management and a good surgical technique, the incidence of such events is low. Subcutaneous emphysema associated with dental extraction occurs when the air from the high-speed dental handpiece is forced into the soft tissue through the reflected flap and invades the adjacent tissues, leading to swelling, crepitus on palpation and occasionally spreading through the tissue spaces of the fascial planes. Although rare, iatrogenic subcutaneous emphysema can have serious and potentially life-threatening consequences. Care should be taken when using air-driven handpieces. The access of air into the facial tissues is not limited to tooth extractions, but may also occur through other portals of entrance, such as endodontically treated teeth, periodontium and lacerations of intraoral soft tissues. When subcutaneous emphysema occurs, it must be quickly diagnosed and properly managed to reduce the risk of further complications. This report presents a case of subcutaneous emphysema occurred during extraction of a mandibular third molar extraction with the use of an air turbine handpiece. Case management is described and issues relative to the diagnosis and prevention of this surgical complication are discussed.

  19. [The application of microvascular anastomotic coupler in vascular anastomosis of free tissue flap for reconstruction of defect after head and neck cancer resection].

    Science.gov (United States)

    Zhang, Y J; Wang, Z H; Li, C H; Chen, J

    2017-09-07

    Objective: To investigate the application and operation skills in vein anastomosis by microvascular anastomotic coupler (MAC) in reconstruction of defects after head and neck cancer resection. Methods: From August 2015 to July 2016, in Department of Head and Neck Surgery, Sichuan Cancer Hosipital, 17 cases underwent the reconstruction of defects after head and neck cancer resection with free tissue flaps, including forearm flaps in 11 casess, anterolateral flaps in 4 casess and fibula flaps in 2 casess. Totally 17 MAC were used, including 14 MAC for end-to-end anastomosis and 3 MAC for end-to-side anastomosis. SPSS 22.0 software was used to analyze the data. Results: Venous anastomoses in 17 free tissue flaps were successfully completed, with no anastomotic errhysis. All flaps survived well. The time required for vascular anastomoses with MAC varied 2-9 min, with average time of (4.2±2.3) min, which was significantly shorter than that with manually anastomosis (17.4 ± 2.7) min ( t =15.1, P anastomosis in free tissue flap for reconstruction of defect after head and neck cancer resection, which requires for less operation time and shows good results.

  20. Expression and Function of Hypoxia Inducible Factor-1α and Vascular Endothelial Growth Factor in Pulp Tissue of Teeth under Orthodontic Movement

    Directory of Open Access Journals (Sweden)

    Fulan Wei

    2015-01-01

    Full Text Available Orthodontic force may lead to cell damage, circulatory disturbances, and vascular changes of the dental pulp, which make a hypoxic environment in pulp. In order to maintain the homeostasis of dental pulp, hypoxia will inevitably induce the defensive reaction. However, this is a complex process and is regulated by numerous factors. In this study, we established an experimental animal model of orthodontic tooth movement to investigate the effects of mechanical force on the expression of VEGF and HIF-1α in dental pulp. Histological analysis of dental pulp and expressions of HIF-1α and VEGF proteins in dental pulp were examined. The results showed that inflammation and vascular changes happened in dental pulp tissue in different periods. Additionally, there were significant changes in the expression of HIF-1α and VEGF proteins under orthodontic force. After application of mechanical load, expression of HIF-1α and VEGF was markedly positive in 1, 3, 7 d, and 2 w groups, and then it weakened in 4 w group. These findings suggested that the expression of HIF-1α and VEGF was enhanced by mechanical force. HIF-1α and VEGF may play an important role in retaining the homeostasis of dental pulp during orthodontic tooth movement.

  1. Vascularization of the gray whale palate (Cetacea, Mysticeti, Eschrichtius robustus): soft tissue evidence for an alveolar source of blood to baleen.

    Science.gov (United States)

    Ekdale, Eric G; Deméré, Thomas A; Berta, Annalisa

    2015-04-01

    The origin of baleen in mysticetes heralded a major transition during cetacean evolution. Extant mysticetes are edentulous in adulthood, but rudimentary teeth develop in utero within open maxillary and mandibular alveolar grooves. The teeth are resorbed prenatally and the alveolar grooves close as baleen germ develops. Arteries supplying blood to highly vascularized epithelial tissue from which baleen develops pass through lateral nutrient foramina in the area of the embryonic alveolar grooves and rudimentary teeth. Those vessels are hypothesized to be branches of the superior alveolar artery, but branches of the greater palatine arteries may play a role in the baleen vascularization. Through a combination of latex injection, CT, and traditional dissection of the palate of a neonatal gray whale (Eschrichtius robustus), we confirm that the baleen receives blood from vessels within the superior alveolar canal via the lateral foramina. The greater palatine artery is restricted to its own passage with no connections to the baleen. This study has implications for the presence of baleen in extinct taxa by identifying the vessels and bony canals that supply blood to the epithelium from which baleen develops. The results indicate that the lateral foramina in edentulous mysticete fossils are bony correlates for the presence of baleen, and the results can be used to help identify bony canals and foramina that have been used to reconstruct baleen in extinct mysticetes that retained teeth in adulthood. Further comparisons are made with mammals that also possess oral keratin structures, including ruminants, ornithorhynchid monotremes, and sirenians. © 2015 Wiley Periodicals, Inc.

  2. Influence of vascular endothelial growth factor stimulation and serum deprivation on gene activation patterns of human adipose tissue-derived stromal cells

    DEFF Research Database (Denmark)

    Tratwal, Josefine; Mathiasen, Anders Bruun; Juhl, Morten

    2015-01-01

    INTRODUCTION: Stimulation of mesenchymal stromal cells and adipose tissue-derived stromal cells (ASCs) with vascular endothelial growth factor (VEGF) has been used in multiple animal studies and clinical trials for regenerative purposes. VEGF stimulation is believed to promote angiogenesis and VEGF...... stimulation is usually performed under serum deprivation. Potential regenerative molecular mechanisms are numerous and the role of contributing factors is uncertain. The aim of the current study was to investigate the effect of in vitro serum deprivation and VEGF stimulation on gene expression patterns...... of ASCs. METHODS: Gene expressions of ASCs cultured in complete medium, ASCs cultured in serum-deprived medium and ASCs stimulated with VEGF in serum-deprived medium were compared. ASC characteristics according to criteria set by the International Society of Cellular Therapy were confirmed by flow...

  3. Blood flow and vascular reactivity in collaterally perfused brain tissue. Evidence of an ischemic penumbra in patients with acute stroke

    DEFF Research Database (Denmark)

    Olsen, T S; Larsen, B; Herning, M

    1983-01-01

    ). Autoregulation was impaired in all of the collaterally perfused areas while the CO2-response always was preserved. Steal phenomena were not seen. In the surrounding brain tissue, autoregulation was normal in 5 patients and impaired in 3 while the CO2-response seemed to be normal. The results confirm...

  4. Tissue inhibitor of matrix metalloproteinase-1 expression in colorectal cancer liver metastases is associated with vascular structures

    DEFF Research Database (Denmark)

    Illemann, Martin; Eefsen, Rikke Helene Løvendahl; Bird, Nigel Charles

    2016-01-01

    several proteases, involved in the degradation of extracellular matrix components, are up-regulated. In liver metastases, their expression is growth pattern dependent. Tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) is a strong prognostic marker in plasma from colorectal cancer patients...

  5. Non-Immunogenic Structurally and Biologically Intact Tissue Matrix Grafts for the Immediate Repair of Ballistic-Induced Vascular and Nerve Tissue Injury in Combat

    Science.gov (United States)

    2004-12-01

    the absence of dilatation, aneurysm formation or neointimal hyperplasia . The 2003 report described the failure to provide appropriate carotid grafts...growth of fibrovascular tissue, sometimes accompanied by inflammatory cells and pigment-laden macrophages. Fragmentation of the umbilical vein...were also present within the device interstices. A fibrovascular stroma (all animals, mild to marked) was also noted within the lumen of the ePTFE

  6. Biofabrication enables efficient interrogation and optimization of sequential culture of endothelial cells, fibroblasts and cardiomyocytes for formation of vascular cords in cardiac tissue engineering

    International Nuclear Information System (INIS)

    Iyer, Rohin K; Radisic, Milica; Chiu, Loraine L Y; Vunjak-Novakovic, Gordana

    2012-01-01

    We previously reported that preculture of fibroblasts (FBs) and endothelial cells (ECs) prior to cardiomyocytes (CMs) improved the structural and functional properties of engineered cardiac tissue compared to culture of CMs alone or co-culture of all three cell types. However, these approaches did not result in formation of capillary-like cords, which are precursors to vascularization in vivo. Here we hypothesized that seeding the ECs first on Matrigel and then FBs 24 h later to stabilize the endothelial network (sequential preculture) would enhance cord formation in engineered cardiac organoids. Three sequential preculture groups were tested by seeding ECs (D4T line) at 8%, 15% and 31% of the total cell number on Matrigel-coated microchannels and incubating for 24 h. Cardiac FBs were then seeded (32%, 25% and 9% of the total cell number, respectively) and incubated an additional 24 h. Finally, neonatal rat CMs (60% of the total cell number) were added and the organoids were cultivated for seven days. Within 24 h, the 8% EC group formed elongated cords which eventually developed into beating cylindrical organoids, while the 15% and 31% EC groups proliferated into flat EC monolayers with poor viability. Excitation threshold (ET) in the 8% EC group (3.4 ± 1.2 V cm −1 ) was comparable to that of the CM group (3.3 ± 1.4 V cm −1 ). The ET worsened with increasing EC seeding density (15% EC: 4.4 ± 1.5 V cm −1 ; 31% EC: 4.9 ± 1.5 V cm −1 ). Thus, sequential preculture promoted vascular cord formation and enhanced architecture and function of engineered heart tissues. (paper)

  7. Influence of epidermal growth factor (EGF) and hydrocortisone on the co-culture of mature adipocytes and endothelial cells for vascularized adipose tissue engineering.

    Science.gov (United States)

    Huber, Birgit; Czaja, Alina Maria; Kluger, Petra Juliane

    2016-05-01

    The composition of vascularized adipose tissue is still an ongoing challenge as no culture medium is available to supply adipocytes and endothelial cells appropriately. Endothelial cell medium is typically supplemented with epidermal growth factor (EGF) as well as hydrocortisone (HC). The effect of EGF on adipocytes is discussed controversially. Some studies say it inhibits adipocyte differentiation while others reported of improved adipocyte lipogenesis. HC is known to have lipolytic activities, which might result in mature adipocyte dedifferentiation. In this study, we evaluated the influence of EGF and HC on the co-culture of endothelial cells and mature adipocytes regarding their cell morphology and functionality. We showed in mono-culture that high levels of HC promoted dedifferentiation and proliferation of mature adipocytes, whereas EGF seemed to have no negative influence. Endothelial cells kept their typical cobblestone morphology and showed a proliferation rate comparable to the control independent of EGF and HC concentration. In co-culture, HC promoted dedifferentiation of mature adipocytes, which was shown by a higher glycerol release. EGF had no negative impact on adipocyte morphology. No negative impact on endothelial cell morphology and functionality could be seen with reduced EGF and HC supplementation in co-culture with mature adipocytes. Taken together, our results demonstrate that reduced levels of HC are needed for co-culturing mature adipocytes and endothelial cells. In co-culture, EGF had no influence on mature adipocytes. Therefore, for the composition of vascularized adipose tissue constructs, the media with low levels of HC and high or low levels of EGF can be used. © 2016 International Federation for Cell Biology.

  8. Exogenous modulation of TGF-β1 influences TGF-βR-III-associated vascularization during wound healing in irradiated tissue

    International Nuclear Information System (INIS)

    Wehrhan, F.; Schultze-Mosgau, S.; Grabenbauer, G.G.; Roedel, F.; Amann, K.

    2004-01-01

    in the TGF-β 1 -treated group. Conclusion: Neutralizing of TGF-β 1 activity in irradiated tissue undergoing surgery leads to a higher expression of TGF-βR-III and increased vascularization. TGF-βR-III seems to be associated with newly formed blood vessels during neovascularization in wound healing. (orig.)

  9. MRI of a Subcutaneous Myolipoma in the Ankle: a Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yeon Soo; Park, Sang Eun; Lee, Jung Uee; Choi, Eun Seok [Daejeon St. Mary' s Hospital, The Catholic University of Korea, Daejeon (Korea, Republic of)

    2011-10-15

    Myolipoma is a rare benign tumor, composed of irregularly admixed adipose tissue and smooth muscle fibers. Few literature studies have described the radiologic appearance of myolipoma, especially in the soft tissue. No MRI findings in subcutaneous myolipoma of an extremity have been reported. Here, we report on the case of a 34-year-old woman with myolipoma in the subcutaneous tissue of the ankle and describe MRI features of the lesion.

  10. Increased Pathogen Identification in Vascular Graft Infections by the Combined Use of Tissue Cultures and 16S rRNA Gene Polymerase Chain Reaction

    Directory of Open Access Journals (Sweden)

    Evelyne Ajdler-Schaeffler

    2018-06-01

    Full Text Available Background: Vascular graft infections (VGI are difficult to diagnose and treat, and despite redo surgery combined with antimicrobial treatment, outcomes are often poor. VGI diagnosis is based on a combination of clinical, radiological, laboratory and microbiological criteria. However, as many of the VGI patients are already under antimicrobial treatment at the time of redo surgery, microbiological identification is often difficult and bacterial cultures often remain negative rendering targeted treatment impossible. We aimed to assess the benefit of 16S rRNA gene polymerase chain reaction (broad-range PCR for better microbiological identification in patients with VGI.Methods: We prospectively analyzed the clinical, microbiological, and treatment data of patients enrolled in the observational Vascular Graft Cohort Study (VASGRA, University Hospital Zurich, Switzerland. The routine diagnostic work-up involved microbiological cultures of minced tissue samples, and the use of molecular techniques in parallel. Patient-related and microbiological data were assessed in descriptive analyses, and we calculated sensitivity, specificity, negative and positive predictive value for broad-range 16S rRNA gene PCR versus culture (considered as gold standard.Results: We investigated 60 patients (median age 66 years (Interquartile range [IQR] 59–75 with confirmed VGI between May 2013 and July 2017. The prevalence of antimicrobial pretreatment at the time of sampling was high [91%; median days of antibiotics 7 days (IQR 1–18]. We investigated 226 microbiological specimens. Thereof, 176 (78% were culture-negative and 50 (22% were culture-positive. There was a concordance of 70% (158/226 between conventional culture and broad-range PCR (sensitivity 58% (95% CI 43–72; specificity 74% (67–80%. Among the group of 176 culture-negative specimens, 46 specimens were broad-range PCR-positive resulting in identification of overall 69 species. Among the culture and

  11. Assessment of vascular invasion by bone and soft tissue tumours of the limbs: usefulness of MDCT angiography

    International Nuclear Information System (INIS)

    Thevenin, Fabrice S.; Drape, Jean-Luc; Campagna, Raphael; Richarme, Delphine; Chevrot, Alain; Feydy, Antoine; Biau, David; Guerini, Henri; Larousserie, Frederique; Babinet, Antoine; Anract, Philippe

    2010-01-01

    To evaluate the accuracy of computed tomography angiography (CTA) in predicting arterial encasement by limb tumours, by comparing CTA with surgical findings (gold standard). Preoperative CTA images of 55 arteries in 48 patients were assessed for arterial status: cross-sectional CTA images were scored as showing a fat plane between artery and tumour (score 0), slight contact between artery and tumour (score 1), partial arterial encasement (score 2) or total arterial encasement (score 3). Reformatted CTA images were assessed for arterial displacement, rigid wall, stenosis or occlusion. At surgery, arteries were classified as free or surgically encased; 45 arteries were free and 10 were surgically encased. Multivariate logistic regression identified the axial CTA score as a relevant predictor for arterial encasement and subsequent vascular intervention during surgery. All sites where CTA showed a fat plane between the tumour and the artery were classified as free at surgery (n = 28/28). The sensitivity of total arterial encasement on CTA (score 3) was 90%, specificity 93%, accuracy 93% and positive likelihood ratio 13.5. CTA evidence of total arterial encasement is a highly specific indication of arterial encasement. The presence of fat between the tumour and the artery on CTA rules out arterial involvement at surgery. (orig.)

  12. Assessment of vascular invasion by bone and soft tissue tumours of the limbs: usefulness of MDCT angiography

    Energy Technology Data Exchange (ETDEWEB)

    Thevenin, Fabrice S.; Drape, Jean-Luc; Campagna, Raphael; Richarme, Delphine; Chevrot, Alain; Feydy, Antoine [Hopital Cochin, Department of Radiology B, Paris Cedex 14 (France); University Paris Descartes, Paris (France); Biau, David [Hopital Cochin, Department of Orthopedics B, Paris Cedex 14 (France); INSERM - UMR-S 717, Hopital Saint Louis, Department of Biostatistics and Public Health, Paris Cedex 10 (France); University Paris Descartes, Paris (France); Guerini, Henri [Hopital Cochin, Department of Radiology B, Paris Cedex 14 (France); Larousserie, Frederique [Hopital Cochin, Department of Pathology, Paris Cedex 14 (France); University Paris Descartes, Paris (France); Babinet, Antoine [Hopital Cochin, Department of Orthopedics B, Paris Cedex 14 (France); Anract, Philippe [Hopital Cochin, Department of Orthopedics B, Paris Cedex 14 (France); University Paris Descartes, Paris (France)

    2010-06-15

    To evaluate the accuracy of computed tomography angiography (CTA) in predicting arterial encasement by limb tumours, by comparing CTA with surgical findings (gold standard). Preoperative CTA images of 55 arteries in 48 patients were assessed for arterial status: cross-sectional CTA images were scored as showing a fat plane between artery and tumour (score 0), slight contact between artery and tumour (score 1), partial arterial encasement (score 2) or total arterial encasement (score 3). Reformatted CTA images were assessed for arterial displacement, rigid wall, stenosis or occlusion. At surgery, arteries were classified as free or surgically encased; 45 arteries were free and 10 were surgically encased. Multivariate logistic regression identified the axial CTA score as a relevant predictor for arterial encasement and subsequent vascular intervention during surgery. All sites where CTA showed a fat plane between the tumour and the artery were classified as free at surgery (n = 28/28). The sensitivity of total arterial encasement on CTA (score 3) was 90%, specificity 93%, accuracy 93% and positive likelihood ratio 13.5. CTA evidence of total arterial encasement is a highly specific indication of arterial encasement. The presence of fat between the tumour and the artery on CTA rules out arterial involvement at surgery. (orig.)

  13. Assessment of vascular invasion by bone and soft tissue tumours of the limbs: usefulness of MDCT angiography.

    Science.gov (United States)

    Thévenin, Fabrice S; Drapé, Jean-Luc; Biau, David; Campagna, Raphaël; Richarme, Delphine; Guerini, Henri; Chevrot, Alain; Larousserie, Frédérique; Babinet, Antoine; Anract, Philippe; Feydy, Antoine

    2010-06-01

    To evaluate the accuracy of computed tomography angiography (CTA) in predicting arterial encasement by limb tumours, by comparing CTA with surgical findings (gold standard). Preoperative CTA images of 55 arteries in 48 patients were assessed for arterial status: cross-sectional CTA images were scored as showing a fat plane between artery and tumour (score 0), slight contact between artery and tumour (score 1), partial arterial encasement (score 2) or total arterial encasement (score 3). Reformatted CTA images were assessed for arterial displacement, rigid wall, stenosis or occlusion. At surgery, arteries were classified as free or surgically encased; 45 arteries were free and 10 were surgically encased. Multivariate logistic regression identified the axial CTA score as a relevant predictor for arterial encasement and subsequent vascular intervention during surgery. All sites where CTA showed a fat plane between the tumour and the artery were classified as free at surgery (n = 28/28). The sensitivity of total arterial encasement on CTA (score 3) was 90%, specificity 93%, accuracy 93% and positive likelihood ratio 13.5. CTA evidence of total arterial encasement is a highly specific indication of arterial encasement. The presence of fat between the tumour and the artery on CTA rules out arterial involvement at surgery.

  14. Effects of fabrication on the mechanics, microstructure and micromechanical environment of small intestinal submucosa scaffolds for vascular tissue engineering.

    Science.gov (United States)

    Sánchez-Palencia, Diana M; D'Amore, Antonio; González-Mancera, Andrés; Wagner, William R; Briceño, Juan C

    2014-08-22

    In small intestinal submucosa scaffolds for functional tissue engineering, the impact of scaffold fabrication parameters on success rate may be related to the mechanotransductory properties of the final microstructural organization of collagen fibers. We hypothesized that two fabrication parameters, 1) preservation (P) or removal (R) of a dense collagen layer present in SIS and 2) SIS in a final dehydrated (D) or hydrated (H) state, have an effect on scaffold void area, microstructural anisotropy (fiber alignment) and mechanical anisotropy (global mechanical compliance). We further integrated our experimental measurements in a constitutive model to explore final effects on the micromechanical environment inside the scaffold volume. Our results indicated that PH scaffolds might exhibit recurrent and large force fluctuations between layers (up to 195 pN), while fluctuations in RH scaffolds might be larger (up to 256 pN) but not as recurrent. In contrast, both PD and RD groups were estimated to produce scarcer and smaller fluctuations (not larger than 50 pN). We concluded that the hydration parameter strongly affects the micromechanics of SIS and that an adequate choice of fabrication parameters, assisted by the herein developed method, might leverage the use of SIS for functional tissue engineering applications, where forces at the cellular level are of concern in the guidance of new tissue formation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. SU-E-J-197: A Novel Optical Interstitial Fiber Spectroscopic System for Real-Time Tissue Micro-Vascular Hemodynamics Monitoring.

    Science.gov (United States)

    Zhao, D; Campos, D; Yan, Y; Kimple, R; Jacques, S; van der Kogel, A; Kissick, M

    2012-06-01

    To demonstrate a novel interstitial optical fiber spectroscopic system, based on diffuse optical spectroscopies with spectral fitting, for the simultaneous monitoring of tumor blood volume and oxygen tension. The technique provides real-time, minimally-invasive and quantification of tissue micro-vascular hemodynamics. An optical fiber prototype probe characterizesthe optical transport in tissue between two large Numerical Aperture (NA) fibers of 200μm core diameter (BFH37-200, ThorLabs) spaced 3-mm apart. Two 21-Ga medical needles are used to protect fiber ends and to facilitate tissue penetration with minimum local blunt trauma in nude mice with xenografts. A 20W white light source (HL-2000-HP, Ocean Optics) is coupled to one fiber with SMA adapter. The other fiber is used to collect light, which is coupled into the spectrometer (QE65000 with Spectrasuite Operating software and OmniDriver, Ocean Optics). The wavelength response of the probe depends on the wavelength dependence of the light source, and of the light signal collection that includes considerable scatter, modeled with Monte-Carlo techniques (S. Jacques 2010 J. of Innov. Opt. Health Sci. 2 123-9). Measured spectra of tissue are normalized by a measured spectrum of a white standard, yielding the transmission spectrum. A head-and-neck xenograft on the flank of a live mouse is used for development. The optical fiber probe delivers and collects light at an arbitrary depth in the tumor. By spectral fitting of the measured transmission spectrum, an analysis of blood volume and oxygen tension is obtained from the fitting parameters in real time. A newly developed optical fiber spectroscopic system with an optical fiber probe takes spectroscopic techniques to a much deeper level in a tumor, which has potential applications for real-time monitoring hypoxic cell population dynamics for an eventual adaptive therapy metric of particular use in hypofractionated radiotherapy. © 2012 American Association of

  16. Imaging features in calcinosis circumscripta, a rare type of subcutaneous calcification in localized scleroderma

    Directory of Open Access Journals (Sweden)

    Pratiksha Yadav

    2013-01-01

    Full Text Available Calcinosis cutis circumscripta is a rare condition in which abnormal deposition of calcium seen in the dermis and subcutaneous tissue, it is associated with localized scleroderma. A 30-year-old female presented with an area of extensive calcification involving the right gluteal region, lateral aspect of right thigh and a small area on left thigh detected on radiograph with atrophy of subcutaneous tissue. Magnetic resonance imaging and computed tomography were done for further evaluation and the findings were of calcification and atrophy involving the skin and subcutaneous tissue.

  17. Penile Subcutaneous Fibrolipoma Postaugmentative Phalloplasty

    Directory of Open Access Journals (Sweden)

    Patrizio Vicini

    2013-01-01

    Full Text Available Fibrolipomas are a rare subtype of lipomas. We describe a case of a man suffering from subcutaneous penile fibrolipoma, who three months earlier has been submitted to an augmentative phalloplasty due to aesthetic dysmorphophobia. After six months from the excision of the mass, the penile elongation and penile enlargement were stable, and the patient was satisfied with his sexual intercourse and sexual life. To our knowledge, this is the first reported penile subcutaneous fibrolipoma case in the literature. The diagnostics and surgical features of this case are discussed.

  18. Injection Technique and Pen Needle Design Affect Leakage From Skin After Subcutaneous Injections

    DEFF Research Database (Denmark)

    Præstmark, Kezia Ann; Stallknecht, Bente; Jensen, Morten Lind

    2016-01-01

    BACKGROUND: After a subcutaneous injection fluid might leak out of the skin, commonly referred to as leakage or backflow. The objective was to examine the influence of needle design and injection technique on leakage after injections in the subcutaneous tissue of humans and pigs. METHOD: Leakage ...

  19. Extended analysis of AL-amyloid protein from abdominal wall subcutaneous fat biopsy

    DEFF Research Database (Denmark)

    Olsen, K E; Sletten, K; Westermark, Per

    1998-01-01

    a subcutaneous fat tissue biopsy and submitted to extended protein separation, typing and amino acid sequence analyses. The AL-protein belonged to the rare immunoglobulin light chain kappa, subtype kappa IV and contained unique amino acid substitutions, mostly in the highly preserved framework regions. The study...... shows that subcutaneous fat biopsies are useful sources of amyloid material for biochemical studies....

  20. Permeability to macromolecular contrast media quantified by dynamic MRI correlates with tumor tissue assays of vascular endothelial growth factor (VEGF)

    International Nuclear Information System (INIS)

    Cyran, Clemens C.; Sennino, Barbara; Fu, Yanjun; Rogut, Victor; Shames, David M.; Chaopathomkul, Bundit; Wendland, Michael F.; McDonald, Donald M.; Brasch, Robert C.; Raatschen, Hans-Juergen

    2012-01-01

    Purpose: To correlate dynamic MRI assays of macromolecular endothelial permeability with microscopic area–density measurements of vascular endothelial growth factor (VEGF) in tumors. Methods and material: This study compared tumor xenografts from two different human cancer cell lines, MDA-MB-231 tumors (n = 5), and MDA-MB-435 (n = 8), reported to express respectively higher and lower levels of VEGF. Dynamic MRI was enhanced by a prototype macromolecular contrast medium (MMCM), albumin-(Gd-DTPA)35. Quantitative estimates of tumor microvascular permeability (K PS ; μl/min × 100 cm 3 ), obtained using a two-compartment kinetic model, were correlated with immunohistochemical measurements of VEGF in each tumor. Results: Mean K PS was 2.4 times greater in MDA-MB-231 tumors (K PS = 58 ± 30.9 μl/min × 100 cm 3 ) than in MDA-MB-435 tumors (K PS = 24 ± 8.4 μl/min × 100 cm 3 ) (p < 0.05). Correspondingly, the area–density of VEGF in MDA-MB-231 tumors was 2.6 times greater (27.3 ± 2.2%, p < 0.05) than in MDA-MB-435 cancers (10.5 ± 0.5%, p < 0.05). Considering all tumors without regard to cell type, a significant positive correlation (r = 0.67, p < 0.05) was observed between MRI-estimated endothelial permeability and VEGF immunoreactivity. Conclusion: Correlation of MRI assays of endothelial permeability to a MMCM and VEGF immunoreactivity of tumors support the hypothesis that VEGF is a major contributor to increased macromolecular permeability in cancers. When applied clinically, the MMCM-enhanced MRI approach could help to optimize the appropriate application of VEGF-inhibiting therapy on an individual patient basis.

  1. Safety and effectiveness of a polyvinyl alcohol barrier in reducing risks of vascular tissue damage during anterior spinal revision surgery.

    Science.gov (United States)

    Jeffords, Paul; Li, Jinsheng; Panchal, Deepal; Denoziere, Guilhem; Fetterolf, Donald

    2012-05-01

    This study was conducted as a controlled, prospective investigation to show the safety and efficacy of a polyvinyl alcohol (PVA) device in a sheep model. To evaluate the ability of a permanent PVA hydrogel barrier to reduce the risk of potential vessel damage during anterior vertebral revision surgery, to provide a nonadhesive barrier at the surgical site, and to create a surgical revision plane of dissection. The development of scar tissue and adhesions presents a significant postoperative problem in spine surgery, where adhesion involvement of overlying structures can cause pain, neurovascular complications, and present a difficult surgical environment during revisions. The devices were implanted onto the ventral surface of exposed lumbar intervertebral discs using an anterolateral approach. One disc separated from the study site was also exposed to serve as a control. Three sheep each were then evaluated with an explant procedure at 30 and 90 days. Extensive sampling was undertaken to evaluate gross anatomic, micropathologic, and biochemical environments and properties of the device. The structural properties and appearance of the device remained intact at both 30 and 90 days. The material remained flexible, hydrophilic, and soft, without visible resorption or decomposition. The material was well tolerated by the animal, with minimal histologic signs of inflammation or rejection. Tissue planes were easily able to be localized by the surgeon attempting to locate the prior surgical site at the time of resection. The PVA vessel shield effectively protected the structures overlying the sheep spine during revision, providing a clear dissection plane for resection at repeat surgery. The overlying structures separated from the previous surgical site with no adhesion, and allowed safe separation of adjacent tissues without the use of sharp dissection.

  2. Promotion of Survival and Engraftment of Transplanted Adipose Tissue-Derived Stromal and Vascular Cells by Overexpression of Manganese Superoxide Dismutase