WorldWideScience

Sample records for subcritical fluid extraction

  1. Application of supercritical and subcritical fluids for the extraction of hazardous materials from soil

    Directory of Open Access Journals (Sweden)

    Skorupan Dara

    2002-01-01

    Full Text Available Subcritical and supercritical extractions are novel, non destructive techniques which can be applied for the removal of hazardous compounds from contaminated soil without any changes of the soil composition and structure. The aim of the presented review paper is to give information on up-to day results of this method commonly applied by several institutions worldwide. Interest in the application of SC CO2 has been more expressed in the last two decades, which may be related to its favorable characteristics (non-toxic, non-flammable, increase diffusion into small pores, low viscosity under SC conditions, low price and others. However, interest in wet oxidation (WO and especially in SCWO (the application of water under supercritical conditions with air has also increased in the last few years. Interest in H2O as a SC fluid, as well as in extraction with water under subcritical conditions may also be related to specific characteristics and the enhanced rate of extraction. Moreover, the solubility of some specific compounds present in soil can be easily changed by adjusting the pressure and temperature of extraction. The high price of the units designed to operate safely at a pressure and temperature much higher than the a critical one of the applied fluids is the main reason why, at present, there is no more broader application of such techniques for the removal hazardous materials from contaminated soil. In the present paper, among many literature citations and their overall review, some specific details related to the development of specific analytical methods under SC conditions are also considered.

  2. Subcritical Fluid Extraction of Chinese Quince Seed: Optimization and Product Characterization.

    Science.gov (United States)

    Wang, Li; Wu, Min; Liu, Hua-Min; Ma, Yu-Xiang; Wang, Xue-De; Qin, Guang-Yong

    2017-03-25

    Chinese quince seed (CQS) is an underutilized oil source and a potential source of unsaturated fatty acids and α-tocopherol-rich oil. Subcritical fluid (SCF) extraction is executed at lower pressures and temperatures than the pressures and temperatures used in supercritical fluid extraction. However, no studies on the SCF extraction of CQS oil are reported. Therefore, the objective of this study was to evaluate the use of SCF for the extraction of CQS oil and to compare the use of SCF with the classical Soxhlet (CS) and supercritical CO₂ (SC-CO₂) extraction methods. Response surface methodology (RSM) was used to investigate the extraction conditions: temperature (45-65 °C), time (30-50 min), and solvent/solid ratio (5-15 mL/g). The optimization results showed that the highest yield (27.78%) was obtained at 56.18 °C, 40.20 min, and 12.57 mL/g. The oil extracted by SCF had a higher unsaturated fatty acid content (86.37%-86.75%), higher α-tocopherol content (576.0-847.6 mg/kg), lower acid value (3.97 mg/g), and lower peroxide value (0.02 meq O₂/kg) than extractions using CS and SC-CO 2 methods. The SCF-defatted meal of oilseed exhibited the highest nitrogen solubility index (49.64%) and protein dispersibility index (50.80%), demonstrating that SCF extraction was a promising and efficient technique as an alternative to CS and SC-CO 2 methods, as very mild operating conditions and an eco-friendly solvent can be used in the process with maximum preservation of the quality of the meal.

  3. Super/Subcritical Fluid Extractions for Preparation of the Crystalline Titania

    Czech Academy of Sciences Publication Activity Database

    Matějová, Lenka; Cajthaml, Tomáš; Matěj, Z.; Benada, Oldřich; Klusoň, Petr; Šolcová, Olga

    2010-01-01

    Roč. 52, č. 2 (2010), s. 215-221 ISSN 0896-8446 R&D Projects: GA ČR GP104/09/P290; GA ČR GA104/09/0694 Institutional research plan: CEZ:AV0Z40720504; CEZ:AV0Z50200510 Keywords : titania * supercritical fluid extraction * pressurised fluid extraction Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.986, year: 2010

  4. COMPARISONS OF SOXHLET EXTRACTION, PRESSURIZED LIQUID EXTRACTION, SUPERCRITICAL FLUID EXTRACTION, AND SUBCRITICAL WATER EXTRACTION FOR ENVIRONMENTAL SOLIDS: RECOVERY, SELECTIVITY, AND EFFECTS ON SAMPLE MATRIX. (R825394)

    Science.gov (United States)

    Extractions of a polycyclic aromatic hydrocarbon (PAH)-contaminated soil from a former manufactured gas plant site were performed with a Soxhlet apparatus (18 h), by pressurized liquid extraction (PLE) (50 min at 100°C), supercritical fluid extraction (SFE) (1 h at 150°...

  5. Recovery of Oil with Unsaturated Fatty Acids and Polyphenols from Chaenomelessinensis (Thouin Koehne: Process Optimization of Pilot-Scale Subcritical Fluid Assisted Extraction

    Directory of Open Access Journals (Sweden)

    Zhenzhou Zhu

    2017-10-01

    Full Text Available The potential effects of three modern extraction technologies (cold-pressing, microwaves and subcritical fluids on the recovery of oil from Chaenomelessinensis (Thouin Koehne seeds have been evaluated and compared to those of conventional chemical extraction methods (Soxhlet extraction. This oil contains unsaturated fatty acids and polyphenols. Subcritical fluid extraction (SbFE provided the highest yield—25.79 g oil/100 g dry seeds—of the three methods. Moreover, the fatty acid composition in the oil samples was analysed using gas chromatography–mass spectrometry. This analysis showed that the percentages of monounsaturated (46.61%, and polyunsaturated fatty acids (42.14%, after applying SbFE were higher than those obtained by Soxhlet, cold-pressing or microwave-assisted extraction. In addition, the oil obtained under optimized SbFE conditions (35 min extraction at 35 °C with four extraction cycles, showed significant polyphenol (527.36 mg GAE/kg oil, and flavonoid (15.32 mg RE/kg oil, content, had a good appearance and was of high quality.

  6. Recovery of Oil with Unsaturated Fatty Acids and Polyphenols from Chaenomelessinensis (Thouin) Koehne: Process Optimization of Pilot-Scale Subcritical Fluid Assisted Extraction.

    Science.gov (United States)

    Zhu, Zhenzhou; Zhang, Rui; Zhan, Shaoying; He, Jingren; Barba, Francisco J; Cravotto, Giancarlo; Wu, Weizhong; Li, Shuyi

    2017-10-22

    The potential effects of three modern extraction technologies (cold-pressing, microwaves and subcritical fluids) on the recovery of oil from Chaenomelessinensis (Thouin) Koehne seeds have been evaluated and compared to those of conventional chemical extraction methods (Soxhlet extraction). This oil contains unsaturated fatty acids and polyphenols. Subcritical fluid extraction (SbFE) provided the highest yield-25.79 g oil/100 g dry seeds-of the three methods. Moreover, the fatty acid composition in the oil samples was analysed using gas chromatography-mass spectrometry. This analysis showed that the percentages of monounsaturated (46.61%), and polyunsaturated fatty acids (42.14%), after applying SbFE were higher than those obtained by Soxhlet, cold-pressing or microwave-assisted extraction. In addition, the oil obtained under optimized SbFE conditions (35 min extraction at 35 °C with four extraction cycles), showed significant polyphenol (527.36 mg GAE/kg oil), and flavonoid (15.32 mg RE/kg oil), content, had a good appearance and was of high quality.

  7. Safety features of subcritical fluid fueled systems

    International Nuclear Information System (INIS)

    Bell, C.R.

    1995-01-01

    Accelerator-driven transmutation technology has been under study at Los Alamos for several years for application to nuclear waste treatment, tritium production, energy generation, and recently, to the disposition of excess weapons plutonium. Studies and evaluations performed to date at Los Alamos have led to a current focus on a fluid-fuel, fission system operating in a neutron source-supported subcritical mode, using molten salt reactor technology and accelerator-driven proton-neutron spallation. In this paper, the safety features and characteristics of such systems are explored from the perspective of the fundamental nuclear safety objectives that any reactor-type system should address. This exploration is qualitative in nature and uses current vintage solid-fueled reactors as a baseline for comparison. Based on the safety perspectives presented, such systems should be capable of meeting the fundamental nuclear safety objectives. In addition, they should be able to provide the safety robustness desired for advanced reactors. However, the manner in which safety objectives and robustness are achieved is very different from that associated with conventional reactors. Also, there are a number of safety design and operational challenges that will have to be addressed for the safety potential of such systems to be credible

  8. Safety features of subcritical fluid fueled systems

    International Nuclear Information System (INIS)

    Bell, C.R.

    1994-01-01

    Accelerator-driven transmutation technology has been under study at Los Alamos for several years for application to nuclear waste treatment, tritium production, energy generation, and recently, to the disposition of excess weapons plutonium. Studies and evaluations performed to date at Los Alamos have led to a current focus on a fluid-fuel, fission system operating in a neutron source-supported subcritical mode, using molten salt reactor technology and accelerator-driven proton-neutron spallation. In this paper, the safety features and characteristics of such systems are explored from the perspective of the fundamental nuclear safety objectives that any reactor-type system should address. This exploration is qualitative in nature and uses current vintage solid-fueled reactors as a baseline for comparison. Based on the safety perspectives presented, such systems should be capable of meeting the fundamental nuclear safety objectives. In addition, they should be able to provide the safety robustness desired for advanced reactors. However, the manner in which safety objectives and robustness are achieved in very different from that associated with conventional reactors. Also, there are a number of safety design and operational challenges that will have to be addressed for the safety potential of such systems to be credible

  9. Safety features of subcritical fluid fueled systems

    Energy Technology Data Exchange (ETDEWEB)

    Bell, C.R. [Los Alamos National Laboratory, NM (United States)

    1995-10-01

    Accelerator-driven transmutation technology has been under study at Los Alamos for several years for application to nuclear waste treatment, tritium production, energy generation, and recently, to the disposition of excess weapons plutonium. Studies and evaluations performed to date at Los Alamos have led to a current focus on a fluid-fuel, fission system operating in a neutron source-supported subcritical mode, using molten salt reactor technology and accelerator-driven proton-neutron spallation. In this paper, the safety features and characteristics of such systems are explored from the perspective of the fundamental nuclear safety objectives that any reactor-type system should address. This exploration is qualitative in nature and uses current vintage solid-fueled reactors as a baseline for comparison. Based on the safety perspectives presented, such systems should be capable of meeting the fundamental nuclear safety objectives. In addition, they should be able to provide the safety robustness desired for advanced reactors. However, the manner in which safety objectives and robustness are achieved is very different from that associated with conventional reactors. Also, there are a number of safety design and operational challenges that will have to be addressed for the safety potential of such systems to be credible.

  10. Extraction of antioxidants from Chlorella sp. using subcritical water treatment

    Science.gov (United States)

    Zakaria, S. M.; Mustapa Kamal, S. M.; Harun, M. R.; Omar, R.; Siajam, S. I.

    2017-06-01

    Chlorella sp. microalgae is one of the main source of natural bioactive compounds used in the food and pharmaceutical industries. Subcritical water extraction is the technique that offers an efficient, non-toxic, and environmental-friendly method to obtain natural ingredients. In this work, the extracts of Chlorella sp. microalgae was evaluated in terms of: chemical composition, extraction (polysaccharides) yield and antioxidant activity, using subcritical water extraction. Extractions were performed at temperatures ranging from 100°C to 300°C. The results show that by using subcritical water, the highest yield of polysaccharides is 23.6 that obtained at 150°C. Analysis on the polysaccharides yield show that the contents were highly influenced by the extraction temperature. The individual antioxidant activity were evaluated by in vitro assay using a free radical method. In general, the antioxidant activity of the extracts obtained at different water temperatures was high, with values of 31.08-54.29 . The results indicated that extraction by subcritical water was effective and Chlorella sp. can be a useful source of natural antioxidants.

  11. A microfluidic sub-critical water extraction instrument

    Science.gov (United States)

    Sherrit, Stewart; Noell, Aaron C.; Fisher, Anita; Lee, Mike C.; Takano, Nobuyuki; Bao, Xiaoqi; Kutzer, Thomas C.; Grunthaner, Frank

    2017-11-01

    This article discusses a microfluidic subcritical water extraction (SCWE) chip for autonomous extraction of amino acids from astrobiologically interesting samples. The microfluidic instrument is composed of three major components. These include a mixing chamber where the soil sample is mixed and agitated with the solvent (water), a subcritical water extraction chamber where the sample is sealed with a freeze valve at the chip inlet after a vapor bubble is injected into the inlet channels to ensure the pressure in the chip is in equilibrium with the vapor pressure and the slurry is then heated to ≤200 °C in the SCWE chamber, and a filter or settling chamber where the slurry is pumped to after extraction. The extraction yield of the microfluidic SCWE chip process ranged from 50% compared to acid hydrolysis and 80%-100% compared to a benchtop microwave SCWE for low biomass samples.

  12. Subcritical Water Extraction of Amino Acids from Atacama Desert Soils

    Science.gov (United States)

    Amashukeli, Xenia; Pelletier, Christine C.; Kirby, James P.; Grunthaner, Frank J.

    2007-01-01

    Amino acids are considered organic molecular indicators in the search for extant and extinct life in the Solar System. Extraction of these molecules from a particulate solid matrix, such as Martian regolith, will be critical to their in situ detection and analysis. The goals of this study were to optimize a laboratory amino acid extraction protocol by quantitatively measuring the yields of extracted amino acids as a function of liquid water temperature and sample extraction time and to compare the results to the standard HCl vapor- phase hydrolysis yields for the same soil samples. Soil samples from the Yungay region of the Atacama Desert ( Martian regolith analog) were collected during a field study in the summer of 2005. The amino acids ( alanine, aspartic acid, glutamic acid, glycine, serine, and valine) chosen for analysis were present in the samples at concentrations of 1 - 70 parts- per- billion. Subcritical water extraction efficiency was examined over the temperature range of 30 - 325 degrees C, at pressures of 17.2 or 20.0 MPa, and for water- sample contact equilibration times of 0 - 30 min. None of the amino acids were extracted in detectable amounts at 30 degrees C ( at 17.2 MPa), suggesting that amino acids are too strongly bound by the soil matrix to be extracted at such a low temperature. Between 150 degrees C and 250 degrees C ( at 17.2 MPa), the extraction efficiencies of glycine, alanine, and valine were observed to increase with increasing water temperature, consistent with higher solubility at higher temperatures, perhaps due to the decreasing dielectric constant of water. Amino acids were not detected in extracts collected at 325 degrees C ( at 20.0 MPa), probably due to amino acid decomposition at this temperature. The optimal subcritical water extraction conditions for these amino acids from Atacama Desert soils were achieved at 200 degrees C, 17.2 MPa, and a water- sample contact equilibration time of 10 min.

  13. Subcritical Water Extraction of Monosaccharides from Oil Palm Fronds Hemicelluloses

    International Nuclear Information System (INIS)

    Norsyabilah, R.; Hanim, S.S.; Norsuhaila, M.H.; Noraishah, A.K.; Siti Kartina

    2013-01-01

    Oil palm plantations in Malaysia generate more than 36 million tones of pruned and felled oil palm fronds (OPF) and are generally considered as waste. The composition of monosaccharide in oil palm frond can be extracted using hydrothermal treatment for useful applications. The objectives of this study were to quantify the yield of monosaccharides at various reaction conditions; temperature 170 to 200 degree Celsius, pressure from 500 psi to 800 psi, reaction time from 5 to 15 min using subcritical water extraction and to determine the composition of oil palm frond hemicelluloses at optimum condition. The monosaccharides composition of oil palm frond hemicelluloses were analysed using High Performance Liquid Chromatography (HPLC). The highest yield of monosaccharides can be extracted from OPF at temperature of 190 degree Celsius, pressure of 600 psi and 10 min of contact time which is xylose the most abundant composition (11.79 %) followed with arabinose (2.82 %), glucose (0.61 %) and mannose (0.66 %). (author)

  14. Effective Subcritical Butane Extraction of Bifenthrin Residue in Black Tea

    Directory of Open Access Journals (Sweden)

    Yating Zhang

    2017-03-01

    Full Text Available As a natural and healthy beverage, tea is widely enjoyed; however, the pesticide residues in tea leaves affect the quality and food safety. To develop a highly selective and efficient method for the facile removal of pesticide residues, the subcritical butane extraction (SBE technique was employed, and three variables involving temperature, time and extraction cycles were studied. The optimum SBE conditions were found to be as follows: extraction temperature 45 °C, extraction time 30 min, number of extraction cycles 1, and in such a condition that the extraction efficiency reached as high as 92%. Further, the catechins, theanine, caffeine and aroma components, which determine the quality of the tea, fluctuated after SBE treatment. Compared with the uncrushed leaves, pesticide residues can more easily be removed from crushed leaves, and the practical extraction efficiency was 97%. These results indicate that SBE is a useful method to efficiently remove the bifenthrin, and as appearance is not relevant in the production process, tea leaves should first be crushed and then extracted in order that residual pesticides are thoroughly removed.

  15. Effective Subcritical Butane Extraction of Bifenthrin Residue in Black Tea.

    Science.gov (United States)

    Zhang, Yating; Gu, Lingbiao; Wang, Fei; Kong, Lingjun; Qin, Guangyong

    2017-03-30

    As a natural and healthy beverage, tea is widely enjoyed; however, the pesticide residues in tea leaves affect the quality and food safety. To develop a highly selective and efficient method for the facile removal of pesticide residues, the subcritical butane extraction (SBE) technique was employed, and three variables involving temperature, time and extraction cycles were studied. The optimum SBE conditions were found to be as follows: extraction temperature 45 °C, extraction time 30 min, number of extraction cycles 1, and in such a condition that the extraction efficiency reached as high as 92%. Further, the catechins, theanine, caffeine and aroma components, which determine the quality of the tea, fluctuated after SBE treatment. Compared with the uncrushed leaves, pesticide residues can more easily be removed from crushed leaves, and the practical extraction efficiency was 97%. These results indicate that SBE is a useful method to efficiently remove the bifenthrin, and as appearance is not relevant in the production process, tea leaves should first be crushed and then extracted in order that residual pesticides are thoroughly removed.

  16. Subcritical-Water Extraction of Organics from Solid Matrices

    Science.gov (United States)

    Amashukeli, Xenia; Grunthaner, Frank; Patrick, Steven; Kirby, James; Bickler, Donald; Willis, Peter; Pelletier, Christine; Bryson, Charles

    2009-01-01

    An apparatus for extracting organic compounds from soils, sands, and other solid matrix materials utilizes water at subcritical temperature and pressure as a solvent. The apparatus, called subcritical water extractor (SCWE), is a prototype of subsystems of future instrumentation systems to be used in searching for organic compounds as signs of past or present life on Mars. An aqueous solution generated by an apparatus like this one can be analyzed by any of a variety of established chromatographic or spectroscopic means to detect the dissolved organic compound( s). The apparatus can be used on Earth: indeed, in proof-of-concept experiments, SCWE was used to extract amino acids from soils of the Atacama Desert (Chile), which was chosen because the dryness and other relevant soil conditions there approximate those on Mars. The design of the apparatus is based partly on the fact that the relative permittivity (also known as the dielectric constant) of liquid water varies with temperature and pressure. At a temperature of 30 C and a pressure of 0.1 MPa, the relative permittivity of water is 79.6, due to the strong dipole-dipole electrostatic interactions between individual molecular dipoles. As the temperature increases, increasing thermal energy causes increasing disorientation of molecular dipoles, with a consequent decrease in relative permittivity. For example, water at a temperature of 325 C and pressure of 20 MPa has a relative permittivity of 17.5, which is similar to the relative permittivities of such nonpolar organic solvents as 1-butanol (17.8). In the operation of this apparatus, the temperature and pressure of water are adjusted so that the water can be used in place of commonly used organic solvents to extract compounds that have dissimilar physical and chemical properties.

  17. Subcritical water extraction of amino acids from Mars analog soils.

    Science.gov (United States)

    Noell, Aaron C; Fisher, Anita M; Fors-Francis, Kisa; Sherrit, Stewart

    2018-01-18

    For decades, the Martian regolith has stymied robotic mission efforts to catalog the organic molecules present. Perchlorate salts, found widely throughout Mars, are the main culprit as they breakdown and react with organics liberated from the regolith during pyrolysis, the primary extraction technique attempted to date on Mars. This work further develops subcritical water extraction (SCWE) as a technique for extraction of amino acids on future missions. The effect of SCWE temperature (185, 200, and 215°C) and duration of extraction (10-120 min) on the total amount and distribution of amino acids recovered was explored for three Mars analog soils (JSC Mars-1A simulant, an Atacama desert soil, and an Antarctic Dry Valleys soil) and bovine serum albumin (as a control solution of known amino acid content). Total amounts of amino acids extracted increased with both time and temperature; however, the distribution shifted notably due to the destruction of the amino acids with charged or polar side chains at the higher temperatures. The pure bovine serum albumin solution and JSC Mars 1A also showed lower yields than the Atacama and Antarctic extractions suggesting that SCWE may be less effective at hydrolyzing large or aggregated proteins. Changing solvent from water to a dilute (10 mM) HCl solution allowed total extraction efficiencies comparable to the higher temperature/time combinations while using the lowest temperature/time (185°C/20 min). The dilute HCl extractions also did not lead to the shift in amino acid distribution observed at the higher temperatures. Additionally, adding sodium perchlorate salt to the extraction did not interfere with recoveries. Native magnetite in the JSC Mars-1A may have been responsible for destruction of glycine, as evidenced by its uncharacteristic decrease as the temperature/time of extraction increased. This work shows that SCWE can extract high yields of native amino acids out of Mars analog soils with minimal disruption of the

  18. Subcritical ethanol extraction of flavonoids from Moringa oleifera leaf and evaluation of antioxidant activity.

    Science.gov (United States)

    Wang, Yongqiang; Gao, Yujie; Ding, Hui; Liu, Shejiang; Han, Xu; Gui, Jianzhou; Liu, Dan

    2017-03-01

    A large-scale process to extract flavonoids from Moringa oleifera leaf by subcritical ethanol was developed and HPLC-MS analysis was conducted to qualitatively identify the compounds in the extracts. To optimize the effects of process parameters on the yield of flavonoids, a Box-Behnken design combined with response surface methodology was conducted in the present work. The results indicated that the highest extraction yield of flavonoids by subcritical ethanol extraction could reach 2.60% using 70% ethanol at 126.6°C for 2.05h extraction. Under the optimized conditions, flavonoids yield was substantially improved by 26.7% compared with the traditional ethanol reflux method while the extraction time was only 2h, and obvious energy saving was observed. FRAP and DPPH assays showed that the extracts had strong antioxidant and free radical scavenging activities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Molecular Dynamics Simulation of Mahkota Dewa (Phaleria Macrocarpa) Extract in Subcritical Water Extraction Process

    Science.gov (United States)

    Hashim, N. A.; Mudalip, S. K. Abdul; Harun, N.; Che Man, R.; Sulaiman, S. Z.; Arshad, Z. I. M.; Shaarani, S. M.

    2018-05-01

    Mahkota Dewa (Phaleria Macrocarpa), a good source of saponin, flavanoid, polyphenol, alkaloid, and mangiferin has an extensive range of medicinal effects. The intermolecular interactions between solute and solvents such as hydrogen bonding considered as an important factor that affect the extraction of bioactive compounds. In this work, molecular dynamics simulation was performed to elucidate the hydrogen bonding exists between Mahkota Dewa extracts and water during subcritical extraction process. A bioactive compound in the Mahkota Dewa extract, namely mangiferin was selected as a model compound. The simulation was performed at 373 K and 4.0 MPa using COMPASS force field and Ewald summation method available in Material Studio 7.0 simulation package. The radial distribution functions (RDF) between mangiferin and water signify the presence of hydrogen bonding in the extraction process. The simulation of the binary mixture of mangiferin:water shows that strong hydrogen bonding was formed. It is suggested that, the intermolecular interaction between OH2O••HMR4(OH1) has been identified to be responsible for the mangiferin extraction process.

  20. Unavoidable food supply chain waste: acid-free pectin extraction from mango peel via subcritical water.

    Science.gov (United States)

    Xia, H; Matharu, A S

    2017-09-21

    Mango peel is the major by-product of mango processing, and compromises 7-24% of the total mango weight. In this study, pectin was extracted from mango peel waste by using subcritical water extraction (SWE) in the absence of mineral acid. A highest yield of 18.34% was achieved from the Kesar variety and the pectin was characterised using ATR-IR spectroscopy, TGA and 13 C solid-state NMR spectroscopy to confirm the structure. The degree of esterification (DE) of the pectin was analysed with both titrimetry and 13 C solid-state NMR spectroscopy, and a high DE (>70%) was observed for all three varieties (Keitt, Sindhri and Kesar). This is the first report on acid-free subcritical water extraction of pectin from mango peel, which provides a green route for the valorisation of mango peel waste and contributes to a source of biobased materials and chemicals for a sustainable 21 st century.

  1. Optimization of Subcritical Water Extraction of Resveratrol from Grape Seeds by Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Yajie Tian

    2017-03-01

    Full Text Available The subcritical water extraction (SWE is a high-efficiency and environment-friendly extraction method. The extraction of resveratrol (RES of grape seeds obtained from the wine production process was proposed using subcritical water extraction (SWE. The effects of different extraction process parameters on RES yield were investigated by single factors. Extraction optimization was conducted using response surface methodology (RSM. Extraction temperature was proven to be the most significant factor influencing RES yield. The optimal conditions was as follows: extraction pressure of 1.02 MPa, temperature of 152.32 °C, time of 24.89 min, and a solid/solvent ratio of 1:15 g/mL. Under these optimal conditions, the predicted extraction RES yield was 6.90 μg/g and the recoveries was up to 91.98%. Compared to other previous studies, this method required less pollution and less treatment time to extract RES from grape seeds. From these results, added economic value to this agroindustrial residue is proposed using environmentally friendly extraction techniques.

  2. Subcritical water extraction of bioactive compounds from dry loquat ...

    African Journals Online (AJOL)

    ERASTO

    total flavonoids (54.1 ± 4.1 mgQE/g LW) and total triterpenoids (37.5 ± 3.2 mgUAE/g LW) ... those obtained using traditional extraction methods, and their main structural pattern of the cured .... Quantification was based on the standard curve generated ..... HPLC chromatograms of the triterpene acids from loquat leaf extract.

  3. Dynamic analysis of an accelerator-driven fluid-fueled subcritical radioactive waste burning system

    International Nuclear Information System (INIS)

    Woosley, M.L. Jr.; Rydin, R.A.

    1998-01-01

    The recent revival of interest in accelerator-driven subcritical fluid-fueled systems is documented. Several important applications of these systems are mentioned, and this is used to motivate the need for dynamic analysis of the nuclear kinetics of such systems. A physical description of the Los alamos National Laboratory accelerator-based conversion (ABC) concept is provided. This system is used as the basis for the kinetics study in this research. The current approach to the dynamic simulation of an accelerator-driven subcritical fluid-fueled system includes four functional elements: a discrete ordinates model is used to calculate the flux distribution for the source-driven system; a nodal convection model is used to calculate time-dependent isotope and temperature distributions that impact reactivity; a nodal importance weighting model is used to calculate the reactivity impact of temperature and isotope distributions and to feed this information back to the time-dependent nodal convection model; and a transient driver is used to simulate transients, model the balance of plant, and record simulation data. Specific transients that have been analyzed with the current modeling system are discussed. These transients include loss-of-flow and loss-of-cooling accidents, xenon and samarium transients, and cold-plug and overfueling events. The results of various transients have uncovered unpredictable behavior, unresolved design issues, and the need for active control. The need for the development of a nodal-coupling spatial kinetics model is mentioned

  4. A review on green trend for oil extraction using subcritical water technology and biodiesel production.

    Science.gov (United States)

    Abdelmoez, Weal; Ashour, Eman; Naguib, Shahenaz M

    2015-01-01

    It became a global agenda to develop clean alternative fuels which were domestically available, environmentally acceptable and technically feasible. Thus, biodiesel was destined to make a substantial contribution to the future energy demands of the domestic and industrial economies. Utilization of the non edible vegetable oils as raw materials for biodiesel production had been handled frequently for the past few years. The oil content of these seeds could be extracted by different oil extraction methods, such as mechanical extraction, solvent extraction and by subcritical water extraction technology SWT. Among them, SWT represents a new promising green extraction method. Therefore this review covered the current used non edible oil seeds for biodiesel production as well as giving a sharp focus on the efficiency of using the SWT as a promising extraction method. In addition the advantages and the disadvantages of the different biodiesel production techniques would be covered.

  5. High performance curcumin subcritical water extraction from turmeric (Curcuma longa L.).

    Science.gov (United States)

    Valizadeh Kiamahalleh, Mohammad; Najafpour-Darzi, Ghasem; Rahimnejad, Mostafa; Moghadamnia, Ali Akbar; Valizadeh Kiamahalleh, Meisam

    2016-06-01

    Curcumin is a hydrophobic polyphenolic compound derived from turmeric rhizome, which consists about 2-5% of the total rhizome content and is a more valuable component of turmeric. For reducing the drawbacks of conventional extraction (using organic solvents) of curcumin, the water as a clean solvent was used for extracting curcumin. Subcritical water extraction (SWE) experimental setup was fabricated in a laboratory scale and the influences of some parameters (e.g. extraction temperature, particle size, retention time and pressure) on the yield of extraction were investigated. Optimum extraction conditions such as SWE pressure of 10bar, extractive temperature of 140°C, particle size of 0.71mm and retention time of 14min were defined. The maximum amount of curcumin extracted at the optimum condition was 3.8wt%. The yield of curcumin extraction was more than 76wt% with regards to the maximum possible curcumin content of turmeric, as known to be 5%. The scanning electron microscope (SEM) images from the outer surface of turmeric, before and after extraction, clearly demonstrated the effect of each parameter; changes in porosity and hardness of turmeric that is directly related to the amount of extracted curcumin in process optimization of the extraction parameters. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Benzo(a)pyrene accumulation in soils of technogenic emission zone by subcritical water extraction method

    Science.gov (United States)

    Sushkova, Svetlana; Minkina, Tatiana; Kizilkaya, Ridvan; Mandzhieva, Saglara; Batukaev, Abdulmalik; Bauer, Tatiana; Gulser, Coskun

    2016-04-01

    The purpose of research is the assessment of main marker of polycyclic aromatic hydrocarbons contamination, benzo[a]pyrene (BaP) content in soils of emission zone of the power complex plant in soils with use of ecologically clean and effective subcritical water extraction method. Studies were conducted on the soils of monitoring plots subjected to Novocherkassk Power Plant emissions from burning coal. In 2000, monitoring plots were established at different distances from the NPS (1.0-20.0 km). Soil samples for the determination of soil properties and the contents of BaP were taken from a depth of 0-20 cm. The soil cover in the region under study consisted of ordinary chernozems, meadow-chernozemic soils, and alluvial meadow soils. This soil revealed the following physical and chemical properties: Corg-3.1-5.0%, pH-7.3-7.6, ECE-31.2-47.6 mmol(+)/100g; CaCO3-0.2-1.0%, the content of physical clay - 51-67% and clay - 3-37%. BaP extraction from soils was carried out by a subcritical water extraction method. Subcritical water extraction of BaP from soil samples was conducted in a specially developed extraction cartridge made of stainless steel and equipped with screw-on caps at both ends. It was also equipped with a manometer that included a valve for pressure release to maintain an internal pressure of 100 atm. The extraction cartridge containing a sample and water was placed into an oven connected to a temperature regulator under temperature 250oC and pressure 60 atm. The BaP concentration in the acetonitrile extract was determined by HPLC. The efficiency of BaP extraction from soil was determined using a matrix spike. The main accumulation of pollutant in 20 cm layer of soils is noted directly in affected zone on the plots situated at 1.2, 1.6, 5.0, 8.0 km from emission source in the direction of prevailing winds. The maximum quantity of a pollutant was founded in the soil of the plot located mostly close to a source of pollution in the direction of prevailing winds

  7. using Supercritical Fluid Extraction

    African Journals Online (AJOL)

    Methods: Supercritical CO2 extraction technology was adopted in this experiment to study the process of extraction of volatile oil from Polygonatum odoratum while gas chromatograph-mass spectrometer ..... Saponin rich fractions from.

  8. Subcritical water extraction of phenolic and antioxidant constituents from pistachio (Pistacia vera L.) hulls.

    Science.gov (United States)

    Erşan, Sevcan; Güçlü Üstündağ, Özlem; Carle, Reinhold; Schweiggert, Ralf M

    2018-07-01

    Pistachio hulls, important by-products of pistachio processing, were extracted using an environmentally friendly process with subcritical water (SCW) at a pressure of 6.9 MPa in the range of 110 and 190 °C, and a flow rate of 4 ml/min. Detailed HPLC-DAD-ESI/MS n analyses allowed the identification of 49 phenolic compounds in the SCW extracts. Total gallotannin yields up to 33 g/kg were reached at 150-170 °C, where gallic acid (22.2 g/kg) and penta-O-galloyl-β-d-glucose (9.77 g/kg) levels were 13.2- and 10.6-fold higher than those in the aqueous methanol extracts. Flavonols were also effectively extracted at 110-150 °C (4.37-5.65 g/kg), while anacardic acid recovery was poor (1.13-2.77 g/kg). Accordingly, high amounts of anacardic acids (up to 50.7 g/kg) were retained in the extraction residue, revealing that SCW extraction allowed selective extraction of gallotannins and flavonols. Antioxidant capacities ranged from 0.68 to 1.20 mmol Trolox equivalents (TE)/g for SCW extracts increasing with temperature up 190 °C. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Subcritical Butane Extraction of Wheat Germ Oil and Its Deacidification by Molecular Distillation

    Directory of Open Access Journals (Sweden)

    Jinwei Li

    2016-12-01

    Full Text Available Extraction and deacidification are important stages for wheat germ oil (WGO production. Crude WGO was extracted using subcritical butane extraction (SBE and compared with traditional solvent extraction (SE and supercritical carbon dioxide extraction (SCE based on the yield, chemical index and fatty acid profile. Furthermore, the effects of the molecular distillation temperature on the quality of WGO were also investigated in this study. Results indicated that WGO extracted by SBE has a higher yield of 9.10% and better quality; at the same time, its fatty acid composition has no significant difference compared with that of SE and SCE. The molecular distillation experiment showed that the acid value, peroxide value and p-anisidine value of WGO were reduced with the increase of the evaporation temperatures, and the contents of the active constituents of tocopherol, polyphenols and phytosterols are simultaneously decreased. Generally, the distillation temperature of 150 °C is an appropriate condition for WGO deacidification with the higher deacidification efficiency of 77.78% and the higher retention rate of active constituents.

  10. Kinetic and Thermodynamics studies for Castor Oil Extraction Using Subcritical Water Technology.

    Science.gov (United States)

    Abdelmoez, Wael; Ashour, Eman; Naguib, Shahenaz M; Hilal, Amr; Al Mahdy, Dalia A; Mahrous, Engy A; Abdel-Sattar, Essam

    2016-06-01

    In this work both kinetic and thermodynamics of castor oil extraction from its seeds using subcritical water technique were studied. It was found that the extraction process followed two consecutive steps. In these steps, the oil was firstly extracted from inside the powder by diffusion mechanism. Then the extracted oil, due to extending the extraction time under high temperature and pressure, was subjected to a decomposition reaction following first order mechanism. The experimental data correlated well with the irreversible consecutive unimolecular-type first order mechanism. The values of both oil extraction rate constants and decomposition rate constants were calculated through non-linear fitting using DataFit software. The extraction rate constants were found to be 0.0019, 0.024, 0.098, 0.1 and 0.117 min(-1), while the decomposition rate constants were 0.057, 0.059, 0.014, 0.019 and 0.17 min(-1) at extraction temperatures of 240, 250, 260, 270 and 280°C, respectively. The thermodynamic properties of the oil extraction process were investigated using Arrhenius equation. The values of the activation energy, Ea, and the frequency factor, A, were 73 kJ mol(-1) and 946, 002 min(-1), respectively. The physicochemical properties of the extracted castor oil including the specific gravity, viscosity, acid value, pH value and calorific value were found to be 0.947, 7.487, 1.094 mg KOH/g, 6.1, and 41.5 MJ/Kg, respectively. Gas chromatography analysis showed that ricinoleic acid (83.6%) appears as the predominant fatty acid in the extracted oil followed by oleic acid (5.5%) and linoleic acid (2.3%).

  11. Supercritical fluid extraction of uranium

    International Nuclear Information System (INIS)

    Kumar, Pradeep

    2017-01-01

    Uranium being strategic material, its separation and purification is of utmost importance in nuclear industry, for which solvent extraction is being employed. During solvent extraction significant quantity of radioactive liquid waste gets generated which is of environmental concern. In recent decades supercritical fluid extraction (SFE) has emerged as promising alternative to solvent extraction owing to its inherent advantage of reduction in liquid waste generation and simplification of process. In this paper a brief overview of research work carried out so far on SFE of uranium by BARC has been given

  12. Temperature effects on diffusion coefficient for 6-gingerol and 6-shogaol in subcritical water extraction

    Science.gov (United States)

    Ilia Anisa, Nor; Azian, Noor; Sharizan, Mohd; Iwai, Yoshio

    2014-04-01

    6-gingerol and 6-shogaol are the main constituents as anti-inflammatory or bioactive compounds from zingiber officinale Roscoe. These bioactive compounds have been proven for inflammatory disease, antioxidatives and anticancer. The effect of temperature on diffusion coefficient for 6-gingerol and 6-shogaol were studied in subcritical water extraction. The diffusion coefficient was determined by Fick's second law. By neglecting external mass transfer and solid particle in spherical form, a linear portion of Ln (1-(Ct/Co)) versus time was plotted in determining the diffusion coefficient. 6-gingerol obtained the higher yield at 130°C with diffusion coefficient of 8.582x10-11 m2/s whilst for 6-shogaol, the higher yield and diffusion coefficient at 170°C and 19.417 × 10-11 m2/s.

  13. Temperature effects on diffusion coefficient for 6-gingerol and 6-shogaol in subcritical water extraction

    International Nuclear Information System (INIS)

    Anisa, Nor Ilia; Azian, Noor; Sharizan, Mohd; Iwai, Yoshio

    2014-01-01

    6-gingerol and 6-shogaol are the main constituents as anti-inflammatory or bioactive compounds from zingiber officinale Roscoe. These bioactive compounds have been proven for inflammatory disease, antioxidatives and anticancer. The effect of temperature on diffusion coefficient for 6-gingerol and 6-shogaol were studied in subcritical water extraction. The diffusion coefficient was determined by Fick's second law. By neglecting external mass transfer and solid particle in spherical form, a linear portion of Ln (1-(Ct/Co)) versus time was plotted in determining the diffusion coefficient. 6-gingerol obtained the higher yield at 130°C with diffusion coefficient of 8.582x10 −11 m 2 /s whilst for 6-shogaol, the higher yield and diffusion coefficient at 170°C and 19.417 × 10 −11 m 2 /s.

  14. Applications of subcritical and supercritical water conditions for extraction, hydrolysis, gasification, and carbonization of biomass: a critical review

    Directory of Open Access Journals (Sweden)

    D. Lachos-Perez

    2017-06-01

    Full Text Available This review summarizes the recent essential aspects of subcritical and supercritical water technology applied tothe extraction, hydrolysis, carbonization, and gasification processes. These are clean and fast technologies which do not need pretreatment, require less reaction time, generate less corrosion and residues, do not usetoxic solvents, and reduce the synthesis of degradation byproducts. The equipment design, process parameters, and types of biomass used for subcritical and supercritical water process are presented. The benefits of catalysis to improve process efficiency are addressed. Bioactive compounds, reducing sugars, hydrogen, biodiesel, and hydrothermal char are the final products of subcritical and supercritical water processes. The present review also revisits advances of the research trends in the development of subcriticaland supercritical water process technologies.

  15. Supercritical fluid extraction of hops

    Directory of Open Access Journals (Sweden)

    ZORAN ZEKOVIC

    2007-01-01

    Full Text Available Five cultivars of hop were extracted by the method of supercritical fluid extraction using carbon dioxide (SFE–CO2 as extractant. The extraction (50 g of hop sample using a CO2 flow rate of 97.725 L/h was done in the two steps: 1. extraction at 150 bar and 40°C for 2.5 h (sample of series A was obtained and, after that, the same sample of hop was extracted in the second step: 2. extraction at 300 bar and 40 °C for 2.5 h (sample of series B was obtained. The Magnum cultivar was chosen for the investigation of the extraction kinetics. For the qualitative and quantitative analysis of the obtained hop extracts, the GC-MS method was used. Two of four themost common compounds of hop aroma (a-humulene and b-caryophyllene were detected in samples of series A. In addition, isomerized a-acids and a high content of b-acids were detected. The a-acids content in the samples of series B was the highest in the extract of the Magnum cultivar (it is a bitter variety of hop. The low contents of a-acids in all the other hop samples resulted in extracts with low a-acids content, i.e., that contents were under the prescribed a-acids content.

  16. Enhancement of Phenolic Production and Antioxidant Activity from Buckwheat Leaves by Subcritical Water Extraction.

    Science.gov (United States)

    Kim, Dong-Shin; Kim, Mi-Bo; Lim, Sang-Bin

    2017-12-01

    To enhance the production of phenolic compounds with high antioxidant activity and reduce the level of phototoxic fagopyrin, buckwheat leaves were extracted with subcritical water (SW) at 100~220°C for 10~50 min. The major phenolic compounds were quercetin, gallic acid, and protocatechuic acid. The cumulative amount of individual phenolic compounds increased with increasing extraction temperature from 100°C to 180°C and did not change significantly at 200°C and 220°C. The highest yield of individual phenolic compounds was 1,632.2 μg/g dry sample at 180°C, which was 4.7-fold higher than that (348.4 μg/g dry sample) at 100°C. Total phenolic content and total flavonoid content increased with increasing extraction temperature and decreased with increasing extraction time, and peaked at 41.1 mg gallic acid equivalents/g and 26.9 mg quercetin equivalents/g at 180°C/10 min, respectively. 2,2-Diphenyl-1-picrylhydrazyl free radical scavenging activity and ferric reducing ability of plasma reached 46.4 mg ascorbic acid equivalents/g and 72.3 mmol Fe 2+ /100 g at 180°C/10 min, respectively. The fagopyrin contents were reduced by 92.5~95.7%. Color values L * and b * decreased, and a * increased with increasing extraction temperature. SW extraction enhanced the yield of phenolic compounds with high antioxidant activity and reduced the fagopyrin content from buckwheat leaves.

  17. Microwave Assisted Extraction of Defatted Roselle (Hibiscus sabdariffa L. Seed at Subcritical Conditions with Statistical Analysis

    Directory of Open Access Journals (Sweden)

    N. I. Yusoff

    2017-01-01

    Full Text Available Roselle seeds are the waste product of roselle processing, but they are now labeled as a polyphenol source with great herbal quality. In this work, polyphenols were extracted using ethanol-water (70% (v/v in a closed vessel under microwave irradiation. The main objective was to determine the optimal parameters statistically. The influence of extraction time (4–10 min, microwave power (100–300 W, and solvent/solid ratio (25–100 mL/g was studied. The total phenolic and flavonoids content were determined using Folin-Ciocalteu and aluminum chloride methods, respectively. Without temperature control, the subcritical conditions could occur and the highest flavonoid content (14.4251 mg QE/g was achieved at 158°C and 16.4 bar. Although the optimum MAE conditions (10 min, 300 W, and 97.7178 mL/g resulted in the highest yield (65.0367% and phenolic content (18.2244 mg GAE/g, low flavonoids content (6.4524 mg QE/g was unexpectedly obtained due to degradation at 163°C.

  18. SIMPLE METHOD FOR ESTIMATING POLYCHLORINATED BIPHENYL CONCENTRATIONS ON SOILS AND SEDIMENTS USING SUBCRITICAL WATER EXTRACTION COUPLED WITH SOLID-PHASE MICROEXTRACTION. (R825368)

    Science.gov (United States)

    A rapid method for estimating polychlorinated biphenyl (PCB) concentrations in contaminated soils and sediments has been developed by coupling static subcritical water extraction with solid-phase microextraction (SPME). Soil, water, and internal standards are placed in a seale...

  19. Decontamination of PCBs-containing soil using subcritical water extraction process.

    Science.gov (United States)

    Islam, Mohammad Nazrul; Park, Jeong-Hun; Shin, Moon-Su; Park, Ha-Seung

    2014-08-01

    Polychlorinated biphenyls (PCBs) are one of the excision compounds listed at the Stockholm convention in 2001. Although their use has been heavily restricted, PCBs can be found in some specific site-contaminated soils. Either removal or destruction is required prior to disposal. The subcritical water extraction (SCWE) of organic hazardous compounds from contaminated soils is a promising technique for hazardous waste contaminated-site cleanup. In this study, the removal of PCBs by the SCWE process was investigated. The effects of temperature and treatment time on removal efficiency have been determined. In the SCWE experiments, a removal percentage of 99.7% was obtained after 1h of treatment at 250°C. The mass removal efficiency of low-chlorinated species was higher than high-chlorinated congeners at lower temperatures, but it was oppositely observed at higher temperatures because the lower chlorinated congeners are formed by dechlorination of higher chlorinated congeners. Gas chromatography/mass spectrometry analysis confirmed that the PCBs underwent partial degradation. Several degradation products including mono- and di-chlorinated biphenyls, oxygen-containing aromatic compounds, and small-size hydrocarbons were identified in the effluent water, which were not initially present in the contaminated soil. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Extraction of Phytochemical Compounds from Eucheuma cottonii and Gracilaria sp using Supercritical CO2 Followed by Subcritical Water

    Directory of Open Access Journals (Sweden)

    Setyorini Dwi

    2018-01-01

    Full Text Available Extraction of phytochemical compounds (such as β-carotene, linoleic acids, carrageenan, and polyphenols from algae Eucheuma cottonii and Gracilaria sp with supercritical CO2 followed by subcritical water has been investigated. Supercritical CO2 extraction was carried out at pressure of 25 MPa, temperature of 60°C, CO2 flowrate of 15 ml/min, and ethanol flowrate of 0.25 ml/min. To determine the content of carotenoids and linoleic acids, the extracted compounds were analyzed using a spectrophotometer UV-Vis. The residue of algae starting material was subsequently extracted by subcritical water at pressures of 3, 5, and 7 MPa, and temperatures of 120, 140, 160, and 180 °C. Carrageenan extracted by subcritical water was analyzed using Fourier Transform Infra Red (FTIR, while the total phenolic compound was analyzed with UV-vis spectrophotometer. Moreover, the antioxidant efficiency of extract was also examined by DPPH assay method. Based on the analytical result, β-carotene and linoleic acid content in Eucheuma cottonii were 209.91 and 321.025 μg/g sample, respectively. While β-carotene and linoleic acid content in Gracilaria sp were 219.99 and 286.52 μg/g sample, respectively. The optimum condition of subcritical water extraction was at 180°C and 7 MPa. At this condition, the highest TPC content in the extract from Eucheuma cottonii and Gracilaria sp were 18.51 mg GAE/g sample and 22.47 mg GAE/g sample, respectively; while the highest yield of carrageenan extracted from Eucheuma cottonii and Gracilaria sp were 61.33 and 65.54 g/100 g dried algae, respectively. At the same condition, the antioxidant efficiency was 0.513 min-1 for Eucheuma cottonii and 0,277 min-1 for Gracilaria sp. Based on the results the extraction method effectively separated non-polar and polar compounds, then increased the antioxidant efficiency of extract.

  1. Process optimization and characterization of fragrant oil from red pepper (Capsicum annuum L.) seed extracted by subcritical butane extraction.

    Science.gov (United States)

    Gu, Ling-Biao; Pang, Hui-Li; Lu, Ke-Ke; Liu, Hua-Min; Wang, Xue-De; Qin, Guang-Yong

    2017-04-01

    Red pepper seeds account for 450-500 g kg -1 of the total pepper weight and are often discarded as waste. In this study, process optimization and characterization of fragrant oil from roasted red pepper seed extracted by subcritical butane extraction were carried out. The optimal conditions of extraction were a temperature of 74.61 °C, a time of 68.65 min and a liquid/solid ratio of 30.24:1. The oil had a refractive index (25 °C) of 1.471, a relative density of 0.900, an acid value of 1.421 mg g -1 oil, an iodine value of 127.035 g per 100 g, a saponification value of 184.060 mg KOH g -1 , an unsaponifiable matter content of 12.400 g kg -1 , a peroxide value of 2.465 meq. O 2 kg -1 and a viscosity of 52.094 cP. The main fatty acids in the oil were linoleic acid (72.95%) followed by palmitic acid (11.43%) and oleic acid (10.00%). The oil showed desirable thermal and oxidative stability. A total of 19 volatile compounds, mostly aldehydes and alkenes, were identified from the oil. The results indicated that the method is appropriate for the preparation of fragrant red pepper seed oil, and the oil is suitable for used as edible oil. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  2. A Generalised Assessment of Working Fluids and Radial Turbines for Non-Recuperated Subcritical Organic Rankine Cycles

    Directory of Open Access Journals (Sweden)

    Martin T. White

    2018-03-01

    Full Text Available The aim of this paper is to conduct a generalised assessment of both optimal working fluids and radial turbine designs for small-scale organic Rankine cycle (ORC systems across a range of heat-source temperatures. The former has been achieved by coupling a thermodynamic model of subcritical, non-recperated cycles with the Peng–Robinson equation of state, and optimising the working-fluid and cycle parameters for heat-source temperatures ranging between 80 ° C and 360 ° C . The critical temperature of the working fluid is found to be an important parameter governing working-fluid selection. Moreover, a linear correlation between heat-source temperature and the optimal critical temperature that achieves maximum power output has been found for heat-source temperatures below 300 ° C ( T cr = 0.830 T hi + 41.27 . This correlation has been validated against cycle calculations completed for nine predefined working fluids using both the Peng–Robinson equation of state and using the REFPROP program. Ultimately, this simple correlation can be used to identify working-fluid candidates for a specific heat-source temperature. In the second half of this paper, the effect of the heat-source temperature on the optimal design of a radial-inflow turbine rotor for a 25 kW subcritical ORC system has been studied. As the heat-source temperature increases, the optimal blade-loading coefficient increases, whilst the optimal flow coefficient reduces. Furthermore, passage losses are dominant in turbines intended for low-temperature applications. However, at higher heat-source temperatures, clearance losses become more dominant owing to the reduced blade heights. This information can be used to identify the most direct route to efficiency improvements in these machines. Finally, it is observed that the transition from a conventional converging stator to a converging-diverging stator occurs at heat-source temperatures of approximately 165 ° C , whilst radially

  3. Supercritical fluid extraction behaviour of polymer matrices

    International Nuclear Information System (INIS)

    Sujatha, K.; Kumar, R.; Sivaraman, N.; Srinivasan, T.G.; Vasudeva Rao, P.R.

    2007-01-01

    Organic compounds present in polymeric matrices such as neoprene, surgical gloves and PVC were co-extracted during the removal of uranium using supercritical fluid extraction (SFE) technique. Hence SFE studies of these matrices were carried out to establish the extracted species using HPLC, IR and mass spectrometry techniques. The initial study indicated that uranium present in the extract could be purified from the co-extracted organic species. (author)

  4. Subcritical water extraction combined with molecular imprinting technology for sample preparation in the detection of triazine herbicides.

    Science.gov (United States)

    Zhao, Fengnian; Wang, Shanshan; She, Yongxin; Zhang, Chao; Zheng, Lufei; Jin, Maojun; Shao, Hua; Jin, Fen; Du, Xinwei; Wang, Jing

    2017-09-15

    A selective, environmentally friendly, and cost-effective sample extraction method based on a combination of subcritical water extraction (SWE) and molecularly imprinted solid-phase extraction (MISPE) was developed for the determination of eight triazine herbicides in soil samples by liquid chromatography-tandem mass spectrometry (LC-MS/MS). In SWE, the highest extraction yields of triazine herbicides were obtained under 150°C for 15min using 20% ethanol as the organic modifier. Addition of MIP during SWE increased the extraction efficiency, and using MIP as a selective SPE sorbent improved the enrichment capability. Soil samples were treated with the optimized extraction MIP/SWE-MISPE method and analyzed by LC-MS/MS. The novel technique was then applied to soil samples for the determination of triazine herbicides, and better recoveries (78.9%-101%) were obtained compared with using SWE-MISPE (30%-67%). Moreover, this newly developed method displayed good linearity (R 2 >0.99) and precision (2.7-9.8%), and low enough detection limits (0.4-3.3μgkg -1 ). This combination of SWE and MIP technology is a simple, effective and promising method to selectively extract class-specific compounds in complex samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Strong cation exchange-type chiral stationary phase for enantioseparation of chiral amines in subcritical fluid chromatography.

    Science.gov (United States)

    Wolrab, Denise; Kohout, Michal; Boras, Mario; Lindner, Wolfgang

    2013-05-10

    A new strong cation exchange type chiral stationary phase (SCX CSP) based on a syringic acid amide derivative of trans-(R, R)-2-aminocyclohexanesulfonic acid was applied to subcritical fluid chromatography (SFC) for separation of various chiral basic drugs and their analogues. Mobile phase systems consisting of aliphatic alcohols as polar modifiers and a broad range of amines with different substitution patterns and lipophilicity were employed to evaluate the impact on the SFC retention and selectivity characteristics. The observed results point to the existence of carbonic and carbamic acid salts formed as a consequence of reactions occurring between carbon dioxide, the alcoholic modifiers and the amine species present in the sub/supercritical fluid medium, respectively. Evidence is provided that these species are essential for affecting ion exchange between the strongly acidic chiral selector units and the basic analytes, following the well-established stoichiometric displacement mechanisms. Specific trends were observed when different types of amines were used as basic additives. While ammonia gave rise to the formation of the most strongly eluting carbonic and carbamic salt species, simple tertiary amines consistently provided superior levels of enantioselectivity. Furthermore, trends in the chiral SFC separation characteristics were investigated by the systematic variation of the modifier content and temperature. Different effects of additives are interpreted in terms of changes in the relative concentration of the transient ionic species contributing to analyte elution, with ammonia-derived carbamic salts being depleted at elevated temperatures by decomposition. Additionally, in an effort to optimize SFC enantiomer separation conditions for selected analytes, the impact of the type of the organic modifier, temperature, flow rate and active back pressure were also investigated. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Super/subcritical fluid chromatography with packed columns: state of the art and applications

    Directory of Open Access Journals (Sweden)

    Carla Grazieli Azevedo da Silva

    2014-07-01

    Full Text Available Separations using supercritical fluid chromatography (SFC with packed columns have been re-discovered and explored in recent years. SFC enables fast and efficient separations and, in some cases, gives better results than high performance liquid chromatography (HPLC. This paper provides an overview of recent advances in SFC separations using packed columns for both achiral and chiral separations. The most important types of stationary phases used in SFC are discussed as well as the most critical parameters involved in the separations and some recent applications.

  7. A three-dimensional thermal and fluid dynamics analysis of a gas cooled subcritical fast reactor driven by a D-T fusion neutron source

    International Nuclear Information System (INIS)

    Angelo, G.; Andrade, D.A.; Angelo, E.; Carluccio, T.; Rossi, P.C.R.; Talamo, A.

    2011-01-01

    Highlights: → A thermal fluid dynamics numerical model was created for a gas cooled subcritical fast reactor. → Standard k-ε model, Eddy Viscosity Transport Equation model underestimates the fuel temperature. → For a conservative assumption, SSG Reynolds stress model was chosen. → Creep strength is the most important parameter in fuel design. - Abstract: The entire nuclear fuel cycle involves partitioning classification and transmutation recycling. The usage of a tokamak as neutron sources to burn spent fuel in a gas cooled subcritical fast reactor (GCSFR) reduces the amount of long-lived radionuclide, thus increasing the repository capacity. This paper presents numerical thermal and fluid dynamics analysis for a gas cooled subcritical fast reactor. The analysis aim to determine the operational flow condition for this reactor, and to compare three distinct turbulence models (Eddy Viscosity Transport Equation, standard k-ε and SSG Reynolds stress) for this application. The model results are presented and discussed. The methodology used in this paper was developed to predict the coolant mass flow rate. It can be applied to any other gas cooled reactor.

  8. Effect of Carreau-Yasuda rheological parameters on subcritical Lapwood convection in horizontal porous cavity saturated by shear-thinning fluid

    Science.gov (United States)

    Khechiba, Khaled; Mamou, Mahmoud; Hachemi, Madjid; Delenda, Nassim; Rebhi, Redha

    2017-06-01

    The present study is focused on Lapwood convection in isotropic porous media saturated with non-Newtonian shear thinning fluid. The non-Newtonian rheological behavior of the fluid is modeled using the general viscosity model of Carreau-Yasuda. The convection configuration consists of a shallow porous cavity with a finite aspect ratio and subject to a vertical constant heat flux, whereas the vertical walls are maintained impermeable and adiabatic. An approximate analytical solution is developed on the basis of the parallel flow assumption, and numerical solutions are obtained by solving the full governing equations. The Darcy model with the Boussinesq approximation and energy transport equations are solved numerically using a finite difference method. The results are obtained in terms of the Nusselt number and the flow fields as functions of the governing parameters. A good agreement is obtained between the analytical approximation and the numerical solution of the full governing equations. The effects of the rheological parameters of the Carreau-Yasuda fluid and Rayleigh number on the onset of subcritical convection thresholds are demonstrated. Regardless of the aspect ratio of the enclosure and thermal boundary condition type, the subcritical convective flows are seen to occur below the onset of stationary convection. Correlations are proposed to estimate the subcritical Rayleigh number for the onset of finite amplitude convection as a function of the fluid rheological parameters. Linear stability of the convective motion, predicted by the parallel flow approximation, is studied, and the onset of Hopf bifurcation, from steady convective flow to oscillatory behavior, is found to depend strongly on the rheological parameters. In general, Hopf bifurcation is triggered earlier as the fluid becomes more and more shear-thinning.

  9. Theoretical models for supercritical fluid extraction.

    Science.gov (United States)

    Huang, Zhen; Shi, Xiao-Han; Jiang, Wei-Juan

    2012-08-10

    For the proper design of supercritical fluid extraction processes, it is essential to have a sound knowledge of the mass transfer mechanism of the extraction process and the appropriate mathematical representation. In this paper, the advances and applications of kinetic models for describing supercritical fluid extraction from various solid matrices have been presented. The theoretical models overviewed here include the hot ball diffusion, broken and intact cell, shrinking core and some relatively simple models. Mathematical representations of these models have been in detail interpreted as well as their assumptions, parameter identifications and application examples. Extraction process of the analyte solute from the solid matrix by means of supercritical fluid includes the dissolution of the analyte from the solid, the analyte diffusion in the matrix and its transport to the bulk supercritical fluid. Mechanisms involved in a mass transfer model are discussed in terms of external mass transfer resistance, internal mass transfer resistance, solute-solid interactions and axial dispersion. The correlations of the external mass transfer coefficient and axial dispersion coefficient with certain dimensionless numbers are also discussed. Among these models, the broken and intact cell model seems to be the most relevant mathematical model as it is able to provide realistic description of the plant material structure for better understanding the mass-transfer kinetics and thus it has been widely employed for modeling supercritical fluid extraction of natural matters. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Subcritical Water Technology for Extraction of Phenolic Compounds from Chlorella sp. Microalgae and Assessment on Its Antioxidant Activity.

    Science.gov (United States)

    Zakaria, Siti Maisurah; Kamal, Siti Mazlina Mustapa; Harun, Mohd Razif; Omar, Rozita; Siajam, Shamsul Izhar

    2017-07-03

    Chlorella sp . microalgae is a potential source of antioxidants and natural bioactive compounds used in the food and pharmaceutical industries. In this study, a subcritical water (SW) technology was applied to determine the phenolic content and antioxidant activity of Chlorella sp . This study focused on maximizing the recovery of Chlorella sp. phenolic content and antioxidant activity measured by 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay as a function of extraction temperature (100-250 °C), time (5-20 min) and microalgae concentration (5-20 wt. %) using response surface methodology. The optimal operating conditions for the extraction process were found to be 5 min at 163 °C with 20 wt. % microalgae concentration, which resulted in products with 58.73 mg gallic acid equivalent (GAE)/g phenolic content and 68.5% inhibition of the DPPH radical. Under optimized conditions, the experimental values were in close agreement with values predicted by the model. The phenolic content was highly correlated (R² = 0.935) with the antioxidant capacity. Results indicated that extraction by SW technology was effective and that Chlorella sp . could be a useful source of natural antioxidants.

  11. Supercritical fluid carbon dioxide extraction of actinides

    International Nuclear Information System (INIS)

    Rao, Ankita; Tomar, B.S.

    2016-01-01

    Supercritical fluid extraction (SFE) is a process akin to liquid-liquid or solvent extraction where a Supercritical fluid (SCF) is contacted with a solid/ liquid matrix for the purpose of separating the component of interest from the original matrix. Carbon dioxide is a preferred choice as supercritical fluid (SCF) owing to its moderate critical parameter (P c = 7.38 MPa and T c = 304.1K) coupled with radiation and chemical stability, non toxic nature and low cost. Despite widespread applications for extraction of organic compounds and associated advantages especially liquid waste minimization, the SFE of metal ions was left unexplored for quite some time, as direct metal ion extraction is inefficient due charge neutralization requirement and weak solute-solvent interaction. Neutral SCF soluble metal-ligand complexation is imperative and SFE of actinides was reported only in 1994. Several studies have been carried out on SFE of uranium, thorium and plutonium from nitric acid medium employing different sets of ligands (organophosphorus, diketones, amides). Especially attractive is the possibility of direct dissolution and extraction of actinides employing ligand-acid adducts (like TBP.HNO 3 adduct) from solid matrices of different stages of nuclear fuel cycle viz. ores, spent nuclear fuels and radioactive wastes. Also, partitioning of actinides from fission products has been explored in spent nuclear fuel. These studies on supercritical fluid extraction of actinides indicate a more efficient and environmentally sustainable technology. (author)

  12. The effect of filler addition and oven temperature to the antioxidant quality in the drying of Physalis angulata fruit extract obtained by subcritical water extraction

    Science.gov (United States)

    Susanti, R. F.; Christianto, G.

    2016-01-01

    Physalis angulata or ceplukan is medicinal herb, which grows naturally in Indonesia. It has been used in traditional medicine to treat several diseases. It is also reported to have antimycobacterial, antileukemic, antipyretic. In this research, Pysalis angulata fruit was investigated for its antioxidant capacity. In order to avoid the toxic organic solvent commonly used in conventional extraction, subcritical water extraction method was used. During drying, filler which is inert was added to the extract. It can absorb water and change the oily and sticky form of extract to powder form. The effects of filler types, concentrations and drying temperatures were investigated to the antioxidant quality covering total phenol, flavonoid and antioxidant activity. The results showed that total phenol, flavonoid and antioxidant activity were improved by addition of filler because the drying time was shorter compared to extract without filler. Filler absorbs water and protects extract from exposure to heat during drying. The combination between high temperature and shorter drying time are beneficial to protect the antioxidant in extract. The type of fillers investigation showed that aerosil gave better performance compared to Microcrystalline Celullose (MCC).

  13. Thermodynamic and economic optimizations of a waste heat to power plant driven by a subcritical ORC (Organic Rankine Cycle) using pure or zeotropic working fluid

    International Nuclear Information System (INIS)

    Le, Van Long; Kheiri, Abdelhamid; Feidt, Michel; Pelloux-Prayer, Sandrine

    2014-01-01

    This paper carried out the thermodynamic and economic optimizations of a subcritical ORC (Organic Rankine Cycle) using a pure or a zeotropic mixture working fluid. Two pure organic compounds, i.e. n-pentane and R245fa, and their mixtures with various concentrations were used as ORC working fluid for this study. Two optimizations, i.e. exergy efficiency maximization and LCOE (Levelized Cost of Electricity) minimization, were performed to find out the optimum operating conditions of the system and to determine the best working fluid from the studied media. Hot water at temperature of 150 °C and pressure of 5 bars was used to simulate the heat source medium. Whereas, cooling water at temperature of 20 °C was considered to be the heat sink medium. The mass flow rate of heat source is fixed at 50 kg/s for the optimizations. According to the results, the n-pentane-based ORC showed the highest maximized exergy efficiency (53.2%) and the lowest minimized LCOE (0.0863 $/kWh). Regarding ORCs using zeotropic working fluids, 0.05 and 0.1 R245fa mass fraction mixtures present the comparable economic features and thermodynamic performances to the system using n-pentane at minimum LCOE. The ORC using R245fa represents the least profitable system. - Highlights: • Thermoeconomic optimization is carried out for a subcritical ORC. • Exergy efficiency and Levelized Cost of Electricity are optimized. • R245fa, n-Pentane and their mixtures are used as ORC working fluid. • CO 2 emissions can be substantially reduced by waste heat recovery using an ORC

  14. Near-critical and supercritical fluid extraction of polycyclic aromatic hydrocarbons from town gas soil

    International Nuclear Information System (INIS)

    Kocher, B.S.; Azzam, F.O.; Cutright, T.J.; Lee, S.

    1995-01-01

    The contamination of soil by hazardous and toxic organic pollutants is an ever-growing problem facing the global community. One particular family of contaminants that are of major importance are polycyclic aromatic hydrocarbons (PAHs). PAHs are the result of coal gasification and high-temperature processes. Sludges from these town gas operations were generally disposed of into unlined pits and left there for eventual biodegradation. However, the high levels of PAH contained in the pits prevented the occurrence of biodegradation. PAH contaminated soil is now considered hazardous and must be cleaned to environmentally acceptable standards. One method for the remediation is extraction with supercritical water. Water in or about its critical region exhibits enhanced solvating power toward most organic compounds. Contaminated soil containing 4% by mass of hydrocarbons was ultra-cleaned in a 300-cm 3 semicontinuous system to an environmentally acceptable standard of less than 200 ppm residual hydrocarbon concentration. The effects of subcritical or supercritical extraction, solvent temperature, pressure, and density have been studied, and the discerning characteristics of this type of fluid have been identified. The efficiencies of subcritical and supercritical extraction have been discussed from a process engineering standpoint

  15. A multi-fluid PSO-based algorithm for the search of the best performance of sub-critical Organic Rankine Cycles

    International Nuclear Information System (INIS)

    Cavazzini, G.; Bari, S.; Pavesi, G.; Ardizzon, G.

    2017-01-01

    The present paper focuses on the thermodynamic optimization of a sub-critical ORC for heat source temperatures in the range between 80 and 150 °C. The most significant novelty of the optimization procedure is that the optimization algorithm was modified for this particular application in order to allow the swarm particles to dynamically choose the working fluid among a list of 37 candidates during their heuristic movement, by continuously and dynamically modifying the search domain of each particle iteration-by-iteration due to the different vapour saturation lines of the chosen working fluid. The significant amount of data obtained by the optimization procedure highlighted the dependency of the system efficiency on two main parameters: the Jakob number related to the optimized cycle (Ja_o_p_t) and the ratio between the critical temperature of the working fluid and the inlet heat source temperature. At closer inspection, a third new parameter Ω was identified, resulting from the combination of the previous two, whose minimization is correlated to the maximization of system efficiency. A procedure for the preliminary estimation of the optimal cycle allowing to estimate with good accuracy the Jakob number Ja_o_p_t and the corresponding value of Ω was also developed. - Highlights: • An PSO algorithm allowing for the dynamic choice of the working fluid is presented. • Thermodynamic optimizations for several heat source temperatures were carried out. • An effective parameter for choosing the best performing working fluids is presented.

  16. Sustainable extraction of molecules for human food, cosmetic and pharmaceutical products: extraction in supercritical fluids

    International Nuclear Information System (INIS)

    Leone, GianPaolo; Ferri, Donatella

    2015-01-01

    Since several years, the ENEA Innovation Laboratory for Agro-Industrial, proposed activities of research and development of extraction processes with supercritical fluids (SFE, Supercritical Fluid Extraction), focusing on sustainability characteristics of the process. The technique, in fact, makes no use of organic solvents, has a low energy consumption and requires a lower number of process steps compared to conventional extractions. The process also responds to the requirements imposed by the legislation for human food, cosmetic and pharmaceutical extracts. [it

  17. Sustainable extraction of molecules for potable alcohol, cosmetics and pharmaceuticals: extraction in supercritical fluids

    International Nuclear Information System (INIS)

    Leone, Gian Paolo; Ferri, Donatella

    2015-01-01

    Since many years the Laboratory of Agro-Industrial Innovation (UTAGRI-INN) ENEA proposed research and development of extraction processes with supercritical fluids (SFE, Supercritical Fluid Extraction), aiming on the sustainability of the process characteristics. The technique, in fact, makes no use of organic solvents, It has reduced energy consumption and requires a number of process step lower than the extractions traditional. The process also responds to the requirements required by the regulations for food use, cosmetics and pharmaceutical extracts. [it

  18. Ginger and turmeric starches hydrolysis using subcritical water + CO2: the effect of the SFE pre-treatment

    Directory of Open Access Journals (Sweden)

    S. R. M. Moreschi

    2006-06-01

    Full Text Available In this work, the hydrolysis of fresh and dried turmeric (Curcuma longa L. and ginger (Zingiber officinale R. in the presence of subcritical water + CO2 was studied. The hydrolysis of ginger and turmeric bagasses from supercritical fluid extraction was also studied. The reactions were done using subcritical water and CO2 at 150 bar, 200 °C and reaction time of 11 minutes; the degree of reaction was monitored through the amount of starch hydrolyzed. Process yields were calculated using the amount of reducing and total sugars formed. The effects of supercritical fluid extraction in the starchy structures were observed by scanning electron microscopy. Higher degree of hydrolysis (97- 98 % were obtained for fresh materials and the highest total sugar yield (74% was established for ginger bagasse. The supercritical fluid extraction did not significantly modify the degree of hydrolysis in the tested conditions.

  19. Supercritical fluid extraction of uranium and neodymium nitrates

    International Nuclear Information System (INIS)

    Sujatha, K.; Sivaraman, N.; Srinivasan, T.G.; Vasudeva Rao, P.R.

    2011-01-01

    Supercritical fluid extraction (SFE) of uranyl nitrate and neodymium nitrate salts from a mixture was investigated in the present study using Sc-CO 2 modified with various ligands such as organophosphorous compounds, amides, and diketones. Preferential extraction of uranyl nitrate over neodymium nitrate was demonstrated using Sc-CO 2 modified with amide, di-(2ethylhexyl) isobutyramide (D2EHIBA). (author)

  20. Supercritical fluid extraction of reed (thypa)

    Energy Technology Data Exchange (ETDEWEB)

    Kucuk, M.; Genel, Y. [YYU Educational Faculty, Van (Turkey); Demir, H. [YYU Science and Art Faculty, Van (Turkey)

    2005-04-15

    Reed (typha) mill was converted to liquid products by using organic solvents (methanol, ethanol and acetone) with catalysts (% 10 NaOH and ZnCl{sub 2}) and without catalyst in an autoclave at temperatures of 533, 553, and 573 K. The liquid products were extracted by liquid-liquid extraction [DSA1] (benzene and diethyl ether). The yields from supercritical methanol, ethanol and acetone conversions were 36.2, 24.5, and 55.1%, respectively, at 573 K. In the catalytic runs with methanol and ethanol extracts were 46.3 and 35.5% (for NaOH catalyst) and 51.8 and 38.5% (for ZnCl{sub 2} catalyst) respectively, at 573 K. The yields from supercritical methanol were increased from 38.2 to 52.4% as the temperature was increased from 533 to 573 K in the catalytic run. (Author)

  1. Particle Formation by Supercritical Fluid Extraction and Expansion Process

    Directory of Open Access Journals (Sweden)

    Sujuan Pan

    2013-01-01

    Full Text Available Supercritical fluid extraction and expansion (SFEE patented technology combines the advantages of both supercritical fluid extraction (SFE and rapid expansion of supercritical solution (RESS with on-line coupling, which makes the nanoparticle formation feasible directly from matrix such as Chinese herbal medicine. Supercritical fluid extraction is a green separation technology, which has been developed for decades and widely applied in traditional Chinese medicines or natural active components. In this paper, a SFEE patented instrument was firstly built up and controlled by LABVIEW work stations. Stearic acid was used to verify the SFEE process at optimized condition; via adjusting the preexpansion pressure and temperature one can get different sizes of particles. Furthermore, stearic acid was purified during the SFEE process with HPLC-ELSD detecting device; purity of stearic acid increased by 19%, and the device can purify stearic acid.

  2. Bio-oil production from biomass via supercritical fluid extraction

    Energy Technology Data Exchange (ETDEWEB)

    Durak, Halil, E-mail: halildurak@yyu.edu.tr [Yuzuncu Yıl University, Vocational School of Health Services, 65080, Van (Turkey)

    2016-04-18

    Supercritical fluid extraction is used for producing bio-fuel from biomass. Supercritical fluid extraction process under supercritical conditions is the thermally disruption process of the lignocellulose or other organic materials at 250-400 °C temperature range under high pressure (4-5 MPa). Supercritical fluid extraction trials were performed in a cylindrical reactor (75 mL) in organic solvents (acetone, ethanol) under supercritical conditions with (calcium hydroxide, sodium carbonate) and without catalyst at the temperatures of 250, 275 and 300 °C. The produced liquids at 300 °C in supercritical liquefaction were analyzed and characterized by elemental, GC-MS and FT-IR. 36 and 37 different types of compounds were identified by GC-MS obtained in acetone and ethanol respectively.

  3. Bio-oil production from biomass via supercritical fluid extraction

    International Nuclear Information System (INIS)

    Durak, Halil

    2016-01-01

    Supercritical fluid extraction is used for producing bio-fuel from biomass. Supercritical fluid extraction process under supercritical conditions is the thermally disruption process of the lignocellulose or other organic materials at 250-400 °C temperature range under high pressure (4-5 MPa). Supercritical fluid extraction trials were performed in a cylindrical reactor (75 mL) in organic solvents (acetone, ethanol) under supercritical conditions with (calcium hydroxide, sodium carbonate) and without catalyst at the temperatures of 250, 275 and 300 °C. The produced liquids at 300 °C in supercritical liquefaction were analyzed and characterized by elemental, GC-MS and FT-IR. 36 and 37 different types of compounds were identified by GC-MS obtained in acetone and ethanol respectively.

  4. [Study on condition for extraction of arctiin from fruits of Arctium lappa using supercritical fluid extraction].

    Science.gov (United States)

    Dong, Wen-hong; Liu, Ben

    2006-08-01

    To study the feasibility of supercritical fluid extraction (SFE) for arctiin from the fruits of Arctium lappa. The extracts were analyzed by HPLC, optimum extraction conditions were studied by orthogonal tests. The optimal extraction conditions were: pressure 40 MPa, temperature 70 degrees C, using methanol as modifier carrier at the rate of 0.55 mL x min(-1), static extraction time 5 min, dynamic extraction 30 min, flow rate of CO2 2 L x min(-1). SFE has the superiority of adjustable polarity, and has the ability of extracting arctiin.

  5. Comparison of extraction fluids used with contaminated soils

    International Nuclear Information System (INIS)

    Erickson, D.C.; White, E.; Loehr, R.C.

    1991-01-01

    Five separate solutions were evaluated for use as leaching fluids with soils containing petroleum refining waste residues. The extraction fluids were: (a) water, (b) dilute hydrochloric acid, (c) 0.05 molar EDTA, (d) acetate buffer and (e) a dilute sulfuric/nitric acid mixture. The soils were collected from former refinery land treatment sites which had been used to treat petroleum refining wastes. The extractions were performed using a rotary tumbler (30 RPM, 18 hours) and the resulting solutions were analyzed for polynuclear aromatic hydrocarbons (PAHs) and metals. Concentrations of the PAHs in each of the five solutions were near or below the analytical quantitation limits. Metal concentrations were highest in the HCL and EDTA extracts, although only a small fraction of the total available metal present in the soils was extracted by the solutions evaluated

  6. Supercritical Fluid Extraction of Plutonium and Americium from Soil

    International Nuclear Information System (INIS)

    Fox, R.V.; Mincher, B.J.

    2002-01-01

    Supercritical fluid extraction (SFE) of plutonium and americium from soil was successfully demonstrated using supercritical fluid carbon dioxide solvent augmented with organophosphorus and beta-diketone complexants. Spiked Idaho soils were chemically and radiologically characterized, then extracted with supercritical fluid carbon dioxide at 2,900 psi and 65 C containing varying concentrations of tributyl phosphate (TBP) and thenoyltrifluoroacetone (TTA). A single 45 minute SFE with 2.7 mol% TBP and 3.2 mol% TTA provided as much as 88% ± 6.0 extraction of americium and 69% ± 5.0 extraction of plutonium. Use of 5.3 mol% TBP with 6.8 mol% of the more acidic beta-diketone hexafluoroacetylacetone (HFA) provided 95% ± 3.0 extraction of americium and 83% ± 5.0 extraction of plutonium in a single 45 minute SFE at 3,750 psi and 95 C. Sequential chemical extraction techniques were used to chemically characterize soil partitioning of plutonium and americium in pre-SFE soil samples. Sequential chemical extraction techniques demonstrated that spiked plutonium resides primarily (76.6%) in the sesquioxide fraction with minor amounts being absorbed by the oxidizable fraction (10.6%) and residual fractions (12.8%). Post-SFE soils subjected to sequential chemical extraction characterization demonstrated that 97% of the oxidizable, 78% of the sesquioxide and 80% of the residual plutonium could be removed using SFE. These preliminary results show that SFE may be an effective solvent extraction technique for removal of actinide contaminants from soil

  7. 9 CFR 319.721 - Fluid extract of meat.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Fluid extract of meat. 319.721 Section... AGENCY ORGANIZATION AND TERMINOLOGY; MANDATORY MEAT AND POULTRY PRODUCTS INSPECTION AND VOLUNTARY INSPECTION AND CERTIFICATION DEFINITIONS AND STANDARDS OF IDENTITY OR COMPOSITION Meat Soups, Soup Mixes...

  8. Fluid extraction using carbon dioxide and organophosphorus chelating agents

    Science.gov (United States)

    Smart, Neil G.; Wai, Chien M.; Lin, Yuehe; Kwang, Yak Hwa

    1998-01-01

    Methods for extracting metalloid and metal species from a solid or liquid material by exposing the material to a fluid solvent, particularly supercritical CO.sub.2, and a chelating agent are described. The chelating agent forms a chelate with the species, the chelate being soluble in the fluid to allow removal of the species from the material. In preferred embodiments the extraction solvent is supercritical CO.sub.2 and the chelating agent comprises an organophosphorous chelating agent, particularly sulfur-containing organophosphorous chelating agents, including mixtures of chelating agents. Examples of chelating agents include monothiophosphinic acid, di-thiophosphinic acid, phosphine sulfite, phosphorothioic acid, and mixtures thereof. The method provides an environmentally benign process for removing metal and metalloids from industrial waste solutions, particularly acidic solutions. Both the chelate and the supercritical fluid can be regenerated and the contaminant species recovered to provide an economic, efficient process.

  9. Remediation of flare pit soils using supercritical fluid extraction

    Energy Technology Data Exchange (ETDEWEB)

    Nagpal, V.; Guigard, S.E. [Alberta Univ., Edmonton, AB (Canada). Dept. of Civil Engineering

    2005-09-01

    A laboratory study was conducted to examine the ability of supercritical fluid extraction (SFE) to remove petroleum hydrocarbons (PHCs) from two flare pit soils in Alberta. SFE is a technology for remediation of contaminated soils. In order to determine the optimal extraction conditions and to understand the effects of pressure, temperature, supercritical carbon dioxide flow rate, soil type, and extraction time on the extraction efficiency of SFE, extractions were performed on two flare pit soils at various pressures and temperatures. Chemicals in the study included diesel oil, SAE 10-30W motor oil, n-decane, hexadecane, tetratriacontane and pentacontane. The best extraction conditions were defined as conditions that result in a treated soil with a PHC concentration that meets the regulatory guidelines of the Canadian Council of Ministers of the Environment in the Canada-wide standard for PHC is soil. The study results indicate that the efficiency of the SFE process is solvent-density dependent for the conditions studied. The highest extraction efficiency for both soils was obtained at conditions of 24.1 MPa and 40 degrees C. An increase in pressure at a fixed temperature led to an increase in the extraction efficiency while an increase in temperature at a fixed pressure led to a decrease in the extraction efficiency. The treated soils were observed to be lighter in colour, drier, and grainier than the soil prior to extraction. It was concluded that SFE is an effective method for remediating flare pit soils. 63 refs., 4 tabs., 5 figs.

  10. RED WINE EXTRACT OBTAINED BY MEMBRANE-BASED SUPERCRITICAL FLUID EXTRACTION: PRELIMINARY CHARACTERIZATION OF CHEMICAL PROPERTIES.

    Directory of Open Access Journals (Sweden)

    W. Silva

    Full Text Available ABSTRACT This study aims to obtain an extract from red wine by using membrane-based supercritical fluid extraction. This technique involves the use of porous membranes as contactors during the dense gas extraction process from liquid matrices. In this work, a Cabernet Sauvignon wine extract was obtained from supercritical fluid extraction using pressurized carbon dioxide as solvent and a hollow fiber contactor as extraction setup. The process was continuously conducted at pressures between 12 and 18 MPa and temperatures ranged from 30 to 50ºC. Meanwhile, flow rates of feed wine and supercritical CO2 varied from 0.1 to 0.5 mL min-1 and from 60 to 80 mL min-1 (NCPT, respectively. From extraction assays, the highest extraction percentage value obtained from the total amount of phenolic compounds was 14% in only one extraction step at 18MPa and 35ºC. A summarized chemical characterization of the obtained extract is reported in this work; one of the main compounds in this extract could be a low molecular weight organic acid with aromatic structure and methyl and carboxyl groups. Finally, this preliminary characterization of this extract shows a remarkable ORAC value equal to 101737 ± 5324 µmol Trolox equivalents (TE per 100 g of extract.

  11. Application of supercritical fluid extraction in analytical science

    International Nuclear Information System (INIS)

    Kumar, Pradeep

    2015-01-01

    In the recent years, supercritical fluid extraction (SFE) has emerged as a promising alternative to conventional solvent extraction process owing to its potential to minimize the generation of the liquid volume and simplification of the extraction process.This technology is some times referred to as 'green technology' and 'clean technology'. Supercritical fluid extraction process assumes significance as it exhibits practical advantages such as enhanced extraction rate due to rapid mass transfer in supercritical fluid medium and change of solvent properties such as density by tuning pressure/temperature conditions. Supercritical fluids (SCF) offer faster, cleaner and efficient extraction owing to low viscosity, high density, low surface tension and better diffusivity properties. Higher diffusivity than liquids facilitates rapid mass transfer and faster completion of reaction. Due to low viscosity and surface tension, SCF can penetrate deep inside the material, extracting the component of interest. Liquid like solvating characteristics of SCFs enable dissolution of compounds whereas gas like diffusion characteristics provide conditions for high degree of extraction in shorter time duration. CO 2 has been widely employed as supercritical fluid owing to its moderate critical constants (Pc= 72.9 atm, Tc =304.3 K, ñ c = 0.47 g mL -1 ) and attractive properties such as being easily available, recyclable, non-toxic, chemically inert, non inflammable and radio-chemically stable. SCF finds application in variety of fields. In nuclear industry for separation and purification of actinides from liquids and solid matrices. In food industry, Decaffeination of coffee is done by SCF. Pharmaceutical industry, organic compounds can be extracted from plants by SC CO 2 avoiding liquid solvent usage. SCF may also be utilised for the production of fine powders. In polymer and plastics industries, examples of applications include the impregnation of medical material

  12. Supercritical fluid extraction of uranium and thorium employing dialkyl amides

    International Nuclear Information System (INIS)

    Rao, Ankita; Kumar, Pradeep

    2014-01-01

    Extraction and purification of actinides from different matrices is of utmost importance to the nuclear industry. In recent decades, supercritical fluid extraction (SFE) has emerged as a promising alternative to solvent extraction owing to its inherent potential of minimization of liquid waste generation. N,N-dialkyl aliphatic amides have been proposed to be an alternative to TBP in the reprocessing of spent nuclear fuel due to several attractive features like innocuous nature of degradation products (mainly carboxylic acids/ amines), possibility of complete incineration of the used extractant leading to reduction in volume of secondary waste. Also, physico-chemical properties of this class of extractants can be tuned by the judicious choice of alkyl groups. In the present work, N,N-dialkyl aliphatic amides with varying alkyl groups viz. N,N-dibutyl-2-ethylhexanamide (DBEHA), N,N-dibutyl-3,3-dimethylbutanamide (DBDMBA), N,N-dihexyloctanamide (DHOA), N,N-disecbutylpentamide (DBPA), N,N-dibutyloctanamide (DBOA), have been evaluated for supercritical fluid extraction (SFE) of uranium and thorium from nitric acid medium as well as tissue paper matrix. Amides were obtained from Department of Chemistry, Delhi University and were used as such. This fact could be exploited for separation of thorium and uranium

  13. Subcriticality determination of nuclear reactor

    International Nuclear Information System (INIS)

    Borisenko, V.I.; Goranchuk, V.V.; Sidoruk, N.M.; Volokh, A.F.

    2014-01-01

    In this article the subcriticality determination of nuclear reactor is considered. Emphasized that, despite the requirements of regulatory documents on the subcriticality determination of WWER from the beginning of their operation, so far, this problem has not been solved. The results of subcriticality determination of Rossi-α method of the WWER-M is presented. The possibility of subcriticality determination of WWER is considered. The possibility of subcriticality determination of Rossi-α method with time resolution is of about 100 microseconds is also considered. The possible reasons for the error in subcriticality determination of the reactor are indicated

  14. Supercritical fluid extraction of selected pharmaceuticals from water and serum.

    Science.gov (United States)

    Simmons, B R; Stewart, J T

    1997-01-24

    Selected drugs from benzodiazepine, anabolic agent and non-steroidal anti-inflammatory drug (NSAID) therapeutic classes were extracted from water and serum using a supercritical CO2 mobile phase. The samples were extracted at a pump pressure of 329 MPa, an extraction chamber temperature of 45 degrees C, and a restrictor temperature of 60 degrees C. The static extraction time for all samples was 2.5 min and the dynamic extraction time ranged from 5 to 20 min. The analytes were collected in appropriate solvent traps and assayed by modified literature HPLC procedures. Analyte recoveries were calculated based on peak height measurements of extracted vs. unextracted analyte. The recovery of the benzodiazepines ranged from 80 to 98% in water and from 75 to 94% in serum. Anabolic drug recoveries from water and serum ranged from 67 to 100% and 70 to 100%, respectively. The NSAIDs were recovered from water in the 76 to 97% range and in the 76 to 100% range from serum. Accuracy, precision and endogenous peak interference, if any, were determined for blank and spiked serum extractions and compared with classical sample preparation techniques of liquid-liquid and solid-phase extraction reported in the literature. For the benzodiazepines, accuracy and precision for supercritical fluid extraction (SFE) ranged from 1.95 to 3.31 and 0.57 to 1.25%, respectively (n = 3). The SFE accuracy and precision data for the anabolic agents ranged from 4.03 to 7.84 and 0.66 to 2.78%, respectively (n = 3). The accuracy and precision data reported for the SFE of the NSAIDs ranged from 2.79 to 3.79 and 0.33 to 1.27%, respectively (n = 3). The precision of the SFE method from serum was shown to be comparable to the precision obtained with other classical preparation techniques.

  15. Subcritical nuclear assembly

    International Nuclear Information System (INIS)

    Vega C, H. R.

    2014-08-01

    A Subcritical Nuclear Assembly is a device where the nuclear-fission chain reaction is initiated and maintained using an external neutron source. It is a valuable educational and research tool where in a safe way many reactor parameters can be measured. Here, we have used the Wigner-Seitz method in the six-factor formula to calculate the effective multiplication factor of a subcritical nuclear reactor Nuclear Chicago model 9000. This reactor has approximately 2500 kg of natural uranium heterogeneously distributed in slugs. The reactor uses a 239 PuBe neutron source that is located in the center of an hexagonal array. Using Monte Carlo methods, with the MCNP5 code, a three-dimensional model of the subcritical reactor was designed to estimate the effective multiplication factor, the neutron spectra, the total and thermal neutron fluences along the radial and axial axis. With the neutron spectra in two locations outside the reactor the ambient dose equivalent were estimated. (Author)

  16. BRAHMMA - accelerator driven subcritical facility

    International Nuclear Information System (INIS)

    Roy, Tushar; Shukla, Shefali; Shukla, M.; Ray, N.K.; Kashyap, Y.S.; Patel, T.; Gadkari, S.C.

    2017-01-01

    Accelerator Driven Subcritical systems are being studied worldwide for their potential in burning minor actinides and reducing long term radiotoxicity of spent nuclear fuels. In order to pursue the physics studies of Accelerator Driven Subcritical systems, a thermal subcritical assembly BRAHMMA (BeOReflectedAndHDPeModeratedMultiplying Assembly) has been developed at Purnima Labs, BARC. The facility consists of two major components: Subcritical core and Accelerator (DT/ DD Purnima Neutron Generator)

  17. Supercritical Fluid Extraction of Plant Flavors and Fragrances

    Directory of Open Access Journals (Sweden)

    Massimo E. Maffei

    2013-06-01

    Full Text Available Supercritical fluid extraction (SFE of plant material with solvents like CO2, propane, butane, or ethylene is a topic of growing interest. SFE allows the processing of plant material at low temperatures, hence limiting thermal degradation, and avoids the use of toxic solvents. Although today SFE is mainly used for decaffeination of coffee and tea as well as production of hop extracts on a large scale, there is also a growing interest in this extraction method for other industrial applications operating at different scales. In this review we update the literature data on SFE technology, with particular reference to flavors and fragrance, by comparing traditional extraction techniques of some industrial medicinal and aromatic crops with SFE. Moreover, we describe the biological activity of SFE extracts by describing their insecticidal, acaricidal, antimycotic, antimicrobial, cytotoxic and antioxidant properties. Finally, we discuss the process modelling, mass-transfer mechanisms, kinetics parameters and thermodynamic by giving an overview of SFE potential in the flavors and fragrances arena.

  18. Studies on supercritical fluid extraction of uranium from sodium diuranate

    International Nuclear Information System (INIS)

    Prabhat, Parimal; Vithal, G.K.; Rao, Ankita; Kumar, Pradeep; Tomar, B.S.

    2014-01-01

    Crude sodium diuranate (SDU) produced from phosphoric acid by solvent extraction process with di-2-ethyl hexyl phosphoric acid (D2EHPA) and tri-n-butyl phosphate(TBP) contains iron and other rare earth impurities along with uranium. For further use of this uranium for fuel fabrication and its subsequent use in nuclear reactors, it has to be purified up to nuclear grade ammonium diuranate (ADU) specifications. Conventionally crude SDU is being purified by dissolving it in nitric acid followed by solvent extraction process using TBP in diluent. Use of large amount of acid and organic solvents for industrial processes is an environmental concern. Nowadays there are efforts to minimize use of acid and organic solvents in industrial processes. Supercritical Fluid Extraction (SFE) of uranium from different matrices (solid as well as liquid) has been reported by several authors in recent years. Near complete extraction of uranium from UO 2 (powder, green pellet and sintered pellet) using TBP-HNO 3 adduct by SFE has been reported. We attempted to explore possibility to purify crude SDU to nuclear grade by SFE of uranium from crude SDU matrix and study the effect of different operational parameters, mode of extraction and complexation

  19. Correlation of supercritical-fluid extraction recoveries with supercritical-fluid chromatographic retention data: A fundamental study

    NARCIS (Netherlands)

    Lou, X.W.; Janssen, J.G.M.; Cramers, C.A.M.G.

    1995-01-01

    The possibility of using supercritical-fluid chromatographic retention data for examining the effects of operational parameters, such as pressure and flow rate, on the extraction characteristics in supercritical-fluid extraction (SFE) was investigated. A model was derived for calculating the

  20. Obtaining of the antioxidants by supercritical fluid extraction

    Directory of Open Access Journals (Sweden)

    Babović Nada V.

    2011-01-01

    Full Text Available One of the important trends in the food industry today is demand for natural antioxidants from plant material. Synthetic antioxidants such as butylated hydroxytoluene (BHT, and butylated hydroxyanisole (BHA are now being replaced by the natural antioxidants because of theirs possible toxicity and as they may act as promoters of carcinogens. The natural antioxidants may show equivalent or higher antioxidant activity than the endogenous or the synthetic antioxidants. Thus, great effort is being devoted to the search for alternative and cheap sources of natural antioxidants, as well as to the development of efficient and selective extraction techniques. The supercritical fluid extraction (SFE with carbon dioxide is considered to be the most suitable method for producing natural antioxidants for the use in food industry. The supercritical extract does not contain residual organic solvents as in conventional extraction processes, which makes these products suitable for use in food, cosmetic and pharmaceutical industry. The recovery of antioxidants from plant sources involves many problematic aspects: choice of an adequate source (in terms of availability, cost, difference in phenolic content with variety and season; selection of the optimal recovery procedure (in terms of yield, simplicity, industrial application, cost; chemical analysis of extracts (for optimization purposes a fast colorimetric method is more preferable than a chromatographic one; evaluation of the antioxidant power (preferably by the different assay methods. The paper presents information about different operational methods for SFE of bioactive compounds from natural sources. It also includes the various reports on the antioxidant activity of the supercritical extracts from Lamiaceae herbs, in comparison with the activity of the synthetic antioxidants and the extracts from Lamiaceae herbs obtained by the conventional methods.

  1. ECO2M: A TOUGH2 Fluid Property Module for Mixtures of Water, NaCl, and CO2, Including Super- and Sub-Critical Conditions, and Phase Change Between Liquid and Gaseous CO2

    Energy Technology Data Exchange (ETDEWEB)

    Pruess, K.

    2011-04-01

    ECO2M is a fluid property module for the TOUGH2 simulator (Version 2.0) that was designed for applications to geologic storage of CO{sub 2} in saline aquifers. It includes a comprehensive description of the thermodynamics and thermophysical properties of H{sub 2}O - NaCl - CO{sub 2} mixtures, that reproduces fluid properties largely within experimental error for temperature, pressure and salinity conditions in the range of 10 C {le} T {le} 110 C, P {le} 600 bar, and salinity from zero up to full halite saturation. The fluid property correlations used in ECO2M are identical to the earlier ECO2N fluid property package, but whereas ECO2N could represent only a single CO{sub 2}-rich phase, ECO2M can describe all possible phase conditions for brine-CO{sub 2} mixtures, including transitions between super- and sub-critical conditions, and phase change between liquid and gaseous CO{sub 2}. This allows for seamless modeling of CO{sub 2} storage and leakage. Flow processes can be modeled isothermally or non-isothermally, and phase conditions represented may include a single (aqueous or CO{sub 2}-rich) phase, as well as two-and three-phase mixtures of aqueous, liquid CO{sub 2} and gaseous CO{sub 2} phases. Fluid phases may appear or disappear in the course of a simulation, and solid salt may precipitate or dissolve. TOUGH2/ECO2M is upwardly compatible with ECO2N and accepts ECO2N-style inputs. This report gives technical specifications of ECO2M and includes instructions for preparing input data. Code applications are illustrated by means of several sample problems, including problems that had been previously solved with TOUGH2/ECO2N.

  2. Extraction of gold and silver from geothermal fluid

    Energy Technology Data Exchange (ETDEWEB)

    Brown, K.L.; Roberts, P.J. (Geothermal Research Center, Wairakei (New Zealand); Spectrum Resources Ltd., Auckland (New Zealand))

    1988-11-10

    This paper describes the results of five experiments of the extraction of gold and silver from hydrothermal fluids with a experimental vessel settled up at KA35 well at the Kawerau geothermal field in New Zealand. The experimental vessel was designed to absorb the fluids from orifice plate controlled to be low pressure and had a chamber having within many collecting plates. The first experiment is a fundamental one in which a mild steel was used as metal collector plate. The rates of deposition of gold and silver on the plate were estimated. The second experiment showed that the rate on deposition of gold on the mild steel plate was controlled by the flux rate of hydrothermal fluid. The third experiment showed that a mild steel seemed to be better for the collection plate of gold and silver than copper and aluminium. The fourth experiment clarified that the activated charcoal was not suitable for the collector plate for gold and silver. The fifth experiment showed that a mild steel was better for metal collector than activated charcoal. 1 ref., 4 figs.

  3. Extraction of Plutonium From Spiked INEEL Soil Samples Using the Ligand-Assisted Supercritical Fluid Extraction (LA-SFE) Technique

    International Nuclear Information System (INIS)

    Fox, R.V.; Mincher, B.J.; Holmes, R.G.G.

    1999-01-01

    In order to investigate the effectiveness of ligand-assisted supercritical fluid extraction for the removal of transuranic contaminations from soils an Idaho National Engineering and Environmental Laboratory (INEEL) silty-clay soil sample was obtained from near the Radioactive Waste Management Complex area and subjected to three different chemical preparations before being spiked with plutonium. The spiked INEEL soil samples were subjected to a sequential aqueous extraction procedure to determine radionuclide portioning in each sample. Results from those extractions demonstrate that plutonium consistently partitioned into the residual fraction across all three INEEL soil preparations whereas americium partitioned 73% into the iron/manganese fraction for soil preparation A, with the balance partitioning into the residual fraction. Plutonium and americium were extracted from the INEEL soil samples using a ligand-assisted supercritical fluid extraction technique. Initial supercritical fluid extraction runs produced plutonium extraction technique. Initial supercritical fluid extraction runs produced plutonium extraction efficiencies ranging from 14% to 19%. After a second round wherein the initial extraction parameters were changed, the plutonium extraction efficiencies increased to 60% and as high as 80% with the americium level in the post-extracted soil samples dropping near to the detection limits. The third round of experiments are currently underway. These results demonstrate that the ligand-assisted supercritical fluid extraction technique can effectively extract plutonium from the spiked INEEL soil preparations

  4. Quality Parameters of Curcuma Longa L. Extracts by Supercritical Fluid Extraction (SFE) and Ultrasonic Assisted Extraction (UAE)

    International Nuclear Information System (INIS)

    Zaibunnisa Abdul Haiyee; Siti Hafsah Mohd Shah; Khudzir Ismail; Nooraain Hashim; Wan Iryani Wan Ismail

    2016-01-01

    Turmeric is one of the prominently use herbal plants due to its diverse beneficial effects especially in Indian medicine. The rhizome part of the turmeric contains valuable compounds which have been said to owe its antimicrobial effects, anti-cancer, anti-inflammatory and enhance wound healing. Due to its short-life span and perishable properties, the conversion of the rhizome into turmeric extract is desirable. Several methods have been used for extraction such as Soxhlet extraction and pressurized liquid extraction (PLE). However, these techniques are tedious, laborious, time consuming and involves the usage of toxic organic solvent, of which safeness of the end product is doubtful. In this study, a rapid, reliable and green extraction method of supercritical fluid extraction (SFE) and ultrasonic assisted extraction (UAE) were used. SFE without modifier has resulted in 0.0006 mg/ 100 g of curcuminoids concentration and 5.62 % of yield (dry weight basis). UAE using ethanol was able to produce significantly the highest yield (6.40 %, dry weight basis) and the highest curcuminoids concentration (0.1020 mg/ 100 g). However, SFE was able to produce extract that contain significantly higher major volatile compounds; tumerone, ar-turmerone and curlone. Therefore, this study proves that both extraction methods were able to produce high quality turmeric extract. (author)

  5. Supercritical fluid extraction: spectroscopic study of interactions comparison to solvent extraction

    International Nuclear Information System (INIS)

    Rustenholtz Farawila, A.

    2005-06-01

    Supercritical fluid carbon dioxide (SF-CO 2 ) was chosen to study Supercritical Fluid Extraction (SFE) of cesium and uranium. At first, crown ethers were considered as chelating agents for the SFE of cesium. The role of water and its interaction with crown ethers were especially studied using Fourier-Transform Infra-Red (FT-IR) spectroscopy in SF-CO 2 . A sandwich configuration between two crown ethers and a water molecule was observed in the SF-CO 2 phase for the first time. The equilibrium between the single and the bridge configurations was defined. The enthalpy of the hydrogen bond formation was also calculated. These results were then compared to the one in different mixtures of chloroform and carbon tetra-chloride using Nuclear Magnetic Resonance (NMR). To conclude this first part and in order to understand the whole picture of the recovery of cesium, I studied the role of water in the equilibrium between the cesium and the di-cyclo-hexano18-crown-6.In a second part, the supercritical fluid extraction of uranium was studied in SF-CO 2 . For this purpose, different complexes of Tributyl Phosphate (TBP), nitric acid and water were used as chelating and oxidizing agents. I first used FT-IR to study the TBP-water interaction in SF-CO 2 . These results were then compared to the one obtained with NMR in chloroform. NMR spectroscopy was also used to understand the TBP-nitric acid-water interaction first alone and then in chloroform. To conclude my research work, I succeeded to improve the efficiency of uranium extraction and stripping into water for a pilot-plant where enriched uranium is extracted from incinerated waste coming from nuclear fuel fabrication. TBP-nitric acid complexes were used in SF-CO 2 for the extraction of uranium from ash. (author)

  6. Supercritical fluid extraction: spectroscopic study of interactions comparison to solvent extraction

    Energy Technology Data Exchange (ETDEWEB)

    Rustenholtz Farawila, A

    2005-06-15

    Supercritical fluid carbon dioxide (SF-CO{sub 2}) was chosen to study Supercritical Fluid Extraction (SFE) of cesium and uranium. At first, crown ethers were considered as chelating agents for the SFE of cesium. The role of water and its interaction with crown ethers were especially studied using Fourier-Transform Infra-Red (FT-IR) spectroscopy in SF-CO{sub 2}. A sandwich configuration between two crown ethers and a water molecule was observed in the SF-CO{sub 2} phase for the first time. The equilibrium between the single and the bridge configurations was defined. The enthalpy of the hydrogen bond formation was also calculated. These results were then compared to the one in different mixtures of chloroform and carbon tetra-chloride using Nuclear Magnetic Resonance (NMR). To conclude this first part and in order to understand the whole picture of the recovery of cesium, I studied the role of water in the equilibrium between the cesium and the di-cyclo-hexano18-crown-6.In a second part, the supercritical fluid extraction of uranium was studied in SF-CO{sub 2}. For this purpose, different complexes of Tributyl Phosphate (TBP), nitric acid and water were used as chelating and oxidizing agents. I first used FT-IR to study the TBP-water interaction in SF-CO{sub 2}. These results were then compared to the one obtained with NMR in chloroform. NMR spectroscopy was also used to understand the TBP-nitric acid-water interaction first alone and then in chloroform. To conclude my research work, I succeeded to improve the efficiency of uranium extraction and stripping into water for a pilot-plant where enriched uranium is extracted from incinerated waste coming from nuclear fuel fabrication. TBP-nitric acid complexes were used in SF-CO{sub 2} for the extraction of uranium from ash. (author)

  7. Magnetic Partitioning Nanofluid for Rare Earth Extraction from Geothermal Fluids

    Energy Technology Data Exchange (ETDEWEB)

    McGrail, Bernard P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Thallapally, Praveen K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Liu, Jian [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Nune, Satish K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-08-21

    Rare earth metals are critical materials in a wide variety of applications in generating and storing renewable energy and in designing more energy efficient devices. Extracting rare earth metals from geothermal brines is a very challenging problem due to the low concentrations of these elements and engineering challenges with traditional chemical separations methods involving packed sorbent beds or membranes that would impede large volumetric flow rates of geothermal fluids transitioning through the plant. We are demonstrating a simple and highly cost-effective nanofluid-based method for extracting rare earth metals from geothermal brines. Core-shell composite nanoparticles are produced that contain a magnetic iron oxide core surrounded by a shell made of silica or metal-organic framework (MOF) sorbent functionalized with chelating ligands selective for the rare earth elements. By introducing the nanoparticles at low concentration (≈0.05 wt%) into the geothermal brine after it passes through the plant heat exchanger, the brine is exposed to a very high concentration of chelating sites on the nanoparticles without need to pass through a large and costly traditional packed bed or membrane system where pressure drop and parasitic pumping power losses are significant issues. Instead, after a short residence time flowing with the brine, the particles are effectively separated out with an electromagnet and standard extraction methods are then applied to strip the rare earth metals from the nanoparticles, which are then recycled back to the geothermal plant. Recovery efficiency for the rare earths at ppm level has now been measured for both silica and MOF sorbents functionalized with a variety of chelating ligands. A detailed preliminary techno-economic performance analysis of extraction systems using both sorbents showed potential to generate a promising internal rate of return (IRR) up to 20%.

  8. Determination of major aromatic constituents in vanilla using an on-line supercritical fluid extraction coupled with supercritical fluid chromatography.

    Science.gov (United States)

    Liang, Yanshan; Liu, Jiaqi; Zhong, Qisheng; Shen, Lingling; Yao, Jinting; Huang, Taohong; Zhou, Ting

    2018-04-01

    An on-line supercritical fluid extraction coupled with supercritical fluid chromatography method was developed for the determination of four major aromatic constituents in vanilla. The parameters of supercritical fluid extraction were systematically investigated using single factor optimization experiments and response surface methodology by a Box-Behnken design. The modifier ratio, split ratio, and the extraction temperature and pressure were the major parameters which have significant effects on the extraction. While the static extraction time, dynamic extraction time, and recycle time had little influence on the compounds with low polarity. Under the optimized conditions, the relative extraction efficiencies of all the constituents reached 89.0-95.1%. The limits of quantification were in the range of 1.123-4.747 μg. The limits of detection were in the range of 0.3368-1.424 μg. The recoveries of the four analytes were in the range of 76.1-88.9%. The relative standard deviations of intra- and interday precision ranged from 4.2 to 7.6%. Compared with other off-line methods, the present method obtained higher extraction yields for all four aromatic constituents. Finally, this method has been applied to the analysis of vanilla from different sources. On the basis of the results, the on-line supercritical fluid extraction-supercritical fluid chromatography method shows great promise in the analysis of aromatic constituents in natural products. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Subcritical nuclear assembly

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H. R., E-mail: fermineutron@yahoo.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)

    2014-08-15

    A Subcritical Nuclear Assembly is a device where the nuclear-fission chain reaction is initiated and maintained using an external neutron source. It is a valuable educational and research tool where in a safe way many reactor parameters can be measured. Here, we have used the Wigner-Seitz method in the six-factor formula to calculate the effective multiplication factor of a subcritical nuclear reactor Nuclear Chicago model 9000. This reactor has approximately 2500 kg of natural uranium heterogeneously distributed in slugs. The reactor uses a {sup 239}PuBe neutron source that is located in the center of an hexagonal array. Using Monte Carlo methods, with the MCNP5 code, a three-dimensional model of the subcritical reactor was designed to estimate the effective multiplication factor, the neutron spectra, the total and thermal neutron fluences along the radial and axial axis. With the neutron spectra in two locations outside the reactor the ambient dose equivalent were estimated. (Author)

  10. Effects of process parameters on peanut skins extract and CO2 diffusivity by supercritical fluid extraction

    Science.gov (United States)

    Putra, N. R.; Yian, L. N.; Nasir, H. M.; Idham, Z. Binti; Yunus, M. A. C.

    2018-03-01

    Peanut skins (Arachis hypogea) are an agricultural waste product which has received much attention because they contain high nutritional values and can be potentially utilized in difference industries. At present, only a few studies have been conducted to study the effects of parameters on the peanut skins oil extraction. Therefore, this study aimed to determine the best extraction condition in order to obtain the highest extract yield using supercritical carbon dioxide (SC-CO2) with co-solvent Ethanol as compared to Soxhlet extraction method. Diffusivity of carbon dioxide in supercritical fluid extraction was determined using Crank model. The mean particle size used in this study was 425 µm. The supercritical carbon dioxide was performed at temperature (40 – 70 °C), flow rate of co-solvent ethanol (0 - 7.5% Vethanol/Vtotal), and extraction pressure (10 – 30 MPa) were used in this studies. The results showed that the percentage of oil yields and effective diffusivity increase as the pressure, rate of co-solvent, and temperature increased.

  11. A fully continuous supercritical fluid extraction system for contaminated soil

    International Nuclear Information System (INIS)

    Ryan, M.; Stiver, W.H.

    2007-01-01

    Brownfield sites are contaminated sites in an urban setting. There are hundreds of thousands of such sites, where contaminants migrate to the atmosphere, seep into groundwater, runoff into surface water and enter the food chain through plant uptake and soil ingestion. The Sydney Tar Ponds alone contain more than a million tonnes of contaminated soils and sediments. Soil vapour extraction, incineration, bioremediation, solvent extraction and land filling are among the remediation techniques that have been developed for brownfield sites over the years. However, no single technology is ideally suited to all cases because of the diversity of contaminants and diversity of site characterization. This paper focused on supercritical fluid extraction (SFE) which is well suited to sites contaminated with polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and heavy metal. A fully continuous laboratory-scale SFE process for a slurry-based system was designed and constructed to handle the supercritical carbon dioxide (SC-CO 2 ) and the soil slurry. The system continuously pumps carbon dioxide under supercritical conditions and soil slurry into a counter-current contacting column. The testing soil was Delhi loamy sand, spiked with 10 mg/g of naphthalene. The soil slurry ranged from 0.0028 g dry soil per g slurry to 0.072 g/g. The operating temperature was 43 degrees C and the operating pressure was 7.7 MPa. Near steady state, fully continuous flow was achieved with runs lasting up to 2 hours. The quantifiable recoveries of naphthalene from the soil slurry was demonstrated and the mass transfer coefficients for the system were quantified in order to provide the foundation to advance to a full-scale system and costing analysis. 14 refs., 1 tab., 3 figs

  12. A fully continuous supercritical fluid extraction system for contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, M.; Stiver, W.H. [Guelph Univ., ON (Canada). School of Engineering

    2007-04-15

    Brownfield sites are contaminated sites in an urban setting. There are hundreds of thousands of such sites, where contaminants migrate to the atmosphere, seep into groundwater, runoff into surface water and enter the food chain through plant uptake and soil ingestion. The Sydney Tar Ponds alone contain more than a million tonnes of contaminated soils and sediments. Soil vapour extraction, incineration, bioremediation, solvent extraction and land filling are among the remediation techniques that have been developed for brownfield sites over the years. However, no single technology is ideally suited to all cases because of the diversity of contaminants and diversity of site characterization. This paper focused on supercritical fluid extraction (SFE) which is well suited to sites contaminated with polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and heavy metal. A fully continuous laboratory-scale SFE process for a slurry-based system was designed and constructed to handle the supercritical carbon dioxide (SC-CO{sub 2}) and the soil slurry. The system continuously pumps carbon dioxide under supercritical conditions and soil slurry into a counter-current contacting column. The testing soil was Delhi loamy sand, spiked with 10 mg/g of naphthalene. The soil slurry ranged from 0.0028 g dry soil per g slurry to 0.072 g/g. The operating temperature was 43 degrees C and the operating pressure was 7.7 MPa. Near steady state, fully continuous flow was achieved with runs lasting up to 2 hours. The quantifiable recoveries of naphthalene from the soil slurry was demonstrated and the mass transfer coefficients for the system were quantified in order to provide the foundation to advance to a full-scale system and costing analysis. 14 refs., 1 tab., 3 figs.

  13. Supercritical fluid extraction of peach (Prunus persica) almond oil: process yield and extract composition.

    Science.gov (United States)

    Mezzomo, Natália; Mileo, Bruna R; Friedrich, Maria T; Martínez, Julian; Ferreira, Sandra R S

    2010-07-01

    Peach kernels are industrial residues from the peach processing, contain oil with important therapeutic properties and attractive nutritional aspects because of the high concentration of oleic and linoleic acids. The extraction method used to obtain natural compounds from raw matter is critical for product quality definition. Thus, the aim of this work was to compare peach almond extraction yields obtained by different procedures: soxhlet extractions (Sox) with different solvents; hydrodistillation (HD); ethanolic maceration (Mac) followed by fractionation with various solvents, and supercritical fluid extraction (SFE) at 30, 40 and 50 degrees C and at 100, 200 and 300bar, performed with pure CO(2) and with a co-solvent. The extracts were evaluated with respect to fatty acid composition (FAC), fractionated chemical profile (FCP) and total phenolic content (TPC). The Sox total yields were generally higher than those obtained by SFE. The crossover pressure for SFE was between 260 and 280bar. The FAC results show oleic and linoleic acids as main components, especially for Sox and SFE extracts. The FCP for samples obtained by Sox and Mac indicated the presence of benzaldehyde and benzyl alcohol, components responsible for almond flavor and with important industrial uses, whereas the SFE extracts present a high content of a possible flavonoid. The higher TPC values were obtained by Sox and Mac with ethanol. In general, the maximum pressure in SFE produced the highest yield, TPC and oleic acid content. The use of ethanol at 5% as co-solvent in SFE did not result in a significant effect on any evaluated parameter. The production of peach almond oil through all techniques is substantially adequate and SFE presented advantages, with respect to the quality of the extracts due to the high oleic acid content, as presented by some Sox samples. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  14. SUPERCRITICAL FLUID EXTRACTION OF POLYCYCLIC AROMATIC HYDROCARBON MIXTURES FROM CONTAMINATED SOILS

    Science.gov (United States)

    Highly contaminated (with PAHs) topsoils were extracted with supercritical CO2 to determine the feasibility and mechanism of supercritical fluid extraction (SFE). Effect of SCF density, temperature, cosolvent type and amount, and of slurrying the soil with water were ...

  15. Basil (Ocimum basilicum L. essential oil and extracts obtained by supercritical fluid extraction

    Directory of Open Access Journals (Sweden)

    Zeković Zoran P.

    2015-01-01

    Full Text Available The extracts obtained from sweet basil (Ocimum basilicum L. by hydrodistillation and supercritical fluid extraction (SFE were qualitative and quantitative analyzed by GC-MS and GC-FID. Essential oil (EO content of basil sample, determined by an official method, was 0.565% (V/w. The yields of basil obtained by SFE were from 0.719 to 1.483% (w/w, depending on the supercritical fluid (carbon dioxide density (from 0.378 to 0.929 g mL-1. The dominant compounds detected in all investigated samples (EO obtained by hydrodistillation and different SFE extracts were: linalool, as the major compound of basil EO (content from 10.14 to 49.79%, w/w, eugenol (from 3.74 to 9.78% and ä-cardinene (from 3.94 to 8.07%. The quantitative results of GC-MS from peak areas and by GC-FID using external standard method involving main standards, were compared and discussed. [Projekat Ministarstva nauke Republike Srbije, br. TR 31013

  16. Modifier free supercritical fluid extraction of uranium from sintered UO2, soil and ore samples

    International Nuclear Information System (INIS)

    Kanekar, A.S.; Pathak, P.N.; Acharya, R.; Mohapatra, P.K.; Manchanda, V.K.

    2011-01-01

    Direct extraction of uranium from different samples viz. sintered UO 2 , soil and ores was carried out by modifier free supercritical fluid using tri-n-butyl phosphate-nitric acid (TBP-HNO 3 ) adduct as extractant. These studies showed that pre-equilibration with more concentrated nitric acid helps in better dissolution and extraction of uranium from sintered UO 2 samples. Modifier free supercritical fluid extraction appears attractive with respect to minimization of secondary wastes. This method resulted 80-100% extraction of uranium from different soil/ore samples. The results were confirmed by performing neutron activation analysis of original (before extraction) and residue (after extraction) samples. (author)

  17. Extraction Techniques for Polycyclic Aromatic Hydrocarbons in Soils

    Science.gov (United States)

    Lau, E. V.; Gan, S.; Ng, H. K.

    2010-01-01

    This paper aims to provide a review of the analytical extraction techniques for polycyclic aromatic hydrocarbons (PAHs) in soils. The extraction technologies described here include Soxhlet extraction, ultrasonic and mechanical agitation, accelerated solvent extraction, supercritical and subcritical fluid extraction, microwave-assisted extraction, solid phase extraction and microextraction, thermal desorption and flash pyrolysis, as well as fluidised-bed extraction. The influencing factors in the extraction of PAHs from soil such as temperature, type of solvent, soil moisture, and other soil characteristics are also discussed. The paper concludes with a review of the models used to describe the kinetics of PAH desorption from soils during solvent extraction. PMID:20396670

  18. Extraction Techniques for Polycyclic Aromatic Hydrocarbons in Soils

    Directory of Open Access Journals (Sweden)

    E. V. Lau

    2010-01-01

    Full Text Available This paper aims to provide a review of the analytical extraction techniques for polycyclic aromatic hydrocarbons (PAHs in soils. The extraction technologies described here include Soxhlet extraction, ultrasonic and mechanical agitation, accelerated solvent extraction, supercritical and subcritical fluid extraction, microwave-assisted extraction, solid phase extraction and microextraction, thermal desorption and flash pyrolysis, as well as fluidised-bed extraction. The influencing factors in the extraction of PAHs from soil such as temperature, type of solvent, soil moisture, and other soil characteristics are also discussed. The paper concludes with a review of the models used to describe the kinetics of PAH desorption from soils during solvent extraction.

  19. Comparison of supercritical fluid extraction and Soxhlet extraction for the determination of PCBs in seaweed samples.

    Science.gov (United States)

    Punín Crespo, M O; Lage Yusty, M A

    2005-06-01

    The efficiency of supercritical fluid extraction for the determination of 12 polychlorinated biphenyls from algae samples is compared to Soxhlet extraction. Analytical detection limits for the individual congeners ranged from 0.62 microgl(-1) to 19 microgl(-1). Recovery was tested for both methods using standard addition procedure. At maximum spike level of concentration, the mean recoveries were not significantly different (P>0.05) of all PCBs studied, with the exception of PCBs 28, 52, 77 and 169. Method precision for Soxhlet extraction (yield comparable results, SFE offers the advantage of detecting all PCBs studied at lower concentrations, reducing extraction time, and reducing the amount of solvents needed. The optimized methods were applied to the analysis of three real seaweed samples, except for PCB101 the concentrations of all PCBs were low or below the detection limits. The levels of PCB101 found in sample 1 were 6.6+/-0.54 ng g(-1) d.w., in sample 2 the levels were 8.2+/-0.86 ng g(-1) d.w. and in sample 3 they were 7.7+/-0.08 ng g(-1) d.w.

  20. Birch Bark Dry Extract by Supercritical Fluid Technology: Extract Characterisation and Use for Stabilisation of Semisolid Systems

    Directory of Open Access Journals (Sweden)

    Markus Armbruster

    2017-03-01

    Full Text Available Triterpene compounds like betulin, betulinic acid, erythrodiol, oleanolic acid and lupeol are known for many pharmacological effects. All these substances are found in the outer bark of birch. Apart from its pharmacological effects, birch bark extract can be used to stabilise semisolid systems. Normally, birch bark extract is produced for this purpose by extraction with organic solvents. Employing supercritical fluid technology, our aim was to develop a birch bark dry extract suitable for stabilisation of lipophilic gels with improved properties while avoiding the use of toxic solvents. With supercritical carbon dioxide, three different particle formation methods from supercritical solutions have been tested. First, particle deposition was performed from a supercritical solution in an expansion chamber. Second, the Rapid Expansion of Supercritical Solutions (RESS method was used for particle generation. Third, a modified RESS-procedure, forming the particles directly into the thereby gelated liquid, was developed. All three methods gave yields from 1% to 5.8%, depending on the techniques employed. The triterpene composition of the three extracts was comparable: all three gave more stable oleogels compared to the use of an extract obtained by organic solvent extraction. Characterizing the rheological behaviour of these gels, a faster gelling effect was seen together with a lower concentration of the extract required for the gel formation with the supercritical fluid (SCF-extracts. This confirms the superiority of the supercritical fluid produced extracts with regard to the oleogel forming properties.

  1. Rapid extraction of PCDD/Fs from soil and fly ash samples. Pressurized fluid extraction (PFE) and microwave-assisted extraction (MAE)

    Energy Technology Data Exchange (ETDEWEB)

    Sanz, P.; Fabrellas, B. [Centro de Investigaciones Energeticas Medioambientales y Tecnologicas (CIEMAT), Madrid (Spain)

    2004-09-15

    The main reference extraction method in the analysis of polychlorinated dibenzop- dioxins and dibenzofurans (PCDD/Fs) is still the Soxhlet extraction. But it requires long extraction times (up to 24 hs), large volumes of hazardous organic solvents (100-300 ml) and its automation is limited. Pressurized Fluid Extraction (PFE) and Microwave-Assisted Extraction (MAE) are two relatively new extraction techniques that reduce the time and the volume of solvent required for extraction. However, very different PFE extraction conditions are found for the same enviromental matrices in the literature. MAE is not a extraction technique very applied for the analysis of PCDD/Fs yet, although it is used for the determination of other organic compounds, such as PCBs and PAHs. In this study, PFE and MAE extraction conditions were optimized to determine PCDDs y PCDFs in fly ash and soil/sediment samples. Conventional Soxhlet extraction with toluene was used to compare the extraction efficiency of both techniques.

  2. Subcriticality monitoring method for reactor

    International Nuclear Information System (INIS)

    Ueda, Makoto.

    1991-01-01

    The present invention accurately monitors the reactor subcriticality and ensures the critical safety, irrespective of the presence or absence of artificial neutron sources. That is, when the subcriticality is monitored upon reactivity changing operation which causes reactivity change to the reactor during shutdown, neutron monitors are disposed at a plurality of monitoring positions. Then, neutron counting ratio before and after conducting the reactivity changing operation is determined. The subcriticality of the reactor is monitored by the ratio and the state of scattering of the ratio of neutron counting rate between each of the neutron monitors. With such procedures, signals of the neutron monitors are used, the characteristic that the change of the signals depend on the change of the neutron multiplication of the reactor core can be utilized whether artificial neutron sources (external neutron sources) are disposed or not. Accordingly, the subcriticality can be monitored more reliably. (I.S.)

  3. Extraction of uranium from simulated ore by the supercritical carbon dioxide fluid extraction method with nitric acid-TBP complex

    International Nuclear Information System (INIS)

    Dung, Le Thi Kim; Imai, Tomoki; Tomioka, Osamu; Nakashima, Mikio; Takahashi, Kuniaki; Meguro, Yoshihiro

    2006-01-01

    The supercritical fluid extraction (SFE) method using CO 2 as a medium with an extractant of HNO 3 -tri-n-butyl phosphate (TBP) complex was applied to extract uranium from several uranyl phosphate compounds and simulated uranium ores. An extraction method consisting of a static extraction process and a dynamic one was established, and the effects of the experimental conditions, such as pressure, temperature, and extraction time, on the extraction of uranium were ascertained. It was found that uranium could be efficiently extracted from both the uranyl phosphates and simulated ores by the SFE method using CO 2 . It was thus demonstrated that the SFE method using CO 2 is useful as a pretreatment method for the analysis of uranium in ores. (author)

  4. Supercritical Fluid Extraction of Seed Oil from Chinese Licorice ...

    African Journals Online (AJOL)

    NJD

    2005-12-17

    Dec 17, 2005 ... a Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Hexing Road 26, 150040, ... Carbon dioxide, the most commonly used supercritical fluid, has ... absorb the remaining water that the chloroform layer had.

  5. HPLC/MS identification of the polyphenols present in an extract of Myrtus communis L. obtained by supercritical fluid extraction

    Directory of Open Access Journals (Sweden)

    Paula Pereira

    2017-12-01

    Full Text Available In this work, we studied an extract obtained by supercritical fluid extraction (SFE using a simpler method of cosolvent (ethanol addition. Instead of using a liquid pump, which is the most common process, the ethanol was directly introduced in the extraction cell, immediately after loading the cell with the plant sample. it was our intent to investigate if this change would have any effect in the composition of the extract obtained. The experimental conditions used were: temperature 48° C, pressure 10 MPa, supercritical fluid (SCF flow rate 130.71dm3h-1 (0.238 kgh-1 and an ethanol volume of 104 cm3. The composition of the extract obtained was different from previous tests, and the compounds identified by HPLC-MS were quinic acid, quinic acid 3,5-di-O-gallate, quinic acid 3,4,5-galloyl, myricetin-galactoside gallate, quercetin-galactoside gallate, quercetin, and myricetin-galactosiderhamnoside.

  6. Steps of Supercritical Fluid Extraction of Natural Products and Their Characteristic Times

    OpenAIRE

    Sovová, H. (Helena)

    2012-01-01

    Kinetics of supercritical fluid extraction (SFE) from plants is variable due to different micro-structure of plants and their parts, different properties of extracted substances and solvents, and different flow patterns in the extractor. Variety of published mathematical models for SFE of natural products corresponds to this diversification. This study presents simplified equations of extraction curves in terms of characteristic times of four single extraction steps: internal diffusion, exter...

  7. Feasibility of ion-pair/supercritical fluid extraction of an ionic compound--pseudoephedrine hydrochloride.

    Science.gov (United States)

    Eckard, P R; Taylor, L T

    1997-02-01

    The supercritical fluid extraction (SFE) of an ionic compound, pseudoephedrine hydrochloride, from a spiked-sand surface was successfully demonstrated. The effect of carbon dioxide density (CO2), supercritical fluid composition (pure vs. methanol modified), and the addition of a commonly used reversed-phase liquid chromatographic ion-pairing reagent, 1-heptanesulfonic acid, sodium salt, on extraction efficiency was examined. The extraction recoveries of pseudoephedrine hydrochloride with the addition of the ion-pairing reagent from a spiked-sand surface were shown to be statistically greater than the extraction recoveries without the ion-pairing reagent with both pure and methanol-modified carbon dioxide.

  8. Supercritical fluid extraction of positron-emitting radioisotopes from solid target matrices

    International Nuclear Information System (INIS)

    Schlyer, D.

    2000-01-01

    Supercritical fluids are attractive as media for both chemical reactions, as well as process extraction, since their physical properties can be manipulated by small changes in pressure and temperature near the critical point of the fluid. Such changes can result in drastic effects on density-dependent properties such as solubility, refractive index, dielectric constant, viscosity and diffusivity of the fluid. This suggests that pressure tuning of a pure supercritical fluid may be a useful means to manipulate chemical reactions on the basis of a thermodynamic solvent effect. It also means that the solvation properties of the fluid can be precisely controlled to enable selective component extraction from a matrix. In recent years there has been a growing interest in applying supercritical fluid extraction to the selective removal of trace metals from solid samples. Much of the work has been done on simple systems comprised of inert matrices such as silica or cellulose. Recently, this process as been expanded to environmental samples as well. However, very little is understood about the exact mechanism of the extraction process. Of course, the widespread application of this technology is highly dependent on the ability of scientists to model and predict accurate phase equilibria in complex systems. In this project, we plan to explore the feasibility of utilizing supercritical fluids as solvents for reaction and extraction of radioisotopes produced from solid enriched targets. The reason for this work is that many of these enriched target materials used for radioisotope production are expensive

  9. Ion-pair extraction of [3]histobadine from biological fluids

    International Nuclear Information System (INIS)

    Scasnar, V.

    1997-01-01

    A simple and specific radiometric assay was developed for determination of stobadine, a cardio protective drug, in the serum of experimental animals. It is based on a single extraction step of the radioactively labeled drug from serum into the benzene solution of dicarbolide of cobalt followed by the quantitation of the extracted radioactivity by using liquid scintillation counting. The extraction mechanism involves the ion-pair formation between the protonized molecule of stobadine and the hydrophobic, negatively charged molecule of dicarbollide of cobalt. The extraction of yield of stobadine from 1 ml of serum was 95% in the concentration range from 1 to 6000 ng/ml. The co extraction of metabolites was less than 5%. The assay was applied to determination of stobadine in serum of dogs and the data obtained were in good agreement with those obtained by high performance liquid chromatography. (author)

  10. Accelerator driven sub-critical core

    Science.gov (United States)

    McIntyre, Peter M; Sattarov, Akhdiyor

    2015-03-17

    Systems and methods for operating an accelerator driven sub-critical core. In one embodiment, a fission power generator includes a sub-critical core and a plurality of proton beam generators. Each of the proton beam generators is configured to concurrently provide a proton beam into a different area of the sub-critical core. Each proton beam scatters neutrons within the sub-critical core. The plurality of proton beam generators provides aggregate power to the sub-critical core, via the proton beams, to scatter neutrons sufficient to initiate fission in the sub-critical core.

  11. towards a fluid and multiscalar governance of extractive resources

    African Journals Online (AJOL)

    RAYAN_

    out, for instance, the geopolitics of pipelines in Africa and its critical role in .... article develops an analysis of its fluid, multiscalar, and networked governance. .... the production and use of this raw material.18 Oil crises are then more significantly ...

  12. Supercritical fluid extraction from spent coffee grounds and coffee husks: antioxidant activity and effect of operational variables on extract composition.

    Science.gov (United States)

    Andrade, Kátia S; Gonçalvez, Ricardo T; Maraschin, Marcelo; Ribeiro-do-Valle, Rosa Maria; Martínez, Julian; Ferreira, Sandra R S

    2012-01-15

    The present study describes the chemical composition and the antioxidant activity of spent coffee grounds and coffee husks extracts, obtained by supercritical fluid extraction (SFE) with CO(2) and with CO(2) and co-solvent. In order to evaluate the high pressure method in terms of process yield, extract composition and antioxidant activity, low pressure methods, such as ultrasound (UE) and soxhlet (SOX) with different organic solvents, were also applied to obtain the extracts. The conditions for the SFE were: temperatures of 313.15K, 323.15K and 333.15K and pressures from 100 bar to 300 bar. The SFE kinetics and the mathematical modeling of the overall extraction curves (OEC) were also investigated. The extracts obtained by LPE (low pressure extraction) with ethanol showed the best results for the global extraction yield (X(0)) when compared to SFE results. The best extraction yield was 15±2% for spent coffee grounds with ethanol and 3.1±04% for coffee husks. The antioxidant potential was evaluated by DPPH method, ABTS method and Folin-Ciocalteau method. The best antioxidant activity was showed by coffee husk extracts obtained by LPE. The quantification and the identification of the extracts were accomplished using HPLC analysis. The main compounds identified were caffeine and chlorogenic acid for the supercritical extracts from coffee husks. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Subcritical reactivity measurement at Angra 1 nuclear power plant

    International Nuclear Information System (INIS)

    Kuramoto, Renato Yoichi Ribeiro; Miranda, Anselmo Ferreira

    2011-01-01

    In order to speed up the Angra 1 NPP physics tests, this work intends to develop a digital reactivity meter combined with a methodology of the modified Neutron Source Multiplication (NSM) method with correction factors for subcriticality measurements at Angra 1 NPP. In the first part of this work, we have applied the Modified Neutron Source Multiplication (MNSM) Method with fundamental mode extraction, in order to improve the monitoring of the subcriticality at Angra 1 NPP during the criticality approach. In the second part, we developed a preliminary subcritical reactivity meter algorithm based on the point-reactor inverse kinetic model with six delayed neutron groups and external neutron source. The source strength was obtained through the Least Squares Inverse Kinetics Method (LSIKM). (author)

  14. Comparative analysis of essential oil composition of Iranian and Indian Nigella sativa L. extracted using supercritical fluid extraction and solvent extraction.

    Science.gov (United States)

    Ghahramanloo, Kourosh Hasanzadeh; Kamalidehghan, Behnam; Akbari Javar, Hamid; Teguh Widodo, Riyanto; Majidzadeh, Keivan; Noordin, Mohamed Ibrahim

    2017-01-01

    The objective of this study was to compare the oil extraction yield and essential oil composition of Indian and Iranian Nigella sativa L. extracted by using Supercritical Fluid Extraction (SFE) and solvent extraction methods. In this study, a gas chromatography equipped with a mass spectrophotometer detector was employed for qualitative analysis of the essential oil composition of Indian and Iranian N. sativa L. The results indicated that the main fatty acid composition identified in the essential oils extracted by using SFE and solvent extraction were linoleic acid (22.4%-61.85%) and oleic acid (1.64%-18.97%). Thymoquinone (0.72%-21.03%) was found to be the major volatile compound in the extracted N. sativa oil. It was observed that the oil extraction efficiency obtained from SFE was significantly ( P essential oil, which is composed of higher linoleic acid and thymoquinone contents compared to the essential oil obtained by the solvent extraction technique.

  15. Supercritical fluid extraction of silicone oil from uranate microspheres prepared by sol-gel process

    International Nuclear Information System (INIS)

    Kumar, R.; Venkatakrishnan, R.; Sivaraman, N.; Srinivasan, T.G.; Vasudeva Rao, P.R.

    2005-01-01

    Supercritical fluid extraction of silicone oil from urania microspheres prepared through sol-gel route was investigated. The influence of pressure, temperature, and flow rate on the extraction efficiency was studied. Experimental conditions were optimised for the complete removal of silicone oil from urania microspheres. (author)

  16. The use of supercritical fluid extraction as a sample preparation technique for soils

    International Nuclear Information System (INIS)

    Levy, J.M.; Dolata, L.A.; Rosselli, A.C.; Ravey, R.M.

    1994-01-01

    Using off-line supercritical fluid extraction (SFE), polynuclear aromatic hydrocarbons (PAHs) were extracted at different levels from various soil and sediment matrices. Based upon GC/MS measurements a number of SFE operational parameters including pressure, temperature and flow rate, were optimized to yield the highest efficiencies with the best precision

  17. Accelerator driven subcritical reactors

    International Nuclear Information System (INIS)

    Salvatores, M.

    2001-01-01

    ADS concepts have been proposed in the last decade for a variety of applications. However, there is a convergence of interest of several countries and laboratories on the application of ADS to transmutation. This applies to plutonium, and/or minor actinides (MA) and long-lived fission products (LLFP). As far as the so-called partitioning and transmutation (PIT) strategies, it was indicated that they can be clarified according to the option taken with respect to Pu and MA, i.e., a) keep Pu and MA together, b) separate Pu from MA. At present several programs are going on ADS: in Japan, USA Europe, where activities in 9 countries are coordinated by a European Technical Working Group (ETWG), and in Russia. As far as the implications for the definition of nuclear data needs, dedicated subcritical cores should have new type of fuels (Pu+MA in different proportions). Proposals are being worked out. For example, composite (such as ceramic-metallic or ceramic-ceramic) fuels are presently under study. The actinide oxide is dispersed in a metallic matrix (Zr, or W or Mo) or in an oxide matrix (e.g., MgO). In these cases, reliable data are required for the matrix materials. As far as coolants, Pb/Bi, Pb, and gas are considered, besides Na. Hard (or very hard) fast neutron spectrum is required. As far as LLFP, transmutation strategies in ADS are proposed. Candidates are 129 I, 99 Tc, 135 Cs, but also 79 Se, 107 Pd, 93 Zr etc. At present, there is no clear option for their transmutation (one needs a high level of thermalized neutrons, support matrixes for target irradiation, isotopic separations, reprocessing techniques, etc.). Finally, ADS transmutation will give rise to fuel cycles, where very active materials will be present. Cm and higher mass isotopes (up to 252 Cf) will be contributors to dose and neutron source strength. This area will deserve attention in future, in order to define the relevant data needs. It is recommended to coordinate work on MA data as a priority

  18. Modeling of the Kinetics of Supercritical Fluid Extraction of Lipids from Microalgae with Emphasis on Extract Desorption

    Directory of Open Access Journals (Sweden)

    Helena Sovová

    2016-05-01

    Full Text Available Microalgae contain valuable biologically active lipophilic substances such as omega-3 fatty acids and carotenoids. In contrast to the recovery of vegetable oils from seeds, where the extraction with supercritical CO2 is used as a mild and selective method, economically viable application of this method on similarly soluble oils from microalgae requires, in most cases, much higher pressure. This paper presents and verifies hypothesis that this difference is caused by high adsorption capacity of microalgae. Under the pressures usually applied in supercritical fluid extraction from plants, microalgae bind a large fraction of the extracted oil, while under extremely high CO2 pressures their adsorption capacity diminishes and the extraction rate depends on oil solubility in supercritical CO2. A mathematical model for the extraction from microalgae was derived and applied to literature data on the extraction kinetics in order to determine model parameters.

  19. Supercritical Fluid Extraction (SFE) of uranium and thorium nitrates using carbon dioxide modified with phosphonates

    International Nuclear Information System (INIS)

    Pitchaiah, K.C.; Sujatha, K.; Brahmananda Rao, C.V.S.; Sivaraman, N.; Vasudeva Rao, P.R.

    2014-01-01

    Supercritical Fluid Extraction (SFE) has emerged as a powerful technique for the extraction of metal ions.The liquid like densities and gas like physical properties of supercritical fluids make them unique to act as special solvents. SFE based procedures were developed and demonstrated in our laboratory for the recovery of actinides from various matrices. In the present study, we have examined for the first time, the use of dialkylalkylphosphonates in supercritical carbon dioxide (Sc-CO 2 ) medium to study the extraction behavior of uranium and thorium nitrates. A series of phosphonates were synthesised by Michaelis-Becker reaction in our laboratory and employed for the SFE

  20. Selective chelation-supercritical fluid extraction of metal ions from waste materials

    International Nuclear Information System (INIS)

    Wai, C.N.; Laintz, K.E.; Yonker, C.R.

    1993-01-01

    The removal of toxic organics, metals, and radioisotopes from solids or liquids is a major concern in the treatment of industrial and nuclear wastes. For this reason, developing methods for selective separation of toxic metals and radioactive materials from solutions of complex matrix is an important problem in environmental research. Recent developments indicate supercritical fluids are good solvents for organic compounds. Many gases become supercritical fluids under moderate temperatures and pressures. For example, the critical temperature and pressure of carbon dioxide are 31 degrees C and 73 atm, respectively. The high diffusivity, low viscosity, and T-P dependence of solvent strength are some attractive properties of supercritical fluid extraction (SFE). Since CO 2 offers the additional benefits of stability and non-toxicity, the SFE technique avoids generation of organic liquid waste and exposure of personnel to toxic solvents. While direct extraction of metal ions by supercritical fluids is highly inefficient, these ions when complexed with organic ligands become quite soluble in supercritical fluids. Specific ligands can be used to achieve selective extraction of metal ions in this process. After SFE, the fluid phase can be depressurized for precipitation of the metal chelates and recycled. The ligand can also be regenerated for repeated use. The success of this selective chelation-supercritical fluid extraction (SC-SFE) process depends on a number of factors including the efficiencies of the selective chelating agents, solubilities of metal chelates in supercritical fluids, rate of extraction, ease of regeneration of the ligands, etc. In this report, the authors present recent results on the studies of the solubilities of metal chelates in supercritical CO 2 , experimental ions from aqueous solution, and the development of selective chelating agents (ionizable crown ethers) for the extraction of lanthanides and actinides

  1. Studies on supercritical fluid extraction behaviour of uranium and thorium nitrates using amides

    International Nuclear Information System (INIS)

    Sujatha, K.; Kumar, R.; Sivaraman, N.; Srinivasan, T.G.; Vasudeva Rao, P.R.

    2007-01-01

    Supercritical fluid extraction studies of uranyl nitrate and thorium nitrate in mixture were carried out using various amides such as N,N-di(2-ethylhexyl) isobutyramide (D2EHIBA),N,N-dihexyl octanamide (DHOA) and Diisooctyl Butanamide (DiOBA). These studies established a preferential extraction of uranium over thorium. Among the various amides studied, D2EHIBA offered the best rate of preferential extraction of uranium over thorium. (author)

  2. Technologies for Extracting Valuable Metals and Compounds from Geothermal Fluids

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Stephen [SIMBOL Materials

    2014-04-30

    Executive Summary Simbol Materials studied various methods of extracting valuable minerals from geothermal brines in the Imperial Valley of California, focusing on the extraction of lithium, manganese, zinc and potassium. New methods were explored for managing the potential impact of silica fouling on mineral extraction equipment, and for converting silica management by-products into commercial products.` Studies at the laboratory and bench scale focused on manganese, zinc and potassium extraction and the conversion of silica management by-products into valuable commercial products. The processes for extracting lithium and producing lithium carbonate and lithium hydroxide products were developed at the laboratory scale and scaled up to pilot-scale. Several sorbents designed to extract lithium as lithium chloride from geothermal brine were developed at the laboratory scale and subsequently scaled-up for testing in the lithium extraction pilot plant. Lithium The results of the lithium studies generated the confidence for Simbol to scale its process to commercial operation. The key steps of the process were demonstrated during its development at pilot scale: 1. Silica management. 2. Lithium extraction. 3. Purification. 4. Concentration. 5. Conversion into lithium hydroxide and lithium carbonate products. Results show that greater than 95% of the lithium can be extracted from geothermal brine as lithium chloride, and that the chemical yield in converting lithium chloride to lithium hydroxide and lithium carbonate products is greater than 90%. The product purity produced from the process is consistent with battery grade lithium carbonate and lithium hydroxide. Manganese and zinc Processes for the extraction of zinc and manganese from geothermal brine were developed. It was shown that they could be converted into zinc metal and electrolytic manganese dioxide after purification. These processes were evaluated for their economic potential, and at the present time Simbol

  3. Supercritical fluid extraction of uranium from tissue paper matrix using organic extractants

    International Nuclear Information System (INIS)

    Kanekar, A.S.; Bhattacharyya, A.; Pathak, P.N.; Mohapatra, P.K.; Manchanda, V.K.

    2009-01-01

    Direct extraction of dried uranyl nitrate from tissue paper matrix was carried out using supercritical carbon dioxide modified with methanol solutions of extractants such as tri-n-butyl phosphate (TBP) and di-n-hexyl octanamide (DHOA)). The effects of temperature, pressure, extractant and nitric acid concentration on the extraction of uranyl ion were investigated. (author)

  4. Towards a fluid and multiscalar governance of extractive resources ...

    African Journals Online (AJOL)

    Political geographies of oil investigate extractive value chains with an emphasis on governance and scales, analysing the role that territories and especially spatial networks play in these dynamics. While underlining the limits and gaps of territorial governance, as it is nowadays theorized and used in the academic literature, ...

  5. Supercritical Fluid Extraction of Seed Oil from Chinese Licorice ...

    African Journals Online (AJOL)

    CO2) extraction. The oil was analysed by GC-MS after methylation. Compounds were identified according to their mass spectra (EI, 70 eV) by comparison with authentic reference substances and literature data. Five fatty acids were identified, with ...

  6. Discriminators for the Accelerator-Based Conversion (ABC) concept using a subcritical molten salt system

    International Nuclear Information System (INIS)

    Arthur, E.; Busksa, J.; Davidson, W.; Poston, D.

    1995-05-01

    Discriminators are described that quantify enhancements added to plutonium destruction and/or nuclear waste transmutation systems through use of an accelerator/fluid fuel combination. This combination produces a robust and flexible nuclear system capable of the destruction of all major long-lived actinides (including plutonium) and fission products. The discriminators discussed in this report are (1) impact of subcritical operation on safety, (2) impact of subcritical and fluid fuel operation on plutonium burnout scenarios, and (3) neutron economy enhancements brought about by subcritical operation. Neutron economy enhancements are quantified through assessment of long-term dose reduction resulting from transmutation of key fission products along with relaxation of processing frequencies afforded by subcritical operation

  7. Squalene Extraction by Supercritical Fluids from Traditionally Puffed Amaranthus hypochondriacus Seeds

    Directory of Open Access Journals (Sweden)

    Teresa Rosales-García

    2017-01-01

    Full Text Available Extraction of squalene, a potent natural antioxidant, from puffed A. hypochondriacus seeds was performed by supercritical fluid extraction (SCFE; besides, to have a blank for comparison, extraction was performed also by Soxhlet method using organic solvents (hexane. Chemical proximal composition and seed morphology were determined in raw, puffed, and SCFE-extracted seeds. Extracts were obtained with a 500 mL capacity commercial supercritical extractor and performed between 10 and 30 MPa at 313, 323, and 333 K under constant CO2 flow of 0.18 kg CO2/h during 8 h. The squalene content was determined and the fatty acids present in the extracts were identified by GC-MS. The extract obtained by SCFE from puffed amaranth seeds reached 460 ± 28.1 g/kg squalene in oily extract at 313 K/20 MPa.

  8. Subcritical assemblies, use and their feasibility assessment

    International Nuclear Information System (INIS)

    Haroon, M.R.

    1982-03-01

    In developing countries, subcritical assemblies can be a useful tool for training and research in the field of nuclear technology with minimum cost. The historical development of subcritical assemblies and the reactor physics experiments which can be carried out using this facility are outlined. The different types of subcritical assemblies have been described and material requirements for each assembly have been pointed out. (author)

  9. Studies on supercritical fluid extraction of uranium and thorium from liquid and solid matrix

    International Nuclear Information System (INIS)

    Kumar, Pradeep; Pal, Ankita; Saxena, M.K.; Ramakumar, K.L.

    2006-05-01

    Supercritical fluid extraction (SFE) is being widely used in pharmaceutical and food industry. Because of its simplicity, ease of operation and more importantly the reduction in the analytical waste generation, this technique is being viewed as a potential application technique in nuclear industry also. CO 2 is employed as supercritical fluid (SCF) as it is easily recyclable, non-toxic, chemically inert, radiochemically stable and inexpensive. Radioanalytical chemistry section (Radiochemistry and Isotope group) has recently procured a supercritical fluid extraction/chromatography system. The present report describes the work carried out on the system. Detailed study on uranium and thorium extraction from highly acidic medium and tissue paper matrix has been carried out. Direct dissolution and extraction of uranium compounds employing SCF has been carried out. CO 2 was employed as supercritical fluid along with very small amount of Tri n-butyl phosphate (TBP) and Tri n-octyl phosphine oxide (TOPO) as co-solvents. The effect of various operating parameters like CO 2 flow rate, co-solvent percentage, temperature and pressure on extraction was investigated and parameters for maximum extraction were optimized. For comparison, the modes of extraction viz. static and dynamic and modes of complexation viz. in-situ and online were studied. Uranium extraction of ∼98% has been achieved from nitric acid medium employing TBP as co-solvent in 30 minutes extraction time, whereas with TOPO ∼99% uranium extraction could be achieved. Uranium from tissue paper matrix could be extracted upto the extent of 98% with TOPO as co-solvent whereas with TBP extraction of (66.83± 9.80)% was achievable. Direct dissolution of UO 2 , U 3 O 8 , U metal, U-Al alloy solids into SCF CO 2 was carried out employing TBP-HNO 3 complex and SFE of uranium was performed using TBP as co-solvent. UO 2 and U 3 O 8 solids could be dissolved within 20 minutes and extraction of ∼98% was achieved. For U

  10. Selective chelation and extraction of lanthanides and actinides with supercritical fluids

    International Nuclear Information System (INIS)

    Brauer, R.D.; Carleson, T.E.; Harrington, J.D.; Jean, F.; Jiang, H.; Lin, Y.; Wai, C.M.

    1994-01-01

    This report is made up of three independent papers: (1) Supercritical Fluid Extraction of Thorium and Uranium with Fluorinated Beta-Diketones and Tributyl Phosphate, (2) Supercritical Fluid Extraction of Lanthanides with Beta-Diketones and Mixed Ligands, and (3) A Group Contribution Method for Predicting the Solubility of Solid Organic Compounds in Supercritical Carbon Dioxide. Experimental data are presented demonstrating the successful extraction of thorium and uranium using fluorinated beta-diketones to form stable complexes that are extracted with supercritical carbon dioxide. The conditions for extracting the lanthanide ions from liquid and solid materials using supercritical carbon dioxide are presented. In addition, the Peng-Robison equation of state and thermodynamic equilibrium are used to predict the solubilities of organic solids in supercritical carbon dioxide from the sublimation pressure, critical properties, and a centric factor of the solid of interest

  11. Recovery of environmental analytes from clays and soils by supercritical fluid extracting/gas chromatography

    International Nuclear Information System (INIS)

    Emery, A.P.; Chesler, S.N.; MacCrehan, W.A.

    1992-01-01

    This paper reports on Supercritical Fluid Extraction (SFE) which promises to provide rapid extractions of organic analytes from environmental sample types without the use of hazardous solvents. In addition, SFE protocols using commercial instrumentation can be automated lowering analysis costs. Because of these benefits, we are investigating SFE as an alternative to the solvent extraction (eg. Soxhlet and sonication) techniques required in many EPA test procedures. SFE, using non-polar carbon dioxide as well as more polar supercritical fluids, was used to determine n-alkane hydrocarbons and polynuclear aromatic hydrocarbons (PAHs) in solid samples. The extraction behavior of these analyte classes from environmentally-contaminated soil matrices and model soil and clay matrices was investigated using a SFE apparatus in which the extracted analytes were collected on a solid phase trap and then selectively eluted with a solvent. The SFE conditions for quantitative recovery of n-alkane hydrocarbons in diesel fuel from a series of clays and soils were determined using materials prepared at the 0.02% level with diesel fuel oil in order to simplify analyte collection and analysis after extraction. The effect of extraction parameters including temperature, fluid flow rate and modifier addition were investigated by monitoring the amount of diesel fuel extracted as a function of time

  12. Supercritical fluid extraction of 2-alkylcyclobutanones formed from triglycerides by irradiation

    International Nuclear Information System (INIS)

    Horvatovich, P.; Farkas, J.; Hasselmann, C.; Marchioni, E.

    1998-01-01

    Complete text of publication follows. Radiation processing is employed to improve the microbiological safety of foodstuffs, and at the same time to suit the 'minimal processing' principle. However adequate information for consumers to enable their free choices requires specific detection methods of irradiation processes. For this purpose one of the most suitable methods is the detection of 2-alkylcyclobutanones which are formed - according to the present knowledge - only by irradiation from the fatty acid part of triglycerides. For detection of these compounds a European Norm (EN 1785) has been established. The method consists of Sohxlet extraction of fatty acids from the food sample, separation of 2-alkylcyclobutanones from other fatty components with liquid chromatography on Florisil TM , and the GC-MS analysis of the appropriate fraction with single ion monitoring (SIM) monitoring of 98 and 112 ions. But this method has a relatively high detection limit (∼1 kGy), it is time consuming and needs costly and sophisticated apparates. To improve the detection of 2-alkylcyclobutanones we replaced the Sohxlet extraction step with a supercritical fluid extraction. We optimised trapping and extraction parameters. It was found that supercritical fluid extraction is more selective than Sohxlet extraction used in the standard protocol. The extract obtained by supercritical fluid extraction contains less quantity and number of detection-disturbing components. This work is the first step towards decreasing the detection limit which will be the derivatization of 2-alkylcyclobutanones with halogen-containing reagent, and detection of derivatives with electron-capture detector (ECD)

  13. Antioxidant effects of supercritical fluid garlic extracts in canned artichokes.

    Science.gov (United States)

    Bravi, E; Marconi, O; Sileoni, V; Rollo, M R; Perretti, G

    2016-10-01

    The effects of adding supercritical carbon dioxide extracts of garlic (at two different concentrations of allicin) on select chemical indices in extra-virgin olive oil used to canned artichokes were studied. Tests were performed after processing and over a storage period of 1 year. A sensorial test was also conducted on the canned artichokes to establish the impact on flavor (in particular perceptions of rancidity and garlic flavor). Acidity, peroxide levels and p -anisidine values were measured as quality analytical parameters. Radical scavenging activity was also evaluated using the DPPH assay. The samples containing supercritical garlic extracts were compared with several other formulations, including control sample (prepared by mixing artichokes with powdered chili pepper and fresh garlic), artichokes with only garlic or only chili pepper, and artichokes treated with the synthetic antioxidant BHT. The results suggested that the allicin extract may be superior, or at least comparable, with BHT in preserving canned artichokes as demonstrated by its positive effects on oxidative stability and sensory profile.

  14. On-line supercritical fluid extraction-supercritical fluid chromatography-mass spectrometry of polycyclic aromatic hydrocarbons in soil.

    Science.gov (United States)

    Wicker, A Paige; Carlton, Doug D; Tanaka, Kenichiro; Nishimura, Masayuki; Chen, Vivian; Ogura, Tairo; Hedgepeth, William; Schug, Kevin A

    2018-06-01

    On-line supercritical fluid extraction - supercritical fluid chromatography - mass spectrometry (SFE-SFC-MS) has been applied for the determination of polycyclic aromatic hydrocarbons (PAHs) in soil. The purpose of this study was to develop and validate the first on-line SFE-SFC-MS method for the quantification of PAHs in various types of soil. By coupling the sample extraction on-line with chromatography and detection, sample preparation is minimized, diminishing sample loss and contamination, and significantly decreasing the required extraction time. Parameters for on-line extraction coupled to chromatographic analysis were optimized. The method was validated for concentrations of 10-1500 ng of PAHs per gram of soil in Certified Reference Material (CRM) sediment, clay, and sand with R 2  ≥ 0.99. Limits of detection (LOD) were found in the range of 0.001-5 ng/g, and limits of quantification (LOQ) in the range of 5-15 ng/g. The method developed in this study can be effectively applied to the study of PAHs in the environment, and may lay the foundation for further applications of on-line SFE-SFC-MS. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. MEASUREMENT OF PYRETHROID RESIDUES IN ENVIRONMENTAL AND FOOD SAMPLES BY ENHANCED SOLVENT EXTRACTION/SUPERCRITICAL FLUID EXTRACTION COUPLED WITH GAS CHROMATOGRAPHY-TANDEM MASS SPECTROMETRY

    Science.gov (United States)

    The abstract summarizes pyrethorid methods development research. It provides a summary of sample preparation and analytical techniques such as supercritical fluid extraction, enhance solvent extraction, gas chromatography and tandem mass spectrometry.

  16. Extraction of metals and/or metalloids from acidic media using supercritical fluids and salts

    International Nuclear Information System (INIS)

    Wai, C.M.; Smart, N.G.; Lin, Y.

    1998-01-01

    A method is described for extracting metalloid and metal species from a solid or liquid material by exposing the material to a fluid solvent, particularly supercritical carbon dioxide, containing a chelating agent. The chelating agent forms chelates that are soluble in the fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent comprises a trialkyl phosphate, a triaryl phosphate, a trialkylphosphine oxide, a triarylphosphine oxide, or mixtures thereof. The method provides an environmentally benign process for removing contaminants from industrial waste. The method is particularly useful for extracting actinides from acidic solutions, and the process can be aided by the addition of nitrate salts. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process. 7 figs

  17. Application of FTA technology to extraction of sperm DNA from mixed body fluids containing semen.

    Science.gov (United States)

    Fujita, Yoshihiko; Kubo, Shin-ichi

    2006-01-01

    FTA technology is a novel method designed to simplify the collection, shipment, archiving and purification of nucleic acids from a wide variety of biological sources. In this study, we report a rapid and simple method of extracting DNA from sperm when body fluids mixed with semen were collected using FTA cards. After proteinase K digestion of the sperm and body fluid mixture, the washed pellet suspension as the sperm fraction and the concentrated supernatant as the epithelial cell fraction were respectively applied to FTA cards containing DTT. The FTA cards were dried, then directly added to a polymerase chain reaction (PCR) mix and processed by PCR. The time required from separation of the mixed fluid into sperm and epithelial origin DNA extractions was only about 2.5-3h. Furthermore, the procedure was extremely simple. It is considered that our designed DNA extraction procedure using an FTA card is available for application to routine work.

  18. Extraction of metals and/or metalloids from acidic media using supercritical fluids and salts

    Science.gov (United States)

    Wai, Chien M.; Smart, Neil G.; Lin, Yuehe

    1998-01-01

    A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a fluid solvent, particularly supercritical carbon dioxide, containing a chelating agent is described. The chelating agent forms chelates that are soluble in the fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent comprises a trialkyl phosphate, a triaryl phosphate, a trialkylphosphine oxide, a triarylphosphine oxide, or mixtures thereof. The method provides an environmentally benign process for removing contaminants from industrial waste. The method is particularly useful for extracting actinides from acidic solutions, and the process can be aided by the addition of nitrate salts. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process.

  19. Optimization of conditions for supercritical fluid extraction of flavonoids from hops (Humulus lupulus L.)*

    Science.gov (United States)

    He, Guo-qing; Xiong, Hao-ping; Chen, Qi-he; Ruan, Hui; Wang, Zhao-yue; Traoré, Lonseny

    2005-01-01

    Waste hops are good sources of flavonoids. Extraction of flavonoids from waste hops (SC-CO2 extracted hops) using supercritical fluids technology was investigated. Various temperatures, pressures and concentrations of ethanol (modifier) and the ratio (w/w) of solvent to material were tested in this study. The results of single factor and orthogonal experiments showed that at 50 °C, 25 MPa, the ratio of solvent to material (50%), ethanol concentration (80%) resulted in maximum extraction yield flavonoids (7.8 mg/g). HPLC-MS analysis of the extracts indicated that flavonoids obtained were xanthohumol, the principal prenylflavonoid in hops. PMID:16187413

  20. Comparative analysis of essential oil composition of Iranian and Indian Nigella sativa L. extracted using supercritical fluid extraction and solvent extraction

    Directory of Open Access Journals (Sweden)

    Ghahramanloo KH

    2017-07-01

    Full Text Available Kourosh Hasanzadeh Ghahramanloo,1 Behnam Kamalidehghan,2 Hamid Akbari Javar,3 Riyanto Teguh Widodo,1 Keivan Majidzadeh,4 Mohamed Ibrahim Noordin1 1Department of Pharmacy, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; 2Medical Genetics Department, National Institute of Genetic Engineering and Biotechnology (NIGEB, 3Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS, 4Breast Cancer Research Center (BCRC Academic Center for Education, Culture and Research, Tehran, Iran Abstract: The objective of this study was to compare the oil extraction yield and essential oil composition of Indian and Iranian Nigella sativa L. extracted by using Supercritical Fluid Extraction (SFE and solvent extraction methods. In this study, a gas chromatography equipped with a mass spectrophotometer detector was employed for qualitative analysis of the essential oil composition of Indian and Iranian N. sativa L. The results indicated that the main fatty acid composition identified in the essential oils extracted by using SFE and solvent extraction were linoleic acid (22.4%–61.85% and oleic acid (1.64%–18.97%. Thymoquinone (0.72%–21.03% was found to be the major volatile compound in the extracted N. sativa oil. It was observed that the oil extraction efficiency obtained from SFE was significantly (P<0.05 higher than that achieved by the solvent extraction technique. The present study showed that SFE can be used as a more efficient technique for extraction of N. Sativa L. essential oil, which is composed of higher linoleic acid and thymoquinone contents compared to the essential oil obtained by the solvent extraction technique. Keywords: Nigella sativa L., essential oil extraction, supercritical fluid extraction, solvent extraction, fatty acid composition, thymoquinone, linoleic acid

  1. Nonlinear dead water resistance at subcritical speed

    Science.gov (United States)

    Grue, John

    2015-08-01

    The dead water resistance F 1 = /1 2 C d w ρ S U 2 (ρ fluid density, U ship speed, S wetted body surface, Cdw resistance coefficient) on a ship moving at subcritical speed along the upper layer of a two-layer fluid is calculated by a strongly nonlinear method assuming potential flow in each layer. The ship dimensions correspond to those of the Polar ship Fram. The ship draught, b0, is varied in the range 0.25h0-0.9h0 (h0 the upper layer depth). The calculations show that Cdw/(b0/h0)2 depends on the Froude number only, in the range close to critical speed, Fr = U/c0 ˜ 0.875-1.125 (c0 the linear internal long wave speed), irrespective of the ship draught. The function Cdw/(b0/h0)2 attains a maximum at subcritical Froude number depending on the draught. Maximum Cdw/(b0/h0)2 becomes 0.15 for Fr = 0.76, b0/h0 = 0.9, and 0.16 for Fr = 0.74, b0/h0 = 1, where the latter extrapolated value of the dead water resistance coefficient is about 60 times higher than the frictional drag coefficient and relevant for the historical dead water observations. The nonlinear Cdw significantly exceeds linear theory (Fr < 0.85). The ship generated waves have a wave height comparable to the upper layer depth. Calculations of three-dimensional wave patterns at critical speed compare well to available laboratory experiments. Upstream solitary waves are generated in a wave tank of finite width, when the layer depths differ, causing an oscillation of the force. In a wide ocean, a very wide wave system develops at critical speed. The force approaches a constant value for increasing time.

  2. Offline combination of pressurized fluid extraction and electron paramagnetic resonance spectroscopy for antioxidant activity of grape skin extracts assessment

    Czech Academy of Sciences Publication Activity Database

    Polovka, M.; Šťavíková, Lenka; Hohnová, Barbora; Karásek, Pavel; Roth, Michal

    2010-01-01

    Roč. 1217, č. 51 (2010), s. 7990-8000 ISSN 0021-9673 R&D Projects: GA ČR GA203/08/1536; GA MŠk LC06023 Institutional research plan: CEZ:AV0Z40310501 Keywords : pressurized fluid extraction * electron paramagnetic resonance spectroscopy * antioxidant activity Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 4.194, year: 2010

  3. Applications of supercritical fluid extraction (SFE) of palm oil and oil from natural sources.

    Science.gov (United States)

    Akanda, Mohammed Jahurul Haque; Sarker, Mohammed Zaidul Islam; Ferdosh, Sahena; Manap, Mohd Yazid Abdul; Ab Rahman, Nik Norulaini Nik; Ab Kadir, Mohd Omar

    2012-02-10

    Supercritical fluid extraction (SFE), which has received much interest in its use and further development for industrial applications, is a method that offers some advantages over conventional methods, especially for the palm oil industry. SC-CO₂ refers to supercritical fluid extraction (SFE) that uses carbon dioxide (CO₂) as a solvent which is a nontoxic, inexpensive, nonflammable, and nonpolluting supercritical fluid solvent for the extraction of natural products. Almost 100% oil can be extracted and it is regarded as safe, with organic solvent-free extracts having superior organoleptic profiles. The palm oil industry is one of the major industries in Malaysia that provides a major contribution to the national income. Malaysia is the second largest palm oil and palm kernel oil producer in the World. This paper reviews advances in applications of supercritical carbon dioxide (SC-CO₂) extraction of oils from natural sources, in particular palm oil, minor constituents in palm oil, producing fractionated, refined, bleached, and deodorized palm oil, palm kernel oil and purified fatty acid fractions commendable for downstream uses as in toiletries and confectionaries.

  4. Applications of Supercritical Fluid Extraction (SFE of Palm Oil and Oil from Natural Sources

    Directory of Open Access Journals (Sweden)

    Mohd Omar Ab Kadir

    2012-02-01

    Full Text Available Supercritical fluid extraction (SFE, which has received much interest in its use and further development for industrial applications, is a method that offers some advantages over conventional methods, especially for the palm oil industry. SC-CO2 refers to supercritical fluid extraction (SFE that uses carbon dioxide (CO2 as a solvent which is a nontoxic, inexpensive, nonflammable, and nonpolluting supercritical fluid solvent for the extraction of natural products. Almost 100% oil can be extracted and it is regarded as safe, with organic solvent-free extracts having superior organoleptic profiles. The palm oil industry is one of the major industries in Malaysia that provides a major contribution to the national income. Malaysia is the second largest palm oil and palm kernel oil producer in the World. This paper reviews advances in applications of supercritical carbon dioxide (SC-CO2 extraction of oils from natural sources, in particular palm oil, minor constituents in palm oil, producing fractionated, refined, bleached, and deodorized palm oil, palm kernel oil and purified fatty acid fractions commendable for downstream uses as in toiletries and confectionaries.

  5. Supercritical fluid extraction (SFE) and gas chromatographic (GC) analysis of products from irradiated foods containing fat

    International Nuclear Information System (INIS)

    Adam, S.T.

    1993-01-01

    Official analytical methods specify the use of organic liquid solvents which may be hazardous to human health. Non-toxic chlorinated fluorocarbons (CFC) which are still recommended for extracting soil samples are known to be detrimental to the stratospheric ozone layer and therefore subject to the ''FCKW-Halon-Verbots-Verordnung''. Therefore, alternative extraction methods using solvents in the supercritical state are currently being developed (Supercritical Fluid Extraction (SFE)). Their low viscosity and the high diffusivity of solutes in the fluids allow selective, efficient and timesaving extractions. Carbon dioxide (CO 2 ) is the fluid of choice in many applications because its critical parameters permit mild operating conditions. CO 2 of high purity is available at low cost, it is neither inflammable nor explosive, physiologically harmless and part of natural cycle processes. Furthermore, it is simply removed from the matrix without any residues left. The combination of SFE and sorptive collection of the extracted substances has been found to lead to high enrichment factors for the analytes. Distillative concentration and solid phase elution steps, required in the classical solvent extraction procedure, are no longer necessary. Loss of analytes occurring in cryogenic or solvent traps is completeley avoided. Plugging of the restrictor as a consequence of the Joule Thomson effect was not observed in the presented method. (orig./vhe)

  6. Effect of solvent type and ratio on betacyanins and antioxidant activity of extracts from Hylocereus polyrhizus flesh and peel by supercritical fluid extraction and solvent extraction.

    Science.gov (United States)

    Fathordoobady, Farahnaz; Mirhosseini, Hamed; Selamat, Jinap; Manap, Mohd Yazid Abd

    2016-07-01

    The main objective of the present study was to investigate the effect of solvent type and ratio as well as the extraction techniques (i.e. supercritical fluid extraction (SFE) and conventional solvent extraction) on betacyanins and antioxidant activity of the peel and fresh extract from the red pitaya (Hylocereus polyrhizus). The peel and flesh extracts obtained by SFE at 25MPa pressure and 10% EtOH/water (v/v) mixture as a co-solvent contained 24.58 and 91.27mg/100ml total betacyanin, respectively; while the most desirable solvent extraction process resulted in a relatively higher total betacyanin in the peel and flesh extracts (28.44 and 120.28mg/100ml, respectively). The major betacyanins identified in the pitaya peel and flesh extracts were betanin, isobetanin, phyllocactin, butyrylbetanin, isophyllocactin and iso-butyrylbetanin. The flesh extract had the stronger antioxidant activity than the peel extract when the higher proportion of ethanol to water (E/W) was applied for the extraction. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Characterization of Linum usitatissimum L. oil obtained from different extraction technique and in vitro antioxidant potential of supercritical fluid extract

    Science.gov (United States)

    Chauhan, Rishika; Chester, Karishma; Khan, Yasmeen; Tamboli, Ennus Tajuddin; Ahmad, Sayeed

    2015-01-01

    Aim: Present investigation was aimed to characterize the fixed oil of Linum usitatissimum L. using five different extraction methods: Supercritical fluid extraction (SFE), ultrasound-assistance, soxhlet extraction, solvent extraction, and three phase partitioning method. Materials and Methods: The SFE conditions (temperature, pressure, and volume of CO2) were optimized prior for better yield. The extracted oils were analyzed and compared for their physiochemical parameters, high performance thin layer chromatography (HPTLC), gas chromatography-mass spectrometry (GC-MS), and Fourier-transformed infrared spectroscopy (FT-IR) fingerprinting. Antioxidant activity was also determined using 1,1-diphenyl-2-picrylhydrazyl and superoxide scavenging method. Result: The main fatty acids were α-linolenic acid, linoleic acid, palmitic acid, and stearic acid as obtained by GC-MS. HPTLC analysis revealed the presence of similar major components in chromatograms. Similarly, the pattern of peaks, as obtained in FT-IR and GC-MS spectra of same oils by different extraction methods, were superimposable. Conclusion: Analysis reported that the fixed oil of L. usitatissimum L. is a good source of n-3 fatty acid with the significant antioxidant activity of oil obtained from SFE extraction method. PMID:26681884

  8. Characterization of Linum usitatissimum L. oil obtained from different extraction technique and in vitro antioxidant potential of supercritical fluid extract

    Directory of Open Access Journals (Sweden)

    Rishika Chauhan

    2015-01-01

    Full Text Available Aim: Present investigation was aimed to characterize the fixed oil of Linum usitatissimum L. using five different extraction methods: Supercritical fluid extraction (SFE, ultrasound-assistance, soxhlet extraction, solvent extraction, and three phase partitioning method. Materials and Methods: The SFE conditions (temperature, pressure, and volume of CO2 were optimized prior for better yield. The extracted oils were analyzed and compared for their physiochemical parameters, high performance thin layer chromatography (HPTLC, gas chromatography-mass spectrometry (GC-MS, and Fourier-transformed infrared spectroscopy (FT-IR fingerprinting. Antioxidant activity was also determined using 1,1-diphenyl-2-picrylhydrazyl and superoxide scavenging method. Result: The main fatty acids were α-linolenic acid, linoleic acid, palmitic acid, and stearic acid as obtained by GC-MS. HPTLC analysis revealed the presence of similar major components in chromatograms. Similarly, the pattern of peaks, as obtained in FT-IR and GC-MS spectra of same oils by different extraction methods, were superimposable. Conclusion: Analysis reported that the fixed oil of L. usitatissimum L. is a good source of n-3 fatty acid with the significant antioxidant activity of oil obtained from SFE extraction method.

  9. Optimization of microwave-assisted extraction and supercritical fluid extraction of carbamate pesticides in soil by experimental design methodology.

    Science.gov (United States)

    Sun, Lei; Lee, Hian Kee

    2003-10-03

    Orthogonal array design (OAD) was applied for the first time to optimize microwave-assisted extraction (MAE) and supercritical fluid extraction (SFE) conditions for the analysis of four carbamates (propoxur, propham, methiocarb, chlorpropham) from soil. The theory and methodology of a new OA16 (4(4)) matrix derived from a OA16 (2(15)) matrix were developed during the MAE optimization. An analysis of variance technique was employed as the data analysis strategy in this study. Determinations of analytes were completed using high-performance liquid chromatography (HPLC) with UV detection. Four carbamates were successfully extracted from soil with recoveries ranging from 85 to 105% with good reproducibility (approximately 4.9% RSD) under the optimum MAE conditions: 30 ml methanol, 80 degrees C extraction temperature, and 6-min microwave heating. An OA8 (2(7)) matrix was employed for the SFE optimization. The average recoveries and RSD of the analytes from spiked soil by SFE were 92 and 5.5%, respectively except for propham (66.3+/-7.9%), under the following conditions: heating for 30 min at 60 degrees C under supercritical CO2 at 300 kg/cm2 modified with 10% (v/v) methanol. The composition of the supercritical fluid was demonstrated to be a crucial factor in the extraction. The addition of a small volume (10%) of methanol to CO2 greatly enhanced the recoveries of carbamates. A comparison of MAE with SFE was also conducted. The results indicated that >85% average recoveries were obtained by both optimized extraction techniques, and slightly higher recoveries of three carbamates (propoxur, propham and methiocarb) were achieved using MAE. SFE showed slightly higher recovery for chlorpropham (93 vs. 87% for MAE). The effects of time-aged soil on the extraction of analytes were examined and the results obtained by both methods were also compared.

  10. Instrument for Solvent Extraction and Analysis (ISEE) of Organics from Regolith Simulant Using Supercritical Fluid Extraction and Chromatography

    Science.gov (United States)

    Franco, Carolina; Hintze, Paul E.

    2017-01-01

    ISEE is an instrument with the potential to perform extractions from regolith found on the surface of asteroids and planets, followed by characterization and quantitation of the extracts using supercritical fluid extraction (SFE) and chromatography (SFC). SFE is a developed technique proven to extract a wide range of organic compounds. SFC is similar to High Performance Liquid Chromatography (HPLC) but has the advantage of performing chiral separations without needing to derivatize the chiral compounds. CO2 will be the solvent for both stages as it is readily available in the Mars atmosphere. ISEE will capture CO2 from the environment, and use it for SFE and SFC. If successful, this would allow ISEE to perform analysis of organic compounds without using consumables. This paper will present results on a preliminary, proof-of-principle effort to use SFE and SFC to extract and analyze lunar regolith simulant spiked with organic compounds representing a range of organics that ISEE would expect to characterize. An optimization of variables for the extraction of the organics from the spiked regolith was successfully developed, using 138 bar pressure and 40 C temperature. The extraction flow rate was optimized at 2% SLPM with 30% methanol modifier. The extractions were successful with a value of 77.3+/- 0.9% of organics extracted. However, the recovery of organics after the extraction was very low with only 48.5+/-14.2%. Moreover, three columns were selected to analyze multiple samples at a time; two of them are Viridis HSS C18 SB and Torus DIOL, and the third column, specific for chiral separations, has not yet been selected yet.

  11. Supercritical fluid extraction of γ-Pyrones from Ammi visnaga L. fruits

    Directory of Open Access Journals (Sweden)

    Mokhtar Bishr

    2018-06-01

    Full Text Available Extraction with supercritical fluid technique has proved to be effective in many applications including extraction and separation of various active principals from medicinal plants. It was used due to its advantages especially safety, specificity, selectivity and ease of component recovery.Ammi visnaga, L. belongs to the family Apiaceae. The fruits are used specifically for the treatment of kidney stones depending on its γ-Pyrones (mainly khellin and visnagin [2]. The supercritical fluid extraction technique of khellin and visnagin was investigated and the operating conditions for their extraction were optimized. The effect of different pressure (150, 200, 300, 400 and 500 bars, temperature (35, 40, 45, 50 and 55 °C, and particle sizes of the raw material (0.5, 1, 1.4 mm and entire fruits on the extract yield was studied under dynamic conditions for extraction for a run time of 90 min. Optimum supercritical extraction condition was found to be 200 bars at 45 °C and optimum particle size was found to be 1.4 mm. The yield is yellowish white bitter powder and measures 1.74% w/w relative to the dried weight of the fruits containing 38.414% w/w average γ-Pyrones content of which 29.4%w/w khellin, and 9.014%w/w visnagin.The obtained extracts were analyzed by reversed phase HPLC. Keywords: Ammi visnaga fruits, γ-Pyrones (khellin and visnagin, Supercritical fluid extraction and HPLC

  12. Modeling the Supercritical Fluid Extraction of Essential Oils from Plant Materials

    Czech Academy of Sciences Publication Activity Database

    Sovová, Helena

    2012-01-01

    Roč. 1250, SI (2012), s. 27-33 ISSN 0021-9673 R&D Projects: GA TA ČR TA01010578 Institutional support: RVO:67985858 Keywords : supercritical fluid extraction * essential oils * model for kinetics Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 4.612, year: 2012

  13. Steps of Supercritical Fluid Extraction of Natural Products and Their Characteristic Times

    Czech Academy of Sciences Publication Activity Database

    Sovová, Helena

    2012-01-01

    Roč. 66, SI (2012), s. 73-79 ISSN 0896-8446 R&D Projects: GA MŠk 2B06049 Institutional support: RVO:67985858 Keywords : supercritical fluid extraction * vegetable oils * essential oils Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.732, year: 2012

  14. Broken-and-Intact Cell Model for Supercritical Fluid Extraction: Its Origin and Limits.

    Czech Academy of Sciences Publication Activity Database

    Sovová, Helena

    2017-01-01

    Roč. 129, SI (2017), s. 3-8 ISSN 0896-8446. [Iberoamerican Conference on Supercritical Fluids ProSCiba 2016 /4./. Vina del Mar, 28.03.2016-01.04.2016] Institutional support: RVO:67985858 Keywords : modelling * extraction kinetics * supercritical CO2 Subject RIV: CI - Industrial Chemistry, Chemical Engineering OBOR OECD: Chemical process engineering Impact factor: 2.991, year: 2016

  15. Preliminary analysis of proton magnetic resonance 1D spectra of cerebrospinal fluid and brain cancer extracts

    International Nuclear Information System (INIS)

    Toczylowska, B.; Jozwik, A.; Kierul, K.; Matysiak, Z.; Sidor, M.; Wojcik, J.

    1999-01-01

    In series of cerebrospinal fluid samples from 25 patients proton spectra of magnetic resonance were measured. The spectra were measured also for series of brain tumor tissue extracts received from another 25 patients. This paper presents an attempt to apply statistical methods of image recognition for spectra analysis of the two measured series

  16. Supercritical Fluid Extraction of Minor Components of Vegetable Oils: beta-Sitosterol

    Czech Academy of Sciences Publication Activity Database

    Sovová, Helena; Galushko, A.A.; Stateva, R.P.; Rochová, Kristina; Sajfrtová, Marie; Bártlová, Milena

    2010-01-01

    Roč. 101, č. 2 (2010), s. 201-209 ISSN 0260-8774 R&D Projects: GA MŠk 2B06024 Institutional research plan: CEZ:AV0Z40720504 Keywords : supercritical fluid extraction * sea buckthorn oil * beta-sitosterol Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.168, year: 2010

  17. A Novel Model for Multicomponent Supercritical Fluid Extraction and its Application to Ruta graveolens.

    Czech Academy of Sciences Publication Activity Database

    Sovová, Helena; Sajfrtová, Marie; Stateva, R.P.

    2017-01-01

    Roč. 120, Part 1 (2017), s. 102-112 ISSN 0896-8446 R&D Projects: GA MŠk 2B06049 Institutional support: RVO:67985858 Keywords : supercritical fluid extraction * multicomponent equilibrium * kinetics Subject RIV: CI - Industrial Chemistry, Chemical Engineering OBOR OECD: Chemical process engineering Impact factor: 2.991, year: 2016

  18. Supercritical fluid extraction-capillary gas chromatography: on-line coupling with a programmed temperature vaporizer

    NARCIS (Netherlands)

    Houben, R.J.; Janssen, J.G.M.; Leclercq, P.A.; Rijks, J.A.; Cramers, C.A.M.G.

    1990-01-01

    A simple and versatile system is described for the on-line coupling of SFE to capillary GC. The interfacing consists of a programmed temperature vaporizer (PTV) injector. With this injector it is possible to combine solute trapping, elimination of a high flow of extraction fluid, and quantitative

  19. Investigation of parameters affecting the online combination of supercritical fluid extraction with capillary gas chromatography

    NARCIS (Netherlands)

    Lou, X.W.; Janssen, J.G.M.; Cramers, C.A.M.G.

    1996-01-01

    Two different injectors, a split/splitless injector and a programmed temperature vaporizer (PTV) injector were investigated as the interface in on-line supercritical fluid extraction (SFE)-capillary gas chromatography (cGC). The parameters affecting the chromatographic peak shapes as well as the

  20. Evaluation of various Crown ethers for the supercritical fluid extraction of uranium from nitric acid medium

    International Nuclear Information System (INIS)

    Kumar, Pradeep; Rao, Ankita; Ramakumar, K.L.

    2009-01-01

    Various crowns have been evaluated for supercritical fluid extraction of uranium from nitric acid medium employing HPFOA as counter ion. Uranium extraction efficiency was found to be influenced by cavity size of crown ether and nature of substituents. Complexation tendency of UO 2 2+ increases with increasing cavity size of crown ether. Electron withdrawing substituents decreased the extraction efficiency which could be attributed to decrease in the basicity of four oxygen atoms and hence their bonding ability. Whereas electron donating substituents increased the efficiency due to increases in basicity of oxygen atoms and hence in increase in bonding ability. (author)

  1. Comparison of supercritical fluid and Soxhlet extractions for the quantification of hydrocarbons from Euphorbia macroclada.

    Science.gov (United States)

    Ozcan, Adnan; Ozcan, Asiye Safa

    2004-10-08

    This study compares conventional Soxhlet extraction and analytical scale supercritical fluid extraction (SFE) for their yields in extracting of hydrocarbons from arid-land plant Euphorbia macroclada. The plant material was firstly sequentially extracted with supercritical carbon dioxide, modified with 10% methanol (v/v) in the optimum conditions that is a pressure of 400atm and a temperature of 50 degrees C and then it was sonicated in methylene chloride for an additional 4h. E. macroclada was secondly extracted by using a Soxhlet apparatus at 30 degrees C for 8h in methylene chloride. The validated SFE was then compared to the extraction yield of E. macroclada with a Soxhlet extraction by using the Student's t-test at the 95% confidence level. All of extracts were fractionated with silica-gel in a glass column to get better hydrocarbon yields. Thus, the highest hydrocarbons yield from E. macroclada was achieved with SFE (5.8%) when it compared with Soxhlet extractions (1.1%). Gas chromatography (GC) analysis was performed to determine the quantitative hydrocarbons from plant material. The greatest quantitative hydrocarbon recovery from GC was obtained by supercritical carbon dioxide extract (0.6mgg(-1)).

  2. Quality of Cosmetic Argan Oil Extracted by Supercritical Fluid Extraction from Argania spinosa L.

    Directory of Open Access Journals (Sweden)

    Chouaa Taribak

    2013-01-01

    Full Text Available Argan oil has been extracted using supercritical CO2. The influence of the variables pressure (100, 200, 300, and 400 bar and temperature (35, 45, 55°C was investigated. The best extraction yields were achieved at a temperature of 45°C and a pressure of 400 bar. The argan oil extracts were characterized in terms of acid, peroxide and iodine values, total tocopherol, carotene, and fatty acids content. Significant compositional differences were not observed between the oil samples obtained using different pressures and temperatures. The antioxidant capacity of the argan oil samples was high in comparison to those of walnut, almond, hazelnut, and peanut oils and comparable to that of pistachio oil. The physicochemical parameters of the extracted oils obtained by SFE, Soxhlet, and traditional methods are comparable. The technique used for oil processing does not therefore markedly alter the quality of argan oil.

  3. Orbital storage and supply of subcritical liquid nitrogen

    Science.gov (United States)

    Aydelott, John C.

    1990-01-01

    Subcritical cryogenic fluid management has long been recognized as an enabling technology for key propulsion applications, such as space transfer vehicles (STV) and the on-orbit cryogenic fuel depots which will provide STV servicing capability. The LeRC Cryogenic Fluids Technology Office (CFTO), under the sponsorship of OAST, has the responsibility of developing the required technology via a balanced program involving analytical modeling, ground based testing, and in-space experimentation. Topics covered in viewgraph form include: cryogenic management technologies; nitrogen storage and supply; cryogenic nitrogen cooling capability; and LN2 system demonstration technical objectives.

  4. Solubility of Benzo[a]pyrene and Organic Matter of Soil in Subcritical Water

    Directory of Open Access Journals (Sweden)

    Svetlana Sushkova

    2015-12-01

    Full Text Available A dynamic subcritical water extraction method of benzo[a]pyrene from soils is under consideration. The optimum conditions for benzo[a]pyrene extraction from soil are described including the soil treatment by subcritical water at 250 °C and 100 atm for 30 min. The effectiveness of developed method was determined using the matrix spiking recovery technique. A comparative analysis was made to evaluate the results of benzo[a]pyrene extraction from soils using the subcritical water and organic solvents. The advantages of the subcritical water extraction involve the use of ecologically friendly solvent, a shorter time for the analysis and a higher amount of benzo[a]pyrene extracted from soil (96 %. The influence of subcritical water extraction on soil properties was measured the investigation of the processes occurring within soil under the influence the high temperature and pressure. Under appropriate conditions of the experiment there is the destruction of the soil organic matter while the composition of the soil mineral fraction remains practically unchanged.

  5. Supercritical fluid extraction of uranium and thorium from nitric acid medium using organophosphorous compounds

    Energy Technology Data Exchange (ETDEWEB)

    Pitchaiah, K.C.; Sujatha, K.; Rao, C.V.S. Brahmmananda; Subramaniam, S.; Sivaraman, N.; Rao, P.R. Vasudeva [Indira Gandhi Centre for Atomic Research, Kalpakkam (India). Chemistry Group

    2015-06-01

    In recent years, Supercritical Fluid Extraction (SFE) technique has been widely used for the extraction of metal ions. In the present study, extraction of uranium from nitric acid medium was investigated using supercritical carbon dioxide (Sc-CO{sub 2}) containing various organophosphorous compounds such as trialkyl phosphates e.g. tri-iso-amyl phosphate (TiAP), tri-sec-butyl phosphate (TsBP) and tri-n-butyl phosphate (TBP), dialkylalkyl phosphonates, e.g. diamylamyl phosphonate (DAAP) and dibutyl butyl phosphonate (DBBP), dialkyl hydrogen phosphonates, e.g. dioctyl hydrogen phosphonate (DOHP), dioctylphosphineoxide (DOPO), trioctyl phosphine oxide (TOPO), n-octylphenyl N,N-diisobutyl carbamoylmethylphosphine oxide (CMPO) and di-2-ethyl-hexyl phosphoric acid (HDEHP). Some of these ligands have been investigated for the first time in the supercritical phase for the extraction of uranium. The extraction efficiency of uranium was studied with TiAP, DAAP and DBBP as a function of nitric acid concentration; the kinetics of the equilibration period (static extraction) and transportation of the metal complex (dynamic extraction) was investigated. The influence of pressure and temperature on the extraction behaviour of uranium with DAAP was studied from 4 N HNO{sub 3}. The extraction efficiency of uranium from 4 N nitric acid medium was found to increase in the order of phosphates < phosphonates < HDEHP < TOPO < CMPO. In the case of phosphates and phosphonates, the maximum extraction of uranium was found to be from 4 N HNO{sub 3} medium. The acidic extractants, HDEHP and DOHP showed relatively higher extraction at lower acidities. The relative extraction of uranium and thorium from their mixture was also examined using Sc-CO{sub 2} containing phosphates, phosphonates and TOPO. The ligand, TsBP provided better fractionation between uranium and thorium compared to trialkyl phosphates, dialkyl alkyl phosphonates and TOPO.

  6. Pressurized fluid extraction of essential oil from Lavandula hybrida using a modified supercritical fluid extractor and a central composite design for optimization.

    Science.gov (United States)

    Kamali, Hossein; Jalilvand, Mohammad Reza; Aminimoghadamfarouj, Noushin

    2012-06-01

    Essential oil components were extracted from lavandin (Lavandula hybrida) flowers using pressurized fluid extraction. A central composite design was used to optimize the effective extraction variables. The chemical composition of extracted samples was analyzed by a gas chromatograph-flame ionization detector column. For achieving 100% extraction yield, the temperature, pressure, extraction time, and the solvent flow rate were adjusted at 90.6°C, 63 bar, 30.4 min, and 0.2 mL/min, respectively. The results showed that pressurized fluid extraction is a practical technique for separation of constituents such as 1,8-cineole (8.1%), linalool (34.1%), linalyl acetate (30.5%), and camphor (7.3%) from lavandin to be applied in the food, fragrance, pharmaceutical, and natural biocides industries. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Characterization of Arachis hypogaea L. oil obtained from different extraction techniques and in vitro antioxidant potential of supercritical fluid extraction extract

    Directory of Open Access Journals (Sweden)

    Rishika Chauhan

    2016-01-01

    Full Text Available Aim: The present investigation was aimed to characterize the fixed oil of Arachis hypogaea L. using five different extraction methods: Supercritical fluid extraction (SFE, ultrasound assistance extraction, soxhlet extraction, solvent extraction, and three phase partitioning method. Materials and Methods: The SFE conditions (temperature, pressure, and volume of CO 2 were optimized prior for better yield. The extracted oils were analyzed and compared for their physiochemical parameters, high-performance thin layer chromatography (HPTLC, gas chromatography-mass spectrometry (GC-MS, and Fourier transform infrared spectrometry (FT-IR fingerprinting. Anti-oxidant activity was also determined using DPPH and superoxide scavenging method. Results: The main fatty acids were oleic, linoleic, palmitic, and stearic acids as obtained by GC-MS. HPTLC analysis revealed the presence of similar major components in chromatograms. Similarly, the pattern of peaks as obtained in FT-IR and GC-MS spectra of same oils by different extraction methods was superimposable. Conclusion: Analysis reported that the fixed oil of A. hypogaea L. is a good source of unsaturated fatty acid, mainly n-6 and n-9 fatty acid with a significant antioxidant activity of oil obtained from SFE extraction method.

  8. Bioassay-guided supercritical fluid extraction of cyclooxygenase-2 inhibiting substances in Plantago major L.

    Science.gov (United States)

    Stenholm, A; Göransson, U; Bohlin, L

    2013-02-01

    Selective extraction of plant materials is advantageous for obtaining extracts enriched with desired constituents, thereby reducing the need for subsequent chromatography purification. Such compounds include three cyclooxygenase-2 (COX-2) inhibitory substances in Plantago major L. targeted in this investigation: α-linolenic acid (α-LNA) (18:3 ω-3) and the triterpenic acids ursolic acid and oleanolic acid. To investigate the scope for tuning the selectivity of supercritical fluid extraction (SFE) using bioassay guidance, and Soxhlet extraction with dichloromethane as solvent as a reference technique, to optimise yields of these substances. Extraction parameters were varied to optimise extracts' COX-2/COX-1 inhibitory effect ratios. The crude extracts were purified initially using a solid phase extraction (SPE) clean-up procedure and the target compounds were identified with GC-MS, LC-ESI-MS and LC-ESI-MS² using GC-FID for quantification. α-LNA was preferentially extracted in dynamic mode using unmodified carbon dioxide at 40°C and 172 bar, at a 0.04% (w/w) yield with a COX-2/COX-1 inhibitory effect ratio of 1.5. Ursolic and oleanolic acids were dynamically extracted at 0.25% and 0.06% yields, respectively, with no traces of (α-LNA) and a COX-2/COX-1-inhibitory effect ratio of 1.1 using 10% (v/v) ethanol as polar modifier at 75°C and 483 bar. The Soxhlet extracts had ursolic acid, oleanolic acid and αLNA yields up to 1.36%, 0.34% and 0.15%, respectively, with a COX-2/COX-1 inhibitory effect ratio of 1.2. The target substances can be extracted selectively by bioassay guided optimisation of SFE conditions. Copyright © 2012 John Wiley & Sons, Ltd.

  9. Supercritical fluid extraction of phenolic compounds and antioxidants from grape (Vitis labrusca B.) seeds.

    Science.gov (United States)

    Ghafoor, Kashif; Al-Juhaimi, Fahad Y; Choi, Yong Hee

    2012-12-01

    Supercritical fluid extraction (SFE) technique was applied and optimized for temperature, CO₂ pressure and ethanol (modifier) concentration using orthogonal array design and response surface methodology for the extract yield, total phenols and antioxidants from grape (Vitis labrusca B.) seeds. Effects of extraction temperature and pressure were found to be significant for all these response variables in SFE process. Optimum SFE conditions (44 ~ 46 °C temperature and 153 ~ 161 bar CO₂ pressure) along with ethanol (extract yield (12.09 %), total phenols (2.41 mg GAE/ml) and antioxidants (7.08 mg AAE/ml), were used to obtain extracts from grape seeds. The predicted values matched well with the experimental values (12.32 % extract yield, 2.45 mg GAE/ml total phenols and 7.08 mg AAE/ml antioxidants) obtained at optimum SFE conditions. The antiradical assay showed that SFE extracts of grape seeds can scavenge more than 85 % of 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radicals. The grape seeds extracts were also analyzed for hydroxybenzoic acids which included gallic acid (1.21 ~ 3.84 μg/ml), protocatechuic acid (3.57 ~ 11.78 μg/ml) and p-hydroxybenzoic acid (206.72 ~ 688.18 μg/ml).

  10. Optimization of co-solvent addition in supercritical fluid extraction of fat with carbon dioxide

    Directory of Open Access Journals (Sweden)

    Ivanov Dušica S.

    2011-01-01

    Full Text Available This investigation is concerned with supercritical fluid extraction (SFE using CO2, as an analytical technique for total fat extraction from food and feed samples. Its most significant advantages are safety, cleanness, and shorter extraction time. The main limitation of this technique includes the difficulty of extracting polar lipids due to the non-polar character of the solvent (CO2 used for the extraction. The influence of ethanol as a co-solvent on the SFE of mash pig feed was investigated in this paper. Total fat content was determined by SFE and Soxhlet method for ten commercially available mesh pig feeds. Yields of the fat extracted by both methods were plotted one against the other and compared. Statistically significant difference (p ≤ 0.05 has been found only between the total fat obtained by the Soxhlet extraction and SFE by pure CO2. Based on the mathematical model, maximum yield of the extracted fat is achieved at an ethanol addition of 0.67 ml/g of sample, when the other parameters are the same as recommended by the producer’s procedure.

  11. Supercritical fluid extraction of triterpenes and aliphatic hydrocarbons from olive tree derivatives

    Directory of Open Access Journals (Sweden)

    Aimen Issaoui

    2017-05-01

    Full Text Available Olive leaves and tree bark were extracted through supercritical fluid extraction (SFE and the chemical composition of the extracted mixture was determined by Gas Chromatography–Mass Spectrometry (GC–MS. Both samples contain a great number of triterpenes as squalene, which were used since 1997 as a main constituent of the flu vaccine (FLUAD, and the alpha-tocopherol the most biologically active form of vitamin E. We also underline the presence of many aliphatic compounds such nonacosane and heptacosane in low concentrations. The extractions were carried out at 313 and 333 K, at a pressure varying from 90 to 250 bars and using pure carbon dioxide in its supercritical phase. Therefore, their solubilities at equilibrium were numerically optimized via two assumptions and compared with the experimental values. Indeed, a good agreement between several results was shown.

  12. Ancient microbes from halite fluid inclusions: optimized surface sterilization and DNA extraction.

    Science.gov (United States)

    Sankaranarayanan, Krithivasan; Timofeeff, Michael N; Spathis, Rita; Lowenstein, Tim K; Lum, J Koji

    2011-01-01

    Fluid inclusions in evaporite minerals (halite, gypsum, etc.) potentially preserve genetic records of microbial diversity and changing environmental conditions of Earth's hydrosphere for nearly one billion years. Here we describe a robust protocol for surface sterilization and retrieval of DNA from fluid inclusions in halite that, unlike previously published methods, guarantees removal of potentially contaminating surface-bound DNA. The protocol involves microscopic visualization of cell structures, deliberate surface contamination followed by surface sterilization with acid and bleach washes, and DNA extraction using Amicon centrifugal filters. Methods were verified on halite crystals of four different ages from Saline Valley, California (modern, 36 ka, 64 ka, and 150 ka), with retrieval of algal and archaeal DNA, and characterization of the algal community using ITS1 sequences. The protocol we developed opens up new avenues for study of ancient microbial ecosystems in fluid inclusions, understanding microbial evolution across geological time, and investigating the antiquity of life on earth and other parts of the solar system.

  13. Workshop on Subcritical Neutron Production

    International Nuclear Information System (INIS)

    Walter Sadowski; Roald Sagdeev

    2006-01-01

    Executive Summary of the Workshop on Subcritical Neutron Production A workshop on Subcritical Neutron Production was sponsored by the East-West Center of the University of Maryland on October 11-13, 2004. The subject of the workshop was the application of subcritical neutrons to transmutation of actinides. The workshop was attended by members of the fission, accelerator and fusion communities. Papers on the state of development of neutron production by accelerators, fusion devices, and fission reactors were presented. Discussions were held on the potential of these technologies to solve the problems of spent nuclear waste storage and nuclear non-proliferation presented by current and future nuclear power reactors. A list of participants including their affiliation and their E-Mail addresses is attached. The workshop concluded that the technologies, presently available or under development, hold out the exciting possibility of improving the environmental quality and long term energy resources of nuclear power while strengthening proliferation resistance. The workshop participants agreed on the following statements. The workshop considered a number of technologies to deal with spent nuclear fuels and current actinide inventories. The conclusion was reached that substantial increase in nuclear power production will require that the issue of spent nuclear fuel be resolved. The Workshop concluded that 14 MeV fusion neutrons can be used to destroy nuclear reactor by-products, some of which would otherwise have to be stored for geologic periods of time. The production of 14 MeV neutrons is based on existing fusion technologies at different research institutions in several countries around the world. At the present time this technology is used to produce 14 MeV neutrons in JET. More development work will be required, however, to bring fusion technology to the level where it can be used for actinide burning on an industrial scale. The workshop concluded that the potential

  14. Broken-and-Intact Cell Model for Supercritical Fluid Extraction: Its Origin and Limits.

    Czech Academy of Sciences Publication Activity Database

    Sovová, Helena

    2017-01-01

    Roč. 129, SI (2017), s. 3-8 ISSN 0896-8446. [Iberoamerican Conference on Supercritical Fluid s ProSCiba 2016 /4./. Vina del Mar, 28.03.2016-01.04.2016] Institutional support: RVO:67985858 Keywords : modelling * extraction kinetics * supercritical CO2 Subject RIV: CI - Industrial Chemistry, Chemical Engineering OBOR OECD: Chemical process engineering Impact factor: 2.991, year: 2016

  15. Solute-matrix and Solute-Solute Interactions during Supercritical Fluid Extraction of Sea Buckthorn Leaves

    Czech Academy of Sciences Publication Activity Database

    Sajfrtová, Marie; Sovová, Helena

    2012-01-01

    Roč. 42, SI (2012), s. 1682-1691 E-ISSN 1877-7058. [International Congress of Chemical and Process Engineering CHISA 2012 and 15th Conference PRES 2012 /20./. Prague, 25.08.2012-29.08.2012] R&D Projects: GA TA ČR TA01010578 Institutional support: RVO:67985858 Keywords : supercritical fluid extraction * sea buckthom leaves * solute-solute interaction Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  16. Multivessel supercritical fluid extraction of food items in Total Diet Study.

    Science.gov (United States)

    Hopper, M L; King, J W; Johnson, J H; Serino, A A; Butler, R J

    1995-01-01

    An off-line, large capacity, multivessel supercritical fluid extractor (SFE) was designed and constructed for extraction of large samples. The extractor can simultaneously process 1-6 samples (15-25 g) by using supercritical carbon dioxide (SC-CO2), which is relatively nontoxic and nonflammable, as the solvent extraction medium. Lipid recoveries for the SFE system were comparable to those obtained by blending or Soxhlet extraction procedures. Extractions at 10,000 psi, 80 degrees C, expanded gaseous CO2 flow rates of 4-5 L/min (35 degrees C), and 1-3 h extraction times gave reproducible lipid recoveries for pork sausage (relative standard deviation [RSD], 1.32%), corn chips (RSD, 0.46%), cheddar cheese (RSD, 1.14%), and peanut butter (RSD, 0.44%). In addition, this SFE system gave reproducible recoveries (> 93%) for butter fortified with cis-chlordane and malathion at the 100 ppm and 0.1 ppm levels. Six portions each of cheddar cheese, saltine crackers, sandwich cookies, and ground hamburger also were simultaneously extracted with SC-CO2 and analyzed for incurred pesticide residues. Results obtained with this SFE system were reproducible and comparable with results from organic-solvent extraction procedures currently used in the Total Diet Study; therefore, use and disposal of large quantities of organic solvents can be eliminated.

  17. Supercritical Fluid Extraction of Lovastatin from the Wheat Bran Obtained after Solid-State Fermentation

    Directory of Open Access Journals (Sweden)

    Ruchir C. Pansuriya

    2009-01-01

    Full Text Available The objective of the present work is to extract lovastatin with minimum impurity by using supercritical carbon dioxide (SC-CO2. A strain of Aspergillus terreus UV 1617 was used to produce lovastatin by solid-state fermentation (SSF on wheat bran as a solid substrate. Extraction of lovastatin and its hydroxy acid form was initially carried out using organic solvents. Among the different screened solvents, acetonitrile was found to be the most efficient. SC-CO2 was used for extraction of lovastatin from the dry fermented matter. The effect of supercritical extraction parameters such as the amount of an in situ pretreatment solvent, temperature, pressure, flow rate and contact time were investigated. The maximum recovery of lovastatin was obtained with 5 mL of methanol as an in situ pretreatment solvent for 1.5 g of solid matrix, flow rate of the supercritical solvent 2 L/min, temperature 50 °C, and contact time 155 min at a pressure 300 bar. The lovastatin extract obtained after optimizing the conditions of supercritical fluid extraction was found to have 5-fold more HPLC purity than the organic solvent extract.

  18. Supercritical Fluid Extraction of Quinones from Compost for Microbial Community Analysis

    Directory of Open Access Journals (Sweden)

    Ni Luh Gede Ratna Juliasih

    2015-01-01

    Full Text Available Supercritical fluid extraction (SFE was used to extract quinones from compost to monitor the microbial community dynamics during composting. The 0.3 g of dried compost was extracted using 3 mL min−1 of carbon dioxide (90% and methanol (10% at 45°C and 25 MPa for a 30 min extraction time. The extracted quinones were analysed using ultra performance liquid chromatography (UPLC with 0.3 mL min−1 of methanol mobile phase for a 50 min chromatographic run time. A comparable detected amount of quinones was obtained using the developed method and an organic solvent extraction method, being 36.06 μmol kg−1 and 34.54 μmol kg−1, respectively. Significantly low value of dissimilarity index (D between the two methods (0.05 indicated that the quinone profile obtained by both methods was considered identical. The developed method was then applied to determine the maturity of the compost by monitoring the change of quinone during composting. The UQ-9 and MK-7 were predominant quinones in the initial stage of composting. The diversity of quinone became more complex during the cooling and maturation stages. This study showed that SFE had successfully extracted quinones from a complex matrix with simplification and rapidity of the analysis that is beneficial for routine analysis.

  19. Benchmarking criticality safety calculations with subcritical experiments

    International Nuclear Information System (INIS)

    Mihalczo, J.T.

    1984-06-01

    Calculation of the neutron multiplication factor at delayed criticality may be necessary for benchmarking calculations but it may not be sufficient. The use of subcritical experiments to benchmark criticality safety calculations could result in substantial savings in fuel material costs for experiments. In some cases subcritical configurations could be used to benchmark calculations where sufficient fuel to achieve delayed criticality is not available. By performing a variety of measurements with subcritical configurations, much detailed information can be obtained which can be compared directly with calculations. This paper discusses several measurements that can be performed with subcritical assemblies and presents examples that include comparisons between calculation and experiment where possible. Where not, examples from critical experiments have been used but the measurement methods could also be used for subcritical experiments

  20. Direct online extraction and determination by supercritical fluid extraction with chromatography and mass spectrometry of targeted carotenoids from red Habanero peppers (Capsicum chinense Jacq.).

    Science.gov (United States)

    Zoccali, Mariosimone; Giuffrida, Daniele; Dugo, Paola; Mondello, Luigi

    2017-10-01

    Recently, supercritical fluid chromatography coupled to mass spectrometry has gained attention as a fast and useful technology applied to the carotenoids analysis. However, no reports are available in the literature on the direct online extraction and determination by supercritical fluid extraction with chromatography and mass spectrometry. The aim of this research was the development of an online method coupling supercritical fluid extraction and supercritical fluid chromatography for a detailed targeted native carotenoids characterization in red habanero peppers. The online nature of the system, compared to offline approaches, improves run-to-run precision, enables the setting of batch-type applications, and reduces the risks of sample contamination. The extraction has been optimized using different temperatures, starting from 40°C up to 80°C. Multiple extractions, until depletion, were performed on the same sample to evaluate the extraction yield. The range of the first extraction yield, carried out at 80°C, which was the best extraction temperature, was 37.4-65.4%, with a %CV range of 2-12. Twenty-one targeted analytes were extracted and identified by the developed methodology in less than 17 min, including free, monoesters, and diesters carotenoids, in a very fast and efficient way. Quantification of the β-carotene was carried out by using the optimized conditions. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Supercritical fluid extraction of lanthanides and actinides from solid materials with a fluorinated β-diketone

    International Nuclear Information System (INIS)

    Lin, Y.; Brauer, R.D.; Laintz, K.E.; Wai, C.M.

    1993-01-01

    Direct extraction of metal ions by supercritical carbon dioxide is highly inefficient because of the charge neutralization requirement and the weak solute-solvent interactions. One suggested approach of extracting metal ions by supercritical carbon dioxide is to convert the charged species into metal chelates using a chelating agent in the fluid phase. This paper describes a method of extracting lanthanide and uranyl ions from a solid material by supercritical carbon dioxide containing a fluorinated beta-diketone, 2,2-dimethyl-6,6,7,7,8,8,8-heptafluoro-3,5-octanedione(FOD). Potential applications of this SFE method for separating the f-block elements from environmental samples are discussed. 13 refs., 2 tabs

  2. Supercritical fluid extraction of volatile and non-volatile compounds from Schinus molle L.

    Directory of Open Access Journals (Sweden)

    M. S. T. Barroso

    2011-06-01

    Full Text Available Schinus molle L., also known as pepper tree, has been reported to have antimicrobial, antifungal, anti-inflammatory, antispasmodic, antipyretic, antitumoural and cicatrizing properties. This work studies supercritical fluid extraction (SFE to obtain volatile and non-volatile compounds from the aerial parts of Schinus molle L. and the influence of the process on the composition of the extracts. Experiments were performed in a pilot-scale extractor with a capacity of 1 L at pressures of 9, 10, 12, 15 and 20 MPa at 323.15 K. The volatile compounds were obtained by CO2 supercritical extraction with moderate pressure (9 MPa, whereas the non-volatile compounds were extracted at higher pressure (12 to 20 MPa. The analysis of the essential oil was carried out by GC-MS and the main compounds identified were sabinene, limonene, D-germacrene, bicyclogermacrene, and spathulenol. For the non-volatile extracts, the total phenolic content was determined by the Folin-Ciocalteau method. Moreover, one of the goals of this study was to compare the experimental data with the simulated yields predicted by a mathematical model based on mass transfer. The model used requires three adjustable parameters to predict the experimental extraction yield curves.

  3. Determination of persistent organic pollutants in solid environmental samples using accelerated solvent extraction and supercritical fluid extraction. Exhaustive extraction and sorption/desorption studies of PCBs

    Energy Technology Data Exchange (ETDEWEB)

    Bjoerklund, E.

    1998-10-01

    Human activity is constantly causing environmental problems due to production and release of numerous chemicals. A group of compounds of special concern is persistent organic pollutants (POP). These toxic, lipophilic chemicals have a high chemical and biological stability, and tend to accumulate in the lipid phase of living organisms. A major sink for POPs are sediments, and consequently these are important for the distribution of POPs in the aquatic environment. Traditionally, determination of POPs relay on exhaustive extraction using liquid extraction techniques (e.g. Soxhlet extraction developed in the late 19th century) followed by gas chromatographic analysis. Since liquid-solid extraction normally requires large volumes of organic solvents in combination with long extraction times and extract clean-up, there has been an increasing demand for improved technology. This should result in reduced organic solvent consumption and sample preparation time, at the same time improving the environment and cutting costs for POP monitoring. In this thesis two modern techniques with capability of fulfilling at least one of these goals have been investigated: (1) Supercritical Fluid Extraction (SFE), and (2) Accelerated Solvent Extraction (ASE). Polychlorinated biphenyls (PCBs) were chosen as model compounds in all experiments performed on environmental matrices, since they cover a relatively large range of physiochemical parameters. Important parameters influencing the overall extraction efficiency in ASE and SFE, are discussed and illustrated for a large number of sediments. It was demonstrated that, by careful consideration of the experimental parameters, both techniques are capable of replacing old methods such as Soxhlet extraction. ASE is somewhat faster than SFE, but the extracts generated in SFE are much cleaner and can be analyzed without sample clean-up. Consequently the overall sample preparation time may be substantially lower using SFE. However, ASE is important

  4. Measurement of subcriticality by a pulsing α-method

    International Nuclear Information System (INIS)

    Jitarev, V.E.; Kachanov, V.M.; Kuzmin, A.N.

    1999-01-01

    The report presents results of a pulsing α-method [1] for determination of the WWER system subcriticality. The pulsing α-method permits to conduct measurements of system subcriticality in conditions of subcritical state and large neutron background. Therefore this method can be used for the control of a subcriticality of storehouses of a burn up nuclear fuel and stopped reactor. (Authors)

  5. Feasibility studies on supercritical fluid extraction of uranium from phosphoric acid

    International Nuclear Information System (INIS)

    Dubey, B.P.; Agarwal, A.K.

    2014-01-01

    Supercritical fluid extraction (SFE) is a promising novel technology for extraction of many materials. Work has been carried out worldwide on SFE of uranium from various matrices. However, there are no references indicating the R and D on uranium extraction from phosphoric acid using this technology. Heavy Water Board is involved in technology development for recovery of uranium from secondary source, hence it was considered prudent to investigate the technology of SFE for this purpose. Various experiments were carried out with both WPA (P 2 O 5 content 28%) and MGPA (P 2 O 5 content 54%) using bench scale facility available with one of the private party. Extraction experiments were carried out using several chelating agents including TBP, D2EHPA, D2EHPA+TBP/TOPO, TTA, TTA+TBP etc. Feasibility studies revealed the hydrodynamics of operation indicating liquid expansion by about three times during flow of super critical (SC) CO 2 . No flooding was observed when the extraction column filled 20% of its volume capacity, no carryover of entrained/extracted liquid with SC CO 2 with MGPA, material balance of inputs and outputs established i.e. 100% recovery of MGPA and chelating agent, No operational problems with raw MGPA (untreated). No significant extraction of impurities from phosphoric acid to SC CO 2 , 40℃ temperature and 160 bar pressure found ideal for extraction experiments since no other materials found extracted at these conditions and no apparent change/deterioration in PA and chelating agents. Experiments established feasibility of SCE with CO 2 , proper recovery of PA and chelating agents, no need for pretreatment/gunk removal from PA; however, extraction of uranium was found inadequate even though ORP of feed acid was boosted by H 2 O 2 addition. Investigations revealed that SCE column created reducing environment in phosphoric acid, which was not favourable for uranium extraction, which resulted in difficulty in extraction of Uranium. HWB has now designed

  6. Field—Based Supercritical Fluid Extraction of Hydrocarbons at Industrially Contaminated Sites

    Directory of Open Access Journals (Sweden)

    Peggy Rigou

    2002-01-01

    Full Text Available Examination of organic pollutants in groundwaters should also consider the source of the pollution, which is often a solid matrix such as soil, landfill waste, or sediment. This premise should be viewed alongside the growing trend towards field-based characterisation of contaminated sites for reasons of speed and cost. Field-based methods for the extraction of organic compounds from solid samples are generally cumbersome, time consuming, or inefficient. This paper describes the development of a field-based supercritical fluid extraction (SFE system for the recovery of organic contaminants (benzene, toluene, ethylbenzene, and xylene and polynuclear aromatic hydrocarbons from soils. A simple, compact, and robust SFE system has been constructed and was found to offer the same extraction efficiency as a well-established laboratory SFE system. Extraction optimisation was statistically evaluated using a factorial analysis procedure. Under optimised conditions, the device yielded recovery efficiencies of >70% with RSD values of 4% against the standard EPA Soxhlet method, compared with a mean recovery efficiency of 48% for a commercially available field-extraction kit. The device will next be evaluated with real samples prior to field deployment.

  7. Extraction of Stevia rebaudiana bertoni sweetener glycosides by supercritical fluid methods.

    Directory of Open Access Journals (Sweden)

    Juan José Hinojosa-González

    2017-05-01

    Full Text Available Aim. The aim was to evaluate the supercritical carbon dioxide extraction method with and without the addition of co-solvent to the system (mixture water: ethanol to obtain the glycosides from leaves of Stevia rebaudiana Bertoni. Methods. A SFT-150 SFE / SFR model with CO2 as a fluid was used for the supercritical extraction. The variables studied were temperature, pressure, extraction time and the presence or absence of the co-solvent (water-ethanol mixture in a concentration of 70:30 v/v, incorporated in different proportions to determine the effect on yield. The amount of glycoside sweeteners was analyzed by High Performance Liquid Chromatography (HPLC. Results. The pressure was the factor that favored the extraction, which was selective in obtaining Rebaudioside A with yields no greater than 2%. The inclusion of the co-solvent achieved an increase in yield to values of 2.9% Conclusion. Supercritical CO2 individually and mixed with ethanol-water as a co-solvent was not efficient to extract Stevia rebaudiana stevioside sweeteners

  8. Online recovery of radiocesium from soil, tissue paper and plant samples by supercritical fluid extraction

    International Nuclear Information System (INIS)

    Kanekar, A.S.; Pathak, P.N.; Mohapatra, P.K.

    2014-01-01

    The feasibility of recovery of radio-cesium from soil, tissue papers, and plant samples has been evaluated by supercritical fluid extraction (SFE) route employing calix(4)arene-mono(crown-6) (CC) dissolved in acetonitrile. These studies showed that quantitative recovery of 137 Cs from soil samples was difficult under the conditions of these studies. However, experiments performed on tissue papers (cellulose matrix) showed quantitative recovery of 137 Cs. On the other hand, 137 Cs recovery from plant samples varied between ∼50 % (for stems) and ∼67.2 % (for leaves) employing 1x10 -3 M CC + 4 M HNO 3 dissolved in acetonitrile. (author)

  9. Removal of plutonium from real time waste using supercritical fluid extraction

    International Nuclear Information System (INIS)

    Sujatha, K.; Sivaraman, N.; Kumar, R.; Srinivasan, T.G.; Vasudeva Rao, P.R.

    2010-01-01

    Supercritical fluid extraction (SFE) technique was carried out for the recovery of plutonium from cellulose waste matrix using supercritical carbon dioxide (SC-CO 2 ) modified with suitable ligands such as octylphenyl N,N-diisobutyl carbamoylmethyl phosphine oxide (φCMPO), tri-n-butyl phosphate (TBP), acetyl acetone, trifluoro acetyl acetone and theonyltrifluoroacetyl acetone (TTA). The maximum plutonium recovery was found to be 99.8% when SC-CO 2 modified with CMPO was employed. About 15mg of plutonium was recovered from waste. (author)

  10. Fatty acid composition and antioxidant activity of oils from two cultivars of Cantaloupe extracted by supercritical fluid extraction

    Energy Technology Data Exchange (ETDEWEB)

    Ismail, M.; Mariod, A.; Bagalkotkar, G.; Ling, H. S

    2010-07-01

    The effect of supercritical fluid extraction (SFE) fractionation of three oil fractions (1st, 2nd, 3rd fraction) on the fatty acid composition and antioxidant activity of oils from two cultivars of cantaloupe were investigated. Rock melon oil (RMO) and Golden Langkawi oil (GLO) were extracted using SFE and the major fatty acids for both cultivars were linoleic, oleic, palmitic, and stearic acid. The SFA decreased from 15.78 to 14.14% in RMO 1st fraction, and MUFA decreased from 18.30 to 16.56% in RMO 2nd fraction, while PUFA increased from 65.9 to 69.30% in RMO 3rd fraction. On the other hand SFA decreased from 16.35 to 13.91% in GLO 1{sup s}t fraction, and MUFA decreased from 17.50 to 15.57% in GLO 2nd fraction, while PUFA increased from 66.15 to 70.52% in GLO 3rd fraction. The different fractions of the two oils showed high antioxidant activity in reducing the oxidation of {beta}-carotene in beta-carotene bleaching assay (BCB) and the quenching of 1,1-diphenyl-2-picrylhydrazyl (DPPH). (Author) 41 refs.

  11. Effect temperature of supercritical CO2 fluid extraction on phytochemical analysis and antioxidant activity of Zingiber officinale Roscoe

    Science.gov (United States)

    Sondari, Dewi; Irawadi, Tun Tedja; Setyaningsih, Dwi; Tursiloadi, Silvester

    2017-11-01

    Supercritical fluid extraction of Zingiber officinale Roscoe has been carried out at a pressure of 16 MPa, with temperatures between 20-40 °C, during extraction time of 6 hours and the flow rate of CO2 fluid 5.5 ml/min. The result of supercritical method was compared with the extraction maceration using a mixture of water and ethanol (70% v/v) for 24 hours. The main content in ginger that has a main role as an antioxidant is a gingerol compound that can help neutralize the damaging effects caused by free radicals in the body, as anti-coagulant, and inhibit the occurrence of blood clots. This study aims to determine the effect of temperature on chemical components contained in rough extract of Zingiber officinale Roscoe and its antioxidant activity, total phenol and total flavonoid content. To determine the chemical components contained in the crude extract of Zingiber officinale Roscoe extracted by supercritical fluid and maceration extraction, GC-MS analysis was performed. Meanwhile, the antioxidant activity of the extract was evaluated based on a 2.2-diphenyl-1-picrylhydrazyl (DPPH) free radical damping method. The results of the analysis show that the result of ginger extract by using the supercritical CO2 extraction method has high antioxidant activity than by using maceration method. The highest total phenol content and total flavonoids were obtained on ginger extraction using supercritical CO2 fluid extraction, indicating that phenol and flavonoid compounds contribute to antioxidant activity. Chromatographic analysis showed that the chemical profile of ginger extract containing oxygenated monoterpenes, monoterpene hydrocarbons, sesquiterpene hydrocarbons, oxygenated monoterpene gingerol and esters. In supercritical fluid extraction, the compounds that can be identified at a temperature of 20-40 °C contain 27 compounds, and 11 compounds from the result of maceration extract. The main component of Zingiber officinale Roscoe extracted using supercritical fluid

  12. ENHANCED ELECTROCHEMICAL PROCESSES IN SUBCRITICAL WATER

    Energy Technology Data Exchange (ETDEWEB)

    Steven B. Hawthorne

    2000-07-01

    This project involved designing and performing preliminary electrochemical experiments in subcritical water. An electrochemical cell with substantially better performance characteristics than presently available was designed, built, and tested successfully. The electrochemical conductivity of subcritical water increased substantially with temperature, e.g., conductivities increased by a factor of 120 when the temperature was increased from 25 to 250 C. Cyclic voltammograms obtained with platinum and nickel demonstrated that the voltage required to produce hydrogen and oxygen from water can be dropped by a factor of three in subcritical water compared to the voltages required at ambient temperatures. However, no enhancement in the degradation of 1,2-dichlorobenzene and the polychlorinated biphenyl 3,3',4,4'-tetrachlorobiphenyl was observed with applied potential in subcritical water.

  13. Comparison study of moisture content, colour properties and essential oil compounds extracted by hydrodistillation and supercritical fluid extraction between stem and leaves of lemongrass (Cymbopogun citratus)

    Science.gov (United States)

    Kamaruddin, Shazlin; Mustapha, Wan Aida Wan; Haiyee, Zaibunnisa Abdul

    2018-04-01

    The objectives of this study were to compare the properties of moisture content, colour and essential oil compounds between stem and leaves of lemongrass (Cymbopogun citratus). The essential oil was extracted using two different methods which are hydrodistillation and supercritical fluid extraction (SFE). There was no significant difference of moisture content between stem and leaves of lemongrass. The lightness (L) and yellowness (+b) values of the stems were significantly higher (pleaves. The highest yield of essential oil was obtained by extraction using supercritical fluid extraction (SFE) in leaves (˜ 0.7%) by treatment at 1700psi and 50°C. The main compound of extracted essential oil was citral (geranial and neral).

  14. A Swellable Microneedle Patch to Rapidly Extract Skin Interstitial Fluid for Timely Metabolic Analysis.

    Science.gov (United States)

    Chang, Hao; Zheng, Mengjia; Yu, Xiaojun; Than, Aung; Seeni, Razina Z; Kang, Rongjie; Tian, Jingqi; Khanh, Duong Phan; Liu, Linbo; Chen, Peng; Xu, Chenjie

    2017-10-01

    Skin interstitial fluid (ISF) is an emerging source of biomarkers for disease diagnosis and prognosis. Microneedle (MN) patch has been identified as an ideal platform to extract ISF from the skin due to its pain-free and easy-to-administrated properties. However, long sampling time is still a serious problem which impedes timely metabolic analysis. In this study, a swellable MN patch that can rapidly extract ISF is developed. The MN patch is made of methacrylated hyaluronic acid (MeHA) and further crosslinked through UV irradiation. Owing to the supreme water affinity of MeHA, this MN patch can extract sufficient ISF in a short time without the assistance of extra devices, which remarkably facilitates timely metabolic analysis. Due to covalent crosslinked network, the MN patch maintains the structure integrity in the swelling hydrated state without leaving residues in skin after usage. More importantly, the extracted ISF metabolites can be efficiently recovered from MN patch by centrifugation for the subsequent offline analysis of metabolites such as glucose and cholesterol. Given the recent trend of easy-to-use point-of-care devices for personal healthcare monitoring, this study opens a new avenue for the development of MN-based microdevices for sampling ISF and minimally invasive metabolic detection. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Supercritical Fluid Extraction of Eucalyptus globulus Bark—A Promising Approach for Triterpenoid Production

    Science.gov (United States)

    Domingues, Rui M. A.; Oliveira, Eduardo L. G.; Freire, Carmen S. R.; Couto, Ricardo M.; Simões, Pedro C.; Neto, Carlos P.; Silvestre, Armando J. D.; Silva, Carlos M.

    2012-01-01

    Eucalyptus bark contains significant amounts of triterpenoids with demonstrated bioactivity, namely triterpenic acids and their acetyl derivatives (ursolic, betulinic, oleanolic, betulonic, 3-acetylursolic, and 3-acetyloleanolic acids). In this work, the supercritical fluid extraction (SFE) of Eucalyptus globulus deciduous bark was carried out with pure and modified carbon dioxide to recover this fraction, and the results were compared with those obtained by Soxhlet extraction with dichloromethane. The effects of pressure (100–200 bar), co-solvent (ethanol) content (0, 5 and 8% wt), and multistep operation were studied in order to evaluate the applicability of SFE for their selective and efficient production. The individual extraction curves of the main families of compounds were measured, and the extracts analyzed by GC-MS. Results pointed out the influence of pressure and the important role played by the co-solvent. Ethanol can be used with advantage, since its effect is more important than increasing pressure by several tens of bar. At 160 bar and 40 °C, the introduction of 8% (wt) of ethanol greatly improves the yield of triterpenoids more than threefold. PMID:22837719

  16. Supercritical Fluid Extraction of Bacterial and Archaeal Lipid Biomarkers from Anaerobically Digested Sludge

    Directory of Open Access Journals (Sweden)

    Koichi Fujie

    2012-03-01

    Full Text Available Supercritical fluid extraction (SFE was used in the analysis of bacterial respiratory quinone (RQ, bacterial phospholipid fatty acid (PLFA, and archaeal phospholipid ether lipid (PLEL from anaerobically digested sludge. Bacterial RQ were determined using ultra performance liquid chromatography (UPLC. Determination of bacterial PLFA and archaeal PLEL was simultaneously performed using gas chromatography-mass spectrometry (GC-MS. The effects of pressure, temperature, and modifier concentration on the total amounts of RQ, PLFA, and PLEL were investigated by 23 experiments with five settings chosen for each variable. The optimal extraction conditions that were obtained through a multiple-response optimization included a pressure of 23.6 MPa, temperature of 77.6 °C, and 10.6% (v/v of methanol as the modifier. Thirty nine components of microbial lipid biomarkers were identified in the anaerobically digested sludge. Overall, the SFE method proved to be more effective, rapid, and quantitative for simultaneously extracting bacterial and archaeal lipid biomarkers, compared to conventional organic solvent extraction. This work shows the potential application of SFE as a routine method for the comprehensive analysis of microbial community structures in environmental assessments using the lipid biomarkers profile.

  17. Ancient microbes from halite fluid inclusions: optimized surface sterilization and DNA extraction.

    Directory of Open Access Journals (Sweden)

    Krithivasan Sankaranarayanan

    Full Text Available Fluid inclusions in evaporite minerals (halite, gypsum, etc. potentially preserve genetic records of microbial diversity and changing environmental conditions of Earth's hydrosphere for nearly one billion years. Here we describe a robust protocol for surface sterilization and retrieval of DNA from fluid inclusions in halite that, unlike previously published methods, guarantees removal of potentially contaminating surface-bound DNA. The protocol involves microscopic visualization of cell structures, deliberate surface contamination followed by surface sterilization with acid and bleach washes, and DNA extraction using Amicon centrifugal filters. Methods were verified on halite crystals of four different ages from Saline Valley, California (modern, 36 ka, 64 ka, and 150 ka, with retrieval of algal and archaeal DNA, and characterization of the algal community using ITS1 sequences. The protocol we developed opens up new avenues for study of ancient microbial ecosystems in fluid inclusions, understanding microbial evolution across geological time, and investigating the antiquity of life on earth and other parts of the solar system.

  18. Identification of Bioactivity, Volatile and Fatty Acid Profile in Supercritical Fluid Extracts of Mexican arnica

    Directory of Open Access Journals (Sweden)

    J. Saúl García-Pérez

    2016-09-01

    Full Text Available Supercritical fluid extraction (SFE is a sustainable technique used for the extraction of lipophilic metabolites such as pigments and fatty acids. Arnica plant is considered a potential candidate material with high antioxidant and antimicrobial activities. Therefore, in this study, a locally available Heterotheca inuloides, also known as Mexican arnica, was analyzed for the extraction of high-value compounds. Based on different pressure (P, temperature (T, and co-solvent (CoS, four treatments (T were prepared. A maximum 7.13% yield was recovered from T2 (T = 60 °C, P = 10 MPa, CoS = 8 g/min, followed by 6.69% from T4 (T = 60 °C, P = 30 MPa, CoS = 4 g/min. Some bioactive sesquiterpenoids such as 7-hydroxycadalene, caryophyllene and δ-cadinene were identified in the extracts by GC/MS. The fatty acid profile revealed that the main components were palmitic acid (C16:0, followed by linoleic acid (C18:2ω6c, α-linolenic acid (C18:3ω3 and stearic acid (C18:0 differing in percent yield per treatment. Antibacterial activities were determined by the agar diffusion method, indicating that all the treatments exerted strong antibacterial activity against S. aureus, C. albicans, and E. coli strains. The antioxidant capacity of the extracts was also measured by three in vitro assays, DPPH, TEAC and FRAP, using Trolox as a standard. Results showed high antioxidant capacity enabling pharmaceutical applications of Mexican arnica.

  19. DNA extraction methods for panbacterial and panfungal PCR detection in intraocular fluids.

    Science.gov (United States)

    Mazoteras, Paloma; Bispo, Paulo José Martins; Höfling-Lima, Ana Luisa; Casaroli-Marano, Ricardo P

    2015-07-01

    Three different methods of DNA extraction from intraocular fluids were compared with subsequent detection for bacterial and fungal DNA by universal PCR amplification. Three DNA extraction methods, from aqueous and vitreous humors, were evaluated to compare their relative efficiency. Bacterial (Gram positive and negative) and fungal strains were used in this study: Escherichia coli, Staphylococcus epidermidis and Candida albicans. The quality, quantification, and detection limit for DNA extraction and PCR amplification were analyzed. Validation procedures for 13 aqueous humor and 14 vitreous samples, from 20 patients with clinically suspected endophthalmitis were carried out. The column-based extraction method was the most time-effective, achieving DNA detection limits ≥10(2) and 10(3 )CFU/100 µL for bacteria and fungi, respectively. PCR amplification detected 100 fg, 1 pg and 10 pg of genomic DNA of E. coli, S. epidermidis and C. albicans respectively. PCR detected 90.0% of the causative agents from 27 intraocular samples collected from 20 patients with clinically suspected endophthalmitis, while standard microbiological techniques could detect only 60.0%. The most frequently found organisms were Streptococcus spp. in 38.9% (n = 7) of patients and Staphylococcus spp. found in 22.2% (n = 4). The column-based extraction method for very small inocula in small volume samples (50-100 µL) of aqueous and/or vitreous humors allowed PCR amplification in all samples with sufficient quality for subsequent sequencing and identification of the microorganism in the majority of them.

  20. Supercritical fluid extraction of ginger (Zingiber Officinale Var. Amarum) : Global yield and composition study

    Science.gov (United States)

    Fitriady, Muhammad Arifuddin; Sulaswatty, Anny; Agustian, Egi; Salahuddin, Aditama, Deska Prayoga Fauzi

    2017-11-01

    An experiment to observe the effect of temperature and time process in ginger rhizome-Supercritical Fluid Extraction (SFE) using CO2 as the solvent has been conducted. The ginger rhizome (Zingiber Officinale Var. Amarum) was washed, drained, sliced, sun-dried, and then stored in a sealed bag prior to usage. The temperature and time process variables are each 35, 40, 45°C and 2, 4, 6 hours respectively with the pressure variable are 3500, 4000, and 4500 psi. It is found that the highest yield (2.9%) was achieved using temperature of 40°C and pressure of 4500 psiwith the process time of 4 hours. However, using the curve-fitting method, it is suggested to use 42°C as the temperature and 5 hours, 7 minutes, and 30 seconds (5.125 Hours) as the time process to obtain the highest yield. The temperature changes will affect both solvent and vapor pressure of diluted compounds of the ginger which will influence the global yield and the composition of the extract. The three major components of the extract are curcumene, zingiberene, and β - sesquipellandrene,

  1. Supercritical fluid extraction of uranium for its purification from various yellow cake matrices

    International Nuclear Information System (INIS)

    Prabhat, Parimal; Rao, Ankita; Tomar, B.S.; Kumar, Pradeep

    2016-01-01

    Uranium is produced from different uranium ores as crude yellow cake of different chemical composition such as sodium diuranate (SDU), ammonium diuranate (ADU), magnesium diuranate (MDU), high temperature uranium peroxide (HTUP) etc. This depends on nature of ores and ore processing methods, availability of required facilities at processing site and other economic as well as environmental factors. These yellow cakes are further processed to produce pure uranium suitable for fuel fabrication facility by conventional solvent extraction process. Supercritical Fluid Extraction (SFE) is being developed as an alternate method for separation in nuclear fields due to its inherent potential to minimize liquid waste generation and process simplification. In present study, SFE of uranium from various yellowcake of different chemical composition has been carried out. Chemical parameter such as effect of TBP amount on SFE of uranium has been carried out and optimized at 2 ml for 200 mg SDU. Instrumental parameter such as temperature and pressure on SFE of uranium has been optimized at 323 K and 15.2 MPa. Extraction efficiency (%) achieved at optimized condition is 91.45 ± 0.2, 97.01 ± 0.75 and 96.72 ± 0.27 for SDU, MDU and HTUP respectively. Purity of uranium before SFE and after has been compared. Further studies is in progress for better understanding of chemical composition of matrix on SFE of uranium and improving purity of uranium separated from this route. (author)

  2. Phytochemical Characterization and Biological Evaluation of the Aqueous and Supercritical Fluid Extracts from Salvia sclareoides Brot

    Directory of Open Access Journals (Sweden)

    Batista Daniela

    2017-04-01

    Full Text Available Plants belonging to the genus Salvia (Lamiaceae are known to have a wide range of biological properties. In this work, extracts obtained from the aerial parts of Salvia sclareoides Brot. were evaluated to investigate their chemical composition, toxicity, bioactivity, and stability under in vitro gastrointestinal conditions. The composition of the supercritical fluid extract was determined by GC and GC-MS, while the identification of the infusion constituents was performed by HPLC-DAD and LC-MS. The in vitro cytotoxicity of both extracts (0-2 mg/mL was evaluated in Caco-2 cell lines by the MTT assay. The anti-inflammatory and anticholinesterase activities were determined through the inhibition of cyclooxygenase-1 and acetylcholinesterase enzymes, while β-carotene/linoleic acid bleaching test and the DPPH assays were used to evaluate the antioxidant activity. The infusion inhibited cyclooxygenase-1 (IC50 = 271.0 μg/mL, and acetylcholinesterase (IC50 = 487.7 μg/ mL enzymes, also demonstrated significant antioxidant properties, as evaluated by the DPPH (IC50 = 10.4 μg/mL and β-carotene/linoleic acid (IC50 = 30.0 μg/mL assays. No remarkable alterations in the composition or in the bioactivities of the infusion were observed after in vitro digestion, which supports the potential of S. sclareoides as a source of bioactive ingredients with neuroprotective, anti-inflammatory and antioxidant properties.

  3. Improved solid-phase extraction method for systematic toxicological analysis in biological fluids.

    Science.gov (United States)

    Soriano, T; Jurado, C; Menéndez, M; Repetto, M

    2001-03-01

    A method for the simultaneous qualitative and quantitative determination of drugs of abuse (opiates, cocaine, or amphetamines) and prescribed drugs (tricyclic antidepressants, phenotiazines, benzodiazepines, etc.) in biological fluids--blood, urine, bile, and gastric contents--was developed. This procedure involves solid-phase extraction with Bond-Elut Certify columns followed by analysis by gas chromatography-nitrogen-phosphorus detection (GC-NPD) and confirmation by gas chromatography-mass spectrometry (GC-MS), after derivatization, when necessary. Pretreatment was performed on all samples: sonication for 15 min plus enzymatic hydrolysis with beta-glucuronidase in urine. With respect to the internal standards, nalorphine and trihexylamine were used for basic substances, allobarbital for acidic drugs, and prazepam for benzodiazepines. Acidic and basic compounds were extracted from different aliquots of samples at different pH levels: 6-6.5 for the acidic and neutral and 8-8.5 for the basic and the benzodiazepines. Several areas of experimental design were considered in the process of method optimization. These included internal standards, pH, sonication, flow rate and washing solvents. It was found that systematic analysis could be reliably performed using optimized extraction conditions. The recovery rates for the compounds tested were always higher than 61.02%.

  4. Evaluation of supercritical fluid extraction/gas chromatography/matrix isolation-infrared spectrometry for analysis of organic compounds

    International Nuclear Information System (INIS)

    Bopari, A.S.; Bierma, D.R.; Applegate, D.V.

    1991-01-01

    Analysis of soil samples for organic compounds typically first requires Soxhlet extraction or sonication. These processes are time consuming and generate large amounts of waste solvent. Supercritical fluid extraction (SFE), which uses a supercritical fluid such as carbon dioxide, has recently been shown to extract organic compounds from soil samples in good yields. Moreover, SFE does not generate waste solvent and can be performed rapidly. Gas Chromatography/Matrix Isolation-Infrared Spectrometry (GC/MI-IR) has been used in our laboratories for determining organic compounds present in extracts from various matrices. The authors have interfaced an SFE extraction apparatus to GC/MI-IR instruments. In this paper the utility of SPE/GC/MI-IR instrumentation is discussed

  5. Experimental study of elliptical jet from supercritical to subcritical conditions using planar laser induced fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Muthukumaran, C. K.; Vaidyanathan, Aravind, E-mail: aravind7@iist.ac.in [Department of Aerospace Engineering, Indian Institute of Space Science and Technology, Trivandrum, Kerala 695547 (India)

    2015-03-15

    The study of fluid jet dynamics at supercritical conditions involves strong coupling between fluid dynamic and thermodynamic phenomena. Beyond the critical point, the liquid-vapor coexistence ceases to exist, and the fluid exists as a single phase known as supercritical fluid with its properties that are entirely different from liquids and gases. At the critical point, the liquids do not possess surface tension and latent heat of evaporation. Around the critical point, the fluid undergoes large changes in density and possesses thermodynamic anomaly like enhancement in thermal conductivity and specific heat. In the present work, the transition of the supercritical and near-critical elliptical jet into subcritical as well as supercritical environment is investigated experimentally with nitrogen and helium as the surrounding environment. Under atmospheric condition, a liquid jet injected from the elliptical orifice exhibits axis switching phenomena. As the injection temperature increases, the axis switching length also increases. Beyond the critical temperature, the axis switching is not observed. The investigation also revealed that pressure plays a major role in determining the thermodynamic transition of the elliptical jet only for the case of supercritical jet injected into subcritical chamber conditions. At larger pressures, the supercritical jet undergoes disintegration and formation of droplets in the subcritical environment is observed. However, for supercritical jet injection into supercritical environment, the gas-gas like mixing behavior is observed.

  6. Experimental study of elliptical jet from supercritical to subcritical conditions using planar laser induced fluorescence

    International Nuclear Information System (INIS)

    Muthukumaran, C. K.; Vaidyanathan, Aravind

    2015-01-01

    The study of fluid jet dynamics at supercritical conditions involves strong coupling between fluid dynamic and thermodynamic phenomena. Beyond the critical point, the liquid-vapor coexistence ceases to exist, and the fluid exists as a single phase known as supercritical fluid with its properties that are entirely different from liquids and gases. At the critical point, the liquids do not possess surface tension and latent heat of evaporation. Around the critical point, the fluid undergoes large changes in density and possesses thermodynamic anomaly like enhancement in thermal conductivity and specific heat. In the present work, the transition of the supercritical and near-critical elliptical jet into subcritical as well as supercritical environment is investigated experimentally with nitrogen and helium as the surrounding environment. Under atmospheric condition, a liquid jet injected from the elliptical orifice exhibits axis switching phenomena. As the injection temperature increases, the axis switching length also increases. Beyond the critical temperature, the axis switching is not observed. The investigation also revealed that pressure plays a major role in determining the thermodynamic transition of the elliptical jet only for the case of supercritical jet injected into subcritical chamber conditions. At larger pressures, the supercritical jet undergoes disintegration and formation of droplets in the subcritical environment is observed. However, for supercritical jet injection into supercritical environment, the gas-gas like mixing behavior is observed

  7. Cygnus Performance in Subcritical Experiments

    International Nuclear Information System (INIS)

    G Corrow; M Hansen; D Henderson; S Lutz; C Mitton

    2008-01-01

    The Cygnus Dual Beam Radiographic Facility consists of two identical radiographic sources with the following specifications: 4-rad dose at 1 m, 1-mm spot size, 50-ns pulse length, 2.25-MeV endpoint energy. The facility is located in an underground tunnel complex at the Nevada Test Site. Here SubCritical Experiments (SCEs) are performed to study the dynamic properties of plutonium. The Cygnus sources were developed as a primary diagnostic for these tests. Since SCEs are single-shot, high-value events - reliability and reproducibility are key issues. Enhanced reliability involves minimization of failure modes through design, inspection, and testing. Many unique hardware and operational features were incorporated into Cygnus to insure reliability. Enhanced reproducibility involves normalization of shot-to-shot output also through design, inspection, and testing. The first SCE to utilize Cygnus, Armando, was executed on May 25, 2004. A year later, April - May 2005, calibrations using a plutonium step wedge were performed. The results from this series were used for more precise interpretation of the Armando data. In the period February - May 2007 Cygnus was fielded on Thermos, which is a series of small-sample plutonium shots using a one-dimensional geometry. Pulsed power research generally dictates frequent change in hardware configuration. Conversely, SCE applications have typically required constant machine settings. Therefore, while operating during the past four years we have accumulated a large database for evaluation of machine performance under highly consistent operating conditions. Through analysis of this database Cygnus reliability and reproducibility on Armando, Step Wedge, and Thermos is presented

  8. Cygnus Performance in Subcritical Experiments

    Energy Technology Data Exchange (ETDEWEB)

    G. Corrow, M. Hansen, D. Henderson, S. Lutz, C. Mitton, et al.

    2008-02-01

    The Cygnus Dual Beam Radiographic Facility consists of two identical radiographic sources with the following specifications: 4-rad dose at 1 m, 1-mm spot size, 50-ns pulse length, 2.25-MeV endpoint energy. The facility is located in an underground tunnel complex at the Nevada Test Site. Here SubCritical Experiments (SCEs) are performed to study the dynamic properties of plutonium. The Cygnus sources were developed as a primary diagnostic for these tests. Since SCEs are single-shot, high-value events - reliability and reproducibility are key issues. Enhanced reliability involves minimization of failure modes through design, inspection, and testing. Many unique hardware and operational features were incorporated into Cygnus to insure reliability. Enhanced reproducibility involves normalization of shot-to-shot output also through design, inspection, and testing. The first SCE to utilize Cygnus, Armando, was executed on May 25, 2004. A year later, April - May 2005, calibrations using a plutonium step wedge were performed. The results from this series were used for more precise interpretation of the Armando data. In the period February - May 2007 Cygnus was fielded on Thermos, which is a series of small-sample plutonium shots using a one-dimensional geometry. Pulsed power research generally dictates frequent change in hardware configuration. Conversely, SCE applications have typically required constant machine settings. Therefore, while operating during the past four years we have accumulated a large database for evaluation of machine performance under highly consistent operating conditions. Through analysis of this database Cygnus reliability and reproducibility on Armando, Step Wedge, and Thermos is presented.

  9. Large subcriticality measurement by pulsed neutron method

    International Nuclear Information System (INIS)

    Yamane, Y.; Yoshida, A.; Nishina, K.; Kobayashi, K.; Kanda, K.

    1985-01-01

    To establish the method determining large subcriticalities in the field of nuclear criticality safety, the authors performed pulsed neutron experiments using the Kyoto University Critical Assembly (KUCA) at Research Reactor Institute, Kyoto University and the Cockcroft-Walton type accelerator attached to the assembly. The area-ratio method proposed by Sjoestrand was employed to evaluate subcriticalities from neutron decay curves measured. This method has the shortcomings that the neutron component due to a decay of delayed neutrons remarkably decreases as the subcriticality of an objective increases. To overcome the shortcoming, the authors increased the frequency of pulsed neutron generation. The integral-version of the area-ratio method proposed by Kosaly and Fisher was employed in addition in order to remove a contamination of spatial higher modes from the decay curve. The latter becomes significant as subcriticality increases. The largest subcriticality determined in the present experiments was 125.4 dollars, which was equal to 0.5111 in a multiplication factor. The calculational values evaluated by the computer code KENO-IV with 137 energy groups based on the Monte Carlo method agreed well with those experimental values

  10. Computational Fluid Dynamics Based Extraction of Heat Transfer Coefficient in Cryogenic Propellant Tanks

    Science.gov (United States)

    Yang, H. Q.; West, Jeff

    2015-01-01

    Current reduced-order thermal model for cryogenic propellant tanks is based on correlations built for flat plates collected in the 1950's. The use of these correlations suffers from: inaccurate geometry representation; inaccurate gravity orientation; ambiguous length scale; and lack of detailed validation. The work presented under this task uses the first-principles based Computational Fluid Dynamics (CFD) technique to compute heat transfer from tank wall to the cryogenic fluids, and extracts and correlates the equivalent heat transfer coefficient to support reduced-order thermal model. The CFD tool was first validated against available experimental data and commonly used correlations for natural convection along a vertically heated wall. Good agreements between the present prediction and experimental data have been found for flows in laminar as well turbulent regimes. The convective heat transfer between tank wall and cryogenic propellant, and that between tank wall and ullage gas were then simulated. The results showed that commonly used heat transfer correlations for either vertical or horizontal plate over predict heat transfer rate for the cryogenic tank, in some cases by as much as one order of magnitude. A characteristic length scale has been defined that can correlate all heat transfer coefficients for different fill levels into a single curve. This curve can be used for the reduced-order heat transfer model analysis.

  11. Determination of As concentration in earthworm coelomic fluid extracts by total-reflection X-ray fluorescence spectrometry

    Science.gov (United States)

    Allegretta, Ignazio; Porfido, Carlo; Panzarino, Onofrio; Fontanella, Maria Chiara; Beone, Gian Maria; Spagnuolo, Matteo; Terzano, Roberto

    2017-04-01

    Earthworms are often used as sentinel organisms to study As bioavailability in polluted soils. Arsenic in earthworms is mainly sequestrated in the coelomic fluids whose As content can therefore be used to asses As bioavalability. In this work, a method for determining As concentration in coelomic fluid extracts using total-reflection X-ray fluorescence spectrometry (TXRF) is presented. For this purpose coelomic fluid extracts from earthworms living in three polluted soils and one non-polluted (control) soil have been collected and analysed. A very simple sample preparation was implemented, consisting of a dilution of the extracts with polyvinyl alcohol (PVA) using a 1:8 ratio and dropwise deposition of the sample on the reflector. A detection limit of 0.2 μg/l and quantification limit of 0.6 μg/l was obtained in the diluted samples, corresponding to 2 μg/l and 6 μg/l in the coelomic fluid extracts, respectively. This allowed to quantify As concentration in coelomic fluids extracted from earthworms living in soils polluted with As at concentrations higher than 20 mg/kg (considered as a pollution threshold for agricultural soils). The TXRF method has been validated by comparison with As concentrations in standards and by analysing the same samples by ICP-MS, after acid digestion of the sample. The low limit of detection, the proven reliability of the method and the little sample preparation make TXRF a suitable, cost-efficient and "green" technique for the analysis of As in earthworm coelomic fluid extracts for bioavailability studies.

  12. Supercritical fluid extraction of meat lipids: an alternative approach to the identification of irradiated meats

    International Nuclear Information System (INIS)

    Hampson, J.W.; Jones, K.C.; Foglia, T.A.; Kohout, K.M.

    1996-01-01

    Ionizing radiation is currently under study as an alternative method for extending the shelf life of meats and meat products. Accordingly, methods are needed to determine if a meat or meat product has been exposed to ionizing radiation. In this study, a method is described for the isolation and analysis of volatile hydrocarbons formed in meat lipids after exposure to ionizing radiation. The method is based on supercritical fluid extraction of the hydrocarbons from meat lipids and subsequent identification and quantitation of individual hydrocarbons by gas chromatography (GC) with a mass selection detector (MSD). Supercritical carbon dioxide at 175 bar and 40°C extracted the hydrocarbon fraction from total meat lipids within 20 min. The presence of radiolytic hydrocarbons, as determined by GC/MSD, was then correlated to the degree of irradiation of the meat from 0 to 10 kGy. Besides being faster, this method has the advantage of reduced solvent consumption when compared to current methods for determining if a meat or meat product has been irradiated

  13. Sedative and hypnotic effects of supercritical carbon dioxide fluid extraction from Schisandra chinensis in mice

    Directory of Open Access Journals (Sweden)

    Hongyan Zhu

    2016-10-01

    Full Text Available Schisandra chinensis is a traditional Chinese medicine that has been used for treating insomnia and neurasthenia for centuries. Lignans, which are considered to be the bioactive components, are apt to be extracted by supercritical carbon dioxide. This study was conducted to investigate the sedative and hypnotic activities of the supercritical carbon dioxide fluid extraction of S. chinensis (SFES in mice and the possible mechanisms. SFES exhibited an obvious sedative effect on shortening the locomotor activity in mice in a dose-dependent (10–200 mg/kg manner. SFES (50 mg/kg, 100 mg/kg, and 200 mg/kg, intragstrically showed a strong hypnotic effect in synergy with pentobarbital in mouse sleep, and reversal of insomnia induced by caffeine, p-chlorophenylalanine and flumazenil by decreasing sleep latency, sleep recovery, and increasing sleeping time. In addition, it produced a synergistic effect with 5-hydroxytryptophan (2.5 mg/kg, intraperitoneally. The behavioral pharmacological results suggest that SFES has significant sedative and hypnotic activities, and the mechanisms might be relevant to the serotonergic and γ-aminobutyric acid (GABAergic system.

  14. Ensuring the validity of calculated subcritical limits

    International Nuclear Information System (INIS)

    Clark, H.K.

    1977-01-01

    The care taken at the Savannah River Laboratory and Plant to ensure the validity of calculated subcritical limits is described. Close attention is given to ANSI N16.1-1975, ''Validation of Calculational Methods for Nuclear Criticality Safety.'' The computer codes used for criticality safety computations, which are listed and are briefly described, have been placed in the SRL JOSHUA system to facilitate calculation and to reduce input errors. A driver module, KOKO, simplifies and standardizes input and links the codes together in various ways. For any criticality safety evaluation, correlations of the calculational methods are made with experiment to establish bias. Occasionally subcritical experiments are performed expressly to provide benchmarks. Calculated subcritical limits contain an adequate but not excessive margin to allow for uncertainty in the bias. The final step in any criticality safety evaluation is the writing of a report describing the calculations and justifying the margin

  15. Modeling of Parameters of Subcritical Assembly SAD

    CERN Document Server

    Petrochenkov, S; Puzynin, I

    2005-01-01

    The accepted conceptual design of the experimental Subcritical Assembly in Dubna (SAD) is based on the MOX core with a nominal unit capacity of 25 kW (thermal). This corresponds to the multiplication coefficient $k_{\\rm eff} =0.95$ and accelerator beam power 1 kW. A subcritical assembly driven with the existing 660 MeV proton accelerator at the Joint Institute for Nuclear Research has been modelled in order to make choice of the optimal parameters for the future experiments. The Monte Carlo method was used to simulate neutron spectra, energy deposition and doses calculations. Some of the calculation results are presented in the paper.

  16. Continuous reactivity calculation for subcritical system

    International Nuclear Information System (INIS)

    Silva, Cristiano; Goncalves, Alessandro C.; Martinez, Aquilino S.; Silva, Fernando C. da

    2011-01-01

    With the rise of a new generation of nuclear reactors as for existence the ADS (Accelerator-Driven System), it is important to have a fast and accurate prediction of the variation in reactivity during a possible variation in the intensity of external sources. This paper presents a formulation for the calculation of reactivity in subcritical systems using the inverse method related only to nuclear power derivatives. One of the applications of the proposed method is the possibility of developing reactimeters that allow the continuous monitoring of subcritical systems. (author)

  17. Continuous reactivity calculation for subcritical system

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Cristiano; Goncalves, Alessandro C.; Martinez, Aquilino S.; Silva, Fernando C. da, E-mail: cristiano@herzeleid.net, E-mail: aquilino@lmp.ufrj.br, E-mail: fernando@con.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Palma, Daniel A.P., E-mail: dapalma@cnen.gov.br [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    With the rise of a new generation of nuclear reactors as for existence the ADS (Accelerator-Driven System), it is important to have a fast and accurate prediction of the variation in reactivity during a possible variation in the intensity of external sources. This paper presents a formulation for the calculation of reactivity in subcritical systems using the inverse method related only to nuclear power derivatives. One of the applications of the proposed method is the possibility of developing reactimeters that allow the continuous monitoring of subcritical systems. (author)

  18. Subcritical calculation of the nuclear material warehouse

    International Nuclear Information System (INIS)

    Garcia M, T.; Mazon R, R.

    2009-01-01

    In this work the subcritical calculation of the nuclear material warehouse of the Reactor TRIGA Mark III labyrinth in the Mexico Nuclear Center is presented. During the adaptation of the nuclear warehouse (vault I), the fuel was temporarily changed to the warehouse (vault II) and it was also carried out the subcritical calculation for this temporary arrangement. The code used for the calculation of the effective multiplication factor, it was the Monte Carlo N-Particle Extended code known as MCNPX, developed by the National Laboratory of Los Alamos, for the particles transport. (Author)

  19. Neutron chain length distributions in subcritical systems

    International Nuclear Information System (INIS)

    Nolen, S.D.; Spriggs, G.

    1999-01-01

    In this paper, the authors present the results of the chain-length distribution as a function of k in subcritical systems. These results were obtained from a point Monte Carlo code and a three-dimensional Monte Carlo code, MC++. Based on these results, they then attempt to explain why several of the common neutron noise techniques, such as the Rossi-α and Feynman's variance-to-mean techniques, are difficult to perform in highly subcritical systems using low-efficiency detectors

  20. Selective extraction of hydrocarbons, phosphonates and phosphonic acids from soils by successive supercritical fluid and pressurized liquid extractions.

    Science.gov (United States)

    Chaudot, X; Tambuté, A; Caude, M

    2000-01-14

    Hydrocarbons, dialkyl alkylphosphonates and alkyl alkylphosphonic acids are selectively extracted from spiked soils by successive implementation of supercritical carbon dioxide, supercritical methanol-modified carbon dioxide and pressurized water. More than 95% of hydrocarbons are extracted during the first step (pure supercritical carbon dioxide extraction) whereas no organophosphorus compound is evidenced in this first extract. A quantitative extraction of phosphonates is achieved during the second step (methanol-modified supercritical carbon dioxide extraction). Polar phosphonic acids are extracted during a third step (pressurized water extraction) and analyzed by gas chromatography under methylated derivatives (diazomethane derivatization). Global recoveries for these compounds are close to 80%, a loss of about 20% occurring during the derivatization process (co-evaporation with solvent). The developed selective extraction method was successfully applied to a soil sample during an international collaborative exercise.

  1. Investigation of extractable organic compounds in deep-sea hydrothermal vent fluids along the Mid-Atlantic Ridge

    Science.gov (United States)

    McCollom, Thomas M.; Seewald, Jeffrey S.; German, Christopher R.

    2015-05-01

    The possibility that deep-sea hydrothermal vents may contain organic compounds produced by abiotic synthesis or by microbial communities living deep beneath the surface has led to numerous studies of the organic composition of vent fluids. Most of these studies have focused on methane and other light hydrocarbons, while the possible occurrence of more complex organic compounds in the fluids has remained largely unstudied. To address this issue, the presence of higher molecular weight organic compounds in deep-sea hydrothermal fluids was assessed at three sites along the Mid-Atlantic Ridge that span a range of temperatures (51 to >360 °C), fluid compositions, and host-rock lithologies (mafic to ultramafic). Samples were obtained at several sites within the Lucky Strike, Rainbow, and Lost City hydrothermal fields. Three methods were employed to extract organic compounds for analysis, including liquid:liquid extraction, cold trapping on the walls of a coil of titanium tubing, and pumping fluids through cartridges filled with solid phase extraction (SPE) sorbents. The only samples to consistently yield high amounts of extractable organic compounds were the warm (51-91 °C), highly alkaline fluids from Lost City, which contained elevated concentrations of C8, C10, and C12n-alkanoic acids and, in some cases, trithiolane, hexadecanol, squalene, and cholesterol. Collectively, the C8-C12 acids can account for about 15% of the total dissolved organic carbon in the Lost City fluids. The even-carbon-number predominance of the alkanoic acids indicates a biological origin, but it is unclear whether these compounds are derived from microbial activity occurring within the hydrothermal chimney proximal to the site of fluid discharge or are transported from deeper within the system. Hydrothermal fluids from the Lucky Strike and Rainbow fields were characterized by an overall scarcity of extractable dissolved organic compounds. Trace amounts of aromatic hydrocarbons including

  2. Immunomodulatory effects of supercritical fluid CO2 extracts from freeze-dried powder of Tenebrio molitor larvae (yellow mealworm

    Directory of Open Access Journals (Sweden)

    QingFeng TANG

    2016-01-01

    Full Text Available Abstract In order to take full advantage of Tenebrio molitor larvae (yellow mealworm resources, the supercritical CO2 fluid freeze-dried powder of T. molitor larvae (fdTML extraction on the immune systems of mice was carried out. The results about the effects of supercritical CO2 fluid fdTML extraction on carbon expurgation and phagocytosis of peritoneal macrophages experiments of mice indicated that the fdTML extraction enhanced observably carbon expurgatory index, phagocytic rate and phagocytic index. The fdTML extraction could stimulate response of delayed hypersensitivity. The proliferation of ConA-induced mitogenic reponse for spleen lymphocyte was also increased. The amount of hemolytic antibody in mice serum increased compared with those of the control group mice. The half of hemolysis values in serum of treated mice increased compared to the control group. Furthermore, serum NO content in all treatment groups was higher than that of the control group whereas acid phosphatase and alkaline phosphatase activity was only significantly higher relative to the control group. Our findings suggest that supercritical CO2 fluid the fdTML extraction has potential as a health food supplement.

  3. Construction of a supercritical fluid extraction (SFE equipment: validation using annatto and fennel and extract analysis by thin layer chromatography coupled to image

    Directory of Open Access Journals (Sweden)

    Júlio Cezar Flores JOHNER

    2016-01-01

    Full Text Available Abstract The present work describes setting up a laboratory unit for supercritical fluid extraction. In addition to its construction, a survey of cost was done to compare the cost of the homemade unit with that of commercial units. The equipment was validated using an extraction of annatto seeds’ oil, and the extraction and fractionation of fennel oil were used to validate the two separators; for both systems, the solvent was carbon dioxide. The chemical profiles of annatto and fennel extracts were assessed using thin layer chromatography; the images of the chromatographic plates were processed using the free ImageJ software. The cost survey showed that the homemade equipment has a very low cost (~US$ 16,000 compared to commercial equipment. The extraction curves of annatto were similar to those obtained in the literature (yield of 3.8% oil. The separators were validated, producing both a 2.5% fraction of fennel seed extract rich in essential oils and another extract fraction composed mainly of oleoresins. The ImageJ software proved to be a low-cost tool for obtaining an initial evaluation of the chemical profile of the extracts.

  4. Supercritical fluid extraction of grape seeds: extract chemical composition, antioxidant activity and inhibition of nitrite production in LPS-stimulated Raw 264.7 cells.

    Science.gov (United States)

    Pérez, Concepción; Ruiz del Castillo, María Luisa; Gil, Carmen; Blanch, Gracia Patricia; Flores, Gema

    2015-08-01

    Grape by-products are a rich source of bioactive compounds having broad medicinal properties, but are usually wasted from juice/wine processing industries. The present study investigates the use of supercritical fluid extraction (SFE) for obtaining an extract rich in bioactive compounds. First, some variables involved in the extraction were applied. SFE conditions were selected based on the oil mass yield, fatty acid profile and total phenolic composition. As a result, 40 °C and 300 bar were selected as operational conditions. The phenolic composition of the grape seed oil was determined using LC-DAD. The antioxidant activity was determined by ABTS and DPPH assays. For the anti-inflammatory activity the inhibition of nitrite production was assessed. The grape seed oil extracted was rich in phenolic compounds and fatty acids with significant antioxidant and anti-inflammatory activities. From these results, added economic value to this agroindustrial residue is proposed using environmentally friendly techniques.

  5. Supercritical fluid extraction and chromatographic analysis (HRGC-FID and HRGC-MS of Lupinus spp. alkaloids

    Directory of Open Access Journals (Sweden)

    Nossack Ana C.

    2000-01-01

    Full Text Available The alkaloid extracts from Lupinus spp., obtained by conventional methods (maceration/sonication - solid phase extraction; maceration/sonication - liquid-liquid extraction and SFE (supercritical fluid extraction using CO2 and modified CO2 (CO2/MeOH, CO2/EtOH, CO2/iPrOH and CO2/H2O were analysed by HRGC-FID (high resolution gas chromatography - flame ionization detector and HRGC-MS (high resolution gas chromatography - mass spectrometry. The HRGC-FID quantitative analyses were performed with an internal standard method for quantification of lupanine, multiflorine and a spartein-like alkaloid. HRGC-MS allowed identification of the chemical constituents (alkaloids and other compounds from these extracts.

  6. Developing novel one-step processes for obtaining food-grade O/W emulsions from pressurized fluid extracts: processes description, state of the art and perspectives

    Directory of Open Access Journals (Sweden)

    Diego Tresinari SANTOS

    2015-01-01

    Full Text Available AbstractIn this work, a novel on-line process for production of food-grade emulsions containing oily extracts, i.e. oil-in-water (O/W emulsions, in only one step is presented. This process has been called ESFE, Emulsions from Supercritical Fluid Extraction. With this process, emulsions containing supercritical fluid extracts can be obtained directly from plant materials. The aim in the conception of this process is to propose a new rapid way to obtain emulsions from supercritical fluid extracts. Nowadays the conventional emulsion formulation method is a two-step procedure, i.e. first supercritical fluid extraction for obtaining an extract; secondly emulsion formulation using another device. Other variation of the process was tested and successfully validated originating a new acronymed process: EPFE (Emulsions from Pressurized Fluid Extractions. Both processes exploit the supercritical CO2-essential oils miscibility, in addition, EPFE process exploits the emulsification properties of saponin-rich pressurized aqueous plant extracts. The feasibility of this latter process was demonstrated using Pfaffia glomerata roots as source of saponin-rich extract, water as extracting solvent and clove essential oil, directly extracted using supercritical CO2, as a model dispersed phase. In addition, examples of pressurized fluid-based coupled processes applied for adding value to food bioactive compounds developed in the past five years are reviewed.

  7. Antioxidant and toxicological evaluation of a Tamarindus indica L. leaf fluid extract.

    Science.gov (United States)

    Escalona-Arranz, J C; Perez-Rosés, R; Rodríguez-Amado, J; Morris-Quevedo, H J; Mwasi, L B; Cabrera-Sotomayor, O; Machado-García, R; Fong-Lórez, O; Alfonso-Castillo, A; Puente-Zapata, E

    2016-01-01

    In the scientific community, there is a growing interest in Tamarindus indica L. leaves, both as a valuable nutrient and as a functional food. This paper focuses on exploring its safety and antioxidant properties. A tamarind leaf fluid extract (TFE) wholly characterised was evaluated for its anti-DPPH activity (IC50 = 44.36 μg/mL) and its reducing power activity (IC50 = 60.87 μg/mL). TFE also exhibited a high ferrous ion-chelating capacity, with an estimated binding constant of 1.085 mol L(-1) while its influence over nitric oxide production in human leucocytes was irregular. At low concentrations, TFE stimulated NO output, but it significantly inhibited it when there was an increase in concentration. TFE was also classified as a non-toxic substance in two toxicity tests: the acute oral toxicity test and the oral mucous irritability test. Further toxicological assays are needed, although results so far suggest that TFE might become a functional dietary supplement.

  8. Variability of standard artificial soils: Physico-chemical properties and phenanthrene desorption measured by means of supercritical fluid extraction

    International Nuclear Information System (INIS)

    Bielská, Lucie; Hovorková, Ivana; Komprdová, Klára; Hofman, Jakub

    2012-01-01

    The study is focused on artificial soil which is supposed to be a standardized “soil like” medium. We compared physico-chemical properties and extractability of Phenanthrene from 25 artificial soils prepared according to OECD standardized procedures at different laboratories. A substantial range of soil properties was found, also for parameters which should be standardized because they have an important influence on the bioavailability of pollutants (e.g. total organic carbon ranged from 1.4 to 6.1%). The extractability of Phe was measured by supercritical fluid extraction (SFE) at harsh and mild conditions. Highly variable Phe extractability from different soils (3–89%) was observed. The extractability was strongly related (R 2 = 0.87) to total organic carbon content, 0.1–2 mm particle size, and humic/fulvic acid ratio in the following multiple regression model: SFE (%) = 1.35 * sand (%) − 0.77 * TOC (%)2 + 0.27 * HA/FA. - Highlights: ► We compared properties and extractability of Phe from 25 different artificial soils. ► Substantial range of soil properties was found, also for important parameters. ► Phe extractability was measured by supercritical fluid extraction (SFE) at 2 modes. ► Phe extractability was highly variable from different soils (3–89%). ► Extractability was strongly related to TOC, 0.1–2 mm particles, and HA/FA. - Significant variability in physico-chemical properties exists between artificial soils prepared at different laboratories and affects behavior of contaminants in these soils.

  9. Electromembrane extraction as a rapid and selective miniaturized sample preparation technique for biological fluids

    DEFF Research Database (Denmark)

    Gjelstad, Astrid; Pedersen-Bjergaard, Stig; Seip, Knut Fredrik

    2015-01-01

    This special report discusses the sample preparation method electromembrane extraction, which was introduced in 2006 as a rapid and selective miniaturized extraction method. The extraction principle is based on isolation of charged analytes extracted from an aqueous sample, across a thin film....... Technical aspects of electromembrane extraction, important extraction parameters as well as a handful of examples of applications from different biological samples and bioanalytical areas are discussed in the paper....

  10. Optimisation of supercritical fluid extraction of polycyclic aromatic hydrocarbons and their nitrated derivatives adsorbed on highly sorptive diesel particulate matter

    International Nuclear Information System (INIS)

    Portet-Koltalo, F.; Oukebdane, K.; Dionnet, F.; Desbene, P.L.

    2009-01-01

    Supercritical fluid extraction (SFE) was performed to extract complex mixtures of polycyclic aromatic hydrocarbons (PAHs), nitrated derivatives (nitroPAHs) and heavy n-alkanes from spiked soot particulates that resulted from the incomplete combustion of diesel oils. This polluted material, resulting from combustion in a light diesel engine and collected at high temperature inside the particulate filter placed just after the engine, was particularly resistant to conventional extraction techniques, such as soxhlet extraction, and had an extraction behaviour that differed markedly from certified reference materials (SRM 1650). A factorial experimental design was performed, simultaneously modelling the influence of four SFE experimental factors on the recovery yields, i.e.: the temperature and the pressure of the supercritical fluid, the nature and the percentage of the organic modifier added to CO 2 (chloroform, tetrahydrofuran, methylene chloride), as a means to reach the optimal extraction yields for all the studied target pollutants. The results of modelling showed that the supercritical fluid pressure had to be kept at its maximum level (30 MPa) and the temperature had to be kept relatively low (75 o C). Under these operating conditions, adding 15% of methylene chloride to the CO 2 permitted quantitative extraction of not only light PAHs and their nitrated derivatives, but also heavy n-alkanes from the spiked soots. However, heavy polyaromatics were not quantitatively extracted from the refractory carbonaceous solid surface. As such, original organic modifiers were tested, including pyridine, which, as a strong electron donor cosolvent (15% into CO 2 ), was the most successful. The addition of diethylamine to pyridine, which enhanced the electron donor character of the cosolvent, even increased the extraction yields of the heaviest PAHs, leading to a quantitative extraction of all PAHs (more than 79%) from the diesel particulate matter, with detection limits

  11. Impacts of Extraction Methods in the Rapid Determination of Atrazine Residues in Foods using Supercritical Fluid Chromatography and Enzyme-Linked Immunosorbent Assay: Microwave Solvent vs. Supercritical Fluid Extractions

    Directory of Open Access Journals (Sweden)

    Mohamed H. El-Saeid

    2005-01-01

    Full Text Available It is an accepted fact that many food products that we eat today have the possibility of being contaminated by various chemicals used from planting to processing. These chemicals have been shown to cause illnesses for which some concerned government agencies have instituted regulatory mechanisms to minimize the risks and the effects on humans. It is for these concerns that reliable and accurate rapid determination techniques are needed to effect proper regulatory standards for the protection of people's nutritional health. This paper, therefore, reports the comparative evaluation of the extraction methods in the determination of atrazine (commonly used in agricultural as a herbicide residues in foods using supercritical fluid chromatography (SFC and enzyme-linked immunosorbent assay (ELISA techniques. Supercritical fluid extraction (SFE and microwave solvent extraction (MSE methods were used to test samples of frozen vegetables, fruit juice, and jam from local food markets in Houston. Results showed a high recovery percentage of atrazine residues using supercritical fluid coupled with ELISA and SFC than with MSE. Comparatively, however, atrazine was detected 90.9 and 54.5% using SFC and ELISA techniques, respectively. ELISA technique was, however, less time consuming, lower in cost, and more sensitive with low detection limit of atrazine residues than SFC technique.

  12. Extraction and isolation of dictamnine, obacunone and fraxinellone from Dictamnus dasycarpus Turcz. by supercritical fluid extraction and high-speed counter-current chromatography

    International Nuclear Information System (INIS)

    Wang, Daijie; Lin, Yunliang; Lin, Xiaojing; Geng, Yanling; Wang, Xiao; Zhang, Jinjie; Qiu, Jiying

    2012-01-01

    Supercritical fluid extraction was used to extract active compounds from the Chinese traditional medicinal D. dasycarpus under the pressure of 30 MPa and temperature of 45 degree C. Further separation and purification was established by high-speed counter-current chromatography (HSCCC) with a two-phase solvent system composed of n-hexane-ethyl acetate-methanol-water (1:0.8:1.3:0.9, volume ratio). The separation yielded a total of 47 mg of dictamnine, 24 mg of obacunone and 83 mg of fraxinellone from 1.0 g of the crude extract in one step separation with the purity of 99.2, 98.4 and 99.0%, respectively, as determined by HPLC. The chemical structures of these compounds were identified by ESI-MS, IR, 1H-NMR and 13 C-NMR. (author)

  13. Extraction and isolation of dictamnine, obacunone and fraxinellone from Dictamnus dasycarpus Turcz. by supercritical fluid extraction and high-speed counter-current chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Daijie; Lin, Yunliang; Lin, Xiaojing; Geng, Yanling; Wang, Xiao, E-mail: wxjn1998@126.com [Process Control Research Center of TCM. Shandong Academy of Sciences. Shandong Analysis and Test Center (China); Zhang, Jinjie [College of Biosystems Engineering and Food Science, Zhejiang University (China); Qiu, Jiying [Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Science, Shandong (China)

    2012-07-01

    Supercritical fluid extraction was used to extract active compounds from the Chinese traditional medicinal D. dasycarpus under the pressure of 30 MPa and temperature of 45 degree C. Further separation and purification was established by high-speed counter-current chromatography (HSCCC) with a two-phase solvent system composed of n-hexane-ethyl acetate-methanol-water (1:0.8:1.3:0.9, volume ratio). The separation yielded a total of 47 mg of dictamnine, 24 mg of obacunone and 83 mg of fraxinellone from 1.0 g of the crude extract in one step separation with the purity of 99.2, 98.4 and 99.0%, respectively, as determined by HPLC. The chemical structures of these compounds were identified by ESI-MS, IR, 1H-NMR and {sup 13}C-NMR. (author)

  14. Extraction and isolation of dictamnine, obacunone and fraxinellone from Dictamnus dasycarpus Turcz. by supercritical fluid extraction and high-speed counter-current chromatography

    Directory of Open Access Journals (Sweden)

    Daijie Wang

    2012-01-01

    Full Text Available Supercritical fluid extraction was used to extract active compounds from the Chinese traditional medicinal D. dasycarpus under the pressure of 30 MPa and temperature of 45 ºC. Further separation and purification was established by high-speed counter-current chromatography (HSCCC with a two-phase solvent system composed of n-hexane-ethyl acetate-methanol-water (1:0.8:1.3:0.9, volume ratio. The separation yielded a total of 47 mg of dictamnine, 24 mg of obacunone and 83 mg of fraxinellone from 1.0 g of the crude extract in one step separation with the purity of 99.2, 98.4 and 99.0%, respectively, as determined by HPLC. The chemical structures of these compounds were identified by ESI-MS, IR, ¹H-NMR and 13C-NMR.

  15. Hybridisation of solar and geothermal energy in both subcritical and supercritical Organic Rankine Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Cheng

    2014-05-01

    Highlights: • Hybrid solar and geothermal energy conversion system was modelled using subcritical and supercritical ORCs. • Solar thermal and geothermal energy can be effectively hybridised. • Greater thermodynamic advantages and economic benefits can be achieved using the supercritical hybrid plant. • Hybrid plants can produce up to 19% more annual electricity than the two stand-alone plants. • Solar-to-electricity cost in the supercritical hybrid plant is about 4–19% less than in the subcritical plant. - Abstract: A supercritical Organic Rankine Cycle (ORC) is renowned for higher conversion efficiency than the conventional ORC due to a better thermal match (i.e. reduced irreversibility) presented in the heat exchanger unit. This improved thermal match is a result of the obscured liquid-to-vapor boundary of the organic working fluid at supercritical states. Stand-alone solar thermal power generation and stand-alone geothermal power generation using a supercritical ORC have been widely investigated. However, the power generation capability of a single supercritical ORC using combined solar and geothermal energy has not been examined. This paper thus investigates the hybridisation of solar and geothermal energy in a supercritical ORC to explore the benefit from the potential synergies of such a hybrid platform. Its performances were also compared with those of a subcritical hybrid plant, stand-alone solar and geothermal plants. All simulations and modelling of the power cycles were carried out using process simulation package Aspen HYSYS. The performances of the hybrid plant were then assessed using technical analysis, economic analysis, and the figure of merit analysis. The results of the technical analysis show that thermodynamically, the hybrid plant using a supercritical ORC outperforms the hybrid plant using a subcritical ORC if at least 66% of its exergy input is met by solar energy (i.e. a solar exergy fraction of >66%), namely producing 4–17

  16. Hybridisation of solar and geothermal energy in both subcritical and supercritical Organic Rankine Cycles

    International Nuclear Information System (INIS)

    Zhou, Cheng

    2014-01-01

    Highlights: • Hybrid solar and geothermal energy conversion system was modelled using subcritical and supercritical ORCs. • Solar thermal and geothermal energy can be effectively hybridised. • Greater thermodynamic advantages and economic benefits can be achieved using the supercritical hybrid plant. • Hybrid plants can produce up to 19% more annual electricity than the two stand-alone plants. • Solar-to-electricity cost in the supercritical hybrid plant is about 4–19% less than in the subcritical plant. - Abstract: A supercritical Organic Rankine Cycle (ORC) is renowned for higher conversion efficiency than the conventional ORC due to a better thermal match (i.e. reduced irreversibility) presented in the heat exchanger unit. This improved thermal match is a result of the obscured liquid-to-vapor boundary of the organic working fluid at supercritical states. Stand-alone solar thermal power generation and stand-alone geothermal power generation using a supercritical ORC have been widely investigated. However, the power generation capability of a single supercritical ORC using combined solar and geothermal energy has not been examined. This paper thus investigates the hybridisation of solar and geothermal energy in a supercritical ORC to explore the benefit from the potential synergies of such a hybrid platform. Its performances were also compared with those of a subcritical hybrid plant, stand-alone solar and geothermal plants. All simulations and modelling of the power cycles were carried out using process simulation package Aspen HYSYS. The performances of the hybrid plant were then assessed using technical analysis, economic analysis, and the figure of merit analysis. The results of the technical analysis show that thermodynamically, the hybrid plant using a supercritical ORC outperforms the hybrid plant using a subcritical ORC if at least 66% of its exergy input is met by solar energy (i.e. a solar exergy fraction of >66%), namely producing 4–17

  17. Subcritical limits for special fissile actinides

    International Nuclear Information System (INIS)

    Clark, H.K.

    1980-01-01

    Critical masses and subcritical mass limits in oxide-water mixtures were calculated for actinide nuclides other than /sup 233/U, /sup 235/U, and /sup 239/Pu that have an odd number of neutrons in the nucleus; S/sub n/ transport theory was used together with cross sections, drawn from the GLASS multigroup library, developed to provide accurate forecasts of actinide production at Savannah River

  18. Supercritical Fluid Extraction and Ultra Performance Liquid Chromatography of Respiratory Quinones for Microbial Community Analysis in Environmental and Biological Samples

    OpenAIRE

    Hanif, Muhammad; Atsuta, Yoichi; Fujie, Koichi; Daimon, Hiroyuki

    2012-01-01

    Microbial community structure plays a significant role in environmental assessment and animal health management. The development of a superior analytical strategy for the characterization of microbial community structure is an ongoing challenge. In this study, we developed an effective supercritical fluid extraction (SFE) and ultra performance liquid chromatography (UPLC) method for the analysis of bacterial respiratory quinones (RQ) in environmental and biological samples. RQ profile analysi...

  19. Cytotoxic Activity of Kenaf Seed Oils from Supercritical Carbon Dioxide Fluid Extraction towards Human Colorectal Cancer (HT29) Cell Lines

    OpenAIRE

    Abd Ghafar, Siti Aisyah; Ismail, Maznah; Saiful Yazan, Latifah; Fakurazi, Sharida; Ismail, Norsharina; Chan, Kim Wei; Md Tahir, Paridah

    2013-01-01

    Kenaf (Hibiscus cannabinus) from the family Malvaceae, is a valuable fiber plant native to India and Africa and is currently planted as the fourth commercial crop in Malaysia. Kenaf seed oil contains alpha-linolenic acid, phytosterol such as ? -sitosterol, vitamin E, and other antioxidants with chemopreventive properties. Kenaf seeds oil (KSO) was from supercritical carbon dioxide extraction fluid (SFE) at 9 different permutations of parameters based on range of pressures from 200 to 600 bars...

  20. The uranium waste fluid processing examination by liquid and liquid extraction method using the emulsion flow method

    International Nuclear Information System (INIS)

    Kanda, Nobuhiro; Daiten, Masaki; Endo, Yuji; Yoshida, Hideaki; Mita, Yutaka; Naganawa, Hirochika; Nagano, Tetsushi; Yanase, Nobuyuki

    2015-03-01

    Spent centrifuges which had used for the development of the uranium enrichment technology are stored in the uranium enrichment facility located in Ningyo-toge Environmental Center, Japan Atomic Energy Agency (JAEA). Our technology of the centrifugal machine processing are supposed to separate the radioactive material adhered on surface of inner parts of centrifuges by the wet way decontamination method using the ultrasonic bath filled dilute sulfuric acid and water, and it is generated the neutralization sediment (sludge) by the processing of the radioactive waste fluid with the decontamination. JAEA had been considering the applicability of a streamlining and reduction of the processing of the sludge by decreases radioactive concentration including the sludge through the removes uranium from the radioactive waste fluid. As part of considerations, JAEA have been promoting technological developments of the uranium extraction separation using The Emulsion Flow Extraction Method (a theory propounded by JAEA-Nuclear Science and Engineering Center) in close coordination and cooperation between with JAEA-Nuclear Science and Engineering Center and Ningyo-toge Environmental Center from 2007 fiscal year. This report describes the outline of the application test using actual waste fluid of dilute sulfuric acid and water by developed the examination system introducing the emulsion flow extraction method. (author)

  1. Rapid Determination of Two Triterpenoid Acids in Chaenomelis Fructus Using Supercritical Fluid Extraction On-line Coupled with Supercritical Fluid Chromatography.

    Science.gov (United States)

    Zhang, Xiaotian; Ji, Feng; Li, Yueqi; He, Tian; Han, Ya; Wang, Daidong; Lin, Zongtao; Chen, Shizhong

    2018-01-01

    In this study, an on-line supercritical fluid extraction (SFE) and supercritical fluid chromatography (SFC) method was developed for the rapid determination of oleanoic acid and ursolic acid in Chaenomelis Fructus. After optimization of the conditions, the two triterpenoid acids was obtained by SFE using 20% methanol as a modifier at 35°C in 8 min. They were resolved on a Shim-pack UC-X Diol column (4.6 × 150 mm, 3 μm) in 14 min (0 - 10 min, 5 - 10%; 10 - 14 min, 10% methanol in CO 2 ) with a backpressure of 15 MPa at 40°C. The on-line SFE-SFC method could be completed within 40 min (10.79 mg/g dry plant, R s = 2.36), while the ultrasound-assisted extraction and HPLC method required at least 90 min (3.55 mg/g dry plant, R s = 1.92). This on-line SFE-SFC method is powerful to simplify the pre-processing and quantitative analysis of natural products.

  2. A simple model for super critical fluid extraction of bio oils from biomass

    International Nuclear Information System (INIS)

    Patel, Rajesh N.; Bandyopadhyay, Santanu; Ganesh, Anuradda

    2011-01-01

    A simple mathematical model to characterize the supercritical extraction process has been proposed in this paper. This model is primarily based on two mass transfer mechanisms: solubility and diffusion. The model assumes two districts mode of extraction: initial constant rate extraction that is controlled by solubility and falling rate extraction that is controlled by diffusivity. Effects of extraction parameters such as pressure and temperature on the extraction of oil have also been studied. The proposed model, when compared with existing models, shows better agreement with the experimental results. The proposed model developed has been applied for both high initial oil content material (cashew nut shells) and low initial oil content material (black pepper).

  3. Deep subcritical levels measurements dependents upon kinetic distortion factors

    International Nuclear Information System (INIS)

    Pan Shibiao; Li Xiang; Fu Guo'en; Huang Liyuan; Mu Keliang

    2013-01-01

    The measurement of deep subcritical levels, with the increase of subcriticality, showed that the results impact on the kinetic distortion effect, along with neutron flux strongly deteriorated. Using the diffusion theory, calculations have been carried out to quantify the kinetic distortion correction factors in subcritical systems, and these indicate that epithermal neutron distributions are strongly affected by kinetic distortion. Subcriticality measurements in four different rod-state combination at the zero power device was carried out. The test data analysis shows that, with increasing subcriticality, kinetic distortion effect correction factor gradually increases from 1.052 to 1.065, corresponding reactive correction amount of 0.78β eff ∼ 3.01β eff . Thus, it is necessary to consider the kinetic distortion effect in the deep subcritical reactivity measurements. (authors)

  4. Developing novel one-step processes for obtaining food-grade O/W emulsions from pressurized fluid extracts: processes description, state of the art and perspectives

    OpenAIRE

    SANTOS, Diego Tresinari; MEIRELES, Maria Angela de Almeida

    2015-01-01

    Abstract In this work, a novel on-line process for production of food-grade emulsions containing oily extracts, i.e. oil-in-water (O/W) emulsions, in only one step is presented. This process has been called ESFE, Emulsions from Supercritical Fluid Extraction. With this process, emulsions containing supercritical fluid extracts can be obtained directly from plant materials. The aim in the conception of this process is to propose a new rapid way to obtain emulsions from supercritical fluid extr...

  5. Theoretical Analysis for Heat Transfer Optimization in Subcritical Electrothermal Energy Storage Systems

    Directory of Open Access Journals (Sweden)

    Peng Hu

    2017-02-01

    Full Text Available Electrothermal energy storage (ETES provides bulk electricity storage based on heat pump and heat engine technologies. A subcritical ETES is described in this paper. Based on the extremum principle of entransy dissipation, a geometry model is developed for heat transfer optimization for subcritical ETES. The exergy during the heat transfer process is deduced in terms of entropy production. The geometry model is validated by the extremum principle of entropy production. The theoretical analysis results show that the extremum principle of entransy dissipation is an effective criterion for the optimization, and the optimum heat transfer for different cases with the same mass flux or pressure has been discussed. The optimum heat transfer can be achieved by adjusting the mass flux and pressure of the working fluid. It also reveals that with the increase of mass flux, there is a minimum exergy in the range under consideration, and the exergy decreases with the increase of the pressure.

  6. Supercritical fluid extraction for the detection of 2-dodecylcyclobutanone in low dose irradiated plant foods

    NARCIS (Netherlands)

    Horvatovich, Peter; Miesch, Michel; Hasselmann, Claude; Marchioni, Eric

    2002-01-01

    Supercritical carbon dioxide extraction [152 bar (15,200 kPa), 80 degrees C, 4 ml min(-1), 60 min], performed on lipids (2 g) previously extracted from irradiated plant foods, allowed a selective extraction of 2-dodecylcyclobutanone and its further detection by gas chromatography-mass spectrometry

  7. Supercritical fluid extraction-gas chromatography of volatile organic compounds (VOC) from Tenax devices. Final report, November 1985-September 1986

    International Nuclear Information System (INIS)

    Wright, B.W.; Kopriva, A.J.; Smith, R.D.

    1987-11-01

    This report describes the development and evaluation of on-line supercritical-fluid extraction - gas-chromatography instrumentation and methodology for the analysis of volatile organic compounds (VOC) from adsorbent sampling devices. Supercritical fluid extraction offers potential advantages for the removal and transport of organic components from adsorbent matrices including rapid and efficient extraction at mild temperatures. Extraction at mild temperatures eliminates potential problems such as analyte decomposition that can be encountered with the high temperatures needed for thermal desorption analysis. Since a major objective of the study was to develop viable instrumentation and methodology, a relatively detailed description of the instrumentation design requirements and present limitations are discussed. The results of several series of methodology validation studies are also presented. These studies included recovery studies of model VOC spiked on three types of Tenax sampling devices including authentic actively pumped (VOST) and passive (EPA) devices. Replicate devices spiked in an exposure chamber were also subjected to parallel analyses using the new methodology and traditional thermal-desorption gas chromatography

  8. Modeling of the Kinetics of Supercritical Fluid Extraction of Lipids from Microalgae with Emphasis on Extract Desorption.

    Czech Academy of Sciences Publication Activity Database

    Sovová, Helena; Nobre, B.P.; Palavra, A.

    2016-01-01

    Roč. 9, č. 6 (2016), s. 423-441 ISSN 1996-1944 Grant - others:FCT(PT) UID/QUI/00100/2013; FCT(PT) SFRH/BPD/100283/2014 Institutional support: RVO:67985858 Keywords : microalgae * supercritical extraction * kinetics Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.654, year: 2016

  9. Critical fluid extraction of Juniperus virginiana L. and bioactivity of extracts against subterranean termites and wood-rot fungi.

    Science.gov (United States)

    F. J. Eller; Carol A. Clausen; Frederick Green; S.L. Taylor

    2010-01-01

    Eastern red cedar (Juniperus virginiana L.) is an abundant renewable resource and represents a vast potential source of valuable natural products that may serve as natural biocides. Both the wood and needles from J. virginiana were extracted using liquid carbon dioxide (L-CO2) as well as ethanol (EtOH) and the yields determined.Woodblocks were...

  10. Design project of fast subcritical system 'Mala Lasta'

    International Nuclear Information System (INIS)

    Milosevic, M.; Stefanovic, D.; Popovic, D.; Pesic, M.; Zavaljevski, N.; Nikolic, D.; Arsenovic, M.

    1988-10-01

    This report contains two parts. Part one covers the objective and fundamental elements for the choice of fast subcritical system 'Mala Lasta', review of the existing fast subcritical assemblies, and a description of the available domestic computer codes applied for calculating neutron reactor parameters. Comparison of results obtained by these codes for a number of existing subcritical assemblies was used for the choice of the design project described in part two of this report. It contains detailed description of the operating parameters of the chosen subcritical system based on the obtained calculated parameters

  11. Field demonstration of an active reservoir pressure management through fluid injection and displaced fluid extractions at the Rock Springs Uplift, a priority geologic CO2 storage site for Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Zunsheng [Univ. of Wyoming, Laramie, WY (United States)

    2017-04-05

    This report provides the results from the project entitled Field Demonstration of Reservoir Pressure Management through Fluid Injection and Displaced Fluid Extraction at the Rock Springs Uplift, a Priority Geologic CO2 Storage Site for Wyoming (DE-FE0026159 for both original performance period (September 1, 2015 to August 31, 2016) and no-cost extension (September 1, 2016 to January 6, 2017)).

  12. Studies on In-situ Chelation/Supercritical Fluid Extraction of Lanthanides and Actinides Using a Radiotracer Technique

    International Nuclear Information System (INIS)

    Lin, Yuehe; Wu, Hong; Smart, Neil G.; Wai, Chien M.

    2001-01-01

    Radioisotope tracer techniques were used to study the process of in-situ chelation/supercritical fluid extraction(SFE) of La3+ and Lu3+ from solid matrix using mixed ligand hexafluoroacetylacetone (HFA) and tributylphosphate (TBP) as chelating agents. A lab-built SFE extactor was used in this study and the extractor design was optimized based on the experimental results. Quantitative recovery of La and Lu was achieved when the extrator design was optimized. Extraction of uranium from real world samples was also investigated to demonstrate the capability of this chelation/SFE technology for environmental remediation applications. A novel on-line back extraction technique for the recovery of metal ions and regeneration of ligands is also reported.

  13. A rapid supercritical fluid extraction method for the qualitative detection of 2-alkylcyclobutanones in gamma-irradiated fresh and sea water fish

    International Nuclear Information System (INIS)

    Tewfik, I.H.; Ismail, H.M.; Sumar, S.

    1999-01-01

    2-Alkylcyclobutanones are routinely used as chemical markers for irradiated foods containing lipids. However, current extraction procedures (soxhlet-Florisil chromatography) for the isolation of these markers involve a long and tedious clean-up regime prior to GC-MS identification. A simple and rapid method for the isolation of these markers using carbon dioxide as a super critical fluid is described for low lipid content fish samples (fresh and sea water) irradiated up to 8kGy. The presence of 2-dodecylcyclobutanone (2-DCB), a radiolytic marker, was confirmed in all irradiated fish samples at all doses. This was a clear indication that the fish samples had been irradiated and that both methods of isolation (florisil and supercritical fluid extraction) were capable of qualitatively extracting this marker. Supercritical fluid extraction is proposed as an alternative extraction procedure to the florisil chromatography method currently in use and has the added advantage of a considerably shorter extraction time

  14. Chemical kinetics and transport processes in supercritical fluid extraction of coal. Final report, August 10, 1990--December 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    McCoy, B.J.; Smith, J.M.; Wang, M.; Zhang, C.J.

    1993-02-01

    The overall objective of this project was to study the supercritical fluid extraction of hydrocarbons from coal. Beyond the practical concern of deriving products from coal, the research has provided insights into the structure, properties, and reactivities of coal. Information on engineering fundamentals of coal thermolysis and extraction, including physical and chemical processes, is presented in this final report. To accomplish the goals of the project we developed continuous-flow experiments for fixed-bed samples of coal that allow two types of analysis of the extract: continuous spectrophotometric absorbance measurements of the lumped concentration of extract, and chromatographic determinations of molecular-weight distributions as a function of time. Thermolysis of coal yields a complex mixture of many extract products whose molecular-weight distribution (MWD) varies with time for continuous-flow, semibatch experiments. The flow reactor with a differential, fixed bed of coal particles contacted by supercritical t-butanol was employed to provide dynamic MWD data by means of HPLC gel permeation chromatography of the extract. The experimental results, time-dependent MWDs of extract molecules, were interpreted by a novel mathematical model based on continuous-mixture kinetics for thermal cleavage of chemical bonds in the coal network. The parameters for the MWDs of extractable groups in the coal and the rate constants for one- and two-fragment reaction are determined from the experimental data. The significant effect of temperature on the kinetics of the extraction was explained in terms of one- and two-fragment reactions in the coal.

  15. Unstable Simple Volatiles and Gas Chromatography-Tandem Mass Spectrometry Analysis of Essential Oil from the Roots Bark of Oplopanax Horridus Extracted by Supercritical Fluid Extraction

    Directory of Open Access Journals (Sweden)

    Li Shao

    2014-11-01

    Full Text Available Volatile oil from the root bark of Oplopanax horridus is regarded to be responsible for the clinical uses of the title plant as a respiratory stimulant and expectorant. Therefore, a supercritical fluid extraction method was first employed to extract the volatile oil from the roots bark of O. horridus, which was subsequently analyzed by GC/MS. Forty-eight volatile compounds were identified by GC/MS analysis, including (S,E-nerolidol (52.5%, τ-cadinol (21.6% and S-falcarinol (3.6%. Accordingly, the volatile oil (100 g was subjected to chromatographic separation and purification. As a result, the three compounds, (E-nerolidol (2 g, τ-cadinol (62 mg and S-falcarinol (21 mg, were isolated and purified from the volatile oil, the structures of which were unambiguously elucidated by detailed spectroscopic analysis including 1D- and 2D-NMR techniques.

  16. Comparison of the Apoptotic Effects of Supercritical Fluid Extracts of Antrodia cinnamomea Mycelia on Hepatocellular Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Hsiu-Man Lien

    2014-06-01

    Full Text Available Antrodia cinnamomea (AC has been widely used as a folk medicine in the prevention and treatment of liver diseases, such as hepatitis, hepatic fibrosis, and hepatocellular carcinoma. Previous studies have indicated that triterpenoids and benzenoids show selective cytotoxicity against human hepatoma cell lines. The aim of the study was to compare the triterpenoid content of extract and the extract-induced cytotoxicity in HepG2 cells from mycelia extracts of solid state cultured AC obtained by supercritical fluid extraction (SFE and the conventional solvent extraction method. SFE with CO2 mixed with a constant amount of ethanol co-solvent (10% of CO2 volume applied at different temperatures and pressures (40, 60 and 80 °C and, 20.7, 27.6 and 34.5 Mpa was also compared in the study. Although the extraction yield of triterpenoids (59.7 mg/g under the optimal extraction conditions of 34.5 MPa (5000 psi/60 °C (designated as sample S-5000-60 was equivalent to the extraction yield using conventional liquid solvent extraction with ethanol (ETOH-E at room temperature (60.33 mg/g, the cytotoxicity of the former against the proliferation of HepG2 cell line measured as the inhibition of 50% of cell growth activity (IC50 at dosages of 116.15, 57.82 and 43.96 µg/mL was superior to that of EtOH-E at 131.09, 80.04 and 48.30 µg/mL at 24, 48 and 72 h, respectively. Additionally, we further proved that the apoptotic effect of S-5000-60 presented a higher apoptosis ratio (21.5% than ETOH-E (10.5% according to annexin V-FITC and propidium iodide double staining assay results. The high affinity and selectivity of SFE on bioactive components resulted in a higher extraction efficiency than conventional solvent extraction. The chemical profile of the obtained extracts from solid state cultivated mycelium of AC was also determined by high-performance liquid chromatography electrospray ionization tandem mass spectrometry (LC-MS/MS, whereby three benzenoids and four

  17. AFM fluid delivery/liquid extraction surface sampling/electrostatic spray cantilever probe

    Science.gov (United States)

    Van Berkel, Gary J.

    2015-06-23

    An electrospray system comprises a liquid extraction surface sampling probe. The probe comprises a probe body having a liquid inlet and a liquid outlet, and having a liquid extraction tip. A solvent delivery conduit is provided for receiving solvent liquid from the liquid inlet and delivering the solvent liquid to the liquid extraction tip. An open liquid extraction channel extends across an exterior surface of the probe body from the liquid extraction tip to the liquid outlet. An electrospray emitter tip is in liquid communication with the liquid outlet of the liquid extraction surface sampling probe. A system for analyzing samples, a liquid junction surface sampling system, and a method of analyzing samples are also disclosed.

  18. Online recovery of radiocesium from soil, cellulose and plant samples by supercritical fluid extraction employing crown ethers and calix-crown derivatives as extractants

    International Nuclear Information System (INIS)

    Kanekar, A.S.; Pathak, P.N.; Mohapatra, P.K.

    2014-01-01

    Two crown ethers (CEs) viz. dibenzo18crown6, and dibenzo12crown7 and three calix-crown derivatives viz. (octyloxy)calix[4]arene-mono-crown-6 (CMC), calix[4]arene-bis(o-benzocrown-6) (CBC), and calix[4]arene-bis(naphthocrown-6) (CNC) were evaluated for the recovery of 137 Cs from synthetic soil, cellulose (tissue paper), and plant samples by supercritical fluid extraction (SFE) route. CEs showed poor extraction of 137 Cs from soil matrix. SFE experiments using 1 × 10 -3 M solutions of CMC, CBC and CNC in acetonitrile at 3 M HNO 3 as modifiers displayed better extraction of 137 Cs, viz. 21(±2) % (CMC), 16.5(±3) % (CBC), and 4(±1) % (CNC). It was not possible to recover 137 Cs quantitatively from soil matrix. The inefficient extraction of 137 Cs from soil matrix was attributed to its incorporation into the interstitial sites. Experiments on tissue papers using CMC showed near quantitative 137 Cs recovery. On the other hand, recovery from plant samples varied between 50(±5) % (for stems) and 75(±5) % (for leaves). (author)

  19. Supercritical fluid extraction for the determination of optimum oil recovery conditions

    Energy Technology Data Exchange (ETDEWEB)

    Al-Marzouqi, Ali H.; Zekri, Abdulrazag Y.; Jobe, Baboucarr; Dowaidar, Ali [Chemical and Petroleum Engineering Department, U.A.E. University, P.O. Box: 17555, Al-Ain (United Arab Emirates)

    2007-01-15

    CO{sub 2} under supercritical (SC) conditions is a powerful solvent capable of extracting hydrocarbons from crude oil. The extraction capacity of CO{sub 2} is a function of pressure, temperature and composition of the crude oil. This paper presents the results of a laboratory study investigating the capacity of CO{sub 2} to extract hydrocarbons from an oil-saturated soil under a wide range of pressures and temperatures (80-120 bar for temperatures ranging from 40 to 60 C and 200-300 bar for temperatures varying from 100 to 140 C). The soil samples were collected from Sahel oil filed, which is near Bu Hasa oil field (Abu Dhabi, UAE) where the crude oil was obtained from. The extracted oil from the SC CO{sub 2} process and the residual oil remaining in the soil sample were analyzed by gas chromatography to shed more light on the extraction phenomenon. Extraction efficiency of CO{sub 2} increased with pressure and decreased with temperature. Moreover, the amount of extracted heavy fractions increased with pressure for all temperatures. On the other hand, the amount of extracted heavy hydrocarbons decreased with temperature for the low pressure range (80-120 bar) and remained the same for the pressure range of 250-300 bar. The maximum extraction efficiency of CO{sub 2} was 72.4%, which was obtained at the highest pressure (300 bar) and a temperature of 100 C. (author)

  20. Coupled Hydro-Mechanical Simulations of CO2 Storage Supported by Pressure Management Demonstrate Synergy Benefits from Simultaneous Formation Fluid Extraction

    Directory of Open Access Journals (Sweden)

    Kempka Thomas

    2015-04-01

    Full Text Available We assessed the synergetic benefits of simultaneous formation fluid extraction during CO2 injection for reservoir pressure management by coupled hydro-mechanical simulations at the prospective Vedsted storage site located in northern Denmark. Effectiveness of reservoir pressure management was investigated by simulation of CO2 storage without any fluid extraction as well as with 66% and 100% equivalent volume formation fluid extraction from four wells positioned for geothermal heat recovery. Simulation results demonstrate that a total pressure reduction of up to about 1.1 MPa can be achieved at the injection well. Furthermore, the areal pressure perturbation in the storage reservoir can be significantly decreased compared to the simulation scenario without any formation fluid extraction. Following a stress regime analysis, two stress regimes were considered in the coupled hydro-mechanical simulations indicating that the maximum ground surface uplift is about 0.24 m in the absence of any reservoir pressure management. However, a ground uplift mitigation of up to 37.3% (from 0.24 m to 0.15 m can be achieved at the injection well by 100% equivalent volume formation fluid extraction. Well-based adaptation of fluid extraction rates can support achieving zero displacements at the proposed formation fluid extraction wells located close to urban infrastructure. Since shear and tensile failure do not occur under both stress regimes for all investigated scenarios, it is concluded that a safe operation of CO2 injection with simultaneous formation fluid extraction for geothermal heat recovery can be implemented at the Vedsted site.

  1. Superfluid helium at subcritical active core

    International Nuclear Information System (INIS)

    Vasil'ev, V.V.; Lopatkin, A.V.; Muratov, V.G.; Rakhno, I.L.

    2002-01-01

    Power range and neutron flux wherein super thermal source was realized at high volume of superfluid helium were investigated. MCU, BRAND, MCNP codes were used for the calculation of reactors. It is shown that the availability of full-size diameter for cryogenic source of ultracold neutrons, as the source with superfluid helium is considered, is possible in the reflector of subcritical assembly. Results obtained from the MCNP-4B code application demonstrated that the density of thermal neutron flux in helium must be not higher than 2.3 x 10 11 s -1 cm -2 [ru

  2. Hydrolysis of corn oil using subcritical water

    Directory of Open Access Journals (Sweden)

    Pinto Jair Sebastião S.

    2006-01-01

    Full Text Available This work presents the results of a study on the use of subcritical water as both solvent and reactant for the hydrolysis of corn oil without the use of acids or alkalis at temperatures of 150-280 degreesC. Corn oil hydrolysis leads to the formation of its respective fatty acids with the same efficiency of conventional methods. Fatty acids form an important group of products, which are used in a range of applications. The confirmation and identification of the hydrolysis products was done by HT-HRGC-FID and HRGC/MS.

  3. Microbial community changes in hydraulic fracturing fluids and produced water from shale gas extraction.

    Science.gov (United States)

    Murali Mohan, Arvind; Hartsock, Angela; Bibby, Kyle J; Hammack, Richard W; Vidic, Radisav D; Gregory, Kelvin B

    2013-11-19

    Microbial communities associated with produced water from hydraulic fracturing are not well understood, and their deleterious activity can lead to significant increases in production costs and adverse environmental impacts. In this study, we compared the microbial ecology in prefracturing fluids (fracturing source water and fracturing fluid) and produced water at multiple time points from a natural gas well in southwestern Pennsylvania using 16S rRNA gene-based clone libraries, pyrosequencing, and quantitative PCR. The majority of the bacterial community in prefracturing fluids constituted aerobic species affiliated with the class Alphaproteobacteria. However, their relative abundance decreased in produced water with an increase in halotolerant, anaerobic/facultative anaerobic species affiliated with the classes Clostridia, Bacilli, Gammaproteobacteria, Epsilonproteobacteria, Bacteroidia, and Fusobacteria. Produced water collected at the last time point (day 187) consisted almost entirely of sequences similar to Clostridia and showed a decrease in bacterial abundance by 3 orders of magnitude compared to the prefracturing fluids and produced water samplesfrom earlier time points. Geochemical analysis showed that produced water contained higher concentrations of salts and total radioactivity compared to prefracturing fluids. This study provides evidence of long-term subsurface selection of the microbial community introduced through hydraulic fracturing, which may include significant implications for disinfection as well as reuse of produced water in future fracturing operations.

  4. A comparative study of conventional and supercritical fluid extraction methods for the recovery of secondary metabolites from Syzygium campanulatum Korth#

    Science.gov (United States)

    Memon, Abdul Hakeem; Hamil, Mohammad Shahrul Ridzuan; Laghari, Madeeha; Rithwan, Fahim; Zhari, Salman; Saeed, Mohammed Ali Ahmed; Ismail, Zhari; Majid, Amin Malik Shah Abdul

    2016-01-01

    Syzygium campanulatum Korth is a plant, which is a rich source of secondary metabolites (especially flavanones, chalcone, and triterpenoids). In our present study, three conventional solvent extraction (CSE) techniques and supercritical fluid extraction (SFE) techniques were performed to achieve a maximum recovery of two flavanones, chalcone, and two triterpenoids from S. campanulatum leaves. Furthermore, a Box-Behnken design was constructed for the SFE technique using pressure, temperature, and particle size as independent variables, and yields of crude extract, individual and total secondary metabolites as the dependent variables. In the CSE procedure, twenty extracts were produced using ten different solvents and three techniques (maceration, soxhletion, and reflux). An enriched extract of five secondary metabolites was collected using n-hexane:methanol (1:1) soxhletion. Using food-grade ethanol as a modifier, the SFE methods produced a higher recovery (25.5%‒84.9%) of selected secondary metabolites as compared to the CSE techniques (0.92%‒66.00%). PMID:27604860

  5. A comparative study of conventional and supercritical fluid extraction methods for the recovery of secondary metabolites from Syzygium campanulatum Korth.

    Science.gov (United States)

    Memon, Abdul Hakeem; Hamil, Mohammad Shahrul Ridzuan; Laghari, Madeeha; Rithwan, Fahim; Zhari, Salman; Saeed, Mohammed Ali Ahmed; Ismail, Zhari; Majid, Amin Malik Shah Abdul

    2016-09-01

    Syzygium campanulatum Korth is a plant, which is a rich source of secondary metabolites (especially flavanones, chalcone, and triterpenoids). In our present study, three conventional solvent extraction (CSE) techniques and supercritical fluid extraction (SFE) techniques were performed to achieve a maximum recovery of two flavanones, chalcone, and two triterpenoids from S. campanulatum leaves. Furthermore, a Box-Behnken design was constructed for the SFE technique using pressure, temperature, and particle size as independent variables, and yields of crude extract, individual and total secondary metabolites as the dependent variables. In the CSE procedure, twenty extracts were produced using ten different solvents and three techniques (maceration, soxhletion, and reflux). An enriched extract of five secondary metabolites was collected using n-hexane:methanol (1:1) soxhletion. Using food-grade ethanol as a modifier, the SFE methods produced a higher recovery (25.5%‒84.9%) of selected secondary metabolites as compared to the CSE techniques (0.92%‒66.00%).

  6. Use of Immobilised Lipase from Candida antarctica in Supercritical Fluid Extraction of Borage (Borago officinalis L. Seed Oil

    Directory of Open Access Journals (Sweden)

    Egidijus Daukšas

    2008-01-01

    Full Text Available This study aims at the investigation of the possibilities to use immobilised lipase from Candida antarctica in supercritical fluid extraction (SFE of borage (Borago officinalis L. see doil. The first series of experiments was performed to measure the extract yields obtained with pure CO2 and with the added entrainer (ethanol. The yield increased more than twice after increasing the extraction pressure from 15 to 25 MPa. Further increase to 35 MPa was less effective. The effect of the entrainer was not significant in most cases. Palmitic (13.1–16.1 %, oleic (13.4–23.8 %, linoleic (33.8–48.4 % and linolenic (8.8–16.3 % acids were dominant in all extracted oils. Further experiments involved the use of enzyme. In this case the first extractor was loaded with ground borage seeds, the second one was filled with the enzyme. The total yield obtained at 15, 25 and 35 MPa was (8.8±0.2, (23.6±0.2 and (28.9±1.1 %, respectively. Thin layer chromatography (TLC of fatty acid ethyl esters showed that the content of esters was higher in the extract obtained in one extractor system at 15 MPa, compared to 35 MPa.

  7. Simultaneous analysis of nucleobases, nucleosides and ginsenosides in ginseng extracts using supercritical fluid chromatography coupled with single quadrupole mass spectrometry.

    Science.gov (United States)

    Huang, Yang; Zhang, Tingting; Zhao, Yumei; Zhou, Haibo; Tang, Guangyun; Fillet, Marianne; Crommen, Jacques; Jiang, Zhengjin

    2017-09-10

    Nucleobases, nucleosides and ginsenosides, which have a significant impact on the physiological activity of organisms, are reported to be the active components of ginseng, while they are less present in ginseng extracts. Few analytical methods have been developed so far to simultaneously analyze these three classes of compounds with different polarities present in ginseng extracts. In the present study, a simple and efficient analytical method was successfully developed for the simultaneous separation of 17 nucleobases, nucleosides and ginsenosides in ginseng extracts using supercritical fluid chromatography coupled with single quadrupole mass spectrometry (SFC-MS). The effect of various experimental factors on the separation performance, such as the column type, temperature and backpressure, the type of modifier and additive, and the concentration of make-up solvent were systematically investigated. Under the selected conditions, the developed method was successfully applied to the quality evaluation of 14 batches of ginseng extracts from different origins. The results obtained for the different batches indicate that this method could be employed for the quality assessment of ginseng extracts. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Solid-Phase Extraction Strategies to Surmount Body Fluid Sample Complexity in High-Throughput Mass Spectrometry-Based Proteomics

    Science.gov (United States)

    Bladergroen, Marco R.; van der Burgt, Yuri E. M.

    2015-01-01

    For large-scale and standardized applications in mass spectrometry- (MS-) based proteomics automation of each step is essential. Here we present high-throughput sample preparation solutions for balancing the speed of current MS-acquisitions and the time needed for analytical workup of body fluids. The discussed workflows reduce body fluid sample complexity and apply for both bottom-up proteomics experiments and top-down protein characterization approaches. Various sample preparation methods that involve solid-phase extraction (SPE) including affinity enrichment strategies have been automated. Obtained peptide and protein fractions can be mass analyzed by direct infusion into an electrospray ionization (ESI) source or by means of matrix-assisted laser desorption ionization (MALDI) without further need of time-consuming liquid chromatography (LC) separations. PMID:25692071

  9. Supercritical fluid extraction of hydrocarbons and 2-alkylcyclobutanones for the detection of irradiated foodstuffs

    NARCIS (Netherlands)

    Horvatovich, P; Miesch, M; Hasselmann, C; Marchioni, E

    2000-01-01

    Supercritical carbon dioxide can be used to carry out a selective and fast extraction (30 min) of volatile hydrocarbons and 2-alkylcyclobutanones contained in irradiated foods. After elimination of the traces of triglycerides still contained in the extracts on a silica column, the compounds were

  10. Supercritical fluid extraction of uranium and thorium using modifier free delivery of ligands

    International Nuclear Information System (INIS)

    Sujatha, K.; Kumar, R.; Sivaraman, N.; Srinivasan, T.G.; Vasudeva Rao, P.R.

    2009-01-01

    The modifier free controlled delivery of octyl (phenyl)-N,N-diisobutylcarbamoylmethy phosphineoxide (CMPO) using supercritical carbon dioxide was established for the extraction of uranyl nitrate as well as uranyl nitrate sorbed on tissue paper matrix and the results were compared with modifier method. The preferential extraction of uranium over thorium was also demonstrated using di (2-ethylhexyl)isobutyramide (D2EHIBA). (author)

  11. High-throughput liquid chromatography for drug analysis in biological fluids: investigation of extraction column life.

    Science.gov (United States)

    Zeng, Wei; Fisher, Alison L; Musson, Donald G; Wang, Amy Qiu

    2004-07-05

    A novel method was developed and assessed to extend the lifetime of extraction columns of high-throughput liquid chromatography (HTLC) for bioanalysis of human plasma samples. In this method, a 15% acetic acid solution and 90% THF were respectively used as mobile phases to clean up the proteins in human plasma samples and residual lipids from the extraction and analytical columns. The 15% acetic acid solution weakens the interactions between proteins and the stationary phase of the extraction column and increases the protein solubility in the mobile phase. The 90% THF mobile phase prevents the accumulation of lipids and thus reduces the potential damage on the columns. Using this novel method, the extraction column lifetime has been extended to about 2000 direct plasma injections, and this is the first time that high concentration acetic acid and THF are used in HTLC for on-line cleanup and extraction column lifetime extension.

  12. Ion-pair extraction of [3H]stobadine from biological fluids

    International Nuclear Information System (INIS)

    Scasnar, V.

    1998-01-01

    A simple and specific radiometric assay was developed for the determination of stobadine, a cardioprotective drug, in the serum of experimental animals. The assay is based on a single extraction step of the radioactively labeled drug from serum into the benzene solution of dicarbolide of cobalt followed by quantitation of the extracted radioactivity by using liquid scintillation counting. The extraction mechanism involves the ion-pair formation between the protonized molecule of stobadine and the hydrophobic, negatively charged molecule of dicarbolide of cobalt. The extraction yield of stobadine from 1 ml of serum was 95% in the concentration range from 1 to 6000 ng/ml. The co-extraction of metabolites was less than 5%. The method was applied to the determination of stobadine in serum of dogs and the data obtained were in a good agreement with those obtained by high performance liquid chromatography. (author)

  13. Some neutronics of innovative subcritical assembly with fast neutron spectrum

    International Nuclear Information System (INIS)

    Kiyavitskaya, H.; Fokov, Yu.; Rutkovskaya, Ch.; Sadovich, S.; Kasuk, D.; Gohar, Y.; Bolshinsky, I.

    2013-01-01

    Conclusion: • New assembly can be used to: • develop the experimental techniques and adapt the existing ones for monitoring the sub-criticality level, neutron spectra measurements, etc; • study the spatial kinetics of sub-critical and critical systems with fast neutron spectra; • measure the transmutation reaction rates of minor-actinides etc

  14. Choosing the optimal parameters of subcritical reactors driven by accelerators

    International Nuclear Information System (INIS)

    Khudaverdyan, A.G.; Zhamkochyan, V.M.

    1998-03-01

    Physical aspects of a subcritical Nuclear Power Plants (NPP) driven by proton accelerators are considered. Estimated theoretical calculations are made for subcritical regimes of various types of reactors. It was shown that the creation of the quite effective explosion-safe NPP is real at an existing level of the accelerator technique by using available reactor units (including the serial ones). (author)

  15. Steady squares and hexagons on a subcritical ramp

    International Nuclear Information System (INIS)

    Hoyle, R.B.

    1995-01-01

    Steady squares and hexagons on a subcritical ramp are studied, both analytically and numerically, within the framework of the lowest-order amplitude equations. On the subcritical ramp, the external stress or control parameter varies continuously in space from subcritical to supercritical values. At the subcritical end of the ramp, pattern formation is suppressed, and patterns fade away into the conduction solution. It is shown that three-dimensional patterns may change shape on a subcritical ramp. A square pattern becomes a pattern of rolls as it fades, with the roll axes aligned in the direction orthogonal to that in which the control parameter varies. Hexagons in systems with horizontal midplane symmetry become a pattern of rectangles before reaching the conduction solution. There is a suggestion that hexagons in systems which lack this symmetry might fade away through a roll pattern. Numerical simulations are used to illustrate these phenomena

  16. Concept of turbines for ultrasupercritical, supercritical, and subcritical steam conditions

    Science.gov (United States)

    Mikhailov, V. E.; Khomenok, L. A.; Pichugin, I. I.; Kovalev, I. A.; Bozhko, V. V.; Vladimirskii, O. A.; Zaitsev, I. V.; Kachuriner, Yu. Ya.; Nosovitskii, I. A.; Orlik, V. G.

    2017-11-01

    The article describes the design features of condensing turbines for ultrasupercritical initial steam conditions (USSC) and large-capacity cogeneration turbines for super- and subcritical steam conditions having increased steam extractions for district heating purposes. For improving the efficiency and reliability indicators of USSC turbines, it is proposed to use forced cooling of the head high-temperature thermally stressed parts of the high- and intermediate-pressure rotors, reaction-type blades of the high-pressure cylinder (HPC) and at least the first stages of the intermediate-pressure cylinder (IPC), the double-wall HPC casing with narrow flanges of its horizontal joints, a rigid HPC rotor, an extended system of regenerative steam extractions without using extractions from the HPC flow path, and the low-pressure cylinder's inner casing moving in accordance with the IPC thermal expansions. For cogeneration turbines, it is proposed to shift the upper district heating extraction (or its significant part) to the feedwater pump turbine, which will make it possible to improve the turbine plant efficiency and arrange both district heating extractions in the IPC. In addition, in the case of using a disengaging coupling or precision conical bolts in the coupling, this solution will make it possible to disconnect the LPC in shifting the turbine to operate in the cogeneration mode. The article points out the need to intensify turbine development efforts with the use of modern methods for improving their efficiency and reliability involving, in particular, the use of relatively short 3D blades, last stages fitted with longer rotor blades, evaporation techniques for removing moisture in the last-stage diaphragm, and LPC rotor blades with radial grooves on their leading edges.

  17. Systematic optimization of subcritical and transcritical organic Rankine cycles (ORCs) constrained by technical parameters in multiple applications

    International Nuclear Information System (INIS)

    Maraver, Daniel; Royo, Javier; Lemort, Vincent; Quoilin, Sylvain

    2014-01-01

    Highlights: • ORC optimization for different target applications. • Model developed to allow computation in subcritical and transcritical operation. • Regenerative and non-regenerative cycles evaluated through second law efficiency. • Common working fluids: R134a, R245fa, Solkatherm, n-Pentane, MDM, Toluene. • Thermodynamic and technological approaches lead to optimal design guidelines. - Abstract: The present work is focused on the thermodynamic optimization of organic Rankine cycles (ORCs) for power generation and CHP from different average heat source profiles (waste heat recovery, thermal oil for cogeneration and geothermal). The general goal is to provide optimization guidelines for a wide range of operating conditions, for subcritical and transcritical, regenerative and non-regenerative cycles. A parameter assessment of the main equipment in the cycle (expander, heat exchangers and feed pump) was also carried out. An optimization model of the ORC (available as an electronic annex) is proposed to predict the best cycle performance (subcritical or transcritical), in terms of its exergy efficiency, with different working fluids. The working fluids considered are those most commonly used in commercial ORC units (R134a, R245fa, Solkatherm, n-Pentane, Octamethyltrisiloxane and Toluene). The optimal working fluid and operating conditions from a purely thermodynamic approach are limited by the technological constraints of the expander, the heat exchangers and the feed pump. Hence, a complementary assessment of both approaches is more adequate to obtain some preliminary design guidelines for ORC units

  18. Off-line supercritical fluid extraction-capillary GC applications in environmental analysis

    NARCIS (Netherlands)

    David, F.; Verschuere, M.; Sandra, P.J.F.

    1992-01-01

    The successful application of supercrit. fluid extn. for environmental samples requires that the extn. for environmental samples requires that the extn. conditions detd. for spiked samples must be optimized in order to overcome the solute-matrix interactions that are responsible for lower recoveries

  19. Analytical modelling and extraction of the modal behaviour of a cantilever beam in fluid interaction

    Czech Academy of Sciences Publication Activity Database

    Gorman, D. G.; Trendafilova, I.; Mulholland, A.J.; Horáček, Jaromír

    2007-01-01

    Roč. 308, - (2007), s. 231-245 ISSN 0022-460X R&D Projects: GA AV ČR IAA200760613 Institutional research plan: CEZ:AV0Z20760514 Keywords : fluid-structure interaction * vibroacoustic * vibrations Subject RIV: BI - Acoustics Impact factor: 1.024, year: 2007

  20. Subcritical limits for special fissile actinides

    International Nuclear Information System (INIS)

    Clark, H.K.

    1980-01-01

    Critical masses and subcritical mass limits in oxide-water mixtures were calculated for actinide nuclides other than 233 U, 235 U, and 239 Pu that have an odd number of neutrons in the nucleus: S/sub n/ transport theory was used together with cross sections, drawn from the GLASS multigroup library, developed to provide accurate forecasts of actinide production at Savannah River. The subcritical limits are 201 g for 241 Pu, 13 g for 242 /sup m/Am, 90 g for 243 Cm, 30 g for 245 Cm, 900 g for 247 Cm, 10 g for 249 Cf, and 5 g for 251 Cf. Association of 241 Pu with an equal mass of 240 Pu increases the 241 Pu limit to a value greater than that for pure 239 Pu. Association of 242 /sup m/Am with 241 Am increases the limit for the mixture to that for dry, theoretical density AmO 2 at isotopic concentrations of 242 /sup m/Am less than approx. 6%. Association of 245 Cm with 244 Cm increases the limit according to the formula 30 + 0.3 244 Cm/ 245 Cm up to the limit for dry CmO 2 . A limiting mass of 8.15 kg for plutonium containing at least 67% 238 Pu as oxide was calculated that applies (provided 240 Pu exceeds 241 Pu) with no limit on moderation. 1 figure, 5 tables

  1. Criticality Analysis of SAMOP Subcritical Assembly

    International Nuclear Information System (INIS)

    Tegas-Sutondo; Syarip; Triwulan-Tjiptono

    2005-01-01

    A critically analysis has been performed for homogenous system of uranyl nitrate solution, as part of a preliminary design assessment on neutronic aspect of SAMOP sub-critical assembly. The analysis is intended to determine some critical parameters such as the minimum of critical dimension and critical mass for the desired concentration. As the basis of this analysis, it has been defined a fuel system with an enrichment of 20% for cylindrical geometry of both bare and graphite reflected of 30 cm thickness. The MCNP code has been utilized for this purpose, for variation of concentrations ranging from 150 g/l to 500 g/l. It is found that the best concentration giving the minimum geometrical dimension is around 400 g/l, for both the bare and reflected systems. Whilst the best one, of minimum critical mass is corresponding to the concentration of around 200 g/l with critical mass around 14.1 kg and 4.2 kg for the bare and reflected systems respectively. Based on the result of calculations, it is concluded that by taking into consideration of the critical limit, the SAMOP subcritical assembly is neutronically can be made. (author)

  2. 32 CFR 634.38 - Involuntary extraction of bodily fluids in traffic cases.

    Science.gov (United States)

    2010-07-01

    ... or in control of a vehicle while under the influence of an intoxicant. (i) A search authorization by... extractions. (4) All law enforcement and medical personnel will keep in mind the possibility that the...

  3. A new method based on supercritical fluid extraction for polyacetylenes and polyenes from Echinacea pallida (Nutt.) Nutt. roots.

    Science.gov (United States)

    Tacchini, Massimo; Spagnoletti, Antonella; Brighenti, Virginia; Prencipe, Francesco Pio; Benvenuti, Stefania; Sacchetti, Gianni; Pellati, Federica

    2017-11-30

    The genus Echinacea (Asteraceae) includes species traditionally used in phytotherapy. Among them, Echinacea pallida (Nutt.) Nutt. root extracts are characterized by a representative antiproliferative activity, due to the presence of acetylenic compounds. In this study, supercritical fluid extraction (SFE) was applied and compared with conventional Soxhlet extraction (SE) in order to obtain a bioactive extract highly rich in polyacetylenes and polyenes from E. pallida roots. The composition of the extracts was monitored by means of HPLC-UV/DAD and HPLC-ESI-MS n by using an Ascentis Express C 18 column (150mm×3.0mm I.D., 2.7μm, Supelco, Bellefonte, PA, USA) with a mobile phase composed of (A) water and (B) acetonitrile, under gradient elution. By keeping SFE time at the threshold of 1h (15min static and 45min dynamic for 1 cycle) with the oven temperature set at 40-45°C and 90bar of pressure, an overall extraction yield of 1.18-1.21% (w/w) was obtained, with a high selectivity for not oxidized lipophilic compounds. The biological activity of the extracts was evaluated against human non-small lung A549 and breast carcinoma MCF-7 cancer cell lines. The cytotoxic effect of the SFE extract was more pronounced towards the MCF-7 than the A549 cancer cells, with IC 50 values ranging from 21.01±2.89 to 31.11±2.l4μg/mL; cell viability was affected mainly between 24 and 48h of exposure. The results show the possibility of a new "green" approach to obtain extracts highly rich in genuine polyacetylenes and polyenes from E. pallida roots. The bioactivity evaluation confirmed the cytotoxicity of E. pallida extracts against the considered cancer cell lines, especially against MCF-7 cells, thus suggesting to represent a valuable tool for applicative purposes in cancer prevention. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Volatile and Nonvolatile Constituents and Antioxidant Capacity of Oleoresins in Three Taiwan Citrus Varieties as Determined by Supercritical Fluid Extraction

    Directory of Open Access Journals (Sweden)

    Min-Hung Chen

    2016-12-01

    Full Text Available As local varieties of citrus fruit in Taiwan, Ponkan (Citrus reticulata Blanco, Tankan (C. tankan Hayata, and Murcott (C. reticulate × C. sinensis face substantial competition on the market. In this study, we used carbon dioxide supercritical technology to extract oleoresin from the peels of the three citrus varieties, adding alcohol as a solvent assistant to enhance the extraction rate. The supercritical fluid extraction was fractionated with lower terpene compounds in order to improve the oxygenated amounts of the volatile resins. The contents of oleoresin from the three varieties of citrus peels were then analyzed with GC/MS in order to identify 33 volatile compounds. In addition, the analysis results indicated that the non-volatile oleoresin extracted from the samples contains polymethoxyflavones (86.2~259.5 mg/g, limonoids (111.7~406.2 mg/g, and phytosterols (686.1~1316.4 μg/g. The DPPH (1,1-Diphenyl-2-picrylhydrazyl, ABTS [2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid] scavenging and inhibition of lipid oxidation, which test the oleoresin from the three kinds of citrus, exhibited significant antioxidant capacity. The component polymethoxyflavones contributed the greatest share of the overall antioxidant capacity, while the limonoid and phytosterol components effectively coordinated with its effects.

  5. Supercritical fluid extraction and ultra performance liquid chromatography of respiratory quinones for microbial community analysis in environmental and biological samples.

    Science.gov (United States)

    Hanif, Muhammad; Atsuta, Yoichi; Fujie, Koichi; Daimon, Hiroyuki

    2012-03-05

    Microbial community structure plays a significant role in environmental assessment and animal health management. The development of a superior analytical strategy for the characterization of microbial community structure is an ongoing challenge. In this study, we developed an effective supercritical fluid extraction (SFE) and ultra performance liquid chromatography (UPLC) method for the analysis of bacterial respiratory quinones (RQ) in environmental and biological samples. RQ profile analysis is one of the most widely used culture-independent tools for characterizing microbial community structure. A UPLC equipped with a photo diode array (PDA) detector was successfully applied to the simultaneous determination of ubiquinones (UQ) and menaquinones (MK) without tedious pretreatment. Supercritical carbon dioxide (scCO(2)) extraction with the solid-phase cartridge trap proved to be a more effective and rapid method for extracting respiratory quinones, compared to a conventional organic solvent extraction method. This methodology leads to a successful analytical procedure that involves a significant reduction in the complexity and sample preparation time. Application of the optimized methodology to characterize microbial communities based on the RQ profile was demonstrated for a variety of environmental samples (activated sludge, digested sludge, and compost) and biological samples (swine and Japanese quail feces).

  6. Supercritical Fluid Extraction and Ultra Performance Liquid Chromatography of Respiratory Quinones for Microbial Community Analysis in Environmental and Biological Samples

    Directory of Open Access Journals (Sweden)

    Koichi Fujie

    2012-03-01

    Full Text Available Microbial community structure plays a significant role in environmental assessment and animal health management. The development of a superior analytical strategy for the characterization of microbial community structure is an ongoing challenge. In this study, we developed an effective supercritical fluid extraction (SFE and ultra performance liquid chromatography (UPLC method for the analysis of bacterial respiratory quinones (RQ in environmental and biological samples. RQ profile analysis is one of the most widely used culture-independent tools for characterizing microbial community structure. A UPLC equipped with a photo diode array (PDA detector was successfully applied to the simultaneous determination of ubiquinones (UQ and menaquinones (MK without tedious pretreatment. Supercritical carbon dioxide (scCO2 extraction with the solid-phase cartridge trap proved to be a more effective and rapid method for extracting respiratory quinones, compared to a conventional organic solvent extraction method. This methodology leads to a successful analytical procedure that involves a significant reduction in the complexity and sample preparation time. Application of the optimized methodology to characterize microbial communities based on the RQ profile was demonstrated for a variety of environmental samples (activated sludge, digested sludge, and compost and biological samples (swine and Japanese quail feces.

  7. Method and apparatus for dissociating metals from metal compounds extracted into supercritical fluids

    Science.gov (United States)

    Wai, Chien M.; Hunt, Fred H.; Smart, Neil G.; Lin, Yuehe

    2000-01-01

    A method for dissociating metal-ligand complexes in a supercritical fluid by treating the metal-ligand complex with heat and/or reducing or oxidizing agents is described. Once the metal-ligand complex is dissociated, the resulting metal and/or metal oxide form fine particles of substantially uniform size. In preferred embodiments, the solvent is supercritical carbon dioxide and the ligand is a .beta.-diketone such as hexafluoroacetylacetone or dibutyldiacetate. In other preferred embodiments, the metals in the metal-ligand complex are copper, silver, gold, tungsten, titanium, tantalum, tin, or mixtures thereof. In preferred embodiments, the reducing agent is hydrogen. The method provides an efficient process for dissociating metal-ligand complexes and produces easily-collected metal particles free from hydrocarbon solvent impurities. The ligand and the supercritical fluid can be regenerated to provide an economic, efficient process.

  8. Chemical composition and antioxidant/antimicrobial activities in supercritical carbon dioxide fluid extract of Gloiopeltis tenax.

    Science.gov (United States)

    Zheng, Jiaojiao; Chen, Yicun; Yao, Fen; Chen, Weizhou; Shi, Ganggang

    2012-12-01

    Gloiopeltis tenax (G. tenax) is widely distributed along the Chinese coastal areas and is commonly used in the treatment of diarrhea and colitis. This study aimed at investigating the bioactivities of the volatile constituents in G. tenax. We extracted the essential constituents of G. tenax by supercritical carbon dioxide extraction (CO₂-SFE), then identified and analyzed the constituents by gas chromatography-mass spectrometry (GC-MS). In total, 30 components were identified in the G. tenax extract. The components showed remarkable antioxidant activity (radical scavenging activity of 2,2-diphenyl-1-picrylhydrazyl (DPPH)), lipid peroxidation inhibition capacity (in a β-carotene/linoleic acid-coupled oxidation reaction), and hydroxyl radical-scavenging activity (by deoxyribose degradation by iron-dependent hydroxyl radical), compared to butylated hydroxytoluene. In microdilution assays, G. tenax extracts showed a moderate inhibitory effects on Staphyloccocus aureus (minimum inhibitory concentration (MIC) = 3.9 mg/mL), Enterococcus faecalis (7.8 mg/mL), Pseudomonas aeruginosa (15.6 mg/mL), and Escherichia coli (3.9 mg/mL). Antioxidant and antimicrobial activities of G. tenax were related to the active chemical composition. These results suggest that the CO₂-SFE extract from G. tenax has potential to be used as a natural antioxidant and antimicrobial agent in food processing.

  9. Chemical Composition and Antioxidant/Antimicrobial Activities in Supercritical Carbon Dioxide Fluid Extract of Gloiopeltis tenax

    Directory of Open Access Journals (Sweden)

    Jiaojiao Zheng

    2012-11-01

    Full Text Available Gloiopeltis tenax (G. tenax is widely distributed along the Chinese coastal areas and is commonly used in the treatment of diarrhea and colitis. This study aimed at investigating the bioactivities of the volatile constituents in G. tenax. We extracted the essential constituents of G. tenax by supercritical carbon dioxide extraction (CO2-SFE, then identified and analyzed the constituents by gas chromatography-mass spectrometry (GC-MS. In total, 30 components were identified in the G. tenax extract. The components showed remarkable antioxidant activity (radical scavenging activity of 2,2-diphenyl-1-picrylhydrazyl (DPPH, lipid peroxidation inhibition capacity (in a β-carotene/linoleic acid-coupled oxidation reaction, and hydroxyl radical-scavenging activity (by deoxyribose degradation by iron-dependent hydroxyl radical, compared to butylated hydroxytoluene. In microdilution assays, G. tenax extracts showed a moderate inhibitory effects on Staphyloccocus aureus (minimum inhibitory concentration (MIC = 3.9 mg/mL, Enterococcus faecalis (7.8 mg/mL, Pseudomonas aeruginosa (15.6 mg/mL, and Escherichia coli (3.9 mg/mL. Antioxidant and antimicrobial activities of G. tenax were related to the active chemical composition. These results suggest that the CO2-SFE extract from G. tenax has potential to be used as a natural antioxidant and antimicrobial agent in food processing.

  10. MODELING OF SUPERCRITICAL FLUID EXTRACTION KINETIC OF FLAXSEED OIL BY DIFFUSION CONTROL METHOD

    Directory of Open Access Journals (Sweden)

    Emir Zafer HOŞGÜN

    2013-06-01

    Full Text Available In this study, Flaxseed oil was extracted by Supercritical Carbondioxide Extraction, and extractionkinetics was modelled using diffusion controlled method.The effect of process parameters, such as pressure (20, 35, 55 MPa, temperature (323 and 343 K, and CO2 flow rate (1 and 3 L CO2 /min on the extraction yield and effective diffusivity (De was investigated. The effective diffusion coefficient varied between 2.4 x10-12 and 10.8 x10-12 m2s-1 for the entire range of experiments and increased with the pressure and flow rate. The model fitted well theexperimental data (ADD varied between 2.35 and 7.48%.

  11. Supercritical fluid extraction and characterization of lipids from algae Scenedesmus obliquus

    Science.gov (United States)

    Choi, K. J.; Nakhost, Z.; Krukonis, V. J.; Karel, M.

    1987-01-01

    Lipids were extracted from a protein concentrate of green algae (Scenedesmus obliquus), using a one-step supercritical carbon dioxide extraction procedure in presence of ethanol as an entrainer, and were characterized. The compositions of neutral lipids, glycolipids, and phospholipids, separated into individual components by column, thin-layer, and gas-liquid chromatography procedures, are presented. Fatty acid composition patterns indicated that the major fatty acids were 16:0, 16:1, 16:2, 16:3, 16:4, 18:1, 18:2, and 18:3. The lipids of S. obliquus were found to contain relatively high concentrations of polyunsaturated fatty acids and essential fatty acids.

  12. Supercritical fluid extraction of soybean oil from the surface of spiked quartz sand - modelling study

    OpenAIRE

    Stela Jokić; B. Nagy; K. Aladić; B. Simándi

    2013-01-01

    The extraction of soybean oil from the surface of spiked quartz sand using supercritical CO2 was investigated. Sand as solid was used; it is not porous material so the internal diffusion does not exist, all the soluble material is in the surface of the particles. Sovová’s model has been used in order to obtain an analytical solution to develop the required extraction yield curves. The model simplifies when the internal diffusion can be neglected. The external mass transfer coefficient was det...

  13. Complete removal of uranyl nitrate from tissue matrix using supercritical fluid extraction

    International Nuclear Information System (INIS)

    Kumar, R.; Sivaraman, N.; Senthil Vadivu, E.; Srinivasan, T.G.; Vasudeva Rao, P.R.

    2003-01-01

    The removal of uranyl nitrate from tissue matrix has been studied with supercritical carbon dioxide modified with methanol alone as well as complexing reagents dissolved in methanol. A systematic study of various complexing agents led to the development of an extraction procedure for the quantitative recovery of uranium from tissue matrix with supercritical carbon dioxide modified with methanol containing small quantities of acetylacetone. The drying time and temperature employed in loading of uranyl nitrate onto tissue paper were found to influence the extraction efficiency significantly

  14. Initial instability of round liquid jet at subcritical and supercritical environments

    International Nuclear Information System (INIS)

    Muthukumaran, C. K.; Vaidyanathan, Aravind

    2016-01-01

    In the present experimental work, the behavior of laminar liquid jet in its own vapor as well as supercritical fluid environment is conducted. Also the study of liquid jet injection into nitrogen (N_2) environment is carried out at supercritical conditions. It is expected that the injected liquid jet would undergo thermodynamic transition to the chamber condition and this would alter the behavior of the injected jet. Moreover at such conditions there is a strong dependence between thermodynamic and fluid dynamic processes. Thus the thermodynamic transition has its effect on the initial instability as well as the breakup nature of the injected liquid jet. In the present study, the interfacial disturbance wavelength, breakup characteristics, and mixing behavior are analysed for the fluoroketone liquid jet that is injected into N_2 environment as well as into its own vapor at subcritical to supercritical conditions. It is observed that at subcritical chamber conditions, the injected liquid jet exhibits classical liquid jet characteristics with Rayleigh breakup at lower Weber number and Taylor breakup at higher Weber number for both N_2 and its own environment. At supercritical chamber conditions with its own environment, the injected liquid jet undergoes sudden thermodynamic transition to chamber conditions and single phase mixing characteristics is observed. However, the supercritical chamber conditions with N_2 as ambient fluid does not have significant effect on the thermodynamic transition of the injected liquid jet.

  15. Concept of an accelerator-driven subcritical research reactor within the TESLA accelerator installation

    International Nuclear Information System (INIS)

    Pesic, Milan; Neskovic, Nebojsa

    2006-01-01

    Study of a small accelerator-driven subcritical research reactor in the Vinca Institute of Nuclear Sciences was initiated in 1999. The idea was to extract a beam of medium-energy protons or deuterons from the TESLA accelerator installation, and to transport and inject it into the reactor. The reactor core was to be composed of the highly enriched uranium fuel elements. The reactor was designated as ADSRR-H. Since the use of this type of fuel elements was not recommended any more, the study of a small accelerator-driven subcritical research reactor employing the low-enriched uranium fuel elements began in 2004. The reactor was designated as ADSRR-L. We compare here the results of the initial computer simulations of ADSRR-H and ADSRR-L. The results have confirmed that our concept could be the basis for designing and construction of a low neutron flux model of the proposed accelerator-driven subcritical power reactor to be moderated and cooled by lead. Our objective is to study the physics and technologies necessary to design and construct ADSRR-L. The reactor would be used for development of nuclear techniques and technologies, and for basic and applied research in neutron physics, metrology, radiation protection and radiobiology

  16. Massive subcritical compact arrays of plutonium metal

    Energy Technology Data Exchange (ETDEWEB)

    Rothe, R.E.

    1998-04-01

    Two experimental critical-approach programs are reported. Both were performed at the Rocky Flats Plant near Denver, Colorado; and both date back to the late 1960s. Both involve very large arrays of massive plutonium ingots. These ingots had been cast in the foundry at the Rocky Flats Plant as part of their routine production operations; they were not specially prepared for either study. Consequently, considerable variation in ingot mass is encountered. This mass varied between approximately 7 kg and a little more than 10 kg. One program, performed in the spring of 1969, involved stacked arrays of ingots contained within cylindrical, disk-shaped, thin, steel cans. This program studied four arrays defined by the pattern of steel cans in a single layer. The four were: 1 x N, 3 x N, 2 x 2 x N, and 3 x 3 x N. The second was a tightly-packed, triangular-pitched patterns; the last two were square-pitched patterns. The other program, performed about a year earlier, involved similar ingots also contained in similar steel cans, but these canned plutonium ingots were placed in commercial steel drums. This study pertained to one-, two-, and three-layered horizontal arrays of drums. All cases proved to be well subcritical. Most would have remained subcritical had the parameters of the array under study been continued infinitely beyond the reciprocal multiplication safety limit. In one case for the drum arrays, an uncertain extrapolation of the data of the earlier program suggests that criticality might have eventually been attained had several thousand additional kilograms of plutonium been available for use.

  17. Massive subcritical compact arrays of plutonium metal

    International Nuclear Information System (INIS)

    Rothe, R.E.

    1998-01-01

    Two experimental critical-approach programs are reported. Both were performed at the Rocky Flats Plant near Denver, Colorado; and both date back to the late 1960s. Both involve very large arrays of massive plutonium ingots. These ingots had been cast in the foundry at the Rocky Flats Plant as part of their routine production operations; they were not specially prepared for either study. Consequently, considerable variation in ingot mass is encountered. This mass varied between approximately 7 kg and a little more than 10 kg. One program, performed in the spring of 1969, involved stacked arrays of ingots contained within cylindrical, disk-shaped, thin, steel cans. This program studied four arrays defined by the pattern of steel cans in a single layer. The four were: 1 x N, 3 x N, 2 x 2 x N, and 3 x 3 x N. The second was a tightly-packed, triangular-pitched patterns; the last two were square-pitched patterns. The other program, performed about a year earlier, involved similar ingots also contained in similar steel cans, but these canned plutonium ingots were placed in commercial steel drums. This study pertained to one-, two-, and three-layered horizontal arrays of drums. All cases proved to be well subcritical. Most would have remained subcritical had the parameters of the array under study been continued infinitely beyond the reciprocal multiplication safety limit. In one case for the drum arrays, an uncertain extrapolation of the data of the earlier program suggests that criticality might have eventually been attained had several thousand additional kilograms of plutonium been available for use

  18. Modeling of the CTEx subcritical unit using MCNPX code

    International Nuclear Information System (INIS)

    Santos, Avelino; Silva, Ademir X. da; Rebello, Wilson F.; Cunha, Victor L. Lassance

    2011-01-01

    The present work aims at simulating the subcritical unit of Army Technology Center (CTEx) namely ARGUS pile (subcritical uranium-graphite arrangement) by using the computational code MCNPX. Once such modeling is finished, it could be used in k-effective calculations for systems using natural uranium as fuel, for instance. ARGUS is a subcritical assembly which uses reactor-grade graphite as moderator of fission neutrons and metallic uranium fuel rods with aluminum cladding. The pile is driven by an Am-Be spontaneous neutron source. In order to achieve a higher value for k eff , a higher concentration of U235 can be proposed, provided it safely remains below one. (author)

  19. Spectrophotometric Quantification of Toxicologically Relevant Concentrations of Chromium(VI in Cosmetic Pigments and Eyeshadow Using Synthetic Lachrymal Fluid Extraction

    Directory of Open Access Journals (Sweden)

    Sarah Wurster

    2012-01-01

    Full Text Available Chromium(VI salts are possible contaminants of the chromium(III pigments used as colorants in eyeshadow preparations. The use of products containing these contaminants poses acute risks for sensitization and contact allergies. Chromium(VI compounds are also classified as carcinogenic to humans (IARC group 1. An analytical method to analyse trace levels of chromium(VI in eyeshadow was developed in this study. The method is based on an extraction of the chromium(VI from the sample using a maximum extraction with alkali and additionally with synthetic lachrymal fluid to simulate physiological conditions. Following derivatization with 1,5-diphenylcarbazide, the extracted chromium(VI is then quantified by spectrophotometry (540 nm. Validation tests indicated a method standard deviation (inter- and intraday of 8.7% and a linear range up to 25 mg/kg. The average recovery was 107.9%, and the detection limit was 2.7 mg/kg. The applicability of the procedure was confirmed by the analysis of pigments and authentic eyeshadow matrices.

  20. High-throughput analysis of sulfatides in cerebrospinal fluid using automated extraction and UPLC-MS/MS.

    Science.gov (United States)

    Blomqvist, Maria; Borén, Jan; Zetterberg, Henrik; Blennow, Kaj; Månsson, Jan-Eric; Ståhlman, Marcus

    2017-07-01

    Sulfatides (STs) are a group of glycosphingolipids that are highly expressed in brain. Due to their importance for normal brain function and their potential involvement in neurological diseases, development of accurate and sensitive methods for their determination is needed. Here we describe a high-throughput oriented and quantitative method for the determination of STs in cerebrospinal fluid (CSF). The STs were extracted using a fully automated liquid/liquid extraction method and quantified using ultra-performance liquid chromatography coupled to tandem mass spectrometry. With the high sensitivity of the developed method, quantification of 20 ST species from only 100 μl of CSF was performed. Validation of the method showed that the STs were extracted with high recovery (90%) and could be determined with low inter- and intra-day variation. Our method was applied to a patient cohort of subjects with an Alzheimer's disease biomarker profile. Although the total ST levels were unaltered compared with an age-matched control group, we show that the ratio of hydroxylated/nonhydroxylated STs was increased in the patient cohort. In conclusion, we believe that the fast, sensitive, and accurate method described in this study is a powerful new tool for the determination of STs in clinical as well as preclinical settings. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  1. Supercritical fluid extraction of bi & multi-layer graphene sheets from graphite by using exfoliation technique

    Science.gov (United States)

    Xavier, Gauravi; Dave, Bhoomi; Khanna, Sakshum

    2018-05-01

    In recent times, researchers have turned to explore the possibility of using Supercritical Fluid (SCFs) system to penetrate into the inert-gaping of graphite and exfoliate it into a number of layer graphene sheets. The supercritical fluid holds excellent wetting surfaces with low interfacial tension and high diffusion coefficients. Although SCFs exfoliation approach looks promising to developed large scale & low-cost graphene sheet but has not received much attention. To arouse interest and reflection on this approach, this review is organized to summarize the recent progress in graphene production by SCF technology. Here we present the simplest route to obtained layers of graphene sheets by intercalating and exfoliating graphite using supercritical CO2 processing. The layers graphene nano-sheets were collected in dichloromethane (DCM) solution which prevents the restocking of sheets. The obtained graphene sheets show the desired characteristics and thus can be used in physical, chemical and biological sciences. Thus this method provides an effortless and eco-friendly approach for the synthesis of layers of graphene sheets.

  2. Physically based model for extracting dual permeability parameters using non-Newtonian fluids

    Science.gov (United States)

    Abou Najm, M. R.; Basset, C.; Stewart, R. D.; Hauswirth, S.

    2017-12-01

    Dual permeability models are effective for the assessment of flow and transport in structured soils with two dominant structures. The major challenge to those models remains in the ability to determine appropriate and unique parameters through affordable, simple, and non-destructive methods. This study investigates the use of water and a non-Newtonian fluid in saturated flow experiments to derive physically-based parameters required for improved flow predictions using dual permeability models. We assess the ability of these two fluids to accurately estimate the representative pore sizes in dual-domain soils, by determining the effective pore sizes of macropores and micropores. We developed two sub-models that solve for the effective macropore size assuming either cylindrical (e.g., biological pores) or planar (e.g., shrinkage cracks and fissures) pore geometries, with the micropores assumed to be represented by a single effective radius. Furthermore, the model solves for the percent contribution to flow (wi) corresponding to the representative macro and micro pores. A user-friendly solver was developed to numerically solve the system of equations, given that relevant non-Newtonian viscosity models lack forms conducive to analytical integration. The proposed dual-permeability model is a unique attempt to derive physically based parameters capable of measuring dual hydraulic conductivities, and therefore may be useful in reducing parameter uncertainty and improving hydrologic model predictions.

  3. Supercritical Fluid Extraction of Lignans and Cinnamic Acid from Schizandra chinensis.

    Czech Academy of Sciences Publication Activity Database

    Sovová, Helena; Opletal, L.; Bártlová, Milena; Sajfrtová, Marie; Křenková, M.

    2007-01-01

    Roč. 42, 1 (2007) , s. 88-95 ISSN 0896-8446 R&D Projects: GA ČR(CZ) GA203/01/0550; GA AV ČR IAA4072102; GA AV ČR KSK4040110 Institutional research plan: CEZ:AV0Z40720504 Keywords : supercritical extraction * solubility * lignans Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.189, year: 2007

  4. Nuclear data requirements for accelerator driven sub-critical systems

    Indian Academy of Sciences (India)

    The development of accelerator driven sub-critical systems (ADSS) require significant amount of new nuclear data in extended energy regions as well as for a variety of new materials. This paper reviews these perspectives in the Indian context.

  5. Sub-criticality monitoring for ADTR trademark control

    International Nuclear Information System (INIS)

    Ashworth, Roger

    2014-01-01

    Following the debut of the Accelerator Driven Thorium Reactor (ADTR trademark) Power Station at ENC 2010 in Barcelona, thorium as a reactor fuel has gained increasing support. The ADTR trademark concept reactor introduced the combination of an accelerator driven system (ADS) with traditional control rod technology, to provide a very high gain novel sub-critical ADS reactor design. The high gain of the system, while significantly reducing the demands on the accelerator design, pushes up operational sub-criticality (k eff ) closer to unity. In this paper we review this design and the progress made since ENC 2010. We compare 2 different methods of measuring the sub-critical neutron multiplication factor as the fuel cycle develops. The paper discusses the most recent work on k eff measurement and the interesting relationship between neutron flux, accelerator current and fuel temperature when using beam pulse methods to determine operational sub-criticality, of which a European patent is being granted. (orig.)

  6. Comparison of Glucose Area Under the Curve Measured Using Minimally Invasive Interstitial Fluid Extraction Technology with Continuous Glucose Monitoring System in Diabetic Patients

    OpenAIRE

    Uemura, Mei

    2017-01-01

    Background: Continuous glucose monitoring (CGM) is reported to be a useful technique, but difficult or inconvenient for some patients and institutions. We are developing a glucose area under the curve (AUC) monitoring system without blood sampling using a minimally invasive interstitial fluid extraction technology (MIET). Here we evaluated the accuracy of interstitial fluid glucose (IG) AUC measured by MIET in patients with diabetes for an extended time interval and the potency of detecting h...

  7. Comparison of Glucose Area Under the Curve Measured Using Minimally Invasive Interstitial Fluid Extraction Technology with Continuous Glucose Monitoring System in Diabetic Patients

    OpenAIRE

    Mei Uemura; Yutaka Yano; Toshinari Suzuki; Taro Yasuma; Toshiyuki Sato; Aya Morimoto; Samiko Hosoya; Chihiro Suminaka; Hiromu Nakajima; Esteban C. Gabazza; Yoshiyuki Takei

    2017-01-01

    Background Continuous glucose monitoring (CGM) is reported to be a useful technique, but difficult or inconvenient for some patients and institutions. We are developing a glucose area under the curve (AUC) monitoring system without blood sampling using a minimally invasive interstitial fluid extraction technology (MIET). Here we evaluated the accuracy of interstitial fluid glucose (IG) AUC measured by MIET in patients with diabetes for an extended time interval and the potency of detecting hy...

  8. Recovery of Palm Oil and Valuable Material from Oil Palm Empty Fruit Bunch by Sub-critical Water.

    Science.gov (United States)

    Ahmad Kurnin, Nor Azrin; Shah Ismail, Mohd Halim; Yoshida, Hiroyuki; Izhar, Shamsul

    2016-01-01

    Oil palm empty fruit bunch (EFB) is one of the solid wastes produced in huge volume by palm oil mill. Whilst it still contains valuable oil, approximately 22.6 million tons is generated annually and treated as solid waste. In this work, sub-critical water (sub-cw) was used to extract oil, sugar and tar from spikelet of EFB. The spikelet was treated with sub-cw between 180-280°C and a reaction time of 2 and 5 minutes. The highest yield of oil was 0.075 g-oil/g-dry EFB, obtained at 240°C and reaction time of 5 minutes. Astonishingly, oil that was extracted through this method was 84.5% of that obtained through Soxhlet method using hexane. Yield of oil extracted was strongly affected by the reaction temperature and time. Higher reaction temperature induces the dielectric constant of water towards the non-polar properties of solvent; thus increases the oil extraction capability. Meanwhile, the highest yield of sugar was 0.20 g-sugar/g-dry EFB obtained at 220°C. At this temperature, the ion product of water is high enough to enable maximum sub-critical water hydrolysis reaction. This study showed that oil and other valuable material can be recovered using water at sub-critical condition, and most attractive without the use of harmful organic solvent.

  9. Comparison of methods for miRNA extraction from plasma and quantitative recovery of RNA from plasma and cerebrospinal fluid

    Directory of Open Access Journals (Sweden)

    Melissa A McAlexander

    2013-05-01

    Full Text Available Interest in extracellular RNA has intensified as evidence accumulates that these molecules may be useful as indicators of a wide variety of biological conditions. To establish specific extracellular RNA molecules as clinically relevant biomarkers, reproducible recovery from biological samples and reliable measurements of the isolated RNA are paramount. Towards these ends, careful and rigorous comparisons of technical procedures are needed at all steps from sample handling to RNA isolation to RNA measurement protocols. In the investigations described in this methods paper, RT-qPCR was used to examine the apparent recovery of specific endogenous miRNAs and a spiked-in synthetic RNA from blood plasma samples. RNA was isolated using several widely used RNA isolation kits, with or without the addition of glycogen as a carrier. Kits examined included total RNA isolation systems that have been commercially available for several years and commonly adapted for extraction of biofluid RNA, as well as more recently introduced biofluids-specific RNA methods. Our conclusions include the following: some RNA isolation methods appear to be superior to others for the recovery of RNA from biological fluids; addition of a carrier molecule seems to be beneficial for some but not all isolation methods; and partially or fully quantitative recovery of RNA is observed from increasing volumes of plasma and cerebrospinal fluid.

  10. Physics of subcritical multiplying regions and experimental validation

    International Nuclear Information System (INIS)

    Salvatores, M.

    1996-01-01

    The coupling of a particle accelerator with a spallation target and with a subcritical multiplying region has been proposed in the fifties and is called here a hybrid system. This article gives some ideas about the energetic balance of such a system. The possibilities of experimental validation of some properties of a subcritical multiplying region by using MASURCA facility at CEA-Cadarache are examined. The results of a preliminary experiment called MUSE are presented. (A.C.)

  11. Pulsed neutron source based on accelerator-subcritical-assembly

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Makoto; Noda, Akira; Iwashita, Yoshihisa; Okamoto, Hiromi; Shirai, Toshiyuki [Kyoto Univ., Uji (Japan). Inst. for Chemical Research

    1997-03-01

    A new pulsed neutron source which consists of a 300MeV proton linac and a nuclear fuel subcritical assembly is proposed. The proton linac produces pulsed spallation neutrons, which are multipied by the subcritical assembly. A prototype proton linac that accelerates protons up to 7MeV has been developed and a high energy section of a DAW structure is studied with a power model. Halo formations in high intensity beam are also being studied. (author)

  12. An Analytical Model for Assessing Stability of Pre-Existing Faults in Caprock Caused by Fluid Injection and Extraction in a Reservoir

    Science.gov (United States)

    Wang, Lei; Bai, Bing; Li, Xiaochun; Liu, Mingze; Wu, Haiqing; Hu, Shaobin

    2016-07-01

    Induced seismicity and fault reactivation associated with fluid injection and depletion were reported in hydrocarbon, geothermal, and waste fluid injection fields worldwide. Here, we establish an analytical model to assess fault reactivation surrounding a reservoir during fluid injection and extraction that considers the stress concentrations at the fault tips and the effects of fault length. In this model, induced stress analysis in a full-space under the plane strain condition is implemented based on Eshelby's theory of inclusions in terms of a homogeneous, isotropic, and poroelastic medium. The stress intensity factor concept in linear elastic fracture mechanics is adopted as an instability criterion for pre-existing faults in surrounding rocks. To characterize the fault reactivation caused by fluid injection and extraction, we define a new index, the "fault reactivation factor" η, which can be interpreted as an index of fault stability in response to fluid pressure changes per unit within a reservoir resulting from injection or extraction. The critical fluid pressure change within a reservoir is also determined by the superposition principle using the in situ stress surrounding a fault. Our parameter sensitivity analyses show that the fault reactivation tendency is strongly sensitive to fault location, fault length, fault dip angle, and Poisson's ratio of the surrounding rock. Our case study demonstrates that the proposed model focuses on the mechanical behavior of the whole fault, unlike the conventional methodologies. The proposed method can be applied to engineering cases related to injection and depletion within a reservoir owing to its efficient computational codes implementation.

  13. Dynamic analysis of an accelerator-based subcritical radioactive waste burning system

    International Nuclear Information System (INIS)

    Woosley, M.L. Jr.; Rydin, R.A.

    1997-01-01

    There has been a recent revival of interest in accelerator-driven subcritical fluid-fueled systems for radioactive waste management. This motivates the need for dynamic analysis of the nuclear kinetics of such systems. A physical description of the Los Alamos Accelerator-Based Conversion (ABC) concept is provided. This system is used as the basis for the kinetic study in this research. The current approach to the dynamic simulation of an accelerator-driven subcritical fluid-fueled system includes four functional blocks: A discrete ordinates model is used to calculate the flux distribution for the source-driven system (DORT); A nodal convection model is used to calculate time-dependent isotope and temperature distributions which impact reactivity (ABCcore); A nodal importance weighting model is used to calculate the reactivity impact of temperature and isotope distributions and to feed this information back to the time-dependent nodal convection model (ABCvip); A transient driver simulates system transients and records simulation data (ABCtrans). Specific transients which have been analyzed with the current modeling system are discussed. These transients include loss-of-flow and loss-of-cooling accidents, xenon and samarium transients, and cold-plug and overfueling events. The results of various transients have uncovered unpredictable behavior, unresolved design issues, and the need for active control. 11 refs., 6 figs., 1 tab

  14. Inverse supercritical fluid extraction as a sample preparation method for the analysis of the nanoparticle content in sunscreen agents.

    Science.gov (United States)

    Müller, David; Cattaneo, Stefano; Meier, Florian; Welz, Roland; de Vries, Tjerk; Portugal-Cohen, Meital; Antonio, Diana C; Cascio, Claudia; Calzolai, Luigi; Gilliland, Douglas; de Mello, Andrew

    2016-04-01

    We demonstrate the use of inverse supercritical carbon dioxide (scCO2) extraction as a novel method of sample preparation for the analysis of complex nanoparticle-containing samples, in our case a model sunscreen agent with titanium dioxide nanoparticles. The sample was prepared for analysis in a simplified process using a lab scale supercritical fluid extraction system. The residual material was easily dispersed in an aqueous solution and analyzed by Asymmetrical Flow Field-Flow Fractionation (AF4) hyphenated with UV- and Multi-Angle Light Scattering detection. The obtained results allowed an unambiguous determination of the presence of nanoparticles within the sample, with almost no background from the matrix itself, and showed that the size distribution of the nanoparticles is essentially maintained. These results are especially relevant in view of recently introduced regulatory requirements concerning the labeling of nanoparticle-containing products. The novel sample preparation method is potentially applicable to commercial sunscreens or other emulsion-based cosmetic products and has important ecological advantages over currently used sample preparation techniques involving organic solvents. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Cytotoxic Activity of Kenaf Seed Oils from Supercritical Carbon Dioxide Fluid Extraction towards Human Colorectal Cancer (HT29 Cell Lines

    Directory of Open Access Journals (Sweden)

    Siti Aisyah Abd Ghafar

    2013-01-01

    Full Text Available Kenaf (Hibiscus cannabinus from the family Malvaceae, is a valuable fiber plant native to India and Africa and is currently planted as the fourth commercial crop in Malaysia. Kenaf seed oil contains alpha-linolenic acid, phytosterol such as β-sitosterol, vitamin E, and other antioxidants with chemopreventive properties. Kenaf seeds oil (KSO was from supercritical carbon dioxide extraction fluid (SFE at 9 different permutations of parameters based on range of pressures from 200 to 600 bars and temperature from 40 to 80°C. They were 200/40, 200/60, 200/80, 400/40, 400/60, 400/80, 600/40, 600/60, and 600/80. Extraction from 9 parameters of KSO-SFE was screened for cytotoxicity towards human colorectal cancer cell lines (HT29 and mouse embryonic fibroblast (NIH/3T3 cell lines using MTS assay. KSO-SFE at 600/40 showed the strongest cytotoxicity towards HT29 with IC50 of 200 µg/mL. The IC50 for NIH/3T3 was not detected even at highest concentration employed. Cell cycle analysis showed a significant increase in the accumulation of KSO-SFE-treated cells at sub-G1 phase, indicating the induction of apoptosis by KSO-SFE. Further apoptosis induction was confirmed by Annexin V/PI and AO/PI staining.

  16. Evaluation of peri-implant crevicular fluid prostaglandin E2 levels in augmented extraction sockets by different biomaterials.

    Science.gov (United States)

    Alkan, Eylem Ayhan; Tüter, Gülay; Parlar, Ateş; Yücel, Ayşegül; Kurtiş, Bülent

    2016-10-01

    This study compares peri-implant crevicular fluid (PICF) prostaglandin E 2 (PGE 2 ) levels, clinical parameters and implant stability quotient (ISQ) values around implants placed in augmented extraction sockets. The sockets (24 in total) were randomly augmented using either EMD or Bio-Oss Collagen. Implant placements were performed after three months of healing. ISQ readings were evaluated at three points: at the time of surgery, at the first month and at the third month. PICF was collected for PGE 2 evaluation after the first and the third months of implant surgery. After the first month, a higher level of PICF PGE 2 was observed in the EMD group than in the Bio-Oss Collagen group, and this increase was of statistical significance; however, at the third month there was no statistically significant difference in PICF PGE 2 levels between the two groups. For implants placed in EMD sites, ISQ values were statistically higher at the third month than at the first month, while no significant differences in ISQ value were detected between the first and third months in Bio-Oss Collagen sites. The results of this research suggest that both EMD and Bio-Oss Collagen are effective treatment modalities for stimulating the formation of new bone at extraction sites prior to implant surgery.

  17. Cytotoxic Activity of Kenaf Seed Oils from Supercritical Carbon Dioxide Fluid Extraction towards Human Colorectal Cancer (HT29) Cell Lines.

    Science.gov (United States)

    Abd Ghafar, Siti Aisyah; Ismail, Maznah; Saiful Yazan, Latifah; Fakurazi, Sharida; Ismail, Norsharina; Chan, Kim Wei; Md Tahir, Paridah

    2013-01-01

    Kenaf (Hibiscus cannabinus) from the family Malvaceae, is a valuable fiber plant native to India and Africa and is currently planted as the fourth commercial crop in Malaysia. Kenaf seed oil contains alpha-linolenic acid, phytosterol such as β -sitosterol, vitamin E, and other antioxidants with chemopreventive properties. Kenaf seeds oil (KSO) was from supercritical carbon dioxide extraction fluid (SFE) at 9 different permutations of parameters based on range of pressures from 200 to 600 bars and temperature from 40 to 80°C. They were 200/40, 200/60, 200/80, 400/40, 400/60, 400/80, 600/40, 600/60, and 600/80. Extraction from 9 parameters of KSO-SFE was screened for cytotoxicity towards human colorectal cancer cell lines (HT29) and mouse embryonic fibroblast (NIH/3T3) cell lines using MTS assay. KSO-SFE at 600/40 showed the strongest cytotoxicity towards HT29 with IC50 of 200 µg/mL. The IC50 for NIH/3T3 was not detected even at highest concentration employed. Cell cycle analysis showed a significant increase in the accumulation of KSO-SFE-treated cells at sub-G1 phase, indicating the induction of apoptosis by KSO-SFE. Further apoptosis induction was confirmed by Annexin V/PI and AO/PI staining.

  18. Minimally-invasive, microneedle-array extraction of interstitial fluid for comprehensive biomedical applications: transcriptomics, proteomics, metabolomics, exosome research, and biomarker identification.

    Science.gov (United States)

    Taylor, Robert M; Miller, Philip R; Ebrahimi, Parwana; Polsky, Ronen; Baca, Justin T

    2018-01-01

    Interstitial fluid (ISF) has recently garnered interest as a biological fluid that could be used as an alternate to blood for biomedical applications, diagnosis, and therapy. ISF extraction techniques are promising because they are less invasive and less painful than venipuncture. ISF is an alternative, incompletely characterized source of physiological data. Here, we describe a novel method of ISF extraction in rats, using microneedle arrays, which provides volumes of ISF that are sufficient for downstream analysis techniques such as proteomics, genomics, and extracellular vesicle purification and analysis. This method is potentially less invasive than previously reported techniques. The limited invasiveness and larger volumes of extracted ISF afforded by this microneedle-assisted ISF extraction method provide a technique that is less stressful and more humane to laboratory animals, while also allowing for a reduction in the numbers of animals needed to acquire sufficient volumes of ISF for biomedical analysis and application.

  19. Perspective: Differential dynamic microscopy extracts multi-scale activity in complex fluids and biological systems

    Science.gov (United States)

    Cerbino, Roberto; Cicuta, Pietro

    2017-09-01

    Differential dynamic microscopy (DDM) is a technique that exploits optical microscopy to obtain local, multi-scale quantitative information about dynamic samples, in most cases without user intervention. It is proving extremely useful in understanding dynamics in liquid suspensions, soft materials, cells, and tissues. In DDM, image sequences are analyzed via a combination of image differences and spatial Fourier transforms to obtain information equivalent to that obtained by means of light scattering techniques. Compared to light scattering, DDM offers obvious advantages, principally (a) simplicity of the setup; (b) possibility of removing static contributions along the optical path; (c) power of simultaneous different microscopy contrast mechanisms; and (d) flexibility of choosing an analysis region, analogous to a scattering volume. For many questions, DDM has also advantages compared to segmentation/tracking approaches and to correlation techniques like particle image velocimetry. The very straightforward DDM approach, originally demonstrated with bright field microscopy of aqueous colloids, has lately been used to probe a variety of other complex fluids and biological systems with many different imaging methods, including dark-field, differential interference contrast, wide-field, light-sheet, and confocal microscopy. The number of adopting groups is rapidly increasing and so are the applications. Here, we briefly recall the working principles of DDM, we highlight its advantages and limitations, we outline recent experimental breakthroughs, and we provide a perspective on future challenges and directions. DDM can become a standard primary tool in every laboratory equipped with a microscope, at the very least as a first bias-free automated evaluation of the dynamics in a system.

  20. Grand unification and subcritical hybrid inflation

    International Nuclear Information System (INIS)

    Buchmueller, Wilfried; Ishiwata, Koji

    2014-12-01

    We consider hybrid inflation for small couplings of the inflaton to matter such that the critical value of the inflaton field exceeds the Planck mass. It has recently been shown that inflation then continues at subcritical inflaton field values where quantum fluctuations generate an effective inflaton mass. The effective inflaton potential interpolates between a quadratic potential at small field values and a plateau at large field values. An analysis of the allowed parameter space leads to predictions for the scalar spectral index n s and the tensor-to-scalar ratio r similar to those of natural inflation. Using the range for n s and r favoured by the Planck data, we find that the energy scale of the plateau is constrained to the interval (1.6-2.4) x 10 16 GeV which includes the energy scale of gauge coupling unification in the supersymmetric standard model. The tensor-to-scalar ratio is predicted to have the lower bound r>0.049 for 60 e-folds before the end of inflation.

  1. Measurement of polychlorinated biphenyls in solid waste such as transformer insulation paper by supercritical fluid extraction and gas chromatography electron capture detection.

    Science.gov (United States)

    Chikushi, Hiroaki; Fujii, Yuka; Toda, Kei

    2012-09-21

    In this work, a method for measuring polychlorinated biphenyls (PCBs) in contaminated solid waste was investigated. This waste includes paper that is used in electric transformers to insulate electric components. The PCBs in paper sample were extracted by supercritical fluid extraction and analyzed by gas chromatography-electron capture detection. The recoveries with this method (84-101%) were much higher than those with conventional water extraction (0.08-14%), and were comparable to those with conventional organic solvent extraction. Limit of detection was 0.0074 mg kg(-1) and measurable up to 2.5 mg kg(-1) for 0.5 g of paper sample. Data for real insulation paper by the proposed method agreed well with those by the conventional organic solvent extraction. Extraction from wood and concrete was also investigated and good performance was obtained as well as for paper samples. The supercritical fluid extraction is simpler, faster, and greener than conventional organic solvent extraction. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Utilization of mixed cellulolytic microbes from termite extract, elephant faecal solution and buffalo ruminal fluid to increase in vitro digestibility of King Grass

    Directory of Open Access Journals (Sweden)

    Agung Prabowo

    2007-06-01

    Full Text Available Cellulose is a compound of plant cell walls which is difficult to be degraded because it composed of glucose monomers linked by β-(1.4-bound. It will be hydrolysed by cellulase enzyme secreted by cellulolytic microbes. The effective digestion of cellulose needs high activity of cellulase enzyme. This research aims to increase in vitro king grass digestibility utilizing mixed cellulolytic microbes of termite extract, elephant faecal solution, and buffalo ruminal fluid. Twelve syringes contained gas test media were randomly divided into four treatments based on sources of microbe (SM, namely: S (SM: cattle ruminal fluid [S], RGK (SM: mixed cellulolytic microbes of termite extract, elephant faecal solution, and buffalo ruminal fluid [RGK], with composition 1 : 1 : 1, S-RGK (SM: S + RGK, with composition 1:1, and TM (without given treatment microbe. Digestibility was measured using gas test method. Average of gas production treatment of S-RGK (70.2 + 0.6 ml was higher and significantly different (P<0.01 compared to treatment of S (60.3 + 0.8 ml, RGK (40.8 + 2.3 ml, and TM (13.3 + 2.0 ml. Utilization of mixed cellulolytic microbes of termite extract, elephant faecal solution, and buffalo ruminal fluid (RGK that combined with microbes of cattle ruminal fluid (S could increase in vitro digestibility of king grass.

  3. Pesticide residues in canned foods, fruits, and vegetables: the application of Supercritical Fluid Extraction and chromatographic techniques in the analysis.

    Science.gov (United States)

    El-Saeid, Mohamed H

    2003-12-11

    Multiple pesticide residues have been observed in some samples of canned foods, frozen vegetables, and fruit jam, which put the health of the consumers at risk of adverse effects. It is quite apparent that such a state of affairs calls for the need of more accurate, cost-effective, and rapid analytical techniques capable of detecting the minimum concentrations of the multiple pesticide residues. The aims of this paper were first, to determine the effectiveness of the use of Supercritical Fluid Extraction (SFE) and Supercritical Fluid Chromatography (SFC) techniques in the analysis of the levels of pesticide residues in canned foods, vegetables, and fruits; and second, to contribute to the promotion of consumer safety by excluding pesticide residue contamination from markets. Fifteen different types of imported canned and frozen fruits and vegetables samples obtained from the Houston local food markets were investigated. The major types of pesticides tested were pyrethroids, herbicides, fungicides, and carbamates. By using these techniques, the overall data showed 60.82% of the food samples had no detection of any pesticide residues under this investigation. On the other hand, 39.15% different food samples were contaminated by four different pyrethroid residues +/- RSD% ranging from 0.03 +/- 0.005 to 0.05 +/- 0.03 ppm, of which most of the pyrethroid residues were detected in frozen vegetables and strawberry jam. Herbicide residues in test samples ranged from 0.03 +/- 0.005 to 0.8 +/- 0.01 ppm. Five different fungicides, ranging from 0.05 +/- 0.02 to 0.8 +/- 0.1 ppm, were found in five different frozen vegetable samples. Carbamate residues were not detected in 60% of investigated food samples. It was concluded that SFE and SFC techniques were accurate, reliable, less time consuming, and cost effective in the analysis of imported canned foods, fruits, and vegetables and are recommended for the monitoring of pesticide contaminations.

  4. Pesticide Residues in Canned Foods, Fruits, and Vegetables: The Application of Supercritical Fluid Extraction and Chromatographic Techniques in the Analysis

    Directory of Open Access Journals (Sweden)

    Mohamed H. EL-Saeid

    2003-01-01

    Full Text Available Multiple pesticide residues have been observed in some samples of canned foods, frozen vegetables, and fruit jam, which put the health of the consumers at risk of adverse effects. It is quite apparent that such a state of affairs calls for the need of more accurate, cost-effective, and rapid analytical techniques capable of detecting the minimum concentrations of the multiple pesticide residues. The aims of this paper were first, to determine the effectiveness of the use of Supercritical Fluid Extraction (SFE and Supercritical Fluid Chromatography (SFC techniques in the analysis of the levels of pesticide residues in canned foods, vegetables, and fruits; and second, to contribute to the promotion of consumer safety by excluding pesticide residue contamination from markets. Fifteen different types of imported canned and frozen fruits and vegetables samples obtained from the Houston local food markets were investigated. The major types of pesticides tested were pyrethroids, herbicides, fungicides, and carbamates.By using these techniques, the overall data showed 60.82% of the food samples had no detection of any pesticide residues under this investigation. On the other hand, 39.15% different food samples were contaminated by four different pyrethroid residues ± RSD% ranging from 0.03 ± 0.005 to 0.05 ± 0.03 ppm, of which most of the pyrethroid residues were detected in frozen vegetables and strawberry jam. Herbicide residues in test samples ranged from 0.03 ± 0.005 to 0.8 ± 0.01 ppm. Five different fungicides, ranging from 0.05 ± 0.02 to 0.8 ±0.1 ppm, were found in five different frozen vegetable samples. Carbamate residues were not detected in 60% of investigated food samples. It was concluded that SFE and SFC techniques were accurate, reliable, less time consuming, and cost effective in the analysis of imported canned foods, fruits, and vegetables and are recommended for the monitoring of pesticide contaminations.

  5. Formation of hydroxyl radical from San Joaquin Valley particles extracted in a cell-free surrogate lung fluid

    Directory of Open Access Journals (Sweden)

    H. Shen

    2011-09-01

    Full Text Available Previous studies have suggested that the adverse health effects from ambient particulate matter (PM are linked to the formation of reactive oxygen species (ROS by PM in cardiopulmonary tissues. While hydroxyl radical (OH is the most reactive of the ROS species, there are few quantitative studies of OH generation from PM. Here we report on OH formation from PM collected at an urban (Fresno and rural (Westside site in the San Joaquin Valley (SJV of California. We quantified OH in PM extracts using a cell-free, phosphate-buffered saline (PBS solution with or without 50 μM ascorbate (Asc. The results show that generally the urban Fresno PM generates much more OH than the rural Westside PM. The presence of Asc at a physiologically relevant concentration in the extraction solution greatly enhances OH formation from all the samples. Fine PM (PM2.5 generally makes more OH than the corresponding coarse PM (PMcf, i.e. with diameters of 2.5 to 10 μm normalized by air volume collected, while the coarse PM typically generates more OH normalized by PM mass. OH production by SJV PM is reduced on average by (97 ± 6 % when the transition metal chelator desferoxamine (DSF is added to the extraction solution, indicating a dominant role of transition metals. By measuring calibration curves of OH generation from copper and iron, and quantifying copper and iron concentrations in our particle extracts, we find that PBS-soluble copper is primarily responsible for OH production by the SJV PM, while iron often makes a significant contribution. Extrapolating our results to expected burdens of PM-derived OH in human lung lining fluid suggests that typical daily PM exposures in the San Joaquin Valley are unlikely to result in a high amount of pulmonary OH, although high

  6. Restricted access magnetic materials prepared by dual surface modification for selective extraction of therapeutic drugs from biological fluids

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yu; Wang Yuxia; Chen Lei [School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072 (China); Wan Qianhong, E-mail: qhwan@tju.edu.cn [School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072 (China)

    2012-02-15

    Magnetic porous particles with dual functionality have been prepared by a two-step procedure and evaluated as novel restricted access materials for extraction of therapeutic agents from biological fluids. The magnetic silica particles served as scaffolds were first modified with diol groups, which were then converted to octadecyl esters through reaction with stearoyl chloride. In the second step, the octadecyl esters on the exterior surface were hydrolyzed by the action of lipase to yield magnetic particles with hydrophobic reversed-phase ligands on the inner surface and biocompatible diol groups on the outer surface. The restricted access behavior of the resulting materials was confirmed by differential binding of small molecules such as methotrexate (MTX), leucovorin (LV) and folic acid (FA) relative to bovine serum albumin. While MTX, LV and FA were all bound to the magnetic particles with high affinity, the adsorption of the protein was markedly reduced due to size exclusion effect. The utility of the magnetic particles for sample preparation was tested in solid-phase extraction of MTX, LV and FA from spiked human serum and the effects of the SPE conditions on the recovery of the analytes were systematically studied. Moreover, the magnetic particle-based sample preparation procedure coupled with reversed-phase liquid chromatography analysis was validated in terms of specificity, linearity and reproducibility. The method was shown to be free from interference of endogenous compounds and linear over the concentration range of 0.5-10 {mu}g/mL for the three drugs studied. The limits of detection for the three drugs in serum were in the range of 0.160-0.302 {mu}g/mL. Reproducibility expressed as the RSD of the recovery for ten replicated extractions at three different concentrations was found to be less than 8.93%. With a unique combination of surface functionality with magnetic cores, the restricted access magnetic particles may be adapted in automated and high

  7. Restricted access magnetic materials prepared by dual surface modification for selective extraction of therapeutic drugs from biological fluids

    International Nuclear Information System (INIS)

    Wang Yu; Wang Yuxia; Chen Lei; Wan Qianhong

    2012-01-01

    Magnetic porous particles with dual functionality have been prepared by a two-step procedure and evaluated as novel restricted access materials for extraction of therapeutic agents from biological fluids. The magnetic silica particles served as scaffolds were first modified with diol groups, which were then converted to octadecyl esters through reaction with stearoyl chloride. In the second step, the octadecyl esters on the exterior surface were hydrolyzed by the action of lipase to yield magnetic particles with hydrophobic reversed-phase ligands on the inner surface and biocompatible diol groups on the outer surface. The restricted access behavior of the resulting materials was confirmed by differential binding of small molecules such as methotrexate (MTX), leucovorin (LV) and folic acid (FA) relative to bovine serum albumin. While MTX, LV and FA were all bound to the magnetic particles with high affinity, the adsorption of the protein was markedly reduced due to size exclusion effect. The utility of the magnetic particles for sample preparation was tested in solid-phase extraction of MTX, LV and FA from spiked human serum and the effects of the SPE conditions on the recovery of the analytes were systematically studied. Moreover, the magnetic particle-based sample preparation procedure coupled with reversed-phase liquid chromatography analysis was validated in terms of specificity, linearity and reproducibility. The method was shown to be free from interference of endogenous compounds and linear over the concentration range of 0.5-10 μg/mL for the three drugs studied. The limits of detection for the three drugs in serum were in the range of 0.160-0.302 μg/mL. Reproducibility expressed as the RSD of the recovery for ten replicated extractions at three different concentrations was found to be less than 8.93%. With a unique combination of surface functionality with magnetic cores, the restricted access magnetic particles may be adapted in automated and high

  8. Reaction kinetics of cellulose hydrolysis in subcritical and supercritical water

    Science.gov (United States)

    Olanrewaju, Kazeem Bode

    The uncertainties in the continuous supply of fossil fuels from the crisis-ridden oil-rich region of the world is fast shifting focus on the need to utilize cellulosic biomass and develop more efficient technologies for its conversion to fuels and chemicals. One such technology is the rapid degradation of cellulose in supercritical water without the need for an enzyme or inorganic catalyst such as acid. This project focused on the study of reaction kinetics of cellulose hydrolysis in subcritical and supercritical water. Cellulose reactions at hydrothermal conditions can proceed via the homogeneous route involving dissolution and hydrolysis or the heterogeneous path of surface hydrolysis. The work is divided into three main parts. First, the detailed kinetic analysis of cellulose reactions in micro- and tubular reactors was conducted. Reaction kinetics models were applied, and kinetics parameters at both subcritical and supercritical conditions were evaluated. The second major task was the evaluation of yields of water soluble hydrolysates obtained from the hydrolysis of cellulose and starch in hydrothermal reactors. Lastly, changes in molecular weight distribution due to hydrothermolytic degradation of cellulose were investigated. These changes were also simulated based on different modes of scission, and the pattern generated from simulation was compared with the distribution pattern from experiments. For a better understanding of the reaction kinetics of cellulose in subcritical and supercritical water, a series of reactions was conducted in the microreactor. Hydrolysis of cellulose was performed at subcritical temperatures ranging from 270 to 340 °C (tau = 0.40--0.88 s). For the dissolution of cellulose, the reaction was conducted at supercritical temperatures ranging from 375 to 395 °C (tau = 0.27--0.44 s). The operating pressure for the reactions at both subcritical and supercritical conditions was 5000 psig. The results show that the rate-limiting step in

  9. Magnetite nanoparticles coated with covalently immobilized ionic liquids as a sorbent for extraction of non-steroidal anti-inflammatory drugs from biological fluids

    International Nuclear Information System (INIS)

    Amiri, Maryam; Yadollah, Yamini; Safari, Meysam; Asiabi, Hamid

    2016-01-01

    Magnetic core-shell nanoparticles (mag-NPs) of type SiO_2-Fe_3O_4 were covalently modified with the ionic liquid dimethyl octadecyl[3-(trimethoxysilyl propyl)]ammonium chloride. The NPs were characterized via FTIR and scanning electron microscopy and evaluated with respect to the extraction of the nonsteroidal anti-inflammatory drugs (NSAIDs) tolmetin, indometacin and naproxen from blood samples. Supercritical fluid extraction was used to eliminate matrix effects before extraction with the mag-NPs. The effects of pH value of sample solution, amount of adsorbent, times of adsorption and desorption, salt effect, type and volume of suitable solvent for desorption were optimized. Under optimum conditions, magnetic solid phase extraction (MSPE) resulted in limits of detection that range between 0.1 and 0.3 μg L"−"1. In case of supercritical fluid extraction along with magnetic solid phase extraction (SFE- MSPE), the LODs ranged from 0.2 to 0.3 mg kg"−"1. The analytical ranges for all of the NSAIDs varied within 0.2–15 mg kg"-"1 and 0.1–250 μg L"−"1 in the SFE-MSPE and MSPE methods, respectively. The relative standard deviations for the extraction of the NSAIDs from blood samples via SFE-MSPE are <10.2%. (author)

  10. Analysis of the MUSE-3 subcritical experiment

    Energy Technology Data Exchange (ETDEWEB)

    Aliberti, G; Rimpault, G; Jacqmin, R; Lebrat, J F; Chauvin, J P; Granget, G [CEA Cadarache, Dept. d' Etudes des Reacteurs 13 - Saint Paul lez Durance (France); Salvatores, M [CEA Saclay, Dir. de l' Energie Nucleaire, 91 - Gif sur Yvette (France)

    2001-07-01

    The purpose of the MUSE (MUltiplication avec Source Externe) experimental programme is to investigate the neutronic properties of fast sub-critical cores coupled with known external sources of neutrons. Measurements of the MUSE-3 experiments (third phase of the MUSE program) included reactivity, U-235 fission rates across various traverses, absolute fission rates and dynamic measurements. Special care was taken in assessing the various sources of errors and uncertainties affecting the results when modelling and analysing MUSE-3 experiments with the ERANOS neutronic code system. Measured and calculated values agree well with each other (discrepancies within the uncertainty bars) except absolute fission rates which are affected by the large uncertainties associated with the inherent source (30 %) and with the strength of the fusion source (25%). However, such uncertainties do not contribute to the uncertainty in the importance of the source, {phi}{sup *}, which is linked to the ratio of the measured reaction rate with and without the fusion source (the generator being switched off and on). The analysis yielded therefore valuable results, in particular on the relative importance of the source from one configuration to another. The uncertainty in the calculated {phi}{sup *}, is of 1-2% (JEF2 and ERALIB1) for configurations without diffuser and 6% for the configuration with a Pb diffuser. There is therefore no bias in this important ADS characteristic as calculations lie within the measured error bars. From this analysis, it can be concluded that MUSE-3-type experiments are suitable for the assessment of tools used for designing ADS. (author)

  11. The spatial kinetic analysis of accelerator-driven subcritical reactor

    International Nuclear Information System (INIS)

    Takahashi, H.; An, Y.; Chen, X.

    1998-02-01

    The operation of the accelerator driven reactor with subcritical condition provides a more flexible choice of the reactor materials and of design parameters. A deep subcriticality is chosen sometime from the analysis of point kinetics. When a large reactor is operated in deep subcritical condition by using a localized spallation source, the power distribution has strong spatial dependence, and point kinetics does not provide proper analysis for reactor safety. In order to analyze the spatial and energy dependent kinetic behavior in the subcritical reactor, the authors developed a computation code which is composed of two parts, the first one is for creating the group cross section and the second part solves the multi-group kinetic diffusion equations. The reactor parameters such as the cross section of fission, scattering, and energy transfer among the several energy groups and regions are calculated by using a code modified from the Monte Carlo codes MCNPA and LAHET instead of the usual analytical method of ANISN, TWOTRAN codes. Thus the complicated geometry of the accelerator driven reactor core can be precisely taken into account. The authors analyzed the subcritical minor actinide transmutor studied by Japan Atomic Energy Research Institute (JAERI) using the code

  12. A novel concept for CRIEC-driven subcritical research reactors

    International Nuclear Information System (INIS)

    Nieto, M.; Miley, G.H.

    2001-01-01

    A novel scheme is proposed to drive a low-power subcritical fuel assembly by means of a long Cylindrical Radially-convergent Inertial Electrostatic Confinement (CRIEC) used as a neutron source. The concept is inherently safe in the sense that the fuel assembly remains subcritical at all times. Previous work has been done for the possible implementation of CRIEC as a subcritical assembly driver for power reactors. However, it has been found that the present technology and stage of development of IEC-based neutron sources can not meet the neutron flux requirements to drive a system as big as a power reactor. Nevertheless, smaller systems, such as research and training reactors, could be successfully driven with levels of neutron flux that seem more reasonable to be achieved in the near future by IEC devices. The need for custom-made expensive nuclear fission fuel, as in the case of the TRIGA reactors, is eliminated, and the CRIEC presents substantial advantages with respect to the accelerator-driven subcritical reactors in terms of simplicity and cost. In the present paper, a conceptual design for a research/training CRIEC-driven subcritical assembly is presented, emphasizing the description, principle of operation and performance of the CRIEC neutron source, highlighting its advantages and discussing some key issues that require study for the implementation of this concept. (author)

  13. Measurements relevant to simulating subcriticality in ADS facilities with blanket

    International Nuclear Information System (INIS)

    Titarenko, Yu. E.; Batyaev, V.F.; Borovlev, S.P.; Gladkikh, N.G.; Igumnov, M.M.; Legostaev, V.O.; Karpikhin, E.I.; Konev, V.N.; Kushnerev, Yu.T.; Popkov, V.N.; Ryazhsky, V.I.; Spiridonov, V.G.; Chernyavsky, E.V.; Shvedov, O.V.

    2009-10-01

    The work presents the results of determining the blanket subcriticality for a zero-power heavy water reactor MAKET at the Institute for Theoretical and Experimental Physics, Moscow. The blanket is hexagonal lattice made of 36 90%-enriched 235U fuel rods spaced 173mm apart. The subcriticality was varied from ∼0.3% to 5% by adjusting the heavy water level. The subcriticality values were calibrated using the dependence of reactivity on heavy water level. The pulsed neutron source technique was used to measure the temporal dependence of neutron field at different blanket points for the calibrated subcriticality values. The subciticality values obtained in terms of the 'inverse clock' formulae using the decay constants of the measured dependences proved to differ from the calibrated subcriticalities by not more than 7% at the average. The MCNP code-aided simulations of the experiment made has given the calibrated keff values at prescribed heavy water levels and led to the neutron field decay constants at given points, which differ on the average from their experimental values by not more than 7% too. (author)

  14. Subcriticality determination of nuclear fuel assembly by Mihalczo method

    International Nuclear Information System (INIS)

    Yamane, Yoshihiro; Watanabe, Shoji; Nishina, Kojiro; Miyoshi, Yoshinori; Suzaki, Takenori; Kobayashi, Iwao.

    1986-01-01

    To establish a technique of on-site subcriticality determination suitable for the criticality safety management of nuclear fuel assembly, the applicability of the method proposed by Mihalczo was examined with the Tank-type Critical Assembly (TCA) of the Japan Atomic Energy Research Institute. In the Mihalczo method, cross power spectral densities and auto power spectral densities are evaluated from the output currents of an ionization chamber containing 252 Cf neutron source and two neutron detectors. The principle of this method is that the spectral ratio formed by the power spectral densities mentioned can be related to the subcriticality by the help of a stochastic theory. Throughout our data processing, an improved formula taking account of the neutron extinction at a detection process was used. Up to the subcriticality of 15 dollars, the Mihalczo method agreed with the water-level worth method, which has been a standard method of reactivity determination at the TCA facility. The systems treated in the present report hold symmetry concerning the nuclear fuel configuration and the 252 Cf chamber position. It was clarified that, contrary to Mihalczo's assertion, the factor converting the spectral ratio to a subcriticality depends on subcriticality itself. (author)

  15. Isolation by pressurised fluid extraction (PFE) and identification using CPC and HPLC/ESI/MS of phenolic compounds from Brazilian cherry seeds (Eugenia uniflora L.).

    Science.gov (United States)

    Oliveira, Alessandra L; Destandau, Emilie; Fougère, Laëtitia; Lafosse, Michel

    2014-02-15

    Brazilian cherry seeds are a waste product from juice and frozen pulp production and, the seeds composition was investigated to valorize this by-product. Compounds separation was performed with ethanol by pressurised fluid extraction (PFE). Here we determine the effect of temperature (T), static time (ST), number of cycles (C), and flush volume (VF) on the yield, composition and total phenolic content (TPC) of the seed extracts. T, ST and their interaction positively influenced yield and TPC. Extracts were fractionated by high performance liquid chromatography (HPLC) and centrifugal partition chromatography (CPC). The collected fractions characterizations were made by electrospray ionisation mass spectrometry (ESI/MS) and high resolution mass spectrometry (HRMS) indicated the presence of ellagic acid pentoside and deoxyhexose, quercitrin and kaempferol pentoside. All of these compounds have antioxidant properties and normally are found in plant extracts. These results confirm that Brazilian cherry seed extract is a potentially valuable source of antioxidants. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Essential oils (EOs), pressurized liquid extracts (PLE) and carbon dioxide supercritical fluid extracts (SFE-CO2) from Algerian Thymus munbyanus as valuable sources of antioxidants to be used on an industrial level.

    Science.gov (United States)

    Bendif, Hamdi; Adouni, Khaoula; Miara, Mohamed Djamel; Baranauskienė, Renata; Kraujalis, Paulius; Venskutonis, Petras Rimantas; Nabavi, Seyed Mohammad; Maggi, Filippo

    2018-09-15

    The aim of this study was to demonstrate the potential of extracts from Algerian Thymus munbyanus as a valuable source of antioxidants for use on an industrial level. To this end, a study was conducted on the composition and antioxidant activities of essential oils (EOs), pressurized liquid extracts (PLE) and supercritical fluid extracts (SFE-CO 2 ) obtained from Thymus munbyanus subsp. coloratus (TMC) and subsp. munbyanus (TMM). EOs and SFE-CO 2 extracts were analysed by GC-FID and GC×GC-TOFMS revealing significant differences. A successive extraction of the solid SFE-CO 2 residue by PLE extraction with solvents of increasing polarity such as acetone, ethanol and water, was carried out. The extracts were evaluated for total phenolic content by Folin-Ciocalteu assay, while the antioxidant power was assessed by DPPH, FRAP, and ORAC assays. SFE-CO 2 extracts were also analysed for their tocopherol content. The antioxidant activity of PLE extracts was found to be higher than that of SFE-CO 2 extracts, and this increased with solvent polarity (water > ethanol > acetone). Overall, these results support the use of T. munbyanus as a valuable source of substances to be used on an industrial level as preservative agents. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Restricted access magnetic materials prepared by dual surface modification for selective extraction of therapeutic drugs from biological fluids

    Science.gov (United States)

    Wang, Yu; Wang, Yuxia; Chen, Lei; Wan, Qian-Hong

    2012-02-01

    Magnetic porous particles with dual functionality have been prepared by a two-step procedure and evaluated as novel restricted access materials for extraction of therapeutic agents from biological fluids. The magnetic silica particles served as scaffolds were first modified with diol groups, which were then converted to octadecyl esters through reaction with stearoyl chloride. In the second step, the octadecyl esters on the exterior surface were hydrolyzed by the action of lipase to yield magnetic particles with hydrophobic reversed-phase ligands on the inner surface and biocompatible diol groups on the outer surface. The restricted access behavior of the resulting materials was confirmed by differential binding of small molecules such as methotrexate (MTX), leucovorin (LV) and folic acid (FA) relative to bovine serum albumin. While MTX, LV and FA were all bound to the magnetic particles with high affinity, the adsorption of the protein was markedly reduced due to size exclusion effect. The utility of the magnetic particles for sample preparation was tested in solid-phase extraction of MTX, LV and FA from spiked human serum and the effects of the SPE conditions on the recovery of the analytes were systematically studied. Moreover, the magnetic particle-based sample preparation procedure coupled with reversed-phase liquid chromatography analysis was validated in terms of specificity, linearity and reproducibility. The method was shown to be free from interference of endogenous compounds and linear over the concentration range of 0.5-10 μg/mL for the three drugs studied. The limits of detection for the three drugs in serum were in the range of 0.160-0.302 μg/mL. Reproducibility expressed as the RSD of the recovery for ten replicated extractions at three different concentrations was found to be less than 8.93%. With a unique combination of surface functionality with magnetic cores, the restricted access magnetic particles may be adapted in automated and high

  18. Critical fluid technology for the processing of lipid-related natural products

    Energy Technology Data Exchange (ETDEWEB)

    King, J.W. [Los Alamos National Lab., Supercritical Fluid Facility, Chemistry Div. NM (United States)

    2004-07-01

    In recent years, the technology envelope that embraces critical fluids can involve a wide range of conditions, different types of pure and modified fluids, as well as processing options involving extractions, fractionations or reactions. Technological development drivers continue to be environmentally and consumer-benign processing and/or products, however in recent years expansion of the use of sub- and supercritical fluids has been catalyzed by applications in such opportune fields as nutraceuticals, conversion of biomass (bio-refining), and the ability to modify natural products by reactions. The use of critical fluid technology is an important facet of any sustainable development program, particularly when utilized over a broad, interconnected application platform. In this overview presentation, concepts and applications of critical fluids from the author's research as well as the literature will be cited to support the above trends. A totally 'green' processing platform appears to be viable using carbon dioxide in the appropriate form, ethanol and water as intermediate co-solvents/reactants, and water from above its boiling point to supercritical conditions. These fluids can be combined in overall coupled unit processes, such as combining trans-esterification with hydrogenation, or glycero-lysis of lipid moieties with supercritical fluid fractionation. Such fluids also can exploited sequentially for bio-refining processes or the segregation of value-added products, but may require using coupled fluid or unit operations to obtain the targeted product composition or purity. Changing the reduced temperatures and/or pressures of critical fluids offers a plethora of opportunity, an excellent example being the relative critical fluid state of water. For example, sub-critical water slightly above its boiling point provides a unique medium that mimics polar organic solvents, and has been used even for the extraction of thermally labile solutes or

  19. Thermodynamic performance analysis of a coupled transcritical and subcritical organic Rankine cycle system for waste heat recovery

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Xi Wu [Zhejiang Ocean University, Zhejian (China); Wang, Xiao Qiong; Li, You Rong; Wu, Chun Mei [Chongqing University, Chongqing (China)

    2015-07-15

    We present a novel coupled organic Rankine cycle (CORC) system driven by the low-grade waste heat, which couples a transcritical organic Rankine cycle with a subcritical organic Rankine cycle. Based on classical thermodynamic theory, a detailed performance analysis on the novel CORC system was performed. The results show that the pressure ratio of the expander is decreased in the CORC and the selection of the working fluids becomes more flexible and abundant. With the increase of the pinch point temperature difference of the internal heat exchanger, the net power output and thermal efficiency of the CORC all decrease. With the increase of the critical temperature of the working fluid, the system performance of the CORC is improved. The net power output and thermal efficiency of the CORC with isentropic working fluids are higher than those with dry working fluids.

  20. Reactor Dynamics Experiments with a Sub-Critical Assembly

    International Nuclear Information System (INIS)

    Miley, G.H.; Yang, Y.; Wu, L.; Momota, H.

    2004-01-01

    A resurgence in use of nuclear power is now underway worldwide. However due to the shutdown of many university research reactors , student laboratories must rely more heavily on use of sub-critical assemblies. Here a driven sub-critical is described that uses a cylindrical Inertial Electrostatic Confinement (IEC) device to provide a fusion neutron source. The small IEC neutron source would be inserted in a fuel element position, with its power input controlled externally at a control panel. This feature opens the way to use of the critical assembly for a number of transient experiments such as sub-critical pulsing and neutron wave propagation. That in turn adds important new insights and excitement for the student teaching laboratory

  1. Evaluating Subcriticality during the Ebola Epidemic in West Africa.

    Directory of Open Access Journals (Sweden)

    Wayne T A Enanoria

    Full Text Available The 2014-2015 Ebola outbreak is the largest and most widespread to date. In order to estimate ongoing transmission in the affected countries, we estimated the weekly average number of secondary cases caused by one individual infected with Ebola throughout the infectious period for each affected West African country using a stochastic hidden Markov model fitted to case data from the World Health Organization. If the average number of infections caused by one Ebola infection is less than 1.0, the epidemic is subcritical and cannot sustain itself. The epidemics in Liberia and Sierra Leone have approached subcriticality at some point during the epidemic; the epidemic in Guinea is ongoing with no evidence that it is subcritical. Response efforts to control the epidemic should continue in order to eliminate Ebola cases in West Africa.

  2. Development of High Flux Isotope Reactor (HFIR) subcriticality monitoring methods

    International Nuclear Information System (INIS)

    Rothrock, R.B.

    1991-01-01

    Use of subcritical source multiplication measurements during refueling has been investigated as a possible replacement for out-of-reactor subcriticality measurements formerly made on fresh HFIR fuel elements at the ORNL Critical Experiment Facility. These measurements have been used in the past for preparation of estimated critical rod positions, and as a partial verification, prior to reactor startup, that the requirements for operational shutdown margin would be met. Results of subcritical count rate data collection during recent HFIR refuelings and supporting calculations are described illustrating the intended measurement method and its expected uncertainty. These results are compared to historical uses of the out-of-reactor core measurements and their accuracy requirements, and a planned in-reactor test is described which will establish the sensitivity of the method and calibrate it for future routine use during HFIR refueling. 2 refs., 1 fig., 2 tabs

  3. Study on the possibility of supercritical fluid extraction for reprocessing of spent nuclear fuel from high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Duan Wuhua; Zhu Liyang; Zhu Yongjun; Xu Jingming

    2011-01-01

    International interest in high temperature gas-cooled reactor (HTGR) has been increasing in recent years. It is important to study on reprocessing of spent nuclear fuel from HTGR for recovery of nuclear resource and reduction of nuclear waste. Treatment of UO 2 pellets for preparing fuel elements of the 10 MW high temperature gas-cooled reactor (HTR-10) using supercritical fluid extraction was investigated. UO 2 pellets are difficult to be directly dissolved and extracted with TBP-HNO 3 complex in supercritical CO 2 (SC-CO 2 ), and the extraction efficiency is only about 7% under experimental conditions. UO 2 pellets are also difficult to be converted completely into nitrate with N 2 O 4 . When UO 2 pellets break spontaneously into U 3 O 8 powders with particle size below 100 μm under O 2 flow and 600degc, the extraction efficiency of U 3 O 8 powders with TBP-HNO 3 complex in SC-CO 2 can reach more than 98%. U 3 O 8 powders are easy to be completely converted into nitrate with N 2 O 4 . The extraction efficiency of the nitrate product with TBP in SC-CO 2 can reach more than 99%. So it has a potential prospect that application of supercritical fluid extraction in reprocessing of spent nuclear fuel from HTGR. (author)

  4. Estimation of subcriticality with the computed values. 2

    Energy Technology Data Exchange (ETDEWEB)

    Sakurai, Kiyoshi; Arakawa, Takuya; Naito, Yoshitaka [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1996-02-01

    For measurements of reactivities and neutron count rate space distributions, seven subcritical cores including non-square array cores were constructed using critical assembly TCA. MCNP-4A was used for the experimental analysis. The calculational results of the neutron count rate space distributions agreed with the measured ones within the each error range. It means that for calculation error indirect estimation method, the calculated neutron multiplication factors are equal to ones of experimental reactivities. It is shown that from these experiments and calculations estimation method of subcriticality with the computed values based on the calculation error indirect estimation method is also applicable to six non-square array cores. (author).

  5. ITEP Subcritical Neutron Generator driven by charged particle accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Shvedov, O.V.; Chuvilo, I.V.; Vasiliev, V.V. [Institute of Theoretical and Experimental Physics, Moscow (Russian Federation)] [and others

    1995-10-01

    A research facility prototype including a combination of a linear accelerator, a neutron generating target, a nuclear safety ensuring and means of its attainment for Subcritical Neutron Generator are considered. The scheme of the multiplying is shown. The assembly will be mounted in the body of the partly dismantled ITEP HWR. Requirements for subcritical assembly are worked out and their feasibility within the framework of the heavy-water blanket is shown. The facility`s application as a full-scale model of more powerful installations of this kind and for fundamental experimental research has been investigated.

  6. Preparative isolation and purification of hainanmurpanin, meranzin, and phebalosin from leaves of Murraya exotica L. using supercritical fluid extraction combined with consecutive high-speed countercurrent chromatography.

    Science.gov (United States)

    Yan, Rongwei; Shen, Jie; Liu, Xiaojing; Zou, Yong; Xu, Xinjun

    2018-05-01

    The objective of this study was to develop a consecutive preparation method for the isolation and purification of hainanmurpanin, meranzin, and phebalosin from leaves of Murraya exotica L. The process involved supercritical fluid extraction with CO 2 , solvent extraction, and two-step high-speed countercurrent chromatography. Pressure, temperature, and the volume of entrainer were optimized as 27 MPa, 52°C, and 60 mL by response surface methodology in supercritical fluid extraction with CO 2 , and the yield of the crude extracts was 7.91 g from 100 g of leaves. Subsequently, 80% methanol/water was used to extract and condense the three compounds from the crude extracts, and 4.23 g of methanol/water extracts was obtained. Then, a two-step high-speed countercurrent chromatography procedure was developed for the isolation of the three target compounds from methanol/water extracts, including conventional high-speed countercurrent chromatography for further enrichment and consecutive high-speed countercurrent chromatography for purification. The yield of concentrates from high-speed countercurrent chromatography was 2.50 g from 4.23 g of methanol/water extracts. Finally, the consecutive high-speed countercurrent chromatography produced 103.2 mg of hainanmurpanin, 244.7 mg of meranzin, and 255.4 mg of phebalosin with purities up to 97.66, 99.36, and 98.64%, respectively, from 900 mg of high-speed countercurrent chromatography concentrates in one run of three consecutive sample loadings without exchanging a solvent system. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Subcritical crack growth along polymer interfaces

    Science.gov (United States)

    Gurumurthy, Charavana Kumara

    2000-10-01

    The adhesion characteristics have been investigated for a polyimide (PI)/model epoxy (ME) interface that is important for microelectronic applications. The fracture toughness (G*c) of this interface has been measured using an asymmetric double cantilever beam (ADCB) technique. The G*c is low, 10-25 J/m 2, and is sensitive to the mechanical phase angle psi. A modified ADCB setup has been used to measure the subcritical crack growth velocity v due to the stress-assisted water attack (SAWA) at various relative humidities (RH) and temperatures (T) as a function of its driving force (the strain energy release rate) G*. The threshold G* decreases remarkably. Above the threshold log v rises linearly with √ G* (a hydrolysis controlled regime) but then enters a regime where the crack velocity is almost independent of √G*, i.e., v = v* (a transport controlled regime). A model for SAWA has been developed based on thermally-activated kinetics for hydrolysis of the ester covalent bonds that bridge from one side to the other of the interface. A new technique has been developed for the determination of the fatigue crack growth under thermal (T) and hydro-thermal (HT) conditions as a function of the range in the strain energy release rate (DeltaG). Under T-fatigue, the fatigue crack growth per unit temperature cycle (da/dN) increases as a power of DeltaG, i.e., a Paris law relationship holds. The HT da/dN measured is higher than da/dN under T-fatigue conditions and has been successfully modeled as a summation of two components: (a) the da/dN due to T-fatigue and (b) the da/dN due to the SAWA along the interface for a given T-cycle. A surface modification procedure that converts a thin interpenetrated by a solvent cast ME is used to strengthen ME/PI interface. The G* c increases with the interpenetration distance w. Increasing w also improves the resistance of the PI/ME interface to SAWA with the threshold G* increasing and the water transport controlled velocity (v

  8. Designing a mini subcritical nuclear reactor

    International Nuclear Information System (INIS)

    Escobedo G, C. R.; Vega C, H. R.; Davila H, V. M.

    2015-10-01

    In this work the design of a mini subcritical nuclear reactor formed by means of light water moderator, uranium as fuel, and isotopic neutron source of 239 PuBe was carried out. The design was done by Monte Carlo methods with the code MCNP5 in which uranium was modeled in an array of concentric holes cylinders of 8.5, 14.5, 20.5, 26.5, 32.5 cm of internal radius and 3 cm of thickness, 36 cm of height. Different models were made from a single fuel cylinder (natural uranium) to five. The neutron source of 239 PuBe was situated in the center of the mini reactor; in each arrangement was used water as moderator. Cross sections libraries Endf/Vi were used and the number of stories was large enough to ensure less uncertainty than 3%. For each case the effective multiplication factor k e -f f , the amplification factor and the power was calculated. Outside the mini reactor the ambient dose equivalent H (10) was calculated for different cases. The value of k eff , the amplification factor and power are directly related to the number of cylinders of uranium as fuel. Although the average energy of the neutrons 239 PuBe is between 4.5 and 5 MeV in the case of the mini reactor for a cylinder, in the neutron spectrum the presence of thermal neutrons does not exist, so that produced fissions are generated with fast neutrons, and in designs of two and three rings the neutron spectra shows the presence of thermal neutrons, however the fissions are being generated with fast neutrons. Finally in the four and five cases the amount of moderator is enough to thermalized the neutrons and thereby produce the fission. The maximum value for k eff was 0.82; this value is very close to the assembly of Universidad Autonoma de Zacatecas generating a k eff of 0.86. According to the safety and radiation protection standards for the design of mini reactor of one, two and three cylinders they comply with the established safety, while designs of four and five cylinders not met. (Author)

  9. Development of Nordic Standard for analysis of oil and fat in water based on supercritical fluid extraction. Preliminary study, part 2

    International Nuclear Information System (INIS)

    Jenssen, L.

    1994-06-01

    This report describes a preliminary study of a method of determining oil in water. The method is based on solid phase extraction and supercritical fluid extraction (SPE-SFE). The oil is extracted from the water by absorption to extraction disks from which it is then desorbed by supercritical carbon dioxide and detected by means of infrared spectrophotometry or gas chromatography. The results of the study will indicate if the method is suitable as a future substitute for the present Norwegian Standard, NS 9803 (Swedish Standard, SS 02 8145). The method has been validated using water samples with addition of real oil to 1-100 ppm. The accuracy is almost 70%, and the method has good repeatability and is linear in the 1-100 ppm range. 5 refs., 6 figs., 10 tabs

  10. SUB-LEU-METAL-THERM-001 SUBCRITICAL MEASUREMENTS OF LOW ENRICHED TUBULAR URANIUM METAL FUEL ELEMENTS BEFORE and AFTER IRRADIATION

    International Nuclear Information System (INIS)

    SCHWINKENDORF, K.N.

    2006-01-01

    With the shutdown of the Hanford PUREX (Plutonium-Uranium Extraction Plant) reprocessing plant in the 1970s, adequate storage capacity for spent Hanford N Reactor fuel elements in the K and N Reactor pools became a concern. To maximize space utilization in the pools, accounting for fuel burnup was considered. Calculations indicated that at typical fuel exposures for N Reactor, the spent-fuel critical mass would be twice the critical mass for green fuel. A decision was reached to test the calculational result with a definitive experiment. If the results proved positive, storage capacity could be increased and N Reactor operation could be prolonged. An experiment to be conducted in the N Reactor spent-fuel storage pool was designed and assembled and the services of the Battelle Northwest Laboratories (BNWL) (now Pacific Northwest National Laboratory [PNNL]) critical mass laboratory were procured for the measurements. The experiments were performed in April 1975 in the Hanford N Reactor fuel storage pool. The fuel elements were MKIA fuel assemblies, comprising two concentric tubes of low-enriched metallic uranium. Two separate sets of measurements were performed: one with ''green'' (fresh) fuel and one with spent fuel. Both the green and spent fuel, were measured in the same geometry. The spent-fuel MKIA assemblies had an average burnup of 2865 MWd (megawatt days)/t. A constraint was imposed restricting the measurements to a subcritical limit of k eff = 0.97. Subcritical count rate data was obtained with pulsed-neutron and approach-to-critical measurements. Ten (10) configurations with green fuel and nine (9) configurations with spent fuel are described and evaluated. Of these, 3 green fuel and 4 spent fuel loading configurations were considered to serve as benchmark models. However, shortcomings in experimental data failed to meet the high standards for a benchmark problem. Nevertheless, the data provided by these subcritical measurements can supply useful

  11. Disintegration of the agricultural by-product wheat bran under subcritical conditions.

    Science.gov (United States)

    Reisinger, Michael; Tirpanalan, Özge; Pruksasri, Suwattana; Kneifel, Wolfgang; Novalin, Senad

    2018-02-10

    The disintegration of destarched wheat bran in water and sulfuric acid (pH 3) under subcritical conditions (275-300 °C) and at short reaction times (1-4 min) was investigated. A cascade process comprising a stepwise separation of the liquid was applied to reduce the formation of undesired degradation products. The highest degree of biomass disintegration (67% dry mass solubilization) was achieved by application of a cascade process at 275 °C (pH 3). Regarding the dissolution of carbohydrates (monomeric and oligomeric form), the total glucose yields remained below 60%, while the total xylose and arabinose yields were about 76% and 67%. Approximately 74% of the protein and 95% of the mineral fraction could be extracted. The application of the cascade process enabled a substantially reduced formation of degradation products. When operating hydrothermally and subcritically in order to avoid some problematic aspects of a biorefinery, an extensive disintegration and monomerization of wheat bran and its constituents remains difficult even under the tested conditions (300 °C, pH 3). However, the applied cascade process proved to be useful to increase the yields and to substantially reduce the formation of undesired degradation products. Despite this fact, increased water consumption has to be conceded. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  12. Local energy losses at positive and negative steps in subcritical ...

    African Journals Online (AJOL)

    Local energy losses occur when there is a transition in open channel flow. Even though local losses in subcritical open channel flow due to changes in channel width have been studied, to date no studies have been reported for losses due to changes in bed elevations. Steps are commonly used in engineering applications ...

  13. Improving subcritical crack growth resistance for alumina glass dental composite

    NARCIS (Netherlands)

    Zhu, Q.; With, de G.

    2005-01-01

    The improvement of subcritical crack growth (SCG) resistance for alumina glass dental composites was explored in this study. The addition of nitrogen to the glass phases in the composite was found to increase the SCG resistance, where the SCG exponent n increases from 22 for the oxide glass

  14. Introduction of fusion driven subcritical system plasma design

    International Nuclear Information System (INIS)

    Bin Wu

    2003-01-01

    Fusion driven subcritical nuclear system (FDS) is a multifunctional hybrid reactor, which could breed nuclear fuel, transmute long-lived wastes, producing tritium and so on. This paper presents an introduction of FDS plasma design. Several different advance equilibrium configurations have been proposed and a 1.5-D discharge simulation of FDS was also present

  15. Equilibria of ternary system Acetic Acid—Water—CO2 under subcritical conditions

    DEFF Research Database (Denmark)

    JIMENEZ GUTIERREZ, Jose M. (Chema); Mussatto, Solange I.; TSOU, Joana

    Carbon dioxide has been subject of research in the past decades, with special attention targeting different uses of this “greenhouse” gas as raw material, technological fluid, building block or as a carbon supply for fuels, turning it from a pollutant to a green resource. Albeit likely...... it will be returned to the atmosphere (as part of the carbon cycle), CO2 is an inexpensive and clean source with numerous industrial applications in diverse fields: from chemical processes to biotechnological purposes [1]. Many of these studies have been focused on supercritical CO2, due to its broad potential uses...... in a very wide range of applications. However, those conditions, especially the levels of high pressure required at larger scale, involve certain equipment limitations. An alternative to overcome those restrictions is to use subcritical carbon dioxide. In order to understand the different systems...

  16. EXTRACT

    DEFF Research Database (Denmark)

    Pafilis, Evangelos; Buttigieg, Pier Luigi; Ferrell, Barbra

    2016-01-01

    The microbial and molecular ecology research communities have made substantial progress on developing standards for annotating samples with environment metadata. However, sample manual annotation is a highly labor intensive process and requires familiarity with the terminologies used. We have the...... and text-mining-assisted curation revealed that EXTRACT speeds up annotation by 15-25% and helps curators to detect terms that would otherwise have been missed.Database URL: https://extract.hcmr.gr/......., organism, tissue and disease terms. The evaluators in the BioCreative V Interactive Annotation Task found the system to be intuitive, useful, well documented and sufficiently accurate to be helpful in spotting relevant text passages and extracting organism and environment terms. Comparison of fully manual...

  17. Comparative analysis of sub-critical transmutation reactor concepts

    International Nuclear Information System (INIS)

    Chang, S. H.

    1997-01-01

    The long-lived nuclear wastes have been substantially generated from the light water reactor for a few decades. The toxicity of these spent fuels will be higher than that of the uranium ore, even if those will be stored in the repository more than ten thousands. Hence the means of transmuting the key long-lived nuclear wastes, primarily the minor actinides, using a hybrid proton accelerator and subcritical transmutation reactor, are proposed. Until now, the representative concepts for a subcritical transmutation reactor are the Energy Amplifier, the OMEGA project, the ATW and the MSBR. The detailed concepts and the specifications are illustrated in Table 1. The design requirements for the subcritical transmutation reactor are the high transmutation rate of long-lived nuclear wastes, safety and economics. And to propose the subcritical transmutation reactor concepts, the coolant, the target material and fuel type are carefully considered. In these aspects, the representative concepts for a subcritical transmutation reactor in Table 1 have been surveyed. The requirements for a target and a coolant are the reliable, low maintenance operation and safe operation to minimize the wastes. The reliable, low maintenance operation and safe operation to minimize the wastes. The reliable coolant must have the low melting point, high heat capacity and excellent physical properties. And the target material must have high neutron yield for a given proton condition and easy heat removal capability. Therefore in respect with the above requirements, Pb-Bi is proposed as the coolant and the target material for the subcritical reactor. Because the neutron yield for a given proton energy increases linearly with mass number up to bismuth but in heavier elements spallation events sharply increase both the neutron and heat outputs, Pb-Bi meets not only such the requirements as the above for the coolant but also those for the coolant and target, the simplification of system can be achieved

  18. Application of response surface methodology for the optimization of supercritical fluid extraction of essential oil from pomegranate (Punica granatum L.) peel.

    Science.gov (United States)

    Ara, Katayoun Mahdavi; Raofie, Farhad

    2016-07-01

    Essential oils and volatile components of pomegranate ( Punica granatum L.) peel of the Malas variety from Meybod, Iran, were extracted using supercritical fluid extraction (SFE) and hydro-distillation methods. The experimental parameters of SFE that is pressure, temperature, extraction time, and modifier (methanol) volume were optimized using a central composite design after a (2 4-1 ) fractional factorial design. Detailed chemical composition of the essential oils and volatile components obtained by hydro-distillation and optimum condition of the supercritical CO 2 extraction were analyzed by GC-MS, and seventy-three and forty-six compounds were identified according to their retention indices and mass spectra, respectively. The optimum SFE conditions were 350 atm pressure, 55 °C temperature, 30 min extraction time, and 150 µL methanol. Results showed that oleic acid, palmitic acid and (-)-Borneol were major compounds in both extracts. The optimum extraction yield was 1.18 % (w/w) for SFE and 0.21 % (v/w) for hydro-distillation.

  19. Influence of surrounding environment on subcritical crack growth in marble

    Science.gov (United States)

    Nara, Yoshitaka; Kashiwaya, Koki; Nishida, Yuki; , Toshinori, Ii

    2017-06-01

    Understanding subcritical crack growth in rock is essential for determining appropriate measures to ensure the long-term integrity of rock masses surrounding structures and for construction from rock material. In this study, subcritical crack growth in marble was investigated experimentally, focusing on the influence of the surrounding environment on the relationship between the crack velocity and stress intensity factor. The crack velocity increased with increasing temperature and/or relative humidity. In all cases, the crack velocity increased with increasing stress intensity factor. However, for Carrara marble (CM) in air, we observed a region in which the crack velocity still increased with temperature, but the increase in the crack velocity with increasing stress intensity factor was not significant. This is similar to Region II of subcritical crack growth observed in glass in air. Region II in glass is controlled by mass transport to the crack tip. In the case of rock, the transport of water to the crack tip is important. In general, Region II is not observed for subcritical crack growth in rock materials, because rocks contain water. Because the porosity of CM is very low, the amount of water contained in the marble is also very small. Therefore, our results imply that we observed Region II in CM. Because the crack velocity increased in both water and air with increasing temperature and humidity, we concluded that dry conditions at low temperature are desirable for the long-term integrity of a carbonate rock mass. Additionally, mass transport to the crack tip is an important process for subcritical crack growth in rock with low porosity.

  20. Subcriticality determination in ADS: Valina-Booster experiments

    International Nuclear Information System (INIS)

    Persson, C. M.; Gudowski, W.; Fokau, A.; Bournos, V.; Fokov, Y.; Routkovskaia, C.; Serafimovich, I.; Kiyavitskaya, H.

    2007-01-01

    A major problem in operating a full-scale subcritical accelerator-driven system (ADS) is to ensure sufficient margin to criticality. Therefore, reliable techniques for subcriticality monitoring are required. In order to develop such techniques, a full understanding of existing reactivity determination methods is essential. In this work, reactivity determination methods, such as pulsed neutron source methods and noise methods, are studied experimentally in the subcritical facility YALINA-Booster. YALINA-Booster: The subcritical assembly YALINA-Booster: recently constructed at the Joint Institute for Power and Nuclear Research - Sosny, consists of a subcritical core driven by an external neutron source. The neutron source is a powerful neutron generator consisting of a deuteron accelerator and a target of deuterium or tritium embedded in titanium. Through (d, d) - or (d, t)-reactions neutrons are created with energy around 2.5 MeV and 14.1 MeV respectively. Neutrons are born in the centre of the core and multiply through a lead matrix fuelled with highly enriched uranium (90% and 36%). This zone is referred to as the booster zone and is surrounded by a thermal zone, moderated by polyethylene. In order to reach sufficient high effective multiplication factor, the thermal zone is fuelled by approximately one thousand rods of 10% enriched uranium dioxide in cylindrical geometry. To prevent thermal neutrons from diffusing into the fast booster zone, an interface, consisting of boron carbide and natural uranium rods, is located between the zones. YALINA-Booster has a radial graphite reflector of thickness 24 cm. Experiments: Experiments using the neutron source in pulsed mode will be presented, relying on methods such as the area method and the method of prompt neutron decay rate determination. Moreover, results from noise analysis using for instance the Feynman-α method will be presented

  1. Extraction and characterization of radish seed oils using different ...

    African Journals Online (AJOL)

    Purpose: To evaluate the impact of three different extraction methods on oil yield, physicochemical properties and bioactive ingredients of radish seeds. Methods: Radish seed oil was prepared by traditional solvent extraction (SE), supercritical carbon dioxide extraction (SCE) and sub-critical propane extraction (SPE).

  2. Effect of Ginkgo biloba extract combined with prednisone on bronchoalveolar lavage fluid related cytokines in patients with IPF

    Directory of Open Access Journals (Sweden)

    Zhen-Chun Shi

    2016-09-01

    Full Text Available Objective: To explore the effect of Ginkgo biloba extract (EGb combined with prednisone on bronchoalveolar lavage fluid (BALF related cytokines in patients with idiopathic pulmonary fibrosis (IPF. Methods: A total of 60 patients with IPF who were admitted in our hospital from March, 2015 to March, 2016 were included in the study and randomized into the observation group and the control group with 30 cases in each group. The patients in the two groups were given oxygen inhalation, bronchodilator agents, phlegm dissipating and asthma relieving, anti-infection, and other supporting treatments. The patients in the control group were orally given prednisone (0.5 mg/kg•d, continuously for 4 weeks, then in a dose of 0.25 mg/kg•d, continuously for 8 weeks, and finally the dosage was reduced to 0.125 mg/kg•d. On this basis, the patients in the observation group were given additional EGb, ie. ginkgo leaf capsule, 1 g/time, 3 times/d, continuously for 12 weeks. The efficacy was evaluated after 12- week treatment. ELISA was used to detect the levels of TNF-毩, IL-4, IL-10, and IFN-γ in BALF. The radioimmunoassay was used to determine the levels of serum HA, ColⅢ, PCⅢ, and LN. The pulmonary function detector was used to measure TLC, VC, DLCO, and 6MWT. Results: After treatment, TNF-毩 level in the control group was significantly reduced when compared with before treatment (P0.05, while HA, ColⅢ, PCⅢ, and LN levels in the observation group were significantly reduced when compared with before treatment (P<0.05, and the difference between the two groups was statistically significant (P<0.05. After treatment, TLC, VC, DLCO, and 6MWT in the two groups were significantly improved when compared with before treatment (P<0.05, and the difference between the two groups was statistically significant (P<0.05. Conclusions: EGb combined with prednisone can effectively enhance the levels of TNF-毩, IL-4, IL-10, and IFN-γ in BALF in patients with IPF, and

  3. Investigating sub-2 μm particle stationary phase supercritical fluid chromatography coupled to mass spectrometry for chemical profiling of chamomile extracts.

    Science.gov (United States)

    Jones, Michael D; Avula, Bharathi; Wang, Yan-Hong; Lu, Lu; Zhao, Jianping; Avonto, Cristina; Isaac, Giorgis; Meeker, Larry; Yu, Kate; Legido-Quigley, Cristina; Smith, Norman; Khan, Ikhlas A

    2014-10-17

    Roman and German chamomile are widely used throughout the world. Chamomiles contain a wide variety of active constituents including sesquiterpene lactones. Various extraction techniques were performed on these two types of chamomile. A packed-column supercritical fluid chromatography-mass spectrometry method was designed for the identification of sesquiterpenes and other constituents from chamomile extracts with no derivatization step prior to analysis. Mass spectrometry detection was achieved by using electrospray ionization. All of the compounds of interest were separated within 15 min. The chamomile extracts were analyzed and compared for similarities and distinct differences. Multivariate statistical analysis including principal component analysis and orthogonal partial least squares-discriminant analysis (OPLS-DA) were used to differentiate between the chamomile samples. German chamomile samples confirmed the presence of cis- and trans-tonghaosu, chrysosplenols, apigenin diglucoside whereas Roman chamomile samples confirmed the presence of apigenin, nobilin, 1,10-epioxynobilin, and hydroxyisonobilin. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Preparative isolation and purification of capsaicin and dihydrocapsaicin from Capsici Fructus using supercritical fluid extraction combined with high speed countercurrent chromatography.

    Science.gov (United States)

    Yan, Rongwei; Zhao, Leilei; Tao, Junfei; Zou, Yong; Xu, Xinjun

    2018-05-01

    Supercritical fluid extraction with CO 2 (SFE-CO 2 ) was utilized for extraction of capsaicin (CA) and dihydrocapsaicin (DHCA) from Capsici Fructus, and then a two-step enrichment method for separating capsaicinoids from SFE-CO 2 extracts was developed. The process involved extraction with aqueous methanol and crystallization by alkali extraction and acid precipitation. Finally, a consecutive high-speed countercurrent chromatography (HSCCC) separation method was successfully applied in the purification of CA and DHCA from capsaicinoid crystal. The extraction pressure, extraction temperature and volume of co-solvent were optimized at 33 MPa, 41 °C and 75 mL, respectively, using response surface methodology; the extraction rates of CA and DHCA were about 93.18% and 93.49%, respectively. 407.43 mg capsaicinoid crystal was isolated from the SFE-CO 2 extracts obtained from 100 g capsicum powder by the two-step enrichment method. About 506 mg and 184 mg CA and DHCA with purities up to 98.31% and 96.68%, respectively, were obtained from 1 g capsaicinoid crystal in one HSCCC of three consecutive sample loadings without exchanging any solvent system. This method comprising SFE-CO 2 , a two-step enrichment and HSCCC was efficient, powerful and practical for the large-scale preparation of CA and DHCA from Capsici Fructus with high purity and high yield. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  5. Magnetic micro-solid-phase extraction based on magnetite-MCM-41 with gas chromatography-mass spectrometry for the determination of antidepressant drugs in biological fluids.

    Science.gov (United States)

    Kamaruzaman, Sazlinda; Sanagi, Mohd Marsin; Yahaya, Noorfatimah; Wan Ibrahim, Wan Aini; Endud, Salasiah; Wan Ibrahim, Wan Nazihah

    2017-11-01

    A new facile magnetic micro-solid-phase extraction coupled to gas chromatography and mass spectrometry detection was developed for the extraction and determination of selected antidepressant drugs in biological fluids using magnetite-MCM-41 as adsorbent. The synthesized sorbent was characterized by several spectroscopic techniques. The maximum extraction efficiency for extraction of 500 μg/L antidepressant drugs from aqueous solution was obtained with 15 mg of magnetite-MCM-41 at pH 12. The analyte was desorbed using 100 μL of acetonitrile prior to gas chromatography determination. This method was rapid in which the adsorption procedure was completed in 60 s. Under the optimized conditions using 15 mL of antidepressant drugs sample, the calibration curve showed good linearity in the range of 0.05-500 μg/L (r 2  = 0.996-0.999). Good limits of detection (0.008-0.010 μg/L) were obtained for the analytes with good relative standard deviations of solid-phase extraction with gas chromatography and mass spectrometry is a convenient, fast, and economical method for the extraction and determination of amitriptyline and chlorpromazine in biological samples. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. The Optimal Evaporation Temperature of Subcritical ORC Based on Second Law Efficiency for Waste Heat Recovery

    Directory of Open Access Journals (Sweden)

    Xiaoxiao Xu

    2012-03-01

    Full Text Available The subcritical Organic Rankine Cycle (ORC with 28 working fluids for waste heat recovery is discussed in this paper. The effects of the temperature of the waste heat, the critical temperature of working fluids and the pinch temperature difference in the evaporator on the optimal evaporation temperature (OET of the ORC have been investigated. The second law efficiency of the system is regarded as the objective function and the evaporation temperature is optimized by using the quadratic approximations method. The results show that the OET will appear for the temperature ranges investigated when the critical temperatures of working fluids are lower than the waste heat temperatures by 18 ± 5 K under the pinch temperature difference of 5 K in the evaporator. Additionally, the ORC always exhibits the OET when the pinch temperature difference in the evaporator is raised under the fixed waste heat temperature. The maximum second law efficiency will decrease with the increase of pinch temperature difference in the evaporator.

  7. Innovative Alternative Technologies to Extract Carotenoids from Microalgae and Seaweeds

    Science.gov (United States)

    Poojary, Mahesha M.; Barba, Francisco J.; Aliakbarian, Bahar; Donsì, Francesco; Pataro, Gianpiero; Dias, Daniel A.; Juliano, Pablo

    2016-01-01

    Marine microalgae and seaweeds (microalgae) represent a sustainable source of various bioactive natural carotenoids, including β-carotene, lutein, astaxanthin, zeaxanthin, violaxanthin and fucoxanthin. Recently, the large-scale production of carotenoids from algal sources has gained significant interest with respect to commercial and industrial applications for health, nutrition, and cosmetic applications. Although conventional processing technologies, based on solvent extraction, offer a simple approach to isolating carotenoids, they suffer several, inherent limitations, including low efficiency (extraction yield), selectivity (purity), high solvent consumption, and long treatment times, which have led to advancements in the search for innovative extraction technologies. This comprehensive review summarizes the recent trends in the extraction of carotenoids from microalgae and seaweeds through the assistance of different innovative techniques, such as pulsed electric fields, liquid pressurization, supercritical fluids, subcritical fluids, microwaves, ultrasounds, and high-pressure homogenization. In particular, the review critically analyzes technologies, characteristics, advantages, and shortcomings of the different innovative processes, highlighting the differences in terms of yield, selectivity, and economic and environmental sustainability. PMID:27879659

  8. Innovative Alternative Technologies to Extract Carotenoids from Microalgae and Seaweeds

    Directory of Open Access Journals (Sweden)

    Mahesha M. Poojary

    2016-11-01

    Full Text Available Marine microalgae and seaweeds (microalgae represent a sustainable source of various bioactive natural carotenoids, including β-carotene, lutein, astaxanthin, zeaxanthin, violaxanthin and fucoxanthin. Recently, the large-scale production of carotenoids from algal sources has gained significant interest with respect to commercial and industrial applications for health, nutrition, and cosmetic applications. Although conventional processing technologies, based on solvent extraction, offer a simple approach to isolating carotenoids, they suffer several, inherent limitations, including low efficiency (extraction yield, selectivity (purity, high solvent consumption, and long treatment times, which have led to advancements in the search for innovative extraction technologies. This comprehensive review summarizes the recent trends in the extraction of carotenoids from microalgae and seaweeds through the assistance of different innovative techniques, such as pulsed electric fields, liquid pressurization, supercritical fluids, subcritical fluids, microwaves, ultrasounds, and high-pressure homogenization. In particular, the review critically analyzes technologies, characteristics, advantages, and shortcomings of the different innovative processes, highlighting the differences in terms of yield, selectivity, and economic and environmental sustainability.

  9. Innovative Alternative Technologies to Extract Carotenoids from Microalgae and Seaweeds.

    Science.gov (United States)

    Poojary, Mahesha M; Barba, Francisco J; Aliakbarian, Bahar; Donsì, Francesco; Pataro, Gianpiero; Dias, Daniel A; Juliano, Pablo

    2016-11-22

    Marine microalgae and seaweeds (microalgae) represent a sustainable source of various bioactive natural carotenoids, including β-carotene, lutein, astaxanthin, zeaxanthin, violaxanthin and fucoxanthin. Recently, the large-scale production of carotenoids from algal sources has gained significant interest with respect to commercial and industrial applications for health, nutrition, and cosmetic applications. Although conventional processing technologies, based on solvent extraction, offer a simple approach to isolating carotenoids, they suffer several, inherent limitations, including low efficiency (extraction yield), selectivity (purity), high solvent consumption, and long treatment times, which have led to advancements in the search for innovative extraction technologies. This comprehensive review summarizes the recent trends in the extraction of carotenoids from microalgae and seaweeds through the assistance of different innovative techniques, such as pulsed electric fields, liquid pressurization, supercritical fluids, subcritical fluids, microwaves, ultrasounds, and high-pressure homogenization. In particular, the review critically analyzes technologies, characteristics, advantages, and shortcomings of the different innovative processes, highlighting the differences in terms of yield, selectivity, and economic and environmental sustainability.

  10. Numerical simulation of CO2 leakage from a geologic disposal reservoir, including transitions from super- to sub-critical conditions, and boiling of liquid of CO2

    International Nuclear Information System (INIS)

    Pruess, Karsten

    2003-01-01

    The critical point of CO 2 is at temperature and pressure conditions of T crit = 31.04 C, P crit = 73.82 bar. At lower (subcritical) temperatures and/or pressures, CO 2 can exist in two different phase states, a liquid and a gaseous state, as well as in two-phase mixtures of these states. Disposal of CO 2 into brine formations would be made at supercritical pressures. However, CO 2 escaping from the storage reservoir may migrate upwards towards regions with lower temperatures and pressures, where CO 2 would be in subcritical conditions. An assessment of the fate of leaking CO 2 requires a capability to model not only supercritical but also subcritical CO 2 , as well as phase changes between liquid and gaseous CO 2 in sub-critical conditions. We have developed a methodology for numerically simulating the behavior of water-CO 2 mixtures in permeable media under conditions that may include liquid, gaseous, and supercritical CO 2 . This has been applied to simulations of leakage from a deep storage reservoir in which a rising CO 2 plume undergoes transitions from supercritical to subcritical conditions. We find strong cooling effects when liquid CO 2 rises to elevations where it begins to boil and evolve a gaseous CO 2 phase. A three-phase zone forms (aqueous - liquid - gas), which over time becomes several hundred meters thick as decreasing temperatures permit liquid CO 2 to advance to shallower elevations. Fluid mobilities are reduced in the three-phase region from phase interference effects. This impedes CO 2 upflow, causes the plume to spread out laterally, and gives rise to dispersed CO 2 discharge at the land surface. Our simulation suggests that temperatures along a CO 2 leakage path may decline to levels low enough so that solid water ice and CO 2 hydrate phases may be formed

  11. Solubility and degradation of paracetamol in subcritical water

    Directory of Open Access Journals (Sweden)

    Emire Zuhal

    2017-01-01

    Full Text Available In this study, solubility and degradation of paracetamol were examined using subcritical water. Effect of temperature and static time was investigated during solubility process in subcritical water at constant pressure (50 bar. Experimental results show that temperature and static time have crucial effect on the degradation and solubility rates. Maximum mole fraction for solubility of paracetamol was obtained at 403 K as (14.68 ± 0.74×103. Approximation model for solubility of paracetamol was proposed. O2 and H2O2 were used in degradation process of paracetamol. Maximum degradation rate was found as 68.66 ± 1.05 and 100 ± 0.00 % using O2 and H2O2, respectively.

  12. Subcriticality calculation in nuclear reactors with external neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Adilson Costa da; Martinez, Aquilino Senra; Silva, Fernando Carvalho da [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Programa de Engenharia Nuclear]. E-mails: asilva@con.ufrj.br; aquilino@lmp.ufrj.br; fernando@con.ufrj.br

    2007-07-01

    The main objective of this paper consists on the development of a methodology to monitor subcriticality. We used the inverse point kinetic equation with 6 precursor groups and external neutron sources for the calculation of reactivity. The input data for the inverse point kinetic equation was adjusted, in order to use the neutron counting rates obtained from the subcritical multiplication (1/M) in a nuclear reactor. In this paper, we assumed that the external neutron sources strength is constant and we define it in terms of a known initial condition. The results obtained from inverse point kinetic equation with external neutron sources were compared with the results obtained with a benchmark calculation, and showed good accuracy (author)

  13. Subcriticality calculation in nuclear reactors with external neutron sources

    International Nuclear Information System (INIS)

    Silva, Adilson Costa da; Martinez, Aquilino Senra; Silva, Fernando Carvalho da

    2007-01-01

    The main objective of this paper consists on the development of a methodology to monitor subcriticality. We used the inverse point kinetic equation with 6 precursor groups and external neutron sources for the calculation of reactivity. The input data for the inverse point kinetic equation was adjusted, in order to use the neutron counting rates obtained from the subcritical multiplication (1/M) in a nuclear reactor. In this paper, we assumed that the external neutron sources strength is constant and we define it in terms of a known initial condition. The results obtained from inverse point kinetic equation with external neutron sources were compared with the results obtained with a benchmark calculation, and showed good accuracy (author)

  14. Evaluation of subcritical hybrid systems loaded with reprocessed fuel

    International Nuclear Information System (INIS)

    Velasquez, Carlos E.; Barros, Graiciany de P.; Pereira, Claubia; Veloso, Maria Auxiliadora F.; Costa, Antonella L.

    2015-01-01

    Highlights: • Accelerator driven systems (ADS) and fusion–fission systems are investigated for transmutation and fuel regeneration. • The calculations were performed using Monteburns code. • The results indicate the most suitable system for achieve transmutation. - Abstract: Two subcritical hybrid systems containing spent fuel reprocessed by Ganex technique and spiked with thorium were submitted to neutron irradiation of two different sources: ADS (Accelerator-driven subcritical) and Fusion. The aim is to investigate the nuclear fuel evolution using reprocessed fuel and the neutronic parameters under neutron irradiation. The source multiplication factor and fuel depletion for both systems were analysed during 10 years. The simulations were performed using MONTEBURNS code (MCNP/ORIGEN). The results indicate the main differences when irradiating the fuel with different neutron sources as well as the most suitable system for achieving transmutation

  15. Subcritical to supercritical flow transition in a horizontal stratified flow

    International Nuclear Information System (INIS)

    Asaka, H.; Kukita, Y.

    1995-01-01

    The conditions for a transition from hydraulically subcritical to supercritical flow in the hot legs of a pressurized water reactor (PWR) were studied using data obtained from a two-phase natural circulation experiment conducted at the ROSA-IV Large Scale Test Facility (LSTF). The LSTF is a 1/48 volumetrically-scaled simulator of a Westinghouse-type PWR. The conditions for the transition were compared with the theory of Gardner. While the model explains the trend in the experimental data, the quantitative agreement was not satisfactory. It was found that the conditions for the transition from the subcritical to supercritical flow were predicted well by introducing energy loss term into the theory. (author)

  16. Simulation an Accelerator driven Subcritical Reactor core with thorium fuel

    International Nuclear Information System (INIS)

    Shirmohammadi, L.; Pazirandeh, A.

    2011-01-01

    The main purpose of this work is simulation An Accelerator driven Subcritical core with Thorium as a new generation nuclear fuel. In this design core , A subcritical core coupled to an accelerator with proton beam (E p =1 GeV) is simulated by MCNPX code .Although the main purpose of ADS systems are transmutation and use MA (Minor Actinides) as a nuclear fuel but another use of these systems are use thorium fuel. This simulated core has two fuel assembly type : (Th-U) and (U-Pu) . Consequence , Neutronic parameters related to ADS core are calculated. It has shown that Thorium fuel is use able in this core and less nuclear waste ,Although Iran has not Thorium reserves but study on Thorium fuel cycle can open a new horizontal in use nuclear energy as a clean energy and without nuclear waste

  17. Nitrate conversion and supercritical fluid extraction of UO2-CeO2 solid solution prepared by an electrolytic reduction-coprecipitation method

    International Nuclear Information System (INIS)

    Zhu, L.Y.; Duan, W.H.; Wen, M.F.; Xu, J.M.; Zhu, Y.J.

    2014-01-01

    A low-waste technology for the reprocessing of spent nuclear fuel (SNF) has been developed recently, which involves the conversion of actinide and lanthanide oxides with liquid N 2 O 4 into their nitrates followed by supercritical fluid extraction of the nitrates. The possibility of the reprocessing of SNF from high-temperature gas-cooled reactors (HTGRs) with nitrate conversion and supercritical fluid extraction is a current area of research in China. Here, a UO 2 -CeO 2 solid solution was prepared as a surrogate for a UO 2 -PuO 2 solid solution, and the recovery of U and Ce from the UO 2 -CeO 2 solid solution with liquid N 2 O 4 and supercritical CO 2 containing tri-n-butyl phosphate (TBP) was investigated. The UO 2 -CeO 2 solid solution prepared by electrolytic reduction-coprecipitation method had square plate microstructures. The solid solution after heat treatment was completely converted into nitrates with liquid N 2 O 4 . The XRD pattern of the nitrates was similar to that of UO 2 (NO 3 ) 2 . 3H 2 O. After 120 min of online extraction at 25 MPa and 50 , 99.98% of the U and 98.74% of the Ce were recovered from the nitrates with supercritical CO 2 containing TBP. The results suggest a promising potential technology for the reprocessing of SNF from HTGRs. (orig.)

  18. Breaking rocks made easy: subcritical processes and tectonic predesign

    Science.gov (United States)

    Voigtlaender, Anne; Krautblatter, Michael

    2017-04-01

    In geomorphic studies, to change in landforms, e.g. by rock slope failure, fluvial or glacial erosion, a threshold is commonly assumed, which is crossed either by an increase in external driving or a decrease of internal resisting forces, respectively. If the threshold is crossed, bedrock breaks and slope fails, rivers incise and glaciers plug and sew their bed. Here we put forward a focus on the decrease of the resisting forces, as an increase in the driving forces, to match the strength of bedrock, is not that likely. We suggest that the degradation of resisting forces of bedrock can be better explained by subcritical processes like creep, fatigue and stress corrosion interplaying with tectonic predesign. Both concepts, subcritical processes and tectonic predesign have been issued in the last century, but have not been widely accepted nor have their assumptions been explicitly stressed in recent case studies. Moreover both concepts profit especially on scale issues if merged. Subcritical crack growth, includes different mechanisms promoting fractures well below the ultimate strength. Single infinitesimal but irreversible damage and deformations are induced in the material over time. They interact with inherent microstructural flaws and low applied stresses, limiting local strength and macroscopic behavior of bedrock. This reissues the concept of tectonic predesigned, as proposed by A.E. Scheidegger, which not only encompasses structural features that determine the routing of drainage patterns and shear planes, e.g. joints, faults and foliations, but also the (neo)tectonic stress-field and the (in-situ) strain state of bedrocks and mountains. Combining subcritical processes and tectonic predesign we can better explain, why and where we see a dissected, eroded and geomorphic divers' landscape. In this conceptual framework actual magnitudes of the driving forces are accounted for and so is the nature of the bedrock material, to better understand the trajectories of

  19. A simple proof of exponential decay of subcritical contact processes

    Czech Academy of Sciences Publication Activity Database

    Swart, Jan M.

    2018-01-01

    Roč. 170, 1-2 (2018), s. 1-9 ISSN 0178-8051 R&D Projects: GA ČR(CZ) GA16-15238S Institutional support: RVO:67985556 Keywords : subcritical contact process * sharpness of the phase transition * eigenmeasure Subject RIV: BA - General Mathematics Impact factor: 1.895, year: 2016 http://library.utia.cas.cz/separaty/2016/SI/swart-0462694.pdf

  20. Inverse kinetics for subcritical systems with external neutron source

    International Nuclear Information System (INIS)

    Carvalho Gonçalves, Wemerson de; Martinez, Aquilino Senra; Carvalho da Silva, Fernando

    2017-01-01

    Highlights: • It was developed formalism for reactivity calculation. • The importance function is related to the system subcriticality. • The importance function is also related with the value of the external source. • The equations were analyzed for seven different levels of sub criticality. • The results are physically consistent with others formalism discussed in the paper. - Abstract: Nuclear reactor reactivity is one of the most important properties since it is directly related to the reactor control during the power operation. This reactivity is influenced by the neutron behavior in the reactor core. The time-dependent neutrons behavior in response to any change in material composition is important for the reactor operation safety. Transient changes may occur during the reactor startup or shutdown and due to accidental disturbances of the reactor operation. Therefore, it is very important to predict the time-dependent neutron behavior population induced by changes in neutron multiplication. Reactivity determination in subcritical systems driven by an external neutron source can be obtained through the solution of the inverse kinetics equation for subcritical nuclear reactors. The main purpose of this paper is to find the solution of the inverse kinetics equation the main purpose of this paper is to device the inverse kinetics equations for subcritical systems based in a previous paper published by the authors (Gonçalves et al., 2015) and by (Gandini and Salvatores, 2002; Dulla et al., 2006). The solutions of those equations were also obtained. Formulations presented in this paper were tested for seven different values of k eff with external neutrons source constant in time and for a powers ratio varying exponentially over time.

  1. Development and Investigation of Reactivity Measurement Methods in Subcritical Cores

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Johanna

    2005-05-01

    Subcriticality measurements during core loading and in future accelerator driven systems have a clear safety relevance. In this thesis two subcriticality methods are treated: the Feynman-alpha and the source modulation method. The Feynman-alpha method is a technique to determine the reactivity from the relative variance of the detector counts during a measurement period. The period length is varied to get the full time dependence of the variance-to-mean. The corresponding theoretical formula was known only with stationary sources. In this thesis, due to its relevance for novel reactivity measurement methods, the Feynman-alpha formulae for pulsed sources for both the stochastic and the deterministic cases are treated. Formulae neglecting as well as including the delayed neutrons are derived. The formulae neglecting delayed neutrons are experimentally verified with quite good agreement. The second reactivity measurement technique investigated in this thesis is the so-called source modulation technique. The theory of the method was elaborated on the assumption of point kinetics, but in practice the method will be applied by using the signal from a single local neutron detector. Applicability of the method therefore assumes point kinetic behaviour of the core. Hence, first the conditions of the point kinetic behaviour of subcritical cores was investigated. After that the performance of the source modulation technique in the general case as well as and in the limit of exact point kinetic behaviour was examined. We obtained the unexpected result that the method has a finite, non-negligible error even in the limit of point kinetic behaviour, and a substantial error in the operation range of future accelerator driven subcritical reactors (ADS). In practice therefore the method needs to be calibrated by some other method for on-line applications.

  2. Development and Investigation of Reactivity Measurement Methods in Subcritical Cores

    International Nuclear Information System (INIS)

    Wright, Johanna

    2005-05-01

    Subcriticality measurements during core loading and in future accelerator driven systems have a clear safety relevance. In this thesis two subcriticality methods are treated: the Feynman-alpha and the source modulation method. The Feynman-alpha method is a technique to determine the reactivity from the relative variance of the detector counts during a measurement period. The period length is varied to get the full time dependence of the variance-to-mean. The corresponding theoretical formula was known only with stationary sources. In this thesis, due to its relevance for novel reactivity measurement methods, the Feynman-alpha formulae for pulsed sources for both the stochastic and the deterministic cases are treated. Formulae neglecting as well as including the delayed neutrons are derived. The formulae neglecting delayed neutrons are experimentally verified with quite good agreement. The second reactivity measurement technique investigated in this thesis is the so-called source modulation technique. The theory of the method was elaborated on the assumption of point kinetics, but in practice the method will be applied by using the signal from a single local neutron detector. Applicability of the method therefore assumes point kinetic behaviour of the core. Hence, first the conditions of the point kinetic behaviour of subcritical cores was investigated. After that the performance of the source modulation technique in the general case as well as and in the limit of exact point kinetic behaviour was examined. We obtained the unexpected result that the method has a finite, non-negligible error even in the limit of point kinetic behaviour, and a substantial error in the operation range of future accelerator driven subcritical reactors (ADS). In practice therefore the method needs to be calibrated by some other method for on-line applications

  3. Supercritical fluid extraction of oregano (Origanum vulgare) essentials oils: anti-inflammatory properties based on cytokine response on THP-1 macrophages.

    Science.gov (United States)

    Ocaña-Fuentes, A; Arranz-Gutiérrez, E; Señorans, F J; Reglero, G

    2010-06-01

    Two fractions (S1 and S2) of an oregano (Origanum vulgare) extract obtained by supercritical fluid extraction have been used to test anti-inflammatory effects on activated human THP-1 cells. The main compounds present in the supercritical extract fractions of oregano were trans-sabinene hydrate, thymol and carvacrol. Fractions toxicity was assessed using the mitochondrial-respiration-dependent 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) reduction method for several concentrations during 24 and 48 h of incubation. Concentrations higher than 30 microg/mL of both supercritical S1 and S2 oregano fractions caused a reduction in cell viability in a dose-dependent manner. Oxidized-LDLs (oxLDLs) activated THP-1 macrophages were used as cellular model of atherogenesis and the release/secretion of cytokines (TNT-alpha, IL-1beta, IL-6 and IL-10) and their respective mRNA expressions were quantified both in presence or absence of supercritical oregano extracts. The results showed a decrease in pro-inflammatory TNF-alpha, IL-1beta and IL-6 cytokines synthesis, as well as an increase in the production of anti-inflammatory cytokine IL-10. These results may suggest an anti-inflammatory effect of oregano extracts and their compounds in a cellular model of atherosclerosis. Copyright 2010 Elsevier Ltd. All rights reserved.

  4. Procedure for controlling the extraction of production fluid from a production well; Fremgangsmaate for aa styre uttrekking av produksjonsfluid fra en produksjonsbroenn

    Energy Technology Data Exchange (ETDEWEB)

    Curlett, H.B.

    1996-06-17

    Basic well drilling techniques have not changed throughout the years: a number of drill pipes connected into a drill column are rotated along with a drill bit in the ground formation. It has been difficult to obtain instant information on the local parameters during the drilling operation. Such information is required by the drilling operator for efficient operation. The present invention concerns controlling the extraction of production fluids from a production well, characterized by externally monitoring local well parameters by means of signals from sensors in the well. If the signals indicate that defined limiting values of one or more parameters have been exceeded, one or more of different fluids are pumped simultaneously and independently down individually assigned conduits to restore the parameters to within their normal ranges. 28 figs.

  5. Semi-automated set-up for exhaustive micro-electromembrane extractions of basic drugs from biological fluids

    Czech Academy of Sciences Publication Activity Database

    Dvořák, Miloš; Seip, K. F.; Pedersen-Bjergaard, S.; Kubáň, Pavel

    2018-01-01

    Roč. 1005, APR (2018), s. 34-42 ISSN 0003-2670 R&D Projects: GA ČR(CZ) GA16-09135S Institutional support: RVO:68081715 Keywords : electromembrane extraction * exhaustive extraction * automation Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 4.950, year: 2016

  6. Optimization of supercritical fluid extraction and HPLC identification of wedelolactone from Wedelia calendulacea by orthogonal array design.

    Science.gov (United States)

    Patil, Ajit A; Sachin, Bhusari S; Wakte, Pravin S; Shinde, Devanand B

    2014-11-01

    The purpose of this work is to provide a complete study of the influence of operational parameters of the supercritical carbon dioxide assisted extraction (SC CO2E) on yield of wedelolactone from Wedelia calendulacea Less., and to find an optimal combination of factors that maximize the wedelolactone yield. In order to determine the optimal combination of the four factors viz. operating pressure, temperature, modifier concentration and extraction time, a Taguchi experimental design approach was used: four variables (three levels) in L9 orthogonal array. Wedelolactone content was determined using validated HPLC methodology. Optimum extraction conditions were found to be as follows: extraction pressure, 25 MPa; temperature, 40 °C; modifier concentration, 10% and extraction time, 90 min. Optimum extraction conditions demonstrated wedelolactone yield of 8.01 ± 0.34 mg/100 g W. calendulacea Less. Pressure, temperature and time showed significant (p yield. The supercritical carbon dioxide extraction showed higher selectivity than the conventional Soxhlet assisted extraction method.

  7. Optimization of supercritical fluid extraction and HPLC identification of wedelolactone from Wedelia calendulacea by orthogonal array design

    Directory of Open Access Journals (Sweden)

    Ajit A. Patil

    2014-11-01

    Full Text Available The purpose of this work is to provide a complete study of the influence of operational parameters of the supercritical carbon dioxide assisted extraction (SC CO2E on yield of wedelolactone from Wedelia calendulacea Less., and to find an optimal combination of factors that maximize the wedelolactone yield. In order to determine the optimal combination of the four factors viz. operating pressure, temperature, modifier concentration and extraction time, a Taguchi experimental design approach was used: four variables (three levels in L9 orthogonal array. Wedelolactone content was determined using validated HPLC methodology. Optimum extraction conditions were found to be as follows: extraction pressure, 25 MPa; temperature, 40 °C; modifier concentration, 10% and extraction time, 90 min. Optimum extraction conditions demonstrated wedelolactone yield of 8.01 ± 0.34 mg/100 g W. calendulacea Less. Pressure, temperature and time showed significant (p < 0.05 effect on the wedelolactone yield. The supercritical carbon dioxide extraction showed higher selectivity than the conventional Soxhlet assisted extraction method.

  8. Measurement of kinetic parameters in the fast subcritical core MASURCA

    International Nuclear Information System (INIS)

    Baeten, Peter; Abderrahim, Hamid Aiet

    2004-01-01

    In the MUSE shared cost action of the European Fifth Framework Program measurements have been performed to investigate the neutronic behavior of the fast subcritical core MASURCA coupled with the GENEPI accelerator. The aim is to examine the applicability of different measurement techniques for the determination of the main kinetic parameters. The measurement of Rossi-alpha distributions, recorded with the accelerator turned off, showed that the analysis of the obtained distributions is feasible for deep subcritical levels, but with strongly deteriorated statistics. From Rossi-alpha distributions, recorded with the pulsed neutron source in operation, the alpha decay constant was easily derived due to good statistics on the correlated signal resulting from the strong intensity of the neutron pulse. When applying the pulsed neutron source analysis, the reactivity (in dollars) together with the ratio of the mean neutron lifetime l and the effective delayed neutron fraction β eff is immediately derived. Although these first results are very promising, further measurements are needed to qualify the method at larger subcritical levels which are representative for future ADS

  9. Calculated characteristics of subcritical assembly with anisotropic transport of neutrons

    International Nuclear Information System (INIS)

    Gorin, N.V.; Lipilina, E.N.; Lyutov, V.D.; Saukov, A.I.

    2003-01-01

    There was considered possibility of creating enough sub-critical system that multiply neutron fluence from a primary source by many orders. For assemblies with high neutron tie between parts, it is impossible. That is why there was developed a construction consisting of many units (cascades) having weak feedback with preceding cascades. The feedback attenuation was obtained placing layers of slow neutron absorber and moderators between the cascades of fission material. Anisotropy of fast neutron transport through the layers was used. The system consisted of many identical cascades aligning one by another. Each cascade consists of layers of moderator, fissile material and absorber of slow neutrons. The calculations were carried out using the code MCNP.4a with nuclear data library ENDF/B5. In this construction neutrons spread predominantly in one direction multiplying in each next fissile layer, and they attenuate considerably in the opposite direction. In a calculated construction, multiplication factor of one cascade is about 1.5 and multiplication factor of whole construction composed of n cascades is 1.5 n . Calculated keff value is 0.9 for one cascade and does not exceed 0.98 for a system containing any number of cascades. Therefore the assembly is always sub-critical and therefore it is safe in respect of criticality. There was considered using such a sub-critical assembly to create a powerful neutron fluence for neutron boron-capturing therapy. The system merits and demerits were discussed. (authors)

  10. Accelerator-driven subcritical facility:Conceptual design development

    Science.gov (United States)

    Gohar, Yousry; Bolshinsky, Igor; Naberezhnev, Dmitry; Duo, Jose; Belch, Henry; Bailey, James

    2006-06-01

    A conceptual design development of an accelerator-driven subcritical facility has been carried out in the preparation of a joint activity with Kharkov Institute of Physics and Technology of Ukraine. The main functions of the facility are the medical isotope production and the support of the Ukraine nuclear industry. An electron accelerator is considered to drive the subcritical assembly. The neutron source intensity and spectrum have been studied. The energy deposition, spatial neutron generation, neutron utilization fraction, and target dimensions have been quantified to define the main target performance parameters, and to select the target material and beam parameters. Different target conceptual designs have been developed based the engineering requirements including heat transfer, thermal hydraulics, structure, and material issues. The subcritical assembly is designed to obtain the highest possible neutron flux level with a Keff of 0.98. Different fuel materials, uranium enrichments, and reflector materials are considered in the design process. The possibility of using low enrichment uranium without penalizing the facility performance is carefully evaluated. The mechanical design of the facility has been developed to maximize its utility and minimize the time for replacing the target and the fuel assemblies. Safety, reliability, and environmental considerations are included in the facility conceptual design. The facility is configured to accommodate future design improvements, upgrades, and new missions. In addition, it has large design margins to accommodate different operating conditions and parameters. In this paper, the conceptual design and the design analyses of the facility will be presented.

  11. Use of on-line supercritical fluid extraction-supercritical fluid chromatography/tandem mass spectrometry to analyze disease biomarkers in dried serum spots compared with serum analysis using liquid chromatography/tandem mass spectrometry.

    Science.gov (United States)

    Suzuki, Makoto; Nishiumi, Shin; Kobayashi, Takashi; Sakai, Arata; Iwata, Yosuke; Uchikata, Takato; Izumi, Yoshihiro; Azuma, Takeshi; Bamba, Takeshi; Yoshida, Masaru

    2017-05-30

    The analytical stability and throughput of biomarker assays based on dried serum spots (DSS) are strongly dependent on the extraction process and determination method. In the present study, an on-line system based on supercritical fluid extraction-supercritical fluid chromatography coupled with tandem mass spectrometry (SFE-SFC/MS/MS) was established for analyzing the levels of disease biomarkers in DSS. The chromatographic conditions were investigated using the ODS-EP, diol, and SIL-100A columns. Then, we optimized the SFE-SFC/MS/MS method using the diol column, focusing on candidate biomarkers of oral, colorectal, and pancreatic cancer that were identified using liquid chromatography (LC)/MS/MS. By using this system, four hydrophilic metabolites and 17 hydrophobic metabolites were simultaneously detected within 15 min. In an experiment involving clinical samples, PC 16:0-18:2/16:1-18:1 exhibited 93.8% sensitivity and 64.3% specificity, whereas PC 17:1-18:1/17:0-18:2 showed 81.3% sensitivity and 92.9% specificity for detecting oral cancer. In addition, assessments of the creatine levels demonstrated 92.3% sensitivity and 78.6% specificity for detecting colorectal cancer. The results of this study indicate that our method has great potential for clinical diagnosis and would be suitable for large-scale screening. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  12. Sensitive, automatic method for the determination of diazepam and its five metabolites in human oral fluid by online solid-phase extraction and liquid chromatography with tandem mass spectrometry

    DEFF Research Database (Denmark)

    Jiang, Fengli; Rao, Yulan; Wang, Rong

    2016-01-01

    A novel and simple online solid-phase extraction liquid chromatography-tandem mass spectrometry method was developed and validated for the simultaneous determination of diazepam and its five metabolites including nordazepam, oxazepam, temazepam, oxazepam glucuronide, and temazepam glucuronide...... in human oral fluid. Human oral fluid was obtained using the Salivette(®) collection device, and 100 μL of oral fluid samples were loaded onto HySphere Resin GP cartridge for extraction. Analytes were separated on a Waters Xterra C18 column and quantified by liquid chromatography with tandem mass...

  13. Rapid and simple pretreatment of human body fluids using electromembrane extraction across supported liquid membrane for capillary electrophoretic determination of lithium.

    Science.gov (United States)

    Strieglerová, Lenka; Kubáň, Pavel; Boček, Petr

    2011-05-01

    Electromembrane extraction was used for simultaneous sample cleanup and preconcentration of lithium from untreated human body fluids. The sample of a body fluid was diluted 100 times with 0.5 mM Tris solution and lithium was extracted by electromigration through a supported liquid membrane composed of 1-octanol into 100 mM acetic acid acceptor solution. Matrix compounds, such as proteins, red blood cells, and other high-molecular-weight compounds were efficiently retained on the supported liquid membrane. The liquid membrane was anchored in pores of a short segment of a polypropylene hollow fiber, which represented a low cost, single use, disposable extraction unit and was discarded after each use. Acceptor solutions were analyzed using capillary electrophoresis with capacitively coupled contactless conductivity detection (CE-C(4) D) and baseline separation of lithium was achieved in a background electrolyte solution consisting of 18 mM L-histidine and 40 mM acetic acid at pH 4.6. Repeatability of the electromembrane extraction-CE-C(4) D method was evaluated for the determination of lithium in standard solutions and real samples and was better than 0.6 and 8.2% for migration times and peak areas, respectively. The concentration limit of detection of 9 nM was achieved. The developed method was applied to the determination of lithium in urine, blood serum, blood plasma, and whole blood at both endogenous and therapeutic concentration levels. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Design project of fast subcritical system 'Mala Lasta'; Idejno resenje brzog podkriticnog sistema Mala LASTA

    Energy Technology Data Exchange (ETDEWEB)

    Milosevic, M; Stefanovic, D; Popovic, D; Pesic, M; Zavaljevski, N; Nikolic, D; Arsenovic, M [Boris Kidric Institute of nuclear sciences Vinca, Belgrade (Yugoslavia)

    1988-10-15

    This report contains two parts. Part one covers the objective and fundamental elements for the choice of fast subcritical system 'Mala Lasta', review of the existing fast subcritical assemblies, and a description of the available domestic computer codes applied for calculating neutron reactor parameters. Comparison of results obtained by these codes for a number of existing subcritical assemblies was used for the choice of the design project described in part two of this report. It contains detailed description of the operating parameters of the chosen subcritical system based on the obtained calculated parameters.

  15. Subcritical tests - nuclear weapon testing under the Comprehensive Test Ban Treaty

    International Nuclear Information System (INIS)

    Hoeibraaten, S.

    1998-10-01

    The report discusses possible nuclear weapons related experiments and whether these are permitted under the 1996 Comprehensive Test Ban Treaty (CTBT). The term ''subcritical experiments'' as used in the United States includes experiments in which one studies fissile materials (so far only plutonium) under extreme conditions generated by conventional high explosives, and in which a self-sustained chain reaction never develops in the fissile material. The known facts about the American subcritical experiments are presented. There is very little reason to doubt that these experiments were indeed subcritical and therefore permitted under the CTBT. Little is known about the Russian efforts that are being made on subcritical experiments

  16. Performance comparison and parametric optimization of subcritical Organic Rankine Cycle (ORC) and transcritical power cycle system for low-temperature geothermal power generation

    International Nuclear Information System (INIS)

    Shengjun, Zhang; Huaixin, Wang; Tao, Guo

    2011-01-01

    Research highlights: → We conduct the thermodynamic and economic performance comparison of the fluids in both subcritical ORC and transcritical power cycle. → We perform parameter optimization based on five indicators. → The optimum operation parameters and working fluids are not the same for different indicators. → The LEC value is used as the determining factor for fluids screening. → The transcritical power cycle with R125 as the working fluid was a cost-effective approach. - Abstract: Organic Rankine Cycle (ORC) is a promising technology for converting the low-grade energy to electricity. This paper presents an investigation on the parameter optimization and performance comparison of the fluids in subcritical ORC and transcritical power cycle in low-temperature (i.e. 80-100 o C) binary geothermal power system. The optimization procedure was conducted with a simulation program written in Matlab using five indicators: thermal efficiency, exergy efficiency, recovery efficiency, heat exchanger area per unit power output (APR) and the levelized energy cost (LEC). With the given heat source and heat sink conditions, performances of the working fluids were evaluated and compared under their optimized internal operation parameters. The optimum cycle design and the corresponding operation parameters were provided simultaneously. The results indicate that the choice of working fluid varies the objective function and the value of the optimized operation parameters are not all the same for different indicators. R123 in subcritical ORC system yields the highest thermal efficiency and exergy efficiency of 11.1% and 54.1%, respectively. Although the thermal efficiency and exergy efficiency of R125 in transcritical cycle is 46.4% and 20% lower than that of R123 in subcritical ORC, it provides 20.7% larger recovery efficiency. And the LEC value is relatively low. Moreover, 22032L petroleum is saved and 74,019 kg CO 2 is reduced per year when the LEC value is used as

  17. Supercritical Fluid Extraction of Eucalyptus globulus Bark—A Promising Approach for Triterpenoid Production

    Directory of Open Access Journals (Sweden)

    Carlos M. Silva

    2012-06-01

    Full Text Available Eucalyptus bark contains significant amounts of triterpenoids with demonstrated bioactivity, namely triterpenic acids and their acetyl derivatives (ursolic, betulinic, oleanolic, betulonic, 3-acetylursolic, and 3-acetyloleanolic acids. In this work, the supercritical fluid extraction (SFE of Eucalyptus globulus deciduous bark was carried out with pure and modified carbon dioxide to recover this fraction, and the results were compared with those obtained by Soxhlet extraction with dichloromethane. The effects of pressure (100–200 bar, co-solvent (ethanol content (0, 5 and 8% wt, and multistep operation were studied in order to evaluate the applicability of SFE for their selective and efficient production. The individual extraction curves of the main families of compounds were measured, and the extracts analyzed by GC-MS. Results pointed out the influence of pressure and the important role played by the co-solvent. Ethanol can be used with advantage, since its effect is more important than increasing pressure by several tens of bar. At 160 bar and 40 °C, the introduction of 8% (wt of ethanol greatly improves the yield of triterpenoids more than threefold.

  18. Extraction and characterization of Raphanus Sativus seed oil ...

    African Journals Online (AJOL)

    properties and bioactive ingredients of Raphanus sativus seed oil. Methods: Raphanus sativus seed oil was prepared by traditional solvent extraction (SE), super-critical carbon dioxide extraction (SCE) and sub-critical propane extraction (SPE). The yield, physicochemical properties, fatty acid composition and oxidative ...

  19. Dissolvable layered double hydroxide as an efficient nanosorbent for centrifugeless air-agitated dispersive solid-phase extraction of potentially toxic metal ions from bio-fluid samples

    Energy Technology Data Exchange (ETDEWEB)

    Rajabi, Maryam, E-mail: mrajabi@semnan.ac.ir; Arghavani-Beydokhti, Somayeh; Barfi, Behruz; Asghari, Alireza

    2017-03-08

    In the present work, a novel nanosorbent namely layered double hydroxides with 4-amino-5-hydroxyl-2,7-naphthalendisulfonic acid monosodium salt interlayer anion (Mg-Al-AHNDA-LDH) was synthesized and applied as a dissolvable nanosorbent in a centrifugeless ultrasound-enhanced air-agitated dispersive solid-phase extraction (USE-AA-D-SPE) method. This method was used for the separation and preconcentration of some metal ions including Cd{sup 2+}, Cr{sup 6+}, Pb{sup 2+}, Co{sup 2+}, and Ni{sup 2+} prior to their determination using the micro-sampling flame atomic absorption spectrometry (MS-FAAS) technique. The most interesting aspect of this nanosorbent is its immediate dissolvability at pH values lower than 4. This capability drastically eliminates the elution step, leading to a great improvement in the extraction efficiency and a decrease in the extraction time. Also in this method, the use of a syringe nanofilter eliminates the need for the centrifugation step, which is time-consuming and essentially causes the analysis to be off-line. Several effective parameters governing the extraction efficiency including the sample solution pH, amount of nanosorbent, eluent condition, number of air-agitation cycles, and sonication time were investigated and optimized. Under the optimized conditions, the good linear dynamic ranges of 2–70, 6–360, 7–725, 7–370, and 8–450 ng mL{sup −1} for the Cd{sup 2+}, Cr{sup 6+}, Pb{sup 2+}, Co{sup 2+}and Ni{sup 2+} ions, respectively, with the correlation of determinations (R{sup 2}s) higher than 0.997 were obtained. The limits of detection (LODs) were found to be 0.6, 1.7, 2.0, 2.1, and 2.4 for the Cd{sup 2+}, Cr{sup 6+}, Pb{sup 2+}, Co{sup 2+}, and Ni{sup 2+} ions, respectively. The intra-day and inter-day precisions (percent relative standard deviations (%RSDs) (n = 5)) were below 7.8%. The proposed method was also successfully applied for the extraction and determination of the target ions in different biological fluid

  20. Dissolvable layered double hydroxide as an efficient nanosorbent for centrifugeless air-agitated dispersive solid-phase extraction of potentially toxic metal ions from bio-fluid samples

    International Nuclear Information System (INIS)

    Rajabi, Maryam; Arghavani-Beydokhti, Somayeh; Barfi, Behruz; Asghari, Alireza

    2017-01-01

    In the present work, a novel nanosorbent namely layered double hydroxides with 4-amino-5-hydroxyl-2,7-naphthalendisulfonic acid monosodium salt interlayer anion (Mg-Al-AHNDA-LDH) was synthesized and applied as a dissolvable nanosorbent in a centrifugeless ultrasound-enhanced air-agitated dispersive solid-phase extraction (USE-AA-D-SPE) method. This method was used for the separation and preconcentration of some metal ions including Cd 2+ , Cr 6+ , Pb 2+ , Co 2+ , and Ni 2+ prior to their determination using the micro-sampling flame atomic absorption spectrometry (MS-FAAS) technique. The most interesting aspect of this nanosorbent is its immediate dissolvability at pH values lower than 4. This capability drastically eliminates the elution step, leading to a great improvement in the extraction efficiency and a decrease in the extraction time. Also in this method, the use of a syringe nanofilter eliminates the need for the centrifugation step, which is time-consuming and essentially causes the analysis to be off-line. Several effective parameters governing the extraction efficiency including the sample solution pH, amount of nanosorbent, eluent condition, number of air-agitation cycles, and sonication time were investigated and optimized. Under the optimized conditions, the good linear dynamic ranges of 2–70, 6–360, 7–725, 7–370, and 8–450 ng mL −1 for the Cd 2+ , Cr 6+ , Pb 2+ , Co 2+ and Ni 2+ ions, respectively, with the correlation of determinations (R 2 s) higher than 0.997 were obtained. The limits of detection (LODs) were found to be 0.6, 1.7, 2.0, 2.1, and 2.4 for the Cd 2+ , Cr 6+ , Pb 2+ , Co 2+ , and Ni 2+ ions, respectively. The intra-day and inter-day precisions (percent relative standard deviations (%RSDs) (n = 5)) were below 7.8%. The proposed method was also successfully applied for the extraction and determination of the target ions in different biological fluid and tap water samples. - Highlights: • A novel centrifugeless dispersive

  1. Intraspecific variability of Holostylis reniformis: concentration of lignans, as determined by maceration and supercritical fluid extraction (SFE-CO{sub 2}), as a function of plant provenance and plant parts

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Gislaine F.; Pereira, Marcos D.P.; Lopes, Lucia M.X., E-mail: lopesxl@iq.unesp.br [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Araraquara, SP (Brazil). Instituto de Quimica; Silva, Tito da [Universidade Federal do Maranhao (UFMA), Imperatriz, MA (Brazil). Centro de Ciencias Sociais, Saude e Tecnologia; Rosa, Paulo de T. Vieira e; Barbosa, Fernanda P. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Instituto de Quimica; Messiano, Gisele B. [Instituto Federal de Sao Paulo, SP (Brazil); Krettli, Antoniana U. [Fundacao Oswaldo Cruz (FIOCRUZ), Belo Horizonte, MG (Brazil). Instituto Rene Rachou

    2014-04-15

    Maceration and supercritical fluid extraction were used to prepare extracts from parts of plants (Holostylis reniformis) collected in two different regions of Brazil. {sup 1}H NMR, HPLC-DAD-ESI/MS, HPLC-DAD, GC-MS, and chemometric techniques were used to analyse lignans in the extracts and showed that yields of SFE-CO{sub 2} were less than or equal to those of hexane maceration extracts. These analyses, in conjunction with the concentrations of aliphatic hydrocarbons, fatty acids and their methyl and ethyl derivatives in the extracts, also allowed the chemical composition of parts and provenance of the plant to be differentiated. (author)

  2. Intraspecific variability of Holostylis reniformis: concentration of lignans, as determined by maceration and supercritical fluid extraction (SFE-CO2), as a function of plant provenance and plant parts

    International Nuclear Information System (INIS)

    Martins, Gislaine F.; Pereira, Marcos D.P.; Lopes, Lucia M.X.; Krettli, Antoniana U.

    2014-01-01

    Maceration and supercritical fluid extraction were used to prepare extracts from parts of plants (Holostylis reniformis) collected in two different regions of Brazil. 1 H NMR, HPLC-DAD-ESI/MS, HPLC-DAD, GC-MS, and chemometric techniques were used to analyse lignans in the extracts and showed that yields of SFE-CO 2 were less than or equal to those of hexane maceration extracts. These analyses, in conjunction with the concentrations of aliphatic hydrocarbons, fatty acids and their methyl and ethyl derivatives in the extracts, also allowed the chemical composition of parts and provenance of the plant to be differentiated. (author)

  3. Supercritical Fluid Extract of Spent Coffee Grounds Attenuates Melanogenesis through Downregulation of the PKA, PI3K/Akt, and MAPK Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Huey-Chun Huang

    2016-01-01

    Full Text Available The mode of action of spent coffee grounds supercritical fluid CO2 extract (SFE in melanogenesis has never been reported. In the study, the spent coffee grounds were extracted by the supercritical fluid CO2 extraction method; the chemical constituents of the SFE were investigated by gas chromatography-mass spectrometry (GC-MS. The effects of the SFE and its major fatty acid components on melanogenesis were evaluated by mushroom tyrosinase activity assay and determination of intracellular tyrosinase activity and melanin content. The expression level of melanogenesis-related proteins was analyzed by western blotting assay. The results revealed that the SFE of spent coffee grounds (1–10 mg/mL and its major fatty acids such as linoleic acid and oleic acid (6.25–50 μM effectively suppressed melanogenesis in the B16F10 murine melanoma cells. Furthermore, the SFE decreased the expression of melanocortin 1 receptor (MC1R, microphthalmia-associated transcription factor (MITF, tyrosinase, tyrosinase-related protein-1 (TRP-1, and tyrosinase-related protein-2 (TRP-2. The SFE also decreased the protein expression levels of p-JNK, p-p38, p-ERK, and p-CREB. Our results revealed that the SFE of spent coffee grounds attenuated melanogenesis in B16F10 cells by downregulation of protein kinase A (PKA, phosphatidylinositol-3-kinase (PI3K/Akt, and mitogen-activated protein kinases (MAPK signaling pathways, which may be due to linoleic acid and oleic acid.

  4. Nitrate conversion and supercritical fluid extraction of UO{sub 2}-CeO{sub 2} solid solution prepared by an electrolytic reduction-coprecipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, L.Y. [Tsinghua Univ., Beijing (China). Inst. of Nuclear and New Energy Technology; China Institute of Atomic Energy, Beijing (China); Duan, W.H.; Wen, M.F.; Xu, J.M.; Zhu, Y.J. [Tsinghua Univ., Beijing (China). Inst. of Nuclear and New Energy Technology

    2014-04-01

    A low-waste technology for the reprocessing of spent nuclear fuel (SNF) has been developed recently, which involves the conversion of actinide and lanthanide oxides with liquid N{sub 2}O{sub 4} into their nitrates followed by supercritical fluid extraction of the nitrates. The possibility of the reprocessing of SNF from high-temperature gas-cooled reactors (HTGRs) with nitrate conversion and supercritical fluid extraction is a current area of research in China. Here, a UO{sub 2}-CeO{sub 2} solid solution was prepared as a surrogate for a UO{sub 2}-PuO{sub 2} solid solution, and the recovery of U and Ce from the UO{sub 2}-CeO{sub 2} solid solution with liquid N{sub 2}O{sub 4} and supercritical CO{sub 2} containing tri-n-butyl phosphate (TBP) was investigated. The UO{sub 2}-CeO{sub 2} solid solution prepared by electrolytic reduction-coprecipitation method had square plate microstructures. The solid solution after heat treatment was completely converted into nitrates with liquid N{sub 2}O{sub 4}. The XRD pattern of the nitrates was similar to that of UO{sub 2}(NO{sub 3}){sub 2} . 3H{sub 2}O. After 120 min of online extraction at 25 MPa and 50 , 99.98% of the U and 98.74% of the Ce were recovered from the nitrates with supercritical CO{sub 2} containing TBP. The results suggest a promising potential technology for the reprocessing of SNF from HTGRs. (orig.)

  5. Electromembrane extraction of amino acids from body fluids followed by capillary electrophoresis with capacitively coupled contactless conductivity detection

    Czech Academy of Sciences Publication Activity Database

    Strieglerová, Lenka; Kubáň, Pavel; Boček, Petr

    2011-01-01

    Roč. 1218, č. 37 (2011), s. 6248-6255 ISSN 0021-9673 R&D Projects: GA ČR GAP206/10/1219 Institutional research plan: CEZ:AV0Z40310501 Keywords : electromembrane extraction * biological samples * capillary electrophoresis Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 4.531, year: 2011

  6. Generic solid phase extraction-liquid chromatography-tandem mass spectrometry method for fast determination of drugs in biological fluids

    NARCIS (Netherlands)

    Schellen, A.; Ooms, B.; Lagemaat, D. van de; Vreeken, R.; Dongen, W.D. van

    2003-01-01

    A generic method was developed for the fast determination of a wide range of drugs in serum or plasma. The methodology comprises generic solid-phase extraction, on-line coupled to gradient HPLC with tandem mass spectrometric detection (SPE-LC-MS/MS). The individual components of the SPE-LC-MS/MS

  7. Antioxidant Properties of Essential Oil Extracted from Pinus morrisonicola Hay Needles by Supercritical Fluid and Identification of Possible Active Compounds by GC/MS.

    Science.gov (United States)

    Cheng, Ming-Ching; Chang, Wen-Hua; Chen, Chih-Wei; Li, Wen-Wing; Tseng, Chin-Yin; Song, Tuzz-Ying

    2015-10-20

    Pine (Pinus morrisonicola Hay, PM) needles have been used as folk medicine for their antihypertension and lipid-lowering effects. As supercritical fluid extraction (SFE) is considered an ideal technique for the extraction of essential oil from plant materials, the present work investigated the optimal SFE conditions and the protective effects of different resulting fractions of PM needles on lipid peroxidation and foam cell production in macrophages. Nine PM needle extracts (PME1-9) were obtained in 1%-4% yields using different SFE conditions, of which PME1 had the lowest yield (1.1%) and PME3 the highest (3.9%). PME3 exhibited lower cytotoxic effects and stronger inhibition of lipid peroxidation and formation of foam cell in RAW 264.7 macrophages than those of other PME extracts. PME3-1 purified from PME3 by column and thin layer chromatography inhibited LDL oxidation more effectively than did PME3 in a cell-free system oxidized by Cu(2+). PME3-1 dose-dependently (25-100 μg/mL) decreased conjugated diene levels and foam cell formation induced by ox-LDL. GC/MS analyses revealed that 1-docosene, neophytadiene, and methyl abietate were increased 5.2-, 1.7- and 4.3-fold in PME3-1 relative to PME3. A new hydrocarbon compound, cedrane-8,13-diol, was identified in PME3-1. Overall, the present study demonstrates the optimal extraction conditions of SFE of PM and identifies the most potent antioxidant fractions and possible active compounds in PM.

  8. Liquid-liquid extraction of strongly protein bound BMS-299897 from human plasma and cerebrospinal fluid, followed by high-performance liquid chromatography/tandem mass spectrometry.

    Science.gov (United States)

    Xue, Y J; Pursley, Janice; Arnold, Mark

    2007-04-11

    BMS-299897 is a gamma-secretase inhibitor that is being developed for the treatment of Alzheimer's disease. Liquid-liquid extraction (LLE), chromatographic/tandem mass spectrometry (LC/MS/MS) methods have been developed and validated for the quantitation of BMS-299897 in human plasma and cerebrospinal fluid (CSF). Both methods utilized (13)C6-BMS-299897, the stable label isotope analog, as the internal standard. For the human plasma extraction method, two incubation steps were required after the addition of 5 mM ammonium acetate and the internal standard in acetonitrile to release the analyte bound to proteins prior to LLE with toluene. For the human CSF extraction method, after the addition of 0.5 N HCl and the internal standard, CSF samples were extracted with toluene and no incubation was required. The organic layers obtained from both extraction methods were removed and evaporated to dryness. The residues were reconstituted and injected into the LC/MS/MS system. Chromatographic separation was achieved isocratically on a MetaChem C18 Hypersil BDS column (2.0 mm x 50 mm, 3 microm). The mobile phase contained 10 mM ammonium acetate pH 5 and acetonitrile. Detection was by negative ion electrospray tandem mass spectrometry. The standard curves ranged from 1 to 1000 ng/ml for human plasma and 0.25-100 ng/ml for human CSF. Both standard curves were fitted to a 1/x weighted quadratic regression model. For both methods, the intra-assay precision was within 8.2% CV, the inter-assay precision was within 5.4% CV, and assay accuracy was within +/-7.4% of the nominal values. The validation and sample analysis results demonstrated that both methods had acceptable precision and accuracy across the calibration ranges.

  9. Antioxidant Properties of Essential Oil Extracted from Pinus morrisonicola Hay Needles by Supercritical Fluid and Identification of Possible Active Compounds by GC/MS

    Directory of Open Access Journals (Sweden)

    Ming-Ching Cheng

    2015-10-01

    Full Text Available Pine (Pinus morrisonicola Hay, PM needles have been used as folk medicine for their antihypertension and lipid-lowering effects. As supercritical fluid extraction (SFE is considered an ideal technique for the extraction of essential oil from plant materials, the present work investigated the optimal SFE conditions and the protective effects of different resulting fractions of PM needles on lipid peroxidation and foam cell production in macrophages. Nine PM needle extracts (PME1–9 were obtained in 1%–4% yields using different SFE conditions, of which PME1 had the lowest yield (1.1% and PME3 the highest (3.9%. PME3 exhibited lower cytotoxic effects and stronger inhibition of lipid peroxidation and formation of foam cell in RAW 264.7 macrophages than those of other PME extracts. PME3-1 purified from PME3 by column and thin layer chromatography inhibited LDL oxidation more effectively than did PME3 in a cell-free system oxidized by Cu2+. PME3-1 dose-dependently (25–100 μg/mL decreased conjugated diene levels and foam cell formation induced by ox-LDL. GC/MS analyses revealed that 1-docosene, neophytadiene, and methyl abietate were increased 5.2-, 1.7- and 4.3-fold in PME3-1 relative to PME3. A new hydrocarbon compound, cedrane-8,13-diol, was identified in PME3-1. Overall, the present study demonstrates the optimal extraction conditions of SFE of PM and identifies the most potent antioxidant fractions and possible active compounds in PM.

  10. OPTIMISATION OF SUPERCRITICAL FLUID EXTRACTION OF ASTAXANTHIN FROM PENAEUS MONODON WASTE USING ETHANOL-MODIFIED CARBON DIOXIDE

    Directory of Open Access Journals (Sweden)

    SHAZANA A. RADZALI

    2016-05-01

    Full Text Available Some studies demonstrated that astaxanthin surpasses the antioxidant benefits of beta-carotene, zeaxanthin, canthaxanthin, vitamin C, and vitamin E. Penaeus monodon (Tiger shrimp is one of the most valuable traded crustacean products in which astaxanthin can be found in its by-products. The extraction of thermolabile compound like carotenoids at lower temperatures through supercritical carbon dioxide (SC-CO2 can reduce the potential isomerization and degradation of the extraction product. In this study, astaxanthin had been extracted using SC-CO2 with 15% (v/v ethanol as an entrainer and the recovered astaxanthin was analyzed using High performance liquid chromatography (HPLC. A central composite design (CCD was employed to study the effect of three SC-CO2 parameters namely temperature (X1 from 40 to 80°C, pressure (X2 from 150 to 250 bar and extraction flow rate (X3 from 1 to 3 ml/min on the astaxanthin complex yield, (Y1 and free astaxanthin content, (Y2. The nonlinear regression equations were significantly (p0.9261, which had no indication of lack of fit. The results indicated that a combined set of values of temperature (56.88°C, pressure (215.68 bar and extraction flow rate (1.89 ml/min was predicted to provide the optimum region in terms of astaxanthin complex yield, (58.50 ± 2.62 µg/g and free astaxanthin content (12.20 ± 4.16 µg/g studied.

  11. Subcritical enhanced safety molten-salt reactor concept

    International Nuclear Information System (INIS)

    Alekseev, P.N.; Ignatiev, V.V.; Men'shikov, L.I.; Prusakov, V.N.; Ponomarev-Stepnoy, N.N.; Subbotin, S.A.; Krasnykh, A.K.; Rudenko, V.T.; Somov, L.N.

    1995-01-01

    The nuclear power and its fuel cycle safety requirements can be met in the main by providing nuclear power with subcritical molten salt reactors (SMSR) - 'burner' with an external neutron source. The utilized molten salt fuel is the decisive advantage of the SMSR over other burners. Fissile and fertile nuclides in the burner are solved in a liquid salt in the form of fluorides. This composition acts simultaneously as: a) fuel, b) coolant, c) medium for chemical partitioning and reprocessing. The effective way of reducing the external source power consists in the cascade neutron multiplication in the system of coupled reactors with suppressed feedback between them. (author)

  12. Spatial and spectral effects in subcritical system pulsed experiments

    International Nuclear Information System (INIS)

    Dulla, S.; Nervo, M.; Ravetto, P.; Carta, M.

    2013-01-01

    Accurate neutronic models are needed for the interpretation of pulsed experiments in subcritical systems. In this work, the extent of spatial and spectral effects in the pulse propagation phenomena is investigated and the analysis is applied to the GUINEVERE experiment. The multigroup cross section data is generated by the Monte Carlo SERPENT code and the neutronic evolution following the source pulse is simulated by a kinetic diffusion code. The results presented show that important spatial and spectral aspects need to be properly accounted for and that a detailed energy approach may be needed to adequately capture the physical features of the system to the pulse injection. (authors)

  13. Treatment of fluctuations of startup rates for core subcriticality monitoring

    International Nuclear Information System (INIS)

    Mol, Antonio Carlos de Abreu; Martinez, Aquilino Senra

    1996-01-01

    In this paper it is presented a method to eliminate the variations in the source and intermediate range count rate, which are used for the on-line and real time monitoring of the critical safety function Subcriticality. The method may be applied to a safety parameters display system, because it is very simple and precise, which it will not affect the real time requirements of such systems. Variations in the count range could cause a temporary positive startup rate, that could lead to incorrect addressing of function restoration guideline. (author)

  14. Measurement of subcritical multiplication by the interval distribution method

    International Nuclear Information System (INIS)

    Nelson, G.W.

    1985-01-01

    The prompt decay constant or the subcritical neutron multiplication may be determined by measuring the distribution of the time intervals between successive neutron counts. The distribution data is analyzed by least-squares fitting to a theoretical distribution function derived from a point reactor probability model. Published results of measurements with one- and two-detector systems are discussed. Data collection times are shorter, and statistical errors are smaller the nearer the system is to delayed critical. Several of the measurements indicate that a shorter data collection time and higher accuracy are possible with the interval distribution method than with the Feynman variance method

  15. Supercritical fluid extraction as an on-line clean-up technique for determination of riboflavin vitamins in food samples by capillary electrophoresis with fluorimetric detection.

    Science.gov (United States)

    Zougagh, Mohammed; Ríos, Angel

    2008-08-01

    An automatic method for the separation and determination of riboflavin (RF) vitamins (RF, flavin mononucleotide and flavin adenine dinucleotide) in food samples (chicken liver, tablet and powder milk) is proposed. The method is based on the on-line coupling of a supercritical fluid extractor (SFE) with a continuous flow-CE system with guided optical fiber fluorimetric detection (CF-CE-FD). The whole SFE-CF-CE-FD arrangement allowed the automatic treatment of food samples (clean-up of the sample followed by the extraction of the analytes), and the direct introduction of a small volume of the extracted plug to the CE-FD system for the determination of RF vitamins. Fluorescence detection introduced an appropriated sensitivity and contributed to avoid interferences of nonfluorescent polar compounds coming from the matrix samples in the extracted plug. Electrophoretic responses were linear within the 0.05-1 microg/g range, whereas the detection limits of RF vitamins were in the 0.036-0.042 microg/g range. The proposed arrangement opens up interesting prospects for the direct determination of polar analytes in complex samples with a good throughput and high level of automation.

  16. Characterisation of organic compounds in aerosol particles from a finnish forest by on-line coupled supercritical fluid extraction-liquid chromatography-gas chromatography-mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Shimmo, Masahiko; Jaentti, Jaana; Hartonen, Kari; Hyoetylaeinen, Tuulia; Riekkola, Marja-Liisa [Laboratory of Analytical Chemistry, Department of Chemistry, University of Helsinki, P.O. Box 55, 00014, Helsinki (Finland); Aalto, Pasi; Kulmala, Markku [Division of Atmospheric Sciences, Department of Physical Sciences, University of Helsinki, P.O. Box 64, 00014, Helsinki (Finland)

    2004-04-01

    During the European Union project Quantification of Aerosol Nucleation in the European Boundary Layer (QUEST), which began in spring 2003, atmospheric aerosol particles were collected in a Finnish Scots pine forest using a high-volume sampler. The organic compounds in the filter samples were then analysed by on-line coupled supercritical fluid extraction-liquid chromatography-gas chromatography-mass spectrometry (SFE-LC-GC-MS). The sample was first extracted by SFE. During LC the extracts were fractionated into three fractions according to polarity. The final separation was carried out by GC-MS. A fraction volume as high as 840 {mu}L was transferred to the GC, using the partial concurrent eluent evaporation technique. The same instrumentation, with an in-situ SFE derivatisation method, was used to analyse organic acids. Major compounds such as n-alkanes and PAH were analysed quantitatively. Their concentrations were lower than those usually observed in urban areas or in other forest areas in Europe. The wind direction was one of the most important factors affecting changes in the daily concentrations of these compounds. Scots pine needles were analysed with the same system to obtain reference data for identification of biogenic compounds in aerosol particles. Other organic compounds found in this study included hopanes, steranes, n-alkanals, n-alkan-2-ones, oxy-PAH, and alkyl-PAH; some biogenic products, including oxidation products of monoterpenes, were also identified. (orig.)

  17. Activity report of working party on reactor physics of subcritical system. October 2001 to March 2003

    International Nuclear Information System (INIS)

    2004-03-01

    Under the Research Committee on Reactor Physics, the Working Party on Reactor Physics of Subcritical System (ADS-WP) was set in July 2001 to research reactor physics of subcritical system such as Accelerator-Driven System (ADS). The WP, at the first meeting, discussed a guideline of its activity for two years and decided to perform theoretical research for the following subjects: (1) study of reactor physics for a subcritical core, (2) benchmark problems for a subcritical core and their calculations, (3) study of physical parameters affecting to set subcriticality of ADS, and (4) study of measurement and surveillance methods of subcriticality of a subcritical core. The activity of ADS-WP continued up to March 2003. In this duration, the members of the WP met together eight times, including four meetings jointly held with the Workshop on Accelerator-Driven Subcritical Reactor at Kyoto University Research Reactor Institute. This report summarizes the result obtained by the above WP activity and research. (author)

  18. A reactive transport modelling approach to assess the leaching potential of hydraulic fracturing fluids associated with coal seam gas extraction

    Science.gov (United States)

    Mallants, Dirk; Simunek, Jirka; Gerke, Kirill

    2015-04-01

    Coal Seam Gas production generates large volumes of "produced" water that may contain compounds originating from the use of hydraulic fracturing fluids. Such produced water also contains elevated concentrations of naturally occurring inorganic and organic compounds, and usually has a high salinity. Leaching of produced water from storage ponds may occur as a result of flooding or containment failure. Some produced water is used for irrigation of specific crops tolerant to elevated salt levels. These chemicals may potentially contaminate soil, shallow groundwater, and groundwater, as well as receiving surface waters. This paper presents an application of scenario modelling using the reactive transport model for variably-saturated media HP1 (coupled HYDRUS-1D and PHREEQC). We evaluate the fate of hydraulic fracturing chemicals and naturally occurring chemicals in soil as a result of unintentional release from storage ponds or when produced water from Coal Seam Gas operations is used in irrigation practices. We present a review of exposure pathways and relevant hydro-bio-geo-chemical processes, a collation of physico-chemical properties of organic/inorganic contaminants as input to a set of generic simulations of transport and attenuation in variably saturated soil profiles. We demonstrate the ability to model the coupled processes of flow and transport in soil of contaminants associated with hydraulic fracturing fluids and naturally occurring contaminants.

  19. Direct dissolution and supercritical fluid extraction of uranium from UO2 powder, granule, green pellet and sintered pellet

    International Nuclear Information System (INIS)

    Rao, Ankita; Kumar, Pradeep; Ramakumar, K.L.

    2009-01-01

    In the present work, direct dissolution and extraction of UO 2 from the solid rejects various stages of fuel fabrication viz. powder granules green pellet and, sintered pellet has been studied. Powder and granules could be easily dissolved in TBP-HNO 3 complex at 50 deg C., whereas in case of green and sintered pellets at elevated temperature at raised to 80 deg C in TBP-HNO 3 complex. With supercritical (SC) CO 2 alone the efficiency was ∼70%. But with SC CO 2 +2.5% TBP, the efficiency was ∼95% for powder and granules, and ∼60% for green and sintered pellets. Nearly complete extraction (∼99%) was achievable for SC CO 2 + 2.5 % TTA in all cases. The method has distinct advantage of elimination of acid usage and minimization of liquid waste generation. (author)

  20. Solid-phase/supercritical-fluid extraction for liquid chromatography of phenolic compounds in freshwater microalgae and selected cyanobacterial species

    Czech Academy of Sciences Publication Activity Database

    Klejdus, B.; Kopecký, Jiří; Benešová, L.; Vacek, J.

    2009-01-01

    Roč. 1216, č. 5 (2009), s. 763-771 ISSN 0021-9673 R&D Projects: GA ČR GA525/07/0338 Grant - others:CZ(CZ) GP525/08/P540 Institutional research plan: CEZ:AV0Z50200510 Keywords : methanol * solid-phase extraction * phenolic compounds Subject RIV: EE - Microbiology, Virology Impact factor: 4.101, year: 2009

  1. Study on uranium-water multiplicative means of the (RESUCO-Subcritical experimental reactor of uranium with oxygen) subcritical assembly by pulsed neutron technique

    International Nuclear Information System (INIS)

    Jesus Barbosa, S. de.

    1987-01-01

    The effective multiplication factor and the nuclear parameters associated with the variation of (RESUCO- Subcritical Experimental Reactor of Uranium with Oxygen) Subcritical Assembly Configuration, using pulsed neutron technique are analysed. BF3 detectors were used to detect the variation of thermal neutrons in the system, positioned parallelly to fuel elements, and a proton recoil detector was used for monitoring the neutron generation. (M.C.K.) [pt

  2. The safe, economical operation of a slightly subcritical reactor and transmutor with a small proton accelerator

    International Nuclear Information System (INIS)

    Takahashi, Hiroshi

    1994-01-01

    I suggest that an accelerator can be used to increase the safety and neutron economy of a power reactor and a transmutor of long-lived radioactive wastes, such as minor actinides and fission products, by providing neutrons for its subcritical operation. Instead of the large subcriticality k=0.9-0.95 which we originally proposed for such transmutor, we propose to use a slightly subcritical reactor, such as k=0.99, which will avoid many of the technical difficulties that are associated with large subcriticality, such as localized power peaking, radiation damage due to injection of medium-energy protons, the high current accelerator, and the requirement for a long beam-expansion section. We analyze the power drop that occurred in Phenix reactor, and show that the operating this reactor in subcritical conditions improves safety. (author). 13 refs., 5 figs

  3. The safe, economical operation of a slightly subcritical reactor and transmutor with a small proton accelerator

    International Nuclear Information System (INIS)

    Takahashi, Hiroshi.

    1994-01-01

    This report describes methods in which an accelerator can be used to increase the safety and neutron economy of a power reactor and transmutor of long-lived radioactive wastes, such as minor actinides and fission products, by providing neutrons for its subcritical operation. Instead of the rather large subcriticality of k=0.9--0.95 which we originally proposed for such a transmutor, we propose to use a slightly subcritical reactor, such as k=0.99, which will avoid many of the technical difficulties that are associated with large subcriticality, such as localized power peaking, radiation damage due to the injection of medium-energy protons, the high current accelerator, and the requirement for a long beam-expansion section. We analyzed the power drop that occurred in Phoenix reactor, and show that the operating this reactor in subcritical condition improves its safety

  4. Supercritical fluid extraction (SFE) of ketamine metabolites from dried urine and on-line quantification by supercritical fluid chromatography and single mass detection (on-line SFE-SFC-MS).

    Science.gov (United States)

    Hofstetter, Robert; Fassauer, Georg M; Link, Andreas

    2018-02-15

    On-line solid-phase supercritical fluid extraction (SFE) and chromatography (SFC) coupled to mass spectrometry (MS) has been evaluated for its usefulness with respect to metabolic profiling and pharmacological investigations of ketamine in humans. The aim of this study was to develop and validate a rapid, highly selective and sensitive SFE-SFC-MS method for the quantification of ketamine and its metabolites in miniature amounts in human urine excluding liquid-liquid extraction (LLE). Several conditions were optimized systematically following the requirements of the European Medicines Agency: selectivity, carry-over, calibration curve parameters (LLOQ, range and linearity), within- and between-run accuracy and precision, dilution integrity, matrix effect, and stability. The method, which required a relatively small volume of human urine (20 μL per sample), was validated for pharmacologically and toxicologically relevant concentrations ranging from 25.0 to 1000 ng/mL (r 2  > 0.995). The lower limit of quantification (LLOQ) for all compounds was found to be as low as 0.5 ng. In addition, stability of analytes during removal of water from the urine samples using different conditions (filter paper or ISOLUTE® HM-N) was studied. In conclusion, the method developed in this study can be successfully applied to studies of ketamine metabolites in humans, and may pave the way for routine application of on-line SFE-SFC-MS in clinical investigations. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Yalina booster subcritical assembly performance with low enriched uranium fuel

    International Nuclear Information System (INIS)

    Talamo, Alberto; Gohar, Yousry

    2011-01-01

    The YALINA Booster facility is a subcritical assembly located in Minsk, Belarus. The facility has special features that result in fast and thermal neutron spectra in different zones. The fast zone of the assembly uses a lead matrix and uranium fuels with different enrichments: 90% and 36%, 36%, or 21%. The thermal zone of the assembly contains 10% enriched uranium fuel in a polyethylene matrix. This study discusses the performance of the three YALINA Booster configurations with the different fuel enrichments. In order to maintain the same subcriticality level in the three configurations, the number of fuel rods in the thermal zone is increased as the uranium fuel enrichment in the fast zone is decreased. The maximum number of fuel rods that can be loaded in the thermal zone is about 1185. Consequently, the neutron multiplication of the configuration with 21% enriched uranium fuel in the fast zone is enhanced by changing the position of the boron carbide and the natural uranium absorber rods, located between the fast and the thermal zones, to form an annular rather than a square arrangement. (author)

  6. Yalina booster subcritical assembly performance with low enriched uranium fuel

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, Alberto; Gohar, Yousry, E-mail: alby@anl.gov [Argonne National Laboratory, Lemont, IL (United States)

    2011-07-01

    The YALINA Booster facility is a subcritical assembly located in Minsk, Belarus. The facility has special features that result in fast and thermal neutron spectra in different zones. The fast zone of the assembly uses a lead matrix and uranium fuels with different enrichments: 90% and 36%, 36%, or 21%. The thermal zone of the assembly contains 10% enriched uranium fuel in a polyethylene matrix. This study discusses the performance of the three YALINA Booster configurations with the different fuel enrichments. In order to maintain the same subcriticality level in the three configurations, the number of fuel rods in the thermal zone is increased as the uranium fuel enrichment in the fast zone is decreased. The maximum number of fuel rods that can be loaded in the thermal zone is about 1185. Consequently, the neutron multiplication of the configuration with 21% enriched uranium fuel in the fast zone is enhanced by changing the position of the boron carbide and the natural uranium absorber rods, located between the fast and the thermal zones, to form an annular rather than a square arrangement. (author)

  7. Estimation of subcriticality by neutron source multiplication method

    International Nuclear Information System (INIS)

    Sakurai, Kiyoshi; Suzaki, Takenori; Arakawa, Takuya; Naito, Yoshitaka

    1995-03-01

    Subcritical cores were constructed in a core tank of the TCA by arraying 2.6% enriched UO 2 fuel rods into nxn square lattices of 1.956 cm pitch. Vertical distributions of the neutron count rates for the fifteen subcritical cores (n=17, 16, 14, 11, 8) with different water levels were measured at 5 cm interval with 235 U micro-fission counters at the in-core and out-core positions arranging a 252 C f neutron source at near core center. The continuous energy Monte Carlo code MCNP-4A was used for the calculation of neutron multiplication factors and neutron count rates. In this study, important conclusions are as follows: (1) Differences of neutron multiplication factors resulted from exponential experiment and MCNP-4A are below 1% in most cases. (2) Standard deviations of neutron count rates calculated from MCNP-4A with 500000 histories are 5-8%. The calculated neutron count rates are consistent with the measured one. (author)

  8. Candidate molten salt investigation for an accelerator driven subcritical core

    Energy Technology Data Exchange (ETDEWEB)

    Sooby, E., E-mail: soobyes@tamu.edu [Texas A and M University, Accelerator Research Laboratory, 3380 University Dr. East, College Station, TX 77845 (United States); Baty, A. [Texas A and M University, Accelerator Research Laboratory, 3380 University Dr. East, College Station, TX 77845 (United States); Beneš, O. [European Commission, DG Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, 76125 Karlsruhe (Germany); McIntyre, P.; Pogue, N. [Texas A and M University, Accelerator Research Laboratory, 3380 University Dr. East, College Station, TX 77845 (United States); Salanne, M. [Université Pierre et Marie Curie, CNRS, Laboratoire PECSA, F-75005 Paris (France); Sattarov, A. [Texas A and M University, Accelerator Research Laboratory, 3380 University Dr. East, College Station, TX 77845 (United States)

    2013-09-15

    Highlights: • Developing accelerator driven subcritical fission to destroy transuranics in SNF. • The core is a vessel containing a molten mixture of NaCl and transuranic chlorides. • Molecular dynamics used to calculate the thermophysical properties of the salt. • Density and molecular structure for actinide salts reported here. • The neutronics of ADS fission in molten salt are presented. -- Abstract: We report a design for accelerator-driven subcritical fission in a molten salt core (ADSMS) that utilizes a fuel salt composed of NaCl and transuranic (TRU) chlorides. The ADSMS core is designed for fast neutronics (28% of neutrons >1 MeV) to optimize TRU destruction. The choice of a NaCl-based salt offers benefits for corrosion, operating temperature, and actinide solubility as compared with LiF-based fuel salts. A molecular dynamics (MD) code has been used to estimate properties of the molten salt system which are important for ADSMS design but have never been measured experimentally. Results from the MD studies are reported. Experimental measurements of fuel salt properties and studies of corrosion and radiation damage on candidate metals for the core vessel are anticipated.

  9. Candidate molten salt investigation for an accelerator driven subcritical core

    International Nuclear Information System (INIS)

    Sooby, E.; Baty, A.; Beneš, O.; McIntyre, P.; Pogue, N.; Salanne, M.; Sattarov, A.

    2013-01-01

    Highlights: • Developing accelerator driven subcritical fission to destroy transuranics in SNF. • The core is a vessel containing a molten mixture of NaCl and transuranic chlorides. • Molecular dynamics used to calculate the thermophysical properties of the salt. • Density and molecular structure for actinide salts reported here. • The neutronics of ADS fission in molten salt are presented. -- Abstract: We report a design for accelerator-driven subcritical fission in a molten salt core (ADSMS) that utilizes a fuel salt composed of NaCl and transuranic (TRU) chlorides. The ADSMS core is designed for fast neutronics (28% of neutrons >1 MeV) to optimize TRU destruction. The choice of a NaCl-based salt offers benefits for corrosion, operating temperature, and actinide solubility as compared with LiF-based fuel salts. A molecular dynamics (MD) code has been used to estimate properties of the molten salt system which are important for ADSMS design but have never been measured experimentally. Results from the MD studies are reported. Experimental measurements of fuel salt properties and studies of corrosion and radiation damage on candidate metals for the core vessel are anticipated

  10. Neutronic calculations for a subcritical system with external source

    International Nuclear Information System (INIS)

    Cintas, A; Lopasso, E.M; Marquez Damian, J. I

    2006-01-01

    We present a neutronic study on an A D S, systems capable of transmute minor actinides and fission products in order to reduce their radiotoxicity and mean-life.We compare neutronic parameters obtained with Scale/Tort and M C N P modelling a sub-critical system with source from a N E A Benchmark.Due to lack of nuclear data at the temperature of the system, we perform calculations at available temperature of libraries (300 K); to compensate the reactivity insertion due to the temperature change we reduce the size of the fuel zone in order to get a sub-critical system that allow u s to evaluate neutronic parameters of the system with source.We have found that the numerical results (neutron spectrum, neutron flux distributions and other neutronic parameters) are in agreement with the M C N P and with those of the benchmark participants even though the geometric models used are not exactly the same. We conclude that with the real temperature cross sections, the calculation scheme developed (Scale/Tort and M C N P) will give reliable results in A D S evaluations [es

  11. Neutron noise measurements at the Delphi subcritical assembly

    International Nuclear Information System (INIS)

    Szieberth, M.; Klujber, G.; Kloosterman, J. L.; De Haas, D.

    2012-01-01

    The paper presents the results and evaluations of a comprehensive set of neutron noise measurements on the Delphi subcritical assembly of the Delft Univ. of Technology. The measurements investigated the effect of different source distributions (inherent spontaneous fission and 252 Cf) and the position of the detectors applied (both radially and vertically). The evaluation of the measured data has been performed by the variance-to-mean ratio (VTMR, Feynman-α), the autocorrelation (ACF, Rossi-α) and the cross-correlation (CCF) methods. The values obtained for the prompt decay constant show a strong bias, which depends both on the detector position and on the source distribution. This is due to the presence of higher modes in the system. It has been observed that the α value fitted is higher when the detector is close to the boundary of the core or to the 252 Cf point-source. The higher alpha-modes have also been observed by fitting functions describing two alpha-modes. The successful set of measurement also provides a good basis for further theoretical investigations including the Monte Carlo simulation of the noise measurements and the calculation of the alpha-modes in the Delphi subcritical assembly. (authors)

  12. Determination of 18 beta-glycyrrhetinic acid in biological fluids from humans and rats by solid-phase extraction and high-performance liquid chromatography.

    Science.gov (United States)

    Hasler, F; Krapf, R; Brenneisen, R; Bourquin, D; Krähenbühl, S

    1993-10-22

    Methods have been developed and characterized allowing rapid isolation and quantification of 18 beta-glycyrrhetinic acid (GRA) in biological fluids from both humans and rats. Sample preparation includes extraction with urea-methanol for plasma samples, and solid-phase extraction (SPE) for urine and bile samples. Hydrolysis of GRA glucuronides in urine and bile was performed by treatment with beta-glucuronidase. MGRA, the 3-O-methyl derivative of GRA was synthesized as an internal standard resistant to hydrolysis. High-performance liquid chromatography (HPLC) was performed with an isocratic system using methanol-water-acetic acid (83:16.8:0.2, v/v/v) as solvent on a Lichrocart RP-18 column at 30 degrees C with ultraviolet detection. The methods allowed base line separation of GRA and MGRA from all biological fluids tested, with a detection limit of 0.15 mg/l. Validation of the methods included determination of recovery, accuracy and precision in plasma, bile and urine from humans and rats. The methods were further evaluated by investigating the pharmacokinetics of GRA in normal rats and in rats with a bile fistula. Following an intravenous dose of 10 mg/kg, the plasma concentration-time curve of GRA could be fitted to a one compartment model both in control and bile fistula rats. The elimination half life averaged 15.0 +/- 2.2 versus 16.8 +/- 2.4 min in control and bile fistula rats (difference not significant). Within 90 min following administration of GRA, urinary elimination of GRA and GRA glucuronides was less than 1% in both groups whereas biliary elimination averaged 51.3 +/- 3.1%. The results show that the methods developed allow pharmacokinetic studies of GRA in humans and rats.

  13. Comparison of Glucose Area Under the Curve Measured Using Minimally Invasive Interstitial Fluid Extraction Technology with Continuous Glucose Monitoring System in Diabetic Patients.

    Science.gov (United States)

    Uemura, Mei; Yano, Yutaka; Suzuki, Toshinari; Yasuma, Taro; Sato, Toshiyuki; Morimoto, Aya; Hosoya, Samiko; Suminaka, Chihiro; Nakajima, Hiromu; Gabazza, Esteban C; Takei, Yoshiyuki

    2017-08-01

    Continuous glucose monitoring (CGM) is reported to be a useful technique, but difficult or inconvenient for some patients and institutions. We are developing a glucose area under the curve (AUC) monitoring system without blood sampling using a minimally invasive interstitial fluid extraction technology (MIET). Here we evaluated the accuracy of interstitial fluid glucose (IG) AUC measured by MIET in patients with diabetes for an extended time interval and the potency of detecting hyperglycemia using CGM data as a reference. Thirty-eight inpatients with diabetes undergoing CGM were enrolled. MIET comprised a pretreatment step using a plastic microneedle array and glucose accumulation step with a hydrogel patch, which was placed on two sites from 9:00 AM to 5:00 PM or from 10:00 PM to 6:00 AM. IG AUC was calculated by accumulated glucose extracted by hydrogel patches using sodium ion as standard. A significant correlation was observed between the predicted AUC by MIET and CGM in daytime (r=0.76) and nighttime (r=0.82). The optimal cutoff for the IG AUC value of MIET to predict hyperglycemia over 200 mg/dL measured by CGM for 8 hours was 1,067.3 mg·hr/dL with 88.2% sensitivity and 81.5% specificity. We showed that 8-hour IG AUC levels using MIET were valuable in estimating the blood glucose AUC without blood sampling. The results also supported the concept of using this technique for evaluating glucose excursion and for screening hyperglycemia during 8 hours in patients with diabetes at any time of day. Copyright © 2017 Korean Diabetes Association

  14. Comparison of Glucose Area Under the Curve Measured Using Minimally Invasive Interstitial Fluid Extraction Technology with Continuous Glucose Monitoring System in Diabetic Patients

    Directory of Open Access Journals (Sweden)

    Mei Uemura

    2017-07-01

    Full Text Available BackgroundContinuous glucose monitoring (CGM is reported to be a useful technique, but difficult or inconvenient for some patients and institutions. We are developing a glucose area under the curve (AUC monitoring system without blood sampling using a minimally invasive interstitial fluid extraction technology (MIET. Here we evaluated the accuracy of interstitial fluid glucose (IG AUC measured by MIET in patients with diabetes for an extended time interval and the potency of detecting hyperglycemia using CGM data as a reference.MethodsThirty-eight inpatients with diabetes undergoing CGM were enrolled. MIET comprised a pretreatment step using a plastic microneedle array and glucose accumulation step with a hydrogel patch, which was placed on two sites from 9:00 AM to 5:00 PM or from 10:00 PM to 6:00 AM. IG AUC was calculated by accumulated glucose extracted by hydrogel patches using sodium ion as standard. ResultsA significant correlation was observed between the predicted AUC by MIET and CGM in daytime (r=0.76 and nighttime (r=0.82. The optimal cutoff for the IG AUC value of MIET to predict hyperglycemia over 200 mg/dL measured by CGM for 8 hours was 1,067.3 mg·hr/dL with 88.2% sensitivity and 81.5% specificity.ConclusionWe showed that 8-hour IG AUC levels using MIET were valuable in estimating the blood glucose AUC without blood sampling. The results also supported the concept of using this technique for evaluating glucose excursion and for screening hyperglycemia during 8 hours in patients with diabetes at any time of day.

  15. Regolith and Environment Science and Oxygen and Lunar Volatile Extraction (RESOLVE): Lunar Advanced Volatile Analysis (LAVA) Capillary Fluid Dynamic Restriction Effects on Gas Chromatography

    Science.gov (United States)

    Gonzalez, Marianne; Quinn, Jacqueline; Captain, Janine; Santiago-Bond, Josephine; Starr, Stanley

    2015-01-01

    The Resource Prospector (RP) mission with the Regolith and Environment Science and Oxygen Lunar Volatile Extraction (RESOLVE) payload aims to show the presence of water in lunar regolith, and establish a proving ground for NASAs mission to Mars. One of the analysis is performed by the Lunar Advanced Volatiles Analysis (LAVA) subsystem, which consists of a fluid network that facilitates the transport of volatile samples to a gas chromatograph and mass spectrometer (GC-MS) instrument. The understanding of fluid dynamics directed from the GC to the MS is important due to the influence of flow rates and pressures that affect the accuracy of and prevent the damage to the overall GC-MS instrument. The micro-scale capillary fluid network within the GC alone has various lengths and inner-diameters; therefore, determination of pressure differentials and flow rates are difficult to model computationally, with additional complexity from the vacuum conditions in space and lack of a lunar atmosphere. A series of tests were performed on an experimental set-up of the system where the inner diameters of the GC transfer line connecting to the MS were varied. The effect on chromatography readings were also studied by applying these lines onto a GC instrument. It was found that a smaller inner diameter transfer line resulted in a lower flow rate, as well as a lower pressure differential across the thermal conductivity detector (TCD) unit of the GC and a negligible pressure drop across the mock-up capillary column. The chromatography was affected with longer retention times and broader peak integrations. It was concluded that a 0.050 mm inner diameter line still proved most suitable for the systems flow rate preferences. In addition, it was evident that this small transfer line portrayed some expense to GC signal characteristics and the wait time for steady-state operation.

  16. Synthesis of high generation thermo-sensitive dendrimers for extraction of rivaroxaban from human fluid and pharmaceutic samples.

    Science.gov (United States)

    Parham, Negin; Panahi, Homayon Ahmad; Feizbakhsh, Alireza; Moniri, Elham

    2018-04-13

    In this present study, poly (N-isopropylacrylamide) as a thermo-sensitive agent was grafted onto magnetic nanoparticles, then ethylenediamine and methylmethacrylate were used to synthesize the first generation of poly amidoamine (PAMAM) dendrimers successively and the process continued alternatively until the ten generations of dendrimers. The synthesized nanocomposite was investigated using Fourier transform infrared spectrometry, thermalgravimetry analysis, X-ray diffractometry, elemental analysis and vibrating-sample magnetometer. The particle size and morphology were characterized using dynamic light scattering, field emission scanning electron microscopy and transmission electron microscopy. Batch experiments were conducted to investigate the parameters affecting adsorption and desorption of rivaroxaban by synthesized nanocomposite. The maximum sorption of rivaroxaban by the synthesized nanocomposite was obtained at pH of 8. The resulting grafted magnetic nanoparticle dendrimers were applied for extraction of rivaroxaban from biologic human liquids and medicinal samples. The specifications of rivaroxaban sorbed by a magnetic nanoparticle dendrimer showed good accessibility and high capacity of the active sites within the dendrimers. Urine and drug matrix extraction recoveries of more than 92.5 and 99.8 were obtained, respectively. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Stability Test of Partially Purified Bromelain from Pineapple (Ananas comosus (L.) Merr) Core Extract in Artificial Stomach Fluid

    Science.gov (United States)

    Setiasih, S.; Adimas, A. Ch. D.; Dzikria, V.; Hudiyono, S.

    2018-01-01

    This study aimed to isolate and purify bromelain from pineapple core (Ananascomosus (L.) Merr) accompanied by a stability test of its enzyme activity in artificial gastric juice. Purification steps start with fractionation by a precipitation method were carried out stepwise using several concentration of ammonium sulfate salt, followed by dialysis prosess and ion exchange chromatography on DEAE-cellulose column. Each step of purification produced an increasing specific activity in enzyme fraction, starting with crude extract, respectively: 0.276 U/mg; 14.591 U/mg; and 16.05 U/mg. Bromelain fraction with the highest level of purity was obtained in 50-80% ammonium sulphate fraction after dialyzed in the amount of 58.15 times compared to the crude extract. Further purification of the enzyme by DEAE-cellulose column produced bromelain which had a purity level 160-fold compared to crude enzyme. The result of bromelain stability test in artificial stomach juice by milk clotting units assay bromelain fraction have proteolytic activity in clotting milk substrate. Exposing bromelain fraction in artificial stomach juice which gave the highest core bromelain proteolytic activity was achieved at estimated volume of 0.4-0.5 mL. Exposure in a period of reaction time to artificial stomach juice that contained pepsin showed relatively stable proteolytic activity in the first 4 hours.

  18. Cryogenic Fluid Management Facility

    Science.gov (United States)

    Eberhardt, R. N.; Bailey, W. J.

    1985-01-01

    The Cryogenic Fluid Management Facility is a reusable test bed which is designed to be carried within the Shuttle cargo bay to investigate the systems and technologies associated with the efficient management of cryogens in space. Cryogenic fluid management consists of the systems and technologies for: (1) liquid storage and supply, including capillary acquisition/expulsion systems which provide single-phase liquid to the user system, (2) both passive and active thermal control systems, and (3) fluid transfer/resupply systems, including transfer lines and receiver tanks. The facility contains a storage and supply tank, a transfer line and a receiver tank, configured to provide low-g verification of fluid and thermal models of cryogenic storage and transfer processes. The facility will provide design data and criteria for future subcritical cryogenic storage and transfer system applications, such as Space Station life support, attitude control, power and fuel depot supply, resupply tankers, external tank (ET) propellant scavenging, and ground-based and space-based orbit transfer vehicles (OTV).

  19. Fusion-driven sub-critical dual-cooled waste transmutation blanket: design and analysis

    International Nuclear Information System (INIS)

    Wang Weihua; Wu Yican; Ke Yan; Kang Zhicheng; Wang Hongyan; Huang Qunying

    2003-01-01

    The Fusion-Driven Sub-critical System (FDS) is one of the Chinese programs to be further developed for fusion application. Its Dual-cooled Waste Transmutation Blanket (DWTB), as one the most important part of the FDS is cooled by helium and liquid metal, and have the features of safety, tritium self-sustaining, high efficiency and feasibility. Its conceptual design has been finished. This paper is mainly involved with the basic structure design and thermal-hydraulics analysis of DWTB. On the basis of a three-dimensional (3-D) model of radial-toroidal sections of the segment box, thermal temperature gradients and structure analysis made with a comprehensive finite element method (FEM) have been performed with the computer code ANSYS5.7 and computational fluid dynamic finite element codes. The analysis refers to the steady-state operating condition of an outboard blanket segment. Furthermore, the mechanical loads due to coolant pressure in normal operating conditions have been also taken into account. All the above loads have been combined as an input for a FEM stress analysis and the resulting stress distribution has been evaluated. Finally, the structure design and Pb-17Li flow velocity has been optimized according to the calculations and analysis

  20. A simple subcritical chromatographic test for an extended ODS high performance liquid chromatography column classification.

    Science.gov (United States)

    Lesellier, Eric; Tchapla, Alain

    2005-12-23

    This paper describes a new test designed in subcritical fluid chromatography (SFC) to compare the commercial C18 stationary phase properties. This test provides, from a single analysis of carotenoid pigments, the absolute hydrophobicity, the silanol activity and the steric separation factor of the ODS stationary phases. Both the choice of the analytical conditions and the validation of the information obtained from the chromatographic measurements are detailed. Correlations of the carotenoid test results with results obtained from other tests (Tanaka, Engelhard, Sander and Wise) performed both in SFC and HPLC are discussed. Two separation factors, calculated from the retention of carotenoid pigments used as probe, allowed to draw a first classification diagram. Columns, which present identical chromatographic behaviors are located in the same area on this diagram. This location can be related to the stationary phase properties: endcapping treatments, bonding density, linkage functionality, specific area or silica pore diameter. From the first classification, eight groups of columns are distinguished. One group of polymer coated silica, three groups of polymeric octadecyl phases, depending on the pore size and the endcapping treatment, and four groups of monomeric stationary phases. An additional classification of the four monomeric groups allows the comparison of these stationary phases inside each group by using the total hydrophobicity. One hundred and twenty-nine columns were analysed by this simple and rapid test, which allows a comparison of columns with the aim of helping along their choice in HPLC.

  1. Generic solid phase extraction-liquid chromatography-tandem mass spectrometry method for fast determination of drugs in biological fluids.

    Science.gov (United States)

    Schellen, Anniek; Ooms, Bert; van de Lagemaat, Dick; Vreeken, Rob; van Dongen, William D

    2003-05-25

    A generic method was developed for the fast determination of a wide range of drugs in serum or plasma. The methodology comprises generic solid-phase extraction, on-line coupled to gradient HPLC with tandem mass spectrometric detection (SPE-LC-MS/MS). The individual components of the SPE-LC-MS/MS system were optimized in an integrated approach to maximize the application range and minimize the method development time. The optimized generic SPE-LC-MS/MS protocol was evaluated for 11 drugs with different physicochemical properties. Good quantification for 10 out of 11 of the pharmaceuticals in serum or plasma could be readily achieved. The quantitative assays gave recoveries better than 95%, lower quantification limits of 0.2-2.0 ng/ml, acceptable precision and accuracy and good linearity over 2-4 orders of magnitude. Carry-over was determined to be in the range of 0.02-0.10%, without optimization.

  2. CHARACTERIZING SOIL/WATER SORPTION AND DESORPTION BEHAVIOR OF BTEX AND PAHS USING SELECTIVE SUPERCRITICAL FLUID EXTRACTION (SFE); TOPICAL

    International Nuclear Information System (INIS)

    Steve Hawthorne

    1998-01-01

    The first goal of the proposed study was to generate initial data to determine the ability of selective SFE behavior to mimic the soil/water sorption and desorption behavior of BTEX (benzene, toluene, and xylenes) and PAHs (polycyclic aromatic hydrocarbons).Samples generated by Professor Bill Rixey's column sorption studies (aged for 2 weeks to 8 months) and desorption studies (six weeks desorption of the aged soil columns with pure water) were extracted using sequentially-stronger SFE conditions to selectively remove different fractions of each BTEX and PAH component which range from loosely to tightly bound in the soil matrices. The selective SFE results parallel the sorption/desorption leaching behavior and mechanisms determined by Professor Rixey's investigations (under separate funding) using water desorption of soil columns previously aged with BTEX and PAHs. These results justify more intensive investigations of the use of selective SFE to mimic soil/water sorption and desorption of organic pollutants related to fossil fuels which will be performed under separate funding. The second goal of the study was to determine if selective SFE extraction behavior parallels the remediation behavior displayed by PAHs currently undergoing in-situ bioremediation at a manufactured gas plant (MGP) site. Based on soil analyses of several individual PAHs (as well as total PAHs) before remediation began, and after 147 days of remediation, selective SFE successfully mimicked remediation behavior. These results strongly support the use of selective SFE to predict remediation behavior of soils contaminated with PAHs, and are expected to provide a powerful and rapid analytical tool which will be useful for determining the remediation endpoints which are necessary for environmental protection. Based on the initial success found in the present study, additional investigations into the use of SFE for predicting and monitoring the remediation behavior of PAH-contaminated soils will be

  3. Measurement of glucose area under the curve using minimally invasive interstitial fluid extraction technology: evaluation of glucose monitoring concepts without blood sampling.

    Science.gov (United States)

    Sato, Toshiyuki; Okada, Seiki; Hagino, Kei; Asakura, Yoshihiro; Kikkawa, Yasuo; Kojima, Junko; Watanabe, Toshihiro; Maekawa, Yasunori; Isobe, Kazuki; Koike, Reona; Nakajima, Hiromu; Asano, Kaoru

    2011-12-01

    Monitoring postprandial hyperglycemia is crucial in treating diabetes, although its dynamics make accurate monitoring difficult. We developed a new technology for monitoring postprandial hyperglycemia using interstitial fluid (ISF) extraction technology without blood sampling. The glucose area under the curve (AUC) using this system was measured as accumulated ISF glucose (IG) with simultaneous calibration with sodium ions. The objective of this study was to evaluate this technological concept in healthy individuals. Minimally invasive ISF extraction technology (MIET) comprises two steps: pretreatment with microneedles and ISF accumulation over a specific time by contact with a solvent. The correlation between glucose and sodium ion levels using MIET was evaluated in 12 subjects with stable blood glucose (BG) levels during fasting. BG and IG time courses were evaluated in three subjects to confirm their relationship while BG was fluctuating. Furthermore, the accuracy of glucose AUC measurements by MIET was evaluated several hours after a meal in 30 subjects. A high correlation was observed between glucose and sodium ion levels when BG levels were stable (R=0.87), indicating that sodium ion is a good internal standard for calibration. The variation in IG and BG with MIET was similar, indicating that IG is an adequate substitute for BG. Finally, we showed a strong correlation (R=0.92) between IG-AUC and BG-AUC after a meal. These findings validate the adequacy of glucose AUC measurements using MIET. Monitoring glucose using MIET without blood sampling may be beneficial to patients with diabetes.

  4. Analysis of neutronics and dynamic characteristics with reactivity injection in LBE cooled sub-critical reactor

    International Nuclear Information System (INIS)

    Chen Sen; Wu Yican; Jin Ming; Chen Zhibin; Bai Yunqing; Zhao Zhumin

    2014-01-01

    Accelerator Driven Sub-critical System (ADS) has particular neutronics behaviors compared with the critical system. Prompt jump approximation point reactor kinetics equations taken external source into account have been deduced using an approach of prompt jump approximation. And the relationship between injection reactivity and power ampliation has been achieved. In addition, based on the RELAP5 code the prolong development of point reactor kinetics code used into assessing sub-critical system have been promoted. Different sub-criticality (k eff = 0.90, 0.95, 0.97, 0.98 and 0.99) have been assessed in preliminary design of a type of natural circulation cooling sub-critical reactor under conditions of reactivity injection +1 β in one second. It shows that the external source prompt transient approximation method has an accurate solution after injecting reactivity around short time and has a capacity to solve the dynamic equation, and the sub-critical system has an inner stability while the deeper sub-criticality the less impact on the sub-critical system. (authors)

  5. Dissolvable layered double hydroxide as an efficient nanosorbent for centrifugeless air-agitated dispersive solid-phase extraction of potentially toxic metal ions from bio-fluid samples.

    Science.gov (United States)

    Rajabi, Maryam; Arghavani-Beydokhti, Somayeh; Barfi, Behruz; Asghari, Alireza

    2017-03-08

    In the present work, a novel nanosorbent namely layered double hydroxides with 4-amino-5-hydroxyl-2,7-naphthalendisulfonic acid monosodium salt interlayer anion (Mg-Al-AHNDA-LDH) was synthesized and applied as a dissolvable nanosorbent in a centrifugeless ultrasound-enhanced air-agitated dispersive solid-phase extraction (USE-AA-D-SPE) method. This method was used for the separation and preconcentration of some metal ions including Cd 2+ , Cr 6+ , Pb 2+ , Co 2+ , and Ni 2+ prior to their determination using the micro-sampling flame atomic absorption spectrometry (MS-FAAS) technique. The most interesting aspect of this nanosorbent is its immediate dissolvability at pH values lower than 4. This capability drastically eliminates the elution step, leading to a great improvement in the extraction efficiency and a decrease in the extraction time. Also in this method, the use of a syringe nanofilter eliminates the need for the centrifugation step, which is time-consuming and essentially causes the analysis to be off-line. Several effective parameters governing the extraction efficiency including the sample solution pH, amount of nanosorbent, eluent condition, number of air-agitation cycles, and sonication time were investigated and optimized. Under the optimized conditions, the good linear dynamic ranges of 2-70, 6-360, 7-725, 7-370, and 8-450 ng mL -1 for the Cd 2+ , Cr 6+ , Pb 2+ , Co 2+ and Ni 2+ ions, respectively, with the correlation of determinations (R 2 s) higher than 0.997 were obtained. The limits of detection (LODs) were found to be 0.6, 1.7, 2.0, 2.1, and 2.4 for the Cd 2+ , Cr 6+ , Pb 2+ , Co 2+ , and Ni 2+ ions, respectively. The intra-day and inter-day precisions (percent relative standard deviations (%RSDs) (n = 5)) were below 7.8%. The proposed method was also successfully applied for the extraction and determination of the target ions in different biological fluid and tap water samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Sub-critical water as a green solvent for production of valuable materials from agricultural waste biomass: A review of recent work

    Directory of Open Access Journals (Sweden)

    A. Shitu

    2015-07-01

    Full Text Available Agricultural waste biomass generated from agricultural production and food processing industry are abundant, such as durian  peel, mango peel, corn straw, rice bran, corn shell, potato peel and many more. Due to low commercial value, these wastes are disposed in landfill, which if not managed properly may cause environmental problems. Currently, environmental laws and regulations pertaining to the pollution from agricultural waste streams by regulatory agencies are stringent and hence the application of toxic solvents during processing has become public concern. Recent development in valuable materials extraction from the decomposition of agricultural waste by sub-critical water treatment from the published literature was review. Physico-chemical characteristic (reaction temperature, reaction time and solid to liquid ratio of the sub-critical water affecting its yield were also reviewed. The utilization of biomass residue from agriculture, forest wood production and from food and feed processing industry may be an important alternative renewable energy supply. The paper also presents future research on sub-critical water.

  7. Comparison studies of surface cleaning methods for PAN-based carbon fibers with acetone, supercritical acetone and subcritical alkali aqueous solutions

    International Nuclear Information System (INIS)

    Meng Linghui; Fan Dapeng; Huang Yudong; Jiang Zaixing; Zhang Chunhua

    2012-01-01

    Highlights: ► Cleaning with supercritical acetone is appropriate to wipe off the oxygenated contaminants. ► Cleaning with supercritical acetone causes smaller damage to bulk strength of carbon fibers. ► Cleaning with subcritical alkali aqueous solution can thoroughly remove silicious contaminants. - Abstract: Four kinds of polyacrylonitrile-based carbon fibers were cleaned by three methods and were characterized by X-ray photoelectron spectroscopy, monofilament tensile strength test and atomic force microscopy (AFM). Experimental results of these tests reveal that the method using supercritical acetone or subcritical potassium hydroxide aqueous solution act as the processing medium shows a better cleaning effect compared to the traditional method, Soxhlet extraction with acetone. The method using supercritical acetone is more appropriate to wipe off the oxygenated contaminants on carbon fibers’ surfaces and causes a relatively smaller damage to the bulk strength of each carbon fiber. As far as treating method using the subcritical alkali aqueous solution, it can thoroughly remove silicious contaminants on the surfaces of treated fibers.

  8. Pati-Salam version of subcritical hybrid inflation

    Science.gov (United States)

    Bryant, B. Charles; Raby, Stuart

    2016-05-01

    In this paper we present a model of subcritical hybrid inflation with a Pati-Salam (PS) symmetry group. Both the inflaton and waterfall fields contribute to the necessary e -foldings of inflation, while only the waterfall field spontaneously breaks PS hence monopoles produced during inflation are diluted during the inflationary epoch. The model is able to produce a tensor-to-scalar ratio, r model also incorporates a Z4R symmetry which can resolve the μ problem and suppress dimension 5 operators for proton decay, leaving over an exact R parity. Finally the model allows for a complete three-family extension with a D4 family symmetry which reproduces low energy precision electroweak and LHC data.

  9. International conference on sub-critical accelerator driven systems. Proceedings

    International Nuclear Information System (INIS)

    Litovkina, L.P.; Titarenko, Yu.E.

    1999-01-01

    The International Meeting on Sub-Critical Accelerator Driven Systems was organized by the State Scientific Center - Institute for Theoretical and Experimental Physics with participation of Atomic Ministry of RF. The Meeting objective was to analyze the recent achievements and tendencies of the accelerator-driven systems development. The Meeting program covers a broad range of problems including the accelerator-driven systems (ADS) conceptual design; analyzing the ADS role in nuclear fuel cycle; accuracy of modeling the main parameters of ADS; conceptual design of high-current accelerators. Moreover, the results of recent experimental and theoretical studies on nuclear data accumulation to support the ADS technologies are presented. About 70 scientists from the main scientific centers of Russia, as well as scientists from USA, France, Belgium, India, and Yugoslavia, attended the meeting and presented 44 works [ru

  10. Experimental Study of Subcritical Water Liquefaction of Biomass

    DEFF Research Database (Denmark)

    Zhu, Zhe; Toor, Saqib; Rosendahl, Lasse

    2014-01-01

    In this work, hydrothermal liquefaction (HTL) of wood industry residues (wood, bark, sawdust) and macroalgae for producing biofuels has been investigated under subcritical water conditions (at temperature of 300 C), with and without the presence of catalyst. The effects of catalyst and biomass type...... bio-crudes were analyzed. The results showed that the higher heating values (HHVs) were in the range of 24.15 to 31.79 MJ/kg, and they were enhanced in the presence of catalyst, except for that of the macroalgae. The solid residues were characterized by heating value, SEM and FTIR. It was found...... that the addition of K2CO3 lowered the solids quality in terms of the heating values, while it did not have apparent effect on the functional groups of solid residues. SEM analysis of the raw biomass and solid residues revealed that the char formation for wood, sawdust and macroalgae had initially finished when...

  11. Monitoring of MNSR operation by measuring subcritical photoneutron flux

    International Nuclear Information System (INIS)

    Haddad, Kh.; Alsomel, N.

    2011-01-01

    Passive nondestructive assay methods are used to monitor the reactor's operation. It is required for nuclear regulatory, calculation validation and safeguards purposes. So, it plays a vital role in the safety and security of the nuclear plants. The possibility of MNSR operation monitoring by measuring the subcritical state photoneutron flux were investigated in this work. The photoneutron flux is induced by the fuels hard gamma radiation in the beryllium reflector. Theoretical formulation and experimental tests were performed. The results show that within a specified cooling time range, the photoneutron flux is induced by a single dominant hard gamma emitter such as 117 Cd (activation product) and 140 Ba ( 140 La fission product). This phenomenon was utilized to monitor the cooling time and the operation neutron flux during the last campaign. Thus a passive nondestructive assay method is proposed with regard to the reactor operation's monitoring.

  12. Dynamic subcriticality measurements using the CF neutron noise method: Videotape

    Energy Technology Data Exchange (ETDEWEB)

    Mihalczo, J.T.; Blakeman, E.D.; Ragan, G.E.; Johnson, E.B.

    1987-01-01

    The capability to measure the subcriticality for a multiplying system with k-effective values as low as 0.3 was demonstrated for measurement times of approximately 10 s; the measured k-effective values obtained do not depend on the speed with which the solution height is changed or on whether the tank is filling or draining. As in previous experiments, the low-frequency ratios of spectral densities are all that are needed to obtain the k-effective value. This method's effectiveness for systems where conditions are changing with time as demonstrated, probably exceeds the dynamic requirements for most nuclear fuel plant processing applications. The calculated k-effective values using the KENO code and Hansen-Roach cross-sections compare well with the experimental values. Before the dynamic capability of the method can be considered fully explored, additional dynamic experiments are required for other geometries and fuel concentrations.

  13. Economic analysis of the fusion-driven subcritical system

    International Nuclear Information System (INIS)

    Huang Desuo; Wu Yican; Chu Delin; Hu Liqin

    2004-01-01

    The economic performance of the Fusion-Driven Subcritical system (FDS) is discussed. At first, as an example, the impacts of parameters, such as plasma aspect-ratio, elongation, normalized beta, on-axis toroidal field and the blanket energy-gain are analyzed on the costs of the typical case (moderate aspect-ratio) of FDS. Then, the economic characteristics of the 3 possible scenarios of FDS are estimated with respect to the neutronics parameters. The results calculated with the SYSCODE developed by the FDS team show that the cost of electricity of Scenario-1 (low aspect-ratio) and Scenario-2 (moderate aspect-ratio) of FDS is cheaper than that of pure fusion power plant at the same plane size (1 GW e ). The cost of electricity of the FDS power plant depends heavily on the functions of blanket and the blanket energy-gain. (authors)

  14. Measurement of material buckling of subcritical assembly CAPITU

    International Nuclear Information System (INIS)

    Pombo, J.B.S.M.

    1976-11-01

    Material buckling and cadmium ratio measurements for 5 lattices of the subcritical assembly CAPITU with UO 2 as fuel (French fuel elements) and D 2 O as moderator are reported. Flux shape method from foil activation data has been used. Some developed accessories, experimental procedures and the counting system used are also described. Flux distributions were analysed by least squares fitting method and by a moments method. Final results for material buckling were confronted with theoretical values and with values obtained by pulsed neutron techniques. A summary of the programs used for preliminary processing of counting data and for least squares fitting are included. Although the measurements involved some problems which were not definitively solved, results seem to be reasonably reliable and the methodology well implemented. (Author) [pt

  15. Subcritical crack growth in a phosphate laser glass

    Energy Technology Data Exchange (ETDEWEB)

    Crichton, S.N.; Tomozawa, M.; Hayden, J.S.; Suratwala, T.I.; Campbell, J.H.

    1999-11-01

    The rate of subcritical crack growth in a metaphosphate Nd-doped laser glass was measured using the double-cleavage-drilled compression (DCDC) method. The crack velocity is reported as a function of stress intensity at temperatures ranging from 296 to 573 K and in nitrogen with water vapor pressures ranging from 40 Pa (0.3 mmHg) to 4.7 x 10{sup 4} Pa (355 mmHg). The measured crack velocities follow region I, II, and III behavior similar to that reported for silicate glasses. A chemical and mass-transport-limited reaction rate model explains the behavior of the data except at high temperatures and high water vapor pressures where crack tip blunting is observed. Blunting is characterized to reinitiate slow crack growth at higher stresses. A dynamic crack tip blunting mechanism is proposed to explain the deviation from the reaction rate model.

  16. Selection of initial events of accelerator driven subcritical system

    International Nuclear Information System (INIS)

    Wang Qianglong; Hu Liqin; Wang Jiaqun; Li Yazhou; Yang Zhiyi

    2013-01-01

    The Probabilistic Safety Assessment (PSA) is an important tool in reactor safety analysis and a significant reference to the design and operation of reactor. It is the origin and foundation of the PSA for a reactor to select the initial events. Accelerator Driven Subcritical System (ADS) has advanced design characteristics, complicated subsystems and little engineering and operating experience, which makes it much more difficult to identify the initial events of ADS. Based on the current design project of ADS, the system's safety characteristics and special issues were analyzed in this article. After a series of deductions with Master Logic Diagram (MLD) and considering the relating experience of other advanced research reactors, a preliminary initial events was listed finally, which provided the foundation for the next safety assessment. (authors)

  17. Safety and control of accelerator-driven subcritical systems

    Energy Technology Data Exchange (ETDEWEB)

    Rief, H. [Ispra Establishment (Italy); Takahashi, H. [Brookhaven National Laboratory, Long Island, NY (United States)

    1995-10-01

    To study control and safety of accelertor driven nuclear systems, a one point kinetic model was developed and programed. It deals with fast transients as a function of reactivity insertion. Doppler feedback, and the intensity of an external neutron source. The model allows for a simultaneous calculation of an equivalent critical reactor. It was validated by a comparison with a benchmark specified by the Nuclear Energy Agency Committee of Reactor Physics. Additional features are the possibility of inserting a linear or quadratic time dependent reactivity ramp which may account for gravity induced accidents like earthquakes, the possibility to shut down the external neutron source by an exponential decay law of the form exp({minus}t/{tau}), and a graphical display of the power and reactivity changes. The calculations revealed that such boosters behave quite benignly even if they are only slightly subcritical.

  18. Controlled assembly of silver nano-fluid in Heliotropium crispum extract: A potent anti-biofilm and bactericidal formulation

    Science.gov (United States)

    Khan, Faria; Hashmi, Muhammad Uzair; Khalid, Nauman; Hayat, Muhammad Qasim; Ikram, Aamer; Janjua, Hussnain A.

    2016-11-01

    The study describes the optimized method for silver nanoparticle (AgNPs) synthesis using Heliotropium crispum (HC) plant extract. Optimization of physicochemical parameters resulted in stable and rapidly assembled AgNPs. FTIR results suggest presence of plant phytochemicals that helped in the reduction, stabilization and capping of AgNPs. The assembled Ag nano-composites displayed the peak surface plasmon resonance (SPR) around 428 nm. The presence of uniquely assembled Ag-biomolecule composites, cap and stabilize nanoparticles in aqueous plant suspension. Spherical, uniform-shaped AgNPs with low poly-dispersion and average particle size of 42 nm and was determined through dynamic light scattering (DLS) and scanning election microscopy (SEM) which present robust interaction with microbes. The study also evaluates the antimicrobial and anti-biofilm properties of biologically synthesized AgNPs on clinical isolates of MRSA, Pseudomonas aeruginosa and Acinetobacter baumannii. Minimum inhibitory concentration (0.5 mg mL-1) of nanoparticles that presented bactericidal effect was made through inhibition assays on bacterial strains. The concentration which presented potent bactericidal response was then evaluated through growth inhibition in liquid medium for anti-biofilm studies at 2.0 mg mL-1. HC-Ag nanoparticles mediated anti-biofilm effects on Pseudomonas aeruginosa was revealed through SEM. Complete breakdown of biofilm's extracellular polymeric substances resulted after incubation with AgNPs. Peptidoglycan cell wall destruction was also revealed on planktonic bacterial images after 24 h of incubation.

  19. Methods for the reactivity evaluation in subcritical systems analysis: a review

    International Nuclear Information System (INIS)

    Dulla, S.; Picca, P.; Carta, M.

    2011-01-01

    The assessment of the subcritical source-driven system technology for waste incineration and power production requires the development of reliable and efficient techniques for the reactivity evaluation and monitoring. Starting from the standard methods developed for close-to-criticality systems, extensive research activities have been carried out to analyze the behavior of subcritical assembly in time-dependent condition and to infer the subcriticality level from local flux values. In the present work, a review of some key aspects in the method development for ADS analysis is proposed, with special attention to the techniques for reactivity evaluation. (author)

  20. MaquiBright™ standardized maqui berry extract significantly increases tear fluid production and ameliorates dry eye-related symptoms in a clinical pilot trial.

    Science.gov (United States)

    Hitoe, S; Tanaka, J; Shimoda, H

    2014-09-01

    Dry eye symptoms, resulting from insufficient tear fluid generation, represent a considerable burden for a largely underestimated number of people. We concluded from earlier pre-clinical investigations that the etiology of dry eyes encompasses oxidative stress burden to lachrymal glands and that antioxidant MaquiBright™ Aristotelia chilensis berry extract helps restore glandular activity. In this pilot trial we investigated 13 healthy volunteers with moderately dry eyes using Schirmer test, as well as a questionnaire which allows for estimating the impact of dry eyes on daily routines. Study participants were assigned to one of two groups, receiving MaquiBright™ at daily dosage of either 30 mg (N.=7) or 60 mg (N.=6) over a period of 60 days. Both groups presented with significantly (Peye dryness on daily routines was evaluated employing the "Dry Eye-related Quality of life Score" (DEQS), with values spanning from zero (impact) to a maximum score of 60. Participants had comparable baseline values of 41.0±7.7 (30 mg) and 40.2±6.3 (60 mg). With 30 mg treatment the score significantly decreased to 21.8±3.9 and 18.9±3.9, after 30 and 60 days, respectively. With 60 mg treatment the DEQS significantly decreased to 26.9±5.3 and 11.1±2.7, after 30 and 60 days, respectively. Blood was drawn for safety analyses (complete blood rheology and -chemistry) at all three investigative time points without negative findings. In conclusion, while daily supplementation with 30 mg MaquiBright™ is effective, the dosage of 60 significantly increased tear fluid volume at all investigative time points and decreased dry eye symptoms to almost a quarter from initial values after two months treatment.

  1. Neutron fluctuation analysis in a subcritical multiplying system with a stochastically pulsed poisson source

    International Nuclear Information System (INIS)

    Kostic, Lj.

    2003-01-01

    The influence of the stochastically pulsed Poisson source to the statistical properties of the subcritical multiplying system is analyzed in the paper. It is shown a strong dependence on the pulse period and pulse width of the source (author)

  2. Final report for fuel acquisition and design of a fast subcritical blanket facility

    International Nuclear Information System (INIS)

    Clikeman, F.M.; Ott, K.O.

    1976-01-01

    A summary is presented of work leading to the design of a subcritical facility for the study of fast reactor blankets. Included are activities related to fuel acquisition, design of the facility, and experiment planning

  3. A rapid MCM-41 dispersive micro-solid phase extraction coupled with LC/MS/MS for quantification of ketoconazole and voriconazole in biological fluids.

    Science.gov (United States)

    Yahaya, Noorfatimah; Sanagi, Mohd Marsin; Abd Aziz, Noorizan; Wan Ibrahim, Wan Aini; Nur, Hadi; Loh, Saw Hong; Kamaruzaman, Sazlinda

    2017-02-01

    A rapid dispersive micro-solid phase extraction (D-μ-SPE) combined with LC/MS/MS method was developed and validated for the determination of ketoconazole and voriconazole in human urine and plasma samples. Synthesized mesoporous silica MCM-41 was used as sorbent in d-μ-SPE of the azole compounds from biological fluids. Important D-μ-SPE parameters, namely type desorption solvent, extraction time, sample pH, salt addition, desorption time, amount of sorbent and sample volume were optimized. Liquid chromatographic separations were carried out on a Zorbax SB-C 18 column (2.1 × 100 mm, 3.5 μm), using a mobile phase of acetonitrile-0.05% formic acid in 5 mm ammonium acetate buffer (70:30, v/v). A triple quadrupole mass spectrometer with positive ionization mode was used for the determination of target analytes. Under the optimized conditions, the calibration curves showed good linearity in the range of 0.1-10,000 μg/L with satisfactory limit of detection (≤0.06 μg/L) and limit of quantitation (≤0.3 μg/L). The proposed method also showed acceptable intra- and inter-day precisions for ketoconazole and voriconazole from urine and human plasma with RSD ≤16.5% and good relative recoveries in the range 84.3-114.8%. The MCM-41-D-μ-SPE method proved to be rapid and simple and requires a small volume of organic solvent (200 μL); thus it is advantageous for routine drug analysis. Copyright © 2016 John Wiley & Sons, Ltd.

  4. Evaluation of full S1 gene sequencing of classical and variant infectious bronchitis viruses extracted from allantoic fluid and FTA cards.

    Science.gov (United States)

    Manswr, Basim; Ball, Christopher; Forrester, Anne; Chantrey, Julian; Ganapathy, Kannan

    2018-05-01

    Sequence variability in the S1 gene determines the genotype of infectious bronchitis virus (IBV) strains. A single RT-PCR assay was developed to amplify and sequence the full S1 gene for six classical and variant IBVs (M41, D274, 793B, IS/885/00, IS/1494/06 and Q1) enriched in allantoic fluid (AF) or the same AF but inoculated onto Flinders Technology Association (FTA) cards. Representative strains from each genotype were grown in SPF eggs and RNA was extracted from AF. Full S1 gene amplification was achieved using primer A and primer 22.51. Products were sequenced using primer A, 1050+, 1380+ and SX3+ to obtain short sequences covering the full gene. Following serial dilutions of AF, detection limits of the partial assay were higher than those of the full S1 gene. Partial S1 sequences exhibited higher than average nucleotide similarity percentages (79%; 352bp) compared to full S1 sequences (77%; 1,756bp), suggesting that full S1 analysis allows greater strain differentiation. For IBV detection from AF inoculated FTA cards, four serotypes were incubated for up to 21 days at three temperatures; 4 o C, 24 o C and 40 o C. RNA was extracted and tested with partial and full S1 protocols. Through partial sequencing, all IBVs were successfully detected at all sampling points and storage temperatures. In contrast, using full S1 sequencing was not possible to amplify the gene beyond 14 days or when stored at 40°C. Data presented shows that for full S1 sequencing, a substantial amount of RNA is needed. Field samples collected onto FTA cards are unlikely to yield such quantity or quality.

  5. Analysis of particulate polycyclic aromatic hydrocarbons by on-line coupled supercritical fluid extraction-liquid chromatography-gas chromatography-mass spectrometry

    Science.gov (United States)

    Shimmo, Masahiko; Adler, Heidi; Hyötyläinen, Tuulia; Hartonen, Kari; Kulmala, Markku; Riekkola, Marja-Liisa

    An on-line supercritical fluid extraction-liquid chromatography-gas chromatography-mass spectrometry (SFE-LC-GC-MS) method was developed for the analysis of the particulate polycyclic aromatic hydrocarbons (PAHs). The limits of detection of the system for the quantification standards were in the range of 0.25-0.57 ng, while the limits of determinations for filter samples varied from 0.02 to 0.04 ng m -3 (24 h sampling). The linearity was excellent from 5 to 300 ng ( R2>0.967). The analysis could be carried out in a closed system without tedious manual sample pretreatment and with no risk of errors by contamination or loss of the analytes. The results of the SFE-LC-GC-MS method were comparable with those for Soxhlet and shake-flask extractions with GC-MS. The new method was applied to the analysis of PAHs collected by high-volume filter in the Helsinki area to study the seasonal trend of the concentrations. The individual PAH concentrations varied from 0.015 to more than 1 ng m -3, while total PAH concentrations varied from 0.81 to 5.68 ng m -3. The concentrations were generally higher in winter than in summer. The mass percentage of the total PAHs in total suspended particulates ranged from 2.85×10 -3% in July to 15.0×10 -3% in December. Increased emissions in winter, meteorological conditions, and more serious artefacts during the sampling in summer season may explain the concentration profiles.

  6. Status of intense permanent magnet proton source for China-accelerator driven sub-critical system Linac.

    Science.gov (United States)

    Wu, Q; Ma, H Y; Yang, Y; Sun, L T; Zhang, X Z; Zhang, Z M; Zhao, H Y; He, Y; Zhao, H W

    2016-02-01

    Two compact intense 2.45 GHz permanent magnet proton sources and their corresponding low energy beam transport (LEBT) system were developed successfully for China accelerator driven sub-critical system in 2014. Both the proton sources operate at 35 kV potential. The beams extracted from the ion source are transported by the LEBT, which is composed of two identical solenoids, to the 2.1 MeV Radio-Frequency Quadrupole (RFQ). In order to ensure the safety of the superconducting cavities during commissioning, an electrostatic-chopper has been designed and installed in the LEBT line that can chop the continuous wave beam into a pulsed one. The minimum width of the pulse is less than 10 μs and the fall/rise time of the chopper is about 20 ns. The performance of the proton source and the LEBT, such as beam current, beam profile, emittance and the impact to RFQ injection will be presented.

  7. Status of intense permanent magnet proton source for China-accelerator driven sub-critical system Linac

    Science.gov (United States)

    Wu, Q.; Ma, H. Y.; Yang, Y.; Sun, L. T.; Zhang, X. Z.; Zhang, Z. M.; Zhao, H. Y.; He, Y.; Zhao, H. W.

    2016-02-01

    Two compact intense 2.45 GHz permanent magnet proton sources and their corresponding low energy beam transport (LEBT) system were developed successfully for China accelerator driven sub-critical system in 2014. Both the proton sources operate at 35 kV potential. The beams extracted from the ion source are transported by the LEBT, which is composed of two identical solenoids, to the 2.1 MeV Radio-Frequency Quadrupole (RFQ). In order to ensure the safety of the superconducting cavities during commissioning, an electrostatic-chopper has been designed and installed in the LEBT line that can chop the continuous wave beam into a pulsed one. The minimum width of the pulse is less than 10 μs and the fall/rise time of the chopper is about 20 ns. The performance of the proton source and the LEBT, such as beam current, beam profile, emittance and the impact to RFQ injection will be presented.

  8. Status of intense permanent magnet proton source for China-accelerator driven sub-critical system Linac

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Q., E-mail: wuq@impcas.ac.cn; Ma, H. Y.; Yang, Y.; Sun, L. T.; Zhang, X. Z.; Zhang, Z. M.; Zhao, H. Y.; He, Y.; Zhao, H. W. [Institute of Modern Physics (IMP), Chinese Academy of Sciences, Lanzhou 730000 (China)

    2016-02-15

    Two compact intense 2.45 GHz permanent magnet proton sources and their corresponding low energy beam transport (LEBT) system were developed successfully for China accelerator driven sub-critical system in 2014. Both the proton sources operate at 35 kV potential. The beams extracted from the ion source are transported by the LEBT, which is composed of two identical solenoids, to the 2.1 MeV Radio-Frequency Quadrupole (RFQ). In order to ensure the safety of the superconducting cavities during commissioning, an electrostatic-chopper has been designed and installed in the LEBT line that can chop the continuous wave beam into a pulsed one. The minimum width of the pulse is less than 10 μs and the fall/rise time of the chopper is about 20 ns. The performance of the proton source and the LEBT, such as beam current, beam profile, emittance and the impact to RFQ injection will be presented.

  9. Subcriticality monitoring method based on the exponential technique usable for nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    Suzaki, T.

    1987-01-01

    Buckling measurement methods in subcritical nuclear fuel systems (negative buckling measurements in small systems are well-known as the exponential experiment) were discussed from the viewpoint of the applicability to on-site monitorings of subcriticality and fuel characteristics of interest. From demonstration experiments using the TCA, it was revealed that the method is quite promising. Applicability of the method to the critical approach in critical assemblies was also discussed. (author)

  10. Reactor parameters and constants determination by using measurements in subcritical and exponential assembly

    International Nuclear Information System (INIS)

    Voi, Dante Luiz; Santos Bastos, Wilma dos

    1995-01-01

    Subcritical and exponential experiments are important for Reactor Physics integral parameter determinations both to validate and confirm theoretical models for reactor calculations. An exponential and subcritical facility has been constructed to be used on the internal thermal column of the Argonauta reactor at IEN-CNEN- Rio de Janeiro. An experimental research program has been developed for the determination of fundamental reactor constants as buckling, migration areas, resonance escape probabilities, thermal utilization, fast fission and fuel eta factors. (author) 23 refs

  11. Implementation and training methodology of subcritical reactors neutronic calculations triggered by external neutron source and applications

    International Nuclear Information System (INIS)

    Carluccio, Thiago

    2011-01-01

    This works had as goal to investigate calculational methodologies on subcritical source driven reactor, such as Accelerator Driven Subcritical Reactor (ADSR) and Fusion Driven Subcritical Reactor (FDSR). Intense R and D has been done about these subcritical concepts, mainly due to Minor Actinides (MA) and Long Lived Fission Products (LLFP) transmutation possibilities. In this work, particular emphasis has been given to: (1) complement and improve calculation methodology with neutronic transmutation and decay capabilities and implement it computationally, (2) utilization of this methodology in the Coordinated Research Project (CRP) of the International Atomic Energy Agency Analytical and Experimental Benchmark Analysis of ADS and in the Collaborative Work on Use of Low Enriched Uranium in ADS, especially in the reproduction of the experimental results of the Yalina Booster subcritical assembly and study of a subcritical core of IPEN / MB-01 reactor, (3) to compare different nuclear data libraries calculation of integral parameters, such as k eff and k src , and differential distributions, such as spectrum and flux, and nuclides inventories and (4) apply the develop methodology in a study that may help future choices about dedicated transmutation system. The following tools have been used in this work: MCNP (Monte Carlo N particle transport code), MCB (enhanced version of MCNP that allows burnup calculation) and NJOY to process nuclear data from evaluated nuclear data files. (author)

  12. Subcritical Noise Analysis Measurements with Fresh and Spent Research Reactor Fuels Elements

    International Nuclear Information System (INIS)

    Valentine, T.E.; Mihalczo, J.T.; Kryter, R.C.; Miller, V.C.

    1999-01-01

    The verification of the subcriticality is of utmost importance for the safe transportation and storage of nuclear reactor fuels. Transportation containers and storage facilities are designed such that nuclear fuels remain in a subcritical state. Such designs often involve excess conservatism because of the lack of relevant experimental data to verify the accuracy of Monte Carlo codes used in nuclear criticality safety analyses. A joint experimental research program between Oak Ridge National Laboratory, Westinghouse Safety Management Solutions, Inc., and the University of Missouri was initiated to obtain measured quantities that could be directly related to the subcriticality of simple arrays of Missouri University Research Reactor (MURR) fuel elements. A series of measurement were performed to assess the reactivity of materials such as BORAL, stainless steel, aluminum, and lead that are typically used in the construction of shipping casks. These materials were positioned between the fuel elements. In addition, a limited number of measurements were performed with configurations of fresh and spent (irradiated) fuel elements to ascertain the reactivity of the spent fuel elements. In these experiments, fresh fuel elements were replaced by spent fuel elements such that the subcritical reactivity change could be measured. The results of these measurements were used by Westinghouse Safety Management Solutions to determine the subcriticality of MURR fuel elements isolated by absorbing materials. The measurements were interpreted using the MCNP-DSP Monte Carlo code to obtain the subcritical neutron multiplication factor k(sub eff), and the bias in K(sub eff) that are used in criticality safety analyses

  13. Numerical simulations of subcritical reactor kinetics in thermal hydraulic transient phases

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, J; Park, W S [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1999-12-31

    A subcritical reactor driven by a linear proton accelerator has been considered as a nuclear waste incinerator at Korea Atomic Energy Research Institute (KAERI). Since the multiplication factor of a subcritical reactor is less than unity, to compensate exponentially decreasing fission neutrons, external neutrons form spallation reactions are essentially required for operating the reactor in its steady state. Furthermore, the profile of accelerator beam currents is very important in controlling a subcritical reactor, because the reactor power varies in accordance to the profile of external neutrons. We have developed a code system to find numerical solutions of reactor kinetics equations, which are the simplest dynamic model for controlling reactors. In a due course of our previous numerical study of point kinetics equations for critical reactors, however, we learned that the same code system can be used in studying dynamic behavior of the subcritical reactor. Our major motivation of this paper is to investigate responses of subcritical reactors for small changes in thermal hydraulic parameters. Building a thermal hydraulic model for the subcritical reactor dynamics, we performed numerical simulations for dynamic responses of the reactor based on point kinetics equations with a source term. Linearizing a set of coupled differential equations for reactor responses, we focus our research interest on dynamic responses of the reactor to variations of the thermal hydraulic parameters in transient phases. 5 refs., 8 figs. (Author)

  14. Numerical simulations of subcritical reactor kinetics in thermal hydraulic transient phases

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, J.; Park, W. S. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    A subcritical reactor driven by a linear proton accelerator has been considered as a nuclear waste incinerator at Korea Atomic Energy Research Institute (KAERI). Since the multiplication factor of a subcritical reactor is less than unity, to compensate exponentially decreasing fission neutrons, external neutrons form spallation reactions are essentially required for operating the reactor in its steady state. Furthermore, the profile of accelerator beam currents is very important in controlling a subcritical reactor, because the reactor power varies in accordance to the profile of external neutrons. We have developed a code system to find numerical solutions of reactor kinetics equations, which are the simplest dynamic model for controlling reactors. In a due course of our previous numerical study of point kinetics equations for critical reactors, however, we learned that the same code system can be used in studying dynamic behavior of the subcritical reactor. Our major motivation of this paper is to investigate responses of subcritical reactors for small changes in thermal hydraulic parameters. Building a thermal hydraulic model for the subcritical reactor dynamics, we performed numerical simulations for dynamic responses of the reactor based on point kinetics equations with a source term. Linearizing a set of coupled differential equations for reactor responses, we focus our research interest on dynamic responses of the reactor to variations of the thermal hydraulic parameters in transient phases. 5 refs., 8 figs. (Author)

  15. Subcritical Water Hydrolysis of Peptides: Amino Acid Side-Chain Modifications

    Science.gov (United States)

    Powell, Thomas; Bowra, Steve; Cooper, Helen J.

    2017-09-01

    Previously we have shown that subcritical water may be used as an alternative to enzymatic digestion in the proteolysis of proteins for bottom-up proteomics. Subcritical water hydrolysis of proteins was shown to result in protein sequence coverages greater than or equal to that obtained following digestion with trypsin; however, the percentage of peptide spectral matches for the samples treated with trypsin were consistently greater than for those treated with subcritical water. This observation suggests that in addition to cleavage of the peptide bond, subcritical water treatment results in other hydrolysis products, possibly due to modifications of amino acid side chains. Here, a model peptide comprising all common amino acid residues (VQSIKCADFLHYMENPTWGR) and two further model peptides (VCFQYMDRGDR and VQSIKADFLHYENPTWGR) were treated with subcritical water with the aim of probing any induced amino acid side-chain modifications. The hydrolysis products were analyzed by direct infusion electrospray tandem mass spectrometry, either collision-induced dissociation or electron transfer dissociation, and liquid chromatography collision-induced dissociation tandem mass spectrometry. The results show preferential oxidation of cysteine to sulfinic and sulfonic acid, and oxidation of methionine. In the absence of cysteine and methionine, oxidation of tryptophan was observed. In addition, water loss from aspartic acid and C-terminal amidation were observed in harsher subcritical water conditions. [Figure not available: see fulltext.

  16. Memory-enhancing effect of a supercritical carbon dioxide fluid extract of the needles of Abies koreana on scopolamine-induced amnesia in mice.

    Science.gov (United States)

    Kim, Kanghyun; Bu, Youngmin; Jeong, Seungil; Lim, Jongpil; Kwon, Youngan; Cha, Dong Seok; Kim, Jinmo; Jeon, Sora; Eun, Jaesoon; Jeon, Hoon

    2006-08-01

    Abies koreana Wilson (A. koreana) is a shrub or broadly pyramidal evergreen tree endemic in the mountainous regions of South Korea. We obtained the essential oil (EO) from alpine needle leaves of A. koreana by the supercritical fluid extraction (SFE) method. EO was analyzed by gas chromatography-mass spectrometry (GC-MS), and 68 compounds were identified constituting 95.66% of the oil. The major components were elemol (11.17%), terpinen-4-ol (9.77%), sabinene (8.86%), 10(15)-cadien-4-ol (7.16%), alpha-terpineol (6.13%), alpha-pinene (6.07%) and gamma-terpinene (4.71%). To investigate the memory-enhancing effects, we conducted a passive avoidance test using a scopolamine (1 mg/kg, ip)-induced amnesia mouse model. A peritoneal injection of EO from A. koreana (100 mg/kg) showed a memory enhancing effect of 72.7% compared with the control. These results suggest that EO of A. koreana may be a useful therapeutic agent against such amnesia-inducing diseases as Alzheimer and vascular dementia.

  17. Escalated regeneration in sciatic nerve crush injury by the combined therapy of human amniotic fluid mesenchymal stem cells and fermented soybean extracts, Natto.

    Science.gov (United States)

    Pan, Hung-Chuan; Yang, Dar-Yu; Ho, Shu-Peng; Sheu, Meei-Ling; Chen, Chung-Jung; Hwang, Shiaw-Min; Chang, Ming-Hong; Cheng, Fu-Chou

    2009-08-23

    Attenuation of inflammatory cell deposits and associated cytokines prevented the apoptosis of transplanted stem cells in a sciatic nerve crush injury model. Suppression of inflammatory cytokines by fermented soybean extracts (Natto) was also beneficial to nerve regeneration. In this study, the effect of Natto on transplanted human amniotic fluid mesenchymal stem cells (AFS) was evaluated. Peripheral nerve injury was induced in SD rats by crushing a sciatic nerve using a vessel clamp. Animals were categorized into four groups: Group I: no treatment; Group II: fed with Natto (16 mg/day for 7 consecutive days); Group III: AFS embedded in fibrin glue; Group IV: Combination of group II and III therapy. Transplanted AFS and Schwann cell apoptosis, inflammatory cell deposits and associated cytokines, motor function, and nerve regeneration were evaluated 7 or 28 days after injury. The deterioration of neurological function was attenuated by AFS, Natto, or the combined therapy. The combined therapy caused the most significantly beneficial effects. Administration of Natto suppressed the inflammatory responses and correlated with decreased AFS and Schwann cell apoptosis. The decreased AFS apoptosis was in line with neurological improvement such as expression of early regeneration marker of neurofilament and late markers of S-100 and decreased vacuole formation. Administration of either AFS, or Natto, or combined therapy augmented the nerve regeneration. In conclusion, administration of Natto may rescue the AFS and Schwann cells from apoptosis by suppressing the macrophage deposits, associated inflammatory cytokines, and fibrin deposits.

  18. Escalated regeneration in sciatic nerve crush injury by the combined therapy of human amniotic fluid mesenchymal stem cells and fermented soybean extracts, Natto

    Directory of Open Access Journals (Sweden)

    Pan Hung-Chuan

    2009-08-01

    Full Text Available Abstract Attenuation of inflammatory cell deposits and associated cytokines prevented the apoptosis of transplanted stem cells in a sciatic nerve crush injury model. Suppression of inflammatory cytokines by fermented soybean extracts (Natto was also beneficial to nerve regeneration. In this study, the effect of Natto on transplanted human amniotic fluid mesenchymal stem cells (AFS was evaluated. Peripheral nerve injury was induced in SD rats by crushing a sciatic nerve using a vessel clamp. Animals were categorized into four groups: Group I: no treatment; Group II: fed with Natto (16 mg/day for 7 consecutive days; Group III: AFS embedded in fibrin glue; Group IV: Combination of group II and III therapy. Transplanted AFS and Schwann cell apoptosis, inflammatory cell deposits and associated cytokines, motor function, and nerve regeneration were evaluated 7 or 28 days after injury. The deterioration of neurological function was attenuated by AFS, Natto, or the combined therapy. The combined therapy caused the most significantly beneficial effects. Administration of Natto suppressed the inflammatory responses and correlated with decreased AFS and Schwann cell apoptosis. The decreased AFS apoptosis was in line with neurological improvement such as expression of early regeneration marker of neurofilament and late markers of S-100 and decreased vacuole formation. Administration of either AFS, or Natto, or combined therapy augmented the nerve regeneration. In conclusion, administration of Natto may rescue the AFS and Schwann cells from apoptosis by suppressing the macrophage deposits, associated inflammatory cytokines, and fibrin deposits.

  19. Experimental Assessment of a Helical Coil Heat Exchanger Operating at Subcritical and Supercritical Conditions in a Small-Scale Solar Organic Rankine Cycle

    Directory of Open Access Journals (Sweden)

    Marija Lazova

    2017-05-01

    Full Text Available In this study, the performance of a helical coil heat exchanger operating at subcritical and supercritical conditions is analysed. The counter-current heat exchanger was specially designed to operate at a maximal pressure and temperature of 42 bar and 200 °C, respectively. The small-scale solar organic Rankine cycle (ORC installation has a net power output of 3 kWe. The first tests were done in a laboratory where an electrical heater was used instead of the concentrated photovoltaic/thermal (CPV/T collectors. The inlet heating fluid temperature of the water was 95 °C. The effects of different parameters on the heat transfer rate in the heat exchanger were investigated. Particularly, the performance analysis was elaborated considering the changes of the mass flow rate of the working fluid (R-404A in the range of 0.20–0.33 kg/s and the inlet pressure varying from 18 bar up to 41 bar. Hence, the variation of the heat flux was in the range of 5–9 kW/m2. The results show that the working fluid’s mass flow rate has significant influence on the heat transfer rate rather than the operational pressure. Furthermore, from the comparison between the experimental results with the heat transfer correlations from the literature, the experimental results fall within the uncertainty range for the supercritical analysis but there is a deviation of the investigated subcritical correlations.

  20. Submersion-Subcritical Safe Space (S4) reactor

    International Nuclear Information System (INIS)

    King, Jeffrey C.; El-Genk, Mohamed S.

    2006-01-01

    The Submersion-Subcritical Safe Space (S 4 ) reactor, developed for future space power applications and avoidance of single point failures, is presented. The S 4 reactor has a Mo-14% Re solid core, loaded with uranium nitride fuel, cooled by He-30% Xe and sized to provide 550 kWth for 7 years of equivalent full power operation. The beryllium oxide reflector of the S 4 reactor is designed to completely disassemble upon impact on water or soil. The potential of using Spectral Shift Absorber (SSA) materials in different forms to ensure that the reactor remains subcritical in the worst-case submersion accident is investigated. Nine potential SSAs are considered in terms of their effect on the thickness of the radial reflector and on the combined mass of the reactor and the radiation shadow shield. The SSA materials are incorporated as a thin (0.1 mm) coating on the outside surface of the reactor core and as core additions in three possible forms: 2.0 mm diameter pins in the interstices of the core block, 0.25 mm thick sleeves around the fuel stacks and/or additions to the uranium nitride fuel. Results show that with a boron carbide coating and 0.25 mm iridium sleeves around the fuel stacks the S 4 reactor has a reflector outer diameter of 43.5 cm with a combined reactor and shadow shield mass of 935.1 kg. The S 4 reactor with 12.5 at.% gadolinium-155 added to the fuel, 2.0 mm diameter gadolinium-155 sesquioxide interstitial pins, and a 0.1 mm thick gadolinium-155 sesquioxide coating has a slightly smaller reflector outer diameter of 43.0 cm, resulting in a smaller total reactor and shield mass of 901.7 kg. With 8.0 at.% europium-151 added to the fuel, along with europium-151 sesquioxide for the pins and coating, the reflector's outer diameter and the total reactor and shield mass are further reduced to 41.5 cm and 869.2 kg, respectively

  1. Characterisation of dissolved organic compounds in hydrothermal fluids by stir bar sorptive extraction - gas chomatography - mass spectrometry. Case study: the Rainbow field (36°N, Mid-Atlantic Ridge

    Directory of Open Access Journals (Sweden)

    Konn Cecile

    2012-11-01

    Full Text Available Abstract The analysis of the dissolved organic fraction of hydrothermal fluids has been considered a real challenge due to sampling difficulties, complexity of the matrix, numerous interferences and the assumed ppb concentration levels. The present study shows, in a qualitative approach, that Stir Bar Sorptive Extraction (SBSE followed by Thermal Desorption – Gas Chromatography – Mass Spectrometry (TD-GC-MS is suitable for extraction of small sample volumes and detection of a wide range of volatile and semivolatile organic compounds dissolved in hydrothermal fluids. In a case study, the technique was successfully applied to fluids from the Rainbow ultramafic-hosted hydrothermal field located at 36°14’N on the Mid-Atlantic Ridge (MAR. We show that n-alkanes, mono- and poly- aromatic hydrocarbons as well as fatty acids can be easily identified and their retention times determined. Our results demonstrate the excellent repeatability of the method as well as the possibility of storing stir bars for at least three years without significant changes in the composition of the recovered organic matter. A preliminary comparative investigation of the organic composition of the Rainbow fluids showed the great potential of the method to be used for assessing intrafield variations and carrying out time series studies. All together our results demonstrate that SBSE-TD-GC-MS analyses of hydrothermal fluids will make important contributions to the understanding of geochemical processes, geomicrobiological interactions and formation of mineral deposits.

  2. Métodos de extração e/ou concentração de compostos encontrados em fluidos biológicos para posterior determinação cromatográfica Methods of extraction and/or concentration of compounds found in biological fluids for subsequent chromatographic determination

    Directory of Open Access Journals (Sweden)

    Sonia C. N. Queiroz

    2001-02-01

    Full Text Available When organic compounds present in biological fluids are analysed by chromatographic methods, it is generally necessary to carry out a prior sample preparation due the high complexity of this type of sample, especially when the compounds to be determinated are found in very low concentrations. This article describes some of the principal methods for sample preparation in analyses of substances present in biological fluids. The methods include liquid-liquid extraction, solid phase extraction, supercritical fluid extraction and extraction using solid and liquid membranes. The advantages and disadvantages of these methods are discussed.

  3. Development study on subcriticality monitor. 1. Report under business contract with Japan Nuclear Fuel Cycle Development Institute

    CERN Document Server

    Yamada, S

    2002-01-01

    In this trust fund, we reviewed subcriticality measuring methods and neutron or gamma ray measuring and date transmission systems appropriate for realizing inexpensive on-line criticality surveillance systems, which is required for ensuring the safety of nuclear fuel reprocessing plants. Since the neutron flux level in subcritical systems is fairly low without external neutron sources, it is desirable to use pulse type neutron detectors for subcritical measurement systems. This logically implies that subcriticality measurement methods based on the temporal domain should be used for developing an on-line criticality surveillance system. In the deep subcriticality conditions, a strong external neutron source is needed for eactivity measurement and a D-T tube can be used in order to improve the accuracy of the measurement. A D-T tube is convenient since it is free from Tritium problem since Tritium is sealed in an airtight container and also can be controlled by power supply. Hence, under deep subcritical condit...

  4. Fluid Assisted Compaction and Deformation of Reservoir Lithologies; FINAL

    International Nuclear Information System (INIS)

    Kronenberg, A.K.; Chester, F.M.; Chester, J.S.; Hajash, A.; He, W.; Karner, S.; Lenz, S.

    2002-01-01

    The compaction and diagenesis of sandstones that form reservoirs to hydrocarbons depend on mechanical compaction processes, fluid flow at local and regional scales, and chemical processes of dissolution, precipitation and diffusional solution transport. The compaction and distortional deformation of quartz aggregates exposed to reactive aqueous fluids have been investigated experimentally at varying critical and subcritical stress states and time scales. Pore fluid compositions and reaction rates during deformation have been measured and compared with creep rates. Relative contributions of mechanical and chemical processes to deformation and pore structure evolution have been evaluated using acoustic emission (AE) measurements and scanning electron microscope (SEM) observations. At the subcritical conditions investigated, creep rates and acoustic emission rates fit transient logarithmic creep laws. Based on AE and SEM observations, we conclude that intragranular cracking and grain rearrangement are the dominant strain mechanisms. Specimens show little evidence of stress-enhanced solution transfer. At long times under wet conditions, the dominant strain mechanism gradually shifts from critical cracking at grain contacts with high stress concentrations to fluid-assisted sub-critical cracking

  5. Onset of Fast Magnetic Reconnection via Subcritical Bifurcation

    Directory of Open Access Journals (Sweden)

    ZHIBIN eGUO

    2015-04-01

    Full Text Available We report a phase transition model for the onset of fast magnetic reconnection. By investigating the joint dynamics of streaming instability(i.e., current driven ion acoustic in this paper and current gradient driven whistler wave {color{blue} {prior to the onset of fast reconnection}}, we show that the nonlinear evolution of current sheet(CS can be described by a Landau-Ginzburg equation. The phase transition from slow reconnection to fast reconnection occurs at a critical thickness, $Delta_csimeq frac{2}{sqrt{pi}}left|frac{v_{the}}{v_c}right|d_e$, where $v_{the}$ is electron thermal velocity and $v_c$ is the velocity threshold of the streaming instability. For current driven ion acoustic, $Delta_c$ is $leq10d_e$. If the thickness of the CS is narrower than $Delta_c$, the CS subcritically bifurcates into a rough state, which facilitates breakage of the CS, and consequently initiates fast reconnection.

  6. The Chain-Length Distribution in Subcritical Systems

    International Nuclear Information System (INIS)

    Nolen, Steven Douglas

    2000-01-01

    The individual fission chains that appear in any neutron multiplying system provide a means, via neutron noise analysis, to unlock a wealth of information regarding the nature of the system. This work begins by determining the probability density distributions for fission chain lengths in zero-dimensional systems over a range of prompt neutron multiplication constant (K) values. This section is followed by showing how the integral representation of the chain-length distribution can be used to obtain an estimate of the system's subcritical prompt multiplication (MP). The lifetime of the chains is then used to provide a basis for determining whether a neutron noise analysis will be successful in assessing the neutron multiplication constant, k, of the system in the presence of a strong intrinsic source. A Monte Carlo transport code, MC++, is used to model the evolution of the individual fission chains and to determine how they are influenced by spatial effects. The dissertation concludes by demonstrating how experimental validation of certain global system parameters by neutron noise analysis may be precluded in situations in which the system K is relatively low and in which realistic detector efficiencies are simulated

  7. Subcritical hydrothermal conversion of organic wastes and biomass. Reaction pathways

    Directory of Open Access Journals (Sweden)

    Alejandro Amadeus Castro Vega

    2007-01-01

    Full Text Available Hydrothermal conversion is a procedure which emulates organic matter’s natural conversion into bio-crude having physical and chemical properties analogous to petroleum. The artificial transformation of biomass requi- res previous knowledge of the main reaction routes and product availability. The main component of biomass (depolymerisation by hydrolysis is presented in hydrothermal cellulose conversion, producing oligosaccharides which exhibit dehydration and retro-aldol condensation reactions for transforming into furfurals and carboxylic acids. Other biomass components (such as lignin, proteins, and fat esters present both hydrolysis and pyrolysis reaction routes. As long as biomass mainly contains carbohydrates, subcritical hydrothermal conversion products and their wastes will be fundamentally analogous to those displaying cellulose. These substances have added- value by far surpassing raw material’s acquisition cost. When the main hydrothermal conversion products’ O/C, H/C molar ratios as reported in literature are plotted, an evolutionary tralectory for conversion products appears to be closely or even overlapped with fossil fuels’ geological evolution.

  8. Monte Carlo Modeling Electronuclear Processes in Cascade Subcritical Reactor

    CERN Document Server

    Bznuni, S A; Zhamkochyan, V M; Polyanskii, A A; Sosnin, A N; Khudaverdian, A G

    2000-01-01

    Accelerator driven subcritical cascade reactor composed of the main thermal neutron reactor constructed analogous to the core of the VVER-1000 reactor and a booster-reactor, which is constructed similar to the core of the BN-350 fast breeder reactor, is taken as a model example. It is shown by means of Monte Carlo calculations that such system is a safe energy source (k_{eff}=0.94-0.98) and it is capable of transmuting produced radioactive wastes (neutron flux density in the thermal zone is PHI^{max} (r,z)=10^{14} n/(cm^{-2} s^{-1}), neutron flux in the fast zone is respectively equal PHI^{max} (r,z)=2.25 cdot 10^{15} n/(cm^{-2} s^{-1}) if the beam current of the proton accelerator is k_{eff}=0.98 and I=5.3 mA). Suggested configuration of the "cascade" reactor system essentially reduces the requirements on the proton accelerator current.

  9. Candidate molten salt investigation for an accelerator driven subcritical core

    Science.gov (United States)

    Sooby, E.; Baty, A.; Beneš, O.; McIntyre, P.; Pogue, N.; Salanne, M.; Sattarov, A.

    2013-09-01

    We report a design for accelerator-driven subcritical fission in a molten salt core (ADSMS) that utilizes a fuel salt composed of NaCl and transuranic (TRU) chlorides. The ADSMS core is designed for fast neutronics (28% of neutrons >1 MeV) to optimize TRU destruction. The choice of a NaCl-based salt offers benefits for corrosion, operating temperature, and actinide solubility as compared with LiF-based fuel salts. A molecular dynamics (MD) code has been used to estimate properties of the molten salt system which are important for ADSMS design but have never been measured experimentally. Results from the MD studies are reported. Experimental measurements of fuel salt properties and studies of corrosion and radiation damage on candidate metals for the core vessel are anticipated. A special thanks is due to Prof. Paul Madden for introducing the ADSMS group to the concept of using the molten salt as the spallation target, rather than a conventional heavy metal spallation target. This feature helps to optimize this core as a Pu/TRU burner.

  10. The Chain-Length Distribution in Subcritical Systems

    Energy Technology Data Exchange (ETDEWEB)

    Nolen, Steven Douglas [Texas A & M Univ., College Station, TX (United States)

    2000-06-01

    The individual fission chains that appear in any neutron multiplying system provide a means, via neutron noise analysis, to unlock a wealth of information regarding the nature of the system. This work begins by determining the probability density distributions for fission chain lengths in zero-dimensional systems over a range of prompt neutron multiplication constant (K) values. This section is followed by showing how the integral representation of the chain-length distribution can be used to obtain an estimate of the system's subcritical prompt multiplication (MP). The lifetime of the chains is then used to provide a basis for determining whether a neutron noise analysis will be successful in assessing the neutron multiplication constant, k, of the system in the presence of a strong intrinsic source. A Monte Carlo transport code, MC++, is used to model the evolution of the individual fission chains and to determine how they are influenced by spatial effects. The dissertation concludes by demonstrating how experimental validation of certain global system parameters by neutron noise analysis may be precluded in situations in which the system K is relatively low and in which realistic detector efficiencies are simulated.

  11. Enhanced Capabilities for Subcritical Experiments (ECSE) Risk Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Urban, Mary Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Process Modeling and Analysis Group

    2016-05-02

    Risk is a factor, element, constraint, or course of action that introduces an uncertainty of outcome that could impact project objectives. Risk is an inherent part of all activities, whether the activity is simple and small, or large and complex. Risk management is a process that identifies, evaluates, handles, and monitors risks that have the potential to affect project success. The risk management process spans the entire project, from its initiation to its successful completion and closeout, including both technical and programmatic (non-technical) risks. This Risk Management Plan (RMP) defines the process to be used for identifying, evaluating, handling, and monitoring risks as part of the overall management of the Enhanced Capabilities for Subcritical Experiments (ECSE) ‘Project’. Given the changing nature of the project environment, risk management is essentially an ongoing and iterative process, which applies the best efforts of a knowledgeable project staff to a suite of focused and prioritized concerns. The risk management process itself must be continually applied throughout the project life cycle. This document was prepared in accordance with DOE O 413.3B, Program and Project Management for the Acquisition of Capital Assets, its associated guide for risk management DOE G 413.3-7, Risk Management Guide, and LANL ADPM AP-350-204, Risk and Opportunity Management.

  12. Recycling high-performance carbon fiber reinforced polymer composites using sub-critical and supercritical water

    Science.gov (United States)

    Knight, Chase C.

    of the polymer matrix. To date, very few studies have been reported in this area and the studies thus far have only focused on small scale feasibility and have only shown the recovery of random fibers. The goal of this research is to advance the knowledge in the field of sub-critical and supercritical fluid recycling by providing fundamental information that will be necessary to move this process forward to an industrial scale. This dissertation work consists of several phases of studies. In the first phase of this research, the feasibility of recycling woven CFRP was established on a scale approximately 30 times larger than previously reported. The industrial relevance was also conveyed, as the process was shown to remove up 99% of a highly cross-linked resin from an aerospace grade composite system with 100% retention of the single filament tensile strength and modulus whilst also retaining the highly valuable woven fiber structure. The second phase of research demonstrated the power of this technology to recycle multi-layer composites and provide the ability to reuse the highly valuable materials. Up to 99% resin elimination was achieved for a woven 12-layer aerospace grade composite. The recycled woven fabric layers, with excellent retention of the fiber architecture, were directly reused to fabricate reclaimed fiber composites (RFC). Manufacturing issues associated with the use of the recycled fiber were investigated. Several fabrication technologies were used to fabricate the composite, and the composites show moderate short beam shear strength and may be suitable for certain industrial applications. Moreover, fresh composites were also recycled, recovered, and reused to investigate the retention of flexural properties of the fibers after recycling. Up to 95% of the flexural strength and 98% of the flexural modulus was retained in the reclaimed fiber composites. The recycled resin residual can be incorporated into fresh resin and cured, demonstrating a near

  13. Proximity-interference wake-induced vibration at subcritical Re: Mechanism analysis using a linear dynamic model

    Science.gov (United States)

    Li, Xintao; Zhang, Weiwei; Gao, Chuanqiang

    2018-03-01

    Wake-induced vibration (WIV) contains rich and complex phenomena due to the flow interference between cylinders. The aim of the present study is to gain physical insight into the intrinsic dynamics of WIV via linear stability analysis (LSA) of the fluid-structure interaction (FSI) system. A reduced-order-model-based linear dynamic model, combined with the direct computational fluid dynamics/computational structural dynamics simulation method, is adopted to investigate WIV in two identical tandem cylinders at low Re. The spacing ratio L/D, with L as the center-to-center distance and D as the diameter of cylinders, is selected as 2.0 to consider the effect of proximity flow interference. Results show that extensive WIV along with the vortex shedding could occur at subcritical Re conditions due to the instability of one coupled mode (i.e., coupled mode I, CM-I) of the FSI system. The eigenfrequency of CM-I transfers smoothly from close to the reduced natural frequency of structure to the eigenfrequency of uncoupled wake mode as the reduced velocity U* increases. Thus, CM-I characterizes as the structure mode (SM) at low U*, while it characterizes as the wake mode (WM) at large U*. Mode conversion of CM-I is the primary cause of the "frequency transition" phenomenon observed in WIV responses. Furthermore, LSA indicates that there exists a critical mass ratio mcr*, below which no upper instability boundary of CM-I exists (Uup p e r *→∞ ). The unbounded instability of CM-I ultimately leads to the "infinite WIV" phenomenon. The neutral stability boundaries for WIV in the (Re, U*) plane are determined through LSA. It is shown that the lowest Re possible for WIV regarding the present configuration is R el o w e s t≈34 . LSA accurately captures the dynamics of WIV at subcritical Re and reveals that it is essentially a fluid-elastic instability problem. This work lays a good foundation for the investigation of WIV at supercritical high Re and gives enlightenment to the

  14. Mechanical weathering and rock erosion by climate-dependent subcritical cracking

    Science.gov (United States)

    Eppes, Martha-Cary; Keanini, Russell

    2017-06-01

    This work constructs a fracture mechanics framework for conceptualizing mechanical rock breakdown and consequent regolith production and erosion on the surface of Earth and other terrestrial bodies. Here our analysis of fracture mechanics literature explicitly establishes for the first time that all mechanical weathering in most rock types likely progresses by climate-dependent subcritical cracking under virtually all Earth surface and near-surface environmental conditions. We substantiate and quantify this finding through development of physically based subcritical cracking and rock erosion models founded in well-vetted fracture mechanics and mechanical weathering, theory, and observation. The models show that subcritical cracking can culminate in significant rock fracture and erosion under commonly experienced environmental stress magnitudes that are significantly lower than rock critical strength. Our calculations also indicate that climate strongly influences subcritical cracking—and thus rock weathering rates—irrespective of the source of the stress (e.g., freezing, thermal cycling, and unloading). The climate dependence of subcritical cracking rates is due to the chemophysical processes acting to break bonds at crack tips experiencing these low stresses. We find that for any stress or combination of stresses lower than a rock's critical strength, linear increases in humidity lead to exponential acceleration of subcritical cracking and associated rock erosion. Our modeling also shows that these rates are sensitive to numerous other environment, rock, and mineral properties that are currently not well characterized. We propose that confining pressure from overlying soil or rock may serve to suppress subcritical cracking in near-surface environments. These results are applicable to all weathering processes.

  15. Experimental subcritical facility driven by D-D/D-T neutron generator at BARC, India

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Amar, E-mail: image@barc.gov.in; Roy, Tushar; Kashyap, Yogesh; Ray, Nirmal; Shukla, Mayank; Patel, Tarun; Bajpai, Shefali; Sarkar, P.S.; Bishnoi, Saroj

    2015-05-01

    Highlights: •Experimental subcritical facility BRAHMMA coupled to D-D/D-T neutron generator. •Preliminary results of PNS experiments reported. •Feynman-alpha noise measurements explored with continuous source. -- Abstract: The paper presents design of an experimental subcritical assembly driven by D-D/D-T neutron and preliminary experimental measurements. The system has been developed for investigating the static and dynamic neutronic properties of accelerator driven sub-critical systems. This system is modular in design and it is first in the series of subcritical assemblies being designed. The subcritical core consists of natural uranium fuel with high density polyethylene as moderator and beryllium oxide as reflector. The fuel is embedded in high density polyethylene moderator matrix. Estimated k{sub eff} of the system is ∼0.89. One of the unique features of subcritical core is the use of Beryllium oxide (BeO) as reflector and HDPE as moderator making the assembly a compact modular system. The subcritical core is coupled to Purnima Neutron Generator which works in D-D and D-T mode with both DC and pulsed operation. It has facility for online source strength monitoring using neutron tagging and programmable source modulation. Preliminary experiments have been carried out for spatial flux measurement and reactivity estimation using pulsed neutron source (PNS) techniques with D-D neutrons. Further experiments are being planned to measure the reactivity and other kinetic parameters using noise methods. This facility would also be used for carrying out studies on effect of source importance and measurement of source multiplication factor k{sub s} and external neutron source efficiency φ{sup ∗} in great details. Experiments with D-T neutrons are also underway.

  16. Physics analyses of an accelerator-driven sub-critical assembly

    Science.gov (United States)

    Naberezhnev, Dmitry G.; Gohar, Yousry; Bailey, James; Belch, Henry

    2006-06-01

    Physics analyses have been performed for an accelerator-driven sub-critical assembly as a part of the Argonne National Laboratory activity in preparation for a joint conceptual design with the Kharkov Institute of Physics and Technology (KIPT) of Ukraine. KIPT has a plan to construct an accelerator-driven sub-critical assembly targeted towards the medical isotope production and the support of the Ukraine nuclear industry. The external neutron source is produced either through photonuclear reactions in tungsten or uranium targets, or deuteron reactions in a beryllium target. KIPT intends using the high-enriched uranium (HEU) for the fuel of the sub-critical assembly. The main objective of this paper is to study the possibility of utilizing low-enriched uranium (LEU) fuel instead of HEU fuel without penalizing the sub-critical assembly performance, in particular the neutron flux level. In the course of this activity, several studies have been carried out to investigate the main choices for the system's parameters. The external neutron source has been characterized and a pre-conceptual target design has been developed. Several sub-critical configurations with different fuel enrichments and densities have been considered. Based on our analysis, it was shown that the performance of the LEU fuel is comparable with that of the HEU fuel. The LEU fuel sub-critical assembly with 200-MeV electron energy and 100-kW electron beam power has an average total flux of ˜2.50×10 13 n/s cm 2 in the irradiation channels. The corresponding total facility power is ˜204 kW divided into 91 and 113 kW deposited in the target and sub-critical assemblies, respectively.

  17. Supercritical-Carbon Dioxide Fluid Extract from Chrysanthemum indicum Enhances Anti-Tumor Effect and Reduces Toxicity of Bleomycin in Tumor-Bearing Mice

    Directory of Open Access Journals (Sweden)

    Hong-Mei Yang

    2017-02-01

    Full Text Available Bleomycin (BLM, a family of anti-tumor drugs, was reported to exhibit severe side effects limiting its usage in clinical treatment. Therefore, finding adjuvants that enhance the anti-tumor effect and reduce the detrimental effect of BLM is a prerequisite. Chrysanthemum indicum, an edible flower, possesses abundant bioactivities; the supercritical-carbon dioxide fluid extract from flowers and buds of C. indicum (CISCFE have strong anti-inflammatory, anti-oxidant, and lung protective effects. However, the role of CISCFE combined with BLM treatment on tumor-bearing mice remains unclear. The present study aimed to investigate the potential synergistic effect and the underlying mechanism of CISCFE combined with BLM in the treatment of hepatoma 22 (H22 tumor-bearing mice. The results suggested that the oral administration of CISCFE combined with BLM could markedly prolong the life span, attenuate the BLM-induced pulmonary fibrosis, suppress the production of pro-inflammatory cytokines (interleukin-6, tumor necrosis factor-α, activities of myeloperoxidase, and malondiadehyde. Moreover, CISCFE combined with BLM promoted the ascites cell apoptosis, the activities of caspases 3 and 8, and up-regulated the protein expression of p53 and down-regulated the transforming growth factor-β1 by activating the gene expression of miR-29b. Taken together, these results indicated that CISCFE could enhance the anti-cancer activity of BLM and reduce the BLM-induced pulmonary injury in H22 tumor-bearing mice, rendering it as a potential adjuvant drug with chemotherapy after further investigation in the future.

  18. High power ring methods and accelerator driven subcritical reactor application

    Energy Technology Data Exchange (ETDEWEB)

    Tahar, Malek Haj [Univ. of Grenoble (France)

    2016-08-07

    High power proton accelerators allow providing, by spallation reaction, the neutron fluxes necessary in the synthesis of fissile material, starting from Uranium 238 or Thorium 232. This is the basis of the concept of sub-critical operation of a reactor, for energy production or nuclear waste transmutation, with the objective of achieving cleaner, safer and more efficient process than today’s technologies allow. Designing, building and operating a proton accelerator in the 500-1000 MeV energy range, CW regime, MW power class still remains a challenge nowadays. There is a limited number of installations at present achieving beam characteristics in that class, e.g., PSI in Villigen, 590 MeV CW beam from a cyclotron, SNS in Oakland, 1 GeV pulsed beam from a linear accelerator, in addition to projects as the ESS in Europe, a 5 MW beam from a linear accelerator. Furthermore, coupling an accelerator to a sub-critical nuclear reactor is a challenging proposition: some of the key issues/requirements are the design of a spallation target to withstand high power densities as well as ensure the safety of the installation. These two domains are the grounds of the PhD work: the focus is on the high power ring methods in the frame of the KURRI FFAG collaboration in Japan: upgrade of the installation towards high intensity is crucial to demonstrate the high beam power capability of FFAG. Thus, modeling of the beam dynamics and benchmarking of different codes was undertaken to validate the simulation results. Experimental results revealed some major losses that need to be understood and eventually overcome. By developing analytical models that account for the field defects, one identified major sources of imperfection in the design of scaling FFAG that explain the important tune variations resulting in the crossing of several betatron resonances. A new formula is derived to compute the tunes and properties established that characterize the effect of the field imperfections on the

  19. Electric field measurements at subcritical, oblique bow shock crossings

    International Nuclear Information System (INIS)

    Wygant, J.R.; Bensadoun, M.; Mozer, F.S.

    1987-01-01

    Electric field measurements at oblique, subcritical bow shock crossings are presented from the ISEE 1 University of California, Berkeley, double-probe electric field experiment. The measurements averaged over the 3-s spin period of the spacecraft provide the first observations of the large-scale (100 km) laminar oscillations in the longitudinal component of the electric field associated with the whistler precursor which is characteristic of these dispersive shocks. The amplitude of the oscillations increases from ∼0.5 mV/m to a maximum of 6 mV/m across the magnetic ramp of the shock (directed along the shock normal). The calculated electric potential drops across the shocks varied from 340 to 550 volts, which is 40-60% of the observed loss of kinetic energy associated with the bulk flow of the ions. These measurements suggest that at these shocks the additional deceleration of incident ions is due to the Lorentz force. The contributions to the normal component of the large-scale electric field at the shock due to the parallel and perpendicular components (relative to the magnetic field) of the electric field are evaluated. It is shown that the perpendicular component of the electric field