WorldWideScience

Sample records for subcritical water electronic

  1. Vacuum ultraviolet spectroscopy of the lowest-lying electronic state in subcritical and supercritical water.

    Science.gov (United States)

    Marin, Timothy W; Janik, Ireneusz; Bartels, David M; Chipman, Daniel M

    2017-05-17

    The nature and extent of hydrogen bonding in water has been scrutinized for decades, including how it manifests in optical properties. Here we report vacuum ultraviolet absorption spectra for the lowest-lying electronic state of subcritical and supercritical water. For subcritical water, the spectrum redshifts considerably with increasing temperature, demonstrating the gradual breakdown of the hydrogen-bond network. Tuning the density at 381 °C gives insight into the extent of hydrogen bonding in supercritical water. The known gas-phase spectrum, including its vibronic structure, is duplicated in the low-density limit. With increasing density, the spectrum blueshifts and the vibronic structure is quenched as the water monomer becomes electronically perturbed. Fits to the supercritical water spectra demonstrate consistency with dimer/trimer fractions calculated from the water virial equation of state and equilibrium constants. Using the known water dimer interaction potential, we estimate the critical distance between molecules (ca. 4.5 Å) needed to explain the vibronic structure quenching.

  2. Subcritical water extraction of lipids from wet algal biomass

    Science.gov (United States)

    Deng, Shuguang; Reddy, Harvind K.; Schaub, Tanner; Holguin, Francisco Omar

    2016-05-03

    Methods of lipid extraction from biomass, in particular wet algae, through conventionally heated subcritical water, and microwave-assisted subcritical water. In one embodiment, fatty acid methyl esters from solids in a polar phase are further extracted to increase biofuel production.

  3. Production of value added materials by subcritical water hydrolysis ...

    African Journals Online (AJOL)

    The aim of this study was the determination of the best experimental conditions for the production of useful materials such as amino acids by subcritical water hydrolysis from supercritical carbon dioxide extracted krill residues and to compare the results with raw krill. Subcritical water hydrolysis efficiency from raw and ...

  4. Subcritical water extraction of bioactive compounds from dry loquat ...

    African Journals Online (AJOL)

    ERASTO

    concentrated in a rotary evaporator at 60°C until dry. The total extraction yield was obtained by the mean value of the total extracts divided by the mass of dry loquat leaves used. Subcritical water extraction. Subcritical water extraction was carried using an extractor. (Hangzhou Huali Co. Ltd, Hangzhou, China). The extractor ...

  5. Subcritical Water Hydrolysis of Peptides: Amino Acid Side-Chain Modifications

    Science.gov (United States)

    Powell, Thomas; Bowra, Steve; Cooper, Helen J.

    2017-09-01

    Previously we have shown that subcritical water may be used as an alternative to enzymatic digestion in the proteolysis of proteins for bottom-up proteomics. Subcritical water hydrolysis of proteins was shown to result in protein sequence coverages greater than or equal to that obtained following digestion with trypsin; however, the percentage of peptide spectral matches for the samples treated with trypsin were consistently greater than for those treated with subcritical water. This observation suggests that in addition to cleavage of the peptide bond, subcritical water treatment results in other hydrolysis products, possibly due to modifications of amino acid side chains. Here, a model peptide comprising all common amino acid residues (VQSIKCADFLHYMENPTWGR) and two further model peptides (VCFQYMDRGDR and VQSIKADFLHYENPTWGR) were treated with subcritical water with the aim of probing any induced amino acid side-chain modifications. The hydrolysis products were analyzed by direct infusion electrospray tandem mass spectrometry, either collision-induced dissociation or electron transfer dissociation, and liquid chromatography collision-induced dissociation tandem mass spectrometry. The results show preferential oxidation of cysteine to sulfinic and sulfonic acid, and oxidation of methionine. In the absence of cysteine and methionine, oxidation of tryptophan was observed. In addition, water loss from aspartic acid and C-terminal amidation were observed in harsher subcritical water conditions. [Figure not available: see fulltext.

  6. Astrobionibbler: In Situ Microfluidic Subcritical Water Extraction of Amino Acids

    Science.gov (United States)

    Noell, A. C.; Fisher, A. M.; Takano, N.; Fors-Francis, K.; Sherrit, S.; Grunthaner, F.

    2016-10-01

    A fluidic-chip based instrument for subcritical water extraction (SCWE) of amino acids and other organics from powder samples has been developed. A variety of soil analog extractions have been performed to better understand SCWE capabilities.

  7. Subcritical water as reaction environment: fundamentals of hydrothermal biomass transformation.

    Science.gov (United States)

    Möller, Maria; Nilges, Peter; Harnisch, Falk; Schröder, Uwe

    2011-05-23

    Subcritical water, that is, water above the boiling and below critical point, is a unique and sustainable reaction medium. Based on its solvent properties, in combination with the often considerable intrinsic water content of natural biomass, it is often considered as a potential solvent for biomass processing. Current knowledge on biomass transformation in subcritical water is, however, still rather scattered without providing a consistent picture. Concentrating on fundamental physical and chemical aspects, this review summarizes the current state of knowledge of hydrothermal biomass conversion in subcritical water. After briefly introducing subcritical water as a reaction medium, its advantages for biomass processing compared to other thermal processes are highlighted. Subsequently, the physical-chemical properties of subcritical water are discussed in the light of their impact on the occurring chemical reactions. The influence of major operational parameters, including temperature, pressure, and reactant concentration on hydrothermal biomass transformation processes are illustrated for selected carbohydrates. Major emphasis is put on the nature of the carbohydrate monomers, since the conversion of the respective polymers is analogous with the additional prior step of hydrolytic depolymerization. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Extraction of antioxidants from Chlorella sp. using subcritical water treatment

    Science.gov (United States)

    Zakaria, S. M.; Mustapa Kamal, S. M.; Harun, M. R.; Omar, R.; Siajam, S. I.

    2017-06-01

    Chlorella sp. microalgae is one of the main source of natural bioactive compounds used in the food and pharmaceutical industries. Subcritical water extraction is the technique that offers an efficient, non-toxic, and environmental-friendly method to obtain natural ingredients. In this work, the extracts of Chlorella sp. microalgae was evaluated in terms of: chemical composition, extraction (polysaccharides) yield and antioxidant activity, using subcritical water extraction. Extractions were performed at temperatures ranging from 100°C to 300°C. The results show that by using subcritical water, the highest yield of polysaccharides is 23.6 that obtained at 150°C. Analysis on the polysaccharides yield show that the contents were highly influenced by the extraction temperature. The individual antioxidant activity were evaluated by in vitro assay using a free radical method. In general, the antioxidant activity of the extracts obtained at different water temperatures was high, with values of 31.08-54.29 . The results indicated that extraction by subcritical water was effective and Chlorella sp. can be a useful source of natural antioxidants.

  9. Experimental Study of Subcritical Water Liquefaction of Biomass

    DEFF Research Database (Denmark)

    Zhu, Zhe; Toor, Saqib; Rosendahl, Lasse

    2014-01-01

    In this work, hydrothermal liquefaction (HTL) of wood industry residues (wood, bark, sawdust) and macroalgae for producing biofuels has been investigated under subcritical water conditions (at temperature of 300 C), with and without the presence of catalyst. The effects of catalyst and biomass type...

  10. A microfluidic sub-critical water extraction instrument

    Science.gov (United States)

    Sherrit, Stewart; Noell, Aaron C.; Fisher, Anita; Lee, Mike C.; Takano, Nobuyuki; Bao, Xiaoqi; Kutzer, Thomas C.; Grunthaner, Frank

    2017-11-01

    This article discusses a microfluidic subcritical water extraction (SCWE) chip for autonomous extraction of amino acids from astrobiologically interesting samples. The microfluidic instrument is composed of three major components. These include a mixing chamber where the soil sample is mixed and agitated with the solvent (water), a subcritical water extraction chamber where the sample is sealed with a freeze valve at the chip inlet after a vapor bubble is injected into the inlet channels to ensure the pressure in the chip is in equilibrium with the vapor pressure and the slurry is then heated to ≤200 °C in the SCWE chamber, and a filter or settling chamber where the slurry is pumped to after extraction. The extraction yield of the microfluidic SCWE chip process ranged from 50% compared to acid hydrolysis and 80%-100% compared to a benchtop microwave SCWE for low biomass samples.

  11. Subcritical and supercritical water oxidation of CELSS model wastes

    Science.gov (United States)

    Takahashi, Y.; Wydeven, T.; Koo, C.

    1989-01-01

    A mixture of ammonium hydroxide with acetic acid and a slurry of human feces, urine, and wipes were used as CELSS model wastes to be wet-oxidized at temperatures from 250 to 500 C, i.e. below and above the critical point of water (374 C and 218 kg/sq cm or 21.4 MPa). The effects of oxidation temperature ( 250-500 C) and residence time (0-120 mn) on carbon and nitrogen and on metal corrosion from the reactor material were studied. Almost all of the organic matter in the model wastes was oxidized in the temperature range from 400 to 500 C, above the critical conditions for water. In contrast, only a small portion of the organic matter was oxidized at subcritical conditions. A substantial amount of nitrogen remained in solution in the form of ammonia at temperatures ranging from 350 to 450 C suggesting that, around 400 C, organic carbon is completely oxidized and most of the nitrogen is retained in solution. The Hastelloy C-276 alloy reactor corroded during subcritical and supercritical water oxidation.

  12. Subcritical water extractor for Mars analog soil analysis.

    Science.gov (United States)

    Amashukeli, Xenia; Grunthaner, Frank J; Patrick, Steven B; Yung, Pun To

    2008-06-01

    Abstract Technologies that enable rapid and efficient extraction of biomarker compounds from various solid matrices are a critical requirement for the successful implementation of in situ chemical analysis of the martian regolith. Here, we describe a portable subcritical water extractor that mimics multiple organic solvent polarities by tuning the dielectric constant of liquid water through adjustment of temperature and pressure. Soil samples, collected from the Yungay region of the Atacama Desert (martian regolith analogue) in the summer of 2005, were used to test the instrument's performance. The total organic carbon was extracted from the samples at concentrations of 0.2-55.4 parts per million. The extraction data were compared to the total organic carbon content in the bulk soil, which was determined via a standard analytical procedure. The instrument's performance was examined over the temperature range of 25-250 degrees C at a fixed pressure of 20.7 MPa. Under these conditions, water remains in a subcritical fluid state with a dielectric constant varying between approximately 80 (at 25 degrees C) and approximately 30 (at 250 degrees C).

  13. Hydrolysis of sweet blue lupin hull using subcritical water technology.

    Science.gov (United States)

    Ciftci, Deniz; Saldaña, Marleny D A

    2015-10-01

    Hydrolysis of sweet blue lupin hulls was conducted in this study using subcritical water technology. Effects of process parameters, such as pressure (50-200 bar), temperature (160-220°C), flow rate (2-10 mL/min), and pH (2-12), were studied to optimize maximum hemicellulose sugars recovery in the extracts. Extracts were analyzed for total hemicellulose sugars, phenolics and organic carbon contents and solid residues left after treatments were also characterized. Temperature, flow rate, and pH had a significant effect on hemicellulose sugar removal; however, the effect of pressure was not significant. The highest yield of hemicellulose sugars in the extracts (85.5%) was found at 180°C, 50 bar, 5 mL/min and pH 6.2. The thermal stability of the solid residue obtained at optimum conditions improved after treatment and the crystallinity index increased from 11.5% to 58.6%. The results suggest that subcritical water treatment is a promising technology for hemicellulose sugars removal from biomass. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Subcritical-Water Extraction of Organics from Solid Matrices

    Science.gov (United States)

    Amashukeli, Xenia; Grunthaner, Frank; Patrick, Steven; Kirby, James; Bickler, Donald; Willis, Peter; Pelletier, Christine; Bryson, Charles

    2009-01-01

    An apparatus for extracting organic compounds from soils, sands, and other solid matrix materials utilizes water at subcritical temperature and pressure as a solvent. The apparatus, called subcritical water extractor (SCWE), is a prototype of subsystems of future instrumentation systems to be used in searching for organic compounds as signs of past or present life on Mars. An aqueous solution generated by an apparatus like this one can be analyzed by any of a variety of established chromatographic or spectroscopic means to detect the dissolved organic compound( s). The apparatus can be used on Earth: indeed, in proof-of-concept experiments, SCWE was used to extract amino acids from soils of the Atacama Desert (Chile), which was chosen because the dryness and other relevant soil conditions there approximate those on Mars. The design of the apparatus is based partly on the fact that the relative permittivity (also known as the dielectric constant) of liquid water varies with temperature and pressure. At a temperature of 30 C and a pressure of 0.1 MPa, the relative permittivity of water is 79.6, due to the strong dipole-dipole electrostatic interactions between individual molecular dipoles. As the temperature increases, increasing thermal energy causes increasing disorientation of molecular dipoles, with a consequent decrease in relative permittivity. For example, water at a temperature of 325 C and pressure of 20 MPa has a relative permittivity of 17.5, which is similar to the relative permittivities of such nonpolar organic solvents as 1-butanol (17.8). In the operation of this apparatus, the temperature and pressure of water are adjusted so that the water can be used in place of commonly used organic solvents to extract compounds that have dissimilar physical and chemical properties.

  15. Catalytic upgrading of duckweed biocrude in subcritical water.

    Science.gov (United States)

    Zhang, Caicai; Duan, Peigao; Xu, Yuping; Wang, Bing; Wang, Feng; Zhang, Lei

    2014-08-01

    Herein, a duckweed biocrude produced from the hydrothermal liquefaction of Lemna minor was treated in subcritical water with added H₂. Effects of several different commercially available materials such as Ru/C, Pd/C, Pt/C, Pt/γ-Al₂O₃, Pt/C-sulfide, Rh/γ-Al₂O₃, activated carbon, MoS₂, Mo₂C, Co-Mo/γ-Al₂O₃, and zeolite on the yields of product fractions and the deoxygenation, denitrogenation, and desulfurization of biocrude at 350°C were examined, respectively. All the materials showed catalytic activity for deoxygenation and desulfurization of the biocrude and only Ru/C showed activity for denitrogenation. Of those catalysts examined, Pt/C showed the best performance for deoxygenation. Among all the upgraded oils, the oil produced with Ru/C shows the lowest sulfur, the highest hydrocarbon content (25.6%), the highest energy recovery (85.5%), and the highest higher heating value (42.6 MJ/kg). The gaseous products were mainly unreacted H₂, CH₄, CO₂, and C₂H6. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Characterization of the Subcritical Water Extraction of Fluoxetine-Hydrochloride.

    Science.gov (United States)

    Murakami, Jillian N; Thurbide, Kevin B; Lambertus, Gordon; Jensen, Eric

    2012-08-10

    The characteristics of using Subcritical Water Extraction (SWE) to recover Fluoxetine-Hydrochloride from both standard solutions and the contents of commercial capsule formulations were investigated. Analysis of solutions and extracts was done by HPLC with UV detection at 254 nm. Standard solutions of Fluoxetine-Hydrochloride were exposed to a variety of SWE operating conditions, including temperatures from 125 to 275°C and periods ranging from 5 to 30 min. Fluoxetine-Hydrochloride could be quantitatively recovered from standard solutions (1.0mg/mL) that were heated up to 175°C for 30 min, up to 200°C for 15 min, or up to 225°C for 10 min. At higher temperatures and/or times, Fluoxetine-Hydrochloride recoveries were generally incomplete and often produced decomposition by-products during the process. By comparison, the concentration of Fluoxetine-Hydrochloride in the standard solution had relatively little effect on recovery. Considering these parameters, an SWE method was developed to extract Fluoxetine-Hydrochloride from the contents of Prozac(®) capsules. It was found that Fluoxetine-Hydrochloride could be quantitatively extracted from the capsule contents in 8 min at a temperature of 200°C using 3.5 mL of water as the extraction solvent. Gelatinization of the starch excipient in the capsule contents was also observed to occur temporarily during the capsule extractions, before ultimately disappearing again. The period of this phenomenon was dependent on both temperature and sample size. The results indicate that SWE can be a very useful method for Fluoxetine-Hydrochloride extraction and suggest that it may be interesting to explore other pharmaceuticals using this method as well. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Subcritical water - a perspective reaction media for biomass processing to chemicals

    OpenAIRE

    Pavlovič, Irena; Škerget, Mojca; Knez, Željko

    2015-01-01

    Biomass and water are recognized as a key renewable feedstock in sustainable production of chemicals, fuels and energy. Subcritical water (SubCW), or commonly referred as hot compressed water (HCW), is the water above boiling and below critical point (CP

  18. Ginger and turmeric starches hydrolysis using subcritical water + CO2: the effect of the SFE pre-treatment

    Directory of Open Access Journals (Sweden)

    S. R. M. Moreschi

    2006-06-01

    Full Text Available In this work, the hydrolysis of fresh and dried turmeric (Curcuma longa L. and ginger (Zingiber officinale R. in the presence of subcritical water + CO2 was studied. The hydrolysis of ginger and turmeric bagasses from supercritical fluid extraction was also studied. The reactions were done using subcritical water and CO2 at 150 bar, 200 °C and reaction time of 11 minutes; the degree of reaction was monitored through the amount of starch hydrolyzed. Process yields were calculated using the amount of reducing and total sugars formed. The effects of supercritical fluid extraction in the starchy structures were observed by scanning electron microscopy. Higher degree of hydrolysis (97- 98 % were obtained for fresh materials and the highest total sugar yield (74% was established for ginger bagasse. The supercritical fluid extraction did not significantly modify the degree of hydrolysis in the tested conditions.

  19. Effect of water on critical and subcritical fracture properties of Woodford shale

    Science.gov (United States)

    Chen, Xiaofeng; Eichhubl, Peter; Olson, Jon E.

    2017-04-01

    Subcritical fracture behavior of shales under aqueous conditions is poorly characterized despite increased relevance to oil and gas resource development and seal integrity in waste disposal and subsurface carbon sequestration. We measured subcritical fracture properties of Woodford shale in ambient air, dry CO2 gas, and deionized water by using the double-torsion method. Compared to tests in ambient air, the presence of water reduces fracture toughness by 50%, subcritical index by 77%, and shear modulus by 27% and increases inelastic deformation. Comparison between test specimens coated with a hydrophobic agent and uncoated specimens demonstrates that the interaction of water with the bulk rock results in the reduction of fracture toughness and enhanced plastic effects, while water-rock interaction limited to the vicinity of the propagating fracture tip by a hydrophobic specimen coating lowers subcritical index and increases fracture velocity. The observed deviation of a rate-dependent subcritical index from the power law K-V relations for coated specimens tested in water is attributed to a time-dependent weakening process resulting from the interaction between water and clays in the vicinity of the fracture tip.

  20. Subcritical water extraction of amino acids from Mars analog soils.

    Science.gov (United States)

    Noell, Aaron C; Fisher, Anita M; Fors-Francis, Kisa; Sherrit, Stewart

    2018-01-18

    For decades, the Martian regolith has stymied robotic mission efforts to catalog the organic molecules present. Perchlorate salts, found widely throughout Mars, are the main culprit as they breakdown and react with organics liberated from the regolith during pyrolysis, the primary extraction technique attempted to date on Mars. This work further develops subcritical water extraction (SCWE) as a technique for extraction of amino acids on future missions. The effect of SCWE temperature (185, 200, and 215°C) and duration of extraction (10-120 min) on the total amount and distribution of amino acids recovered was explored for three Mars analog soils (JSC Mars-1A simulant, an Atacama desert soil, and an Antarctic Dry Valleys soil) and bovine serum albumin (as a control solution of known amino acid content). Total amounts of amino acids extracted increased with both time and temperature; however, the distribution shifted notably due to the destruction of the amino acids with charged or polar side chains at the higher temperatures. The pure bovine serum albumin solution and JSC Mars 1A also showed lower yields than the Atacama and Antarctic extractions suggesting that SCWE may be less effective at hydrolyzing large or aggregated proteins. Changing solvent from water to a dilute (10 mM) HCl solution allowed total extraction efficiencies comparable to the higher temperature/time combinations while using the lowest temperature/time (185°C/20 min). The dilute HCl extractions also did not lead to the shift in amino acid distribution observed at the higher temperatures. Additionally, adding sodium perchlorate salt to the extraction did not interfere with recoveries. Native magnetite in the JSC Mars-1A may have been responsible for destruction of glycine, as evidenced by its uncharacteristic decrease as the temperature/time of extraction increased. This work shows that SCWE can extract high yields of native amino acids out of Mars analog soils with minimal disruption of the

  1. Solubility of Benzo[a]pyrene and Organic Matter of Soil in Subcritical Water

    Directory of Open Access Journals (Sweden)

    Svetlana Sushkova

    2015-12-01

    Full Text Available A dynamic subcritical water extraction method of benzo[a]pyrene from soils is under consideration. The optimum conditions for benzo[a]pyrene extraction from soil are described including the soil treatment by subcritical water at 250 °C and 100 atm for 30 min. The effectiveness of developed method was determined using the matrix spiking recovery technique. A comparative analysis was made to evaluate the results of benzo[a]pyrene extraction from soils using the subcritical water and organic solvents. The advantages of the subcritical water extraction involve the use of ecologically friendly solvent, a shorter time for the analysis and a higher amount of benzo[a]pyrene extracted from soil (96 %. The influence of subcritical water extraction on soil properties was measured the investigation of the processes occurring within soil under the influence the high temperature and pressure. Under appropriate conditions of the experiment there is the destruction of the soil organic matter while the composition of the soil mineral fraction remains practically unchanged.

  2. Subcritical water extraction of flavoring and phenolic compounds from cinnamon bark (Cinnamomum zeylanicum).

    Science.gov (United States)

    Khuwijitjaru, Pramote; Sayputikasikorn, Nucha; Samuhasaneetoo, Suched; Penroj, Parinda; Siriwongwilaichat, Prasong; Adachi, Shuji

    2012-01-01

    Cinnamon bark (Cinnamomum zeylanicum) powder was treated with subcritical water at 150 and 200°C in a semi-continuous system at a constant flow rate (3 mL/min) and pressure (6 MPa). Major flavoring compounds, i.e., cinnamaldehyde, cinnamic acid, cinnamyl alcohol and coumarin, were extracted at lower recoveries than the extraction using methanol, suggesting that degradation of these components might occur during the subcritical water treatment. Caffeic, ferulic, p-coumaric, protocatechuic and vanillic acids were identified from the subcritical water treatment. Extraction using subcritical water was more effective to obtain these acids than methanol (50% v/v) in both number of components and recovery, especially at 200°C. Subcritical water treatment at 200°C also resulted in a higher total phenolic content and DPPH radical scavenging activity than the methanol extraction. The DPPH radical scavenging activity and total phenolic content linearly correlated but the results suggested that the extraction at 200°C might result in other products that possessed a free radical scavenging activity other than the phenolic compounds.

  3. Sensitivity Analysis of Core Neutronic Parameters in Electron Accelerator-driven Subcritical Advanced Liquid Metal Reactor

    OpenAIRE

    Ebrahimkhani, Marziye; Hassanzadeh, Mostafa; Feghhi, Sayed Amier Hossian; Masti, Darush

    2016-01-01

    Calculation of the core neutronic parameters is one of the key components in all nuclear reactors. In this research, the energy spectrum and spatial distribution of the neutron flux in a uranium target have been calculated. In addition, sensitivity of the core neutronic parameters in accelerator-driven subcritical advanced liquid metal reactors, such as electron beam energy (Ee) and source multiplication coefficient (ks), has been investigated. A Monte Carlo code (MCNPX_2.6) has been used to ...

  4. PILOT-SCALE SUBCRITICAL WATER REMEDIATION OF POLYCYCLIC AROMATIC HYDROCARBON- AND PESTICIDE-CONTAMINATED SOIL. (R825394)

    Science.gov (United States)

    Subcritical water (hot water under enough pressure to maintain the liquid state) was used to remove polycyclic aromatic hydrocarbons (PAHs) and pesticides from highly contaminated soils. Laboratory-scale (8 g of soil) experiments were used to determine conditions f...

  5. High performance curcumin subcritical water extraction from turmeric (Curcuma longa L.).

    Science.gov (United States)

    Valizadeh Kiamahalleh, Mohammad; Najafpour-Darzi, Ghasem; Rahimnejad, Mostafa; Moghadamnia, Ali Akbar; Valizadeh Kiamahalleh, Meisam

    2016-06-01

    Curcumin is a hydrophobic polyphenolic compound derived from turmeric rhizome, which consists about 2-5% of the total rhizome content and is a more valuable component of turmeric. For reducing the drawbacks of conventional extraction (using organic solvents) of curcumin, the water as a clean solvent was used for extracting curcumin. Subcritical water extraction (SWE) experimental setup was fabricated in a laboratory scale and the influences of some parameters (e.g. extraction temperature, particle size, retention time and pressure) on the yield of extraction were investigated. Optimum extraction conditions such as SWE pressure of 10bar, extractive temperature of 140°C, particle size of 0.71mm and retention time of 14min were defined. The maximum amount of curcumin extracted at the optimum condition was 3.8wt%. The yield of curcumin extraction was more than 76wt% with regards to the maximum possible curcumin content of turmeric, as known to be 5%. The scanning electron microscope (SEM) images from the outer surface of turmeric, before and after extraction, clearly demonstrated the effect of each parameter; changes in porosity and hardness of turmeric that is directly related to the amount of extracted curcumin in process optimization of the extraction parameters. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Efficient decomposition of a new fluorochemical surfactant: perfluoroalkane disulfonate to fluoride ions in subcritical and supercritical water.

    Science.gov (United States)

    Hori, Hisao; Saito, Hiroki; Sakai, Hidenori; Kitahara, Toshiyuki; Sakamoto, Takehiko

    2015-06-01

    Decomposition of (-)O3SC3F6SO3(-) in subcritical and supercritical water was investigated, and the results were compared with the results for C3F7SO3(-). This is the first report on the decomposition of perfluoroalkane disulfonates, which are being introduced in electronics industry as greener alternatives to environmentally persistent and bioaccumulative perfluoroalkyl surfactants. Addition of zerovalent iron to the reaction system dramatically increased the yield of F(-) in the reaction solution: when the reaction of (-)O3SC3F6SO3(-) was carried out in subcritical water at 350°C for 6h, the F(-) yield was 70%, which was 23times the yield without zerovalent iron. Prolonged reaction increased the F(-) formation: after 18h, the F(-) yield from the reaction of (-)O3SC3F6SO3(-) reached 81%, which was 2.1times the F(-) yield from the reaction of C3F7SO3(-). Although the reactivity of FeO toward these substrates was lower than zerovalent iron in subcritical water, the reactivity was enhanced when the reaction temperature was elevated to supercritical state, at which temperature FeO underwent in situ disproportionation to form zerovalent iron, which acted as the reducing agent. When the reaction of (-)O3SC3F6SO3(-) was carried out in the presence of FeO in supercritical water at 380°C for 18h, the F(-) yield reached 92%, which was the highest yield among tested. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Efficient decomposition of perchlorate to chloride ions in subcritical water by use of steel slag.

    Science.gov (United States)

    Hori, Hisao; Kamijo, Ayae; Inoue, Miki; Chino, Asako; Wu, Qian; Kannan, Kurunthachalam

    2016-08-03

    Decomposition of perchlorate (ClO4(-)) in subcritical water in the presence of steel slag, a by-product of the steel industry, was investigated. Reactivity of ClO4(-) was low in pure subcritical water state up to 300 °C, whereas adding steel slag efficiently accelerated the decomposition of ClO4(-) to Cl(-), with no leaching of heavy metals such as chromium and other environmentally undesirable elements (boron and fluorine). When the reaction was performed in subcritical water at a relatively low temperature (250 °C) for 6 h, virtually all ClO4(-) ions were removed from the reaction solution. The concentration of Cl(-) after the reaction was well accounted for by the sum of the amount of Cl(-) ascribed to the decomposition of ClO4(-) and the amount of Cl(-) leached from the slag. This method was successfully applied to decompose ClO4(-) in water samples collected from a man-made reflection pond following a fireworks display, even though these samples contained much higher concentrations of Cl(-) and SO4(2-) than ClO4(-).

  8. Subcritical Growth of Electron Phase-space Holes in Planetary Radiation Belts

    Science.gov (United States)

    Osmane, Adnane; Turner, Drew L.; Wilson, Lynn B.; Dimmock, Andrew P.; Pulkkinen, Tuija I.

    2017-09-01

    The discovery of long-lived electrostatic coherent structures with large-amplitude electric fields (1≤slant E ≤slant 500 mV/m) by the Van Allen Probes has revealed alternative routes through which planetary radiation belts’ acceleration can take place. Following previous reports showing that small phase-space holes, with qφ /{T}ec≃ {10}-2{--}{10}-3, could result from electron interaction with large-amplitude whistlers, we demonstrate one possible mechanism through which holes can grow nonlinearly (I.e., γ \\propto \\sqrt{φ }) and subcritically as a result of momentum exchange between hot and cold electron populations. Our results provide an explanation for the common occurrence and fast growth of large-amplitude electron phase-space holes in the Earth’s radiation belts.

  9. Subcritical water extraction of trace metals from petroleum source rock.

    Science.gov (United States)

    Akinlua, Akinsehinwa; Smith, Roger M

    2010-06-15

    The extraction of trace metals from petroleum source rock by superheated water was investigated and the conditions for maximum yield were determined. The results showed that no significant extraction was attained at 100 degrees C but the extraction was enhanced at higher temperatures. The optimum temperature for superheated water extraction of the metals from petroleum source rocks was 250 degrees C. Extraction yields increased with enhanced extraction time. Exhaustive extraction time for all the trace metals determined in this study was attained at 30min. Comparison of results of leaching these trace metals by superheated water with those of acid digestion revealed that cadmium, chromium, manganese and nickel had better yields with superheated water while vanadium had better yield with acid digestion. The results showed that the temperature and kinetic rates have significant effects on superheated water extraction of metals from petroleum source rocks. The results also revealed that effective leaching of some metals from petroleum source rocks by superheated water can be achieved without any modification except for vanadium.

  10. Surface chemistry and corrosion behavior of Inconel 625 and 718 in subcritical, supercritical, and ultrasupercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, David; Merwin, Augustus; Karmiol, Zachary; Chidambaram, Dev, E-mail: dcc@unr.edu

    2017-05-15

    Highlights: • Mixtures of oxides containing Ni, Fe, Cr and Nb formed on the surface. • Short term exposure tests observed breakdown of native film. • Formation of a Fe rich oxide layer on Inconel 718 prevents mass loss. - Abstract: Corrosion behavior of Inconel 625 and 718 in subcritical, supercritical and ultrasupercritical water was studied as a function of temperature and time. The change in the chemistry of the as-received surface film on Inconel 625 and 718 after exposure to subcritical water at 325 °C and supercritical water at 425 °C and 527.5 °C for 2 h was studied. After exposure to 325 °C subcritical water, the CrO{sub 4}{sup 2−} based film formed; however minor quantities of NiFe{sub x}Cr{sub 2-x}O{sub 4} spinel compounds were observed. The oxide film formed on both alloys when exposed to supercritical water at 425 °C consisted of NiFe{sub x}Cr{sub 2-x}O{sub 4} spinel. The surface films on both alloys were identified as NiFe{sub 2}O{sub 4} when exposed to supercritical water at 527.5 °C. To characterize the fully developed oxide layer, studies were conducted at test solution temperatures of 527.5 and 600 °C. Samples were exposed to these temperatures for 24, 96, and 200 h. Surface chemistry was analyzed using X-ray diffraction, as well as Raman and X-ray photoelectron spectroscopies. Inconel 718 exhibited greater mass gain than Inconel 625 for all temperatures and exposure times. The differences in corrosion behavior of the two alloys are attributed to the lower content of chromium and increased iron content of Inconel 718 as compared to Inconel 625.

  11. Surface chemistry and corrosion behavior of Inconel 625 and 718 in subcritical, supercritical, and ultrasupercritical water

    Science.gov (United States)

    Rodriguez, David; Merwin, Augustus; Karmiol, Zachary; Chidambaram, Dev

    2017-05-01

    Corrosion behavior of Inconel 625 and 718 in subcritical, supercritical and ultrasupercritical water was studied as a function of temperature and time. The change in the chemistry of the as-received surface film on Inconel 625 and 718 after exposure to subcritical water at 325 °C and supercritical water at 425 °C and 527.5 °C for 2 h was studied. After exposure to 325 °C subcritical water, the CrO42- based film formed; however minor quantities of NiFexCr2-xO4 spinel compounds were observed. The oxide film formed on both alloys when exposed to supercritical water at 425 °C consisted of NiFexCr2-xO4 spinel. The surface films on both alloys were identified as NiFe2O4 when exposed to supercritical water at 527.5 °C. To characterize the fully developed oxide layer, studies were conducted at test solution temperatures of 527.5 and 600 °C. Samples were exposed to these temperatures for 24, 96, and 200 h. Surface chemistry was analyzed using X-ray diffraction, as well as Raman and X-ray photoelectron spectroscopies. Inconel 718 exhibited greater mass gain than Inconel 625 for all temperatures and exposure times. The differences in corrosion behavior of the two alloys are attributed to the lower content of chromium and increased iron content of Inconel 718 as compared to Inconel 625.

  12. Subcritical Growth of Electron Phase-space Holes in Planetary Radiation Belts

    Science.gov (United States)

    Osmane, A.; Wilson, L. B., III; Turner, D. L.; Dimmock, A. P.; Pulkkinen, T. I.

    2017-12-01

    The discovery of self-sustained coherent structures with large-amplitude electric fields (E ˜ 10 - 100 mV/m) by the Van Allen Probes has revealed alternative routes through which energy-momentum exchange can take place in planetary radiation belts. When originating from energetic electrons in Landau resonance with large-amplitude whistlers, phase-space electron holes form with small amplitudes of the order of the hot to cold electron density, i.e., qφ/T_e≃ n_h/n_c ≃ 10^{-3}, and orders of magnitude smaller than observed values of the largest phase-space holes amplitude, i.e., qφ /T_e ≃ 1. In this report we present a mechanism through which electron holes can grow nonlinearly (i.e. γ ∝ √{φ}) and subcritically as a result of momentum exchange with passing (untrapped) electrons. Growth rates are computed analytically for plasma parameters consistent with those measured in the Earth's radiation belts under quiet and disturbed conditions. Our results provide an explanation for the fast growth of electron phase-space holes in the Earth's radiation belts from small initial values qφ/T_c ≃ 10^{-3}, to larger values of the order qφ /T_e ≃ 1.

  13. Alkaline subcritical water gasification of dairy industry waste (Whey).

    Science.gov (United States)

    Muangrat, Rattana; Onwudili, Jude A; Williams, Paul T

    2011-05-01

    The near-critical water gasification of dairy industry waste in the form of Whey, a product composed of mixtures of carbohydrates (mainly lactose) and amino acids such as glycine and glutamic acid, has been studied. The gasification process involved partial oxidation with hydrogen peroxide in the presence of NaOH. The reactions were studied over the temperature range from 300°C to 390°C, corresponding pressures of 9.5-24.5 MPa and reaction times from 0 min to 120 min. Hydrogen production was affected by the presence of NaOH, the concentration of H(2)O(2), temperature, reaction time and feed concentration. Up to 40% of the theoretical hydrogen gas production was achieved at 390°C. Over 80% of the Whey nitrogen content was found as ammonia, mainly in the liquid effluent. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Hydrothermal liquefaction of Spirulina and Nannochloropsis Salina under subcritical and supercritical water conditions

    DEFF Research Database (Denmark)

    Toor, Saqib; Reddy, H.; Deng, S.

    2013-01-01

    Six hydrothermal liquefaction experiments on Nannochloropsis salina and Spirulina platensis at subcritical and supercritical water conditions (220-375 °C, 20-255 bar) were carried out to explore the feasibility of extracting lipids from wet algae, preserving nutrients in lipid-extracted algae solid...... on Nannochloropsis salina at 350 °C and 175 bar. For Spirulina platensis algae sample, the optimal hydrothermal liquefaction condition appears to be at 310 °C and 115 bar, while the optimal condition for Nannochloropsis salina is at 350 °C and 175 bar. Preliminary data also indicate that a lipid-extracted algae...

  15. Applications of subcritical and supercritical water conditions for extraction, hydrolysis, gasification, and carbonization of biomass: a critical review

    Directory of Open Access Journals (Sweden)

    D. Lachos-Perez

    2017-06-01

    Full Text Available This review summarizes the recent essential aspects of subcritical and supercritical water technology applied tothe extraction, hydrolysis, carbonization, and gasification processes. These are clean and fast technologies which do not need pretreatment, require less reaction time, generate less corrosion and residues, do not usetoxic solvents, and reduce the synthesis of degradation byproducts. The equipment design, process parameters, and types of biomass used for subcritical and supercritical water process are presented. The benefits of catalysis to improve process efficiency are addressed. Bioactive compounds, reducing sugars, hydrogen, biodiesel, and hydrothermal char are the final products of subcritical and supercritical water processes. The present review also revisits advances of the research trends in the development of subcriticaland supercritical water process technologies.

  16. Production of valued materials from squid viscera by subcritical water hydrolysis.

    Science.gov (United States)

    Uddin, M Salim; Ahn, Hyang-Min; Kishimura, Hideki; Chun, Byung-Soo

    2010-09-01

    Subcritical water hydrolysis was carried out to produce valued materials from squid viscera, the waste product of fish processing industries. The reaction temperatures for hydrolysis of rawand deoiled squid viscera were maintained from 180 to 280 degrees C for5 min. The ratio of material to water forhydrolysis was 1:50. Most of the proteins from deoiled squid viscera were recovered at high temperature. The protein yield in raw squid viscera hydrolyzate decreased with the rise of temperature. The reducing sugar yield was higher at high temperature in subcritical water hydrolysis of both raw and deoiled squid viscera. The highest yield of amino acids in raw and deoiled squid viscera hydrolyzates were 233.25 +/- 3.25 and 533.78 +/- 4.13 mg g(-1) at 180 and 280 degrees C, respectively. Most amino acids attained highest yield at the reaction temperature range of 180-220 degrees C and 260-280 degrees C for raw and deoiled samples, respectively. The recovery of amino acids from deoiled squid viscera was about 1.5 times higher than that of raw squid viscera.

  17. Benzo(a)pyrene accumulation in soils of technogenic emission zone by subcritical water extraction method

    Science.gov (United States)

    Sushkova, Svetlana; Minkina, Tatiana; Kizilkaya, Ridvan; Mandzhieva, Saglara; Batukaev, Abdulmalik; Bauer, Tatiana; Gulser, Coskun

    2016-04-01

    The purpose of research is the assessment of main marker of polycyclic aromatic hydrocarbons contamination, benzo[a]pyrene (BaP) content in soils of emission zone of the power complex plant in soils with use of ecologically clean and effective subcritical water extraction method. Studies were conducted on the soils of monitoring plots subjected to Novocherkassk Power Plant emissions from burning coal. In 2000, monitoring plots were established at different distances from the NPS (1.0-20.0 km). Soil samples for the determination of soil properties and the contents of BaP were taken from a depth of 0-20 cm. The soil cover in the region under study consisted of ordinary chernozems, meadow-chernozemic soils, and alluvial meadow soils. This soil revealed the following physical and chemical properties: Corg-3.1-5.0%, pH-7.3-7.6, ECE-31.2-47.6 mmol(+)/100g; CaCO3-0.2-1.0%, the content of physical clay - 51-67% and clay - 3-37%. BaP extraction from soils was carried out by a subcritical water extraction method. Subcritical water extraction of BaP from soil samples was conducted in a specially developed extraction cartridge made of stainless steel and equipped with screw-on caps at both ends. It was also equipped with a manometer that included a valve for pressure release to maintain an internal pressure of 100 atm. The extraction cartridge containing a sample and water was placed into an oven connected to a temperature regulator under temperature 250oC and pressure 60 atm. The BaP concentration in the acetonitrile extract was determined by HPLC. The efficiency of BaP extraction from soil was determined using a matrix spike. The main accumulation of pollutant in 20 cm layer of soils is noted directly in affected zone on the plots situated at 1.2, 1.6, 5.0, 8.0 km from emission source in the direction of prevailing winds. The maximum quantity of a pollutant was founded in the soil of the plot located mostly close to a source of pollution in the direction of prevailing winds

  18. Optimization of Subcritical Water Extraction of Resveratrol from Grape Seeds by Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Yajie Tian

    2017-03-01

    Full Text Available The subcritical water extraction (SWE is a high-efficiency and environment-friendly extraction method. The extraction of resveratrol (RES of grape seeds obtained from the wine production process was proposed using subcritical water extraction (SWE. The effects of different extraction process parameters on RES yield were investigated by single factors. Extraction optimization was conducted using response surface methodology (RSM. Extraction temperature was proven to be the most significant factor influencing RES yield. The optimal conditions was as follows: extraction pressure of 1.02 MPa, temperature of 152.32 °C, time of 24.89 min, and a solid/solvent ratio of 1:15 g/mL. Under these optimal conditions, the predicted extraction RES yield was 6.90 μg/g and the recoveries was up to 91.98%. Compared to other previous studies, this method required less pollution and less treatment time to extract RES from grape seeds. From these results, added economic value to this agroindustrial residue is proposed using environmentally friendly extraction techniques.

  19. Release of phenolic acids from defatted rice bran by subcritical water treatment.

    Science.gov (United States)

    Fabian, Cynthia; Tran-Thi, Ngoc Yen; Kasim, Novy S; Ju, Yi-Hsu

    2010-12-01

    Oil production from rice bran, an undervalued by-product of rice milling, produces defatted rice bran (DRB) as a waste material. Although it is considered a less valuable product, DRB still contains useful substances such as phenolic compounds with antioxidant, UV-B-protecting and anti-tumour activities. In this study the phenolic acids in DRB were extracted with subcritical water at temperatures of 125, 150, 175 and 200 °C. Analysis of total phenolics using Folin-Ciocalteu reagent showed about 2-20 g gallic acid equivalent kg(-1) bran in the extracts. High-performance liquid chromatography analysis showed low contents of phenolic acids (about 0.4-2 g kg(-1) bran). Ferulic, p-coumaric, gallic and caffeic acids were the major phenolic acids identified in the extracts. Thermal analysis of the phenolic acids was also done. The thermogravimetric curves showed that p-coumaric, caffeic and ferulic acids started to decompose at about 170 °C, while gallic acid did not start to decompose until about 200 °C. Subcritical water can be used to hydrolyse rice bran and release phenolic compounds, but the high temperatures used in the extraction can also cause the decomposition of phenolic acids. Copyright © 2010 Society of Chemical Industry.

  20. TNT and RDX degradation and extraction from contaminated soil using subcritical water.

    Science.gov (United States)

    Islam, Mohammad Nazrul; Shin, Moon-Su; Jo, Young-Tae; Park, Jeong-Hun

    2015-01-01

    The use of explosives either for industrial or military operations have resulted in the environmental pollution, poses ecological and health hazard. In this work, a subcritical water extraction (SCWE) process at laboratory scale was used at varying water temperature (100-175 °C) and flow rate (0.5-1.5 mL min(-1)), to treat 2,4,6-trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) contaminated soil, to reveal information with respect to the explosives removal (based on the analyses of soil residue after extraction), and degradation performance (based on the analyses of water extracts) of this process. Continuous flow subcritical water has been considered on removal of explosives to avoid the repartitioning of non-degraded compounds to the soil upon cooling which usually occurs in the batch system. In the SCWE experiments, near complete degradation of both TNT and RDX was observed at 175 °C based on analysis of water extracts and soil. Test results also indicated that TNT removal of >99% and a complete RDX removal were achieved by this process, when the operating conditions were 1 mL min(-1), and treatment time of 20 min, after the temperature reached 175 °C. HPLC-UV and ion chromatography analysis confirmed that the explosives underwent for degradation. The low concentration of explosives found in the process wastewater indicates that water recycling may be viable, to treat additional soil. Our results have shown in the remediation of explosives contaminated soil, the effectiveness of the continuous flow SCWE process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Production of medical radioactive isotopes using KIPT electron driven subcritical facility.

    Science.gov (United States)

    Talamo, Alberto; Gohar, Yousry

    2008-05-01

    Kharkov Institute of Physics and Technology (KIPT) of Ukraine in collaboration with Argonne National Laboratory (ANL) has a plan to construct an electron accelerator driven subcritical assembly. One of the facility objectives is the production of medical radioactive isotopes. This paper presents the ANL collaborative work performed for characterizing the facility performance for producing medical radioactive isotopes. First, a preliminary assessment was performed without including the self-shielding effect of the irradiated samples. Then, more detailed investigation was carried out including the self-shielding effect, which defined the sample size and location for producing each medical isotope. In the first part, the reaction rates were calculated as the multiplication of the cross section with the unperturbed neutron flux of the facility. Over fifty isotopes have been considered and all transmutation channels are used including (n, gamma), (n, 2n), (n, p), and (gamma, n). In the second part, the parent isotopes with high reaction rate were explicitly modeled in the calculations. Four irradiation locations were considered in the analyses to study the medical isotope production rate. The results show the self-shielding effect not only reduces the specific activity but it also changes the irradiation location that maximizes the specific activity. The axial and radial distributions of the parent capture rates have been examined to define the irradiation sample size of each parent isotope.

  2. Analysis of product distribution and characteristics in hydrothermal liquefaction of barley straw in subcritical and supercritical water

    DEFF Research Database (Denmark)

    Zhu, Zhe; Toor, Saqib; Rosendahl, Lasse

    2014-01-01

    In this study, hydrothermal liquefaction of barley straw in subcritical and supercritical water with potassium carbonate catalyst was performed in the temperatures range of 280-400°C. The influence of final reaction temperature on products yield was investigated and some physicochemical properties...

  3. Hydrolysis of polycarbonate in sub-critical water in fused silica capillary reactor with in situ Raman spectroscopy

    Science.gov (United States)

    Pan, Z.; Chou, I.-Ming; Burruss, R.C.

    2009-01-01

    The advantages of using fused silica capillary reactor (FSCR) instead of conventional autoclave for studying chemical reactions at elevated pressure and temperature conditions were demonstrated in this study, including the allowance for visual observation under a microscope and in situ Raman spectroscopic characterization of polycarbonate and coexisting phases during hydrolysis in subcritical water. ?? 2009 The Royal Society of Chemistry.

  4. The mechanism of lipids extraction from wet microalgae Scenedesmus sp. by ionic liquid assisted subcritical water

    Science.gov (United States)

    Yu, Zhuanni; Chen, Xiaolin; Xia, Shuwei

    2016-06-01

    In this paper, the total sugar concentration, protein concentration, lipid yield and morphology characteristics of the algae residue were determined to explain the mechanism of lipids extraction from wet microalgae Scenedesmus sp. by ionic liquid assisted subcritical water. The results showed similar variation for the sugar, protein and lipid. However, the total sugar was more similar to lipids yield, so the results showed that the reaction between ionic liquid and cellulose and hemicellulose in cell wall was the most important step which determined the lipids extration directly. And the total sugar variation may be representing the lipids yield. For later lipids extraction, we can determine the total sugar concentration to predict the extraction end product.

  5. An integrated green process: Subcritical water, enzymatic hydrolysis, and fermentation, for biohydrogen production from coconut husk.

    Science.gov (United States)

    Muharja, Maktum; Junianti, Fitri; Ranggina, Dian; Nurtono, Tantular; Widjaja, Arief

    2017-10-09

    The objective of this work is to develop an integrated green process of subcritical water (SCW), enzymatic hydrolysis and fermentation of coconut husk (CCH) to biohydrogen. The maximum sugar yield was obtained at mild severity factor. This was confirmed by the degradation of hemicellulose, cellulose and lignin. The tendency of the changing of sugar yield as a result of increasing severity factor was opposite to the tendency of pH change. It was found that CO2 gave a different tendency of severity factor compared to N2 as the pressurizing gas. The result of SEM analysis confirmed the structural changes during SCW pretreatment. This study integrated three steps all of which are green processes which ensured an environmentally friendly process to produce a clean biohydrogen. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. A review on green trend for oil extraction using subcritical water technology and biodiesel production.

    Science.gov (United States)

    Abdelmoez, Weal; Ashour, Eman; Naguib, Shahenaz M

    2015-01-01

    It became a global agenda to develop clean alternative fuels which were domestically available, environmentally acceptable and technically feasible. Thus, biodiesel was destined to make a substantial contribution to the future energy demands of the domestic and industrial economies. Utilization of the non edible vegetable oils as raw materials for biodiesel production had been handled frequently for the past few years. The oil content of these seeds could be extracted by different oil extraction methods, such as mechanical extraction, solvent extraction and by subcritical water extraction technology SWT. Among them, SWT represents a new promising green extraction method. Therefore this review covered the current used non edible oil seeds for biodiesel production as well as giving a sharp focus on the efficiency of using the SWT as a promising extraction method. In addition the advantages and the disadvantages of the different biodiesel production techniques would be covered.

  7. Temperature effects on diffusion coefficient for 6-gingerol and 6-shogaol in subcritical water extraction

    Science.gov (United States)

    Ilia Anisa, Nor; Azian, Noor; Sharizan, Mohd; Iwai, Yoshio

    2014-04-01

    6-gingerol and 6-shogaol are the main constituents as anti-inflammatory or bioactive compounds from zingiber officinale Roscoe. These bioactive compounds have been proven for inflammatory disease, antioxidatives and anticancer. The effect of temperature on diffusion coefficient for 6-gingerol and 6-shogaol were studied in subcritical water extraction. The diffusion coefficient was determined by Fick's second law. By neglecting external mass transfer and solid particle in spherical form, a linear portion of Ln (1-(Ct/Co)) versus time was plotted in determining the diffusion coefficient. 6-gingerol obtained the higher yield at 130°C with diffusion coefficient of 8.582x10-11 m2/s whilst for 6-shogaol, the higher yield and diffusion coefficient at 170°C and 19.417 × 10-11 m2/s.

  8. SIMPLE METHOD FOR ESTIMATING POLYCHLORINATED BIPHENYL CONCENTRATIONS ON SOILS AND SEDIMENTS USING SUBCRITICAL WATER EXTRACTION COUPLED WITH SOLID-PHASE MICROEXTRACTION. (R825368)

    Science.gov (United States)

    A rapid method for estimating polychlorinated biphenyl (PCB) concentrations in contaminated soils and sediments has been developed by coupling static subcritical water extraction with solid-phase microextraction (SPME). Soil, water, and internal standards are placed in a seale...

  9. Subcritical Water Induced Complexation of Soy Protein and Rutin: Improved Interfacial Properties and Emulsion Stability.

    Science.gov (United States)

    Chen, Xiao-Wei; Wang, Jin-Mei; Yang, Xiao-Quan; Qi, Jun-Ru; Hou, Jun-Jie

    2016-09-01

    Rutin is a common dietary flavonoid with important antioxidant and pharmacological activities. However, its application in the food industry is limited mainly because of its poor water solubility. The subcritical water (SW) treatment provides an efficient technique to solubilize and achieve the enrichment of rutin in soy protein isolate (SPI) by inducing their complexation. The physicochemical, interfacial, and emulsifying properties of the complex were investigated and compared to the mixtures. SW treatment had much enhanced rutin-combined capacity of SPI than that of conventional method, ascribing to the well-contacted for higher water solubility of rutin with stronger collision-induced hydrophobic interactions. Compared to the mixtures of rutin with proteins, the complex exhibited an excellent surface activity and improved the physical and oxidative stability of its stabilized emulsions. This improving effect could be attributed to the targeted accumulation of rutin at the oil-water interface accompanied by the adsorption of SPI resulting in the thicker interfacial layer, as evidenced by higher interfacial protein and rutin concentrations. This study provides a novel strategy for the design and enrichment of nanovehicle providing water-insoluble hydrophobic polyphenols for interfacial delivery in food emulsified systems. © 2016 Institute of Food Technologists®

  10. Hydrothermal liquefaction of Spirulina and Nannochloropsis salina under subcritical and supercritical water conditions.

    Science.gov (United States)

    Toor, Saqib S; Reddy, Harvind; Deng, Shuguang; Hoffmann, Jessica; Spangsmark, Dorte; Madsen, Linda B; Holm-Nielsen, Jens Bo; Rosendahl, Lasse A

    2013-03-01

    Six hydrothermal liquefaction experiments on Nannochloropsis salina and Spirulina platensis at subcritical and supercritical water conditions (220–375 °C, 20–255 bar) were carried out to explore the feasibility of extracting lipids from wet algae, preserving nutrients in lipid-extracted algae solid residue, and recycling process water for algae cultivation. GC–MS, elemental analyzer, FT-IR, calorimeter and nutrient analysis were used to analyze bio-crude, lipid-extracted algae and water samples produced in the hydrothermal liquefaction process. The highest bio-crude yield of 46% was obtained on N. salina at 350 °C and 175 bar. For S. platensis algae sample, the optimal hydrothermal liquefaction condition appears to be at 310 °C and 115 bar, while the optimal condition for N. salina is at 350 °C and 175 bar. Preliminary data also indicate that a lipid-extracted algae solid residue sample obtained in the hydrothermal liquefaction process contains a high level of proteins. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Energy conversion of biomass with supercritical and subcritical water using large-scale plants.

    Science.gov (United States)

    Okajima, Idzumi; Sako, Takeshi

    2014-01-01

    Exploiting unused or waste biomass as an alternative fuel is currently receiving much attention because of the potential reductions in CO2 emissions and the lower cost in comparison to expensive fossil fuels. If we are to use biomass domestically or industrially, we must be able to convert biomass to high-quality and easy-to-use liquid, gas, or solid fuels that have high-calorific values, low moisture and ash contents, uniform composition, and suitable for stored over long periods. In biomass treatment, hot and high-pressure water including supercritical and subcritical water is an excellent solvent, as it is clean and safe and its action on biomass can be optimized by varying the temperature and pressure. In this article, the conversion of waste biomass to fuel using hot and high-pressure water is reviewed, and the following examples are presented: the production of large amounts of hydrogen from waste biomass, the production of cheap bioethanol from non-food raw materials, and the production of composite powder fuel from refractory waste biomass in the rubble from the Great East Japan Earthquake. Several promising techniques for the conversion of biomass have been demonstrated in large-scale plants and commercial deployment is expected in the near future. Copyright © 2013. Published by Elsevier B.V.

  12. Optimization of subcritical water extraction of polysaccharides from Grifola frondosa using response surface methodology

    Science.gov (United States)

    Yang, Liuqing; Qu, Hongyuan; Mao, Guanghua; Zhao, Ting; Li, Fang; Zhu, Bole; Zhang, Bingtao; Wu, Xiangyang

    2013-01-01

    Background: This research is among the few that has been conducted on the feasibility of subcritical water extraction (SWE) as a rapid and efficient extraction tool for polysaccharides. Objective: The aim of the study was to extractand optimize the parameter conditions of SWE of polysaccharides from Grifola frondosa using response surface methodology. Materials and Methods: In the study, SWEwas applied to extractbioactive compounds from G. frondosa. A preliminary analysis was made on the physical properties and content determination of extracts using SWE and hot water extraction (HWE). Analysis of the sample residues and antioxidant activities of the polysaccharides extracted by SWE and HWE were then evaluated. Results: The optimal extraction conditions include: extraction temperature of 210°C, extraction time of 43.65 min and the ratio of water to raw material of 26.15:1. Under these optimal conditions, the experimental yield of the polysaccharides (25.1 ± 0.3%) corresponded with the mean value predicted by the model and two times more than the mean value obtained by the traditional HWE. The antioxidant activities of polysaccharides extracted by SWE were generally higher than those extracted by HWE. From the study, the SWE technology could be a time-saving, high yield, and bioactive technique for production of polysaccharides. PMID:23772107

  13. Coupled Subcritical Water and Solid Phase Extraction for In-Situ Chemical Analysis Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Leiden Measurement Technology (LMT) will design and develop a low volume analyte separation, concentration, and transfer system (ConTech), that couples a Subcritical...

  14. Particle formation of budesonide from alcohol-modified subcritical water solutions.

    Science.gov (United States)

    Carr, Adam G; Mammucari, Raffaella; Foster, Neil R

    2011-02-28

    Recently, subcritical water (SBCW: water that has been heated to a temperature between 100°C and 200°C at pressures of up to 70bar) has been used to dissolve several hydrophobic pharmaceutical compounds (Carr et al., 2010a). Furthermore, a number of active pharmaceutical ingredients (APIs) have been rapidly precipitated from SBCW solutions (Carr et al., 2010b,c). It is possible to alter the precipitate morphology by altering the processing variables; including the SBCW-API solution injection temperature and adding impurities (such as pharmaceutical excipients, e.g. lactose) to the precipitation chamber. The work presented in this article demonstrates that the morphology of pharmaceutical particles can be tuned by adding organic solvents (ethanol and methanol) to the SBCW-API solutions. Particle morphology has also been tuned by adding different pharmaceutical excipients (polyethylene glycol 400 and lactose) to the precipitation chamber. Different morphologies of pharmaceutical particles were produced, ranging from nanospheres of 60nm diameter to 5μm plate particles. Budesonide was used as the model API in this study. Two experimental products were spray dried to form dry powder products. The aerodynamic particle size of the powder was established by running the powder through an Andersen Cascade Impactor. It has been shown that the drug particles produced from the SBCW micronization process, when coupled with a spray drying process, are suitable for delivery to the lungs. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Recovery of solid fuel from municipal solid waste by hydrothermal treatment using subcritical water

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, In-Hee, E-mail: hwang@eng.hokudai.ac.jp [Laboratory of Solid Waste Disposal Engineering, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060 8628 (Japan); Aoyama, Hiroya; Matsuto, Toshihiko; Nakagishi, Tatsuhiro; Matsuo, Takayuki [Laboratory of Solid Waste Disposal Engineering, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060 8628 (Japan)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Hydrothermal treatment using subcritical water was studied to recover solid fuel from MSW. Black-Right-Pointing-Pointer More than 75% of carbon in MSW was recovered as char. Black-Right-Pointing-Pointer Heating value of char was comparable to that of brown coal and lignite. Black-Right-Pointing-Pointer Polyvinyl chloride was decomposed at 295 Degree-Sign C and 8 MPa and was removed by washing. - Abstract: Hydrothermal treatments using subcritical water (HTSW) such as that at 234 Degree-Sign C and 3 MPa (LT condition) and 295 Degree-Sign C and 8 MPa (HT condition) were investigated to recover solid fuel from municipal solid waste (MSW). Printing paper, dog food (DF), wooden chopsticks, and mixed plastic film and sheets of polyethylene, polypropylene, and polystyrene were prepared as model MSW components, in which polyvinylchloride (PVC) powder and sodium chloride were used to simulate Cl sources. While more than 75% of carbon in paper, DF, and wood was recovered as char under both LT and HT conditions, plastics did not degrade under either LT or HT conditions. The heating value (HV) of obtained char was 13,886-27,544 kJ/kg and was comparable to that of brown coal and lignite. Higher formation of fixed carbon and greater oxygen dissociation during HTSW were thought to improve the HV of char. Cl atoms added as PVC powder and sodium chloride to raw material remained in char after HTSW. However, most Cl originating from PVC was found to converse into soluble Cl compounds during HTSW under the HT condition and could be removed by washing. From these results, the merit of HTSW as a method of recovering solid fuel from MSW is considered to produce char with minimal carbon loss without a drying process prior to HTSW. In addition, Cl originating from PVC decomposes into soluble Cl compound under the HT condition. The combination of HTSW under the HT condition and char washing might improve the quality of char as alternative fuel.

  16. Short communication: antiviral activity of subcritical water extract of Brassica juncea against influenza virus A/H1N1 in nonfat milk

    National Research Council Canada - National Science Library

    Lee, N-K; Lee, J-H; Lim, S-M; Lee, K A; Kim, Y B; Chang, P-S; Paik, H-D

    2014-01-01

    Subcritical water extract (SWE) of Brassica juncea was studied for antiviral effects against influenza virus A/H1N1 and for the possibility of application as a nonfat milk supplement for use as an "antiviral food...

  17. High-energy-density electron beam from interaction of two successive laser pulses with subcritical-density plasma

    Directory of Open Access Journals (Sweden)

    J. W. Wang

    2016-02-01

    Full Text Available It is shown by particle-in-cell simulations that a narrow electron beam with high energy and charge density can be generated in a subcritical-density plasma by two consecutive laser pulses. Although the first laser pulse dissipates rapidly, the second pulse can propagate for a long distance in the thin wake channel created by the first pulse and can further accelerate the preaccelerated electrons therein. Given that the second pulse also self-focuses, the resulting electron beam has a narrow waist and high charge and energy densities. Such beams are useful for enhancing the target-back space-charge field in target normal sheath acceleration of ions and bremsstrahlung sources, among others.

  18. Recycling high-performance carbon fiber reinforced polymer composites using sub-critical and supercritical water

    Science.gov (United States)

    Knight, Chase C.

    Carbon fiber reinforced plastics (CFRP) are composite materials that consist of carbon fibers embedded in a polymer matrix, a combination that yields materials with properties exceeding the individual properties of each component. CFRP have several advantages over metals: they offer superior strength to weight ratios and superior resistance to corrosion and chemical attack. These advantages, along with continuing improvement in manufacturing processes, have resulted in rapid growth in the number of CFRP products and applications especially in the aerospace/aviation, wind energy, automotive, and sporting goods industries. Due to theses well-documented benefits and advancements in manufacturing capabilities, CFRP will continue to replace traditional materials of construction throughout several industries. However, some of the same properties that make CFRP outstanding materials also pose a major problem once these materials reach the end of service life. They become difficult to recycle. With composite consumption in North America growing by almost 5 times the rate of the US GDP in 2012, this lack of recyclability is a growing concern. As consumption increases, more waste will inevitably be generated. Current composite recycling technologies include mechanical recycling, thermal processing, and chemical processing. The major challenge of CFRP recycling is the ability to recover materials of high-value and preserve their properties. To this end, the most suitable technology is chemical processing, where the polymer matrix can be broken down and removed from the fiber, with limited damage to the fibers. This can be achieved using high concentration acids, but such a process is undesirable due to the toxicity of such materials. A viable alternative to acid is water in the sub-critical and supercritical region. Under these conditions, the behavior of this abundant and most environmentally friendly solvent resembles that of an organic compound, facilitating the breakdown

  19. Subcritical water extraction and characterization of bioactive compounds from Haematococcus pluvialis microalga.

    Science.gov (United States)

    Rodríguez-Meizoso, I; Jaime, L; Santoyo, S; Señoráns, F J; Cifuentes, A; Ibáñez, E

    2010-01-20

    In this work, extraction and characterization of compounds with antioxidant and antimicrobial activity from Haematococcus pluvialis microalga in red phase have been carried out. To do this, subcritical water extraction (SWE) has been combined with analytical techniques such as HPLC-DAD, HPLC-QqQ-MS and GC-MS and in vitro assays (i.e., for antioxidant and antimicrobial activity). The effect of the extraction temperature (50, 100, 150 and 200 degrees C) and solvent polarity has been studied in terms of yield and activity of the extracts. Results demonstrate that the extraction temperature has a positive influence in the extraction yield and antioxidant activity. Thus, the extraction yield achieved with this process was higher than 30% of dry weight at 200 degrees C as extraction temperature. Moreover, the extract obtained at 200 degrees C presented the highest antioxidant activity by far, while temperature does not seem to significatively affect the antimicrobial activity. Chemical composition was determined by HPLC-DAD, HPLC-QqQ-MS and GC-MS. Short chain fatty acids turned out to be responsible of the antimicrobial activity, whereas the antioxidant activity was correlated to vitamin E (present exclusively in the 200 degrees C extract), together with simple phenols, caramelization products and possible Maillard reaction products obtained during the extraction at high temperatures.

  20. Subcritical carbon dioxide-water hydrolysis of sugarcane bagasse pith for reducing sugars production.

    Science.gov (United States)

    Liang, Jiezhen; Chen, Xiaopeng; Wang, Linlin; Wei, Xiaojie; Wang, Huasheng; Lu, Songzhou; Li, Yunhua

    2017-03-01

    The aim of present study was to obtain total reducing sugars (TRS) by hydrolysis in subcritical CO2-water from sugarcane bagasse pith (SCBP), the fibrous residue remaining after papermaking from sugarcane bagasse. The optimum hydrolysis conditions were evaluated by L16(4(5)) orthogonal experiments. The TRS yield achieved 45.8% at the optimal conditions: 200°C, 40min, 500rmin(-1), CO2 initial pressure of 1MPa and liquid-to-solid ratio of 50:1. Fourier transform infrared spectrometry and two-dimensional heteronuclear single quantum coherence nuclear magnetic resonance were used to characterize hydrolysis liquor, treated and untreated SCBP, resulting in the removal of hemicelluloses to mainly produce xylose, glucose and arabinose during hydrolysis. The severity factors had no correlation to TRS yield, indicating that the simple kinetic processes of biomass solubilisation cannot perfectly describe the SCBP hydrolysis. The first-order kinetic model based on consecutive reaction was used to obtain rate constants, activation energies and pre-exponential factors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Sugars and char formation on subcritical water hydrolysis of sugarcane straw.

    Science.gov (United States)

    Lachos-Perez, D; Tompsett, G A; Guerra, P; Timko, M T; Rostagno, M A; Martínez, Julian; Forster-Carneiro, T

    2017-11-01

    Subcritical water has potential as an environmentally friendly solvent for applications including hydrolysis, liquefaction, extraction, and carbonization. Here, we report hydrolysis of sugarcane straw, an abundant byproduct of sugar production, in a semi-continuous reactor at reaction temperatures ranging from 190 to 260°C and at operating pressures of 9 and 16MPa. The target hydrolysis products were total reducing sugars. The main products of sugarcane straw hydrolysis were glucose, xylose, arabinose, and galactose in addition to 5- hydroxymethylfurfural and furfural as minor byproducts. Fourier transform infrared spectroscopy and thermogravimetric analysis provided additional information on the surface and bulk composition of the residual biomass. Char was present on samples treated at temperatures equal to and greater than 190°C. Samples treated at 260°C contained approximately 20wt% char, yet retained substantial hemicellulose and cellulose content. Hydrolysis temperature of 200°C provided the greatest TRS yield while minimizing char formation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Efficient, high-speed methane fermentation for sewage sludge using subcritical water hydrolysis as pretreatment.

    Science.gov (United States)

    Yoshida, Hiroyuki; Tokumoto, Hayato; Ishii, Kyoko; Ishii, Ryo

    2009-06-01

    A novel biomass-energy process for the production of methane from sewage sludge using a subcritical water (sub-CW) hydrolysis reaction as pretreatment is proposed. The main substances of sewage sludge hydrolyzed by sub-CW at 513 K for 10 min were acetic acid, formic acid, pyroglutamic acid, alanine, and glycine. Fermentation experiments were conducted in an anaerobic-sludge reactor for two different samples: real sewage sludge and a model solution containing components typically produced by the sub-CW pretreatment of sewage sludge. In the experiment for the sub-CW pretreatment of sewage sludge, methane generation was twice that for non-pretreatment after 3 days of incubation. In the model experiment, the methane conversion was about 40% with the application of mixture of organic acids and amino acids after 5 days of incubation. Furthermore, the methane conversion was about 60% for 2 days when only organic acids, such as acetic acid and formic acid, were applied. Because acetic acid is the key intermediate and main precursor of the methanogenesis step, fermentation experiments were conducted in an anaerobic-sludge reactor with high concentrations of acetic acid (0.01-0.1M). Nearly 100% of acetic acid was converted to methane and carbon dioxide in 1-3 days.

  3. Combined subcritical water and enzymatic hydrolysis for reducing sugar production from coconut husk

    Science.gov (United States)

    Muharja, Maktum; Junianti, Fitri; Nurtono, Tantular; Widjaja, Arief

    2017-05-01

    Coconut husk wastes are abundantly available in Indonesia. It has a potential to be used into alternative renewable energy sources such as hydrogen using enzymatic hydrolysis followed by a fermentation process. Unfortunately, enzymatic hydrolysis is hampered by the complex structure of lignocellulose, so the cellulose component is hard to degrade. In this study, Combined Subcritical Water (SCW) and enzymatic hydrolysis are applied to enhance fermentable, thereby reducing production of sugar from coconut husk. There were two steps in this study, the first step was coconut husk pretreated by SCW in batch reactor at 80 bar and 150-200°C for 60 minutes reaction time. Secondly, solid fraction from the results of SCW was hydrolyzed using the mixture of pure cellulose and xylanase enzymes. Analysis was conducted on untreated and SCW-treated by gravimetric assay, liquid fraction after SCW and solid fraction after enzymatic hydrolysis using DNS assay. The maximum yield of reducing sugar (including xylose, arabinose glucose, galactose, mannose) was 1.254 gr per 6 gr raw material, representing 53.95% of total sugar in coconut husk biomass which was obtained at 150°C 80 bar for 60 minutes reaction time of SCW-treated and 6 hour of enzymatic hydrolysis using mixture of pure cellulose and xylanase enzymes (18.6 U /gram of coconut husk).

  4. Subcritical water extraction of antioxidant phenolic compounds from XiLan olive fruit dreg.

    Science.gov (United States)

    Yu, Xue-Mei; Zhu, Ping; Zhong, Qiu-Ping; Li, Meng-Ying; Ma, Han-Ruo

    2015-08-01

    Olive fruit dreg (OFD), waste from olive softdrink processing, has caused disposal problems. Nevertheless, OFD is a good source of functional ingredients, such as phenolic compounds. This study investigated the extraction conditions of phenolic compounds from OFD by using subcritical water (SCW) extraction method, antioxidant activity of SCW extracts, and components of phenolic compounds by LC-MS. SCW extraction experiments were performed in a batch stainless steel reactor at temperatures ranging from 100 to 180 °C at residence time of 5 to 60 min, and at solid-to-liquid ratio of 1:20 to 1:60. Higher recoveries of phenolic compounds [37.52 ± 0.87 mg gallic acid equivalents (GAE)/g, dry weight (DW)] were obtained at 160 °C, solid-to-liquid ratio of 1:50, and extract time of 30 min than at 2 h extraction with methanol (1.21 ± 0.16 mg GAE/g DW), ethanol (0.24 ± 0.07 mg GAE/g DW), and acetone (0.34 ± 0.01 mg GAE/g DW). The antioxidant activities of the SCW extracts were significantly stronger than those in methanol extracts at the same concentration of total phenolic contents. LC-MS analysis results indicated that SCW extracts contained higher amounts of phenolic compounds, such as chlorogenic acid, homovanillic acid, gallic acid, hydroxytyrosol, quercetin, and syringic acid. SCW at 160 °C, 30 min, and solid-to-liquid ratio of 1:50 may be a good substitute of organic solvents, such as methanol, ethanol, and acetone to recover phenolic compounds from OFD.

  5. Recovery of solid fuel from municipal solid waste by hydrothermal treatment using subcritical water.

    Science.gov (United States)

    Hwang, In-Hee; Aoyama, Hiroya; Matsuto, Toshihiko; Nakagishi, Tatsuhiro; Matsuo, Takayuki

    2012-03-01

    Hydrothermal treatments using subcritical water (HTSW) such as that at 234°C and 3MPa (LT condition) and 295°C and 8MPa (HT condition) were investigated to recover solid fuel from municipal solid waste (MSW). Printing paper, dog food (DF), wooden chopsticks, and mixed plastic film and sheets of polyethylene, polypropylene, and polystyrene were prepared as model MSW components, in which polyvinylchloride (PVC) powder and sodium chloride were used to simulate Cl sources. While more than 75% of carbon in paper, DF, and wood was recovered as char under both LT and HT conditions, plastics did not degrade under either LT or HT conditions. The heating value (HV) of obtained char was 13,886-27,544 kJ/kg and was comparable to that of brown coal and lignite. Higher formation of fixed carbon and greater oxygen dissociation during HTSW were thought to improve the HV of char. Cl atoms added as PVC powder and sodium chloride to raw material remained in char after HTSW. However, most Cl originating from PVC was found to converse into soluble Cl compounds during HTSW under the HT condition and could be removed by washing. From these results, the merit of HTSW as a method of recovering solid fuel from MSW is considered to produce char with minimal carbon loss without a drying process prior to HTSW. In addition, Cl originating from PVC decomposes into soluble Cl compound under the HT condition. The combination of HTSW under the HT condition and char washing might improve the quality of char as alternative fuel. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Kinetic and Thermodynamics studies for Castor Oil Extraction Using Subcritical Water Technology.

    Science.gov (United States)

    Abdelmoez, Wael; Ashour, Eman; Naguib, Shahenaz M; Hilal, Amr; Al Mahdy, Dalia A; Mahrous, Engy A; Abdel-Sattar, Essam

    2016-06-01

    In this work both kinetic and thermodynamics of castor oil extraction from its seeds using subcritical water technique were studied. It was found that the extraction process followed two consecutive steps. In these steps, the oil was firstly extracted from inside the powder by diffusion mechanism. Then the extracted oil, due to extending the extraction time under high temperature and pressure, was subjected to a decomposition reaction following first order mechanism. The experimental data correlated well with the irreversible consecutive unimolecular-type first order mechanism. The values of both oil extraction rate constants and decomposition rate constants were calculated through non-linear fitting using DataFit software. The extraction rate constants were found to be 0.0019, 0.024, 0.098, 0.1 and 0.117 min(-1), while the decomposition rate constants were 0.057, 0.059, 0.014, 0.019 and 0.17 min(-1) at extraction temperatures of 240, 250, 260, 270 and 280°C, respectively. The thermodynamic properties of the oil extraction process were investigated using Arrhenius equation. The values of the activation energy, Ea, and the frequency factor, A, were 73 kJ mol(-1) and 946, 002 min(-1), respectively. The physicochemical properties of the extracted castor oil including the specific gravity, viscosity, acid value, pH value and calorific value were found to be 0.947, 7.487, 1.094 mg KOH/g, 6.1, and 41.5 MJ/Kg, respectively. Gas chromatography analysis showed that ricinoleic acid (83.6%) appears as the predominant fatty acid in the extracted oil followed by oleic acid (5.5%) and linoleic acid (2.3%).

  7. Radioactive isotope production for medical applications using Kharkov electron driven subcritical assembly facility.

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, A.; Gohar, Y.; Nuclear Engineering Division

    2007-05-15

    Kharkov Institute of Physics and Technology (KIPT) of Ukraine has a plan to construct an accelerator driven subcritical assembly. The main functions of the subcritical assembly are the medical isotope production, neutron thereby, and the support of the Ukraine nuclear industry. Reactor physics experiments and material research will be carried out using the capabilities of this facility. The United States of America and Ukraine have started collaboration activity for developing a conceptual design for this facility with low enrichment uranium (LEU) fuel. Different conceptual designs are being developed based on the facility mission and the engineering requirements including nuclear physics, neutronics, heat transfer, thermal hydraulics, structure, and material issues. Different fuel designs with LEU and reflector materials are considered in the design process. Safety, reliability, and environmental considerations are included in the facility conceptual design. The facility is configured to accommodate future design improvements and upgrades. This report is a part of the Argonne National Laboratory Activity within this collaboration for developing and characterizing the subcritical assembly conceptual design. In this study, the medical isotope production function of the Kharkov facility is defined. First, a review was carried out to identify the medical isotopes and its medical use. Then a preliminary assessment was performed without including the self-shielding effect of the irradiated samples. Finally, more detailed investigation was carried out including the self-shielding effect, which defined the sample size and irradiation location for producing each medical isotope. In the first part, the reaction rates were calculated as the multiplication of the cross section with the unperturbed neutron flux of the facility. Over fifty isotopes were considered and all transmutation channels are used including (n,{gamma}), (n,2n), (n,p), and ({gamma},n). In the second part

  8. Subcritical water extraction, UPLC-Triple-TOF/MS analysis and antioxidant activity of anthocyanins from Lycium ruthenicum Murr.

    Science.gov (United States)

    Wang, Yuwei; Luan, Guangxiang; Zhou, Wu; Meng, Jing; Wang, Honglun; Hu, Na; Suo, Yourui

    2018-05-30

    In this work, it has been developed an efficient method for extraction of anthocyanin from Lycium ruthenicum Murr. and the antioxidative activities research. Subcritical water extraction was investigated as a green technology for the extraction of anthocyanin from L. ruthenicum. Several key parameters affecting extraction efficiency were investigated and optimized by response surface methodology (RSM) combined with Box-Behnken design (BBD). The optimum extraction conditions and the desirability of model were the time of extraction = 55 min and the flow rate was 3 mL/min at 170 °C. At this operating condition, the content of anthocyanin was high to 26.33%. Subcritical water extraction was more efficient than using hot water or methyl alcohol for the extraction of anthocyanin. The composition of anthocyanins from L. ruthenicum has been investigated by high-performance liquid chromatography with diode array detector (HPLC-DAD) and Ultra Performance Liquid Chromatography-Triple-Time of Flight Mass Spectrometer (UPLC-Triple-TOF/MS). Seven anthocyanins have been detected, all of which were identified and quantified. Furthermore, the anthocyanins extracted by SWE showed significantly better antioxidant activity than the anthocyanins extracted by hot water or methyl alcohol according to DPPH and ABTS assay. SWE with significantly higher anthocyanin and antioxidant activity were achieved compared to conventional methods. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Innovative leaching of cobalt and lithium from spent lithium-ion batteries and simultaneous dechlorination of polyvinyl chloride in subcritical water.

    Science.gov (United States)

    Liu, Kang; Zhang, Fu-Shen

    2016-10-05

    In this work, an effective and environmentally friendly process for the recovery of cobalt (Co) and lithium (Li) from spent lithium-ion batteries (LIBs) and simultaneously detoxification of polyvinyl chloride (PVC) in subcritical water was developed. Lithium cobalt oxide (LiCoO2) power from spent LIBs and PVC were co-treated by subcritical water oxidation, in which PVC served as a hydrochloric acid source to promote metal leaching. The dechlorination of PVC and metal leaching was achieved simultaneously under subcritical water oxidation. More than 95% Co and nearly 98% Li were recovered under the optimum conditions: temperature 350°C, PVC/LiCoO2 ratio 3:1, time 30min, and a solid/liquid ratio 16:1 (g/L), respectively. Moreover, PVC was completely dechlorinated at temperatures above 350°C without any release of toxic chlorinated organic compounds. Assessment on economical and environmental impacts revealed that the PVC and LiCoO2 subcritical co-treatment process had significant technical, economic and environmental benefits over the traditional hydrometallurgy and pyrometallurgy processes. This innovative co-treatment process is efficient, environmentally friendly and adequate for Co and Li recovery from spent LIBs and simultaneous dechlorination of PVC in subcritical water. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Equilibria of ternary system acetic acid-water-CO2 under subcritical conditions

    DEFF Research Database (Denmark)

    Gutierrez, Jose M. Jimenez; Mussatto, Solange I.; Tsou, Joana

    in a very wide range of applications. However, those conditions, especially the levels of high pressure required at larger scale, involve certain equipment limitations. An alternative to overcome those restrictions is to use subcritical carbon dioxide. In order to understand the different systems......) of the ternary system HAc—H2O—CO2 at different subcritical conditions. A proposed computer model could be validated with experimental data, leading to a certain degree of adjustment due to specific factors, such as the binary interaction parameter kij, used in the model based on the Peng-Robinson EoS coupled...... it will be returned to the atmosphere (as part of the carbon cycle), CO2 is an inexpensive and clean source with numerous industrial applications in diverse fields: from chemical processes to biotechnological purposes [1]. Many of these studies have been focused on supercritical CO2, due to its broad potential uses...

  11. Enhanced Production of Phenolic Compounds from Pumpkin Leaves by Subcritical Water Hydrolysis.

    Science.gov (United States)

    Ko, Jeong-Yeon; Ko, Mi-Ok; Kim, Dong-Shin; Lim, Sang-Bin

    2016-06-01

    Enhanced production of individual phenolic compounds by subcritical water hydrolysis (SWH) of pumpkin leaves was investigated at various temperatures ranging from 100 to 220°C at 20 min and at various reaction times ranging from 10 to 50 min at 160°C. Caffeic acid, p-coumaric acid, ferulic acid, and gentisic acid were the major phenolic compounds in the hydrolysate of pumpkin leaves. All phenolic compounds except gentisic acid showed the highest yield at 160°C, but gentisic acid showed the highest yield at 180°C. The cumulative amount of individual phenolic compounds gradually increased by 48.1, 52.2, and 78.4 μg/g dry matter at 100°C, 120°C, and 140°C, respectively, and then greatly increased by 1,477.1 μg/g dry matter at 160°C. The yields of caffeic acid and ferulic acid showed peaks at 20 min, while those of cinnamic acid, p-coumaric acid, p-hydroxybenzoic acid, and procatechuic acid showed peaks at 30 min. Antioxidant activities such as 2,2-diphenyl-1-picrylhydrazyl and ferric reducing antioxidant power values gradually increased with hydrolysis temperature and ranged from 6.77 to 12.42 mg ascorbic acid equivalents/g dry matter and from 4.25 to 8.92 mmol Fe(2+)/100 g dry matter, respectively. Color L* and b* values gradually decreased as hydrolysis temperature increased from 100°C to 140°C. At high temperatures (160°C to 220°C), L* and b* values decreased suddenly. The a* value peaked at 160°C and then decreased as temperature increased from 160°C to 220°C. These results suggest that SWH of pumpkin leaves was strongly influenced by hydrolysis temperature and may enhanced the production of phenolic compounds and antioxidant activities.

  12. Non-Catalytic and MgSO4 - Catalyst based Degradation of Glycerol in Subcritical and Supercritical Water Media

    Directory of Open Access Journals (Sweden)

    Mahfud Mahfud

    2011-02-01

    Full Text Available This research aims to study the glycerol degradation reaction in subcritical and supercritical water media. The degradation of glycerol into other products was performed both with sulphate salt catalysts and without catalyst. The reactant was made from glycerol and water with the mass ratio of 1:10. The experiments were carried out using a batch reactor at a constant pressure of 250 kgf/cm2, with the temperature range of 200-400oC, reaction time of 30 minutes, and catalyst mol ratio in glycerol of 1:10 and 1:8. The products of the non-catalytic glycerol degradation were acetaldehyde, methanol, and ethanol. The use of sulphate salt as catalyst has high selectivity to acetaldehyde and still allows the formation alcohol product in small quantities. The mechanism of ionic reaction and free radical reaction can occur at lower temperature in hydrothermal area or subcritical water. Conversion of glycerol on catalytic reaction showed a higher yield when compared with the reaction performed without catalyst

  13. Innovative leaching of cobalt and lithium from spent lithium-ion batteries and simultaneous dechlorination of polyvinyl chloride in subcritical water

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Kang; Zhang, Fu-Shen, E-mail: fszhang@rcees.ac.cn

    2016-10-05

    Highlights: • A co-treatment process for recovery of Co and Li and simultaneous detoxification of PVC in subcritical water was proposed. • PVC was used as a hydrochloric acid source. • More than 95% Co and nearly 98% Li were leached under the optimum conditions. • Neither corrosive acid nor reducing agent was used. • The co-treatment process has technical, economic and environmental benefits over the traditional recovery processes. - Abstract: In this work, an effective and environmentally friendly process for the recovery of cobalt (Co) and lithium (Li) from spent lithium-ion batteries (LIBs) and simultaneously detoxification of polyvinyl chloride (PVC) in subcritical water was developed. Lithium cobalt oxide (LiCoO{sub 2}) power from spent LIBs and PVC were co-treated by subcritical water oxidation, in which PVC served as a hydrochloric acid source to promote metal leaching. The dechlorination of PVC and metal leaching was achieved simultaneously under subcritical water oxidation. More than 95% Co and nearly 98% Li were recovered under the optimum conditions: temperature 350 °C, PVC/LiCoO{sub 2} ratio 3:1, time 30 min, and a solid/liquid ratio 16:1 (g/L), respectively. Moreover, PVC was completely dechlorinated at temperatures above 350 °C without any release of toxic chlorinated organic compounds. Assessment on economical and environmental impacts revealed that the PVC and LiCoO{sub 2} subcritical co-treatment process had significant technical, economic and environmental benefits over the traditional hydrometallurgy and pyrometallurgy processes. This innovative co-treatment process is efficient, environmentally friendly and adequate for Co and Li recovery from spent LIBs and simultaneous dechlorination of PVC in subcritical water.

  14. Optimization of subcritical water extraction parameters of antioxidant polyphenols from sea buckthorn (Hippophaë rhamnoides L.) seed residue.

    Science.gov (United States)

    Gong, Ying; Zhang, Xiaofei; He, Li; Yan, Qiuli; Yuan, Fang; Gao, Yanxiang

    2015-03-01

    Polyphenols was extracted with subcritical water from the sea buckthorn seed residue (after oil recovery), and the extraction parameters were optimized using response surface methodology (RSM). The independent processing variables were extraction temperature, extraction time and the ratio of water to solid. The optimal extraction parameters for the extracts with highest ABTS radical scavenging activity were 120 °C, 36 min and the water to solid ratio of 20, and the maximize antioxidant capacity value was 32.42 mmol Trolox equivalent (TE)/100 g. Under the optimal conditions, the yield of total phenolics, total flavonoids and proanthocyanidins was 36.62 mg gallic acid equivalents (GAE)/g, 19.98 mg rutin equivalent (RE)/g and 10.76 mg catechin equivalents (CE)/g, respectively.

  15. Extraction of bioactive compounds from sesame (Sesamum indicum L.) defatted seeds using water and ethanol under sub-critical conditions.

    Science.gov (United States)

    Bodoira, Romina; Velez, Alexis; Andreatta, Alfonsina E; Martínez, Marcela; Maestri, Damián

    2017-12-15

    Sesame seeds contain a vast array of lignans and phenolic compounds having important biological properties. An optimized method to obtain these seed components was designed by using water and ethanol at high pressure and temperature conditions. The maximum concentrations of lignans, total phenolics, flavonoids and flavonols compounds were achieved at 220°C extraction temperature and 8MPa pressure, using 63.5% ethanol as co-solvent. Under these conditions, the obtained sesame extracts gave the best radical scavenging capacity. Kinetic studies showed a high extraction rate of phenolic compounds until the first 50min of extraction, and it was in parallel with the highest scavenging capacity. The comparison of our results with those obtained under conventional extraction conditions (normal pressure, ambient temperature) suggests that recovery of sesame bioactive compounds may be markedly enhanced using water/ethanol mixtures at sub-critical conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Evaluation of sub-critical water as an extraction fluid for model contaminants from recycled PET for reuse as food packaging material.

    Science.gov (United States)

    Santos, Amélia S F; Agnelli, José A M; Manrich, Sati

    2010-04-01

    Recycling of plastics for food-contact packaging is an important issue and research into meaningful and cost-effective solutions is in progress. In this paper, the use of sub-critical water was evaluated as an alternative way of purifying poly(ethylene terephthalate) (PET) flakes for direct food contact applications. The effects of temperature, pressure and flow rate were assessed on the extraction efficiency of two of the most challenging classes of contaminants (toluene and benzophenone) from PET by sub-critical water using a first-order fractional experimental design. Extraction yield was quantified using GC/FID. The most important parameter was flow rate, indicating that the decrease in sub-critical water polarity with temperature was insufficient to eliminate partition effects. Temperature was also important, but only for the optimization of toluene extraction. These results may be explained by the poor solubility of higher molar mass compounds in sub-critical water compared to lower molar mass compounds under the same conditions, and the small decrease in dielectric constant with temperature under the experimental conditions evaluated. As cleaning efficiency is low and PET is very susceptible to hydrolysis, which limits the use of higher temperatures vis-à-vis physical recycling, the proposed extraction is unsuitable for a standalone super-clean process but may be a step in the process.

  17. Life cycle assessment of biodiesel production from algal bio-crude oils extracted under subcritical water conditions.

    Science.gov (United States)

    Ponnusamy, Sundaravadivelnathan; Reddy, Harvind Kumar; Muppaneni, Tapaswy; Downes, Cara Meghan; Deng, Shuguang

    2014-10-01

    A life cycle assessment study is performed for the energy requirements and greenhouse gas emissions in an algal biodiesel production system. Subcritical water (SCW) extraction was applied for extracting bio-crude oil from algae, and conventional transesterification method was used for converting the algal oil to biodiesel. 58MJ of energy is required to produce 1kg of biodiesel without any co-products management, of which 36% was spent on cultivation and 56% on lipid extraction. SCW extraction with thermal energy recovery reduces the energy consumption by 3-5 folds when compared to the traditional solvent extraction. It is estimated that 1kg of algal biodiesel fixes about 0.6kg of CO2. An optimized case considering the energy credits from co-products could further reduce the total energy demand. The energy demand for producing 1kg of biodiesel in the optimized case is 28.23MJ. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Complete degradation of Orange G by electrolysis in sub-critical water.

    Science.gov (United States)

    Yuksel, Asli; Sasaki, Mitsuru; Goto, Motonobu

    2011-06-15

    Complete degradation of azo dye Orange G was studied using a 500 mL continuous flow reactor made of SUS 316 stainless steel. In this system, a titanium reactor wall acted as a cathode and a titanium plate-type electrode was used as an anode in a subcritical reaction medium. This hydrothermal electrolysis process provides an environmentally friendly route that does not use any organic solvents or catalysts to remove organic pollutants from wastewater. Reactions were carried out from 30 to 90 min residence times at a pressure of 7 MPa, and at different temperatures of 180-250°C by applying various direct currents ranging from 0.5 to 1A. Removal of dye from the product solution and conversion of TOC increased with increasing current value. Moreover, the effect of salt addition on degradation of Orange G and TOC conversion was investigated, because in real textile wastewater, many salts are also included together with dye. Addition of Na(2)CO(3) resulted in a massive degradation of the dye itself and complete mineralization of TOC, while NaCl and Na(2)SO(4) obstructed the removal of Orange G. Greater than 99% of Orange G was successfully removed from the product solution with a 98% TOC conversion. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Dynamic Simulation of the Water-steam System in Once-through Boilers - Sub-critical Power Boiler Case -

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seongil; Choi, Sangmin [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2017-05-15

    The dynamics of a water-steam system in a once-through boiler was simulated based on the physics-based modeling approach, representing the system in response to large load change or scale disturbance simulations. The modeling considered the mass, energy conservation, and momentum equation in the water pipe and the focus was limited to the sub-critical pressure region. An evaporator tube modeling was validated against the reference data. A simplified boiler system consisting of economizer, evaporator, and superheater was constructed to match a 500 MW power boiler. The dynamic response of the system following a disturbance was discussed along with the quantitative response characteristics. The dynamic response of the boiler system was further evaluated by checking the case of an off-design point operation of the feedwater-to-fuel supply ratio. The results re-emphasized the significance of controlling the feedwater-to-fuel supply ratio and additional design requirements of the water-steam separator and spray attemperator.

  20. Comparing the effect of sub-critical water extraction with conventional extraction methods on the chemical composition of Lavandula stoechas.

    Science.gov (United States)

    Giray, E Sultan; Kirici, Saliha; Kaya, D Alpaslan; Türk, Murat; Sönmez, Ozgür; Inan, Memet

    2008-01-15

    The volatile extract composition of Lavandula stoechas flowers obtained by hydrodistillation (HD), subcrtical water extraction (SbCWE) and organic solvent extraction under ultrasonic irradiation (USE) were estimated by gas chromatography-mass spectrometry (GC-MS). One hundred and twenty four components were detected in SbCWE extracts while 94 and 65 signals were gained from HD and USE extracts, respectively. Most of the constituents were identified. The major compounds in all three extracts were fenchon, camphor, myrtenyl acetate, myrtenol and 1,8-cineol, but they differ in quantitatively. The total monoterpene hydrocarbons are higher in HD and USE extracts than those of SbCWE extract. However, SbCWE extract had higher concentration of light oxygenated compounds which contributes to the fragrance of the oil in a major extension. Heavy-oxygenated compounds was also in higher abundance in SbCWE extract (9.90%) than those of HD and USE extracts (3.19 and 4.78%, respectively). Effect of temperature on the extraction yield of SbCWE was investigated and while oil yield was increasing with an increase in temperature, a decrease in the extraction ability of sub-critical water toward the more polar compounds such as, 1,8-cineol, camphor and fenchon, was observed. Kinetic studies shown that SbCWE is clearly quicker than conventional alternatives. Most of components of volatile compounds were extracted at 15min.

  1. Sub-critical water as a green solvent for production of valuable materials from agricultural waste biomass: A review of recent work

    Directory of Open Access Journals (Sweden)

    A. Shitu

    2015-07-01

    Full Text Available Agricultural waste biomass generated from agricultural production and food processing industry are abundant, such as durian  peel, mango peel, corn straw, rice bran, corn shell, potato peel and many more. Due to low commercial value, these wastes are disposed in landfill, which if not managed properly may cause environmental problems. Currently, environmental laws and regulations pertaining to the pollution from agricultural waste streams by regulatory agencies are stringent and hence the application of toxic solvents during processing has become public concern. Recent development in valuable materials extraction from the decomposition of agricultural waste by sub-critical water treatment from the published literature was review. Physico-chemical characteristic (reaction temperature, reaction time and solid to liquid ratio of the sub-critical water affecting its yield were also reviewed. The utilization of biomass residue from agriculture, forest wood production and from food and feed processing industry may be an important alternative renewable energy supply. The paper also presents future research on sub-critical water.

  2. SubcriticalWater – a Perspective ReactionMedia for Biomass Processing to Chemicals: Study on Cellulose Conversion as aModel for Biomass

    OpenAIRE

    Pavlovič, I.; Knez, Ž.; Škerget, M.

    2013-01-01

    Biomass and water are recognized as a key renewable feedstock in sustainable production of chemicals, fuels and energy. Subcritical water (SubCW), or commonly referred as hot compressed water (HCW), is the water above boiling and below critical point (CP; 374 °C, 22.1 MPa). It has gained great attention in the last few decades as a green, cheap, and nontoxic reagent for conversion of biomass into valuable chemicals. In this paper, hydrothermal reactions of cellulose, as the model biomass s...

  3. Subcritical water extraction combined with molecular imprinting technology for sample preparation in the detection of triazine herbicides.

    Science.gov (United States)

    Zhao, Fengnian; Wang, Shanshan; She, Yongxin; Zhang, Chao; Zheng, Lufei; Jin, Maojun; Shao, Hua; Jin, Fen; Du, Xinwei; Wang, Jing

    2017-09-15

    A selective, environmentally friendly, and cost-effective sample extraction method based on a combination of subcritical water extraction (SWE) and molecularly imprinted solid-phase extraction (MISPE) was developed for the determination of eight triazine herbicides in soil samples by liquid chromatography-tandem mass spectrometry (LC-MS/MS). In SWE, the highest extraction yields of triazine herbicides were obtained under 150°C for 15min using 20% ethanol as the organic modifier. Addition of MIP during SWE increased the extraction efficiency, and using MIP as a selective SPE sorbent improved the enrichment capability. Soil samples were treated with the optimized extraction MIP/SWE-MISPE method and analyzed by LC-MS/MS. The novel technique was then applied to soil samples for the determination of triazine herbicides, and better recoveries (78.9%-101%) were obtained compared with using SWE-MISPE (30%-67%). Moreover, this newly developed method displayed good linearity (R2>0.99) and precision (2.7-9.8%), and low enough detection limits (0.4-3.3μgkg-1). This combination of SWE and MIP technology is a simple, effective and promising method to selectively extract class-specific compounds in complex samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Molecular modification of native coffee polysaccharide using subcritical water treatment: Structural characterization, antioxidant, and DNA protecting activities.

    Science.gov (United States)

    Getachew, Adane Tilahun; Chun, Byung Soo

    2017-06-01

    Polysaccharides are an abundant resource in coffee beans and have proved to show numerous bioactivities. Despite their abundance, their activities are not always satisfactory mostly due to their structure and large molecular size. Molecular modifications of native polysaccharides can overcome this problem. In this study, we used a novel and green method to modify native coffee polysaccharides using subcritical water (SCW) treatment. The SCW treatment was used at the temperature of 180°C-220°C and pressure of 30-60bar. The molecular and structural modification of the polysaccharides was confirmed using several techniques such as FT-IR, UV spectroscopy, XRD, and TGA. The antioxidant activity of the modified polysaccharides was evaluated using several chemical and Saccharomyces cerevisiae-based high throughput assays. The modified polysaccharides showed high antioxidant activities in all tested assays. Moreover, the polysaccharides showed high DNA protection activities. Therefore, SCW could be employed as a green solvent for molecular modification of polysaccharides. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Degradation of Acid Red 274 using H2O2 in subcritical water: application of response surface methodology.

    Science.gov (United States)

    Kayan, Berkant; Gözmen, Belgin

    2012-01-30

    In this research, the degradation of Acid Red 274 (AR 274) was investigated under subcritical water conditions using H(2)O(2), which led to the oxidative degradation of Acid Red 274 up to its 80% of mineralization. The Box-Behnken design matrix and response surface methodology (RSM) were applied in designing the experiments for evaluating the interactive effects of the three most important operating variables. Thus, the interactive effects of temperature (100-250°C), oxidant (H(2)O(2)) concentration (50-250 mM), and time (30-60 min.) on the degradation of AR 274 were investigated. A total of 17 experiments were conducted in this research, and the analysis of variance (ANOVA) indicated that the proposed quadratic model could be used for navigating the design space. The proposed model was essentially in accordance with the experimental case with correlation coefficient R(2)=0.9930 and Adj-R(2)=0.9839, respectively. The results confirmed that RSM based on the Box-Behnken design was a compatible method for optimizing the operating conditions of AR 274 degradation. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Subcritical hydrothermal liquefaction of barley straw in fresh water and recycled aqueous phase

    DEFF Research Database (Denmark)

    Zhu, Zhe; Toor, Saqib; Rosendahl, Lasse

    2014-01-01

    . With the addition of recycling aqueous phase in HTL process, it is expected that the amount of the waste water and energy consumption can be reduced. The effect of water recirculation on product yield and properties was investigated in this study. The results showed that bio-oil yield was 34.85 wt% when the barley...

  7. Effect of residence time on two-step liquefaction of rice straw in a CO2 atmosphere: Differences between subcritical water and supercritical ethanol.

    Science.gov (United States)

    Yang, Tianhua; Wang, Jian; Li, Bingshuo; Kai, Xingping; Li, Rundong

    2017-04-01

    This study investigated the influence of temperature and residence time on liquefaction of rice straw in subcritical CO2-subcritical water (subCO2-subH2O) and in subcritical CO2-supercritical ethanol (subCO2-scEtOH), considering the final reaction temperatures (270-345°C) and residence times (15 and 30min). Residence time was identified as a crucial parameter in the subCO2-subH2O liquefaction, whereas residence time had a marginal influence on subCO2-scEtOH liquefaction. When reaction conditions were 320°C and 15min, solvents have weak impact on the quality of bio-oil, HHV 28.57MJ/kg and 28.62MJ/kg, respectively. There was an obvious difference between the subCO2-subH2O and subCO2-scEtOH liquefaction mechanisms. In subCO2-subH2O, CO2 promoted the carbonyl reaction. In subCO2-scEtOH, supercritical ethanol have the function of donating hydrogen and promoting the reaction of hydroxyl-alkylation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. The study of isochoric subcritical water using power series: A potential of energy generation with ISCW reactor

    Science.gov (United States)

    Sangian, Hanny F.; Tunena, Mercyas; Pani, Sutaryono

    2017-09-01

    The present study was aimed to analyze the behaviors of PVT and Z of ISCW (isochoric subcritical water) condition using mathematical series. The data showed that the pressure extremely increased from 15 bars until 80 bars taking only a few seconds that was probably to generate energy. The study was initiated by formulating power series in term of P and T with parameters, a0, a1, a2, a3, a4, a5, a6, and a7 whereas they were solved by performing the fitting method. By employing that technique, parameters were obtained as follows: a0= 7.63x-6, a1=0.23K/bar, a2=0.0035K2/bar2, a3=0.0068 K3/bar3, a4=8.27x10-7K4/bar4, a5=1.33x10-7K5/bar5, a6=2.18x10-8K6/bar6, and a7=3.64x10-9K7/bar7. Compressibility factor increased as pressure and temperature improved. In an isochoric condition, there was extremity that was located at a temperature above 450K in which compressibility factor abruptly increased with the tangent of the line was infinity. All parameters attaching on terms of a mathematical model proposed were assumed constant during P and T increase. At the request of the authors of the paper and with the agreement of the proceedings editor, an updated version of this article was published on 4 October 2017. The original version supplied to AIP Publishing included an incorrect spelling in the name of the first author. This has been corrected in the updated and re-published version.

  9. Subcritical and supercritical water oxidation of organic, wet wastes for carbon cycling in regenerative life support systems

    Science.gov (United States)

    Ronsse, Frederik; Lasseur, Christophe; Rebeyre, Pierre; Clauwaert, Peter; Luther, Amanda; Rabaey, Korneel; Zhang, Dong Dong; López Barreiro, Diego; Prins, Wolter; Brilman, Wim

    2016-07-01

    For long-term human spaceflight missions, one of the major requirements is the regenerative life support system which has to be capable of recycling carbon, nutrients and water from both solid and liquid wastes generated by the crew and by the local production of food through living organisms (higher plants, fungi, algae, bacteria, …). The European Space Agency's Life Support System, envisioned by the MELiSSA project, consists of a 5 compartment artificial ecosystem, in which the waste receiving compartment (so-called compartment I or briefly 'CI') is based on thermophilic fermentation. However, as the waste generated by the crew compartment and food production compartment contain typical plant fibres (lignin, cellulose and hemicellulose), these recalcitrant fibres end up largely unaffected in the digestate (sludge) generated in the C-I compartment. Therefore, the C-I compartment has to be supplemented with a so-called fibre degradation unit (in short, FDU) for further oxidation or degradation of said plant fibres. A potential solution to degrading these plant fibres and other recalcitrant organics is their oxidation, by means of subcritical or supercritical water, into reusable CO2 while retaining the nutrients in an organic-free liquid effluent. By taking advantage of the altered physicochemical properties of water above or near its critical point (647 K, 22.1 MPa) - including increased solubility of non-polar compounds and oxygen, ion product and diffusivity - process conditions can be created for rapid oxidation of C into CO2. In this research, the oxidizer is provided as a hydrogen peroxide solution which, at elevated temperature, will dissociated into O2. The purpose of this study is to identify ideal process conditions which (a) ensure complete oxidation of carbon, (b) retaining the nutrients other than C in the liquid effluent and (c) require as little oxidizer as possible. Experiments were conducted on a continuous, tubular heated reactor and on batch

  10. The use of sub-critical water hydrolysis for the recovery of peptides and free amino acids from food processing wastes. Review of sources and main parameters.

    Science.gov (United States)

    Marcet, Ismael; Álvarez, Carlos; Paredes, Benjamín; Díaz, Mario

    2016-03-01

    Food industry processing wastes are produced in enormous amounts every year, such wastes are usually disposed with the corresponding economical cost it implies, in the best scenario they can be used for pet food or composting. However new promising technologies and tools have been developed in the last years aimed at recovering valuable compounds from this type of materials. In particular, sub-critical water hydrolysis (SWH) has been revealed as an interesting way for recovering high added-value molecules, and its applications have been broadly referred in the bibliography. Special interest has been focused on recovering protein hydrolysates in form of peptides or amino acids, from both animal and vegetable wastes, by means of SWH. These recovered biomolecules have a capital importance in fields such as biotechnology research, nutraceuticals, and above all in food industry, where such products can be applied with very different objectives. Present work reviews the current state of art of using sub-critical water hydrolysis for protein recovering from food industry wastes. Key parameters as reaction time, temperature, amino acid degradation and kinetic constants have been discussed. Besides, the characteristics of the raw material and the type of products that can be obtained depending on the substrate have been reviewed. Finally, the application of these hydrolysates based on their functional properties and antioxidant activity is described. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. STUDY OF THE PREPARATION OF SUGAR FROM HIGH-LIGNIN LIGNOCELLULOSE APPLYING SUBCRITICAL WATER AND ENZYMATIC HYDROLYSIS: SYNTHESIS AND CONSUMABLE COST EVALUATION

    Directory of Open Access Journals (Sweden)

    HANNY F. SANGIAN

    2015-05-01

    Full Text Available This study concern sugars hydrolyzed from the high-lignin coconut coir dust using moderate subcritical water (SCW hydrolysis at pressures 20-40 bar for 1 h and to evaluate the consumable costs driver generated. The SCW method produced two products, sugar liquid and solid (SCW-treated substrate. The solid was proceeded to prepare the sugar via enzymatic hydrolysis using pure cellulase. Yield of sugar hydrolyzed from lignocellulose by SCW technique was 0.25 gram sugar/gram cellulose +hemicellulose, or 0.09-gram sugar/gram lignocellulose at 160 °C and 40 bar. While, the maximum yield of sugar liberated enzymatically from SCW-treated solid was 0.35-gram sugar/gram cellulose+hemicellulose, or 0.13-gram sugar/gram SCW-treated solid. It was found that carbon dioxide gas was the highest cost driving in SCW hydrolysis.

  12. Design and construction of an automatic measurement electronic system and graphical neutron flux for the subcritical reactor; Diseno y construccion de un sistema electronico automatico de medicion y graficado del flujo neutronico para el reactor subcritico

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez M, J.L.; Balderas, E.G.; Rivero G, T. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1997-07-01

    The National Institute of Nuclear Research (ININ) has in its installations with a nuclear subcritical reactor which was designed and constructed with the main purpose to be used in the nuclear sciences education in the Physics areas and Reactors engineering. Within the nuclear experiments that can be realized in this reactor are very interesting those about determinations of neutron and gamma fluxes spectra, since starting from these some interesting nuclear parameters can be obtained. In order to carry out this type of experiments different radioactive sources are used which exceed the permissible doses by far to human beings. Therefore it is necessary the remote handling as of the source as of detectors used in different experiments. In this work it is presented the design of an electronic system which allows the different positions inside of the tank of subcritical reactor at ININ over the radial and axial axes in manual or automatic ways. (Author)

  13. Mechanisms of Subcritical Cracking in Calcite

    Science.gov (United States)

    Royne, A.; Dysthe, D. K.; Bisschop, J.

    2008-12-01

    Brittle materials are characterized by a critical stress intensity factor above which they will fail catastrophically by dynamic cracking. However, it has been observed that materials can also fail at much lower stresses, through slow crack growth, often referred to as subcritical cracking. This phenomenon can take place even in vacuum, but is greatly enhanced by water and other reactive species in the environment. For a given material and environmental condition there is a systematic relationship between the crack tip velocity and the stress intensity factor. The presence of a lower stress limit to subcritical cracking has been predicted from thermodynamics but has not been firmly demonstrated experimentally. This parameter would control the long- term strength of geological materials. Subcritical cracking must necessarily be important in controlling the rock strength in near-surface processes where water and other active species are present and the displacements and stresses are low. Weathering is one example of such a process. Modelling has shown that fracture networks generated by a high degree of subcritical cracking will percolate at much lower fracture densities than purely stochastical fracture networks. This has important implications for how water can move through the crust. Understanding the mechanisms for subcritical crack growth in geological materials is also important in assessing the stability and long term performance of sequestration reservoirs for CO2 or nuclear waste. The mechanism for stress corrosion is well known for glasses and quartz. For carbonate minerals, the mechanism for subcritical crack growth has not been identified, and the only experimental studies on calcitic materials have been on polycrystalline rocks such as marble. Suggested mechanisms include stress corrosion (weakening reactions at the crack tip), preferential dissolution at the crack tip with rapid removal of dissolved species, and environmentally controlled

  14. The effect of filler addition and oven temperature to the antioxidant quality in the drying of Physalis angulata fruit extract obtained by subcritical water extraction

    Science.gov (United States)

    Susanti, R. F.; Christianto, G.

    2016-01-01

    Physalis angulata or ceplukan is medicinal herb, which grows naturally in Indonesia. It has been used in traditional medicine to treat several diseases. It is also reported to have antimycobacterial, antileukemic, antipyretic. In this research, Pysalis angulata fruit was investigated for its antioxidant capacity. In order to avoid the toxic organic solvent commonly used in conventional extraction, subcritical water extraction method was used. During drying, filler which is inert was added to the extract. It can absorb water and change the oily and sticky form of extract to powder form. The effects of filler types, concentrations and drying temperatures were investigated to the antioxidant quality covering total phenol, flavonoid and antioxidant activity. The results showed that total phenol, flavonoid and antioxidant activity were improved by addition of filler because the drying time was shorter compared to extract without filler. Filler absorbs water and protects extract from exposure to heat during drying. The combination between high temperature and shorter drying time are beneficial to protect the antioxidant in extract. The type of fillers investigation showed that aerosil gave better performance compared to Microcrystalline Celullose (MCC).

  15. Design, Development and Installation of Jordan Subcritical Assembly

    OpenAIRE

    Ned Xoubi

    2013-01-01

    Following its announcement in 2007 to pursue a nuclear power program and in the absence of any nuclear facility essential for the education, training, and research, Jordan decided to build a subcritical reactor as its first nuclear facility. Jordan Subcritical Assembly (JSA) is uranium fueled light water moderated and reflected subcritical reactor driven by a plutonium-beryllium source, and the core consists of 313 LEU fuel rods, loaded into a water-filled vessel in a square lattice of 19.11 ...

  16. Short communication: antiviral activity of subcritical water extract of Brassica juncea against influenza virus A/H1N1 in nonfat milk.

    Science.gov (United States)

    Lee, N-K; Lee, J-H; Lim, S-M; Lee, K A; Kim, Y B; Chang, P-S; Paik, H-D

    2014-09-01

    Subcritical water extract (SWE) of Brassica juncea was studied for antiviral effects against influenza virus A/H1N1 and for the possibility of application as a nonfat milk supplement for use as an "antiviral food." At maximum nontoxic concentrations, SWE had higher antiviral activity against influenza virus A/H1N1 than n-hexane, ethanol, or hot water (80°C) extracts. Addition of 0.5mg/mL of B. juncea SWE to culture medium led to 50.35% cell viability (% antiviral activity) for Madin-Darby canine kidney cells infected with influenza virus A/H1N1. Nonfat milk supplemented with 0.28mg/mL of B. juncea SWE showed 39.62% antiviral activity against influenza virus A/H1N1. Thus, the use of B. juncea SWE as a food supplement might aid in protection from influenza viral infection. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  17. Subcritical water treatment of explosive and heavy metals co-contaminated soil: Removal of the explosive, and immobilization and risk assessment of heavy metals.

    Science.gov (United States)

    Islam, Mohammad Nazrul; Jung, Ho-Young; Park, Jeong-Hun

    2015-11-01

    Co-contamination of explosives and heavy metals (HMs) in soil, particularly army shooting range soil, has received increasing environmental concern due to toxicity and risks to ecological systems. In this study, a subcritical water (SCW) extraction process was used to remediate the explosives-plus-HMs-co-contaminated soil. A quantitative evaluation of explosives in the treated soil, compared with untreated soil, was applied to assess explosive removal. The immobilization of HMs was assessed by toxicity characteristic leaching procedure tests, and by investigating the migration of HMs fractions. The environmental risk of HMs in the soil residue was assessed according to the risk assessment code (RAC) and ecological risk indices (Er and RI). The results indicated that SCW treatment could eliminate the explosives, >99%, during the remediation, while the HM was effectively immobilized. The effect of water temperature on reducing the explosives and the risk of HMs in soil was observed. A marked increase in the non-bioavailable concentration of each HM was observed, and the leaching rate of HMs was decreased by 70-97% after SCW treatment at 250 °C, showing the effective immobilization of HMs. According to the RAC or RI, each tested HM showed no or low risk to the environment after treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Subcritical multiplication determination studies

    Energy Technology Data Exchange (ETDEWEB)

    Estes, G.P.; Goulding, C.A.

    1995-07-01

    A series of measurements and improvements to computational techniques are in progress at Los Alamos National Laboratory that are aimed at better understanding the determination of the reactivity of subcritical systems from measurements of the apparent multiplication of the system. Such studies are being performed in order to improve the special nuclear material (SNM) assays of unknown systems such as those encountered in SNM safeguards, arms-control verification, imports of foreign-generated SNM, etc. Improved techniques and understanding are needed since measured multiplication is not always an invariant characteristic of a subcritical system, especially if one has a system with no significant intrinsic internal neutron source that is illuminated nonuniformly with an external source (i.e., a non-normal mode system).

  19. Quantum Subcritical Bubbles

    Science.gov (United States)

    Uesugi, T.; Morikawa, M.; Shiromizu, T.

    1996-08-01

    We quantize subcritical bubbles which are formed in the weakly first order phase transition. We find that the typical size of the thermal fluctuation reduces in quantum-statistical physics. We estimate the typical size and the amplitude of thermal fluctuations near the critical temperature in the electroweak phase transition using a quantum statistical average. Furthermore, based on our study, we discuss implications for the dynamics of phase transitions.

  20. Subcritical nuclear assembly

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H. R., E-mail: fermineutron@yahoo.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)

    2014-08-15

    A Subcritical Nuclear Assembly is a device where the nuclear-fission chain reaction is initiated and maintained using an external neutron source. It is a valuable educational and research tool where in a safe way many reactor parameters can be measured. Here, we have used the Wigner-Seitz method in the six-factor formula to calculate the effective multiplication factor of a subcritical nuclear reactor Nuclear Chicago model 9000. This reactor has approximately 2500 kg of natural uranium heterogeneously distributed in slugs. The reactor uses a {sup 239}PuBe neutron source that is located in the center of an hexagonal array. Using Monte Carlo methods, with the MCNP5 code, a three-dimensional model of the subcritical reactor was designed to estimate the effective multiplication factor, the neutron spectra, the total and thermal neutron fluences along the radial and axial axis. With the neutron spectra in two locations outside the reactor the ambient dose equivalent were estimated. (Author)

  1. Subcritical water oxidation of 6-aminopenicillanic acid and cloxacillin using H2O2, K2S2O8, and O2.

    Science.gov (United States)

    Yabalak, Erdal; Döndaş, H Ali; Gizir, Ahmet Murat

    2017-02-23

    This study was undertaken to investigate the degradation of 6-aminopenicillanic acid (6-APA) and cloxacillin in aqueous solution by the combined effect of subcritical water and the oxidising agents O2, H2O2, and K2S2O8. Nano ZnO was used as a solid catalyst. Response surface methodology was used to determine the optimum experimental parameters (temperature, treatment time, and concentration of oxidising agent). For 6-APA, the maximum organic carbon (TOC) removal rates of 83.54%, 81.11% and 42.42% were obtained using H2O2, K2S2O8, and O2, respectively. For cloxacillin, the maximum TOC removal rates of 67.69%, 76.02% and 14.45% were obtained using H2O2, K2S2O8, and O2, respectively. Additionally, the impact of nano and commercial ZnO on TOC removal rates was determined. Secondary ions produced during the degradation process-such as nitrite, nitrate, sulphate and chloride-were determined using ion chromatography.

  2. Subcritical neutron production using multiple accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, W.Y.; Jones, J.L. [Idaho National Engineering Lab., Idaho Falls, ID (United States); Harmon, J.F. [Idaho State Univ., Pocatello, ID (United States)

    1994-12-31

    A subcritical neutron production technique using multiple accelerators is being developed to provide a selective alternative (for small volumes) to nuclear reactor neutron production. The concept combines the capabilities of multiple commercially-available linear accelerators and a compact subcritical assembly design to generate reactor-like thermal neutron fluxes (i.e., 10{sup 13}-10{sup 14} n/cm{sup 2}/s) in small irradiation volumes of up to 500 cm{sup 3}. In addition, fast and epithermal neutron fluxes will also be available. The neutron source utilizes radially-oriented, pulsed, electron accelerators. The subcritical neutron production assembly is in the form of a compact right-cylinder (approximately 20-cm dia.). This assembly uses an outer ring of graphite (i.e., reflector) with re-entrant holes to enable penetration of the electron beam to the internal structure which comprises of uranium as an electron convertor/neutron multiplier followed by H{sub 2}O beryllium, H{sub 2}O aluminum, and D{sub 2}O in succession toward the center. The inner-most region filled with D{sub 2}O is the central irradiation volume. The material configuration and overall design is to maximize thermal neutron fluxes in the central irradiation volume based on photoneutron/photofission and neutron multiplication processes as well as neutron transport. This assembly will be designed not to reach a nuclear critical state under any normal and/or accidental condition.

  3. Numerical comparison of thermal hydraulic aspects of supercritical carbon dioxide and subcritical water-based natural circulation loop

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Milan Krishna Singhar; Basu, Dipankar Narayan [Dept. of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati (India)

    2017-02-15

    Application of the supercritical condition in reactor core cooling needs to be properly justified based on the extreme level of parameters involved. Therefore, a numerical study is presented to compare the thermalhydraulic performance of supercritical and single-phase natural circulation loops under low-to-intermediate power levels. Carbon dioxide and water are selected as respective working fluids, operating under an identical set of conditions. Accordingly, a three-dimensional computational model was developed, and solved with an appropriate turbulence model and equations of state. Large asymmetry in velocity and temperature profiles was observed in a single cross section due to local buoyancy effect, which is more prominent for supercritical fluids. Mass flow rate in a supercritical loop increases with power until a maximum is reached, which subsequently corresponds to a rapid deterioration in heat transfer coefficient. That can be identified as the limit of operation for such loops to avoid a high temperature, and therefore, the use of a supercritical loop is suggested only until the appearance of such maxima. Flow-induced heat transfer deterioration can be delayed by increasing system pressure or lowering sink temperature. Bulk temperature level throughout the loop with water as working fluid is higher than supercritical carbon dioxide. This is until the heat transfer deterioration, and hence the use of a single-phase loop is prescribed beyond that limit.

  4. Numerical Comparison of Thermalhydraulic Aspects of Supercritical Carbon Dioxide and Subcritical Water-Based Natural Circulation Loop

    Directory of Open Access Journals (Sweden)

    Milan Krishna Singha Sarkar

    2017-02-01

    Full Text Available Application of the supercritical condition in reactor core cooling needs to be properly justified based on the extreme level of parameters involved. Therefore, a numerical study is presented to compare the thermalhydraulic performance of supercritical and single-phase natural circulation loops under low-to-intermediate power levels. Carbon dioxide and water are selected as respective working fluids, operating under an identical set of conditions. Accordingly, a three-dimensional computational model was developed, and solved with an appropriate turbulence model and equations of state. Large asymmetry in velocity and temperature profiles was observed in a single cross section due to local buoyancy effect, which is more prominent for supercritical fluids. Mass flow rate in a supercritical loop increases with power until a maximum is reached, which subsequently corresponds to a rapid deterioration in heat transfer coefficient. That can be identified as the limit of operation for such loops to avoid a high temperature, and therefore, the use of a supercritical loop is suggested only until the appearance of such maxima. Flow-induced heat transfer deterioration can be delayed by increasing system pressure or lowering sink temperature. Bulk temperature level throughout the loop with water as working fluid is higher than supercritical carbon dioxide. This is until the heat transfer deterioration, and hence the use of a single-phase loop is prescribed beyond that limit.

  5. Subcritical Water Hydrolysis Effectively Reduces the In Vitro Seeding Activity of PrPSc but Fails to Inactivate the Infectivity of Bovine Spongiform Encephalopathy Prions.

    Science.gov (United States)

    Murayama, Yuichi; Yoshioka, Miyako; Okada, Hiroyuki; Takata, Eri; Masujin, Kentaro; Iwamaru, Yoshifumi; Shimozaki, Noriko; Yamamura, Tomoaki; Yokoyama, Takashi; Mohri, Shirou; Tsutsumi, Yuji

    2015-01-01

    The global outbreak of bovine spongiform encephalopathy (BSE) has been attributed to the recycling of contaminated meat and bone meals (MBMs) as feed supplements. The use of MBMs has been prohibited in many countries; however, the development of a method for inactivating BSE prions could enable the efficient and safe use of these products as an organic resource. Subcritical water (SCW), which is water heated under pressure to maintain a liquid state at temperatures below the critical temperature (374°C), exhibits strong hydrolytic activity against organic compounds. In this study, we examined the residual in vitro seeding activity of protease-resistant prion protein (PrPSc) and the infectivity of BSE prions after SCW treatments. Spinal cord homogenates prepared from BSE-infected cows were treated with SCW at 230-280°C for 5-7.5 min and used to intracerebrally inoculate transgenic mice overexpressing bovine prion protein. Serial protein misfolding cyclic amplification (sPMCA) analysis detected no PrPSc in the SCW-treated homogenates, and the mice treated with these samples survived for more than 700 days without any signs of disease. However, sPMCA analyses detected PrPSc accumulation in the brains of all inoculated mice. Furthermore, secondary passage mice, which inoculated with brain homogenates derived from a western blotting (WB)-positive primary passage mouse, died after an average of 240 days, similar to mice inoculated with untreated BSE-infected spinal cord homogenates. The PrPSc accumulation and vacuolation typically observed in the brains of BSE-infected mice were confirmed in these secondary passage mice, suggesting that the BSE prions maintained their infectivity after SCW treatment. One late-onset case, as well as asymptomatic but sPMCA-positive cases, were also recognized in secondary passage mice inoculated with brain homogenates from WB-negative but sPMCA-positive primary passage mice. These results indicated that SCW-mediated hydrolysis was

  6. Electron affinity of liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Gaiduk, Alex P.; Pham, Tuan Anh; Govoni, Marco; Paesani, Francesco; Galli, Giulia

    2018-01-16

    Understanding redox and photochemical reactions in aqueous environments requires a precise knowledge of the ionization potential and electron affinity of liquid water. The former has been measured, but not the latter. We predict the electron affinity of liquid water and of its surface from first principles, coupling path-integral molecular dynamics with ab initio potentials, and many-body perturbation theory. Our results for the surface (0.8 eV) agree well with recent pump-probe spectroscopy measurements on amorphous ice. Those for the bulk (0.1–0.3 eV) differ from several estimates adopted in the literature, which we critically revisit. We show that the ionization potential of the bulk and surface are almost identical; instead their electron affinities differ substantially, with the conduction band edge of the surface much deeper in energy than that of the bulk. We also discuss the significant impact of nuclear quantum effects on the fundamental gap and band edges of the liquid.

  7. Accelerator driven sub-critical core

    Science.gov (United States)

    McIntyre, Peter M; Sattarov, Akhdiyor

    2015-03-17

    Systems and methods for operating an accelerator driven sub-critical core. In one embodiment, a fission power generator includes a sub-critical core and a plurality of proton beam generators. Each of the proton beam generators is configured to concurrently provide a proton beam into a different area of the sub-critical core. Each proton beam scatters neutrons within the sub-critical core. The plurality of proton beam generators provides aggregate power to the sub-critical core, via the proton beams, to scatter neutrons sufficient to initiate fission in the sub-critical core.

  8. The chemistry of subcritical water reactions of a hardwood derived lignin and lignin model compounds with nitrogen, hydrogen, carbon monoxide and carbon dioxide

    Science.gov (United States)

    Hill Bembenic, Meredith A.

    Biofuels, like cellulosic ethanol, may only be cost effective if the lignin byproduct is upgraded to value-added products. However, lignin's inherent aromatic structure and interunit crosslinkages hinder effective conversion. High temperature H2O is considered for lignin conversion, because H2O exhibits unusual properties at higher temperatures (particularly at its supercritical point of 374°C and 3205 psi) including a decreased ion product and a decreased static dielectric constant (similar to those of polar organic solvents at room temperature) such that there is a high solubility for organic compounds, like lignin. Much of the research concerning lignin and supercritical H2O has focused on further decomposition to gases (e.g., H2, CH4, and CO2) where nearly no char formation is expected in the presence of a catalyst. However, the conditions required for supercritical H2O are difficult to maintain, catalysts can be expensive, and gases are not favorable to the current liquid fuel infrastructure. Reactions using Organosolv lignin, subcritical H2O (365°C) and various industrial gases (N2, H2, CO, and CO2 at an initial pressure of 500 psi) for 30 min. were examined to determine both lignin's potential to generate value-added products (e.g., monomer compounds and methanol) and the role (if any) of the H2O and the gases during the reactions. The behavior of H2O at reaction temperature and pressure is expected to be similar to the behavior of supercritical H 2O without the need to maintain supercritical conditions. Different characterization techniques were used for the products collected including primarily GC/FID-TCD of the evolved gases, GC/MS analysis of the organic liquids, solid phase microextraction analysis of the water, and solid state 13C-NMR analysis of the residues. The reactor pressure at temperature was shown to influence the reactivity of the H2O and lignin, and the highest conversions (≈54--62%) were obtained when adding a gas. However, the

  9. Inelastic electron injection in a water chain.

    Science.gov (United States)

    Rizzi, Valerio; Todorov, Tchavdar N; Kohanoff, Jorge J

    2017-03-28

    Irradiation of biological matter triggers a cascade of secondary particles that interact with their surroundings, resulting in damage. Low-energy electrons are one of the main secondary species and electron-phonon interaction plays a fundamental role in their dynamics. We have developed a method to capture the electron-phonon inelastic energy exchange in real time and have used it to inject electrons into a simple system that models a biological environment, a water chain. We simulated both an incoming electron pulse and a steady stream of electrons and found that electrons with energies just outside bands of excited molecular states can enter the chain through phonon emission or absorption. Furthermore, this phonon-assisted dynamical behaviour shows great sensitivity to the vibrational temperature, highlighting a crucial controlling factor for the injection and propagation of electrons in water.

  10. The imprint of the Hawking effect in subcritical flows

    CERN Document Server

    Coutant, Antonin

    2016-01-01

    We study the propagation of low frequency shallow water waves on a one dimensional flow of varying depth. When taking into account dispersive effects, the linear propagation of long wavelength modes on uneven bottoms excites new solutions of the dispersion relation which possess a much shorter wavelength. The peculiarity is that one of these new solutions has a negative energy. When the flow becomes supercritical, this mode has been shown to be responsible for the (classical) analog of the Hawking effect. For subcritical flows, the production of this mode has been observed numerically and experimentally, but the precise physics governing the scattering remained unclear. In this work, we provide an analytic treatment of this effect in subcritical flows. We analyze the scattering of low frequency waves using a new perturbative series, derived from a generalization of the Bremmer series. We show that the production of short wavelength modes is governed by a complex value of the position: a complex turning point....

  11. Design, Development and Installation of Jordan Subcritical Assembly

    Directory of Open Access Journals (Sweden)

    Ned Xoubi

    2013-01-01

    Full Text Available Following its announcement in 2007 to pursue a nuclear power program and in the absence of any nuclear facility essential for the education, training, and research, Jordan decided to build a subcritical reactor as its first nuclear facility. Jordan Subcritical Assembly (JSA is uranium fueled light water moderated and reflected subcritical reactor driven by a plutonium-beryllium source, and the core consists of 313 LEU fuel rods, loaded into a water-filled vessel in a square lattice of 19.11 mm pitch. The fuel rods are based on PWR fuel structural pattern type, made of uranium oxide (UO2 with 3.4 wt% 235U enrichment in zirconium alloy (Zr-4 cladding. Design, optimization, and verification were performed using MCNP5 nuclear code; the computed effective multiplication factor is 0.95923. The JSA is designed to fulfill the training needs of students and is equipped to perform all of the fundamental experiments required for a typical nuclear engineering university program. This paper presents the design, development, modeling, core analysis, and utilization of Jordan’s first nuclear facility and why this simplified low cost reactor presents an attractive choice to fulfill the preliminary experimental needs of nuclear engineering education in developing countries.

  12. Picking a Fight with Water, and Water Lost ... an Electron

    Science.gov (United States)

    Herr, Jonathan D.

    The global need for energy is increasing, as is the importance of producing energy by green and renewable methodologies. This document outlines a research program dedicated to investigating a possible source for this form of energy generation and storage: solar fuels. The photon-induced splitting of water into molecular hydrogen and oxygen is currently hindered by large overpotentials from the oxidation half-reaction of water-splitting. This study concentrated on fundamental models of water-spitting chemistry, using a physical and computational chemistry analysis. The oxidation was first explored via ab initio electronic structure calculations of bare cationic water clusters, comprised of 2 to 21 molecules, in order to determine key electronic interactions that facilitate oxidation. Deeper understanding of these interactions could serve as guides for the development of viable water oxidation catalysts (WOC) designed to reduce overpotentials. The cationic water cluster study was followed by an investigation into hydrated copper (I) clusters, which acted as precursor models for real WOCs. Analyzing how the copper ion perturbed the properties of water clusters led to important electronic considerations for the development of WOCs, such as copper-water interactions that go beyond simple electrostatics. The importance of diagnostic thermodynamic properties, as well as anharmonic characteristics being persistent throughout oxidized water clusters, necessitated the use of quantum and classical molecular dynamics (MD) routines. Therefore, two new methods for accelerating computationally demanding classical and quantum MD methods were developed to increase their accessibility. The first method utilized a new form of electronic extrapolation - a linear prediction routine incorporating a Burg minimization - to decrease the iterations required for solving the electronic equations throughout the dynamics. The second method utilized a multiple-timestepping description of the

  13. Subcritical flutter in the acoustics of friction

    National Research Council Canada - National Science Library

    O.N Kirillov

    2008-01-01

    ...-simple eigenfrequencies at the nodes. At contact with friction pads, the rotating continua, such as the singing wine glass or the squealing disc brake, start to vibrate owing to the subcritical flutter instability...

  14. Effect of Water Environment on Subcritical Crack Growth of Machinable Ceramics; Kaisakusei seramikkusu no kiretsu shinten tokusei ni oyobosu mizu kankyo no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, K.; Kaizu, K.; Inotani, T. [Miyazaki Univ., Miyazaki (Japan); Yoshikawa, A.; Adachi, K.; Igaki, H. [Osaka Sangyo Univ., Osaka (Japan)

    1997-06-15

    The fatigue behavior of ceramics has been discussed on the basis of the relation between stress intensity facter (KI) and crack velocity (V). In this paper, the effect of environment on the relation between KI and V was studied on machinable ceramics (mica glass ceramics) and two kinds of glass ceramics with different grain sizes. The double torsion (DT) technique was used for the determination of the KI-V characteristics under different environments of air and ion-exchanged water. The characteristics of acoustic emission (AE) during stress corrosion cracking of mica glass ceramics was also examined. In water environment, the region II in the KI-V curve, in which crack velocity varies slowly with KI, disappeared. From this experimental fact, it was considered that at high KI, the crack velocity is encouraged by diffusion of the corrosive species to the crack and thus depended on the amount of water. SEM farc tography revealed that mica single crystals in the material caused crack arrest and deflection to occur. It is also found that AE event rate is quantitatively related to the crack velocity. AE measurement can be used in studying the crack propagation behavior of mica glass ceramics. 11 refs., 12 figs., 3 tabs.

  15. Development and application of a specially designed heating system for temperature-programmed high-performance liquid chromatography using subcritical water as the mobile phase.

    Science.gov (United States)

    Teutenberg, T; Goetze, H-J; Tuerk, J; Ploeger, J; Kiffmeyer, T K; Schmidt, K G; Kohorst, W gr; Rohe, T; Jansen, H-D; Weber, H

    2006-05-05

    A specially designed heating system for temperature-programmed HPLC was developed based on experimental measurements of eluent temperature inside a stainless steel capillary using a very thin thermocouple. The heating system can be operated at temperatures up to 225 degrees C and consists of a preheating, a column heating and a cooling unit. Fast cycle times after a temperature gradient can be realized by an internal silicone oil bath which cools down the preheating and column heating unit. Long-term thermal stability of a polybutadiene-coated zirconium dioxide column has been evaluated using a tubular oven in which the column was placed. The packing material was stable after 50h of operation at 185 degrees C. A mixture containing four steroids was separated at ambient conditions using a mobile phase of 25% acetonitrile:75% deionized water and a mobile phase of pure deionized water at 185 degrees C using the specially designed heating system and the PBD column. Analysis time could be drastically reduced from 17 min at ambient conditions and a flow rate of 1 mL/min to only 1.2 min at 185 degrees C and a flow rate of 5 mL/min. At these extreme conditions, no thermal mismatch was observed and peaks were not distorted, thus underlining the performance of the developed heating system. Temperature programming was performed by separating cytostatic and antibiotic drugs with a temperature gradient using only water as the mobile phase. In contrast to an isocratic elution of this mixture at room temperature, overall analysis time could be reduced two-fold from 20 to 10 min.

  16. Modeling of biomass fractionation in a lab-scale biorefinery: Solubilization of hemicellulose and cellulose from holm oak wood using subcritical water.

    Science.gov (United States)

    Cabeza, A; Piqueras, C M; Sobrón, F; García-Serna, J

    2016-01-01

    Lignocellulose fractionation is a key biorefinery process that need to be understood. In this work, a comprehensive study on hydrothermal-fractionation of holm oak in a semi-continuous system was conducted. The aim was to develop a physicochemical model in order to reproduce the role of temperature and water flow over the products composition. The experiments involved two sets: at constant flow (6mL/min) and two different ranges of temperature (140-180 and 240-280°C) and at a constant temperature range (180-260°C) and different flows: 11.0, 15.0 and 27.9mL/min. From the results, temperature has main influence and flow effect was observed only if soluble compounds were produced. The kinetic model was validated against experimental data, reproducing the total organic carbon profile (e.g. deviation of 33%) and the physicochemical phenomena observed in the process. In the model, it was also considered the variations of molecular weight of each biopolymer, successfully reproducing the biomass cleaving. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. The physics of accelerator driven sub-critical reactors

    Indian Academy of Sciences (India)

    Keywords. Accelerator driven systems; nuclear waste transmutation; computer codes; reactor physics; reactor noise; kinetics; burnup; transport theory; Monte Carlo; thorium utilization; neutron multiplication; sub-criticality; sub-critical facilities.

  18. Modeling of Parameters of Subcritical Assembly SAD

    CERN Document Server

    Petrochenkov, S; Puzynin, I

    2005-01-01

    The accepted conceptual design of the experimental Subcritical Assembly in Dubna (SAD) is based on the MOX core with a nominal unit capacity of 25 kW (thermal). This corresponds to the multiplication coefficient $k_{\\rm eff} =0.95$ and accelerator beam power 1 kW. A subcritical assembly driven with the existing 660 MeV proton accelerator at the Joint Institute for Nuclear Research has been modelled in order to make choice of the optimal parameters for the future experiments. The Monte Carlo method was used to simulate neutron spectra, energy deposition and doses calculations. Some of the calculation results are presented in the paper.

  19. Application of electron beam technology in improving sewage water ...

    African Journals Online (AJOL)

    user

    The use of electron beam to disinfect sewage water is gaining importance. The current problem on environmental health in relation to water pollution insists for the safe disposal of sewage water. In general, sewage water comprises of heterogeneous organic based chemicals as well as pathogens. EB. (electron beam) ...

  20. Application of electron beam technology in improving sewage water ...

    African Journals Online (AJOL)

    The use of electron beam to disinfect sewage water is gaining importance. The current problem on environmental health in relation to water pollution insists for the safe disposal of sewage water. In general, sewage water comprises of heterogeneous organic based chemicals as well as pathogens. EB (electron beam) ...

  1. Promotion or suppression of glucose isomerization in subcritical aqueous straight- and branched-chain alcohols.

    Science.gov (United States)

    Gao, Da-Ming; Kobayashi, Takashi; Adachi, Shuji

    2015-01-01

    The influence of water-miscible alcohols (methanol, 1-propanol, 2-propanol, and t-butyl alcohol) on the isomerization of glucose to fructose and mannose was investigated under subcritical aqueous conditions (180-200 °C). Primary and secondary alcohols promoted the conversion and isomerization of glucose to afford fructose and mannose with high and low selectivity, respectively. On the other hand, the decomposition (side-reaction) of glucose was suppressed in the presence of the primary and secondary alcohols compared with that in subcritical water. The yield of fructose increased with increasing concentration of the primary and secondary alcohols, and the species of the primary and secondary alcohols tested had little effect on the isomerization behavior of glucose. In contrast, the isomerization of glucose was suppressed in subcritical aqueous t-butyl alcohol. Both the conversion of glucose and the yield of fructose decreased with increasing concentration of t-butyl alcohol. In addition, mannose was not detected in reactions using subcritical aqueous t-butyl alcohol.

  2. MCNP multiplication analysis of subcritical HEU experiments

    Energy Technology Data Exchange (ETDEWEB)

    Estes, G.P. [Los Alamos National Lab., NM (United States); Brockhoff, R.C. [Kansas State Univ., Manhattan, KS (United States)

    1998-12-31

    A series of measurements and improvements to computational techniques was described in Ref. 1 that were aimed at better understanding the determination of the reactivity of subcritical systems from measurements of the multiplying characteristics of the system. This methodology has been applied to a number of the bare highly enriched uranium (HEU) measurements (simulating 0.5- to 21.5-kg balls with nesting shells) of Ref. 2, demonstrating that the experimental multiplication results can be reproduced computationally with good accuracy. This capability promises to improve special nuclear material (SNM) assays of unknown systems such as those encountered in SNM safeguards, arms-control verification, imports of foreign-generated SNM, smuggling of SNM, etc. Improved techniques and understanding are needed since traditionally measured or calculated multiplications are not always an invariant characteristic of a subcritical system, especially if one has an SNM system with no significant intrinsic internal neutron source that is illuminated nonuniformly with an external source (i.e., a nonnormal mode system). The measurement techniques used in Refs. 1 and 2 to determine multiplication are based on the Feynman variance-to-mean method, which has been previously documented in Refs. 3 and 4 and applied successfully to normal mode systems such as plutonium and uranium spheres. These techniques have been applied to nonnormal mode problems with less success, and both Refs. 1 and 2 as well as the current paper are attempts to better understand the subcritical multiplication of such systems.

  3. Monte Carlo simulation of a perturbed subcritical core

    Energy Technology Data Exchange (ETDEWEB)

    Jaradat, Mustafa K.; Park, Chang Je [KAERI, Daejeon (Korea, Republic of)

    2012-10-15

    Jordan Subcritical Assembly (JSA) is designed for the purpose of education, training, and experiment research. Jordan subcritical assembly is considered Jordan's First Nuclear Facility Moving Jordan into the nuclear age. It is a teaching and training experimental facility that is designed to stay in a subcriticality A subcritical assembly is a multiplying system of nuclear fuel and moderator whose effective multiplication factor is less than unity. An extraneous source of neutron is required for the operation in order to compensate for the difference between the production rate of fission neutrons in the fuel and the rate of loss caused by absorption and leakage.

  4. Plutonium Critical Mass Curve Comparison to Mass at Upper Subcritical Limit (USL) Using Whisper

    Energy Technology Data Exchange (ETDEWEB)

    Alwin, Jennifer Louise [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Monte Carlo Codes; Zhang, Ning [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Nuclear Criticality Safety Division

    2016-09-27

    Whisper is computational software designed to assist the nuclear criticality safety analyst with validation studies with the MCNP® Monte Carlo radiation transport package. Standard approaches to validation rely on the selection of benchmarks based upon expert judgment. Whisper uses sensitivity/uncertainty (S/U) methods to select relevant benchmarks to a particular application or set of applications being analyzed. Using these benchmarks, Whisper computes a calculational margin. Whisper attempts to quantify the margin of subcriticality (MOS) from errors in software and uncertainties in nuclear data. The combination of the Whisper-derived calculational margin and MOS comprise the baseline upper subcritical limit (USL), to which an additional margin may be applied by the nuclear criticality safety analyst as appropriate to ensure subcriticality. A series of critical mass curves for plutonium, similar to those found in Figure 31 of LA-10860-MS, have been generated using MCNP6.1.1 and the iterative parameter study software, WORM_Solver. The baseline USL for each of the data points of the curves was then computed using Whisper 1.1. The USL was then used to determine the equivalent mass for plutonium metal-water system. ANSI/ANS-8.1 states that it is acceptable to use handbook data, such as the data directly from the LA-10860-MS, as it is already considered validated (Section 4.3 4) “Use of subcritical limit data provided in ANSI/ANS standards or accepted reference publications does not require further validation.”). This paper attempts to take a novel approach to visualize traditional critical mass curves and allows comparison with the amount of mass for which the keff is equal to the USL (calculational margin + margin of subcriticality). However, the intent is to plot the critical mass data along with USL, not to suggest that already accepted handbook data should have new and more rigorous requirements for validation.

  5. The physics of accelerator driven sub-critical reactors

    Indian Academy of Sciences (India)

    utilization; neutron multiplication; sub-criticality; sub-critical facilities. PACS Nos 89.30.Gg; 28.41.-I; 28.50.-k. 1. Introduction. Accelerator driven systems (ADS) are attracting worldwide attention increasingly due to their superior safety characteristics and their potential for burning actinide and fission product-waste and energy ...

  6. The water-water cycle as alternative photon and electron sinks.

    OpenAIRE

    Asada, K

    2000-01-01

    The water-water cycle in chloroplasts is the photoreduction of dioxygen to water in photosystem I (PS I) by the electrons generated in photosystem II (PS II) from water. In the water-water cycle, the rate of photoreduction of dioxygen in PS I is several orders of magnitude lower than those of the disproportionation of superoxide catalysed by superoxide dismutase, the reduction of hydrogen peroxide to water catalysed by ascorbate peroxidase, and the reduction of the resulting oxidized forms of...

  7. Determination of the Electronics Charge--Electrolysis of Water Method.

    Science.gov (United States)

    Venkatachar, Arun C.

    1985-01-01

    Presents an alternative method for measuring the electronic charge using data from the electrolysis of acidified distilled water. The process (carried out in a commercially available electrolytic cell) has the advantage of short completion time so that students can determine electron charge and mass in one laboratory period. (DH)

  8. Application of electron beam technology in improving sewage water ...

    African Journals Online (AJOL)

    user

    2Radiation Technology Development Division, Bhabha Atomic Research Centre (BARC), Mumbai-400085, India. Accepted 30 May, 2011. The use of electron beam to disinfect sewage water is gaining importance. The current problem on environmental health in relation to water pollution insists for the safe disposal of ...

  9. Thermalisation and recombination of subexcitation electrons in solid water

    Energy Technology Data Exchange (ETDEWEB)

    Goulet, T.; Jay-Gerin, J.-P. (Sherbrooke Univ., PQ (Canada). Faculte de Medicine); Patau, J.-P. (Toulouse-3 Univ., 31 (France))

    1990-01-01

    The results of Monte Carlo simulations of the thermalisation of subexcitation electrons in solid water are reported. In the simulations, the possibility is taken into account that, prior to being thermalised, the electrons either recombine with their parent cation (H{sub 2}O{sup +}), or undergo a dissociative attachment to water molecules. A particular emphasis is placed on the description of the recombination process and on the influence of the parent cation on the electron's motion. The simulations are performed for different initial electron energies E{sub o} in the subexcitations energy range (i.e. E{sub o} < 7.4 eV). For each of these energies, the mean thermalisation distance {sub th} and time {sub th} are determined, as well as the proportions P{sub rec} and P{sub dis} of subexcitation electrons which, instead of thermalising, undergo recombination or dissociative attachment. (author).

  10. Dynamics of Subcritical Bubbles in First Order Phase Transition

    Science.gov (United States)

    Shiromizu, T.; Morikawa, M.; Yokoyama, J.

    1995-11-01

    We derivate the Langevin and the Fokker-Planck equations for the radius of O(3)-symmetric subcritical bubbles as a phenomenological model to treat thermal fluctuation. The effect of thermal noise on subcritical bubbles is examined. We find that the fluctuation-dissipation relation holds and that in the high temperature phase the system settles down rapidly to the thermal equilibrium state even if it was in a nonequilibrium state initially. We then estimate the typical size of subcritical bubbles as well as the amplitude of fluctuations on that scale. We also discuss their implication to the electroweak phase transition.

  11. ECO2M: A TOUGH2 Fluid Property Module for Mixtures of Water, NaCl, and CO2, Including Super- and Sub-Critical Conditions, and Phase Change Between Liquid and Gaseous CO2

    Energy Technology Data Exchange (ETDEWEB)

    Pruess, K.

    2011-04-01

    ECO2M is a fluid property module for the TOUGH2 simulator (Version 2.0) that was designed for applications to geologic storage of CO{sub 2} in saline aquifers. It includes a comprehensive description of the thermodynamics and thermophysical properties of H{sub 2}O - NaCl - CO{sub 2} mixtures, that reproduces fluid properties largely within experimental error for temperature, pressure and salinity conditions in the range of 10 C {le} T {le} 110 C, P {le} 600 bar, and salinity from zero up to full halite saturation. The fluid property correlations used in ECO2M are identical to the earlier ECO2N fluid property package, but whereas ECO2N could represent only a single CO{sub 2}-rich phase, ECO2M can describe all possible phase conditions for brine-CO{sub 2} mixtures, including transitions between super- and sub-critical conditions, and phase change between liquid and gaseous CO{sub 2}. This allows for seamless modeling of CO{sub 2} storage and leakage. Flow processes can be modeled isothermally or non-isothermally, and phase conditions represented may include a single (aqueous or CO{sub 2}-rich) phase, as well as two-and three-phase mixtures of aqueous, liquid CO{sub 2} and gaseous CO{sub 2} phases. Fluid phases may appear or disappear in the course of a simulation, and solid salt may precipitate or dissolve. TOUGH2/ECO2M is upwardly compatible with ECO2N and accepts ECO2N-style inputs. This report gives technical specifications of ECO2M and includes instructions for preparing input data. Code applications are illustrated by means of several sample problems, including problems that had been previously solved with TOUGH2/ECO2N.

  12. Transmission and Trapping of Cold Electrons in Water Ice

    DEFF Research Database (Denmark)

    Balog, Richard; Cicman, Peter; Field, David

    2011-01-01

    Experiments are reported that show currents of low energy (“cold”) electrons pass unattenuated through crystalline ice at 135 K for energies between zero and 650 meV, up to the maximum studied film thickness of 430 bilayers, showing negligible apparent trapping. By contrast, both porous amorphous...... ice and compact crystalline ice at 40 K show efficient electron trapping. Ice at intermediate temperatures reveals metastable trapping that decays within a few hundred seconds at 110 K. Our results are the first to demonstrate full transmission of cold electrons in high temperature water ice...

  13. Pulsed neutron source based on accelerator-subcritical-assembly

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Makoto; Noda, Akira; Iwashita, Yoshihisa; Okamoto, Hiromi; Shirai, Toshiyuki [Kyoto Univ., Uji (Japan). Inst. for Chemical Research

    1997-03-01

    A new pulsed neutron source which consists of a 300MeV proton linac and a nuclear fuel subcritical assembly is proposed. The proton linac produces pulsed spallation neutrons, which are multipied by the subcritical assembly. A prototype proton linac that accelerates protons up to 7MeV has been developed and a high energy section of a DAW structure is studied with a power model. Halo formations in high intensity beam are also being studied. (author)

  14. On Respiratory Rate of Cherry Tomatoes under Subcritical Heights

    Directory of Open Access Journals (Sweden)

    Fang Duan

    2013-01-01

    Full Text Available The influence of subcritical drop heights on respiratory rate was studied for cherry tomatoes. The cherry tomatoes were dropped, and the mean value of O2 concentration was measured, and then the respiration rate was calculated. The results showed that the respiration rate of the cherry tomatoes increases remarkably with the dropping height. Finally, the relationship between the subcritical dropping heights and respiration rate was modeled and validated, showing good agreement.

  15. On Respiratory Rate of Cherry Tomatoes under Subcritical Heights

    OpenAIRE

    Fang Duan; Yu-fen Chen; Zhong-zheng Sun; Ming-qing Chen; Hui Zhang; Jing Zhang

    2013-01-01

    The influence of subcritical drop heights on respiratory rate was studied for cherry tomatoes. The cherry tomatoes were dropped, and the mean value of O2 concentration was measured, and then the respiration rate was calculated. The results showed that the respiration rate of the cherry tomatoes increases remarkably with the dropping height. Finally, the relationship between the subcritical dropping heights and respiration rate was modeled and validated, showing good agreement.

  16. Alternating electron and proton transfer steps in photosynthetic water oxidation.

    Science.gov (United States)

    Klauss, André; Haumann, Michael; Dau, Holger

    2012-10-02

    Water oxidation by cyanobacteria, algae, and plants is pivotal in oxygenic photosynthesis, the process that powers life on Earth, and is the paradigm for engineering solar fuel-production systems. Each complete reaction cycle of photosynthetic water oxidation requires the removal of four electrons and four protons from the catalytic site, a manganese-calcium complex and its protein environment in photosystem II. In time-resolved photothermal beam deflection experiments, we monitored apparent volume changes of the photosystem II protein associated with charge creation by light-induced electron transfer (contraction) and charge-compensating proton relocation (expansion). Two previously invisible proton removal steps were detected, thereby filling two gaps in the basic reaction-cycle model of photosynthetic water oxidation. In the S(2) → S(3) transition of the classical S-state cycle, an intermediate is formed by deprotonation clearly before electron transfer to the oxidant (Y Z OX). The rate-determining elementary step (τ, approximately 30 µs at 20 °C) in the long-distance proton relocation toward the protein-water interface is characterized by a high activation energy (E(a) = 0.46 ± 0.05 eV) and strong H/D kinetic isotope effect (approximately 6). The characteristics of a proton transfer step during the S(0) → S(1) transition are similar (τ, approximately 100 µs; E(a) = 0.34 ± 0.08 eV; kinetic isotope effect, approximately 3); however, the proton removal from the Mn complex proceeds after electron transfer to . By discovery of the transient formation of two further intermediate states in the reaction cycle of photosynthetic water oxidation, a temporal sequence of strictly alternating removal of electrons and protons from the catalytic site is established.

  17. Neutrino Physics with Accelerator Driven Subcritical Reactors

    Science.gov (United States)

    Ciuffoli, Emilio

    2017-09-01

    Accelerator Driven Subcritical System (ADS) reactors are being developed around the world, to produce energy and, at the same time, to provide an efficient way to dispose of and to recycle nuclear waste. Used nuclear fuel, by itself, cannot sustain a chain reaction; however in ADS reactors the additional neutrons which are required will be supplied by a high-intensity accelerator. This accelerator will produce, as a by-product, a large quantity of {\\bar{ν }}μ via muon Decay At Rest (µDAR). Using liquid scintillators, it will be possible to to measure the CP-violating phase δCP and to look for experimental signs of the presence of sterile neutrinos in the appearance channel, testing the LSND and MiniBooNE anomalies. Even in the first stage of the project, when the beam energy will be lower, it will be possible to produce {\\bar{ν }}e via Isotope Decay At Rest (IsoDAR), which can be used to provide competitive bounds on sterile neutrinos in the disappearance channel. I will consider several experimental setups in which the antineutrinos are created using accelerators that will be constructed as part of the China-ADS program.

  18. Utilizing electron microscopy and spectroscopy methods to understand water structure and water doping

    Science.gov (United States)

    Miller, Lior

    Water is the second most common element in the universe and the most studied material on earth. Most of the studies concerning water are from the fields of chemistry and biology. Hence, the structure of water molecules and short range order and interactions are well characterized and understood. However, the collective arrangement of water molecules and the long range order are still missing. Understanding of this long range order in water is needed, as it is the key to many water activities. To fill this gap, this study utilizes a new direct method for characterization of water in the vapor phase. Water samples from different water types were characterized using electron energy loss spectroscopy (EELS) within a transmission electron microscope (TEM). Prior to characterizing water vapor, the measurement method for in-situ gas analysis was developed using pure gases. Water samples were also characterized using more conventional techniques, including: using cryogenic scanning electron microscopy (Cryo-SEM) in the solid state, after rapid freezing; and using high resolution TEM (HRTEM) and scanning TEM (STEM) after drying. Many other characterization techniques were evaluated but most of them were found to be not suitable, mainly due to detection limits. EELS characterization showed that samples from different water types have different electronic configurations, and they all have structures that are large enough in order to scatter electrons. From cryo SEM characterization it was found that water has nanoparticles inside with a size range of 10-100 nm, and these particles are ~500 nm apart. HRTEM/STEM characterization showed that particles from different water types have different shapes. The presence of particles provide surfaces to support water structures and the difference between the particles can explain the different properties of different water types Using tools and methods that are conventional in materials science for characterization of bulk materials and

  19. Accelerated Stress Corrosion Crack Initiation of Alloys 600 and 690 in Hydrogenated Supercritical Water

    Science.gov (United States)

    Moss, Tyler; Was, Gary S.

    2017-04-01

    The objective of this study is to determine whether stress corrosion crack initiation of Alloys 600 and 690 occurs by the same mechanism in subcritical and supercritical water. Tensile bars of Alloys 690 and 600 were strained in constant extension rate tensile experiments in hydrogenated subcritical and supercritical water from 593 K to 723 K (320 °C to 450 °C), and the crack initiation behavior was characterized by high-resolution electron microscopy. Intergranular cracking was observed across the entire temperature range, and the morphology, structure, composition, and temperature dependence of initiated cracks in Alloy 690 were consistent between hydrogenated subcritical and supercritical water. Crack initiation of Alloy 600 followed an Arrhenius relationship and did not exhibit a discontinuity or change in slope after crossing the critical temperature. The measured activation energy was 121 ± 13 kJ/mol. Stress corrosion crack initiation in Alloy 690 was fit with a single activation energy of 92 ± 12 kJ/mol across the entire temperature range. Cracks were observed to propagate along grain boundaries adjacent to chromium-depleted metal, with Cr2O3 observed ahead of crack tips. All measures of the SCC behavior indicate that the mechanism for stress corrosion crack initiation of Alloy 600 and Alloy 690 is consistent between hydrogenated subcritical and supercritical water.

  20. Time Resolved Broadband Terahertz Relaxation Dynamics of Electron in Water

    DEFF Research Database (Denmark)

    Wang, Tianwu; Iwaszczuk, Krzysztof; Cooke, David G.

    We investigated the transient response of the solvated electron in water ejected by photodetachment from potassium ferrocyanide using time resolved terahertz spectroscopy (TSTS). Ultrabroadband THz transients are generated and detected by a two-color femtosecond-induced air plasma and air biased...... coherent detection, respectively. We find that the measured frequency dependent conductivity can be well described by a Drude-Smith model, supplemented by a Lorentz model oscillating near 5 THz....

  1. Structure and electronic properties of a benzene-water solution.

    Science.gov (United States)

    Mateus, Margarida P S; Galamba, Nuno; Cabral, Benedito J Costa

    2012-01-07

    Electronic properties of benzene in water were investigated by a sequential quantum mechanical/molecular dynamics approach. Emphasis was placed on the analysis of the structure, polarization effects, and ionization spectrum. By adopting a polarizable model for both benzene and water the structure of the benzene-water solution is in good agreement with data from first principles molecular dynamics. Further, strong evidence that water molecules acquire enhanced orientational order near the benzene molecule is found. Upon hydration, the quadrupole moment of benzene is not significantly changed in comparison with the gas-phase value. We are also reporting results for the dynamic polarizability of benzene in water. Our results indicate that the low energy behaviour of the dynamic polarizability of gas-phase and hydrated benzene is quite similar. Outer valence Green's function calculations for benzene in liquid water show a splitting of the gas-phase energy levels associated with the 1e(1g)(π), 2e(2g), and 2e(1u) orbitals upon hydration. Lifting of the orbitals degeneracy and redshift of the outer valence bands is related to symmetry breaking of the benzene structure in solution and polarization effects from the surrounding water molecules.

  2. Quantitative Determination of Spring Water Quality Parameters via Electronic Tongue

    Directory of Open Access Journals (Sweden)

    Noèlia Carbó

    2017-12-01

    Full Text Available The use of a voltammetric electronic tongue for the quantitative analysis of quality parameters in spring water is proposed here. The electronic voltammetric tongue consisted of a set of four noble electrodes (iridium, rhodium, platinum, and gold housed inside a stainless steel cylinder. These noble metals have a high durability and are not demanding for maintenance, features required for the development of future automated equipment. A pulse voltammetry study was conducted in 83 spring water samples to determine concentrations of nitrate (range: 6.9–115 mg/L, sulfate (32–472 mg/L, fluoride (0.08–0.26 mg/L, chloride (17–190 mg/L, and sodium (11–94 mg/L as well as pH (7.3–7.8. These parameters were also determined by routine analytical methods in spring water samples. A partial least squares (PLS analysis was run to obtain a model to predict these parameter. Orthogonal signal correction (OSC was applied in the preprocessing step. Calibration (67% and validation (33% sets were selected randomly. The electronic tongue showed good predictive power to determine the concentrations of nitrate, sulfate, chloride, and sodium as well as pH and displayed a lower R2 and slope in the validation set for fluoride. Nitrate and fluoride concentrations were estimated with errors lower than 15%, whereas chloride, sulfate, and sodium concentrations as well as pH were estimated with errors below 10%.

  3. A Hybrid System Based on an Electronic Nose Coupled with an Electronic Tongue for the Characterization of Moroccan Waters

    Directory of Open Access Journals (Sweden)

    Z. Haddi

    2014-05-01

    Full Text Available A hybrid multisensor system combined with multivariate analysis was applied to the characterization of different kinds of Moroccan waters. The proposed hybrid system based on an electronic nose coupled with an electronic tongue consisted of metal oxide semiconductors and potentiometric sensors respectively. Five Taguchi Gas Sensors were implemented in the electronic nose for the discrimination between mineral, natural, sparkling, river and tap waters. Afterwards, the electronic tongue, based on series of Ion-Selective-Electrodes was applied to the analysis of the same waters. Multisensor responses obtained from the waters were processed by two chemometrics: Principal Component Analysis (PCA and Linear Discriminant Analysis (LDA. PCA results using electronic nose data depict all of the potable water samples in a separate group from the samples that were originated from river. Furthermore, PCA and LDA analysis on electronic tongue data permitted clear and rapid recognizing of the different waters due to the concentration changes of the chemical parameters from source to another.

  4. PRACTICAL APPLICATION OF THE SINGLE-PARAMETER SUBCRITICAL MASS LIMIT FOR PLUTONIUM METAL

    Energy Technology Data Exchange (ETDEWEB)

    MITCHELL, MARK VON [Los Alamos National Laboratory

    2007-01-10

    According to ANS-8.1, operations with fissile materials can be performed safely by complying with any of the listed single-parameter subcritical limits. For metallic units, when interspersed moderators are present, the mass limits apply to a single piece having no concave surfaces. On a practical level, when has any operation with fissile metal involved a single piece and absolutely no moderating material, e.g., water, oil, plastic, etc.? This would be rare. This paper explores the application of the single-parameter plutonium metal mass limit for realistic operational environments.

  5. Criticality Safety Evaluation of the LLNL Inherently Safe Subcritical Assembly (ISSA)

    Energy Technology Data Exchange (ETDEWEB)

    Percher, Catherine [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2012-06-19

    The LLNL Nuclear Criticality Safety Division has developed a training center to illustrate criticality safety and reactor physics concepts through hands-on experimental training. The experimental assembly, the Inherently Safe Subcritical Assembly (ISSA), uses surplus highly enriched research reactor fuel configured in a water tank. The training activities will be conducted by LLNL following the requirements of an Integration Work Sheet (IWS) and associated Safety Plan. Students will be allowed to handle the fissile material under the supervision of LLNL instructors. This report provides the technical criticality safety basis for instructional operations with the ISSA experimental assembly.

  6. Modeling of the CTEx subcritical unit using MCNPX code

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Avelino [Divisao de Defesa Quimica, Biologica e Nuclear. Centro Tecnologico do Exercito - CTEx, Guaratiba, Rio de Janeiro, RJ (Brazil); Silva, Ademir X. da, E-mail: ademir@con.ufrj.br [Programa de Engenharia Nuclear. Universidade Federal do Rio de Janeiro - UFRJ Centro de Tecnologia, Rio de Janeiro, RJ (Brazil); Rebello, Wilson F. [Secao de Engenharia Nuclear - SE/7 Instituto Militar de Engenharia - IME Rio de Janeiro, RJ (Brazil); Cunha, Victor L. Lassance [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    The present work aims at simulating the subcritical unit of Army Technology Center (CTEx) namely ARGUS pile (subcritical uranium-graphite arrangement) by using the computational code MCNPX. Once such modeling is finished, it could be used in k-effective calculations for systems using natural uranium as fuel, for instance. ARGUS is a subcritical assembly which uses reactor-grade graphite as moderator of fission neutrons and metallic uranium fuel rods with aluminum cladding. The pile is driven by an Am-Be spontaneous neutron source. In order to achieve a higher value for k{sub eff}, a higher concentration of U235 can be proposed, provided it safely remains below one. (author)

  7. Multicomponent analysis of drinking water by a voltammetric electronic tongue

    Energy Technology Data Exchange (ETDEWEB)

    Winquist, Fredrik, E-mail: frw@ifm.liu.se [Swedish Sensor Centre and the Division of Applied Physics, Department of Physics, Chemistry and Biology, Linkoeping University, SE-581 83 Linkoeping (Sweden); Olsson, John; Eriksson, Mats [Swedish Sensor Centre and the Division of Applied Physics, Department of Physics, Chemistry and Biology, Linkoeping University, SE-581 83 Linkoeping (Sweden)

    2011-01-10

    A voltammetric electronic tongue is described that was used for multicomponent analysis of drinking water. Measurements were performed on drinking water from a tap and injections of the compounds NaCl, NaN{sub 3}, NaHSO{sub 3}, ascorbic acid, NaOCl and yeast suspensions could be identified by use of principal component analysis (PCA). A model based on partial least square (PLS) was developed for the simultaneously prediction of identification and concentration of the compounds NaCl, NaHSO{sub 3} and NaOCl. By utilizing this type of non-selective sensor technique for water quality surveillance, it will be feasible to detect a plurality of events without the need of a specific sensor for each type of event.

  8. Multicomponent analysis of drinking water by a voltammetric electronic tongue.

    Science.gov (United States)

    Winquist, Fredrik; Olsson, John; Eriksson, Mats

    2011-01-10

    A voltammetric electronic tongue is described that was used for multicomponent analysis of drinking water. Measurements were performed on drinking water from a tap and injections of the compounds NaCl, NaN(3), NaHSO(3), ascorbic acid, NaOCl and yeast suspensions could be identified by use of principal component analysis (PCA). A model based on partial least square (PLS) was developed for the simultaneously prediction of identification and concentration of the compounds NaCl, NaHSO(3) and NaOCl. By utilizing this type of non-selective sensor technique for water quality surveillance, it will be feasible to detect a plurality of events without the need of a specific sensor for each type of event. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. First reactivity determination of a subcritical reactor using a single beam-trip and fission chambers operating in current mode

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Ordonez, M.; Villamarin, D.; Becares, V.; Gonzalez-Romero, E.M. [Nuclear Innovation Group, CIEMAT, Avda. Complutense, Madrid (Spain); Bergloef, C. [Reactor Physics Department, Royal Institute of Technology, Stockholm (Sweden); Bournos, V.; Fokov, Y.; Kiyavitskaya, H. [Joint Institute for Power and Nuclear Research, National Academy of Sciences, Minsk (Belarus)

    2009-06-15

    Transmutation of spent nuclear fuel in Accelerator-Driven Systems (ADS) is considered as a key technology for achieving sustainable nuclear energy. In the design of future ADS facilities, the reactivity monitoring system is of highest importance. An extensive experimental program devoted to reactivity monitoring of ADS has been carried out at the subcritical facility YALINA-Booster in the framework of IP-EUROTRANS. The main objective, besides the qualification of the reactivity monitoring techniques, has been to develop electronic chains that can be used in a full power ADS. For this purpose, YALINA-Booster couples a D-T neutron generator to a flexible zero-power subcritical assembly with a coupled fast-thermal neutron spectrum. The high intensity of the accelerator and the possibility to work in continuous or pulsed mode allowed the study of the current-to-flux relationship and beam-trip experiments. In addition, the experimental facility provided the opportunity to test electronic chains in current mode, which correspond to the most probable condition in a full power ADS. There exists a relationship between the reactivity of a subcritical core, the intensity of the accelerator and the neutron source intensity. Hence, by monitoring these three quantities it should be possible to determine the origin of any reactivity or power change within the subcritical assembly. We have developed the necessary acquisition system to monitor the conditions of these three variables in the millisecond scale. The current-to-flux technique provides relative changes in the behavior of the core, however, in order to determine absolute values of the reactivity, we have taken profit of short imposed beam interruptions in the millisecond scale, thus providing the possibility for applying the Source-Jerk method within few milliseconds. It is the first time that the reactivity of an ADS is determined in a single beam-trip using fission chambers operating in current mode. The experiments

  10. Microwave ion source for accelerator driven sub-critical system

    CERN Document Server

    Cui Bao Qun; Jiang Wei; LiLiQiang; WangRongWen

    2002-01-01

    A microwave ion source is under developing for a demonstration prototype of a accelerator driven sub-critical system at CIAE (China Institute of Atomic Energy), 100 mA hydrogen beam has been extracted from the source through a 7.3 mm aperture in diameter, proton ratio is more than 85%, reliability has been tested for 100 h without any failures

  11. Local energy losses at positive and negative steps in subcritical ...

    African Journals Online (AJOL)

    Local energy losses occur when there is a transition in open channel flow. Even though local losses in subcritical open channel flow due to changes in channel width have been studied, to date no studies have been reported for losses due to changes in bed elevations. Steps are commonly used in engineering applications ...

  12. Monte Carlo Alpha Iteration Algorithm for a Subcritical System Analysis

    Directory of Open Access Journals (Sweden)

    Hyung Jin Shim

    2015-01-01

    Full Text Available The α-k iteration method which searches the fundamental mode alpha-eigenvalue via iterative updates of the fission source distribution has been successfully used for the Monte Carlo (MC alpha-static calculations of supercritical systems. However, the α-k iteration method for the deep subcritical system analysis suffers from a gigantic number of neutron generations or a huge neutron weight, which leads to an abnormal termination of the MC calculations. In order to stably estimate the prompt neutron decay constant (α of prompt subcritical systems regardless of subcriticality, we propose a new MC alpha-static calculation method named as the α iteration algorithm. The new method is derived by directly applying the power method for the α-mode eigenvalue equation and its calculation stability is achieved by controlling the number of time source neutrons which are generated in proportion to α divided by neutron speed in MC neutron transport simulations. The effectiveness of the α iteration algorithm is demonstrated for two-group homogeneous problems with varying the subcriticality by comparisons with analytic solutions. The applicability of the proposed method is evaluated for an experimental benchmark of the thorium-loaded accelerator-driven system.

  13. Local energy losses at positive and negative steps in subcritical ...

    African Journals Online (AJOL)

    2010-04-22

    7) 554-568. MORRIS HM and WIGGERT JM (1972) Applied Hydraulics in. Engineering. John Wiley & Sons, New York. ÖRSEL SI (2002) Local Losses at a Step in a Sub-critical Open. Channel Flow. M.Sc. Thesis, Department ...

  14. Pilot-scale subcritical solvent extraction of curcuminoids from Curcuma long L.

    Science.gov (United States)

    Kwon, Hye-Lim; Chung, Myong-Soo

    2015-10-15

    Curcuminoids consisted curcumin, demethoxycurcumin and bisdemethoxycurcumin, were extracted from turmeric using subcritical solvent by varying conditions of temperature (110-150 °C), time (1-10 min), pressure (5-100 atm), solid-to-solvent ratio, and mixing ratio of solvent. Preliminary lab-scale experiments were conducted to determine the optimum extraction temperature and mixing ratio of water and ethanol for the pilot-scale extraction. The maximum yield of curcuminoids in the pilot-scale system was 13.58% (curcumin 4.94%, demethoxycurcumin 4.73%, and bisdemethoxycurcumin 3.91% in dried extracts) at 135 °C/5 min with water/ethanol mixture (50:50, v/v) as a solvent. On the other hand, the extraction yields of curcuminoids were obtained as 10.49%, 13.71% and 13.96% using the 50%, 95% and 100% ethanol, respectively, at the atmospheric condition (60 °C/120 min). Overall results showed that the subcritical solvent extraction is much faster and efficient extraction method considering extracted curcuminoids contents and has a potential to develop a commercial process for the extraction of curcuminoids. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Ultrasound-Enhanced Subcritical CO2 Extraction of Lutein from Chlorella pyrenoidosa.

    Science.gov (United States)

    Fan, Xiao-Dan; Hou, Yan; Huang, Xing-Xin; Qiu, Tai-Qiu; Jiang, Jian-Guo

    2015-05-13

    Lutein is an important pigment of Chlorella pyrenoidosa with many beneficial functions in human health. The main purpose of this study was to extract lutein from C. pyrenoidosa using ultrasound-enhanced subcritical CO2 extraction (USCCE). Effects of operating conditions on the extraction, including extraction pretreatment, temperature, pressure, time, CO2 flow rate, and ultrasonic power, were investigated, and an orthogonal experiment was designed to study the effects of extraction pressure, temperature, cosolvent amount, and time on the extraction yields. The USCCE method was compared with other extraction methods in terms of the yields of lutein and the microstructure of C. pyrenoidosa powder by scanning electron microscopy. A maximal extraction yield of 124.01 mg lutein/100 g crude material was achieved under optimal conditions of extraction temperature at 27 °C, extraction pressure at 21 MPa, cosolvent amount at 1.5 mL/g ethanol, and ultrasound power at 1000 W. Compared to other methods, USCCE could significantly increase the lutein extraction yield at lower extraction temperature and pressure. Furthermore, the kinetic models of USCCE and subcritical CO2 extraction (SCCE) of lutein from C. pyrenoidosa were set as E = 130.64 × (1 - e(-0.6599t)) and E = 101.82 × (1 - e(-0.5683t)), respectively. The differences of parameters in the kinetic models indicate that ultrasound was able to enhance the extraction process of SCCE.

  16. Biocatalytic photosynthesis with water as an electron donor.

    Science.gov (United States)

    Ryu, Jungki; Nam, Dong Heon; Lee, Sahng Ha; Park, Chan Beum

    2014-09-15

    Efficient harvesting of unlimited solar energy and its conversion into valuable chemicals is one of the ultimate goals of scientists. With the ever-increasing concerns about sustainable growth and environmental issues, numerous efforts have been made to develop artificial photosynthetic process for the production of fuels and fine chemicals, thus mimicking natural photosynthesis. Despite the research progress made over the decades, the technology is still in its infancy because of the difficulties in kinetic coupling of whole photocatalytic cycles. Herein, we report a new type of artificial photosynthesis system that can avoid such problems by integrally coupling biocatalytic redox reactions with photocatalytic water splitting. We found that photocatalytic water splitting can be efficiently coupled with biocatalytic redox reactions by using tetracobalt polyoxometalate and Rh-based organometallic compound as hole and electron scavengers, respectively, for photoexcited [Ru(bpy)3](2+). Based on these results, we could successfully photosynthesize a model chiral compound (L-glutamate) using a model redox enzyme (glutamate dehydrogenase) upon in situ photoregeneration of cofactors. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Analysis of reactivity determination methods in the subcritical experiment Yalina

    Science.gov (United States)

    Persson, Carl-Magnus; Seltborg, Per; Åhlander, Alexandra; Gudowski, Waclaw; Stummer, Thomas; Kiyavitskaya, Hanna; Bournos, Victor; Fokov, Yurij; Serafimovich, Ivan; Chigrinov, Sergey

    2005-12-01

    Different reactivity determination methods have been investigated, based on experiments performed at the subcritical assembly Yalina in Minsk, Belarus. The development of techniques for on-line monitoring of the reactivity level in a future accelerator-driven system (ADS) is of major importance for safe operation. Since an ADS is operating in a subcritical mode, the safety margin to criticality must be sufficiently large. The investigated methods are the Slope Fit Method, the Sjöstrand Method and the Source Jerk Method. The results are compared with Monte Carlo simulations performed with different nuclear data libraries. The results of the Slope Fit Method are in good agreement with the Monte Carlo simulation results, whereas the Sjöstrand Method appears to underestimate the criticality somewhat. The Source Jerk Method is subject to inadequate statistical accuracy.

  18. A simple proof of exponential decay of subcritical contact processes

    Czech Academy of Sciences Publication Activity Database

    Swart, Jan M.

    2018-01-01

    Roč. 170, 1-2 (2018), s. 1-9 ISSN 0178-8051 R&D Projects: GA ČR(CZ) GA16-15238S Institutional support: RVO:67985556 Keywords : subcritical contact process * sharpness of the phase transition * eigenmeasure Subject RIV: BA - General Mathematics Impact factor: 1.895, year: 2016 http:// library .utia.cas.cz/separaty/2016/SI/swart-0462694.pdf

  19. Development and Investigation of Reactivity Measurement Methods in Subcritical Cores

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Johanna

    2005-05-01

    Subcriticality measurements during core loading and in future accelerator driven systems have a clear safety relevance. In this thesis two subcriticality methods are treated: the Feynman-alpha and the source modulation method. The Feynman-alpha method is a technique to determine the reactivity from the relative variance of the detector counts during a measurement period. The period length is varied to get the full time dependence of the variance-to-mean. The corresponding theoretical formula was known only with stationary sources. In this thesis, due to its relevance for novel reactivity measurement methods, the Feynman-alpha formulae for pulsed sources for both the stochastic and the deterministic cases are treated. Formulae neglecting as well as including the delayed neutrons are derived. The formulae neglecting delayed neutrons are experimentally verified with quite good agreement. The second reactivity measurement technique investigated in this thesis is the so-called source modulation technique. The theory of the method was elaborated on the assumption of point kinetics, but in practice the method will be applied by using the signal from a single local neutron detector. Applicability of the method therefore assumes point kinetic behaviour of the core. Hence, first the conditions of the point kinetic behaviour of subcritical cores was investigated. After that the performance of the source modulation technique in the general case as well as and in the limit of exact point kinetic behaviour was examined. We obtained the unexpected result that the method has a finite, non-negligible error even in the limit of point kinetic behaviour, and a substantial error in the operation range of future accelerator driven subcritical reactors (ADS). In practice therefore the method needs to be calibrated by some other method for on-line applications.

  20. Hydrothermal decomposition of liquid crystal in subcritical water

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Xuning [State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, No. 1239 Siping Road, Shanghai 200092 (China); Shanghai Cooperative Centre for WEEE Recycling, Shanghai Second Polytechnic University, No. 2360 Jinhai Road, Shanghai 201209 (China); He, Wenzhi, E-mail: hithwz@163.com [State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, No. 1239 Siping Road, Shanghai 200092 (China); Li, Guangming; Huang, Juwen; Lu, Shangming; Hou, Lianjiao [State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, No. 1239 Siping Road, Shanghai 200092 (China)

    2014-04-01

    Highlights: • Hydrothermal technology can effectively decompose the liquid crystal of 4-octoxy-4'-cyanobiphenyl. • The decomposition rate reached 97.6% under the optimized condition. • Octoxy-4'-cyanobiphenyl was mainly decomposed into simple and innocuous products. • The mechanism analysis reveals the decomposition reaction process. - Abstract: Treatment of liquid crystal has important significance for the environment protection and human health. This study proposed a hydrothermal process to decompose the liquid crystal of 4-octoxy-4′-cyanobiphenyl. Experiments were conducted with a 5.7 mL stainless tube reactor and heated by a salt-bath. Factors affecting the decomposition rate of 4-octoxy-4′-cyanobiphenyl were evaluated with HPLC. The decomposed liquid products were characterized by GC-MS. Under optimized conditions i.e., 0.2 mL H{sub 2}O{sub 2} supply, pH value 6, temperature 275 °C and reaction time 5 min, 97.6% of 4-octoxy-4′-cyanobiphenyl was decomposed into simple and environment-friendly products. Based on the mechanism analysis and products characterization, a possible hydrothermal decomposition pathway was proposed. The results indicate that hydrothermal technology is a promising choice for liquid crystal treatment.

  1. Subcritical water extraction of bioactive compounds from dry loquat ...

    African Journals Online (AJOL)

    Results showed that the highest yields of total polyphenols were 82.7 ± 1.5 mgGAE/g leaf weight (LW), total flavonoids (54.1 ± 4.1 mgQE/g LW) and total triterpenoids (37.5 ± 3.2 mgUAE/g LW) were obtained by SWE compared to total polyphenols (61.8 ± 3.3 mgGAE/g LW), total flavonoids (43.2 ± 0.6 mgQE/g LW) and total ...

  2. Operation and reactivity measurements of an accelerator driven subcritical TRIGA reactor

    Science.gov (United States)

    O'Kelly, David Sean

    Experiments were performed at the Nuclear Engineering Teaching Laboratory (NETL) in 2005 and 2006 in which a 20 MeV linear electron accelerator operating as a photoneutron source was coupled to the TRIGA (Training, Research, Isotope production, General Atomics) Mark II research reactor at the University of Texas at Austin (UT) to simulate the operation and characteristics of a full-scale accelerator driven subcritical system (ADSS). The experimental program provided a relatively low-cost substitute for the higher power and complexity of internationally proposed systems utilizing proton accelerators and spallation neutron sources for an advanced ADSS that may be used for the burning of high-level radioactive waste. Various instrumentation methods that permitted ADSS neutron flux monitoring in high gamma radiation fields were successfully explored and the data was used to evaluate the Stochastic Pulsed Feynman method for reactivity monitoring.

  3. Optimization of supercritical phase and combined supercritical/subcritical conversion of lignocellulose for hexose production by using a flow reaction system.

    Science.gov (United States)

    Zhao, Yan; Lu, Wen-Jing; Wu, Hua-Yong; Liu, Jin-Wen; Wang, Hong-Tao

    2012-12-01

    A flow reaction system was utilized to investigate lignocellulose conversion using combined supercritical/subcritical conditions for hexose production. Initially, investigation of cellulose hydrolysis in supercritical water and optimization of reaction parameters were done. Oligosaccharide yields reached over 30% at cellulose concentrations of 3-5 gL(-1) and reaction times of 6-10s at 375 °C, and 2.5-4 gL(-1) and 8-10s at 380 °C. Temperatures above 380 °C were not appropriate for the supercritical phase in the combined process. Subsequently, conversion of lignocellulosic materials under combined supercritical/subcritical conditions was studied. Around 30% hexose was produced from corn stalks under the optimal parameters for supercritical (380 °C, 23-24 MPa, 9-10s) and subcritical (240 °C, 8-9 MPa, 45-50s) phases. Flow systems utilizing the combined supercritical/subcritical technology present a promising method for lignocellulosic conversion. The results of this study provide an important guide for the operational optimization and practical application of the proposed system. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Application of supercritical and subcritical fluids for the extraction of hazardous materials from soil

    Directory of Open Access Journals (Sweden)

    Skorupan Dara

    2002-01-01

    Full Text Available Subcritical and supercritical extractions are novel, non destructive techniques which can be applied for the removal of hazardous compounds from contaminated soil without any changes of the soil composition and structure. The aim of the presented review paper is to give information on up-to day results of this method commonly applied by several institutions worldwide. Interest in the application of SC CO2 has been more expressed in the last two decades, which may be related to its favorable characteristics (non-toxic, non-flammable, increase diffusion into small pores, low viscosity under SC conditions, low price and others. However, interest in wet oxidation (WO and especially in SCWO (the application of water under supercritical conditions with air has also increased in the last few years. Interest in H2O as a SC fluid, as well as in extraction with water under subcritical conditions may also be related to specific characteristics and the enhanced rate of extraction. Moreover, the solubility of some specific compounds present in soil can be easily changed by adjusting the pressure and temperature of extraction. The high price of the units designed to operate safely at a pressure and temperature much higher than the a critical one of the applied fluids is the main reason why, at present, there is no more broader application of such techniques for the removal hazardous materials from contaminated soil. In the present paper, among many literature citations and their overall review, some specific details related to the development of specific analytical methods under SC conditions are also considered.

  5. Etching of glass microchips with supercritical water.

    Science.gov (United States)

    Karásek, Pavel; Grym, Jakub; Roth, Michal; Planeta, Josef; Foret, František

    2015-01-07

    A novel method of etching channels in glass microchips with the most tunable solvent, water, was tested as an alternative to common hydrogen fluoride-containing etchants. The etching properties of water strongly depend on temperature and pressure, especially in the vicinity of the water critical point. The chips were etched at the subcritical, supercritical and critical temperature of water, and the resulting channel shape, width, depth and surface morphology were studied by scanning electron microscopy and 3D laser profilometry. Channels etched with the hot water were compared with the chips etched with standard hydrogen fluoride-containing solution. Depending on the water pressure and temperature, the silicate dissolved from the glass could be re-deposited on the channel surface. This interesting phenomenon is described together with the conditions necessary for its utilization. The results illustrate the versatility of pure water as a glass etching and surface morphing agent.

  6. Binding energies, lifetimes and implications of bulk and interface solvated electrons in water.

    Science.gov (United States)

    Siefermann, Katrin R; Liu, Yaxing; Lugovoy, Evgeny; Link, Oliver; Faubel, Manfred; Buck, Udo; Winter, Bernd; Abel, Bernd

    2010-04-01

    Solvated electrons in liquid water are one of the seemingly simplest, but most important, transients in chemistry and biology, but they have resisted disclosing important information about their energetics, binding motifs and dynamics. Here we report the first ultrafast liquid-jet photoelectron spectroscopy measurements of solvated electrons in liquid water. The results prove unequivocally the existence of solvated electrons bound at the water surface and of solvated electrons in the bulk solution, with vertical binding energies of 1.6 eV and 3.3 eV, respectively, and with lifetimes longer than 100 ps. The unexpectedly long lifetime of solvated electrons bound at the water surface is attributed to a free-energy barrier that separates surface and interior states. Beyond constituting important energetic and kinetic benchmark and reference data, the results also help to understand the mechanisms of a number of very efficient electron-transfer processes in nature.

  7. The safe, economical operation of a slightly subcritical reactor and transmutor with a small proton accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Hiroshi

    1994-04-01

    This report describes methods in which an accelerator can be used to increase the safety and neutron economy of a power reactor and transmutor of long-lived radioactive wastes, such as minor actinides and fission products, by providing neutrons for its subcritical operation. Instead of the rather large subcriticality of k=0.9--0.95 which we originally proposed for such a transmutor, we propose to use a slightly subcritical reactor, such as k=0.99, which will avoid many of the technical difficulties that are associated with large subcriticality, such as localized power peaking, radiation damage due to the injection of medium-energy protons, the high current accelerator, and the requirement for a long beam-expansion section. We analyzed the power drop that occurred in Phoenix reactor, and show that the operating this reactor in subcritical condition improves its safety.

  8. Subcritical co-solvents extraction of lipid from wet microalgae pastes of Nannochloropsis sp

    Science.gov (United States)

    Chen, Min; Liu, Tianzhong; Chen, Xiaolin; Chen, Lin; Zhang, Wei; Wang, Junfeng; Gao, Lili; Chen, Yu; Peng, Xiaowei

    2012-01-01

    In this paper subcritical co-solvents extraction (SCE) of algal lipid from wet pastes of Nannochloropsis sp. is examined. The influences of five operating parameters including the ratio between ethanol to hexane, the ratio of mixed solvents to algal biomass (dry weight), extraction temperature, pressure, and time were investigated. The determined optimum extraction conditions were 3:1 (hexane to ethanol ratio), 10:1 ratio (co-solvents to microalgae (dry weight) ratio), 90°C, 1.4 MPa, and 50 min, which could produce 88% recovery rate of the total lipids. In addition, electron micrographs of transmission electron microscopy (TEM) and scanning electron microscopy (SEM) were conducted to show that the algal cell presented shrunken, collapsed with some wrinkles and microholes after SCE extraction. The main composition of total lipids extracted under the optimum conditions was TAG which represented more than 80%. And the fatty acid profile of triglycerides revealed that C16:0 (35.67 ± 0.2%), C18:1 (26.84 ± 0.044%) and C16:1 (25.96 ± 0.011%) were dominant. Practical applications: The reported method could save energy consumption significantly through avoiding deep dewatering (for example drying). The composition of the extracted lipid is suitable for the production of high quality biodiesel. PMID:22745570

  9. DESTRUCTION OF HALOGENATED HYDROCARBONS WITH SOLVATED ELECTRONS IN THE PRESENCE OF WATER. (R826180)

    Science.gov (United States)

    Model halogenated aromatic and aliphatic hydrocarbons and halogenated phenols were dehalogenated in seconds by solvated electrons generated from sodium in both anhydrous liquid ammonia and ammonia/water solutions. The minimum sodium required to completely dehalogenate these mo...

  10. Thorium as a Fuel for Accelerator Driven Subcritical Electronuclear Systems

    CERN Document Server

    Barashenkov, V S; Singh, V

    2000-01-01

    Neutron yield and energy production in a very large, practically infinite, uranium and thorium target-blocks irradiated by protons with energies in the range 0.1-2 GeV are studied by Monte Carlo method. Though the comparison of uranium and thorium targets shows that the neutron yield in the latter is 30-40 % less and the energy gain is approximatelly two times smaller, accelerator Driven subcritical Systems (ADS) with thorium fuel are very perspective at the bombarding energies higher than several hundreds MeV. An admixture of fissile elements U^{233}, U^{235}, Pu^{239} in the set-up gives larger neutron multiplication which in turn shows better energy amplification. It is argued that due to the practically complete burning of the fuel in such set-up there is no need of technology of conversion of the exhaust fuel.

  11. Gravity-driven soap film dynamics in subcritical regimes

    Science.gov (United States)

    Auliel, M. I.; Castro, F.; Sosa, R.; Artana, G.

    2015-10-01

    We undertake the analysis of soap-film dynamics with the classical approach of asymptotic expansions. We focus our analysis in vertical soap film tunnels operating in subcritical regimes with elastic Mach numbers Me=O(10-1) . Considering the associated set of nondimensional numbers that characterize this flow, we show that the flow behaves as a two-dimensional (2D) divergence free flow with variable mass density. When the soap film dynamics agrees with that of a 2D and almost constant mass density flow, the regions where the second invariant of the velocity gradient is non-null correspond to regions where the rate of change of film thickness is non-negligible.

  12. Comparative analysis of the secondary electron yield from carbon nanoparticles and pure water medium

    OpenAIRE

    Verkhovtsev, Alexey; McKinnon, Sally; Vera, Pablo; Surdutovich, Eugene; Guatelli, Susanna; Korol, Andrei V.; Rosenfeld, Anatoly; Solov'yov, Andrey V.

    2015-01-01

    The production of secondary electrons generated by carbon nanoparticles and pure water medium irradiated by fast protons is studied by means of model approaches and Monte Carlo simulations. It is demonstrated that due to a prominent collective response to an external field, the nanoparticles embedded in the medium enhance the yield of low-energy electrons. The maximal enhancement is observed for electrons in the energy range where plasmons, which are excited in the nanoparticles, play the dom...

  13. Effect of SO2 concentration as an impurity on carbon steel corrosion under subcritical CO2 environment

    Science.gov (United States)

    Mahlobo, MGR; Premlall, K.; Olubambi, PA

    2017-12-01

    Carbon dioxide (CO2) is considered to be easier to transport over moderate distances when turned into supercritical state (dense phase) than at any other state. Because of this reason, the transportation of CO2 during carbon capture and storage requires CO2 to be at its supercritical state. CO2 temperature profile from different regions causes CO2 to deviate between supercritical and subcritical state (gas/liquid phase). In this study the influence of sulphur dioxide (SO2) on the corrosion of carbon steel was evaluated under different SO2 concentrations (0.5, 1.5 and 5%) in combination with subcritical CO2. Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD) and Energy-Dispersive X-ray Spectroscopy (EDS) were used to characterize the CO2 corrosion product layer formed on the carbon steel surface. The weight loss results showed that corrosion rate increased with SO2 concentration with corrosion rate up to 7.45 mm/year while at 0% SO2 the corrosion rate was 0.067 mm/year.

  14. In-air fluence profiles and water depth dose for uncollimated electron beams

    Science.gov (United States)

    Toutaoui, Abedelkadar; Aichouche, Amar Nassim; Adjidir, Kenza Adjidir; Chami, Ahmed Chafik

    2008-01-01

    Advanced electron beam dose calculation models for radiation treatment planning systems require the input of a phase space beam model to configure a clinical electron beam in a computer. This beam model is a distribution in position, energy, and direction of electrons and photons in a plane in front of the patient. The phase space beam model can be determined by Monte Carlo simulation of the treatment head or from a limited set of measurements. In the latter case, parameters of the electron phase space beam model are obtained by fitting measured to calculated dosimetric data. In the present work, data for air fluence profiles and water depth doses have been presented for electron beams without an applicator for a medical linear accelerator. These data are used to parameterize the electron phase space beam model to a Monte Carlo dose calculation module available in the first commercial (MDS Nordion, now Nucletron) Monte Carlo treatment planning for electron beams. PMID:19893707

  15. In-situ biodiesel and sugar production from rice bran under subcritical condition

    Science.gov (United States)

    Zullaikah, Siti; Rahkadima, Yulia Tri

    2015-12-01

    An integrated method of producing biodiesel and sugar using subcritical water and methanol has been employed as a potential way to reduce the high cost of single biofuel production from rice bran. The effects of temperature, methanol to water ratio and reaction time on the biodiesel yield and purity, and the concentration of sugar in hydrolysate were investigated systematically. Biodiesel with yield and purity of 65.21%and 73.53%, respectively, was obtained from rice bran with initial free fatty acid (FFA) content of 37.64% under the following conditions: T= 200 oC, P= 4.0 MPa (using CO2 as pressurizing gas), ratio of rice bran/water/methanol of 1/2/6 (g/mL/mL), and 3 h of reaction time. FFAs level was reduced to 10.00% with crude biodiesel recovery of 88.69%. However, the highest biodiesel yield (67.39%) and crude biodiesel recovery (100.00%) were obtained by decreasing the amount of methanol so that the ratio of rice bran/water/methanol became 1/4/4, g/mL/mL. In addition, the highest sugar concentration of 0.98 g/L was obtained at 180 oC and 4.0 MPa with ratio of rice bran/water/methanol of 1/4/4 (g/mL/mL) and reaction time of 3 h. Since no catalyst was employed and the biodiesel and reducing sugar were produced directly from rice bran with high water and FFA contents, the process was simple and environmentally friendly, which would make the production of biofuel more economical and sustainable.

  16. Sub-critical crack growth in silicate glasses: Role of network topology

    Science.gov (United States)

    Smedskjaer, Morten M.; Bauchy, Mathieu

    2015-10-01

    The presence of water in the surrounding atmosphere can cause sub-critical crack growth (SCCG) in glasses, a phenomenon known as fatigue or stress corrosion. Here, to facilitate the compositional design of more fatigue-resistant glasses, we investigate the composition dependence of SCCG by studying fourteen silicate glasses. The fatigue curves (V-KI) have been obtained by indentation experiments through measurements of the crack length as a function of post-indentation fatigue duration. Interestingly, we find that the fatigue resistance parameter N is generally improved by increasing the alumina content and is thereby found to exhibit a fairly linear dependence on the measured Vickers hardness HV for a wide range of N and HV values. This finding highlights the important role of network topology in governing the SCCG in silicate glasses, since hardness has been shown to scale linearly with the number of atomic constraints. Our results therefore suggest that glasses showing under-constrained flexible networks, which feature floppy internal modes of deformation, are more readily attacked by water molecules, thus promoting stress corrosion and reducing the fatigue resistance.

  17. Non-monotonic variation of Au nanoparticle yield during femtosecond/picosecond laser ablation in water

    Science.gov (United States)

    Danilov, P. A.; Ionin, A. A.; Kudryashov, S. I.; Rudenko, A. A.; Saraeva, I. N.; Zayarny, D. A.

    2017-05-01

    Ablative multi-shot preparation of gold nanoparticle hydrosols was carried out by raster-scanning a gold plate in deionized water using focused 1030 nm laser pulses of variable pulse width (0.3-6 ps). The relative nanoparticle yield, correlated with the extinction coefficient of colloidal solutions, exhibited an extraordinary non-monotonic variation versus the laser pulse width, which is explained by the electronic dynamics in gold in the lower limit, and either film water boiling or sub-critical peak laser powers in the upper limit.

  18. Theoretical Analysis for Heat Transfer Optimization in Subcritical Electrothermal Energy Storage Systems

    OpenAIRE

    Peng Hu; Gao-Wei Zhang; Long-Xiang Chen; Ming-Hou Liu

    2017-01-01

    Electrothermal energy storage (ETES) provides bulk electricity storage based on heat pump and heat engine technologies. A subcritical ETES is described in this paper. Based on the extremum principle of entransy dissipation, a geometry model is developed for heat transfer optimization for subcritical ETES. The exergy during the heat transfer process is deduced in terms of entropy production. The geometry model is validated by the extremum principle of entropy production. The theoretical analys...

  19. 3D CAD model of the subcritical nuclear reactor of IPN; Modelo CAD 3D del reactor nuclear subcritico del IPN

    Energy Technology Data Exchange (ETDEWEB)

    Pahuamba V, F. de J.; Delfin L, A.; Gomez T, A. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Ibarra R, G.; Del Valle G, E.; Sanchez R, A., E-mail: narehc@hotmail.com [IPN, Escuela Superior de Fisica y Matematicas, Av. IPN, Edif. 9, Unidad Profesional Adolfo Lopez Mateos, San Pedro Zacatenco, 07738 Ciudad de Mexico (Mexico)

    2016-09-15

    The three-dimensional (3D) CAD model of the subcritical reactor Chicago model 9000 of Instituto Politecnico Nacional (IPN) allows obtaining a 3D view with the dimensions of each of its components, such as: natural uranium cylindrical rods, fuel elements, hexagonal reactor core arrangement, cylindrical stainless steel tank containing the core, fuel element support grids and reactor water cleaning system. As a starting point for the development of the model, the Chicago model 9000 subcritical reactor manual provided by the manufacturer was used, the measurement and verification of the components to adapt the geometric, physical and mechanical characteristics was carried out and materials standards were used to obtain a design that allows to elaborate a new manual according to the specifications. In addition, the 3D models of the building of the Advanced Physics Laboratory, neutron generator, cobalt source and the corridors connecting to the subcritical reactor facility were developed, allowing an animated ride, developed by computer-aided design software. The manual provided by the company Nuclear Chicago, dates from the year 1959 and presents diverse deviations in the design and dimensions of the reactor components. The model developed; in addition to supporting the development of the new manual represents a learning tool to visualize the reactor components. (Author)

  20. Subcritical Noise Analysis Measurements with Fresh and Spent Research Reactor Fuels Elements

    Energy Technology Data Exchange (ETDEWEB)

    Valentine, T.E.; Mihalczo, J.T.; Kryter, R.C.; Miller, V.C.

    1999-02-01

    The verification of the subcriticality is of utmost importance for the safe transportation and storage of nuclear reactor fuels. Transportation containers and storage facilities are designed such that nuclear fuels remain in a subcritical state. Such designs often involve excess conservatism because of the lack of relevant experimental data to verify the accuracy of Monte Carlo codes used in nuclear criticality safety analyses. A joint experimental research program between Oak Ridge National Laboratory, Westinghouse Safety Management Solutions, Inc., and the University of Missouri was initiated to obtain measured quantities that could be directly related to the subcriticality of simple arrays of Missouri University Research Reactor (MURR) fuel elements. A series of measurement were performed to assess the reactivity of materials such as BORAL, stainless steel, aluminum, and lead that are typically used in the construction of shipping casks. These materials were positioned between the fuel elements. In addition, a limited number of measurements were performed with configurations of fresh and spent (irradiated) fuel elements to ascertain the reactivity of the spent fuel elements. In these experiments, fresh fuel elements were replaced by spent fuel elements such that the subcritical reactivity change could be measured. The results of these measurements were used by Westinghouse Safety Management Solutions to determine the subcriticality of MURR fuel elements isolated by absorbing materials. The measurements were interpreted using the MCNP-DSP Monte Carlo code to obtain the subcritical neutron multiplication factor k(sub eff), and the bias in K(sub eff) that are used in criticality safety analyses.

  1. Numerical simulations of subcritical reactor kinetics in thermal hydraulic transient phases

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, J.; Park, W. S. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    A subcritical reactor driven by a linear proton accelerator has been considered as a nuclear waste incinerator at Korea Atomic Energy Research Institute (KAERI). Since the multiplication factor of a subcritical reactor is less than unity, to compensate exponentially decreasing fission neutrons, external neutrons form spallation reactions are essentially required for operating the reactor in its steady state. Furthermore, the profile of accelerator beam currents is very important in controlling a subcritical reactor, because the reactor power varies in accordance to the profile of external neutrons. We have developed a code system to find numerical solutions of reactor kinetics equations, which are the simplest dynamic model for controlling reactors. In a due course of our previous numerical study of point kinetics equations for critical reactors, however, we learned that the same code system can be used in studying dynamic behavior of the subcritical reactor. Our major motivation of this paper is to investigate responses of subcritical reactors for small changes in thermal hydraulic parameters. Building a thermal hydraulic model for the subcritical reactor dynamics, we performed numerical simulations for dynamic responses of the reactor based on point kinetics equations with a source term. Linearizing a set of coupled differential equations for reactor responses, we focus our research interest on dynamic responses of the reactor to variations of the thermal hydraulic parameters in transient phases. 5 refs., 8 figs. (Author)

  2. Experimental subcritical facility driven by D-D/D-T neutron generator at BARC, India

    Science.gov (United States)

    Sinha, Amar; Roy, Tushar; Kashyap, Yogesh; Ray, Nirmal; Shukla, Mayank; Patel, Tarun; Bajpai, Shefali; Sarkar, P. S.; Bishnoi, Saroj

    2015-05-01

    The paper presents design of an experimental subcritical assembly driven by D-D/D-T neutron and preliminary experimental measurements. The system has been developed for investigating the static and dynamic neutronic properties of accelerator driven sub-critical systems. This system is modular in design and it is first in the series of subcritical assemblies being designed. The subcritical core consists of natural uranium fuel with high density polyethylene as moderator and beryllium oxide as reflector. The fuel is embedded in high density polyethylene moderator matrix. Estimated keff of the system is ∼0.89. One of the unique features of subcritical core is the use of Beryllium oxide (BeO) as reflector and HDPE as moderator making the assembly a compact modular system. The subcritical core is coupled to Purnima Neutron Generator which works in D-D and D-T mode with both DC and pulsed operation. It has facility for online source strength monitoring using neutron tagging and programmable source modulation. Preliminary experiments have been carried out for spatial flux measurement and reactivity estimation using pulsed neutron source (PNS) techniques with D-D neutrons. Further experiments are being planned to measure the reactivity and other kinetic parameters using noise methods. This facility would also be used for carrying out studies on effect of source importance and measurement of source multiplication factor ks and external neutron source efficiency φ∗ in great details. Experiments with D-T neutrons are also underway.

  3. A one-electron model for the aqueous electron that includes many-body electron-water polarization: Bulk equilibrium structure, vertical electron binding energy, and optical absorption spectrum.

    Science.gov (United States)

    Jacobson, Leif D; Herbert, John M

    2010-10-21

    Previously, we reported an electron-water pseudopotential designed to be used in conjunction with a polarizable water model, in order to describe the hydrated electron [L. D. Jacobson et al., J. Chem. Phys. 130, 124115 (2009)]. Subsequently, we found this model to be inadequate for the aqueous electron in bulk water, and here we report a reparametrization of the model. Unlike the previous model, the current version is not fit directly to any observables; rather, we use an ab initio exchange-correlation potential, along with a repulsive potential that is fit to reproduce the density maximum of the excess electron's wave function within the static-exchange approximation. The new parametrization performs at least as well as the previous model, as compared to ab initio benchmarks for (H(2)O)(n) (-) clusters, and also predicts reasonable values for the diffusion coefficient, radius of gyration, and absorption maximum of the bulk species. The new model predicts a vertical electron binding energy of 3.7 eV in bulk water, which is 1.4 eV smaller than the value obtained using nonpolarizable models; the difference represents the solvent's electronic reorganization energy following electron detachment. We find that the electron's first solvation shell is quite loose, which may be responsible for the electron's large, positive entropy of hydration. Many-body polarization alters the electronic absorption line shape in a qualitative way, giving rise to a high-energy tail that is observed experimentally but is absent in previous simulations. In our model, this feature arises from spatially diffuse excited states that are bound only by electronic reorganization (i.e., solvent polarization) following electronic excitation.

  4. Ab initio calculation of the electronic absorption spectrum of liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Martiniano, Hugo F. M. C.; Galamba, Nuno [Grupo de Física Matemática da Universidade de Lisboa, Av. Professor Gama Pinto 2, 1649-003 Lisboa (Portugal); Cabral, Benedito J. Costa, E-mail: ben@cii.fc.ul.pt [Grupo de Física Matemática da Universidade de Lisboa, Av. Professor Gama Pinto 2, 1649-003 Lisboa (Portugal); Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa (Portugal); Instituto de Física da Universidade de São Paulo, CP 66318, 05314-970 São Paulo, SP (Brazil)

    2014-04-28

    The electronic absorption spectrum of liquid water was investigated by coupling a one-body energy decomposition scheme to configurations generated by classical and Born-Oppenheimer Molecular Dynamics (BOMD). A Frenkel exciton Hamiltonian formalism was adopted and the excitation energies in the liquid phase were calculated with the equation of motion coupled cluster with single and double excitations method. Molecular dynamics configurations were generated by different approaches. Classical MD were carried out with the TIP4P-Ew and AMOEBA force fields. The BLYP and BLYP-D3 exchange-correlation functionals were used in BOMD. Theoretical and experimental results for the electronic absorption spectrum of liquid water are in good agreement. Emphasis is placed on the relationship between the structure of liquid water predicted by the different models and the electronic absorption spectrum. The theoretical gas to liquid phase blue-shift of the peak positions of the electronic absorption spectrum is in good agreement with experiment. The overall shift is determined by a competition between the O–H stretching of the water monomer in liquid water that leads to a red-shift and polarization effects that induce a blue-shift. The results illustrate the importance of coupling many-body energy decomposition schemes to molecular dynamics configurations to carry out ab initio calculations of the electronic properties in liquid phase.

  5. Dynamics, magnetic properties, and electron binding energies of H2O2 in water.

    Science.gov (United States)

    C Cabral, Benedito J

    2017-06-21

    Results for the magnetic properties and electron binding energies of H2O2 in liquid water are presented. The adopted methodology relies on the combination of Born-Oppenheimer molecular dynamics and electronic structure calculations. The Keal-Tozer functional was applied for predicting magnetic shieldings and H2O2 intramolecular spin-spin coupling constants. Electron binding energies were calculated with electron propagator theory. In water, H2O2 is a better proton donor than proton acceptor, and the present results indicate that this feature is important for understanding magnetic properties in solution. In comparison with the gas-phase, H2O2 atoms are deshielded in water. For oxygen atoms, the deshielding is mainly determined by structural/conformational changes. Hydrogen-bond interactions explain the deshielding of protons in water. The predicted chemical shift for the H2O2 protons in water (δ∼11.8 ppm) is in good agreement with experimental information (δ=11.2 ppm). The two lowest electron binding energies of H2O2 in water (10.7±0.5 and 11.2±0.5 eV) are in reasonable agreement with experiment. In keeping with data from photoelectron spectroscopy, an ∼1.6 eV red-shift of the two first ionisation energies relative to the gas-phase is observed in water. The strong dependence of magnetic properties on changes of the electronic density in the nuclei environment is illustrated by a correlation between the σ(17O) magnetic shielding constant and the energy gap between the [2a] lowest valence and [1a] core orbitals of H2O2.

  6. Dynamics, magnetic properties, and electron binding energies of H2O2 in water

    Science.gov (United States)

    C. Cabral, Benedito J.

    2017-06-01

    Results for the magnetic properties and electron binding energies of H2O2 in liquid water are presented. The adopted methodology relies on the combination of Born-Oppenheimer molecular dynamics and electronic structure calculations. The Keal-Tozer functional was applied for predicting magnetic shieldings and H2O2 intramolecular spin-spin coupling constants. Electron binding energies were calculated with electron propagator theory. In water, H2O2 is a better proton donor than proton acceptor, and the present results indicate that this feature is important for understanding magnetic properties in solution. In comparison with the gas-phase, H2O2 atoms are deshielded in water. For oxygen atoms, the deshielding is mainly determined by structural/conformational changes. Hydrogen-bond interactions explain the deshielding of protons in water. The predicted chemical shift for the H2O2 protons in water (δ ˜11.8 ppm) is in good agreement with experimental information (δ =11.2 ppm). The two lowest electron binding energies of H2O2 in water (10.7 ±0.5 and 11.2 ±0.5 eV) are in reasonable agreement with experiment. In keeping with data from photoelectron spectroscopy, an ˜1.6 eV red-shift of the two first ionisation energies relative to the gas-phase is observed in water. The strong dependence of magnetic properties on changes of the electronic density in the nuclei environment is illustrated by a correlation between the σ(17O) magnetic shielding constant and the energy gap between the [2a] lowest valence and [1a] core orbitals of H2O2.

  7. Impact of electronic faucets and water quality on the occurrence of Pseudomonas aeruginosa in water: a multi-hospital study.

    Science.gov (United States)

    Charron, Dominique; Bédard, Emilie; Lalancette, Cindy; Laferrière, Céline; Prévost, Michèle

    2015-03-01

    To compare Pseudomonas aeruginosa prevalence in electronic and manual faucets and assess the influence of connecting pipes and water quality. Faucets in 4 healthcare centers in Quebec, Canada. Water samples from 105 electronic, 90 manual, and 14 foot-operated faucets were analyzed for P. aeruginosa by culture and enzymatic detection, and swab samples from drains and aerators were analyzed by culture. Copper and residual chlorine concentrations, temperature, and flow rate were measured. P. aeruginosa concentrations were analyzed in 4 consecutive volumes of cold water and a laboratory study was conducted on copper pipes and flexible hoses. P. aeruginosa contamination was found in drains more frequently (51%) than in aerators (1%) or water (culture: 4%, enzyme detection: 16%). Prevalence in water samples was comparable between manual (14%) and 2 types of electronic faucets (16%) while higher for foot-operated faucets (29%). However, type 2 electronic faucets were more often contaminated (31%) than type 1 (14%), suggesting that faucet architecture and mitigated volume (30 mL vs 10 mL) influence P. aeruginosa growth. Concentrations were 100 times higher in the first 250 mL than after flushing. Flexible hoses were more favorable to P. aeruginosa growth than copper and a temperature of 40°C led to higher counts. The types of faucets and connecting pipes, flow rate, and water quality are important parameters influencing the prevalence and the concentrations of P. aeruginosa in faucets. High concentrations of P. aeruginosa in the first 250 mL suggest increased risk of exposure when using the first flush.

  8. Development study on subcriticality monitor. 1. Report under business contract with Japan Nuclear Fuel Cycle Development Institute

    CERN Document Server

    Yamada, S

    2002-01-01

    In this trust fund, we reviewed subcriticality measuring methods and neutron or gamma ray measuring and date transmission systems appropriate for realizing inexpensive on-line criticality surveillance systems, which is required for ensuring the safety of nuclear fuel reprocessing plants. Since the neutron flux level in subcritical systems is fairly low without external neutron sources, it is desirable to use pulse type neutron detectors for subcritical measurement systems. This logically implies that subcriticality measurement methods based on the temporal domain should be used for developing an on-line criticality surveillance system. In the deep subcriticality conditions, a strong external neutron source is needed for eactivity measurement and a D-T tube can be used in order to improve the accuracy of the measurement. A D-T tube is convenient since it is free from Tritium problem since Tritium is sealed in an airtight container and also can be controlled by power supply. Hence, under deep subcritical condit...

  9. Subcritical hydrothermal conversion of organic wastes and biomass. Reaction pathways

    Directory of Open Access Journals (Sweden)

    Alejandro Amadeus Castro Vega

    2010-04-01

    Full Text Available Hydrothermal conversion is a procedure which emulates organic matter’s natural conversion into bio-crude having physical and chemical properties analogous to petroleum. The artificial transformation of biomass requi- res previous knowledge of the main reaction routes and product availability. The main component of biomass (depolymerisation by hydrolysis is presented in hydrothermal cellulose conversion, producing oligosaccharides which exhibit dehydration and retro-aldol condensation reactions for transforming into furfurals and carboxylic acids. Other biomass components (such as lignin, proteins, and fat esters present both hydrolysis and pyrolysis reaction routes. As long as biomass mainly contains carbohydrates, subcritical hydrothermal conversion products and their wastes will be fundamentally analogous to those displaying cellulose. These substances have added- value by far surpassing raw material’s acquisition cost. When the main hydrothermal conversion products’ O/C, H/C molar ratios as reported in literature are plotted, an evolutionary tralectory for conversion products appears to be closely or even overlapped with fossil fuels’ geological evolution.

  10. Effect of fluid salinity on subcritical crack propagation in calcite

    Science.gov (United States)

    Rostom, Fatma; Røyne, Anja; Dysthe, Dag Kristian; Renard, François

    2013-01-01

    The slow propagation of cracks, also called subcritical crack growth, is a mechanism of fracturing responsible for a ductile deformation of rocks under crustal conditions. In the present study, the double-torsion technique was used to measure the effect of fluid chemistry on the slow propagation of cracks in calcite single crystals at room temperature. Time-lapse images and measurements of force and load-point displacement allowed accurate characterization of crack velocities in a range of 10- 8 to 10- 4 m/s. Velocity curves as a function of energy-release rates were obtained for different fluid compositions, varying NH4Cl and NaCl concentrations. Our results show the presence of a threshold in fluid composition, separating two regimes: weakening conditions where the crack propagation is favored, and strengthening conditions where crack propagation slows down. We suggest that electrostatic surface forces that modify the repulsion forces between the two surfaces of the crack may be responsible for this behavior.

  11. Effective Subcritical Butane Extraction of Bifenthrin Residue in Black Tea.

    Science.gov (United States)

    Zhang, Yating; Gu, Lingbiao; Wang, Fei; Kong, Lingjun; Qin, Guangyong

    2017-03-30

    As a natural and healthy beverage, tea is widely enjoyed; however, the pesticide residues in tea leaves affect the quality and food safety. To develop a highly selective and efficient method for the facile removal of pesticide residues, the subcritical butane extraction (SBE) technique was employed, and three variables involving temperature, time and extraction cycles were studied. The optimum SBE conditions were found to be as follows: extraction temperature 45 °C, extraction time 30 min, number of extraction cycles 1, and in such a condition that the extraction efficiency reached as high as 92%. Further, the catechins, theanine, caffeine and aroma components, which determine the quality of the tea, fluctuated after SBE treatment. Compared with the uncrushed leaves, pesticide residues can more easily be removed from crushed leaves, and the practical extraction efficiency was 97%. These results indicate that SBE is a useful method to efficiently remove the bifenthrin, and as appearance is not relevant in the production process, tea leaves should first be crushed and then extracted in order that residual pesticides are thoroughly removed.

  12. The Chain-Length Distribution in Subcritical Systems

    Energy Technology Data Exchange (ETDEWEB)

    Nolen, Steven Douglas [Texas A & M Univ., College Station, TX (United States)

    2000-06-01

    The individual fission chains that appear in any neutron multiplying system provide a means, via neutron noise analysis, to unlock a wealth of information regarding the nature of the system. This work begins by determining the probability density distributions for fission chain lengths in zero-dimensional systems over a range of prompt neutron multiplication constant (K) values. This section is followed by showing how the integral representation of the chain-length distribution can be used to obtain an estimate of the system's subcritical prompt multiplication (MP). The lifetime of the chains is then used to provide a basis for determining whether a neutron noise analysis will be successful in assessing the neutron multiplication constant, k, of the system in the presence of a strong intrinsic source. A Monte Carlo transport code, MC++, is used to model the evolution of the individual fission chains and to determine how they are influenced by spatial effects. The dissertation concludes by demonstrating how experimental validation of certain global system parameters by neutron noise analysis may be precluded in situations in which the system K is relatively low and in which realistic detector efficiencies are simulated.

  13. Reynolds number effect on VIV: from subcritical to supercritical flow

    Energy Technology Data Exchange (ETDEWEB)

    Triantafyllou, M.S.; Hover, F.S.; Techet, A.H. [Massachusetts Inst. of Tech., Dept. of Ocean Engineering, Cambridge, MA (United States)

    2004-07-01

    Vortex Induced Vibrations in flexibly supported rigid cylinders and long, flexible slender structures, such as cables and risers, are caused by the formation of large-scale vortices, whose dynamics are controlled to a large extend by inviscid mechanisms. Reynolds number remains a very important parameter, however, because it influences the formation and shedding mechanisms of the vortical patterns. For low Reynolds numbers, below a few thousand, a nearly complete understanding has been obtained in recent years, at least for flexibly mounted rigid cylinders. This is not the case, though, for VIV above Re=10,000 and - especially - above the critical Reynolds number of about Re=250,000 for smooth cylinders. The talk provides observed WV trends of flexibly mounted cylinders, obtained in recent experiments as function of the Reynolds number, from Re about 1,000 up to 1,000,000. In particular, similarities and differences between subcritical and supercritical force and motion data will be discussed, and conclusions on the governing principal mechanisms will be drawn, including transitions in the arrangement of vortical patterns and effects of correlation length. (authors)

  14. Effective Subcritical Butane Extraction of Bifenthrin Residue in Black Tea

    Directory of Open Access Journals (Sweden)

    Yating Zhang

    2017-03-01

    Full Text Available As a natural and healthy beverage, tea is widely enjoyed; however, the pesticide residues in tea leaves affect the quality and food safety. To develop a highly selective and efficient method for the facile removal of pesticide residues, the subcritical butane extraction (SBE technique was employed, and three variables involving temperature, time and extraction cycles were studied. The optimum SBE conditions were found to be as follows: extraction temperature 45 °C, extraction time 30 min, number of extraction cycles 1, and in such a condition that the extraction efficiency reached as high as 92%. Further, the catechins, theanine, caffeine and aroma components, which determine the quality of the tea, fluctuated after SBE treatment. Compared with the uncrushed leaves, pesticide residues can more easily be removed from crushed leaves, and the practical extraction efficiency was 97%. These results indicate that SBE is a useful method to efficiently remove the bifenthrin, and as appearance is not relevant in the production process, tea leaves should first be crushed and then extracted in order that residual pesticides are thoroughly removed.

  15. Enhanced Capabilities for Subcritical Experiments (ECSE) Risk Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Urban, Mary Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Process Modeling and Analysis Group

    2016-05-02

    Risk is a factor, element, constraint, or course of action that introduces an uncertainty of outcome that could impact project objectives. Risk is an inherent part of all activities, whether the activity is simple and small, or large and complex. Risk management is a process that identifies, evaluates, handles, and monitors risks that have the potential to affect project success. The risk management process spans the entire project, from its initiation to its successful completion and closeout, including both technical and programmatic (non-technical) risks. This Risk Management Plan (RMP) defines the process to be used for identifying, evaluating, handling, and monitoring risks as part of the overall management of the Enhanced Capabilities for Subcritical Experiments (ECSE) ‘Project’. Given the changing nature of the project environment, risk management is essentially an ongoing and iterative process, which applies the best efforts of a knowledgeable project staff to a suite of focused and prioritized concerns. The risk management process itself must be continually applied throughout the project life cycle. This document was prepared in accordance with DOE O 413.3B, Program and Project Management for the Acquisition of Capital Assets, its associated guide for risk management DOE G 413.3-7, Risk Management Guide, and LANL ADPM AP-350-204, Risk and Opportunity Management.

  16. Vortex-Induced Vibration Tests of a Marine Growth Wrapped Cylinder at Subcritical Reynolds Number

    Directory of Open Access Journals (Sweden)

    Kurian V. J.

    2017-01-01

    Full Text Available Vortex Induced Vibrations (VIV may cause great damage to deep water risers. Estimation of accurate hydrodynamic coefficients and response amplitudes for fouled tubular cylinders subjected to VIVs is a complex task. This paper presents the results of an extensive experimental investigation on in-line and cross-flow forces acting on cylinders wrapped with marine growth, subjected to current at Subcritical Reynolds Number. The drag and lift force coefficients have been determined through the use of the Fast Fourier Analysis methods. The different tests were conducted in the offshore engineering laboratory at Universiti Teknologi PETRONAS (UTP, Malaysia. In this study, a cylinder with outer diameter Do = 27 mm, fixed at top as cantilever beam was used. The in-line and cross-flow forces were measured using VIV Force Totaller (VIVFT. VIVFT is a two degree of freedom (2DOF forces sensor developed by UTP to measure the VIV forces. The tests were conducted for current velocity varied between 0.118 to 0.59 m/s. The test results suggest that the cylinder wrapped with marine growth has shown an overall increase in drag and inertia coefficients as well as on response amplitudes.

  17. Microwave Assisted Extraction of Defatted Roselle (Hibiscus sabdariffa L. Seed at Subcritical Conditions with Statistical Analysis

    Directory of Open Access Journals (Sweden)

    N. I. Yusoff

    2017-01-01

    Full Text Available Roselle seeds are the waste product of roselle processing, but they are now labeled as a polyphenol source with great herbal quality. In this work, polyphenols were extracted using ethanol-water (70% (v/v in a closed vessel under microwave irradiation. The main objective was to determine the optimal parameters statistically. The influence of extraction time (4–10 min, microwave power (100–300 W, and solvent/solid ratio (25–100 mL/g was studied. The total phenolic and flavonoids content were determined using Folin-Ciocalteu and aluminum chloride methods, respectively. Without temperature control, the subcritical conditions could occur and the highest flavonoid content (14.4251 mg QE/g was achieved at 158°C and 16.4 bar. Although the optimum MAE conditions (10 min, 300 W, and 97.7178 mL/g resulted in the highest yield (65.0367% and phenolic content (18.2244 mg GAE/g, low flavonoids content (6.4524 mg QE/g was unexpectedly obtained due to degradation at 163°C.

  18. Understanding the Role of Water on Electron-Initiated Processes and Radical Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Garrett, Bruce C [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Colson, Steven D [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dixon, David A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Laufer, Allan H [US Department of Energy Office of Science Office of Basic Energy Sciences; Ray, Douglas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2003-06-10

    On September 26–28, 2002, a workshop entitled “Understanding the Role of Water on Electron-Initiated Processes and Radical Chemistry” was held to assess new research opportunities in electron-driven processes and radical chemistry in aqueous systems. Of particular interest was the unique and complex role that the structure of water plays in influencing these processes. Novel experimental and theoretical approaches to solving long-standing problems in the field were explored. A broad selection of participants from universities and the national laboratories contributed to the workshop, which included scientific and technical presentations and parallel sessions for discussions and report writing.

  19. Experimental subcritical facility driven by D-D/D-T neutron generator at BARC, India

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Amar, E-mail: image@barc.gov.in; Roy, Tushar; Kashyap, Yogesh; Ray, Nirmal; Shukla, Mayank; Patel, Tarun; Bajpai, Shefali; Sarkar, P.S.; Bishnoi, Saroj

    2015-05-01

    Highlights: •Experimental subcritical facility BRAHMMA coupled to D-D/D-T neutron generator. •Preliminary results of PNS experiments reported. •Feynman-alpha noise measurements explored with continuous source. -- Abstract: The paper presents design of an experimental subcritical assembly driven by D-D/D-T neutron and preliminary experimental measurements. The system has been developed for investigating the static and dynamic neutronic properties of accelerator driven sub-critical systems. This system is modular in design and it is first in the series of subcritical assemblies being designed. The subcritical core consists of natural uranium fuel with high density polyethylene as moderator and beryllium oxide as reflector. The fuel is embedded in high density polyethylene moderator matrix. Estimated k{sub eff} of the system is ∼0.89. One of the unique features of subcritical core is the use of Beryllium oxide (BeO) as reflector and HDPE as moderator making the assembly a compact modular system. The subcritical core is coupled to Purnima Neutron Generator which works in D-D and D-T mode with both DC and pulsed operation. It has facility for online source strength monitoring using neutron tagging and programmable source modulation. Preliminary experiments have been carried out for spatial flux measurement and reactivity estimation using pulsed neutron source (PNS) techniques with D-D neutrons. Further experiments are being planned to measure the reactivity and other kinetic parameters using noise methods. This facility would also be used for carrying out studies on effect of source importance and measurement of source multiplication factor k{sub s} and external neutron source efficiency φ{sup ∗} in great details. Experiments with D-T neutrons are also underway.

  20. Electron-induced hydrogen loss in uracil in a water cluster environment

    Energy Technology Data Exchange (ETDEWEB)

    Smyth, M.; Kohanoff, J. [Atomistic Simulation Centre, Queen' s University Belfast, Belfast BT7 1NN, Northern Ireland (United Kingdom); Fabrikant, I. I., E-mail: ifabrikant1@unl.edu [Department of Physics and Astronomy, University of Nebraska, Lincoln, Nebraska 68588, USA and Department of Physical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom)

    2014-05-14

    Low-energy electron-impact hydrogen loss due to dissociative electron attachment (DEA) to the uracil and thymine molecules in a water cluster environment is investigated theoretically. Only the A{sup ′}-resonance contribution, describing the near-threshold behavior of DEA, is incorporated. Calculations are based on the nonlocal complex potential theory and the multiple scattering theory, and are performed for a model target with basic properties of uracil and thymine, surrounded by five water molecules. The DEA cross section is strongly enhanced when the attaching molecule is embedded in a water cluster. This growth is due to two effects: the increase of the resonance lifetime and the negative shift in the resonance position due to interaction of the intermediate negative ion with the surrounding water molecules. A similar effect was earlier found in DEA to chlorofluorocarbons.

  1. Electron-induced hydrogen loss in uracil in a water cluster environment.

    Science.gov (United States)

    Smyth, M; Kohanoff, J; Fabrikant, I I

    2014-05-14

    Low-energy electron-impact hydrogen loss due to dissociative electron attachment (DEA) to the uracil and thymine molecules in a water cluster environment is investigated theoretically. Only the A(')-resonance contribution, describing the near-threshold behavior of DEA, is incorporated. Calculations are based on the nonlocal complex potential theory and the multiple scattering theory, and are performed for a model target with basic properties of uracil and thymine, surrounded by five water molecules. The DEA cross section is strongly enhanced when the attaching molecule is embedded in a water cluster. This growth is due to two effects: the increase of the resonance lifetime and the negative shift in the resonance position due to interaction of the intermediate negative ion with the surrounding water molecules. A similar effect was earlier found in DEA to chlorofluorocarbons.

  2. A Monte Carlo calculation of subexcitation and vibrationally-relaxing electron spectra in irradiated liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Cobut, V.; Frongillo, Y.; Jay-Gerin, J.-P. (Sherbrooke Univ., PQ (Canada). Faculte de Medecine); Patau, J.-P. (Toulouse-3 Univ., 31 (France))

    1992-12-01

    An energy spectrum of ''subexcitation electrons'' produced in liquid water by electrons with initial energies of a few keV is obtained by using a Monte Carlo transport simulation calculation. It is found that the introduction of vibrational-excitation cross sections leads to the appearance of a sharp peak in the probability density function near the electronic-excitation threshold. Electrons contributing to this peak are shown to be more naturally described if a novel energy spectrum, that we propose to name ''vibrationally-relaxing electron'' spectrum, is introduced. The corresponding distribution function is presented, and an empirical expression of it is given. (author).

  3. Electron irradiation-enhanced water and hydrocarbon adsorption in EUV lithography devices

    Science.gov (United States)

    Al-Ajlony, A.; Kanjilal, A.; Catalfano, M.; Harilal, S. S.; Hassanein, A.

    2014-01-01

    The accumulation of water and hydrocarbons molecules on pure Au smooth surfaces were monitored during 100 eV electron bombardment at various beam current levels. Our studies showed that these low energy electrons could accelerate the physical adsorption processes of the gaseous contaminant molecules on the mirror surface. The 100 eV electron beam was used to provide a rough simulation of the secondary electrons generated during the interaction between the EUV beam at 13.5 nm wavelength and the mirror surface in an EUVL device. The adsorption enhancement phenomenon was explained in accordance with Langmuir's Adsorption model by the increase of the sticking coefficient of adsorbed molecules onto the mirror surface. We have also shown that a positive biasing of the top of mirror surface can be used for preventing the secondary electron emission from the mirror surface.

  4. Electron irradiation-enhanced water and hydrocarbon adsorption in EUV lithography devices

    Energy Technology Data Exchange (ETDEWEB)

    Al-Ajlony, A., E-mail: aalajlon@purdue.edu; Kanjilal, A.; Catalfano, M.; Harilal, S.S.; Hassanein, A.

    2014-01-15

    The accumulation of water and hydrocarbons molecules on pure Au smooth surfaces were monitored during 100 eV electron bombardment at various beam current levels. Our studies showed that these low energy electrons could accelerate the physical adsorption processes of the gaseous contaminant molecules on the mirror surface. The 100 eV electron beam was used to provide a rough simulation of the secondary electrons generated during the interaction between the EUV beam at 13.5 nm wavelength and the mirror surface in an EUVL device. The adsorption enhancement phenomenon was explained in accordance with Langmuir's Adsorption model by the increase of the sticking coefficient of adsorbed molecules onto the mirror surface. We have also shown that a positive biasing of the top of mirror surface can be used for preventing the secondary electron emission from the mirror surface.

  5. Electron Emission from Amorphous Solid Water Induced by Passage of Energetic Protons and Fluorine Ions

    Science.gov (United States)

    Toburen, L. H.; McLawhorn, S. L.; McLawhorn, R. A.; Carnes, K. D.; Dingfelder, M.; Shinpaugh, J. L.

    2013-01-01

    Absolute doubly differential electron emission yields were measured from thin films of amorphous solid water (ASW) after the transmission of 6 MeV protons and 19 MeV (1 MeV/nucleon) fluorine ions. The ASW films were frozen on thin (1-μm) copper foils cooled to approximately 50 K. Electrons emitted from the films were detected as a function of angle in both the forward and backward direction and as a function of the film thickness. Electron energies were determined by measuring the ejected electron time of flight, a technique that optimizes the accuracy of measuring low-energy electron yields, where the effects of molecular environment on electron transport are expected to be most evident. Relative electron emission yields were normalized to an absolute scale by comparison of the integrated total yields for proton-induced electron emission from the copper substrate to values published previously. The absolute doubly differential yields from ASW are presented along with integrated values, providing single differential and total electron emission yields. These data may provide benchmark tests of Monte Carlo track structure codes commonly used for assessing the effects of radiation quality on biological effectiveness. PMID:20681805

  6. High power ring methods and accelerator driven subcritical reactor application

    Energy Technology Data Exchange (ETDEWEB)

    Tahar, Malek Haj [Univ. of Grenoble (France)

    2016-08-07

    High power proton accelerators allow providing, by spallation reaction, the neutron fluxes necessary in the synthesis of fissile material, starting from Uranium 238 or Thorium 232. This is the basis of the concept of sub-critical operation of a reactor, for energy production or nuclear waste transmutation, with the objective of achieving cleaner, safer and more efficient process than today’s technologies allow. Designing, building and operating a proton accelerator in the 500-1000 MeV energy range, CW regime, MW power class still remains a challenge nowadays. There is a limited number of installations at present achieving beam characteristics in that class, e.g., PSI in Villigen, 590 MeV CW beam from a cyclotron, SNS in Oakland, 1 GeV pulsed beam from a linear accelerator, in addition to projects as the ESS in Europe, a 5 MW beam from a linear accelerator. Furthermore, coupling an accelerator to a sub-critical nuclear reactor is a challenging proposition: some of the key issues/requirements are the design of a spallation target to withstand high power densities as well as ensure the safety of the installation. These two domains are the grounds of the PhD work: the focus is on the high power ring methods in the frame of the KURRI FFAG collaboration in Japan: upgrade of the installation towards high intensity is crucial to demonstrate the high beam power capability of FFAG. Thus, modeling of the beam dynamics and benchmarking of different codes was undertaken to validate the simulation results. Experimental results revealed some major losses that need to be understood and eventually overcome. By developing analytical models that account for the field defects, one identified major sources of imperfection in the design of scaling FFAG that explain the important tune variations resulting in the crossing of several betatron resonances. A new formula is derived to compute the tunes and properties established that characterize the effect of the field imperfections on the

  7. Concept of turbines for ultrasupercritical, supercritical, and subcritical steam conditions

    Science.gov (United States)

    Mikhailov, V. E.; Khomenok, L. A.; Pichugin, I. I.; Kovalev, I. A.; Bozhko, V. V.; Vladimirskii, O. A.; Zaitsev, I. V.; Kachuriner, Yu. Ya.; Nosovitskii, I. A.; Orlik, V. G.

    2017-11-01

    The article describes the design features of condensing turbines for ultrasupercritical initial steam conditions (USSC) and large-capacity cogeneration turbines for super- and subcritical steam conditions having increased steam extractions for district heating purposes. For improving the efficiency and reliability indicators of USSC turbines, it is proposed to use forced cooling of the head high-temperature thermally stressed parts of the high- and intermediate-pressure rotors, reaction-type blades of the high-pressure cylinder (HPC) and at least the first stages of the intermediate-pressure cylinder (IPC), the double-wall HPC casing with narrow flanges of its horizontal joints, a rigid HPC rotor, an extended system of regenerative steam extractions without using extractions from the HPC flow path, and the low-pressure cylinder's inner casing moving in accordance with the IPC thermal expansions. For cogeneration turbines, it is proposed to shift the upper district heating extraction (or its significant part) to the feedwater pump turbine, which will make it possible to improve the turbine plant efficiency and arrange both district heating extractions in the IPC. In addition, in the case of using a disengaging coupling or precision conical bolts in the coupling, this solution will make it possible to disconnect the LPC in shifting the turbine to operate in the cogeneration mode. The article points out the need to intensify turbine development efforts with the use of modern methods for improving their efficiency and reliability involving, in particular, the use of relatively short 3D blades, last stages fitted with longer rotor blades, evaporation techniques for removing moisture in the last-stage diaphragm, and LPC rotor blades with radial grooves on their leading edges.

  8. Energy deposition model based on electron scattering cross section data from water molecules

    Energy Technology Data Exchange (ETDEWEB)

    Munoz, A; Oiler, J C [Centra de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Avenida Complutense 22, 28040 Madrid (Spain); Blanco, F [Departamento de Fisica Atomica, Molecular y Nuclear, Universidad Complutense de Madrid, Avenida Complutense s.n., 28040 Madrid (Spain); Gorfinkiel, J D [Department of Physiscs and Astronomy, The Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Limao-Vieira, P [Departamento de Fisica, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Maira-Vidal, A; Borge, M J G; Tengblad, O [Instituto de Estructura de la Materia, Consejo Superior de Investigaciones Cientificas (CSIC), Serrano 113-bis, 28006 Madrid, Spam (Spain); Huerga, C; Tellez, M [Hospital Universitario La Paz, paseo de la Castellana 261, 28046 Madrid (Spain); Garcia, G [Instituto de Matematicas y Fisica Fundamental, Consejo Superior de Investigaciones CientifIcas (CSIC), Serrano 113-bis, 28006 Madrid (Spain)], E-mail: g.garcia@imaff.cfmac.csic.es

    2008-10-01

    A complete set of electrons scattering cross sections by water molecules over a broad energy range, from the me V to the Me V ranges, is presented in this study. These data have been obtained by combining experiments and calculations and cover most relevant processes, both elastic and inelastic, which can take place in the considered energy range. A new Monte Carlo simulation programme has been developed using as input parameter these cross sectional data as well as experimental energy loss spectra. The simulation procedure has been applied to obtain electron tracks and energy deposition plots in water when irradiated by a Ru-106 plaque as those used for brachytherapy of ocular tumours. Finally, the low energy electron tracks provided by the present model have been compared with those obtained with other codes available in the literature.

  9. Characterization of Emulsions of Fish Oil and Water by Cryo Scanning Electron Microscopy

    DEFF Research Database (Denmark)

    Jensen, Louise Helene Søgaard; Horn, Anna Frisenfeldt; Jacobsen, Charlotte

    to the many double bonds. Emulsions of fish oil in water are potential candidates for a delivery system of fish oil to food products. It has been suggested that oxidation of oil-in-water emulsions is initiated at the interface between oil and water. It has also been proposed that oxidation is to some extent...... dependent on the ultra structure of the emulsion; including the size of oil droplets, their distribution and the thickness of the interface between oil and water. This interface is stabilized by macromolecules such as proteins, phospholipids and hydrocolloids. The main objective of this study...... is to characterize fish oil in water emulsions with respect to oil droplet size, distribution, and ultimately to view the structure and thickness of the interface layer. A freeze-fractured surface viewed at low temperatures under the scanning electron microscope is a promising strategy to reveal variations...

  10. Influences of water molecules on the electronic properties of atomically thin molybdenum disulfide

    Science.gov (United States)

    Zhang, Kang; Wang, Xingli; Sun, Leimeng; Zou, Jianping; Wang, Jingyuan; Liu, Zheng; Chen, Tupei; Tay, Beng Kang; Zhang, Qing

    2017-07-01

    Although it is well known that the performances of two-dimensional transition metal dichalcogenide (2D-TMD) based devices are strongly affected by humidity, the roles of water molecules in the electronic properties of 2D-TMDs are still unclear. In this work, the influence of water molecules on the electrical properties of monolayer molybdenum disulfide (MoS2) is studied systemically using the dielectric force microscopy (DFM) technique. Taking the advantage of the DFM technique and other nondestructive characterization techniques, the electronic properties (surface potential, dielectrics, and carrier mobility) of atomically thin MoS2 exposed to different levels of humidity are investigated. Furthermore, Raman spectroscopy manifested the correlation between the optical phonon and the mobility drop of MoS2 flakes when subjected to humidity variations. Our results provide an in-depth understanding of the mechanism of water molecules interacting with MoS2.

  11. Subcritical measurements of the WINCO slab tank experiment using the source-jerk technique

    Energy Technology Data Exchange (ETDEWEB)

    Spriggs, G.D.; Hansen, G.E.; Martin, E.R.; Plassmann, E.A.; Pederson, R.A.; Schlesser, J.A.; Krawczyk, T.L.; Tanner, J.E.; Smolen, G.R. (Los Alamos National Lab., NM (USA); Martin Marietta Energy Systems, Inc., Oak Ridge, TN (USA); Westinghouse Idaho Nuclear Co., Inc., Idaho Falls, ID (USA); Martin Marietta Energy Systems, Inc., Oak Ridge, TN (USA))

    1989-01-01

    Subcritical measurements of the WINCO slab tank using the source-jerk technique are presented. This technique determines subcriticality by analyzing the transient response produced by the sudden removal of an extraneous neutron source (i.e., a source jerk). We have found that the technique can provide an accurate means of measuring k in configurations that are close to critical (i.e., 0.90 < k < 1.0). As the system becomes more subcritical (i.e., k < 0.90), spatial effects introduce significant biases depending on the source and detector positions. A comparison between the measurements and Monte Carlo code calculations is also presented. 15 refs., 6 figs., 2 tabs.

  12. Basic Study on Visibility and Water Equivalency of a New Colorless Transparent Bolus for Electron Radiotherapy.

    Science.gov (United States)

    Maruyama, Daiki; Yamazaki, Shinichi; Honda, Emi; Suzuki, Eiji; Hommatsu, Kouji; Oshiba, Ryo; Sato, Noboru

    2017-01-01

    Boluses used in electron radiotherapy need to have radiation field visibility and water equivalence. In this report, we have examined field visibility and water equivalence of a new colorless transparent bolus. We examined field visibility, water equivalence, and dose profile. Field visibility was evaluated by comparison to conventional bolus. Water equivalence was investigated by a measured fluence scaling factor. The dose profile was measured by using radiochromic film with the bolus and an ionization chamber in water. We confirmed that the irradiation field could clearly be seen through the transparent colorless bolus. The bolus did not cast a field edge as compared with the conventional bolus. The fluence scaling factor was less than 0.8% as compared to water. We confirmed that the colorless transparent bolus was treated as a water equivalent material. The percentage depth dose (PDD) measured by using radiochromic film with the bolus matched the PDD measured with an ionization chamber in water. R50 was less than 1 mm as compared to PDD measured with an ionization chamber. It was confirmed that the colorless transparent bolus can use to set up patient without losing visibility on flat ground planes. The fluence scaling factor and dose profile measured by using the bolus matched the results measured in water. Therefore, the new colorless transparent bolus has feasibility to improve patient setup efficiency and can improve calculation accuracy by using the fluence scaling factor.

  13. Giant onsite electronic entropy enhances the performance of ceria for water splitting.

    Science.gov (United States)

    Naghavi, S Shahab; Emery, Antoine A; Hansen, Heine A; Zhou, Fei; Ozolins, Vidvuds; Wolverton, Chris

    2017-08-18

    Previous studies have shown that a large solid-state entropy of reduction increases the thermodynamic efficiency of metal oxides, such as ceria, for two-step thermochemical water splitting cycles. In this context, the configurational entropy arising from oxygen off-stoichiometry in the oxide, has been the focus of most previous work. Here we report a different source of entropy, the onsite electronic configurational entropy, arising from coupling between orbital and spin angular momenta in lanthanide f orbitals. We find that onsite electronic configurational entropy is sizable in all lanthanides, and reaches a maximum value of ≈4.7 k B per oxygen vacancy for Ce 4+ /Ce 3+ reduction. This unique and large positive entropy source in ceria explains its excellent performance for high-temperature catalytic redox reactions such as water splitting. Our calculations also show that terbium dioxide has a high electronic entropy and thus could also be a potential candidate for solar thermochemical reactions.Solid-state entropy of reduction increases the thermodynamic efficiency of ceria for two-step thermochemical water splitting. Here, the authors report a large and different source of entropy, the onsite electronic configurational entropy arising from coupling between orbital and spin angular momenta in f orbitals.

  14. Subcritical calculation of the nuclear material warehouse;Calculo de subcriticidad del almacen del material nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Garcia M, T.; Mazon R, R., E-mail: teodoro.garcia@inin.gob.m [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2009-07-01

    In this work the subcritical calculation of the nuclear material warehouse of the Reactor TRIGA Mark III labyrinth in the Mexico Nuclear Center is presented. During the adaptation of the nuclear warehouse (vault I), the fuel was temporarily changed to the warehouse (vault II) and it was also carried out the subcritical calculation for this temporary arrangement. The code used for the calculation of the effective multiplication factor, it was the Monte Carlo N-Particle Extended code known as MCNPX, developed by the National Laboratory of Los Alamos, for the particles transport. (Author)

  15. Geant4-DNA simulation of electron slowing-down spectra in liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Incerti, S., E-mail: sebastien.incerti@tdt.edu.vn [Division of Nuclear Physics, Ton Duc Thang University, Tan Phong Ward, District 7, Ho Chi Minh City (Viet Nam); Faculty of Applied Sciences, Ton Duc Thang University, Tan Phong Ward, District 7, Ho Chi Minh City (Viet Nam); Univ. Bordeaux, CENBG, UMR 5797, F-33170, Gradignan (France); CNRS, IN2P3, CENBG, UMR 5797, F-33170 Gradignan (France); Kyriakou, I. [Medical Physics Laboratory, University of Ioannina Medical School, 45110 Ioannina (Greece); Tran, H.N. [Division of Nuclear Physics, Ton Duc Thang University, Tan Phong Ward, District 7, Ho Chi Minh City (Viet Nam); Faculty of Applied Sciences, Ton Duc Thang University, Tan Phong Ward, District 7, Ho Chi Minh City (Viet Nam)

    2017-04-15

    This work presents the simulation of monoenergetic electron slowing-down spectra in liquid water by the Geant4-DNA extension of the Geant4 Monte Carlo toolkit (release 10.2p01). These spectra are simulated for several incident energies using the most recent Geant4-DNA physics models, and they are compared to literature data. The influence of Auger electron production is discussed. For the first time, a dedicated Geant4-DNA example allowing such simulations is described and is provided to Geant4 users, allowing further verification of Geant4-DNA track structure simulation capabilities.

  16. Skeletal growth phases of the cold-water coral Lophelia pertusa shown by scanning electron microscope and electron backscatter diffraction

    Science.gov (United States)

    Mouchi, Vincent; Vonlanthen, Pierre; Verrecchia, Eric P.; Crowley, Quentin G.

    2016-04-01

    Lophelia pertusa is a cold-water coral, which may form reefs by the association of multiple coralites within which a polyp lives. Each individual polyp builds an aragonite skeleton by an initial phase of early mineralization (traditionally referred to as centres of calcification) from which aragonite fibres grow in thickening deposits. The skeleton wall features successive optically opaque and translucent bands previously attributed to different regimes of growth as either uniform in crystal orientation (translucent bands) or with a chaotic organization (opaque bands). The processes involved in any organizational changes are still unknown. Microlayers in the coral wall, which represent separate periods of skeletal growth, have been recently identified and described. These growth patterns are readily visible under scanning electron microscope (SEM) after etching in dilute formic acid, but they do not necessarily form continuously visible structures. Here we present high quality SEM images and electron backscatter diffraction (EBSD) maps to study aragonite fibre orientation across the wall of L. pertusa. Both microlayers and opaque and translucent bands are compared to the crystallographic orientation of the aragonite fibres. EBSD maps and SEM images indicate that aragonite fibres do not exhibit a chaotic orientation, even in opaque bands. The absence of continuity of microlayers is partially explained by an association of multiple crystallographic preferred orientations of aragonite fibres. In the case of L. pertusa, careful textural characterisation is necessary prior to elemental or isotope analysis in order to select a skeletal transect representing a linear and continuous time period.

  17. Nanostructure Fabrication by Electron-Beam-Induced Deposition with Metal Carbonyl Precursor and Water Vapor

    Science.gov (United States)

    Takeguchi, Masaki; Shimojo, Masayuki; Furuya, Kazuo

    2007-09-01

    Nanorod fabrication is performed by electron beam induced deposition (EBID) with iron carbonyl [Fe(CO)5] and tungsten carbonyl [W(CO)6] precursors. The effects of water vapor addition to each metal carbonyl on the microstructure and composition of the obtained nanorods are studied. Normally, EBID-fabricated metal nanorods consist of an amorphous phase containing a considerable amount of carbon. However, it is found that water vapor addition to iron carbonyl can effectively reduce the carbon content of the nanorods and induce the formation of carbon-free crystalline Fe3O4 nanorods with increasing partial pressure ratio of water vapor to iron carbonyl. In contrast, for tungsten carbonyl, water vapor addition has no obvious effect on carbon content reduction. The obtained nanorods consist of a carbon-rich amorphous matrix containing tungsten oxide nanocrystals inside.

  18. Ordered water structure at hydrophobic graphite interfaces observed by 4D, ultrafast electron crystallography

    Science.gov (United States)

    Yang, Ding-Shyue; Zewail, Ahmed H.

    2009-01-01

    Interfacial water has unique properties in various functions. Here, using 4-dimensional (4D), ultrafast electron crystallography with atomic-scale spatial and temporal resolution, we report study of structure and dynamics of interfacial water assembly on a hydrophobic surface. Structurally, vertically stacked bilayers on highly oriented pyrolytic graphite surface were determined to be ordered, contrary to the expectation that the strong hydrogen bonding of water on hydrophobic surfaces would dominate with suppressed interfacial order. Because of its terrace morphology, graphite plays the role of a template. The dynamics is also surprising. After the excitation of graphite by an ultrafast infrared pulse, the interfacial ice structure undergoes nonequilibrium “phase transformation” identified in the hydrogen-bond network through the observation of structural isosbestic point. We provide the time scales involved, the nature of ice-graphite structural dynamics, and relevance to properties related to confined water. PMID:19246378

  19. Influence of the parent cation on the thermalization of subexcitation electrons in solid water

    Energy Technology Data Exchange (ETDEWEB)

    Goulet, T.; Jay-Gerin, J. (Universite de Sherbrooke, Quebec (Canada)); Patau, J. (Universite Paul Sabatier, Toulouse (France))

    1990-09-06

    The authors report the results of their Monte Carlo simulations of the thermalization, recombination, and dissociative attachment of subexcitation electrons in solid water. A particular emphasis is placed on the description of the electrons motion in the Coulomb field of its parent cation (H{sub 2}O{sup +}) and on the effect of this positive charge on the fate of the electron. In comparing the results obtained with and without the parent cation they find on the one hand, that the dissociative attachment probability and the electron thermalization distances and times remain practically unaffected by the presence of H{sub 2}O{sup +}. On the other hand, they find that a certain proportion of subexcitation electrons can be captured, before they thermalize, by a process of dissociative recombination which yields various species such as O, H, OH, and H{sub 2}. The variation of this proportion and of the average thermalization distances and times with the energy of the subexcitation electrons is investigated.

  20. Water swelling properties of the electron beam irradiated PVA-g-AAc hydrogels

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qingguo, E-mail: qwang@qust.edu.cn [Key Laboratory of Rubber-Plastics of Ministry of Education, Qingdao University of Science and Technology, Qingdao 266042 (China); Shandong Provincial Key Laboratory of Rubber-Plastics, Qingdao 266042 (China); Zhou, Xue; Zeng, Jinxia; Wang, Jizeng [Key Laboratory of Rubber-Plastics of Ministry of Education, Qingdao University of Science and Technology, Qingdao 266042 (China)

    2016-02-01

    In this paper, the electron beam irradiation technology being more suitable for the industry application is explored to fabricate the acrylic acid (AAc) monomer-grafted polyvinyl alcohol (PVA-g-AAc) hydrogels. ATR-IR spectra of the PVA-g-AAc hydrogels shows an obvious absorption peak of the −C=O group at 1701 cm{sup −1}, indicating that the AAc monomers were grafted onto the PVA macromolecules. This paper also studied some effects of the mass ratio of PVA/AAc, pH of buffer solution and irradiation dosage on the water swelling properties of the electron beam irradiated PVA-g-AAc hydrogels. The water swelling ratio of PVA-g-AAc hydrogels decreases with increased irradiation dosage and mass ratio of PVA/AAc, whereas swelling ratio increases with increased pH of buffer solution and soaking time. The water-swelling behavior of PVA-g-AAc hydrogels occurred easily in an alkaline environment, particularly in a buffer solution with pH 9.2. Both PVA-g-AAc hydrogels (PVA/AAc = 1/5, w/w) irradiated with 5 kilogray (kGy) and PVA-g-AAc hydrogels (PVA/AAc = 1/1, w/w) irradiated with 15 kGy could easily absorb water and lead to high water swelling ratios (up to about 600%), which are potential candidates to meet the requirements for some biomedical applications.

  1. A low-cost electronic tensiometer system for continuous monitoring of soil water potential

    Directory of Open Access Journals (Sweden)

    Martin Thalheimer

    2013-12-01

    Full Text Available A low cost system for measuring soil water potential and data logging was developed on the basis of an Arduino microcontroller board, electronic pressure transducers and water-filled tensiometers. The assembly of this system requires only minimal soldering, limited to the wiring of the power supply and the pressure sensors to the microcontroller board. The system presented here is, therefore, not only inexpensive, but also suited for easy reproduction by users with only basic technical skills. The utility and reliability of the system was tested in a commercial apple orchard.

  2. Catalyst-free ethyl biodiesel production from rice bran under subcritical condition

    Science.gov (United States)

    Zullaikah, Siti; Afifudin, Riza; Amalia, Rizky

    2015-12-01

    In-situ ethyl biodiesel production from rice bran under subcritical water and ethanol with no catalyst was employed. This process is environmentally friendly and is very flexible in term of feedstock utilization since it can handle relatively high moisture and free fatty acids (FFAs) contents. In addition, the alcohol, i.e. bioethanol, is a non-toxic, biodegradable, and green raw material when produced from non-edible biomass residues, leading to a 100% renewable biodiesel. The fatty acid ethyl esters (FAEEs, ethyl biodiesel) are better than fatty acid methyl esters (FAMEs, methyl biodiesel) in terms of fuel properties, including cetane number, oxidation stability and cold flow properties. The influences of the operating variables such as reaction time (1 - 10 h), ethanol concentration (12.5 - 87.5%), and pressurizing gas (N2 and CO2) on the ethyl biodiesel yield and purity have been investigated systematically while the temperature and pressure were kept constant at 200 °C and 40 bar. The optimum results were obtained at 5 h reaction time and 75% ethanol concentration using CO2 as compressing gas. Ethyl biodiesel yield and purity of 58.78% and 61.35%, respectively, were obtained using rice bran with initial FFAs content of 37.64%. FFAs level was reduced to 14.22% with crude ethyl biodiesel recovery of 95.98%. Increasing the reaction time up to 10 h only increased the yield and purity by only about 3%. Under N2 atmosphere and at the same operating conditions (5h and 75% ethanol), ethyl biodiesel yield and purity decreased to 54.63% and 58.07%, respectively, while FFAs level was increased to 17.93% and crude ethyl biodiesel recovery decreased to 87.32%.

  3. Inelastic cross sections for low-energy electrons in liquid water: exchange and correlation effects.

    Science.gov (United States)

    Emfietzoglou, Dimitris; Kyriakou, Ioanna; Garcia-Molina, Rafael; Abril, Isabel; Nikjoo, Hooshang

    2013-11-01

    Low-energy electrons play a prominent role in radiation therapy and biology as they are the largest contributor to the absorbed dose. However, no tractable theory exists to describe the interaction of low-energy electrons with condensed media. This article presents a new approach to include exchange and correlation (XC) effects in inelastic electron scattering at low energies (below ∼10 keV) in the context of the dielectric theory. Specifically, an optical-data model of the dielectric response function of liquid water is developed that goes beyond the random phase approximation (RPA) by accounting for XC effects using the concept of the many-body local-field correction (LFC). It is shown that the experimental energy-loss-function of liquid water can be reproduced by including into the RPA dispersion relations XC effects (up to second order) calculated in the time-dependent local-density approximation with the addition of phonon-induced broadening in N. D. Mermin's relaxation-time approximation. Additional XC effects related to the incident and/or struck electrons are included by means of the vertex correction calculated by a modified Hubbard formula for the exchange-only LFC. Within the first Born approximation, the present XC corrections cause a significantly larger reduction (∼10-50%) to the inelastic cross section compared to the commonly used Mott and Ochkur approximations, while also yielding much better agreement with the recent experimental data for amorphous ice. The current work offers a manageable, yet rigorous, approach for including non-Born effects in the calculation of inelastic cross sections for low-energy electrons in liquid water, which due to its generality, can be easily extended to other condensed media.

  4. Simulation of electronic circuit sensitivity towards humidity using electrochemical data on water layer

    DEFF Research Database (Denmark)

    Joshy, Salil; Verdingovas, Vadimas; Jellesen, Morten Stendahl

    2015-01-01

    Climatic conditions like temperature and humidity have direct influence on the operation of electronic circuits. The effects of temperature on the operation of electronic circuits have been widely investigated, while the effect of humidity and solder flux residues are not well understood including...... the effect on circuit and PCBA (printed circuit board assembly) layout design. This paper elucidates a methodology for analyzing the sensitivity of an electronic circuit based on parasitic circuit analysis using data on electrical property of the water layer formed under humid as well as contaminated...... conditions. Some commonly used circuits are analyzed as case studies and flux related contaminations of PCBA from process is used as an example to show how different flux chemistry and humidity together compromise the circuit functionality....

  5. On the dissociative electron attachment as a potential source of molecular hydrogen in irradiated liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Cobut, V.; Jay-Gerin, J.-P.; Frongillo, Y. [Sherbrooke Univ., PQ (Canada). Faculte de Medecine; Patau, J.P. [Toulouse-3 Univ., 31 (France)

    1996-02-01

    In the radiolysis of liquid water, different mechanisms for the formation of molecular hydrogen (H{sub 2}) are involved at different times after the initial energy disposition. It has been suggested that the contributions of the e{sub aq}{sup -} + e{sub aq}{sup -}, H + e{sub aq}{sup -} and H + H reactions between hydrated electrons (e{sub aq}{sup -}) and hydrogen atoms in the spurs are not sufficient to account for all of the observed H{sub 2} yield (0.45 molecules/100 eV) on the microsecond time scale. Addressing the question of the origin of an unscavengeable H{sub 2} yield of 0.15 molecules/100 eV produced before spur expansion, we suggest that the dissociative capture of the so-called vibrationally-relaxing electrons by H{sub 2}O molecules is a possible pathway for the formation of part of the initial H{sub 2} yield. Comparison of recent dissociative-electron-attachment H{sup -}-anion yield-distribution measurements from amorphous H{sub 2}O films with the energy spectrum of vibrationally-relaxing electrons in irradiated liquid water, calculated by Monte Carlo simulations, plays in favor of this hypothesis. (author).

  6. Electron and positron collisions with polar molecules: studies with the benchmark water molecule

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Rui; Tennyson, Jonathan [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Faure, Alexandre [Laboratoire d' Astrophysique, UMR 5571 CNRS, Universite Joseph-Fourier, BP 53, 38041 Grenoble cedex 09 (France)], E-mail: j.tennyson@ucl.ac.uk

    2009-07-15

    It is difficult to measure low-energy cross sections for collisions of charged particles with strongly dipolar systems since the magnitude of such cross sections is completely dominated by collisions in the forward direction. Theoretically, it is possible to account for the strong forward scattering using the Born approximation but the procedure for combining Born 'top-up' with the more sophisticated treatments required to treat the scattering in other directions is not unique. This comment describes recent progress in describing both electron and positron collisions with polar molecules taking the important water molecule as a benchmark. Previous calculations on electron water at collision energies below 7 eV are compared with new experiments. Positron water studies up to 10 eV are re-analysed based on given experimental acceptance profiles, which depend on the details of the apparatus and method used in the measurements. It is suggested that theory is capable of giving reliable results for elastic and rotationally inelastic electron/positron collisions with strongly dipolar species.

  7. Electronic absorption line shapes at the water liquid/vapor interface.

    Science.gov (United States)

    Nelson, Katherine V; Benjamin, Ilan

    2012-04-12

    In order to investigate the factors that contribute to the electronic absorption line shape of a chromophore adsorbed at the water liquid/vapor interface, molecular dynamics simulations of a series of dipolar solutes undergoing various electronic transitions at various locations along the interface normal are studied. For electronic transitions that involve a change in the permanent dipole moment of the solute, the transition from the bulk water to the liquid/vapor interface involves a spectral shift consistent with the lower polarity of the interface. The change in the spectral width relative to that in the bulk is determined by several factors, which, depending on the nature of the transition and the dipole moment of the initial state, can result in a narrowing or broadening of the spectrum. These factors include the location of the interface region (which directly correlates with local polarity), the heterogeneity of the local solvation shell, and the width of the surface region. The contribution of the heterogeneity of the local solvation shell can be determined by comparing surface water with bulk methanol, whose polarity is comparable to one of the surface regions.

  8. Discharge Computation of Trapezoidal Side Weir in Subcritical Flow Regime Using Conventional Weir Theory

    Directory of Open Access Journals (Sweden)

    S. Riahi

    2016-02-01

    Full Text Available Introduction: Side weir structures are extensively used in hydraulic engineering, irrigation and environmental engineering, and it usually consists of a main weir and a lateral channel. Side weirs are also used as an emergency structure. This structure is installed on one side or both sides of the main channel to divert the flow from the main channel to the side channel. Lateral outflow takes place when the water surface in the main channel rises above the weir sill. Flow over a side weir is a typical case of spatially varied flow with decreasing discharge. There have been extensive studies on side weir overflows. Most of the previous theoretical analysis and experimental research works are related to the flow over rectangular side weirs in rectangular main channels. In the current study, the flow conditions over a trapezoidal side weir located in a rectangular main channel in subcritical flow regime is considered. Materials and Methods: The experiments were performed in a rectangular open channel having provisions for a side weir at one side of the channel. The main channel was horizontal with 12 m length, 0.25 m width, and 0.5 m height, and it was installed on a frame; lateral channel that has a length of 6 m, width of 0.25 m, and height of 1 m. It was set up parallel to the main channel; walls and its bed were made up of Plexiglas plates. The side weir was positioned at a distance of 6 m from the channel’s entrance. A total of 121 experiments on trapezoidal side weirs were carried out. Results and Discussion: For trapezoidal side weir, effective non-dimensionnal parameters were identified using dimensional analysis and Buckingham's Pi-Theorem. Finally, the following non-dimensional parameters were considered as the most effective ones on the discharge coefficient of the trapezoidal side weir flow. in which Fr1= upstream Froude number, P= hight of the trapezoidal side weir, y1= upstream water depth, z=side slope of the trapezoidal side weir

  9. Nonlinear dynamics aspects of subcritical transitions and singular flows in viscoelastic fluids

    NARCIS (Netherlands)

    Becherer, Paul

    2008-01-01

    Recently, there has been a renewed interest in theoretical aspects of flows of viscoelastic fluids (such as dilute polymer solutions). This thesis addresses two distinct issues related to such flows. Motivated by the possible occurrence of subcritical (finite-amplitude) instabilities in parallel

  10. LAVENDER: A steady-state core analysis code for design studies of accelerator driven subcritical reactors

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Shengcheng; Wu, Hongchun; Cao, Liangzhi; Zheng, Youqi, E-mail: yqzheng@mail.xjtu.edu.cn; Huang, Kai; He, Mingtao; Li, Xunzhao

    2014-10-15

    Highlights: • A new code system for design studies of accelerator driven subcritical reactors (ADSRs) is developed. • S{sub N} transport solver in triangular-z meshes, fine deletion analysis and multi-channel thermal-hydraulics analysis are coupled in the code. • Numerical results indicate that the code is reliable and efficient for design studies of ADSRs. - Abstract: Accelerator driven subcritical reactors (ADSRs) have been proposed and widely investigated for the transmutation of transuranics (TRUs). ADSRs have several special characteristics, such as the subcritical core driven by spallation neutrons, anisotropic neutron flux distribution and complex geometry etc. These bring up requirements for development or extension of analysis codes to perform design studies. A code system named LAVENDER has been developed in this paper. It couples the modules for spallation target simulation and subcritical core analysis. The neutron transport-depletion calculation scheme is used based on the homogenized cross section from assembly calculations. A three-dimensional S{sub N} nodal transport code based on triangular-z meshes is employed and a multi-channel thermal-hydraulics analysis model is integrated. In the depletion calculation, the evolution of isotopic composition in the core is evaluated using the transmutation trajectory analysis algorithm (TTA) and fine depletion chains. The new code is verified by several benchmarks and code-to-code comparisons. Numerical results indicate that LAVENDER is reliable and efficient to be applied for the steady-state analysis and reactor core design of ADSRs.

  11. Subcritical localization in the discrete nonlinear Schrödinger equation with arbitrary power nonlinearity

    DEFF Research Database (Denmark)

    Bang, O.; Juul Rasmussen, J.; Christiansen, P.L.

    1994-01-01

    Discretizing the continuous nonlinear Schrodinger equation with arbitrary power nonlinearity influences the time evolution of its ground state solitary solution. In the subcritical case, for grid resolutions above a certain transition value, depending on the degree of nonlinearity, the solution w...

  12. Subcritical crack growth behavior of AI2O3-Glass dental composites

    NARCIS (Netherlands)

    Zhu, Q.; With, G. de; Dortmans, L.J.M.G.; Feenstra, F.

    2003-01-01

    The purpose of this study is to investigate the subcritical crack growth (SCG) behavior of alumina-glass dental composites. Alumina-glass composites were fabricated by infiltrating molten glass to porous alumina preforms. Rectangular bars of the composite were subject to dynamic loading in air, with

  13. Ab initio study on the structural and electronic properties of water surrounding a multifunctional nanoprobe

    Science.gov (United States)

    Xia, Xiuli; Shao, Yuanzhi

    2018-02-01

    We report the magneto-electric behavior of a dual-modality biomedical nanoprobe, a ternary nanosystem consisting of gold and gadolinia clusters and water molecules, with the effect of both nanoclusters on the structural and electronic properties of water. The hydrogen-oxygen bond lengths and angles as well as electronic charges of water molecules surrounding both nanoclusters were calculated using Hubbard U corrected density functional theory aided by molecular dynamics approach. The calculations reveal existence of a magneto-electric interaction between gold and gadolinium oxide nanoclusters, which influences the physical properties of surrounding water remarkably. A broader (narrower) distribution of Hsbnd O bond lengths (Hsbnd Osbnd H bond angles) was observed at the presence of either gold or gadolinia nanoclusters. The presence of Gd6O9 cluster leads to the larger charges of neighbour oxygen atoms. The distribution of oxygen atom charges becomes border when both Gd6O9 and Au13 clusters coexist. Ab initio calculation provides a feasible approach to explore the most essential interactions among functional components of a multimodal nanoprobe applied in aqueous environment.

  14. Sensory evaluation and electronic tongue for sensing flavored mineral water taste attributes.

    Science.gov (United States)

    Sipos, László; Gere, Attila; Szöllősi, Dániel; Kovács, Zoltán; Kókai, Zoltán; Fekete, András

    2013-10-01

    In this article a trained sensory panel evaluated 6 flavored mineral water samples. The samples consisted of 3 different brands, each with 2 flavors (pear-lemon grass and josta berry). The applied sensory method was profile analysis. Our aim was to analyze the sensory profiles and to investigate the similarities between the sensitivity of the trained human panel and an electronic tongue device. Another objective was to demonstrate the possibilities for the prediction of sensory attributes from electronic tongue measurements using a multivariate statistical method (Partial Least Squares regression [PLS]). The results showed that the products manufactured under different brand name but with the same aromas had very similar sensory profiles. The panel performance evaluation showed that it is appropriate (discrimination ability, repeatability, and panel consensus) to compare the panel's results with the results of the electronic tongue. The samples can be discriminated by the electronic tongue and an accurate classification model can be built. Principal Component Analysis BiPlot diagrams showed that Brand A and B were similar because the manufacturers use the same aroma brands for their products. It can be concluded that Brand C was quite different compared to the other samples independently of the aroma content. Based on the electronic tongue results good prediction models can be obtained with high correlation coefficient (r(2) > 0.81) and low prediction error (RMSEP sensory evaluation from 0 to 100). © 2013 Institute of Food Technologists®

  15. Modeling Electronic Polarizability Changes in the Course of a Magnesium Ion Water Ligand Exchange Process.

    Science.gov (United States)

    Kurnikov, Igor V; Kurnikova, Maria

    2015-08-13

    This paper introduces explicit dependence of atomic polarizabilities on intermolecular interactions within the framework of a polarizable force field AMOEBA. Polarizable models used in biomolecular simulations often poorly describe molecular electrostatic induction in condensed phase, in part, due to neglect of a strong dependency of molecular electronic polarizability on intermolecular interactions at short distances. Our variable polarizability model parameters are derived from quantum chemical calculations of small clusters of atoms and molecules, and can be applied in simulations in condensed phase without additional scaling factors. The variable polarizability model is applied to simulate a ligand exchange reaction for a Mg(2+) ion solvated in water. Explicit dependence of water polarizability on a distance between a water oxygen and Mg(2+) is derived from in vacuum MP2 calculations of Mg(2+)-water dimer. The simulations yield a consistent description of the energetics of the Mg(2+)-water clusters of different size. Simulations also reproduce thermodynamics of ion solvation as well as kinetics of a water ligand exchange reaction. In contrast, simulations that used the additive force field or that used the constant polarizability models were not able to consistently and quantitatively describe the properties of the solvated Mg(2+) ion.

  16. Mimicking Daphnia magna bioassay performance by an electronic tongue for urban water quality control

    Energy Technology Data Exchange (ETDEWEB)

    Kirsanov, Dmitry, E-mail: d.kirsanov@gmail.com [Laboratory of Chemical Sensors, St. Petersburg State University, St. Petersburg (Russian Federation); Laboratory of Artificial Sensor Systems, ITMO University, St. Petersburg (Russian Federation); Legin, Evgeny [Laboratory of Artificial Sensor Systems, ITMO University, St. Petersburg (Russian Federation); Sensor Systems LLC, St. Petersburg (Russian Federation); Zagrebin, Anatoly; Ignatieva, Natalia; Rybakin, Vladimir [Institute of Limnology, Russian Academy of Sciences, St. Petersburg (Russian Federation); Legin, Andrey [Laboratory of Chemical Sensors, St. Petersburg State University, St. Petersburg (Russian Federation); Laboratory of Artificial Sensor Systems, ITMO University, St. Petersburg (Russian Federation)

    2014-05-01

    Highlights: • -Daphnia magna bioassay can be simulated with multisensor system. • Urban water toxicity can be predicted from potentiometric ET data. • Independent test set validation confirms statistical significance of the results. - Abstract: Toxicity is one of the key parameters of water quality in environmental monitoring. However, being evaluated as a response of living beings (as their mobility, fertility, death rate, etc.) to water quality, toxicity can only be assessed with the help of these living beings. This imposes certain restrictions on toxicity bioassay as an analytical method: biotest organisms must be properly bred, fed and kept under strictly regulated conditions and duration of tests can be quite long (up to several days), thus making the whole procedure the prerogative of the limited number of highly specialized laboratories. This report describes an original application of potentiometric multisensor system (electronic tongue) when the set of electrochemical sensors was calibrated against Daphnia magna death rate in order to perform toxicity assessment of urban waters without immediate involvement of living creatures. PRM (partial robust M) and PLS (projections on latent structures) regression models based on the data from this multisensor system allowed for prediction of toxicity of unknown water samples in terms of biotests but in the fast and simple instrumental way. Typical errors of water toxicity predictions were below 20% in terms of Daphnia death rate which can be considered as a good result taking into account the complexity of the task.

  17. Coal-water slurry spray characteristics of an electronically-controlled accumulator fuel injection system

    Energy Technology Data Exchange (ETDEWEB)

    Caton, J.A.; Payne, S.E.; Terracina, D.P.; Kihm, K.D. [Texas A and M Univ., College Station, TX (United States). Dept. of Mechanical Engineering

    1993-12-31

    Experiments have been complete to characterize coal-water slurry sprays from a electronically-controlled accumulator fuel injection system of diesel engine. The sprays were injected into a pressurized chamber equipped with windows. High speed movies, fuel pressures and needle lifts were obtained as a function of time, orifice diameter, coal loading, gas density in the chamber, and accumulator fuel pressure. For the base conditions 50% (by mass) coal loading, 0.4 mm diameter nozzle hole, coal-water slurry pressure of 82 MPa (12,000 psi), and a chamber density of 25 kg/m{sup 3}, the break-up time was 0. 30 ms. An empirical correlation for both spray tip penetration and initial jet velocity was developed. For the conditions of this study, the spray tip penetration and initial jet velocity were 15% greater for coal-water slurry than for diesel fuel or water. Cone angles of the sprays were dependent on the operating conditions and fluid, as well as the time and locations of the measurement. The time-averaged cone angle for the base case conditions was 13.6{degree}. Results of this study and the correlation are specific to the tested coal-water slurry and are not general for other coal-water slurry fuels.

  18. Disinfection and reduction of organic load of sewage water by electron beam radiation

    Science.gov (United States)

    Maruthi, Y. Avasn; Das, N. Lakshmana; Hossain, Kaizar; Sarma, K. S. S.; Rawat, K. P.; Sabharwal, S.

    2011-09-01

    The efficacy of electron beam radiation for the disinfection and reduction of organic load of sewage water was assessed with ILU-6 Accelerator at Radiation Technology Development Division of the Bhabha Atomic Research Centre, Mumbai India. The current problem on environmental health in relation to water pollution insists for the safe disposal of sewage water. In general, sewage water comprises heterogeneous organic based chemicals as well as pathogens. EB treatment of the wastewater has found to be very effective in reducing the pathogens as well as organic load. EB dose of 1.5 kGy was sufficient for complete elimination of total coli forms. The experimental results elucidated the reduction of biological oxygen demand—BOD (35 and 51.7%) in both inlet and outlet sewage samples. Similarly reduction of chemical oxygen demand—COD was observed (37.54 and 52.32%) in both sewage samples with respect to increase in irradiation doses (0.45-6 kGy). The present study demonstrated the potential of ionizing radiation for disinfection of sewage and to increase the water quality of the wastewater by decreasing BOD and COD. So, the irradiation sewage water can find its application either in agriculture for irrigation, in industry for cooling purpose and some selected domestic purposes.

  19. Geochemical controls on the kinetics of quartz fracture at subcritical tensile stresses

    Science.gov (United States)

    Dove, Patricia M.

    1995-11-01

    A new kinetic model links physical and chemical controls on the subcritical fracture kinetics of quartz from the assumption that molecular level reactions governing fracture and dissolution proceed by similar pathways. The model formulation combines fracture theory with a mechanistically based description of chemical, thermal, and tensile stress effects on reactivity in aqueous environments. Water, as a vapor or liquid, promotes rupture of Si-O bonds by end-member processes: (1) reaction of a protonated surface with molecular water and (2) reaction of hydroxyl ions at an ionized surface. In humid environments, reaction frequency is determined by water accessibility to the crack tip. In wetted environments, the relative contributions of these mechanisms are determined by bulk solution composition which affects surface ionization and sol vent-surf ace interactions. The macroscopic fracture rate law is given in meters per second by the fractional sum of these end-member reaction mechanisms per a first-order equation. Agreement of this empirical rate expression with reported measurements of quartz fracture rates suggests the model is robust. It gives a good fit to fracture rates over 6 orders of magnitude and explains increasing rates with increasing solution pH, the dependence of rate upon crystallographic direction, and thermal dependence of rate over 20° to 80°C. Findings in this study suggest that (1) fracture models based upon changes in surface free energy with solution composition are macroscopic descriptions of solvent-surface interactions and parallel the mechanistic model presented here; (2) faster fracture rates observed in basic solutions are not facilitated by decreases in the activation barrier but are due to a transition in the solvent-surface reaction to give a higher reaction frequency and (3) power law expressions applied to fracture rate versus stress intensity measurements may not have direct mechanistic significance since log-linear relations

  20. Transient analysis of subcritical/supercritical carbon dioxide based natural circulation loop with end heat exchangers: experimental study

    Science.gov (United States)

    Yadav, Ajay Kumar; Ramgopal, Maddali; Bhattacharyya, Souvik

    2017-09-01

    Carbon dioxide (CO2) based natural circulation loops (NCLs) has gained attention due to its compactness with higher heat transfer rate. In the present study, experimental investigations have been carried out to capture the transient behaviour of a CO2 based NCL operating under subcritical as well as supercritical conditions. Water is used as the external fluid in cold and hot heat exchangers. Results are obtained for various inlet temperatures (323-353 K) of water in the hot heat exchanger and a fixed inlet temperature (305 K) of cooling water in the cold heat exchanger. Effect of loop operating pressure (50-90 bar) on system performance is also investigated. Effect of loop tilt in two different planes (XY and YZ) is also studied in terms of transient as well as steady state behaviour of the loop. Results show that the time required to attain steady state decreases as operating pressure of the loop increases. It is also observed that the change in temperature of loop fluid (CO2) across hot or cold heat exchanger decreases as operating pressure increases.

  1. Electron beam irradiation enhances the digestibility and fermentation yield of water-soaked lignocellulosic biomass

    Directory of Open Access Journals (Sweden)

    Jin Seop Bak

    2014-12-01

    Full Text Available In order to overcome the limitation of commercial electron beam irradiation (EBI, lignocellulosic rice straw (RS was pretreated using water soaking-based electron beam irradiation (WEBI. This environment-friendly pretreatment, without the formation (or release of inhibitory compounds (especially hydroxymethylfurfural and furfural, significantly increased the enzymatic hydrolysis and fermentation yields of RS. Specifically, when water-soaked RS (solid:liquid ratio of 100% was treated with WEBI doses of 1 MeV at 80 kGy, 0.12 mA, the glucose yield after 120 h of hydrolysis was 70.4% of the theoretical maximum. This value was predominantly higher than the 29.5% and 52.1% measured from untreated and EBI-treated RS, respectively. Furthermore, after simultaneous saccharification and fermentation for 48 h, the ethanol concentration, production yield, and productivity were 9.3 g/L, 57.0% of the theoretical maximum, and 0.19 g/L h, respectively. Finally, scanning electron microscopy images revealed that WEBI induced significant ultrastructural changes to the surface of lignocellulosic fibers.

  2. Comparison of ionisation measurements in water and polystyrene for electron beam dosimetry.

    Science.gov (United States)

    Bruinvis, I A; Heukelom, S; Mijnheer, B J

    1985-10-01

    For the determination of absorbed dose to water in electron beams, dosimetry protocols advocate ionisation measurements in plastic phantoms instead of water for practical reasons. The chamber readings in polystyrene at the depth of maximum ionisation must be corrected for the difference in physical properties between the two materials. This correction factor was determined for a Farmer 0.6 cm3 graphite-walled chamber in electron beams with mean energies at the phantom surface between 6 and 19 MeV. Experiments with white polystyrene yielded corrections for the measured ionisation ranging from 0.3 to 2.4%. For clear polystyrene, 0.6-1% higher corrections were found. For beams with the same mean energy at the phantom surface, but with different beam-flattening and collimation systems, variations in this correction up to 1.2% were observed. In contrast to recent reports on electrical charge storage in polystyrene due to electron irradiation, our experiments do not show differences in the chamber readings any larger than 0.5%.

  3. Reconstructing the direction of reactor antineutrinos via electron scattering in Gd-doped water Cherenkov detectors

    Energy Technology Data Exchange (ETDEWEB)

    Hellfeld, D., E-mail: dhellfeld@berkeley.edu [Department of Nuclear Engineering, University of California, Berkeley, Berkeley, CA 94720 (United States); Bernstein, A. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Dazeley, S., E-mail: dazeley2@llnl.gov [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Marianno, C. [Department of Nuclear Engineering, Texas A& M University, College Station, TX 77843 (United States)

    2017-01-01

    The potential of elastic antineutrino-electron scattering in a Gd-doped water Cherenkov detector to determine the direction of a nuclear reactor antineutrino flux was investigated using the recently proposed WATCHMAN antineutrino experiment as a baseline model. The expected scattering rate was determined assuming a 13-km standoff from a 3.758-GWt light water nuclear reactor and the detector response was modeled using a Geant4-based simulation package. Background was estimated via independent simulations and by scaling published measurements from similar detectors. Background contributions were estimated for solar neutrinos, misidentified reactor-based inverse beta decay interactions, cosmogenic radionuclides, water-borne radon, and gamma rays from the photomultiplier tubes (PMTs), detector walls, and surrounding rock. We show that with the use of low background PMTs and sufficient fiducialization, water-borne radon and cosmogenic radionuclides pose the largest threats to sensitivity. Directional sensitivity was then analyzed as a function of radon contamination, detector depth, and detector size. The results provide a list of experimental conditions that, if satisfied in practice, would enable antineutrino directional reconstruction at 3σ significance in large Gd-doped water Cherenkov detectors with greater than 10-km standoff from a nuclear reactor.

  4. Polarization induced water molecule dissociation below the first-order electronic-phase transition temperature

    CERN Document Server

    Arulsamy, Andrew Das; Elersic, Kristina; Modic, Martina; Subramani, Uma Shankar

    2011-01-01

    Hydrogen produced from the photocatalytic splitting of water is one of the reliable alternatives to replace the polluting fossil and the radioactive nuclear fuels. Here, we provide unequivocal evidence for the existence of blue- and red-shifting O$-$H covalent bonds within a single water molecule adsorbed on MgO surface as a result of asymmetric displacement polarizabilities. The adsorbed H-O-H on MgO gives rise to one weaker H-O bond, while the other O-H covalent bond from the same adsorbed water molecule compensates this effect with a stronger bond. The weaker bond (nearest to the surface), the interlayer tunneling electrons and the silver substrate are shown to be the causes for the smallest dissociative activation energy on MgO monolayer. The origin that is responsible to initiate the splitting mechanism is proven to be due to the changes in the polarizability of an adsorbed water molecule, which are further supported by the temperature-dependent static dielectric constant measurements for water below the...

  5. Reconstructing the direction of reactor antineutrinos via electron scattering in Gd-doped water Cherenkov detectors

    Energy Technology Data Exchange (ETDEWEB)

    Hellfeld, D. [Univ. of California, Berkeley, CA (United States). Dept. of Nuclear Engineering; Bernstein, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dazeley, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Marianno, C. [Texas A & M Univ., College Station, TX (United States). Dept. of Nuclear Engineering

    2017-01-01

    The potential of elastic antineutrino-electron scattering (ν¯e + e → ν¯e + e) in a Gd-doped water Cherenkov detector to determine the direction of a nuclear reactor antineutrino flux was investigated using the recently proposed WATCHMAN antineutrino experiment as a baseline model. The expected scattering rate was determined assuming a 13 km standoff from a 3.758 GWt light water nuclear reactor. Background was estimated via independent simulations and by appropriately scaling published measurements from similar detectors. Many potential backgrounds were considered, including solar neutrinos, misidentified reactor-based inverse beta decay interactions, cosmogenic radionuclide and water-borne radon decays, and gamma rays from the photomultiplier tubes, detector walls, and surrounding rock. The detector response was modeled using a GEANT4-based simulation package. The results indicate that with the use of low radioactivity PMTs and sufficient fiducialization, water-borne radon and cosmogenic radionuclides pose the largest threats to sensitivity. The directional sensitivity was then analyzed as a function of radon contamination, detector depth, and detector size. Lastly, the results provide a list of theoretical conditions that, if satisfied in practice, would enable nuclear reactor antineutrino directionality in a Gd-doped water Cherenkov detector approximately 10 km from a large power reactor.

  6. In situ observation of water in a fuel cell catalyst using scanning electron microscopy.

    Science.gov (United States)

    Ueda, Satoru; Kobayashi, Yoshio; Koizumi, Satoshi; Tsutsumi, Yasuyuki

    2015-04-01

    To visualize water in the catalyst of polymer electrolyte fuel cells (PEFCs), backscattered electron (BSE) imaging by means of scanning electron microscopy was employed. To confine a wet specimen of catalyst, an environmental wet cell was manufactured with a silicon nitride thin film (∼100 nm) as the beam window. By supplying humidified gas into the cell, a change in BSE brightness was detected in the catalyst attached to the silicon nitride window. As humidification proceeded, the BSE image became darker and returned brighter by switching to a dry gas. Monte Carlo simulations were performed to evaluate the energy and number of BSE obtained after passing through water with thickness d. Combining the results of the Monte Carlo simulation successfully converted the change in brightness to the change in thickness from d = 100 nm to d = 3 μm. This established method of evaluating water with a thickness resolution of the order of Δd = 100 nm can be applied to in situ observations of the catalyst in a PEFC during operation. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Designing a mini subcritical nuclear reactor; Diseno de un mini reactor nuclear subcritico

    Energy Technology Data Exchange (ETDEWEB)

    Escobedo G, C. R.; Vega C, H. R.; Davila H, V. M., E-mail: rafelaescobedo@hotmail.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Jardin Juarez 147, Col. Centro, 98000 Zacatecas, Zac. (Mexico)

    2015-10-15

    In this work the design of a mini subcritical nuclear reactor formed by means of light water moderator, uranium as fuel, and isotopic neutron source of {sup 239}PuBe was carried out. The design was done by Monte Carlo methods with the code MCNP5 in which uranium was modeled in an array of concentric holes cylinders of 8.5, 14.5, 20.5, 26.5, 32.5 cm of internal radius and 3 cm of thickness, 36 cm of height. Different models were made from a single fuel cylinder (natural uranium) to five. The neutron source of {sup 239}PuBe was situated in the center of the mini reactor; in each arrangement was used water as moderator. Cross sections libraries Endf/Vi were used and the number of stories was large enough to ensure less uncertainty than 3%. For each case the effective multiplication factor k{sub e}-f{sub f}, the amplification factor and the power was calculated. Outside the mini reactor the ambient dose equivalent H (10) was calculated for different cases. The value of k{sub eff}, the amplification factor and power are directly related to the number of cylinders of uranium as fuel. Although the average energy of the neutrons {sup 239}PuBe is between 4.5 and 5 MeV in the case of the mini reactor for a cylinder, in the neutron spectrum the presence of thermal neutrons does not exist, so that produced fissions are generated with fast neutrons, and in designs of two and three rings the neutron spectra shows the presence of thermal neutrons, however the fissions are being generated with fast neutrons. Finally in the four and five cases the amount of moderator is enough to thermalized the neutrons and thereby produce the fission. The maximum value for k{sub eff} was 0.82; this value is very close to the assembly of Universidad Autonoma de Zacatecas generating a k{sub eff} of 0.86. According to the safety and radiation protection standards for the design of mini reactor of one, two and three cylinders they comply with the established safety, while designs of four and five

  8. Electron Beam-Induced Immobilization of Laccase on Porous Supports for Waste Water Treatment Applications

    Directory of Open Access Journals (Sweden)

    Elham Jahangiri

    2014-08-01

    Full Text Available The versatile oxidase enzyme laccase was immobilized on porous supports such as polymer membranes and cryogels with a view of using such biocatalysts in bioreactors aiming at the degradation of environmental pollutants in wastewater. Besides a large surface area for supporting the biocatalyst, the aforementioned porous systems also offer the possibility for simultaneous filtration applications in wastewater treatment. Herein a “green” water-based, initiator-free, and straightforward route to highly reactive membrane and cryogel-based bioreactors is presented, where laccase was immobilized onto the porous polymer supports using a water-based electron beam-initiated grafting reaction. In a second approach, the laccase redox mediators 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS and syringaldehyde were cross-linked instead of the enzyme via electron irradiation in a frozen aqueous poly(acrylate mixture in a one pot set-up, yielding a mechanical stable macroporous cryogel with interconnected pores ranging from 10 to 50 µm in size. The membranes as well as the cryogels were characterized regarding their morphology, chemical composition, and catalytic activity. The reactivity towards waste- water pollutants was demonstrated by the degradation of the model compound bisphenol A (BPA. Both membrane- and cryogel-immobilized laccase remained highly active after electron beam irradiation. Apparent specific BPA removal rates were higher for cryogel- than for membrane-immobilized and free laccase, whereas membrane-immobilized laccase was more stable with respect to maintenance of enzymatic activity and prevention of enzyme leakage from the carrier than cryogel-immobilized laccase. Cryogel-immobilized redox mediators remained functional in accelerating the laccase-catalyzed BPA degradation, and especially ABTS was found to act more efficiently in immobilized than in freely dissolved state.

  9. Microdosimetric properties of ionizing electrons in water: a test of the PENELOPE code system.

    Science.gov (United States)

    Stewart, R D; Wilson, W E; McDonald, J C; Strom, D J

    2002-01-07

    The ability to simulate the tortuous path of very low-energy electrons in condensed matter is important for a variety of applications in radiobiology. Event-by-event Monte Carlo codes such as OREC, MOCA and PITS represent the preferred method of computing distributions of microdosimetric quantities. However, event-by-event Monte Carlo is computationally expensive, and the cross sections needed to transport simulations to this level of detail are usually only available for water. In the recently developed PENELOPE code system, 'hard' electron and positron interactions are simulated in a detailed way while soft' interactions are treated using multiple scattering theory. Using this mixed simulation algorithm, electrons and positrons can be transported down to energies as low as 100 eV. To our knowledge, PENELOPE is the first widely available, general purpose Monte Carlo code system capable of transporting electrons and positrons in arbitrary media down to such low energies. The ability to transport electrons and positrons to such low energies opens up the possibility of using a general purpose Monte Carlo code system for microdosimetry. This paper presents the results of a code intercomparison study designed to test the applicability of the PENELOPE code system for microdosimetry applications. For sites comparable in size to a mammalian cell or cell nucleus, single-event distributions, site-hit probabilities and the frequency-mean specific energy per event are in reasonable agreement with those predicted using event-by-event Monte Carlo. Site-hit probabilities and the mean specific energy per event can be estimated to within about 1-10% of those predicted using event-by-event Monte Carlo. However, for some combinations of site size and source-target geometry, site-hit probabilities and the mean specific energy per event may only agree to within 25-60%. The most problematic source-target geometry is one in which the emitted electrons are very close to the tally site (e

  10. The water-water cycle in leaves is not a major alternative electron sink for dissipation of excess excitation energy when CO2 assimilation is restricted

    NARCIS (Netherlands)

    Driever, S.M.; Baker, N.R.

    2011-01-01

    Electron flux from water via photosystem II (PSII) and PSI to oxygen (water–water cycle) may provide a mechanism for dissipation of excess excitation energy in leaves when CO2 assimilation is restricted. Mass spectrometry was used to measure O2 uptake and evolution together with CO2 uptake in leaves

  11. Experimental Assessment of a Helical Coil Heat Exchanger Operating at Subcritical and Supercritical Conditions in a Small-Scale Solar Organic Rankine Cycle

    Directory of Open Access Journals (Sweden)

    Marija Lazova

    2017-05-01

    Full Text Available In this study, the performance of a helical coil heat exchanger operating at subcritical and supercritical conditions is analysed. The counter-current heat exchanger was specially designed to operate at a maximal pressure and temperature of 42 bar and 200 °C, respectively. The small-scale solar organic Rankine cycle (ORC installation has a net power output of 3 kWe. The first tests were done in a laboratory where an electrical heater was used instead of the concentrated photovoltaic/thermal (CPV/T collectors. The inlet heating fluid temperature of the water was 95 °C. The effects of different parameters on the heat transfer rate in the heat exchanger were investigated. Particularly, the performance analysis was elaborated considering the changes of the mass flow rate of the working fluid (R-404A in the range of 0.20–0.33 kg/s and the inlet pressure varying from 18 bar up to 41 bar. Hence, the variation of the heat flux was in the range of 5–9 kW/m2. The results show that the working fluid’s mass flow rate has significant influence on the heat transfer rate rather than the operational pressure. Furthermore, from the comparison between the experimental results with the heat transfer correlations from the literature, the experimental results fall within the uncertainty range for the supercritical analysis but there is a deviation of the investigated subcritical correlations.

  12. Basic concept for an accelerator-driven subcritical system to be used as a long-pulse neutron source for Condensed Matter research

    Energy Technology Data Exchange (ETDEWEB)

    Vivanco, R., E-mail: raul.vivanco.sanchez@gmail.com [ESS-BILBAO, Parque Tecnológico Bizkaia, Laida Bidea, Edificio 207 B Planta Baja, 48160 Derio (Spain); Instituto de Fusión Nuclear - UPM, ETS Ingenieros Industriales, C/ José Gutiérrez Abascal, 2, 28006 Madrid Spain (Spain); Ghiglino, A.; Vicente, J.P. de; Sordo, F.; Terrón, S.; Magán, M. [ESS-BILBAO, Parque Tecnológico Bizkaia, Laida Bidea, Edificio 207 B Planta Baja, 48160 Derio (Spain); Instituto de Fusión Nuclear - UPM, ETS Ingenieros Industriales, C/ José Gutiérrez Abascal, 2, 28006 Madrid Spain (Spain); Perlado, J.M. [Instituto de Fusión Nuclear - UPM, ETS Ingenieros Industriales, C/ José Gutiérrez Abascal, 2, 28006 Madrid Spain (Spain); Bermejo, F.J. [Instituto de Estructura de la Materia, IEM-CSIC, Consejo Superior de Investigaciones Científicas, Serrano 123, 28006 Madrid (Spain)

    2014-12-11

    A model for an accelerator-driven subcritical system to be operated as a source of cold neutrons for Condensed Matter research is developed at the conceptual level. Its baseline layout relies upon proven accelerator, spalattion target and fuel array technologies, and consists in a proton accelerator able to deliver some 67.5 mA of proton beam with kinetic energy 0.6 GeV, a pulse length of 2.86 ms, and repetition rate of 14 Hz. The particle beam hits a target of conventional design that is surrounded by a multiplicative core made of fissile/fertile material, composed by a subcritical array of fuel bars made of aluminium Cermet cooled by light water poisoned with boric acid. Relatively low enriched uranium is chosen as fissile material. An optimisation of several parameters is carried out, using as components of the objective function several characteristics pertaining the cold neutron pulse. The results show that the optimal device will deliver up to 80% of the cold neutron flux expected for some of the ongoing projects using a significantly lower proton beam power than that managed in such projects. The total power developed within the core rises up to 22.8 MW, and the criticality range shifts to a final k{sub eff} value of around 0.9 after the 50 days cycle.

  13. A vibrating membrane bioreactor operated at supra- and sub-critical flux: Influence of extracellular polymeric substances from yeast cells

    DEFF Research Database (Denmark)

    Beier, Søren Prip; Jonsson, Gunnar Eigil

    2007-01-01

    A vibrating membrane bioreactor, in which the fouling problems are reduced by vibrating a hollow fiber membrane module, has been tested in constant flux microfiltration above (supra-critical) and below (sub-critical) an experimentally determined critical flux. Suspensions of bakers yeast cells were....... Filtration just below the critical flux (sub-critical) seems to be a good compromise between acceptable flux level and acceptable increase of fouling resistance and trans-membrane pressure (TMP) in a given time period. EPS from the yeast cells causes the membrane module to foul and part of the fouling...... is continually washed out during supra-critical flux operation whereas the washing out at sub-critical flux operation is not observed. This might be due to locally different hydrodynamic conditions at the membrane surface and pore entrances at supra- and sub-critical flux respectively....

  14. Subcritical tests - nuclear weapon testing under the Comprehensive Test Ban Treaty; Subkritiske tester - kjernevaapentesting under avtalen om fullstendig proevestans

    Energy Technology Data Exchange (ETDEWEB)

    Hoeibraaten, S

    1998-10-01

    The report discusses possible nuclear weapons related experiments and whether these are permitted under the 1996 Comprehensive Test Ban Treaty (CTBT). The term ''subcritical experiments'' as used in the United States includes experiments in which one studies fissile materials (so far only plutonium) under extreme conditions generated by conventional high explosives, and in which a self-sustained chain reaction never develops in the fissile material. The known facts about the American subcritical experiments are presented. There is very little reason to doubt that these experiments were indeed subcritical and therefore permitted under the CTBT. Little is known about the Russian efforts that are being made on subcritical experiments.

  15. Structural, Dynamical, and Electronic Properties of Liquid Water: A Hybrid Functional Study.

    Science.gov (United States)

    Ambrosio, Francesco; Miceli, Giacomo; Pasquarello, Alfredo

    2016-08-04

    We study structural, dynamical, and electronic properties of liquid water through ab initio molecular dynamics (MD) simulations based on a hybrid functional which includes nonlocal van der Waals (vdW) interactions. The water dimer, the water hexamer, and two phases of ice are studied as benchmark cases. The hydrogen-bond energy depends on the balance between Fock exchange and vdW interactions. Moreover, the energetic competition between extended and compact structural motifs is found to be well described by theory provided vdW interactions are accounted for. Applied to the hydrogen-bond network of liquid water, the dispersion interactions favor more compact structural motifs, bring the density closer to the experimental value, and improve the agreement with experimental observables such as radial distribution functions. The description of the self-diffusion coefficient is also found to improve upon the combined consideration of Fock exchange and vdW interactions. The band gap and the band edges are found to agree with experiment within 0.1 eV.

  16. Decoupling hydrogen and oxygen evolution during electrolytic water splitting using an electron-coupled-proton buffer.

    Science.gov (United States)

    Symes, Mark D; Cronin, Leroy

    2013-05-01

    Hydrogen is essential to several key industrial processes and could play a major role as an energy carrier in a future 'hydrogen economy'. Although the majority of the world's hydrogen supply currently comes from the reformation of fossil fuels, its generation from water using renewables-generated power could provide a hydrogen source without increasing atmospheric CO₂ levels. Conventional water electrolysis produces H₂ and O₂ simultaneously, such that these gases must be generated in separate spaces to prevent their mixing. Herein, using the polyoxometalate H₃PMo₁₂O₄₀, we introduce the concept of the electron-coupled-proton buffer (ECPB), whereby O₂ and H₂ can be produced at separate times during water electrolysis. This could have advantages in preventing gas mixing in the headspaces of high-pressure electrolysis cells, with implications for safety and electrolyser degradation. Furthermore, we demonstrate that temporally separated O₂ and H₂ production allows greater flexibility regarding the membranes and electrodes that can be used in water-splitting cells.

  17. Finite-bias electronic transport of molecules in a water solution

    KAUST Repository

    Rungger, Ivan

    2010-06-04

    The effects of water wetting conditions on the transport properties of molecular nanojunctions are investigated theoretically by using a combination of empirical-potential molecular-dynamics and first-principles electronic-transport calculations. These are at the level of the nonequilibrium Green’s-function method implemented for self-interaction corrected density-functional theory. We find that water effectively produces electrostatic gating to the molecular junction with a gating potential determined by the time-averaged water dipole field. Such a field is large for the polar benzene-dithiol molecule, resulting in a transmission spectrum shifted by about 0.6 eV with respect to that of the dry junction. The situation is drastically different for carbon nanotubes (CNTs). In fact, because of their hydrophobic nature the gating is almost negligible so that the average transmission spectrum of wet Au/CNT/Au junctions is essentially the same as that in dry conditions. This suggests that CNTs can be used as molecular interconnects also in water-wet situations, for instance, as tips for scanning tunnel microscopy in solution or in biological sensors.

  18. Comparing electronic probes for volumetric water content of low-density feathermoss

    Science.gov (United States)

    Overduin, P.P.; Yoshikawa, K.; Kane, D.L.; Harden, J.W.

    2005-01-01

    Purpose - Feathermoss is ubiquitous in the boreal forest and across various land-cover types of the arctic and subarctic. A variety of affordable commercial sensors for soil moisture content measurement have recently become available and are in use in such regions, often in conjunction with fire-susceptibility or ecological studies. Few come supplied with calibrations suitable or suggested for soils high in organics. Aims to test seven of these sensors for use in feathermoss, seeking calibrations between sensor output and volumetric water content. Design/methodology/approach - Measurements from seven sensors installed in live, dead and burned feathermoss samples, drying in a controlled manner, were compared to moisture content measurements. Empirical calibrations of sensor output to water content were determined. Findings - Almost all of the sensors tested were suitable for measuring the moss sample water content, and a unique calibration for each sensor for this material is presented. Differences in sensor design lead to changes in sensitivity as a function of volumetric water content, affecting the spatial averaging over the soil measurement volume. Research limitations/implications - The wide range of electromagnetic sensors available include frequency and time domain designs with variations in wave guide and sensor geometry, the location of sensor electronics and operating frequency. Practical implications - This study provides information for extending the use of electromagnetic sensors to feathermoss. Originality/value - A comparison of volumetric water content sensor mechanics and design is of general interest to researchers measuring soil water content. In particular, researchers working in wetlands, boreal forests and tundra regions will be able to apply these results. ?? Emerald Group Publishing Limited.

  19. The Hydrated Electron at the Surface of Neat Liquid Water Appears To Be Indistinguishable from the Bulk Species.

    Science.gov (United States)

    Coons, Marc P; You, Zhi-Qiang; Herbert, John M

    2016-08-31

    Experiments have suggested that the aqueous electron, e(-)(aq), may play a significant role in the radiation chemistry of DNA. A recent measurement of the energy (below vacuum level) of the putative "interfacial" hydrated electron at the water/vacuum interface, performed using liquid microjet photoelectron spectroscopy, has been interpreted to suggest that aqueous electrons at the water/biomolecule interface may possess the appropriate energetics to induce DNA strand breaks, whereas e(-)(aq) in bulk water lies too far below the vacuum level to induce such reactions. Other such experiments, however, find no evidence of a long-lived feature at low binding energy. We employ a variety of computational strategies to demonstrate that the energetics of the hydrated electron at the surface of neat liquid water are not significantly different from those of e(-)(aq) in bulk water and as such are incompatible with dissociative electron attachment reactions in DNA. We furthermore suggest that no stable interfacial species may exist at all, consistent with the interpretation of certain surface-sensitive spectroscopy measurements, and that even if a short-lived, metastable species does exist at the vacuum/water interface, it would be extremely difficult to distinguish, experimentally, from e(-)(aq) in bulk water, using either optical absorption or photoelectron spectroscopy.

  20. Transport coefficients for electrons in water vapor: definition, measurement, and calculation.

    Science.gov (United States)

    Robson, R E; White, R D; Ness, K F

    2011-02-14

    Comparison of experimental and theoretical transport data for electron swarms in water vapour over a wide range of fields provides a rigorous test of (e(-), H(2)O) scattering cross sections over a correspondingly broad range of energies. That like should be compared with like is axiomatic, but the definition of transport coefficients at high fields, when non-conservative processes are significant, has long been contentious. This paper revisits and distills the most essential aspects of the definition and calculation of transport coefficients, giving numerical results for the drift velocity and ionisation coefficient of electrons in water vapour. In particular, the relationship between the theoretically calculated bulk drift velocities of [K. F. Ness and R. E. Robson, Phys. Rev. A 38, 1446 (1988)] and the experimental "arrival time spectra" drift velocity data of Hasegawa et al. [J. Phys. D 40(8), 2495 (2007)] is established. This enables the Hasegawa et al. data to be reconciliated with the previous literature, and facilitates selection of the best (e(-), H(2)O) cross section set.

  1. Comparisons of Calculations with PARTRAC and NOREC: Transport of Electrons in Liquid Water

    Science.gov (United States)

    Dingfelder, M.; Ritchie, R. H.; Turner, J. E.; Friedland, W.; Paretzke, H. G.; Hamm, R. N.

    2013-01-01

    Monte Carlo computer models that simulate the detailed, event-by-event transport of electrons in liquid water are valuable for the interpretation and understanding of findings in radiation chemistry and radiation biology. Because of the paucity of experimental data, such efforts must rely on theoretical principles and considerable judgment in their development. Experimental verification of numerical input is possible to only a limited extent. Indirect support for model validity can be gained from a comparison of details between two independently developed computer codes as well as the observable results calculated with them. In this study, we compare the transport properties of electrons in liquid water using two such models, PARTRAC and NOREC. Both use interaction cross sections based on plane-wave Born approximations and a numerical parameterization of the complex dielectric response function for the liquid. The models are described and compared, and their similarities and differences are highlighted. Recent developments in the field are discussed and taken into account. The calculated stopping powers, W values, and slab penetration characteristics are in good agreement with one another and with other independent sources. PMID:18439039

  2. In Vivo Cytogenotoxicity and Oxidative Stress Induced by Electronic Waste Leachate and Contaminated Well Water

    Directory of Open Access Journals (Sweden)

    Adeyinka M. Gbadebo

    2013-07-01

    Full Text Available Environmental, plant and animal exposure to hazardous substances from electronic wastes (e-wastes in Nigeria is increasing. In this study, the potential cytogenotoxicity of e-wastes leachate and contaminated well water samples obtained from Alaba International Electronic Market in Lagos, Nigeria, using induction of chromosome and root growth anomalies in Allium cepa, and micronucleus (MN in peripheral erythrocytes of Clarias gariepinus, was evaluated. The possible cause of DNA damage via the assessments of liver malondialdehyde (MDA, catalase (CAT, reduced glutathione (GSH and superoxide dismutase (SOD as indicators of oxidative stress in mice was also investigated. There was significant (p < 0.05 inhibition of root growth and mitosis in A. cepa. Cytological aberrations such as spindle disturbance, C-mitosis and binucleated cells, and morphological alterations like tumor and twisting roots were also induced. There was concentration-dependent, significant (p < 0.05 induction of micronucleated erythrocytes and nuclear abnormalities such as blebbed nuclei and binucleated erythrocytes in C. gariepinus. A significant increase (p < 0.001 in CAT, GSH and MDA with concomitant decrease in SOD concentrations were observed in the treated mice. Pb, As, Cu, Cr, and Cd analyzed in the tested samples contributed significantly to these observations. This shows that the well water samples and leachate contained substances capable of inducing somatic mutation and oxidative stress in living cells; and this is of health importance in countries with risk of e-wastes exposure.

  3. Determination of phenoxy acid herbicides in water by electron-capture and microcoulometric gas chromatography

    Science.gov (United States)

    Goerlitz, D.F.; Lamar, William L.

    1967-01-01

    A sensitive gas chromatographic method using microcoulometric titration and electron-capture detection for the analysis of 2,4-D, silvex, 2,4,5-T, and other phenoxy acid herbicides in water is described. The herbicides are extracted from unfiltered water samples (800-1,000 ml) by use of ethyl ether ; then the herbicides are concentrated and esterilied. To allow the analyst a choice, two esterilication procedures--using either boron trifluoride-methanol or diazomethane--are evaluated. Microcoulometric gas chromatography is specific for the detection of halogenated compounds such as the phenoxy acid herbicides whereas it does not respond to nonhalogenated components. Microcoulometric gas chromatography requires care and patience. It is not convenient for rapid screening of l-liter samples that contain less than 1 microgram of the herbicide. Although electroncapture gas chromatography is less selective and more critically affected by interfering substances, it is, nevertheless, convenient and more sensitive than microcoulometric gas chromatography. Two different liquid phases are used in the gas chromatographic columns--DC-200 silicone in one column and QF-1 silicone in the other. The performance of both columns is improved by the addition of Carbowax 20M. The Gas Chrom Q support is coated with the liquid phases by the 'frontal-analysis' technique. The practical lower limits for measurement of the phenoxy acid herbicides in water primarily depend upon the sample size, interferences present, anal instrumentation used. With l-liter samples of water, the practical lower limits of measurement are 10 ppt (parts per trillion) for 2,4-D and 2 ppt for silvex and 2,4,5-T when electron-capture detection is used, and approximately 20 ppt for each herbicide when analyzed by microcoulometric-titration gas chromatography. Recoveries of the herbicides immediately after addition to unfiltered water samples averaged 92 percent for 2,4-D, 90 percent for silvex, and 98 percent for 2

  4. Research Programme for the 660 Mev Proton Accelerator Driven MOX-Plutonium Subcritical Assembly

    CERN Document Server

    Barashenkov, V S; Buttseva, G L; Dudarev, S Yu; Polanski, A; Puzynin, I V; Sissakian, A N

    2000-01-01

    The paper presents a research programme of the Experimental Acclerator Driven System (ADS), which employs a subcritical assembly and a 660 MeV proton acceletator operating at the Laboratory of Nuclear Problems of the JINR, Dubna. MOX fuel (25% PuO_2 + 75% UO_2) designed for the BN-600 reactor use will be adopted for the core of the assembly. The present conceptual design of the experimental subcritical assembly is based on a core of a nominal unit capacity of 15 kW (thermal). This corresponds to the multiplication coefficient k_eff = 0.945, energetic gain G = 30 and the accelerator beam power 0.5 kW.

  5. Tuning colloidal interactions in subcritical solvents by solvophobicity: explicit versus implicit modeling.

    Science.gov (United States)

    Dzubiella, J; Chakrabarti, J; Löwen, H

    2009-07-28

    The distance-resolved effective interaction between two colloidal particles in a subcritical solvent is explored both by an explicit and implicit modeling. An implicit solvent approach based on a simple thermodynamic interface model is tested against grand-canonical Monte Carlo computer simulations using explicit Lennard-Jones solvent molecules. Close to liquid-gas coexistence, a joint gas bubble surrounding the colloidal particle pair yields an effective attraction between the colloidal particles, the strength of which can be vastly tuned by the solvophobicity of the colloids. The implicit model is in good agreement with our explicit computer simulations, thus enabling an efficient modeling and evaluation of colloidal interactions and self-assembly in subcritical solvent environments.

  6. A fusion-driven subcritical system concept based on viable technologies

    Science.gov (United States)

    Wu, Y.; Jiang, J.; Wang, M.; Jin, M.; FDS Team

    2011-10-01

    A fusion-driven hybrid subcritical system (FDS) concept has been designed and proposed as spent fuel burner based on viable technologies. The plasma fusion driver can be designed based on relatively easily achieved plasma parameters extrapolated from the successful operation of existing fusion experimental devices such as the EAST tokamak in China and other tokamaks in the world, and the subcritical fission blanket can be designed based on the well-developed technologies of fission power plants. The simulation calculations and performance analyses of plasma physics, neutronics, thermal-hydraulics, thermomechanics and safety have shown that the proposed concept can meet the requirements of tritium self-sufficiency and sufficient energy gain as well as effective burning of nuclear waste from fission power plants and efficient breeding of nuclear fuel to feed fission power plants.

  7. Theoretical Analysis for Heat Transfer Optimization in Subcritical Electrothermal Energy Storage Systems

    Directory of Open Access Journals (Sweden)

    Peng Hu

    2017-02-01

    Full Text Available Electrothermal energy storage (ETES provides bulk electricity storage based on heat pump and heat engine technologies. A subcritical ETES is described in this paper. Based on the extremum principle of entransy dissipation, a geometry model is developed for heat transfer optimization for subcritical ETES. The exergy during the heat transfer process is deduced in terms of entropy production. The geometry model is validated by the extremum principle of entropy production. The theoretical analysis results show that the extremum principle of entransy dissipation is an effective criterion for the optimization, and the optimum heat transfer for different cases with the same mass flux or pressure has been discussed. The optimum heat transfer can be achieved by adjusting the mass flux and pressure of the working fluid. It also reveals that with the increase of mass flux, there is a minimum exergy in the range under consideration, and the exergy decreases with the increase of the pressure.

  8. Determination of subcriticality and effective source strength by source drop and jerk experiments

    Energy Technology Data Exchange (ETDEWEB)

    Taninaka, Hiroshi [Interdisciplinary Graduate School of Science and Technology, Kinki University, 3-4-1, Kowakae, Higashi-Osaka, 577-8502 (Japan); Hashimoto, Kengo [Atomic Energy Research Institute, Kinki University, 3-4-1, Kowakae, Higashi-Osaka, 577-8502 (Japan)

    2008-07-01

    This paper presents applicability of least squares inverse kinetics method (LSIKM) to source drop and source jerk experiments. The LSIKM can estimate both reactivity and source strength by applying least square approximation to a correlation between time-sequence count data and inverse kinetics analysis data. The experiments were performed in the UTR-KINKI reactor to demonstrate the applicability of the LSIKM. To source jerk data, for comparison, conventional integral method is also applied. In the subcriticality and source strength obtained by the LSIKM, spatial dependence is slightly observed. However, the integral method leads to significant spatial dependence. The sub-criticalities inferred from source drop data are consistent with the results from source jerk data. (authors)

  9. Influence of moderator to fuel ratio (MFR) on burning thorium in a subcritical assembly

    Energy Technology Data Exchange (ETDEWEB)

    Wojciechowski, Andrzej, E-mail: andrzej.wojciechowski@ncbj.gov.pl [National Center for Nuclear Research, Otwock-Swierk (Poland); Joint Institute for Nuclear Research, Dubna (Russian Federation)

    2014-10-15

    The conversion ratio (CR) of Th-232 to U-233 calculation results for a subcritical reactor assembly is presented as a function of MFR, burnup, power density (PD) and fissile concentration. The calculated model is based on subcritical assembly which makes configuration of fuel rods and volumes of moderator and coolant changes possible. This comfortable assembly enables investigation of CR in a thorium cycle for different value of MFR. Additionally, the calculation results of U-233 saturation concentration are explained by mathematical model. The value of MFR main influences the saturation concentration of U-233 and fissile and the fissile concentration dependence of CR. The saturation value of CR is included in the range CR ∈ (0.911, 0.966) and is a slowly increasing function of MFR. The calculations were done with a MCNPX 2.7 code.

  10. Subcritical ethanol extraction of flavonoids from Moringa oleifera leaf and evaluation of antioxidant activity.

    Science.gov (United States)

    Wang, Yongqiang; Gao, Yujie; Ding, Hui; Liu, Shejiang; Han, Xu; Gui, Jianzhou; Liu, Dan

    2017-03-01

    A large-scale process to extract flavonoids from Moringa oleifera leaf by subcritical ethanol was developed and HPLC-MS analysis was conducted to qualitatively identify the compounds in the extracts. To optimize the effects of process parameters on the yield of flavonoids, a Box-Behnken design combined with response surface methodology was conducted in the present work. The results indicated that the highest extraction yield of flavonoids by subcritical ethanol extraction could reach 2.60% using 70% ethanol at 126.6°C for 2.05h extraction. Under the optimized conditions, flavonoids yield was substantially improved by 26.7% compared with the traditional ethanol reflux method while the extraction time was only 2h, and obvious energy saving was observed. FRAP and DPPH assays showed that the extracts had strong antioxidant and free radical scavenging activities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Coupling of subcritical methanol with acidic ionic liquids for the acidity reduction of naphthenic acids

    Directory of Open Access Journals (Sweden)

    Zafar Faisal

    2017-09-01

    Full Text Available The presence of naphthenic acids (NAs in crude oil is the major cause of corrosion in the refineries and its processing equipment. The goal of this study is to reduce the total acid number (TAN of NAs by treating them with subcritical methanol in the presence of acidic ionic liquid (AIL catalysts. Experiments were carried out in an autoclave batch reactor and the effect of different reaction parameters was investigated. It was observed that TAN reduction was positively dependent on the temperature and concentration of the AIL whereas excess of methanol has a negative effect. Approximately 90% TAN reduction was achieved under the optimized reaction conditions using [BMIM]HSO4 as catalyst. It was also perceived from the experimental results that the AILs with longer alkyl chain exhibited higher catalytic activity. The activity and stability of AIL showed that they can be promising catalyst to esterify NAs under subcritical methanol.

  12. Enhanced enzymatic cellulose hydrolysis by subcritical carbon dioxide pretreatment of sugarcane bagasse.

    Science.gov (United States)

    Zhang, Hongdan; Wu, Shubin

    2014-04-01

    Most biomass pretreatment processes for sugar production are run at low-solid concentration (carbon dioxide (CO2) could provide a more sustainable pretreatment medium while using relative high-solid contents (15 wt.%). The effects of subcritical CO2 pretreatment of sugarcane bagasse to the solid and glucan recoveries at different pretreatment conditions were investigated. Subsequently, enzymatic hydrolysis at different hydrolysis time was applied to obtain maximal glucose yield, which can be used for ethanol fermentation. The maximum glucose yield in enzyme hydrolyzate reached 38.5 g based on 100g raw material after 72 h of enzymatic hydrolysis, representing 93.0% glucose in sugarcane bagasse. The enhanced digestibilities of subcritical CO2 pretreated sugarcane bagasse were due to the removal of hemicellulose, which were confirmed by XRD, FTIR, SEM, and TGA analyses. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Sub-Critical Closed String Field Theory in D Less Than 26

    OpenAIRE

    Kaku, Michio

    1993-01-01

    We construct the second quantized action for sub-critical closed string field theory with zero cosmological constant in dimensions $ 2 \\leq D < 26$, generalizing the non-polynomial closed string field theory action proposed by the author and the Kyoto and MIT groups for $D = 26$. The proof of gauge invariance is considerably complicated by the presence of the Liouville field $\\phi$ and the non-polynomial nature of the action. However, we explicitly show that the polyhedral vertex functions ob...

  14. Subcritical mineralization of sodium salt of dodecyl benzene sulfonate using sonication-wet oxidation (SONIWO) technique.

    Science.gov (United States)

    Dhale, A D; Mahajani, V V

    2001-06-01

    Subcritical mineralization of sodium salt of dodecyl benzene sulfonate via hybrid process-sonication followed by wet oxidation (SONIWO) has been investigated. Sonication of the compound enhanced the rates and % COD reduction during wet oxidation. In this process, homogenous CuSO4 catalyst was found to be effective. In wet oxidation studies, phenol, hydroquinone, maleic acid, oxalic acid, propionic acid, and acetic acid were identified as intermediates. The global rate equations for wet oxidation in terms of COD reduction were developed.

  15. Observation of subcritical geodesic acoustic mode excitation in the large helical device

    Science.gov (United States)

    Ido, T.; Itoh, K.; Lesur, M.; Osakabe, M.; Shimizu, A.; Ogawa, K.; Nishiura, M.; Yamada, I.; Yasuhara, R.; Kosuga, Y.; Sasaki, M.; Ida, K.; Inagaki, S.; Itoh, S.-I.; the LHD Experiment Group

    2017-07-01

    The abrupt and strong excitation of the geodesic acoustic mode (GAM) has been found in the large helical device (LHD), when the frequency of a chirping energetic particle-driven GAM (EGAM) approaches twice that of the GAM frequency. The temporal evolution of the phase relation between the abrupt GAM and the chirping EGAM is common in all events. The result indicates a coupling between the GAM and the EGAM. In addition, the nonlinear evolution of the growth rate of the GAM is observed, and there is a threshold in the amplitude of the GAM for the appearance of nonlinear behavior. A threshold in the amplitude of the EGAM for the abrupt excitation of the GAM is also observed. According to one theory (Lesur et al 2016 Phys. Rev. Lett. 116 015003, Itoh et al 2016 Plasma Phys. Rep. 42 418) the observed abrupt phenomenon can be interpreted as the excitation of the subcritical instability of the GAM. The excitation of a subcritical instability requires a trigger and a seed with sufficient amplitude. The observed threshold in the amplitude of the GAM seems to correspond with the threshold in the seed, and the threshold in the amplitude of the EGAM seems to correspond with the threshold in the magnitude of the trigger. Thus, the observed threshold supports the interpretation that the abrupt phenomenon is the excitation of a subcritical instability of the GAM.

  16. Neutron Detector Signal Processing to Calculate the Effective Neutron Multiplication Factor of Subcritical Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, Alberto [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Gohar, Yousry [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division

    2016-06-01

    This report describes different methodologies to calculate the effective neutron multiplication factor of subcritical assemblies by processing the neutron detector signals using MATLAB scripts. The subcritical assembly can be driven either by a spontaneous fission neutron source (e.g. californium) or by a neutron source generated from the interactions of accelerated particles with target materials. In the latter case, when the particle accelerator operates in a pulsed mode, the signals are typically stored into two files. One file contains the time when neutron reactions occur and the other contains the times when the neutron pulses start. In both files, the time is given by an integer representing the number of time bins since the start of the counting. These signal files are used to construct the neutron count distribution from a single neutron pulse. The built-in functions of MATLAB are used to calculate the effective neutron multiplication factor through the application of the prompt decay fitting or the area method to the neutron count distribution. If the subcritical assembly is driven by a spontaneous fission neutron source, then the effective multiplication factor can be evaluated either using the prompt neutron decay constant obtained from Rossi or Feynman distributions or the Modified Source Multiplication (MSM) method.

  17. Th and U fuel photofission study by NTD for AD-MSR subcritical assembly

    Energy Technology Data Exchange (ETDEWEB)

    Sajo-Bohus, Laszlo; Greaves, Eduardo D.; Barros, Haydn; Pino, Felix; Barrera, Maria T.; Farina, Fulvio [Universidad Simón Bolívar, Nuclear Physics Laboratory, Apdo 89000, Caracas 1080A (Venezuela, Bolivarian Republic of); Davila, Jesus [Física Médica C. A. and Universidad Central de Venezuela, Caracas (Venezuela, Bolivarian Republic of)

    2015-07-23

    During the last decade a considerable effort has been devoted for developing energy generating systems based on advanced nuclear technology within the design concepts of GEN-IV. Thorium base fuel systems such as accelerator driven nuclear reactors are one of the often mentioned attractive and affordable options. Several radiotherapy linear accelerators are on the market and due to their reliability, they could be employed as drivers for subcritical liquid fuel assemblies. Bremsstrahlung photons with energies above 5.5MeV, induce (γ,n) and (e,e’n) reactions in the W-target. Resulting gamma radiation and photo or fission neutrons may be absorbed in target materials such as thorium and uranium isotopes to induce sustained fission or nuclear transmutation in waste radioactive materials. Relevant photo driven and photo-fission reaction cross sections are important for actinides {sup 232}Th, {sup 238}U and {sup 237}Np in the radiotherapy machines energy range of 10-20 MV. In this study we employ passive nuclear track detectors (NTD) to determine fission rates and neutron production rates with the aim to establish the feasibility for gamma and photo-neutron driven subcritical assemblies. To cope with these objectives a 20 MV radiotherapy machine has been employed with a mixed fuel target. Results will support further development for a subcritical assembly employing a thorium containing liquid fuel. It is expected that acquired technological knowledge will contribute to the Venezuelan nuclear energy program.

  18. Wettability modification of human tooth surface by water and UV and electron-beam radiation

    Energy Technology Data Exchange (ETDEWEB)

    Tiznado-Orozco, Gaby E., E-mail: gab0409@gmail.com [UMET, Bâtiment C6, Université de Lille 1, Sciences et Technologies, 59650 Villeneuve d' Ascq (France); Unidad Académica de Odontología, Universidad Autónoma de Nayarit, Edificio E7, Ciudad de la Cultura “Amado Nervo”, C.P. 63190 Tepic, Nayarit (Mexico); Reyes-Gasga, José, E-mail: jreyes@fisica.unam.mx [UMET, Bâtiment C6, Université de Lille 1, Sciences et Technologies, 59650 Villeneuve d' Ascq (France); Instituto de Física, UNAM, Circuito de la Investigación s/n, Ciudad Universitaria, 04510 Coyoacan, México, D.F. (Mexico); Elefterie, Florina, E-mail: elefterie_florina@yahoo.com [UMET, Bâtiment C6, Université de Lille 1, Sciences et Technologies, 59650 Villeneuve d' Ascq (France); Beyens, Christophe, E-mail: christophe.beyens@ed.univ-lille1.fr [UMET, Bâtiment C6, Université de Lille 1, Sciences et Technologies, 59650 Villeneuve d' Ascq (France); Maschke, Ulrich, E-mail: Ulrich.Maschke@univ-lille1.fr [UMET, Bâtiment C6, Université de Lille 1, Sciences et Technologies, 59650 Villeneuve d' Ascq (France); Brès, Etienne F., E-mail: etienne.bres@univ-lille1.fr [UMET, Bâtiment C6, Université de Lille 1, Sciences et Technologies, 59650 Villeneuve d' Ascq (France)

    2015-12-01

    The wettability of the human tooth enamel and dentin was analyzed by measuring the contact angles of a drop of distilled water deposited on the surface. The samples were cut along the transverse and longitudinal directions, and their surfaces were subjected to metallographic mirror-finish polishing. Some samples were also acid etched until their microstructure became exposed. Wettability measurements of the samples were done in dry and wet conditions and after ultraviolet (UV) and electron beam (EB) irradiations. The results indicate that water by itself was able to increase the hydrophobicity of these materials. The UV irradiation momentarily reduced the contact angle values, but they recovered after a short time. EB irradiation raised the contact angle and maintained it for a long time. Both enamel and dentin surfaces showed a wide range of contact angles, from approximately 10° (hydrophilic) to 90° (hydrophobic), although the contact angle showed more variability on enamel than on dentin surfaces. Whether the sample's surface had been polished or etched did not influence the contact angle value in wet conditions. - Highlights: • Human tooth surface wettability changes in dry/wet and UV/EB radiation conditions. • More variability in contact angle is observed on enamel than on dentin surfaces. • Water by itself increases the hydrophobicity of the human tooth surface. • UV irradiation reduces momentarily the human tooth surface hydrophobicity. • EB irradiation increases and maintains the hydrophobicity for a long time.

  19. On the Electronic Nature of the Surface Potential at the Vapor-Liquid Interface of Water

    Energy Technology Data Exchange (ETDEWEB)

    Kathmann, S M; Kuo, I; Mundy, C J

    2008-02-05

    The surface potential at the vapor-liquid interface of water is relevant to many areas of chemical physics. Measurement of the surface potential has been experimentally attempted many times, yet there has been little agreement as to its magnitude and sign (-1.1 to +0.5 mV). We present the first computation of the surface potential of water using ab initio molecular dynamics. We find that the surface potential {chi} = -18 mV with a maximum interfacial electric field = 8.9 x 10{sup 7} V/m. A comparison is made between our quantum mechanical results and those from previous molecular simulations. We find that explicit treatment of the electronic density makes a dramatic contribution to the electric properties of the vapor-liquid interface of water. The E-field can alter interfacial reactivity and transport while the surface potential can be used to determine the 'chemical' contribution to the real and electrochemical potentials for ionic transport through the vapor-liquid interface.

  20. Toxicity reduction for pharmaceuticals mixture in water by electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Boiani, Nathalia Fonseca; Tominaga, Flavio Kiyoshi; Borrely, Sueli Ivone, E-mail: flavio_tominaga@hotmail.com, E-mail: sborrely@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    The incorrect disposal of products is committing the environment quality once the aquatic environment is the main vehicle for dispersion of pollutants. Among the highlighted contaminants there are the pharmaceuticals, which are also released to the aquatic environment through the domestic sewage, hospitals and effluents. The monitoring of these pharmaceuticals in the environment has grown, showing many of them as persistent pollutants. Pharmaceuticals from different therapeutic classes have been detected in domestic sewage, surface water and groundwater around the world. Several studies evidenced Fluoxetine Hydrochloride residues in waters. Another important product is the Propranolol, used for heart disease treatments as far as fluoxetine is applied for treating mental diseases. The objective of this study was to apply the radiation processing for the abatement of pollutant in waters. Electron beam accelerator was used during irradiation of the mixture (Propranolol + Fluoxetine Hydrochloride) in aqueous solution. Acute toxicity assays were carried out for Vibrio fischeri marine bacterium, 15 minutes exposure. The results showed that irradiation (2.5kGy and 5.0kGy) enhanced the average effective concentration of the mixture, which means reduction of toxicity (56.34%, 55.70% respectively). Inverse effect was obtained with 7.5 kGy and 10 kGy. (author)

  1. Local energy losses at positive and negative steps in subcritical ...

    African Journals Online (AJOL)

    2010-04-22

    Apr 22, 2010 ... local loss coefficient for positive steps defined in Eq. (6). K2n local loss coefficient for negative steps defined in Eq. (7). U average velocity y water depth z bed elevation α energy correction coefficient. ϕ inclination of the step. ∆z step height. Introduction. The energy losses that result from local features such ...

  2. Improving the efficiency of water splitting in dye-sensitized solar cells by using a biomimetic electron transfer mediator.

    Science.gov (United States)

    Zhao, Yixin; Swierk, John R; Megiatto, Jackson D; Sherman, Benjamin; Youngblood, W Justin; Qin, Dongdong; Lentz, Deanna M; Moore, Ana L; Moore, Thomas A; Gust, Devens; Mallouk, Thomas E

    2012-09-25

    Photoelectrochemical water splitting directly converts solar energy to chemical energy stored in hydrogen, a high energy density fuel. Although water splitting using semiconductor photoelectrodes has been studied for more than 40 years, it has only recently been demonstrated using dye-sensitized electrodes. The quantum yield for water splitting in these dye-based systems has, so far, been very low because the charge recombination reaction is faster than the catalytic four-electron oxidation of water to oxygen. We show here that the quantum yield is more than doubled by incorporating an electron transfer mediator that is mimetic of the tyrosine-histidine mediator in Photosystem II. The mediator molecule is covalently bound to the water oxidation catalyst, a colloidal iridium oxide particle, and is coadsorbed onto a porous titanium dioxide electrode with a Ruthenium polypyridyl sensitizer. As in the natural photosynthetic system, this molecule mediates electron transfer between a relatively slow metal oxide catalyst that oxidizes water on the millisecond timescale and a dye molecule that is oxidized in a fast light-induced electron transfer reaction. The presence of the mediator molecule in the system results in photoelectrochemical water splitting with an internal quantum efficiency of approximately 2.3% using blue light.

  3. Bio-oil production via subcritical hydrothermal liquefaction of biomass

    Science.gov (United States)

    Durak, Halil

    2017-04-01

    Biomass based raw materials can be converted into the more valued energy forms using biochemical methods such as ethanol fermentation, methane fermentation and the thermochemical methods such as direct combustion, pyrolysis, gasification, liquefaction. The bio-oil obtained from the biomass has many advantages than traditional use. Firstly, it has features such as high energy density, easy storage and easy transportation. Bio-oil can be used as a fuel in engines, turbines and burning units directly. Besides, it can be converted into products in higher quality and volume via catalytic cracking, hydrodexygenation, emulsification, and steam reforming [1,2]. Many organic solvents such as acetone, ethanol, methanol, isopropanol are used in the supercritical liquefaction processes. When we think about the cost and effects of the organic solvent on nature, it will be understood better that it is necessary to find solvent that are more sensitive against nature. Here, water must have an important place because of its features. Most important solvent of the world water is named as "universal solvent" because none of the liquids can dissolve the materials as much as done by water. Water is found much at the nature and cost of it is very few when compared with the other solvent. Hydrothermal liquefaction, a thermochemical conversion process is an effective method used for converting biomass into the liquid products. General reaction conditions for hydrothermal liquefaction process are the 250-374 °C temperature range and 4 - 22 Mpa pressure values range, besides, the temperature values can be higher according to the product that is expected to be obtained [3,4]. In this study, xanthium strumarium plant stems have been used as biomass source. The experiments have been carried out using a cylindrical reactor (75 mL) at the temperatures of 300 °C. The produced liquids at characterized by elemental analysis, GC-MS and FT-IR. According to the analysis, different types of compounds

  4. Photo-illuminated diamond as a solid-state source of solvated electrons in water for nitrogen reduction.

    Science.gov (United States)

    Zhu, Di; Zhang, Linghong; Ruther, Rose E; Hamers, Robert J

    2013-09-01

    The photocatalytic reduction of N₂ to NH₃ is typically hampered by poor binding of N₂ to catalytic materials and by the very high energy of the intermediates involved in this reaction. Solvated electrons directly introduced into the reactant solution can provide an alternative pathway to overcome such limitations. Here we demonstrate that illuminated hydrogen-terminated diamond yields facile electron emission into water, thus inducing reduction of N₂ to NH₃ at ambient temperature and pressure. Transient absorption measurements at 632 nm reveal the presence of solvated electrons adjacent to the diamond after photoexcitation. Experiments using inexpensive synthetic diamond samples and diamond powder show that photocatalytic activity is strongly dependent on the surface termination and correlates with the production of solvated electrons. The use of diamond to eject electrons into a reactant liquid represents a new paradigm for photocatalytic reduction, bringing electrons directly to reactants without requiring molecular adsorption to the surface.

  5. Integrated modeling of CO2 storage and leakage scenarios including transitions between super- and sub-critical conditions, and phase change between liquid and gaseous CO2

    Energy Technology Data Exchange (ETDEWEB)

    Pruess, K.

    2011-05-15

    Storage of CO{sub 2} in saline aquifers is intended to be at supercritical pressure and temperature conditions, but CO{sub 2} leaking from a geologic storage reservoir and migrating toward the land surface (through faults, fractures, or improperly abandoned wells) would reach subcritical conditions at depths shallower than 500-750 m. At these and shallower depths, subcritical CO{sub 2} can form two-phase mixtures of liquid and gaseous CO{sub 2}, with significant latent heat effects during boiling and condensation. Additional strongly non-isothermal effects can arise from decompression of gas-like subcritical CO{sub 2}, the so-called Joule-Thomson effect. Integrated modeling of CO{sub 2} storage and leakage requires the ability to model non-isothermal flows of brine and CO{sub 2} at conditions that range from supercritical to subcritical, including three-phase flow of aqueous phase, and both liquid and gaseous CO{sub 2}. In this paper, we describe and demonstrate comprehensive simulation capabilities that can cope with all possible phase conditions in brine-CO{sub 2} systems. Our model formulation includes: (1) an accurate description of thermophysical properties of aqueous and CO{sub 2}-rich phases as functions of temperature, pressure, salinity and CO{sub 2} content, including the mutual dissolution of CO{sub 2} and H{sub 2}O; (2) transitions between super- and subcritical conditions, including phase change between liquid and gaseous CO{sub 2}; (3) one-, two-, and three-phase flow of brine-CO{sub 2} mixtures, including heat flow; (4) non-isothermal effects associated with phase change, mutual dissolution of CO{sub 2} and water, and (de-) compression effects; and (5) the effects of dissolved NaCl, and the possibility of precipitating solid halite, with associated porosity and permeability change. Applications to specific leakage scenarios demonstrate that the peculiar thermophysical properties of CO{sub 2} provide a potential for positive as well as negative

  6. Implementation of new physics models for low energy electrons in liquid water in Geant4-DNA.

    Science.gov (United States)

    Bordage, M C; Bordes, J; Edel, S; Terrissol, M; Franceries, X; Bardiès, M; Lampe, N; Incerti, S

    2016-12-01

    A new alternative set of elastic and inelastic cross sections has been added to the very low energy extension of the Geant4 Monte Carlo simulation toolkit, Geant4-DNA, for the simulation of electron interactions in liquid water. These cross sections have been obtained from the CPA100 Monte Carlo track structure code, which has been a reference in the microdosimetry community for many years. They are compared to the default Geant4-DNA cross sections and show better agreement with published data. In order to verify the correct implementation of the CPA100 cross section models in Geant4-DNA, simulations of the number of interactions and ranges were performed using Geant4-DNA with this new set of models, and the results were compared with corresponding results from the original CPA100 code. Good agreement is observed between the implementations, with relative differences lower than 1% regardless of the incident electron energy. Useful quantities related to the deposited energy at the scale of the cell or the organ of interest for internal dosimetry, like dose point kernels, are also calculated using these new physics models. They are compared with results obtained using the well-known Penelope Monte Carlo code. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  7. Tracking the Structural and Electronic Configurations of a Cobalt Proton Reduction Catalyst in Water

    Energy Technology Data Exchange (ETDEWEB)

    Moonshiram, Dooshaye; Gimbert-Suriñach, Carolina [Institute; Guda, Alexander [International; Picon, Antonio; Lehmann, C. Stefan; Zhang, Xiaoyi; Doumy, Gilles; March, Anne Marie; Benet-Buchholz, Jordi [Institute; Soldatov, Alexander [International; Llobet, Antoni [Institute; Departament; Southworth, Stephen H.

    2016-08-09

    Time resolved X-ray absorption spectroscopy (X-TAS) has been used to study the light induced hydrogen evolution reaction catalyzed by a highly stable cobalt complex, [Ru(bpy)3]2+ photosensitizer and an equimolar mixture of sodium ascorbate/ascorbic acid electron donor in pure water. XANES and EXAFS analysis of a binary mixture of the octahedral Co(III) pre-catalyst and [Ru(bpy)3]2+ after illumination, revealed in-situ formation of a square pyramidal Co(II) intermediate, with electron transfer kinetics of 51 ns. On the other hand, X-TAS experiments of the complete photocatalytic system in the presence of the electron donor showed the formation of a square planar Co(I) intermediate species within a few nanoseconds followed by its decay in the microsecond timescales. The Co(I) structural assignment is supported by calculations based on density functional theory (DFT). At longer reaction times, we observe the formation of the initial Co(III) species concomitant to the decay of Co(I), thus closing the catalytic cycle. The experimental X-ray absorption spectra of the molecular species formed along the catalytic cycle are modeled using a combination of molecular orbital DFT calculations (DFT-MO) and Finite Difference Method (FDM). These findings allowed us to unequivocally assign the full mechanistic pathway followed by the catalyst as well as to determine the rate limiting step of the process, which consists in the protonation of the Co(I). This study provides a complete kinetics scheme for the hydrogen evolution reaction by a cobalt catalyst, revealing unique information for the development of better catalysts for the reductive side of hydrogen fuel cells.

  8. Analysis of Subcritical Crack Growth in Dental Ceramics Using Fracture Mechanics and Fractography

    Science.gov (United States)

    Taskonak, Burak; Griggs, Jason A.; Mecholsky, John J.; Yan, Jia-Hau

    2008-01-01

    Objectives The aim of this study was to test the hypothesis that the flexural strengths and critical flaw sizes of dental ceramic specimens will be affected by the testing environment and stressing rate even though their fracture toughness values will remain the same. Methods Ceramic specimens were prepared from an aluminous porcelain (Vitadur Alpha; VITA Zahnfabrik, Bad Säckingen, Germany) and an alumina-zirconia-glass composite (In-Ceram® Zirconia; VITA Zahnfabrik). Three hundred uniaxial flexure specimens (150 of each material) were fabricated to dimensions of 25 mm × 4 mm × 1.2 mm according to the ISO 6872 standard. Each group of 30 specimens was fractured in water using one of four different target stressing rates ranging on a logarithmic scale from 0.1 to 100 MPa/s for Vitadur Alpha and from 0.01 to 10 MPa/s for In-Ceram® Zirconia. The fifth group was tested in inert environment (oil) with a target stressing rate of 100 MPa/s for Vitadur Alpha and 1000 MPa/s for In-Ceram® Zirconia. The effects of stressing rate and environment on flexural strength, critical flaw size, and fracture toughness were analyzed statistically by Kruskal-Wallis one-way ANOVA on ranks followed by post-hoc comparisons using Dunn’s test (α=0.05). In addition, 20 Vitadur Alpha specimens were fabricated with controlled flaws to simplify fractography. Half of these specimens were fracture tested in water and half in oil at a target stressing rate of 100 MPa/s, and the results were compared using Mann-Whitney rank sum tests (α=0.05). A logarithmic regression model was used to determine the fatigue parameters for each material. Results For each ceramic composition, specimens tested in oil had significantly higher strength (P≤0.05) and smaller critical flaw size (significant for Vitadur Alpha, P≤0.05) than those tested in water but did not have significantly different fracture toughness (P>0.05). Specimens tested at faster stressing rates had significantly higher strength (P≤0

  9. Atom Resolved Electron Microscpe Images of Polyvinylidene Fluoride Nanofibers for Water Desalination

    Science.gov (United States)

    Liu, Suqi; Reneker, Darrell

    Ultra-thin nanofibers of polyvinylidene fluoride (PVDF), observed with an aberration corrected transmission electron microscope, in a through focus series of 50 images, revealed three-dimensional positions and motions of some molecular segments. The x,y positions of fluorine atoms in the PVDF segments were observed at high resolution as described in (DOI: 10.1039/c5nr01619c). The methods described in (DOI:10.1038/nature11074) were used to measure the positions of fluorine atoms along the observation direction of the microscope. PVDF is widely used to separate salt ions from water in reverse osmosis systems. The observed separation depends on the atomic scale positions and motions of segments of the PVDF molecules. Conformational changes and the associated changes in the directions of the dipole moments of PVDF segments distinguish the diffusion of dipolar water molecules from diffusion of salt ions to accomplish desalination. Authors thank Coalescence Filtration Nanofibers Consortium at The University of Akron for support.

  10. Combined electron-beam and adsorption purification of water from mercury and chromium using materials of vegetable origin as sorbents

    Science.gov (United States)

    Ponomarev, A. V.; Bludenko, A. V.; Makarov, I. E.; Pikaev, A. K.; Kyung Kim, Duk; Kim, Yuri; Han, Bumsoo

    1997-04-01

    Combined electron-beam and adsorption method of purification of water from Hg(II) and Cr(VI) using materials of vegetable origin as sorbents was developed. It consists in the addition of materials of vegetable origin (e.g. cellulose, carboxymethyl cellulose, starch, and wheat flour) into water, subsequent electron-beam irradiation, sedimentation and filtration of additives with captured Hg(II) or Cr(VI). The method is based on the synergistic effect of the combined action of irradiation and sorbent. The best results were obtained with the wheat flour. For example, the addition of 25 mg/I of the flour to the water containing 1 mg/I Hg(II) and irradiation with dose 1.1 kGy upon bubbling inert gas through the system led to the 98% removal of the pollutant. The possible mechanism of the processes causing the purification of water is discussed.

  11. Evaluation of reactivity monitoring techniques at the Yalina - Booster sub-critical facility

    Energy Technology Data Exchange (ETDEWEB)

    Becares Palacios, V.

    2014-07-01

    The management of long-lived radioactive wastes produced by nuclear reactors constitutes one of the main challenges of nuclear technology nowadays. A possible option for its management consists in the transmutation of long lived nuclides into shorter lived ones. Accelerator Driven Subcritical Systems (ADS) are one of the technologies in development to achieve this goal. An ADS consists in a subcritical nuclear reactor maintained in a steady state by an external neutron source driven by a particle accelerator. The interest of these systems lays on its capacity to be loaded with fuels having larger contents of minor actinides than conventional critical reactors, and in this way, increasing the transmutation rates of these elements, that are the main responsible of the long-term radiotoxicity of nuclear waste. One of the key points that have been identified for the operation of an industrial-scale ADS is the need of continuously monitoring the reactivity of the subcritical system during operation. For this reason, since the 1990s a number of experiments have been conducted in zero-power subcritical assemblies (MUSE, RACE, KUCA, Yalina, GUINEVERE/FREYA) in order to experimentally validate these techniques. In this context, the present thesis is concerned with the validation of reactivity monitoring techniques at the Yalina-Booster subcritical assembly. This assembly belongs to the Joint Institute for Power and Nuclear Research (JIPNR-Sosny) of the National Academy of Sciences of Belarus. Experiments concerning reactivity monitoring have been performed in this facility under the EUROTRANS project of the 6th EU Framework Program in year 2008 under the direction of CIEMAT. Two types of experiments have been carried out: experiments with a pulsed neutron source (PNS) and experiments with a continuous source with short interruptions (beam trips). For the case of the first ones, PNS experiments, two fundamental techniques exist to measure the reactivity, known as the prompt

  12. Odd-number theorem: Optical feedback control at a subcritical Hopf bifurcation in a semiconductor laser

    Science.gov (United States)

    Schikora, S.; Wünsche, H.-J.; Henneberger, F.

    2011-02-01

    A subcritical Hopf bifurcation is prepared in a multisection semiconductor laser. In the free-running state, hysteresis is absent due to noise-induced escape processes. The missing branches are recovered by stabilizing them against noise through application of phase-sensitive noninvasive delayed optical feedback control. The same type of control is successfully used to stabilize the unstable pulsations born in the Hopf bifurcation. This experimental finding represents an optical counterexample to the so-called odd-number limitation of delayed feedback control. However, as a leftover of the limitation, the domains of control are extremely small.

  13. Numerical simulations of flow field in the target region of accelerator-driven subcritical reactor system

    CERN Document Server

    Chen Hai Yan

    2002-01-01

    Numerical simulations of flow field were performed by using the PHOENICS 3.2 code for the proposed spallation target of accelerator-driven subcritical reactor system (ADS). The fluid motion in the target is axisymmetric and is treated as a 2-D steady-state problem. A body-fitted coordinate system (BFC) is then chosen and a two-dimensional mesh of the flow channel is generated. Results are presented for the ADS target under both upward and downward flow, and for the target with diffuser plate installed below the window under downward flow

  14. Study on design of superconducting proton linac for accelerator driven subcritical nuclear power system

    CERN Document Server

    Yu Qi; Xu Tao Guang

    2002-01-01

    As a prior option of the next generation of energy source, the accelerator driven subcritical nuclear power system (ADS) can use efficiently the uranium and thorium resource, transmute the high-level long-lived radioactive wastes and raise nuclear safety. The ADS accelerator should provide the proton beam with tens megawatts. The superconducting linac (SCL) is a good selection of ADS accelerator because of its high efficiency and low beam loss rate. It is constitute by a series of the superconducting accelerating cavities. The cavity geometry is determined by means of the electromagnetic field computation. The SCL main parameters are determined by the particle dynamics computation

  15. Subcritical experiments at the FREYA experiment; Experimentos subcriticos en el proyecto FREYA

    Energy Technology Data Exchange (ETDEWEB)

    Becares Palacios, V.; Villamarin fernandez, D.

    2013-07-01

    The FREYA Project of the 7th Framework Program is aimed to the study of the kinetics of subcritical reactors coupled to an external neutron source, and, more specifically, to the validation of reactivity monitoring techniques. CIEMAT activities within the frame of this project have consisted in analyzing the possible ways of correcting the spatial and energy effects on these reactivity monitoring techniques, as well as analyzing the effects that may have on them the presence of different materials in the reflector and the position of the neutron source.

  16. Ion acoustic wave generation by a standing electromagnetic field in a subcritical plasma

    OpenAIRE

    P. Fischer; Gauthereau, C.; Godiot, J.; G. Matthieussent

    1987-01-01

    An electromagnetic wave ( f = 9 GHz, Pi = 150 kW, τ = 1.5 μs) is launched into a subcritical argon plasma (n e ≃1011 cm-3, P0 ≃ 5 × 10-4 Torr), resulting in a standing wave. The associated ponderomotive force generates an ion acoustic wave with a wave vector equal to twice the electromagnetic one and with a frequency satisfying the usual dispersion relation (fA ≃ 150 kHz). The main features of the ion acoustic wave, as measured in this 3D experiment, agree with a simple theory. However, varyi...

  17. Semiclassical Limit of the Non-linear Schroedinger-Poisson Equation With Subcritical Initial Data

    Science.gov (United States)

    2002-12-01

    lim ∇xargψ. As noted earlier, this argument is self - consistent as long as the solution of the Euler- Poisson system (1.5)-(1.6) remains classical...00-2003 to 00-00-2003 4. TITLE AND SUBTITLE Semiclassical Limit of the Non-linear Schrodinger - Poisson Equation with Subcritical Initial Data 5a...classical limit of a self - consistent quantum-Vlasov equation in 3-D, Math. Models Methods Appl. Sci., 3 (1993), pp. 109–124. [SMM] C. Sparber, P. Markowich

  18. The glass transition in a nutshell: a source of inspiration to describe the subcritical transition to turbulence.

    Science.gov (United States)

    Dauchot, Olivier; Bertin, Eric

    2014-04-01

    The starting point of the present work is the observation of possible analogies, both at the phenomenological and at the methodological level, between the subcritical transition to turbulence and the glass transition. Having recalled the phenomenology of the subcritical transition to turbulence, we review the theories of the glass transition at a very basic level, focusing on the history of their development as well as on the concepts they have elaborated. Doing so, we aim at attracting the attention on the above-mentioned analogies, which we believe could inspire new developments in the theory of the subcritical transition to turbulence. We then briefly describe a model inspired by one of the simplest and most inspiring models of the glass transition, the so-called Random Energy Model, as a first step in that direction.

  19. Microdosimetry of electrons in liquid water using the low-energy models of Geant4

    Science.gov (United States)

    Kyriakou, I.; Emfietzoglou, D.; Ivanchenko, V.; Bordage, M. C.; Guatelli, S.; Lazarakis, P.; Tran, H. N.; Incerti, S.

    2017-07-01

    The biological effects of ionizing radiation at the cellular level are frequently studied using the well-known formalism of microdosimetry, which provides a quantitative description of the stochastic aspects of energy deposition in irradiated media. Energy deposition can be simulated using Monte Carlo codes, some adopting a computationally efficient condensed-history approach, while others follow a more detailed track-structure approach. In this work, we present the simulation of microdosimetry spectra and related quantities (frequency-mean and dose-mean lineal energies) for incident monoenergetic electrons (50 eV-10 keV) in spheres of liquid water with dimensions comparable to the size of biological targets: base pairs (2 nm diameter), nucleosomes (10 nm), chromatin fibres (30 nm) and chromosomes (300 nm). Simulations are performed using the condensed-history low-energy physics models ("Livermore" and "Penelope") and the track-structure Geant4-DNA physics models, available in the Geant4 Monte Carlo simulation toolkit. The spectra are compared and the influence of simulation parameters and different physics models, with emphasis on recent developments, is discussed, underlining the suitability of Geant4-DNA models for microdosimetry simulations. It is further shown that with an appropriate choice of simulation parameters, condensed-history transport may yield reasonable results for sphere sizes as small as a few tens of a nanometer.

  20. Final Progress Report: FRACTURE AND SUBCRITICAL DEBONDING IN THIN LAYERED STRUCTURES: EXPERIMENTS AND MULTI-SCALE MODELING

    Energy Technology Data Exchange (ETDEWEB)

    Reinhold H. Dauskardt

    2005-08-30

    Final technical report detailing unique experimental and multi-scale computational modeling capabilities developed to study fracture and subcritical cracking in thin-film structures. Our program to date at Stanford has studied the mechanisms of fracture and fatigue crack-growth in structural ceramics at high temperature, bulk and thin-film glasses in selected moist environments where we demonstrated the presence of a true mechanical fatigue effect in some glass compositions. We also reported on the effects of complex environments and fatigue loading on subcritical cracking that effects the reliability of MEMS and other micro-devices using novel micro-machined silicon specimens and nanomaterial layers.

  1. Time- and angle-resolved photoemission spectroscopy of hydrated electrons near a liquid water surface.

    Science.gov (United States)

    Yamamoto, Yo-ichi; Suzuki, Yoshi-Ichi; Tomasello, Gaia; Horio, Takuya; Karashima, Shutaro; Mitríc, Roland; Suzuki, Toshinori

    2014-05-09

    We present time- and angle-resolved photoemission spectroscopy of trapped electrons near liquid surfaces. Photoemission from the ground state of a hydrated electron at 260 nm is found to be isotropic, while anisotropic photoemission is observed for the excited states of 1,4-diazabicyclo[2,2,2]octane and I- in aqueous solutions. Our results indicate that surface and subsurface species create hydrated electrons in the bulk side. No signature of a surface-bound electron has been observed.

  2. Dynamic properties of nucleated microtubules: GTP utilisation in the subcritical concentration regime.

    Science.gov (United States)

    Symmons, M F; Martin, S R; Bayley, P M

    1996-11-01

    Microtubule assembly kinetics have been studied quantitatively under solution conditions supporting microtubule dynamic instability. Purified GTP-tubulin (Tu-GTP) and covalently cross-linked short microtubule seeds (EGS-seeds; Koshland et al. (1988) Nature 331, 499) were used with and without biotinylation. Under sub-critical concentration conditions ([Tu-GTP] assembly, that was found to abolish the GDP release. The variation of the GDP release with tubulin concentration (Jh(c) plot) was determined below the critical concentration (Cc). The GDP production observed was consistent with the elongation of the observed seeded microtubules with an apparent rate constant of 1.5 x 10(6) M-1 second-1 above a threshold of approximately 1 microM tubulin. The form of this Jh(c) plot for elongation below Cc is reproduced by the Lateral Cap model for microtubule dynamic instability adapted for seeded assembly. The behaviour of the system is contrasted with that previously studied in the absence of detectable microtubule elongation (Caplow and Shanks (1990) J. Biol. Chem. 265, 8935-8941). The approach provides a means of monitoring microtubule dynamics at concentrations inaccessible to optical microscopy, and shows that essentially the same dynamic mechanisms apply at all concentrations. Numerical simulation of the subcritical concentration regime shows dynamic growth features applicable to the initiation of microtubule growth in vivo.

  3. Homoclinic connections and subcritical Neimark bifurcation in a duopoly model with adaptively adjusted productions

    Energy Technology Data Exchange (ETDEWEB)

    Agliari, Anna [Dipartimento di Scienze Economiche e Sociali, Universita Cattolica del Sacro Cuore, Via Emilia Parmense, 84, 29100 Piacenza (Italy)]. E-mail: anna.agliari@unicatt.it

    2006-08-15

    In this paper we study some global bifurcations arising in the Puu's oligopoly model when we assume that the producers do not adjust to the best reply but use an adaptive process to obtain at each step the new production. Such bifurcations cause the appearance of a pair of closed invariant curves, one attracting and one repelling, this latter being involved in the subcritical Neimark bifurcation of the Cournot equilibrium point. The aim of the paper is to highlight the relationship between the global bifurcations causing the appearance/disappearance of two invariant closed curves and the homoclinic connections of some saddle cycle, already conjectured in [Agliari A, Gardini L, Puu T. Some global bifurcations related to the appearance of closed invariant curves. Comput Math Simul 2005;68:201-19]. We refine the results obtained in such a paper, showing that the appearance/disappearance of closed invariant curves is not necessarily related to the existence of an attracting cycle. The characterization of the periodicity tongues (i.e. a region of the parameter space in which an attracting cycle exists) associated with a subcritical Neimark bifurcation is also discussed.

  4. Total acid number reduction kinetics of naphthenic acids using non-catalytic subcritical methanol

    Science.gov (United States)

    Zafar, Faisal; Mandal, Pradip Chandra; Shaari, Ku Zilati bt Ku; Nadeem, Saad

    2017-10-01

    Naphthenic acids (NAs) are weak organic acids present in the heavy crude oil and Oil Sand Bitumens. Whereas, the NAs are the major cause of corrosion in different processing, handling and storage equipment's of the refinery. Esterification of these acids can be an interesting method to reduce the NAs content in the crude oil besides its esters are valuable commodity and can be used as added lubricant in the oils. In this study, NAs reduction kinetics were investigated in a batch type reactor with subcritical methanol, the experiments were performed at temperatures of 150-210°C and fixed methanol partial pressure of 2 MPa. Findings of this study demonstrate that the 59% of total acid number (TAN) reduction was achieved at the temperature of 210°C, methanol partial pressure of 2 MPa and reaction time of 150 min. The TAN reduction followed second order kinetics with activation energy and frequency factor of 54.15 KJ/mol and 7.6×103, respectively. These results suggest that subcritical methanol can be an effective to reduce the TAN non-catalytically.

  5. Kinetics and reaction pathways of total acid number reduction of cyclopentane carboxylic acid using subcritical methanol

    Directory of Open Access Journals (Sweden)

    Mandal Pradip C.

    2016-09-01

    Full Text Available Cyclopentane carboxylic acid (CPCA is a model compound of Naphthenic acids (NAs. This objective of this paper is to discover total acid number (TAN reduction kinetics and pathways of the reaction between CAPA and subcritical methanol (SubC-MeOH. The experiments were carried out in an autoclave reactor at temperatures of 180-220°C, a methanol partial pressure (MPP of 3 MPa, reaction times of 0-30 min and CPCA initial gas phase concentrations of 0.016-0.04 g/mL. TAN content of the samples were analyzed using ASTM D 974 techniques. The reaction products were identified and quantified with the help of GC/MS and GC-FID respectively. Experimental results reveal that TAN removal kinetics followed first order kinetics with an activation energy of 13.97 kcal/mol and a pre-exponential factor of 174.21 s-1. Subcritical methanol is able to reduce TAN of CPCA decomposing CPCA into new compounds such as cyclopentane, formaldehyde, methyl acetate and 3-pentanol.

  6. Subcritical saturation of the magnetorotational instability through mean magnetic field generation

    Science.gov (United States)

    Xie, Jin-Han; Julien, Keith; Knobloch, Edgar

    2018-03-01

    The magnetorotational instability is widely believed to be responsible for outward angular momentum transport in astrophysical accretion discs. The efficiency of this transport depends on the amplitude of this instability in the saturated state. We employ an asymptotic expansion based on an explicit, astrophysically motivated time-scale separation between the orbital period, Alfvén crossing time and viscous or resistive dissipation time-scales, originally proposed by Knobloch and Julien, to formulate a semi-analytical description of the saturated state in an incompressible disc. In our approach a Keplerian shear flow is maintained by the central mass but the instability saturates via the generation of a mean vertical magnetic field. The theory assumes that the time-averaged angular momentum flux and the radial magnetic flux are constant and determines both self-consistently. The results predict that, depending on parameters, steady saturation may be supercritical or subcritical, and in the latter case that the upper (lower) solution branch is always stable (unstable). The angular momentum flux is always outward, consistent with the presence of accretion, and for fixed wavenumber peaks in the subcritical regime. The limit of infinite Reynolds number at large but finite magnetic Reynolds number is also discussed.

  7. Ion-scale turbulence in MAST: anomalous transport, subcritical transitions, and comparison to BES measurements

    Science.gov (United States)

    van Wyk, F.; Highcock, E. G.; Field, A. R.; Roach, C. M.; Schekochihin, A. A.; Parra, F. I.; Dorland, W.

    2017-11-01

    We investigate the effect of varying the ion temperature gradient (ITG) and toroidal equilibrium scale sheared flow on ion-scale turbulence in the outer core of MAST by means of local gyrokinetic simulations. We show that nonlinear simulations reproduce the experimental ion heat flux and that the experimentally measured values of the ITG and the flow shear lie close to the turbulence threshold. We demonstrate that the system is subcritical in the presence of flow shear, i.e., the system is formally stable to small perturbations, but transitions to a turbulent state given a large enough initial perturbation. We propose that the transition to subcritical turbulence occurs via an intermediate state dominated by low number of coherent long-lived structures, close to threshold, which increase in number as the system is taken away from the threshold into the more strongly turbulent regime, until they fill the domain and a more conventional turbulence emerges. We show that the properties of turbulence are effectively functions of the distance to threshold, as quantified by the ion heat flux. We make quantitative comparisons of correlation lengths, times, and amplitudes between our simulations and experimental measurements using the MAST BES diagnostic. We find reasonable agreement of the correlation properties, most notably of the correlation time, for which significant discrepancies were found in previous numerical studies of MAST turbulence.

  8. Subcritical convection in a rapidly rotating sphere at low Prandtl number

    CERN Document Server

    Guervilly, Celine

    2016-01-01

    We study non-linear convection in a low Prandtl number fluid ($Pr = 0.01-0.1$) in a rapidly rotating sphere with internal heating. We use a numerical model based on the quasi-geostrophic approximation, in which variations of the axial vorticity along the rotation axis are neglected, whereas the temperature field is fully three-dimensional. We identify two separate branches of convection close to onset: (i) a well-known weak branch for Ekman numbers greater than $10^{-6}$, which is continuous at the onset (supercritical bifurcation) and consists of a superposition of thermal Rossby waves, and (ii) a novel strong branch at lower Ekman numbers, which is discontinuous at the onset. The strong branch becomes subcritical for Ekman numbers of the order of $10^{-8}$. On the strong branch, the Reynolds number of the flow is greater than $10^3$, and a strong zonal flow with multiple jets develops, even close to the non-linear onset of convection. We find that the subcriticality is amplified by decreasing the Prandtl nu...

  9. Subcritical Thermal Convection of Liquid Metals in a Rapidly Rotating Sphere

    Science.gov (United States)

    Kaplan, E. J.; Schaeffer, N.; Vidal, J.; Cardin, P.

    2017-09-01

    Planetary cores consist of liquid metals (low Prandtl number Pr) that convect as the core cools. Here, we study nonlinear convection in a rotating (low Ekman number Ek) planetary core using a fully 3D direct numerical simulation. Near the critical thermal forcing (Rayleigh number Ra), convection onsets as thermal Rossby waves, but as Ra increases, this state is superseded by one dominated by advection. At moderate rotation, these states (here called the weak branch and strong branch, respectively) are smoothly connected. As the planetary core rotates faster, the smooth transition is replaced by hysteresis cycles and subcriticality until the weak branch disappears entirely and the strong branch onsets in a turbulent state at Ek <10-6. Here, the strong branch persists even as the thermal forcing drops well below the linear onset of convection (Ra =0.7 Racrit in this study). We highlight the importance of the Reynolds stress, which is required for convection to subsist below the linear onset. In addition, the Péclet number is consistently above 10 in the strong branch. We further note the presence of a strong zonal flow that is nonetheless unimportant to the convective state. Our study suggests that, in the asymptotic regime of rapid rotation relevant for planetary interiors, thermal convection of liquid metals in a sphere onsets through a subcritical bifurcation.

  10. Beam transient analyses of Accelerator Driven Subcritical Reactors based on neutron transport method

    Energy Technology Data Exchange (ETDEWEB)

    He, Mingtao; Wu, Hongchun [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China); Zheng, Youqi, E-mail: yqzheng@mail.xjtu.edu.cn [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China); Wang, Kunpeng [Nuclear and Radiation Safety Center, PO Box 8088, Beijing 100082 (China); Li, Xunzhao; Zhou, Shengcheng [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China)

    2015-12-15

    Highlights: • A transport-based kinetics code for Accelerator Driven Subcritical Reactors is developed. • The performance of different kinetics methods adapted to the ADSR is investigated. • The impacts of neutronic parameters deteriorating with fuel depletion are investigated. - Abstract: The Accelerator Driven Subcritical Reactor (ADSR) is almost external source dominated since there is no additional reactivity control mechanism in most designs. This paper focuses on beam-induced transients with an in-house developed dynamic analysis code. The performance of different kinetics methods adapted to the ADSR is investigated, including the point kinetics approximation and space–time kinetics methods. Then, the transient responds of beam trip and beam overpower are calculated and analyzed for an ADSR design dedicated for minor actinides transmutation. The impacts of some safety-related neutronics parameters deteriorating with fuel depletion are also investigated. The results show that the power distribution varying with burnup leads to large differences in temperature responds during transients, while the impacts of kinetic parameters and feedback coefficients are not very obvious. Classification: Core physic.

  11. The Free Overfall in Circular Sections with Different Flat Base in Supercritical and Subcritical Flow Regimes

    Directory of Open Access Journals (Sweden)

    A.R. Vatankhah

    2017-01-01

    Full Text Available Introduction: A free overfall offers a simple device for flow discharge measuring by a single measurement of depth at the end of the channel yb which is known as the end depth or brink depth. When the bottom of a channel drops suddenly, the flow separates from sharp edge of the brink and the pressure distribution is not hydrostatic because of the curvature of the flow. In channels with subcritical flow regime, control section occurs at the upstream with a critical depth (yc. Although pressure distribution at the critical depth is hydrostatic, the location of the critical depth can vary with respect to the discharge value. So, the end depth at brink is offered to estimate the discharge. A unique relationship between the brink depth (yb and critical depth (yc, known as end-depth ratio (EDR = yb/yc, exist. Since a relationship between the discharge and critical depth exists, the discharge can ultimately be related to yb. However, when the approaching flow is supercritical, critical section does not exist. Therefore, the discharge will be a function of end depth and channel longitudinal slope. In current study, an analytical model is presented for a circular free overfall with different flat base height in subcritical and supercritical flow regimes. The flow over a drop in a free overfall is simulated by applying the energy to calculate the EDR and end depth-discharge (EDD relationship. End-depth-discharge relationship: The flow of a free overfall in a channel can be assumed that is similar to the flow over a sharp-crested weir by taking weir height equal to zero. It is assumed that pressure at the end section is atmospheric, and also streamlines at the end section are parallel. To account for the curvature of streamlines, the deflection of jet due to gravity, the coefficient of contraction, Cc, is considered. At a short distance upstream the end section, the pressure is hydrostatic. By applying the energy equation between end section and control

  12. Calculated and measured dose distribution in electron and X-ray irradiated water phantom

    CERN Document Server

    Ziaie, F; Bulka, S; Afarideh, H; Hadji-Saeid, S M

    2002-01-01

    The Bremsstrahlung yields produced by incident electrons on a tantalum converter have been calculated by using a Monte-Carlo computer code. The tantalum thickness as an X-ray converter was optimized for 2, 2.5, 5, 7.5, and 10 MeV electron beams. The dose distribution in scanning and conveyor direction for both 2 MeV electron and X-ray converted from 2 MeV electron beam have been calculated and compared with experimental results. The economical aspects of low energy electron conversion were discussed as well.

  13. Dynamical electron-phonon coupling, G W self-consistency, and vertex effect on the electronic band gap of ice and liquid water

    Science.gov (United States)

    Ziaei, Vafa; Bredow, Thomas

    2017-06-01

    We study the impact of dynamical electron-phonon (el-ph) effects on the electronic band gap of ice and liquid water by accounting for frequency-dependent Fan contributions in the el-ph mediated self-energy within the many-body perturbation theory (MBPT). We find that the dynamical el-ph coupling effects greatly reduce the static el-ph band-gap correction of the hydrogen-rich molecular ice crystal from-2.46 to -0.23 eV in great contrast to the result of Monserrat et al. [Phys. Rev. B 92, 140302 (2015), 10.1103/PhysRevB.92.140302]. This is of particular importance as otherwise the static el-ph gap correction would considerably reduce the electronic band gap, leading to considerable underestimation of the intense peaks of optical absorption spectra of ice which would be in great disagreement to experimental references. By contrast, the static el-ph gap correction of liquid water is very moderate (-0.32 eV), and inclusion of dynamical effects slightly reduces the gap correction to -0.19 eV. Further, we determine the diverse sensitivity of ice and liquid water to the G W self-consistency and show that the energy-only self-consistent approach (GnWn ) exhibits large implicit vertex character in comparison to the quasiparticle self-consistent approach, for which an explicit calculation of vertex corrections is necessary for good agreement with experiment.

  14. Modifying Surface Chemistry of Metal Oxides for Boosting Dissolution Kinetics in Water by Liquid Cell Electron Microscopy.

    Science.gov (United States)

    Lu, Yue; Geng, Jiguo; Wang, Kuan; Zhang, Wei; Ding, Wenqiang; Zhang, Zhenhua; Xie, Shaohua; Dai, Hongxing; Chen, Fu-Rong; Sui, Manling

    2017-08-22

    Dissolution of metal oxides is fundamentally important for understanding mineral evolution and micromachining oxide functional materials. In general, dissolution of metal oxides is a slow and inefficient chemical reaction. Here, by introducing oxygen deficiencies to modify the surface chemistry of oxides, we can boost the dissolution kinetics of metal oxides in water, as in situ demonstrated in a liquid environmental transmission electron microscope (LETEM). The dissolution rate constant significantly increases by 16-19 orders of magnitude, equivalent to a reduction of 0.97-1.11 eV in activation energy, as compared with the normal dissolution in acid. It is evidenced from the high-resolution TEM imaging, electron energy loss spectra, and first-principle calculations where the dissolution route of metal oxides is dynamically changed by local interoperability between altered water chemistry and surface oxygen deficiencies via electron radiolysis. This discovery inspires the development of a highly efficient electron lithography method for metal oxide films in ecofriendly water, which offers an advanced technique for nanodevice fabrication.

  15. Subcritical water extraction of flavoring and phenolic compounds from cinnamon bark (Cinnamomum zeylanicum)

    National Research Council Canada - National Science Library

    Pramote Khuwijitjaru; Nucha Sayputikasikorn; Suched Samuhasaneetoo; Parinda Penroj; Prasong Siriwongwilaichat; Shuji Adachi

    2012-01-01

    ..., i.e., cinnamaldehyde, cinnamic acid, cinnamyl alcohol and coumarin, were extracted at lower recoveries than the extraction using methanol, suggesting that degradation of these components might occur...

  16. Effect of water density on the oxidation behavior of alloy A-286 at 625 °C – A TEM study

    Energy Technology Data Exchange (ETDEWEB)

    Huang, X., E-mail: xiao.huang@carleton.ca [Mechanical and Aerospace Engineering, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6 (Canada); Li, J.; Amirkhiz, B.S.; Liu, P. [CanmetMATERIALS, 183 Longwood Rd. S., Hamilton, ON L8P 0A1 (Canada)

    2015-12-15

    In this study the effect of water pressure on oxidation behavior of Alloy A-286 is assessed at 625 °C for 1000 h. The pressure values selected are 0.1, 8 and 29 MPa, representing steam, subcritical and supercritical conditions. Transmission electron microscopy (TEM) is used to study the oxide formation on the surface. A-286 sample exposed to supercritical water forms an oxide layer, about 1 μm, containing Fe{sub 2}O{sub 3}, spinel and Cr{sub 2}O{sub 3}. In addition, isolated internal oxidation, up to 10 μm, has taken place during the exposure. Recrystallization of substrate material is also observed. A-286 exposed to steam shows little oxidation. The oxide formed on the surface is only ∼200 nm thick and it is comprised of a top layer of Cr{sub 2}O{sub 3} and a thin sub-layer of SiO{sub 2}, as well as limited grain boundary oxidation in the form of spinel (Cr, Fe, Ti){sub 3}O{sub 4} and TiO{sub 2}. In contrast, the sample tested under subcritical condition suffered from excessive external and internal oxidation, with about 20 μm of Fe{sub 2}O{sub 3} on the external surface, followed by a partially oxidized zone (up to 20 μm) containing Cr{sub 2}O{sub 3} on the prior grain boundaries and discrete Cr{sub 2}O{sub 3} particles within the grain. The weight gain of A-286 exposed to subcritical condition is several orders of magnitude greater than that seen under steam condition.

  17. Supercritical CO(2) and subcritical propane extraction of pungent paprika and quantification of carotenoids, tocopherols, and capsaicinoids.

    Science.gov (United States)

    Gnayfeed, M H; Daood, H G; Illés, V; Biacs, P A

    2001-06-01

    Ground paprika (Capsicum annuum L.) was extracted with supercritical carbon dioxide (SC-CO(2)) and subcritical propane at different conditions of pressure and temperature to estimate the yield and variation in carotenoid, tocopherol, and capsaicinoid contents and composition. The yield of paprika extract was found to be affected by the extraction conditions with SC-CO(2) but fairly constant at different conditions with subcritical propane. The maximum yields of oleoresin were 7.9 and 8.1% of ground paprika by SC-CO(2) and subcritical propane, respectively. The quantitative distribution of carotenoids, tocopherols, and capsaicinoids between paprika extract and powder was influenced by extraction conditions. SC-CO(2) was inefficient in the extraction of diesters of xanthophylls even at 400 bar and 55 degrees C, whereas tocopherols and capsaicinoids were easy to extract at these conditions. Under mild conditions subcritical propane was superior to SC-CO(2) in the extraction of carotenoids and tocopherols but less efficient in the extraction of capsaicinoids.

  18. Differences in the stimulation of cyclic electron flow in two tropical ferns under water stress are related to leaf anatomy.

    Science.gov (United States)

    Wang, Ji-Hua; Li, Shen-Chong; Sun, Mei; Huang, Wei; Cao, Hua; Xu, Feng; Zhou, Ning-Ning; Zhang, Shi-Bao

    2013-03-01

    Cyclic electron flow (CEF) plays an important role in photoprotection for angiosperms under environmental stresses. However, ferns are more sensitive to drought and their water transport systems are not as efficient as those of angiosperms, it is unclear whether CEF also contributes to photoprotection in these plants. Using Microsorum punctatum and Paraleptochillus decurrens, we studied the electron fluxes through both photosystem I (PSI) and photosystem II (PSII) under water stress and their leaf anatomies. Our goal was to determine if CEF functions in the photoprotection of these ferns and, if so, whether CEF stimulation is related to leaf anatomy. Compared with P. decurrens, M. punctatum had thicker leaves and cuticles and higher water storage capacity, but lower stomatal density and slower rate of water loss. During induced drought, the decrease in leaf water potential (Ψ(leaf) ) was more pronounced in P. decurrens than in M. punctatum. For both species, the decline in Ψ(leaf) was associated with a lower effective PSII quantum yield, photochemical quantum yield of PSI and electron transport rate (ETR), whereas increases were found in the quantum yield of regulated energy dissipation, CEF and CEF/ETR(II) ratio. Values for CEF and the CEF/ETR(II) ratio peaked in M. punctatum at a light intensity of 500-600 µmol m(-2) s(-1) vs only 150-200 µmol m(-2) s(-1) in P. decurrens. Therefore, our results indicate that the stimulation of CEF in tropical ferns contributes to their photoprotection under water stress, and is related to their respective drought tolerance and leaf anatomy. Copyright © Physiologia Plantarum 2012.

  19. Penetration depth measurement of a 6 MeV electron beam in water by magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    B. E. Hammer

    2011-11-01

    Full Text Available We demonstrate magnetic resonance imaging (MRI visualization of a 6 MeV electron beam in ferrous-doped water; a 25 mm penetration depth was measured. Time domain nuclear magnetic resonance was used to investigate the effect of generated free radicals on the free induction decay (FID in nondoped water; no apparent effects to the FID were observed. We show that MRI visualization of charged particle beams used in medical applications will require exogenous agents to provide contrast enhancement.

  20. Prediction of electron concentration reductions in re-entry flow fields due to electrophilic liquid and water injection.

    Science.gov (United States)

    Pergament, H. S.; Mikatarian, R. R.; Kurzius, S. C.

    1972-01-01

    Discussion of an analytical model which leads to predictions of reductions in electron concentrations in reentry flow fields due to the injection of electrophilic liquids and water. The processes incorporated into the model are: penetration and breakup of the liquid jet, droplet acceleration and vaporization, expansion of the liquid spray due to droplet vaporization, electrophilic vapor diffusion, heterogeneous and homogeneous charged species recombination kinetics and homogeneous electron attachment kinetics. Spray boundary calculations are shown to be in good agreement with photographic observations of water and Freon E-3 sprays in wind tunnel tests of a scale model RAM C-III flight vehicle. Fixed-bias electrostatic probe data taken during the RAM C-III flight are interpreted in terms of effective jet penetration distances - which are shown to be consistent with calculations using the present model.

  1. Incorporation of Water-Oxidation Catalysts into Photoinduced Electron Transfer Systems: Toward Solar Fuel Generation via Artificial Photosynthesis

    Science.gov (United States)

    Vagnini, Michael Thomas

    A key goal of artificial photosynthesis is to mimic the photochemistry of photosystem II and oxidize water using light energy, with the ultimate aim of using the liberated electrons for reductive, fuel-forming reactions. One of the more recent challenges in the field of solar fuels chemistry is the efficient activation of molecular water-oxidation catalysts with photoinduced electron transfer, an effort that would benefit from detailed knowledge of the energetics and kinetics of each electron transfer step in a light-driven catalytic cycle. The focus of this thesis is the synthesis and photophysical characterization of covalent assemblies comprising a redox-active organic chromophore and the iridium(III)-based water-oxidation catalyst Cp*Ir(ppy)Cl (ppy = 2-phenylpyridine), and the rates and pathways for photogeneration of higher-valence states of the catalyst are determined with femtosecond transient absorption spectroscopy and other time-resolved spectroscopic techniques. In linking the photooxidant perylene-3,4:9,10-bis (dicarboximide) (PDI) to the Ir(III) catalyst, fast photoinduced electron transfer from the metal complex to PDI outcompetes heavy-atom quenching of the dye excited state, and the catalytic integrity of the complex is retained, as determined by electrocatalysis experiments. Long-lived higher-valence states of the catalyst are necessary for the accumulation of oxidizing equivalents for oxygen evolution, and the lifetime of photogenerated Ir(IV) has been extended by over two orders of magnitude by catalyst incorporation into a covalent electron acceptor--chromophore--catalyst triad, in which the dye is perylene-3,4-dicarboximide (PMI). Time resolved X-ray absorption studies of the triad confirm the photogeneration of an Ir(IV) metal center, a species that is too unstable to observe with chemical or electrochemical oxidation methods. This approach to preparing higher-valence states of water-oxidation catalysts has great promise for deducing catalytic

  2. PRODUCTION OF HYDRATED ELECTRONS FROM PHOTOIONIZATION OF DISSOLVED ORGANIC MATTER IN NATURAL WATERS

    Science.gov (United States)

    Under UV irradiation, an important primary photochemical reaction of colored dissolved organic matter (CDOM) is electron ejection, producing hydrated electrons (e-aq). The efficiency of this process has been studied in both fresh and seawater samples with both steady-state scave...

  3. 76 FR 36919 - Proof of Concept Demonstration for Electronic Reporting of Clean Water Act Compliance Monitoring...

    Science.gov (United States)

    2011-06-23

    ... generation of the following types of sample DMR XML files in the format expected by ICIS via the software... of all types of sample DMR XML files listed above to CDX via the software provider's electronic... demonstration will focus the electronic transmission of NPDES DMRs from a third-party commercial software...

  4. Laser-assisted electron scattering in strong-field ionization of dense water vapor by ultrashort laser pulses

    Science.gov (United States)

    Wilke, M.; Al-Obaidi, R.; Moguilevski, A.; Kothe, A.; Engel, N.; Metje, J.; Kiyan, I. Yu; Aziz, E. F.

    2014-08-01

    We report on strong-field ionization of dense water gas in a short infrared laser pulse. By employing a unique combination of photoelectron spectroscopy with a liquid micro-jet technique, we observe how the character of electron emission at high kinetic energies changes with the increase of the medium density. This change is associated with the process of laser-assisted electron scattering (LAES) on neighboring particles, which becomes a dominant mechanism of hot electron emission at higher medium densities. The manifestation of this mechanism is found to require densities that are orders of magnitude lower than those considered for heating the laser-generated plasmas via the LAES process. The experimental results are supported by simulations of the LAES yield with the use of the Kroll-Watson theory.

  5. FINAL DESIGN REVIEW REPORT Subcritical Experiments Gen 2, 3-ft Confinement Vessel Weldment

    Energy Technology Data Exchange (ETDEWEB)

    Romero, Christopher [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-28

    A Final Design Review (FDR) of the Subcritical Experiments (SCE) Gen 2, 3-ft. Confinement Vessel Weldment was held at Los Alamos National Laboratory (LANL) on September 14, 2017. The review was a focused review on changes only to the confinement vessel weldment (versus a system design review). The changes resulted from lessons-learned in fabricating and inspecting the current set of confinement vessels used for the SCE Program. The baseline 3-ft. confinement vessel weldment design has successfully been used (to date) for three (3) high explosive (HE) over-tests, two (2) fragment tests, and five (5) integral HE experiments. The design team applied lessons learned from fabrication and inspection of these vessel weldments to enhance fit-up, weldability, inspection, and fitness for service evaluations. The review team consisted of five (5) independent subject matter experts with engineering design, analysis, testing, fabrication, and inspection experience. The

  6. Conceptual study of high power proton linac for accelerator driven subcritical nuclear power system

    CERN Document Server

    Yu Qi; Ouyang Hua Fu; Xu Tao Guang

    2001-01-01

    As a prior option of the next generation of energy source, the accelerator driven subcritical nuclear power system (ADS) can use efficiently the uranium and thorium resource, transmute the high-level long-lived radioactive wastes and raise nuclear safety. The ADS accelerator should provide the proton beam with tens megawatts. The superconducting linac is a good selection of ADS accelerator because of its high efficiency and low beam loss rate. The ADS accelerator presented by the consists of a 5 MeV radio-frequency quadrupole, a 100 MeV independently phased superconducting cavity linac and a 1 GeV elliptical superconducting cavity linac. The accelerating structures and main parameters are determined and the research and development plan is considered

  7. Conceptual design based on scale laws and algorithms for sub-critical transmutation reactors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kwang Gu; Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1997-12-31

    In order to conduct the effective integration of computer-aided conceptual design for integrated nuclear power reactor, not only is a smooth information flow required, but also decision making for both conceptual design and construction process design must be synthesized. In addition to the aboves, the relations between the one step and another step and the methodologies to optimize the decision variables are verified, in this paper especially, that is, scaling laws and scaling criteria. In the respect with the running of the system, the integrated optimization process is proposed in which decisions concerning both conceptual design are simultaneously made. According to the proposed reactor types and power levels, an integrated optimization problems are formulated. This optimization is expressed as a multi-objective optimization problem. The algorithm for solving the problem is also presented. The proposed method is applied to designing a integrated sub-critical reactors. 6 refs., 5 figs., 1 tab. (Author)

  8. Kinetic model for the esterification of oleic acid catalyzed by zinc acetate in subcritical methanol

    Energy Technology Data Exchange (ETDEWEB)

    Song, Chengcai; Deng, Tiansheng [State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, P.O. Box 165, Taiyuan, Shanxi 030001 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China); Qi, Yongqin; Hou, Xianglin; Qin, Zhangfeng [State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, P.O. Box 165, Taiyuan, Shanxi 030001 (China)

    2010-03-15

    The esterification of oleic acid in subcritical methanol catalyzed by zinc acetate was investigated in a batch-type autoclave. The effect of reaction conditions such as temperature, pressure, reaction time and molar ratio of oleic acid to methanol on the esterification was examined. The oleic acid conversion reached 95.0% under 220 C and 6.0 MPa with the molar ratio of methanol to oleic acid being 4 and 1.0 wt% zinc acetate as catalyst. A kinetic model for the esterification was established. By fitting the kinetic model with the experimental results, the reaction order n = 2.2 and activation energy E{sub a} = 32.62 KJ/mol were obtained. (author)

  9. Experimental study of subcritical laboratory magnetized collisionless shocks using a laser-driven magnetic piston

    Energy Technology Data Exchange (ETDEWEB)

    Schaeffer, D. B., E-mail: dschaeffer@physics.ucla.edu; Everson, E. T.; Bondarenko, A. S.; Clark, S. E.; Constantin, C. G.; Gekelman, W.; Niemann, C. [Department of Physics and Astronomy, University of California—Los Angeles, Los Angeles, California 90095 (United States); Winske, D. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2015-11-15

    Recent experiments at the University of California, Los Angeles have successfully generated subcritical magnetized collisionless shocks, allowing new laboratory studies of shock formation relevant to space shocks. The characteristics of these shocks are compared with new data in which no shock or a pre-shock formed. The results are consistent with theory and 2D hybrid simulations and indicate that the observed shock or shock-like structures can be organized into distinct regimes by coupling strength. With additional experiments on the early time parameters of the laser plasma utilizing Thomson scattering, spectroscopy, and fast-gate filtered imaging, these regimes are found to be in good agreement with theoretical shock formation criteria.

  10. Nonlinear elastic behavior of sub-critically damaged body armor panel

    Science.gov (United States)

    Fisher, Jason T.; Chimenti, D. E.

    2012-05-01

    A simple go/no-go test for body armor panels using pressure-sensitive, dye-indicator film (PSF) has been shown to be statistically effective in revealing subcritical damage to body armor panels. Previous measurements have shown that static indicator levels are accurately reproduced in dynamic loading events. Further impact tests on armor worn by a human resuscitation dummy using instrumented masses with an attached accelerometer and embedded force transducer have been performed and analyzed. New impact tests have shown a reliable correlation between PSF indication (as digitized images) and impact force for a wide range of impactor energies and masses. Numerical evaluation of digital PSF images is presented and correlated with impact parameters. Relationships between impactor mass and energy, and corresponding measured force are shown. We will also report on comparisons between ballistic testing performed on panels damaged under various impact conditions and tests performed on undamaged panels.

  11. Experimental study of subcritical laboratory magnetized collisionless shocks using a laser-driven magnetic piston

    Science.gov (United States)

    Schaeffer, D. B.; Everson, E. T.; Bondarenko, A. S.; Clark, S. E.; Constantin, C. G.; Winske, D.; Gekelman, W.; Niemann, C.

    2015-11-01

    Recent experiments at the University of California, Los Angeles have successfully generated subcritical magnetized collisionless shocks, allowing new laboratory studies of shock formation relevant to space shocks. The characteristics of these shocks are compared with new data in which no shock or a pre-shock formed. The results are consistent with theory and 2D hybrid simulations and indicate that the observed shock or shock-like structures can be organized into distinct regimes by coupling strength. With additional experiments on the early time parameters of the laser plasma utilizing Thomson scattering, spectroscopy, and fast-gate filtered imaging, these regimes are found to be in good agreement with theoretical shock formation criteria.

  12. Source-jerk method for application on ADS neutronics study The ADS is stated for Accelerator Driven sub-critical System

    CERN Document Server

    Zhu Qing Fu; Li Yi; Xia Pu; Zheng Wu Qing; Zhu Guo Sheng

    2003-01-01

    The paper is concerned in the source-jerk method used to measure the sub-criticality, and the sub-critical experiment facility, which is used for the study on the neutronics of ADS, driven by external neutron source sup 2 sup 5 sup 2 Cf. The effects of the location of neutron source and material buffer where is at the location of the pipe of proton beam and target of fission-product dispersion on the sub-criticality of reactor are studied by source-jerk method

  13. Global bifurcations to subcritical magnetorotational dynamo action in Keplerian shear flow

    Science.gov (United States)

    Riols, A.; Rincon, F.; Cossu, C.; Lesur, G.; Longaretti, P.-Y.; Ogilvie, G. I.; Herault, J.

    2013-09-01

    Magnetorotational dynamo action in Keplerian shear flow is a three-dimensional, nonlinear magnetohydrodynamic process whose study is relevant to the understanding of accretion and magnetic field generation in astrophysics. Transition to this form of dynamo is subcritical and shares many characteristics of transition to turbulence in non-rotating hydrodynamic shear flows. This suggests that these different fluid systems become active through similar generic bifurcation mechanisms, which in both cases have eluded detailed understanding so far. In this paper, we investigate numerically the bifurcation mechanisms at work in the incompressible Keplerian magnetorotational dynamo problem in the shearing box framework. Using numerical techniques imported from dynamical systems research, we show that the onset of chaotic dynamo action at magnetic Prandtl numbers larger than unity is primarily associated with global homoclinic and heteroclinic bifurcations of nonlinear magnetorotational dynamo cycles. These global bifurcations are supplemented by local bifurcations of cycles marking the beginning of period-doubling cascades. This suggests that nonlinear magnetorotational dynamo cycles provide the pathway to turbulent injection of both kinetic and magnetic energy in incompressible magnetohydrodynamic Keplerian shear flow in the absence of an externally imposed magnetic field. Studying the nonlinear physics and bifurcations of these cycles in different regimes and configurations may subsequently help to better understand the conditions of excitation of magnetohydrodynamic turbulence and instability-driven dynamos in various astrophysical systems and laboratory experiments. The detailed characterization of global bifurcations provided for this three-dimensional subcritical fluid dynamics problem may also prove useful for the problem of transition to turbulence in hydrodynamic shear flows.

  14. Monte Carlo modeling and analyses of YALINA- booster subcritical assembly Part II : pulsed neutron source.

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, A.; Gohar, M. Y. A.; Rabiti, C.; Nuclear Engineering Division

    2008-10-22

    One of the most reliable experimental methods for measuring the kinetic parameters of a subcritical assembly is the Sjoestrand method applied to the reaction rate generated from a pulsed neutron source. This study developed a new analytical methodology for characterizing the kinetic parameters of a subcritical assembly using the Sjoestrand method, which allows comparing the analytical and experimental time dependent reaction rates and the reactivity measurements. In this methodology, the reaction rate, detector response, is calculated due to a single neutron pulse using MCNP/MCNPX computer code or any other neutron transport code that explicitly simulates the fission delayed neutrons. The calculation simulates a single neutron pulse over a long time period until the delayed neutron contribution to the reaction is vanished. The obtained reaction rate is superimposed to itself, with respect to the time, to simulate the repeated pulse operation until the asymptotic level of the reaction rate, set by the delayed neutrons, is achieved. The superimposition of the pulse to itself was calculated by a simple C computer program. A parallel version of the C program is used due to the large amount of data being processed, e.g. by the Message Passing Interface (MPI). The new calculation methodology has shown an excellent agreement with the experimental results available from the YALINA-Booster facility of Belarus. The facility has been driven by a Deuterium-Deuterium or Deuterium-Tritium pulsed neutron source and the (n,p) reaction rate has been experimentally measured by a {sup 3}He detector. The MCNP calculation has utilized the weight window and delayed neutron biasing variance reduction techniques since the detector volume is small compared to the assembly volume. Finally, this methodology was used to calculate the IAEA benchmark of the YALINA-Booster experiment.

  15. Highly Selective and Considerable Subcritical Butane Extraction to Separate Abamectin in Green Tea.

    Science.gov (United States)

    Zhang, Yating; Gu, Lingbiao; Wang, Fei; Kong, Lingjun; Pang, Huili; Qin, Guangyong

    2017-06-01

    We specially carried out the subcritical butane extraction to separate abamectin from tea leaves. Four parameters, such as extraction temperature, extraction time, number of extraction cycles, and solid-liquid ratio were studied and optimized through the response surface methodology with design matrix developed by Box-Behnken. Seventeen experiments with three various factors and three variable levels were employed to investigate the effect of these parameters on the extraction of abamectin. Besides, catechins, theanine, caffeine, and aroma components were determined by both high-performance liquid chromatography and gas chromatography-mass spectrometry to evaluate the tea quality before and after the extraction. The results showed that the extraction temperature was the uppermost parameter compared with others. The optimal extraction conditions selected as follows: extraction temperature, 42°C; number of extraction cycles and extraction time, 1 and 30 min, respectively; and solid-liquid ratio, 1:10. Based on the above study, the separation efficiency of abamectin was up to 93.95%. It is notable that there has a quite low loss rate, including the negligible damage of aroma components, the bits reduce of catechins within the range of 0.7%-13.1%, and a handful lessen of caffeine and theanine of 1.81% and 2.6%, respectively. The proposed method suggested subcritical butane possesses solubility for lipid-soluble pesticides, and since most of the pesticides are attached to the surfaces of tea, thus the as-applied method was successfully effective to separate abamectin because of the so practical and promising method.

  16. Suitability of olive oil washing water as an electron donor in a feed batch operating bio-electrochemical system

    Directory of Open Access Journals (Sweden)

    F. G. Fermoso

    2017-06-01

    Full Text Available Olive oil washing water derived from the two-phase manufacturing process was assessed as an electron donor in a bio-electrochemical system (BES operating at 35 ºC. Start-up was carried out by using acetate as a substrate for the BES, reaching a potential of around +680 mV. After day 54, BES was fed with olive oil washing water. The degradation of olive oil washing water in the BES generated a maximum voltage potential of around +520 mV and a Chemical Oxygen Demand (COD removal efficiency of 41%. However, subsequent loads produced a decrease in the COD removal, while current and power density diminished greatly. The deterioration of these parameters could be a consequence of the accumulation of recalcitrant or inhibitory compounds, such as phenols. These results demonstrated that the use of olive oil washing water as an electron donor in a BES is feasible, although it has to be further investigated in order to make it more suitable for a real application.

  17. Role of Water in Electron-Initiated Processes and Radical Chemistry: Issues and Scientific Advances

    Energy Technology Data Exchange (ETDEWEB)

    Garrett, Bruce C.; Dixon, David A.; Camaioni, Donald M.; Chipman, Daniel M.; Johnson, Mark A.; Jonah, Charles D.; Kimmel, Greg A.; Miller, John H.; Rescigno, Tom; Rossky, Peter J.; Xantheas, Sotiris S.; Colson, Steve D.; Laufer, Allan H.; Ray, Douglas; Barbara, Paul F.; Bartels, David M.; Bowen, Kit H.; Becker, Kurt H.; Bradforth, Stephen E.; Carmichael, Ian; Coe, James V.; Corrales, L. Rene; Cowin, James P.; Dupuis, Michel; Eisenthal, Kenneth B.; Franz, James A.; Gutowski, Maciej S.; Jordon, Kenneth D.; Kay, Bruce D.; La Verne, Jay A.; Lymar, Sergei V.; Madey, Theodore E.; Mccurdy, C. W.; Meisel, Dan; Mukamel, Shaul; Nilsson, Anders R.; Orlando, Thomas M.; Petrik, Nikolay G.; Pimblott, Simon M.; Rustad, James R.; Schenter, Gregory K.; Singer, Sherwin J.; Tokmakoff, Andrei; Wang, Lai-Sheng; Wittig, Curt; Zwier, Timothy S.

    2005-01-12

    An understanding of electron-initiated processes in aqueous systems and the subsequent radical chemistry these processes induce is significant in such diverse fields as waste remediation and environmental cleanup, radiation processing, nuclear reactors, and medical diagnosis and therapy. We review the state of the art in the physical chemistry and chemical physics of electron-initiated processes in aqueous systems and raise critical research issues and fundamental questions that remain unanswered.

  18. Coal-water slurry sprays from an electronically controlled accumulator fuel injection system: Break-up distances and times

    Energy Technology Data Exchange (ETDEWEB)

    Caton, J.A.; Payne, S.E.; Terracina, D.P.; Kihm, K.D. [Texas A and M Univ., College Station, TX (United States). Dept. of Mechanical Engineering

    1993-12-31

    Experiments have been completed to characterize coal-water slurry sprays from an electronically-controlled accumulator fuel injection system of a diesel engine. The sprays were injected into a pressurized chamber equipped with windows. High speed movies, fuel pressures and needle lifts were obtained as a function of time, orifice diameter, coal loading, gas density in the chamber, and accumulator fuel pressure. For the base conditions (50% (by man) coal loading, 0.4 mm diameter nozzle hole, coal-water slurry pressure of 82 MPa (12,000 psi), and a chamber density of 25 kg/m{sup 3}), the break-up time was 0.30 ms. An empirical correlation for spray tip penetration, break-up time and initial jet velocity was developed. For the conditions of this study, the spray tip penetration and initial jet velocity were 15% greater for coal-water slurry than for diesel fuel or water. Results of this study and the correlation are specific to the tested coal-water slurry and are not general for other coal-water slurry fuels.

  19. A First-Principles Approach to the Dynamics and Electronic Properties of p-Nitroaniline in Water.

    Science.gov (United States)

    Cabral, Benedito J Costa; Coutinho, Kaline; Canuto, Sylvio

    2016-06-09

    Born-Oppenheimer molecular dynamics of p-nitroaniline (PNA) in water was carried out and the electronic structure was investigated by time-dependent density functional theory. Hydrogen bonding involving the PNA nitro and amine groups and the water molecules leads to an ∼160 cm(-1) red shift of the ν(N-O) and ν(N-H) stretching frequencies relative to the gas phase species. Our estimate for the peak position of the charge transfer (CT) band in the absorption spectrum of PNA in water (∼3.5 eV) is in good agreement with experimental data (3.3 eV). We have investigated the specific role played by local hydrogen bonding and electrostatic interactions on the electronic absorption spectrum. It is shown that although electrostatic interactions play a major role for explaining the structure of the PNA CT band in water, the theoretical prediction of the observed red shift is improved by the explicit consideration of local hydrogen bonding of PNA to water. For isolated PNA, we predict that the dipole moment of the second excited state (S2) is 9.6 D greater than ground state (S0) dipole, which is in good agreement with experimental information (8.2-9.3 D). Calculation of charge transfer indexes for the two first excitations of PNA in water indicates that despite the feature that a small fraction of S1 states (<5%) may exhibit some CT character, CT states in solution are mainly associated with S2 ← S0 transitions.

  20. Probing the structural and dynamical properties of liquid water with models including non-local electron correlation.

    Science.gov (United States)

    Del Ben, Mauro; Hutter, Jürg; VandeVondele, Joost

    2015-08-07

    Water is a ubiquitous liquid that displays a wide range of anomalous properties and has a delicate structure that challenges experiment and simulation alike. The various intermolecular interactions that play an important role, such as repulsion, polarization, hydrogen bonding, and van der Waals interactions, are often difficult to reproduce faithfully in atomistic models. Here, electronic structure theories including all these interactions at equal footing, which requires the inclusion of non-local electron correlation, are used to describe structure and dynamics of bulk liquid water. Isobaric-isothermal (NpT) ensemble simulations based on the Random Phase Approximation (RPA) yield excellent density (0.994 g/ml) and fair radial distribution functions, while various other density functional approximations produce scattered results (0.8-1.2 g/ml). Molecular dynamics simulation in the microcanonical (NVE) ensemble based on Møller-Plesset perturbation theory (MP2) yields dynamical properties in the condensed phase, namely, the infrared spectrum and diffusion constant. At the MP2 and RPA levels of theory, ice is correctly predicted to float on water, resolving one of the anomalies as resulting from a delicate balance between van der Waals and hydrogen bonding interactions. For several properties, obtaining quantitative agreement with experiment requires correction for nuclear quantum effects (NQEs), highlighting their importance, for structure, dynamics, and electronic properties. A computed NQE shift of 0.6 eV for the band gap and absorption spectrum illustrates the latter. Giving access to both structure and dynamics of condensed phase systems, non-local electron correlation will increasingly be used to study systems where weak interactions are of paramount importance.

  1. The effects of electron donor and granular iron on nitrate transformation rates in sediments from a municipal water supply aquifer

    Science.gov (United States)

    Devlin, J. F.; Eedy, R.; Butler, B. J.

    2000-11-01

    A municipal water supply well for the town of Baden, located about 10 km southwest of Waterloo, ON, Canada, was forced to close due to unacceptably high concentrations of nitrate in the groundwater. Stimulated in situ denitrification was considered a possible solution to the problem. In advance of a planned field test, the effectiveness of various electron donors (acetate, hydrogen gas, elemental sulphur, thiosulphate, aqueous ferrous iron and pyrite) at stimulating denitrification was compared in microcosm experiments involving sediment from the Baden aquifer. All electron donors tested, with the possible exception of pyrite, stimulated nitrate removal from solution. Acetate was found to be the substance that stimulated the quickest initial removal rates, and denitrification was confirmed as the mechanism using the acetylene block technique. Nitrite accumulation was minimal in most systems, although the local water quality guideline limit of 1.0 mg/l NO 2--N was briefly and temporarily exceeded (maximum value was 1.2 mg/l) in some of the acetate amended microcosms. Granular iron was also considered as an electron donor or abiotic reducing agent, but was found to reduce nitrate predominantly to ammonium, in a neutral pH solution buffered with pyrite. In mixed granular iron aquifer sediment systems, where several electron donors were present (hydrogen, ferrous iron and pyrite) that could have supported denitrification, the abiotic reaction with the granular iron appeared to dominate other transformation pathways, and ammonium was again the major product. Based on the testing completed as part of this project, the aquifer at Baden is considered a good candidate for acetate-stimulated in situ denitrification for the removal of nitrate from the groundwater near the municipal water supply well.

  2. Quantitative nanoscale water mapping in frozen-hydrated skin by low-loss electron energy-loss spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yakovlev, Sergey [Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, NJ 07030 (United States); Misra, Manoj; Shi, Shanling [Unilever Research and Development, Trumbull, CT 06611 (United States); Firlar, Emre [Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, NJ 07030 (United States); Libera, Matthew, E-mail: mlibera@stevens.edu [Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, NJ 07030 (United States)

    2010-06-15

    Spatially resolved low-loss electron energy-loss spectroscopy (EELS) is a powerful method to quantitatively determine the water distribution in frozen-hydrated biological materials at high spatial resolution. However, hydrated tissue, particularly its hydrophilic protein-rich component, is very sensitive to electron radiation. This sensitivity has traditionally limited the achievable spatial resolution because of the relatively high noise associated with low-dose data acquisition. We show that the damage caused by high-dose data acquisition affects the accuracy of a multiple-least-squares (MLS) compositional analysis because of inaccuracies in the reference spectrum used to represent the protein. Higher spatial resolution combined with more accurate compositional analysis can be achieved if a reference spectrum is used that better represents the electron-beam-damaged protein component under frozen-hydrated conditions rather than one separately collected from dry protein under low-dose conditions. We thus introduce a method to extract the best-fitting protein reference spectrum from an experimental spectrum dataset. This method can be used when the MLS-fitting problem is sufficiently constrained so that the only unknown is the reference spectrum for the protein component. We apply this approach to map the distribution of water in cryo-sections obtained from frozen-hydrated tissue of porcine skin. The raw spectral data were collected at doses up to 10{sup 5} e/nm{sup 2} despite the fact that observable damage begins at doses as low as 10{sup 3} e/nm{sup 2}. The resulting spatial resolution of 10 nm is 5-10 times better than that in previous studies of frozen-hydrated tissue and is sufficient to resolve sub-cellular water fluctuations as well as the inter-cellular lipid-rich regions of skin where water-mediated processes are believed to play a significant role in the phenotype of keratinocytes in the stratum corneum.

  3. The water oxidation bottleneck in artificial photosynthesis: how can we get through it? An alternative route involving a two-electron process.

    Science.gov (United States)

    Inoue, Haruo; Shimada, Tetsuya; Kou, Youki; Nabetani, Yu; Masui, Dai; Takagi, Shinsuke; Tachibana, Hiroshi

    2011-02-18

    The state-of-the-art of research on artificial photosynthesis is briefly reviewed. Insights into how Nature takes electrons from water, the photon-flux density of sunlight, the time scale for the arrival of the next photon (electron-hole) at the oxygen-evolving complex, how Nature solves the photon-flux-density problem, and how we can get through the bottleneck of water oxidation are discussed. An alternate route for a two-electron process induced by one-photon excitation is postulated for getting through the bottleneck of water oxidation. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. SUB-LEU-METAL-THERM-001 SUBCRITICAL MEASUREMENTS OF LOW ENRICHED TUBULAR URANIUM METAL FUEL ELEMENTS BEFORE & AFTER IRRADIATION

    Energy Technology Data Exchange (ETDEWEB)

    SCHWINKENDORF, K.N.

    2006-05-12

    With the shutdown of the Hanford PUREX (Plutonium-Uranium Extraction Plant) reprocessing plant in the 1970s, adequate storage capacity for spent Hanford N Reactor fuel elements in the K and N Reactor pools became a concern. To maximize space utilization in the pools, accounting for fuel burnup was considered. Calculations indicated that at typical fuel exposures for N Reactor, the spent-fuel critical mass would be twice the critical mass for green fuel. A decision was reached to test the calculational result with a definitive experiment. If the results proved positive, storage capacity could be increased and N Reactor operation could be prolonged. An experiment to be conducted in the N Reactor spent-fuel storage pool was designed and assembled and the services of the Battelle Northwest Laboratories (BNWL) (now Pacific Northwest National Laboratory [PNNL]) critical mass laboratory were procured for the measurements. The experiments were performed in April 1975 in the Hanford N Reactor fuel storage pool. The fuel elements were MKIA fuel assemblies, comprising two concentric tubes of low-enriched metallic uranium. Two separate sets of measurements were performed: one with ''green'' (fresh) fuel and one with spent fuel. Both the green and spent fuel, were measured in the same geometry. The spent-fuel MKIA assemblies had an average burnup of 2865 MWd (megawatt days)/t. A constraint was imposed restricting the measurements to a subcritical limit of k{sub eff} = 0.97. Subcritical count rate data was obtained with pulsed-neutron and approach-to-critical measurements. Ten (10) configurations with green fuel and nine (9) configurations with spent fuel are described and evaluated. Of these, 3 green fuel and 4 spent fuel loading configurations were considered to serve as benchmark models. However, shortcomings in experimental data failed to meet the high standards for a benchmark problem. Nevertheless, the data provided by these subcritical measurements can

  5. Energy and angular distribution of electrons ejected from water by the impact of fast O8+ ion beams

    Science.gov (United States)

    Bhattacharjee, Shamik; Bagdia, Chandan; Chowdhury, Madhusree Roy; Monti, Juan M.; Rivarola, Roberto D.; Tribedi, Lokesh C.

    2018-01-01

    Double differential cross sections (DDCS) of electrons emitted from vapor water molecules (in vapor phase) by 2.0 MeV/u and 3.75 MeV/u bare oxygen ion impact have been measured by continuum electron spectroscopy technique. The ejected electrons were detected by an electrostatic hemispherical deflection analyzer over an energy range of 1-600 eV and emission angles from 20∘ to 160∘. The DDCS data has been compared with the continuum-distorted-wave-eikonal-initial state (CDW-EIS) approximation and a reasonable agreement was found with both version of the models i.e. post and prior version. By numerical integration of the DDCS data, the single differential cross section (SDCS) and total ionization cross section (TCS) were obtained. The obtained TCS results were compared with other available TCS results for water target within the same energy range. The total ionization cross sections values are seen to saturate as the projectile charge state ( q p ) increases, which is in contrast to the first-Born predicted q p 2 dependence. This is also in contrast to the prediction of the CDW-EIS models.

  6. DEVELOPMENT ELECTRONIC MAPS OF ECOLOGICAL STATUS OF WATER OBJECTS OF THE VOLGA RIVER DELTA

    Directory of Open Access Journals (Sweden)

    Z. N. Isenalieva

    2016-01-01

    Full Text Available Abstract. Aim. The aim of this work was the comprehensive study of the ecological state of water objects of the Volga River delta. Methods. The following methods were used: field (collection, observation, organoleptic, uniform chemical analysis techniques are based on colorimetric, settlement, photometric, spectrometric measurement methods. Results. On the basis of results of researches for 2010-2014 performed a comparative analysis of the dynamics of the content of hydro-chemical indicators of environmental quality in waters of the Volga River delta and the residential areas of the background. Applying an integrated approach to the study of biological indicators of water quality. Created digitized map of the quality of aquatic ecosystems of the Volga River delta. Displaying modern ecological condition of watercourses investigated, determined the degree of contamination, the overall trophic and saprobic. Main conclusions. The work has identified adverse environmental situation in water objects of the Astrakhan and the surrounding areas. Average annual concentrations of toxicological substances water objects in the background zone 10 times less than in the water objects of settlements. As a result of work on the basis of ArcGis 10.2.2 created information environment "Eco-monitor", which is a systematic set of information, and quantitatively characterizing the ecological status of water objects. Created on the basis of ArcGis 10.2.2 information environment monitoring system of waterways allows for a temporary and spatial analysis, to assess the quality of different streams in the control sections.

  7. A Comparative Study of Enantioseparations of Nα-Fmoc Proteinogenic Amino Acids on Quinine-Based Zwitterionic and Anion Exchanger-Type Chiral Stationary Phases under Hydro-Organic Liquid and Subcritical Fluid Chromatographic Conditions

    Directory of Open Access Journals (Sweden)

    Gyula Lajkó

    2016-11-01

    Full Text Available The focus of this contribution is a comparative investigation of enantioseparations of 19 Nα-Fmoc proteinogenic amino acids on Quinine-based zwitterionic and anion-exchanger type chiral stationary phases employing hydro-organic and polar-ionic liquid and subcritical fluid chromatographic conditions. Effects of mobile phase composition (including additives, e.g., water, basis and acids and nature of chiral selectors on the chromatographic performances were studied at different chromatographic modes. Thermodynamic parameters of the temperature dependent enantioseparation results were calculated in the temperature range 5–50 °C applying plots of lnα versus 1/T. The differences in standard enthalpy and standard entropy for a given pair of enantiomers were calculated and served as a basis for comparisons. Elution sequence in all cases was determined, where a general rule could be observed, both in liquid and subcritical fluid chromatographic mode the d-enantiomers eluted before the L ones. In both modes, the principles of ion exchange chromatography apply.

  8. A Comparative Study of Enantioseparations of Nα-Fmoc Proteinogenic Amino Acids on Quinine-Based Zwitterionic and Anion Exchanger-Type Chiral Stationary Phases under Hydro-Organic Liquid and Subcritical Fluid Chromatographic Conditions.

    Science.gov (United States)

    Lajkó, Gyula; Grecsó, Nóra; Tóth, Gábor; Fülöp, Ferenc; Lindner, Wolfgang; Péter, Antal; Ilisz, István

    2016-11-22

    The focus of this contribution is a comparative investigation of enantioseparations of 19 Nα-Fmoc proteinogenic amino acids on Quinine-based zwitterionic and anion-exchanger type chiral stationary phases employing hydro-organic and polar-ionic liquid and subcritical fluid chromatographic conditions. Effects of mobile phase composition (including additives, e.g., water, basis and acids) and nature of chiral selectors on the chromatographic performances were studied at different chromatographic modes. Thermodynamic parameters of the temperature dependent enantioseparation results were calculated in the temperature range 5-50 °C applying plots of lnα versus 1/T. The differences in standard enthalpy and standard entropy for a given pair of enantiomers were calculated and served as a basis for comparisons. Elution sequence in all cases was determined, where a general rule could be observed, both in liquid and subcritical fluid chromatographic mode the d-enantiomers eluted before the L ones. In both modes, the principles of ion exchange chromatography apply.

  9. Subcritical hydrothermal liquefaction of cattle manure to bio-oil: Effects of conversion parameters on bio-oil yield and characterization of bio-oil.

    Science.gov (United States)

    Yin, Sudong; Dolan, Ryan; Harris, Matt; Tan, Zhongchao

    2010-05-01

    In this study, cattle manure was converted to bio-oil by subcritical hydrothermal liquefaction in the presence of NaOH. The effects of conversion temperature, process gas, initial conversion pressure, residence time and mass ratio of cattle manure to water on the bio-oil yield were studied. The bio-oil was characterized in terms of elemental composition, higher heating value, ultraviolet-visible (UV/Vis) spectroscopy, Fourier transform infrared spectroscopy (FTIR), gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). Results showed that the bio-oil yield depended on the conversion temperature and the process gas. Higher initial conversion pressure, longer residence time and larger mass ratio of cattle manure to water, however, had negative impacts on the bio-oil yield. The higher heating value of bio-oil was 35.53MJ/kg on average. The major non-polar components of bio-oil were toluene, ethyl benzene and xylene, which are components of crude oil, gasoline and diesel. Copyright 2010 Elsevier Ltd. All rights reserved.

  10. Mass transfer in fuel cells. [electron microscopy of components, thermal decomposition of Teflon, water transport, and surface tension of KOH solutions

    Science.gov (United States)

    Walker, R. D., Jr.

    1973-01-01

    Results of experiments on electron microscopy of fuel cell components, thermal decomposition of Teflon by thermogravimetry, surface area and pore size distribution measurements, water transport in fuel cells, and surface tension of KOH solutions are described.

  11. Implementation and qualification of neutronic calculation methodology in subcritical reactors driven by external neutron sources and applications

    OpenAIRE

    Thiago Carluccio

    2011-01-01

    O trabalho teve como objetivo a investigação de Metodologias de Cálculo dos Reatores Subcríticos acionados por fonte externa de nêutrons, tais como, \\"Accelerator Driven Subcritical Reactor\\" (ADSR) e \\"Fusion Driven Subcritical Reator\\" (FDSR) , que são reatores nucleares subcríticos com uma fonte externa de nêutrons. Tais nêutrons são produzidos, no caso do ADSR, através da interação de partículas aceleradas (prótons, deutério) com um alvo (Pb, Bi, etc) ou através das reações de fusão, no c...

  12. Application of the Modified Source Multiplication (MSM) Technique to Subcritical Reactivity Worth Measurements in Thermal and Fast Reactor Systems

    Science.gov (United States)

    Blaise, Patrick; Mellier, Frédéric; Fougeras, Philippe

    2011-06-01

    The Amplified Source Multiplication (ASM) method and its improved Modified Source Multiplication (MSM) method have been widely used in the CEA's EOLE and MASURCA critical facilities over the past decades for the determination of reactivity worths by using fission chambers in subcritical configurations. The ASM methodology uses relatively simple relationships between count rates of efficient miniature fission chambers located in slightly subcritical reference and perturbed configurations. While this method works quite well for small reactivity variations, the raw results need to be corrected to take into account the flux perturbation at the fission chamber location. This is performed by applying to the measurement a correction factor called MSM. This paper describes in detail both methodologies, with their associated uncertainties. Applications on absorber cluster worth in the MISTRAL-4 full MOX mock-up core and the last core loaded in MASURCA show the importance of the MSM correction on raw ASM data.

  13. Electronic coarse graining enhances the predictive power of molecular simulation allowing challenges in water physics to be addressed

    Energy Technology Data Exchange (ETDEWEB)

    Cipcigan, Flaviu S., E-mail: flaviu.cipcigan@ed.ac.uk [School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD (United Kingdom); National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW (United Kingdom); Sokhan, Vlad P. [National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW (United Kingdom); Crain, Jason [School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD (United Kingdom); National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW (United Kingdom); Martyna, Glenn J. [IBM T. J. Watson Research Center, Yorktown Heights, NY 10598 (United States)

    2016-12-01

    One key factor that limits the predictive power of molecular dynamics simulations is the accuracy and transferability of the input force field. Force fields are challenged by heterogeneous environments, where electronic responses give rise to biologically important forces such as many-body polarisation and dispersion. The importance of polarisation in the condensed phase was recognised early on, as described by Cochran in 1959 [Philosophical Magazine 4 (1959) 1082–1086] [32]. Currently in molecular simulation, dispersion forces are treated at the two-body level and in the dipole limit, although the importance of three-body terms in the condensed phase was demonstrated by Barker in the 1980s [Phys. Rev. Lett. 57 (1986) 230–233] [72]. One approach for treating both polarisation and dispersion on an equal basis is to coarse grain the electrons surrounding a molecular moiety to a single quantum harmonic oscillator (cf. Hirschfelder, Curtiss and Bird 1954 [The Molecular Theory of Gases and Liquids (1954)] [37]). The approach, when solved in strong coupling beyond the dipole limit, gives a description of long-range forces that includes two- and many-body terms to all orders. In the last decade, the tools necessary to implement the strong coupling limit have been developed, culminating in a transferable model of water with excellent predictive power across the phase diagram. Transferability arises since the environment automatically identifies the important long range interactions, rather than the modeler through a limited set of expressions. Here, we discuss the role of electronic coarse-graining in predictive multiscale materials modelling and describe the first implementation of the method in a general purpose molecular dynamics software: QDO-MD. - Highlights: • Electronic coarse graining unites many-body dispersion and polarisation beyond the dipole limit. • It consists of replacing the electrons of a molecule using a quantum harmonic oscillator, called a

  14. Degradation of pollutants and elimination of pathogens of waste water by adsorption of accelerated electrons; Degradacion de contaminantes y eliminacion de patogenos de aguas residuales por adsorcion de electrones acelerados

    Energy Technology Data Exchange (ETDEWEB)

    Martinez M, I

    1991-10-15

    This report presents a position of the pollutants degradation of the industrial residual waters, it intends a method that consists on making pass residual water, treated biologically by a packed column with activated carbon. The carbon retains the pollutants and the water goes out with a purity that allows the reuse. In simultaneous form to the adsorption of pollutants are made pass electrons through the column of carbon, the electrons will destroy to the polluting adsorbed in the carbon; the pollutants degrade until CO{sub 2} that escapes as gas. The active sites of the carbon are empty and clever to be occupied by other pollutants. This process is continuous and it is repeated while water is passing by the column and electrons through this. (Author)

  15. X-ray absorption and infrared spectra of water and ice: A first-principles electronic structure study

    Science.gov (United States)

    Chen, Wei

    Water is of essential importance for chemistry and biology, yet the physics concerning many of its distinctive properties is not well known. In this thesis we present a theoretical study of the x-ray absorption (XA) and infrared (IR) spectra of water in liquid and solid phase. Our theoretical tools are the density functional theory (DFT), Car-Parrinello (CP) molecular dynamics (MD), and the so-called GW method. Since a systematic review of these ab initio methods is not the task of this thesis, we only briefly recall the main concepts of these methods as needed in the course of our exposition. The focus is, instead, an investigation of what is the important physics necessary for a better description of these excitation processes, in particular, core electron excitations (in XA) that reveal the local electronic structure, and vibrational excitations (in IR) associated to the molecular dynamics. The most interesting question we are trying to answer is: as we include better approximations and more complete physical descriptions of these processes, how do the aforementioned spectra reflect the underlying hydrogen-bonding network of water? The first part of this thesis consists of the first four chapters, which focus on the study of core level excitation of water and ice. The x-ray absorption spectra of water and ice are calculated with a many-body approach for electron-hole excitations. The experimental features, even the small effects of a temperature change in the liquid, are reproduced with quantitative detail using molecular configurations generated by ab initio molecular dynamics. We find that the spectral shape is controlled by two major modifications of the short range order that mark the transition from ice to water. One is associated to dynamic breaking of the hydrogen bonds which leads to a strong enhancement of the pre-edge intensity in the liquid. The other is due to densification, which follows the partial collapse of the hydrogen bond network and is

  16. Biodiesel from Hydrolyzed Waste Cooking Oil Using a S-ZrO2/SBA-15 Super Acid Catalyst under Sub-Critical Conditions

    Directory of Open Access Journals (Sweden)

    Muhammad Nobi Hossain

    2018-01-01

    Full Text Available Due to rapid changes in food habits, a substantial amount of waste fat and used oils are generated each year. Due to strong policies, the disposal of this material into nearby sewers causes ecological and environmental problems in many parts of the world. For efficient management, waste cooking oil, a less expensive, alternative and promising feedstock, can be used as a raw material for producing biofuel. In the present study, we produced a biodiesel from hydrolyzed waste cooking oil with a subcritical methanol process using a synthesized solid super acid catalyst, a sulfated zirconium oxide supported on Santa Barbara Amorphous silica (S-ZrO2/SBA-15. The characterization of the synthesized catalyst was carried out using scanning electron microscopy (SEM, X-ray diffraction (XRD, and the Brunauer-Emmett-Teller (BET method. The catalytic effect on biodiesel production was examined by varying the parameters: temperatures of 120 to 200 °C, 5–20 min times, oil-to-methanol mole ratios between 1:5 to 1:20, and catalyst loadings of 1–2.5%. The maximum biodiesel yield was 96.383%, obtained under optimum reaction conditions of 140 °C, 10 min, and a 1:10 oil-to-methanol molar ratio with a 2.0% catalyst loading. We successfully reused the catalyst five times without regeneration with a 90% efficiency. The fuel properties were found to be within the limits set by the biodiesel standard.

  17. High-resolution gas-chromatographic analysis of the secondary metabolites obtained by subcritical-fluid extraction from Colombian rue (Ruta graveolens L.).

    Science.gov (United States)

    Stashenko, E E; Acosta, R; Martínez, J R

    2000-07-05

    Subcritical (CO(2)) extraction, carried out in a J&W Scientific High Pressure Soxhlet Extractor, was used to isolate secondary metabolites from leaves, flowers, stems and roots of Colombian rue (Ruta graveolens L.). The various extracts were analyzed by capillary chromatography, on an HP-5 (30 m) column, using nitrogen-phosphorus, flame ionization, and mass selective detection systems. Kováts indexes and mass spectra (electron impact, 70 eV) were employed for compound identification. The extracts from the various parts of rue studied had different compositions. The number of compounds detected at concentrations above 0.01% (w/w) in the extracts from leaves, flowers, stems and roots, was 78, 45, 25 and 24, respectively. 2-Nonanone (8.9%), 2-undecanone (13.4%), chalepensin (13.0%), and geijerene (19.3%) were the main constituents found in the extracts from rue leaves, flowers, stems and roots, respectively. Furanocoumarins, furoquinolines, hydrocarbons and benzodioxol derivatives were the main compound families found in all extracts, at total concentrations between 3.7 and 33.9%, depending on the part of the plant. The extraction method used has low environmental impact and produced solvent-free extracts in good yield with no pigments, waxes, resins, or high-molecular weight compounds which may interfere with the isolation and analysis of the alkaloids responsible for rue's biological activity, which were extracted in relatively high yield.

  18. Analysis of the Temporal Response of Coupled Asymmetrical Zero-Power Subcritical Bare Metal Reactor Systems

    Energy Technology Data Exchange (ETDEWEB)

    Klain, Kimberly L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-06-21

    The behavior of symmetrical coupled-core systems has been extensively studied, yet there is a dearth of research on asymmetrical systems due to the increased complexity of the analysis of such systems. In this research, the multipoint kinetics method is applied to asymmetrical zeropower, subcritical, bare metal reactor systems. Existing research on asymmetrical reactor systems assumes symmetry in the neutronic coupling; however, it will be shown that this cannot always be assumed. Deep subcriticality adds another layer of complexity and requires modification of the multipoint kinetics equations to account for the effect of the external neutron source. A modified set of multipoint kinetics equations is derived with this in mind. Subsequently, the Rossi-alpha equations are derived for a two-region asymmetrical reactor system. The predictive capabilities of the radiation transport code MCNP6 for neutron noise experiments are shown in a comparison to the results of a series of Rossi-alpha measurements performed by J. Mihalczo utilizing a coupled set of symmetrical bare highly-enriched uranium (HEU) cylinders. The ptrac option within MCNP6 can generate time-tagged counts in a cell (list-mode data). The list-mode data can then be processed similarly to measured data to obtain values for system parameters such as the dual prompt neutron decay constants observable in a coupled system. The results from the ptrac simulations agree well with the historical measured values. A series of case studies are conducted to study the effects of geometrical asymmetry in the coupling between two bare metal HEU cylinders. While the coupling behavior of symmetrical systems has been reported on extensively, that of asymmetrical systems remains sparse. In particular, it appears that there has been no previous research in obtaining the coupling time constants for asymmetrically-coupled systems. The difficulty in observing such systems is due in part to the inability to determine the

  19. Extraction of Fenugreek (Trigonella foenum-graceum L.) Seed Oil Using Subcritical Butane: Characterization and Process Optimization.

    Science.gov (United States)

    Gu, Ling-Biao; Liu, Xiao-Ning; Liu, Hua-Min; Pang, Hui-Li; Qin, Guang-Yong

    2017-02-02

    In this study, the subcritical butane extraction process of fenugreek seed oil was optimized using response surface methodology with a Box-Behnken design. The optimum conditions for extracted oil from fenugreek seed was as follows: extraction temperature of 43.24 °C , extraction time of 32.80 min, and particle size of 0.26 mm. No significant differences were found between the experimental and predicted values. The physical and chemical properties of the oil showed that the oil could be used as edible oil. Fatty acid composition of oils obtained by subcritical butane under the optimum conditions and by accelerated solvent extraction showed negligible difference. The oils were rich in linoleic acid (42.71%-42.80%), linolenic acid (26.03%-26.15%), and oleic acid (14.24%-14.40%). The results revealed that the proposed method was feasible, and this essay shows the way to exploit fenugreek seeds by subcritical butane extraction under the scope of edible oils.

  20. Anomalous Ground State of the Electrons in Nano-confined Water

    Science.gov (United States)

    2016-06-13

    using x-ray Compton scattering and a computational model, that the ground state configuration of the valence electrons in a particular nano...version of Nafion), were the same as those used in the neutron Compton scattering measurements4. The two samples have very different conductivities at the...was 14, the same as was used in the neutron experiments. The samples were sealed in the x-ray sample cells while in contact with the vapor to avoid

  1. Giant onsite electronic entropy enhances the performance of ceria for water splitting

    DEFF Research Database (Denmark)

    Naghavi, S. Shahab; Emery, Antoine A.; Hansen, Heine Anton

    2017-01-01

    lanthanides, and reaches a maximum value of ≈4.7 kB per oxygen vacancy for Ce4+/Ce3+ reduction. This unique and large positive entropy source in ceria explains its excellent performance for high-temperature catalytic redox reactions such as water splitting. Our calculations also show that terbium dioxide has......Previous studies have shown that a large solid-state entropy of reduction increases the thermodynamic efficiency of metal oxides, such as ceria, for two-step thermochemical water splitting cycles. In this context, the configurational entropy arising from oxygen off-stoichiometry in the oxide, has...

  2. The 13th Annual James L. Waters Symposium at Pittcon: Electron Spectroscopy for Chemical Analysis

    Science.gov (United States)

    Baltrus, John P.

    2004-01-01

    The objective of the James L. Waters Annual Symposium is to recognize pioneers in the development of instrumentation by preserving the early history of the cooperation and important contributions of inventors, scientists, engineers, entrepreneurs, and marketing organizations. The symposium was held in Pittsburgh, United States in March 2002 to…

  3. Water

    Science.gov (United States)

    ... www.girlshealth.gov/ Home Nutrition Nutrition basics Water Water Did you know that water makes up more ... to drink more water Other drinks How much water do you need? top Water is very important, ...

  4. Characterisation of bicontinuous cubic liquid crystalline systems of phytantriol and water using cryo field emission scanning electron microscopy (cryo FESEM).

    Science.gov (United States)

    Rizwan, S B; Dong, Y-D; Boyd, B J; Rades, T; Hook, S

    2007-01-01

    Cubosomes are a novel lipid particulate delivery system currently being investigated for drug delivery purposes. The present study investigates bicontinuous cubic liquid crystalline systems (bulk phase and cubosomes) formed by phytantriol and water using cryo field emission scanning electron microscopy (cryo FESEM). Previously cubosomes have been characterized by cryo transmission electron microscopy (cryo TEM) with small angle X-ray diffraction (SAXS) confirming the bicontinuous liquid crystalline type. Bulk cubic phase and cubosomes were prepared from phytantriol and Pluronic F127 and analysed using cryo FESEM and SAXS. The micrographs showed the cubic phase had a tortuous, bicontinuous nature with a non-intersecting network of water channels. The cubosomes also show the same underlying tortuous structure entirely consistent with that of the bulk cubic phase and closely resemble the mathematical description of cubosomes described using nodal surface representation. The structure of both systems was confirmed using SAXS as a bicontinuous cubic liquid crystalline phase with Pn3m geometry. Cryo FESEM provides valuable insights into the morphological features of bicontinuous cubic liquid crystalline systems. The unique details shown provide strength to support the nodal surface representation of bicontinuous cubic liquid crystalline systems. Cryo FESEM provides a new technique to complement cryo TEM and SAXS for investigating their structure and function.

  5. Water resistance and surface morphology of synthetic fabrics covered by polysiloxane/acrylate followed by electron beam irradiation

    CERN Document Server

    El-Naggar, A M; Mohammed, S S; Alam, E A

    2003-01-01

    Different synthetic fabrics were treated by electron beam surface coating with two formulations based on polydimethylsiloxane (PDMS) and polystyrene (PS) or poly(methyl methacrylate) (PMMA) oligomers. The water resistance properties were investigated in terms of the percentage of water repellency and absorption. Also, the surface coated fabrics were examined by scanning electron microscopy/microscope (SEM) connected to an energy dispersive X-ray (EDX) unit to determine the percentage atomic contents of elements. The results showed that the adhesion of the polysiloxane formulation to the surface depends largely on the kind of acrylate oligomer and textile fabric as indicated by the EDX analysis for silicon. In this regard, PDMS/PS formulation is more compatible with polyester and nylon-6 fabrics than PDMS/PMMA one. However, it was found that PDMS/PMMA formulation is more compatible with cotton/polyester blend than PDMS/PS. The SEM micrographs give further supports to the EDX analysis. On the basis of the perce...

  6. CFD Analysis and Design of Detailed Target Configurations for an Accelerator-Driven Subcritical System

    Energy Technology Data Exchange (ETDEWEB)

    Kraus, Adam; Merzari, Elia; Sofu, Tanju; Zhong, Zhaopeng; Gohar, Yousry

    2016-08-01

    High-fidelity analysis has been utilized in the design of beam target options for an accelerator driven subcritical system. Designs featuring stacks of plates with square cross section have been investigated for both tungsten and uranium target materials. The presented work includes the first thermal-hydraulic simulations of the full, detailed target geometry. The innovative target cooling manifold design features many regions with complex flow features, including 90 bends and merging jets, which necessitate three-dimensional fluid simulations. These were performed using the commercial computational fluid dynamics code STAR-CCM+. Conjugate heat transfer was modeled between the plates, cladding, manifold structure, and fluid. Steady-state simulations were performed but lacked good residual convergence. Unsteady simulations were then performed, which converged well and demonstrated that flow instability existed in the lower portion of the manifold. It was established that the flow instability had little effect on the peak plate temperatures, which were well below the melting point. The estimated plate surface temperatures and target region pressure were shown to provide sufficient margin to subcooled boiling for standard operating conditions. This demonstrated the safety of both potential target configurations during normal operation.

  7. High-pressure cell for neutron reflectometry of supercritical and subcritical fluids at solid interfaces.

    Science.gov (United States)

    Carmichael, Justin R; Rother, Gernot; Browning, James F; Ankner, John F; Banuelos, Jose L; Anovitz, Lawrence M; Wesolowski, David J; Cole, David R

    2012-04-01

    A new high-pressure cell design for use in neutron reflectometry (NR) for pressures up to 50 MPa and a temperature range of 300-473 K is described. The cell design guides the neutron beam through the working crystal without passing through additional windows or the bulk fluid, which provides for a high neutron transmission, low scattering background, and low beam distortion. The o-ring seal is suitable for a wide range of subcritical and supercritical fluids and ensures high chemical and pressure stability. Wafers with a diameter of 5.08 cm (2 in.) and 5 mm or 10 mm thickness can be used with the cells, depending on the required pressure and momentum transfer range. The fluid volume in the sample cell is very small at about 0.1 ml, which minimizes scattering background and stored energy. The cell design and pressure setup for measurements with supercritical fluids are described. NR data are shown for silicon/silicon oxide and quartz wafers measured against air and subsequently within the high-pressure cell to demonstrate the neutron characteristics of the high-pressure cell. Neutron reflectivity data for supercritical CO(2) in contact with quartz and Si/SiO(2) wafers are also shown. © 2012 American Institute of Physics

  8. Subcritical Butane Extraction of Wheat Germ Oil and Its Deacidification by Molecular Distillation

    Directory of Open Access Journals (Sweden)

    Jinwei Li

    2016-12-01

    Full Text Available Extraction and deacidification are important stages for wheat germ oil (WGO production. Crude WGO was extracted using subcritical butane extraction (SBE and compared with traditional solvent extraction (SE and supercritical carbon dioxide extraction (SCE based on the yield, chemical index and fatty acid profile. Furthermore, the effects of the molecular distillation temperature on the quality of WGO were also investigated in this study. Results indicated that WGO extracted by SBE has a higher yield of 9.10% and better quality; at the same time, its fatty acid composition has no significant difference compared with that of SE and SCE. The molecular distillation experiment showed that the acid value, peroxide value and p-anisidine value of WGO were reduced with the increase of the evaporation temperatures, and the contents of the active constituents of tocopherol, polyphenols and phytosterols are simultaneously decreased. Generally, the distillation temperature of 150 °C is an appropriate condition for WGO deacidification with the higher deacidification efficiency of 77.78% and the higher retention rate of active constituents.

  9. Studies on subcritical and overcritical density laser ablated TAC foam targets

    Science.gov (United States)

    Chaurasia, S.; Leshma, P.; Murali, C. G.; Borisenko, N. G.; Munda, D. S.; Orekhov, A.; Gromov, A. I.; Merkuliev, Yu. A.; Dhareshwar, L. J.

    2015-05-01

    In this paper, the interaction of high power laser with low density polymer foam with density as low as 2 mg/cm3, 4 mg/cm3, 20 mg/cm3 30 mg/cm3 and 50 mg/cm3 targets are investigated and compared with solid polymer targets. An understanding of such interaction is important from fusion research point of view. Low density foam coating of fusion capsule has been proposed in order to smooth in direct drive scheme and also it is being used as efficient x-ray converter in indirect drive scheme. It is observed that about 75-80% of the laser energy is absorbed in the subcritical (with density case is almost two times that measured in the over dense (supper critical) targets. The optical shadowgraphy of the targets shows that the laser coupling in low density foam is associated with a supersonic heat wave while, with increasing density this phenomenon is replaced by subsonic absorption and shock formation. In the case of a 50 mg/cm3 foams the foil velocity reduced by 35% (i.e. 5×106 cm/s), which further reduced to 3.8×106 cm/s in case solid polymer targets.

  10. Polyethylene-reflected plutonium metal sphere : subcritical neutron and gamma measurements.

    Energy Technology Data Exchange (ETDEWEB)

    Mattingly, John K.

    2009-11-01

    Numerous benchmark measurements have been performed to enable developers of neutron transport models and codes to evaluate the accuracy of their calculations. In particular, for criticality safety applications, the International Criticality Safety Benchmark Experiment Program (ICSBEP) annually publishes a handbook of critical and subcritical benchmarks. Relatively fewer benchmark measurements have been performed to validate photon transport models and codes, and unlike the ICSBEP, there is no program dedicated to the evaluation and publication of photon benchmarks. Even fewer coupled neutron-photon benchmarks have been performed. This report documents a coupled neutron-photon benchmark for plutonium metal reflected by polyethylene. A 4.5-kg sphere of ?-phase, weapons-grade plutonium metal was measured in six reflected configurations: (1) Bare; (2) Reflected by 0.5 inch of high density polyethylene (HDPE); (3) Reflected by 1.0 inch of HDPE; (4) Reflected by 1.5 inches of HDPE; (5) Reflected by 3.0 inches of HDPE; and (6) Reflected by 6.0 inches of HDPE. Neutron and photon emissions from the plutonium sphere were measured using three instruments: (1) A gross neutron counter; (2) A neutron multiplicity counter; and (3) A high-resolution gamma spectrometer. This report documents the experimental conditions and results in detail sufficient to permit developers of radiation transport models and codes to construct models of the experiments and to compare their calculations to the measurements. All of the data acquired during this series of experiments are available upon request.

  11. High-pressure cell for neutron reflectometry of supercritical and subcritical fluids at solid interfaces

    Science.gov (United States)

    Carmichael, Justin R.; Rother, Gernot; Browning, James F.; Ankner, John F.; Banuelos, Jose L.; Anovitz, Lawrence M.; Wesolowski, David J.; Cole, David R.

    2012-04-01

    A new high-pressure cell design for use in neutron reflectometry (NR) for pressures up to 50 MPa and a temperature range of 300-473 K is described. The cell design guides the neutron beam through the working crystal without passing through additional windows or the bulk fluid, which provides for a high neutron transmission, low scattering background, and low beam distortion. The o-ring seal is suitable for a wide range of subcritical and supercritical fluids and ensures high chemical and pressure stability. Wafers with a diameter of 5.08 cm (2 in.) and 5 mm or 10 mm thickness can be used with the cells, depending on the required pressure and momentum transfer range. The fluid volume in the sample cell is very small at about 0.1 ml, which minimizes scattering background and stored energy. The cell design and pressure setup for measurements with supercritical fluids are described. NR data are shown for silicon/silicon oxide and quartz wafers measured against air and subsequently within the high-pressure cell to demonstrate the neutron characteristics of the high-pressure cell. Neutron reflectivity data for supercritical CO2 in contact with quartz and Si/SiO2 wafers are also shown.

  12. The TRADE experiment: shielding calculations for the building hosting the subcritical system.

    Science.gov (United States)

    Burn, K W; Carta, M; Casalini, L; Kadi, Y; Monti, S; Nava, E; Palomba, M; Petrovich, C; Picardi, L; Rubbia, C; Troiani, F

    2005-01-01

    The TRADE project (TRiga Accelerator Driven Experiment), to be performed at the existing TRIGA reactor at ENEA Casaccia, has been proposed as a validation of the accelerator-driven system (ADS) concept. TRADE will be the first experiment in which the three main components of an ADS--the accelerator, spallation target and sub-critical blanket--are coupled at a power level sufficient to encounter reactivity feedback effects. As such, TRADE represents the necessary intermediate step in the development of hybrid transmutation systems, its expected outcomes being considered crucial--in terms of proof of stability of operation, dynamic behaviour and licensing issues--for the subsequent realisation of an ADS Transmutation Demonstrator. An essential role in the feasibility study of the experiment is played by radioprotection calculations. Such a system exhibits new characteristics with respect to a traditional reactor, owing to the presence of the proton accelerator. As beam losses always occur under normal operating conditions of an accelerator, shielding studies need to be performed not only around the reactor but also along the beam line from the accelerator to the spallation target. This paper illustrates a preliminary evaluation, using Monte Carlo methods, of the additional shielding to be located around the reactor structures, the beam transport line and the existing reactor building to allow access into the reactor hall and to restrict the doses outside to their legal limits.

  13. The effect of a hydroxyapatite impregnated PCL membrane in rat subcritical calvarial bone defects.

    Science.gov (United States)

    Groppo, Monica Feresini; Caria, Paulo Henrique; Freire, Alexandre Rodrigues; Figueroba, Sidney R; Ribeiro-Neto, Wilson Alves; Bretas, Rosario Elida Suman; Prado, Felippe Bevilacqua; Haiter-Neto, Francisco; Aguiar, Flavio Henrique; Rossi, Ana Claudia

    2017-10-01

    The present study evaluated the effect of polymeric-nanofibers membranes impregnated with microparticulate hydroxyapatite (HA) in the subcritical calvarial bone defects (SCBD) healing. PCL membranes with and without HA were obtained by electrospinning. SCBD were perforated (3.3mm) in left and right sides of 36 rat calvarias. The right-side SBCD of 18 animals was filled with HA mixed with blood clot and blood clot at the contralateral side. The remaining animals received PCL+HA membrane at the right-side SCBD and PCL membrane at the contralateral side. Animals were killed after 30, 60 and 90days after surgery. Bone defect volume (in mm3) was measured by tomography (CBCT). Qualitative histological analysis and SBCD area (in mm2) were measured. Quantitative data were submitted to Kruskal-Wallis/Dunn tests. Reduction of SBCD volume was observed in all treatments but PCL. Association with HA significantly improved bone healing induced by PCL and blood clot. PCL+HA induced the lowest SBCD volume at 60 and 90days. Complete bone healing was not observed even at 90days in SCBD treated with blood clot. In every period, more bone formation was observed for SCBD treated with membranes. We concluded that both PCL membrane and HA were able to improve bone healing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. The Optimal Evaporation Temperature of Subcritical ORC Based on Second Law Efficiency for Waste Heat Recovery

    Directory of Open Access Journals (Sweden)

    Xiaoxiao Xu

    2012-03-01

    Full Text Available The subcritical Organic Rankine Cycle (ORC with 28 working fluids for waste heat recovery is discussed in this paper. The effects of the temperature of the waste heat, the critical temperature of working fluids and the pinch temperature difference in the evaporator on the optimal evaporation temperature (OET of the ORC have been investigated. The second law efficiency of the system is regarded as the objective function and the evaporation temperature is optimized by using the quadratic approximations method. The results show that the OET will appear for the temperature ranges investigated when the critical temperatures of working fluids are lower than the waste heat temperatures by 18 ± 5 K under the pinch temperature difference of 5 K in the evaporator. Additionally, the ORC always exhibits the OET when the pinch temperature difference in the evaporator is raised under the fixed waste heat temperature. The maximum second law efficiency will decrease with the increase of pinch temperature difference in the evaporator.

  15. Subcritical Butane Extraction of Wheat Germ Oil and Its Deacidification by Molecular Distillation.

    Science.gov (United States)

    Li, Jinwei; Sun, Dewei; Qian, Lige; Liu, Yuanfa

    2016-12-07

    Extraction and deacidification are important stages for wheat germ oil (WGO) production. Crude WGO was extracted using subcritical butane extraction (SBE) and compared with traditional solvent extraction (SE) and supercritical carbon dioxide extraction (SCE) based on the yield, chemical index and fatty acid profile. Furthermore, the effects of the molecular distillation temperature on the quality of WGO were also investigated in this study. Results indicated that WGO extracted by SBE has a higher yield of 9.10% and better quality; at the same time, its fatty acid composition has no significant difference compared with that of SE and SCE. The molecular distillation experiment showed that the acid value, peroxide value and p-anisidine value of WGO were reduced with the increase of the evaporation temperatures, and the contents of the active constituents of tocopherol, polyphenols and phytosterols are simultaneously decreased. Generally, the distillation temperature of 150 °C is an appropriate condition for WGO deacidification with the higher deacidification efficiency of 77.78% and the higher retention rate of active constituents.

  16. Physics design of an accelerator for an accelerator-driven subcritical system

    Directory of Open Access Journals (Sweden)

    Zhihui Li

    2013-08-01

    Full Text Available An accelerator-driven subcritical system (ADS program was launched in China in 2011, which aims to design and build an ADS demonstration facility with the capability of more than 1000 MW thermal power in multiple phases lasting about 20 years. The driver linac is defined to be 1.5 GeV in energy, 10 mA in current and in cw operation mode. To meet the extremely high reliability and availability, the linac is designed with much installed margin and fault tolerance, including hot-spare injectors and local compensation method for key element failures. The accelerator complex consists of two parallel 10-MeV injectors, a joint medium-energy beam transport line, a main linac, and a high-energy beam transport line. The superconducting acceleration structures are employed except for the radio frequency quadrupole accelerators (RFQs which are at room temperature. The general design considerations and the beam dynamics design of the driver linac complex are presented here.

  17. Undulative induction electron accelerator for the waste and natural water purification systems

    CERN Document Server

    Kulish, Victor V; Gubanov, I V

    2001-01-01

    The project analysis of Undulative Induction Accelerator (EH - accelerator) for the waste and natural water purification systems is accomplished. It is shown that the use of the four-channel design of induction block and the standard set of auxiliary equipment (developed earlier for the Linear Induction Accelerators - LINACs) allow to construct commercially promising purification systems. A quality analysis of the accelerator is done and the optimal parameters are chosen taking into account the specific sphere of its usage.

  18. Fourier transform infrared difference and time-resolved infrared detection of the electron and proton transfer dynamics in photosynthetic water oxidation.

    Science.gov (United States)

    Noguchi, Takumi

    2015-01-01

    Photosynthetic water oxidation, which provides the electrons necessary for CO₂ reduction and releases O₂ and protons, is performed at the Mn₄CaO₅ cluster in photosystem II (PSII). In this review, studies that assessed the mechanism of water oxidation using infrared spectroscopy are summarized focusing on electron and proton transfer dynamics. Structural changes in proteins and water molecules between intermediates known as Si states (i=0-3) were detected using flash-induced Fourier transform infrared (FTIR) difference spectroscopy. Electron flow in PSII and proton release from substrate water were monitored using the infrared changes in ferricyanide as an exogenous electron acceptor and Mes buffer as a proton acceptor. Time-resolved infrared (TRIR) spectroscopy provided information on the dynamics of proton-coupled electron transfer during the S-state transitions. In particular, a drastic proton movement during the lag phase (~200μs) before electron transfer in the S3→S0 transition was detected directly by monitoring the infrared absorption of a polarizable proton in a hydrogen bond network. Furthermore, the proton release pathways in the PSII proteins were analyzed by FTIR difference measurements in combination with site-directed mutagenesis, isotopic substitutions, and quantum chemical calculations. Therefore, infrared spectroscopy is a powerful tool for understanding the molecular mechanism of photosynthetic water oxidation. This article is part of a Special Issue entitled: Vibrational spectroscopies and bioenergetic systems. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Single- and Multiple-Electron Removal Processes in Proton-Water Vapor Collisions

    Science.gov (United States)

    Murakami, Mitsuko; Kirchner, Tom; Horbatsch, Marko; Jürgen Lüdde, Hans

    2012-06-01

    Charge-state correlated cross sections for single- and multiple-electron removal processes due to capture and ionization in proton-H2O collisions are calculated by using the non-perturbative basis generator method adapted for ion-molecule collisions [1]. Orbital-specific cross sections for vacancy production are evaluated using this method to predict the yields of charged fragments (H2O^+, OH^+, H^+, O^+) according to branching ratios known to be valid at high impact energies. At intermediate and low energies, we obtain fragmentation results on the basis of predicted multi-electron removal cross sections, and explain most of the available experimental data [2]. The cross sections for charge transfer and for ionization are also compared with recent multi-center classical-trajectory Monte Carlo calculations [3] for impact energies from 20keV to several MeV. [4pt] [1] H.J. L"udde et al, Phys. Rev. A 80, 060702(R) (2009)[0pt] [2] M. Murakami et al, to be submitted to Phys. Rev. A (2012)[0pt] [3] C. Illescas et al, Phys. Rev. A 83, 052704 (2011)

  20. Dinuclear manganese complexes for water oxidation: evaluation of electronic effects and catalytic activity.

    Science.gov (United States)

    Arafa, Wael A A; Kärkäs, Markus D; Lee, Bao-Lin; Åkermark, Torbjörn; Liao, Rong-Zhen; Berends, Hans-Martin; Messinger, Johannes; Siegbahn, Per E M; Åkermark, Björn

    2014-06-28

    During recent years significant progress has been made towards the realization of a sustainable and carbon-neutral energy economy. One promising approach is photochemical splitting of H2O into O2 and solar fuels, such as H2. However, the bottleneck in such artificial photosynthetic schemes is the H2O oxidation half reaction where more efficient catalysts are required that lower the kinetic barrier for this process. In particular catalysts based on earth-abundant metals are highly attractive compared to catalysts comprised of noble metals. We have now synthesized a library of dinuclear Mn2(II,III) catalysts for H2O oxidation and studied how the incorporation of different substituents affected the electronics and catalytic efficiency. It was found that the incorporation of a distal carboxyl group into the ligand scaffold resulted in a catalyst with increased catalytic activity, most likely because of the fact that the distal group is able to promote proton-coupled electron transfer (PCET) from the high-valent Mn species, thus facilitating O-O bond formation.

  1. EPA Method 551.1: Determination of Chlorination Disinfection Byproducts, Chlorinated Solvents, and Halogenated Pesticides/Herbicides in Drinking Water by Liquid-Liquid Extraction and Gas Chromatography With Electron-Capture Detection

    Science.gov (United States)

    SAM lists this method as a gas chromatography with electron capture detection applicable to the determination of halogenated analytes in finished drinking water, drinking water during intermediate stages of treatment and raw source water.

  2. Calculations of absorbed fractions in small water spheres for low-energy monoenergetic electrons and the Auger-emitting radionuclides (123)Ι and (125)Ι.

    Science.gov (United States)

    Bousis, Christos; Emfietzoglou, Dimitris; Nikjoo, Hooshang

    2012-12-01

    To calculate the absorbed fraction (AF) of low energy electrons in small tissue-equivalent spherical volumes by Monte Carlo (MC) track structure simulation and assess the influence of phase (liquid water versus density-scaled water vapor) and of the continuous-slowing-down approximation (CSDA) used in semi-analytic calculations. An event-by-event MC code simulating the transport of electrons in both the vapor and liquid phase of water using appropriate electron-water interaction cross sections was used to quantify the energy deposition of low-energy electrons in spherical volumes. Semi-analytic calculations within the CSDA using a convolution integral of the Howell range-energy expressions are also presented for comparison. The AF for spherical volumes of radii from 10-1000 nm are presented for monoenergetic electrons over the energy range 100-10,000 eV and the two Auger-emitting radionuclides (125)I and (123)I. The MC calculated AF for the liquid phase are found to be smaller than those of the (density scaled) gas phase by up to 10-20% for the monoenergetic electrons and 10% for the two Auger-emitters. Differences between the liquid-phase MC results and the semi-analytic CSDA calculations are up to ∼ 55% for the monoenergetic electrons and up to ∼ 35% for the two Auger-emitters. Condensed-phase effects in the inelastic interaction of low-energy electrons with water have a noticeable but relatively small impact on the AF for the energy range and target sizes examined. Depending on the electron energies, the semi-analytic approach may lead to sizeable errors for target sizes with linear dimensions below 1 micron.

  3. Influence of the Raman laser power on the opto-electronics properties in graphene with water molecule

    Science.gov (United States)

    Rey-GonzáLez, R. R.; Champi, A.; Rojas Cuervo, A. M.

    The study of physical and chemical properties of nanostructures has contributed in great part with advance of the nanotechnology, which is important for the development of present and future technological applications. An important key in this purpose is the interaction of atoms and molecules with nanostructures. The principal interest of this experimental work is to study these processes on the interaction between liquid and vapor phases water with a graphene bilayer which is obtained through micromechanical exfoliation technique from a sample of natural graphite deposited on a SiO2 substrate. The number of layers and the interaction water-bilayer are analyzed systematically by means of Raman spectroscopy λ = 532nm). Also, the influence of variation of the Raman laser power and its effects in the opto-electronic properties of the system are studied. From the usual G, D and 2D bands of these spectra, we analyze the relation between the laser power and some band parameters, such as its area, position and wide. Finally, these results permit us to quantify the density of defects and the distance among them as function of Raman power before and after of the water vapor incorporation in bilayers Authors would like to thank the Programa Latino Americano de Física of Sociedade Brasileira de Física for their financial support. A. M. Rojas-Cuervo would also like to thank the Colciencias, Colombia.

  4. A dielectric response study of the electronic stopping power of liquid water for energetic protons and a new I-value for water.

    Science.gov (United States)

    Emfietzoglou, D; Garcia-Molina, R; Kyriakou, I; Abril, I; Nikjoo, H

    2009-06-07

    The electronic stopping power of liquid water for protons over the 50 keV to 10 MeV energy range is studied using an improved dielectric response model which is in good agreement with the best available experimental data. The mean excitation energy (I) of stopping power theory is calculated to be 77.8 eV. Shell corrections are accounted for in a self-consistent manner through analytic dispersion relations for the momentum dependence of the dielectric function. It is shown that widely used dispersion schemes based on the random-phase approximation (RPA) can result in sizeable errors due to the neglect of damping and local field effects that lead to a momentum broadening and shifting of the energy-loss function. Low-energy Born corrections for the Barkas, Bloch and charge-state effects practically cancel out down to 100 keV proton energies. Differences with ICRU Report 49 stopping power values and earlier calculations are found to be at the approximately 20% level in the region of the stopping maximum. The present work overcomes the limitations of the Bethe formula below 1 MeV and improves the accuracy of previous calculations through a more consistent account of the dielectric response properties of liquid water.

  5. Dynamics of Electron Injection in SnO2/TiO2 Core/Shell Electrodes for Water-Splitting Dye-Sensitized Photoelectrochemical Cells.

    Science.gov (United States)

    McCool, Nicholas S; Swierk, John R; Nemes, Coleen T; Schmuttenmaer, Charles A; Mallouk, Thomas E

    2016-08-04

    Water-splitting dye-sensitized photoelectrochemical cells (WS-DSPECs) rely on photoinduced charge separation at a dye/semiconductor interface to supply electrons and holes for water splitting. To improve the efficiency of charge separation and reduce charge recombination in these devices, it is possible to use core/shell structures in which photoinduced electron transfer occurs stepwise through a series of progressively more positive acceptor states. Here, we use steady-state emission studies and time-resolved terahertz spectroscopy to follow the dynamics of electron injection from a photoexcited ruthenium polypyridyl dye as a function of the TiO2 shell thickness on SnO2 nanoparticles. Electron injection proceeds directly into the SnO2 core when the thickness of the TiO2 shell is less than 5 Å. For thicker shells, electrons are injected into the TiO2 shell and trapped, and are then released into the SnO2 core on a time scale of hundreds of picoseconds. As the TiO2 shell increases in thickness, the probability of electron trapping in nonmobile states within the shell increases. Conduction band electrons in the TiO2 shell and the SnO2 core can be differentiated on the basis of their mobility. These observations help explain the observation of an optimum shell thickness for core/shell water-splitting electrodes.

  6. Conceptual design of minor actinides burner with an accelerator-driven subcritical system.

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Y.; Gohar, Y. (Nuclear Engineering Division)

    2011-11-04

    In the environmental impact study of the Yucca Mountain nuclear waste repository, the limit of spent nuclear fuel (SNF) for disposal is assessed at 70,000 metric tons of heavy metal (MTHM), among which 63,000 MTHM are the projected SNF discharge from U.S. commercial nuclear power plants though 2011. Within the 70,000 MTHM of SNF in storage, approximately 115 tons would be minor actinides (MAs) and 585 tons would be plutonium. This study describes the conceptual design of an accelerator-driven subcritical (ADS) system intended to utilize (burn) the 115 tons of MAs. The ADS system consists of a subcritical fission blanket where the MAs fuel will be burned, a spallation neutron source to drive the fission blanket, and a radiation shield to reduce the radiation dose to an acceptable level. The spallation neutrons are generated from the interaction of a 1 GeV proton beam with a lead-bismuth eutectic (LBE) or liquid lead target. In this concept, the fission blanket consists of a liquid mobile fuel and the fuel carrier can be LBE, liquid lead, or molten salt. The actinide fuel materials are dissolved, mixed, or suspended in the liquid fuel carrier. Therefore, fresh fuel can be fed into the fission blanket to adjust its reactivity and to control system power during operation. Monte Carlo analyses were performed to determine the overall parameters of an ADS system utilizing LBE as an example. Steady-state Monte Carlo simulations were studied for three fission blanket configurations that are similar except that the loaded amount of actinide fuel in the LBE is either 5, 7, or 10% of the total volume of the blanket, respectively. The neutron multiplication factor values of the three configurations are all approximately 0.98 and the MA initial inventories are each approximately 10 tons. Monte Carlo burnup simulations using the MCB5 code were performed to analyze the performance of the three conceptual ADS systems. Preliminary burnup analysis shows that all three conceptual ADS

  7. Role of the electronically excited-state hydrogen bonding and water clusters in the luminescent metal-organic framework.

    Science.gov (United States)

    Sui, Xiao; Ji, Min; Lan, Xin; Mi, Weihong; Hao, Ce; Qiu, Jieshan

    2013-05-20

    The electronically excited state and luminescence property of metal-organic framework Zn(3-tzba)(2,2'-bipy)(H2O)·nH2O have been investigated using the density functional theory (DFT) and time-dependent DFT (TDDFT). The calculated geometry and infrared spectra in the ground state are consistent with the experimental results. The frontier molecular orbitals and electronic configuration indicated that the origin of luminescence is attributed to a ligand-to-ligand charge transfer (LLCT). We theoretically demonstrated that the hydrogen bond H47···O5═C is weakened in the excited state S1; the weakening of the excited-state hydrogen bonding should be beneficial to the luminescence. To explore the effect of the water clusters on the luminescence, we studied four complexes Zn(3-tzba)(2,2'-bipy)(H2O)·3H2O, Zn(3-tzba)(2,2'-bipy)(H2O)·2H2O, Zn(3-tzba)(2,2'-bipy)(H2O)·H2O, and Zn(3-tzba)(2,2'-bipy)(H2O). The results reveal that the presence of water should play an important role in the emission characteristics of the MOF. Also, the UV-vis absorption and emission spectra of Zn(3-tzba)(2,2'-bipy)(H2O)·3H2O are in good agreement with the experimental results.

  8. Enhancement of a 252Cf-based neutron beam via subcritical multiplication for neutron capture therapy.

    Science.gov (United States)

    Wang, C K; Zino, J F; Kessler, G

    2000-01-01

    Previous studies indicated that an epithermal-neutron beam based on bare 252Cf is not feasible for neutron capture therapy (NCT). It was reported that a clinically useful epithermal-neutron beam requires a minimum of 1.0 g of 252Cf, which is more than twice the US current annual supply. However, it was reasoned that the required quantity of 252Cf could be dramatically reduced when used with a subcritical multiplying assembly (SMA). This reasoning is based on the assumption that the epithermal-neutron beam intensity for NCT is directly proportional to the fission neutron population, and that the neutron multiplying factor of the SMA can be estimated by 1/(1 - k(eff)). We have performed detailed Monte Carlo calculations to investigate the validity of the above reasoning. Our results show that 1/(1 - k(eff)) grossly overestimates the beam enhancement factor for NCT. For example, Monte Carlo calculations predict a beam enhancement factor of 6.0 for an optimized SMA geometry with k(eff) = 0.968. This factor is much less than 31 predicted by 1/(1 - k(eff)). The overestimation is due to the fact that most of the neutrons produced in the SMA are self-shielded, whereas self-shielding is negligible in a bare 252Cf source. Since the beam intensity of a 0.1 g 252Cf with the optimized SMA enhancement is still more than an order of magnitude too low compared to the existing reactor beams, we conclude that the enhancement via an SMA for a 252Cf-based epithermal-neutron beam is inadequate for NCT.

  9. Subcritical CO2 sintering of microspheres of different polymeric materials to fabricate scaffolds for tissue engineering.

    Science.gov (United States)

    Bhamidipati, Manjari; Sridharan, BanuPriya; Scurto, Aaron M; Detamore, Michael S

    2013-12-01

    The aim of this study was to use CO2 at sub-critical pressures as a tool to sinter 3D, macroporous, microsphere-based scaffolds for bone and cartilage tissue engineering. Porous scaffolds composed of ~200 μm microspheres of either poly(lactic-co-glycolic acid) (PLGA) or polycaprolactone (PCL) were prepared using dense phase CO2 sintering, which were seeded with rat bone marrow mesenchymal stromal cells (rBMSCs), and exposed to either osteogenic (PLGA, PCL) or chondrogenic (PLGA) conditions for 6 weeks. Under osteogenic conditions, the PLGA constructs produced over an order of magnitude more calcium than the PCL constructs, whereas the PCL constructs had far superior mechanical and structural integrity (125 times stiffer than PLGA constructs) at week 6, along with twice the cell content of the PLGA constructs. Chondrogenic cell performance was limited in PLGA constructs, perhaps as a result of the polymer degradation rate being too high. The current study represents the first long-term culture of CO2-sintered microsphere-based scaffolds, and has established important thermodynamic differences in sintering between the selected formulations of PLGA and PCL, with the former requiring adjustment of pressure only, and the latter requiring the adjustment of both pressure and temperature. Based on more straightforward sintering conditions and more favorable cell performance, PLGA may be the material of choice for microspheres in a CO2 sintering application, although a different PLGA formulation with the encapsulation of growth factors, extracellular matrix-derived nanoparticles, and/or buffers in the microspheres may be advantageous for achieving a more superior cell performance than observed here. © 2013.

  10. Alpha Eigenvalue Estimation from Dynamic Monte Carlo Calculation for Subcritical Systems

    Energy Technology Data Exchange (ETDEWEB)

    Shaukat, Nadeem; Shim, Hyung Jin; Jang, Sang Hoon [Seoul National University, Seoul (Korea, Republic of)

    2016-05-15

    The dynamic Monte Carlo (DMC) method has been used in the TART code for the α eigenvalue calculations. A unique method has been equipped to measure the α in time-stepwise Monte Carlo simulations. For off-critical systems, the neutron population is allowed to change exponentially over a period of time. The neutron population is uniformly combed to return it to the neutron population started with at the beginning of time boundary. In this study, the conventional dynamic Monte Carlo method has been implemented in the McCARD. There is an exponential change of neutron population at the end of each time boundary for off-critical systems. In order to control this exponential change at the end of each time boundary, a conventional time cut-off controlling population strategy is included in the DMC module implemented in the McCARD. the conventional combing method to control the neutron population for off-critical systems is implemented. Instead of considering the cycles, the simulation is divided in time intervals. At the end of each time interval, neutron population control is applied on the banked neutrons. Randomly selected neutrons are discarded, until the size of neutron population matches the initial neutron histories at the beginning of time simulation. The prompt neutron decay constant α is estimated from DMC algorithm for subcritical systems. The effectiveness of the results is examined for two-group infinite homogeneous problems with varying the k-value. From the comparisons with the analytical solutions, it is observed that the results are quite comparable with each other for each k-value.

  11. Water-soluble phosphine-protected Au9 clusters: Electronic structures and nuclearity conversion via phase transfer

    Science.gov (United States)

    Yao, Hiroshi; Tsubota, Shuhei

    2017-08-01

    In this article, isolation, exploration of electronic structures, and nuclearity conversion of water-soluble triphenylphosphine monosulfonate (TPPS)-protected nonagold (Au9) clusters are outlined. The Au9 clusters are obtained by the reduction of solutions containing TPPS and HAuCl4 and subsequent electrophoretic fractionation. Mass spectrometry and elemental analysis reveal the formation of [Au9(TPPS)8]5- nonagold cluster. UV-vis absorption and magnetic circular dichroism (MCD) spectra of aqueous [Au9(TPPS)8]5- are quite similar to those of [Au9(PPh3)8]3+ in organic solvent, so the solution-phase structures are likely similar for both systems. Simultaneous deconvolution analysis of absorption and MCD spectra demonstrates the presence of some weak electronic transitions that are essentially unresolved in the UV-vis absorption. Quantum chemical calculations for a model compound [Au9(pH3)8]3+ show that the possible (solution-phase) skeletal structure of the nonagold cluster has D2h core symmetry rather than C4-symmetrical centered crown conformation, which is known as the crystal form of the Au9 compound. Moreover, we find a new nuclearity conversion route from Au9 to Au8; that is, phase transfer of aqueous [Au9(TPPS)8]5- into chloroform using tetraoctylammonium bromide yields [Au8(TPPS)8]6- clusters in the absence of excess phosphine.

  12. Electronic coarse graining enhances the predictive power of molecular simulation allowing challenges in water physics to be addressed

    Science.gov (United States)

    Cipcigan, Flaviu S.; Sokhan, Vlad P.; Crain, Jason; Martyna, Glenn J.

    2016-12-01

    One key factor that limits the predictive power of molecular dynamics simulations is the accuracy and transferability of the input force field. Force fields are challenged by heterogeneous environments, where electronic responses give rise to biologically important forces such as many-body polarisation and dispersion. The importance of polarisation in the condensed phase was recognised early on, as described by Cochran in 1959 [Philosophical Magazine 4 (1959) 1082-1086] [32]. Currently in molecular simulation, dispersion forces are treated at the two-body level and in the dipole limit, although the importance of three-body terms in the condensed phase was demonstrated by Barker in the 1980s [Phys. Rev. Lett. 57 (1986) 230-233] [72]. One approach for treating both polarisation and dispersion on an equal basis is to coarse grain the electrons surrounding a molecular moiety to a single quantum harmonic oscillator (cf. Hirschfelder, Curtiss and Bird 1954 [The Molecular Theory of Gases and Liquids (1954)] [37]). The approach, when solved in strong coupling beyond the dipole limit, gives a description of long-range forces that includes two- and many-body terms to all orders. In the last decade, the tools necessary to implement the strong coupling limit have been developed, culminating in a transferable model of water with excellent predictive power across the phase diagram. Transferability arises since the environment automatically identifies the important long range interactions, rather than the modeller through a limited set of expressions. Here, we discuss the role of electronic coarse-graining in predictive multiscale materials modelling and describe the first implementation of the method in a general purpose molecular dynamics software: QDO_MD.

  13. SUB-LEU-METAL-THERM-001 SUBCRITICAL MEASUREMENTS OF LOW ENRICHED TUBULAR URANIUM METAL FUEL ELEMENTS BEFORE & AFTER IRRADIATION

    Energy Technology Data Exchange (ETDEWEB)

    TOFFER, H.

    2006-07-18

    With the shutdown of the Hanford PUREX (Plutonium-Uranium Extraction Plant) reprocessing plant in the 1970s, adequate storage capacity for spent Hanford N Reactor fuel elements in the K and N Reactor pools became a concern. To maximize space utilization in the pools, accounting for fuel burnup was considered. Fuel that had experienced a neutron environment in a reactor is known as spent, exposed, or irradiated fuel. In contrast fuel that has not yet been placed in a reactor is known as green, unexposed, or unirradiated fuel. Calculations indicated that at typical fuel exposures for N Reactor, the spent-fuel critical mass would be twice the critical mass for green fuel. A decision was reached to test the calculational result with a definitive experiment. If the results proved positive, storage capacity could be increased and N Reactor operation could be prolonged. An experiment to be conducted in the N Reactor spent-fuel storage pool was designed and assembled (References 1 and 2) and the services of the Battelle Northwest Laboratories (BNWL) (now Pacific Northwest National Laboratory [PNNL]) critical mass laboratory were procured for the measurements (Reference 3). The experiments were performed in April 1975 in the Hanford N Reactor fuel storage pool. The fuel elements were MKIA fuel assemblies, comprised of two concentric tubes of low-enriched metallic uranium. Two separate sets of measurements were performed: one with unirradiated fuel and one with irradiated fuel. Both the unirradiated and irradiated fuel, were measured in the same geometry. The spent-fuel MKIA assemblies had an average burnup of 2865 MWd (megawatt days)/t. A constraint was imposed restricting the measurements to a subcritical limit of k{sub eff} = 0.97. Subcritical count rate data was obtained with pulsed-neutron and approach-to-critical measurements. Ten (10) configurations with green fuel and nine (9) configurations with spent fuel are described and evaluated. Of these, three (3) green fuel

  14. Structural, electronic and optical properties of Bi2O3 polymorphs by first-principles calculations for photocatalytic water splitting

    Science.gov (United States)

    Azhar, N. S.; Taib, M. F. M.; Hassan, O. H.; Yahya, M. Z. A.; Ali, A. M. M.

    2017-03-01

    Crystal structures of α-Bi2O3 and β-Bi2O3 were calculated using Cambridge serial total energy package (CASTEP) based on the first-principles plane-wave ultrasoft pseudopotential method within local density approximation (LDA) and generalized gradient approximation (GGA) together with Perdew-Burke-Ernzerhof (GGA-PBE) and Perdew-Burke-Ernzerhof revised for solid (GGA-PBEsol). The structural parameter of α-Bi2O3 and β-Bi2O3 are in good agreement with previous experimental and theoretical data. All of the polymorphs were calculated for the total density of states (TDOS) and the partial density of states (PDOS) of Bi, O atoms. Density of states exhibits hybridization of Bi 6s and O 2p orbitals and the calculated charge density profiles exhibit the ionic character in the chemical bonding of this compound. The narrowed band gap (E g) and red-shift of light absorption edge are responsible for the photocatalytic activity of Bi2O3 for water splitting application. The optical properties such as optical absorption and electron energy loss function were calculated to show the best structure among these polymorphs for the photocatalytic water splitting application.

  15. Effect of Subcritical Fluid Extraction on the High Quality of Headspace Oil from Jasminum sambac (L.) Aiton.

    Science.gov (United States)

    Ye, Qiuping; Jin, Xinyi; Wei, Shiqin; Zheng, Gongyu; Li, Xinlei

    2016-05-01

    Subcritical fluid extraction (SFE), as a novel method, was applied to investigate the yield, quality, and sensory evaluation of headspace oil from Jasminum sambac (L.) Aiton in comparison with petroleum ether extraction (PEE). The results indicated that the yield of the headspace oil using SFE was significantly higher (P headspace oil. The contents of linalool (21.90%) and benzyl acetate (16.31%) were higher via SFE than PEE. In addition, the sensory evaluation of SFE was superior to PEE, indicating a fresh, jasmine-like odor and green-yellow color. Thus, SFE is an improved method for obtaining natural headspace oil from jasmine flowers.

  16. Effect of Subcritical Fluid Extraction on the High Quality of Headspace Oil from Jasminum sambac (L.) Aiton.

    Science.gov (United States)

    2016-04-22

    Subcritical fluid extraction (SFE), as a novel method, was applied to investigate the yield, quality, and sensory evaluation of headspace oil from Jasminum sambac (L.) Aiton in comparison with petroleum ether extraction (PEE). The results indicated that the yield of the headspace oil using SFE was significantly higher (P headspace oil. The contents of linalool (21.90%) and benzyl acetate (16.31%) were higher via SFE than PEE. In addition, the sensory evaluation of SFE was superior to PEE, indicating a fresh, jasmine-like odor and green-yellow color. Thus, SFE is an improved method for obtaining natural headspace oil from jasmine flowers.

  17. The Impact of a Mild Sub-Critical Hydrothermal Carbonization Pretreatment on Umbila Wood. A Mass and Energy Balance Perspective

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Cuvilas

    2015-03-01

    Full Text Available Over the last years, the pretreatment of biomass as a source of energy has become one of the most important steps of biomass conversion. In this work the effect of a mild subcritical hydrothermal carbonization of a tropical woody biomass was studied. Results indicate considerable change in carbon content from 52.78% to 65.1%, reduction of oxygen content from 41.14% to 28.72% and ash slagging and fouling potential. Even though decarboxylation, decarbonylation and dehydration reactions take place, dehydration is the one that prevails. The mass and energy balance was affected by the treatment conditions than the severity of the treatment.

  18. Density dependence of the yield of hydrated electrons in the low-LET radiolysis of supercritical water at 400 °C: influence of the geminate recombination of subexcitation-energy electrons prior to thermalization.

    Science.gov (United States)

    Meesungnoen, Jintana; Sanguanmith, Sunuchakan; Jay-Gerin, Jean-Paul

    2013-10-21

    Monte Carlo simulations were used to calculate the yield of hydrated electrons (eaq(-)) in the low-linear energy transfer radiolysis of supercritical water at 400 °C as a function of water density over the range of ~0.15 to 0.6 g cm(-3). Very good agreement was found between our calculations and picosecond pulse radiolysis experimental data at ~60 ps and 1 ns at high density (>0.35 g cm(-3)). At densities lower than ~0.35 g cm(-3), our eaq(-) yields were lower than the experimental data, especially at ~60 ps. However, if we incorporated into the simulations a prompt geminate electron-cation (H2O˙(+)) recombination (prior thermalization of the electron) that decreased as the density decreased, our computed eaq(-) yields at ~60 ps and 1 ns compared fairly well with the experimental data for the entire density range studied.

  19. Differential effects of severe water stress on linear and cyclic electron fluxes through Photosystem I in spinach leaf discs in CO(2)-enriched air.

    Science.gov (United States)

    Jia, Husen; Oguchi, Riichi; Hope, Alexander B; Barber, James; Chow, Wah Soon

    2008-10-01

    Linear and cyclic electron fluxes through Photosystem I in 1% CO(2) were quantified in spinach leaf tissue under severe water stress. Using actinic light with a peak at 697 nm for preferential light absorption by Photosystem I while also stimulating Photosystem II to improve redox poising, the cyclic electron flux after 60 s of illumination was a substantial proportion (33-44%) of the total electron flux through PSI at irradiances up to ~1,070 micromol photons m(-2) s(-1). At the maximum irradiance, the cyclic electron flux changed little with the progressive water loss from leaf tissue up to ~60%; by contrast, the linear electron flux was approximately halved. A reason for this differential effect of water stress on the capacity for cyclic and linear electron flow could be the increased crowding of soluble proteins in the stroma due to chloroplast shrinkage. Indeed the confinement of soluble proteins to a smaller chloroplast volume was indicated by cryo-scanning electron microscopy. It is known that the diffusion coefficient of large proteins is decreased when the background concentration of small proteins is raised; by contrast, the diffusion coefficient of small proteins is not affected by increasing the concentration of a large protein (Muramatsu and Minton in Proc Natl Acad Sci USA 85:2984-2988, 1988). Therefore, we suggest that linear electron flow, being coupled to the Calvin-Benson cycle, is limited by the diffusion of large macromolecules, especially the ribulose 1, 5-bisphosphate carboxylase/oxygenase complex. By contrast, cyclic electron flow, involving relatively small macromolecules such as ferredoxin, is less susceptible to inhibition by crowding in the stroma.

  20. Dual function photocatalysis of cyano-bridged heteronuclear metal complexes for water oxidation and two-electron reduction of dioxygen to produce hydrogen peroxide as a solar fuel.

    Science.gov (United States)

    Aratani, Yusuke; Suenobu, Tomoyoshi; Ohkubo, Kei; Yamada, Yusuke; Fukuzumi, Shunichi

    2017-03-25

    The photocatalytic production of hydrogen peroxide from water and dioxygen under visible light irradiation was made possible by using polymeric cyano-bridged heteronuclear metal complexes (M(II)[Ru(II)(CN)4(bpy)]; M(II) = Ni(II), Fe(II) and Mn(II)), where the photocatalytic two-electron reduction of O2 and water oxidation were catalysed by the Ru and M(II) moieties, respectively.

  1. Highly water-dispersible, mixed ionic-electronic conducting, polymer acid-doped polyanilines as ionomers for direct methanol fuel cells.

    Science.gov (United States)

    Murthy, Arun; Manthiram, Arumugam

    2011-06-28

    Highly water-dispersible polymer acid-doped polyanilines have been synthesized and evaluated as an alternative for expensive Nafion ionomers in the anode of direct methanol fuel cells (DMFC). These polymers as ionomers lead to higher performance in single cell DMFC compared to Nafion ionomers due to mixed ionic-electronic conduction, water dispersibility, and co-catalytic activity. This journal is © The Royal Society of Chemistry 2011

  2. Reactivity analysis for numerical solution of the point kinetic equation for subcritical; Analise da reatividade para solucao numerica da equacao da cinetica pontual para sistemas subcriticos

    Energy Technology Data Exchange (ETDEWEB)

    Henrice Junior, Edson; Goncalves, Alessandro da Cruz, E-mail: ejunior@nuclear.ufrj.br, E-mail: alessandro@nuclear.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Energia Nuclear; Palma, Daniel Artur Pinheiro, E-mail: dapalma@cnen.gov.br [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil); Mesquita, Amir Zacarias, E-mail: amir@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    This paper provides a comparison between the reactivity calculated by the approximation based on the multiplication factor (K{sub eff}) and a new approach for the reactivity calculation to be used in the kinetics point equation for subcritical systems. To obtain the necessary kinetic parameters as well and the reference Power value calculation and validation, a subcritical system was simulated with the Monte Carlo code Serpent. This study is important for determining nuclear Power in such systems. The results shown consistent values with the validation method and new in-depth studies to calculate the reactivity should be performed to such systems, making the issue a very current theme. (author)

  3. Aspects of the physics and chemistry of water radiolysis by fast neutrons and fast electrons in nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    McCracken, D.R. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Tsang, K.T. [Atomic Energy of Canada Limited, Mississauga, Ontario (Canada); Laughton, P.J

    1998-09-01

    Detailed radiation physics calculations of energy deposition have been done for the coolant of CANDU reactors and Pressurized Water Reactors (PWRs). The geometry of the CANDU fuel channel was modelled in detail. Fluxes and energy-deposition rates for neutrons, recoil ions, photons, and fast electrons have been calculated using MCNP4B, WIMS-AECL, and specifically derived energy-transfer factors. These factors generate the energy/flux spectra of recoil ions from fast-neutron energy/flux spectra. The energy spectrum was divided into 89 discrete ranges (energy bins).The production of oxidizing species and net coolant radiolysis can be suppressed by the addition of hydrogen to the coolant of nuclear reactors. It is argued that the net dissociation of coolant by gamma rays is suppressed by lower levels of excess hydrogen than when dissociation is by ion recoils. This has consequences for the modelling of coolant radiolysis by homogeneous kinetics. More added hydrogen is required to stop water radiolysis by recoil ions acting alone than if recoil ions and gamma rays acted concurrently in space and time. Homogeneous kinetic models and experimental data suggest that track overlap is very inefficient in providing radicals from gamma-ray tracks to recombine molecular products in ion-recoil tracks. An inhomogeneous chemical model is needed that incorporates ionizing-particle track structure and track overlap. Such a model does not yet exist, but a number of limiting cases using homogeneous kinetics are discussed. There are sufficient uncertainties and contradictions in the data relevant to the radiolysis of reactor coolant that the relatively high CHC's (critical hydrogen concentration) observed in NRU reactor experiments (compared to model predictions) may be explainable by errors in fundamental data and understanding of water radiolysis under reactor conditions. The radiation chemistry program at CRL has been focused to generate quantitative water-radiolysis data in a

  4. Photochemistry of hydrogen halides on water clusters: simulations of electronic spectra and photodynamics, and comparison with photodissociation experiments.

    Science.gov (United States)

    Ončák, Milan; Slavíček, Petr; Fárník, Michal; Buck, Udo

    2011-06-16

    The photochemistry of small HX·(H(2)O)(n), n = 4 and 5 and X = F, Cl, and Br, clusters has been modeled by means of ab initio-based molecular simulations. The theoretical results were utilized to support our interpretation of photodissociation experiments with hydrogen halides on ice nanoparticles HX·(H(2)O)(n), n ≈ 10(2)-10(3). We have investigated the HX·(H(2)O)(n) photochemistry for three structural types: covalently bound structures (CBS) and acidically dissociated structures in a form of contact ion pair (CIP) and solvent separated pair (SSP). For all structures, we have modeled the electronic absorption spectra using the reflection principle combined with a path integral molecular dynamics (PIMD) estimate of the ground state density. In addition, we have investigated the solvent effect of water on the absorption spectra within the nonequilibrium polarizable continuum model (PCM) scheme. The major conclusion from these calculations is that the spectra for ionic structures CIP and SSP are significantly red-shifted with respect to the spectra of CBS structures. We have also studied the photodynamics of HX·(H(2)O)(n) clusters using the Full Multiple Spawning method. In the CBS structures, the excitation led to almost immediate release of the hydrogen atom with high kinetic energy. The light absorption in ionically dissociated species generates the hydronium radical (H(3)O) and halogen radical (X) within a charge-transfer-to-solvent (CTTS) excitation process. The hydronium radical ultimately decays into a water molecule and hydrogen atom with a characteristic kinetic energy irrespective of the hydrogen halide. We have also investigated the dynamics of an isolated and water-solvated H(3)O radical that we view as a central species in water radiation chemistry. The theoretical findings support the following picture of the HX photochemistry on ice nanoparticles investigated in our molecular beam experiments: HX is acidically dissociated in the ground state on

  5. State-of-the-art Sn2+-based ternary oxides as photocatalysts for water splitting: electronic structures and optoelectronic properties

    KAUST Repository

    Noureldine, Dalal

    2016-09-19

    Developing visible light responsive metal oxide photocatalysts is a challenge that must be conquered to achieve high efficiency for water splitting or hydrogen evolution reactions. Valence band engineering is possible by forming ternary oxides using the combination of a metal cation with an s2d10 electronic configuration and a transition metal oxide with a d0 configuration. Many (Sn2+, Bi3+, Pb2+)-based ternary metal oxide photocatalysts have been reported for hydrogen and/or oxygen evolution under visible irradiation. Sn2+-based materials have attracted particular attention because tin is inexpensive, abundant and more environmentally friendly than lead or bismuth. In this review, we provide a fruitful library for Sn2+-based photocatalysts that have been reported to evolve hydrogen using sacrificial reagents, including SnNb2O6, Sn2Nb2O7, SnTaxNb2−xO6, SnTa2O6, Sn2Ta2O7, SnWO4 (α and β phases), SnSb2O6·nH2O, and Sn2TiO4. The synthesis method used in the literature and the resultant morphology and crystal structure of each compound are discussed. The density functional theory (DFT) calculations of the electronic structure and density of states are provided, and the consequent optoelectronic properties such as band gap, nature of the bandgap, dielectric constant, and effective masses are summarized. This review will help highlight the main challenges for Sn2+-based materials.

  6. Neutronic design study of accelerator driven system (ADS) for Jordan subcritical reactor as a neutron source for nuclear research.

    Science.gov (United States)

    Xoubi, Ned

    2018-01-01

    In this paper, a preliminary neutronic design study of an accelerator driven subcritical system for Jordan Subcritical Assembly (JSA) is presented. The conceptual design of coupling the JSA core with proton accelerator and spallation target is investigated, and its feasibility as a neutron source for nuclear research, and possibly for target irradiation and isotope production evaluated. 3D MCNPX model of the JSA reactor, the accelerator beam, and the Pb target was developed, based on actual reactor parameters. MCNPX calculations were carried out to estimate the absolute radial and axial neutron flux in the reactor, and to calculate the multiplication factor K eff and heat generated in the reactor. Numerical results showed an enormous increase in the neutron flux, by seven orders of magnitude, compared to the current JSA core design using Pu-Be source. In this research the results obtained are discussed and compared with those of the JSA, and do confirm the feasibility of utilizing the JSA as a viable nuclear research facility with adequate neutron flux. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Conceptual design for accelerator-driven sodium-cooled sub-critical transmutation reactors using scale laws

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kwang Gu; Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1998-12-31

    The feasibility study on conceptual design methodology for accelerator-driven sodium-cooled sub-critical transmutation reactors has been conducted to optimize the design parameters from the scale laws and validates the reactor performance with the integrated code system. A 1000 MWth sodium-cooled sub-critical transmutation reactor has been scaled and verified through the methodology in this paper, which is referred to Advanced Liquid Metal Reactor (ALMR). A Pb-Bi target material and a partitioned fuel are the liquid phases, and they are cooled by the circulation of secondary Pb-Bi coolant and by primary sodium coolant, respectively. Overall key design parameters are generated from the scale laws and they are improved and validated by the integrated code system. Integrated Code System (ICS) consists of LAHET, HMCNP, ORIGEN2, and COMMIX codes and some files. Through ICS the target region, the core region, and thermal-hydraulic related regions are analyzed once-through Results of conceptual design are attached in this paper. 5 refs., 4 figs., 1 tab. (Author)

  8. Transmission electron microscopic analysis showing structural changes to bacterial cells treated with electrolyzed water and an acidic sanitizer.

    Science.gov (United States)

    Feliciano, Lizanel; Lee, Jaesung; Pascall, Melvin A

    2012-04-01

    The effects of various sanitizers on the viability and cellular injury to structures of Escherichia coli and Listeria innocua were investigated. A food grade organic acidic formulation (pH 2.5) and acidic, neutral, and basic electrolyzed water [AEW (pH 2.7, oxidation reduction potential; ORP: 1100 mV, free available chlorine; FAC: 150 ppm), NEW (pH 6.9, ORP: 840 mV, FAC: 150 ppm), BEW (pH 11.6, ORP: -810 mV)] were used to treat E. coli and L. innocua cells. After 10 min of exposure to the sanitizers, changes to the bacterial numbers and cell structures were evaluated by plate counting and transmission electron microscopy (TEM), respectively. It was concluded from the results that the sanitizers reduced the E. coli cells between 2 and 3 log CFU/mL. Except for the BEW treatment, reductions in L. innocua population were greater (>1 log CFU/mL) than that of E. coli for all treatments. Data from the TEM showed that all sanitizers caused changes to the cell envelope and cytoplasm of both organisms. However, smaller changes were observed for L. innocua cells. Decrease in the integrity of the cell envelope and aggregation of the cytoplasmic components appeared to be mainly because of exposure to the sanitizers. The organic acid formulation and AEW were the most effective sanitizers against bacterial cells, indicating that penetration of acidic substances effectively caused the cell inactivation. An understanding of the method in which E-water and an acidic sanitizer cause injury to E. coli and L. innocua would be helpful in selecting an effective chemical agent as a food safety tool. This will allow a scientist to target similar microorganisms such as food borne bacteria with structures that are vulnerable to the sanitizer. © 2012 Institute of Food Technologists®

  9. Water

    Science.gov (United States)

    ... environment and your health: Green living Sun Water Health effects of water pollution How to protect yourself from water pollution Air Chemicals Noise Quizzes Links to more information girlshealth glossary girlshealth. ...

  10. Bacillus cereus as indicator in the sterilization of residual water with high energy electrons; Bacillus cereus como indicador en la desinfeccion de aguas residuales con electrones de alta energia

    Energy Technology Data Exchange (ETDEWEB)

    Mejia Z, E

    2000-07-01

    One of the main causes of water pollution is the presence of microorganisms that provoke infections, moreover of chemical substances. The processes of residual water treatment finally require of the disinfection for its use or final disposition. The radiation technology for the residual water treatment by mean of electron beams is an innovator process because as well as decomposing the chemical substance or to degrade them, also it provokes a disinfection by which this is proposed as alternative for disinfection of residual water, with the purpose in reusing the water treated in the agriculture, recreation and industry among others secondary activities, solving environmental or health problems. The objective of this work is to evaluate the use of Bacillus cereus as biological indicator in the disinfection by radiation, using High Energy Electrons. To fulfil with this objective, the work was developed in three stages, the first one consisted in the acquisition, propagation and conservation of the Bacillus cereus stumps, considering Escherichia coli and Salmonella typhimurium as pathogenic germs present in residual water. Moreover, the inocule standardization and the conditions of the Electron accelerator Type Pelletron. In the second stage it was performed the irradiation of aqueous samples of the microorganisms simulating biological pollution and the application to problem samples of a treatment plant sited in the Lerma River zone of mixed residual water. And in the third stage was performed a regression analysis to the reported survival for each kind of microorganisms. The results obtained show that with the use of Electron beams was reduced 6 logarithmic units de E. coli at 129 Gy, for S. typhimurium it was reduced 8 logarithmic units at 383 Gy and the B. cereus at 511 Gy was reduced 6.8 logarithmic units. Of the problem samples irradiated at 500 Gy, the concentration of the total account diminished from 8.70 x 10{sup 7} UFC/ml to 550 UFC/ml, the presence of B

  11. Recovery of Organic and Amino Acids from Sludge and Fish Waste in Sub Critical Water Conditions

    Directory of Open Access Journals (Sweden)

    Muhammad Faisal

    2011-12-01

    Full Text Available The possibility of organic and amino acid production from the treatment of sludge and fish waste using water at sub critical conditions was investigated. The results indicated that at sub-critical conditions, where the ion product of water went through a maximum, the formation of organic acids was favorable. The presence of oxidant favored formation of acetic and formic acid. Other organic acids of significant amount were propionic, succinic and lactic acids. Depending on the type of wastes, formation of other organic acids was also possible. Knowing the organic acids obtained by hydrolysis and oxidation in sub-critical water of various wastes are useful in designing of applicable waste treatment process, complete degradation of organic wastes into volatile carbon and water, and also on the viewpoint of resource recovery. The production of lactic acid was discussed as well. The results indicated that temperature of 573 K, with the absence of oxidant, yield of lactic acid from fish waste was higher than sewage sludge. The maximum yield of total amino acids (137 mg/g-dry fish from waste fish entrails was obtained at subcritical condition (T = 523 K, P = 4 MPa at reaction time of 60 min by using the batch reactor. The amino acids obtained in this study were mainly alanine and glycine. Keywords:  organic acids, amino acids, sub-critical water, hydrothermal, resources recovery

  12. Laser acceleration of electrons in two-dimensionally inhomogeneous plasma at the boundary of a metal foil

    Energy Technology Data Exchange (ETDEWEB)

    Pugachev, L. P., E-mail: pugachev@ihed.ras.ru; Andreev, N. E., E-mail: andreev@ras.ru; Levashov, P. R., E-mail: pasha@ihed.ras.ru [Russian Academy of Sciences, Joint Institute for High Temperature (Russian Federation); Malkov, Yu. A., E-mail: yurymalkov@mail.ru; Stepanov, A. N., E-mail: step@ufp.appl.sci-nnov.ru; Yashunin, D. A., E-mail: yashuninda@yandex.ru [Russian Academy of Sciences, Institute of Applied Physics (Russian Federation)

    2015-07-15

    The electron acceleration mechanism associated with the generation of a plasma wave due to self-modulation instability of laser radiation in a subcritical plasma produced by a laser prepulse coming 10 ns before the arrival of the main intense femtosecond pulse is considered. Three-dimensional particle-in-cell simulations of the interaction of laser radiation with two-dimensionally inhomogeneous subcritical plasma have shown that, for a sufficiently strong plasma inhomogeneity and a sharp front of the laser pulse, efficient plasma wave excitation, electron trapping, and generation of collimated electron beams with energies on the order of 0.2–0.5 MeV can occur. The simulation results agree with experiments on the generation of collimated beams of accelerated electrons from metal targets irradiated by intense femtosecond laser pulses.

  13. Polyurethane Membranes Modified with Isopropyl Myristate as a Potential Candidate for Encapsulating Electronic Implants: A Study of Biocompatibility and Water Permeability

    Directory of Open Access Journals (Sweden)

    Deepen Paul

    2010-07-01

    Full Text Available Medical polyurethanes have shown good bio-stability and mechanical properties and have been used as coating for implantable medical devices. However, despite their excellent properties, they are relatively permeable to liquid water and water vapour which is a drawback for electronic implant encapsulation. In this study polyether polyurethanes with different soft segment molecular weights were modified by incorporating isopropyl myristate (IPM, as a hydrophobic modifying agent, and the effect of IPM on water resistant and biocompatibility of membranes were investigated. IPM changed the surface properties of the polyurethane film and reduced its surface energy. Polyurethane films were found to be stable with IPM concentrations of 1–5 wt% based upon their chemistry; however it leached out in BSA at higher concentrations. Though, low concentrations of IPM reduced both liquid water and water vapour permeability; at higher IPM content liquid permeability did not improved significantly. In general, the polyurethane materials showed much lower water permeability compared with currently used silicone packaging material for electronic implants. In addition, cytotoxicity assessment of IPM containing polyurethanes showed no evidence of cytotoxcity up to 5 wt% IPM.

  14. Study in stationary state of the subcriticality of intermediate configurations of core in the reloading process of a BWR; Estudio en estado estacionario de la subcriticidad de configuraciones intermedias de nucleo en el proceso de recarga de un BWR

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, J.L.; Montes, J.L.; Perusquia, R.; Ortiz, J.J. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: jlhm@nuclear.inin.mx

    2006-07-01

    In this work is carried out the simulation in three dimensions with the COREMASTER-PRESTO code, of the behavior of the reactor core in different stages of the change process of fuel assemblies. To carry out the simulation, this code requires of a database of nuclear parameters that includes those that can associate to the areas of an assemblies that they don't contain fuel and in its place there is moderator. These nuclear parameters are calculated with the AURORA-HELIOS-ZENITH-TABGEN system. One of the approaches that were carried out consisted on designing a 'water assemble', that is to say, an axial arrangement of 25 'water cells'. To obtain the appropriate 'water cell' its were carried out some selective test cases, since it presents in two cases the necessity to find an enough minimum value of fissile material for the correct execution of HELIOS, firstly, and later on COREMASTER-PRESTO. In the first case, the situation is solved when placing symmetrically 6 bars with natural uranium in the lateral areas of the cell; with that which the value of k{sub inf} of 0.1592 is obtained in the calculations with the HELIOS code in the cold condition to zero power (CZP), and 0% of vacuums. For the second case the cell includes symmetrically 28 bars with natural uranium, and the k{sub inf} value is 0.45290. These values are the maximum through the life of the 'cell.' As part of the activities that are developed during the fuel substitution, this the one of evaluating the subcriticality of the core each determined number of substitution movements. The obtained results when evaluating the k-effective in cold condition, in 5 different intermediate core configurations, as the loading process of the fuel advances are presented. To make the evaluation with CM-PRESTO in each configuration it was proceeded to complete the rest of the 444 assemblies with the one denominated 'water assemble'. In all the evaluated cases the

  15. Water

    Science.gov (United States)

    Leopold, Luna Bergere; Baldwin, Helene L.

    1962-01-01

    What do you use water for?If someone asked you this question you would probably think right away of water for drinking. Then you would think of water for bathing, brushing teeth, flushing the toilet. Your list would get longer as you thought of water for cooking, washing the dishes, running the garbage grinder. Water for lawn watering, for play pools, for swimming pools, for washing the car and the dog. Water for washing machines and for air conditioning. You can hardly do without water for fun and pleasure—water for swimming, boating, fishing, water-skiing, and skin diving. In school or the public library, you need water to wash your hands, or to have a drink. If your home or school bursts into flames, quantities of water are needed to put it out.In fact, life to Americans is unthinkable without large supplies of fresh, clean water. If you give the matter a little thought, you will realize that people in many countries, even in our own, may suffer from disease and dirt simply because their homes are not equipped with running water. Imagine your own town if for some reason - an explosion, perhaps - water service were cut off for a week or several weeks. You would have to drive or walk to a neighboring town and bring water back in pails. Certainly if people had to carry water themselves they might not be inclined to bathe very often; washing clothes would be a real chore.Nothing can live without water. The earth is covered by water over three-fourths of its surface - water as a liquid in rivers, lakes and oceans, and water as ice and snow on the tops of high mountains and in the polar regions. Only one-quarter of our bodies is bone and muscle; the other three-fourths is made of water. We need water to live, and so do plants and animals. People and animals can live a long time without food, but without water they die in a few days. Without water, everything would die, and the world would turn into a huge desert.

  16. A Model of Ball Lightning as a Formation of Water Molecules Confining an Electric Charge and the Classical Theory of the Electron

    Science.gov (United States)

    Tennakone, K.

    2012-04-01

    Ball lightning or faintly luminous floating spheres with radii of the order of ten centimeters appearing transiently in air notably during stormy weather continue to remain an unresolved phenomenon. It is suggested that these objects are organized structures constituted of an electrically charged spherical thin shell of electro-frozen dipole oriented water molecules carrying an electric charge, balanced by the internal negative pressure and outward electrostatic stress. A model presented, resembling the classical theory of the electron with Poincare stresses explain almost all observed attributes of this phenomenon. The possibility of realizing macroscopic spherical surface charge distributions in the vacuum and their implication on the problem of electron are commented.

  17. A semi-analytical model for calculating the penetration depth of a high energy electron beam in a water phantom with a magnetic field.

    Science.gov (United States)

    You, Shihu; Gou, Chengjun; Wu, Zhangwen; Hou, Qing

    2015-07-01

    As an electron beam is incident on a uniform water phantom in the presence of a lateral magnetic field, the depth-dose distribution of the electron beam changes significantly and forms the well-known 'Bragg peak', with a depth-dose distribution similar to that of heavy ions. This phenomenon has pioneered a new field in the clinical application of electron beams. For such clinical applications, evaluating the penetration depth of electron beams quickly and accurately is the critical problem. This paper describes a model for calculating the penetration depth of an electron beam rapidly and correctly in a water phantom under the influence of a magnetic field. The model was used to calculate the penetration depths under different conditions: the energies of electron beams of 6, 8, 12 and 15 MeV and the magnetic induction intensities of 0.75, 1.0, 1.5, 2.0 and 3.0 T. In addition, the calculation results were compared with the results of a Monte Carlo simulation. The comparison results indicate that the difference between the two calculation methods was less than 0.5 cm. Moreover, the computing time of the calculation model was less than a second. The semi-analytical model proposed in the present study enables the penetration depth of the electron beam in the presence of a magnetic field to be obtained with a computational efficiency higher than that of the Monte Carlo approach; thus, the proposed model has high potential for application. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  18. Pore pressure migration during hydraulic stimulation due to permeability enhancement by low-pressure subcritical fracture slip

    Science.gov (United States)

    Mukuhira, Yusuke; Moriya, Hirokazu; Ito, Takatoshi; Asanuma, Hiroshi; Häring, Markus

    2017-04-01

    Understanding the details of pressure migration during hydraulic stimulation is important for the design of an energy extraction system and reservoir management, as well as for the mitigation of hazardous-induced seismicity. Based on microseismic and regional stress information, we estimated the pore pressure increase required to generate shear slip on an existing fracture during stimulation. Spatiotemporal analysis of pore pressure migration revealed that lower pore pressure migrates farther and faster and that higher pore pressure migrates more slowly. These phenomena can be explained by the relationship between fracture permeability and stress state criticality. Subcritical fractures experience shear slip following smaller increases of pore pressure and promote migration of pore pressure because of their enhanced permeability. The difference in migration rates between lower and higher pore pressures suggests that the optimum wellhead pressure is the one that can stimulate relatively permeable fractures, selectively. Its selection optimizes economic benefits and minimizes seismic risk.

  19. On the significance of the energy correlations of spallation neutrons on the neutron fluctuations in accelerator-driven subcritical systems

    CERN Document Server

    Pázsit, I; Fhager, V

    2000-01-01

    Studies of neutron fluctuations in spallation-driven subcritical systems require the use of energy-dependent master equations. In particular, calculation of the second moment of the neutron distribution requires knowledge on the energy correlations (two-point distributions) of the source particles. It is shown here that such correlations will exist even if the energies of all neutrons, generated in any single spallation event, are independent, provided that the energy distribution of the neutrons for separate spallation events is dependent on the number of neutrons generated. A simple model of number dependence of the energy spectrum is constructed, and the arising energy correlations are calculated. The error in calculating the second moment of the neutron distribution, arising when assuming zero correlations (i.e. using only one-particle energy spectra), is estimated in a simple model of neutron slowing down.

  20. Study of the enantiomeric separation of oxfendazole and cetirizine using subcritical fluid chromatography on an amylose-based column.

    Science.gov (United States)

    Toribio, L; del Nozal, M J; Bernal, J L; Cristofol, C; Alonso, C

    2006-07-21

    The enantiomeric separation of cetirizine and oxfendazole on a Chiralpak AD column using subcritical fluid chromatography has been studied in this work. The enantioseparation of cetirizine was only possible when 2-propanol was used as a modifier, obtaining better results in presence of the additives triethylamine (TEA) and trifluoroacetic acid (TFAA). On the contrary, 2-propanol provided the lowest enantioresolutions for oxfendazole, in this case the best results in terms of high resolution and short analysis time were obtained with ethanol. The study of the temperature effect revealed that in the case of cetirizine using 2-propanol, and oxfendazole using methanol, the separation was enthalpy-driven and the isoelution temperature was above the working range. Using ethanol or 2-propanol, the results showed that the oxfendazole enantioseparation was entropically driven and the isoelution temperatures were below the range studied.

  1. Water

    Science.gov (United States)

    ... the tap as described). 3. In all situations, drink or cook only with water that comes out of the tap cold. Water that comes out of the tap warm or hot can contain much higher levels of lead. Boiling ...

  2. Measurement of the electron neutrino charged-current interaction rate on water with the T2K ND280 π0 detector

    Science.gov (United States)

    Abe, K.; Adam, J.; Aihara, H.; Andreopoulos, C.; Aoki, S.; Ariga, A.; Assylbekov, S.; Autiero, D.; Barbi, M.; Barker, G. J.; Barr, G.; Bartet-Friburg, P.; Bass, M.; Batkiewicz, M.; Bay, F.; Berardi, V.; Berger, B. E.; Berkman, S.; Bhadra, S.; Blaszczyk, F. d. M.; Blondel, A.; Bolognesi, S.; Bordoni, S.; Boyd, S. B.; Brailsford, D.; Bravar, A.; Bronner, C.; Buchanan, N.; Calland, R. G.; Caravaca Rodríguez, J.; Cartwright, S. L.; Castillo, R.; Catanesi, M. G.; Cervera, A.; Cherdack, D.; Chikuma, N.; Christodoulou, G.; Clifton, A.; Coleman, J.; Coleman, S. J.; Collazuol, G.; Connolly, K.; Cremonesi, L.; Dabrowska, A.; Das, R.; Davis, S.; de Perio, P.; De Rosa, G.; Dealtry, T.; Dennis, S. R.; Densham, C.; Dewhurst, D.; Di Lodovico, F.; Di Luise, S.; Dolan, S.; Drapier, O.; Duffy, K.; Dumarchez, J.; Dytman, S.; Dziewiecki, M.; Emery-Schrenk, S.; Ereditato, A.; Escudero, L.; Feusels, T.; Finch, A. J.; Fiorentini, G. A.; Friend, M.; Fujii, Y.; Fukuda, Y.; Furmanski, A. P.; Galymov, V.; Garcia, A.; Giffin, S.; Giganti, C.; Gilje, K.; Goeldi, D.; Golan, T.; Gonin, M.; Grant, N.; Gudin, D.; Hadley, D. R.; Haegel, L.; Haesler, A.; Haigh, M. D.; Hamilton, P.; Hansen, D.; Hara, T.; Hartz, M.; Hasegawa, T.; Hastings, N. C.; Hayashino, T.; Hayato, Y.; Helmer, R. L.; Hierholzer, M.; Hignight, J.; Hillairet, A.; Himmel, A.; Hiraki, T.; Hirota, S.; Holeczek, J.; Horikawa, S.; Hosomi, F.; Huang, K.; Ichikawa, A. K.; Ieki, K.; Ieva, M.; Ikeda, M.; Imber, J.; Insler, J.; Irvine, T. J.; Ishida, T.; Ishii, T.; Iwai, E.; Iwamoto, K.; Iyogi, K.; Izmaylov, A.; Jacob, A.; Jamieson, B.; Jiang, M.; Johnson, S.; Jo, J. H.; Jonsson, P.; Jung, C. K.; Kabirnezhad, M.; Kaboth, A. C.; Kajita, T.; Kakuno, H.; Kameda, J.; Kanazawa, Y.; Karlen, D.; Karpikov, I.; Katori, T.; Kearns, E.; Khabibullin, M.; Khotjantsev, A.; Kielczewska, D.; Kikawa, T.; Kilinski, A.; Kim, J.; King, S.; Kisiel, J.; Kitching, P.; Kobayashi, T.; Koch, L.; Koga, T.; Kolaceke, A.; Konaka, A.; Kopylov, A.; Kormos, L. L.; Korzenev, A.; Koshio, Y.; Kropp, W.; Kubo, H.; Kudenko, Y.; Kurjata, R.; Kutter, T.; Lagoda, J.; Lamont, I.; Larkin, E.; Laveder, M.; Lawe, M.; Lazos, M.; Lindner, T.; Lister, C.; Litchfield, R. P.; Longhin, A.; Lopez, J. P.; Ludovici, L.; Magaletti, L.; Mahn, K.; Malek, M.; Manly, S.; Marino, A. D.; Marteau, J.; Martin, J. F.; Martins, P.; Martynenko, S.; Maruyama, T.; Matveev, V.; Mavrokoridis, K.; Mazzucato, E.; McCarthy, M.; McCauley, N.; McFarland, K. S.; McGrew, C.; Mefodiev, A.; Metelko, C.; Mezzetto, M.; Mijakowski, P.; Miller, C. A.; Minamino, A.; Mineev, O.; Mine, S.; Missert, A.; Miura, M.; Moriyama, S.; Mueller, Th. A.; Murakami, A.; Murdoch, M.; Murphy, S.; Myslik, J.; Nakadaira, T.; Nakahata, M.; Nakamura, K. G.; Nakamura, K.; Nakayama, S.; Nakaya, T.; Nakayoshi, K.; Nantais, C.; Nielsen, C.; Nirkko, M.; Nishikawa, K.; Nishimura, Y.; Nowak, J.; O'Keeffe, H. M.; Ohta, R.; Okumura, K.; Okusawa, T.; Oryszczak, W.; Oser, S. M.; Ovsyannikova, T.; Owen, R. A.; Oyama, Y.; Palladino, V.; Palomino, J. L.; Paolone, V.; Payne, D.; Perevozchikov, O.; Perkin, J. D.; Petrov, Y.; Pickard, L.; Pinzon Guerra, E. S.; Pistillo, C.; Plonski, P.; Poplawska, E.; Popov, B.; Posiadala-Zezula, M.; Poutissou, J.-M.; Poutissou, R.; Przewlocki, P.; Quilain, B.; Radicioni, E.; Ratoff, P. N.; Ravonel, M.; Rayner, M. A. M.; Redij, A.; Reeves, M.; Reinherz-Aronis, E.; Riccio, C.; Rodrigues, P. A.; Rojas, P.; Rondio, E.; Roth, S.; Rubbia, A.; Ruterbories, D.; Rychter, A.; Sacco, R.; Sakashita, K.; Sánchez, F.; Sato, F.; Scantamburlo, E.; Scholberg, K.; Schoppmann, S.; Schwehr, J. D.; Scott, M.; Seiya, Y.; Sekiguchi, T.; Sekiya, H.; Sgalaberna, D.; Shah, R.; Shaikhiev, A.; Shaker, F.; Shaw, D.; Shiozawa, M.; Short, S.; Shustrov, Y.; Sinclair, P.; Smith, B.; Smy, M.; Sobczyk, J. T.; Sobel, H.; Sorel, M.; Southwell, L.; Stamoulis, P.; Steinmann, J.; Suda, Y.; Suzuki, A.; Suzuki, K.; Suzuki, S. Y.; Suzuki, Y.; Tacik, R.; Tada, M.; Takahashi, S.; Takeda, A.; Takeuchi, Y.; Tanaka, H. K.; Tanaka, H. A.; Tanaka, M. M.; Terhorst, D.; Terri, R.; Thompson, L. F.; Thorley, A.; Tobayama, S.; Toki, W.; Tomura, T.; Touramanis, C.; Tsukamoto, T.; Tzanov, M.; Uchida, Y.; Vacheret, A.; Vagins, M.; Vasseur, G.; Wachala, T.; Wakamatsu, K.; Walter, C. W.; Wark, D.; Warzycha, W.; Wascko, M. O.; Weber, A.; Wendell, R.; Wilkes, R. J.; Wilking, M. J.; Wilkinson, C.; Williamson, Z.; Wilson, J. R.; Wilson, R. J.; Wongjirad, T.; Yamada, Y.; Yamamoto, K.; Yanagisawa, C.; Yano, T.; Yen, S.; Yershov, N.; Yokoyama, M.; Yoo, J.; Yoshida, K.; Yuan, T.; Yu, M.; Zalewska, A.; Zalipska, J.; Zambelli, L.; Zaremba, K.; Ziembicki, M.; Zimmerman, E. D.; Zito, M.; Żmuda, J.; T2K Collaboration

    2015-06-01

    This paper presents a measurement of the charged current interaction rate of the electron neutrino beam component of the beam above 1.5 GeV using the large fiducial mass of the T2K π0 detector. The predominant portion of the νe flux (˜85 % ) at these energies comes from kaon decays. The measured ratio of the observed beam interaction rate to the predicted rate in the detector with water targets filled is 0.89 ±0.08 (stat)±0.11 (sys) , and with the water targets emptied is 0.90 ±0.09 (stat)±0.13 (sys) . The ratio obtained for the interactions on water only from an event subtraction method is 0.87 ±0.33 (stat)±0.21 (sys) . This is the first measurement of the interaction rate of electron neutrinos on water, which is particularly of interest to experiments with water Cherenkov detectors.

  3. First and second one-​electron reduction of lumiflavin in water - A first principles molecular dynamics study

    NARCIS (Netherlands)

    Kılıç, M.; Ensing, B.

    2013-01-01

    Flavins are ubiquitously found in nature as cofactors in proteins that regulate electron and proton transfer reactions. The electron and proton affinities of flavins are modulated by their molecular environment. Using density functional theory based molecular dynamics simulations, we have studied

  4. Electron-Stimulated Production of Molecular Oxygen in Amorphous Solid Water on Pt(111): Precursor Transport Through the Hydrogen Bonding Network

    Energy Technology Data Exchange (ETDEWEB)

    Petrik, Nikolay G.; Kavetski, Alexandre G.; Kimmel, Greg A.

    2006-09-28

    The low-energy, electron-stimulated production of molecular oxygen from thin amorphous solid water (ASW) films adsorbed on Pt(111) is investigated. For ASW coverages less than {approx}60 monolayers (ML), the O2 ESD yield depends on coverage in a manner that is very similar to the H2 ESD yield. In particular, both the O2 and H2 ESD yields have a pronounced maximum at {approx}20 ML due to reactions at the Pt/water interface. The O2 yield is dose-dependent and several precursors (OH, H2O2 and HO2) are involved in the O2 production. Layered films of H216O and H218O are used to profile the spatial distribution of the electron-stimulated reactions leading to oxygen within the water films. Independent of the ASW film thickness, the final reactions leading to O2 occur at or near the ASW/vacuum interface. However for ASW coverages less than {approx}40 ML, the results indicate that dissociation of water molecules at the ASW/Pt interface contributes to the O2 production at the ASW/vacuum interface presumably via the generation of OH radicals near the Pt substrate. The OH (or possibly OH-) segregates to the vacuum interface where it contributes to the reactions at that interface. The electron-stimulated migration of precursors to the vacuum interface occurs via transport through the hydrogen bond network of the ASW without motion of the oxygen atoms. A simple kinetic model of the non-thermal reactions leading to O2, which was previously used to account for reactions in thick ASW films, is modified to account for the electron-stimulated migration of precursors.

  5. COUPLED SUBCRITICAL WATER EXTRACTION WITH SOLID-PHASE MICROEXTRACTION FOR DETERMINING SEMIVOLATILE ORGANICS IN ENVIRONMENTAL SOLIDS. (R825368)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  6. Measurement of the Electron Neutrino Charged-current Interaction Rate on Water with the T2K ND280 pi-zero Detector

    CERN Document Server

    Abe, K; Aihara, H; Andreopoulos, C; Aoki, S; Ariga, A; Assylbekov, S; Autiero, D; Barbi, M; Barker, G J; Barr, G; Bartet-Friburg, P; Bass, M; Batkiewicz, M; Bay, F; Berardi, V; Berger, B E; Berkman, S; Bhadra, S; Blaszczyk, F d M; Blondel, A; Bolognesi, S; Bordoni, S; Boyd, S B; Brailsford, D; Bravar, A; Bronner, C; Buchanan, N; Calland, R G; Caravaca, J; Cartwright, S L; Castillo, R; Catanesi, M G; Cervera, A; Cherdack, D; Christodoulou, G; Clifton, A; Coleman, J; Coleman, S J; Collazuol, G; Connolly, K; Cremonesi, L; Dabrowska, A; Das, R; Davis, S; de, P; De, G; Dealtry, T; Dennis, S R; Densham, C; Dewhurst, D; Di, F; Di, S; Dolan, S; Drapier, O; Duffy, K; Dumarchez, J; Dytman, S; Dziewiecki, M; Emery-Schrenk, S; Ereditato, A; Escudero, L; Feusels, T; Finch, A J; Fiorentini, G A; Friend, M; Fujii, Y; Fukuda, Y; Furmanski, A P; Galymov, V; Garcia, A; Giffin, S; Giganti, C; Gilje, K; Goeldi, D; Golan, T; Gonin, M; Grant, N; Gudin, D; Hadley, D R; Haegel, L; Haesler, A; Haigh, M D; Hamilton, P; Hansen, D; Hara, T; Hartz, M; Hasegawa, T; Hastings, N C; Hayashino, T; Hayato, Y; Helmer, R L; Hierholzer, M; Hignight, J; Hillairet, A; Himmel, A; Hiraki, T; Hirota, S; Holeczek, J; Horikawa, S; Huang, K; Ichikawa, A K; Ieki, K; Ieva, M; Ikeda, M; Imber, J; Insler, J; Irvine, T J; Ishida, T; Ishii, T; Iwai, E; Iwamoto, K; Iyogi, K; Izmaylov, A; Jacob, A; Jamieson, B; Jiang, M; Johnson, S; Jo, J H; Jonsson, P; Jung, C K; Kabirnezhad, M; Kaboth, A C; Kajita, T; Kakuno, H; Kameda, J; Kanazawa, Y; Karlen, D; Karpikov, I; Katori, T; Kearns, E; Khabibullin, M; Khotjantsev, A; Kielczewska, D; Kikawa, T; Kilinski, A; Kim, J; King, S; Kisiel, J; Kitching, P; Kobayashi, T; Koch, L; Koga, T; Kolaceke, A; Konaka, A; Kormos, L L; Korzenev, A; Koshio, Y; Kropp, W; Kubo, H; Kudenko, Y; Kurjata, R; Kutter, T; Lagoda, J; Lamont, I; Larkin, E; Laveder, M; Lawe, M; Lazos, M; Lindner, T; Lister, C; Litchfield, R P; Longhin, A; Lopez, J P; Ludovici, L; Magaletti, L; Mahn, K; Malek, M; Manly, S; Marino, A D; Marteau, J; Martin, J F; Martins, P; Martynenko, S; Maruyama, T; Matveev, V; Mavrokoridis, K; Mazzucato, E; McCarthy, M; McCauley, N; McFarland, K S; McGrew, C; Mefodiev, A; Metelko, C; Mezzetto, M; Mijakowski, P; Miller, C A; Minamino, A; Mineev, O; Missert, A; Miura, M; Moriyama, S; Mueller, Th A; Murakami, A; Murdoch, M; Murphy, S; Myslik, J; Nakadaira, T; Nakahata, M; Nakamura, K G; Nakamura, K; Nakayama, S; Nakaya, T; Nakayoshi, K; Nantais, C; Nielsen, C; Nirkko, M; Nishikawa, K; Nishimura, Y; Nowak, J; O'Keeffe, H M; Ohta, R; Okumura, K; Okusawa, T; Oryszczak, W; Oser, S M; Ovsyannikova, T; Owen, R A; Oyama, Y; Palladino, V; Palomino, J L; Paolone, V; Payne, D; Perevozchikov, O; Perkin, J D; Petrov, Y; Pickard, L; Pinzon, E S; Pistillo, C; Plonski, P; Poplawska, E; Popov, B; Posiadala-Zezula, M; Poutissou, J -M; Poutissou, R; Przewlocki, P; Quilain, B; Radicioni, E; Ratoff, P N; Ravonel, M; Rayner, M A M; Redij, A; Reeves, M; Reinherz-Aronis, E; Riccio, C; Rodrigues, P A; Rojas, P; Rondio, E; Roth, S; Rubbia, A; Ruterbories, D; Rychter, A; Sacco, R; Sakashita, K; S, F; Sato, F; Scantamburlo, E; Scholberg, K; Schoppmann, S; Schwehr, J; Scott, M; Seiya, Y; Sekiguchi, T; Sekiya, H; Sgalaberna, D; Shah, R; Shaker, F; Shaw, D; Shiozawa, M; Short, S; Shustrov, Y; Sinclair, P; Smith, B; Smy, M; Sobczyk, J T; Sobel, H; Sorel, M; Southwell, L; Stamoulis, P; Steinmann, J; Suda, Y; Suzuki, A; Suzuki, K; Suzuki, S Y; Suzuki, Y; Tacik, R; Tada, M; Takahashi, S; Takeda, A; Takeuchi, Y; Tanaka, H K; Tanaka, H A; Tanaka, M M; Terhorst, D; Terri, R; Thompson, L F; Thorley, A; Tobayama, S; Toki, W; Tomura, T; Totsuka, Y; Touramanis, C; Tsukamoto, T; Tzanov, M; Uchida, Y; Vacheret, A; Vagins, M; Vasseur, G; Wachala, T; Wakamatsu, K; Walter, C W; Wark, D; Warzycha, W; Wascko, M O; Weber, A; Wendell, R; Wilkes, R J; Wilking, M J; Wilkinson, C; Williamson, Z; Wilson, J R; Wilson, R J; Wongjirad, T; Yamada, Y; Yamamoto, K; Yanagisawa, C; Yano, T; Yen, S; Yershov, N; Yokoyama, M; Yoshida, K; Yuan, T; Yu, M; Zalewska, A; Zalipska, J; Zambelli, L; Zaremba, K; Ziembicki, M; Zimmerman, E D; Zito, M; Zmuda, J

    2015-01-01

    The first direct observation of the appearance of electron neutrinos in a muon neutrino beam through neutrino oscillation was recently reported by the T2K experiment. The main background in this observation was the presence of the electron neutrino component of the beam, which accounts for 1.2 % of the beam below the 1.2 GeV threshold. This paper presents a measurement of the charged current interaction rate of the electron neutrino beam component using the large fiducial mass of the T2K $\\pi^0$ detector. The measured ratio of the observed beam interaction rate to the predicted rate in the detector with water targets filled is 0.89 $\\pm$ 0.08 (stat.) $\\pm$ 0.11 (sys.), and with the water targets emptied is 0.90 $\\pm$ 0.09 (stat.) $\\pm$ 0.13 (sys.). The ratio obtained for the interactions on water only from an event subtraction method is 0.87 $\\pm$ 0.33 (stat.) $\\pm$ 0.21 (sys.). These are pioneering measurements of the $\

  7. Theoretical study on the surface stabilities, electronic structures and water adsorption behavior of the Ta3N5(110) surface.

    Science.gov (United States)

    Wang, Jiajia; Ma, Aibin; Li, Zhaosheng; Jiang, Jinghua; Feng, Jianyong; Zou, Zhigang

    2016-03-21

    A recent experiment revealed that the Ta3N5 semiconductor with orientation along the (110) surface exhibited improved photoelectrochemical activities, but the role of the (110) surface in the improved photoelectrochemical activity remains unclear. In this study, density functional theory calculations were performed to investigate the surface stabilities, surface electronic structures and water splitting behavior of the Ta3N5(110) surface with and without oxygen impurities. The results showed that, on the clean and oxygen impurity containing (110) surfaces, the energy barriers of water splitting were as low as 0.05 and 0.06 eV, respectively, suggesting that the Ta3N5(110) surface is a promising candidate for water splitting. The lower energy barriers of water splitting on the Ta3N5(110) surface may be ascribed to the easy migration of the H atom from the surface Ta atom to the nearby N atom. Furthermore, the surface energies and surface electronic structures revealed that the Ta3N5(110) surface contained less oxygen impurities, which is in accordance with the experimental observations.

  8. Electron beam induced water-soluble silk fibroin nanoparticles as a natural antioxidant and reducing agent for a green synthesis of gold nanocolloid

    Science.gov (United States)

    Wongkrongsak, Soraya; Tangthong, Theeranan; Pasanphan, Wanvimol

    2016-01-01

    The research proposes a novel water-soluble silk fibroin nanoparticles (WSSF-NPs) created by electron beam irradiation. In this report, we demonstrate the effects of electron beam irradiation doses ranging from 1 to 30 kGy on the molecular weight (MW), nanostructure formation, antioxidant activity and reducing power of the WSSF-NPs. Electron beam-induced degradation of SF causing MW reduction from 250 to 37 kDa. Chemical characteristic functions of SF still remained after exposing to electron beam. The WSSF-NPs with the MW of 37 kDa exhibited spherical morphology with a nanoscaled size of 40 nm. Antioxidant activities and reducing powers were investigated using 2,2-diphenyl-1-picrylhryl free radical (DPPH•) scavenging activity and ferric reducing antioxidant power (FRAP) assays, respectively. The WSSF-NPs showed greater antioxidant activity and reducing power than non-irradiated SF. By increasing their antioxidant and reducing power efficiencies, WSSF-NPs potentially created gold nanocolloid. WSSF-NPs produced by electron beam irradiation would be a great merit for the uses as a natural antioxidant additive and a green reducing agent in biomedical, cosmetic and food applications.

  9. Electron diffraction determination of 11.5 Å and HySo structures: candidate water carriers to the Upper Mantle

    Czech Academy of Sciences Publication Activity Database

    Gemmi, M.; Merlini, M.; Palatinus, Lukáš; Fumagalli, P.; Hanfland, M.

    2016-01-01

    Roč. 101, č. 12 (2016), s. 2645-2654 ISSN 0003-004X Institutional support: RVO:68378271 Keywords : subduction * MASH system * electron diffraction tomography Subject RIV: DB - Geology ; Mineralogy Impact factor: 2.021, year: 2016

  10. Detection of the adsorption of water monolayers through the ion oscillation frequency in the magnesium oxide lattice by means of low energy electron diffraction

    Directory of Open Access Journals (Sweden)

    M. Guevara-Bertsch

    2016-03-01

    Full Text Available We investigate the variation of the oscillation frequency of the Mg2+ and O2− ions in the magnesium oxide lattice due to the interactions of the surface with water monolayers by means of Low Energy Electron Diffraction. Our key result is a new technique to determine the adsorbate vibrations produced by the water monolayers on the surface lattice as a consequence of their change in the surface Debye temperature and its chemical shift. The latter was systematically investigated for different annealing times and for a constant external thermal perturbation in the range of 110–300 K in order to accomplish adsorption or desorption of water monolayers in the surface lattice.

  11. Detection of the adsorption of water monolayers through the ion oscillation frequency in the magnesium oxide lattice by means of low energy electron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Guevara-Bertsch, M.; Avendaño, E. [Escuela de Física, Universidad de Costa Rica, 2060 San Pedro, San José (Costa Rica); Centro de Investigación en Ciencia e Ingeniería de Materiales, Universidad de Costa Rica, 2060 San Pedro, San José (Costa Rica); Ramírez-Hidalgo, G. [Centro de Investigación en Ciencia e Ingeniería de Materiales, Universidad de Costa Rica, 2060 San Pedro, San José (Costa Rica); Sección de Física Teórica, Universidad de Costa Rica, 2060 San Pedro, San José (Costa Rica); Chavarría-Sibaja, A.; Araya-Pochet, J. A. [Centro de Investigación en Ciencia e Ingeniería de Materiales, Universidad de Costa Rica, 2060 San Pedro, San José (Costa Rica); Herrera-Sancho, O. A., E-mail: oscar-andrey.herrera@uibk.ac.at [Escuela de Física, Universidad de Costa Rica, 2060 San Pedro, San José (Costa Rica); Centro de Investigación en Ciencia e Ingeniería de Materiales, Universidad de Costa Rica, 2060 San Pedro, San José (Costa Rica); Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften, Technikerstr. 21a, 6020 Innsbruck (Austria)

    2016-03-15

    We investigate the variation of the oscillation frequency of the Mg{sup 2+} and O{sup 2−} ions in the magnesium oxide lattice due to the interactions of the surface with water monolayers by means of Low Energy Electron Diffraction. Our key result is a new technique to determine the adsorbate vibrations produced by the water monolayers on the surface lattice as a consequence of their change in the surface Debye temperature and its chemical shift. The latter was systematically investigated for different annealing times and for a constant external thermal perturbation in the range of 110–300 K in order to accomplish adsorption or desorption of water monolayers in the surface lattice.

  12. Economizer water-wall damages initiated by feedwater impurities

    Directory of Open Access Journals (Sweden)

    Vidojković Sonja M.

    2014-01-01

    Full Text Available The main causes of efficiency loss in thermal power plants are boiler tube failures that diminish unit reliability and availability, and raise the cost of the electric energy. For that reason, regular examination of boiler tubes is indispensable measure for prevention future malfunctions of power units. Microscopic examination of economizer inner wall microstructure, analysis of chemical composition of deposit using x-ray diffraction (XRD and scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS has been performed in a subcritical power plant. Stress corrosion cracking, pitting corrosion, destroyed protective magnetite layer, presence of magnetite and hematite in deposit and corrosive impurities within the cracks were indicated the effect of inadequate quality of feedwater that can not entirely ensure reliable operation of the boiler. It may be stated that maintenance of present boiler does not provide its reliable operation. Extensive chemical control of water/steam cycle was recommended. [Projekat Ministartsva nauke Republike Srbije, br. III 43009 i br. III 45012

  13. Selected specific rates of reactions of transients from water in aqueous solution. Hydrated electron, supplemental data. [Reactions with transients from water, with inorganic solutes, and with solutes

    Energy Technology Data Exchange (ETDEWEB)

    Ross, A.B.

    1975-06-01

    A compilation of rates of reactions of hydrated electrons with other transients and with organic and inorganic solutes in aqueous solution appeared in NSRDS-NBS 43, and covered the literature up to early 1971. This supplement includes additional rates which have been published through July 1973.

  14. Heterogeneous ordered-disordered structure of the mesodomain in frozen sucrose-water solutions revealed by multiple electron paramagnetic resonance spectroscopies.

    Science.gov (United States)

    Chen, Hanlin; Sun, Li; Warncke, Kurt

    2013-04-02

    The microscopic structure of frozen aqueous sucrose solutions, over concentrations of 0-75% (w/v), is characterized by using multiple continuous-wave and pulsed electron paramagnetic resonance (EPR) spectroscopic and relaxation techniques and the paramagnetic spin probe, TEMPOL. The temperature dependence of the TEMPOL EPR line-shape anisotropy reveals a mobility transition, specified at 205 K in pure water and 255 ± 5 K for >1% (w/v) added sucrose. The transition temperature is >Tg, where Tg is the homogeneous water glass transition temperature, which shows that TEMPOL resides in the mesoscopic domain (mesodomain) at water-ice crystallite boundaries and that the mesodomain sucrose concentrations are comparable at >1% (w/v) added sucrose. Electron spin-echo envelope modulation (ESEEM) spectroscopy of TEMPOL-(2)H2-sucrose hyperfine interactions also indicates comparable sucrose concentrations in mesodomains at >1% (w/v) added sucrose. Electron spin-echo (ESE) detected longitudinal and phase memory relaxation times (T1 and TM, respectively) at 6 K indicate a general trend of increased mesodomain volume with added sucrose, in three stages: 1-15, 20-50, and >50% (w/v). The calibrated TEMPOL concentrations indicate that the mesodomain volume is less than the predicted maximally freeze-concentrated value [80 (w/w); 120% (w/v)], with transitions at 15-20% and 50% (w/v) starting sucrose. An ordered sucrose hydrate phase, which excludes TEMPOL, and a disordered, amorphous sucrose-water glass phase, in which TEMPOL resides, are proposed to compose a heterogeneous mesodomain. The results show that the ratio of ordered and disordered volume fractions in the mesodomain is exquisitely sensitive to the starting sucrose concentration.

  15. Comparative analysis of operation and safety of subcritical nuclear systems and innovative critical reactors; Analyse comparative du fonctionnement et de la surete de systemes sous-critiques et de reacteurs critiques innovants

    Energy Technology Data Exchange (ETDEWEB)

    Bokov, P.M

    2005-05-01

    The main goal of this thesis work is to investigate the role of core subcriticality for safety enhancement of advanced nuclear systems, in particular, molten salt reactors, devoted to both energy production and waste incineration/transmutation. The inherent safety is considered as ultimate goal of this safety improvement. An attempt to apply a systematic approach for the analysis of the subcriticality contribution to inherent properties of hybrid system was performed. The results of this research prove that in many cases the subcriticality may improve radically the safety characteristics of nuclear reactors, and in some configurations it helps to reach the 'absolute' intrinsic safety. In any case, a proper choice of subcriticality level makes all analyzed transients considerably slower and monotonic. It was shown that the weakest point of the independent-source systems with respect to the intrinsic safety is thermohydraulic unprotected transients, while in the case of the coupled-source systems the excess reactivity/current insertion events remain a matter of concern. To overcome these inherent drawbacks a new principle of realization of a coupled sub-critical system (DENNY concept) is proposed. In addition, the ways to remedy some particular safety-related problems with the help of the core sub-criticality are demonstrated. A preliminary safety analysis of the fast-spectrum molten salt reactor (REBUS concept) is also carried out in this thesis work. Finally, the potential of the alternative (to spallation) neutron sources for application in hybrid systems is examined. (author)

  16. Implementation and training methodology of subcritical reactors neutronic calculations triggered by external neutron source and applications; Implementacao e qualificacao de metodologia de calculos neutronicos em reatores subcriticos acionados por fonte externa de neutrons e aplicacoes

    Energy Technology Data Exchange (ETDEWEB)

    Carluccio, Thiago

    2011-07-01

    This works had as goal to investigate calculational methodologies on subcritical source driven reactor, such as Accelerator Driven Subcritical Reactor (ADSR) and Fusion Driven Subcritical Reactor (FDSR). Intense R and D has been done about these subcritical concepts, mainly due to Minor Actinides (MA) and Long Lived Fission Products (LLFP) transmutation possibilities. In this work, particular emphasis has been given to: (1) complement and improve calculation methodology with neutronic transmutation and decay capabilities and implement it computationally, (2) utilization of this methodology in the Coordinated Research Project (CRP) of the International Atomic Energy Agency Analytical and Experimental Benchmark Analysis of ADS and in the Collaborative Work on Use of Low Enriched Uranium in ADS, especially in the reproduction of the experimental results of the Yalina Booster subcritical assembly and study of a subcritical core of IPEN / MB-01 reactor, (3) to compare different nuclear data libraries calculation of integral parameters, such as k{sub eff} and k{sub src}, and differential distributions, such as spectrum and flux, and nuclides inventories and (4) apply the develop methodology in a study that may help future choices about dedicated transmutation system. The following tools have been used in this work: MCNP (Monte Carlo N particle transport code), MCB (enhanced version of MCNP that allows burnup calculation) and NJOY to process nuclear data from evaluated nuclear data files. (author)

  17. Comparison studies of surface cleaning methods for PAN-based carbon fibers with acetone, supercritical acetone and subcritical alkali aqueous solutions

    Science.gov (United States)

    Meng, Linghui; Fan, Dapeng; Huang, Yudong; Jiang, Zaixing; Zhang, Chunhua

    2012-11-01

    Four kinds of polyacrylonitrile-based carbon fibers were cleaned by three methods and were characterized by X-ray photoelectron spectroscopy, monofilament tensile strength test and atomic force microscopy (AFM). Experimental results of these tests reveal that the method using supercritical acetone or subcritical potassium hydroxide aqueous solution act as the processing medium shows a better cleaning effect compared to the traditional method, Soxhlet extraction with acetone. The method using supercritical acetone is more appropriate to wipe off the oxygenated contaminants on carbon fibers' surfaces and causes a relatively smaller damage to the bulk strength of each carbon fiber. As far as treating method using the subcritical alkali aqueous solution, it can thoroughly remove silicious contaminants on the surfaces of treated fibers.

  18. Water

    CSIR Research Space (South Africa)

    Van Wyk, Llewellyn V

    2010-08-01

    Full Text Available , and of the remaining 2,5 percent, some 70 percent is frozen in the polar caps and around 30 percent is present as soil moisture or in underground aquifers. Less than 1 percent is thus accessible for direct use by humans, animals and plants. Consequently... be serviced with harvested water and/or grey water. Conserve and reuse cooling tower water by using efficient systems and strategies. Avoid ?once-through systems? commonly used for evaporation coolers, ice makers, hydraulic equipment, and air compressors...

  19. (n,xn) cross section measurements for Y-89 foils used as detectors for high energy neutron measurements in the deeply subcritical assembly “QUINTA”

    OpenAIRE

    Bielewicz Marcin; Kilim Stanisław; Strugalska-Gola Elżbieta; Szuta Marcin; Wojciechowski Andrzej; Tyutyunnikov Sergey; Prokofiev Alexander; Passoth Elke

    2017-01-01

    Study of the deep subcritical systems (QUINTA) using relativistic beams is performed within the project “Energy and Transmutation of Radioactive Wastes” (E&T – RAW). The experiment assembly was irradiated by deuteron/proton beam (Dubna NUCLOTRON). We calculated the neutron energy spectrum inside the whole assembly by using threshold energy (n,xn) reactions in yttrium (Y-89) foils. There are almost no experimental cross section data for those reactions. New Y-89(n,xn) cross section measurement...

  20. Subcritical Multiplication Parameters of the Accelerator-Driven System with 100 MeV Protons at the Kyoto University Critical Assembly

    OpenAIRE

    Jae-Yong Lim; Cheol Ho Pyeon; Takahiro Yagi; Tsuyoshi Misawa

    2012-01-01

    Basic experiments on the accelerator-driven system (ADS) at the Kyoto University Critical Assembly are carried out by combining a solid-moderated and -reflected core with the fixed-field alternating gradient accelerator. The reaction rates are measured by the foil activation method to obtain the subcritical multiplication parameters. The numerical calculations are conducted with the use of MCNPX and JENDL/HE-2007 to evaluate the reaction rates of activation foils set in the core region and at...

  1. Optimization of Biomass-Fuelled Combined Cooling, Heating and Power (CCHP) Systems Integrated with Subcritical or Transcritical Organic Rankine Cycles (ORCs)

    OpenAIRE

    Daniel Maraver; Sylvain Quoilin; Javier Royo

    2014-01-01

    This work is focused on the thermodynamic optimization of Organic Rankine Cycles (ORCs), coupled with absorption or adsorption cooling units, for combined cooling heating and power (CCHP) generation from biomass combustion. Results were obtained by modelling with the main aim of providing optimization guidelines for the operating conditions of these types of systems, specifically the subcritical or transcritical ORC, when integrated in a CCHP system to supply typical heating and cooling deman...

  2. Sub-critical long-term operation of industrial scale hollow-fibre membranes in a submerged anaerobic MBR (HF-SAnMBR) system

    OpenAIRE

    Robles Martínez, Ángel; Ruano García, María Victoria; Ribes Bertomeu, José; Ferrer, J.

    2012-01-01

    The aim of this study was to evaluate the long-term performance of hollow-fibre (HF) membranes used to treat urban wastewater in a submerged anaerobic MBR when operating sub-critically. To this end, a demonstration plant with two industrial scale HF ultrafiltration membrane modules was operated under different conditions. The main factor affecting membrane performance was the concentration of mixed liquor total solids (MLTS). The reversible fouling rate remained low even when MLTS levels (abo...

  3. Water

    Directory of Open Access Journals (Sweden)

    E. Sanmuga Priya

    2017-05-01

    Full Text Available Phytoremediation through aquatic macrophytes treatment system (AMATS for the removal of pollutants and contaminants from various natural sources is a well established environmental protection technique. Water hyacinth (Eichhornia crassipes, a worst invasive aquatic weed has been utilised for various research activities over the last few decades. The biosorption capacity of the water hyacinth in minimising various contaminants present in the industrial wastewater is well studied. The present review quotes the literatures related to the biosorption capacity of the water hyacinth in reducing the concentration of dyestuffs, heavy metals and minimising certain other physiochemical parameters like TSS (total suspended solids, TDS (total dissolved solids, COD (chemical oxygen demand and BOD (biological oxygen demand in textile wastewater. Sorption kinetics through various models, factors influencing the biosorption capacity, and role of physical and chemical modifications in the water hyacinth are also discussed.

  4. Visible light-induced electronic structure modulation of Nb- and Ta-doped α-Fe2O3 nanorods for effective photoelectrochemical water splitting

    Science.gov (United States)

    Chang, Han-Wei; Fu, Yanming; Lee, Wan-Yi; Lu, Ying-Rui; Huang, Yu-Cheng; Chen, Jeng-Lung; Chen, Chi-Liang; Chou, Wu Ching; Chen, Jin-Ming; Lee, Jyh-Fu; Shen, Shaohua; Dong, Chung-Li

    2018-02-01

    The photoelectrochemical (PEC) water splitting activity of Nb and Ta-doped hematite (α-Fe2O3) nanorods was investigated with reference to electronic structures by in situ synchrotron x-ray absorption spectroscopy (XAS). Current density-potential measurements demonstrate that the PEC activity of α-Fe2O3 nanorods depends strongly on the species and concentrations of dopants. The doping of α-Fe2O3 nanorods with a low level of Nb or Ta can improve their electrical conductivity and thereby facilitate charge transport and reduced electron–hole recombination therein. The photoconversion effects of Nb and Ta-doped α-Fe2O3 by in situ XAS in the dark and under illumination revealed opposite evolutions of the spectral intensities of the Fe L-edge and Nb/Ta L-edge, indicating that charge transfer and a conduction pathway are involved in the photoconversion. Analytic in situ XAS results reveal that the α-Fe2O3 that is doped with a low level of Nb has a greater photoconversion efficiency than that doped with Ta because Nb sites are more active than Ta sites in α-Fe2O3. The correlation between PEC activity and the electronic structure of Nb/Ta-doped α-Fe2O3 is examined in detail using in situ XAS and helps to elucidate the mechanism of PEC water splitting in terms of the electronic structure.

  5. Parametric waves excitation in relativistic laser-plasma interactions for electron acceleration

    Science.gov (United States)

    Shulyapov, S. A.; Ivanov, K. A.; Tsymbalov, I. N.; Krestovskih, D. A.; Savel'ev, A. B.; Ksenofontov, P. A.; Brantov, A. V.; Bychenkov, V. Yu

    2015-11-01

    Plasma created by femtosecond laser pulse of high intensity can be used as the brilliant source of high energy electrons, ions and x- or γ-rays. In most cases, laser pulses with high contrast are used for particle acceleration. But, it has been shown, that changing parameters of pre-plasma layer on the surface of the target can significantly increase electron energies. In this work we present the results of the experimental and numerical studies of the abnormally hot electron generation mechanisms in the case of long scale pre-plasma layer subcritical density.

  6. Comparison studies of surface cleaning methods for PAN-based carbon fibers with acetone, supercritical acetone and subcritical alkali aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Meng Linghui; Fan Dapeng [School of Chemical Engineering and Technology, Harbin Institute of Technology, P.O. Box 410, Harbin 150001 (China); Huang Yudong, E-mail: ydhuang.hit1@yahoo.com.cn [School of Chemical Engineering and Technology, Harbin Institute of Technology, P.O. Box 410, Harbin 150001 (China); Jiang Zaixing; Zhang Chunhua [School of Chemical Engineering and Technology, Harbin Institute of Technology, P.O. Box 410, Harbin 150001 (China)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer Cleaning with supercritical acetone is appropriate to wipe off the oxygenated contaminants. Black-Right-Pointing-Pointer Cleaning with supercritical acetone causes smaller damage to bulk strength of carbon fibers. Black-Right-Pointing-Pointer Cleaning with subcritical alkali aqueous solution can thoroughly remove silicious contaminants. - Abstract: Four kinds of polyacrylonitrile-based carbon fibers were cleaned by three methods and were characterized by X-ray photoelectron spectroscopy, monofilament tensile strength test and atomic force microscopy (AFM). Experimental results of these tests reveal that the method using supercritical acetone or subcritical potassium hydroxide aqueous solution act as the processing medium shows a better cleaning effect compared to the traditional method, Soxhlet extraction with acetone. The method using supercritical acetone is more appropriate to wipe off the oxygenated contaminants on carbon fibers' surfaces and causes a relatively smaller damage to the bulk strength of each carbon fiber. As far as treating method using the subcritical alkali aqueous solution, it can thoroughly remove silicious contaminants on the surfaces of treated fibers.

  7. Subcritical Multiplication Parameters of the Accelerator-Driven System with 100 MeV Protons at the Kyoto University Critical Assembly

    Directory of Open Access Journals (Sweden)

    Jae-Yong Lim

    2012-01-01

    Full Text Available Basic experiments on the accelerator-driven system (ADS at the Kyoto University Critical Assembly are carried out by combining a solid-moderated and -reflected core with the fixed-field alternating gradient accelerator. The reaction rates are measured by the foil activation method to obtain the subcritical multiplication parameters. The numerical calculations are conducted with the use of MCNPX and JENDL/HE-2007 to evaluate the reaction rates of activation foils set in the core region and at the location of the target. Here, a comparison between the measured and calculated eigenvalues reveals a relative difference of around 10% in C/E values. A special mention is made of the fact that the reaction rate analyses in the subcritical systems demonstrate apparently the actual effect of moving the tungsten target into the core on neutron multiplication. A series of further ADS experiments with 100 MeV protons needs to be carried out to evaluate the accuracy of subcritical multiplication parameters.

  8. A New Method for the Fast Analysis of Trihalomethanes in Tap and Recycled Waters Using Headspace Gas Chromatography with Micro-Electron Capture Detection

    Science.gov (United States)

    Alexandrou, Lydon D.; Meehan, Barry J.; Morrison, Paul D.; Jones, Oliver A. H.

    2017-01-01

    Chemical disinfection of water supplies brings significant public health benefits by reducing microbial contamination. The process can however, result in the formation of toxic compounds through interactions between disinfectants and organic material in the source water. These new compounds are termed disinfection by-products (DBPs). The most common are the trihalomethanes (THMs) such as trichloromethane (chloroform), dichlorobromomethane, chlorodibromomethane and tribromomethane (bromoform); these are commonly reported as a single value for total trihalomethanes (TTHMs). Analysis of DBPs is commonly performed via time- and solvent-intensive sample preparation techniques such as liquid–liquid and solid phase extraction. In this study, a method using headspace gas chromatography with micro-electron capture detection was developed and applied for the analysis of THMs in drinking and recycled waters from across Melbourne (Victoria, Australia). The method allowed almost complete removal of the sample preparation step whilst maintaining trace level detection limits (>1 ppb). All drinking water samples had TTHM concentrations below the Australian regulatory limit of 250 µg/L but some were above the U.S. EPA limit of 60 µg/L. The highest TTHM concentration was 67.2 µg/L and lowest 22.9 µg/L. For recycled water, samples taken directly from treatment plants held significantly higher concentrations (153.2 µg/L TTHM) compared to samples from final use locations (4.9–9.3 µg/L). PMID:28505068

  9. A New Method for the Fast Analysis of Trihalomethanes in Tap and Recycled Waters Using Headspace Gas Chromatography with Micro-Electron Capture Detection

    Directory of Open Access Journals (Sweden)

    Lydon D. Alexandrou

    2017-05-01

    Full Text Available Chemical disinfection of water supplies brings significant public health benefits by reducing microbial contamination. The process can however, result in the formation of toxic compounds through interactions between disinfectants and organic material in the source water. These new compounds are termed disinfection by-products (DBPs. The most common are the trihalomethanes (THMs such as trichloromethane (chloroform, dichlorobromomethane, chlorodibromomethane and tribromomethane (bromoform; these are commonly reported as a single value for total trihalomethanes (TTHMs. Analysis of DBPs is commonly performed via time- and solvent-intensive sample preparation techniques such as liquid–liquid and solid phase extraction. In this study, a method using headspace gas chromatography with micro-electron capture detection was developed and applied for the analysis of THMs in drinking and recycled waters from across Melbourne (Victoria, Australia. The method allowed almost complete removal of the sample preparation step whilst maintaining trace level detection limits (>1 ppb. All drinking water samples had TTHM concentrations below the Australian regulatory limit of 250 µg/L but some were above the U.S. EPA limit of 60 µg/L. The highest TTHM concentration was 67.2 µg/L and lowest 22.9 µg/L. For recycled water, samples taken directly from treatment plants held significantly higher concentrations (153.2 µg/L TTHM compared to samples from final use locations (4.9–9.3 µg/L.

  10. A New Method for the Fast Analysis of Trihalomethanes in Tap and Recycled Waters Using Headspace Gas Chromatography with Micro-Electron Capture Detection.

    Science.gov (United States)

    Alexandrou, Lydon D; Meehan, Barry J; Morrison, Paul D; Jones, Oliver A H

    2017-05-15

    Chemical disinfection of water supplies brings significant public health benefits by reducing microbial contamination. The process can however, result in the formation of toxic compounds through interactions between disinfectants and organic material in the source water. These new compounds are termed disinfection by-products (DBPs). The most common are the trihalomethanes (THMs) such as trichloromethane (chloroform), dichlorobromomethane, chlorodibromomethane and tribromomethane (bromoform); these are commonly reported as a single value for total trihalomethanes (TTHMs). Analysis of DBPs is commonly performed via time- and solvent-intensive sample preparation techniques such as liquid-liquid and solid phase extraction. In this study, a method using headspace gas chromatography with micro-electron capture detection was developed and applied for the analysis of THMs in drinking and recycled waters from across Melbourne (Victoria, Australia). The method allowed almost complete removal of the sample preparation step whilst maintaining trace level detection limits (>1 ppb). All drinking water samples had TTHM concentrations below the Australian regulatory limit of 250 µg/L but some were above the U.S. EPA limit of 60 µg/L. The highest TTHM concentration was 67.2 µg/L and lowest 22.9 µg/L. For recycled water, samples taken directly from treatment plants held significantly higher concentrations (153.2 µg/L TTHM) compared to samples from final use locations (4.9-9.3 µg/L).

  11. Interaction of the chlorine atom with water: ESR and ab initio MO evidence for three-electron ({sigma}{sup 2}{sigma}{sup *1}) bonding

    Energy Technology Data Exchange (ETDEWEB)

    Sevilla, M.D.; Summerfield, S.; Eliezer, I.; Rak, J. [Oakland Univ., Rochester, MI (United States); Symons, M.C.R. [De Montfort Univ., Leicester (United Kingdom)

    1997-04-10

    The specific interaction of chlorine atoms with water has been investigated by electron spin resonance spectroscopy and molecular orbital theory. Chlorine atoms are formed by attack of hydroxyl radicals on chloride ions in frozen aqueous solutions at low temperatures. A variety of frozen aqueous systems were irradiated at 77 K and investigated by ESR spectroscopy, and results obtained suggest a localized three-electron bond ({sigma}{sup 2}{sigma}{sup *1}) between {sup .}Cl and H{sub 2}O or less likely with OH{sup -}. Chlorine atom interactions with both species were investigated by both ab initio and semiempirical molecular orbital calculations. A series of isolated chlorine-water radical species consisting of hydrated chlorine atoms as well as chloride anions with hydroxyl radicals were considered. Best agreement with experiment is found for chlorine atom-water interactions, H{sub 2}O-Cl(H{sub 2}O){sub n}. Full optimization of {sup .}OH-Cl{sup -} aquated systems shows that energetic ion dipole forces overcome weaker {sigma}{sigma}{sup *} interactions and result in full spin localization on the hydroxyl radical. Poor agreement with experiment is found even when the Cl{sup .}OH{sup -} structure is held in position to promote {sigma}{sigma}{sup *} bonding. 30 refs., 5 figs., 2 tabs.

  12. Dominance of Plasmonic Resonant Energy Transfer over Direct Electron Transfer in Substantially Enhanced Water Oxidation Activity of BiVO4 by Shape-Controlled Au Nanoparticles.

    Science.gov (United States)

    Lee, Mi Gyoung; Moon, Cheon Woo; Park, Hoonkee; Sohn, Woonbae; Kang, Sung Bum; Lee, Sanghan; Choi, Kyoung Jin; Jang, Ho Won

    2017-10-01

    The performance of plasmonic Au nanostructure/metal oxide heterointerface shows great promise in enhancing photoactivity, due to its ability to confine light to the small volume inside the semiconductor and modify the interfacial electronic band structure. While the shape control of Au nanoparticles (NPs) is crucial for moderate bandgap semiconductors, because plasmonic resonance by interband excitations overlaps above the absorption edge of semiconductors, its critical role in water splitting is still not fully understood. Here, first, the plasmonic effects of shape-controlled Au NPs on bismuth vanadate (BiVO4 ) are studied, and a largely enhanced photoactivity of BiVO4 is reported by introducing the octahedral Au NPs. The octahedral Au NP/BiVO4 achieves 2.4 mA cm-2 at the 1.23 V versus reversible hydrogen electrode, which is the threefold enhancement compared to BiVO4 . It is the highest value among the previously reported plasmonic Au NPs/BiVO4 . Improved photoactivity is attributed to the localized surface plasmon resonance; direct electron transfer (DET), plasmonic resonant energy transfer (PRET). The PRET can be stressed over DET when considering the moderate bandgap semiconductor. Enhanced water oxidation induced by the shape-controlled Au NPs is applicable to moderate semiconductors, and shows a systematic study to explore new efficient plasmonic solar water splitting cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. X-Pol Potential: An Electronic Structure-Based Force Field for Molecular Dynamics Simulation of a Solvated Protein in Water.

    Science.gov (United States)

    Xie, Wangshen; Orozco, Modesto; Truhlar, Donald G; Gao, Jiali

    2009-02-17

    A recently proposed electronic structure-based force field called the explicit polarization (X-Pol) potential is used to study many-body electronic polarization effects in a protein, in particular by carrying out a molecular dynamics (MD) simulation of bovine pancreatic trypsin inhibitor (BPTI) in water with periodic boundary conditions. The primary unit cell is cubic with dimensions ~54 × 54 × 54 Å(3), and the total number of atoms in this cell is 14281. An approximate electronic wave function, consisting of 29026 basis functions for the entire system, is variationally optimized to give the minimum Born-Oppenheimer energy at every MD step; this allows the efficient evaluation of the required analytic forces for the dynamics. Intramolecular and intermolecular polarization and intramolecular charge transfer effects are examined and are found to be significant; for example, 17 out of 58 backbone carbonyls differ from neutrality on average by more than 0.1 electron, and the average charge on the six alanines varies from -0.05 to +0.09. The instantaneous excess charges vary even more widely; the backbone carbonyls have standard deviations in their fluctuating net charges from 0.03 to 0.05, and more than half of the residues have excess charges whose standard deviation exceeds 0.05. We conclude that the new-generation X-Pol force field permits the inclusion of time-dependent quantum mechanical polarization and charge transfer effects in much larger systems than was previously possible.

  14. Determination of the physical parameters of the nuclear subcritical assembly Chicago 9000 of the IPN using the Serpent code; Determinacion de los parametros fisicos del conjunto subcritico nuclear Chicago 9000 del IPN usando el codigo SERPENT

    Energy Technology Data Exchange (ETDEWEB)

    Arriaga R, L.; Del Valle G, E. [IPN, Escuela Superior de Fisica y Matematicas, Av. Instituto Politecnico Nacional s/n, U.P. Adolfo Lopez Mateos, Col. San Pedro Zacatenco, 07738 Mexico D. F. (Mexico); Gomez T, A. M., E-mail: guten_tag_04@hotmail.com [ININ, Departamento de Sistemas Nucleares, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2013-10-15

    For the Serpent code was developed the three-dimensional model corresponding to the nuclear subcritical assembly (S A) Chicago 9000 of the Escuela Superior de Fisica y Matematicas del Instituto Politecnico Nacional (ESFM-IPN). The model includes: a) the core, formed by 312 aluminum pipes that contain 5 nuclear fuel rods (natural uranium in metallic form), b) the multi-perforated plates where they penetrate the inferior part of each pipe to be able to remain in vertical form, c) water, acting as moderator and reflector, and d) the recipient lodging to the core. The pipes arrangement is hexagonal although the transversal section of the recipient that lodges to the core is circular. The entrance file for the Serpent code was generated with the data provided by the manual of the S A use about the composition and density of the fuel rods and others obtained in direct form of the rods, as the interior and external diameter, mass and height. Of the obtained physical parameters, those more approached to that reported in the manual of the subcritical assembly are the effective multiplication factor and the reproduction factor η. The differences can be because the description of the fuel rods provided by the manual of the S A use do not correspond those that are physically in the S A core. This difference consists on the presence of a circular central channel of 1.245 diameter centimeters in each fuel rod. The fuel rods reported in the mentioned manual do not have that channel. Although the obtained results are encouraging, we want to continue improving the model to incorporate in this the detectors, defined this way by the Serpent code, which could determine the existent neutrons flux in diverse points of interest like the axial or radial aligned points and to compare these with those that are obtained in an experimental way when a generating neutrons source (Pu-Be) is introduced. Added to this effort the cross sections for each unitary cell will be determined, so that

  15. Generating high-brightness and coherent soft x-ray pulses in the water window with a seeded free-electron laser

    Directory of Open Access Journals (Sweden)

    Kaishang Zhou

    2017-01-01

    Full Text Available We propose a new scheme to generate high-brightness and temporal coherent soft x-ray radiation in a seeded free-electron laser. The proposed scheme is based on the coherent harmonic generation (CHG and superradiant principles. A CHG scheme is first used to generate a coherent signal at ultrahigh harmonics of the seed. This coherent signal is then amplified by a series of chicane-undulator modules via the fresh bunch and superradiant processes in the following radiator. Using a representative of a realistic set of parameters, three-dimensional simulations have been carried out and the simulations results demonstrated that 10 GW-level ultrashort (∼20  fs coherent radiation pulses in the water window can be achieved by using a 1.6 GeV electron beam based on the proposed technique.

  16. Subcritical, nontypical and period-doubling bifurcations of a delta wing in a low speed wind tunnel

    Science.gov (United States)

    Korbahti, Banu; Kagambage, Emile; Andrianne, Thomas; Abdul Razak, Norizham; Dimitriadis, Grigorios

    2011-04-01

    Limit Cycle Oscillations (LCOs) involving Delta wings are an important area of research in modern aeroelasticity. Such phenomena can be the result of geometric or aerodynamic nonlinearity. In this paper, a flexible half-span Delta wing is tested in a low speed wind tunnel in order to investigate its dynamic response. The wing is designed to be more flexible than the models used in previous research on the subject in order to expand the airspeed range in which LCOs occur. The experiments reveal that this wing features a very rich bifurcation behavior. Three types of bifurcation are observed for the first time for such an aeroelastic system: subcritical bifurcations, period-doubling/period-halving and nontypical bifurcations. They give rise to a great variety of LCOs, even at very low angles of attack. The LCOs resulting from the nontypical bifurcation display Hopf-type behavior, i.e. having fundamental frequencies equal to one of the linear modal frequencies. All of the other LCOs have fundamental frequencies that are unrelated to the underlying linear system modes.

  17. Hydrogen adsorption and diffusion, and subcritical-crack growth in high strength steels and nickel base alloys

    Science.gov (United States)

    Wei, R. P.; Klier, K.; Simmons, G. W.; Chornet, E.

    1973-01-01

    Embrittlement, or the enhancement of crack growth by gaseous hydrogen in high strength alloys, is of primary interest in selecting alloys for various components in the space shuttle. Embrittlement is known to occur at hydrogen gas pressures ranging from fractions to several hundred atmospheres, and is most severe in the case of martensitic high strength steels. Kinetic information on subcritical crack growth in gaseous hydrogen is sparse at this time. Corroborative information on hydrogen adsorption and diffusion is inadequate to permit a clear determination of the rate controlling process and possible mechanism in hydrogen enhanced crack growth, and for estimating behavior over a range of temperatures and pressures. Therefore, coordinated studies of the kinetics of crack growth, and adsorption and diffusion of hydrogen, using identical materials, have been initiated. Comparable conditions of temperature and pressure will be used in the chemical and mechanical experiments. Inconel 718 alloy and 18Ni(200) maraging steel have been selected for these studies. Results from these studies are expected to provide not only a better understanding of the gaseous hydrogen embrittlement phenomenon itself, but also fundamental information on hydrogen adsorption and diffusion, and crack growth information that can be used directly for design.

  18. Solvent tailoring in coal liquefaction. Quarterly report, May 1982-August 1982. [Comparison of subcritical and supercritical conditions

    Energy Technology Data Exchange (ETDEWEB)

    Tarrer, A.R.; Guin, J.A.; Curtis, C.W.; Williams, D.C.

    1982-01-01

    The initial objective of this work was to study the phase distribution of donor solvents and solvent mixtures during the liquefaction of coal, to investigate the effects of phase distribution on coal conversion, and to determine the advantages, if any, of operating at subcritical and/or supercritical conditions. Computer simulations were used to predict the phase distribution, for various binary systems, as a function of temperature. The FLASH program was used to theoretically predict phase distribution for various model systems. Due to limitations in the computer program, success was achieved only in a few cases. Even in these cases, the existence of two-phase regions was observed only at temperatures and pressures far below normal liquefaction conditions. An extensive review of the literature was carried out in order to survey methods of experimentally studying vapor-liquid equilibria. Finally, some preliminary laboratory studies were carried out with the use of benzothiophene-dodecane as the model reaction system. It was felt that the study of the effect of reactor configuration on conversion would provide insight into whether phase distribution or mass transfer was the limiting consideration for coal conversion. However, no conclusive results were obtained from these studies.

  19. Design-theoretical study of cascade CO2 sub-critical mechanical compression/butane ejector cooling cycle

    KAUST Repository

    Petrenko, V.O.

    2011-11-01

    In this paper an innovative micro-trigeneration system composed of a cogeneration system and a cascade refrigeration cycle is proposed. The cogeneration system is a combined heat and power system for electricity generation and heat production. The cascade refrigeration cycle is the combination of a CO2 mechanical compression refrigerating machine (MCRM), powered by generated electricity, and an ejector cooling machine (ECM), driven by waste heat and using refrigerant R600. Effect of the cycle operating conditions on ejector and ejector cycle performances is studied. Optimal geometry of the ejector and performance characteristics of ECM are determined at wide range of the operating conditions. The paper also describes a theoretical analysis of the CO2 sub-critical cycle and shows the effect of the MCRM evaporating temperature on the cascade system performance. The obtained data provide necessary information to design a small-scale cascade system with cooling capacity of 10 kW for application in micro-trigeneration systems. © 2010 Elsevier Ltd and IIR. All rights reserved.

  20. Concerted proton-coupled electron transfers in aquo/hydroxo/oxo metal complexes: Electrochemistry of [OsII(bpy)2py(OH2)]2+ in water

    OpenAIRE

    Costentin, Cyrille; Robert, Marc; Savéant, Jean-Michel; Teillout, Anne-Lucie

    2009-01-01

    Kinetic analysis of the successive oxidative cyclic voltammetric responses of [OsII(bpy)2py(OH2)]2+ in buffered water, together with determination of H/D isotope effects, has allowed the determination of the mechanisms of the successive proton-coupled electron transfers that convert the OsII-aquo complex into the OsIII-hydroxo complex and the later into the OsIV-oxo complex. The stepwise pathways prevail over the concerted pathway in the first case. However, very large concentrations of a bas...

  1. Electron transfer behavior and water photodecomposition ability of calcined material from a cerium-S-phenylene-O-holmium-O-phenylene-S hybrid copolymer.

    Science.gov (United States)

    Matsui, Hideo; Otsuki, Keigo; Yamada, Hiroyoshi; Kawahara, Tetsuro; Yoshihara, Masakuni

    2006-05-15

    Calcination of a cerium-S-phenylene-O-holmium-O-phenylene-S hybrid copolymer under a vacuum gave cerium oxide-carbon cluster-holmium oxide composite material. The material calcined at 600 degrees C loaded with Pt particles could decompose water to H2 and O2 with a H2/O2 ratio of 2 under visible light irradiation. ESR spectral examinations of the calcined materials revealed the possibility of a two-step electron transfer in the process of CeO2 --> carbon cluster --> Ho2O3 --> Pt with an oxidation site at CeO2 particles and a reduction site at Pt particles.

  2. Water Cooling for the Frontend Electronics and a modular Phase Separator for the COMPASS Silicon Detectors and Alignment for the 2012 Primakoff Run

    CERN Document Server

    Holzgartner, Bernd

    The COMPASS experiment at CERN uses sili- con microstrip detectors for beam definition and vertex reconstruction. Since 2009, the detectors are operated at cryogenic temperatures to min- imize radiation damage. This thesis describes the development of a new, modular phase sep- arator for the liquid nitrogen cooling system of the detector modules as well as the construction and the commissioning of a water cooling sys- tem for the frontend electronics of these detec- tors. In addition, results of the alignment stud- ies for the 2012 Primakoff run are presented.

  3. Design of a homogeneous subcritical nuclear reactor based on thorium with a source of californium 252; Diseno de un reactor nuclear subcritico homogeneo a base de Torio con una fuente de Californio 252

    Energy Technology Data Exchange (ETDEWEB)

    Delgado H, C. E.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas, Zac. (Mexico); Sajo B, L., E-mail: ce_delgado89@hotmail.com [Universidad Simon Bolivar, Laboratorio de Fisica Nuclear, Apdo. 89000, 1080A Caracas (Venezuela, Bolivarian Republic of)

    2015-10-15

    Full text: One of the energy alternatives to fossil fuels which do not produce greenhouse gases is the nuclear energy. One of the drawbacks of this alternative is the generation of radioactive wastes of long half-life and its relation to the generation of nuclear materials to produce weapons of mass destruction. An option to these drawbacks of nuclear energy is to use Thorium as part of the nuclear fuel which it becomes in U{sup 233} when capturing neutrons, that is a fissile material. In this paper Monte Carlo methods were used to design a homogeneous subcritical reactor based on thorium. As neutron reflector graphite was used. The reactor core is homogeneous and is formed of 70% light water as moderator, 12% of enriched uranium UO{sub 2}(NO{sub 3}){sub 4} and 18% of thorium Th(NO{sub 3}){sub 4} as fuel. To start the nuclear fission chain reaction an isotopic source of californium 252 was used with an intensity of 4.6 x 10{sup 7} s{sup -1}. In the design the value of the effective multiplication factor, whose value turned out k{sub eff} <1 was calculated. Also, the neutron spectra at different distances from the source and the total fluence were calculated, as well as the values of the ambient dose equivalent in the periphery of the reactor. (Author)

  4. Detection of the water-binding sites of the oxygen-evolving complex of Photosystem II using W-band 17O electron-electron double resonance-detected NMR spectroscopy.

    Science.gov (United States)

    Rapatskiy, Leonid; Cox, Nicholas; Savitsky, Anton; Ames, William M; Sander, Julia; Nowaczyk, Marc M; Rögner, Matthias; Boussac, Alain; Neese, Frank; Messinger, Johannes; Lubitz, Wolfgang

    2012-10-10

    Water binding to the Mn(4)O(5)Ca cluster of the oxygen-evolving complex (OEC) of Photosystem II (PSII) poised in the S(2) state was studied via H(2)(17)O- and (2)H(2)O-labeling and high-field electron paramagnetic resonance (EPR) spectroscopy. Hyperfine couplings of coordinating (17)O (I = 5/2) nuclei were detected using W-band (94 GHz) electron-electron double resonance (ELDOR) detected NMR and Davies/Mims electron-nuclear double resonance (ENDOR) techniques. Universal (15)N (I = ½) labeling was employed to clearly discriminate the (17)O hyperfine couplings that overlap with (14)N (I = 1) signals from the D1-His332 ligand of the OEC (Stich Biochemistry 2011, 50 (34), 7390-7404). Three classes of (17)O nuclei were identified: (i) one μ-oxo bridge; (ii) a terminal Mn-OH/OH(2) ligand; and (iii) Mn/Ca-H(2)O ligand(s). These assignments are based on (17)O model complex data, on comparison to the recent 1.9 Å resolution PSII crystal structure (Umena Nature 2011, 473, 55-60), on NH(3) perturbation of the (17)O signal envelope and density functional theory calculations. The relative orientation of the putative (17)O μ-oxo bridge hyperfine tensor to the (14)N((15)N) hyperfine tensor of the D1-His332 ligand suggests that the exchangeable μ-oxo bridge links the outer Mn to the Mn(3)O(3)Ca open-cuboidal unit (O4 and O5 in the Umena et al. structure). Comparison to literature data favors the Ca-linked O5 oxygen over the alternative assignment to O4. All (17)O signals were seen even after very short (≤15 s) incubations in H(2)(17)O suggesting that all exchange sites identified could represent bound substrate in the S(1) state including the μ-oxo bridge. (1)H/(2)H (I = ½, 1) ENDOR data performed at Q- (34 GHz) and W-bands complement the above findings. The relatively small (1)H/(2)H couplings observed require that all the μ-oxo bridges of the Mn(4)O(5)Ca cluster are deprotonated in the S(2) state. Together, these results further limit the possible substrate water

  5. Gas chromatographic determination of acid herbicides in surface water samples with electron-capture detection and mass spectrometric confirmation

    NARCIS (Netherlands)

    Vink, M.; Poll, J.M. van der

    1996-01-01

    The development of a multi-residue method for the determination of eight polar acidic herbicides (MCPA, MCPB, mecoprop, 2,4-D, dichlorprop, bentazone, dicamba and dikegulac) in surface water is described. The method involves an off-line solid-phase extraction (SPE) procedure prior to instrumental

  6. Electronics and electronic systems

    CERN Document Server

    Olsen, George H

    1987-01-01

    Electronics and Electronic Systems explores the significant developments in the field of electronics and electronic devices. This book is organized into three parts encompassing 11 chapters that discuss the fundamental circuit theory and the principles of analog and digital electronics. This book deals first with the passive components of electronic systems, such as resistors, capacitors, and inductors. These topics are followed by a discussion on the analysis of electronic circuits, which involves three ways, namely, the actual circuit, graphical techniques, and rule of thumb. The remaining p

  7. EELS and electron diffraction studies on possible bonaccordite crystals in pressurized water reactor fuel CRUD and in oxide films of alloy 600 material

    Directory of Open Access Journals (Sweden)

    Jiaxin Chen

    2017-06-01

    Full Text Available Experimental verification of boron species in fuel CRUD (Chalk River Unidentified Deposit would provide essential and important information about the root cause of CRUD-induced power shifts (CIPS. To date, only bonaccordite and elemental boron were reported to exist in fuel CRUD in CIPS-troubled pressurized water reactor (PWR cores and lithium tetraborate to exist in simulated PWR fuel CRUD from some autoclave tests. We have reevaluated previous analysis of similar threadlike crystals along with examining some similar threadlike crystals from CRUD samples collected from a PWR cycle that had no indications of CIPS. These threadlike crystals have a typical [Ni]/[Fe] atomic ratio of ∼2 and similar crystal morphology as the one (bonaccordite reported previously. In addition to electron diffraction study, we have applied electron energy loss spectroscopy to determine boron content in such a crystal and found a good agreement with that of bonaccordite. Surprisingly, such crystals seem to appear also on corroded surfaces of Alloy 600 that was exposed to simulated PWR primary water with a dissolved hydrogen level of 5 mL H2/kg H2O, but absent when exposed under 75 mL H2/kg H2O condition. It remains to be verified as to what extent and in which chemical environment this phase would be formed in PWR primary systems.

  8. Measurements and simulations of microscopic damage to DNA in water by 30 keV electrons: A general approach applicable to other radiation sources and biological targets

    Science.gov (United States)

    Hahn, Marc Benjamin; Meyer, Susann; Kunte, Hans-Jörg; Solomun, Tihomir; Sturm, Heinz

    2017-05-01

    The determination of the microscopic dose-damage relationship for DNA in an aqueous environment is of a fundamental interest for dosimetry and applications in radiation therapy and protection. We combine geant4 particle-scattering simulations in water with calculations concerning the movement of biomolecules to obtain the energy deposit in the biologically relevant nanoscopic volume. We juxtaposition these results to the experimentally determined damage to obtain the dose-damage relationship at a molecular level. This approach is tested for an experimentally challenging system concerning the direct irradiation of plasmid DNA (pUC19) in water with electrons as primary particles. Here a microscopic target model for the plasmid DNA based on the relation of lineal energy and radiation quality is used to calculate the effective target volume. It was found that on average fewer than two ionizations within a 7.5-nm radius around the sugar-phosphate backbone are sufficient to cause a single strand break, with a corresponding median lethal energy deposit being E1 /2=6 ±4 eV. The presented method is applicable for ionizing radiation (e.g., γ rays, x rays, and electrons) and a variety of targets, such as DNA, proteins, or cells.

  9. EELS and electron diffraction studies on possible bonaccordite crystals in pressurized water reactor fuel CRUD and in oxide films of alloy 600 material

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jiaxin [Studsvik Nuclear AB, Nykoping (Sweden); Lindberg, Fredrik [Swerea KIMAB AB, Kista (Sweden); Wells, Daniel [Electric Power Research Institute, Charlotte (United States); Bengysson, Bernt [Ringhals AB, Ringhalsverket, Varobacka (Sweden)

    2017-06-15

    Experimental verification of boron species in fuel CRUD (Chalk River Unidentified Deposit) would provide essential and important information about the root cause of CRUD-induced power shifts (CIPS). To date, only bonaccordite and elemental boron were reported to exist in fuel CRUD in CIPS-troubled pressurized water reactor (PWR) cores and lithium tetraborate to exist in simulated PWR fuel CRUD from some autoclave tests. We have reevaluated previous analysis of similar threadlike crystals along with examining some similar threadlike crystals from CRUD samples collected from a PWR cycle that had no indications of CIPS. These threadlike crystals have a typical [Ni]/[Fe] atomic ratio of ⁓2 and similar crystal morphology as the one (bonaccordite) reported previously. In addition to electron diffraction study, we have applied electron energy loss spectroscopy to determine boron content in such a crystal and found a good agreement with that of bonaccordite. Surprisingly, such crystals seem to appear also on corroded surfaces of Alloy 600 that was exposed to simulated PWR primary water with a dissolved hydrogen level of 5 mL H{sub 2}/kg H{sub 2}O, but absent when exposed under 75 mL H{sub 2}/kg H{sub 2}O condition. It remains to be verified as to what extent and in which chemical environment this phase would be formed in PWR primary systems.

  10. Theoretical characterization of four distinct isomer types in hydrated-electron clusters, and proposed assignments for photoelectron spectra of water cluster anions.

    Science.gov (United States)

    Jacobson, Leif D; Herbert, John M

    2011-12-14

    Water cluster anions, (H(2)O)(N)(-), are examined using mixed quantum/classical molecular dynamics based on a one-electron pseudopotential model that incorporates many-body polarization and predicts vertical electron detachment energies (VDEs) with an accuracy of ~0.1 eV. By varying the initial conditions under which the clusters are formed, we are able to identify four distinct isomer types that exhibit different size-dependent VDEs. On the basis of a strong correlation between the electron's radius of gyration and its optical absorption maximum, and extrapolating to the bulk limit (N → ∞), our analysis supports the assignment of the "isomer Ib" data series, observed in photoelectron spectra of very cold clusters, as arising from cavity-bound (H(2)O)(N)(-) cluster isomers. The "isomer I" data reported in warmer experiments are assigned to surface-bound isomers in smaller clusters, transitioning to partially embedded isomers in larger clusters. The partially embedded isomers are characterized by a partially formed solvent cavity at the cluster surface, and they are spectroscopically quite similar to internalized cavity isomers. These assignments are consistent with various experimental data, and our theoretical characterization of these isomers sheds new light on a long-standing assignment problem. © 2011 American Chemical Society

  11. Acetone-water complexes at MRCI level using localized orbitals: n ->pi* and pi ->pi* electronic transitions

    DEFF Research Database (Denmark)

    Hoyau, S.; Ben Amor, N.; Borini, Stefano

    2008-01-01

    The n -> pi* and pi -> pi* vertical electronic transitions of acetone with two and four H2O which correspond to a first solvation shell are considered. By using localized orbitals, and thanks to the MRCI approach which permits to know the wave function, the role of the various solvent molecules...... is analysed in details. Distinguishing the solvent molecules allows one to consider them at different calculation levels. The methodology is to compare the spectra obtained with four H2O, with two H2O either in the acetone plane or in a perpendicular plane and when they are completely or partly frozen....

  12. Strain and Water Effects on the Electronic Structure and Chemical Activity of In-Plane Graphene/Silicene Heterostructure

    OpenAIRE

    Kistanov, Andrey A; Cai, Yongqing; Zhang, Yong-Wei; Dmitriev, Sergey V; Zhou, Kun

    2016-01-01

    By using first-principles calculations, the electronic structure of planar and strained in-plane graphene/silicene heterostructure is studied. The heterostructure is found to be metallic in a strain range from -7% (compression) to +7% (tension). The effect of compressive/tensile strain on the chemical activity of the in-plane graphene/silicene heterostructure is examined by studying its interaction with the H2O molecule. It shows that compressive/tensile strain is able to increase the binding...

  13. Paleohydraulic Reconstruction of Modern Large Floods at Subcritical Speed in a Confined Valley: Proof of Concept

    Directory of Open Access Journals (Sweden)

    Patricio Bohorquez

    2016-12-01

    Full Text Available The present study aims to show the accuracy of paleoflood reconstruction techniques based on two-dimensional (2D hydraulic modelling of a large flood. Using this reconstruction technique, we determined trends in flood stages over time in a regulated river. A stretch of the Guadalquivir River (Southern Spain was selected as the study site. High-resolution orthophotos and LiDAR (Light Detection and Ranging elevations were acquired just after modern floods. They were used for the identification and location of stage indicators. In addition, water gradients were estimated from gauging records, documentary information and paleostage indicators (PSIs in two situations: (i pre-vegetation encroachment; and (ii post-vegetation encroachment due to upstream impoundment. Standard two-dimensional, flow depth-averaged equations over fixed beds were used in the hydraulic modelling. In a first stage, long records of instrumental data at gauging stations and documentary evidence of flood levels served to calibrate the input parameters of the hydraulic model. In a second stage, paleoflood signatures within sedimentary and botanical sequences served to verify the flood stages in the numerical simulations not only at the river reach where instrumental data exist but also in the downstream river reach. Interestingly, the rating curve obtained from the combined use of documentary information and imagery was nearly as accurate as gauging measurements. The thoughtful comparison of 2D modelled hydraulic variables against inferred values from PSIs and instrumental data supports the paleoflood reconstruction method over fixed beds. Vegetation encroachment provoked 10% deeper floods at the water discharge of 2000 m3 · s−1, which implied an increase of Manning’s roughness coefficient from 0.04 to 0.055 s · m−1/3 in less than 15 years.

  14. Rapid annealing of severely deformed low carbon steel in subcritical temperature range

    Science.gov (United States)

    Ghiabakloo, H.; Kazeminezhad, M.

    2017-09-01

    A low-carbon steel sheet containing 0.05 C, 0.203 Mn, and 0.0229 Si (all in wt%) was rapidly annealed in a temperature range of 300 °C to 600 °C after severe plastic deformation by using constrained groove pressing (CGP) technique. Microstructure evolution was investigated by scanning electron and optical microscopes. Mechanical properties were evaluated by hardness measurements and shear punch test. The results showed a thermal stability up to 400 °C where recrystallization did not occur in the specimens even after 7200 s. This thermal stability is in agreement with previously reported results of conventional annealing of the same steel after CGP. However, annealing at 500 °C and 600 °C led to recrystallization which started after holding times of 600 s and 20 s, respectively. Longer holding times resulted to grain growth and deterioration of strength and hardness, but the final strength and hardness were still higher than those of conventionally annealed specimens. The reason has been attributed to no abnormal grain growth in the present study, in contrast to that occurs after conventional annealing of CGPed low carbon steel. The kinetics of recrystallization at 600 °C was studied using the celebrated Johnson-Mehl-Avrami-Kolmogorov (JMAK) model; the results showed a bi-linear JMAK plot indicating two different stages of recrystallization rate before and after 70% recrystallization.

  15. Strontium Titanate Based Artificial Leaf Loaded with Reduction and Oxidation Cocatalysts for Selective CO2 Reduction Using Water as an Electron Donor.

    Science.gov (United States)

    Shoji, Shusaku; Yamaguchi, Akira; Sakai, Etsuo; Miyauchi, Masahiro

    2017-06-21

    Thin film of SrTiO3 nanorods loaded with reduction and oxidation cocatalysts drove the selective reduction of carbon dioxide (CO2) into carbon monoxide (CO), as well as caused the production of equivalent oxygen molecules through water oxidation under UV irradiation. The described film functioned as a free-standing plate without any bias potential application, similar to a natural leaf. The film was facilely fabricated by a simple hydrothermal and annealing treatment of a titanium substrate to produce the SrTiO3 nanorod film (STO film) followed by two steps of loading the reduction and oxidation cocatalysts onto the surface of the STO. As a reduction cocatalyst, a CuxO nanocluster was chosen to achieve selective reduction of CO2 into CO, whereas a cobalt- and phosphate-based cocatalyst (CoPi) facilitated oxidation on the STO surface to promote oxygen generation. For the photocatalysis test, a wireless film was simply set into an aqueous solution bubbled with CO2 in a reactor, and CO production was observed in the headspace of the reactor under UV irradiation. Compared to the bare STO film, the dual cocatalyst-loaded STO film exhibited 2.5 times higher CO generation. H2 production was very limited in our system, and the amount of molecules generated by the reduction reaction was almost twice that of the generated oxygen molecules, proving that water molecules acted as electron donors. Our artificial leaf consists of abundant and nontoxic natural elements and represents the first achievement of stoichiometric CO2 reduction using water as an electron donor by a free-standing natural leaflike plate form.

  16. The impact of resin-coating on sub-critical crack extension in a porcelain laminate veneer material.

    Science.gov (United States)

    Cao, Xu; Fleming, Garry J P; Addison, Owen

    2017-05-01

    Characterisation of the interaction between crack extension, crack stabilisation and stress/strain relaxation in the polymeric matrix, the interplay between stress corrosion cracking and the mechanical response of a resin-based luting adhesive within a surface defect population could extend PLV restoration longevity by optimising cementation protocols. The aim was to investigate the influence of stress corrosion cracking and the viscoelastic behaviour of a resin-based luting adhesive independently by controlling the environmental conditions operative during test specimen fabrication. The effects of stress corrosion at ceramic crack tips and potential viscoelastic responses to loading of the resin-coated impregnating cracks were isolated. Resin-coated feldspathic ceramic test specimens were fabricated in ambient humidity or following moisture exclusion. Bi-axial flexure strengths of groups (n = 20) were determined at constant loading rates of 2.5, 10, 40, 160 or 640 N/min and data was compared with uncoated controls. Fractographic analyses were performed on all fractured test specimens. Resin-cement coating resulted in significant ceramic strengthening in all conditions tested (p < 0.01). A two-way ANOVA demonstrated that the exclusion of moisture during resin- coating significantly increased mean BFS (p<0.01) but post-hoc Tukey tests identified that moisture exclusion resulted in significant increases in BFS values only at intermediate loading rates with no significant differences observed at either the fastest or slowest loading rates (640 and 2.5 N/min, respectively). Mechanical reinforcement of PLV materials by resin-cement systems is yet to be optimized. The viscoelastic behavior of the resin-cement itself can influence the magnitude of reinforcement observed and sub-critical crack growth. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  17. The Effect of Subcritical Bone Loss and Exposure on Recurrent Instability After Arthroscopic Bankart Repair in Intercollegiate American Football.

    Science.gov (United States)

    Dickens, Jonathan F; Owens, Brett D; Cameron, Kenneth L; DeBerardino, Thomas M; Masini, Brendan D; Peck, Karen Y; Svoboda, Steven J

    2017-07-01

    There is no consensus on the optimal method of stabilization (arthroscopic or open) in collision athletes with anterior shoulder instability. To examine the effect of "subcritical" bone loss and football-specific exposure on the rate of recurrent shoulder instability after arthroscopic stabilization in an intercollegiate American football population. Case-control study; Level of evidence, 3. Fifty intercollegiate football players underwent primary arthroscopic stabilization for anterior shoulder instability and returned to football for at least a single season. Preoperatively, 32 patients experienced recurrent subluxations, and 18 patients experienced a single or recurrent dislocation. Shoulders with glenoid bone loss >20%, an engaging Hill-Sachs lesion, an off-track lesion, and concomitant rotator cuff repair were excluded from the study. The primary outcome of interest was the ability to return to football without subsequent instability. Patients were followed for time to a subsequent instability event after return to play using days of exposure to football and total follow-up time after arthroscopic stabilization. Fifty consecutive patients returned to American football for a mean 1.5 seasons (range, 1-3) after arthroscopic stabilization. Three of 50 (6%; 95% CI, 1.3%-16.5%) patients experienced recurrent instability. There were no subsequent instability events after a mean 3.2 years of military service. All shoulders with glenoid bone loss >13.5% (n = 3) that underwent arthroscopic stabilization experienced recurrent instability upon returning to sport, while none of the shoulders with football ( X 2 = 15.80, P 13.5% glenoid bone loss had an incidence rate of 5.31 cases of recurrent instability per 1000 athlete-exposures of football. In 72,000 athlete-exposures to football with football players with <13.5% glenoid bone loss provides reliable outcomes and low recurrence rates.

  18. Monte Carlo modeling and analyses of YALINA-booster subcritical assembly part 1: analytical models and main neutronics parameters.

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, A.; Gohar, M. Y. A.; Nuclear Engineering Division

    2008-09-11

    This study was carried out to model and analyze the YALINA-Booster facility, of the Joint Institute for Power and Nuclear Research of Belarus, with the long term objective of advancing the utilization of accelerator driven systems for the incineration of nuclear waste. The YALINA-Booster facility is a subcritical assembly, driven by an external neutron source, which has been constructed to study the neutron physics and to develop and refine methodologies to control the operation of accelerator driven systems. The external neutron source consists of Californium-252 spontaneous fission neutrons, 2.45 MeV neutrons from Deuterium-Deuterium reactions, or 14.1 MeV neutrons from Deuterium-Tritium reactions. In the latter two cases a deuteron beam is used to generate the neutrons. This study is a part of the collaborative activity between Argonne National Laboratory (ANL) of USA and the Joint Institute for Power and Nuclear Research of Belarus. In addition, the International Atomic Energy Agency (IAEA) has a coordinated research project benchmarking and comparing the results of different numerical codes with the experimental data available from the YALINA-Booster facility and ANL has a leading role coordinating the IAEA activity. The YALINA-Booster facility has been modeled according to the benchmark specifications defined for the IAEA activity without any geometrical homogenization using the Monte Carlo codes MONK and MCNP/MCNPX/MCB. The MONK model perfectly matches the MCNP one. The computational analyses have been extended through the MCB code, which is an extension of the MCNP code with burnup capability because of its additional feature for analyzing source driven multiplying assemblies. The main neutronics parameters of the YALINA-Booster facility were calculated using these computer codes with different nuclear data libraries based on ENDF/B-VI-0, -6, JEF-2.2, and JEF-3.1.

  19. Process optimization and characterization of fragrant oil from red pepper (Capsicum annuum L.) seed extracted by subcritical butane extraction.

    Science.gov (United States)

    Gu, Ling-Biao; Pang, Hui-Li; Lu, Ke-Ke; Liu, Hua-Min; Wang, Xue-De; Qin, Guang-Yong

    2017-04-01

    Red pepper seeds account for 450-500 g kg-1 of the total pepper weight and are often discarded as waste. In this study, process optimization and characterization of fragrant oil from roasted red pepper seed extracted by subcritical butane extraction were carried out. The optimal conditions of extraction were a temperature of 74.61 °C, a time of 68.65 min and a liquid/solid ratio of 30.24:1. The oil had a refractive index (25 °C) of 1.471, a relative density of 0.900, an acid value of 1.421 mg g-1 oil, an iodine value of 127.035 g per 100 g, a saponification value of 184.060 mg KOH g-1 , an unsaponifiable matter content of 12.400 g kg-1 , a peroxide value of 2.465 meq. O2 kg-1 and a viscosity of 52.094 cP. The main fatty acids in the oil were linoleic acid (72.95%) followed by palmitic acid (11.43%) and oleic acid (10.00%). The oil showed desirable thermal and oxidative stability. A total of 19 volatile compounds, mostly aldehydes and alkenes, were identified from the oil. The results indicated that the method is appropriate for the preparation of fragrant red pepper seed oil, and the oil is suitable for used as edible oil. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  20. Physics design of a 10 MeV injector test stand for an accelerator-driven subcritical system

    Directory of Open Access Journals (Sweden)

    Fang Yan

    2015-05-01

    Full Text Available The 10 MeV accelerator-driven subcritical system (ADS Injector I test stand at Institute of High Energy Physics (IHEP is a testing facility dedicated to demonstrate one of the two injector design schemes [Injector Scheme-I, which works at 325 MHz], for the ADS project in China. The injector is composed of two parts, the linac part and the beam dump line. The former is designed on the basis of 325 MHz four-vane type copper structure radio frequency quadrupole and superconducting (SC spoke cavities with β=0.12. The latter is designed to transport the beam coming out of the SC section of the linac to the beam dump, where the beam transverse profile is fairly enlarged and unformed to simplify the beam target design. The SC section consists of two cryomodules with 14 β=0.12 Spoke cavities, 14 solenoid and 14 BPMs in total. The first challenge in the physics design comes from the necessary space required for the cryomodule separation where the periodical lattice is destroyed at a relatively lower energy of ∼5  MeV. Another challenge is the beam dump line design, as it will be the first beam dump line being built by using a step field magnet for the transverse beam expansion and uniformity in the world. This paper gives an overview of the physics design study together with the design principles and machine construction considerations. The results of an optimized design, fabrication status and end to end simulations including machine errors are presented.

  1. Electronic quenching of OH(A) by water in atmospheric pressure plasmas and its influence on the gas temperature determination by OH(A-X) emission

    Energy Technology Data Exchange (ETDEWEB)

    Bruggeman, Peter; Schram, Daan C [Department of Applied Physics, Technische Universiteit Eindhoven, PO Box 513, 5600 MB Eindhoven (Netherlands); Iza, Felipe; Kong, Michael G [Department of Electronic and Electrical Engineering, Loughborough University, Loughborough, Leicestershire LE11 3TU (United Kingdom); Guns, Peter; Lauwers, Daniel; Leys, Christophe [Department of Applied Physics, Ghent University, Jozef Plateaustraat 22, B-9000 Ghent (Belgium); Gonzalvo, Yolanda Aranda [Plasma and Surface Analysis Division, Hiden Analytical Ltd, 420 Europa Boulevard, Warrington WA5 7UN (United Kingdom)], E-mail: p.j.bruggeman@tue.nl

    2010-02-15

    In this paper it is shown that electronic quenching of OH(A) by water prevents thermalization of the rotational population distribution of OH(A). This means that the observed ro-vibrational OH(A-X) emission band is (at least partially) an image of the formation process and is determined not only by the gas temperature. The formation of negative ions and clusters for larger water concentrations can contribute to the non-equilibrium. The above is demonstrated in RF excited atmospheric pressure glow discharges in He-water mixtures in a parallel metal plate reactor by optical emission spectroscopy. For this particular case a significant overpopulation of high rotational states appears around 1000 ppm H{sub 2}O in He. The smallest temperature parameter of a non-Boltzmann (two-temperature) distribution fitted to the experimental spectrum of OH(A-X) gives a good representation of the gas temperature. Only the rotational states with the smallest rotational numbers (J {<=} 7) are thermalized and representative for the gas temperature.

  2. Optimization of solid-phase microextraction conditions using a response surface methodology to determine organochlorine pesticides in water by gas chromatography and electron-capture detection.

    Science.gov (United States)

    Aguilar, C; Peñalver, A; Pocurull, E; Ferré, J; Borrull, F; Marcé, R M

    1999-06-04

    A response surface methodology was applied to optimise the solid-phase microextraction (SPME) conditions using a polyacrylate-coated fiber to determine thirteen organochlorine pesticides from water. Analyses were performed using gas chromatography-electron-capture detection. Variables affecting absorption in both the headspace and immersion extraction were optimised by using a response surface generated with a Doehlert design, and the results were compared. The immersion SPME method was selected since higher recoveries were obtained for most of the compounds studied. The method developed was applied to the analysis of tap and Ebro river water samples. The linear range of most pesticides for real samples was found to be between 0.001 and 2.5 micrograms l-1 and the limits of detection were between 0.15 and 0.35 ng l-1. The repeatability and the reproducibility between days of the method (n = 6), expressed as relative standard deviation, for tap water spiked at a level of 1 ng l-1 were between 5.7 and 25.6% and between 7.6 and 26.5%, respectively.

  3. PVTx Measurements for a H2O + Methanol Mixture in the Subcritical and Supercritical Regions

    Science.gov (United States)

    Bazaev, A. R.; Abdulagatov, I. M.; Magee, J. W.; Bazaev, E. A.; Ramazanova, A. E.; Abdurashidova, A. A.

    2004-05-01

    PVTx relationships for a H2O + CH3OH mixture (0.36 mole fraction of methanol) were measured in a range of temperatures from 373 to 673 K and pressures between 0.042 and 90.9 MPa. The density ranged from 37.76 to 559.03 kg · m-3. Measurements were made with a constant-volume piezometer surrounded by a precision thermostat. The temperature inside the thermostat was maintained uniform within 5 mK. The volume of the piezometer (32.68 ± 0.01 cm3) was previously calibrated from well-established PVT values of pure water (IAPWS), and was corrected for both temperature and pressure expansions. Uncertainties of the density, temperature, and pressure measurements are estimated to be 0.16%, 30 mK, and 0.05%, respectively. The uncertainty in composition is 0.001 mole fraction. The method of isochoric and isothermal break points was used to extract the phase transition temperatures, pressures, and densities for each measured isochore and isotherm. The values of the critical temperature, pressure, and density of the mixture were also determined from PVTx measurements in the critical region.

  4. Solubilities of selected organic electronic materials in pressurized hot water and estimations of aqueous solubilities at 298.15 K.

    Science.gov (United States)

    Karásek, Pavel; Hohnová, Barbora; Planeta, Josef; Št'avíková, Lenka; Roth, Michal

    2013-02-01

    Increasing production and disposal of organic light-emitting diode (OLED) displays for smartphones and tablets may have impact on the environment depending on the aqueous solubility of the pertinent chemicals. Here, aqueous solubilities are presented for several compounds, mostly aromatic amines, used as hole transport materials in the OLED displays. Solute selection includes 1,4-bis(diphenylamino)benzene, tetra-N-phenylbenzidine, 4,4'-bis(N-carbazolyl)-1,1'-biphenyl, 1,3,5-tris(diphenylamino)benzene, and 9,10-bis(phenylethynyl)anthracene. The solubilities are those in pressurized hot water (PHW), i.e., measured at elevated temperature (up to 260 °C) and pressure. The semi-quantitative estimates of room-temperature solubilities of the solutes have been obtained from extrapolations of the solubilities in PHW. For the compounds studied, the estimated aqueous solubilities at room temperature do not exceed 2×10(-11) g of the solute per 1 kg of water. Aqueous solubilities of triphenylamine have also been measured and used to upgrade a recent group-contribution model of aqueous solubilities of organic nonelectrolytes with the parameters for the nitrogen atom in aromatic amines. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Effect of Carreau-Yasuda rheological parameters on subcritical Lapwood convection in horizontal porous cavity saturated by shear-thinning fluid

    Science.gov (United States)

    Khechiba, Khaled; Mamou, Mahmoud; Hachemi, Madjid; Delenda, Nassim; Rebhi, Redha

    2017-06-01

    The present study is focused on Lapwood convection in isotropic porous media saturated with non-Newtonian shear thinning fluid. The non-Newtonian rheological behavior of the fluid is modeled using the general viscosity model of Carreau-Yasuda. The convection configuration consists of a shallow porous cavity with a finite aspect ratio and subject to a vertical constant heat flux, whereas the vertical walls are maintained impermeable and adiabatic. An approximate analytical solution is developed on the basis of the parallel flow assumption, and numerical solutions are obtained by solving the full governing equations. The Darcy model with the Boussinesq approximation and energy transport equations are solved numerically using a finite difference method. The results are obtained in terms of the Nusselt number and the flow fields as functions of the governing parameters. A good agreement is obtained between the analytical approximation and the numerical solution of the full governing equations. The effects of the rheological parameters of the Carreau-Yasuda fluid and Rayleigh number on the onset of subcritical convection thresholds are demonstrated. Regardless of the aspect ratio of the enclosure and thermal boundary condition type, the subcritical convective flows are seen to occur below the onset of stationary convection. Correlations are proposed to estimate the subcritical Rayleigh number for the onset of finite amplitude convection as a function of the fluid rheological parameters. Linear stability of the convective motion, predicted by the parallel flow approximation, is studied, and the onset of Hopf bifurcation, from steady convective flow to oscillatory behavior, is found to depend strongly on the rheological parameters. In general, Hopf bifurcation is triggered earlier as the fluid becomes more and more shear-thinning.

  6. Optimum design and criticality safety of a beam-shaping assembly with an accelerator-driven subcritical neutron multiplier for boron neutron capture therapies.

    Science.gov (United States)

    Hiraga, F

    2015-12-01

    The beam-shaping assembly for boron neutron capture therapies with a compact accelerator-driven subcritical neutron multiplier was designed so that an epithermal neutron flux of 1.9×10(9) cm(-2) s(-1) at the treatment position was generated by 5 MeV protons in a beam current of 2 mA. Changes in the atomic density of (135)Xe in the nuclear fuel due to the operation of the beam-shaping assembly were estimated. The criticality safety of the beam-shaping assembly in terms of Xe poisoning is discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. (n,xn) cross section measurements for Y-89 foils used as detectors for high energy neutron measurements in the deeply subcritical assembly "QUINTA"

    Science.gov (United States)

    Bielewicz, Marcin; Kilim, Stanisław; Strugalska-Gola, Elżbieta; Szuta, Marcin; Wojciechowski, Andrzej; Tyutyunnikov, Sergey; Prokofiev, Alexander; Passoth, Elke

    2017-09-01

    Study of the deep subcritical systems (QUINTA) using relativistic beams is performed within the project "Energy and Transmutation of Radioactive Wastes" (E&T - RAW). The experiment assembly was irradiated by deuteron/proton beam (Dubna NUCLOTRON). We calculated the neutron energy spectrum inside the whole assembly by using threshold energy (n,xn) reactions in yttrium (Y-89) foils. There are almost no experimental cross section data for those reactions. New Y-89(n,xn) cross section measurements were carried out at The Svedberg laboratory (TSL) in Uppsala, Sweden in 2015. In this paper we present preliminary results of those experiments.

  8. (n,xn cross section measurements for Y-89 foils used as detectors for high energy neutron measurements in the deeply subcritical assembly “QUINTA”

    Directory of Open Access Journals (Sweden)

    Bielewicz Marcin

    2017-01-01

    Full Text Available Study of the deep subcritical systems (QUINTA using relativistic beams is performed within the project “Energy and Transmutation of Radioactive Wastes” (E&T – RAW. The experiment assembly was irradiated by deuteron/proton beam (Dubna NUCLOTRON. We calculated the neutron energy spectrum inside the whole assembly by using threshold energy (n,xn reactions in yttrium (Y-89 foils. There are almost no experimental cross section data for those reactions. New Y-89(n,xn cross section measurements were carried out at The Svedberg laboratory (TSL in Uppsala, Sweden in 2015. In this paper we present preliminary results of those experiments.

  9. Hangman Catalysis for Photo–and Photoelectro–Chemical Activation of Water Proton-Coupled Electron Transfer Mechanisms of Small Molecule Activation

    Energy Technology Data Exchange (ETDEWEB)

    Nocera, Daniel G. [Harvard Univ., Cambridge, MA (United States)

    2013-03-15

    The weakest link for the large-scale deployment of solar energy and for that matter, any renewable energy source, is its storage. The energy needs of future society demands are so large that storage must be in the form of fuels owing to their high energy density. Indeed, society has intuitively understood this disparity in energy density as it has developed over the last century as all large-scale energy storage in our society is in the form of fuels. But these fuels are carbon-based. The imperative for the discipline of chemistry, and more generally science, is to develop fuel storage methods that are easily scalable, carbon-neutral and sustainable. These methods demand the creation of catalysts to manage the multi-electron, multi-proton transformations of the conversion of small molecules into fuels. The splitting of water using solar light is a fuel-forming reaction that meets the imperative of large scale energy storage. As light does not directly act on water to engender its splitting into its elemental components, we have designed “hangman” catalysts to effect the energy conversion processes needed for the fuel forming reactions. The hangman construct utilizes a pendant acid/base functionality within the secondary coordination sphere that is “hung” above the redox platform onto which substrate binds. In this way, we can precisely control the delivery of a proton to the substrate, thus ensuring efficient coupling between the proton and electron. An emphasis was on the coupling of electron and proton in the hydrogen evolution reaction (HER) on Ni, Co and Fe porphyrin platforms. Electrokinetic rate laws were developed to define the proton-coupled electron transfer (PCET) mechanism. The HER of Co and Fe porphyrins was metal-centered. Surprisingly, HER this was not the case for Ni porphyrins. In this system, the PCET occurred at the porphyrin platform to give rise to a phlorin. This is one of the first examples of an HER occurring via ligand non

  10. Size fractionation and characterisation of fresh water colloids and particles: split-flow thin-cell and electron microscopy analyses.

    Science.gov (United States)

    De Momi, Anna; Lead, Jamie R

    2006-11-01

    Split-flow thin-cell (SPLITT) was employed in conventional mode (CSF), to size-fractionate colloids and particles from a selected freshwater. Imaging and quantification by calculations of particle size distributions (PSDs) and shape factors were performed on sample analyzed by conventional high vacuum scanning electron microscopy (SEM) and environmental SEM (ESEM), to investigate the ability of SPLITT to make accurate and nonperturbing separations. SEM and ESEM images of unperturbed and SPLITT-generated fractions were used in order to obtain qualitative and quantitative information about the properties of colloids and particles. Particle size distributions (PSDs) showed that separations were very good, agreeing with theoretical behavior. ESEM PSDs showed that up to 87-88% of the material in the a fraction (expected to be 1 microm) 87-95% of the material was the expected size. The SEM data indicated a slightly higher contamination of the b fraction with the presence of submicron colloids. Moreover, analysis of conformations indicated significant nonsphericity in unfractionated colloids and particles, but after SPLITT fractionation, shape factors showed that particles were significantly more spherical than before separation.

  11. Doping ZnO with Water/Alcohol-Soluble Small Molecules as Electron Transport Layers for Inverted Polymer Solar Cells.

    Science.gov (United States)

    Liu, Chang; Zhang, Lin; Xiao, Liangang; Peng, Xiaobin; Cao, Yong

    2016-10-03

    By doping ZnO with porphyrin small molecules (FNEZnP-OE and FNEZnP-T) as cathode electron transport layers (ETLs), the inverted polymer solar cells (i-PSC) with PTB7:PC71BM (PTB7: polythieno[3,4-b]-thiophene-co-benzodithiophene, PC71BM: [6, 6]-phenyl-C71-butyric acid methyl ester) as the active materials exhibit enhanced device performance. While the power conversion efficiency (PCE) of the PSCs with pure ZnO ETL is 7.52%, that of the devices with FNEZnP-T-doped ZnO ETL shows a slightly improved PCE of 8.09%, and that of the PSCs with FNEZnP-OE-doped ZnO ETL is further enhanced up to 9.24% with an over 20% improvement compared to that with pure ZnO ETL. The better performance is contributed by the better interfacial contact and reduced work function induced by 9,9-bis(30-(N,N-dimethylamino)propyl)-2,7-fluorenes and 3,4-bis-(2-(2-methoxy-ethoxy)-ethoxy)-phenyls in the porphyrin small molecules. More importantly, the PCE is still higher than 8% even when the thickness of FNEZnP-OE-doped ZnO ETL is up to 110 nm, which are important criteria for eventually making organic photovoltaic modules with roll-to-roll coat processing.

  12. Approximate inclusion of triple excitations in combined coupled cluster/molecular mechanics: Calculations of electronic excitation energies in solution for acrolein, water, formamide, and n-methylacetamide

    DEFF Research Database (Denmark)

    Sneskov, Kristian; Gras, Eduard Matito; Kongsted, Jacob

    2010-01-01

    Electronic excitation energies are often significantly affected by perturbing surroundings such as, for example, solvent molecules. Correspondingly, for an accurate comparison between theory and experiment, the inclusion of solvent effects in high-level theoretical predictions is important. Here,...... as liquid water, demonstrating how a systematic inclusion of many different effects leads to good agreement with experimental values. In doing so we also illustrate the theoretical challenges involved when investigating UV properties of solvated molecules....... and a solvent described by polarizable MM methods. The CCSDR(3)/MM includes triples effects in a computational tractable noniterative fashion. The resulting approach allows for both high-accuracy inclusion of triples effects and inclusion of solute−solvent interactions with polarization effects, as well...

  13. Electronic setup for fluorescence emission measurements and long-time constant-temperature maintenance of Single-Walled Carbon Nano-Tubes in water solutions

    Directory of Open Access Journals (Sweden)

    De Rosa Matteo

    2017-03-01

    Full Text Available In our previous research we have observed that the fluorescence emission from water solutions of Single-Walled Carbon Nano-Tubes (SWCNT, excited by a laser with a wavelength of 830nm, diminishes with the time. We have already proved that such a fading is a function of the storage time and the storage temperature. In order to study the emission of the SWCNT as a function of these two parameters we have designed and realized a special measurement compartment with a cuvette holder where the SWCNT solutions can be measured and stored at a fixed constant temperature for periods of time as long as several weeks. To maintain the measurement setup under a constant temperature we have designed special experimental setup based on two Peltier cells with electronic temperature control.

  14. How is the water molecule activated on metalloporphyrins? Oxygenation of substrates induced through one-photon/two-electron conversion in artificial photosynthesis by visible light.

    Science.gov (United States)

    Shimada, Tetsuya; Kumagai, Akihiro; Funyu, Shigeaki; Takagi, Shinsuke; Masui, Dai; Nabetani, Yu; Tachibana, Hiroshi; Tryk, Donald A; Inoue, Haruo

    2012-01-01

    The reaction mechanism of the highly efficient (phi = 0.60), selective photochemical epoxidation of alkenes sensitized by CO-coordinated tetra(2,4,6-trimethyl)phenylporphyrinatoruthenium(II) (Ru(II)TMP(CO)), with water acting both as an electron and oxygen atom donor, was investigated. The steady-state light irradiation of the reaction mixture indicated the formation of the Ru(II)TMP (CO) cation radical under neutral conditions, which was effectively trapped by an hydroxide ion to regenerate the starting sensitizer. By means of a laser flash photolysis experiment, the formation of the cation radical as the primary process from the triplet excited state of Ru(II)TMP(CO) was clearly observed. Four kinds of transients were detected in completely different ranges of the delay time: the excited triplet state of Ru(II)TMP(CO) [delay time region artificial photosynthesis.

  15. Computational studies of the geometry and electronic structure of an all-inorganic and homogeneous tetra-Ru-polyoxotungstate catalyst for water oxidation and its four subsequent one-electron oxidized forms.

    Science.gov (United States)

    Quiñonero, David; Kaledin, Alexey L; Kuznetsov, Aleksey E; Geletii, Yurii V; Besson, Claire; Hill, Craig L; Musaev, Djamaladdin G

    2010-01-14

    Geometry and electronic structure of five species [{Ru(4)O(4)(OH)(2)(H(2)O)(4)}(gamma-SiW(10)O(36))(2)](10-) (1), [{Ru(4)O(4)(OH)(2)(H(2)O)(4)}(gamma-SiW(10)O(36))(2)](9-) (2), [{Ru(4)O(4)(OH)(2)(H(2)O)(4)}(gamma-SiW(10)O(36))(2)](8-) (3), [{Ru(4)O(4)(OH)(2)(H(2)O)(4)}(gamma-SiW(10)O(36))(2)](7-) (4), and [{Ru(4)O(4)(OH)(2)(H(2)O)(4)}(gamma-SiW(10)O(36))(2)](6-) (5) with different oxidation states of Ru centers were studied at the density functional and COSMO levels of theory. These species are expected to be among the possible intermediates of the recently reported 1-catalyzed water oxidation (Geletii, Y. V.; Botar, B.; Kogerler, P.; Hillesheim, D. A.; Musaev, D. G.; Hill, C. L. Angew. Chem. Int. Ed. 2008, 47, 3896-3899 and Sartorel, A.; Carraro, M.; Scorrano, G.; Zorzi, R. D.; Geremia, S.; McDaniel, N. D.; Bernhard, S.; Bonchio, M. J. Am. Chem. Soc. 2008, 130, 5006-5007). It was shown that RI-BP86 correctly describes the geometry and energy of the low-lying electronic states of compound 1, whereas the widely used B3LYP approach overestimates the energy of its high-spin states. Including the solvent and/or countercation effects into calculations improves the agreement between the calculated and experimental data. It was found that the several HOMOs and LUMOs of the studied complexes are bonding and antibonding orbitals of the [Ru(4)O(4)(OH)(2)(H(2)O)(4)](6+) core, and four subsequent one-electron oxidations of 1, leading to formation of 2, 3, 4, and 5, respectively, involve only {Ru(4)} core orbitals. In other words, catalyst instability due to ligand oxidation in the widely studied Ru-blue dimer, [(bpy)(2)(O)Ru(V)-(mu-O)-Ru(V)(O)(bpy)(2)](4+), is not operable for 1: the latter all-inorganic catalyst is predicted to be stable under water oxidation turnover conditions. The calculated HOMOs and LUMOs of all the studied species are very close in energy and exhibit a "quasi-continuum" or "nanoparticle-type" electronic structure similar to that of nanosized transition

  16. WATER AS A REAGENT FOR SOIL REMEDIATION

    Energy Technology Data Exchange (ETDEWEB)

    Indira S. Jayaweera; Montserrat Marti-Perez; Jordi Diaz-Ferrero; Angel Sanjurjo

    2001-11-12

    SRI International conducted experiments in a two-year, two-phase process to develop and evaluate hydrothermal extraction technology, also known as hot water extraction (HWE) technology, to separate petroleum-related contaminants and other hazardous pollutants from soil and sediments. In this process, water with added electrolytes (inexpensive and environmentally friendly) is used as the extracting solvent under subcritical conditions (150-300 C). The use of electrolytes allows us to operate reactors under mild conditions and to obtain high separation efficiencies that were hitherto impossible. Unlike common organic solvents, water under subcritical conditions dissolves both organics and inorganics, thus allowing opportunities for separation of both organic and inorganic material from soil. In developing this technology, our systematic approach was to (1) establish fundamental solubility data, (2) conduct treatability studies with industrial soils, and (3) perform a bench-scale demonstration using a highly contaminated soil. The bench-scale demonstration of the process has shown great promise. The next step of the development process is the successful pilot demonstration of this technology. Once pilot tested, this technology can be implemented quite easily, since most of the basic components are readily available from mature technologies (e.g., steam stripping, soil washing, thermal desorption). The implementation of this technology will revolutionize the conventional use of water in soil remediation technologies and will provide a stand-alone technology for removal of both volatile and heavy components from contaminated soil.

  17. Comparison of polarizable continuum model and quantum mechanics/molecular mechanics solute electronic polarization: study of the optical and magnetic properties of diazines in water.

    Science.gov (United States)

    Manzoni, Vinícius; Lyra, Marcelo L; Coutinho, Kaline; Canuto, Sylvio

    2011-10-14

    A combination of the polarizable continuum model (PCM) and the hybrid quantum mechanics/molecular mechanics (QM/MM) methodology, PCM-MM/QM, is used to include the solute electronic polarization and then study the solvent effects on the low-lying n→π(∗) excitation energy and the (15)N nuclear magnetic shielding of pyrazine and pyridazine in aqueous environment. The results obtained with PCM-MM/QM are compared with two other procedures, i.e., the conventional PCM and the iterative and sequential QM/MM (I-QM/MM). The QM calculations are made using density functional theory in the three procedures. For the excitation energies, the time-dependent B3LYP/6-311+G(d) model is used. For the magnetic shielding, the B3LYP/aug-pcS2(N)/pcS2(C,O,H) is used with the gauge-including atomic orbitals. In both cases, i.e., PCM-MM/QM and I-QM/MM, that use a discrete model of the solvent, the solute is surrounded by a first shell of explicit water molecules embedded by an electrostatic field of point charges for the outer shells. The best results are obtained including 28 explicit water molecules for the spectral calculations and 9 explicit water molecules for the magnetic shielding. Using the PCM-MM/QM methodology the results for the n→π(∗) excitation energies of pyridazine and pyrazine are 32,070 ± 80 cm(-1) and 32,675 ± 60 cm(-1), respectively, in good agreement with the corresponding I-MM/QM results of 32,540 ± 80 cm(-1) and 32,710 ± 60 cm(-1) and the experimental results of 33,450-33,580 cm(-1) and 32,700-33,300 cm(-1). For the (15)N magnetic shielding, the corresponding numbers for the gas-water shifts obtained with PCM-MM/QM are 47.4 ± 1.3 ppm for pyridazine and 19.7 ± 1.1 ppm for pyrazine, compared with the I-QM/MM values of 53.4 ± 1.3 ppm and 19.5 ± 1.2 ppm and the experimental results of 42-54 ppm and 17-22 ppm, respectively. The agreement between the two procedures is found to be very good and both are in agreement with the experimental values. PCM

  18. Electronic structure-sunlight driven water splitting activity correlation of (Zn1-yGay)(O1-zNz).

    Science.gov (United States)

    RajaAmbal, Sivaraman; Yadav, A K; Jha, S N; Bhattacharyya, D; Gopinath, Chinnnakonda S

    2014-11-21

    (Zn1-yGay)(O1-zNz) (y≤ 0.10; z≤ 0.15) solid solutions have been investigated for their electronic structure and visible light photocatalytic activity, and a correlation was found between them. (Zn1-yGay)(O1-zNz) with ZnO as the major component have been synthesized by a solution combustion method in 10 minutes using simple raw materials. The local structures of Zn K edge and Ga K edge, and changes in the chemical environment with the incorporation of Ga and N in ZnO were determined by EXAFS study. EXAFS and XRD results suggested the dissolution of GaN in the ZnO lattice. The homogeneity of the solid solution was demonstrated from HRTEM studies. Photoluminescence studies revealed the creation of a new band at the top of the ZnO valence band (VB), and thus the broadening of the VB of (Zn1-yGay)(O1-zNz) or a decrease in the band gap was attributed to the origin of visible light absorption. UV-Vis spectral studies showed light absorption up to 550 nm, which directly supports the VB broadening. Predominant oxygen vacancies and high photocorrosion observed for ZnO were fully suppressed for (Zn1-yGay)(O1-zNz), indicating the minimization of defects, and thus more sustainability under irradiation conditions. The bare solid solution exhibited reasonable and promising activity for solar hydrogen evolution and photoelectrochemical current generation at 0 V. The present work explained factors such as the preparation method, single phase structure with the stabilization of integral parts, homogeneity in the structure, compensation of oxygen vacancies, and suppression of the density of recombination centres that play a pivotal role in realizing solar energy harvesting.

  19. Study of the modes of adsorption and electronic structure of hydrogen peroxide and ethanol over TiO2 rutile (110) surface within the context of water splitting

    Science.gov (United States)

    Alghamdi, H.; Idriss, H.

    2018-03-01

    While photocatalytic water splitting over many materials is favourable thermodynamically the kinetic of the reaction is very slow. One of the proposed reasons linked to the slow oxidation reaction rate is H2O2 formation as a reaction intermediate. Using Density Functional Theory (DFT) H2O2 is investigated on TiO2 rutile (110) surface to determine its most stable adsorption modes: molecular, (H)O(H)O - (a), partially dissociated, (H)OO - (a), and fully dissociated (a) - OO - (a). We then compare H2O2 interaction to that of a fast hole scavenger molecule, ethanol. Geometry, electronic structure, charge density difference and work function determination of both adsorbates are presented and compared using DFT with different functionals (PBE, PBE-D, PBE-U, and HSE + D). H2O2 is found to be strongly adsorbed on TiO2 rutile (110) surface with adsorption energies reaching 0.95 eV, comparable to that of ethanol (0.89 eV); using GGA PBE. The negative changes in the work function upon adsorption were found to be highest for molecular adsorption ( - 1.23 eV) and lowest for the fully dissociated mode ( - 0.54 eV) of H2O2. This may indicate that electrons flow from the surface to the adsorbate in order to make O(s)-H partially offset the overall magnitude of the oxygen lone pair interaction (of H2O2) with Ti4+ cations. Examination of the electronic structure through density of states (DOS) at the PBE level of computation, indicates that the H2O2 highest occupied molecular orbital (HOMO) level is not overlapping with oxygen atoms of TiO2 surface at any of its adsorption modes and at any of the computation methods. Some overlap is seen using the HSE + D computational method. On the other hand the dissociated mode of ethanol (ethoxides) does overlap with all computational methods used. The high adsorption energy and the absence of overlapping of the HOMO level of H2O2 with TiO2 rutile (110) surface may explain why water splitting is slow.

  20. ANALYSIS AND IDENTIFICATION SPIKING CHEMICAL COMPOUNDS RELATED TO CHEMICAL WEAPON CONVENTION IN UNKNOWN WATER SAMPLES USING GAS CHROMATOGRAPHY AND GAS CHROMATOGRAPHY ELECTRON IONIZATION MASS SPECTROMETRY

    Directory of Open Access Journals (Sweden)

    Harry Budiman

    2010-06-01

    Full Text Available The identification and analysis of chemical warfare agents and their degradation products is one of important component for the implementation of the convention. Nowadays, the analytical method for determination chemical warfare agent and their degradation products has been developing and improving. In order to get the sufficient analytical data as recommended by OPCW especially in Proficiency Testing, the spiking chemical compounds related to Chemical Weapon Convention in unknown water sample were determined using two different techniques such as gas chromatography and gas chromatography electron-impact ionization mass spectrometry. Neutral organic extraction, pH 11 organic extraction, cation exchanged-methylation, triethylamine/methanol-silylation were performed to extract the chemical warfare agents from the sample, before analyzing with gas chromatography. The identification of chemical warfare agents was carried out by comparing the mass spectrum of chemicals with mass spectrum reference from the OPCW Central Analytical Database (OCAD library while the retention indices calculation obtained from gas chromatography analysis was used to get the confirmation and supported data of  the chemical warfare agents. Diisopropyl methylphosphonate, 2,2-diphenyl-2-hydroacetic acid and 3-quinuclidinol were found in unknown water sample. Those chemicals were classified in schedule 2 as precursor or reactant of chemical weapons compound in schedule list of Chemical Weapon Convention.   Keywords: gas chromatography, mass spectrometry, retention indices, OCAD library, chemical warfare agents