WorldWideScience

Sample records for subcritical assemblies controlled

  1. Reactor Dynamics Experiments with a Sub-Critical Assembly

    International Nuclear Information System (INIS)

    Miley, G.H.; Yang, Y.; Wu, L.; Momota, H.

    2004-01-01

    A resurgence in use of nuclear power is now underway worldwide. However due to the shutdown of many university research reactors , student laboratories must rely more heavily on use of sub-critical assemblies. Here a driven sub-critical is described that uses a cylindrical Inertial Electrostatic Confinement (IEC) device to provide a fusion neutron source. The small IEC neutron source would be inserted in a fuel element position, with its power input controlled externally at a control panel. This feature opens the way to use of the critical assembly for a number of transient experiments such as sub-critical pulsing and neutron wave propagation. That in turn adds important new insights and excitement for the student teaching laboratory

  2. Subcritical assemblies, use and their feasibility assessment

    International Nuclear Information System (INIS)

    Haroon, M.R.

    1982-03-01

    In developing countries, subcritical assemblies can be a useful tool for training and research in the field of nuclear technology with minimum cost. The historical development of subcritical assemblies and the reactor physics experiments which can be carried out using this facility are outlined. The different types of subcritical assemblies have been described and material requirements for each assembly have been pointed out. (author)

  3. Subcritical nuclear assembly

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H. R., E-mail: fermineutron@yahoo.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico)

    2014-08-15

    A Subcritical Nuclear Assembly is a device where the nuclear-fission chain reaction is initiated and maintained using an external neutron source. It is a valuable educational and research tool where in a safe way many reactor parameters can be measured. Here, we have used the Wigner-Seitz method in the six-factor formula to calculate the effective multiplication factor of a subcritical nuclear reactor Nuclear Chicago model 9000. This reactor has approximately 2500 kg of natural uranium heterogeneously distributed in slugs. The reactor uses a {sup 239}PuBe neutron source that is located in the center of an hexagonal array. Using Monte Carlo methods, with the MCNP5 code, a three-dimensional model of the subcritical reactor was designed to estimate the effective multiplication factor, the neutron spectra, the total and thermal neutron fluences along the radial and axial axis. With the neutron spectra in two locations outside the reactor the ambient dose equivalent were estimated. (Author)

  4. Subcritical nuclear assembly

    International Nuclear Information System (INIS)

    Vega C, H. R.

    2014-08-01

    A Subcritical Nuclear Assembly is a device where the nuclear-fission chain reaction is initiated and maintained using an external neutron source. It is a valuable educational and research tool where in a safe way many reactor parameters can be measured. Here, we have used the Wigner-Seitz method in the six-factor formula to calculate the effective multiplication factor of a subcritical nuclear reactor Nuclear Chicago model 9000. This reactor has approximately 2500 kg of natural uranium heterogeneously distributed in slugs. The reactor uses a 239 PuBe neutron source that is located in the center of an hexagonal array. Using Monte Carlo methods, with the MCNP5 code, a three-dimensional model of the subcritical reactor was designed to estimate the effective multiplication factor, the neutron spectra, the total and thermal neutron fluences along the radial and axial axis. With the neutron spectra in two locations outside the reactor the ambient dose equivalent were estimated. (Author)

  5. Physics analyses of an accelerator-driven sub-critical assembly

    Science.gov (United States)

    Naberezhnev, Dmitry G.; Gohar, Yousry; Bailey, James; Belch, Henry

    2006-06-01

    Physics analyses have been performed for an accelerator-driven sub-critical assembly as a part of the Argonne National Laboratory activity in preparation for a joint conceptual design with the Kharkov Institute of Physics and Technology (KIPT) of Ukraine. KIPT has a plan to construct an accelerator-driven sub-critical assembly targeted towards the medical isotope production and the support of the Ukraine nuclear industry. The external neutron source is produced either through photonuclear reactions in tungsten or uranium targets, or deuteron reactions in a beryllium target. KIPT intends using the high-enriched uranium (HEU) for the fuel of the sub-critical assembly. The main objective of this paper is to study the possibility of utilizing low-enriched uranium (LEU) fuel instead of HEU fuel without penalizing the sub-critical assembly performance, in particular the neutron flux level. In the course of this activity, several studies have been carried out to investigate the main choices for the system's parameters. The external neutron source has been characterized and a pre-conceptual target design has been developed. Several sub-critical configurations with different fuel enrichments and densities have been considered. Based on our analysis, it was shown that the performance of the LEU fuel is comparable with that of the HEU fuel. The LEU fuel sub-critical assembly with 200-MeV electron energy and 100-kW electron beam power has an average total flux of ˜2.50×10 13 n/s cm 2 in the irradiation channels. The corresponding total facility power is ˜204 kW divided into 91 and 113 kW deposited in the target and sub-critical assemblies, respectively.

  6. Pulsed neutron source based on accelerator-subcritical-assembly

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Makoto; Noda, Akira; Iwashita, Yoshihisa; Okamoto, Hiromi; Shirai, Toshiyuki [Kyoto Univ., Uji (Japan). Inst. for Chemical Research

    1997-03-01

    A new pulsed neutron source which consists of a 300MeV proton linac and a nuclear fuel subcritical assembly is proposed. The proton linac produces pulsed spallation neutrons, which are multipied by the subcritical assembly. A prototype proton linac that accelerates protons up to 7MeV has been developed and a high energy section of a DAW structure is studied with a power model. Halo formations in high intensity beam are also being studied. (author)

  7. Modeling of Parameters of Subcritical Assembly SAD

    CERN Document Server

    Petrochenkov, S; Puzynin, I

    2005-01-01

    The accepted conceptual design of the experimental Subcritical Assembly in Dubna (SAD) is based on the MOX core with a nominal unit capacity of 25 kW (thermal). This corresponds to the multiplication coefficient $k_{\\rm eff} =0.95$ and accelerator beam power 1 kW. A subcritical assembly driven with the existing 660 MeV proton accelerator at the Joint Institute for Nuclear Research has been modelled in order to make choice of the optimal parameters for the future experiments. The Monte Carlo method was used to simulate neutron spectra, energy deposition and doses calculations. Some of the calculation results are presented in the paper.

  8. Analysis of subcritical control rod worth measurements in assembly BZB/3

    International Nuclear Information System (INIS)

    Giese, H.

    1981-07-01

    A series of subcritical absorber array measurements was performed in version three of the BIZET assembly BZB in order to check the ability of standard reactor computational codes used by the BIZET participants in predicting control rod worths in large fast reactors. Assembly BZB/3 was a two-zone core with a diameter of about 2.5 m and a core height of 0.89 m, fuelled with plutonium. Fifteen control rod positions and twelve secondary shutdown rod positions were simulated in the core. The measurements comprised the insertion of single absorbers as well as various groups of absorbers and were based on the modified source multiplication method. The KfK analysis was confined to the calculation of eigenvalues for different absorber arrays, also with a view to a comparison with the results of a former BZA evaluation with calculation-to-experiment values of up to C/E ∼ 1.10. The C/E-values found for BZB/3 ranged from 1.02 to 1.10 and did not show a systematic variation at different radial positions or different degrees of absorber asymmetry

  9. Subcriticality determination of nuclear fuel assembly by Mihalczo method

    International Nuclear Information System (INIS)

    Yamane, Yoshihiro; Watanabe, Shoji; Nishina, Kojiro; Miyoshi, Yoshinori; Suzaki, Takenori; Kobayashi, Iwao.

    1986-01-01

    To establish a technique of on-site subcriticality determination suitable for the criticality safety management of nuclear fuel assembly, the applicability of the method proposed by Mihalczo was examined with the Tank-type Critical Assembly (TCA) of the Japan Atomic Energy Research Institute. In the Mihalczo method, cross power spectral densities and auto power spectral densities are evaluated from the output currents of an ionization chamber containing 252 Cf neutron source and two neutron detectors. The principle of this method is that the spectral ratio formed by the power spectral densities mentioned can be related to the subcriticality by the help of a stochastic theory. Throughout our data processing, an improved formula taking account of the neutron extinction at a detection process was used. Up to the subcriticality of 15 dollars, the Mihalczo method agreed with the water-level worth method, which has been a standard method of reactivity determination at the TCA facility. The systems treated in the present report hold symmetry concerning the nuclear fuel configuration and the 252 Cf chamber position. It was clarified that, contrary to Mihalczo's assertion, the factor converting the spectral ratio to a subcriticality depends on subcriticality itself. (author)

  10. Experimental determination of the neutron source for the Argonauta reactor subcritical assembly

    Energy Technology Data Exchange (ETDEWEB)

    Renke, Carlos A.C.; Furieri, Rosanne C.A.A.; Pereira, Joao C.S.; Voi, Dante L.; Barbosa, Andre L.N., E-mail: renke@ien.gov.b [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    The utilization of a subcritical assembly for the determination of nuclear parameters in a multiplier medium requires a well defined neutron source to carry out the experiments necessary for the acquisition of the desired data. The Argonauta research reactor installed at the Instituto de Engenharia Nuclear has a subcritical assembly, under development, to be coupled at the upper part of the reactor core that will provide the needed neutrons emerging from its internal thermal column made of graphite. In order to perform neutronic calculations to compare with the experimental results, it is necessary a precise knowledge of the emergent neutron flux that will be used as neutron source in the subcritical assembly. In this work, we present the thermal neutron flux profile determined experimentally via the technique of neutron activation analysis, using dysprosium wires uniformly distributed at the top of the internal thermal neutron column of the Argonauta reactor and later submitted to a detection system using Geiger-Mueller detector. These experimental data were then compared with those obtained through neutronic calculation using HAMMER and CITATION codes in order to validate this calculation system and to define a correct neutron source distribution to be used in the subcritical assembly. This procedure avoids a coupled neutronic calculation of the subcritical assembly and the reactor core. It has also been determined the dimension of the graphite pedestal to be used in the bottom of the subcritical assembly tank in order to smooth the emergent neutron flux at the reactor top. Finally, it is estimated the thermal neutron flux inside the assembly tank when filled with water. (author)

  11. Physics study of D-D/D-T neutron driven experimental subcritical assembly

    International Nuclear Information System (INIS)

    Sinha, Amar

    2015-01-01

    An experimental program to design and study external source driven subcritical assembly has been initiated at BARC. This program is aimed at understanding neutronic characteristics of accelerator driven system at low power level. In this series, a zero-power, sub-critical assembly driven by a D-D/D-T neutron generator has been developed. This system is modular in design and it is first in the series of subcritical assemblies being designed. The subcritical core consists of natural uranium fuel with high density polyethylene as moderator and beryllium oxide as reflector. The subcritical core is coupled to Purnima Neutron Generator. Preliminary experiments have been carried out for spatial flux measurement and reactivity estimation using pulsed neutron source (PNS) techniques. Further experiments are being planned to measure the reactivity and other kinetic parameters using noise methods. This facility would also be used for carrying out studies on effect of source importance and measurement of source multiplication factor k s and external neutron source efficiency φ* in great details. Some experiments with D-D and D-T neutrons have been presented. (author)

  12. Some neutronics of innovative subcritical assembly with fast neutron spectrum

    International Nuclear Information System (INIS)

    Kiyavitskaya, H.; Fokov, Yu.; Rutkovskaya, Ch.; Sadovich, S.; Kasuk, D.; Gohar, Y.; Bolshinsky, I.

    2013-01-01

    Conclusion: • New assembly can be used to: • develop the experimental techniques and adapt the existing ones for monitoring the sub-criticality level, neutron spectra measurements, etc; • study the spatial kinetics of sub-critical and critical systems with fast neutron spectra; • measure the transmutation reaction rates of minor-actinides etc

  13. Criticality Analysis of SAMOP Subcritical Assembly

    International Nuclear Information System (INIS)

    Tegas-Sutondo; Syarip; Triwulan-Tjiptono

    2005-01-01

    A critically analysis has been performed for homogenous system of uranyl nitrate solution, as part of a preliminary design assessment on neutronic aspect of SAMOP sub-critical assembly. The analysis is intended to determine some critical parameters such as the minimum of critical dimension and critical mass for the desired concentration. As the basis of this analysis, it has been defined a fuel system with an enrichment of 20% for cylindrical geometry of both bare and graphite reflected of 30 cm thickness. The MCNP code has been utilized for this purpose, for variation of concentrations ranging from 150 g/l to 500 g/l. It is found that the best concentration giving the minimum geometrical dimension is around 400 g/l, for both the bare and reflected systems. Whilst the best one, of minimum critical mass is corresponding to the concentration of around 200 g/l with critical mass around 14.1 kg and 4.2 kg for the bare and reflected systems respectively. Based on the result of calculations, it is concluded that by taking into consideration of the critical limit, the SAMOP subcritical assembly is neutronically can be made. (author)

  14. Research Programme for the 660 Mev Proton Accelerator Driven MOX-Plutonium Subcritical Assembly

    CERN Document Server

    Barashenkov, V S; Buttseva, G L; Dudarev, S Yu; Polanski, A; Puzynin, I V; Sissakian, A N

    2000-01-01

    The paper presents a research programme of the Experimental Acclerator Driven System (ADS), which employs a subcritical assembly and a 660 MeV proton acceletator operating at the Laboratory of Nuclear Problems of the JINR, Dubna. MOX fuel (25% PuO_2 + 75% UO_2) designed for the BN-600 reactor use will be adopted for the core of the assembly. The present conceptual design of the experimental subcritical assembly is based on a core of a nominal unit capacity of 15 kW (thermal). This corresponds to the multiplication coefficient k_eff = 0.945, energetic gain G = 30 and the accelerator beam power 0.5 kW.

  15. MCNPX, MONK, and ERANOS analyses of the YALINA Booster subcritical assembly

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, Alberto, E-mail: alby@anl.go [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States); Gohar, Y.; Aliberti, G.; Cao, Y.; Smith, D.; Zhong, Z. [Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439 (United States); Kiyavitskaya, H.; Bournos, V.; Fokov, Y.; Routkovskaya, C.; Serafimovich, I. [Joint Institute for Power and Nuclear Research - Sosny, National Academy of Sciences of Belarus, 99 Acad. Krasin Str., Minsk 220109 (Belarus)

    2011-05-15

    This paper compares the numerical results obtained from various nuclear codes and nuclear data libraries with the YALINA Booster subcritical assembly (Minsk, Belarus) experimental results. This subcritical assembly was constructed to study the physics and the operation of accelerator-driven subcritical systems (ADS) for transmuting the light water reactors (LWR) spent nuclear fuel. The YALINA Booster facility has been accurately modeled, with no material homogenization, by the Monte Carlo codes MCNPX (MCNP/MCB) and MONK. The MONK geometrical model matches that of MCNPX. The assembly has also been analyzed by the deterministic code ERANOS. In addition, the differences between the effective neutron multiplication factor and the source multiplication factors have been examined by alternative calculational methodologies. The analyses include the delayed neutron fraction, prompt neutron lifetime, generation time, neutron flux profiles, and spectra in various experimental channels. The accuracy of the numerical models has been enhanced by accounting for all material impurities and the actual density of the polyethylene material used in the assembly (the latter value was obtained by dividing the total weight of the polyethylene by its volume in the numerical model). There is good agreement between the results from MONK, MCNPX, and ERANOS. The ERANOS results show small differences relative to the other results because of material homogenization and the energy and angle discretizations.The MCNPX results match the experimental measurements of the {sup 3}He(n,p) reaction rates obtained with the californium neutron source.

  16. MCNPX, MONK, and ERANOS analyses of the YALINA Booster subcritical assembly

    International Nuclear Information System (INIS)

    Talamo, Alberto; Gohar, Y.; Aliberti, G.; Cao, Y.; Smith, D.; Zhong, Z.; Kiyavitskaya, H.; Bournos, V.; Fokov, Y.; Routkovskaya, C.; Serafimovich, I.

    2011-01-01

    This paper compares the numerical results obtained from various nuclear codes and nuclear data libraries with the YALINA Booster subcritical assembly (Minsk, Belarus) experimental results. This subcritical assembly was constructed to study the physics and the operation of accelerator-driven subcritical systems (ADS) for transmuting the light water reactors (LWR) spent nuclear fuel. The YALINA Booster facility has been accurately modeled, with no material homogenization, by the Monte Carlo codes MCNPX (MCNP/MCB) and MONK. The MONK geometrical model matches that of MCNPX. The assembly has also been analyzed by the deterministic code ERANOS. In addition, the differences between the effective neutron multiplication factor and the source multiplication factors have been examined by alternative calculational methodologies. The analyses include the delayed neutron fraction, prompt neutron lifetime, generation time, neutron flux profiles, and spectra in various experimental channels. The accuracy of the numerical models has been enhanced by accounting for all material impurities and the actual density of the polyethylene material used in the assembly (the latter value was obtained by dividing the total weight of the polyethylene by its volume in the numerical model). There is good agreement between the results from MONK, MCNPX, and ERANOS. The ERANOS results show small differences relative to the other results because of material homogenization and the energy and angle discretizations.The MCNPX results match the experimental measurements of the 3 He(n,p) reaction rates obtained with the californium neutron source.

  17. Calculated characteristics of subcritical assembly with anisotropic transport of neutrons

    International Nuclear Information System (INIS)

    Gorin, N.V.; Lipilina, E.N.; Lyutov, V.D.; Saukov, A.I.

    2003-01-01

    There was considered possibility of creating enough sub-critical system that multiply neutron fluence from a primary source by many orders. For assemblies with high neutron tie between parts, it is impossible. That is why there was developed a construction consisting of many units (cascades) having weak feedback with preceding cascades. The feedback attenuation was obtained placing layers of slow neutron absorber and moderators between the cascades of fission material. Anisotropy of fast neutron transport through the layers was used. The system consisted of many identical cascades aligning one by another. Each cascade consists of layers of moderator, fissile material and absorber of slow neutrons. The calculations were carried out using the code MCNP.4a with nuclear data library ENDF/B5. In this construction neutrons spread predominantly in one direction multiplying in each next fissile layer, and they attenuate considerably in the opposite direction. In a calculated construction, multiplication factor of one cascade is about 1.5 and multiplication factor of whole construction composed of n cascades is 1.5 n . Calculated keff value is 0.9 for one cascade and does not exceed 0.98 for a system containing any number of cascades. Therefore the assembly is always sub-critical and therefore it is safe in respect of criticality. There was considered using such a sub-critical assembly to create a powerful neutron fluence for neutron boron-capturing therapy. The system merits and demerits were discussed. (authors)

  18. Yalina booster subcritical assembly performance with low enriched uranium fuel

    International Nuclear Information System (INIS)

    Talamo, Alberto; Gohar, Yousry

    2011-01-01

    The YALINA Booster facility is a subcritical assembly located in Minsk, Belarus. The facility has special features that result in fast and thermal neutron spectra in different zones. The fast zone of the assembly uses a lead matrix and uranium fuels with different enrichments: 90% and 36%, 36%, or 21%. The thermal zone of the assembly contains 10% enriched uranium fuel in a polyethylene matrix. This study discusses the performance of the three YALINA Booster configurations with the different fuel enrichments. In order to maintain the same subcriticality level in the three configurations, the number of fuel rods in the thermal zone is increased as the uranium fuel enrichment in the fast zone is decreased. The maximum number of fuel rods that can be loaded in the thermal zone is about 1185. Consequently, the neutron multiplication of the configuration with 21% enriched uranium fuel in the fast zone is enhanced by changing the position of the boron carbide and the natural uranium absorber rods, located between the fast and the thermal zones, to form an annular rather than a square arrangement. (author)

  19. Yalina booster subcritical assembly performance with low enriched uranium fuel

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, Alberto; Gohar, Yousry, E-mail: alby@anl.gov [Argonne National Laboratory, Lemont, IL (United States)

    2011-07-01

    The YALINA Booster facility is a subcritical assembly located in Minsk, Belarus. The facility has special features that result in fast and thermal neutron spectra in different zones. The fast zone of the assembly uses a lead matrix and uranium fuels with different enrichments: 90% and 36%, 36%, or 21%. The thermal zone of the assembly contains 10% enriched uranium fuel in a polyethylene matrix. This study discusses the performance of the three YALINA Booster configurations with the different fuel enrichments. In order to maintain the same subcriticality level in the three configurations, the number of fuel rods in the thermal zone is increased as the uranium fuel enrichment in the fast zone is decreased. The maximum number of fuel rods that can be loaded in the thermal zone is about 1185. Consequently, the neutron multiplication of the configuration with 21% enriched uranium fuel in the fast zone is enhanced by changing the position of the boron carbide and the natural uranium absorber rods, located between the fast and the thermal zones, to form an annular rather than a square arrangement. (author)

  20. Neutron noise measurements at the Delphi subcritical assembly

    International Nuclear Information System (INIS)

    Szieberth, M.; Klujber, G.; Kloosterman, J. L.; De Haas, D.

    2012-01-01

    The paper presents the results and evaluations of a comprehensive set of neutron noise measurements on the Delphi subcritical assembly of the Delft Univ. of Technology. The measurements investigated the effect of different source distributions (inherent spontaneous fission and 252 Cf) and the position of the detectors applied (both radially and vertically). The evaluation of the measured data has been performed by the variance-to-mean ratio (VTMR, Feynman-α), the autocorrelation (ACF, Rossi-α) and the cross-correlation (CCF) methods. The values obtained for the prompt decay constant show a strong bias, which depends both on the detector position and on the source distribution. This is due to the presence of higher modes in the system. It has been observed that the α value fitted is higher when the detector is close to the boundary of the core or to the 252 Cf point-source. The higher alpha-modes have also been observed by fitting functions describing two alpha-modes. The successful set of measurement also provides a good basis for further theoretical investigations including the Monte Carlo simulation of the noise measurements and the calculation of the alpha-modes in the Delphi subcritical assembly. (authors)

  1. Research programme for the 660 MeV proton accelerator driven MOX-plutonium subcritical assembly

    International Nuclear Information System (INIS)

    Barashenkov, V.S.; Buttsev, V.S.; Buttseva, G.L.; Dudarev, S.Yu.; Polanski, A.; Puzynin, I.V.; Sissakyan, A.N.

    2000-01-01

    The paper presents a research programme of the Experimental Accelerator Driven System (ADS), which employs a subcritical assembly and a 660 MeV proton accelerator operating at the Laboratory of Nuclear Problems of the JINR, Dubna. MOX fuel (25% PuO 2 + 75% UO 2 ) designed for the BN-600 reactor use will be adopted for the core of the assembly. The present conceptual design of the experimental subcritical assembly is based on a core of a nominal unit capacity of 15 kW (thermal). This corresponds to the multiplication coefficient k eff = 0.945, energetic gain G=30 and the accelerator beam power 0.5 kW

  2. Theoretical and Experimental Research in Neutron Spectra and Nuclear Waste Transmutation on Fast Subcritical Assembly with MOX Fuel

    Science.gov (United States)

    Arkhipkin, D. A.; Buttsev, V. S.; Chigrinov, S. E.; Kutuev, R. Kh.; Polanski, A.; Rakhno, I. L.; Sissakian, A.; Zulkarneev, R. Ya.; Zulkarneeva, Yu. R.

    2003-07-01

    The paper deals with theoretical and experimental investigation of transmutation rates for a number of long-lived fission products and minor actinides, as well as with neutron spectra formed in a subcritical assembly driven with the following monodirectional beams: 660-MeV protons and 14-MeV neutrons. In this work, the main objective is the comparison of neutron spectra in the MOX assembly for different external driving sources: a 660-MeV proton accelerator and a 14-MeV neutron generator. The SAD project (JINR, Russia) has being discussed. In the context of this project, a subcritical assembly consisting of a cylindrical lead target surrounded by a cylindrical MOX fuel layer will be constructed. Present conceptual design of the subcritical assembly is based on the core with a nominal unit capacity of 15 kW (thermal). This corresponds to a multiplication coefficient, keff= 0.945, and an accelerator beam power of 0.5 kW. The results of theoretical investigations on the possibility of incinerating long-lived fission products and minor actinides in fast neutron spectrum and formation of neutron spectra with different hardness in subcritical systems based on the MOX subcritical assembly are discussed. Calculated neutron spectra emitted from a lead target irradiated by a 660-MeV protons are also presented.

  3. Study on uranium-water multiplicative means of the (RESUCO-Subcritical experimental reactor of uranium with oxygen) subcritical assembly by pulsed neutron technique

    International Nuclear Information System (INIS)

    Jesus Barbosa, S. de.

    1987-01-01

    The effective multiplication factor and the nuclear parameters associated with the variation of (RESUCO- Subcritical Experimental Reactor of Uranium with Oxygen) Subcritical Assembly Configuration, using pulsed neutron technique are analysed. BF3 detectors were used to detect the variation of thermal neutrons in the system, positioned parallelly to fuel elements, and a proton recoil detector was used for monitoring the neutron generation. (M.C.K.) [pt

  4. Prompt neutron decay constants and subcritical measurements for material control and accountability in SHEBA

    International Nuclear Information System (INIS)

    Sanchez, R.; Jaegers, P.

    1998-01-01

    Rossi-Alpha measurements were performed on the SHEBA assembly to determine the prompt neutron decay constants. These prompt neutron decay constants represent an eigenvalue characteristic of this particular assembly, which can be used to infer the amount of fissile material in the assembly. In addition, subcritical measurements using Rossi-Alpha and the source-jerk techniques were also performed on the SHEBA assembly. These measurements were compared against TWODANT calculations and agreed quite well. The subcritical measurements were also used to obtain a unique signature that represented the amount of material associated with the degree of subcriticality of the SHEBA assembly. Finally, the Feynman variance-to-mean technique in conjunction with TWODANT, were used to determine the effective delayed neutron fraction for the SHEBA assembly

  5. BRAHMMA - accelerator driven subcritical facility

    International Nuclear Information System (INIS)

    Roy, Tushar; Shukla, Shefali; Shukla, M.; Ray, N.K.; Kashyap, Y.S.; Patel, T.; Gadkari, S.C.

    2017-01-01

    Accelerator Driven Subcritical systems are being studied worldwide for their potential in burning minor actinides and reducing long term radiotoxicity of spent nuclear fuels. In order to pursue the physics studies of Accelerator Driven Subcritical systems, a thermal subcritical assembly BRAHMMA (BeOReflectedAndHDPeModeratedMultiplying Assembly) has been developed at Purnima Labs, BARC. The facility consists of two major components: Subcritical core and Accelerator (DT/ DD Purnima Neutron Generator)

  6. Benchmarks of subcriticality in accelerator-driven system at Kyoto University Critical Assembly

    Directory of Open Access Journals (Sweden)

    Cheol Ho Pyeon

    2017-09-01

    Full Text Available Basic research on the accelerator-driven system is conducted by combining 235U-fueled and 232Th-loaded cores in the Kyoto University Critical Assembly with the pulsed neutron generator (14 MeV neutrons and the proton beam accelerator (100 MeV protons with a heavy metal target. The results of experimental subcriticality are presented with a wide range of subcriticality level between near critical and 10,000 pcm, as obtained by the pulsed neutron source method, the Feynman-α method, and the neutron source multiplication method.

  7. Influence of moderator to fuel ratio (MFR) on burning thorium in a subcritical assembly

    International Nuclear Information System (INIS)

    Wojciechowski, Andrzej

    2014-01-01

    The conversion ratio (CR) of Th-232 to U-233 calculation results for a subcritical reactor assembly is presented as a function of MFR, burnup, power density (PD) and fissile concentration. The calculated model is based on subcritical assembly which makes configuration of fuel rods and volumes of moderator and coolant changes possible. This comfortable assembly enables investigation of CR in a thorium cycle for different value of MFR. Additionally, the calculation results of U-233 saturation concentration are explained by mathematical model. The value of MFR main influences the saturation concentration of U-233 and fissile and the fissile concentration dependence of CR. The saturation value of CR is included in the range CR ∈ (0.911, 0.966) and is a slowly increasing function of MFR. The calculations were done with a MCNPX 2.7 code

  8. Neutron Detector Signal Processing to Calculate the Effective Neutron Multiplication Factor of Subcritical Assemblies

    International Nuclear Information System (INIS)

    Talamo, Alberto; Gohar, Yousry

    2016-01-01

    This report describes different methodologies to calculate the effective neutron multiplication factor of subcritical assemblies by processing the neutron detector signals using MATLAB scripts. The subcritical assembly can be driven either by a spontaneous fission neutron source (e.g. californium) or by a neutron source generated from the interactions of accelerated particles with target materials. In the latter case, when the particle accelerator operates in a pulsed mode, the signals are typically stored into two files. One file contains the time when neutron reactions occur and the other contains the times when the neutron pulses start. In both files, the time is given by an integer representing the number of time bins since the start of the counting. These signal files are used to construct the neutron count distribution from a single neutron pulse. The built-in functions of MATLAB are used to calculate the effective neutron multiplication factor through the application of the prompt decay fitting or the area method to the neutron count distribution. If the subcritical assembly is driven by a spontaneous fission neutron source, then the effective multiplication factor can be evaluated either using the prompt neutron decay constant obtained from Rossi or Feynman distributions or the Modified Source Multiplication (MSM) method.

  9. Neutron Detector Signal Processing to Calculate the Effective Neutron Multiplication Factor of Subcritical Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, Alberto [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division; Gohar, Yousry [Argonne National Lab. (ANL), Argonne, IL (United States). Nuclear Engineering Division

    2016-06-01

    This report describes different methodologies to calculate the effective neutron multiplication factor of subcritical assemblies by processing the neutron detector signals using MATLAB scripts. The subcritical assembly can be driven either by a spontaneous fission neutron source (e.g. californium) or by a neutron source generated from the interactions of accelerated particles with target materials. In the latter case, when the particle accelerator operates in a pulsed mode, the signals are typically stored into two files. One file contains the time when neutron reactions occur and the other contains the times when the neutron pulses start. In both files, the time is given by an integer representing the number of time bins since the start of the counting. These signal files are used to construct the neutron count distribution from a single neutron pulse. The built-in functions of MATLAB are used to calculate the effective neutron multiplication factor through the application of the prompt decay fitting or the area method to the neutron count distribution. If the subcritical assembly is driven by a spontaneous fission neutron source, then the effective multiplication factor can be evaluated either using the prompt neutron decay constant obtained from Rossi or Feynman distributions or the Modified Source Multiplication (MSM) method.

  10. Evaluation of the criticality constant from Pulsed Neutron Source measurements in the Yalina-Booster subcritical assembly

    International Nuclear Information System (INIS)

    Bécares, V.; Villamarín, D.; Fernández-Ordóñez, M.; González-Romero, E.M.; Berglöf, C.; Bournos, V.; Fokov, Y.; Mazanik, S.; Serafimovich, I.

    2013-01-01

    Highlights: ► New methodology proposed to determine the reactivity of subcritical systems. ► Methodology tested in PNS experiments at the Yalina-Booster subcritical assembly. ► The area-ratio and the prompt decay constant methods have been used for validation. ► The absolute reactivity of the system is determined in spite of large spatial effects. - Abstract: The prompt decay constant method and the area-ratio (Sjöstrand) method constitute the reference techniques for measuring the reactivity of a subcritical system using Pulsed Neutron Source experiments (PNS). However, different experiments have shown that in many cases it is necessary to apply corrections to the experimental results in order to take into account spectral and spatial effects. In these cases, the approach usually followed is to develop different specific correction procedures for each method. In this work we discuss the validity of prompt decay constant method and the area-ratio method in the Yalina-Booster subcritical assembly and propose a general correction procedure based on Monte Carlo simulations

  11. Th and U fuel photofission study by NTD for AD-MSR subcritical assembly

    Energy Technology Data Exchange (ETDEWEB)

    Sajo-Bohus, Laszlo; Greaves, Eduardo D.; Barros, Haydn; Pino, Felix; Barrera, Maria T.; Farina, Fulvio [Universidad Simón Bolívar, Nuclear Physics Laboratory, Apdo 89000, Caracas 1080A (Venezuela, Bolivarian Republic of); Davila, Jesus [Física Médica C. A. and Universidad Central de Venezuela, Caracas (Venezuela, Bolivarian Republic of)

    2015-07-23

    During the last decade a considerable effort has been devoted for developing energy generating systems based on advanced nuclear technology within the design concepts of GEN-IV. Thorium base fuel systems such as accelerator driven nuclear reactors are one of the often mentioned attractive and affordable options. Several radiotherapy linear accelerators are on the market and due to their reliability, they could be employed as drivers for subcritical liquid fuel assemblies. Bremsstrahlung photons with energies above 5.5MeV, induce (γ,n) and (e,e’n) reactions in the W-target. Resulting gamma radiation and photo or fission neutrons may be absorbed in target materials such as thorium and uranium isotopes to induce sustained fission or nuclear transmutation in waste radioactive materials. Relevant photo driven and photo-fission reaction cross sections are important for actinides {sup 232}Th, {sup 238}U and {sup 237}Np in the radiotherapy machines energy range of 10-20 MV. In this study we employ passive nuclear track detectors (NTD) to determine fission rates and neutron production rates with the aim to establish the feasibility for gamma and photo-neutron driven subcritical assemblies. To cope with these objectives a 20 MV radiotherapy machine has been employed with a mixed fuel target. Results will support further development for a subcritical assembly employing a thorium containing liquid fuel. It is expected that acquired technological knowledge will contribute to the Venezuelan nuclear energy program.

  12. Th and U fuel photofission study by NTD for AD-MSR subcritical assembly

    Science.gov (United States)

    Sajo-Bohus, Laszlo; Greaves, Eduardo D.; Davila, Jesus; Barros, Haydn; Pino, Felix; Barrera, Maria T.; Farina, Fulvio

    2015-07-01

    During the last decade a considerable effort has been devoted for developing energy generating systems based on advanced nuclear technology within the design concepts of GEN-IV. Thorium base fuel systems such as accelerator driven nuclear reactors are one of the often mentioned attractive and affordable options. Several radiotherapy linear accelerators are on the market and due to their reliability, they could be employed as drivers for subcritical liquid fuel assemblies. Bremsstrahlung photons with energies above 5.5MeV, induce (γ,n) and (e,e'n) reactions in the W-target. Resulting gamma radiation and photo or fission neutrons may be absorbed in target materials such as thorium and uranium isotopes to induce sustained fission or nuclear transmutation in waste radioactive materials. Relevant photo driven and photo-fission reaction cross sections are important for actinides 232Th, 238U and 237Np in the radiotherapy machines energy range of 10-20 MV. In this study we employ passive nuclear track detectors (NTD) to determine fission rates and neutron production rates with the aim to establish the feasibility for gamma and photo-neutron driven subcritical assemblies. To cope with these objectives a 20 MV radiotherapy machine has been employed with a mixed fuel target. Results will support further development for a subcritical assembly employing a thorium containing liquid fuel. It is expected that acquired technological knowledge will contribute to the Venezuelan nuclear energy program.

  13. Transmutation of uranium and thorium in the particle field of the Quinta sub-critical assembly

    Science.gov (United States)

    Hashemi-Nezhad, S. R.; Asquith, N. L.; Voronko, V. A.; Sotnikov, V. V.; Zhadan, Alina; Zhuk, I. V.; Potapenko, A.; Husak, Krystsina; Chilap, V.; Adam, J.; Baldin, A.; Berlev, A.; Furman, W.; Kadykov, M.; Khushvaktov, J.; Kudashkin, I.; Mar'in, I.; Paraipan, M.; Pronskih, V.; Solnyshkin, A.; Tyutyunnikov, S.

    2018-03-01

    The fission rates of natural uranium and thorium were measured in the particle field of Quinta, a 512 kg natural uranium target-blanket sub-critical assembly. The Quinta assembly was irradiated with deuterons of energy 4 GeV from the Nuclotron accelerator of the Joint Institute for Nuclear Research (JINR), Dubna, Russia. Fission rates of uranium and thorium were measured using Gamma spectroscopy and fission track techniques. The production rate of 239Np was also measured. The obtained experimental results were compared with Monte Carlo predictions using the MCNPX 2.7 code employing the physics and fission-evaporation models of INCL4-ABLA, CEM03.03 and LAQGSM03.03. Some of the neutronic characteristics of the Quinta are compared with the "Energy plus Transmutation (EpT)" subcritical assembly, which is composed of a lead target and natU blanket. This comparison clearly demonstrates the importance of target material, neutron moderator and reflector types on the performance of a spallation neutron driven subcritical system. As the dimensions of the Quinta are very close to those of an optimal multi-rod-uranium target, the experimental and Monte Carlo calculation results presented in this paper provide insights on the particle field within a uranium target as well as in Accelerator Driven Systems in general.

  14. Mathematical investigation of the possibility of a power increase of the subcritical assembly in Dubna (SAD) up to 100 kW

    International Nuclear Information System (INIS)

    Petrochenkov, S.A.; Shvetsov, V.N.; Polanski, A.

    2007-01-01

    We present the results of Monte-Carlo modeling of the experimental accelerator-driven electronuclear system composed of the subcritical assembly and DLNP JINR Phasotron. The expected thermal power of the subcritical assembly in Dubna (SAD) is about 30 kW. The possibility of assembly power increase without changes in design and basic elements is considered. The proposed assembly upgrade gives power increase up to 100 kW. It is of importance that proposed upgrade operations can be performed both before and after the run with nominal power and partial fulfillment of a basic experimental program

  15. Calchulation of physical parameters of the subcritical assembly located in the higher Institute of Nuclear Sciences and Technology

    International Nuclear Information System (INIS)

    Castaneda Donate, S.; Quintero, B.; Santos, J.

    1992-01-01

    A detailed calculation of the core is necessary to analyze the influence of the neutron source on the neutron flux in the subcritical assembly of the Higher Institute Nuclear Science and Technology. A new calculation methodology for the neutronic characteristics of the subcritical assembly is presented, based on the calculation tools available nowadays in our department (WIMS, SNAP, etc). The main results are: Neutron-physical constants of the reactor cells; absolute neutron flux distribution and an estimation of the adequate regions for detector location based on higher armonic terms influence

  16. Importance of (n,xn) reactions in evaluating kinetic parameters of subcritical assemblies: from classic to modern formalism

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, Alberto; Gohar, Yousry, E-mail: alby@anl.gov [Argonne National Laboratory, Lemont, IL (United States); Dulla, Sandra; Ravetto, Piero [Politecnico di Torino (Italy)

    2011-07-01

    The importance of (n,xn) reactions must be taken into consideration while calculating the kinetic parameters of subcritical assemblies driven by an external neutron source. This study is divided into two parts, the first part is dedicated to the classic definition of the neutron source multiplication factor and two alternative calculation methodologies are compared. The second part considers a new definition of the kinetic parameters for subcritical assemblies, with particular emphasis on the delayed neutron fraction and generation time. This new definition has been modified to take into account the external neutron source and (n,xn) reactions, which increase the fraction of prompt neutrons. The developed theoretical framework has been applied by Monte Carlo and deterministic calculations to the YALINA Thermal subcritical assembly in Belarus. This facility can be driven by californium, deuterium-deuterium (D-D), or deuterium-tritium (D-T) external neutron sources. For the D-T neutron source, (n,xn) reactions must be taken into account in order to produce accurate results because the average energy of D-T source neutrons is 14.1 MeV, a value much higher than the threshold energy of the (n,2n) cross section of uranium isotopes. (author)

  17. Importance of (n,xn) reactions in evaluating kinetic parameters of subcritical assemblies: from classic to modern formalism

    International Nuclear Information System (INIS)

    Talamo, Alberto; Gohar, Yousry; Dulla, Sandra; Ravetto, Piero

    2011-01-01

    The importance of (n,xn) reactions must be taken into consideration while calculating the kinetic parameters of subcritical assemblies driven by an external neutron source. This study is divided into two parts, the first part is dedicated to the classic definition of the neutron source multiplication factor and two alternative calculation methodologies are compared. The second part considers a new definition of the kinetic parameters for subcritical assemblies, with particular emphasis on the delayed neutron fraction and generation time. This new definition has been modified to take into account the external neutron source and (n,xn) reactions, which increase the fraction of prompt neutrons. The developed theoretical framework has been applied by Monte Carlo and deterministic calculations to the YALINA Thermal subcritical assembly in Belarus. This facility can be driven by californium, deuterium-deuterium (D-D), or deuterium-tritium (D-T) external neutron sources. For the D-T neutron source, (n,xn) reactions must be taken into account in order to produce accurate results because the average energy of D-T source neutrons is 14.1 MeV, a value much higher than the threshold energy of the (n,2n) cross section of uranium isotopes. (author)

  18. Measurement of multiple α-modes at the Delphi subcritical assembly by neutron noise techniques

    International Nuclear Information System (INIS)

    Szieberth, Máté; Klujber, Gergely; Kloosterman, Jan Leen; Haas, Dick de

    2015-01-01

    Highlights: • Neutron noise measurements were performed at the Delphi subcritical assembly. • Bias in the fitted prompt decay constant was observed due to higher modes. • Spatial dependence of the higher mode was surveyed. • Effect of two different source distributions was investigated. • An estimation of the prompt decay constant is given for the Delphi. - Abstract: The paper presents the results and evaluations of a comprehensive set of neutron noise measurements on the Delphi subcritical assembly of the Delft University of Technology. The measurements investigated the effect of different source distributions (inherent spontaneous fission and 252 Cf) and the position of the detectors applied (both radially and vertically). The evaluation of the measured data has been performed by the variance-to-mean (VTM, Feynman-α), the autocorrelation (ACF, Rossi-α) and the cross-correlation (CCF) methods. The values obtained for the prompt decay constant show a strong bias, which depends both on the detector position and on the source distribution. This is due to the presence of higher modes in the system. It has been observed that the α value fitted is higher when the detector is close to the boundary of the core or to the 252 Cf point-source. The higher alpha-modes have also been observed by fitting functions describing two alpha-modes. The successful set of measurements also provides a good basis for further theoretical investigations including the Monte Carlo simulation of the noise measurements and the calculation of the alpha-modes in the Delphi subcritical assembly

  19. Design project of fast subcritical system 'Mala Lasta'

    International Nuclear Information System (INIS)

    Milosevic, M.; Stefanovic, D.; Popovic, D.; Pesic, M.; Zavaljevski, N.; Nikolic, D.; Arsenovic, M.

    1988-10-01

    This report contains two parts. Part one covers the objective and fundamental elements for the choice of fast subcritical system 'Mala Lasta', review of the existing fast subcritical assemblies, and a description of the available domestic computer codes applied for calculating neutron reactor parameters. Comparison of results obtained by these codes for a number of existing subcritical assemblies was used for the choice of the design project described in part two of this report. It contains detailed description of the operating parameters of the chosen subcritical system based on the obtained calculated parameters

  20. Measurement of material buckling of subcritical assembly CAPITU

    International Nuclear Information System (INIS)

    Pombo, J.B.S.M.

    1976-11-01

    Material buckling and cadmium ratio measurements for 5 lattices of the subcritical assembly CAPITU with UO 2 as fuel (French fuel elements) and D 2 O as moderator are reported. Flux shape method from foil activation data has been used. Some developed accessories, experimental procedures and the counting system used are also described. Flux distributions were analysed by least squares fitting method and by a moments method. Final results for material buckling were confronted with theoretical values and with values obtained by pulsed neutron techniques. A summary of the programs used for preliminary processing of counting data and for least squares fitting are included. Although the measurements involved some problems which were not definitively solved, results seem to be reasonably reliable and the methodology well implemented. (Author) [pt

  1. Sub-criticality monitoring for ADTR trademark control

    International Nuclear Information System (INIS)

    Ashworth, Roger

    2014-01-01

    Following the debut of the Accelerator Driven Thorium Reactor (ADTR trademark) Power Station at ENC 2010 in Barcelona, thorium as a reactor fuel has gained increasing support. The ADTR trademark concept reactor introduced the combination of an accelerator driven system (ADS) with traditional control rod technology, to provide a very high gain novel sub-critical ADS reactor design. The high gain of the system, while significantly reducing the demands on the accelerator design, pushes up operational sub-criticality (k eff ) closer to unity. In this paper we review this design and the progress made since ENC 2010. We compare 2 different methods of measuring the sub-critical neutron multiplication factor as the fuel cycle develops. The paper discusses the most recent work on k eff measurement and the interesting relationship between neutron flux, accelerator current and fuel temperature when using beam pulse methods to determine operational sub-criticality, of which a European patent is being granted. (orig.)

  2. Neutron pulse propagation in natural UO sub(2) subcritical assembly moderated by heavy water

    International Nuclear Information System (INIS)

    Prado Souza, R.M.G. do.

    1976-01-01

    Short neutron bursts are fed to the graphite base of CAPITU, a D sub(2)O - natural uranium subcritical assembly. Due to the dispersive properties of the media the wave -components of the neutron pulses are attenuated and phase shifted along the axial direction. The experimental impulse response is Fourier transformed to yield the system's dispersion law, a relationship connecting the neutron diffusion parameters and the inverse complex relaxation length K (ω). The experimental results for five assemblies studied in CAPITU are compared with the theoretical dispersion law obtained from the two group diffusion theory. (author)

  3. Characterizing subcritical assemblies with time of flight fixed by energy estimation distributions

    Science.gov (United States)

    Monterial, Mateusz; Marleau, Peter; Pozzi, Sara

    2018-04-01

    We present the Time of Flight Fixed by Energy Estimation (TOFFEE) as a measure of the fission chain dynamics in subcritical assemblies. TOFFEE is the time between correlated gamma rays and neutrons, subtracted by the estimated travel time of the incident neutron from its proton recoil. The measured subcritical assembly was the BeRP ball, a 4.482 kg sphere of α-phase weapons grade plutonium metal, which came in five configurations: bare, 0.5, 1, and 1.5 in iron, and 1 in nickel closed fitting shell reflectors. We extend the measurement with MCNPX-PoliMi simulations of shells ranging up to 6 inches in thickness, and two new reflector materials: aluminum and tungsten. We also simulated the BeRP ball with different masses ranging from 1 to 8 kg. A two-region and single-region point kinetics models were used to model the behavior of the positive side of the TOFFEE distribution from 0 to 100 ns. The single region model of the bare cases gave positive linear correlations between estimated and expected neutron decay constants and leakage multiplications. The two-region model provided a way to estimate neutron multiplication for the reflected cases, which correlated positively with expected multiplication, but the nature of the correlation (sub or superlinear) changed between material types. Finally, we found that the areal density of the reflector shells had a linear correlation with the integral of the two-region model fit. Therefore, we expect that with knowledge of reflector composition, one could determine the shell thickness, or vice versa. Furthermore, up to a certain amount and thickness of the reflector, the two-region model provides a way of distinguishing bare and reflected plutonium assemblies.

  4. K/sub infinity/-meter concept verified via subcritical-critical TRIGA experiments

    International Nuclear Information System (INIS)

    Ocampo Mansilla, H.

    1983-01-01

    This work presents a technique for building a device to measure the k/sub infinity/ of a spent nuclear fuel assembly discharged from the core of a nuclear power plant. The device, called a k/sub infinity/-meter, consists of a cross-shaped subcritical assembly, two artificial neutron sources, and two separate neutron counting systems. The central position of the subcritical assembly is used to measure k/sub infinity/ of the spent fuel assembly. The initial subcritical assembly is calibrated to determine its k/sub eff/ and verify the assigned k/sub infinity/ of a selected fuel assembly placed in the central position. Count rates are taken with the fuel assembly of known k/sub infinity/'s placed in the central position and then repeated with a fuel assembly of unknown k/sub infinity/ placed in the central position. The count rate ratio of the unknown fuel assembly to the known fuel assembly is used to determine the k/sub infinity/ of the unknown fuel assembly. The k/sub infinity/ of the unknown fuel assembly is represented as a polynomial function of the count rate ratios. The coefficients of the polynomial equation are determined using the neutronic codes LEOPARD and EXTERMINATOR-II. The analytical approach has been validated by performing several subcritical/critical experiments, using the Penn State Breazeale TRIGA Reactor (PSBR), and comparing the experimental results with the calculations

  5. A novel concept for CRIEC-driven subcritical research reactors

    International Nuclear Information System (INIS)

    Nieto, M.; Miley, G.H.

    2001-01-01

    A novel scheme is proposed to drive a low-power subcritical fuel assembly by means of a long Cylindrical Radially-convergent Inertial Electrostatic Confinement (CRIEC) used as a neutron source. The concept is inherently safe in the sense that the fuel assembly remains subcritical at all times. Previous work has been done for the possible implementation of CRIEC as a subcritical assembly driver for power reactors. However, it has been found that the present technology and stage of development of IEC-based neutron sources can not meet the neutron flux requirements to drive a system as big as a power reactor. Nevertheless, smaller systems, such as research and training reactors, could be successfully driven with levels of neutron flux that seem more reasonable to be achieved in the near future by IEC devices. The need for custom-made expensive nuclear fission fuel, as in the case of the TRIGA reactors, is eliminated, and the CRIEC presents substantial advantages with respect to the accelerator-driven subcritical reactors in terms of simplicity and cost. In the present paper, a conceptual design for a research/training CRIEC-driven subcritical assembly is presented, emphasizing the description, principle of operation and performance of the CRIEC neutron source, highlighting its advantages and discussing some key issues that require study for the implementation of this concept. (author)

  6. Large subcriticality measurement by pulsed neutron method

    International Nuclear Information System (INIS)

    Yamane, Y.; Yoshida, A.; Nishina, K.; Kobayashi, K.; Kanda, K.

    1985-01-01

    To establish the method determining large subcriticalities in the field of nuclear criticality safety, the authors performed pulsed neutron experiments using the Kyoto University Critical Assembly (KUCA) at Research Reactor Institute, Kyoto University and the Cockcroft-Walton type accelerator attached to the assembly. The area-ratio method proposed by Sjoestrand was employed to evaluate subcriticalities from neutron decay curves measured. This method has the shortcomings that the neutron component due to a decay of delayed neutrons remarkably decreases as the subcriticality of an objective increases. To overcome the shortcoming, the authors increased the frequency of pulsed neutron generation. The integral-version of the area-ratio method proposed by Kosaly and Fisher was employed in addition in order to remove a contamination of spatial higher modes from the decay curve. The latter becomes significant as subcriticality increases. The largest subcriticality determined in the present experiments was 125.4 dollars, which was equal to 0.5111 in a multiplication factor. The calculational values evaluated by the computer code KENO-IV with 137 energy groups based on the Monte Carlo method agreed well with those experimental values

  7. Radioactive isotope production for medical applications using Kharkov electron driven subcritical assembly facility

    International Nuclear Information System (INIS)

    Talamo, A.; Gohar, Y.

    2007-01-01

    Kharkov Institute of Physics and Technology (KIPT) of Ukraine has a plan to construct an accelerator driven subcritical assembly. The main functions of the subcritical assembly are the medical isotope production, neutron thereby, and the support of the Ukraine nuclear industry. Reactor physics experiments and material research will be carried out using the capabilities of this facility. The United States of America and Ukraine have started collaboration activity for developing a conceptual design for this facility with low enrichment uranium (LEU) fuel. Different conceptual designs are being developed based on the facility mission and the engineering requirements including nuclear physics, neutronics, heat transfer, thermal hydraulics, structure, and material issues. Different fuel designs with LEU and reflector materials are considered in the design process. Safety, reliability, and environmental considerations are included in the facility conceptual design. The facility is configured to accommodate future design improvements and upgrades. This report is a part of the Argonne National Laboratory Activity within this collaboration for developing and characterizing the subcritical assembly conceptual design. In this study, the medical isotope production function of the Kharkov facility is defined. First, a review was carried out to identify the medical isotopes and its medical use. Then a preliminary assessment was performed without including the self-shielding effect of the irradiated samples. Finally, more detailed investigation was carried out including the self-shielding effect, which defined the sample size and irradiation location for producing each medical isotope. In the first part, the reaction rates were calculated as the multiplication of the cross section with the unperturbed neutron flux of the facility. Over fifty isotopes were considered and all transmutation channels are used including (n,γ), (n,2n), (n,p), and (γ,n). In the second part, the parent

  8. Radioactive isotope production for medical applications using Kharkov electron driven subcritical assembly facility.

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, A.; Gohar, Y.; Nuclear Engineering Division

    2007-05-15

    Kharkov Institute of Physics and Technology (KIPT) of Ukraine has a plan to construct an accelerator driven subcritical assembly. The main functions of the subcritical assembly are the medical isotope production, neutron thereby, and the support of the Ukraine nuclear industry. Reactor physics experiments and material research will be carried out using the capabilities of this facility. The United States of America and Ukraine have started collaboration activity for developing a conceptual design for this facility with low enrichment uranium (LEU) fuel. Different conceptual designs are being developed based on the facility mission and the engineering requirements including nuclear physics, neutronics, heat transfer, thermal hydraulics, structure, and material issues. Different fuel designs with LEU and reflector materials are considered in the design process. Safety, reliability, and environmental considerations are included in the facility conceptual design. The facility is configured to accommodate future design improvements and upgrades. This report is a part of the Argonne National Laboratory Activity within this collaboration for developing and characterizing the subcritical assembly conceptual design. In this study, the medical isotope production function of the Kharkov facility is defined. First, a review was carried out to identify the medical isotopes and its medical use. Then a preliminary assessment was performed without including the self-shielding effect of the irradiated samples. Finally, more detailed investigation was carried out including the self-shielding effect, which defined the sample size and irradiation location for producing each medical isotope. In the first part, the reaction rates were calculated as the multiplication of the cross section with the unperturbed neutron flux of the facility. Over fifty isotopes were considered and all transmutation channels are used including (n,{gamma}), (n,2n), (n,p), and ({gamma},n). In the second part

  9. Benchmarking criticality safety calculations with subcritical experiments

    International Nuclear Information System (INIS)

    Mihalczo, J.T.

    1984-06-01

    Calculation of the neutron multiplication factor at delayed criticality may be necessary for benchmarking calculations but it may not be sufficient. The use of subcritical experiments to benchmark criticality safety calculations could result in substantial savings in fuel material costs for experiments. In some cases subcritical configurations could be used to benchmark calculations where sufficient fuel to achieve delayed criticality is not available. By performing a variety of measurements with subcritical configurations, much detailed information can be obtained which can be compared directly with calculations. This paper discusses several measurements that can be performed with subcritical assemblies and presents examples that include comparisons between calculation and experiment where possible. Where not, examples from critical experiments have been used but the measurement methods could also be used for subcritical experiments

  10. An experimental accelerator driven system based on plutonium subcritical assembly and 660 MeV protons accelerator

    International Nuclear Information System (INIS)

    Barashenkov, V.S.; Puzynin, I.V.; Sisakyan, A.N.; Polanski, A.

    1999-01-01

    We present a Plutonium Based Energy Amplifier Testing Concept, which employs a plutonium subcritical assembly and a 660 MeV proton accelerator operating in the JINR Laboratory of Nuclear Problems. Fuel designed for the pulsed neutron source IREN (Laboratory of Neutron Physics, JINR) will be adopted for the core of the assembly. To make the present conceptual design of the Plutonium Energy Amplifier we have chosen a nominal unit capacity of 20 kW (thermal). This corresponds to the multiplication coefficient K eff ranging between 0.94 and 0.95 and the energetic gain about 20. Accelerated current is in the range of 1-1.6μA

  11. The Texts of the Instruments connected with the Agency's Assistance to Finland in Establishing a Sub-Critical Assemblies Project

    International Nuclear Information System (INIS)

    1964-01-01

    The text of the Project Agreement between the Agency and the Government of Finland in connection with the Agency's assistance to that Government in establishing a sub-critical assemblies project is reproduced in Part I of this document for the information of all Members. This Agreement entered into force on 30 July 1963

  12. The Texts of the Instruments connected with the Agency's Assistance to Finland in Establishing a Sub-Critical Assemblies Project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1964-02-10

    The text of the Project Agreement between the Agency and the Government of Finland in connection with the Agency's assistance to that Government in establishing a sub-critical assemblies project is reproduced in Part I of this document for the information of all Members. This Agreement entered into force on 30 July 1963.

  13. Design project of fast subcritical system 'Mala Lasta'; Idejno resenje brzog podkriticnog sistema Mala LASTA

    Energy Technology Data Exchange (ETDEWEB)

    Milosevic, M; Stefanovic, D; Popovic, D; Pesic, M; Zavaljevski, N; Nikolic, D; Arsenovic, M [Boris Kidric Institute of nuclear sciences Vinca, Belgrade (Yugoslavia)

    1988-10-15

    This report contains two parts. Part one covers the objective and fundamental elements for the choice of fast subcritical system 'Mala Lasta', review of the existing fast subcritical assemblies, and a description of the available domestic computer codes applied for calculating neutron reactor parameters. Comparison of results obtained by these codes for a number of existing subcritical assemblies was used for the choice of the design project described in part two of this report. It contains detailed description of the operating parameters of the chosen subcritical system based on the obtained calculated parameters.

  14. Measurements for uranium-light water subcritical assembly; Mesures pour ensemble sous-critique uranium-eau legere d'enseignement

    Energy Technology Data Exchange (ETDEWEB)

    Barre, J Y [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1964-07-01

    The aim of this report is to determine the matter Laplacian of a subcritical assembly, done for educational purposes, using natural uranium combustible and light water for the moderator and the reflector. (M.B.) [French] L'objet de ce rapport est la determination du Laplacien matiere d'un reseau sous-critique, destine a l'enseignement, utilisant comme combustible l'uranium naturel et comme moderateur et reflecteur l'eau naturelle. (M.B.)

  15. Subcritical Multiplication Parameters of the Accelerator-Driven System with 100 MeV Protons at the Kyoto University Critical Assembly

    Directory of Open Access Journals (Sweden)

    Jae-Yong Lim

    2012-01-01

    Full Text Available Basic experiments on the accelerator-driven system (ADS at the Kyoto University Critical Assembly are carried out by combining a solid-moderated and -reflected core with the fixed-field alternating gradient accelerator. The reaction rates are measured by the foil activation method to obtain the subcritical multiplication parameters. The numerical calculations are conducted with the use of MCNPX and JENDL/HE-2007 to evaluate the reaction rates of activation foils set in the core region and at the location of the target. Here, a comparison between the measured and calculated eigenvalues reveals a relative difference of around 10% in C/E values. A special mention is made of the fact that the reaction rate analyses in the subcritical systems demonstrate apparently the actual effect of moving the tungsten target into the core on neutron multiplication. A series of further ADS experiments with 100 MeV protons needs to be carried out to evaluate the accuracy of subcritical multiplication parameters.

  16. ITEP Subcritical Neutron Generator driven by charged particle accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Shvedov, O.V.; Chuvilo, I.V.; Vasiliev, V.V. [Institute of Theoretical and Experimental Physics, Moscow (Russian Federation)] [and others

    1995-10-01

    A research facility prototype including a combination of a linear accelerator, a neutron generating target, a nuclear safety ensuring and means of its attainment for Subcritical Neutron Generator are considered. The scheme of the multiplying is shown. The assembly will be mounted in the body of the partly dismantled ITEP HWR. Requirements for subcritical assembly are worked out and their feasibility within the framework of the heavy-water blanket is shown. The facility`s application as a full-scale model of more powerful installations of this kind and for fundamental experimental research has been investigated.

  17. Monte Carlo modeling and analyses of YALINA- booster subcritical assembly Part II: pulsed neutron source

    International Nuclear Information System (INIS)

    Talamo, A.; Gohar, M.Y.A.; Rabiti, C.

    2008-01-01

    One of the most reliable experimental methods for measuring the kinetic parameters of a subcritical assembly is the Sjoestrand method applied to the reaction rate generated from a pulsed neutron source. This study developed a new analytical methodology for characterizing the kinetic parameters of a subcritical assembly using the Sjoestrand method, which allows comparing the analytical and experimental time dependent reaction rates and the reactivity measurements. In this methodology, the reaction rate, detector response, is calculated due to a single neutron pulse using MCNP/MCNPX computer code or any other neutron transport code that explicitly simulates the fission delayed neutrons. The calculation simulates a single neutron pulse over a long time period until the delayed neutron contribution to the reaction is vanished. The obtained reaction rate is superimposed to itself, with respect to the time, to simulate the repeated pulse operation until the asymptotic level of the reaction rate, set by the delayed neutrons, is achieved. The superimposition of the pulse to itself was calculated by a simple C computer program. A parallel version of the C program is used due to the large amount of data being processed, e.g. by the Message Passing Interface (MPI). The new calculation methodology has shown an excellent agreement with the experimental results available from the YALINA-Booster facility of Belarus. The facility has been driven by a Deuterium-Deuterium or Deuterium-Tritium pulsed neutron source and the (n,p) reaction rate has been experimentally measured by a 3 He detector. The MCNP calculation has utilized the weight window and delayed neutron biasing variance reduction techniques since the detector volume is small compared to the assembly volume. Finally, this methodology was used to calculate the IAEA benchmark of the YALINA-Booster experiment

  18. Pulse superimposition calculational methodology for estimating the subcriticality level of nuclear fuel assemblies

    International Nuclear Information System (INIS)

    Talamo, Alberto; Gohar, Y.; Rabiti, C.; Aliberti, G.; Kondev, F.; Smith, D.; Zhong, Z.; Kiyavitskaya, H.; Bournos, V.; Fokov, Y.; Routkovskaya, C.; Serafimovich, I.

    2009-01-01

    One of the most reliable experimental methods for measuring the subcriticality level of a nuclear fuel assembly is the Sjoestrand method applied to the reaction rate generated from a pulsed neutron source. This study developed a new analytical methodology simulating the Sjoestrand method, which allows comparing the experimental and analytical reaction rates and the obtained subcriticality levels. In this methodology, the reaction rate is calculated due to a single neutron pulse using MCNP/MCNPX computer code or any other neutron transport code that explicitly simulates the delayed fission neutrons. The calculation simulates a single neutron pulse over a long time period until the delayed neutron contribution to the reaction rate is vanished. The obtained reaction rate is then superimposed to itself, with respect to the time, to simulate the repeated pulse operation until the asymptotic level of the reaction rate, set by the delayed neutrons, is achieved. The superimposition of the pulse to itself was calculated by a simple C computer program. A parallel version of the C program is used due to the large amount of data being processed, e.g. by the Message Passing Interface (MPI). The analytical results of this new calculation methodology have shown an excellent agreement with the experimental data available from the YALINA-Booster facility of Belarus. This methodology can be used to calculate Bell and Glasstone spatial correction factor.

  19. Pulse superimposition calculational methodology for estimating the subcriticality level of nuclear fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, Alberto [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)], E-mail: atalamo@anl.gov; Gohar, Y. [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Rabiti, C. [Idaho National Laboratory, P.O. Box 2528, Idaho Falls, ID 83403 (United States); Aliberti, G.; Kondev, F.; Smith, D.; Zhong, Z. [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Kiyavitskaya, H.; Bournos, V.; Fokov, Y.; Routkovskaya, C.; Serafimovich, I. [Joint Institute for Power and Nuclear Research-Sosny, National Academy of Sciences (Belarus)

    2009-07-21

    One of the most reliable experimental methods for measuring the subcriticality level of a nuclear fuel assembly is the Sjoestrand method applied to the reaction rate generated from a pulsed neutron source. This study developed a new analytical methodology simulating the Sjoestrand method, which allows comparing the experimental and analytical reaction rates and the obtained subcriticality levels. In this methodology, the reaction rate is calculated due to a single neutron pulse using MCNP/MCNPX computer code or any other neutron transport code that explicitly simulates the delayed fission neutrons. The calculation simulates a single neutron pulse over a long time period until the delayed neutron contribution to the reaction rate is vanished. The obtained reaction rate is then superimposed to itself, with respect to the time, to simulate the repeated pulse operation until the asymptotic level of the reaction rate, set by the delayed neutrons, is achieved. The superimposition of the pulse to itself was calculated by a simple C computer program. A parallel version of the C program is used due to the large amount of data being processed, e.g. by the Message Passing Interface (MPI). The analytical results of this new calculation methodology have shown an excellent agreement with the experimental data available from the YALINA-Booster facility of Belarus. This methodology can be used to calculate Bell and Glasstone spatial correction factor.

  20. The Texts of the Instruments connected with the Agency's Assistance to Mexico in Establishing a Sub-Critical Assembly Project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1967-10-25

    The texts of the Supply Agreement between the Agency and the Governments of Mexico and the United States of America, and of the Project Agreement between the Agency and the Government of Mexico, connected with the Agency's assistance to the latter Government in establishing a sub-critical assembly project, are reproduced in this document for the information of all Members. Both Agreements entered into force on 23 August 1967.

  1. The Texts of the Instruments connected with the Agency's Assistance to Mexico in Establishing a Sub-Critical Assembly Project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1966-07-07

    The texts of the Supply Agreement between the Agency and the Governments of Mexico and the United States of America, and of the Project Agreement between the Agency and the Government of Mexico in connection with the Agency's assistance to that Government in establishing a sub-critical assembly project.. are reproduced in this document for the information of all Members. Both Agreements entered into force on 20 June 1966.

  2. The Texts of the Instruments connected with the Agency's Assistance to Mexico in Establishing a Sub-Critical Assembly Project

    International Nuclear Information System (INIS)

    1966-01-01

    The texts of the Supply Agreement between the Agency and the Governments of Mexico and the United States of America, and of the Project Agreement between the Agency and the Government of Mexico in connection with the Agency's assistance to that Government in establishing a sub-critical assembly project.. are reproduced in this document for the information of all Members. Both Agreements entered into force on 20 June 1966

  3. The Texts of the Instruments connected with the Agency's Assistance to Mexico in Establishing a Sub-Critical Assembly Project

    International Nuclear Information System (INIS)

    1967-01-01

    The texts of the Supply Agreement between the Agency and the Governments of Mexico and the United States of America, and of the Project Agreement between the Agency and the Government of Mexico, connected with the Agency's assistance to the latter Government in establishing a sub-critical assembly project, are reproduced in this document for the information of all Members. Both Agreements entered into force on 23 August 1967

  4. Accelerator-driven subcritical facility:Conceptual design development

    Science.gov (United States)

    Gohar, Yousry; Bolshinsky, Igor; Naberezhnev, Dmitry; Duo, Jose; Belch, Henry; Bailey, James

    2006-06-01

    A conceptual design development of an accelerator-driven subcritical facility has been carried out in the preparation of a joint activity with Kharkov Institute of Physics and Technology of Ukraine. The main functions of the facility are the medical isotope production and the support of the Ukraine nuclear industry. An electron accelerator is considered to drive the subcritical assembly. The neutron source intensity and spectrum have been studied. The energy deposition, spatial neutron generation, neutron utilization fraction, and target dimensions have been quantified to define the main target performance parameters, and to select the target material and beam parameters. Different target conceptual designs have been developed based the engineering requirements including heat transfer, thermal hydraulics, structure, and material issues. The subcritical assembly is designed to obtain the highest possible neutron flux level with a Keff of 0.98. Different fuel materials, uranium enrichments, and reflector materials are considered in the design process. The possibility of using low enrichment uranium without penalizing the facility performance is carefully evaluated. The mechanical design of the facility has been developed to maximize its utility and minimize the time for replacing the target and the fuel assemblies. Safety, reliability, and environmental considerations are included in the facility conceptual design. The facility is configured to accommodate future design improvements, upgrades, and new missions. In addition, it has large design margins to accommodate different operating conditions and parameters. In this paper, the conceptual design and the design analyses of the facility will be presented.

  5. PNS and statistical experiments simulation in subcritical systems using Monte-Carlo method on example of Yalina-Thermal assembly

    International Nuclear Information System (INIS)

    Sadovich, S.; Burnos, V.; Kiyavitskaya, H.; Fokov, Y.; Talamo, A.

    2013-01-01

    In subcritical systems driven by an external neutron source, the experimental methods based on pulsed neutron source (PNS) and statistical techniques play an important role for reactivity measurement. Simulation of these methods is very time-consumed procedure. For simulations in Monte-Carlo programs several improvements for neutronic calculations have been made. This paper introduces a new method for simulating PNS and statistical measurements. In this method all events occurred in the detector during simulation are stored in a file using PTRAC feature in the MCNP. After that with a special code (or post-processing) PNS and statistical methods can be simulated. Additionally different shapes of neutron pulses and its lengths as well as dead time of detectors can be included into the simulation. The methods described above have been tested on the sub-critical assembly Yalina-Thermal, located in the Joint Institute for Power and Nuclear Research SOSNY in Minsk (Belarus). A good agreement between experiment and simulation was shown. (authors)

  6. Modeling of the CTEx subcritical unit using MCNPX code

    International Nuclear Information System (INIS)

    Santos, Avelino; Silva, Ademir X. da; Rebello, Wilson F.; Cunha, Victor L. Lassance

    2011-01-01

    The present work aims at simulating the subcritical unit of Army Technology Center (CTEx) namely ARGUS pile (subcritical uranium-graphite arrangement) by using the computational code MCNPX. Once such modeling is finished, it could be used in k-effective calculations for systems using natural uranium as fuel, for instance. ARGUS is a subcritical assembly which uses reactor-grade graphite as moderator of fission neutrons and metallic uranium fuel rods with aluminum cladding. The pile is driven by an Am-Be spontaneous neutron source. In order to achieve a higher value for k eff , a higher concentration of U235 can be proposed, provided it safely remains below one. (author)

  7. Subcritical Measurements Research Program for Fresh and Spent Materials Test Reactor Fuels

    International Nuclear Information System (INIS)

    Blanchard, A.

    1999-01-01

    'A series of subcritical noise measurements were performed on fresh and spent University of Missouri Research Reactor fuel assemblies. These experimental measurements were performed for the purposes of providing benchmark quality data for validating transport theory computer codes and nuclear cross-section data used to perform criticality safety analyses for highly enriched, uranium-aluminum Material Test Reactor fuel assemblies. A mechanical test rig was designed and built to hold up to four fuel assemblies and neutron detectors in a subcritical array. The rig provided researchers with the ability to evaluate the reactivity effects of variable fuel/detector spacing, fuel rotation, and insertion of metal reflector plates into the lattice.'

  8. Evaluation of the harmonics and neutronic coupling in the sub-cores of the Brazilian `RESUCO` subcritical assembly; Avaliacoes dos harmonicos e do acoplamento neutronico entre dois subnucleos do conjunto subcritico `RESUCO`

    Energy Technology Data Exchange (ETDEWEB)

    Aquino Bezerra, A.F. de

    1991-05-01

    The present study evaluates the importance of the harmonic components in the thermal neutron flux distribution and evaluates as well the separation required for attaining neutronic decoupling in sub-cores in subcritical assemblies. The theoretical results are compared to experimental ones performed at the Brazilian natural uranium, light water RESUCO subcritical assembly. It is observed that the harmonics have a very important contributions to neutron flux. Furthermore, the neutronic decoupling is attained with the removal of five rows of fuel elements, corresponding to 27,5 cm of light water. (F.E.). 23 refs, 18 figs, 9 tabs.

  9. Experimental subcritical facility driven by D-D/D-T neutron generator at BARC, India

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Amar, E-mail: image@barc.gov.in; Roy, Tushar; Kashyap, Yogesh; Ray, Nirmal; Shukla, Mayank; Patel, Tarun; Bajpai, Shefali; Sarkar, P.S.; Bishnoi, Saroj

    2015-05-01

    Highlights: •Experimental subcritical facility BRAHMMA coupled to D-D/D-T neutron generator. •Preliminary results of PNS experiments reported. •Feynman-alpha noise measurements explored with continuous source. -- Abstract: The paper presents design of an experimental subcritical assembly driven by D-D/D-T neutron and preliminary experimental measurements. The system has been developed for investigating the static and dynamic neutronic properties of accelerator driven sub-critical systems. This system is modular in design and it is first in the series of subcritical assemblies being designed. The subcritical core consists of natural uranium fuel with high density polyethylene as moderator and beryllium oxide as reflector. The fuel is embedded in high density polyethylene moderator matrix. Estimated k{sub eff} of the system is ∼0.89. One of the unique features of subcritical core is the use of Beryllium oxide (BeO) as reflector and HDPE as moderator making the assembly a compact modular system. The subcritical core is coupled to Purnima Neutron Generator which works in D-D and D-T mode with both DC and pulsed operation. It has facility for online source strength monitoring using neutron tagging and programmable source modulation. Preliminary experiments have been carried out for spatial flux measurement and reactivity estimation using pulsed neutron source (PNS) techniques with D-D neutrons. Further experiments are being planned to measure the reactivity and other kinetic parameters using noise methods. This facility would also be used for carrying out studies on effect of source importance and measurement of source multiplication factor k{sub s} and external neutron source efficiency φ{sup ∗} in great details. Experiments with D-T neutrons are also underway.

  10. Methods for the reactivity evaluation in subcritical systems analysis: a review

    International Nuclear Information System (INIS)

    Dulla, S.; Picca, P.; Carta, M.

    2011-01-01

    The assessment of the subcritical source-driven system technology for waste incineration and power production requires the development of reliable and efficient techniques for the reactivity evaluation and monitoring. Starting from the standard methods developed for close-to-criticality systems, extensive research activities have been carried out to analyze the behavior of subcritical assembly in time-dependent condition and to infer the subcriticality level from local flux values. In the present work, a review of some key aspects in the method development for ADS analysis is proposed, with special attention to the techniques for reactivity evaluation. (author)

  11. Modeling and Simulation Monte Carlo by the MCNP code for determining neutron parameters of the nuclear reactor-subcritical assembly in CNSTN

    International Nuclear Information System (INIS)

    Romdhani, Ibtissem

    2014-01-01

    As part of developing its nuclear infrastructure base, the National Science and Technology Center Nuclear (CNSTN) examines the technical feasibility of setting up a new installation of subcritical assembly. Our study focuses on determining the neutron parameters of a nuclear zero power reactor based on Monte Carlo simulation MCNP. The objective of the simulation is to model the installation, determine the effective multiplication factor, and spatial distribution of neutron flux.

  12. Measurement of subcriticality by a pulsing α-method

    International Nuclear Information System (INIS)

    Jitarev, V.E.; Kachanov, V.M.; Kuzmin, A.N.

    1999-01-01

    The report presents results of a pulsing α-method [1] for determination of the WWER system subcriticality. The pulsing α-method permits to conduct measurements of system subcriticality in conditions of subcritical state and large neutron background. Therefore this method can be used for the control of a subcriticality of storehouses of a burn up nuclear fuel and stopped reactor. (Authors)

  13. Compact D-D Neutron Source-Driven Subcritical Multiplier and Beam-Shaping Assembly for Boron Neutron Capture Therapy

    International Nuclear Information System (INIS)

    Ganda, Francesco; Vujic, Jasmina; Greenspan, Ehud; Leung, Ka-Ngo

    2010-01-01

    This work assesses the feasibility of using a small, safe, and inexpensive keff 0.98 subcritical fission assembly [subcritical neutron multiplier (SCM)] to amplify the treatment neutron beam intensity attainable from a compact deuterium-deuterium (D-D) fusion neutron source delivering [approximately]1012 n/s. The objective is to reduce the treatment time for deep-seated brain tumors to [approximately]1 h. The paper describes the optimal SCM design and two optimal beam-shaping assemblies (BSAs) - one designed to maximize the dose rate and the other designed to maximize the total dose that can be delivered to a deep-seated tumor. The neutron beam intensity amplification achieved with the optimized SCM and BSA results in an increase in the treatment dose rate by a factor of 18: from 0.56 Gy/h without the SCM to 10.1 Gy/h. The entire SCM is encased in an aluminum structure. The total amount of 20% enriched uranium required for the SCM is 8.5 kg, and the cost (not including fabrication) is estimated to be less than $60,000. The SCM power level is estimated at 400 W when driven by a 1012 n/s D-D neutron source. This translates into consumption of only [approximately]0.6% of the initially loaded 235U atoms during 50 years of continuous operation and implies that the SCM could operate continuously for the entire lifetime of the facility without refueling. Cooling the SCM does not pose a challenge; it may be accomplished by natural circulation as the maximum heat flux is only 0.034 W/cm2.

  14. Using anisotropies in prompt fission neutron coincidences to assess the neutron multiplication of highly multiplying subcritical plutonium assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, J.M., E-mail: jonathan_mueller@ncsu.edu; Mattingly, J.

    2016-07-21

    There is a significant and well-known anisotropy between the prompt neutrons emitted from a single fission event; these neutrons are most likely to be observed at angles near 0° or 180° relative to each other. However, the propagation of this anisotropy through different generations of a fission chain reaction has not been previously studied. We have measured this anisotropy in neutron–neutron coincidences from a subcritical highly-multiplying assembly of plutonium metal. The assembly was a 4.5 kg α-phase plutonium metal sphere composed of 94% {sup 239}Pu and 6% {sup 240}Pu by mass. Data were collected using two EJ-309 liquid scintillators and two EJ-299 plastic scintillators. The angular distribution of neutron–neutron coincidences was measured at 90° and 180° and found to be largely isotropic. Simulations were performed using MCNPX-PoliMi of similar plutonium metal spheres of varying sizes and a correlation between the neutron multiplication of the assembly and the anisotropy of neutron–neutron coincidences was observed. In principle, this correlation could be used to assess the neutron multiplication of an unknown assembly.

  15. Estimation of subcriticality with the computed values. 2

    Energy Technology Data Exchange (ETDEWEB)

    Sakurai, Kiyoshi; Arakawa, Takuya; Naito, Yoshitaka [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1996-02-01

    For measurements of reactivities and neutron count rate space distributions, seven subcritical cores including non-square array cores were constructed using critical assembly TCA. MCNP-4A was used for the experimental analysis. The calculational results of the neutron count rate space distributions agreed with the measured ones within the each error range. It means that for calculation error indirect estimation method, the calculated neutron multiplication factors are equal to ones of experimental reactivities. It is shown that from these experiments and calculations estimation method of subcriticality with the computed values based on the calculation error indirect estimation method is also applicable to six non-square array cores. (author).

  16. Reactor parameters and constants determination by using measurements in subcritical and exponential assembly

    International Nuclear Information System (INIS)

    Voi, Dante Luiz; Santos Bastos, Wilma dos

    1995-01-01

    Subcritical and exponential experiments are important for Reactor Physics integral parameter determinations both to validate and confirm theoretical models for reactor calculations. An exponential and subcritical facility has been constructed to be used on the internal thermal column of the Argonauta reactor at IEN-CNEN- Rio de Janeiro. An experimental research program has been developed for the determination of fundamental reactor constants as buckling, migration areas, resonance escape probabilities, thermal utilization, fast fission and fuel eta factors. (author) 23 refs

  17. Steady squares and hexagons on a subcritical ramp

    International Nuclear Information System (INIS)

    Hoyle, R.B.

    1995-01-01

    Steady squares and hexagons on a subcritical ramp are studied, both analytically and numerically, within the framework of the lowest-order amplitude equations. On the subcritical ramp, the external stress or control parameter varies continuously in space from subcritical to supercritical values. At the subcritical end of the ramp, pattern formation is suppressed, and patterns fade away into the conduction solution. It is shown that three-dimensional patterns may change shape on a subcritical ramp. A square pattern becomes a pattern of rolls as it fades, with the roll axes aligned in the direction orthogonal to that in which the control parameter varies. Hexagons in systems with horizontal midplane symmetry become a pattern of rectangles before reaching the conduction solution. There is a suggestion that hexagons in systems which lack this symmetry might fade away through a roll pattern. Numerical simulations are used to illustrate these phenomena

  18. Impact of the neutron detector choice on Bell and Glasstone spatial correction factor for subcriticality measurement

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, Alberto, E-mail: alby@anl.gov [Argonne National Laboratory, 9700S. Cass Avenue, Argonne, IL 60439 (United States); Gohar, Y.; Cao, Y.; Zhong, Z. [Argonne National Laboratory, 9700S. Cass Avenue, Argonne, IL 60439 (United States); Kiyavitskaya, H.; Bournos, V.; Fokov, Y.; Routkovskaya, C. [Joint Institute for Power and Nuclear Research-Sosny, National Academy of Sciences of Belarus, 99 acad. Krasin str., Minsk 220109 (Belarus)

    2012-03-11

    In subcritical assemblies, the Bell and Glasstone spatial correction factor is used to correct the measured reactivity from different detector positions. In addition to the measuring position, several other parameters affect the correction factor: the detector material, the detector size, and the energy-angle distribution of source neutrons. The effective multiplication factor calculated by computer codes in criticality mode slightly differs from the average value obtained from the measurements in the different experimental channels of the subcritical assembly, which are corrected by the Bell and Glasstone spatial correction factor. Generally, this difference is due to (1) neutron counting errors; (2) geometrical imperfections, which are not simulated in the calculational model, and (3) quantities and distributions of material impurities, which are missing from the material definitions. This work examines these issues and it focuses on the detector choice and the calculation methodologies. The work investigated the YALINA Booster subcritical assembly of Belarus, which has been operated with three different fuel enrichments in the fast zone either: high (90%) and medium (36%), medium (36%), or low (21%) enriched uranium fuel.

  19. Impact of the neutron detector choice on Bell and Glasstone spatial correction factor for subcriticality measurement

    International Nuclear Information System (INIS)

    Talamo, Alberto; Gohar, Y.; Cao, Y.; Zhong, Z.; Kiyavitskaya, H.; Bournos, V.; Fokov, Y.; Routkovskaya, C.

    2012-01-01

    In subcritical assemblies, the Bell and Glasstone spatial correction factor is used to correct the measured reactivity from different detector positions. In addition to the measuring position, several other parameters affect the correction factor: the detector material, the detector size, and the energy-angle distribution of source neutrons. The effective multiplication factor calculated by computer codes in criticality mode slightly differs from the average value obtained from the measurements in the different experimental channels of the subcritical assembly, which are corrected by the Bell and Glasstone spatial correction factor. Generally, this difference is due to (1) neutron counting errors; (2) geometrical imperfections, which are not simulated in the calculational model, and (3) quantities and distributions of material impurities, which are missing from the material definitions. This work examines these issues and it focuses on the detector choice and the calculation methodologies. The work investigated the YALINA Booster subcritical assembly of Belarus, which has been operated with three different fuel enrichments in the fast zone either: high (90%) and medium (36%), medium (36%), or low (21%) enriched uranium fuel.

  20. (n,xn cross section measurements for Y-89 foils used as detectors for high energy neutron measurements in the deeply subcritical assembly “QUINTA”

    Directory of Open Access Journals (Sweden)

    Bielewicz Marcin

    2017-01-01

    Full Text Available Study of the deep subcritical systems (QUINTA using relativistic beams is performed within the project “Energy and Transmutation of Radioactive Wastes” (E&T – RAW. The experiment assembly was irradiated by deuteron/proton beam (Dubna NUCLOTRON. We calculated the neutron energy spectrum inside the whole assembly by using threshold energy (n,xn reactions in yttrium (Y-89 foils. There are almost no experimental cross section data for those reactions. New Y-89(n,xn cross section measurements were carried out at The Svedberg laboratory (TSL in Uppsala, Sweden in 2015. In this paper we present preliminary results of those experiments.

  1. Subcriticality monitoring method based on the exponential technique usable for nuclear fuel cycle facilities

    International Nuclear Information System (INIS)

    Suzaki, T.

    1987-01-01

    Buckling measurement methods in subcritical nuclear fuel systems (negative buckling measurements in small systems are well-known as the exponential experiment) were discussed from the viewpoint of the applicability to on-site monitorings of subcriticality and fuel characteristics of interest. From demonstration experiments using the TCA, it was revealed that the method is quite promising. Applicability of the method to the critical approach in critical assemblies was also discussed. (author)

  2. Subcriticality determination in ADS: Valina-Booster experiments

    International Nuclear Information System (INIS)

    Persson, C. M.; Gudowski, W.; Fokau, A.; Bournos, V.; Fokov, Y.; Routkovskaia, C.; Serafimovich, I.; Kiyavitskaya, H.

    2007-01-01

    A major problem in operating a full-scale subcritical accelerator-driven system (ADS) is to ensure sufficient margin to criticality. Therefore, reliable techniques for subcriticality monitoring are required. In order to develop such techniques, a full understanding of existing reactivity determination methods is essential. In this work, reactivity determination methods, such as pulsed neutron source methods and noise methods, are studied experimentally in the subcritical facility YALINA-Booster. YALINA-Booster: The subcritical assembly YALINA-Booster: recently constructed at the Joint Institute for Power and Nuclear Research - Sosny, consists of a subcritical core driven by an external neutron source. The neutron source is a powerful neutron generator consisting of a deuteron accelerator and a target of deuterium or tritium embedded in titanium. Through (d, d) - or (d, t)-reactions neutrons are created with energy around 2.5 MeV and 14.1 MeV respectively. Neutrons are born in the centre of the core and multiply through a lead matrix fuelled with highly enriched uranium (90% and 36%). This zone is referred to as the booster zone and is surrounded by a thermal zone, moderated by polyethylene. In order to reach sufficient high effective multiplication factor, the thermal zone is fuelled by approximately one thousand rods of 10% enriched uranium dioxide in cylindrical geometry. To prevent thermal neutrons from diffusing into the fast booster zone, an interface, consisting of boron carbide and natural uranium rods, is located between the zones. YALINA-Booster has a radial graphite reflector of thickness 24 cm. Experiments: Experiments using the neutron source in pulsed mode will be presented, relying on methods such as the area method and the method of prompt neutron decay rate determination. Moreover, results from noise analysis using for instance the Feynman-α method will be presented

  3. Physical controls on directed virus assembly at nanoscale chemical templates

    International Nuclear Information System (INIS)

    Cheung, C L; Chung, S; Chatterji, A; Lin, T; Johnson, J E; Hok, S; Perkins, J; De Yoreo, J

    2006-01-01

    Viruses are attractive building blocks for nanoscale heterostructures, but little is understood about the physical principles governing their directed assembly. In-situ force microscopy was used to investigate organization of Cowpea Mosaic Virus engineered to bind specifically and reversibly at nanoscale chemical templates with sub-30nm features. Morphological evolution and assembly kinetics were measured as virus flux and inter-viral potential were varied. The resulting morphologies were similar to those of atomic-scale epitaxial systems, but the underlying thermodynamics was analogous to that of colloidal systems in confined geometries. The 1D templates biased the location of initial cluster formation, introduced asymmetric sticking probabilities, and drove 1D and 2D condensation at subcritical volume fractions. The growth kinetics followed a t 1/2 law controlled by the slow diffusion of viruses. The lateral expansion of virus clusters that initially form on the 1D templates following introduction of polyethylene glycol (PEG) into the solution suggests a significant role for weak interaction

  4. Accelerator driven sub-critical core

    Science.gov (United States)

    McIntyre, Peter M; Sattarov, Akhdiyor

    2015-03-17

    Systems and methods for operating an accelerator driven sub-critical core. In one embodiment, a fission power generator includes a sub-critical core and a plurality of proton beam generators. Each of the proton beam generators is configured to concurrently provide a proton beam into a different area of the sub-critical core. Each proton beam scatters neutrons within the sub-critical core. The plurality of proton beam generators provides aggregate power to the sub-critical core, via the proton beams, to scatter neutrons sufficient to initiate fission in the sub-critical core.

  5. Investigation on energy storage and quick load change control of subcritical circulating fluidized bed boiler units

    International Nuclear Information System (INIS)

    Gao, Mingming; Hong, Feng; Liu, Jizhen

    2017-01-01

    Highlights: • The model of energy storage of subcritical CFB boilers is established. • The capacity and increment rate of heat storage are quantified. • A novel load control strategy is proposed to improve the quick load change ability. • An application on the 300 MW CFB unit proves the load change rate to 5–8 MW/min. - Abstract: The energy storage of circulating fluidized bed (CFB) boilers on fuel side cannot be ignored due to the special combustion type different from pulverized coal boilers. The sizable energy storage makes it possible for CFB units to enhance the quick load change ability and to increase the scale of new energy power connected into grid. Through mechanism analysis, the model of energy storage of subcritical CFB boilers has been established for the first time. Then by the project practice, the quantitative analysis is demonstrated for the capacity and control characteristics of energy storage on fuel side and steam water side. Based on the control characteristics and the transformation of the energy storage, a coordinated control system (CCS) control strategy named advanced energy balance (AEB) is designed to shorten the response time through the use of energy storage and to accelerate the load change speed of subcritical CFB units. Finally, a case study on a 300 MW CFB unit proves the feasibility of the proposed control strategy.

  6. Subcriticality determination of nuclear reactor

    International Nuclear Information System (INIS)

    Borisenko, V.I.; Goranchuk, V.V.; Sidoruk, N.M.; Volokh, A.F.

    2014-01-01

    In this article the subcriticality determination of nuclear reactor is considered. Emphasized that, despite the requirements of regulatory documents on the subcriticality determination of WWER from the beginning of their operation, so far, this problem has not been solved. The results of subcriticality determination of Rossi-α method of the WWER-M is presented. The possibility of subcriticality determination of WWER is considered. The possibility of subcriticality determination of Rossi-α method with time resolution is of about 100 microseconds is also considered. The possible reasons for the error in subcriticality determination of the reactor are indicated

  7. Sub-critical pulsed neutron experiments with uranyl nitrate solutions in spherical geometry

    International Nuclear Information System (INIS)

    Gurin, Victor N.; Ryazanov, Boris G.; Sviridov, Victor I.; Volnistov, Vladimir V.

    2003-01-01

    The pulse source method is used to study homogeneous solution assemblies. Three sets of sub-critical pulse experiments with spherical tanks filled with water solution of uranyl nitrate (90% enrichment) were carried out at the RF-GS facility, Obninsk, Russia. Seven spherical tanks with the volume within the range of 1.29 L to 19.8 L were used in the experiments. Three uranium concentrations were studied, i.e. 20.7, 29.6 and 37.5 g/L. The sub-critical experiments were analyzed with the MCNP 4A code based on the Monte-Carlo method, and with ENDF/B-V library. (author)

  8. Assessments of the kinetic and dynamic transient behavior of sub-critical systems (ADS) in comparison to critical reactor systems

    International Nuclear Information System (INIS)

    Schikorr, W.M.

    2001-01-01

    The neutron kinetic and the reactor dynamic behavior of Accelerator Driven Systems (ADS) is significantly different from those of conventional power reactor systems currently in use for the production of power. It is the objective of this study to examine and to demonstrate the intrinsic differences of the kinetic and dynamic behavior of accelerator driven systems to typical plant transient initiators in comparison to the known, kinetic and dynamic behavior of critical thermal and fast reactor systems. It will be shown that in sub-critical assemblies, changes in reactivity or in the external neutron source strength lead to an asymptotic power level essentially described by the instantaneous power change (i.e. prompt jump). Shutdown of ADS operating at high levels of sub-criticality, (i.e. k eff ∼0.99), without the support of reactivity control systems (such as control or safety rods), may be problematic in case the ability of cooling of the core should be impaired (i.e. loss of coolant flow). In addition, the dynamic behavior of sub-critical systems to typical plant transients such as protected or unprotected loss of flow (LOF) or heat sink (LOH) transients are not necessarily substantially different from the plant dynamic behavior of critical systems if the reactivity feedback coefficients of the ADS design are unfavorable. As expected, the state of sub-criticality and the temperature feedback coefficients, such as Doppler and coolant temperature coefficient, play dominant roles in determining the course and direction of plant transients. Should the combination of these safety coefficients be very unfavorable, not much additional margin in safety may be gained by making a critical system only sub-critical (i.e. k eff ∼0.95). A careful optimization procedure between the selected operating level of sub-criticality, the safety reactivity coefficients and the possible need for additional reactivity control systems seems, therefore, advisable during the early

  9. Superfluid helium at subcritical active core

    International Nuclear Information System (INIS)

    Vasil'ev, V.V.; Lopatkin, A.V.; Muratov, V.G.; Rakhno, I.L.

    2002-01-01

    Power range and neutron flux wherein super thermal source was realized at high volume of superfluid helium were investigated. MCU, BRAND, MCNP codes were used for the calculation of reactors. It is shown that the availability of full-size diameter for cryogenic source of ultracold neutrons, as the source with superfluid helium is considered, is possible in the reflector of subcritical assembly. Results obtained from the MCNP-4B code application demonstrated that the density of thermal neutron flux in helium must be not higher than 2.3 x 10 11 s -1 cm -2 [ru

  10. Monte Carlo modeling and analyses of YALINA-booster subcritical assembly part 1: analytical models and main neutronics parameters

    International Nuclear Information System (INIS)

    Talamo, A.; Gohar, M. Y. A.; Nuclear Engineering Division

    2008-01-01

    This study was carried out to model and analyze the YALINA-Booster facility, of the Joint Institute for Power and Nuclear Research of Belarus, with the long term objective of advancing the utilization of accelerator driven systems for the incineration of nuclear waste. The YALINA-Booster facility is a subcritical assembly, driven by an external neutron source, which has been constructed to study the neutron physics and to develop and refine methodologies to control the operation of accelerator driven systems. The external neutron source consists of Californium-252 spontaneous fission neutrons, 2.45 MeV neutrons from Deuterium-Deuterium reactions, or 14.1 MeV neutrons from Deuterium-Tritium reactions. In the latter two cases a deuteron beam is used to generate the neutrons. This study is a part of the collaborative activity between Argonne National Laboratory (ANL) of USA and the Joint Institute for Power and Nuclear Research of Belarus. In addition, the International Atomic Energy Agency (IAEA) has a coordinated research project benchmarking and comparing the results of different numerical codes with the experimental data available from the YALINA-Booster facility and ANL has a leading role coordinating the IAEA activity. The YALINA-Booster facility has been modeled according to the benchmark specifications defined for the IAEA activity without any geometrical homogenization using the Monte Carlo codes MONK and MCNP/MCNPX/MCB. The MONK model perfectly matches the MCNP one. The computational analyses have been extended through the MCB code, which is an extension of the MCNP code with burnup capability because of its additional feature for analyzing source driven multiplying assemblies. The main neutronics parameters of the YALINA-Booster facility were calculated using these computer codes with different nuclear data libraries based on ENDF/B-VI-0, -6, JEF-2.2, and JEF-3.1

  11. Monte Carlo modeling and analyses of YALINA-booster subcritical assembly part 1: analytical models and main neutronics parameters.

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, A.; Gohar, M. Y. A.; Nuclear Engineering Division

    2008-09-11

    This study was carried out to model and analyze the YALINA-Booster facility, of the Joint Institute for Power and Nuclear Research of Belarus, with the long term objective of advancing the utilization of accelerator driven systems for the incineration of nuclear waste. The YALINA-Booster facility is a subcritical assembly, driven by an external neutron source, which has been constructed to study the neutron physics and to develop and refine methodologies to control the operation of accelerator driven systems. The external neutron source consists of Californium-252 spontaneous fission neutrons, 2.45 MeV neutrons from Deuterium-Deuterium reactions, or 14.1 MeV neutrons from Deuterium-Tritium reactions. In the latter two cases a deuteron beam is used to generate the neutrons. This study is a part of the collaborative activity between Argonne National Laboratory (ANL) of USA and the Joint Institute for Power and Nuclear Research of Belarus. In addition, the International Atomic Energy Agency (IAEA) has a coordinated research project benchmarking and comparing the results of different numerical codes with the experimental data available from the YALINA-Booster facility and ANL has a leading role coordinating the IAEA activity. The YALINA-Booster facility has been modeled according to the benchmark specifications defined for the IAEA activity without any geometrical homogenization using the Monte Carlo codes MONK and MCNP/MCNPX/MCB. The MONK model perfectly matches the MCNP one. The computational analyses have been extended through the MCB code, which is an extension of the MCNP code with burnup capability because of its additional feature for analyzing source driven multiplying assemblies. The main neutronics parameters of the YALINA-Booster facility were calculated using these computer codes with different nuclear data libraries based on ENDF/B-VI-0, -6, JEF-2.2, and JEF-3.1.

  12. Simulation an Accelerator driven Subcritical Reactor core with thorium fuel

    International Nuclear Information System (INIS)

    Shirmohammadi, L.; Pazirandeh, A.

    2011-01-01

    The main purpose of this work is simulation An Accelerator driven Subcritical core with Thorium as a new generation nuclear fuel. In this design core , A subcritical core coupled to an accelerator with proton beam (E p =1 GeV) is simulated by MCNPX code .Although the main purpose of ADS systems are transmutation and use MA (Minor Actinides) as a nuclear fuel but another use of these systems are use thorium fuel. This simulated core has two fuel assembly type : (Th-U) and (U-Pu) . Consequence , Neutronic parameters related to ADS core are calculated. It has shown that Thorium fuel is use able in this core and less nuclear waste ,Although Iran has not Thorium reserves but study on Thorium fuel cycle can open a new horizontal in use nuclear energy as a clean energy and without nuclear waste

  13. Safety and control of accelerator-driven subcritical systems

    Energy Technology Data Exchange (ETDEWEB)

    Rief, H. [Ispra Establishment (Italy); Takahashi, H. [Brookhaven National Laboratory, Long Island, NY (United States)

    1995-10-01

    To study control and safety of accelertor driven nuclear systems, a one point kinetic model was developed and programed. It deals with fast transients as a function of reactivity insertion. Doppler feedback, and the intensity of an external neutron source. The model allows for a simultaneous calculation of an equivalent critical reactor. It was validated by a comparison with a benchmark specified by the Nuclear Energy Agency Committee of Reactor Physics. Additional features are the possibility of inserting a linear or quadratic time dependent reactivity ramp which may account for gravity induced accidents like earthquakes, the possibility to shut down the external neutron source by an exponential decay law of the form exp({minus}t/{tau}), and a graphical display of the power and reactivity changes. The calculations revealed that such boosters behave quite benignly even if they are only slightly subcritical.

  14. Numerical simulations of subcritical reactor kinetics in thermal hydraulic transient phases

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, J; Park, W S [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1999-12-31

    A subcritical reactor driven by a linear proton accelerator has been considered as a nuclear waste incinerator at Korea Atomic Energy Research Institute (KAERI). Since the multiplication factor of a subcritical reactor is less than unity, to compensate exponentially decreasing fission neutrons, external neutrons form spallation reactions are essentially required for operating the reactor in its steady state. Furthermore, the profile of accelerator beam currents is very important in controlling a subcritical reactor, because the reactor power varies in accordance to the profile of external neutrons. We have developed a code system to find numerical solutions of reactor kinetics equations, which are the simplest dynamic model for controlling reactors. In a due course of our previous numerical study of point kinetics equations for critical reactors, however, we learned that the same code system can be used in studying dynamic behavior of the subcritical reactor. Our major motivation of this paper is to investigate responses of subcritical reactors for small changes in thermal hydraulic parameters. Building a thermal hydraulic model for the subcritical reactor dynamics, we performed numerical simulations for dynamic responses of the reactor based on point kinetics equations with a source term. Linearizing a set of coupled differential equations for reactor responses, we focus our research interest on dynamic responses of the reactor to variations of the thermal hydraulic parameters in transient phases. 5 refs., 8 figs. (Author)

  15. Numerical simulations of subcritical reactor kinetics in thermal hydraulic transient phases

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, J.; Park, W. S. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    A subcritical reactor driven by a linear proton accelerator has been considered as a nuclear waste incinerator at Korea Atomic Energy Research Institute (KAERI). Since the multiplication factor of a subcritical reactor is less than unity, to compensate exponentially decreasing fission neutrons, external neutrons form spallation reactions are essentially required for operating the reactor in its steady state. Furthermore, the profile of accelerator beam currents is very important in controlling a subcritical reactor, because the reactor power varies in accordance to the profile of external neutrons. We have developed a code system to find numerical solutions of reactor kinetics equations, which are the simplest dynamic model for controlling reactors. In a due course of our previous numerical study of point kinetics equations for critical reactors, however, we learned that the same code system can be used in studying dynamic behavior of the subcritical reactor. Our major motivation of this paper is to investigate responses of subcritical reactors for small changes in thermal hydraulic parameters. Building a thermal hydraulic model for the subcritical reactor dynamics, we performed numerical simulations for dynamic responses of the reactor based on point kinetics equations with a source term. Linearizing a set of coupled differential equations for reactor responses, we focus our research interest on dynamic responses of the reactor to variations of the thermal hydraulic parameters in transient phases. 5 refs., 8 figs. (Author)

  16. Burnup calculations for KIPT accelerator driven subcritical facility using Monte Carlo computer codes-MCB and MCNPX

    International Nuclear Information System (INIS)

    Gohar, Y.; Zhong, Z.; Talamo, A.

    2009-01-01

    Argonne National Laboratory (ANL) of USA and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have been collaborating on the conceptual design development of an electron accelerator driven subcritical (ADS) facility, using the KIPT electron accelerator. The neutron source of the subcritical assembly is generated from the interaction of 100 KW electron beam with a natural uranium target. The electron beam has a uniform spatial distribution and electron energy in the range of 100 to 200 MeV. The main functions of the subcritical assembly are the production of medical isotopes and the support of the Ukraine nuclear power industry. Neutron physics experiments and material structure analyses are planned using this facility. With the 100 KW electron beam power, the total thermal power of the facility is ∼375 kW including the fission power of ∼260 kW. The burnup of the fissile materials and the buildup of fission products reduce continuously the reactivity during the operation, which reduces the neutron flux level and consequently the facility performance. To preserve the neutron flux level during the operation, fuel assemblies should be added after long operating periods to compensate for the lost reactivity. This process requires accurate prediction of the fuel burnup, the decay behavior of the fission produces, and the introduced reactivity from adding fresh fuel assemblies. The recent developments of the Monte Carlo computer codes, the high speed capability of the computer processors, and the parallel computation techniques made it possible to perform three-dimensional detailed burnup simulations. A full detailed three-dimensional geometrical model is used for the burnup simulations with continuous energy nuclear data libraries for the transport calculations and 63-multigroup or one group cross sections libraries for the depletion calculations. Monte Carlo Computer code MCNPX and MCB are utilized for this study. MCNPX transports the electrons and the

  17. Implementation and training methodology of subcritical reactors neutronic calculations triggered by external neutron source and applications

    International Nuclear Information System (INIS)

    Carluccio, Thiago

    2011-01-01

    This works had as goal to investigate calculational methodologies on subcritical source driven reactor, such as Accelerator Driven Subcritical Reactor (ADSR) and Fusion Driven Subcritical Reactor (FDSR). Intense R and D has been done about these subcritical concepts, mainly due to Minor Actinides (MA) and Long Lived Fission Products (LLFP) transmutation possibilities. In this work, particular emphasis has been given to: (1) complement and improve calculation methodology with neutronic transmutation and decay capabilities and implement it computationally, (2) utilization of this methodology in the Coordinated Research Project (CRP) of the International Atomic Energy Agency Analytical and Experimental Benchmark Analysis of ADS and in the Collaborative Work on Use of Low Enriched Uranium in ADS, especially in the reproduction of the experimental results of the Yalina Booster subcritical assembly and study of a subcritical core of IPEN / MB-01 reactor, (3) to compare different nuclear data libraries calculation of integral parameters, such as k eff and k src , and differential distributions, such as spectrum and flux, and nuclides inventories and (4) apply the develop methodology in a study that may help future choices about dedicated transmutation system. The following tools have been used in this work: MCNP (Monte Carlo N particle transport code), MCB (enhanced version of MCNP that allows burnup calculation) and NJOY to process nuclear data from evaluated nuclear data files. (author)

  18. Determination of the physical parameters of the nuclear subcritical assembly Chicago 9000 of the IPN using the Serpent code

    International Nuclear Information System (INIS)

    Arriaga R, L.; Del Valle G, E.; Gomez T, A. M.

    2013-10-01

    For the Serpent code was developed the three-dimensional model corresponding to the nuclear subcritical assembly (S A) Chicago 9000 of the Escuela Superior de Fisica y Matematicas del Instituto Politecnico Nacional (ESFM-IPN). The model includes: a) the core, formed by 312 aluminum pipes that contain 5 nuclear fuel rods (natural uranium in metallic form), b) the multi-perforated plates where they penetrate the inferior part of each pipe to be able to remain in vertical form, c) water, acting as moderator and reflector, and d) the recipient lodging to the core. The pipes arrangement is hexagonal although the transversal section of the recipient that lodges to the core is circular. The entrance file for the Serpent code was generated with the data provided by the manual of the S A use about the composition and density of the fuel rods and others obtained in direct form of the rods, as the interior and external diameter, mass and height. Of the obtained physical parameters, those more approached to that reported in the manual of the subcritical assembly are the effective multiplication factor and the reproduction factor η. The differences can be because the description of the fuel rods provided by the manual of the S A use do not correspond those that are physically in the S A core. This difference consists on the presence of a circular central channel of 1.245 diameter centimeters in each fuel rod. The fuel rods reported in the mentioned manual do not have that channel. Although the obtained results are encouraging, we want to continue improving the model to incorporate in this the detectors, defined this way by the Serpent code, which could determine the existent neutrons flux in diverse points of interest like the axial or radial aligned points and to compare these with those that are obtained in an experimental way when a generating neutrons source (Pu-Be) is introduced. Added to this effort the cross sections for each unitary cell will be determined, so that

  19. Study on variance-to-mean method as subcriticality monitor for accelerator driven system operated with pulse-mode

    International Nuclear Information System (INIS)

    Yamauchi, Hideto; Kitamura, Yasunori; Yamane, Yoshihiro; Misawa, Tsuyoshi; Unesaki, Hironobu

    2003-01-01

    Two types of the variance-to-mean methods for the subcritical system that was driven by the periodic and pulsed neutron source were developed and their experimental examination was performed with the Kyoto University Critical Assembly and a pulsed neutron generator. As a result, it was demonstrated that the prompt neutron decay constant could be measured by these methods. From this fact, it was concluded that the present variance-to-mean methods had potential for being used in the subcriticality monitor for the future accelerator driven system operated with the pulse-mode. (author)

  20. Research project on accelerator-driven subcritical system using FFAG accelerator and Kyoto University critical assembly

    International Nuclear Information System (INIS)

    Mishima, Kaichiro; Unesaki, Hironobu; Misawa, Tsuyoshi; Tanigaki, Minoru; Mori, Yoshiharu; Shiroya, Seiji; Inoue, Makoto; Ishi, Y.; Fukumoto, Shintaro

    2005-01-01

    The KART (Kumatori Accelerator-driven Reactor Test facility) project started in Research Reactor Institute, Kyoto University in fiscal year 2002 with the grant by the Japanese Ministry of Education, Culture, Sports, Science and Technology. The purpose of this research project is to demonstrate the basis feasibility of accelerator driven system (ADS), studying the effect of incident neutron energy on the effective multiplication factor in a subcritical nuclear fuel system. For this purpose, a variable-energy FFAG (Fixed Field Alternating Gradient) accelerator complex is being constructed to be coupled with the Kyoto University Critical Assembly (KUCA). The FFAG proton accelerator complex consists of ion-beta, booster and main rings. This system aims to attain 1 μA proton beam with energy range from 20 to 150 MeV with a repetition rate of 120 Hz. The first beam from the FFAG complex is expected to be available by the end of FY 2005, and the experiment on ADS with KUCA and the FFAG complex (FFAG-KUCA experiment) will start in FY 2006. Before the FFAG-KUCA experiment starts, preliminary experiments with 14 MeV neutrons are currently being performed using a Cockcroft-Walton type accelerator coupled with the KUCA. Experimental data are analyzed using continuous energy Monte-Carlo codes MVP, MCNP and MNCP-X. (author)

  1. SUB-LEU-METAL-THERM-001 SUBCRITICAL MEASUREMENTS OF LOW ENRICHED TUBULAR URANIUM METAL FUEL ELEMENTS BEFORE and AFTER IRRADIATION

    International Nuclear Information System (INIS)

    SCHWINKENDORF, K.N.

    2006-01-01

    With the shutdown of the Hanford PUREX (Plutonium-Uranium Extraction Plant) reprocessing plant in the 1970s, adequate storage capacity for spent Hanford N Reactor fuel elements in the K and N Reactor pools became a concern. To maximize space utilization in the pools, accounting for fuel burnup was considered. Calculations indicated that at typical fuel exposures for N Reactor, the spent-fuel critical mass would be twice the critical mass for green fuel. A decision was reached to test the calculational result with a definitive experiment. If the results proved positive, storage capacity could be increased and N Reactor operation could be prolonged. An experiment to be conducted in the N Reactor spent-fuel storage pool was designed and assembled and the services of the Battelle Northwest Laboratories (BNWL) (now Pacific Northwest National Laboratory [PNNL]) critical mass laboratory were procured for the measurements. The experiments were performed in April 1975 in the Hanford N Reactor fuel storage pool. The fuel elements were MKIA fuel assemblies, comprising two concentric tubes of low-enriched metallic uranium. Two separate sets of measurements were performed: one with ''green'' (fresh) fuel and one with spent fuel. Both the green and spent fuel, were measured in the same geometry. The spent-fuel MKIA assemblies had an average burnup of 2865 MWd (megawatt days)/t. A constraint was imposed restricting the measurements to a subcritical limit of k eff = 0.97. Subcritical count rate data was obtained with pulsed-neutron and approach-to-critical measurements. Ten (10) configurations with green fuel and nine (9) configurations with spent fuel are described and evaluated. Of these, 3 green fuel and 4 spent fuel loading configurations were considered to serve as benchmark models. However, shortcomings in experimental data failed to meet the high standards for a benchmark problem. Nevertheless, the data provided by these subcritical measurements can supply useful

  2. Subcriticality monitoring method for reactor

    International Nuclear Information System (INIS)

    Ueda, Makoto.

    1991-01-01

    The present invention accurately monitors the reactor subcriticality and ensures the critical safety, irrespective of the presence or absence of artificial neutron sources. That is, when the subcriticality is monitored upon reactivity changing operation which causes reactivity change to the reactor during shutdown, neutron monitors are disposed at a plurality of monitoring positions. Then, neutron counting ratio before and after conducting the reactivity changing operation is determined. The subcriticality of the reactor is monitored by the ratio and the state of scattering of the ratio of neutron counting rate between each of the neutron monitors. With such procedures, signals of the neutron monitors are used, the characteristic that the change of the signals depend on the change of the neutron multiplication of the reactor core can be utilized whether artificial neutron sources (external neutron sources) are disposed or not. Accordingly, the subcriticality can be monitored more reliably. (I.S.)

  3. Highly Compact Accelerator-Driven Subcritical Assembly for Medical and Industrial Applications

    International Nuclear Information System (INIS)

    Jasmina Vujic; William Kastenberg; Ehud Greenspan; Ka-Ngo Leung

    2006-01-01

    A novel, highly compact, fusion neutron source (CNS) based on a coaxial electrostatic accelerator is under development at the Lawrence Berkeley National Laboratory. This source is designed to generate up to ∼1012 D-D n/s. This source intensity is an order of magnitude too small for Boron Neutron Capture Therapy (BNCT) applications. The objective of this project is to assess the feasibility of using a small, safe and inexpensive subcritical fission assembly to multiply the fusion neutrons by a factor of (ge)30. The overall design objective is to get a treatment time for deep seated rain tumors that does not significantly increase beyond one hour when the effective multiplication factor of the SCM is k eff = 0.98. There are two major parts to this study: the optimization of the Sub-Critical Multiplier (SCM) and the optimization of the Beam Shaping Assembly (BSA), including the reflector for both subsystems. The SCM optimization objective is to maximize the current of neutrons that leak out from the SCM in the direction of the patient, without exceeding the maximum permissible k eff . Minimizing the required uranium inventory is another objective. SCM design variables considered include the uranium enrichment level in the range not exceeding 20% 235U (for proliferation concerns), SCM geometry and dimensions, fuel thickness and moderator thickness. The objective of the BSA optimization is to maximize the tumor dose rate using the optimal SCM while maintaining a tumor-to-normal tissue dose ratio of at least 20 to 12.5 (corresponding to the tumor control dose and to the healthy tissue dose limit). The BSA design variables include its shape, dimensions and composition. The reflector optimization is, in fact, an integral part of the SCM optimization and of the BSA optimization. The reflector design variables are composition and thickness. The study concludes that it is not quite feasible to achieve the project objective. Nevertheless, it appears feasible to develop a

  4. Recirculator "SALO" - A basis for creation of a model of sub-critical reactor controlled by the accelerator

    NARCIS (Netherlands)

    Gann, V.V.; Guk, I.S.; Dovbnya, A.N.; Kononenko, S.G.; Kostromin, A.S.; Peev, F.A.; Prochorets, I.M.; Soldatov, C.A.; Tarasenko, A.S.; Wiel, van der M.J.; Botman, J.I.M.

    2006-01-01

    Recently opportunities of creation test facility with sub-crit. reactors controlled by accelerators of particles are actively discussed. At an initial stage of these researches it is the most expedient to use electron accelerators as cost of such facility will be much less, than at use of proton

  5. ENHANCED ELECTROCHEMICAL PROCESSES IN SUBCRITICAL WATER

    Energy Technology Data Exchange (ETDEWEB)

    Steven B. Hawthorne

    2000-07-01

    This project involved designing and performing preliminary electrochemical experiments in subcritical water. An electrochemical cell with substantially better performance characteristics than presently available was designed, built, and tested successfully. The electrochemical conductivity of subcritical water increased substantially with temperature, e.g., conductivities increased by a factor of 120 when the temperature was increased from 25 to 250 C. Cyclic voltammograms obtained with platinum and nickel demonstrated that the voltage required to produce hydrogen and oxygen from water can be dropped by a factor of three in subcritical water compared to the voltages required at ambient temperatures. However, no enhancement in the degradation of 1,2-dichlorobenzene and the polychlorinated biphenyl 3,3',4,4'-tetrachlorobiphenyl was observed with applied potential in subcritical water.

  6. Evaluating Subcriticality during the Ebola Epidemic in West Africa.

    Directory of Open Access Journals (Sweden)

    Wayne T A Enanoria

    Full Text Available The 2014-2015 Ebola outbreak is the largest and most widespread to date. In order to estimate ongoing transmission in the affected countries, we estimated the weekly average number of secondary cases caused by one individual infected with Ebola throughout the infectious period for each affected West African country using a stochastic hidden Markov model fitted to case data from the World Health Organization. If the average number of infections caused by one Ebola infection is less than 1.0, the epidemic is subcritical and cannot sustain itself. The epidemics in Liberia and Sierra Leone have approached subcriticality at some point during the epidemic; the epidemic in Guinea is ongoing with no evidence that it is subcritical. Response efforts to control the epidemic should continue in order to eliminate Ebola cases in West Africa.

  7. A portable measurement system for subcriticality measurements by the Cf-source-driven neutron noise analysis method

    International Nuclear Information System (INIS)

    Mihalczo, J.T.; Ragan, G.E.; Blakeman, E.D.

    1987-01-01

    A portable measurement system consisting of a personal computer used as a Fourier analyzer and three detection channels (with associated electronics that provide the signals to analog-to-digital (A/D) convertors) has been assembled to measure subcriticality by the 252 Cf-source-driven neutron noise analysis method. 8 refs

  8. Deep subcritical levels measurements dependents upon kinetic distortion factors

    International Nuclear Information System (INIS)

    Pan Shibiao; Li Xiang; Fu Guo'en; Huang Liyuan; Mu Keliang

    2013-01-01

    The measurement of deep subcritical levels, with the increase of subcriticality, showed that the results impact on the kinetic distortion effect, along with neutron flux strongly deteriorated. Using the diffusion theory, calculations have been carried out to quantify the kinetic distortion correction factors in subcritical systems, and these indicate that epithermal neutron distributions are strongly affected by kinetic distortion. Subcriticality measurements in four different rod-state combination at the zero power device was carried out. The test data analysis shows that, with increasing subcriticality, kinetic distortion effect correction factor gradually increases from 1.052 to 1.065, corresponding reactive correction amount of 0.78β eff ∼ 3.01β eff . Thus, it is necessary to consider the kinetic distortion effect in the deep subcritical reactivity measurements. (authors)

  9. Study in stationary state of the subcriticality of intermediate configurations of core in the reloading process of a BWR

    International Nuclear Information System (INIS)

    Hernandez, J.L.; Montes, J.L.; Perusquia, R.; Ortiz, J.J.

    2006-01-01

    In this work is carried out the simulation in three dimensions with the COREMASTER-PRESTO code, of the behavior of the reactor core in different stages of the change process of fuel assemblies. To carry out the simulation, this code requires of a database of nuclear parameters that includes those that can associate to the areas of an assemblies that they don't contain fuel and in its place there is moderator. These nuclear parameters are calculated with the AURORA-HELIOS-ZENITH-TABGEN system. One of the approaches that were carried out consisted on designing a 'water assemble', that is to say, an axial arrangement of 25 'water cells'. To obtain the appropriate 'water cell' its were carried out some selective test cases, since it presents in two cases the necessity to find an enough minimum value of fissile material for the correct execution of HELIOS, firstly, and later on COREMASTER-PRESTO. In the first case, the situation is solved when placing symmetrically 6 bars with natural uranium in the lateral areas of the cell; with that which the value of k inf of 0.1592 is obtained in the calculations with the HELIOS code in the cold condition to zero power (CZP), and 0% of vacuums. For the second case the cell includes symmetrically 28 bars with natural uranium, and the k inf value is 0.45290. These values are the maximum through the life of the 'cell.' As part of the activities that are developed during the fuel substitution, this the one of evaluating the subcriticality of the core each determined number of substitution movements. The obtained results when evaluating the k-effective in cold condition, in 5 different intermediate core configurations, as the loading process of the fuel advances are presented. To make the evaluation with CM-PRESTO in each configuration it was proceeded to complete the rest of the 444 assemblies with the one denominated 'water assemble'. In all the evaluated cases the subcriticality of the core was demonstrated in cold condition and with

  10. LAVENDER: A steady-state core analysis code for design studies of accelerator driven subcritical reactors

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Shengcheng; Wu, Hongchun; Cao, Liangzhi; Zheng, Youqi, E-mail: yqzheng@mail.xjtu.edu.cn; Huang, Kai; He, Mingtao; Li, Xunzhao

    2014-10-15

    Highlights: • A new code system for design studies of accelerator driven subcritical reactors (ADSRs) is developed. • S{sub N} transport solver in triangular-z meshes, fine deletion analysis and multi-channel thermal-hydraulics analysis are coupled in the code. • Numerical results indicate that the code is reliable and efficient for design studies of ADSRs. - Abstract: Accelerator driven subcritical reactors (ADSRs) have been proposed and widely investigated for the transmutation of transuranics (TRUs). ADSRs have several special characteristics, such as the subcritical core driven by spallation neutrons, anisotropic neutron flux distribution and complex geometry etc. These bring up requirements for development or extension of analysis codes to perform design studies. A code system named LAVENDER has been developed in this paper. It couples the modules for spallation target simulation and subcritical core analysis. The neutron transport-depletion calculation scheme is used based on the homogenized cross section from assembly calculations. A three-dimensional S{sub N} nodal transport code based on triangular-z meshes is employed and a multi-channel thermal-hydraulics analysis model is integrated. In the depletion calculation, the evolution of isotopic composition in the core is evaluated using the transmutation trajectory analysis algorithm (TTA) and fine depletion chains. The new code is verified by several benchmarks and code-to-code comparisons. Numerical results indicate that LAVENDER is reliable and efficient to be applied for the steady-state analysis and reactor core design of ADSRs.

  11. Advanced gray rod control assembly

    Science.gov (United States)

    Drudy, Keith J; Carlson, William R; Conner, Michael E; Goldenfield, Mark; Hone, Michael J; Long, Jr., Carroll J; Parkinson, Jerod; Pomirleanu, Radu O

    2013-09-17

    An advanced gray rod control assembly (GRCA) for a nuclear reactor. The GRCA provides controlled insertion of gray rod assemblies into the reactor, thereby controlling the rate of power produced by the reactor and providing reactivity control at full power. Each gray rod assembly includes an elongated tubular member, a primary neutron-absorber disposed within the tubular member said neutron-absorber comprising an absorber material, preferably tungsten, having a 2200 m/s neutron absorption microscopic capture cross-section of from 10 to 30 barns. An internal support tube can be positioned between the primary absorber and the tubular member as a secondary absorber to enhance neutron absorption, absorber depletion, assembly weight, and assembly heat transfer characteristics.

  12. Analytical and experimental analysis of YALINA-Booster and YALINA-Thermal assemblies

    International Nuclear Information System (INIS)

    Kiyavitskaya, H.; Bournos, V.; Mazanik, S.; Khilmanovich, A.; Martsinkevich, B.; Routkovskaya, Ch.; Edchik, I.; Fokov, Y.; Sadovich, S.; Fedorenko, A.; Gohar, Y.; Talamo, A.

    2010-01-01

    Full text: Accelerator Driven Systems (ADS) may play an important role in future nuclear fuel cycles to reduce the longterm radiotoxicity and volume of spent nuclear fuel. It is proposed that ADS will produce energy and incinerate radioactive waste. This technology was called Accelerator Driven Transmutation Technology (ADTT). The most important problems of this technology are monitoring of a reactivity level in on-line regime, a choice of neutron spectrum appropriate for incineration of Minor Actinides (MA) and transmutation of Long Lived Fission Products (LLFP) and etc. Before the designing and construction of an installation it is necessary to carry out R and D to validate codes, nuclear data libraries and other instrumentations. The YALINA facility is designed to study the ADS physics and to investigate the transmutation reaction rates of MA and LLFP. The main objective of the YALINA benchmark is to compare the results from different calculation methods with each other and experimental data. The benchmark is based on the current YALINA facility configuration, which provides the opportunity to verify the prediction capability of the different methods. The experimental data have been obtained in the frame of the ISTC Projects B1341 'Analytical and experimental evaluation of the possibility to create a universal volume source of neutrons in the sub-critical booster assembly with low enrichment uranium fuel driven by a neutron generator' and B1732P 'Analytical and experimental evaluating the possibility of creation of universal volume source of neutrons in the sub-critical booster assembly with low enriched uranium fuel driven by the neutron generator'. In this paper a comparison of the experimental and calculated data obtained for YALINA-Booster subcritical assembly with a fuel of different enrichment and for YALINA-Thermal with a different number of control rods (216, 245 and 280) will be done.

  13. Development study on subcriticality monitor. 1. Report under business contract with Japan Nuclear Fuel Cycle Development Institute

    CERN Document Server

    Yamada, S

    2002-01-01

    In this trust fund, we reviewed subcriticality measuring methods and neutron or gamma ray measuring and date transmission systems appropriate for realizing inexpensive on-line criticality surveillance systems, which is required for ensuring the safety of nuclear fuel reprocessing plants. Since the neutron flux level in subcritical systems is fairly low without external neutron sources, it is desirable to use pulse type neutron detectors for subcritical measurement systems. This logically implies that subcriticality measurement methods based on the temporal domain should be used for developing an on-line criticality surveillance system. In the deep subcriticality conditions, a strong external neutron source is needed for eactivity measurement and a D-T tube can be used in order to improve the accuracy of the measurement. A D-T tube is convenient since it is free from Tritium problem since Tritium is sealed in an airtight container and also can be controlled by power supply. Hence, under deep subcritical condit...

  14. Model-based adaptive sliding mode control of the subcritical boiler-turbine system with uncertainties.

    Science.gov (United States)

    Tian, Zhen; Yuan, Jingqi; Xu, Liang; Zhang, Xiang; Wang, Jingcheng

    2018-05-25

    As higher requirements are proposed for the load regulation and efficiency enhancement, the control performance of boiler-turbine systems has become much more important. In this paper, a novel robust control approach is proposed to improve the coordinated control performance for subcritical boiler-turbine units. To capture the key features of the boiler-turbine system, a nonlinear control-oriented model is established and validated with the history operation data of a 300 MW unit. To achieve system linearization and decoupling, an adaptive feedback linearization strategy is proposed, which could asymptotically eliminate the linearization error caused by the model uncertainties. Based on the linearized boiler-turbine system, a second-order sliding mode controller is designed with the super-twisting algorithm. Moreover, the closed-loop system is proved robustly stable with respect to uncertainties and disturbances. Simulation results are presented to illustrate the effectiveness of the proposed control scheme, which achieves excellent tracking performance, strong robustness and chattering reduction. Copyright © 2018. Published by Elsevier Ltd.

  15. High order statistical signatures from source-driven measurements of subcritical fissile systems

    International Nuclear Information System (INIS)

    Mattingly, J.K.

    1998-01-01

    This research focuses on the development and application of high order statistical analyses applied to measurements performed with subcritical fissile systems driven by an introduced neutron source. The signatures presented are derived from counting statistics of the introduced source and radiation detectors that observe the response of the fissile system. It is demonstrated that successively higher order counting statistics possess progressively higher sensitivity to reactivity. Consequently, these signatures are more sensitive to changes in the composition, fissile mass, and configuration of the fissile assembly. Furthermore, it is shown that these techniques are capable of distinguishing the response of the fissile system to the introduced source from its response to any internal or inherent sources. This ability combined with the enhanced sensitivity of higher order signatures indicates that these techniques will be of significant utility in a variety of applications. Potential applications include enhanced radiation signature identification of weapons components for nuclear disarmament and safeguards applications and augmented nondestructive analysis of spent nuclear fuel. In general, these techniques expand present capabilities in the analysis of subcritical measurements

  16. Experimental investigations of the accelerator-driven transmutation technologies at the subcritical facility ''Yalina''

    International Nuclear Information System (INIS)

    Chigrinov, S.E.; Kiyavitskaya, H.I.; Serafimovich, I.G.; Rakhno, I.L.; Rutkovskaia, Ch.K.; Fokov, Y.; Khilmanovich, A.M.; Marstinkevich, B.A.; Bournos, V.V.; Korneev, S.V.; Mazanik, S.E.; Kulikovskaya, A.V.; Korbut, T.P.; Voropaj, N.K.; Zhouk, I.V.; Kievec, M.K.

    2002-01-01

    The investigations on accelerator-driven transmutation technologies (ADTT) focus on the reduction of the amount of long-lived wastes and the physics of a subcritical system driven with an external neutron source. This paper presents the experimental facility 'Yalina' which was designed and created at the Radiation Physics and Chemistry Problems Institute of the National Academy of Sciences of Belarus in the framework of the ISTC project no. B-070 to study the peculiarities of ADTT in thermal spectrum. A detailed description of the assembly, neutron generator and a preliminary analysis of some calculated and experimental data (multiplication factor, neutron flux density distribution in the assembly, transmutation rates of some long-lived fission products and minor actinides) are presented. (authors)

  17. Influence of surrounding environment on subcritical crack growth in marble

    Science.gov (United States)

    Nara, Yoshitaka; Kashiwaya, Koki; Nishida, Yuki; , Toshinori, Ii

    2017-06-01

    Understanding subcritical crack growth in rock is essential for determining appropriate measures to ensure the long-term integrity of rock masses surrounding structures and for construction from rock material. In this study, subcritical crack growth in marble was investigated experimentally, focusing on the influence of the surrounding environment on the relationship between the crack velocity and stress intensity factor. The crack velocity increased with increasing temperature and/or relative humidity. In all cases, the crack velocity increased with increasing stress intensity factor. However, for Carrara marble (CM) in air, we observed a region in which the crack velocity still increased with temperature, but the increase in the crack velocity with increasing stress intensity factor was not significant. This is similar to Region II of subcritical crack growth observed in glass in air. Region II in glass is controlled by mass transport to the crack tip. In the case of rock, the transport of water to the crack tip is important. In general, Region II is not observed for subcritical crack growth in rock materials, because rocks contain water. Because the porosity of CM is very low, the amount of water contained in the marble is also very small. Therefore, our results imply that we observed Region II in CM. Because the crack velocity increased in both water and air with increasing temperature and humidity, we concluded that dry conditions at low temperature are desirable for the long-term integrity of a carbonate rock mass. Additionally, mass transport to the crack tip is an important process for subcritical crack growth in rock with low porosity.

  18. Criticality Calculations of Fresh LEU and MOX Assemblies for Transport and Storage at the Balakovo Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Goluoglu, S.

    2001-01-11

    Transportation of low-enriched uranium (LEU) and mixed-oxide (MOX) assemblies to and within the VVER-1000-type Balakovo Nuclear Power Plant is investigated. Effective multiplication factors for fresh fuel assemblies on the railroad platform, fresh fuel assemblies in the fuel transportation vehicle, and fresh fuel assemblies in the spent fuel storage pool are calculated. If there is no absorber between the units, the configurations with all MOX assemblies result in higher effective multiplication factors than the configurations with all LEU assemblies when the system is dry. When the system is flooded, the configurations with all LEU assemblies result in higher effective multiplication factors. For normal operating conditions, effective multiplication factors for all configurations are below the presumed upper subcritical limit of 0.95. For an accident condition of a fully loaded fuel transportation vehicle that is flooded with low-density water (possibly from a fire suppression system), the presumed upper subcritical limit is exceeded by configurations containing LEU assemblies.

  19. Spatial kinetics studies in liquid-metal fast breeder reactor critical assemblies

    International Nuclear Information System (INIS)

    Brumback, S.B.; Goin, R.W.; Carpenter, S.G.

    1988-01-01

    Recent measurements in the zero-power physics reactor have been used to study the effect of spatial decoupling in fast reactor critical assemblies of various sizes and compositions. Flux distributions in these assemblies had varying degrees of sensitivity to perturbations. Decoupling was investigated using rod-drop, boron-oscillator, and noise-coherence techniques, which emphasized different times following perturbations. Equilibrium flux distributions were also measured for subcritical configurations with inserted control rods. For most assemblies, accurate reactivity measurements were obtained by analyzing the power history from a single detector using inverse kinetics methods, assuming an instantaneous efficiency change for the detector. The instantaneous efficiency change assumption broke down, however, in assemblies with zones in which normal plutonium fuel was replaced by /sup 235/U fuel or fuel with a high /sup 240/Pu content. Flux redistributions caused by perturbations in these cores took several minutes to evolve

  20. Noise method for monitoring the sub-criticality in accelerator driven systems

    International Nuclear Information System (INIS)

    Rugama, Y.; Munoz-Cobo, J.L.; Valentine, T.E.; Mihalczo, J.T.; Perez, R.B.; Perez-Navarro, A.

    2001-01-01

    In this paper, an absolute measurements technique for the sub-criticality determination is presented. The development of ADS, requires of methods to monitor and control the sub-criticality of this kind of systems, without interfering it's normal operation mode. This method is based on the Stochastic Neutron and Photon Transport Theory developed by Munoz-Cobo et al., and which can be implemented in presently available neutron transport codes. As a by-product of the methodology a monitoring measurement technique has been developed and verified using two coupled Monte Carlo programs. The spallation collisions and the high-energy transport are simulated with LAHET. The neutrons transports with energies less than 20 MeV and the estimation of the count statistics for neutron and/or gamma ray counters in fissile systems, is simulated with MCNP-DSP. It is possible to get the kinetics parameters and the k eff value of the sub-critical system through the analysis of the counter detectors. (author)

  1. The Model of Temperature Dynamics of Pulsed Fuel Assembly

    CERN Document Server

    Bondarchenko, E A; Popov, A K

    2002-01-01

    Heat exchange process differential equations are considered for a subcritical fuel assembly with an injector. The equations are obtained by means of the use of the Hermit polynomial. The model is created for modelling of temperature transitional processes. The parameters and dynamics are estimated for hypothetical fuel assembly consisting of real mountings: the powerful proton accelerator and the reactor IBR-2 core at its subcritica l state.

  2. Applicability of Avery's coupled reactor theory to estimate subcriticality of test region in two region system

    International Nuclear Information System (INIS)

    Kugo, Teruhiko

    1992-01-01

    The author examined the validity to estimate the subcriticality of a test region in a coupled reactor system using only measurable quantities on the basis of Avery's coupled reactor theory. For the purpose, we analyzed coupled reactor experiments performed at the Tank-type Critical Assembly in Japan Atomic Energy Research Institute by using two region systems and evaluated the subcriticality of the test region through a numerical study. Coupling coefficients were redefined at the quasi-static state because their definitions by Avery were not clear. With the coupling coefficients obtained by the numerical calculation, the multiplication factor of the test region was evaluated by two formulas; one for the evaluation using only the measurable quantities and the other for the accurate evaluation which contains the terms dropped in the former formula by assuming the unchangeableness for the perturbation induced in a driver region. From the comparison between the results of the evaluations, it was found that the estimation using only the measurable quantities is valid only for the coupled reactor system where the subcriticality of the test region was very small within a few dollars in reactivity. Consequently, it is concluded that the estimation using only the measurable quantities is not applicable to a general coupled reactor system. (author)

  3. A portable measurement system for subcriticality measurements by the CF-source-driven neutron noise analysis method

    International Nuclear Information System (INIS)

    Mihalczo, J.T.; Ragan, G.E.; Blakeman, E.D.

    1988-01-01

    A portable measurement system consisting of a personal computer used as a Fourier analyzer and three detection channels (with associated electronics that provide the signals to analog-to-digital (A/D) convertors) has been assembled to measure subcriticality by the /sup 252/Cf-source-driven neutron noise analysis method. The /sup 252/Cf-source-driven neutron noise analysis method for obtaining the subcritical neutron multiplication factor of a configuration of fissile material requires measurement of the frequency-dependent cross-power spectral density (CPSD), G/sub 23/(ω), between a pair of detectors (Nos. 2 and 3) located in or near the fissile material and CPSDs G/sub 12/(ω) and G/sub 13/(ω) between these same detectors and a source of neutrons emanating from an ionization chamber (No. 1) containing /sup 252/Cf, also positioned in or near the fissile material. The auto-power spectral density (APSD), G/sub 11/(ω), of the source is also required. A particular ratio of spectral densities, G/sub 12//sup */G/sub 13//G/sub 11/G/sub 23/ (/sup */ denotes complex conjugation), is then formed. This ratio is related to the subcritical neutron multiplication factor and is independent of detector efficiencies

  4. Inverse kinetics for subcritical systems with external neutron source

    International Nuclear Information System (INIS)

    Carvalho Gonçalves, Wemerson de; Martinez, Aquilino Senra; Carvalho da Silva, Fernando

    2017-01-01

    Highlights: • It was developed formalism for reactivity calculation. • The importance function is related to the system subcriticality. • The importance function is also related with the value of the external source. • The equations were analyzed for seven different levels of sub criticality. • The results are physically consistent with others formalism discussed in the paper. - Abstract: Nuclear reactor reactivity is one of the most important properties since it is directly related to the reactor control during the power operation. This reactivity is influenced by the neutron behavior in the reactor core. The time-dependent neutrons behavior in response to any change in material composition is important for the reactor operation safety. Transient changes may occur during the reactor startup or shutdown and due to accidental disturbances of the reactor operation. Therefore, it is very important to predict the time-dependent neutron behavior population induced by changes in neutron multiplication. Reactivity determination in subcritical systems driven by an external neutron source can be obtained through the solution of the inverse kinetics equation for subcritical nuclear reactors. The main purpose of this paper is to find the solution of the inverse kinetics equation the main purpose of this paper is to device the inverse kinetics equations for subcritical systems based in a previous paper published by the authors (Gonçalves et al., 2015) and by (Gandini and Salvatores, 2002; Dulla et al., 2006). The solutions of those equations were also obtained. Formulations presented in this paper were tested for seven different values of k eff with external neutrons source constant in time and for a powers ratio varying exponentially over time.

  5. Comparative analysis of sub-critical transmutation reactor concepts

    International Nuclear Information System (INIS)

    Chang, S. H.

    1997-01-01

    The long-lived nuclear wastes have been substantially generated from the light water reactor for a few decades. The toxicity of these spent fuels will be higher than that of the uranium ore, even if those will be stored in the repository more than ten thousands. Hence the means of transmuting the key long-lived nuclear wastes, primarily the minor actinides, using a hybrid proton accelerator and subcritical transmutation reactor, are proposed. Until now, the representative concepts for a subcritical transmutation reactor are the Energy Amplifier, the OMEGA project, the ATW and the MSBR. The detailed concepts and the specifications are illustrated in Table 1. The design requirements for the subcritical transmutation reactor are the high transmutation rate of long-lived nuclear wastes, safety and economics. And to propose the subcritical transmutation reactor concepts, the coolant, the target material and fuel type are carefully considered. In these aspects, the representative concepts for a subcritical transmutation reactor in Table 1 have been surveyed. The requirements for a target and a coolant are the reliable, low maintenance operation and safe operation to minimize the wastes. The reliable, low maintenance operation and safe operation to minimize the wastes. The reliable coolant must have the low melting point, high heat capacity and excellent physical properties. And the target material must have high neutron yield for a given proton condition and easy heat removal capability. Therefore in respect with the above requirements, Pb-Bi is proposed as the coolant and the target material for the subcritical reactor. Because the neutron yield for a given proton energy increases linearly with mass number up to bismuth but in heavier elements spallation events sharply increase both the neutron and heat outputs, Pb-Bi meets not only such the requirements as the above for the coolant but also those for the coolant and target, the simplification of system can be achieved

  6. Accelerator-driven subcritical systems - An analysis with a focus on non-proliferation and export control

    International Nuclear Information System (INIS)

    Andersson, Per; Nielsen, Fredrik; Sunhede, Daniel

    2013-01-01

    The Department of Nuclear Weapons Related Issues at The Swedish Defence Research Agency, FOI, as commissioned by the Swedish Radiation Safety Authority, SSM, conducted a study concerning Accelerator Driven Subcritical Systems, ADS, with emphasis on non-proliferation and export control. An ADS looks at first glance like a traditional nuclear reactor, but the nuclear core is designed to always remain subcritical, both during normal and off-normal conditions. Neutrons are instead supplied by an external source in the form of an proton accelerator and a spallation target. This report gives a short walk-through to the physical processes that governs the neutron flux and reactivity in the core and how they are affected by the design of the core including the accelerator and spallation target. Furthermore is the results from reactor core simulations presented, where the isotopic nuclear fuel inventory has been studied as a function of burn up and initial configuration. Finally the report contains an analysis of the potential risks involved from the perspective of nuclear proliferation and exports. This study shows that ADS in the future could constitute a proliferation concern. The subsystems and components in question share design and materials with the equivalent components in traditional reactors with the exception of the proton accelerator and spallation target, which is unique for accelerator driven systems

  7. Shock buffer for nuclear control assembly

    International Nuclear Information System (INIS)

    Bevilacqua, F.

    1977-01-01

    A shock buffer is provided for the gradual deceleration of a rapidly descending control element assembly in a nuclear reactor. The interactive buffer components are associated respectively with the movable control element assembly and part of the upper guide structure independent of and spaced from the fuel assemblies of the reactor

  8. The spatial kinetic analysis of accelerator-driven subcritical reactor

    International Nuclear Information System (INIS)

    Takahashi, H.; An, Y.; Chen, X.

    1998-02-01

    The operation of the accelerator driven reactor with subcritical condition provides a more flexible choice of the reactor materials and of design parameters. A deep subcriticality is chosen sometime from the analysis of point kinetics. When a large reactor is operated in deep subcritical condition by using a localized spallation source, the power distribution has strong spatial dependence, and point kinetics does not provide proper analysis for reactor safety. In order to analyze the spatial and energy dependent kinetic behavior in the subcritical reactor, the authors developed a computation code which is composed of two parts, the first one is for creating the group cross section and the second part solves the multi-group kinetic diffusion equations. The reactor parameters such as the cross section of fission, scattering, and energy transfer among the several energy groups and regions are calculated by using a code modified from the Monte Carlo codes MCNPA and LAHET instead of the usual analytical method of ANISN, TWOTRAN codes. Thus the complicated geometry of the accelerator driven reactor core can be precisely taken into account. The authors analyzed the subcritical minor actinide transmutor studied by Japan Atomic Energy Research Institute (JAERI) using the code

  9. Continuous reactivity calculation for subcritical system

    International Nuclear Information System (INIS)

    Silva, Cristiano; Goncalves, Alessandro C.; Martinez, Aquilino S.; Silva, Fernando C. da

    2011-01-01

    With the rise of a new generation of nuclear reactors as for existence the ADS (Accelerator-Driven System), it is important to have a fast and accurate prediction of the variation in reactivity during a possible variation in the intensity of external sources. This paper presents a formulation for the calculation of reactivity in subcritical systems using the inverse method related only to nuclear power derivatives. One of the applications of the proposed method is the possibility of developing reactimeters that allow the continuous monitoring of subcritical systems. (author)

  10. Continuous reactivity calculation for subcritical system

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Cristiano; Goncalves, Alessandro C.; Martinez, Aquilino S.; Silva, Fernando C. da, E-mail: cristiano@herzeleid.net, E-mail: aquilino@lmp.ufrj.br, E-mail: fernando@con.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Palma, Daniel A.P., E-mail: dapalma@cnen.gov.br [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    With the rise of a new generation of nuclear reactors as for existence the ADS (Accelerator-Driven System), it is important to have a fast and accurate prediction of the variation in reactivity during a possible variation in the intensity of external sources. This paper presents a formulation for the calculation of reactivity in subcritical systems using the inverse method related only to nuclear power derivatives. One of the applications of the proposed method is the possibility of developing reactimeters that allow the continuous monitoring of subcritical systems. (author)

  11. Mechanical weathering and rock erosion by climate-dependent subcritical cracking

    Science.gov (United States)

    Eppes, Martha-Cary; Keanini, Russell

    2017-06-01

    This work constructs a fracture mechanics framework for conceptualizing mechanical rock breakdown and consequent regolith production and erosion on the surface of Earth and other terrestrial bodies. Here our analysis of fracture mechanics literature explicitly establishes for the first time that all mechanical weathering in most rock types likely progresses by climate-dependent subcritical cracking under virtually all Earth surface and near-surface environmental conditions. We substantiate and quantify this finding through development of physically based subcritical cracking and rock erosion models founded in well-vetted fracture mechanics and mechanical weathering, theory, and observation. The models show that subcritical cracking can culminate in significant rock fracture and erosion under commonly experienced environmental stress magnitudes that are significantly lower than rock critical strength. Our calculations also indicate that climate strongly influences subcritical cracking—and thus rock weathering rates—irrespective of the source of the stress (e.g., freezing, thermal cycling, and unloading). The climate dependence of subcritical cracking rates is due to the chemophysical processes acting to break bonds at crack tips experiencing these low stresses. We find that for any stress or combination of stresses lower than a rock's critical strength, linear increases in humidity lead to exponential acceleration of subcritical cracking and associated rock erosion. Our modeling also shows that these rates are sensitive to numerous other environment, rock, and mineral properties that are currently not well characterized. We propose that confining pressure from overlying soil or rock may serve to suppress subcritical cracking in near-surface environments. These results are applicable to all weathering processes.

  12. Subcriticality of accelerator driven system by AESJ/JAERI working party

    International Nuclear Information System (INIS)

    Iwasaki, Tomohiko

    2002-01-01

    Under Atomic Energy Society of Japan (AESJ) and Japan Atomic Energy Research Institute (JAERI), a Working Party on Reactor Physics of Accelerator-Driven System (ADS-WP) has been set since March 1999 to review and investigate special subjects related to reactor physics research of Accelerator-Driven System (ADS). In the ADS-WP, the extensive and aggressive activity is being made by 25 professional members in the field of reactor physics in Japan. The ADS is now studying three subjects related to subcriticality of ADS; (1) calculation accuracy of subcriticality on ADS, (2) critical safety issues of ADS, and (3) theoretical review of subcriticality and its measurement methods. This paper describes two topics related to the subjects (1) and (2); one is an analysis of maximum reactivity potentially inserted to a subcritical core and the other is a benchmark proposal for checking calculation accuracy of subcriticality on ADS. The full specification of the calculation benchmark will be supplied by June 2002. Researchers from overseas, especially from Korea, are welcome to join this benchmark

  13. Measurements relevant to simulating subcriticality in ADS facilities with blanket

    International Nuclear Information System (INIS)

    Titarenko, Yu. E.; Batyaev, V.F.; Borovlev, S.P.; Gladkikh, N.G.; Igumnov, M.M.; Legostaev, V.O.; Karpikhin, E.I.; Konev, V.N.; Kushnerev, Yu.T.; Popkov, V.N.; Ryazhsky, V.I.; Spiridonov, V.G.; Chernyavsky, E.V.; Shvedov, O.V.

    2009-10-01

    The work presents the results of determining the blanket subcriticality for a zero-power heavy water reactor MAKET at the Institute for Theoretical and Experimental Physics, Moscow. The blanket is hexagonal lattice made of 36 90%-enriched 235U fuel rods spaced 173mm apart. The subcriticality was varied from ∼0.3% to 5% by adjusting the heavy water level. The subcriticality values were calibrated using the dependence of reactivity on heavy water level. The pulsed neutron source technique was used to measure the temporal dependence of neutron field at different blanket points for the calibrated subcriticality values. The subciticality values obtained in terms of the 'inverse clock' formulae using the decay constants of the measured dependences proved to differ from the calibrated subcriticalities by not more than 7% at the average. The MCNP code-aided simulations of the experiment made has given the calibrated keff values at prescribed heavy water levels and led to the neutron field decay constants at given points, which differ on the average from their experimental values by not more than 7% too. (author)

  14. Snubber assembly for a control rod drive

    International Nuclear Information System (INIS)

    Matthews, J.C.

    1978-01-01

    A snubber cartridge assembly is mounted to the nozzle of a control rod drive mechanism to insure that the snubber assembly will be located within the liquid filled section of a nuclear reactor vessel whenever the control rod drive is assembled thereto. The snubber assembly includes a piston mounted proximate to the control rod connecting end of the control rod drive leadscrew to allow the piston to travel within the liquid filled snubber cartridge and controllably exhaust liquid therefrom during a ''scram'' condition. The snubber cartridge provides three separate areas of increasing resistance to piston travel to insure a speedy but safe ''scram'' of the control rod into the reactor

  15. Neutron chain length distributions in subcritical systems

    International Nuclear Information System (INIS)

    Nolen, S.D.; Spriggs, G.

    1999-01-01

    In this paper, the authors present the results of the chain-length distribution as a function of k in subcritical systems. These results were obtained from a point Monte Carlo code and a three-dimensional Monte Carlo code, MC++. Based on these results, they then attempt to explain why several of the common neutron noise techniques, such as the Rossi-α and Feynman's variance-to-mean techniques, are difficult to perform in highly subcritical systems using low-efficiency detectors

  16. Ensuring the validity of calculated subcritical limits

    International Nuclear Information System (INIS)

    Clark, H.K.

    1977-01-01

    The care taken at the Savannah River Laboratory and Plant to ensure the validity of calculated subcritical limits is described. Close attention is given to ANSI N16.1-1975, ''Validation of Calculational Methods for Nuclear Criticality Safety.'' The computer codes used for criticality safety computations, which are listed and are briefly described, have been placed in the SRL JOSHUA system to facilitate calculation and to reduce input errors. A driver module, KOKO, simplifies and standardizes input and links the codes together in various ways. For any criticality safety evaluation, correlations of the calculational methods are made with experiment to establish bias. Occasionally subcritical experiments are performed expressly to provide benchmarks. Calculated subcritical limits contain an adequate but not excessive margin to allow for uncertainty in the bias. The final step in any criticality safety evaluation is the writing of a report describing the calculations and justifying the margin

  17. Subcritical Water Hydrolysis of Peptides: Amino Acid Side-Chain Modifications

    Science.gov (United States)

    Powell, Thomas; Bowra, Steve; Cooper, Helen J.

    2017-09-01

    Previously we have shown that subcritical water may be used as an alternative to enzymatic digestion in the proteolysis of proteins for bottom-up proteomics. Subcritical water hydrolysis of proteins was shown to result in protein sequence coverages greater than or equal to that obtained following digestion with trypsin; however, the percentage of peptide spectral matches for the samples treated with trypsin were consistently greater than for those treated with subcritical water. This observation suggests that in addition to cleavage of the peptide bond, subcritical water treatment results in other hydrolysis products, possibly due to modifications of amino acid side chains. Here, a model peptide comprising all common amino acid residues (VQSIKCADFLHYMENPTWGR) and two further model peptides (VCFQYMDRGDR and VQSIKADFLHYENPTWGR) were treated with subcritical water with the aim of probing any induced amino acid side-chain modifications. The hydrolysis products were analyzed by direct infusion electrospray tandem mass spectrometry, either collision-induced dissociation or electron transfer dissociation, and liquid chromatography collision-induced dissociation tandem mass spectrometry. The results show preferential oxidation of cysteine to sulfinic and sulfonic acid, and oxidation of methionine. In the absence of cysteine and methionine, oxidation of tryptophan was observed. In addition, water loss from aspartic acid and C-terminal amidation were observed in harsher subcritical water conditions. [Figure not available: see fulltext.

  18. Subcritical tests - nuclear weapon testing under the Comprehensive Test Ban Treaty

    International Nuclear Information System (INIS)

    Hoeibraaten, S.

    1998-10-01

    The report discusses possible nuclear weapons related experiments and whether these are permitted under the 1996 Comprehensive Test Ban Treaty (CTBT). The term ''subcritical experiments'' as used in the United States includes experiments in which one studies fissile materials (so far only plutonium) under extreme conditions generated by conventional high explosives, and in which a self-sustained chain reaction never develops in the fissile material. The known facts about the American subcritical experiments are presented. There is very little reason to doubt that these experiments were indeed subcritical and therefore permitted under the CTBT. Little is known about the Russian efforts that are being made on subcritical experiments

  19. Determination of neutron interaction effect and subcriticality for light water moderated UO2 lattices

    International Nuclear Information System (INIS)

    Miyoshi, Y.; Suzaki, T.; Kobayashi, I.

    1984-01-01

    From the view point of nuclear criticality safety for fuel storage, transport and processing, a series of critical experiments have been performed using a Tank-type Critical Assembly (TCA) at the Japan Atomic Energy Research Institute. The first series of experiments are concerned with the neutron interaction effects between two cores composed of BWR-type fuel rods in water. The reactivity contribution from one core to another have been measured by the water level worth method and a pulsed neutron source method. Two symmetrical rectangular cores were composed in TCA and the water gap between two cores were parametrically changed. The volume ratios of water to fuel are 1.83 and 2.48 of which lattice pitches are 1.96 cm and 2.15 cm respectively. As for the pulsed neutron experiment, Gozani's area ratio method is theoretically extended to a coupled-core system, and the applicability of this method has been studied for determination of the reactivity at a subcritical state and the coupling coefficient that represents reactivity contribution from one core to another. The object of the second series of experiment is development of the technique which determine the reactivity at a high sub-critical state. The CF-252 source driven neutron noise analysis method proposed by Mihalczo has been tested in order to examine whether it could be available for measuring the subcriticality for the light water moderated system. The tested core was water reflected annular type which consisted of 308 UO 2 fuel rods and had a void region at the core center

  20. Nuclear reactor control assembly

    International Nuclear Information System (INIS)

    Negron, S.B.

    1991-01-01

    This patent describes an assembly for providing global power control in a nuclear reactor having the core split into two halves. It comprises a disk assembly formed from at least two disks each machined with an identical surface hole pattern such that rotation of one disk relative to the other causes the hole pattern to open or close, the disk assembly being positioned substantially at the longitudinal center of and coaxial with the core halves; and means for rotating at least one of the disks relative to the other

  1. Derivation and experimental demonstration of the perturbed reactivity method for the determination of subcriticality

    International Nuclear Information System (INIS)

    Kwok, K.S.; Bernard, J.A.; Lanning, D.D.

    1992-01-01

    The perturbed reactivity method is a general technique for the estimation of reactivity. It is particularly suited to the determination of a reactor's initial degree of subcriticality and was developed to facilitate the automated startup of both spacecraft and multi-modular reactors using model-based control laws. It entails perturbing a shutdown reactor by the insertion of reactivity at a known rate and then estimating the initial degree of subcriticality from observation of the resulting reactor period. While similar to inverse kinetics, the perturbed reactivity method differs in that the net reactivity present in the core is treated as two separate entities. The first is that associated with the known perturbation. This quantity, together with the observed period and the reactor's describing parameters, are the inputs to the method's implementing algorithm. The second entity, which is the algorithm;s output, is the sum of all other reactivities including those resulting from inherent feedback and the initial degree of subcriticality. During an automated startup, feedback effects will be minimal. Hence, when applied to a shutdown reactor, the output of the perturbed reactivity method will be a constant that is equal to the initial degree of subcriticality. This is a major advantage because repeated estimates can be made of this one quantity and signal smoothing techniques can be applied to enhance accuracy. In addition to describing the theoretical basis for the perturbed reactivity method, factors involved in its implementation such as the movement of control devices other than those used to create the perturbation, source estimation, and techniques for data smoothing are presented

  2. Control rod guide tube assemblies

    International Nuclear Information System (INIS)

    Jabsen, F.S.

    1979-01-01

    A nuclear fuel assembly including sleeves telescoped over end portions of control rod guide tubes which bear against internal shoulders of the sleeves. Upper ends of the sleeves protrude beyond a control rod guide tube spider and are locked in place by means of a resilient cellular lattice or lock that is seated in mating grooves in the outer surfaces of the sleeves. A grapple is provided for disengaging the entire lock structure spider and associated washers, springs and a grill from the end of the fuel assembly in order to enable these components to be removed and subsequently replaced on the fuel assembly after inspection and repair. (UK)

  3. Subcritical calculation of the nuclear material warehouse

    International Nuclear Information System (INIS)

    Garcia M, T.; Mazon R, R.

    2009-01-01

    In this work the subcritical calculation of the nuclear material warehouse of the Reactor TRIGA Mark III labyrinth in the Mexico Nuclear Center is presented. During the adaptation of the nuclear warehouse (vault I), the fuel was temporarily changed to the warehouse (vault II) and it was also carried out the subcritical calculation for this temporary arrangement. The code used for the calculation of the effective multiplication factor, it was the Monte Carlo N-Particle Extended code known as MCNPX, developed by the National Laboratory of Los Alamos, for the particles transport. (Author)

  4. Reaction kinetics of cellulose hydrolysis in subcritical and supercritical water

    Science.gov (United States)

    Olanrewaju, Kazeem Bode

    The uncertainties in the continuous supply of fossil fuels from the crisis-ridden oil-rich region of the world is fast shifting focus on the need to utilize cellulosic biomass and develop more efficient technologies for its conversion to fuels and chemicals. One such technology is the rapid degradation of cellulose in supercritical water without the need for an enzyme or inorganic catalyst such as acid. This project focused on the study of reaction kinetics of cellulose hydrolysis in subcritical and supercritical water. Cellulose reactions at hydrothermal conditions can proceed via the homogeneous route involving dissolution and hydrolysis or the heterogeneous path of surface hydrolysis. The work is divided into three main parts. First, the detailed kinetic analysis of cellulose reactions in micro- and tubular reactors was conducted. Reaction kinetics models were applied, and kinetics parameters at both subcritical and supercritical conditions were evaluated. The second major task was the evaluation of yields of water soluble hydrolysates obtained from the hydrolysis of cellulose and starch in hydrothermal reactors. Lastly, changes in molecular weight distribution due to hydrothermolytic degradation of cellulose were investigated. These changes were also simulated based on different modes of scission, and the pattern generated from simulation was compared with the distribution pattern from experiments. For a better understanding of the reaction kinetics of cellulose in subcritical and supercritical water, a series of reactions was conducted in the microreactor. Hydrolysis of cellulose was performed at subcritical temperatures ranging from 270 to 340 °C (tau = 0.40--0.88 s). For the dissolution of cellulose, the reaction was conducted at supercritical temperatures ranging from 375 to 395 °C (tau = 0.27--0.44 s). The operating pressure for the reactions at both subcritical and supercritical conditions was 5000 psig. The results show that the rate-limiting step in

  5. Subcritical reactivity measurement at Angra 1 nuclear power plant

    International Nuclear Information System (INIS)

    Kuramoto, Renato Yoichi Ribeiro; Miranda, Anselmo Ferreira

    2011-01-01

    In order to speed up the Angra 1 NPP physics tests, this work intends to develop a digital reactivity meter combined with a methodology of the modified Neutron Source Multiplication (NSM) method with correction factors for subcriticality measurements at Angra 1 NPP. In the first part of this work, we have applied the Modified Neutron Source Multiplication (MNSM) Method with fundamental mode extraction, in order to improve the monitoring of the subcriticality at Angra 1 NPP during the criticality approach. In the second part, we developed a preliminary subcritical reactivity meter algorithm based on the point-reactor inverse kinetic model with six delayed neutron groups and external neutron source. The source strength was obtained through the Least Squares Inverse Kinetics Method (LSIKM). (author)

  6. Physics of subcritical multiplying regions and experimental validation

    International Nuclear Information System (INIS)

    Salvatores, M.

    1996-01-01

    The coupling of a particle accelerator with a spallation target and with a subcritical multiplying region has been proposed in the fifties and is called here a hybrid system. This article gives some ideas about the energetic balance of such a system. The possibilities of experimental validation of some properties of a subcritical multiplying region by using MASURCA facility at CEA-Cadarache are examined. The results of a preliminary experiment called MUSE are presented. (A.C.)

  7. Snubber assembly for a control rod drive

    International Nuclear Information System (INIS)

    1976-01-01

    A snubber cartridge assembly is described which is mounted to the nozzle of a control rod drive mechanism to insure that it will be located within the liquid filled section of a nuclear reactor vessel whenever the control rod drive is assembled thereto. The snubber assembly includes a piston-mounted proximate to the control rod connecting end of the control rod drive leadscrew to allow the piston to travel within the liquid filled snubber cartridge and controllable exhaust the liquid during a 'scram' condition. The snubber cartridge provides three separate areas of increasing resistance to piston travel to insure a speedy but safe 'scram' of the control rod into the reactor

  8. Shock buffer for nuclear control element assembly

    International Nuclear Information System (INIS)

    Bevilacqua, F.

    1977-01-01

    A shock buffer for a control element assembly in a nuclear reactor is described, comprising a piston and a cylinder. The piston is affixed to and extends upward from the control rod guide structure; the cylinder is supported by the upper portion of the control element assembly and is vertically oriented with open end downward for receiving the piston. Coolant liquid normally has free access to the cylinder. The piston displaces liquid from the cylinder when inserted, thereby decelerating the control element assembly near its lower extent of travel. (LL)

  9. Development of reactivity feedback effect measurement techniques under sub-critical condition in fast reactors

    International Nuclear Information System (INIS)

    Kitano, A.; Nishi, H.; Suzuki, T.; Okajima, S.; Kanemoto, S.

    2012-01-01

    The first-of-a-kind reactor has been licensed by a safety examination of the plant design based on the measured data in precedent mock-up experiments. The validity of the safety design can be confirmed without a mock-up experiment, if the reactor feed-back characteristics can be measured before operation, with the constructed reactor itself. The 'Synthesis Method', a systematic and sophisticated method of sub-criticality measurement, is proposed in this work to ensure the safety margin before operation. The 'Synthesis Method' is based on the modified source multiplication method (MSM) combined with the noise analysis method to measure the reference sub-criticality level for MSM. A numerical simulation for the control-rod reactivity worth and the isothermal feed-back reactivity was conducted for typical fast reactors of 100 MWe-size, 300 MWe-size, 750 MWe-size, and 1500 MWe-size to investigate the applicability of Synthesis Method. The number of neutron detectors and their positions necessary for the measurement were investigated for both methods of MSM and the noise analysis by a series of parametric survey calculations. As a result, it was suggested that a neutron detector located above the core center and three or more neutron detectors located above the radial blanket region enable the measurement of sub-criticality within 10% uncertainty from -$0.5 to -$2 and within 15% uncertainty for the deeper sub-criticality. (authors)

  10. Activity report of working party on reactor physics of subcritical system. October 2001 to March 2003

    International Nuclear Information System (INIS)

    2004-03-01

    Under the Research Committee on Reactor Physics, the Working Party on Reactor Physics of Subcritical System (ADS-WP) was set in July 2001 to research reactor physics of subcritical system such as Accelerator-Driven System (ADS). The WP, at the first meeting, discussed a guideline of its activity for two years and decided to perform theoretical research for the following subjects: (1) study of reactor physics for a subcritical core, (2) benchmark problems for a subcritical core and their calculations, (3) study of physical parameters affecting to set subcriticality of ADS, and (4) study of measurement and surveillance methods of subcriticality of a subcritical core. The activity of ADS-WP continued up to March 2003. In this duration, the members of the WP met together eight times, including four meetings jointly held with the Workshop on Accelerator-Driven Subcritical Reactor at Kyoto University Research Reactor Institute. This report summarizes the result obtained by the above WP activity and research. (author)

  11. Possibilities and limits of the reactivity determination of control rods

    International Nuclear Information System (INIS)

    Buenemann, D.

    1975-01-01

    Basic physical facts of the reactivity determination of control rods are presented. A survey of currrently applied methods is given, and the drawbacks of the various methods are pointed out. Special problems are presented by the interpretation of highly subcritical assemblies which are not really important in practical reactor operation but desirable for a consistant comparison between theory and experiments. (orig./AK) [de

  12. Feasibility of subcriticality and NDA measurements for spent fuel by frequency analysis techniques with 252Cf

    International Nuclear Information System (INIS)

    Mihalczo, J.T.; Valentine, T.E.; Mattingly, J.K.

    1996-01-01

    The 252 Cf-source-driven frequency analysis method can be used for measuring the subcritical neutron multiplication factor of arrays of LWR fuel and as little as a single PWR fuel assembly. These measurements can be used to verify the criticality safety margins of spent LWR fuel configurations and thus could be a means of obtaining the information to justify burnup credit for spent LWR transportation/storage casks. In addition, the data can be used to validate calculational methods for criticality safety. These measurements provide parameters that have a higher sensitivity to changes in fissile mass than neutron multiplication factor and thus serve as a better test of calculational methods. The analysis have also shown that measurement of the cross power spectral density (CPSD) between detectors on one side of a single fuel assembly and an internal or external 252 Cf source driving the fission chain multiplication process can be used for nondestructive assay of fissile mass along the length of the assembly. This CPSD is a smooth function of fissile mass and does not depend on the varying inherent source in the fuel assembly and thus is ideal for fissile mass assay

  13. Extraction of antioxidants from Chlorella sp. using subcritical water treatment

    Science.gov (United States)

    Zakaria, S. M.; Mustapa Kamal, S. M.; Harun, M. R.; Omar, R.; Siajam, S. I.

    2017-06-01

    Chlorella sp. microalgae is one of the main source of natural bioactive compounds used in the food and pharmaceutical industries. Subcritical water extraction is the technique that offers an efficient, non-toxic, and environmental-friendly method to obtain natural ingredients. In this work, the extracts of Chlorella sp. microalgae was evaluated in terms of: chemical composition, extraction (polysaccharides) yield and antioxidant activity, using subcritical water extraction. Extractions were performed at temperatures ranging from 100°C to 300°C. The results show that by using subcritical water, the highest yield of polysaccharides is 23.6 that obtained at 150°C. Analysis on the polysaccharides yield show that the contents were highly influenced by the extraction temperature. The individual antioxidant activity were evaluated by in vitro assay using a free radical method. In general, the antioxidant activity of the extracts obtained at different water temperatures was high, with values of 31.08-54.29 . The results indicated that extraction by subcritical water was effective and Chlorella sp. can be a useful source of natural antioxidants.

  14. Light-Controlled Swarming and Assembly of Colloidal Particles

    Directory of Open Access Journals (Sweden)

    Jianhua Zhang

    2018-02-01

    Full Text Available Swarms and assemblies are ubiquitous in nature and they can perform complex collective behaviors and cooperative functions that they cannot accomplish individually. In response to light, some colloidal particles (CPs, including light active and passive CPs, can mimic their counterparts in nature and organize into complex structures that exhibit collective functions with remote controllability and high temporospatial precision. In this review, we firstly analyze the structural characteristics of swarms and assemblies of CPs and point out that light-controlled swarming and assembly of CPs are generally achieved by constructing light-responsive interactions between CPs. Then, we summarize in detail the recent advances in light-controlled swarming and assembly of CPs based on the interactions arisen from optical forces, photochemical reactions, photothermal effects, and photoisomerizations, as well as their potential applications. In the end, we also envision some challenges and future prospects of light-controlled swarming and assembly of CPs. With the increasing innovations in mechanisms and control strategies with easy operation, low cost, and arbitrary applicability, light-controlled swarming and assembly of CPs may be employed to manufacture programmable materials and reconfigurable robots for cooperative grasping, collective cargo transportation, and micro- and nanoengineering.

  15. Renovating process for Pressurized Water Reactor control rod assemblies and corresponding control

    International Nuclear Information System (INIS)

    Jahnke, S.; Ple, P.

    1989-01-01

    In the first PWRs the control rods are moving by the intermediary of electromagnetic mechanisms where the power fed to the electromagnets is selected by a hard wired logic circuit connected to the controldesh by another logic control. For renovating the control rod assemblies each power assembly is replaced by an electronic assembly containing an ordinator and power supply interfaces [fr

  16. Analysis of neutronics and dynamic characteristics with reactivity injection in LBE cooled sub-critical reactor

    International Nuclear Information System (INIS)

    Chen Sen; Wu Yican; Jin Ming; Chen Zhibin; Bai Yunqing; Zhao Zhumin

    2014-01-01

    Accelerator Driven Sub-critical System (ADS) has particular neutronics behaviors compared with the critical system. Prompt jump approximation point reactor kinetics equations taken external source into account have been deduced using an approach of prompt jump approximation. And the relationship between injection reactivity and power ampliation has been achieved. In addition, based on the RELAP5 code the prolong development of point reactor kinetics code used into assessing sub-critical system have been promoted. Different sub-criticality (k eff = 0.90, 0.95, 0.97, 0.98 and 0.99) have been assessed in preliminary design of a type of natural circulation cooling sub-critical reactor under conditions of reactivity injection +1 β in one second. It shows that the external source prompt transient approximation method has an accurate solution after injecting reactivity around short time and has a capacity to solve the dynamic equation, and the sub-critical system has an inner stability while the deeper sub-criticality the less impact on the sub-critical system. (authors)

  17. Measuring method for effective neutron multiplication factor upon containing irradiated fuel assembly

    International Nuclear Information System (INIS)

    Ueda, Makoto; Mitsuhashi, Ishi; Sasaki, Tomoharu.

    1993-01-01

    A portion of irradiated fuel assemblies at a place where a reactivity effect is high, that is, at a place where neutron importance is high is replaced with standard fuel assemblies having a known composition to measure neutron fluxes at each of the places. An effective composition at the periphery of the standard fuel assemblies is determined by utilizing a calibration curve determined separately based on the composition and neutron flux values of the standard assemblies. By using the calibration curve determined separately based on this composition and the known composition of the standard fuel assemblies, an effective neutron multiplication factor for the fuel containing portion containing the irradiated fuel assemblies is recognized. Then, subcriticality is ensured and critical safety upon containing the fuel assemblies can be secured quantitatively. (N.H.)

  18. Choosing the optimal parameters of subcritical reactors driven by accelerators

    International Nuclear Information System (INIS)

    Khudaverdyan, A.G.; Zhamkochyan, V.M.

    1998-03-01

    Physical aspects of a subcritical Nuclear Power Plants (NPP) driven by proton accelerators are considered. Estimated theoretical calculations are made for subcritical regimes of various types of reactors. It was shown that the creation of the quite effective explosion-safe NPP is real at an existing level of the accelerator technique by using available reactor units (including the serial ones). (author)

  19. Transient subcritical crack-growth behavior in transformation-toughened ceramics

    International Nuclear Information System (INIS)

    Dauskardt, R.H.; Ritchie, R.O.; Carter, W.C.; Veirs, D.K.

    1990-01-01

    Transient subcritical crack-growth behavior following abrupt changes in the applied load are studied in transformation-toughened ceramics. A mechanics analysis is developed to model the transient nature of transformation shielding of the crack tip, K s , with subcritical crack extension following the applied load change. conditions for continued crack growth, crack growth followed by arrest, and no crack growth after the load change, are considered and related to the magnitude and sign of the applied load change and to materials properties such as the critical transformation stress. The analysis is found to provide similar trends in K s compared to values calculated from experimentally measured transformation zones in a transformation-toughened Mg-PSZ. In addition, accurate prediction of the post load-change transient crack-growth behavior is obtained using experimentally derived steady-state subcritical crack-growth relationships for cyclic fatigue in the same material

  20. Measurement of fast assembly spectra using time-of-flight method

    International Nuclear Information System (INIS)

    Duquesne, Henry; Rotival, Michel; Schmitt, Andre; Allard, Christian; De Keyser, Albert; Hortsmann, Henri

    1975-07-01

    Measurement of neutron spectra made in fast subcritical assemblies HUG 3 and PHUG 3 (uranium-graphite and plutonium-graphite) utilizing time-of-flight techniques are described. The matrix were excited by the pulsed neutron source from the BCMN Linac beam impinging on a target of natural uranium. Details of the experimental procedure, safety studies, detector calibration and data reduction are given [fr

  1. Solubility of Benzo[a]pyrene and Organic Matter of Soil in Subcritical Water

    Directory of Open Access Journals (Sweden)

    Svetlana Sushkova

    2015-12-01

    Full Text Available A dynamic subcritical water extraction method of benzo[a]pyrene from soils is under consideration. The optimum conditions for benzo[a]pyrene extraction from soil are described including the soil treatment by subcritical water at 250 °C and 100 atm for 30 min. The effectiveness of developed method was determined using the matrix spiking recovery technique. A comparative analysis was made to evaluate the results of benzo[a]pyrene extraction from soils using the subcritical water and organic solvents. The advantages of the subcritical water extraction involve the use of ecologically friendly solvent, a shorter time for the analysis and a higher amount of benzo[a]pyrene extracted from soil (96 %. The influence of subcritical water extraction on soil properties was measured the investigation of the processes occurring within soil under the influence the high temperature and pressure. Under appropriate conditions of the experiment there is the destruction of the soil organic matter while the composition of the soil mineral fraction remains practically unchanged.

  2. Proposed sub-criticality level for an 80 MWTHd-bismuth-cooled Ads

    International Nuclear Information System (INIS)

    Mansani, L.; Monti, R.; Neuhold, P.

    2003-01-01

    The degree of operational sub-criticality of an Accelerator-driven System (ADS) on the one hand directly affects key accelerator system parameters, such as the proton beam current required to sustain the selected rated power level and, on the other, the likelihood of approaching or attaining criticality under abnormal or accident conditions. Then, if in all such conditions the safety goal is pursued to design the sub-critical core so that it stays away from criticality with adequate margin, the required operational sub-criticality level must be determined by a properly balanced approach between excessively demanding accelerator system performances and risk of accidental criticality. The approach must necessarily include evaluation and appropriate combination of the relevant reactivity effects (e.g. from system cool-down, postulated accident scenarios, geometrical variations) and proper consideration of specific design features (such as, for instance, the absence of safety rods, intended as neutron absorbing devices having a role equivalent to the shutdown rods in critical reactors). The paper presents a possible approach to the determination of the operational sub-criticality level of an 80 MWth Lead-Bismuth-cooled pool type ADS, initially conceived and developed by a team of Italian Organisations led by Ansaldo, with funding from the Ministry of University and Scientific and Technological Research, and currently in the process of being assessed, versus a gas-cooled concept, in the frame of a contract with the Commission of the European Communities. After a brief description of the Lead-Bismuth-cooled ADS concept relevant features and of the key safety goals in terms of required sub-criticality margin, the evaluated reactivity effects are presented, a method to combine them is discussed and a proposed operational sub-criticality level is derived. (author)

  3. Subcritical Noise Analysis Measurements with Fresh and Spent Research Reactor Fuels Elements

    International Nuclear Information System (INIS)

    Valentine, T.E.; Mihalczo, J.T.; Kryter, R.C.; Miller, V.C.

    1999-01-01

    The verification of the subcriticality is of utmost importance for the safe transportation and storage of nuclear reactor fuels. Transportation containers and storage facilities are designed such that nuclear fuels remain in a subcritical state. Such designs often involve excess conservatism because of the lack of relevant experimental data to verify the accuracy of Monte Carlo codes used in nuclear criticality safety analyses. A joint experimental research program between Oak Ridge National Laboratory, Westinghouse Safety Management Solutions, Inc., and the University of Missouri was initiated to obtain measured quantities that could be directly related to the subcriticality of simple arrays of Missouri University Research Reactor (MURR) fuel elements. A series of measurement were performed to assess the reactivity of materials such as BORAL, stainless steel, aluminum, and lead that are typically used in the construction of shipping casks. These materials were positioned between the fuel elements. In addition, a limited number of measurements were performed with configurations of fresh and spent (irradiated) fuel elements to ascertain the reactivity of the spent fuel elements. In these experiments, fresh fuel elements were replaced by spent fuel elements such that the subcritical reactivity change could be measured. The results of these measurements were used by Westinghouse Safety Management Solutions to determine the subcriticality of MURR fuel elements isolated by absorbing materials. The measurements were interpreted using the MCNP-DSP Monte Carlo code to obtain the subcritical neutron multiplication factor k(sub eff), and the bias in K(sub eff) that are used in criticality safety analyses

  4. Burning of spent fuel of an accelerator-driven modular HTGR in sub-critical condition

    International Nuclear Information System (INIS)

    Jing Xingqing; Yang Yongwei; Chang Hong; Wu Zongxin; Gu Yuxiang

    2002-01-01

    The modular high temperature gas cooled reactor (MHTGR) has good safety characteristics because of the use of coated particles in the fuel element. After the particles cool outside of the reactor for some time, the spent fuel can be re-utilized. The author describes a physics feasibility study for the burning of spent fuel from a 350 MW ring-shaped modular high temperature gas cooled reactor in an accelerator-driven sub-critical reactor. A conceptual design is given for the 30 MW accelerator-driven sub-critical reactor. The neutron transport in the sub-critical reactor was simulated using the MCNP code, and the burnup was calculated using the ORIGEN2 code. The results show that the accelerator-driven sub-critical gas-cooled reactor has reliable sub-criticality and low power density and that the spent fuel from a 350 MW ring-shaped modular high temperature gas cooled reactor can be burned to provide 20% more energy

  5. Radiological characterization of spent control rod assemblies

    International Nuclear Information System (INIS)

    Lepel, E.A.; Robertson, D.E.; Thomas, C.W.; Pratt, S.L.; Haggard, D.L.

    1995-10-01

    This document represents the final report of an ongoing study to provide radiological characterizations, classifications, and assessments in support of the decommissioning of nuclear power stations. This report describes the results of non-destructive and laboratory radionuclide measurements, as well as waste classification assessments, of BWR and PWR spent control rod assemblies. The radionuclide inventories of these spent control rods were determined by three separate methodologies, including (1) direct assay techniques, (2) calculational techniques, and (3) by sampling and laboratory radiochemical analyses. For the BWR control rod blade (CRB) and PWR burnable poison rod assembly (BPRA), 60 Co and 63 Ni, present in the stainless steel cladding, were the most abundant neutron activation products. The most abundant radionuclide in the PWR rod cluster control assembly (RCCA) was 108m Ag (130 yr halflife) produced in the Ag-In-Cd alloy used as the neutron poison. This radionuclide will be the dominant contributor to the gamma dose rate for many hundreds of years. The results of the direct assay methods agree very well (±10%) with the sampling/radiochemical measurements. The results of the calculational methods agreed fairly well with the empirical measurements for the BPRA, but often varied by a factor of 5 to 10 for the CRB and the RCCA assemblies. If concentration averaging and encapsulation, as allowed by 10CFR61.55, is performed, then each of the entire control assemblies would be classified as Class C low-level radioactive waste

  6. Development of High Flux Isotope Reactor (HFIR) subcriticality monitoring methods

    International Nuclear Information System (INIS)

    Rothrock, R.B.

    1991-01-01

    Use of subcritical source multiplication measurements during refueling has been investigated as a possible replacement for out-of-reactor subcriticality measurements formerly made on fresh HFIR fuel elements at the ORNL Critical Experiment Facility. These measurements have been used in the past for preparation of estimated critical rod positions, and as a partial verification, prior to reactor startup, that the requirements for operational shutdown margin would be met. Results of subcritical count rate data collection during recent HFIR refuelings and supporting calculations are described illustrating the intended measurement method and its expected uncertainty. These results are compared to historical uses of the out-of-reactor core measurements and their accuracy requirements, and a planned in-reactor test is described which will establish the sensitivity of the method and calibrate it for future routine use during HFIR refueling. 2 refs., 1 fig., 2 tabs

  7. Discriminators for the Accelerator-Based Conversion (ABC) concept using a subcritical molten salt system

    International Nuclear Information System (INIS)

    Arthur, E.; Busksa, J.; Davidson, W.; Poston, D.

    1995-05-01

    Discriminators are described that quantify enhancements added to plutonium destruction and/or nuclear waste transmutation systems through use of an accelerator/fluid fuel combination. This combination produces a robust and flexible nuclear system capable of the destruction of all major long-lived actinides (including plutonium) and fission products. The discriminators discussed in this report are (1) impact of subcritical operation on safety, (2) impact of subcritical and fluid fuel operation on plutonium burnout scenarios, and (3) neutron economy enhancements brought about by subcritical operation. Neutron economy enhancements are quantified through assessment of long-term dose reduction resulting from transmutation of key fission products along with relaxation of processing frequencies afforded by subcritical operation

  8. Workshop on Subcritical Neutron Production

    International Nuclear Information System (INIS)

    Walter Sadowski; Roald Sagdeev

    2006-01-01

    Executive Summary of the Workshop on Subcritical Neutron Production A workshop on Subcritical Neutron Production was sponsored by the East-West Center of the University of Maryland on October 11-13, 2004. The subject of the workshop was the application of subcritical neutrons to transmutation of actinides. The workshop was attended by members of the fission, accelerator and fusion communities. Papers on the state of development of neutron production by accelerators, fusion devices, and fission reactors were presented. Discussions were held on the potential of these technologies to solve the problems of spent nuclear waste storage and nuclear non-proliferation presented by current and future nuclear power reactors. A list of participants including their affiliation and their E-Mail addresses is attached. The workshop concluded that the technologies, presently available or under development, hold out the exciting possibility of improving the environmental quality and long term energy resources of nuclear power while strengthening proliferation resistance. The workshop participants agreed on the following statements. The workshop considered a number of technologies to deal with spent nuclear fuels and current actinide inventories. The conclusion was reached that substantial increase in nuclear power production will require that the issue of spent nuclear fuel be resolved. The Workshop concluded that 14 MeV fusion neutrons can be used to destroy nuclear reactor by-products, some of which would otherwise have to be stored for geologic periods of time. The production of 14 MeV neutrons is based on existing fusion technologies at different research institutions in several countries around the world. At the present time this technology is used to produce 14 MeV neutrons in JET. More development work will be required, however, to bring fusion technology to the level where it can be used for actinide burning on an industrial scale. The workshop concluded that the potential

  9. Control rod guide tube assembly

    International Nuclear Information System (INIS)

    Jabsen, F.S.

    1982-01-01

    An improved fuel assembly is described as consisting of a sleeve that engages one end of a control rod guide tube essentially fixing the guide tube to one of the fuel assembly end structures. The end of the sleeve protrudes above the surface of the end fitting. The outer surface of the sleeve has a peripheral groove that engages the resilient sides of a cellular grid or lattice shaped lock. This lock fixes the sleeve in position between the various elements that comprise the end fitting, thereby eliminating a profusion of costly and potentially troublesome nuts, threaded studs and the like that are frequently employed in the fuel assemblies that are presently in use

  10. Reconstitutable control assembly having removable control rods with detachable split upper end plugs

    International Nuclear Information System (INIS)

    Gjertsen, R.K.; Knott, R.P.; Sparrow, J.A.

    1989-01-01

    This patent describes, in a reconstitutable control assembly for use with a nuclear fuel assembly, the control assembly including a spider structure and at least one control rod, an attachment joint for detachable fastening the control rod to the spider structure. The attachment joint comprising: a hollow connecting finger on the spider structure; and an elongated detachable split upper end plug on the control rod having a pair of separate upper and lower plug portions, the upper plug portion having integrally-connected tandemly- arranged upper, middle and lower sections. The lower plug portion having integrally-connected tandemly-arranged upper, middle and lower segments

  11. Solubility and degradation of paracetamol in subcritical water

    Directory of Open Access Journals (Sweden)

    Emire Zuhal

    2017-01-01

    Full Text Available In this study, solubility and degradation of paracetamol were examined using subcritical water. Effect of temperature and static time was investigated during solubility process in subcritical water at constant pressure (50 bar. Experimental results show that temperature and static time have crucial effect on the degradation and solubility rates. Maximum mole fraction for solubility of paracetamol was obtained at 403 K as (14.68 ± 0.74×103. Approximation model for solubility of paracetamol was proposed. O2 and H2O2 were used in degradation process of paracetamol. Maximum degradation rate was found as 68.66 ± 1.05 and 100 ± 0.00 % using O2 and H2O2, respectively.

  12. The safe, economical operation of a slightly subcritical reactor and transmutor with a small proton accelerator

    International Nuclear Information System (INIS)

    Takahashi, Hiroshi

    1994-01-01

    I suggest that an accelerator can be used to increase the safety and neutron economy of a power reactor and a transmutor of long-lived radioactive wastes, such as minor actinides and fission products, by providing neutrons for its subcritical operation. Instead of the large subcriticality k=0.9-0.95 which we originally proposed for such transmutor, we propose to use a slightly subcritical reactor, such as k=0.99, which will avoid many of the technical difficulties that are associated with large subcriticality, such as localized power peaking, radiation damage due to injection of medium-energy protons, the high current accelerator, and the requirement for a long beam-expansion section. We analyze the power drop that occurred in Phenix reactor, and show that the operating this reactor in subcritical conditions improves safety. (author). 13 refs., 5 figs

  13. The safe, economical operation of a slightly subcritical reactor and transmutor with a small proton accelerator

    International Nuclear Information System (INIS)

    Takahashi, Hiroshi.

    1994-01-01

    This report describes methods in which an accelerator can be used to increase the safety and neutron economy of a power reactor and transmutor of long-lived radioactive wastes, such as minor actinides and fission products, by providing neutrons for its subcritical operation. Instead of the rather large subcriticality of k=0.9--0.95 which we originally proposed for such a transmutor, we propose to use a slightly subcritical reactor, such as k=0.99, which will avoid many of the technical difficulties that are associated with large subcriticality, such as localized power peaking, radiation damage due to the injection of medium-energy protons, the high current accelerator, and the requirement for a long beam-expansion section. We analyzed the power drop that occurred in Phoenix reactor, and show that the operating this reactor in subcritical condition improves its safety

  14. Compactable control element assembly for a nuclear reactor

    International Nuclear Information System (INIS)

    Dupen, C.F.G.

    1976-01-01

    A description is given of a compactable control element assembly for a nuclear reactor in which the absorber pins of the assembly are compacted during downward movement of the pin and are returned to their uncompacted state when downward movement is stopped. The control element assembly comprises a support member longitudinally movable within a control assembly duct and a plurality of absorber pins supported laterally outward of the support member and within the duct by pairs of support arms. The absorber pins are pivotably mounted to the support arms and the support arms in turn are supported from the support member for upward pivotable movement in a longitudinal plane. As the support member is moved downward, the support arms pivot upwardly and the absorber pins move upwardly and inwardly towards the support member. When the support member is stopped the absorber pins return to their uncompacted position

  15. Pulsed Source Measurements on a Uranium-Water Subcritical Assembly

    International Nuclear Information System (INIS)

    Gibson, I.H.; Walker, J.

    1964-01-01

    An unreflected assembly of natural uranium and light water has been used in conjunction with a pulsed source of neutrons for decay-time measurements at different bucklings. Four different lattice pitches over the range 3.94 cm to 5.08 cm were obtained by using different pairs of accurately machined lattice plates and in each case the uranium was in the form of bars 109.8 cm long and 3.0 cm diameter. The fuel- was mounted horizontally and loadings up to approximately 6 t were involved. Spatial harmonics were eliminated or selected by appropriate placing of a small scintillation detector. Experimental results showing the dependence of decay constant on buckling are presented and compared with theoretical values. (author) [fr

  16. Directed Assembly of Janus Cylinders by Controlling the Solvent Polarity.

    Science.gov (United States)

    Kim, Jongmin; Choi, Chang-Hyung; Yeom, Su-Jin; Eom, Naye; Kang, Kyoung-Ku; Lee, Chang-Soo

    2017-08-01

    This study demonstrates the possibility of controlling the directed self-assembly of microsized Janus cylinders by changing the solvent polarity of the assembly media. Experimental results are analyzed and theoretical calculations of the free energy of adhesion (ΔG ad ) are performed to elucidate the underlying basic principles and investigate the effects of the solvent on the self-assembled structures. This approach will pave a predictive route for controlling the structures of assembly depending on the solvent polarity. In particular, we find that a binary solvent system with precisely controlled polarity induces directional assembly of the microsized Janus cylinders. Thus, the formation of two-dimensional (2D) and three-dimensional (3D) assembled clusters can be reliably tuned by controlling the numbers of constituent Janus cylinders in a binary solvent system. Finally, this approach is expanded to stepwise assembly, which forms unique microstructures via secondary growth of primary seed clusters formed by the Janus cylinders. We envision that this investigation is highly promising for the construction of desired superstructures using a wide variety of polymeric Janus microparticles with chemical and physical multicompartments.

  17. Design requirement on KALIMER control rod assembly duct

    International Nuclear Information System (INIS)

    Hwang, W.; Kang, H. Y.; Nam, C.; Kim, J. O.; Kim, Y. J.

    1998-03-01

    This document establishes the design guidelines which are needs for designing the control rod assembly duct of the KALIMER as design requirements. it describes control rod assembly duct of the KALIMER and its requirements that includes functional requirements, performance requirements, interfacing systems, design limits and strength requirements, seismic requirements, structural requirements, environmental requirements, reliability and safety requirements, standard and codes, QA programs, and other requirements. The control rod system consists of three parts, which are drive mechanism, drive-line, and absorber bundle. This report deals with the absorber bundle and its outer duct only because the others are beyond the scope of fuel system design. The guidelines for design requirements intend to be used for an improved design of the control rod assembly duct of the KALIMER. (author). 19 refs

  18. Design requirement on KALIMER control rod assembly duct

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, W.; Kang, H. Y.; Nam, C.; Kim, J. O.; Kim, Y. J

    1998-03-01

    This document establishes the design guidelines which are needs for designing the control rod assembly duct of the KALIMER as design requirements. it describes control rod assembly duct of the KALIMER and its requirements that includes functional requirements, performance requirements, interfacing systems, design limits and strength requirements, seismic requirements, structural requirements, environmental requirements, reliability and safety requirements, standard and codes, QA programs, and other requirements. The control rod system consists of three parts, which are drive mechanism, drive-line, and absorber bundle. This report deals with the absorber bundle and its outer duct only because the others are beyond the scope of fuel system design. The guidelines for design requirements intend to be used for an improved design of the control rod assembly duct of the KALIMER. (author). 19 refs.

  19. Subcritical wet air oxidation of organic solvents and chelating agents of the nuclear fuel

    International Nuclear Information System (INIS)

    Bachir, Souley

    1999-01-01

    This document deals with the environment control, more specially organic solvents and chelating agents destruction, employed in the nuclear industry. This work details the subcritical wet air oxidation process. Another part of the document deals with the possible coupling between this process and the biodegradation technic in the framework of the sewage sludges treatment. (A.L.B.)

  20. Reactor core and control rod assembly in FBR type reactor

    International Nuclear Information System (INIS)

    Fujimura, Koji; Kawashima, Katsuyuki; Itooka, Satoshi.

    1993-01-01

    Fuel assemblies and control rod assemblies are attached respectively to reactor core support plates each in a cantilever fashion. Intermediate spacer pads are disposed to the lateral side of a wrapper tube just above the fuel rod region. Intermediate space pads are disposed to the lateral side of a control rod guide tube just above a fuel rod region. The thickness of the intermediate spacer pad for the control rod assembly is made smaller than the thickness of the intermediate spacer pad for the fuel assembly. This can prevent contact between intermediate spacer pads of the control guide tube and the fuel assembly even if the temperature of coolants is elevated to thermally expand the intermediate spacer pad, by which the radial displacement amount of the reactor core region along the direction of the height of the control guide tube is reduced substantially to zero. Accordingly, contribution of the control rod assembly to the radial expansion reactivity can be reduced to zero or negative level, by which the effect of the negative radial expansion reactivity of the reactor is increased to improve the safety upon thermal transient stage, for example, loss of coolant flow rate accident. (I.N.)

  1. Consultancy on the potential of fusion/fission sub-critical neutron systems for energy production and transmutation. Working material

    International Nuclear Information System (INIS)

    2005-01-01

    possible activities to be implemented under IAEA aegis. The Consultancy examined existing experimental facilities and devices that could produce 14 MeV neutrons in the near future to permit the first concrete steps toward fusion-fission systems and how such a facility can become an integral part of the effort to develop sub-critical reactors, presently spearheaded by accelerator driven systems. In support of this effort, the Consultancy discussed and proposed a set of studies that permit future inter-comparison between various utilization and/or transmutation technologies, including accelerator driven systems and possible DT-plasma fusion devices for such application in the near future. The Consultancy recommended enhanced coordinated efforts for developing DT-plasma fusion driven sub-critical core designs. The main areas requiring enhanced research and technology development are nuclear data, forms and preparation of fuel, chemistry control, sub-critical core design, and systems integration

  2. Inlet for fuel assembly having finger control rods

    International Nuclear Information System (INIS)

    Berglund, A.; Suvanto, A.; Tornblom, L.

    1975-01-01

    A nuclear reactor with vertically arranged fuel assemblies positioned on supporting members and with control rods displaceably arranged in guide tubes between the fuel rods inside the fuel assemblies is described. The supporting plate is provided with a transverse end piece with throttling means for the liquid flow which passes from below up through the supporting member and past the fuel rods in the fuel assembly. The inlets for the guide tubes for the control rods are located below the end piece and the throttling means. In this way a higher pressure prevails at the inlet to the guide tubes than above the end piece, so that a stronger flow of coolant is produced through guide tubes than through the fuel assembly. (U.S.)

  3. Feasibility of waste transmutation using accelerator-driven IRIS subcritical system

    International Nuclear Information System (INIS)

    Petroviae, B.; Carelli, M.; Paramonov, D.

    2001-01-01

    Waste transmutation is considered for reducing radio-toxicity of nuclear waste generated in power reactors. Accelerator driven subcritical systems (ADS) offer certain advantages over the use of nuclear reactors. Transmutation of fission products (e.g. 99 Tc) generally requires thermal neutron spectrum, while for actinides fast spectrum provides better performance. Proposed solutions to this problem include a multi-strata approach as well as a multi-zone (thermal/fast-spectrum) single systems. In this paper we examine the feasibility of employing a dual-spectrum two-zone accelerator-driven IRIS subcritical for waste transmutation. (author)

  4. Cost optimization of ADS design: Comparative study of externally driven heterogeneous and homogeneous two-zone subcritical reactor systems

    International Nuclear Information System (INIS)

    Gulik, Volodymyr; Tkaczyk, Alan H.

    2014-01-01

    Highlights: • The optimization of two-zone homogeneous subcritical systems has been performed. • A Serpent model for two-zone heterogeneous subcritical systems has been developed. • The optimization of two-zone heterogeneous subcritical systems has been carried out. • Economically optimal core composition of two-zone subcritical system was found. • The neutron spectra of the heterogeneous subcritical systems have been obtained. - Abstract: Subcritical systems driven by external neutron sources, commonly known as Accelerator-Driven System (ADS), are one type of advanced nuclear reactor exhibiting attractive characteristics, distinguished from the traditional critical systems by their intrinsic safety features. In addition, an ADS can be used for the transmutation of the nuclear waste, accumulated during the operation of existing reactors. The optimization of a subcritical nuclear reactor in terms of materials (fuel content, coolant, etc.), geometrical, and economical parameters is a crucial step in the process of their design and construction. This article describes the optimization modeling performed for homogeneous and heterogeneous two-zone subcritical systems in terms of geometry of the fuel zones. Economical assessment was also carried out for the costs of the fuel in the core of the system. Optimization modeling was performed with the Serpent-1.1.18 Monte Carlo code. The model of a two-zone subcritical system with a fast inner and a thermal gas-cooled graphite-moderated outer zone was developed, simulated, and analyzed. The optimal value for the pitch of fuel elements in the thermal outer zone was investigated from the viewpoint of the cost of subcritical system. As the main goal of ADS development is nuclear waste transmutation, neutron spectra for both fast and thermal zones were obtained for different system configurations. The results of optimization modeling of homogeneous and heterogeneous two-zone subcritical systems show that an optimal

  5. A microfluidic sub-critical water extraction instrument

    Science.gov (United States)

    Sherrit, Stewart; Noell, Aaron C.; Fisher, Anita; Lee, Mike C.; Takano, Nobuyuki; Bao, Xiaoqi; Kutzer, Thomas C.; Grunthaner, Frank

    2017-11-01

    This article discusses a microfluidic subcritical water extraction (SCWE) chip for autonomous extraction of amino acids from astrobiologically interesting samples. The microfluidic instrument is composed of three major components. These include a mixing chamber where the soil sample is mixed and agitated with the solvent (water), a subcritical water extraction chamber where the sample is sealed with a freeze valve at the chip inlet after a vapor bubble is injected into the inlet channels to ensure the pressure in the chip is in equilibrium with the vapor pressure and the slurry is then heated to ≤200 °C in the SCWE chamber, and a filter or settling chamber where the slurry is pumped to after extraction. The extraction yield of the microfluidic SCWE chip process ranged from 50% compared to acid hydrolysis and 80%-100% compared to a benchtop microwave SCWE for low biomass samples.

  6. System and method for controlling a combustor assembly

    Science.gov (United States)

    York, William David; Ziminsky, Willy Steve; Johnson, Thomas Edward; Stevenson, Christian Xavier

    2013-03-05

    A system and method for controlling a combustor assembly are disclosed. The system includes a combustor assembly. The combustor assembly includes a combustor and a fuel nozzle assembly. The combustor includes a casing. The fuel nozzle assembly is positioned at least partially within the casing and includes a fuel nozzle. The fuel nozzle assembly further defines a head end. The system further includes a viewing device configured for capturing an image of at least a portion of the head end, and a processor communicatively coupled to the viewing device, the processor configured to compare the image to a standard image for the head end.

  7. Status of control assembly materials in Indian water reactors

    International Nuclear Information System (INIS)

    Date, V.G.; Kulkarni, P.G.

    2000-01-01

    India's present operating water cooled power reactors comprise boiling water reactors of Tarapur Atomic Power Station (TAPS) and pressurized heavy water reactors (PHWRs) at Kota (RAPS), Kalpakkam (MAPS), Narora (NAPS) and Kakrapara (KAPS). Boiling water reactors of TAPS use boron carbide control blades for control of power as well as for shut down (scram). PHWRs use boron steel and cobalt absorber rods for power control and Cd sandwiched shut off rods (primary shut down system) and liquid poison rods (secondary shut down system) for shut down. In TAPS, Gadolinium rods (burnable poison rods) are also incorporated in fuel assembly for flux flattening. Boron carbide control blades and Gadolinium rods for TAPS, cobalt absorber rods and shut down assemblies for PHWRs are fabricated indigenously. Considerable development work was carried out for evolving material specifications, component and assembly drawings, and fabrication processes. Details of various control and shut off assemblies being fabricated currently are highlighted in the paper. (author)

  8. Production of rare sugars from common sugars in subcritical aqueous ethanol.

    Science.gov (United States)

    Gao, Da-Ming; Kobayashi, Takashi; Adachi, Shuji

    2015-05-15

    A new isomerization reaction was developed to synthesize rare ketoses. D-tagatose, D-xylulose, and D-ribulose were obtained in the maximum yields of 24%, 38%, and 40%, respectively, from the corresponding aldoses, D-galactose, D-xylose, and D-ribose, by treating the aldoses with 80% (v/v) subcritical aqueous ethanol at 180°C. The maximum productivity of D-tagatose was ca. 80 g/(Lh). Increasing the concentration of ethanol significantly increased the isomerization of D-galactose. Variation in the reaction temperature did not significantly affect the production of D-tagatose from D-galactose. Subcritical aqueous ethanol converted both 2,3-threo and 2,3-erythro aldoses to the corresponding C-2 ketoses in high yields. Thus, the treatment of common aldoses in subcritical aqueous ethanol can be regarded as a new method to synthesize the corresponding rare sugars. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Measurement of kinetic parameters in the fast subcritical core MASURCA

    International Nuclear Information System (INIS)

    Baeten, Peter; Abderrahim, Hamid Aiet

    2004-01-01

    In the MUSE shared cost action of the European Fifth Framework Program measurements have been performed to investigate the neutronic behavior of the fast subcritical core MASURCA coupled with the GENEPI accelerator. The aim is to examine the applicability of different measurement techniques for the determination of the main kinetic parameters. The measurement of Rossi-alpha distributions, recorded with the accelerator turned off, showed that the analysis of the obtained distributions is feasible for deep subcritical levels, but with strongly deteriorated statistics. From Rossi-alpha distributions, recorded with the pulsed neutron source in operation, the alpha decay constant was easily derived due to good statistics on the correlated signal resulting from the strong intensity of the neutron pulse. When applying the pulsed neutron source analysis, the reactivity (in dollars) together with the ratio of the mean neutron lifetime l and the effective delayed neutron fraction β eff is immediately derived. Although these first results are very promising, further measurements are needed to qualify the method at larger subcritical levels which are representative for future ADS

  10. Extrapolated experimental critical parameters of unreflected and steel-reflected massive enriched uranium metal spherical and hemispherical assemblies

    International Nuclear Information System (INIS)

    Rothe, R.E.

    1997-12-01

    Sixty-nine critical configurations of up to 186 kg of uranium are reported from very early experiments (1960s) performed at the Rocky Flats Critical Mass Laboratory near Denver, Colorado. Enriched (93%) uranium metal spherical and hemispherical configurations were studied. All were thick-walled shells except for two solid hemispheres. Experiments were essentially unreflected; or they included central and/or external regions of mild steel. No liquids were involved. Critical parameters are derived from extrapolations beyond subcritical data. Extrapolations, rather than more precise interpolations between slightly supercritical and slightly subcritical configurations, were necessary because experiments involved manually assembled configurations. Many extrapolations were quite long; but the general lack of curvature in the subcritical region lends credibility to their validity. In addition to delayed critical parameters, a procedure is offered which might permit the determination of prompt critical parameters as well for the same cases. This conjectured procedure is not based on any strong physical arguments

  11. Subcriticality calculation in nuclear reactors with external neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Adilson Costa da; Martinez, Aquilino Senra; Silva, Fernando Carvalho da [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Programa de Engenharia Nuclear]. E-mails: asilva@con.ufrj.br; aquilino@lmp.ufrj.br; fernando@con.ufrj.br

    2007-07-01

    The main objective of this paper consists on the development of a methodology to monitor subcriticality. We used the inverse point kinetic equation with 6 precursor groups and external neutron sources for the calculation of reactivity. The input data for the inverse point kinetic equation was adjusted, in order to use the neutron counting rates obtained from the subcritical multiplication (1/M) in a nuclear reactor. In this paper, we assumed that the external neutron sources strength is constant and we define it in terms of a known initial condition. The results obtained from inverse point kinetic equation with external neutron sources were compared with the results obtained with a benchmark calculation, and showed good accuracy (author)

  12. Subcriticality calculation in nuclear reactors with external neutron sources

    International Nuclear Information System (INIS)

    Silva, Adilson Costa da; Martinez, Aquilino Senra; Silva, Fernando Carvalho da

    2007-01-01

    The main objective of this paper consists on the development of a methodology to monitor subcriticality. We used the inverse point kinetic equation with 6 precursor groups and external neutron sources for the calculation of reactivity. The input data for the inverse point kinetic equation was adjusted, in order to use the neutron counting rates obtained from the subcritical multiplication (1/M) in a nuclear reactor. In this paper, we assumed that the external neutron sources strength is constant and we define it in terms of a known initial condition. The results obtained from inverse point kinetic equation with external neutron sources were compared with the results obtained with a benchmark calculation, and showed good accuracy (author)

  13. Conceptual design of the fusion-driven subcritical system FDS-I

    International Nuclear Information System (INIS)

    Wu, Y.; Zheng, S.; Zhu, X.; Wang, W.; Wang, H.; Liu, S.; Bai, Y.; Chen, H.; Hu, L.; Chen, M.; Huang, Q.; Huang, D.; Zhang, S.; Li, J.; Chu, D.; Jiang, J.; Song, Y.

    2006-01-01

    The fusion-driven subcritical system (named FDS-I) was previously proposed as an intermediate step toward the final application of fusion energy. A conceptual design of the FDS-I is presented, which consists of the fusion neutron driver with relatively easy-achieved plasma parameters, and the He-gas/liquid lithium-lead Dual-cooled subcritical Waste Transmutation (DWT) blanket used to transmute long-lived radioactive wastes and to generate energy on the basis of self-sustainable fission and fusion fuel cycle. An overview of the FDS-I is given and the specifications of the design analysis are summarized

  14. Promotion or suppression of glucose isomerization in subcritical aqueous straight- and branched-chain alcohols.

    Science.gov (United States)

    Gao, Da-Ming; Kobayashi, Takashi; Adachi, Shuji

    2015-01-01

    The influence of water-miscible alcohols (methanol, 1-propanol, 2-propanol, and t-butyl alcohol) on the isomerization of glucose to fructose and mannose was investigated under subcritical aqueous conditions (180-200 °C). Primary and secondary alcohols promoted the conversion and isomerization of glucose to afford fructose and mannose with high and low selectivity, respectively. On the other hand, the decomposition (side-reaction) of glucose was suppressed in the presence of the primary and secondary alcohols compared with that in subcritical water. The yield of fructose increased with increasing concentration of the primary and secondary alcohols, and the species of the primary and secondary alcohols tested had little effect on the isomerization behavior of glucose. In contrast, the isomerization of glucose was suppressed in subcritical aqueous t-butyl alcohol. Both the conversion of glucose and the yield of fructose decreased with increasing concentration of t-butyl alcohol. In addition, mannose was not detected in reactions using subcritical aqueous t-butyl alcohol.

  15. A new formulation for the importance function in the kinetics of subcritical reactors

    International Nuclear Information System (INIS)

    Silva, Cristiano da; Senra Martinez, Aquilino; Carvalho da Silva, Fernando

    2012-01-01

    Highlights: ► In this paper we propose a new formulation for the importance function in the kinetics of subcritical systems. ► We analyze the relevance of an external neutron source for the subcritical interval 0.95 eff eff is the multiplication factor according to the physical properties of the nuclear reactor. For the purposes of validation of the proposed method we will use, as a reference method, the expansion in modes of the time-dependent neutron flux for the solution of the onedimensional diffusion equation. It will be presented results that demonstrate the precision of the proposed method when compared to the conventional point kinetic equations. The results show that the new point kinetic equations are rather precise in the subcriticality range considered.

  16. Quality and reliability control on assemblies

    International Nuclear Information System (INIS)

    Mueller, H.

    1976-01-01

    Taking as an example electronic assemblies in printed circuit board engineering, quality control during manufacture is dealt with. After giving a survey of four phases of quality and reliability control, some specific methods of quality control are dealt with by means of a flowchart, and by some examples the necessity and the success of these measures are shown. (RW) [de

  17. Activities of working party on 'Subcritical core of accelerator-driven system' under the research committee on reactor physics of AESJ and JAERI

    International Nuclear Information System (INIS)

    Iwasaki, T.; Tsujimoto, K.; Nishihara, K.; Kitamura, Y.

    2004-01-01

    The Research Committee on Reactor Physics under the Atomic Energy Society of Japan and the Japan Atomic Energy Research Inst. organized the working party (ADS-WP) on S ubcritical Core of Accelerator-Driven System . The ADS-WP investigated reactor physics of subcriticality from the viewpoint of the accelerator driven system (ADS) since subcriticality has been almost studied from the viewpoint of critical safety. The working party was set in July 2001 and it worked for two years. The activities of the ADS-WP are (Work-I) theory of subcriticality, (Work-II) benchmark of subcritical core, (Work-III) setting of subcriticality level of ADS and (Work-JAO monitoring of subcriticality. These activities clarified about the important issues related to the subcriticality or the subcritical core from the wide ranges of theory, analysis, calculation, design and monitoring for ADS. The activities were already summarized and the report will be published in March 2004. (authors)

  18. Subcritical limits for special fissile actinides

    International Nuclear Information System (INIS)

    Clark, H.K.

    1980-01-01

    Critical masses and subcritical mass limits in oxide-water mixtures were calculated for actinide nuclides other than /sup 233/U, /sup 235/U, and /sup 239/Pu that have an odd number of neutrons in the nucleus; S/sub n/ transport theory was used together with cross sections, drawn from the GLASS multigroup library, developed to provide accurate forecasts of actinide production at Savannah River

  19. YALINA Booster subcritical assembly modeling and analyses

    International Nuclear Information System (INIS)

    Talamo, A.; Gohar, Y.; Aliberti, G.; Cao, Y.; Zhong, Z.; Kiyavitskaya, H.; Bournos, V.; Fokov, Y.; Routkovskaya, C.; Sadovich, S.

    2010-01-01

    Full text: Accurate simulation models of the YALINA Booster assembly of the Joint Institute for Power and Nuclear Research (JIPNR)-Sosny, Belarus have been developed by Argonne National Laboratory (ANL) of the USA. YALINA-Booster has coupled zones operating with fast and thermal neutron spectra, which requires a special attention in the modelling process. Three different uranium enrichments of 90%, 36% or 21% were used in the fast zone and 10% uranium enrichment was used in the thermal zone. Two of the most advanced Monte Carlo computer programs have been utilized for the ANL analyses: MCNP of the Los Alamos National Laboratory and MONK of the British Nuclear Fuel Limited and SERCO Assurance. The developed geometrical models for both computer programs modelled all the details of the YALINA Booster facility as described in the technical specifications defined in the International Atomic Energy Agency (IAEA) report without any geometrical approximation or material homogenization. Materials impurities and the measured material densities have been used in the models. The obtained results for the neutron multiplication factors calculated in criticality mode (keff) and in source mode (ksrc) with an external neutron source from the two Monte Carlo programs are very similar. Different external neutron sources have been investigated including californium, deuterium-deuterium (D-D), and deuterium-tritium (D-T) neutron sources. The spatial neutron flux profiles and the neutron spectra in the experimental channels were calculated. In addition, the kinetic parameters were defined including the effective delayed neutron fraction, the prompt neutron lifetime, and the neutron generation time. A new calculation methodology has been developed at ANL to simulate the pulsed neutron source experiments. In this methodology, the MCNP code is used to simulate the detector response from a single pulse of the external neutron source and a C code is used to superimpose the pulse until the

  20. Determination of the physical parameters of the nuclear subcritical assembly Chicago 9000 of the IPN using the Serpent code; Determinacion de los parametros fisicos del conjunto subcritico nuclear Chicago 9000 del IPN usando el codigo SERPENT

    Energy Technology Data Exchange (ETDEWEB)

    Arriaga R, L.; Del Valle G, E. [IPN, Escuela Superior de Fisica y Matematicas, Av. Instituto Politecnico Nacional s/n, U.P. Adolfo Lopez Mateos, Col. San Pedro Zacatenco, 07738 Mexico D. F. (Mexico); Gomez T, A. M., E-mail: guten_tag_04@hotmail.com [ININ, Departamento de Sistemas Nucleares, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2013-10-15

    For the Serpent code was developed the three-dimensional model corresponding to the nuclear subcritical assembly (S A) Chicago 9000 of the Escuela Superior de Fisica y Matematicas del Instituto Politecnico Nacional (ESFM-IPN). The model includes: a) the core, formed by 312 aluminum pipes that contain 5 nuclear fuel rods (natural uranium in metallic form), b) the multi-perforated plates where they penetrate the inferior part of each pipe to be able to remain in vertical form, c) water, acting as moderator and reflector, and d) the recipient lodging to the core. The pipes arrangement is hexagonal although the transversal section of the recipient that lodges to the core is circular. The entrance file for the Serpent code was generated with the data provided by the manual of the S A use about the composition and density of the fuel rods and others obtained in direct form of the rods, as the interior and external diameter, mass and height. Of the obtained physical parameters, those more approached to that reported in the manual of the subcritical assembly are the effective multiplication factor and the reproduction factor η. The differences can be because the description of the fuel rods provided by the manual of the S A use do not correspond those that are physically in the S A core. This difference consists on the presence of a circular central channel of 1.245 diameter centimeters in each fuel rod. The fuel rods reported in the mentioned manual do not have that channel. Although the obtained results are encouraging, we want to continue improving the model to incorporate in this the detectors, defined this way by the Serpent code, which could determine the existent neutrons flux in diverse points of interest like the axial or radial aligned points and to compare these with those that are obtained in an experimental way when a generating neutrons source (Pu-Be) is introduced. Added to this effort the cross sections for each unitary cell will be determined, so that

  1. High aspect ratio, remote controlled pumping assembly

    Science.gov (United States)

    Brown, Steve B.; Milanovich, Fred P.

    1995-01-01

    A miniature dual syringe-type pump assembly which has a high aspect ratio and which is remotely controlled, for use such as in a small diameter penetrometer cone or well packer used in water contamination applications. The pump assembly may be used to supply and remove a reagent to a water contamination sensor, for example, and includes a motor, gearhead and motor encoder assembly for turning a drive screw for an actuator which provides pushing on one syringe and pulling on the other syringe for injecting new reagent and withdrawing used reagent from an associated sensor.

  2. Beam transient analyses of Accelerator Driven Subcritical Reactors based on neutron transport method

    Energy Technology Data Exchange (ETDEWEB)

    He, Mingtao; Wu, Hongchun [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China); Zheng, Youqi, E-mail: yqzheng@mail.xjtu.edu.cn [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China); Wang, Kunpeng [Nuclear and Radiation Safety Center, PO Box 8088, Beijing 100082 (China); Li, Xunzhao; Zhou, Shengcheng [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049, Shaanxi (China)

    2015-12-15

    Highlights: • A transport-based kinetics code for Accelerator Driven Subcritical Reactors is developed. • The performance of different kinetics methods adapted to the ADSR is investigated. • The impacts of neutronic parameters deteriorating with fuel depletion are investigated. - Abstract: The Accelerator Driven Subcritical Reactor (ADSR) is almost external source dominated since there is no additional reactivity control mechanism in most designs. This paper focuses on beam-induced transients with an in-house developed dynamic analysis code. The performance of different kinetics methods adapted to the ADSR is investigated, including the point kinetics approximation and space–time kinetics methods. Then, the transient responds of beam trip and beam overpower are calculated and analyzed for an ADSR design dedicated for minor actinides transmutation. The impacts of some safety-related neutronics parameters deteriorating with fuel depletion are also investigated. The results show that the power distribution varying with burnup leads to large differences in temperature responds during transients, while the impacts of kinetic parameters and feedback coefficients are not very obvious. Classification: Core physic.

  3. Conceptual research on reactor core physics for accelerator driven sub-critical reactor

    International Nuclear Information System (INIS)

    Zhao Zhixiang; Ding Dazhao; Liu Guisheng; Fan Sheng; Shen Qingbiao; Zhang Baocheng; Tian Ye

    2000-01-01

    The main properties of reactor core physics are analysed for accelerator driven sub-critical reactor. These properties include the breeding of fission nuclides, the condition of equilibrium, the accumulation of long-lived radioactive wastes, the effect from poison of fission products, as well as the thermal power output and the energy gain for sub-critical reactor. The comparison between thermal and fast system for main properties are carried out. The properties for a thermal-fast coupled system are also analysed

  4. Breaking rocks made easy: subcritical processes and tectonic predesign

    Science.gov (United States)

    Voigtlaender, Anne; Krautblatter, Michael

    2017-04-01

    In geomorphic studies, to change in landforms, e.g. by rock slope failure, fluvial or glacial erosion, a threshold is commonly assumed, which is crossed either by an increase in external driving or a decrease of internal resisting forces, respectively. If the threshold is crossed, bedrock breaks and slope fails, rivers incise and glaciers plug and sew their bed. Here we put forward a focus on the decrease of the resisting forces, as an increase in the driving forces, to match the strength of bedrock, is not that likely. We suggest that the degradation of resisting forces of bedrock can be better explained by subcritical processes like creep, fatigue and stress corrosion interplaying with tectonic predesign. Both concepts, subcritical processes and tectonic predesign have been issued in the last century, but have not been widely accepted nor have their assumptions been explicitly stressed in recent case studies. Moreover both concepts profit especially on scale issues if merged. Subcritical crack growth, includes different mechanisms promoting fractures well below the ultimate strength. Single infinitesimal but irreversible damage and deformations are induced in the material over time. They interact with inherent microstructural flaws and low applied stresses, limiting local strength and macroscopic behavior of bedrock. This reissues the concept of tectonic predesigned, as proposed by A.E. Scheidegger, which not only encompasses structural features that determine the routing of drainage patterns and shear planes, e.g. joints, faults and foliations, but also the (neo)tectonic stress-field and the (in-situ) strain state of bedrocks and mountains. Combining subcritical processes and tectonic predesign we can better explain, why and where we see a dissected, eroded and geomorphic divers' landscape. In this conceptual framework actual magnitudes of the driving forces are accounted for and so is the nature of the bedrock material, to better understand the trajectories of

  5. Cylindrical IEC neutron source design for driven research reactor operation

    International Nuclear Information System (INIS)

    Miley, G.H.; Ulmen, B.; Amadio, G.; Leon, H.; Hora, H.

    2009-01-01

    A resurgence in nuclear power use is now underway worldwide. However, due many university research reactors shutdown, they must rely on using subcritical assemblies which employs a cylindrical Inertial Electrostatic Confinement (IEC) device to provide a fusion neutron source. The source is inserted in a fuel element position, with its power input controlled externally at a control panel. This feature opens the way to use of the critical assembly for a number of transient experiments such as sub-critical pulsing and neutron wave propagation. That in turn adds important new insights and excitement for the student teaching laboratory. (author)

  6. Fuel assembly

    International Nuclear Information System (INIS)

    Ueda, Makoto; Ogiya, Shunsuke.

    1989-01-01

    For improving the economy of a BWR type reactor by making the operation cycle longer, the fuel enrichment degree has to be increased further. However, this makes the subcriticality shallower in the upper portion of the reactor core, to bring about a possibility that the reactor shutdown becomes impossible. In the present invention, a portion of fuel rod is constituted as partial length fuel rods (P-fuel rods) in which the entire stack length in the effective portion is made shorter by reducing the concentration of fissionable materials in the axial portion. A plurality of moderator rods are disposed at least on one diagonal line of a fuel assembly and P-fuel rods are arranged at a position put between the moderator rods. This makes it possible to reactor shutdown and makes the axial power distribution satisfactory even if the fuel enrichment degree is increased. (T.M.)

  7. Dynamic analysis of an accelerator-based subcritical radioactive waste burning system

    International Nuclear Information System (INIS)

    Woosley, M.L. Jr.; Rydin, R.A.

    1997-01-01

    There has been a recent revival of interest in accelerator-driven subcritical fluid-fueled systems for radioactive waste management. This motivates the need for dynamic analysis of the nuclear kinetics of such systems. A physical description of the Los Alamos Accelerator-Based Conversion (ABC) concept is provided. This system is used as the basis for the kinetic study in this research. The current approach to the dynamic simulation of an accelerator-driven subcritical fluid-fueled system includes four functional blocks: A discrete ordinates model is used to calculate the flux distribution for the source-driven system (DORT); A nodal convection model is used to calculate time-dependent isotope and temperature distributions which impact reactivity (ABCcore); A nodal importance weighting model is used to calculate the reactivity impact of temperature and isotope distributions and to feed this information back to the time-dependent nodal convection model (ABCvip); A transient driver simulates system transients and records simulation data (ABCtrans). Specific transients which have been analyzed with the current modeling system are discussed. These transients include loss-of-flow and loss-of-cooling accidents, xenon and samarium transients, and cold-plug and overfueling events. The results of various transients have uncovered unpredictable behavior, unresolved design issues, and the need for active control. 11 refs., 6 figs., 1 tab

  8. Development and Investigation of Reactivity Measurement Methods in Subcritical Cores

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Johanna

    2005-05-01

    Subcriticality measurements during core loading and in future accelerator driven systems have a clear safety relevance. In this thesis two subcriticality methods are treated: the Feynman-alpha and the source modulation method. The Feynman-alpha method is a technique to determine the reactivity from the relative variance of the detector counts during a measurement period. The period length is varied to get the full time dependence of the variance-to-mean. The corresponding theoretical formula was known only with stationary sources. In this thesis, due to its relevance for novel reactivity measurement methods, the Feynman-alpha formulae for pulsed sources for both the stochastic and the deterministic cases are treated. Formulae neglecting as well as including the delayed neutrons are derived. The formulae neglecting delayed neutrons are experimentally verified with quite good agreement. The second reactivity measurement technique investigated in this thesis is the so-called source modulation technique. The theory of the method was elaborated on the assumption of point kinetics, but in practice the method will be applied by using the signal from a single local neutron detector. Applicability of the method therefore assumes point kinetic behaviour of the core. Hence, first the conditions of the point kinetic behaviour of subcritical cores was investigated. After that the performance of the source modulation technique in the general case as well as and in the limit of exact point kinetic behaviour was examined. We obtained the unexpected result that the method has a finite, non-negligible error even in the limit of point kinetic behaviour, and a substantial error in the operation range of future accelerator driven subcritical reactors (ADS). In practice therefore the method needs to be calibrated by some other method for on-line applications.

  9. Development and Investigation of Reactivity Measurement Methods in Subcritical Cores

    International Nuclear Information System (INIS)

    Wright, Johanna

    2005-05-01

    Subcriticality measurements during core loading and in future accelerator driven systems have a clear safety relevance. In this thesis two subcriticality methods are treated: the Feynman-alpha and the source modulation method. The Feynman-alpha method is a technique to determine the reactivity from the relative variance of the detector counts during a measurement period. The period length is varied to get the full time dependence of the variance-to-mean. The corresponding theoretical formula was known only with stationary sources. In this thesis, due to its relevance for novel reactivity measurement methods, the Feynman-alpha formulae for pulsed sources for both the stochastic and the deterministic cases are treated. Formulae neglecting as well as including the delayed neutrons are derived. The formulae neglecting delayed neutrons are experimentally verified with quite good agreement. The second reactivity measurement technique investigated in this thesis is the so-called source modulation technique. The theory of the method was elaborated on the assumption of point kinetics, but in practice the method will be applied by using the signal from a single local neutron detector. Applicability of the method therefore assumes point kinetic behaviour of the core. Hence, first the conditions of the point kinetic behaviour of subcritical cores was investigated. After that the performance of the source modulation technique in the general case as well as and in the limit of exact point kinetic behaviour was examined. We obtained the unexpected result that the method has a finite, non-negligible error even in the limit of point kinetic behaviour, and a substantial error in the operation range of future accelerator driven subcritical reactors (ADS). In practice therefore the method needs to be calibrated by some other method for on-line applications

  10. Evaluation of subcritical hybrid systems loaded with reprocessed fuel

    International Nuclear Information System (INIS)

    Velasquez, Carlos E.; Barros, Graiciany de P.; Pereira, Claubia; Veloso, Maria Auxiliadora F.; Costa, Antonella L.

    2015-01-01

    Highlights: • Accelerator driven systems (ADS) and fusion–fission systems are investigated for transmutation and fuel regeneration. • The calculations were performed using Monteburns code. • The results indicate the most suitable system for achieve transmutation. - Abstract: Two subcritical hybrid systems containing spent fuel reprocessed by Ganex technique and spiked with thorium were submitted to neutron irradiation of two different sources: ADS (Accelerator-driven subcritical) and Fusion. The aim is to investigate the nuclear fuel evolution using reprocessed fuel and the neutronic parameters under neutron irradiation. The source multiplication factor and fuel depletion for both systems were analysed during 10 years. The simulations were performed using MONTEBURNS code (MCNP/ORIGEN). The results indicate the main differences when irradiating the fuel with different neutron sources as well as the most suitable system for achieving transmutation

  11. Morphology and Pattern Control of Diphenylalanine Self-Assembly via Evaporative Dewetting.

    Science.gov (United States)

    Chen, Jiarui; Qin, Shuyu; Wu, Xinglong; Chu, And Paul K

    2016-01-26

    Self-assembled peptide nanostructures have unique physical and biological properties and promising applications in electrical devices and functional molecular recognition. Although solution-based peptide molecules can self-assemble into different morphologies, it is challenging to control the self-assembly process. Herein, controllable self-assembly of diphenylalanine (FF) in an evaporative dewetting solution is reported. The fluid mechanical dimensionless numbers, namely Rayleigh, Marangoni, and capillary numbers, are introduced to control the interaction between the solution and FF molecules in the self-assembly process. The difference in the film thickness reflects the effects of Rayleigh and Marangoni convection, and the water vapor flow rate reveals the role of viscous fingering in the emergence of aligned FF flakes. By employing dewetting, various FF self-assembled patterns, like concentric and spokelike, and morphologies, like strips and hexagonal tubes/rods, can be produced, and there are no significant lattice structural changes in the FF nanostructures.

  12. Subcritical to supercritical flow transition in a horizontal stratified flow

    International Nuclear Information System (INIS)

    Asaka, H.; Kukita, Y.

    1995-01-01

    The conditions for a transition from hydraulically subcritical to supercritical flow in the hot legs of a pressurized water reactor (PWR) were studied using data obtained from a two-phase natural circulation experiment conducted at the ROSA-IV Large Scale Test Facility (LSTF). The LSTF is a 1/48 volumetrically-scaled simulator of a Westinghouse-type PWR. The conditions for the transition were compared with the theory of Gardner. While the model explains the trend in the experimental data, the quantitative agreement was not satisfactory. It was found that the conditions for the transition from the subcritical to supercritical flow were predicted well by introducing energy loss term into the theory. (author)

  13. Time-of-flight techniques applied to neutron spectra measurements in fast subcritical assemblies

    International Nuclear Information System (INIS)

    Rotival, Michel

    1975-04-01

    Time-of-flight measurements on Uranium-Graphite assemblies were performed using the BCMN linear accelerator. Methods to provide scalar spectra averaged over a core cell from these experimental results are described [fr

  14. Estimation of subcriticality by neutron source multiplication method

    International Nuclear Information System (INIS)

    Sakurai, Kiyoshi; Suzaki, Takenori; Arakawa, Takuya; Naito, Yoshitaka

    1995-03-01

    Subcritical cores were constructed in a core tank of the TCA by arraying 2.6% enriched UO 2 fuel rods into nxn square lattices of 1.956 cm pitch. Vertical distributions of the neutron count rates for the fifteen subcritical cores (n=17, 16, 14, 11, 8) with different water levels were measured at 5 cm interval with 235 U micro-fission counters at the in-core and out-core positions arranging a 252 C f neutron source at near core center. The continuous energy Monte Carlo code MCNP-4A was used for the calculation of neutron multiplication factors and neutron count rates. In this study, important conclusions are as follows: (1) Differences of neutron multiplication factors resulted from exponential experiment and MCNP-4A are below 1% in most cases. (2) Standard deviations of neutron count rates calculated from MCNP-4A with 500000 histories are 5-8%. The calculated neutron count rates are consistent with the measured one. (author)

  15. Transient Analysis of a Gas-cooled Fast Reactor for Single Control Assembly Withdrawal

    International Nuclear Information System (INIS)

    Choi, Hangbok

    2014-01-01

    The Energy Multiplier Module (EMZ) system response has been evaluated for control assembly withdrawal transients. Currently the EM2 core is equipped with six cylindrical drum-type control assemblies in the reflector zone for excess reactivity control and power maneuvering during the operating core life. This study investigates the system response to the control assembly withdrawal accident with various rotational speeds and reactivity worth to determine feasible control assembly design requirements from the physics viewpoint. The simulations have been conducted for single control assembly withdrawal transients without scram by a gas-cooled reactor plant simulator, which is based on a simplified plant nodal model, including the point reactor kinetics, single channel core thermal-fluid model, and a turbo-machinery performance model. Simulations were conducted for the middle-of- cycle core, when the excess reactivity of the core is the highest. Control assembly withdrawal times were varied from 1 (runaway) to 180 sec and reactivity worth was varied from 100 to 400 pcm. For a single control assembly withdrawal, the simulation has shown that the peak fuel temperature is expected to be ~1820°C when the assembly worth is 200 pcm and the runaway time is 1 sec per 180 degree rotation. The peak temperature could be reduced to ~1780°C if the assembly is rotated out in a moderate speed such as 1 degree/sec. These peak temperatures give a thermal margin of 22 to 24% to the melting point of uranium carbide fuel. The results also indicate that the current design with a single control assembly worth of 314 pcm may need adjustments in the future design. (author)

  16. Comparison of the transient behavior of lead-based advanced critical and sub-critical reactors

    International Nuclear Information System (INIS)

    Wang Gang; Gu Zhixing; Wang Zhen; Jin Ming; Bai Yunqing

    2014-01-01

    A lead-based reactor developed by FDS Team is proposed in 2011 and designed to be 10 MW. It is a pool type reactor and the primary coolant is driven by natural circulation. The reactor has two operation modes, which are a lead-based critical fast reactor mode and a lead-based sub-critical reactor mode. The conceptual designs of the two modes are both completed by 2013. In this paper, four transient accidents were simulated for both the critical and sub-critical reactors above by NTC-2D code, which is developed by FDS Team for advanced reactor safety analysis. The four accidents were protected and unprotected loss of heat sink accidents (PLOHS and ULOHS), protected and unprotected transient overpower accidents (PTOP and UTOP). The simulation results of the two reactors were compared and analyzed. The results showed that during PLOHS and PTOP accidents for both the two modes, all the key parameters (core power, fuel, cladding and coolant temperatures in the hottest channel) decreased to very small values after the reactor scrammed, which meant the reactors under the two modes were both safe. For ULOHS, the fuel, cladding and coolant temperatures of the sub-critical reactor increased bigger than those of the critical one. For UTOP, the parameters above of the critical fast reactor were much bigger than those of the sub-critical one. The analysis results showed different safety advantages of the lead-based critical fast and sub-critical reactors during different transient accidents. (author)

  17. Accelerator-driven sub-critical research facility with low-enriched fuel in lead matrix: Neutron flux calculation

    Directory of Open Access Journals (Sweden)

    Avramović Ivana

    2007-01-01

    Full Text Available The H5B is a concept of an accelerator-driven sub-critical research facility (ADSRF being developed over the last couple of years at the Vinča Institute of Nuclear Sciences, Belgrade, Serbia. Using well-known computer codes, the MCNPX and MCNP, this paper deals with the results of a tar get study and neutron flux calculations in the sub-critical core. The neutron source is generated by an interaction of a proton or deuteron beam with the target placed inside the sub-critical core. The results of the total neutron flux density escaping the target and calculations of neutron yields for different target materials are also given here. Neutrons escaping the target volume with the group spectra (first step are used to specify a neutron source for further numerical simulations of the neutron flux density in the sub-critical core (second step. The results of the calculations of the neutron effective multiplication factor keff and neutron generation time L for the ADSRF model have also been presented. Neutron spectra calculations for an ADSRF with an uranium tar get (highest values of the neutron yield for the selected sub-critical core cells for both beams have also been presented in this paper.

  18. Bias in calculated keff from subcritical measurements by the 252Cf-source-driven noise analysis method

    International Nuclear Information System (INIS)

    Mihalczo, J.T.; Valentine, T.E.

    1995-01-01

    The development of MCNP-DSP, which allows direct calculation of the measured time and frequency analysis parameters from subcritical measurements using the 252 Cf-source-driven noise analysis method, permits the validation of calculational methods for criticality safety with in-plant subcritical measurements. In addition, a method of obtaining the bias in the calculations, which is essential to the criticality safety specialist, is illustrated using the results of measurements with 17.771-cm-diam, enriched (93.15), unreflected, and unmoderated uranium metal cylinders. For these uranium metal cylinders the bias obtained using MCNP-DSP and ENDF/B-V cross-section data increased with subcriticality. For a critical experiment [height (h) = 12.629 cm], it was -0.0061 ± 0.0003. For a 10.16-cm-high cylinder (k ∼ 0.93), it was 0.0060 ± 0.0016, and for a subcritical cylinder (h = 8.13 cm, k ∼ 0.85), the bias was -0.0137 ± 0.0037, more than a factor of 2 larger in magnitude. This method allows the nuclear criticality safety specialist to establish the bias in calculational methods for criticality safety from in-plant subcritical measurements by the 252 Cf-source-driven noise analysis method

  19. Nuclear data requirements for accelerator driven sub-critical systems

    Indian Academy of Sciences (India)

    The development of accelerator driven sub-critical systems (ADSS) require significant amount of new nuclear data in extended energy regions as well as for a variety of new materials. This paper reviews these perspectives in the Indian context.

  20. Sensitivity analysis of source driven subcritical systems by the HGPT methodology

    International Nuclear Information System (INIS)

    Gandini, A.

    1997-01-01

    The heuristically based generalized perturbation theory (HGPT) methodology has been extensively used in the last decades for analysis studies in the nuclear reactor field. Its use leads to fundamental reciprocity relationships from which perturbation, or sensitivity expressions can be derived, to first and higher order, in terms of simple integration operation of quantities calculated at unperturbed system conditions. Its application to subcritical, source-driven systems, now considered with increasing interest in many laboratories for their potential use as nuclear waste burners and/or safer energy producers, is here commented, with particular emphasis to problems implying an intensive system control variable. (author)

  1. Study in stationary state of the subcriticality of intermediate configurations of core in the reloading process of a BWR; Estudio en estado estacionario de la subcriticidad de configuraciones intermedias de nucleo en el proceso de recarga de un BWR

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, J.L.; Montes, J.L.; Perusquia, R.; Ortiz, J.J. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: jlhm@nuclear.inin.mx

    2006-07-01

    In this work is carried out the simulation in three dimensions with the COREMASTER-PRESTO code, of the behavior of the reactor core in different stages of the change process of fuel assemblies. To carry out the simulation, this code requires of a database of nuclear parameters that includes those that can associate to the areas of an assemblies that they don't contain fuel and in its place there is moderator. These nuclear parameters are calculated with the AURORA-HELIOS-ZENITH-TABGEN system. One of the approaches that were carried out consisted on designing a 'water assemble', that is to say, an axial arrangement of 25 'water cells'. To obtain the appropriate 'water cell' its were carried out some selective test cases, since it presents in two cases the necessity to find an enough minimum value of fissile material for the correct execution of HELIOS, firstly, and later on COREMASTER-PRESTO. In the first case, the situation is solved when placing symmetrically 6 bars with natural uranium in the lateral areas of the cell; with that which the value of k{sub inf} of 0.1592 is obtained in the calculations with the HELIOS code in the cold condition to zero power (CZP), and 0% of vacuums. For the second case the cell includes symmetrically 28 bars with natural uranium, and the k{sub inf} value is 0.45290. These values are the maximum through the life of the 'cell.' As part of the activities that are developed during the fuel substitution, this the one of evaluating the subcriticality of the core each determined number of substitution movements. The obtained results when evaluating the k-effective in cold condition, in 5 different intermediate core configurations, as the loading process of the fuel advances are presented. To make the evaluation with CM-PRESTO in each configuration it was proceeded to complete the rest of the 444 assemblies with the one denominated 'water assemble'. In all the evaluated cases the

  2. The consequences of a sharp temperature change in the fuel pins of an accelerator-driven subcritical system

    International Nuclear Information System (INIS)

    Dagan, R.; Jianu, A.; Weisenburger, A.; Schikorr, M.; Rimpault, G.

    2013-01-01

    The effect of temperature changes and in particular those that are accompanied by strong gradients was extensively investigated for fast reactors. Subcritical systems designed for their transmutation ability are to some extent similar to critical power reactors in their subassembly structure. However, they differ in two main aspects. First, the coolant in a subcritical system is lead or lead-bismuth eutectic (LBE) and not sodium, and second, the main cause for steep temperature gradients in a fast power reactor is sudden control rod insertion, or scram, whereas in subcritical systems shutdown of the accelerator and its proton beam is the main cause for temperature gradients. Furthermore, the increased probability of operational interruptions in an accelerator driven system is largely due to the instability of the accelerator generating the proton beam. This study uses the knowledge gained from fast reactors as a preliminary reference and concentrates further on the unique features of the proposed subcritical systems. In particular, the effect of beam trips on the fuel pin integrity is evaluated as a function of the temperature gradients and the duration of the beam trips. It seems, however, that the largest hazard to the fuel pin integrity is due to the lead (or LBE) coolant. In particular, the stability of the protective oxide layer built on the clad surface with the lead coolant appears quite sensitive to sudden temperature changes. In the second part of this study, several available experimental results show that even very moderate temperature changes are sufficient to cause crack formation in the oxide layer thereby exposing the clad surface to enhanced LBE corrosion. In the worst case, complete exfoliation of the magnetite outer layer is observed. As a consequence, clad failure probability due to corrosion is considerably increased. (authors)

  3. Subcritical tests - nuclear weapon testing under the Comprehensive Test Ban Treaty; Subkritiske tester - kjernevaapentesting under avtalen om fullstendig proevestans

    Energy Technology Data Exchange (ETDEWEB)

    Hoeibraaten, S

    1998-10-01

    The report discusses possible nuclear weapons related experiments and whether these are permitted under the 1996 Comprehensive Test Ban Treaty (CTBT). The term ''subcritical experiments'' as used in the United States includes experiments in which one studies fissile materials (so far only plutonium) under extreme conditions generated by conventional high explosives, and in which a self-sustained chain reaction never develops in the fissile material. The known facts about the American subcritical experiments are presented. There is very little reason to doubt that these experiments were indeed subcritical and therefore permitted under the CTBT. Little is known about the Russian efforts that are being made on subcritical experiments.

  4. Performance of FFTF reference fuel and control assemblies

    International Nuclear Information System (INIS)

    Leggett, R.D.; Weber, E.T.

    1984-11-01

    This paper describes the performance of the reference fuel and control assemblies used in FFTF through the first four cycles of irradiation (446 equivalent full power days, EFPD). These assemblies performed flawlessly through the rigors of the Startup Testing Program, STP, (beginning in late 1979) with its cyclic operation and continued to do so throughout Cycles 1, 2, 3 and 4, the latter ending in April 1984

  5. Introduction of fusion driven subcritical system plasma design

    International Nuclear Information System (INIS)

    Bin Wu

    2003-01-01

    Fusion driven subcritical nuclear system (FDS) is a multifunctional hybrid reactor, which could breed nuclear fuel, transmute long-lived wastes, producing tritium and so on. This paper presents an introduction of FDS plasma design. Several different advance equilibrium configurations have been proposed and a 1.5-D discharge simulation of FDS was also present

  6. Hybridisation of solar and geothermal energy in both subcritical and supercritical Organic Rankine Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Cheng

    2014-05-01

    Highlights: • Hybrid solar and geothermal energy conversion system was modelled using subcritical and supercritical ORCs. • Solar thermal and geothermal energy can be effectively hybridised. • Greater thermodynamic advantages and economic benefits can be achieved using the supercritical hybrid plant. • Hybrid plants can produce up to 19% more annual electricity than the two stand-alone plants. • Solar-to-electricity cost in the supercritical hybrid plant is about 4–19% less than in the subcritical plant. - Abstract: A supercritical Organic Rankine Cycle (ORC) is renowned for higher conversion efficiency than the conventional ORC due to a better thermal match (i.e. reduced irreversibility) presented in the heat exchanger unit. This improved thermal match is a result of the obscured liquid-to-vapor boundary of the organic working fluid at supercritical states. Stand-alone solar thermal power generation and stand-alone geothermal power generation using a supercritical ORC have been widely investigated. However, the power generation capability of a single supercritical ORC using combined solar and geothermal energy has not been examined. This paper thus investigates the hybridisation of solar and geothermal energy in a supercritical ORC to explore the benefit from the potential synergies of such a hybrid platform. Its performances were also compared with those of a subcritical hybrid plant, stand-alone solar and geothermal plants. All simulations and modelling of the power cycles were carried out using process simulation package Aspen HYSYS. The performances of the hybrid plant were then assessed using technical analysis, economic analysis, and the figure of merit analysis. The results of the technical analysis show that thermodynamically, the hybrid plant using a supercritical ORC outperforms the hybrid plant using a subcritical ORC if at least 66% of its exergy input is met by solar energy (i.e. a solar exergy fraction of >66%), namely producing 4–17

  7. Hybridisation of solar and geothermal energy in both subcritical and supercritical Organic Rankine Cycles

    International Nuclear Information System (INIS)

    Zhou, Cheng

    2014-01-01

    Highlights: • Hybrid solar and geothermal energy conversion system was modelled using subcritical and supercritical ORCs. • Solar thermal and geothermal energy can be effectively hybridised. • Greater thermodynamic advantages and economic benefits can be achieved using the supercritical hybrid plant. • Hybrid plants can produce up to 19% more annual electricity than the two stand-alone plants. • Solar-to-electricity cost in the supercritical hybrid plant is about 4–19% less than in the subcritical plant. - Abstract: A supercritical Organic Rankine Cycle (ORC) is renowned for higher conversion efficiency than the conventional ORC due to a better thermal match (i.e. reduced irreversibility) presented in the heat exchanger unit. This improved thermal match is a result of the obscured liquid-to-vapor boundary of the organic working fluid at supercritical states. Stand-alone solar thermal power generation and stand-alone geothermal power generation using a supercritical ORC have been widely investigated. However, the power generation capability of a single supercritical ORC using combined solar and geothermal energy has not been examined. This paper thus investigates the hybridisation of solar and geothermal energy in a supercritical ORC to explore the benefit from the potential synergies of such a hybrid platform. Its performances were also compared with those of a subcritical hybrid plant, stand-alone solar and geothermal plants. All simulations and modelling of the power cycles were carried out using process simulation package Aspen HYSYS. The performances of the hybrid plant were then assessed using technical analysis, economic analysis, and the figure of merit analysis. The results of the technical analysis show that thermodynamically, the hybrid plant using a supercritical ORC outperforms the hybrid plant using a subcritical ORC if at least 66% of its exergy input is met by solar energy (i.e. a solar exergy fraction of >66%), namely producing 4–17

  8. 3D CAD model of the subcritical nuclear reactor of IPN

    International Nuclear Information System (INIS)

    Pahuamba V, F. de J.; Delfin L, A.; Gomez T, A.; Ibarra R, G.; Del Valle G, E.; Sanchez R, A.

    2016-09-01

    The three-dimensional (3D) CAD model of the subcritical reactor Chicago model 9000 of Instituto Politecnico Nacional (IPN) allows obtaining a 3D view with the dimensions of each of its components, such as: natural uranium cylindrical rods, fuel elements, hexagonal reactor core arrangement, cylindrical stainless steel tank containing the core, fuel element support grids and reactor water cleaning system. As a starting point for the development of the model, the Chicago model 9000 subcritical reactor manual provided by the manufacturer was used, the measurement and verification of the components to adapt the geometric, physical and mechanical characteristics was carried out and materials standards were used to obtain a design that allows to elaborate a new manual according to the specifications. In addition, the 3D models of the building of the Advanced Physics Laboratory, neutron generator, cobalt source and the corridors connecting to the subcritical reactor facility were developed, allowing an animated ride, developed by computer-aided design software. The manual provided by the company Nuclear Chicago, dates from the year 1959 and presents diverse deviations in the design and dimensions of the reactor components. The model developed; in addition to supporting the development of the new manual represents a learning tool to visualize the reactor components. (Author)

  9. Neutronics of a sub-critical system burning non-recycled LWR waste

    International Nuclear Information System (INIS)

    Wallenius, J.; Tucek, K.; Gudowski, W.; Sanders, C.

    1999-01-01

    We have investigated neutronic properties of a subcritical system designed for transmutation of non-recycled TRU discharges from commercial light water reactors. Burnable absorbers (BA) and depleted uranium in variable concentrations are introduced in order to maximize fission to absorption ratios, and to minimize power peaking as well as reactivity losses. The use of nitride fuel raises linear power ratings to 60-110 kW/m while keeping fuel center line temperatures below 1400 K after gap closure. A comparatively small power peaking of 1.5 at a subcriticality level of 0.97 allows for a total core power of 1200 MWth with a corresponding proton beam power of 20 MW at BOL. Core averaged fission to absorption ratios for Np and Am as high as 0.5 are achieved using 10 B enriched B 4 C as BA. Hence, both Pu and minor actinide inventories are reduced during burnup in the here proposed system, mitigating swelling problems arising due to high-activity in MA-based fuels. Disadvantages following BA introduction, such as increase of void coefficients and decrease of negative doppler feedback in conjunction with small values of β eff , are addressed by setting the BOL subcriticality level to 0.97. (author)

  10. Multi-sensor control for precise assembly of optical components

    Directory of Open Access Journals (Sweden)

    Ma Li

    2014-06-01

    Full Text Available In order to perform an optical assembly accurately, a multi-sensor control strategy is developed which includes an attitude measurement system, a vision system, a loss measurement system and a force sensor. A 3-DOF attitude measuring method using linear variable differential transformers (LVDT is designed to adjust the relation of position and attitude between the spherical mirror and the resonator. A micro vision feedback system is set up to extract the light beam and the diaphragm, which can achieve the coarse positioning of the spherical mirror in the optical assembly process. A rapid self-correlation method is presented to analyze the spectrum signal for the fine positioning. In order to prevent the damage of the optical components and realize sealing of the resonator, a hybrid force-position control is constructed to control the contact force of the optical components. The experimental results show that the proposed multi-sensor control strategy succeeds in accomplishing the precise assembly of the optical components, which consists of parallel adjustment, macro coarse adjustment, macro approach, micro fine adjustment, micro approach and optical contact. Therefore, the results validate the multi-sensor control strategy.

  11. Calculation of drop course of control rod assembly in PWR

    International Nuclear Information System (INIS)

    Zhou Xiaojia; Mao Fei; Min Peng; Lin Shaoxuan

    2013-01-01

    The validation of control rod drop performance is an important part of safety analysis of nuclear power plant. Development of computer code for calculating control rod drop course will be useful for validating and improving the design of control rod drive line. Based on structural features of the drive line, the driving force on moving assembly was analyzed and decomposed, the transient value of each component of the driving force was calculated by choosing either theoretical method or numerical method, and the simulation code for calculating rod cluster control assembly (RCCA) drop course by time step increase was achieved. The analysis results of control rod assembly drop course calculated by theoretical model and numerical method were validated by comparing with RCCA drop test data of Qinshan Phase Ⅱ 600 MW PWR. It is shown that the developed RCCA drop course calculation code is suitable for RCCA in PWR and can correctly simulate the drop course and the stress of RCCA. (authors)

  12. Validation of neutronic methods applied to the analysis of fast subcritical systems. The MUSE-2 experiments

    International Nuclear Information System (INIS)

    Soule, R.; Salvatores, M.; Jacqmin, R.; Martini, M.; Lebrat, J.F.; Bertrand, P.; Broccoli, U.; Peluso, V.

    1997-01-01

    In the framework of the French SPIN program devoted to the separation and the transmutation of radioactive wastes, the CEA has launched the ISAAC program to investigate the potential of accelerator-driven systems and to provide an experimental validation of the physics characteristics of these systems. The neutronics of the subcritical core needs experimental validation. This can be done by decoupling the problem of the neutron source from the problem of the subcritical medium. Experiments with a well known external source placed in a subcritical medium have been performed in the MASURCA facility. The results confirm the high accuracy achievable with such experiments and the good quality of the ERANOS code system predictions. (author)

  13. Validation of neutronic methods applied to the analysis of fast subcritical systems. The MUSE-2 experiments

    Energy Technology Data Exchange (ETDEWEB)

    Soule, R; Salvatores, M; Jacqmin, R; Martini, M; Lebrat, J F; Bertrand, P [CEA Centre d` Etudes de Cadarache, Service de Physique des Reacteurs et du Cycle, 13 - Saint-Paul-lez-Durance (France); Broccoli, U; Peluso, V

    1998-12-31

    In the framework of the French SPIN program devoted to the separation and the transmutation of radioactive wastes, the CEA has launched the ISAAC program to investigate the potential of accelerator-driven systems and to provide an experimental validation of the physics characteristics of these systems. The neutronics of the subcritical core needs experimental validation. This can be done by decoupling the problem of the neutron source from the problem of the subcritical medium. Experiments with a well known external source placed in a subcritical medium have been performed in the MASURCA facility. The results confirm the high accuracy achievable with such experiments and the good quality of the ERANOS code system predictions. (author)

  14. Calculation of neutron interior source distribution within subcritical fission-chain reacting systems for a prescribed power density generation

    International Nuclear Information System (INIS)

    Moraes, Leonardo R.C.; Alves Filho, Hermes; Barros, Ricardo C.

    2017-01-01

    Accelerator Driven Systems (ADS) are sub-critical systems stabilized by stationary external sources of neutrons. A system is subcritical when the removal by absorption and leakage exceeds the production by fission and tends to shut down. On the other hand, any subcritical system can be stabilized by including time-independent external sources of neutrons. The goal of this work is to determine the intensity of uniform and isotropic sources of neutrons that must be added inside all fuel regions of a subcritical system so that it becomes stabilized, generating a prescribed distribution of electric power. A computer program has been developed in Java language to estimate the intensity of stationary sources of neutrons that must be included in the fuel regions to drive the subcritical system with a fixed power distribution prescribed by the user. The mathematical model used to achieve this goal was the energy multigroup, slab-geometry neutron transport equation in the discrete ordinates (S N ) formulation and the response matrix method was applied to solve the forward and the adjoint S N problems. Numerical results are given to verify the present. (author)

  15. Calculation of neutron interior source distribution within subcritical fission-chain reacting systems for a prescribed power density generation

    Energy Technology Data Exchange (ETDEWEB)

    Moraes, Leonardo R.C.; Alves Filho, Hermes; Barros, Ricardo C., E-mail: lrcmoraes@iprj.uerj.br, E-mail: halves@iprj.uerj.br, E-mail: ricardob@iprj.uerj.br [Universidade do Estado do Rio de Janeiro (UERJ), Nova Friburgo, RJ (Brazil). Programa de Pós-Graduação em Modelagem Computacional

    2017-07-01

    Accelerator Driven Systems (ADS) are sub-critical systems stabilized by stationary external sources of neutrons. A system is subcritical when the removal by absorption and leakage exceeds the production by fission and tends to shut down. On the other hand, any subcritical system can be stabilized by including time-independent external sources of neutrons. The goal of this work is to determine the intensity of uniform and isotropic sources of neutrons that must be added inside all fuel regions of a subcritical system so that it becomes stabilized, generating a prescribed distribution of electric power. A computer program has been developed in Java language to estimate the intensity of stationary sources of neutrons that must be included in the fuel regions to drive the subcritical system with a fixed power distribution prescribed by the user. The mathematical model used to achieve this goal was the energy multigroup, slab-geometry neutron transport equation in the discrete ordinates (S{sub N}) formulation and the response matrix method was applied to solve the forward and the adjoint S{sub N} problems. Numerical results are given to verify the present. (author)

  16. Optimal Neutron Source and Beam Shaping Assembly for Boron Neutron Capture Therapy

    International Nuclear Information System (INIS)

    Vujic, J.; Greenspan, E.; Kastenber, W.E.; Karni, Y.; Regev, D.; Verbeke, J.M.; Leung, K.N.; Chivers, D.; Guess, S.; Kim, L.; Waldron, W.; Zhu, Y.

    2003-01-01

    There were three objectives to this project: (1) The development of the 2-D Swan code for the optimization of the nuclear design of facilities for medical applications of radiation, radiation shields, blankets of accelerator-driven systems, fusion facilities, etc. (2) Identification of the maximum beam quality that can be obtained for Boron Neutron Capture Therapy (BNCT) from different reactor-, and accelerator-based neutron sources. The optimal beam-shaping assembly (BSA) design for each neutron source was also to e obtained. (3) Feasibility assessment of a new neutron source for NCT and other medical and industrial applications. This source consists of a state-of-the-art proton or deuteron accelerator driving and inherently safe, proliferation resistant, small subcritical fission assembly

  17. Design parameters for voltage-controllable directed assembly of single nanoparticles

    International Nuclear Information System (INIS)

    Porter, Benjamin F; Bhaskaran, Harish; Abelmann, Leon

    2013-01-01

    Techniques to reliably pick-and-place single nanoparticles into functional assemblies are required to incorporate exotic nanoparticles into standard electronic circuits. In this paper we explore the use of electric fields to drive and direct the assembly process, which has the advantage of being able to control the nano-assembly process at the single nanoparticle level. To achieve this, we design an electrostatic gating system, thus enabling a voltage-controllable nanoparticle picking technique. Simulating this system with the nonlinear Poisson–Boltzmann equation, we can successfully characterize the parameters required for single particle placement, the key being single particle selectivity, in effect designing a system that can achieve this controllably. We then present the optimum design parameters required for successful single nanoparticle placement at ambient temperature, an important requirement for nanomanufacturing processes. (paper)

  18. Impact of proton beam trips and pulsation on accelerator-driven subcritical system (ADSS) control

    International Nuclear Information System (INIS)

    Sullivan, P.; Rydin, R.A.

    2001-01-01

    The full text follows. ADSS (accelerator driven systems) concepts use a source consisting of a proton beam directed into a high-Z target, such as tungsten or lead, driving a (p,n) spallation reaction. This results in a neutron source which is meant to sustain a constant rate of fission power production in the fuel. However, conceptual ADSS studies to date have not taken two special attributes of these sources into account, usually using the simplifying assumption that the spallation source is constant and continuously variable. These are: (1) proton beams under consideration for ADSS sources are pulsed at a certain frequency, which would suggest that the neutron source for the ADSS is also pulsed since the spallation reaction is prompt; (2) while shutting off the beam is the usual answer to safety questions, this poses its own set of issues. Even state-of the-art proton beams are prone to routine and frequent trips, with beam restart times ranging from seconds to hours. Both of these attributes could place system components under severe thermal stress. The strong, subcriticality-level-dependent feedback effects that occur in an ADSS can introduce transient power swings and oscillations that may need to be controlled or abated by source modulation and/or control rod motion. Earlier work indicates that such feedback effects may lead to unpredictable behavior, affecting restart performance and requiring active control measures to prevent or mitigate such effects. And there is a further consideration. Since efficient operation of ADSS-based systems may suggest that a system operates near, though below, critical, the actual operation of such a system means that the operator would need to walk a fine line between safety and efficiency. The intent of this effort is to examine control and safety issues posed by pulsed and trip-prone neutron sources in near-critical ADSS's, using spread sheet-based simulations [informed by the results of earlier work] to develop scenarios

  19. Preliminary analysis of advanced equilibrium configuration for the fusion-driven subcritical system

    International Nuclear Information System (INIS)

    Chu Delin; Wu Bin; Wu Yican

    2003-01-01

    The Fusion-Driven Subcritical System (FDS) is a subcritical nuclear energy system driven by fusion neutron source. In this paper, an advanced plasma configuration for FDS system has been proposed, which aims at high beta, high bootstrap current and good confinement. A fixed-boundary equilibrium code has been used to obtain ideal equilibrium configuration. In order to determine the feasibility of FDS operation, a two-dimensional time-dependent free boundary simulation code has been adopted to simulate time-scale evolution of plasma current profile and boundary position. By analyses, the Reversed Shear mode as the most attractive one has been recommended for the FDS equilibrium configuration design

  20. Experimental study on accelerator driven subcritical reactor. JAERI's nuclear research promotion program, H12-031 (Contract research)

    International Nuclear Information System (INIS)

    Shiroya, Seiji; Misawa, Tsuyoshi; Unesaki, Hironobu

    2004-03-01

    In view of the future plan of Research Reactor Institute, Kyoto University (KURRI), the present study consisted of 1) the transmission experiments of high energy neutrons through materials, 2) experimental simulation of ADSR using the Kyoto University Critical Assembly (KUCA), and 3) conceptual neutronics design study on Kyoto University Reactor (KUR) type ADSR using the MCNPX code. The purpose of the present study was not only to obtain the knowledge usable for the realization of ADSR as a new neutron source for research but also to select technical issues in the field of reactor physics for the development of ADSR in general. Through the present study, valuable knowledge on the basic nuclear characteristics of ADSR was obtained both theoretically and experimentally. This kind of knowledge is indispensable to promote the study on ADSR further. If one dare say the main part of knowledge in short words, the basic nuclear characteristics of ADSR is overwhelmed by the characteristics of the subcritical reactor as expected. For the realization of ADSR in the future, it is considered to be necessary to accumulate results of research steadily. For this purpose, it is inevitable 1) to compile the more precise nuclear data for the wide energy range, 2) to establish experimental techniques for reactor physics study on ADSR including subcriticality measurement and absolute neutron flux measurement from the low energy region to the high energy region, and 3) to develop neutronics calculation tools which facilitate to take into account the neutron generation process by the spallation reaction and the delayed neutron behavior. (author)

  1. Subcritical limits for special fissile actinides

    International Nuclear Information System (INIS)

    Clark, H.K.

    1980-01-01

    Critical masses and subcritical mass limits in oxide-water mixtures were calculated for actinide nuclides other than 233 U, 235 U, and 239 Pu that have an odd number of neutrons in the nucleus: S/sub n/ transport theory was used together with cross sections, drawn from the GLASS multigroup library, developed to provide accurate forecasts of actinide production at Savannah River. The subcritical limits are 201 g for 241 Pu, 13 g for 242 /sup m/Am, 90 g for 243 Cm, 30 g for 245 Cm, 900 g for 247 Cm, 10 g for 249 Cf, and 5 g for 251 Cf. Association of 241 Pu with an equal mass of 240 Pu increases the 241 Pu limit to a value greater than that for pure 239 Pu. Association of 242 /sup m/Am with 241 Am increases the limit for the mixture to that for dry, theoretical density AmO 2 at isotopic concentrations of 242 /sup m/Am less than approx. 6%. Association of 245 Cm with 244 Cm increases the limit according to the formula 30 + 0.3 244 Cm/ 245 Cm up to the limit for dry CmO 2 . A limiting mass of 8.15 kg for plutonium containing at least 67% 238 Pu as oxide was calculated that applies (provided 240 Pu exceeds 241 Pu) with no limit on moderation. 1 figure, 5 tables

  2. Source-jerk method for application on ADS neutronics study The ADS is stated for Accelerator Driven sub-critical System

    CERN Document Server

    Zhu Qing Fu; Li Yi; Xia Pu; Zheng Wu Qing; Zhu Guo Sheng

    2003-01-01

    The paper is concerned in the source-jerk method used to measure the sub-criticality, and the sub-critical experiment facility, which is used for the study on the neutronics of ADS, driven by external neutron source sup 2 sup 5 sup 2 Cf. The effects of the location of neutron source and material buffer where is at the location of the pipe of proton beam and target of fission-product dispersion on the sub-criticality of reactor are studied by source-jerk method

  3. Reconstitutable control rod spider assembly

    International Nuclear Information System (INIS)

    Shallenberger, J.M.; Ferian, S.J.

    1990-01-01

    A reconstitutable control rod/spider assembly includes a hollow connecting finger of the spider having a pair of opposing flat segments formed on the interior thereof and engaging a pair of opposing flat sectors formed on the exterior of a stem extending form the upper end of control rod. The stem also has an externally-threaded portion engaging a nut and a pilot aligning portion for the nut. The nut has a radially flexible and expandable thread-defining element captured in its bore. The segments and sectors allow the rod to be removed and reattached after turning through 180 0 to allow more even wear on the rod. (author)

  4. Controlled assembly of multi-segment nanowires by histidine-tagged peptides

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Aijun A; Lee, Joun; Jenikova, Gabriela; Mulchandani, Ashok; Myung, Nosang V; Chen, Wilfred [Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521 (United States)

    2006-07-28

    A facile technique was demonstrated for the controlled assembly and alignment of multi-segment nanowires using bioengineered polypeptides. An elastin-like-polypeptide (ELP)-based biopolymer consisting of a hexahistine cluster at each end (His{sub 6}-ELP-His{sub 6}) was generated and purified by taking advantage of the reversible phase transition property of ELP. The affinity between the His{sub 6} domain of biopolymers and the nickel segment of multi-segment nickel/gold/nickel nanowires was exploited for the directed assembly of nanowires onto peptide-functionalized electrode surfaces. The presence of the ferromagnetic nickel segments on the nanowires allowed the control of directionality by an external magnetic field. Using this method, the directed assembly and positioning of multi-segment nanowires across two microfabricated nickel electrodes in a controlled manner was accomplished with the expected ohmic contact.

  5. MCNPX and MCB coupled methodology for the burnup calculation of the KIPT accelerator driven subcritical system

    International Nuclear Information System (INIS)

    Zhong, Z.; Gohar, Y.; Talamo, A.

    2009-01-01

    Argonne National Laboratory (ANL) of USA and Kharkov Inst. of Physics and Technology (KIPT) of Ukraine have been collaborating on the conceptual design development of an electron accelerator driven subcritical facility (ADS). The facility will be utilized for basic research, medical isotopes production, and training young nuclear specialists. The burnup methodology and analysis of the KIPT ADS are presented in this paper. MCNPX and MCB Monte Carlo computer codes have been utilized. MCNPX has the capability of performing electron, photon and neutron coupled transport problems, but it lacks the burnup capability for driven subcritical systems. MCB has the capability for performing the burnup calculation of driven subcritical systems, while it cannot transport electrons. A calculational methodology coupling MCNPX and MCB has been developed, which can exploit the electrons transport capability of MCNPX for neutron production and the burnup capability of MCB for driven subcritical systems. In this procedure, a neutron source file is generated using MCNPX transport calculation, preserving the neutrons yield from photonuclear reactions initiated by electrons, and this source file is utilized by MCB for the burnup analyses with the same geometrical model. In this way, the ADS depletion calculation can be accurately. (authors)

  6. Estimation of subcriticality and fuel concentration by using 'pattern matching' of neutron flux distribution under non uniformed system

    International Nuclear Information System (INIS)

    Ishitani, Kazuki; Yamane, Yoshihiro

    1999-01-01

    In nuclear fuel reprocessing plants, monitoring the spatial profile of neutron flux to infer subcriticality and distribution of fuel concentration using detectors such as PSPC, is very beneficial in sight of criticality safety. In this paper a method of subcriticality and fuel concentration estimation which is supposed to use under non-uniformed system is proposed. Its basic concept is the pattern matching between measured neutron flux distribution and beforehand calculated one. In any kind of subcriticality estimation, we can regard that measured neutron counts put any kind of black box, and then this black box outputs subcriticality. We proposed the use of artificial neural network or 'pattern matching' as black box which have no theoretical clear base. These method are wholly based on the calculated value as recently advancement of computer code accuracy for criticality safety. The most difference between indirect bias estimation method and our method is that our new approach target are the unknown non-uniform system. (J.P.N.)

  7. An approximation for kanban controlled assembly systems

    NARCIS (Netherlands)

    Topan, E.; Avsar, Z.M.

    2011-01-01

    An approximation is proposed to evaluate the steady-state performance of kanban controlled two-stage assembly systems. The development of the approximation is as follows. The considered continuous-time Markov chain is aggregated keeping the model exact, and this aggregate model is approximated

  8. Controlling Photoconductivity in PBI Films by Supramolecular Assembly.

    Science.gov (United States)

    Draper, Emily R; Archibald, Lewis J; Nolan, Michael C; Schweins, Ralf; Zwijnenburg, Martijn A; Sproules, Stephen; Adams, Dave J

    2018-03-15

    Perylene bisimides (PBIs) self-assemble in solution. The solubility of the PBIs is commonly changed through the choice of substituents at the imide positions. It is generally assumed this substitution does not affect the electronic properties of the PBI, and that the properties of the self-assembled aggregate are essentially that of the isolated molecule. However, substituents do affect the self-assembly, resulting in potentially different packing in the formed aggregates. Here, we show that the photoconductivity of films formed from a library of substituted PBIs varies strongly with the substituent and demonstrate that this is due to the different ways in which they pack. Our results open the possibility for tuning the optoelectronic properties of self-assembled PBIs by controlling the aggregate structure through careful choice of substituent, as demonstrated by us here optimising the photoconductivity of PBI films in this way. © 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  9. Subcritical multiplication measurements with a BeO reflected 233U uranyl nitrate solution system

    International Nuclear Information System (INIS)

    Job, P.K.; Srinivasan, M.; Nargundkar, V.R.; Chandramoleshwar, K.; Pasupathy, C.S.; Das, S.; Mayankutty, P.C.

    1978-01-01

    A series of subcritical multiplication measurements were carried out in PURNIMA with 233 U uranyl nitrate solution contained in all 11 x 11 cm 2 square sectional tank and reflected by 30 cm thickness of BeO on all sides. The objective of these experiments was to determine the 'Minimum critical mass' of the system in rectangular parellelopiped geometry. The rectangular aluminium core tank was attached to the bottom of an alpha tight glove box. BeO reflector was arranged below the glove box outside the core tank. The system multiplication was measured as a function of solution concentration and core volume by means of neutron detectors placed outside the assembly. The extrapolated critical mass was obtained through conventional inverse counts plot. The maximum amount of 233 U used was 120 gms. The rectangular geometry was estimated to be 235 +- 10 gms, in the concentration range of 80 to 120 gms/litre of 233 U. The experimental set up, procedure adopted, method of analysis and the details of the results are described. (author)

  10. Plutonium Critical Mass Curve Comparison to Mass at Upper Subcritical Limit (USL) Using Whisper

    International Nuclear Information System (INIS)

    Alwin, Jennifer Louise; Zhang, Ning

    2016-01-01

    Whisper is computational software designed to assist the nuclear criticality safety analyst with validation studies with the MCNP ® Monte Carlo radiation transport package. Standard approaches to validation rely on the selection of benchmarks based upon expert judgment. Whisper uses sensitivity/uncertainty (S/U) methods to select relevant benchmarks to a particular application or set of applications being analyzed. Using these benchmarks, Whisper computes a calculational margin. Whisper attempts to quantify the margin of subcriticality (MOS) from errors in software and uncertainties in nuclear data. The combination of the Whisper-derived calculational margin and MOS comprise the baseline upper subcritical limit (USL), to which an additional margin may be applied by the nuclear criticality safety analyst as appropriate to ensure subcriticality. A series of critical mass curves for plutonium, similar to those found in Figure 31 of LA-10860-MS, have been generated using MCNP6.1.1 and the iterative parameter study software, WORM S olver. The baseline USL for each of the data points of the curves was then computed using Whisper 1.1. The USL was then used to determine the equivalent mass for plutonium metal-water system. ANSI/ANS-8.1 states that it is acceptable to use handbook data, such as the data directly from the LA-10860-MS, as it is already considered validated (Section 4.3 4) ''Use of subcritical limit data provided in ANSI/ANS standards or accepted reference publications does not require further validation.''). This paper attempts to take a novel approach to visualize traditional critical mass curves and allows comparison with the amount of mass for which the k eff is equal to the USL (calculational margin + margin of subcriticality). However, the intent is to plot the critical mass data along with USL, not to suggest that already accepted handbook data should have new and more rigorous requirements for validation.

  11. Characteristics of membrane fouling in submerged membrane bioreactor under sub-critical flux operation.

    Science.gov (United States)

    Su, Y C; Huang, C P; Pan, Jill R; Lee, H C

    2008-01-01

    Recently, the membrane bioreactor (MBR) process has become one of the novel technologies to enhance the performance of biological treatment of wastewater. Membrane bioreactor process uses the membrane unit to replace a sediment tank, and this can greatly enhance treatment performance. However, membrane fouling in MBR restricts its widespread application because it leads to permeate flux decline, making more frequent membrane cleaning and replacement necessary, which then increases operating and maintenance costs. This study investigated the sludge characteristics in membrane fouling under sub-critical flux operation and also assessed the effect of shear stress on membrane fouling. Membrane fouling was slow under sub-critical flux operation. However, as filamentous microbes became dominant in the reactor, membrane fouling increased dramatically due to the increased viscosity and polysaccharides. A close link was found between membrane fouling and the amount of polysaccharides in soluble EPS. The predominant resistance was the cake resistance which could be minimized by increasing the shear stress. However, the resistance of colloids and solutes was not apparently reduced by increasing shear stress. Therefore, smaller particles such as macromolecules (e.g. polysaccharides) may play an important role in membrane fouling under sub-critical flux operation.

  12. Plant Outage Time Savings Provided by Subcritical Physics Testing at Vogtle Unit 2

    International Nuclear Information System (INIS)

    Cupp, Philip; Heibel, M.D.

    2006-01-01

    The most recent core reload design verification physics testing done at Southern Nuclear Company's (SNC) Vogtle Unit 2, performed prior to initial power operations in operating cycle 12, was successfully completed while the reactor was at least 1% ΔK/K subcritical. The testing program used was the first application of the Subcritical Physics Testing (SPT) program developed by the Westinghouse Electric Company LLC. The SPT program centers on the application of the Westinghouse Subcritical Rod Worth Measurement (SRWM) methodology that was developed in cooperation with the Vogtle Reactor Engineering staff. The SRWM methodology received U. S. Nuclear Regulatory Commission (NRC) approval in August of 2005. The first application of the SPT program occurred at Vogtle Unit 2 in October of 2005. The results of the core design verification measurements obtained during the SPT program demonstrated excellent agreement with prediction, demonstrating that the predicted core characteristics were in excellent agreement with the actual operating characteristics of the core. This paper presents an overview of the SPT Program used at Vogtle Unit 2 during operating cycle 12, and a discussion of the critical path outage time savings the SPT program is capable of providing. (authors)

  13. Balancing the intermolecular forces in peptide amphiphiles for controlling self-assembly transitions.

    Science.gov (United States)

    Buettner, C J; Wallace, A J; Ok, S; Manos, A A; Nicholl, M J; Ghosh, A; Tweedle, M F; Goldberger, J E

    2017-06-21

    While the influence of alkyl chain length and headgroup size on self-assembly behaviour has been well-established for simple surfactants, the rational control over the pH- and concentration-dependent self-assembly behaviour in stimuli responsive peptides remains an elusive goal. Here, we show that different amphiphilic peptides can have similar self-assembly phase diagrams, providing the relative strengths of the attractive and repulsive forces are balanced. Using palmitoyl-YYAAEEEEK(DO3A:Gd)-NH 2 and palmitoyl-YAAEEEEK(DO3A:Gd)-NH 2 as controls, we show that reducing hydrophobic attractive forces through fewer methylene groups in the alkyl chain will lead to a similar self-assembly phase diagram as increasing the electrostatic repulsive forces via the addition of a glutamic acid residue. These changes allow creation of self-assembled MRI vehicles with slightly different micelle and nanofiber diameters but with minimal changes in the spin-lattice T 1 relaxivity. These findings reveal a powerful strategy to design self-assembled vehicles with different sizes but with similar self-assembly profiles.

  14. Design status and future research programme for a sub-critical assembly driven by a proton accelerator with proton energy 660 MeV for experiments on long-lived fission products and minor actinides transmutation (Sad)

    International Nuclear Information System (INIS)

    Gustov, S.A.; Mirokhin, I.V.; Morozov, N.A.; Onischenko, L.M.; Savchenko, O.V.; Sissakian, A.N.; Shvetsov, V.N.; Tretyakov, I.T.; Lopatkin, A.V.; Vorontsov, M.T.

    2003-01-01

    Report presents project for the construction of a low power integral system on the basis of the proton accelerator of energy 660 MeV and sub-critical MOX blanket with uranium-plutonium fuel. Installation includes sub-critical core with a nominal thermal power of 15-20 kW. Multiplication coefficient k eff = 0,95 and the accelerator beam power of 0.75-1 kW. The experimental programme for SAD will be focused on solving different aspects of reactor physics, reaction rates measurements and benchmarking. The first conceptual design of the SAD experiment is completed in the form of the ISTC Project Proposal 2267. Realisation of the SAD facility may be expected in about 3-4 years. (author)

  15. Study on the method of determining the sub-criticality of a reactor via the measurement of core neutron flux spatial distribution

    International Nuclear Information System (INIS)

    Ma Aifeng; Jiang Xiaofeng; Zhang Shaohong

    2007-01-01

    A new methodology based on rigorous reactor physics theory astead of the point reactor assumption was proposed to determine or monitor the sub-criticality ora reactor, especially the sub-critical reactor of ADS, via the measurement of in-core flux spatial distribution. Preliminary numerical studies on the 1st ADS sub-critical experimental facilities-Venus No.1 in China have demonstrated the feasibility of this new method. Related discussions pointed out the potential applications of the method. (authors)

  16. Towards Robust Predictive Fault–Tolerant Control for a Battery Assembly System

    Directory of Open Access Journals (Sweden)

    Seybold Lothar

    2015-12-01

    Full Text Available The paper deals with the modeling and fault-tolerant control of a real battery assembly system which is under implementation at the RAFI GmbH company (one of the leading electronic manufacturing service providers in Germany. To model and control the battery assembly system, a unified max-plus algebra and model predictive control framework is introduced. Subsequently, the control strategy is enhanced with fault-tolerance features that increase the overall performance of the production system being considered. In particular, it enables tolerating (up to some degree mobile robot, processing and transportation faults. The paper discusses also robustness issues, which are inevitable in real production systems. As a result, a novel robust predictive fault-tolerant strategy is developed that is applied to the battery assembly system. The last part of the paper shows illustrative examples, which clearly exhibit the performance of the proposed approach.

  17. Fast accelerator driven subcritical system for energy production: nuclear fuel evolution

    International Nuclear Information System (INIS)

    Barros, Graiciany de P.; Pereira, Claubia; Veloso, Maria A.F.; Costa, Antonella L.

    2011-01-01

    Accelerators Driven Systems (ADS) are an innovative type of nuclear system, which is useful for long-lived fission product transmutation and fuel regeneration. The ADS consist of a coupling of a sub-critical nuclear core reactor and a proton beam produced by a particle accelerator. These particles are injected into a target for the neutrons production by spallation reactions. The neutrons are then used to maintain the fission chain in the sub-critical core. The aim of this study is to investigate the nuclear fuel evolution of a lead cooled accelerator driven system used for energy production. The fuel studied is a mixture based upon "2"3"2Th and "2"3"3U. Since thorium is an abundant fertile material, there is hope for the thorium-cycle fuels for an accelerator driven sub-critical system. The target is a lead spallation target and the core is filled with a hexagonal lattice. High energy neutrons are used to reduce the negative reactivity caused by the presence of protoactinium, since this effect is most pronounced in the thermal range of the neutron spectrum. For that reason, such material is not added moderator to the system. In this work is used the Monte Carlo code MCNPX 2.6.0, that presents the the depletion/ burnup capability. The k_e_f_f evolution, the neutron energy spectrum in the core and the nuclear fuel evolution using ADS source (SDEF) and kcode-mode are evaluated during the burnup. (author)

  18. Subcritical thermal convection of liquid metals in a rapidly rotating sphere

    Science.gov (United States)

    Cardin, P.; Schaeffer, N.; Guervilly, C.; Kaplan, E.

    2017-12-01

    Planetary cores consist of liquid metals (low Prandtl number Pr) that convect as the core cools. Here we study nonlinear convection in a rotating (low Ekman number Ek) planetary core using a fully 3D direct (down to Ek=10-7) and a quasi geostrophic (down to Ek=10-10) numerical simulations. Near the critical thermal forcing (Rayleigh number Ra), convection onsets as thermal Rossby waves, but as Ra increases, this state is superceded by one dominated by advection. At moderate rotation, these states (here called the weak branch and strong branch, respectively) are continuously connected. As the planetary core rotates faster, the continuous transition is replaced by hysteresis cycles and subcriticality until the weak branch disappears entirely and the strong branch onsets in a turbulent state at Ekforcing decreases well below the linear onset of convection (Ra 0.4Racrit in this study for Ek=10-10 and Pr=0.01). We highlight the importance of the Reynolds stress, which is required for convection to persist below the linear onset. We further note the presence of a strong zonal flow that is nonetheless unimportant to the convective subcritical state. Our study suggests that, in the asymptotic regime of rapid rotation relevant for planetary interiors, thermal convection of liquid metals in a sphere onsets and shuts down through a subcritical bifurcation. This scenario may be relevant to explain the lunar and martian dynamo extinctions.

  19. Calculation and analysis of burnup and optimum core design in accelerator driven sub-critical system

    International Nuclear Information System (INIS)

    Wang Yuwei; Yang Yongwei; Cui Pengfei

    2011-01-01

    The premise of the accelerator driven sub-critical system (ADS) in the accident is still subcritical, the biggest k eff change with burn time is less than 1.5% and the cladding material, HT9 steel, can withstand the maximum radiation damage, core fuel area is divided into fuel transmutation area and fuel multiplication area, and fuel transmutation area maintains the same fuel composition in the whole process. Through the analysis of the composition of the fuel, shape of core layout and the power distribution, etc., supposed outer and inner Pu enrichment ratio range of 1.0-1.5, then the fuel components of fuel multiplication area was adjusted. Time evolution of k eff was calculated by COUPLED2 which coupled with MCNP and ORIGEN. At the same time the power peaking factors, minoractinides transmutation rate desired to maximization and burnup were considered. A sub-critical system fitting for engineering practice was established. (authors)

  20. Improving subcritical crack growth resistance for alumina glass dental composite

    NARCIS (Netherlands)

    Zhu, Q.; With, de G.

    2005-01-01

    The improvement of subcritical crack growth (SCG) resistance for alumina glass dental composites was explored in this study. The addition of nitrogen to the glass phases in the composite was found to increase the SCG resistance, where the SCG exponent n increases from 22 for the oxide glass

  1. Controlled capillary assembly of magnetic Janus Particles at fluid-fluid interfaces

    NARCIS (Netherlands)

    Xie, Q.; Davies, G.B.; Harting, J.D.R.

    2016-01-01

    Capillary interactions can be used to direct assembly of particles adsorbed at fluid-fluid interfaces. Precisely controlling the magnitude and direction of capillary interactions to assemble particles into favoured structures for materials science purposes is desirable but challenging. In this

  2. Quality control of FWC during assembly/commissioning on SST-1

    International Nuclear Information System (INIS)

    Patel, Hiteshkumar; Santra, Prosenjit; Jaiswal, Snehal

    2015-01-01

    First Wall components (FWC) of SST-1 tokamak, which are in the immediate vicinity of plasma comprises of limiters, divertors, baffles, passive stabilizers are designed to operate long duration (1000 s) discharges of elongated plasma. All FWC consists of a copper alloy heat sink modules with SS cooling tubes brazed onto it, graphite tiles acting as armour material facing the plasma, and are mounted to the vacuum vessels with suitable Inconel support structures at ring and port locations. The FWC are very recently assembled and commissioned successfully inside the vacuum vessel of SST-1 under going a rigorous quality control and checks at every stage of the assembly process. This paper will present the quality control and checks of FWC from commencement of assembly procedure, namely material test reports, leak testing of high temperature baked components, assembled dimensional tolerances, leak testing of all welded joints, graphite tile tightening torques, electrical continuity of passive stabilizers, and electrical isolation of passive stabilizers from vacuum vessel, baking and cooling hydraulic connections inside vacuum vessel. (author)

  3. Further development of the Dynamic Control Assemblies Worth Measurement Method for Advanced Reactivity Computers

    International Nuclear Information System (INIS)

    Petenyi, V.; Strmensky, C.; Jagrik, J.; Minarcin, M.; Sarvaic, I.

    2005-01-01

    The dynamic control assemblies worth measurement technique is a quick method for validation of predicted control assemblies worth. The dynamic control assemblies worth measurement utilize space-time corrections for the measured out of core ionization chamber readings calculated by DYN 3D computer code. The space-time correction arising from the prompt neutron density redistribution in the measured ionization chamber reading can be directly applied in the advanced reactivity computer. The second correction concerning the difference of spatial distribution of delayed neutrons can be calculated by simulation the measurement procedure by dynamic version of the DYN 3D code. In the paper some results of dynamic control assemblies worth measurement applied for NPP Mochovce are presented (Authors)

  4. Source term determination from subcritical multiplication measurements at Koral-1 reactor

    International Nuclear Information System (INIS)

    Blazquez, J.B.; Barrado, J.M.

    1978-01-01

    By using an AmBe neutron source two independent procedures have been settled for the zero-power experimental fast-reactor Coral-1 in order to measure the source term which appears in the point kinetical equations. In the first one, the source term is measured when the reactor is just critical with source by taking advantage of the wide range of the linear approach to critical for Coral-1. In the second one, the measurement is made in subcritical state by making use of the previous calibrated control rods. Several applications are also included such as the measurement of the detector dead time, the determinations of the reactivity of small samples and the shape of the neutron importance of the source. (author)

  5. Automatic coolant flow control device for a nuclear reactor assembly

    Science.gov (United States)

    Hutter, Ernest

    1986-01-01

    A device which controls coolant flow through a nuclear reactor assembly comprises a baffle means at the exit end of said assembly having a plurality of orifices, and a bimetallic member in operative relation to the baffle means such that at increased temperatures said bimetallic member deforms to unblock some of said orifices and allow increased coolant flow therethrough.

  6. Accelerator Driven Sub-Critical System for the Radioactive Waste Transmutation

    International Nuclear Information System (INIS)

    Avramovic, I.; Pesic, M.

    2008-01-01

    Spent nuclear fuel discharged from nuclear power plants is the main problem during design of radioactive waste disposal. Most of the hazard stems from only a few chemical elements. The radiotoxicity of these elements can be efficiently reduced using partitioning and transmutation in fast reactors and accelerator driven subcritical systems. (author)

  7. Measurements of fast neutron spectra in iron, uranium and sodium-iron assemblies

    International Nuclear Information System (INIS)

    Kappler, F.; Pieroni, N.; Rusch, D.; Schmidt, A.; Wattecamps, E.; Werle, H.

    1979-01-01

    Spectrum measurements were performed at the fast subcritical facility SUAK to test nuclear data and computer codes used in fast reactor calculations. In order to obtain a specific and quantitative interpretation of discrepancies between measured and calculated spectrum, homogeneous assemblies consisting of single materials were investigated. The leakage spectrum of iron and uranium cylinders was measured by time-of-flight and proportional counters. Time-dependent leakage spectra were measured by a NE 213 liquid scintillator. It was demonstrated that the investigation of time-dependent spectra is a sensitive test of inelastic scattering cross section data. The effect of an interface on fast neutron spectra was also investigated by measuring space dependent spectra across a sodium-iron interface. The measured spectra of these assemblies are suitable for testing the adequacy of computational approximations and cross section data. (author)

  8. Sensitivity Analysis of Core Neutronic Parameters in Electron Accelerator-driven Subcritical Advanced Liquid Metal Reactor

    Directory of Open Access Journals (Sweden)

    Marziye Ebrahimkhani

    2016-02-01

    Full Text Available Calculation of the core neutronic parameters is one of the key components in all nuclear reactors. In this research, the energy spectrum and spatial distribution of the neutron flux in a uranium target have been calculated. In addition, sensitivity of the core neutronic parameters in accelerator-driven subcritical advanced liquid metal reactors, such as electron beam energy (Ee and source multiplication coefficient (ks, has been investigated. A Monte Carlo code (MCNPX_2.6 has been used to calculate neutronic parameters such as effective multiplication coefficient (keff, net neutron multiplication (M, neutron yield (Yn/e, energy constant gain (G0, energy gain (G, importance of neutron source (φ∗, axial and radial distributions of neutron flux, and power peaking factor (Pmax/Pave in two axial and radial directions of the reactor core for four fuel loading patterns. According to the results, safety margin and accelerator current (Ie have been decreased in the highest case of ks, but G and φ∗ have increased by 88.9% and 21.6%, respectively. In addition, for LP1 loading pattern, with increasing Ee from 100 MeV up to 1 GeV, Yn/e and G improved by 91.09% and 10.21%, and Ie and Pacc decreased by 91.05% and 10.57%, respectively. The results indicate that placement of the Np–Pu assemblies on the periphery allows for a consistent keff because the Np–Pu assemblies experience less burn-up.

  9. Subcriticality determination by a new time-domain correlation experiment with a 252Cf neutron source

    International Nuclear Information System (INIS)

    Nishina, K.; Yamane, Y.; Ishiguro, S.; Miyoshi, Y.; Suzaki, T.; Kobayahi, I.

    1985-01-01

    As a candidate for the on-site subcriticality-monitoring method, a new time-domain correlation experiment is proposed. Hinted by the Cf-252 detector method of Mihalczo, three covariances are taken between the count of three detectors; namely an ionization chamber with Cf-252 coating, and two He-3 proportional counters. A ratio Q is formed from the three quantities such that it does not depend either on detector efficiencies or counting gate duration T, and then related to reactivity. A formulation is given deriving a theoretical expression for this Q, with the effect of higher spatial modes included. Experiments were carried out with a loading at Tank-type Critical Assembly of Japan Atomic Energy Research Institute, which is a slightly-enriched, and light-water moderated system. With fundamental mode approximation adopted in the data processing, reasonable agreements are observed between the present method and the reactivity scale that has been calibrated by water-level variety. The possibility of the present method is to be investigated further beyond the range of 7$ reported

  10. Concept of an accelerator-driven subcritical research reactor within the TESLA accelerator installation

    International Nuclear Information System (INIS)

    Pesic, Milan; Neskovic, Nebojsa

    2006-01-01

    Study of a small accelerator-driven subcritical research reactor in the Vinca Institute of Nuclear Sciences was initiated in 1999. The idea was to extract a beam of medium-energy protons or deuterons from the TESLA accelerator installation, and to transport and inject it into the reactor. The reactor core was to be composed of the highly enriched uranium fuel elements. The reactor was designated as ADSRR-H. Since the use of this type of fuel elements was not recommended any more, the study of a small accelerator-driven subcritical research reactor employing the low-enriched uranium fuel elements began in 2004. The reactor was designated as ADSRR-L. We compare here the results of the initial computer simulations of ADSRR-H and ADSRR-L. The results have confirmed that our concept could be the basis for designing and construction of a low neutron flux model of the proposed accelerator-driven subcritical power reactor to be moderated and cooled by lead. Our objective is to study the physics and technologies necessary to design and construct ADSRR-L. The reactor would be used for development of nuclear techniques and technologies, and for basic and applied research in neutron physics, metrology, radiation protection and radiobiology

  11. Applications of subcritical and supercritical water conditions for extraction, hydrolysis, gasification, and carbonization of biomass: a critical review

    Directory of Open Access Journals (Sweden)

    D. Lachos-Perez

    2017-06-01

    Full Text Available This review summarizes the recent essential aspects of subcritical and supercritical water technology applied tothe extraction, hydrolysis, carbonization, and gasification processes. These are clean and fast technologies which do not need pretreatment, require less reaction time, generate less corrosion and residues, do not usetoxic solvents, and reduce the synthesis of degradation byproducts. The equipment design, process parameters, and types of biomass used for subcritical and supercritical water process are presented. The benefits of catalysis to improve process efficiency are addressed. Bioactive compounds, reducing sugars, hydrogen, biodiesel, and hydrothermal char are the final products of subcritical and supercritical water processes. The present review also revisits advances of the research trends in the development of subcriticaland supercritical water process technologies.

  12. Hydrolysis of corn oil using subcritical water

    Directory of Open Access Journals (Sweden)

    Pinto Jair Sebastião S.

    2006-01-01

    Full Text Available This work presents the results of a study on the use of subcritical water as both solvent and reactant for the hydrolysis of corn oil without the use of acids or alkalis at temperatures of 150-280 degreesC. Corn oil hydrolysis leads to the formation of its respective fatty acids with the same efficiency of conventional methods. Fatty acids form an important group of products, which are used in a range of applications. The confirmation and identification of the hydrolysis products was done by HT-HRGC-FID and HRGC/MS.

  13. Neutronic calculations for a subcritical system with external source

    International Nuclear Information System (INIS)

    Cintas, A; Lopasso, E.M; Marquez Damian, J. I

    2006-01-01

    We present a neutronic study on an A D S, systems capable of transmute minor actinides and fission products in order to reduce their radiotoxicity and mean-life.We compare neutronic parameters obtained with Scale/Tort and M C N P modelling a sub-critical system with source from a N E A Benchmark.Due to lack of nuclear data at the temperature of the system, we perform calculations at available temperature of libraries (300 K); to compensate the reactivity insertion due to the temperature change we reduce the size of the fuel zone in order to get a sub-critical system that allow u s to evaluate neutronic parameters of the system with source.We have found that the numerical results (neutron spectrum, neutron flux distributions and other neutronic parameters) are in agreement with the M C N P and with those of the benchmark participants even though the geometric models used are not exactly the same. We conclude that with the real temperature cross sections, the calculation scheme developed (Scale/Tort and M C N P) will give reliable results in A D S evaluations [es

  14. Fluid-Mediated Stochastic Self-Assembly at Centimetric and Sub-Millimetric Scales: Design, Modeling, and Control

    Directory of Open Access Journals (Sweden)

    Bahar Haghighat

    2016-08-01

    Full Text Available Stochastic self-assembly provides promising means for building micro-/nano-structures with a variety of properties and functionalities. Numerous studies have been conducted on the control and modeling of the process in engineered self-assembling systems constituted of modules with varied capabilities ranging from completely reactive nano-/micro-particles to intelligent miniaturized robots. Depending on the capabilities of the constituting modules, different approaches have been utilized for controlling and modeling these systems. In the quest of a unifying control and modeling framework and within the broader perspective of investigating how stochastic control strategies can be adapted from the centimeter-scale down to the (sub-millimeter-scale, as well as from mechatronic to MEMS-based technology, this work presents the outcomes of our research on self-assembly during the past few years. As the first step, we leverage an experimental platform to study self-assembly of water-floating passive modules at the centimeter scale. A dedicated computational framework is developed for real-time tracking, modeling and control of the formation of specific structures. Using a similar approach, we then demonstrate controlled self-assembly of microparticles into clusters of a preset dimension in a microfluidic chamber, where the control loop is closed again through real-time tracking customized for a much faster system dynamics. Finally, with the aim of distributing the intelligence and realizing programmable self-assembly, we present a novel experimental system for fluid-mediated programmable stochastic self-assembly of active modules at the centimeter scale. The system is built around the water-floating 3-cm-sized Lily robots specifically designed to be operative in large swarms and allows for exploring the whole range of fully-centralized to fully-distributed control strategies. The outcomes of our research efforts extend the state-of-the-art methodologies

  15. A new approach to make collapsed cross section for burnup calculation of subcritical system

    International Nuclear Information System (INIS)

    Matsunaka, Masayuki; Kondo, Keitaro; Miyamaru, Hiroyuki; Murata, Isao

    2008-01-01

    A general-purpose transport and burnup code system for precise analysis of subcritical reactors like a fusion-fission (FF) hybrid reactor was developed and used for analyzing their performance. The FF hybrid reactor is a subcritical system, which has a concept of fusion reactor with a blanket region containing nuclear fuel and has been under discussion by author's group for years because the present burnup calculation system mainly consists of a general-purpose Monte Carlo code MCNP-4B, a point burnup code ORIGEN2. JENDL-3.3 pointwise cross section library and JENDL Activation Cross Section File 96 were used as base cross section libraries to make group constant for burnup calculation. A new method has been proposed to make group constant for the burnup calculation as accurate as possible directly using output data of the neutron transport calculation by MCNP and evaluated nuclear data libraries. This method is strict and a general procedure to make one group cross sections in Monte Carlo calculations, while it takes very long computation time. Some speed-up techniques were discussed for the present group constant making process so as to decrease calculation time. Adoption of postprocessing to make group constant improved the calculation accuracy because of increasing number of cross sections to be updated in each burnup cycle. The present calculation system is capable of performing neutronics analysis of subcritical reactors more precise than our previous one. However, at the moment, it still takes long computation time to make group constants. Further speed-up techniques are now under investigation so as to apply the present system to neutronics design analysis for various subcritical systems. (author)

  16. Safeguarding subcriticality during loading and shuffling operations in the higher density of the RSG-GAS's silicide core

    International Nuclear Information System (INIS)

    Sembiring, T.M.; Kuntoro, I.

    2003-01-01

    The core conversion program of the RSG-GAS reactor is to convert the all-oxide to all-silicide core. The silicide equilibrium core with fuel meat density of 3.55 gU cm -3 is an optimal core for RSG-GAS reactor and it can significantly increase the operation cycle length from 25 to 32 full power days. Nevertheless, the subcriticality of the shutdown core and the shutdown margin are lower than of the oxide core. Therefore, the deviation of subcriticality condition in the higher silicide core caused by the fuel loading and shuffling error should be reanalysed. The objective of this work is to analyse the sufficiency of the subcriticality condition of the shutdown core to face the worst condition caused by an error during loading and shuffling operations. The calculations were carried out using the 2-dimensional multigroup neutron diffusion code of Batan-FUEL. In the fuel handling error, the calculated results showed that the subcriticality condition of the shutdown higher density silicide equilibrium core of RSG-GAS can be maintained. Therefore, all fuel management steps are fixed in the present reactor operation manual can be applied in the higher silicide equilibrium core of RSG-GAS reactor. (author)

  17. Spatial correction factors for YALINA Booster facility loaded with medium and low enriched fuels

    International Nuclear Information System (INIS)

    Talamo, A.; Gohar, Y.; Bournos, V.; Fokov, Y.; Kiyavitskaya, H.; Routkovskaya, C.

    2012-01-01

    The Bell and Glasstone spatial correction factor is used in analyses of subcritical assemblies to correct the experimental reactivity as function of the detector position. Besides the detector position, several other parameters affect the correction factor: the energy weighting function of the detector, the detector size, the energy-angle distribution of source neutrons, and the reactivity of the subcritical assembly. This work focuses on the dependency of the correction factor on the detector material and it investigates the YALINA Booster subcritical assembly loaded with medium (36%) and low (10%) enriched fuels. (authors)

  18. Spatial correction factors for YALINA Booster facility loaded with medium and low enriched fuels

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, A.; Gohar, Y. [Argonne National Laboratory, 9700 S. Cass Ave, Argonne, IL 60439 (United States); Bournos, V.; Fokov, Y.; Kiyavitskaya, H.; Routkovskaya, C. [Joint Inst. for Power and Nuclear Research-Sosny, 99 Academician A.K.Krasin Str, Minsk 220109 (Belarus)

    2012-07-01

    The Bell and Glasstone spatial correction factor is used in analyses of subcritical assemblies to correct the experimental reactivity as function of the detector position. Besides the detector position, several other parameters affect the correction factor: the energy weighting function of the detector, the detector size, the energy-angle distribution of source neutrons, and the reactivity of the subcritical assembly. This work focuses on the dependency of the correction factor on the detector material and it investigates the YALINA Booster subcritical assembly loaded with medium (36%) and low (10%) enriched fuels. (authors)

  19. Study of neutron noise from reflected, metal assemblies with criticality safety applications in mind

    International Nuclear Information System (INIS)

    Barnett, C.S.

    1985-01-01

    The author studied the statistics of detected neutrons that leaked from four subcritical reflected, enriched-uranium assemblies, to explore the feasibility of developing a criticality warning system based on neutron noise analysis. The calculated multiplication factors of the assemblies are 0.59, 0.74, 0.82, and 0.92. The author studied three possible discriminators, i.e., three signatures that might be used to discriminate among assemblies of various multiplications. They are (1) variance-to-mean ratio of the counts in a time bin (V/M), (2) covariance-to-mean ratio of the counts in a common time bin from two different detectors (C/M), (3) covariance-to-mean ratio of the counts from a single detector in two adjacent time bins of equal length, which the author calls the serial-covariance-to-mean ratio (SC/M). The performances of the three discriminators were not greatly different, but a hierarchy did emerge: SC/M greater than or equal to V/M greater than or equal to C/M. An example of some results: in the neighborhood of k = 0.6 the Δk required for satisfactory discrimination varies from about 3% to 7% as detector solid angle varies from 19% to 5%. In the neighborhood of k = 0.8 the corresponding Δks are 1% and 2%. The noise analysis techniques studied performed well enough in deeply subcritical situations to deserve testing in an applications environment. They have a good chance of detecting changes in reactivity that are potentially dangerous. One can expect sharpest results when doing comparison, i.e., when comparing two records, one taken in the past under circumstances known to be normal and one taken now to search for change

  20. Study of neutron noise from reflected, metal assemblies with criticality safety applications in mind

    International Nuclear Information System (INIS)

    Barnett, C.S.

    1985-01-01

    The author studied the statistics of detected neutrons that leaked from four subcritical reflected, enriched-uranium assemblies, to explore the feasibility of developing a criticality warning system based on neutron noise analysis. The calculated multiplication factors of the assemblies are 0.59, 0.74, 0.82, and 0.92. The author studied three possible discriminators, i.e., three signatures that might be used to discriminate among assemblies of various multiplications. They are: (1) variance-to-mean ratio of the counts in a time bin (V/M); (2) covariance-to-mean ratio of the counts in a common time bin from two different detectors (C/M); and (3) covariance-to-mean ratio of the counts from a single detector in two adjacent time bins of equal length, which the author calls the serial-covariance-to-mean ratio (SC/M). The performances of the three discriminators were not greatly different, but a hierarchy did emerge: SC/M greater than or equal to V/M greater than or equal to C/M. An example of some results: in the neighborhood of k = 0.6 the Δk required for satisfactory discrimination varies from about 3% to 7% as detector solid angle varies from 19% to 5%. In the neighborhood of k = 0.8 the corresponding Δks are 1% and 2%. The noise analysis techniques studied performed well enough in deeply subcritical situations to deserve testing in an applications environment. They have a good chance of detecting changes in reactivity that are potentially dangerous. One can expect sharpest results when doing comparisons, i.e., when comparing two records, one taken in the past under circumstances known to be normal and one taken now to search for change

  1. A pH-Regulated Quality Control Cycle for Surveillance of Secretory Protein Assembly

    Science.gov (United States)

    Vavassori, Stefano; Cortini, Margherita; Masui, Shoji; Sannino, Sara; Anelli, Tiziana; Caserta, Imma R.; Fagioli, Claudio; Mossuto, Maria F.; Fornili, Arianna; van Anken, Eelco; Degano, Massimo; Inaba, Kenji; Sitia, Roberto

    2013-01-01

    Summary To warrant the quality of the secretory proteome, stringent control systems operate at the endoplasmic reticulum (ER)-Golgi interface, preventing the release of nonnative products. Incompletely assembled oligomeric proteins that are deemed correctly folded must rely on additional quality control mechanisms dedicated to proper assembly. Here we unveil how ERp44 cycles between cisGolgi and ER in a pH-regulated manner, patrolling assembly of disulfide-linked oligomers such as IgM and adiponectin. At neutral, ER-equivalent pH, the ERp44 carboxy-terminal tail occludes the substrate-binding site. At the lower pH of the cisGolgi, conformational rearrangements of this peptide, likely involving protonation of ERp44’s active cysteine, simultaneously unmask the substrate binding site and −RDEL motif, allowing capture of orphan secretory protein subunits and ER retrieval via KDEL receptors. The ERp44 assembly control cycle couples secretion fidelity and efficiency downstream of the calnexin/calreticulin and BiP-dependent quality control cycles. PMID:23685074

  2. Stoichiometry-Controlled Inversion of Supramolecular Chirality in Nanostructures Co-assembled with Bipyridines.

    Science.gov (United States)

    Wang, Fang; Feng, Chuan-Liang

    2018-02-01

    To control supramolecular chirality of the co-assembled nanostructures, one of the remaining issues is how stoichiometry of the different molecules involved in co-assembly influence chiral transformation. Through co-assembly of achiral 1,4-bis(pyrid-4-yl)benzene and chiral phenylalanine-glycine derivative hydrogelators, stoichiometry is found to be an effective tool for controlling supramolecular chirality inversion processes. This inversion is mainly mediated by a delicate balance between intermolecular hydrogen bonding interactions and π-π stacking of the two components, which may subtly change the stacking of the molecules, in turn, the self-assembled nanostructures. This study exemplifies a simplistic way to invert the handedness of chiral nanostructures and provide fundamental understanding of the inherent principles of supramolecular chirality. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. A modernized and versatile startup reactivity measuring system installed at NPP Paks and its application for subcritical systems

    International Nuclear Information System (INIS)

    Czibok, T.; Dezso, Z.; Horvath, Cs.; Lipcsei, S.; Vegh, J.; Pos, I.

    2006-01-01

    In 2004 the Hungarian Paks NPP completed a project for upgrading the reactivity measuring system applied during reactor startup experiments. Almost all components of the previous system were replaced, only ex-core ionisation chambers remained unaltered. New hardware and software components were introduced for neutron flux signal handling, for data acquisition, as well as for measurement evaluation and data presentation. High-precision picoamper meters were installed at each reactor unit, current signals are handled by a portable signal processing unit. The system applies an accurate on-line reactivity calculation algorithm based on the point-kinetic model with six delayed neutron groups. Detailed off-line evaluation and analysis of startup measurements can be performed on the portable unit, as well. The paper describes the architecture, data acquisition modules, services and man-machine interface of the new system. Functions and results are illustrated with measured data recorded during a startup of Unit 3. In 2003 and 2004 the RMR was installed and tested at all Paks NPP units successfully and now it is in regular use during unit startups. The second part of the paper illustrates an extension of the new system to perform reactivity measurements using the well-known Rossi-α and Feynman-α statistical methods. The modified system was needed to estimate the reactivity of a subcritical system formed by damaged fuel assemblies stored at the fuel service pit of Paks Unit 2. Theoretical background of the applied algorithms is outlined, then results of validation tests and on site measurements are treated. The measurements have shown that the subcriticality of the damaged fuel was sufficiently deep if the high boron concentration in the fuel service pit was maintained

  4. The measurement of subcritical reactivity in nuclear reactors by use of a high frequency sine-wave modulated neutron source

    International Nuclear Information System (INIS)

    Guppy, C.B.

    1964-11-01

    In this report the frequency response characteristics for phase and gain of the fundamental reactor mode of the zero power kinetics are given for various subcritical reactivities in a fast reactor and in a thermal reactor. Results, of a study on harmonic effects based on a small zero energy thermal reactor are presented which demonstrate the importance of spatial harmonic effects. A harmonic theory for thermal reactors is developed. A new method of measuring, subcritical reactivity at moderately high frequencies is suggested which circumvents the harmonic problem. It is shown that at high frequencies there is more sensitivity than at low frequencies and that this could lead to an increased range over which subcritical reactivity can be measured. (author)

  5. Internal hydrogen-induced subcritical crack growth in austenitic stainless steels

    Science.gov (United States)

    Huang, J. H.; Altstetter, C. J.

    1991-11-01

    The effects of small amounts of dissolved hydrogen on crack propagation were determined for two austenitic stainless steel alloys, AISI 301 and 310S. In order to have a uniform distribution of hydrogen in the alloys, they were cathodically charged at high temperature in a molten salt electrolyte. Sustained load tests were performed on fatigue precracked specimens in air at 0 ‡C, 25 ‡C, and 50 ‡C with hydrogen contents up to 41 wt ppm. The electrical potential drop method with optical calibration was used to continuously monitor the crack position. Log crack velocity vs stress intensity curves had definite thresholds for subcritical crack growth (SCG), but stage II was not always clearly delineated. In the unstable austenitic steel, AISI 301, the threshold stress intensity decreased with increasing hydrogen content or increasing temperature, but beyond about 10 wt ppm, it became insensitive to hydrogen concentration. At higher concentrations, stage II became less distinct. In the stable stainless steel, subcritical crack growth was observed only for a specimen containing 41 wt ppm hydrogen. Fractographic features were correlated with stress intensity, hydrogen content, and temperature. The fracture mode changed with temperature and hydrogen content. For unstable austenitic steel, low temperature and high hydrogen content favored intergranular fracture while microvoid coalescence dominated at a low hydrogen content. The interpretation of these phenomena is based on the tendency for stress-induced phase transformation, the different hydrogen diffusivity and solubility in ferrite and austenite, and outgassing from the crack tip. After comparing the embrittlement due to internal hydrogen with that in external hydrogen, it is concluded that the critical hydrogen distribution for the onset of subcritical crack growth is reached at a location that is very near the crack tip.

  6. Local energy losses at positive and negative steps in subcritical ...

    African Journals Online (AJOL)

    Local energy losses occur when there is a transition in open channel flow. Even though local losses in subcritical open channel flow due to changes in channel width have been studied, to date no studies have been reported for losses due to changes in bed elevations. Steps are commonly used in engineering applications ...

  7. Innovative leaching of cobalt and lithium from spent lithium-ion batteries and simultaneous dechlorination of polyvinyl chloride in subcritical water

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Kang; Zhang, Fu-Shen, E-mail: fszhang@rcees.ac.cn

    2016-10-05

    Highlights: • A co-treatment process for recovery of Co and Li and simultaneous detoxification of PVC in subcritical water was proposed. • PVC was used as a hydrochloric acid source. • More than 95% Co and nearly 98% Li were leached under the optimum conditions. • Neither corrosive acid nor reducing agent was used. • The co-treatment process has technical, economic and environmental benefits over the traditional recovery processes. - Abstract: In this work, an effective and environmentally friendly process for the recovery of cobalt (Co) and lithium (Li) from spent lithium-ion batteries (LIBs) and simultaneously detoxification of polyvinyl chloride (PVC) in subcritical water was developed. Lithium cobalt oxide (LiCoO{sub 2}) power from spent LIBs and PVC were co-treated by subcritical water oxidation, in which PVC served as a hydrochloric acid source to promote metal leaching. The dechlorination of PVC and metal leaching was achieved simultaneously under subcritical water oxidation. More than 95% Co and nearly 98% Li were recovered under the optimum conditions: temperature 350 °C, PVC/LiCoO{sub 2} ratio 3:1, time 30 min, and a solid/liquid ratio 16:1 (g/L), respectively. Moreover, PVC was completely dechlorinated at temperatures above 350 °C without any release of toxic chlorinated organic compounds. Assessment on economical and environmental impacts revealed that the PVC and LiCoO{sub 2} subcritical co-treatment process had significant technical, economic and environmental benefits over the traditional hydrometallurgy and pyrometallurgy processes. This innovative co-treatment process is efficient, environmentally friendly and adequate for Co and Li recovery from spent LIBs and simultaneous dechlorination of PVC in subcritical water.

  8. Production of medical radioactive isotopes using KIPT electron driven subcritical facility

    International Nuclear Information System (INIS)

    Talamo, Alberto; Gohar, Yousry

    2008-01-01

    Kharkov Institute of Physics and Technology (KIPT) of Ukraine in collaboration with Argonne National Laboratory (ANL) has a plan to construct an electron accelerator driven subcritical assembly. One of the facility objectives is the production of medical radioactive isotopes. This paper presents the ANL collaborative work performed for characterizing the facility performance for producing medical radioactive isotopes. First, a preliminary assessment was performed without including the self-shielding effect of the irradiated samples. Then, more detailed investigation was carried out including the self-shielding effect, which defined the sample size and location for producing each medical isotope. In the first part, the reaction rates were calculated as the multiplication of the cross section with the unperturbed neutron flux of the facility. Over fifty isotopes have been considered and all transmutation channels are used including (n, γ), (n, 2n), (n, p), and (γ, n). In the second part, the parent isotopes with high reaction rate were explicitly modeled in the calculations. Four irradiation locations were considered in the analyses to study the medical isotope production rate. The results show the self-shielding effect not only reduces the specific activity but it also changes the irradiation location that maximizes the specific activity. The axial and radial distributions of the parent capture rates have been examined to define the irradiation sample size of each parent isotope

  9. Production of medical radioactive isotopes using KIPT electron driven subcritical facility

    Energy Technology Data Exchange (ETDEWEB)

    Talamo, Alberto [Nuclear Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)], E-mail: alby@anl.gov; Gohar, Yousry [Nuclear Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)

    2008-05-15

    Kharkov Institute of Physics and Technology (KIPT) of Ukraine in collaboration with Argonne National Laboratory (ANL) has a plan to construct an electron accelerator driven subcritical assembly. One of the facility objectives is the production of medical radioactive isotopes. This paper presents the ANL collaborative work performed for characterizing the facility performance for producing medical radioactive isotopes. First, a preliminary assessment was performed without including the self-shielding effect of the irradiated samples. Then, more detailed investigation was carried out including the self-shielding effect, which defined the sample size and location for producing each medical isotope. In the first part, the reaction rates were calculated as the multiplication of the cross section with the unperturbed neutron flux of the facility. Over fifty isotopes have been considered and all transmutation channels are used including (n, {gamma}), (n, 2n), (n, p), and ({gamma}, n). In the second part, the parent isotopes with high reaction rate were explicitly modeled in the calculations. Four irradiation locations were considered in the analyses to study the medical isotope production rate. The results show the self-shielding effect not only reduces the specific activity but it also changes the irradiation location that maximizes the specific activity. The axial and radial distributions of the parent capture rates have been examined to define the irradiation sample size of each parent isotope.

  10. Production of medical radioactive isotopes using KIPT electron driven subcritical facility.

    Science.gov (United States)

    Talamo, Alberto; Gohar, Yousry

    2008-05-01

    Kharkov Institute of Physics and Technology (KIPT) of Ukraine in collaboration with Argonne National Laboratory (ANL) has a plan to construct an electron accelerator driven subcritical assembly. One of the facility objectives is the production of medical radioactive isotopes. This paper presents the ANL collaborative work performed for characterizing the facility performance for producing medical radioactive isotopes. First, a preliminary assessment was performed without including the self-shielding effect of the irradiated samples. Then, more detailed investigation was carried out including the self-shielding effect, which defined the sample size and location for producing each medical isotope. In the first part, the reaction rates were calculated as the multiplication of the cross section with the unperturbed neutron flux of the facility. Over fifty isotopes have been considered and all transmutation channels are used including (n, gamma), (n, 2n), (n, p), and (gamma, n). In the second part, the parent isotopes with high reaction rate were explicitly modeled in the calculations. Four irradiation locations were considered in the analyses to study the medical isotope production rate. The results show the self-shielding effect not only reduces the specific activity but it also changes the irradiation location that maximizes the specific activity. The axial and radial distributions of the parent capture rates have been examined to define the irradiation sample size of each parent isotope.

  11. Numerical investigation of the flow over a golf ball in the subcritical and supercritical regimes

    International Nuclear Information System (INIS)

    Smith, C.E.; Beratlis, N.; Balaras, E.; Squires, K.; Tsunoda, M.

    2010-01-01

    In order to understand the role of surface dimpling on the flow over a golf ball, direct numerical simulations (DNS) are conducted within the framework of an immersed boundary approach for two physical regimes. Computations of the flow over a non-rotating golf ball are reported for a subcritical flow at a Reynolds number of 2.5 x 10 4 and a supercritical case at a Reynolds number of 1.1 x 10 5 . Grid refinement studies for both Reynolds numbers indicated that characteristics of the subcritical flow could be captured using a mesh of 337 x 10 6 points, and for the supercritical case using a grid with 1.2 x 10 9 points. Flow visualizations reveal the differences in separation characteristics between the two Reynolds numbers. Profiles of the mean velocity indicate that the flow detaches completely at approximately 84 o in the subcritical case (measured from the stagnation point at the front of the ball), while in the supercritical regime there are alternating regions of reattachment and separation within dimples with complete detachment around 110 o . Energy spectra highlight frequencies associated with vortex formation over the dimples prior to complete detachment in the supercritical regime. Reynolds stresses quantify momentum transport in the near-wall region, showing that the axial stress increases around 90 o for the subcritical case. In the supercritical regime these stress components alternately increase and decrease, corresponding to local separation and reattachment. Prediction of the drag coefficient for both Reynolds numbers is in reasonable agreement with measurements.

  12. Comparison between two gas-cooled TRU burner subcritical reactors: fusion-fission and ADS

    International Nuclear Information System (INIS)

    Carluccio, T.; Rossi, P.C.R.; Angelo, G.; Maiorino, J.R.

    2011-01-01

    This work shows a preliminary comparative study between two gas cooled subcritical fast reactor as dedicated transuranics (TRU) transmuters: using a spallation neutron source or a D-T fusion neutron source based on ITER. The two concepts are compared in terms of a minor actinides burning performance. Further investigations are required to choose the best partition and transmutation strategy. Mainly due to geometric factors, the ADS shows better neutron multiplication. Other designs, like SABR and lead cooled ADS may show better performances than a Gas Coolead Subcritical Fast Reactors and should be investigated. We noticed that both designs can be utilized to transmutation. Besides the diverse source neutron spectra, we may notice that the geometric design and cycle parameters play a more important role. (author)

  13. Method of performing shutdown reactivity measurements in spent nuclear fuel storage pools

    International Nuclear Information System (INIS)

    Levine, S.H.; Schultz, M.A.; Chang, D.

    1981-01-01

    The objective of this paper is to develop a device to measure the k/infinity/ of a spent fuel assembly used in light water reactors. A subcritical assembly having a cross configuration is designed to allow measurement of the k/sub //infinity/ of a spent fuel assembly by comparing the change in its multiplication with that of a fuel assembly of known k/infinity/. Calculations have been performed using nucleonic codes to develop polynomial equations that relate the k/infinity/ of the spent fuel assembly to measured data. The measurements involve taking count rates with the spent fuel assembly in the center position of the subcritical assembly, and the measured data are the count rate ratio of the spent fuel assembly over the count rate taken with a fuel assembly of known k/infinity/. The polynomial equations are easy to program on a microcomputer, which, together with the subcritical assembly, form the k/infinity/ meter. 9 refs

  14. A simple proof of exponential decay of subcritical contact processes

    Czech Academy of Sciences Publication Activity Database

    Swart, Jan M.

    2018-01-01

    Roč. 170, 1-2 (2018), s. 1-9 ISSN 0178-8051 R&D Projects: GA ČR(CZ) GA16-15238S Institutional support: RVO:67985556 Keywords : subcritical contact process * sharpness of the phase transition * eigenmeasure Subject RIV: BA - General Mathematics Impact factor: 1.895, year: 2016 http://library.utia.cas.cz/separaty/2016/SI/swart-0462694.pdf

  15. Measurement of critical mass for an assembly of bare uranium shells

    International Nuclear Information System (INIS)

    Myers, W.L.; Goulding, C.A.; Hollas, C.L.

    1997-01-01

    As part of the research into nuclear measurement techniques, a series of measurements was performed that have applications to criticality safety and nuclear material handling. The critical mass of a set of bare, enriched-uranium metal hemispherical shells, known as the Rocky Flats shells, was measured for an assembly having an inside radius of 2.347 cm. The critical mass value was extrapolated from a series of subcritical measurements using three different kinds of sources (AmBe, AmF, and 252 Cf) placed at the center of the shells. Two kinds of neutron detection configurations (a 1% efficiency and a 25% efficiency configuration) were used to make the measurements

  16. PLC based control system for RAM assembly test facility

    International Nuclear Information System (INIS)

    Kulkarni, S.S.; Kumar, Vinaya; Chandra, Umesh

    1994-01-01

    The flexibility, expandability, ease of programming and diagnostic features makes the programmable logic controller (PLC) suitable for a variety of control applications in engineering system test facilities. A PLC based control system for RAM assembly test facility (RATF) and for testing the related hydraulic components is being developed and installed at BARC. This paper describes the approach taken for meeting the control requirements and illustrates the PLC software that has been developed. (author). 1 fig

  17. Analysis on burn-up behaviors for accelerator-driven sub-critical facility

    International Nuclear Information System (INIS)

    Liu Guisheng; Zhao Zhixiang; Zhang Baocheng; Shen Qinbiao; Ding Dazhao

    2000-01-01

    An analysis is performed on burn-up behaviors for accelerator-driven sub-critical reactor by means of the code PASC-1 for neutronics calculation, the code CBURN for burn-up calculation and 44 group constants is processed by CENDL-2 and ENDF/B-6 using NJOY-91.91

  18. Dynamic analysis of an accelerator-driven fluid-fueled subcritical radioactive waste burning system

    International Nuclear Information System (INIS)

    Woosley, M.L. Jr.; Rydin, R.A.

    1998-01-01

    The recent revival of interest in accelerator-driven subcritical fluid-fueled systems is documented. Several important applications of these systems are mentioned, and this is used to motivate the need for dynamic analysis of the nuclear kinetics of such systems. A physical description of the Los alamos National Laboratory accelerator-based conversion (ABC) concept is provided. This system is used as the basis for the kinetics study in this research. The current approach to the dynamic simulation of an accelerator-driven subcritical fluid-fueled system includes four functional elements: a discrete ordinates model is used to calculate the flux distribution for the source-driven system; a nodal convection model is used to calculate time-dependent isotope and temperature distributions that impact reactivity; a nodal importance weighting model is used to calculate the reactivity impact of temperature and isotope distributions and to feed this information back to the time-dependent nodal convection model; and a transient driver is used to simulate transients, model the balance of plant, and record simulation data. Specific transients that have been analyzed with the current modeling system are discussed. These transients include loss-of-flow and loss-of-cooling accidents, xenon and samarium transients, and cold-plug and overfueling events. The results of various transients have uncovered unpredictable behavior, unresolved design issues, and the need for active control. The need for the development of a nodal-coupling spatial kinetics model is mentioned

  19. The role of cladding material for performance of LWR control assemblies

    International Nuclear Information System (INIS)

    Dewes, P.; Roppelt, A.

    2000-01-01

    The lifetime of control assemblies in LWRs can be limited presently by mechanical failure of the absorber cladding. The major cause of failure is mechanical interaction of the absorber with the cladding due to irradiation induced dimensional changes such as absorber swelling and cladding creep, resulting in cracking of the clad. Such failures occurred in both BWRs and PWRs. Experience and in-reactor tests revealed that cracking can be avoided principally by two ways: First, if strain rates and hence, stresses in the cladding are kept low (well below the yield strength), significant strains can be tolerated. This is the case for the cladding of PWR control assemblies with slowly swelling Ag-In-Cd absorber. Recent examinations of highly exposed PWR control assemblies confirmed the design correlation up to the presently used strain limit. Second, in such cases where strongly swelling absorber material like boron carbide is still preferred, materials which are resistant against irradiation assisted stress corrosion cracking (IASCC) can be used. The influence of material composition and condition on IASCC was studied in-reactor using tubular samples of various stainless steels and Ni-base alloys stressed by swelling mandrels. In several programme steps high purity materials with special features had been identified as resistant to IASCC. Another process of cladding damage which may occur in PWRs is wear caused by friction of the control rods in the surrounding guide structure. For replacement control assemblies this problem is solved by coating of the cladding. There exists meanwhile excellent experience of up to 18 operation cycles with coated claddings. (author)

  20. Fracture and subcritical crack-growth behavior of Y-Si-Al-O-N glasses and Si3N4 ceramics

    International Nuclear Information System (INIS)

    Bhatnagar, A.; Hoffman, M.J.; Dauskardt, R.H.

    2000-01-01

    Fracture and environmentally assisted subcritical crack-growth processes are examined in bulk Y-Si-Al-O-N oxynitride glasses with compositions typical of the grain boundary phase of silicon nitride ceramics. Both long-crack (in compact tension specimens) as well as short-crack behavior (using indentation techniques) were investigated to establish a reliable fracture toughness and to elucidate the anomalous densification behavior of the oxynitride glass. Environmentally assisted subcritical crack-growth processes were studied in inert, moist, and wet environments under both cyclic and static loading conditions. Behavior is discussed in terms of the interaction of the environment with the crack tip. Likely mechanisms for environmentally assisted crack growth are discussed and related to the subcritical crack-growth behavior of silicon nitride ceramics

  1. Missing Links in Antibody Assembly Control

    Directory of Open Access Journals (Sweden)

    Tiziana Anelli

    2013-01-01

    Full Text Available Fidelity of the humoral immune response requires that quiescent B lymphocytes display membrane bound immunoglobulin M (IgM on B lymphocytes surface as part of the B cell receptor, whose function is to recognize an antigen. At the same time B lymphocytes should not secrete IgM until recognition of the antigen has occurred. The heavy chains of the secretory IgM have a C-terminal tail with a cysteine instead of a membrane anchor, which serves to covalently link the IgM subunits by disulfide bonds to form “pentamers” or “hexamers.” By virtue of the same cysteine, unassembled secretory IgM subunits are recognized and retained (via mixed disulfide bonds by members of the protein disulfide isomerase family, in particular ERp44. This so-called “thiol-mediated retention” bars assembly intermediates from prematurely leaving the cell and thereby exerts quality control on the humoral immune response. In this essay we discuss recent findings on how ERp44 governs such assembly control in a pH-dependent manner, shuttling between the cisGolgi and endoplasmic reticulum, and finally on how pERp1/MZB1, possibly as a co-chaperone of GRP94, may help to overrule the thiol-mediated retention in the activated B cell to give way to antibody secretion.

  2. Supervisory Control Technique For An Assembly Workstation As A Dynamic Discrete Event System

    Directory of Open Access Journals (Sweden)

    Daniela Cristina CERNEGA

    2001-12-01

    Full Text Available This paper proposes a control problem statement in the framework of supervisory control technique for the assembly workstations. A desired behaviour of an assembly workstation is analysed. The behaviour of such a workstation is cyclic and some linguistic properties are established. In this paper, it is proposed an algorithm for the computation of the supremal controllable language of the closed system desired language. Copyright © 2001 IFAC.

  3. Temperature Profile of the Solution Vessel of an Accelerator-Driven Subcritical Fissile Solution System

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Steven Karl [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Determan, John C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-09-14

    Dynamic System Simulation (DSS) models of fissile solution systems have been developed and verified against a variety of historical configurations. DSS techniques have been applied specifically to subcritical accelerator-driven systems using fissile solution fuels of uranium. Initial DSS models were developed in DESIRE, a specialized simulation scripting language. In order to tailor the DSS models to specifically meet needs of system designers they were converted to a Visual Studio implementation, and one of these subsequently to National Instrument’s LabVIEW for human factors engineering and operator training. Specific operational characteristics of subcritical accelerator-driven systems have been examined using a DSS model tailored to this particular class using fissile fuel.

  4. Temperature Profile of the Solution Vessel of an Accelerator-Driven Subcritical Fissile Solution System

    International Nuclear Information System (INIS)

    Klein, Steven Karl; Determan, John C.

    2015-01-01

    Dynamic System Simulation (DSS) models of fissile solution systems have been developed and verified against a variety of historical configurations. DSS techniques have been applied specifically to subcritical accelerator-driven systems using fissile solution fuels of uranium. Initial DSS models were developed in DESIRE, a specialized simulation scripting language. In order to tailor the DSS models to specifically meet needs of system designers they were converted to a Visual Studio implementation, and one of these subsequently to National Instrument's LabVIEW for human factors engineering and operator training. Specific operational characteristics of subcritical accelerator-driven systems have been examined using a DSS model tailored to this particular class using fissile fuel.

  5. Power peak in vicinity of WWER-440 control assembly

    International Nuclear Information System (INIS)

    Mikus, J.

    2002-01-01

    This paper presents information concerning the WWER-440 local power peaking problem induced by a control assembly and corresponding investigation possibilities on the light-water zero-power reactor LR-O at the Nuclear Research Institute Rez plc. Brief description of the disposable CA model, experimental arrangement and conditions on the LR-O reactor, preparation of the relevant measurements in the WWER-440 type cores with CA model, as well as some preliminary results of the fission density distribution obtained in a core without boron and with fuel assemblies having profiled enrichment are mentioned too (Author)

  6. Novel Production Method for Plant Polyphenol from Livestock Excrement Using Subcritical Water Reaction

    Directory of Open Access Journals (Sweden)

    Mayu Yamamoto

    2008-01-01

    Full Text Available Plant polyphenol, including vanillin, is often used as the intermediate materials of the medicines and vanilla flavoring. In agriculture generally vanillin is produced from vanilla plant and in industry from lignin of disposed wood pulp. We have recently developed a method for the production of plant polyphenol with the excrement as a natural resource of lignin, of the herbivorous animals, by using the subcritical water. The method for using the subcritical water is superior to that of the supercritical water because in the latter complete decomposition occurs. We have successfully produced the vanillin, protocatechuic acid, vanillic acid, and syringic acid in products. Our method is simpler and more efficient not only because it requires the shorter treatment time but also because it releases less amount of carbon dioxide into the atmosphere.

  7. Design report of the disposal canister for twelve fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Raiko, H. [VTT Energy, Espoo (Finland); Salo, J.P. [Posiva Oy, Helsinki (Finland)

    1999-05-01

    The report provides a summary of the design of the canister for final disposal of spent nuclear fuel. The canister structure consists of a cylindrical massive nodular graphite cast iron insert covered by a 50 mm thick copper overlay. The capacity of the canister is 12 assemblies of BWR or VVER 440 fuel. The canister shall be tight with a high probability for about 100 000 years. The good and long lasting tightness requires: (1) The good initial tightness that is achieved by high quality requirements and extensive quality control, (2) The good corrosion resistance, which is obtained by the overpack of oxygen free copper, and (3) Mechanical strength of the canister, that is ensured by analyses (the following loads are considered: hydrostatic pressure, even and uneven swelling pressure of bentonite, thermal effects, and elevated hydrostatic pressure during glaciation. The allowed stresses and strains are set in such a way that reasonable engineering safety factors are obtained in all assessed design base loading cases). The canister shall limit the radiation dose rate outside the canister to minimise the radiolysis of the water in the vicinity of the canister. The canister insert shall keep the fuel assemblies in a subcritical configuration even if the void in the canister is filled with water due to postulated leakage. The design basis of the canister is set, the performed analyses are summarised and the results are assessed and discussed in the report. (orig.) 35 refs.

  8. Design report of the disposal canister for twelve fuel assemblies

    International Nuclear Information System (INIS)

    Raiko, H.; Salo, J.P.

    1999-05-01

    The report provides a summary of the design of the canister for final disposal of spent nuclear fuel. The canister structure consists of a cylindrical massive nodular graphite cast iron insert covered by a 50 mm thick copper overlay. The capacity of the canister is 12 assemblies of BWR or VVER 440 fuel. The canister shall be tight with a high probability for about 100 000 years. The good and long lasting tightness requires: (1) The good initial tightness that is achieved by high quality requirements and extensive quality control, (2) The good corrosion resistance, which is obtained by the overpack of oxygen free copper, and (3) Mechanical strength of the canister, that is ensured by analyses (the following loads are considered: hydrostatic pressure, even and uneven swelling pressure of bentonite, thermal effects, and elevated hydrostatic pressure during glaciation. The allowed stresses and strains are set in such a way that reasonable engineering safety factors are obtained in all assessed design base loading cases). The canister shall limit the radiation dose rate outside the canister to minimise the radiolysis of the water in the vicinity of the canister. The canister insert shall keep the fuel assemblies in a subcritical configuration even if the void in the canister is filled with water due to postulated leakage. The design basis of the canister is set, the performed analyses are summarised and the results are assessed and discussed in the report. (orig.)

  9. Bone compositional study during healing of subcritical calvarial defects in rats by Raman spectroscopy

    Science.gov (United States)

    Ahmed, Rafay; Wing Lun Law, Alan; Cheung, Tsz Wing; Lau, Condon

    2017-07-01

    Subcritical calvarial defects are important to study bone regeneration during healing. In this study 1mm calvarial defects were created using trephine in the parietal bones of Sprague-Dawley rats (n=7) that served as in vivo defects. Subjects were sacrificed after 7 days and the additional defects were created on the harvested skull with the same method to serve as control defects. Raman spectroscopy is established to investigate mineral/matrix ratio, carbonate/phosphate ratio and crystallinity of three different surfaces; in vivo defects, control defects and normal surface. Results show 21% and 23% decrease in mineral/matrix after 7 days of healing from surface to in vivo and control to in vivo defects, respectively. Carbonate to phosphate ratio was found to be increased by 39% while crystallinity decreased by 26% in both surface to in vivo and control to in vivo defects. This model allows to study the regenerated bone without mechanically perturbing healing surface.

  10. Final report for fuel acquisition and design of a fast subcritical blanket facility

    International Nuclear Information System (INIS)

    Clikeman, F.M.; Ott, K.O.

    1976-01-01

    A summary is presented of work leading to the design of a subcritical facility for the study of fast reactor blankets. Included are activities related to fuel acquisition, design of the facility, and experiment planning

  11. Force-controlled robotic assembly processes of rigid and flexible objects methodologies and applications

    CERN Document Server

    Ghalyan, Ibrahim Fahad Jasim

    2016-01-01

    This book provides comprehensive and integrated approaches for rigid and flexible object assembly. It presents comparison studies with the available force-guided robotic processes and covers contact-state modeling, scheme control strategies, and position searching algorithms. Further, it includes experimental validations for different assembly situations, including those for the assembly of industrial parts taken from the automotive industry. .

  12. 50 mm Diameter digital DC/pulse neutron generator for subcritical reactor test

    International Nuclear Information System (INIS)

    Li Gang; Zhang Zhongshuai; Chi Qian; Liu Linmao

    2012-01-01

    A 50 mm diameter digital DC/pulse neutron generator was developed with 25 mm ceramic drive-in target neutron tube. It was applied in the subcritical reactor test of China Institute of Atomic Energy (CIAE). The generator can produce neutron in three modes: DC, pulse and multiple pulse. The maximum neutron yield of the generator is 1 × 10 8 n/s, while the maximum pulse frequency is 10 kHz, and the minimum pulse width is 10 μs. As a remote controlled generator, it is small in volume, easy to be connected and controlled. The tested results indicate that penning ion source has the feature of delay time in glow discharge, and it is easier for glow discharge to happen when switching the DC voltage of penning ion source into pulse. According to these two characteristics, the generator has been modified. This improved generator can be used in many other areas including Prompt Gamma Neutron Activation Analysis (PGNAA), neutron testing and experiment.

  13. 50 mm Diameter digital DC/pulse neutron generator for subcritical reactor test

    Energy Technology Data Exchange (ETDEWEB)

    Li Gang; Zhang Zhongshuai [Northeast Normal University, Changchun 130024 (China); Chi Qian [Guang Hua College of Chang Chun University, Changchun 130117 (China); Liu Linmao, E-mail: ll888@nenu.edu.cn [Northeast Normal University, Changchun 130024 (China)

    2012-11-01

    A 50 mm diameter digital DC/pulse neutron generator was developed with 25 mm ceramic drive-in target neutron tube. It was applied in the subcritical reactor test of China Institute of Atomic Energy (CIAE). The generator can produce neutron in three modes: DC, pulse and multiple pulse. The maximum neutron yield of the generator is 1 Multiplication-Sign 10{sup 8} n/s, while the maximum pulse frequency is 10 kHz, and the minimum pulse width is 10 {mu}s. As a remote controlled generator, it is small in volume, easy to be connected and controlled. The tested results indicate that penning ion source has the feature of delay time in glow discharge, and it is easier for glow discharge to happen when switching the DC voltage of penning ion source into pulse. According to these two characteristics, the generator has been modified. This improved generator can be used in many other areas including Prompt Gamma Neutron Activation Analysis (PGNAA), neutron testing and experiment.

  14. Estimation of the sub-criticality of the sodium-cooled fast reactor Monju using the modified neutron source multiplication method

    International Nuclear Information System (INIS)

    Truchet, G.; Van Rooijen, W. F. G.; Shimazu, Y.; Yamaguchi, K.

    2012-01-01

    The Modified Neutron Source Method (MNSM) is applied to the Monju reactor. This static method to estimate sub-criticality has already given good results on commercial Pressurized Water Reactors. The MNSM consists both in the extraction of the fundamental mode seen by a detector to avoid the effect of higher modes near sources, and the correction of flux distortion effects due to control rod movement. Among Monju's particularities that have a big influence on MNSM factors are: the presence of two californium sources and the position of the detector which is located far from the core outside of the reactor vessel. The importance of spontaneous fission and (α, n) reactions which have increased during the shutdown period of 15 years will also be discussed. The relative position of detectors and sources deeply affect the correction factors in some regions. In order to evaluate the detector count rate, an analytical propagation has been conducted from the reactor vessel. For two subcritical states, an estimation of the reactivity has been made and compared to experimental data obtained in the restart experiments at Monju (2010). (authors)

  15. Subcritical crack growth behavior of AI2O3-Glass dental composites

    NARCIS (Netherlands)

    Zhu, Q.; With, G. de; Dortmans, L.J.M.G.; Feenstra, F.

    2003-01-01

    The purpose of this study is to investigate the subcritical crack growth (SCG) behavior of alumina-glass dental composites. Alumina-glass composites were fabricated by infiltrating molten glass to porous alumina preforms. Rectangular bars of the composite were subject to dynamic loading in air, with

  16. Candidate molten salt investigation for an accelerator driven subcritical core

    International Nuclear Information System (INIS)

    Sooby, E.; Baty, A.; Beneš, O.; McIntyre, P.; Pogue, N.; Salanne, M.; Sattarov, A.

    2013-01-01

    Highlights: • Developing accelerator driven subcritical fission to destroy transuranics in SNF. • The core is a vessel containing a molten mixture of NaCl and transuranic chlorides. • Molecular dynamics used to calculate the thermophysical properties of the salt. • Density and molecular structure for actinide salts reported here. • The neutronics of ADS fission in molten salt are presented. -- Abstract: We report a design for accelerator-driven subcritical fission in a molten salt core (ADSMS) that utilizes a fuel salt composed of NaCl and transuranic (TRU) chlorides. The ADSMS core is designed for fast neutronics (28% of neutrons >1 MeV) to optimize TRU destruction. The choice of a NaCl-based salt offers benefits for corrosion, operating temperature, and actinide solubility as compared with LiF-based fuel salts. A molecular dynamics (MD) code has been used to estimate properties of the molten salt system which are important for ADSMS design but have never been measured experimentally. Results from the MD studies are reported. Experimental measurements of fuel salt properties and studies of corrosion and radiation damage on candidate metals for the core vessel are anticipated

  17. Candidate molten salt investigation for an accelerator driven subcritical core

    Energy Technology Data Exchange (ETDEWEB)

    Sooby, E., E-mail: soobyes@tamu.edu [Texas A and M University, Accelerator Research Laboratory, 3380 University Dr. East, College Station, TX 77845 (United States); Baty, A. [Texas A and M University, Accelerator Research Laboratory, 3380 University Dr. East, College Station, TX 77845 (United States); Beneš, O. [European Commission, DG Joint Research Centre, Institute for Transuranium Elements, P.O. Box 2340, 76125 Karlsruhe (Germany); McIntyre, P.; Pogue, N. [Texas A and M University, Accelerator Research Laboratory, 3380 University Dr. East, College Station, TX 77845 (United States); Salanne, M. [Université Pierre et Marie Curie, CNRS, Laboratoire PECSA, F-75005 Paris (France); Sattarov, A. [Texas A and M University, Accelerator Research Laboratory, 3380 University Dr. East, College Station, TX 77845 (United States)

    2013-09-15

    Highlights: • Developing accelerator driven subcritical fission to destroy transuranics in SNF. • The core is a vessel containing a molten mixture of NaCl and transuranic chlorides. • Molecular dynamics used to calculate the thermophysical properties of the salt. • Density and molecular structure for actinide salts reported here. • The neutronics of ADS fission in molten salt are presented. -- Abstract: We report a design for accelerator-driven subcritical fission in a molten salt core (ADSMS) that utilizes a fuel salt composed of NaCl and transuranic (TRU) chlorides. The ADSMS core is designed for fast neutronics (28% of neutrons >1 MeV) to optimize TRU destruction. The choice of a NaCl-based salt offers benefits for corrosion, operating temperature, and actinide solubility as compared with LiF-based fuel salts. A molecular dynamics (MD) code has been used to estimate properties of the molten salt system which are important for ADSMS design but have never been measured experimentally. Results from the MD studies are reported. Experimental measurements of fuel salt properties and studies of corrosion and radiation damage on candidate metals for the core vessel are anticipated.

  18. 233U breeding in accelerator-driven sub-critical fast reactor

    International Nuclear Information System (INIS)

    Yang Yongwei; An Yu

    1999-01-01

    Accelerator-driven Sub-critical Fast Reactor (ADFR) is chosen as fissile-material-breeding reactor. (U-Pu)O x is chosen as fuel in the core and ThO 2 as fertile material in the blanket zone to breed 233 U. Molten lead is chosen as coolant because of its better neutronic and chemical characteristics over sodium. The program system used for neutronics study consists of: LAHET, for the simulation of the interaction between the proton with medium energy and the nuclei of the target; MCNP4A, for the simulation of neutron transport with energy below 20 MeV in the sub-critical reactor; CONNECT1, for the processing of some tallies provided by the output of MCNP4A in order to prepare micro-cross sections for elements used for burnup calculation; ORIGEN2, used for multi-region burnup calculation; CONNECT2, for the processing of atom densities of some elements provided in the output of ORIGEN2 in order to prepare input to LAHET calculation for next time step. The calculated results show that the proposed case is feasible for breeding fissile material considering the criticality safety, power density, burnup, etc

  19. Two applications of airtightness control techniques on big assemblies

    CERN Document Server

    Devallan, C; Marcellin, J

    1973-01-01

    Deals with two airtightness control techniques respectively applied on intersecting storage rings (ISR) at CERN in Geneva and on a liquid methane storage tank. These two big assemblies called for two different control techniques which use helium and ammonia respectively as tracer gas. Existing practical leakage detection techniques to meet industrial needs are discussed at the end of the article. (2 refs).

  20. Achieving 3-D Nanoparticle Assembly in Nanocomposite Thin Films via Kinetic Control

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Jingyu; Xiao, Yihan; Xu, Ting [UCB

    2017-02-20

    Nanocomposite thin films containing well-ordered nanoparticle (NP) assemblies are ideal candidates for the fabrication of metamaterials. Achieving 3-D assembly of NPs in nanocomposite thin films is thermodynamically challenging as the particle size gets similar to that of a single polymer chain. The entropic penalties of polymeric matrix upon NP incorporation leads to NP aggregation on the film surface or within the defects in the film. Controlling the kinetic pathways of assembly process provides an alternative path forward by arresting the system in nonequilibrium states. Here, we report the thin film 3-D hierarchical assembly of 20 nm NPs in supramolecules with a 30 nm periodicity. By mediating the NP diffusion kinetics in the supramolecular matrix, surface aggregation of NPs was suppressed and NPs coassemble with supramolecules to form new 3-D morphologies in thin films. The present studies opened a viable route to achieve designer functional composite thin films via kinetic control.

  1. Thermal hydraulic performance of naturally aspirated control rod housing assemblies

    International Nuclear Information System (INIS)

    Geiger, G.T.; Randolph, H.W.; Paik, I.K.; Foti, D.J.

    1992-01-01

    Savannah River Site reactors are comprised of heat generating fuel/target assemblies, control rods which regulate reactor power, and heavy water which acts as the coolant and as a moderator. The fuel/target assemblies are cooled by the downflow of heavy water while the control rods are cooled via upflow. Five control rods are grouped with two safety rods in seven-channel assemblies called septifoils. Under normal operating conditions, the reactor power level, radial shape flux and axial power flux are regulated by the positioning of the control rods. The control rods are solid rods of a lithium-aluminum alloy with an thin aluminum outer sheath. Lithium is a good absorber of neutrons and, thus control rod temperatures rise with reactor power. At conditions of sufficiently high reactor power and degraded coolant flow, the control rods could heat sufficiently to cause a metallurigical failure of the sheath leading to molten material coming in contact with water and the possibility of a steam explosion. An accident has been postulated as part of the analysis involving the safety upgrade of Savannah River Site reactors in which the housing is not seated on the pin. Coolant from the upflow pin would not be directed into the housing but, into the moderator space surrounding the housing. Only naturally aspirated cooling due to buoyancy effects would be available to cool the control rods and the coolant mass flow rate would drop significantly from its nominal value. In this study, the mechanisms and limits of cooling heated rods housed in an unseated septifoil are addressed. Experiments were conducted on a shortened, prototypic housing with electrically heated rods to gain an understanding of the phenomena governing the cooling in such a case and develop data which can be used to evaluate predictive models. These experiments are described, their results discussed, and the predictions of current models is presented

  2. Massive subcritical compact arrays of plutonium metal

    Energy Technology Data Exchange (ETDEWEB)

    Rothe, R.E.

    1998-04-01

    Two experimental critical-approach programs are reported. Both were performed at the Rocky Flats Plant near Denver, Colorado; and both date back to the late 1960s. Both involve very large arrays of massive plutonium ingots. These ingots had been cast in the foundry at the Rocky Flats Plant as part of their routine production operations; they were not specially prepared for either study. Consequently, considerable variation in ingot mass is encountered. This mass varied between approximately 7 kg and a little more than 10 kg. One program, performed in the spring of 1969, involved stacked arrays of ingots contained within cylindrical, disk-shaped, thin, steel cans. This program studied four arrays defined by the pattern of steel cans in a single layer. The four were: 1 x N, 3 x N, 2 x 2 x N, and 3 x 3 x N. The second was a tightly-packed, triangular-pitched patterns; the last two were square-pitched patterns. The other program, performed about a year earlier, involved similar ingots also contained in similar steel cans, but these canned plutonium ingots were placed in commercial steel drums. This study pertained to one-, two-, and three-layered horizontal arrays of drums. All cases proved to be well subcritical. Most would have remained subcritical had the parameters of the array under study been continued infinitely beyond the reciprocal multiplication safety limit. In one case for the drum arrays, an uncertain extrapolation of the data of the earlier program suggests that criticality might have eventually been attained had several thousand additional kilograms of plutonium been available for use.

  3. Massive subcritical compact arrays of plutonium metal

    International Nuclear Information System (INIS)

    Rothe, R.E.

    1998-01-01

    Two experimental critical-approach programs are reported. Both were performed at the Rocky Flats Plant near Denver, Colorado; and both date back to the late 1960s. Both involve very large arrays of massive plutonium ingots. These ingots had been cast in the foundry at the Rocky Flats Plant as part of their routine production operations; they were not specially prepared for either study. Consequently, considerable variation in ingot mass is encountered. This mass varied between approximately 7 kg and a little more than 10 kg. One program, performed in the spring of 1969, involved stacked arrays of ingots contained within cylindrical, disk-shaped, thin, steel cans. This program studied four arrays defined by the pattern of steel cans in a single layer. The four were: 1 x N, 3 x N, 2 x 2 x N, and 3 x 3 x N. The second was a tightly-packed, triangular-pitched patterns; the last two were square-pitched patterns. The other program, performed about a year earlier, involved similar ingots also contained in similar steel cans, but these canned plutonium ingots were placed in commercial steel drums. This study pertained to one-, two-, and three-layered horizontal arrays of drums. All cases proved to be well subcritical. Most would have remained subcritical had the parameters of the array under study been continued infinitely beyond the reciprocal multiplication safety limit. In one case for the drum arrays, an uncertain extrapolation of the data of the earlier program suggests that criticality might have eventually been attained had several thousand additional kilograms of plutonium been available for use

  4. Prospects of subcritical molten salt reactor for minor actinides incineration in closed fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Alekseev, Pavel N.; Balanin, Andrey L.; Dudnikov, Anatoly A.; Fomichenko, Petr A.; Nevinitsa, Vladimir A.; Frolov, Aleksey A.; Lubina, Anna S.; Sedov, Aleksey A.; Subbotin, Aleksey S.; Blandinsky, Viktor Yu. [Nuclear Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation)

    2015-09-15

    A subcritical molten salt reactor is proposed for minor actinides (separated from spent fuel VVER-1000 light water reactor) incineration and for {sup 233}U conversion from {sup 232}Th. Here the subcritical molten salt reactor with fuel composition of heavy nuclide fluorides in molten LiF - NaF - KF salt and with external neutron source, based on 1 GeV proton accelerator and molten salt cooled tungsten target is considered. The paper presents the results of parametrical analysis of equilibrium nuclide composition of molten salt reactor with minor actinides feed in dependence of core dimensions, average neutron flux and external neutron source intensity. Reactor design is defined; requirements to external neutron source are posed; heavy nuclides equilibrium and fuel cycle main parameters are calculated.

  5. Orbital storage and supply of subcritical liquid nitrogen

    Science.gov (United States)

    Aydelott, John C.

    1990-01-01

    Subcritical cryogenic fluid management has long been recognized as an enabling technology for key propulsion applications, such as space transfer vehicles (STV) and the on-orbit cryogenic fuel depots which will provide STV servicing capability. The LeRC Cryogenic Fluids Technology Office (CFTO), under the sponsorship of OAST, has the responsibility of developing the required technology via a balanced program involving analytical modeling, ground based testing, and in-space experimentation. Topics covered in viewgraph form include: cryogenic management technologies; nitrogen storage and supply; cryogenic nitrogen cooling capability; and LN2 system demonstration technical objectives.

  6. Subcritical enhanced safety molten-salt reactor concept

    International Nuclear Information System (INIS)

    Alekseev, P.N.; Ignatiev, V.V.; Men'shikov, L.I.; Prusakov, V.N.; Ponomarev-Stepnoy, N.N.; Subbotin, S.A.; Krasnykh, A.K.; Rudenko, V.T.; Somov, L.N.

    1995-01-01

    The nuclear power and its fuel cycle safety requirements can be met in the main by providing nuclear power with subcritical molten salt reactors (SMSR) - 'burner' with an external neutron source. The utilized molten salt fuel is the decisive advantage of the SMSR over other burners. Fissile and fertile nuclides in the burner are solved in a liquid salt in the form of fluorides. This composition acts simultaneously as: a) fuel, b) coolant, c) medium for chemical partitioning and reprocessing. The effective way of reducing the external source power consists in the cascade neutron multiplication in the system of coupled reactors with suppressed feedback between them. (author)

  7. Reconstitutable control assembly having removable control rods with detachable split upper end plugs

    International Nuclear Information System (INIS)

    Gjertsen, R.K.; Knott, R.P.; Sparrow, J.A.

    1991-01-01

    This patent describes, for use in facilitating replacement of a neutron absorber control rod on a control assembly spider structure, an end plug. It comprises a pair of separate upper and lower plug portions; the upper section of the upper plug portion being configured for rigid attachment; the middle section of the upper plug portion having angularly displaced flat surfaces formed on the exterior

  8. Transverse single-file diffusion and enhanced longitudinal diffusion near a subcritical bifurcation

    Science.gov (United States)

    Dessup, Tommy; Coste, Christophe; Saint Jean, Michel

    2018-05-01

    A quasi-one-dimensional system of repelling particles undergoes a configurational phase transition when the transverse confining potential decreases. Below a threshold, it becomes energetically favorable for the system to adopt one of two staggered raw patterns, symmetric with respect to the system axis. This transition is a subcritical pitchfork bifurcation for short range interactions. As a consequence, the homogeneous zigzag pattern is unstable in a finite zigzag amplitude range [hC 1,hC 2] . We exhibit strong qualitative effects of the subcriticality on the thermal motions of the particles. When the zigzag amplitude is close enough to the limits hC 1 and hC 2, a transverse vibrational soft mode occurs which induces a strongly subdiffusive behavior of the transverse fluctuations, similar to single-file diffusion. On the contrary, the longitudinal fluctuations are enhanced, with a diffusion coefficient which is more than doubled. Conversely, a simple measurement of the thermal fluctuations allows a precise determination of the bifurcation thresholds.

  9. Theoretical Analysis for Heat Transfer Optimization in Subcritical Electrothermal Energy Storage Systems

    Directory of Open Access Journals (Sweden)

    Peng Hu

    2017-02-01

    Full Text Available Electrothermal energy storage (ETES provides bulk electricity storage based on heat pump and heat engine technologies. A subcritical ETES is described in this paper. Based on the extremum principle of entransy dissipation, a geometry model is developed for heat transfer optimization for subcritical ETES. The exergy during the heat transfer process is deduced in terms of entropy production. The geometry model is validated by the extremum principle of entropy production. The theoretical analysis results show that the extremum principle of entransy dissipation is an effective criterion for the optimization, and the optimum heat transfer for different cases with the same mass flux or pressure has been discussed. The optimum heat transfer can be achieved by adjusting the mass flux and pressure of the working fluid. It also reveals that with the increase of mass flux, there is a minimum exergy in the range under consideration, and the exergy decreases with the increase of the pressure.

  10. WWER-440 control assembly local power peaking investigation on LR-0 reactor

    International Nuclear Information System (INIS)

    Mikus, J.

    2002-01-01

    This paper presents information concerning the local power peaking problem induced by the WWER-440 control assembly and the investigation possibilities on the light water, zero power reactor LR-0 at the Nuclear Research Institute (NRI) Rez plc. A brief description is given about the disposable control assembly model, experimental arrangement and conditions on the LR-0 reactor with regard to the earlier performed investigations as well as to the relevant measurements to be realized in the near future.(abstract)

  11. Orientation-controlled parallel assembly at the air–water interface

    International Nuclear Information System (INIS)

    Park, Kwang Soon; Hoo, Ji Hao; Baskaran, Rajashree; Böhringer, Karl F

    2012-01-01

    This paper presents an experimental and theoretical study with statistical analysis of a high-yield, orientation-specific fluidic self-assembly process on a preprogrammed template. We demonstrate self-assembly of thin (less than few hundred microns in thickness) parts, which is vital for many applications in miniaturized platforms but problematic for today's pick-and-place robots. The assembly proceeds row-by-row as the substrate is pulled up through an air–water interface. Experiments and analysis are presented with an emphasis on the combined effect of controlled surface waves and magnetic force. For various gap values between a magnet and Ni-patterned parts, magnetic force distributions are generated using Monte Carlo simulation and employed to predict assembly yield. An analysis of these distributions shows that a gradual decline in yield following the probability density function can be expected with degrading conditions. The experimentally determined critical magnetic force is in good agreement with a derived value from a model of competing forces acting on a part. A general set of design guidelines is also presented from the developed model and experimental data. (paper)

  12. Long-Time Behavior and Critical Limit of Subcritical SQG Equations in Scale-Invariant Sobolev Spaces

    Science.gov (United States)

    Coti Zelati, Michele

    2018-02-01

    We consider the subcritical SQG equation in its natural scale-invariant Sobolev space and prove the existence of a global attractor of optimal regularity. The proof is based on a new energy estimate in Sobolev spaces to bootstrap the regularity to the optimal level, derived by means of nonlinear lower bounds on the fractional Laplacian. This estimate appears to be new in the literature and allows a sharp use of the subcritical nature of the L^∞ bounds for this problem. As a by-product, we obtain attractors for weak solutions as well. Moreover, we study the critical limit of the attractors and prove their stability and upper semicontinuity with respect to the strength of the diffusion.

  13. Controlling the amplification of chirality in hydrogen-bonded assemblies

    NARCIS (Netherlands)

    Mateos timoneda, Miguel; Crego Calama, Mercedes; Reinhoudt, David

    2005-01-01

    The amplification of chirality (a high enantiomeric or diastereomeric excess induced by a small initial amount of chiral bias) on hydrogen-bonded assemblies has been studied using “sergeants-and-soldiers” experiments under thermodynamically controlled conditions. Here it is shown that different

  14. YALINA facility a sub-critical Accelerator- Driven System (ADS) for nuclear energy research facility description and an overview of the research program (1997-2008).

    Energy Technology Data Exchange (ETDEWEB)

    Gohar, Y.; Smith, D. L.; Nuclear Engineering Division

    2010-04-28

    The YALINA facility is a zero-power, sub-critical assembly driven by a conventional neutron generator. It was conceived, constructed, and put into operation at the Radiation Physics and Chemistry Problems Institute of the National Academy of Sciences of Belarus located in Minsk-Sosny, Belarus. This facility was conceived for the purpose of investigating the static and dynamic neutronics properties of accelerator driven sub-critical systems, and to serve as a neutron source for investigating the properties of nuclear reactions, in particular transmutation reactions involving minor-actinide nuclei. This report provides a detailed description of this facility and documents the progress of research carried out there during a period of approximately a decade since the facility was conceived and built until the end of 2008. During its history of development and operation to date (1997-2008), the YALINA facility has hosted several foreign groups that worked with the resident staff as collaborators. The participation of Argonne National Laboratory in the YALINA research programs commenced in 2005. For obvious reasons, special emphasis is placed in this report on the work at YALINA facility that has involved Argonne's participation. Attention is given here to the experimental program at YALINA facility as well as to analytical investigations aimed at validating codes and computational procedures and at providing a better understanding of the physics and operational behavior of the YALINA facility in particular, and ADS systems in general, during the period 1997-2008.

  15. Exploring How Weathering Related Stresses and Subcritical Crack Growth May Influence the Size of Sediment Produced From Different Rock Types.

    Science.gov (United States)

    Eppes, M. C.; Hallet, B.; Hancock, G. S.; Mackenzie-Helnwein, P.; Keanini, R.

    2016-12-01

    The formation and diminution of rock debris, sediment and soil at and near Earth's surface is driven in large part by in situ, non-transport related, rock cracking. Given the relatively low magnitude stresses that arise in surface and near-surface settings, this production and diminution of granular material is likely strongly influenced and/or driven by subcritical crack growth (Eppes et al., 2016), cracking that occurs under stress loading conditions much lower than a rock's strength as typically measured in the laboratory under rapid loading. Despite a relatively sound understanding of subcritical crack growth through engineering and geophysical studies, its geomorphic and sedimentologic implications have only been minimally explored. Here, based on existing studies, we formulate several hypotheses to predict how weathering-induced stresses combined with the subcritical crack growth properties of rock may influence sediment size distribution. For example, subcritical crack growth velocity (v) can be described by v = CKIn where KI is the mode I (simple opening mode) stress intensity factor, a function of tensile stress at the crack tip and crack length; C is a rock- and environment-dependent constant; and n is material constant, the subcritical crack growth index. Fracture length and spacing in rock is strongly dependent on n, where higher n values result in fewer, more distally spaced cracks (e.g. Olsen, 1993). Thus, coarser sediment might be expected from rocks with higher n values. Weathering-related stresses such as thermal stresses and mineral hydration, however, can disproportionally stress boundaries between minerals with contrasting thermal or chemical properties and orientation, resulting in granular disintegration. Thus, rocks with properties favorable to inducing these stresses might produce sediment whose size is reflective of its constituent grains. We begin to test these hypotheses through a detailed examination of crack and rock characteristics in

  16. Catalytic subcritical water liquefaction of flax straw for high yield of furfural

    International Nuclear Information System (INIS)

    Harry, Inibehe; Ibrahim, Hussameldin; Thring, Ron; Idem, Raphael

    2014-01-01

    There is substantial interest in the application of biomass as a renewable fuel or for production of chemicals. Flax straw can be converted into valuable chemicals and biofuels via liquefaction in sub-critical water. In this study, the yield of furfural and the kinetics of flax straw liquefaction under sub-critical water conditions were investigated using a high-pressure autoclave reactor. The liquefaction was conducted in the temperature range of 175–325 °C, pressure of 0.1 MPa–8 MPa, retention time in the range of 0 min–120 min, and flax straw mass fraction (w F ) of 5–20 %. Also, the effect of acid catalysts on furfural yield was studied. The kinetic parameters of flax straw liquefaction were determined using nonlinear regression of the experimental data, assuming second-order kinetics. The apparent activation energy was found to be 27.97 kJ mol −1 while the reaction order was 2.0. The optimum condition for furfural yield was at 250 °C, 6.0 MPa, w F of 5% and 0 retention time after reaching set conditions. An acid catalyst was found to selectively favour furfural yield with 40% flax straw conversion. - Highlights: • Flax straw liquefaction in subcritical water. • Creation of a reaction pathway that can be used to optimized furfural production. • Acid catalyst selectively favoured furfural yield with respect to other liquid products. • At the highest process temperature of 325 °C, a carbon conversion of 40% was achieved. • Activation energy and reaction order was 28 kJ/mol and 2.0 respectively

  17. Analytical solution of point kinetic equations for sub-critical systems

    International Nuclear Information System (INIS)

    Henrice Junior, Edson; Goncalves, Alessandro C.

    2013-01-01

    This article presents an analytical solution for the set of point kinetic equations for sub-critical reactors. This solution stems from the ordinary, non-homogeneous differential equation that rules the neutron density and that presents the incomplete Gamma function in its functional form. The method used proved advantageous and allowed practical applications such as the linear insertion of reactivity, considering an external constant source or with both varying linearly. (author)

  18. Experimental subcritical reactivity determinations employing APSD measurements with pulse mode detectors in the IPEN/MB-01 reactor

    International Nuclear Information System (INIS)

    Santos, Adimir dos; Lee, Seung Min; Diniz, Ricardo; Jerez, Rogerio

    2011-01-01

    This work aims to determine experimentally the subcritical reactivity levels of several configurations of the IPEN/MB-01 reactor in an approach based on the subcritical kinetic model developed by Gandini and Salvatores. The procedure employs the measurements of the APSD (Auto Power Spectral Density) using pulse mode detectors. The proposed approach is based only on measured quantities such as counting rates and the parameters arising from the least square approach of the APSD. Other difficult quantity such as detector efficiencies is not needed in the method. Several measurements of APSD were performed in varying degrees of sub-criticality (up to around -7000 pcm). The APSD data were least-square fitted to get the prompt decay mode (α). Beside the startup source, an external neutron sources of Am-Be was installed near the core in order to improve neutron count statistics. The final experimental results are of very good quality. The experiment shows clearly that the classical one point kinetic theory cannot describe the measured reactivity. MCNP K eff results were compared to the corresponding experimental results. The agreement was fairly good. (author)

  19. Light-activated control of protein channel assembly mediated by membrane mechanics

    Science.gov (United States)

    Miller, David M.; Findlay, Heather E.; Ces, Oscar; Templer, Richard H.; Booth, Paula J.

    2016-12-01

    Photochemical processes provide versatile triggers of chemical reactions. Here, we use a photoactivated lipid switch to modulate the folding and assembly of a protein channel within a model biological membrane. In contrast to the information rich field of water-soluble protein folding, there is only a limited understanding of the assembly of proteins that are integral to biological membranes. It is however possible to exploit the foreboding hydrophobic lipid environment and control membrane protein folding via lipid bilayer mechanics. Mechanical properties such as lipid chain lateral pressure influence the insertion and folding of proteins in membranes, with different stages of folding having contrasting sensitivities to the bilayer properties. Studies to date have relied on altering bilayer properties through lipid compositional changes made at equilibrium, and thus can only be made before or after folding. We show that light-activation of photoisomerisable di-(5-[[4-(4-butylphenyl)azo]phenoxy]pentyl)phosphate (4-Azo-5P) lipids influences the folding and assembly of the pentameric bacterial mechanosensitive channel MscL. The use of a photochemical reaction enables the bilayer properties to be altered during folding, which is unprecedented. This mechanical manipulation during folding, allows for optimisation of different stages of the component insertion, folding and assembly steps within the same lipid system. The photochemical approach offers the potential to control channel assembly when generating synthetic devices that exploit the mechanosensitive protein as a nanovalve.

  20. Integrated Quality Control of Precision Assemblies using Computed Tomography

    DEFF Research Database (Denmark)

    Stolfi, Alessandro

    coor-dinate measuring machines (CMMs) when working with complex and fragile parts. This Ph.D. project at DTU Mechanical Engineering concerns the applicability of CT for quality control of precision assem-blies. Investigations to quantify the accuracy of CT measurements, reference artefacts to correct...

  1. Analysis of fuel management in the KIPT neutron source facility

    Energy Technology Data Exchange (ETDEWEB)

    Zhong Zhaopeng, E-mail: zzhong@anl.gov [Nuclear Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Gohar, Yousry; Talamo, Alberto [Nuclear Engineering Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)

    2011-05-15

    Research highlights: > Fuel management of KIPT ADS was analyzed. > Core arrangement was shuffled in stage wise. > New fuel assemblies was added into core periodically. > Beryllium reflector could also be utilized to increase the fuel life. - Abstract: Argonne National Laboratory (ANL) of USA and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have been collaborating on the conceptual design development of an experimental neutron source facility consisting of an electron accelerator driven sub-critical assembly. The neutron source driving the sub-critical assembly is generated from the interaction of 100 KW electron beam with a natural uranium target. The sub-critical assembly surrounding the target is fueled with low enriched WWR-M2 type hexagonal fuel assemblies. The U-235 enrichment of the fuel material is <20%. The facility will be utilized for basic and applied research, producing medical isotopes, and training young specialists. With the 100 KW electron beam power, the total thermal power of the facility is {approx}360 kW including the fission power of {approx}260 kW. The burnup of the fissile materials and the buildup of fission products continuously reduce the system reactivity during the operation, decrease the neutron flux level, and consequently impact the facility performance. To preserve the neutron flux level during the operation, the fuel assemblies should be added and shuffled for compensating the lost reactivity caused by burnup. Beryllium reflector could also be utilized to increase the fuel life time in the sub-critical core. This paper studies the fuel cycles and shuffling schemes of the fuel assemblies of the sub-critical assembly to preserve the system reactivity and the neutron flux level during the operation.

  2. Designing a mini subcritical nuclear reactor

    International Nuclear Information System (INIS)

    Escobedo G, C. R.; Vega C, H. R.; Davila H, V. M.

    2015-10-01

    In this work the design of a mini subcritical nuclear reactor formed by means of light water moderator, uranium as fuel, and isotopic neutron source of 239 PuBe was carried out. The design was done by Monte Carlo methods with the code MCNP5 in which uranium was modeled in an array of concentric holes cylinders of 8.5, 14.5, 20.5, 26.5, 32.5 cm of internal radius and 3 cm of thickness, 36 cm of height. Different models were made from a single fuel cylinder (natural uranium) to five. The neutron source of 239 PuBe was situated in the center of the mini reactor; in each arrangement was used water as moderator. Cross sections libraries Endf/Vi were used and the number of stories was large enough to ensure less uncertainty than 3%. For each case the effective multiplication factor k e -f f , the amplification factor and the power was calculated. Outside the mini reactor the ambient dose equivalent H (10) was calculated for different cases. The value of k eff , the amplification factor and power are directly related to the number of cylinders of uranium as fuel. Although the average energy of the neutrons 239 PuBe is between 4.5 and 5 MeV in the case of the mini reactor for a cylinder, in the neutron spectrum the presence of thermal neutrons does not exist, so that produced fissions are generated with fast neutrons, and in designs of two and three rings the neutron spectra shows the presence of thermal neutrons, however the fissions are being generated with fast neutrons. Finally in the four and five cases the amount of moderator is enough to thermalized the neutrons and thereby produce the fission. The maximum value for k eff was 0.82; this value is very close to the assembly of Universidad Autonoma de Zacatecas generating a k eff of 0.86. According to the safety and radiation protection standards for the design of mini reactor of one, two and three cylinders they comply with the established safety, while designs of four and five cylinders not met. (Author)

  3. Quality control of FWC during assembly and commissioning in SST-1 Tokamak

    Science.gov (United States)

    Patel, Hitesh; Santra, Prosenjit; Parekh, Tejas; Biswas, Prabal; Jayswal, Snehal; Chauhan, Pradeep; Paravastu, Yuvakiran; George, Siju; Semwal, Pratibha; Thankey, Prashant; Ramesh, Gattu; Prakash, Arun; Dhanani, Kalpesh; Raval, D. C.; Khan, Ziauddin; Pradhan, Subrata

    2017-04-01

    First Wall Components (FWC) of SST-1 tokamak, which are in the immediate vicinity of plasma, comprises of limiters, divertors, baffles, passive stabilizers designed to operate long duration (∼1000 s) discharges of elongated plasma. All FWC consist of copper alloy heat sink modules with SS cooling tubes brazed onto it, graphite tiles acting as armour material facing the plasma, and are mounted to the vacuum vessels with suitable Inconel support structures at inter-connected ring & port locations. The FWC are very recently assembled and commissioned successfully inside the vacuum vessel of SST-1 undergoing a rigorous quality control and checks at every stage of the assembly process. This paper will present the quality control aspects and checks of FWC from commencement of assembly procedure, namely material test reports, leak testing of high temperature baked components, assembled dimensional tolerances, leak testing of all welded joints, graphite tile tightening torques, electrical continuity and electrical isolation of passive stabilizers from vacuum vessel, baking and cooling hydraulic connections inside vacuum vessel.

  4. Programming Cells for Dynamic Assembly of Inorganic Nano-Objects with Spatiotemporal Control.

    Science.gov (United States)

    Wang, Xinyu; Pu, Jiahua; An, Bolin; Li, Yingfeng; Shang, Yuequn; Ning, Zhijun; Liu, Yi; Ba, Fang; Zhang, Jiaming; Zhong, Chao

    2018-04-01

    Programming living cells to organize inorganic nano-objects (NOs) in a spatiotemporally precise fashion would advance new techniques for creating ordered ensembles of NOs and new bio-abiotic hybrid materials with emerging functionalities. Bacterial cells often grow in cellular communities called biofilms. Here, a strategy is reported for programming dynamic biofilm formation for the synchronized assembly of discrete NOs or hetero-nanostructures on diverse interfaces in a dynamic, scalable, and hierarchical fashion. By engineering Escherichia coli to sense blue light and respond by producing biofilm curli fibers, biofilm formation is spatially controlled and the patterned NOs' assembly is simultaneously achieved. Diverse and complex fluorescent quantum dot patterns with a minimum patterning resolution of 100 µm are demonstrated. By temporally controlling the sequential addition of NOs into the culture, multilayered heterostructured thin films are fabricated through autonomous layer-by-layer assembly. It is demonstrated that biologically dynamic self-assembly can be used to advance a new repertoire of nanotechnologies and materials with increasing complexity that would be otherwise challenging to produce. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Controlled assembly of jammed colloidal shells on fluid droplets

    Science.gov (United States)

    Subramaniam, Anand Bala; Abkarian, Manouk; Stone, Howard A.

    2005-07-01

    Assembly of colloidal particles on fluid interfaces is a promising technique for synthesizing two-dimensional microcrystalline materials useful in fields as diverse as biomedicine, materials science, mineral flotation and food processing. Current approaches rely on bulk emulsification methods, require further chemical and thermal treatments, and are restrictive with respect to the materials used. The development of methods that exploit the great potential of interfacial assembly for producing tailored materials have been hampered by the lack of understanding of the assembly process. Here we report a microfluidic method that allows direct visualization and understanding of the dynamics of colloidal crystal growth on curved interfaces. The crystals are periodically ejected to form stable jammed shells, which we refer to as colloidal armour. We propose that the energetic barriers to interfacial crystal growth and organization can be overcome by targeted delivery of colloidal particles through hydrodynamic flows. Our method allows an unprecedented degree of control over armour composition, size and stability.

  6. Numerical Analysis on the Free Fall Motion of the Control Rod Assembly for the Sodium Cooled Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Se-Hong; Choi, Choengryul; Son, Sung-Man [ELSOLTEC, Yongin (Korea, Republic of); Kim, Jae-Yong; Yoon, Kyung-Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    On receiving the scram signal, the control rod assemblies are released to fall into the reactor core by its weight. Thus drop time and falling velocity of the control rod assembly must be estimated for the safety evaluation. However, because of its complex shape, it is difficult to estimate the drop time by theoretical method. In this study, numerical analysis has been carried out in order to estimate drop time and falling velocity of the control rod assembly to provide the underlying data for the design optimization. Numerical analysis has been carried out to estimate the drop time and falling velocity of the control rod assembly for sodium-cooled fast reactor. Before performing the numerical analysis for the control rod assembly, sphere dropping experiment has been carried out for verification of the CFD methodology. The result of the numerical analysis for the method verification is almost same as the result of the experiment. Falling velocity and drag force increase rapidly in the beginning. And then it goes to the stable state. When the piston head of the control rod assembly is inserted into the damper, the drag force increases instantaneously and the falling velocity decreases quickly. The falling velocity is reduced about 14 % by damper. The total drop time of the control rod assembly is about 1.47s. In the next study, the experiment for the control rod assembly will be carried out, and its result is going to be compared with the CFD analysis result.

  7. Drop performance test of conceptually designed control rod assembly for prototype generation IV sodium-cooled fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Kyu; Lee, Jae Han; Kim, Hoe Woong; KIm, Sung Kyun; Kim, Jong Bum [Sodium-cooled Fast Reactor NSSS Design Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2017-06-15

    The control rod assembly controls reactor power by adjusting its position during normal operation and shuts down chain reactions by its free drop under scram conditions. Therefore, the drop performance of the control rod assembly is important for the safety of a nuclear reactor. In this study, the drop performance of the conceptually designed control rod assembly for the prototype generation IV sodium-cooled fast reactor that is being developed at the Korea Atomic Energy Research Institute as a next-generation nuclear reactor was experimentally investigated. For the performance test, the test facility and test procedure were established first, and several free drop performance tests of the control rod assembly under different flow rate conditions were then carried out. Moreover, performance tests under several types and magnitudes of seismic loading conditions were also conducted to investigate the effects of seismic loading on the drop performance of the control rod assembly. The drop time of the conceptually designed control rod assembly for 0% of the tentatively designed flow rate was measured to be 1.527 seconds, and this agrees well with the analytically calculated drop time. It was also observed that the effect of seismic loading on the drop time was not significant.

  8. Nonlinear dead water resistance at subcritical speed

    Science.gov (United States)

    Grue, John

    2015-08-01

    The dead water resistance F 1 = /1 2 C d w ρ S U 2 (ρ fluid density, U ship speed, S wetted body surface, Cdw resistance coefficient) on a ship moving at subcritical speed along the upper layer of a two-layer fluid is calculated by a strongly nonlinear method assuming potential flow in each layer. The ship dimensions correspond to those of the Polar ship Fram. The ship draught, b0, is varied in the range 0.25h0-0.9h0 (h0 the upper layer depth). The calculations show that Cdw/(b0/h0)2 depends on the Froude number only, in the range close to critical speed, Fr = U/c0 ˜ 0.875-1.125 (c0 the linear internal long wave speed), irrespective of the ship draught. The function Cdw/(b0/h0)2 attains a maximum at subcritical Froude number depending on the draught. Maximum Cdw/(b0/h0)2 becomes 0.15 for Fr = 0.76, b0/h0 = 0.9, and 0.16 for Fr = 0.74, b0/h0 = 1, where the latter extrapolated value of the dead water resistance coefficient is about 60 times higher than the frictional drag coefficient and relevant for the historical dead water observations. The nonlinear Cdw significantly exceeds linear theory (Fr < 0.85). The ship generated waves have a wave height comparable to the upper layer depth. Calculations of three-dimensional wave patterns at critical speed compare well to available laboratory experiments. Upstream solitary waves are generated in a wave tank of finite width, when the layer depths differ, causing an oscillation of the force. In a wide ocean, a very wide wave system develops at critical speed. The force approaches a constant value for increasing time.

  9. Simulating control rod and fuel assembly motion using moving meshes

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, D. [Department of Electrical and Computer Engineering, McMaster University, 1280 Main Street West, Hamilton Ontario, L8S 4K1 (Canada)], E-mail: gilbertdw1@gmail.com; Roman, J.E. [Departamento de Sistemas Informaticos y Computacion, Universidad Politecnica de Valencia, Camino de Vera s/n, 46022 Valencia (Spain); Garland, Wm. J. [Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton Ontario, L8S 4K1 (Canada); Poehlman, W.F.S. [Department of Computing and Software, McMaster University, 1280 Main Street West, Hamilton Ontario, L8S 4K1 (Canada)

    2008-02-15

    A prerequisite for designing a transient simulation experiment which includes the motion of control and fuel assemblies is the careful verification of a steady state model which computes k{sub eff} versus assembly insertion distance. Previous studies in nuclear engineering have usually approached the problem of the motion of control rods with the use of nonlinear nodal models. Nodal methods employ special approximations for the leading and trailing cells of the moving assemblies to avoid the rod cusping problem which results from the naive volume weighted cell cross-section approximation. A prototype framework called the MOOSE has been developed for modeling moving components in the presence of diffusion phenomena. A linear finite difference model is constructed, solutions for which are computed by SLEPc, a high performance parallel eigenvalue solver. Design techniques for the implementation of a patched non-conformal mesh which links groups of sub-meshes that can move relative to one another are presented. The generation of matrices which represent moving meshes which conserve neutron current at their boundaries, and the performance of the framework when applied to model reactivity insertion experiments is also discussed.

  10. Tritium system test assembly control system cost estimate

    International Nuclear Information System (INIS)

    Stutz, R.A.

    1979-01-01

    The principal objectives of the Tritium Systems Test Assembly (TSTA), which includes the development, demonstration and interfacing of technologies related to the deuterium--tritium fuel cycle for fusion reactor systems, are concisely stated. The various integrated subsystems comprising TSTA and their functions are discussed. Each of the four major subdivisions of TSTA, including the main process system, the environmental and safety systems, supporting systems and the physical plant are briefly discussed. An overview of the Master Data Acquisition and Control System, which will control all functional operation of TSTA, is provided

  11. Pati-Salam version of subcritical hybrid inflation

    Science.gov (United States)

    Bryant, B. Charles; Raby, Stuart

    2016-05-01

    In this paper we present a model of subcritical hybrid inflation with a Pati-Salam (PS) symmetry group. Both the inflaton and waterfall fields contribute to the necessary e -foldings of inflation, while only the waterfall field spontaneously breaks PS hence monopoles produced during inflation are diluted during the inflationary epoch. The model is able to produce a tensor-to-scalar ratio, r model also incorporates a Z4R symmetry which can resolve the μ problem and suppress dimension 5 operators for proton decay, leaving over an exact R parity. Finally the model allows for a complete three-family extension with a D4 family symmetry which reproduces low energy precision electroweak and LHC data.

  12. Obtainment of the subcritical reactivity by mean of measurement of APSD and CPSD employing pulse mode detectors in the IPEN/MB-01 reactor

    International Nuclear Information System (INIS)

    Lee, Seung Min

    2014-01-01

    This work presents a new experimental approach to determine the reactivity levels of subcritical systems. The method employs the subcritical kinetic model developed by Gandini and Salvatores and it is based only on measured quantities such as counting rates of the detectors employed in the experiments and the parameters arising from the least squares fitting of the APSD (Auto Power Spectral Density) and CPSD (Cross Power Spectral Density). Detector efficiencies, quantity required in other procedures such as Neutron Source Multiplication (NSM) method, are not needed in the proposed method. The only hypothesis made in the method was the independence of the effective delayed neutron fraction and the prompt neutron generation time to the subcriticality level of the system. The proposed method was applied to measure the reactivity of several subcritical configurations of the IPEN/MB-01 reactor. Measurements of APSD and CPSD were performed in several degrees of subcriticality (up to around -7000 pcm). The spectral densities data were least squares fitted to get the prompt decay mode (α) and other quantities. Beside the startup source of the facility, an external neutron source of Am-Be was installed near the core in order to improve neutron counting statistics. The final experimental results are of good quality. The proposed experimental method shows clearly that the classical point kinetic theory cannot describe the measured reactivity. Instead, the reactivity inferred from this model follows closely the subcriticality index (ζ) for the source arrangements in the experiment. The agreement of the MCNP5 and GPT-TORT results, both with ENDF/B-VII.0 as the basic nuclear data library, when compared to the corresponding experimental ones was also good. (author)

  13. Self-Controlling Rig for Jaw Crusher Assembly

    OpenAIRE

    Saurabh Jadhav; Anup Pawar

    2017-01-01

    The aim of the work is to develop a method for easy assembly of the bearing in the housing by standardized way. The assembly of bearing should take place on the atomized set up. Based on this method a assembly setup was constructed which enables to assembly of the shaft with bearing of different models of jaw crusher. First tests were done with manual alignment and it shows that with proper alignment shaft assembly is very easy operation and also safe. Results of those tests show that the dev...

  14. A Carbon Dioxide Bubble-Induced Vortex Triggers Co-Assembly of Nanotubes with Controlled Chirality.

    Science.gov (United States)

    Zhang, Ling; Zhou, Laicheng; Xu, Na; Ouyang, Zhenjie

    2017-07-03

    It is challenging to prepare co-organized nanotube systems with controlled nanoscale chirality in an aqueous liquid flow field. Such systems are responsive to a bubbled external gas. A liquid vortex induced by bubbling carbon dioxide (CO 2 ) gas was used to stimulate the formation of nanotubes with controlled chirality; two kinds of achiral cationic building blocks were co-assembled in aqueous solution. CO 2 -triggered nanotube formation occurs by formation of metastable intermediate structures (short helical ribbons and short tubules) and by transition from short tubules to long tubules in response to chirality matching self-assembly. Interestingly, the chirality sign of these assemblies can be selected for by the circulation direction of the CO 2 bubble-induced vortex during the co-assembly process. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Subcritical saturation of the magnetorotational instability through mean magnetic field generation

    Science.gov (United States)

    Xie, Jin-Han; Julien, Keith; Knobloch, Edgar

    2018-03-01

    The magnetorotational instability is widely believed to be responsible for outward angular momentum transport in astrophysical accretion discs. The efficiency of this transport depends on the amplitude of this instability in the saturated state. We employ an asymptotic expansion based on an explicit, astrophysically motivated time-scale separation between the orbital period, Alfvén crossing time and viscous or resistive dissipation time-scales, originally proposed by Knobloch and Julien, to formulate a semi-analytical description of the saturated state in an incompressible disc. In our approach a Keplerian shear flow is maintained by the central mass but the instability saturates via the generation of a mean vertical magnetic field. The theory assumes that the time-averaged angular momentum flux and the radial magnetic flux are constant and determines both self-consistently. The results predict that, depending on parameters, steady saturation may be supercritical or subcritical, and in the latter case that the upper (lower) solution branch is always stable (unstable). The angular momentum flux is always outward, consistent with the presence of accretion, and for fixed wavenumber peaks in the subcritical regime. The limit of infinite Reynolds number at large but finite magnetic Reynolds number is also discussed.

  16. Synthesis of biodiesel from soybean oil by coupling catalysis with subcritical methanol

    International Nuclear Information System (INIS)

    Yin Jianzhong; Xiao Min; Wang Aiqin; Xiu Zhilong

    2008-01-01

    Biodiesel synthesis from soybean oil and methanol was investigated under supercritical and subcritical conditions. Under the supercritical conditions, the maximum methyl ester yield exceeded 98% when the molar ratio of methanol to oil was 42:1 and the reaction temperature ranged from 260 deg. C to 350 deg. C. In order to decrease the operational temperature and pressures and to increase the conversion efficiency of methanol, first co-solvent was added to the reaction mixture to improve the reaction process, and then a novel idea was presented in which catalysis and supercritical effect were coupled together. Thus, with 2.5 wt% hexane, temperature of 300 deg. C, methanol to oil ratio of 42, a 85.5% conversion is observed in 30 min, while a 62.2% conversion is observed without hexane in the same condition; with less carbon dioxide, temperature of 300 deg. C, methanol to oil ratio of 42, a 91.6% conversion is observed in 20 min, while a 51.4% conversion is observed without carbon dioxide in the same condition; With only a little amount of potassium hydroxide as the catalyst (KOH/oil = 0.1 wt%), a 98% yield of methyl esters was obtained in 10 min at a reaction temperature of 160 deg. C and the molar ratio (methanol/oil) of 24:1. In contrast, above 1 wt% of catalyst is required in the conventional alkali-catalyzed method; while only 6% yield of methyl ester was obtained at 260 deg. C (corresponding to subcritical conditions) without the catalyst. This result demonstrated that by coupling the catalysis and subcritical operation, the amount of catalyst could be largely reduced and the methanol utilization could be significantly enhanced. Thus, the present method offers some advantages over both the conventional alkali-catalyst method and the expensive supercritical method

  17. Observations of the severity of notch-root radius in initiation of subcritical crack growth

    International Nuclear Information System (INIS)

    Reuter, W.G.; Eiholzer, C.R.; Tupper, M.A.

    1981-01-01

    Slow bend tests were conducted on Charpy specimens containing precracks or machined notches of 0.10 or 0.25 mm radius. The test specimens were fabricated from three heats of annealed Type 304 stainless steel. The purpose of these tests was to examine the effects of notch root radius, in very ductile materials, on initiation of subcritical crack growth. In addition, it was intended to establish the critical values of J, COD, etc. for the single-edge notch specimen for comparison with results obtained from specimens containing surface flaws. This paper will briefly describe only those results of the calculation for J. The tests were monitored by acoustic emission to identify the load corresponding to initiation of subcritical crack growth, by a crack-opening displacement gage (COD), by cross-head displacement, and by stop-action photography

  18. Design and Testing of the Fusion Virtual Assembly System FVAS1.0

    International Nuclear Information System (INIS)

    Pengcheng Long; Songlin Liu; Yican Wu

    2006-01-01

    Virtual assembly (VA), utilizing virtual reality (VR) technologies to plan and evaluate assembly process, retains the benefits (time-saving, inexpensive and no hazardous) of VR technologies and conquers the shortcoming of physical prototypes, such as long circle, high cost, low precision, and so on. Presented in this paper is the Fusion Virtual Assembly System FVAS 1.0 that makes possible engineering application for assemblies of large-scale complex nuclear facilities. FVAS 1.0 is designed to support the planning, evaluation and demonstration of assembly process, and training assemblers, and to work on PC (personal computer) platform. In this paper, architecture and main features of FVAS are introduced firstly. Then, design of the key sections (such as collision detection, virtual roaming) are described in detail. Finally, some successful application cases are presented. To enhance the real-time performance for large-scale nuclear facilities simulation, a policy based on separation of display scene and collision detection scene has been adopted. The display scene can be predigested to reduce the time of scene refreshment, and the collision detection performance is greatly improved by using the mature interference check ability of commercial CAD systems. Convenient observation mechanism brings more practicability. So a multi-viewpoints roaming scheme has been utilized to facilitate users' assembly operation. Users can obtain much optical information from multiple angles by switching between multi-viewpoints. The ESAT superconducting tokamak is characterized by large volume, complicated constitution and high assembly precision, e.g. the strict precision requirement in the assembly for the three tori (the tori of vacuum vessel, thermal shield, and toroidal coil). FVAS 1.0 has succeeded in demonstrating the assembly process of ESAT components. Furthermore, FVAS 1.0 has been applied to evaluate FDS-I (Fusion-Driven Sub-critical system) concept from assembly point of

  19. Neutron fluctuation analysis in a subcritical multiplying system with a stochastically pulsed poisson source

    International Nuclear Information System (INIS)

    Kostic, Lj.

    2003-01-01

    The influence of the stochastically pulsed Poisson source to the statistical properties of the subcritical multiplying system is analyzed in the paper. It is shown a strong dependence on the pulse period and pulse width of the source (author)

  20. Experimental study of elliptical jet from supercritical to subcritical conditions using planar laser induced fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Muthukumaran, C. K.; Vaidyanathan, Aravind, E-mail: aravind7@iist.ac.in [Department of Aerospace Engineering, Indian Institute of Space Science and Technology, Trivandrum, Kerala 695547 (India)

    2015-03-15

    The study of fluid jet dynamics at supercritical conditions involves strong coupling between fluid dynamic and thermodynamic phenomena. Beyond the critical point, the liquid-vapor coexistence ceases to exist, and the fluid exists as a single phase known as supercritical fluid with its properties that are entirely different from liquids and gases. At the critical point, the liquids do not possess surface tension and latent heat of evaporation. Around the critical point, the fluid undergoes large changes in density and possesses thermodynamic anomaly like enhancement in thermal conductivity and specific heat. In the present work, the transition of the supercritical and near-critical elliptical jet into subcritical as well as supercritical environment is investigated experimentally with nitrogen and helium as the surrounding environment. Under atmospheric condition, a liquid jet injected from the elliptical orifice exhibits axis switching phenomena. As the injection temperature increases, the axis switching length also increases. Beyond the critical temperature, the axis switching is not observed. The investigation also revealed that pressure plays a major role in determining the thermodynamic transition of the elliptical jet only for the case of supercritical jet injected into subcritical chamber conditions. At larger pressures, the supercritical jet undergoes disintegration and formation of droplets in the subcritical environment is observed. However, for supercritical jet injection into supercritical environment, the gas-gas like mixing behavior is observed.

  1. Experimental study of elliptical jet from supercritical to subcritical conditions using planar laser induced fluorescence

    International Nuclear Information System (INIS)

    Muthukumaran, C. K.; Vaidyanathan, Aravind

    2015-01-01

    The study of fluid jet dynamics at supercritical conditions involves strong coupling between fluid dynamic and thermodynamic phenomena. Beyond the critical point, the liquid-vapor coexistence ceases to exist, and the fluid exists as a single phase known as supercritical fluid with its properties that are entirely different from liquids and gases. At the critical point, the liquids do not possess surface tension and latent heat of evaporation. Around the critical point, the fluid undergoes large changes in density and possesses thermodynamic anomaly like enhancement in thermal conductivity and specific heat. In the present work, the transition of the supercritical and near-critical elliptical jet into subcritical as well as supercritical environment is investigated experimentally with nitrogen and helium as the surrounding environment. Under atmospheric condition, a liquid jet injected from the elliptical orifice exhibits axis switching phenomena. As the injection temperature increases, the axis switching length also increases. Beyond the critical temperature, the axis switching is not observed. The investigation also revealed that pressure plays a major role in determining the thermodynamic transition of the elliptical jet only for the case of supercritical jet injected into subcritical chamber conditions. At larger pressures, the supercritical jet undergoes disintegration and formation of droplets in the subcritical environment is observed. However, for supercritical jet injection into supercritical environment, the gas-gas like mixing behavior is observed

  2. Controlled short-linkage assembly of functional nano-objects

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhary, Shilpi; Kamra, Tripta [Division of Pure and Applied Biochemistry, Lund University, Box 124, 221 00 Lund (Sweden); ENI AB, Malmö (Sweden); Division of Synchrotron Radiation Research, Lund University, Box 118, 221 00 Lund (Sweden); Uddin, Khan Mohammad Ahsan [Division of Pure and Applied Biochemistry, Lund University, Box 124, 221 00 Lund (Sweden); Snezhkova, Olesia [Division of Synchrotron Radiation Research, Lund University, Box 118, 221 00 Lund (Sweden); Jayawardena, H. Surangi N. [Department of Chemistry, University of Massachusetts Lowell, 1 University Ave., Lowell, MA 01854 (United States); Yan, Mingdi [Department of Chemistry, University of Massachusetts Lowell, 1 University Ave., Lowell, MA 01854 (United States); Department of Chemistry, KTH – Royal Institute of Technology, Teknikringen 30, S-10044 Stockholm (Sweden); Montelius, Lars [ENI AB, Malmö (Sweden); Schnadt, Joachim, E-mail: joachim.schnadt@sljus.lu.se [Division of Synchrotron Radiation Research, Lund University, Box 118, 221 00 Lund (Sweden); Ye, Lei, E-mail: lei.ye@tbiokem.lth.se [Division of Pure and Applied Biochemistry, Lund University, Box 124, 221 00 Lund (Sweden)

    2014-05-01

    Graphical abstract: - Highlights: • Fast photoconjugation of nanoparticles on surface. • Non-destructive feature guarantees intact function of nanoparticles. • Direct contact between nano-objects allows efficient photon and electron transfer. • Possibility of generating patterned nanoparticle assemblies on surface. • Open new opportunities for assembling chemical sensors. - Abstract: In this work, we report a method that allows the deterministic, photo-controlled covalent assembly of nanoparticles directly on surface. As a model system, we study the conjugation of molecularly imprinted polymer (MIP) nanoparticles on a glass surface and confirm that the immobilized nanoparticles maintain their molecular recognition functionality. The glass slide was first modified with perfluorophenylazide and then used to bind MIP nanoparticles under UV irradiation. After each step the surface was analyzed by water contact angle measurement, fluorescence microscopy, scanning electron microscopy, and/or synchrotron-based X-ray photoelectron spectroscopy. The MIP nanoparticles immobilized on the glass surface remained stable and maintained specific binding for the template molecule, propranolol. The method developed in this work allows MIP nanoparticles to be directly coupled to a flat surface, offering a straightforward means to construct robust chemical sensors. Using the reported photo conjugation method, it is possible to generate patterned assembly of nanoparticles using a photomask. Since perfluorophenylazide-based photochemistry works with all kinds of organic material, the method developed in this work is expected to enable immobilization of not only MIPs but also other kinds of organic and inorganic–organic core–shell particles for various applications involving photon or electron transfer.

  3. Controlled short-linkage assembly of functional nano-objects

    International Nuclear Information System (INIS)

    Chaudhary, Shilpi; Kamra, Tripta; Uddin, Khan Mohammad Ahsan; Snezhkova, Olesia; Jayawardena, H. Surangi N.; Yan, Mingdi; Montelius, Lars; Schnadt, Joachim; Ye, Lei

    2014-01-01

    Graphical abstract: - Highlights: • Fast photoconjugation of nanoparticles on surface. • Non-destructive feature guarantees intact function of nanoparticles. • Direct contact between nano-objects allows efficient photon and electron transfer. • Possibility of generating patterned nanoparticle assemblies on surface. • Open new opportunities for assembling chemical sensors. - Abstract: In this work, we report a method that allows the deterministic, photo-controlled covalent assembly of nanoparticles directly on surface. As a model system, we study the conjugation of molecularly imprinted polymer (MIP) nanoparticles on a glass surface and confirm that the immobilized nanoparticles maintain their molecular recognition functionality. The glass slide was first modified with perfluorophenylazide and then used to bind MIP nanoparticles under UV irradiation. After each step the surface was analyzed by water contact angle measurement, fluorescence microscopy, scanning electron microscopy, and/or synchrotron-based X-ray photoelectron spectroscopy. The MIP nanoparticles immobilized on the glass surface remained stable and maintained specific binding for the template molecule, propranolol. The method developed in this work allows MIP nanoparticles to be directly coupled to a flat surface, offering a straightforward means to construct robust chemical sensors. Using the reported photo conjugation method, it is possible to generate patterned assembly of nanoparticles using a photomask. Since perfluorophenylazide-based photochemistry works with all kinds of organic material, the method developed in this work is expected to enable immobilization of not only MIPs but also other kinds of organic and inorganic–organic core–shell particles for various applications involving photon or electron transfer

  4. Fuel assembly

    International Nuclear Information System (INIS)

    Gjertsen, R.K.; Bassler, E.A.; Huckestein, E.A.; Salton, R.B.; Tower, S.N.

    1988-01-01

    A fuel assembly adapted for use with a pressurized water nuclear reactor having capabilities for fluid moderator spectral shift control is described comprising: parallel arranged elongated nuclear fuel elements; means for providing for axial support of the fuel elements and for arranging the fuel elements in a spaced array; thimbles interspersed among the fuel elements adapted for insertion of a rod control cluster therewithin; means for structurally joining the fuel elements and the guide thimbles; fluid moderator control means for providing a volume of low neutron absorbing fluid within the fuel assembly and for removing a substantially equivalent volume of reactor coolant water therefrom, a first flow manifold at one end of the fuel assembly sealingly connected to a first end of the moderator control tubes whereby the first ends are commonly flow connected; and a second flow manifold, having an inlet passage and an outlet passage therein, sealingly connected to a second end of the moderator control tubes at a second end of the fuel assembly

  5. Analysis of fuel management in the KIPT neutron source facility

    International Nuclear Information System (INIS)

    Zhong Zhaopeng; Gohar, Yousry; Talamo, Alberto

    2011-01-01

    Research highlights: → Fuel management of KIPT ADS was analyzed. → Core arrangement was shuffled in stage wise. → New fuel assemblies was added into core periodically. → Beryllium reflector could also be utilized to increase the fuel life. - Abstract: Argonne National Laboratory (ANL) of USA and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have been collaborating on the conceptual design development of an experimental neutron source facility consisting of an electron accelerator driven sub-critical assembly. The neutron source driving the sub-critical assembly is generated from the interaction of 100 KW electron beam with a natural uranium target. The sub-critical assembly surrounding the target is fueled with low enriched WWR-M2 type hexagonal fuel assemblies. The U-235 enrichment of the fuel material is <20%. The facility will be utilized for basic and applied research, producing medical isotopes, and training young specialists. With the 100 KW electron beam power, the total thermal power of the facility is ∼360 kW including the fission power of ∼260 kW. The burnup of the fissile materials and the buildup of fission products continuously reduce the system reactivity during the operation, decrease the neutron flux level, and consequently impact the facility performance. To preserve the neutron flux level during the operation, the fuel assemblies should be added and shuffled for compensating the lost reactivity caused by burnup. Beryllium reflector could also be utilized to increase the fuel life time in the sub-critical core. This paper studies the fuel cycles and shuffling schemes of the fuel assemblies of the sub-critical assembly to preserve the system reactivity and the neutron flux level during the operation.

  6. Subcritical molten salt reactor with fast/intermediate spectrum for minor actinides transmutation

    International Nuclear Information System (INIS)

    Degtyarev, Alexey M.; Feinberg, Olga S.; Kolyaskin, Oleg E.; Myasnikov, Andrey A.; Karmanov, Fedor I.; Kuznetsov, Andrey Yu.; Ponomarev, Leonid I.; Seregin, Mikhail B.; Sidorkin, Stanislav F.

    2011-01-01

    The subcritical molten-salt reactor for transmutation of Am and Cm with the fast-intermediate neutron spectrum is suggested. It is shown that ∼10 such reactor-burners is enough to support the future nuclear power based on the fast reactors as well as for the transmutation of Am and Cm accumulated in the spent fuel storages. (author)

  7. DNA controlled assembly of liposomes

    DEFF Research Database (Denmark)

    Vogel, Stefan; Jakobsen, Ulla; Simonsen, Adam Cohen

    2009-01-01

    DNA-encoding of solid nanoparticles requires surfacechemistry, which is often tedious and not generally applicable. In the present study non-covalently attached DNA are used to assemble soft nanoparticles (liposomes) in solution. This process displays remarkably sharp thermal transitions from...... assembled to disassembled state for which reason this method allows easy and fast detection of polynucleotides (e.g. DNA or RNA), including single nucleotide polymorphisms as well as insertions and deletions....

  8. Critical and sub-critical experiments on U-BeO lattices

    International Nuclear Information System (INIS)

    Benoist, P.; Gourdon, Ch.; Martelly, J.; Sagot, M.; Wanner, G.

    1958-01-01

    Sub-critical experiments have allowed us to measure the material buckling of uranium natural oxide of beryllium lattices with a grid of 15 cm, and made up of uranium bars measuring 2.60 - 2.92 - 3.56 and 4.40 cm of diameter. A critical experiment has then been conducted with hollow 1.35 per cent enriched uranium bars. A study of U-BeO 18.03 cm grid lattices is at present being conducted. (author) [fr

  9. A proton-driven, intense, subcritical, fission neutron source for radioisotope production

    Energy Technology Data Exchange (ETDEWEB)

    Jongen, Y. [Chemin du Cyclotron, Louvain-la-Neuve (Belgium)

    1995-10-01

    {sup 99m}Tc, the most frequently used radioisotope in nuclear medicine, is distributed as {sup 99}Mo=>{sup 99m}Tc generators. {sup 99}Mo is a fission product of {sup 235}U. To replace the aging nuclear reactors used today for this production, the author proposes to use a spallation neutron source, with neutron multiplication by fission. A 150 MeV, H{sup {minus}} cyclotron can produce a 225 kW proton beam with 50% total system energy efficiency. The proton beam would hit a molten lead target, surrounded by a water moderator and a graphite reflector, producing around 0.96 primary neutron per proton. The primary spallation neutrons, moderated, would strike secondary targets containing a subcritical amount of {sup 235}U. The assembly would show a k{sub eff} of 0.8, yielding a fivefold neutron multiplication. The thermal neutron flux at the targets location would be 2 {times} 10{sup 14} n/cm{sup 2}.s, resulting in a fission power of 500 to 750 kW. One such system could supply the world demand in {sup 99}Mo, as well as other radioisotopes. Preliminary indications show that the cost would be lower than the cost of a commercial 10 MW isotope production reactor. The cost of operation, of disposal of radiowaste and of decommissioning should be significantly lower as well. Finally, the non-critical nature of the system would make it more acceptable for the public than a nuclear reactor and should simplify the licensing process.

  10. Controllable assembly of silver nanoparticles induced by femtosecond laser direct writing

    International Nuclear Information System (INIS)

    Wang, Huan; Liu, Sen; Zhang, Yong-Lai; Wang, Jian-Nan; Wang, Lei; Xia, Hong; Chen, Qi-Dai; Sun, Hong-Bo; Ding, Hong

    2015-01-01

    We report controllable assembly of silver nanoparticles (Ag NPs) for patterning of silver microstructures. The assembly is induced by femtosecond laser direct writing (FsLDW). A tightly focused femtosecond laser beam is capable of trapping and driving Ag NPs to form desired micropatterns with a high resolution of ∼190 nm. Taking advantage of the ‘direct writing’ feature, three microelectrodes have been integrated with a microfluidic chip; two silver-based microdevices including a microheater and a catalytic reactor have been fabricated inside a microfluidic channel for chip functionalization. The FsLDW-induced programmable assembly of Ag NPs may open up a new way to the designable patterning of silver microstructures toward flexible fabrication and integration of functional devices. (focus issue paper)

  11. Assembly of Liposomes Controlled by Triple Helix Formation

    DEFF Research Database (Denmark)

    Vogel, Stefan; Jakobsen, Ulla

    2013-01-01

    Attachment of DNA to the surface of different solid nanoparticles (e.g. gold- and silica nanoparticles) is well established and a number of DNA-modified solid nanoparticle systems have been applied to thermal denaturation analysis of oligonucleotides. We report herein the non-covalent immobilizat...... analysis (NTA) and dynamic light scattering (DLS) show independently from ultraviolet spectroscopy experiments the formation of liposome aggregates.......-covalent immobilization of oligonucleotides on the surface of soft nanoparticles (e.g. liposomes) and the subsequent controlled assembly by DNA triple helix formation. The non-covalent approach avoids tedious surface chemistry and necessary purification procedures and can simplify and extend the available methodology...... sequences (G or C-rich) to explore the applicability of the method for different triple helical assembly modes. We demonstrate advantages and limitations of the approach and proof the reversible and reproducible formation of liposome aggregates during thermal denaturation cycles. Nanoparticle tracking...

  12. Subcritical ethanol extraction of flavonoids from Moringa oleifera leaf and evaluation of antioxidant activity.

    Science.gov (United States)

    Wang, Yongqiang; Gao, Yujie; Ding, Hui; Liu, Shejiang; Han, Xu; Gui, Jianzhou; Liu, Dan

    2017-03-01

    A large-scale process to extract flavonoids from Moringa oleifera leaf by subcritical ethanol was developed and HPLC-MS analysis was conducted to qualitatively identify the compounds in the extracts. To optimize the effects of process parameters on the yield of flavonoids, a Box-Behnken design combined with response surface methodology was conducted in the present work. The results indicated that the highest extraction yield of flavonoids by subcritical ethanol extraction could reach 2.60% using 70% ethanol at 126.6°C for 2.05h extraction. Under the optimized conditions, flavonoids yield was substantially improved by 26.7% compared with the traditional ethanol reflux method while the extraction time was only 2h, and obvious energy saving was observed. FRAP and DPPH assays showed that the extracts had strong antioxidant and free radical scavenging activities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Controllable self-assembly of sodium caseinate with a zwitterionic vitamin-derived bolaamphiphile.

    Science.gov (United States)

    Sun, Li-Hui; Sun, Yu-Long; Yang, Li-Jun; Zhang, Jian; Chen, Zhong-Xiu

    2013-11-06

    The control of self-assembly of sodium caseinate (SC) including the formation of mixed layers, microspheres, or nanoparticles is highly relevant to the microstructure of food and the design of promising drug delivery systems. In this paper, we designed a structure-switchable zwitterionic bolaamphiphile, 1,12-diaminododecanediorotate (DDO), from orotic acid, which has special binding sites and can guide the self-assembly of SC. Complexation between SC and DDO was investigated using dynamic light scattering, transmission electron microscopy, differential scanning calorimetry, and fluorescence spectra measurements. Monomeric DDO was bound to the negatively charged sites on the SC micelle and made the structure of SC more compact with decreased electrostatic repulsion between the head groups. Vesicular DDO led to reassociation of vesicles with enlarged size via preferable hydrophobic interactions. Moreover, the aggregation between SC and DDO was found to be temperature-dependent and reversible. This research provides an effective way to control the reversible self-assembly of SC by the zwitterionic vitamin-derived bolaamphiphile.

  14. Defect- and dopant-controlled carbon nanotubes fabricated by self-assembly of graphene nanoribbons

    Institute of Scientific and Technical Information of China (English)

    Cun Zhang and Shaohua Chen

    2015-01-01

    Molecular dynamics simulations showed that a basal carbon nanotube can activate and guide the fabrication of single-walled carbon nanotubes (CNTs) on its internal surface by self-assembly of edge-unpassivated graphene nanoribbons with defects. Furthermore, the distribution of defects on self-assembled CNTs is controllable. The system temperature and defect fraction are two main factors that influence the success of self-assembly. Due to possible joint flaws formed at the boundaries under a relatively high constant temperature, a technique based on increasing the temperature is adopted. Self-assembly is always successful for graphene nanoribbons with relatively small defect fractions, while it will fail in cases with relatively large ones. Similar to the self-assembly of graphene nanoribbons with defects, graphene nanoribbons with different types of dopants can also be self-assembled into carbon nanotubes. The finding provides a possible fabrication technique not only for carbon nanotubes with metallic or semi-con- ductive properties but also for carbon nanotubes with electromagnetic induction characteristics.

  15. Advanced electrical current measurements of microdischarges: evidence of sub-critical pulses and ion currents in barrier discharge in air

    Science.gov (United States)

    Synek, Petr; Zemánek, Miroslav; Kudrle, Vít; Hoder, Tomáš

    2018-04-01

    Electrical current measurements in corona or barrier microdischarges are a challenge as they require both high temporal resolution and a large dynamic range of the current probe used. In this article, we apply a simple self-assembled current probe and compare it to commercial ones. An analysis in the time and frequency domain is carried out. Moreover, an improved methodology is presented, enabling both temporal resolution in sub-nanosecond times and current sensitivity in the order of tens of micro-amperes. Combining this methodology with a high-tech oscilloscope and self-developed software, a unique statistical analysis of currents in volume barrier discharge driven in atmospheric-pressure air is made for over 80 consecutive periods of a 15 kHz applied voltage. We reveal the presence of repetitive sub-critical current pulses and conclude that these can be identified with the discharging of surface charge microdomains. Moreover, extremely low, long-lasting microsecond currents were detected which are caused by ion flow, and are analysed in detail. The statistical behaviour presented gives deeper insight into the discharge physics of these usually undetectable current signals.

  16. Nuclear power history calculation for subcritical systems using Euler-MacLaurin formula

    International Nuclear Information System (INIS)

    Henrice Junior, Edson; Goncalves, Alessandro da Cruz

    2013-01-01

    This paper presents an efficient method for calculating the reactivity using inverse point kinetic equation for subcritical systems by applying the Euler-MacLaurin summation formula to calculate the nuclear power history. In accordance with the accuracy of the numerical results, this method does not require a large number of points for calculation, providing accurate results with low computational cost. (author)

  17. Subcritical fracture propagation in rocks: An examination using the methods of fracture mechanics and non-destructive testing. Ph.D. Thesis

    Science.gov (United States)

    Swanson, P. L.

    1984-01-01

    An experimental investigation of tensile rock fracture is presented with an emphasis on characterizing time dependent crack growth using the methods of fracture mechanics. Subcritical fracture experiments were performed in moist air on glass and five different rock types at crack velocities using the double torsion technique. The experimental results suggest that subcritical fracture resistance in polycrystals is dominated by microstructural effects. Evidence for gross violations of the assumptions of linear elastic fracture mechanics and double torsion theory was found in the tests on rocks. In an effort to obtain a better understanding of the physical breakdown processes associated with rock fracture, a series of nondestructive evaluation tests were performed during subcritical fracture experiments on glass and granite. Comparison of the observed process zone shape with that expected on the basis of a critical normal principal tensile stress criterion shows that the zone is much more elongated in the crack propagation direction than predicted by the continuum based microcracking model alone.

  18. Comparison studies of surface cleaning methods for PAN-based carbon fibers with acetone, supercritical acetone and subcritical alkali aqueous solutions

    International Nuclear Information System (INIS)

    Meng Linghui; Fan Dapeng; Huang Yudong; Jiang Zaixing; Zhang Chunhua

    2012-01-01

    Highlights: ► Cleaning with supercritical acetone is appropriate to wipe off the oxygenated contaminants. ► Cleaning with supercritical acetone causes smaller damage to bulk strength of carbon fibers. ► Cleaning with subcritical alkali aqueous solution can thoroughly remove silicious contaminants. - Abstract: Four kinds of polyacrylonitrile-based carbon fibers were cleaned by three methods and were characterized by X-ray photoelectron spectroscopy, monofilament tensile strength test and atomic force microscopy (AFM). Experimental results of these tests reveal that the method using supercritical acetone or subcritical potassium hydroxide aqueous solution act as the processing medium shows a better cleaning effect compared to the traditional method, Soxhlet extraction with acetone. The method using supercritical acetone is more appropriate to wipe off the oxygenated contaminants on carbon fibers’ surfaces and causes a relatively smaller damage to the bulk strength of each carbon fiber. As far as treating method using the subcritical alkali aqueous solution, it can thoroughly remove silicious contaminants on the surfaces of treated fibers.

  19. An MCNP parametric study of George C. Laurence's subcritical pile experiment

    International Nuclear Information System (INIS)

    Dranga, R.; Blomeley, L.; Carrington, R.

    2014-01-01

    In the early 1940s at the National Research Council (NRC) Laboratories in Ottawa, Canada, Dr. George Laurence conducted several experiments to determine if a sustained nuclear fission chain reaction in a carbon-uranium arrangement (or 'pile') was possible. Although Dr. Laurence did not achieve criticality, these pioneering experiments marked a significant historical event in nuclear science, and they provided a valuable reference for subsequent experiments that led to the design of Canada's first heavy-water reactors at the Chalk River Nuclear Laboratories. This paper summarizes the results of a recent collaborative project between Atomic Energy of Canada Limited and the Deep River Science Academy undertaken to numerically explore the experiments carried out at the NRC Laboratories by Dr. Laurence, while teaching high school students about nuclear science and technology. In this study, a modern Monte Carlo reactor physics code, MCNP6, was utilized to identify and study the key parameters impacting the subcritical pile's neutron multiplication factor (e.g., moderation, geometry, material impurities) and quantify their effect on the extent of subcriticality. The findings presented constitute the first endeavour to model, using a current computational reactor physics tool, the seminal experiment that provided the foundation of Canada's nuclear science and technology program. (author)

  20. Submersion-Subcritical Safe Space (S4) reactor

    International Nuclear Information System (INIS)

    King, Jeffrey C.; El-Genk, Mohamed S.

    2006-01-01

    The Submersion-Subcritical Safe Space (S 4 ) reactor, developed for future space power applications and avoidance of single point failures, is presented. The S 4 reactor has a Mo-14% Re solid core, loaded with uranium nitride fuel, cooled by He-30% Xe and sized to provide 550 kWth for 7 years of equivalent full power operation. The beryllium oxide reflector of the S 4 reactor is designed to completely disassemble upon impact on water or soil. The potential of using Spectral Shift Absorber (SSA) materials in different forms to ensure that the reactor remains subcritical in the worst-case submersion accident is investigated. Nine potential SSAs are considered in terms of their effect on the thickness of the radial reflector and on the combined mass of the reactor and the radiation shadow shield. The SSA materials are incorporated as a thin (0.1 mm) coating on the outside surface of the reactor core and as core additions in three possible forms: 2.0 mm diameter pins in the interstices of the core block, 0.25 mm thick sleeves around the fuel stacks and/or additions to the uranium nitride fuel. Results show that with a boron carbide coating and 0.25 mm iridium sleeves around the fuel stacks the S 4 reactor has a reflector outer diameter of 43.5 cm with a combined reactor and shadow shield mass of 935.1 kg. The S 4 reactor with 12.5 at.% gadolinium-155 added to the fuel, 2.0 mm diameter gadolinium-155 sesquioxide interstitial pins, and a 0.1 mm thick gadolinium-155 sesquioxide coating has a slightly smaller reflector outer diameter of 43.0 cm, resulting in a smaller total reactor and shield mass of 901.7 kg. With 8.0 at.% europium-151 added to the fuel, along with europium-151 sesquioxide for the pins and coating, the reflector's outer diameter and the total reactor and shield mass are further reduced to 41.5 cm and 869.2 kg, respectively

  1. PILOT-SCALE SUBCRITICAL WATER REMEDIATION OF POLYCYCLIC AROMATIC HYDROCARBON- AND PESTICIDE-CONTAMINATED SOIL. (R825394)

    Science.gov (United States)

    Subcritical water (hot water under enough pressure to maintain the liquid state) was used to remove polycyclic aromatic hydrocarbons (PAHs) and pesticides from highly contaminated soils. Laboratory-scale (8 g of soil) experiments were used to determine conditions f...

  2. Subcritical-Water Extraction of Organics from Solid Matrices

    Science.gov (United States)

    Amashukeli, Xenia; Grunthaner, Frank; Patrick, Steven; Kirby, James; Bickler, Donald; Willis, Peter; Pelletier, Christine; Bryson, Charles

    2009-01-01

    An apparatus for extracting organic compounds from soils, sands, and other solid matrix materials utilizes water at subcritical temperature and pressure as a solvent. The apparatus, called subcritical water extractor (SCWE), is a prototype of subsystems of future instrumentation systems to be used in searching for organic compounds as signs of past or present life on Mars. An aqueous solution generated by an apparatus like this one can be analyzed by any of a variety of established chromatographic or spectroscopic means to detect the dissolved organic compound( s). The apparatus can be used on Earth: indeed, in proof-of-concept experiments, SCWE was used to extract amino acids from soils of the Atacama Desert (Chile), which was chosen because the dryness and other relevant soil conditions there approximate those on Mars. The design of the apparatus is based partly on the fact that the relative permittivity (also known as the dielectric constant) of liquid water varies with temperature and pressure. At a temperature of 30 C and a pressure of 0.1 MPa, the relative permittivity of water is 79.6, due to the strong dipole-dipole electrostatic interactions between individual molecular dipoles. As the temperature increases, increasing thermal energy causes increasing disorientation of molecular dipoles, with a consequent decrease in relative permittivity. For example, water at a temperature of 325 C and pressure of 20 MPa has a relative permittivity of 17.5, which is similar to the relative permittivities of such nonpolar organic solvents as 1-butanol (17.8). In the operation of this apparatus, the temperature and pressure of water are adjusted so that the water can be used in place of commonly used organic solvents to extract compounds that have dissimilar physical and chemical properties.

  3. Multigeometry Nanoparticle Engineering via Kinetic Control through Multistep assembly

    Science.gov (United States)

    Chen, Yingchao; Wang, Xiaojun; Zhang, Ke; Zhang, Fuwu; Mays, Jimmy; Wooley, Karen; Pochan, Darrin

    2014-03-01

    Organization of block copolymers into complicated multicompartment (MCM) and multigeometry (MGM) nanostructures is of increasing interest. Multistep, co-assembly methods resulting in kinetic control processing was used to produce complex nanoparticles that are not obtained via other assembly methods. Vesicle-cylinder, separate vesicle and cylinder, disk-cylinder, and mixed vesicle nanoparticles were constructed by binary blends of distinct diblock copolymers. Initially, the vesicle former polyacrylic acid-polyisoprene and cylinder former polyacrylic acid-polystyrene which share the same hydrophilic domain but immiscible hydrophobic domain were blended in THF. Secondly, dimaine molecules are added to associate with the common hydrophilic PAA. Importantly, and lastly, by tuning the kinetic addition rate of selective, miscible solvent water, the unlike hydrophobic blocks are kinetically trapped into one particle and eventually nanophase separate to form multiple compartments and multigeometries. The effective bottom-up multistep assembly strategies can be applied in other binary/ternary blends, in which new vesicle-sphere, disk-disk and cylinder-cylinder MCM/MGM nanoparticles were programed. We are grateful for the financial support from the National Science Funding DMR-0906815 (D.J.P. and K.L.W.) and NIST METROLOGY POCHAN 2012.

  4. Lithographic stress control for the self-assembly of polymer MEMS structures

    International Nuclear Information System (INIS)

    Lee, S-W; Sameoto, D; Parameswaran, M; Mahanfar, A

    2008-01-01

    We present a novel self-assembly mechanism to produce an assortment of predetermined three-dimensional micromechanical structures in polymer MEMS technology using lithographically defined areas of stress and mechanical reinforcement within a single structural material. This self-assembly technology is based on the tensile stress that arises during the cross-linking of the negative tone, epoxy-based photoresist SU-8. Two different thicknesses of SU-8 are used in a single compliant structure. The first SU-8 layer forms the main structural element and the second SU-8 layer determines the aspects of self-assembly. The second SU-8 layer thickness acts to both to create a stress differential within the structure as well as define the direction in which the induced stress will cause the structure to deform. In this manner, both the magnitude and direction of self-assembled structures can be controlled using a single lithographic step. Although this technique uses a single structural material, the basic concept may be adapted for other processes, with different material choices, for a wide variety of applications

  5. Measurement of subcritical multiplication by the interval distribution method

    International Nuclear Information System (INIS)

    Nelson, G.W.

    1985-01-01

    The prompt decay constant or the subcritical neutron multiplication may be determined by measuring the distribution of the time intervals between successive neutron counts. The distribution data is analyzed by least-squares fitting to a theoretical distribution function derived from a point reactor probability model. Published results of measurements with one- and two-detector systems are discussed. Data collection times are shorter, and statistical errors are smaller the nearer the system is to delayed critical. Several of the measurements indicate that a shorter data collection time and higher accuracy are possible with the interval distribution method than with the Feynman variance method

  6. Subcritical crack growth along polymer interfaces

    Science.gov (United States)

    Gurumurthy, Charavana Kumara

    2000-10-01

    The adhesion characteristics have been investigated for a polyimide (PI)/model epoxy (ME) interface that is important for microelectronic applications. The fracture toughness (G*c) of this interface has been measured using an asymmetric double cantilever beam (ADCB) technique. The G*c is low, 10-25 J/m 2, and is sensitive to the mechanical phase angle psi. A modified ADCB setup has been used to measure the subcritical crack growth velocity v due to the stress-assisted water attack (SAWA) at various relative humidities (RH) and temperatures (T) as a function of its driving force (the strain energy release rate) G*. The threshold G* decreases remarkably. Above the threshold log v rises linearly with √ G* (a hydrolysis controlled regime) but then enters a regime where the crack velocity is almost independent of √G*, i.e., v = v* (a transport controlled regime). A model for SAWA has been developed based on thermally-activated kinetics for hydrolysis of the ester covalent bonds that bridge from one side to the other of the interface. A new technique has been developed for the determination of the fatigue crack growth under thermal (T) and hydro-thermal (HT) conditions as a function of the range in the strain energy release rate (DeltaG). Under T-fatigue, the fatigue crack growth per unit temperature cycle (da/dN) increases as a power of DeltaG, i.e., a Paris law relationship holds. The HT da/dN measured is higher than da/dN under T-fatigue conditions and has been successfully modeled as a summation of two components: (a) the da/dN due to T-fatigue and (b) the da/dN due to the SAWA along the interface for a given T-cycle. A surface modification procedure that converts a thin interpenetrated by a solvent cast ME is used to strengthen ME/PI interface. The G* c increases with the interpenetration distance w. Increasing w also improves the resistance of the PI/ME interface to SAWA with the threshold G* increasing and the water transport controlled velocity (v

  7. Sub-critical crack growth and clad integrity in a PWR reactor pressure vessel

    International Nuclear Information System (INIS)

    Tice, D.R.; Foreman, A.J.E.; Sharples, J.K.

    1987-10-01

    The possibility of in-service growth of sub-critical defects in a PWR reactor pressure vessel to a critical size which could result in vessel failure was addressed in both the 1976 and 1982 reports of the Light Water Reactor Study Group (LWRSG), under the Chairmanship of Dr W Marshall (now Lord Marshall). An addendum to this report was published by UKAEA in April 1987. The section of the addendum dealing with subcritical crack growth and the related issue of integrity of the stainless steel cladding on the inner vessel surface is reproduced in this report. This section of the LWRSG addendum provides a review of the current status of fatigue crack growth and environmentally assisted cracking research for pressure vessel steels in light water reactor environments, as well as a review of developments in crack growth assessment methods. The review concludes that the alternative assessment procedures now being developed give a more realistic prediction of in service crack growth than the ASME Section XI Appendix A fatigue crack growth curves. (author)

  8. Gate-controlled metal-insulator transition in the LaAlO{sub 3}/SrTiO{sub 3} system with sub-critical LaAlO{sub 3} thickness

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Joon Sung; Lee, Seung Ran; Chang, Jung-Won; Noh, Hyunho; Baasandorj, Lkhagvasuren; Shim, Seung-Bo; Kim, Jinhee [Korea Research Institute of Standards and Science, Daejeon 305-600 (Korea, Republic of); Seung, Sang Keun; Shin, Hyun Sup; Song, Jonghyun [Department of Physics, Chungnam National University, Daejeon 305-764 (Korea, Republic of)

    2012-12-15

    We studied the electrical conduction in the LaAlO{sub 3}/SrTiO{sub 3} (LAO/STO) interface electron system with a sub-critical LAO layer thickness of {proportional_to}3.5 unit cells (uc). It was found that the true dividing point between metallic and insulating behaviour without gating lies near the LAO thickness of 3.5 uc. Our marginally metallic 3.5 uc sample showed a sharp transition to insulating state at temperatures which strongly depended on the applied negative back-gate voltage. The superior gate-controllability of the sample was attributed to its sheet carrier density which was an order of magnitude lower than those of conducting LAO/STO samples with 4 uc or more of LAO layers. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Development and characterization of the control assembly system for the large 2400 MWth Generation IV gas-cooled fast reactor

    International Nuclear Information System (INIS)

    Girardin, G.; Rimpault, G.; Morin, F.; Bosq, J.C.; Coddington, P.; Mikityuk, K.; Chawla, R.

    2008-01-01

    The present paper is related to the design and neutronic characterization of the principal control assembly system for the reference large (2400 MWth) Generation IV gas-cooled fast reactor (GFR), which makes use of ceramic-ceramic (CERCER) plate-type fuel-elements with (U-Pu) carbide fuel contained within a SiC inert matrix. For the neutronic calculations, the deterministic code system ERANOS-2.0 has been used, in association with a full core model including a European fast reactor (EFR)-type pattern for the control assemblies as a starting point. More specifically, the core contains a total of 33 control (control system device: CSD) and safety (diverse safety device: DSD) assemblies implemented in three banks. In the design of the new control assembly system, particular attention was given to the heat generation within the assemblies, so that both neutronic and thermal-hydraulic constraints could be appropriately accounted for. The thermal-hydraulic calculations have been performed with the code COPERNIC, significant coolant mass flow rates being found necessary to maintain acceptable cladding temperatures of the absorber pins. Complementary to the design study, neutronic investigations have been performed to assess the impact of the control assemblies in the GFR core in greater detail (rod interactions, shift of the flux, peaking factors, etc.). Thus, considerable shadowing effects have been observed between the first bank and the safety bank, as also between individual assemblies within the first bank. Large anti-shadowing effects also occur, the most prominent being that between the two CSD banks, where the total assembly worth is almost doubled in comparison to the sum of the individual values. Additional investigations have been performed and, in this context, it has been found that computation of the first-order eigenvalue and the eigenvalue separation is a robust tool to anticipate control assembly interactions in a large fast-spectrum core. One interesting

  10. Nuclear reactor fuel assembly

    International Nuclear Information System (INIS)

    Vikhorev, Yu.V.; Biryukov, G.I.; Kirilyuk, N.A.; Lobanov, V.N.

    1977-01-01

    A fuel assembly is proposed for nuclear reactors allowing remote replacement of control rod bundles or their shifting from one assembly to another, i.e., their multipurpose use. This leads to a significant increase in fuel assembly usability. In the fuel assembly the control rod bundle is placed in guide tube channels to which baffles are attached for fuel element spacing. The remote handling of control rods is provided by a hollow cylinder with openings in its lower bottom through which the control rods pass. All control rods in a bundle are mounted to a cross beam which in turn is mounted in the cylinder and is designed for grasping the whole rod bundle by a remotely controlled telescopic mechanism in bundle replacement or shifting. (Z.M.)

  11. Calculation of the local power peaking near WWER-440 control assemblies with Hf plates

    International Nuclear Information System (INIS)

    Hegyi, Gy.; Hordosy, G.; Kereszturi, A.; Maraszy, Cs.; Temesvari, E.

    2003-01-01

    The original coupler design of the WWER-440 assemblies had the following well known deficiency: The relatively large amount of water in the coupler between the absorber and fuel port of the control assembly can cause undesirably sharp power peaking in the fuel rods next to the coupler. The power peaking can be especially high after control rod withdrawal when the coupler reached low burnup level region of the adjacent assembly. The modernized coupler design overcomes the original problem by applying a thin Hf plate in the critical region. The very complicated structure of the coupler requires the verification of the core design methods by high precision 3D Monte Carlo calculations. The paper presents an MCNP reference calculation on the control rod coupler benchmark with Hf absorber plates. The benchmark solution with the KARATE-440 code system is also presented. The need for treating the Hf burnout in the reflector region is investigated (Authors)

  12. Sub-critical water as a green solvent for production of valuable materials from agricultural waste biomass: A review of recent work

    Directory of Open Access Journals (Sweden)

    A. Shitu

    2015-07-01

    Full Text Available Agricultural waste biomass generated from agricultural production and food processing industry are abundant, such as durian  peel, mango peel, corn straw, rice bran, corn shell, potato peel and many more. Due to low commercial value, these wastes are disposed in landfill, which if not managed properly may cause environmental problems. Currently, environmental laws and regulations pertaining to the pollution from agricultural waste streams by regulatory agencies are stringent and hence the application of toxic solvents during processing has become public concern. Recent development in valuable materials extraction from the decomposition of agricultural waste by sub-critical water treatment from the published literature was review. Physico-chemical characteristic (reaction temperature, reaction time and solid to liquid ratio of the sub-critical water affecting its yield were also reviewed. The utilization of biomass residue from agriculture, forest wood production and from food and feed processing industry may be an important alternative renewable energy supply. The paper also presents future research on sub-critical water.

  13. Design of the MYRRHA Spallation Target Assembly

    International Nuclear Information System (INIS)

    Keijers, S.; Fernandez, R.; Stankovskiy, A.; Kennedy, G.; Van Tichelen, K.

    2015-01-01

    MYRRHA (Multi-purpose hybrid Research Reactor for High-tech Applications) is a multi-purpose research facility currently being developed at SCK.CEN. MYRRHA is based on the ADS (Accelerator Driven System) concept where a proton accelerator, a spallation target and a subcritical reactor are coupled. MYRRHA will demonstrate the ADS full concept by coupling these three components at a reasonable power level. As a flexible irradiation facility, the MYRRHA research reactor will be able to work in both critical and subcritical modes. In this way, MYRRHA will allow fuel developments for innovative reactor systems, material research for GEN IV and fusion reactors, and radioisotope production for medical and industrial applications. MYRRHA will be cooled by Lead Bismuth Eutectic (LBE) and will play an important role in the development of the Pb-alloys technology needed for the LFR (Lead Fast Reactor) GEN IV concept. This paper describes the evolution of the MYRRHA spallation target design. In the early phase of the MYRRHA project (XT-ADS), the target design was based on a dedicated spallation loop inside the primary reactor vessel. Within the core, the 3 central fuel assembly positions were occupied by the spallation target, which enabled a windowless design created by a free surface of LBE facing the proton beam. The windowless option was preferred because of high heat loads in combination with severe irradiation damage in the target region would result in unacceptably short lifetimes of a target window. The LBE in the loop served as spallation target and as target coolant, but was separated from the LBE cooling the reactor core. The loop was equipped with its own pump, heat exchanger and conditioning system. The change from cyclotron to linear accelerator allowed the increase in proton energy from 350 MeV to 600 MeV. This modification led to an important reduction of the specific heat load at the target level and an improvement of the neutronic performance. In addition to

  14. On the estimation of subcritical reactivity by the pulsed α-method

    International Nuclear Information System (INIS)

    Shulepin, V.S.

    1974-01-01

    A technique for calculating the neutron generation time is considered. It is based on the use of only basic (non-conjugate) conditionally critical reactor equations. The formula is drawn to show the relation between the reactivity coefficient Ksub(eff), damping decrement and neutron generation time. Some transformations result in a conditionally critical equation at Ksub(eff) equal to unit, from which the neutron generation time is found that is necessary to measure subcritical reactivity by the α-method

  15. Measurement of neutron importance by a dynamic method

    International Nuclear Information System (INIS)

    Dmitriev, V.M.; Matusevich, E.S.; Regushevskij, V.I.; Sazonov, S.P.; Usikov, D.A.

    1977-01-01

    A procedure is proposed for measuring neutron importance spatial distribution in a critical reactor by determining the parameters of its run-up with a constant neutron source. 252 Cf quasiisotropic point source was used. The measurements were performed at a critical assembly with a highly enriched uranium core and beryllium reflector. Importance distributions in critical and subsritical assemblies were compared for various degrees of subcriticality. Absolute normalization for the importance was obtained, and some new integral reactor characteristics were determined experimentally on its basis. An experimental data acquisition and processing system was developed on the basis of the ELECTRONIKA-100 computer. An algorithm was also developed for statistical treatment of the data. The importance distributions in critical and subcritical assemblies proved to coincide up to a rather deep subcriticality

  16. Treatment of fluctuations of startup rates for core subcriticality monitoring

    International Nuclear Information System (INIS)

    Mol, Antonio Carlos de Abreu; Martinez, Aquilino Senra

    1996-01-01

    In this paper it is presented a method to eliminate the variations in the source and intermediate range count rate, which are used for the on-line and real time monitoring of the critical safety function Subcriticality. The method may be applied to a safety parameters display system, because it is very simple and precise, which it will not affect the real time requirements of such systems. Variations in the count range could cause a temporary positive startup rate, that could lead to incorrect addressing of function restoration guideline. (author)

  17. Development of a digital reactivity meter for criticality prediction and control rod worth evaluation in pressurized water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kuramoto, Renato Y.R.; Miranda, Anselmo F.; Valladares, Gastao Lommez; Prado, Adelk C. [Eletrobras Termonuclear S.A. - ELETRONUCLEAR, Angra dos Reis, RJ (Brazil). Central Nuclear Almirante Alvaro Alberto], e-mail: kuramot@eletronuclear.gov.br

    2009-07-01

    In this work, we have proposed the development of a digital reactivity meter in order to monitor subcriticality continuously during criticality approach in a PWR. A subcritical reactivity meter can provide an easy prediction of the estimated critical point prior to reactor criticality, without complicated hand calculation. Moreover, in order to reduce the interval of the Physics Tests from the economical point of view, a subcritical reactivity meter can evaluate the control rod worth from direct subcriticality measurement. In other words, count rate of Source Range (SR) detector recorded during the criticality approach could be used for subcriticality evaluation or control rod worth evaluation. Basically, a digital reactivity meter is based on the inverse solution of the kinetic equations of a reactor with the external neutron source in one-point reactor model. There are some difficulties in the direct application of a digital reactivity meter to the subcriticality measurement. When the Inverse Kinetic method is applied to a sufficiently high power level or to a core without an external neutron source, the neutron source term may be neglected. When applied to a lower power level or in the sub-critical domain, however, the source effects must be taken in account. Furthermore, some treatments are needed in using the count rate of Source Range (SR) detector as input signal to the digital reactivity meter. To overcome these difficulties, we have proposed a digital reactivity meter combined with a methodology of the modified Neutron Source Multiplication (NSM) method with correction factors for subcriticality measurements in PWR. (author)

  18. Development of a digital reactivity meter for criticality prediction and control rod worth evaluation in pressurized water reactors

    International Nuclear Information System (INIS)

    Kuramoto, Renato Y.R.; Miranda, Anselmo F.; Valladares, Gastao Lommez; Prado, Adelk C.

    2009-01-01

    In this work, we have proposed the development of a digital reactivity meter in order to monitor subcriticality continuously during criticality approach in a PWR. A subcritical reactivity meter can provide an easy prediction of the estimated critical point prior to reactor criticality, without complicated hand calculation. Moreover, in order to reduce the interval of the Physics Tests from the economical point of view, a subcritical reactivity meter can evaluate the control rod worth from direct subcriticality measurement. In other words, count rate of Source Range (SR) detector recorded during the criticality approach could be used for subcriticality evaluation or control rod worth evaluation. Basically, a digital reactivity meter is based on the inverse solution of the kinetic equations of a reactor with the external neutron source in one-point reactor model. There are some difficulties in the direct application of a digital reactivity meter to the subcriticality measurement. When the Inverse Kinetic method is applied to a sufficiently high power level or to a core without an external neutron source, the neutron source term may be neglected. When applied to a lower power level or in the sub-critical domain, however, the source effects must be taken in account. Furthermore, some treatments are needed in using the count rate of Source Range (SR) detector as input signal to the digital reactivity meter. To overcome these difficulties, we have proposed a digital reactivity meter combined with a methodology of the modified Neutron Source Multiplication (NSM) method with correction factors for subcriticality measurements in PWR. (author)

  19. Burnup studies of the subcritical fusion-driven in-zinerator

    International Nuclear Information System (INIS)

    Persson, C. M.; Gudowski, W.; Venneri, F.

    2007-01-01

    A fusion-driven subcritical core, 'In-Zinerator', has been proposed for nuclear waste transmutation [1]. In this concept, a powerful Z-pinch neutron source will produce pulses of 14 MeV neutrons that multiply in a surrounding subcritical core consisting of spent fuel from the LWR fuel cycle or from deep burn high temperature reactors. The proposed design has pulse frequency 0.1 Hz and a thermal power of 3 GWth. The Z-pinch fusion experiment is located at Sandia Laboratories, USA, and can today fire once a day. However, investigations have been made how to increase the frequency to several fires per minute. Each fire yields 300 MJ corresponding to 1020 neutrons per pulse. The source chamber will in the In-Zinerator concept be surrounded by spent fuel to reach an effective multiplication factor, k e ff, of 0.97. The core will be cooled by liquid lead. In this paper, the burnup of different fuel compositions in the In-Zinerator will be studied as function of initial k e ff. The Monte Carlo based continuous energy burnup code MCB [2][3]will be used. References: [1] B.B. Cipiti, Fusion Transmutation of Waste and the Role of the In-Zinerator in the Nuclear Fuel Cycle, Sandia Report SAND2006-3522, Sandia National Laboratories, USA, 2006. [2] J. Cetnar, J Wallenius and W Gudowski, MCB: A continuous energy Monte-Carlo burnup simulation code, Actinide and fission product partitioning and transmutation, Proc. of the Fifth Int. Information Exchange Meeting, Mol, Belgium, 25-27 November 1998, 523, OECD/NEA, 1998. [3] http://www.nea.fr/abs/html/nea-1643.html

  20. Disintegration of the agricultural by-product wheat bran under subcritical conditions.

    Science.gov (United States)

    Reisinger, Michael; Tirpanalan, Özge; Pruksasri, Suwattana; Kneifel, Wolfgang; Novalin, Senad

    2018-02-10

    The disintegration of destarched wheat bran in water and sulfuric acid (pH 3) under subcritical conditions (275-300 °C) and at short reaction times (1-4 min) was investigated. A cascade process comprising a stepwise separation of the liquid was applied to reduce the formation of undesired degradation products. The highest degree of biomass disintegration (67% dry mass solubilization) was achieved by application of a cascade process at 275 °C (pH 3). Regarding the dissolution of carbohydrates (monomeric and oligomeric form), the total glucose yields remained below 60%, while the total xylose and arabinose yields were about 76% and 67%. Approximately 74% of the protein and 95% of the mineral fraction could be extracted. The application of the cascade process enabled a substantially reduced formation of degradation products. When operating hydrothermally and subcritically in order to avoid some problematic aspects of a biorefinery, an extensive disintegration and monomerization of wheat bran and its constituents remains difficult even under the tested conditions (300 °C, pH 3). However, the applied cascade process proved to be useful to increase the yields and to substantially reduce the formation of undesired degradation products. Despite this fact, increased water consumption has to be conceded. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  1. Surface chemistry and corrosion behavior of Inconel 625 and 718 in subcritical, supercritical, and ultrasupercritical water

    Science.gov (United States)

    Rodriguez, David; Merwin, Augustus; Karmiol, Zachary; Chidambaram, Dev

    2017-05-01

    Corrosion behavior of Inconel 625 and 718 in subcritical, supercritical and ultrasupercritical water was studied as a function of temperature and time. The change in the chemistry of the as-received surface film on Inconel 625 and 718 after exposure to subcritical water at 325 °C and supercritical water at 425 °C and 527.5 °C for 2 h was studied. After exposure to 325 °C subcritical water, the CrO42- based film formed; however minor quantities of NiFexCr2-xO4 spinel compounds were observed. The oxide film formed on both alloys when exposed to supercritical water at 425 °C consisted of NiFexCr2-xO4 spinel. The surface films on both alloys were identified as NiFe2O4 when exposed to supercritical water at 527.5 °C. To characterize the fully developed oxide layer, studies were conducted at test solution temperatures of 527.5 and 600 °C. Samples were exposed to these temperatures for 24, 96, and 200 h. Surface chemistry was analyzed using X-ray diffraction, as well as Raman and X-ray photoelectron spectroscopies. Inconel 718 exhibited greater mass gain than Inconel 625 for all temperatures and exposure times. The differences in corrosion behavior of the two alloys are attributed to the lower content of chromium and increased iron content of Inconel 718 as compared to Inconel 625.

  2. Core-control assembly with a fixed fuel support

    International Nuclear Information System (INIS)

    Challberg, R.C.

    1993-01-01

    A core-control assembly is described comprising: a control rod having a plurality of blades; a control-rod guide tube for guiding vertical motion of said control rod; a fuel support for supporting fuel bundles separated by said blades, said fuel support having an aperture conforming to a cross section of said control rod through said blades for preventing rotational movement of said control rod to a decoupling orientation when said control rod is between a maximum power position and a minimum power position, said minimum power position being above said maximum power position, said fuel support being supported by said control-rod guide tube; control-rod drive means for controlling vertical motion of said control rod, said control-rod drive means providing for vertical motion between said maximum power position and said minimum power position, said control-rod drive means providing for vertical movement to a decoupling position, said decoupling position being no lower than said minimum power position, said decoupling position being at a level sufficient to permit said control rod to rotate to a decoupling orientation relative to said fuel support; and coupling means for coupling said control rod to said control rod drive means, said coupling means being releasable by rotational movement of said control rod to said decoupling orientation relative to said control-rod drive means

  3. Spatial and spectral effects in subcritical system pulsed experiments

    International Nuclear Information System (INIS)

    Dulla, S.; Nervo, M.; Ravetto, P.; Carta, M.

    2013-01-01

    Accurate neutronic models are needed for the interpretation of pulsed experiments in subcritical systems. In this work, the extent of spatial and spectral effects in the pulse propagation phenomena is investigated and the analysis is applied to the GUINEVERE experiment. The multigroup cross section data is generated by the Monte Carlo SERPENT code and the neutronic evolution following the source pulse is simulated by a kinetic diffusion code. The results presented show that important spatial and spectral aspects need to be properly accounted for and that a detailed energy approach may be needed to adequately capture the physical features of the system to the pulse injection. (authors)

  4. Recovery of Palm Oil and Valuable Material from Oil Palm Empty Fruit Bunch by Sub-critical Water.

    Science.gov (United States)

    Ahmad Kurnin, Nor Azrin; Shah Ismail, Mohd Halim; Yoshida, Hiroyuki; Izhar, Shamsul

    2016-01-01

    Oil palm empty fruit bunch (EFB) is one of the solid wastes produced in huge volume by palm oil mill. Whilst it still contains valuable oil, approximately 22.6 million tons is generated annually and treated as solid waste. In this work, sub-critical water (sub-cw) was used to extract oil, sugar and tar from spikelet of EFB. The spikelet was treated with sub-cw between 180-280°C and a reaction time of 2 and 5 minutes. The highest yield of oil was 0.075 g-oil/g-dry EFB, obtained at 240°C and reaction time of 5 minutes. Astonishingly, oil that was extracted through this method was 84.5% of that obtained through Soxhlet method using hexane. Yield of oil extracted was strongly affected by the reaction temperature and time. Higher reaction temperature induces the dielectric constant of water towards the non-polar properties of solvent; thus increases the oil extraction capability. Meanwhile, the highest yield of sugar was 0.20 g-sugar/g-dry EFB obtained at 220°C. At this temperature, the ion product of water is high enough to enable maximum sub-critical water hydrolysis reaction. This study showed that oil and other valuable material can be recovered using water at sub-critical condition, and most attractive without the use of harmful organic solvent.

  5. YALINA-Thermal Facility Experiments

    International Nuclear Information System (INIS)

    Kiyavitskaya, H.; Bournos, V.; Fokov, Y.; Routkovskaya, C.; Sadovich, S.; Cintas, A.; Márquez Damián, J.I.; Lopasso, E.M.; Maiorino, J.R.; Carluccio, T.; Rossi, P.C.R.; Antunes, A.; Oliveira, F.L. de; Lee, S.M.; Xia, P.; Shi, Y.; Xia, H.; Zhu, Q.; Yu, T.; Wu, X.; Zhang, W.; Cao, J.; Luo, H.; Quan, Y.; Kulkarni, K.; Yadav, R.D.S.; Bajpai, A.; Degweker, S.B.; Modak, R.S.; Park, H.J.; Shim, H.J.; Kim, C.H.; Wojciechowski, A.; Zuta, M.; Pešić, M.; Avramović, I.; Beličev, P.; Gohar, Y.; Talamo, A.; Aliberti, G.

    2017-01-01

    This Section discussed the results obtained by the Member States participating in the IAEA coordinated research project on Analytical and Experimental Benchmark Analysis on Accelerator Driven Systems, and Low Enriched Uranium Fuel Utilization in Accelerator Driven Subcritical Assembly Systems for the YALINA Thermal facility. Member States used both Monte Carlo and deterministic computational tools to analyse the YALINA Thermal subcritical assembly, including: MCNP5, MCNPX, McCARD, PARTISN, and ERANOS computer programs. All calculations have been performed using the ENDF/B-VI (different modes) nuclear data libraries with the exception of Republic of Korea which used the ENDF/B-VII.0 nuclear data library. Generally, there is a good agreement between the results obtained by all the Member States. Deterministic codes perform space, energy, and angle discretization and materials homogenizations, which introduce approximations affecting the obtained results. In subcritical assemblies, the neutron multiplication and the detector counting rate depend strongly on the external neutron source. Cf and D-D sources provide similar results since they emit neutrons with similar average energy. D-T neutrons trigger (n,xn) reactions and have a longer mean free path, which increases the neutron leakage if the geometry dimensions of the assembly are small, as in the case of the YALINA-Thermal subcritical assembly. Close to criticality, the effect of the external neutron source diminishes since fission neutrons dominate the neutron population.

  6. Control assembly ejection accident analysis for WWER-440 (Armenian NPP)

    International Nuclear Information System (INIS)

    Bznuni, S.; Malakyan, Ts.; Amirjanyan, A.; Ghasabyan, L.

    2007-01-01

    Control Assembly ejection in WWER-440 initiated by the loss of integrity of the Control Assemblies drive housing has been analyzed. This event causes a very rapid reactivity insertion to the core and small break LOCA which potentially could lead to rapid power increase and redistribution of heat release in the core resulting in a fuel, cladding and coolant temperature rise; primary pressure increase, radiological consequences due to loss of primary coolant and potential loss of cladding integrity and fuel disintegration (if applicable). Methodology of the analysis is based on conservative assumptions as well as on deterministic approach for selection of functioning logic of systems and equipment's to maximize reactor core power and minimize power decreasing reactivity feedback. Computational analyses were performed by 3D kinetics PARCS-RELAP coupled code. WWER-440 fuel cross-section libraries, diffusion coefficients and kinetics parameters were calculated by HELOS code. In this paper analysis of accident for Hot Full Power was presented. Results of analysis show that ANPP WWER-440 reactor design meets acceptance criteria prescribed for RIA type design based accidents (Authors)

  7. Assembly and control of large microtubule complexes

    Science.gov (United States)

    Korolev, Kirill; Ishihara, Keisuke; Mitchison, Timothy

    Motility, division, and other cellular processes require rapid assembly and disassembly of microtubule structures. We report a new mechanism for the formation of asters, radial microtubule complexes found in very large cells. The standard model of aster growth assumes elongation of a fixed number of microtubules originating from the centrosomes. However, aster morphology in this model does not scale with cell size, and we found evidence for microtubule nucleation away from centrosomes. By combining polymerization dynamics and auto-catalytic nucleation of microtubules, we developed a new biophysical model of aster growth. The model predicts an explosive transition from an aster with a steady-state radius to one that expands as a travelling wave. At the transition, microtubule density increases continuously, but aster growth rate discontinuously jumps to a nonzero value. We tested our model with biochemical perturbations in egg extract and confirmed main theoretical predictions including the jump in the growth rate. Our results show that asters can grow even though individual microtubules are short and unstable. The dynamic balance between microtubule collapse and nucleation could be a general framework for the assembly and control of large microtubule complexes. NIH GM39565; Simons Foundation 409704; Honjo International 486 Scholarship Foundation.

  8. Absolute measurement of the subcriticality based on the third order neutron correlation in consideration of the finite nature of neutron counts data

    International Nuclear Information System (INIS)

    Endo, Tomohiro; Kitamura, Yasunori; Yamane, Yoshihiro

    2003-01-01

    We have studied a measurement of subcriticality by using the neutron correlation method. Furuhashi proposed an absolute measurement of subcriticality by using the third order neutron correlation factor X in addition to the second order neutron correlation factor Y. In actual experiments, the number of neutron counts data is not infinity so that we take the effect of the finite nature of the neutron counts data into account. We derived new formulas in consideration of the number of data and verified them. (author)

  9. Control assembly materials for water reactors: Experience, performance and perspectives. Proceedings of a technical committee meeting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-02-01

    The safe, reliable and economic operation of water cooled nuclear power reactors depends to a large extent upon the reliable operation of control assemblies for the regulation and shutdown of the reactors. These consist of neutron absorbing materials clad in stainless steel or zirconium based alloys, guide tubes and guide cards, and other structural components. Current designs have worked extremely well in normal conditions, but less than ideal behaviour limits the lifetimes of control materials, imposing an economic penalty which acts as a strong incentive to produce improved materials and designs that are more reliable. Neutron absorbing materials currently in use include the ceramic boron carbide, the high melting point metal hafnium and the low melting point complex alloy Ag-In-Cd. Other promising neutron absorbing materials, such as dysprosium titanate, are being evaluated in the Russian Federation. These control materials exhibit widely differing mechanical, physical and chemical properties, which must be understood in order to be able to predict the behaviour of control rod assemblies. Identification of existing failure mechanisms, end of life criteria and the implications of the gradual introduction of extended burnup, mixed oxide (MOX) fuels and more complex fuel cycles constitutes the first step in a search for improved materials and designs. In the early part of this decade, it was recognized by the International Working Group on Fuel Performance and Technology (IWGFPT) that international conferences, symposia and published reviews on the materials science aspects of control assemblies were few and far between. Consequently, the IWGFPT recommended that the IAEA should rectify this situation with a series of Technical Committee meetings (TCMs) devoted entirely to the materials aspects of reactor control assemblies. The first was held in 1993 and in the intervening five years considerable progress has been made. In bringing together experts in the

  10. Control assembly materials for water reactors: Experience, performance and perspectives. Proceedings of a technical committee meeting

    International Nuclear Information System (INIS)

    2000-02-01

    The safe, reliable and economic operation of water cooled nuclear power reactors depends to a large extent upon the reliable operation of control assemblies for the regulation and shutdown of the reactors. These consist of neutron absorbing materials clad in stainless steel or zirconium based alloys, guide tubes and guide cards, and other structural components. Current designs have worked extremely well in normal conditions, but less than ideal behaviour limits the lifetimes of control materials, imposing an economic penalty which acts as a strong incentive to produce improved materials and designs that are more reliable. Neutron absorbing materials currently in use include the ceramic boron carbide, the high melting point metal hafnium and the low melting point complex alloy Ag-In-Cd. Other promising neutron absorbing materials, such as dysprosium titanate, are being evaluated in the Russian Federation. These control materials exhibit widely differing mechanical, physical and chemical properties, which must be understood in order to be able to predict the behaviour of control rod assemblies. Identification of existing failure mechanisms, end of life criteria and the implications of the gradual introduction of extended burnup, mixed oxide (MOX) fuels and more complex fuel cycles constitutes the first step in a search for improved materials and designs. In the early part of this decade, it was recognized by the International Working Group on Fuel Performance and Technology (IWGFPT) that international conferences, symposia and published reviews on the materials science aspects of control assemblies were few and far between. Consequently, the IWGFPT recommended that the IAEA should rectify this situation with a series of Technical Committee meetings (TCMs) devoted entirely to the materials aspects of reactor control assemblies. The first was held in 1993 and in the intervening five years considerable progress has been made. In bringing together experts in the

  11. Neutron source multiplication method

    International Nuclear Information System (INIS)

    Clayton, E.D.

    1985-01-01

    Extensive use has been made of neutron source multiplication in thousands of measurements of critical masses and configurations and in subcritical neutron-multiplication measurements in situ that provide data for criticality prevention and control in nuclear materials operations. There is continuing interest in developing reliable methods for monitoring the reactivity, or k/sub eff/, of plant operations, but the required measurements are difficult to carry out and interpret on the far subcritical configurations usually encountered. The relationship between neutron multiplication and reactivity is briefly discussed and data presented to illustrate problems associated with the absolute measurement of neutron multiplication and reactivity in subcritical systems. A number of curves of inverse multiplication have been selected from a variety of experiments showing variations observed in multiplication during the course of critical and subcritical experiments where different methods of reactivity addition were used, with different neutron source detector position locations. Concern is raised regarding the meaning and interpretation of k/sub eff/ as might be measured in a far subcritical system because of the modal effects and spectrum differences that exist between the subcritical and critical systems. Because of this, the calculation of k/sub eff/ identical with unity for the critical assembly, although necessary, may not be sufficient to assure safety margins in calculations pertaining to far subcritical systems. Further study is needed on the interpretation and meaning of k/sub eff/ in the far subcritical system

  12. Unavoidable food supply chain waste: acid-free pectin extraction from mango peel via subcritical water.

    Science.gov (United States)

    Xia, H; Matharu, A S

    2017-09-21

    Mango peel is the major by-product of mango processing, and compromises 7-24% of the total mango weight. In this study, pectin was extracted from mango peel waste by using subcritical water extraction (SWE) in the absence of mineral acid. A highest yield of 18.34% was achieved from the Kesar variety and the pectin was characterised using ATR-IR spectroscopy, TGA and 13 C solid-state NMR spectroscopy to confirm the structure. The degree of esterification (DE) of the pectin was analysed with both titrimetry and 13 C solid-state NMR spectroscopy, and a high DE (>70%) was observed for all three varieties (Keitt, Sindhri and Kesar). This is the first report on acid-free subcritical water extraction of pectin from mango peel, which provides a green route for the valorisation of mango peel waste and contributes to a source of biobased materials and chemicals for a sustainable 21 st century.

  13. Coupling of subcritical methanol with acidic ionic liquids for the acidity reduction of naphthenic acids

    Directory of Open Access Journals (Sweden)

    Zafar Faisal

    2017-09-01

    Full Text Available The presence of naphthenic acids (NAs in crude oil is the major cause of corrosion in the refineries and its processing equipment. The goal of this study is to reduce the total acid number (TAN of NAs by treating them with subcritical methanol in the presence of acidic ionic liquid (AIL catalysts. Experiments were carried out in an autoclave batch reactor and the effect of different reaction parameters was investigated. It was observed that TAN reduction was positively dependent on the temperature and concentration of the AIL whereas excess of methanol has a negative effect. Approximately 90% TAN reduction was achieved under the optimized reaction conditions using [BMIM]HSO4 as catalyst. It was also perceived from the experimental results that the AILs with longer alkyl chain exhibited higher catalytic activity. The activity and stability of AIL showed that they can be promising catalyst to esterify NAs under subcritical methanol.

  14. Estimation of subcriticality with the computed values analysis using MCNP of experiment on coupled cores

    International Nuclear Information System (INIS)

    Sakurai, Kiyoshi; Yamamoto, Toshihiro; Arakawa, Takuya; Naito, Yoshitaka

    1998-01-01

    Experiments on coupled cores performed at TCA were analysed using continuous energy Monte Carlo calculation code MCNP 4A. Errors of neutron multiplication factors are evaluated using Indirect Bias Estimation Method proposed by authors. Calculation for simulation of pulsed neutron method was performed for 17 X 17 + 5G + 17 x 17 core system and its of exponential experiment method was also performed for 16 x 9 + 3G + 16 x 9 and 16 x 9 + 5G + 16 x 9 core systems. Errors of neutron multiplication factors are estimated to be (-1.5) - (-0.6)% evaluated by Indirect Bias Estimation Method. Its errors evaluated by conventional pulsed neutron method and exponential experiment method are estimated to be 7%, but it is below 1% for estimation of subcriticality with the computed values by applying Indirect Bias Estimation Method. Feasibility of subcriticality management is higher by application of the method to full scale fuel strage facility. (author)

  15. Implementation of the neutron noise technique for subcritical reactors using a new data acquisition system

    International Nuclear Information System (INIS)

    Bellino, Pablo A.; Gomez, Angel

    2009-01-01

    A new data acquisition system was designed and programmed for nuclear kinetics parameter estimations in subcritical reactors. The system allows using any of the neutron noise techniques, since it could store the whole information available in the neutron detection system. The α Rossi, α Feynman and spectral analysis methods were performed in order to estimate the prompt neutron decay constant (and hence the reactivity). The measurements were done in the nuclear research reactor RA-1, where introducing the control rods, different reactivity levels where reached (until -7 dollars). With the three methods used, agreement was found between the estimations and the reference reactivities in each level, even when the detector efficiency was low. All the measurements were performed with a high gamma flux, although the results were found to be satisfactory. (author)

  16. Critical and subcritical mass calculations of fissionable nuclides based on JENDL-3.2+

    International Nuclear Information System (INIS)

    Okuno, H.

    2002-01-01

    We calculated critical and subcritical masses of 10 fissionable actinides ( 233 U, 235 U, 238 Pu, 239 Pu, 241 Pu, 242m Am, 243 Cm, 244 Cm, 249 Cf and 251 Cf) in metal and in metal-water mixtures (except 238 Pu and 244 Cm). The calculation was made with a combination of a continuous energy Monte Carlo neutron transport code, MCNP-4B2, and the latest released version of the Japanese Evaluated Nuclear Data Library, JENDL-3.2. Other evaluated nuclear data files, ENDF/B-VI, JEF-2.2, and JENDL-3.3 in its preliminary version were also applied to find differences in results originated from different nuclear data files. For the so-called big three fissiles ( 233 U, 235 U and 239 Pu), analyzing the criticality experiments cited in ICSBEP Handbook validated the code-library combination, and calculation errors were consequently evaluated. Estimated critical and lower limit critical masses of the big three in a sphere with/without a water or SS-304 reflector were supplied, and they were compared with the subcritical mass limits of ANS-8.1. (author)

  17. Conceptual design for accelerator-driven sodium-cooled sub-critical transmutation reactors using scale laws

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kwang Gu; Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1998-12-31

    The feasibility study on conceptual design methodology for accelerator-driven sodium-cooled sub-critical transmutation reactors has been conducted to optimize the design parameters from the scale laws and validates the reactor performance with the integrated code system. A 1000 MWth sodium-cooled sub-critical transmutation reactor has been scaled and verified through the methodology in this paper, which is referred to Advanced Liquid Metal Reactor (ALMR). A Pb-Bi target material and a partitioned fuel are the liquid phases, and they are cooled by the circulation of secondary Pb-Bi coolant and by primary sodium coolant, respectively. Overall key design parameters are generated from the scale laws and they are improved and validated by the integrated code system. Integrated Code System (ICS) consists of LAHET, HMCNP, ORIGEN2, and COMMIX codes and some files. Through ICS the target region, the core region, and thermal-hydraulic related regions are analyzed once-through Results of conceptual design are attached in this paper. 5 refs., 4 figs., 1 tab. (Author)

  18. Optimization of Subcritical Water Extraction of Resveratrol from Grape Seeds by Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Yajie Tian

    2017-03-01

    Full Text Available The subcritical water extraction (SWE is a high-efficiency and environment-friendly extraction method. The extraction of resveratrol (RES of grape seeds obtained from the wine production process was proposed using subcritical water extraction (SWE. The effects of different extraction process parameters on RES yield were investigated by single factors. Extraction optimization was conducted using response surface methodology (RSM. Extraction temperature was proven to be the most significant factor influencing RES yield. The optimal conditions was as follows: extraction pressure of 1.02 MPa, temperature of 152.32 °C, time of 24.89 min, and a solid/solvent ratio of 1:15 g/mL. Under these optimal conditions, the predicted extraction RES yield was 6.90 μg/g and the recoveries was up to 91.98%. Compared to other previous studies, this method required less pollution and less treatment time to extract RES from grape seeds. From these results, added economic value to this agroindustrial residue is proposed using environmentally friendly extraction techniques.

  19. Experience feedback of operational events of the control rod assembly and its drive mechanism in nuclear power plants

    International Nuclear Information System (INIS)

    Zhou Hong; Xiao Zhi; Tao Shusheng; Zheng Lixin; Chen Zhaolin

    2013-01-01

    Seventeen operational events of the control rod assembly and its drive mechanism are collected from 1992 to 2012 important nuclear operational events and feedback in referred nuclear power plants. After investigated and classified, several important issues, such as the impact of control rod swell and fuel assembly distortion, control rod drive mechanism leakage, and the control system reliability of control rod, are emphatically analyzed. Some suggestions of experience feedback are proposed. (authors)

  20. Accelerator driven subcritical reactors

    International Nuclear Information System (INIS)

    Salvatores, M.

    2001-01-01

    ADS concepts have been proposed in the last decade for a variety of applications. However, there is a convergence of interest of several countries and laboratories on the application of ADS to transmutation. This applies to plutonium, and/or minor actinides (MA) and long-lived fission products (LLFP). As far as the so-called partitioning and transmutation (PIT) strategies, it was indicated that they can be clarified according to the option taken with respect to Pu and MA, i.e., a) keep Pu and MA together, b) separate Pu from MA. At present several programs are going on ADS: in Japan, USA Europe, where activities in 9 countries are coordinated by a European Technical Working Group (ETWG), and in Russia. As far as the implications for the definition of nuclear data needs, dedicated subcritical cores should have new type of fuels (Pu+MA in different proportions). Proposals are being worked out. For example, composite (such as ceramic-metallic or ceramic-ceramic) fuels are presently under study. The actinide oxide is dispersed in a metallic matrix (Zr, or W or Mo) or in an oxide matrix (e.g., MgO). In these cases, reliable data are required for the matrix materials. As far as coolants, Pb/Bi, Pb, and gas are considered, besides Na. Hard (or very hard) fast neutron spectrum is required. As far as LLFP, transmutation strategies in ADS are proposed. Candidates are 129 I, 99 Tc, 135 Cs, but also 79 Se, 107 Pd, 93 Zr etc. At present, there is no clear option for their transmutation (one needs a high level of thermalized neutrons, support matrixes for target irradiation, isotopic separations, reprocessing techniques, etc.). Finally, ADS transmutation will give rise to fuel cycles, where very active materials will be present. Cm and higher mass isotopes (up to 252 Cf) will be contributors to dose and neutron source strength. This area will deserve attention in future, in order to define the relevant data needs. It is recommended to coordinate work on MA data as a priority

  1. Neutronic Design of an Accelerator Driven Sub-Critical Research Reactor

    International Nuclear Information System (INIS)

    Pesic, M.

    2002-01-01

    Conceptual design of an accelerator driven sub-critical research reactor (ADSRR), as a new project in the Vinca Institute of Nuclear Sciences, is suggested for support to the Ministry of science, technologies and development of Republic Serbia, Yugoslavia. This paper show initial results of neutronic analyses of the proposed ADSRR carried out by Monte Carlo based MCNP and SHIELD codes. According to the proposal, the ADSRR would be constructed, in a later phase, at high-energy channel H5B of the VINCY cyclotron of the TESLA Accelerator Installation, that is under completion in the Vinca Institute. The fuel elements of 80%-enriched uranium dioxide dispersed in aluminium matrix, available in the Vinca Institute, are proposed for the ADSRR core design. The HEU fuel elements are placed in aluminium tubes filled by the 'primary moderator' - light water. These 'fuel tubes' are placed in a square lattice within lead matrix in a stainless steel tank. The lead is used as a 'secondary moderator' in the core and as the axial and radial reflector. Such design of the ADSRR shows that this small low neutron flux system can be used as an experimental 'demonstration' ADS with some neutron characteristics similar to proposed well-known lead moderated and cooled power sub-critical ADS with intermediate or fast neutron spectrum. The proposed experimental ADSRR, beside usage as a valuable research machine in reactor and neutron physics, will contribute to following and developing new nuclear technologies in the country, useful for eventual nuclear power option and nuclear waste incineration in future. (author)

  2. Colloidal polymers with controlled sequence and branching constructed from magnetic field assembled nanoparticles.

    Science.gov (United States)

    Bannwarth, Markus B; Utech, Stefanie; Ebert, Sandro; Weitz, David A; Crespy, Daniel; Landfester, Katharina

    2015-03-24

    The assembly of nanoparticles into polymer-like architectures is challenging and usually requires highly defined colloidal building blocks. Here, we show that the broad size-distribution of a simple dispersion of magnetic nanocolloids can be exploited to obtain various polymer-like architectures. The particles are assembled under an external magnetic field and permanently linked by thermal sintering. The remarkable variety of polymer-analogue architectures that arises from this simple process ranges from statistical and block copolymer-like sequencing to branched chains and networks. This library of architectures can be realized by controlling the sequencing of the particles and the junction points via a size-dependent self-assembly of the single building blocks.

  3. Phytosterol-based oleogels self-assembled with monoglyceride for controlled volatile release.

    Science.gov (United States)

    Yang, Dan-Xia; Chen, Xiao-Wei; Yang, Xiao-Quan

    2018-01-01

    Oleogels have recently emerged as a subject of growing interest among industrial and academic researchers as an alternative to saturated/trans-fat and delivery of functional ingredients. Phytosterols, comprising plant-derived natural steroid compounds, are preferred for oleogel production because they are both natural and healthy. In the present study, phytosterol-based oleogels self-assembled with monoglyceride were studied with respect to tuning volatile release. Microscopy images of the bicomponent oleogels of β-sitosterol and monoglyceride showed the formation of a new three-dimensional network of entangled crystals and a controllable microstructure. Our analysis from differential scanning calorimetry and small angle X-ray scattering results suggests the self-assembly of β-sitosterol and monoglyceride via intermolecular hydrogen bonds into spherulitic microstructures. The results showed that the release rate (v 0 ), maximum headspace concentrations (C max ) and partition coefficients (k a/o ) for oleogels showed a significantly controlled release and were tunable via the microstructure of phytosterol-based oleogels under both dynamic and static conditions. In addition, the solid-like oleogels had interesting thixotropic and thermoresponsive behaviors, probably as a result of intermolecular hydrogen bonding. The self-assembly of phytosterol-based oleogels with monoglyceride was attributed to intermolecular hydrogen and is demonstrated to be a promising tunable and functional strategy for delivering flavor compounds. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  4. Effective multiplication factor measurement by feynman-α method. 3

    International Nuclear Information System (INIS)

    Mouri, Tomoaki; Ohtani, Nobuo

    1998-06-01

    The sub-criticality monitoring system has been developed for criticality safety control in nuclear fuel handling plants. In the past experiments performed with the Deuterium Critical Assembly (DCA), it was confirmed that the detection of sub-criticality was possible to k eff = 0.3. To investigate the applicability of the method to more generalized system, experiments were performed in the light-water-moderated system of the modified DCA core. From these experiments, it was confirmed that the prompt decay constant (α), which was a index of the sub-criticality, was detected between k eff = 0.623 and k eff = 0.870 and the difference of 0.05 - 0.1Δk could be distinguished. The α values were numerically calculated with 2D transport code TWODANT and monte carlo code KENO V.a, and the results were compared with the measured values. The differences between calculated and measured values were proved to be less than 13%, which was sufficient accuracy in the sub-criticality monitoring system. It was confirmed that Feynman-α method was applicable to sub-critical measurement of the light-water-moderated system. (author)

  5. Criticality safety evaluation for TWR-S fuel assembly transportation using TK-S16 containers

    International Nuclear Information System (INIS)

    Pesic, M.P.; Steljic, M.M.; Antic, D.P.

    2002-01-01

    Criticality safety issues, concerning transportation of fresh high-enriched uranium fuel elements (TWR-S fuel assembly type) with Russian containers TK-S16, are objects of study in this paper. Three-dimensional (3D) models of fuel element and container were made, based upon their well-known geometry and material structure. The way to pack fuel elements in a bundle inside of the container is proposed. Calculations were done by MCNP4B2 computer code. This Monte Carlo criticality code determined the effective multiplication factor from the cross-section data and specific geometry data. This evaluation demonstrated the subcriticality of a single package and an array of packages during normal conditions of transport and various hypothetical accident conditions. (author)

  6. CFD Analysis of Hot Spot Fuel Temperature in the Control Fuel Block Assembly of a VHTR core

    International Nuclear Information System (INIS)

    Kim, Min Hwan; Tak, Nam Il; Noh, Jae Man

    2010-01-01

    The Very High Temperature Reactor (VHTR) dedicated for efficient hydrogen production requires core outlet temperatures of more than 950 .deg. C. As the outlet temperature increases, the thermal margin of the core decreases, which highlights the need for a detailed analysis to reduce its uncertainty. Tak et al. performed CFD analysis for a 1/12 fuel assembly model and compared the result with a simple unit-cell model in order to emphasize the need of a detailed CFD analysis for the prediction of hot spot fuel temperatures. Their CFD model, however, was focused on the standard fuel assembly but not on the control fuel assembly in which a considerable amount of bypass flow is expected to occur through the control rod passages. In this study, a CFD model for the control fuel block assembly is developed and applied for the hot spot analyses of PMR200 core. Not only the bypass flow but also the cross flow is considered in the analyses

  7. Grand unification and subcritical hybrid inflation

    International Nuclear Information System (INIS)

    Buchmueller, Wilfried; Ishiwata, Koji

    2014-12-01

    We consider hybrid inflation for small couplings of the inflaton to matter such that the critical value of the inflaton field exceeds the Planck mass. It has recently been shown that inflation then continues at subcritical inflaton field values where quantum fluctuations generate an effective inflaton mass. The effective inflaton potential interpolates between a quadratic potential at small field values and a plateau at large field values. An analysis of the allowed parameter space leads to predictions for the scalar spectral index n s and the tensor-to-scalar ratio r similar to those of natural inflation. Using the range for n s and r favoured by the Planck data, we find that the energy scale of the plateau is constrained to the interval (1.6-2.4) x 10 16 GeV which includes the energy scale of gauge coupling unification in the supersymmetric standard model. The tensor-to-scalar ratio is predicted to have the lower bound r>0.049 for 60 e-folds before the end of inflation.

  8. Interactions within the yeast t-SNARE Sso1p that control SNARE complex assembly.

    Science.gov (United States)

    Munson, M; Chen, X; Cocina, A E; Schultz, S M; Hughson, F M

    2000-10-01

    In the eukaryotic secretory and endocytic pathways, transport vesicles shuttle cargo among intracellular organelles and to and from the plasma membrane. Cargo delivery entails fusion of the transport vesicle with its target, a process thought to be mediated by membrane bridging SNARE protein complexes. Temporal and spatial control of intracellular trafficking depends in part on regulating the assembly of these complexes. In vitro, SNARE assembly is inhibited by the closed conformation adopted by the syntaxin family of SNAREs. To visualize this closed conformation directly, the X-ray crystal structure of a yeast syntaxin, Sso1p, has been determined and refined to 2.1 A resolution. Mutants designed to destabilize the closed conformation exhibit accelerated rates of SNARE assembly. Our results provide insight into the mechanism of SNARE assembly and its intramolecular and intermolecular regulation.

  9. Initial instability of round liquid jet at subcritical and supercritical environments

    International Nuclear Information System (INIS)

    Muthukumaran, C. K.; Vaidyanathan, Aravind

    2016-01-01

    In the present experimental work, the behavior of laminar liquid jet in its own vapor as well as supercritical fluid environment is conducted. Also the study of liquid jet injection into nitrogen (N_2) environment is carried out at supercritical conditions. It is expected that the injected liquid jet would undergo thermodynamic transition to the chamber condition and this would alter the behavior of the injected jet. Moreover at such conditions there is a strong dependence between thermodynamic and fluid dynamic processes. Thus the thermodynamic transition has its effect on the initial instability as well as the breakup nature of the injected liquid jet. In the present study, the interfacial disturbance wavelength, breakup characteristics, and mixing behavior are analysed for the fluoroketone liquid jet that is injected into N_2 environment as well as into its own vapor at subcritical to supercritical conditions. It is observed that at subcritical chamber conditions, the injected liquid jet exhibits classical liquid jet characteristics with Rayleigh breakup at lower Weber number and Taylor breakup at higher Weber number for both N_2 and its own environment. At supercritical chamber conditions with its own environment, the injected liquid jet undergoes sudden thermodynamic transition to chamber conditions and single phase mixing characteristics is observed. However, the supercritical chamber conditions with N_2 as ambient fluid does not have significant effect on the thermodynamic transition of the injected liquid jet.

  10. Systematic optimization of subcritical and transcritical organic Rankine cycles (ORCs) constrained by technical parameters in multiple applications

    International Nuclear Information System (INIS)

    Maraver, Daniel; Royo, Javier; Lemort, Vincent; Quoilin, Sylvain

    2014-01-01

    Highlights: • ORC optimization for different target applications. • Model developed to allow computation in subcritical and transcritical operation. • Regenerative and non-regenerative cycles evaluated through second law efficiency. • Common working fluids: R134a, R245fa, Solkatherm, n-Pentane, MDM, Toluene. • Thermodynamic and technological approaches lead to optimal design guidelines. - Abstract: The present work is focused on the thermodynamic optimization of organic Rankine cycles (ORCs) for power generation and CHP from different average heat source profiles (waste heat recovery, thermal oil for cogeneration and geothermal). The general goal is to provide optimization guidelines for a wide range of operating conditions, for subcritical and transcritical, regenerative and non-regenerative cycles. A parameter assessment of the main equipment in the cycle (expander, heat exchangers and feed pump) was also carried out. An optimization model of the ORC (available as an electronic annex) is proposed to predict the best cycle performance (subcritical or transcritical), in terms of its exergy efficiency, with different working fluids. The working fluids considered are those most commonly used in commercial ORC units (R134a, R245fa, Solkatherm, n-Pentane, Octamethyltrisiloxane and Toluene). The optimal working fluid and operating conditions from a purely thermodynamic approach are limited by the technological constraints of the expander, the heat exchangers and the feed pump. Hence, a complementary assessment of both approaches is more adequate to obtain some preliminary design guidelines for ORC units

  11. A study of calculation methodology and experimental measurements of the kinetic parameters for source driven subcritical systems

    International Nuclear Information System (INIS)

    Lee, Seung Min

    2009-01-01

    This work presents a theoretical study of reactor kinetics focusing on the methodology of calculation and the experimental measurements of the so-called kinetic parameters. A comparison between the methodology based on the Dulla's formalism and the classical method is made. The objective is to exhibit the dependence of the parameters on subcriticality level and perturbation. Two different slab type systems were considered: thermal one and fast one, both with homogeneous media. One group diffusion model was used for the fast reactor, and for the thermal system, two groups diffusion model, considering, in both case, only one precursor's family. The solutions were obtained using the expansion method. Also, descriptions of the main experimental methods of measurements of the kinetic parameters are presented in order to put a question about the compatibility of these methods in subcritical region. (author)

  12. Controllable Self-Assembly of Amphiphilic Zwitterionic PBI Towards Tunable Surface Wettability of the Nanostructures.

    Science.gov (United States)

    Ye, Yong; Lü, Baozhong; Cheng, Wenyu; Wu, Zhen; Wei, Jie; Yin, Meizhen

    2017-05-04

    Amphiphilic molecules have received wide attention as they possess both hydrophobic and hydrophilic properties, and can form diverse nanostructures in selective solvents. Herein, we report an asymmetric amphiphilic zwitterionic perylene bisimide (AZP) with an octyl chain and a zwitterionic group on the opposite imide positions of perylene tetracarboxylic dianhydride. The controllable nanostructures of AZP with tunable hydrophilic/hydrophobic surface have been investigated through solvent-dependent amphiphilic self-assembly as confirmed by SEM, TEM, and contact angle measurements. The planar perylene core of AZP contributes to strong π-π stacking, while the amphiphilic balance of asymmetric AZP adjusts the self-assembly property. Additionally, due to intermolecular π-π stacking and solvent-solute interactions, AZP could self-assemble into hydrophilic microtubes in a polar solvent (acetone) and hydrophobic nanofibers in an apolar solvent (hexane). This facile method provides a new pathway for controlling the surface properties based on an asymmetric amphiphilic zwitterionic perylene bisimide. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Decay constants of subcritical system by diffusion theory for two groups

    International Nuclear Information System (INIS)

    Moura Neto, C. de.

    1977-01-01

    The effects of a neutronic pulse applied to a subcritical multiplicative medium are analysed on the basis of the diffusion theory for one and two groups. The decay constants of the system for various values of geometric buckling were determined from the experimental data. A natural uranium-light water lattice was pulsed employing a Texas Nuclear 9905 neutron generator. The least square method was employed in the data reduction procedures to determine the decay constants. The separation of the decay constants associated with thermal and epithermal fluxes is attempted through two groups formulation. (author)

  14. Decay constants of a subcritical system by two-group diffusion theory

    International Nuclear Information System (INIS)

    Moura Neto, C. de.

    1979-08-01

    The effects of a neutronic pulse applied to a subcritical multiplicative medium are analyzed on the basis of the diffusion theory for one and two groups. The decay constants of the system were determined from the experimental data, for various values geometric buckling. A natural uranium light-water configuration was pulsed employing a Texas Nuclear 9905 neutron generator. The least square method was employed in the data reduction procedures to determine the decay constants. The separation of the decay constants associated with thermal and epithermal fluxes are verified through two groups formulation. (Author) [pt

  15. Synthesis of nano-crystalline NiFe2O4 powders in subcritical and supercritical ethanol

    Czech Academy of Sciences Publication Activity Database

    Ćosović, A.; Žák, Tomáš; Glisić, S.; Sokić, M.; Lazarević, S.; Ćosović, V.; Orlović, A.

    2016-01-01

    Roč. 113, JUL (2016), s. 96-105 ISSN 0896-8446 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : supercritical * subcritical * nano-crystalline powders * nickel ferrite * metal oxide * magnetic properties Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.991, year: 2016

  16. Extraction of Phytochemical Compounds from Eucheuma cottonii and Gracilaria sp using Supercritical CO2 Followed by Subcritical Water

    Directory of Open Access Journals (Sweden)

    Setyorini Dwi

    2018-01-01

    Full Text Available Extraction of phytochemical compounds (such as β-carotene, linoleic acids, carrageenan, and polyphenols from algae Eucheuma cottonii and Gracilaria sp with supercritical CO2 followed by subcritical water has been investigated. Supercritical CO2 extraction was carried out at pressure of 25 MPa, temperature of 60°C, CO2 flowrate of 15 ml/min, and ethanol flowrate of 0.25 ml/min. To determine the content of carotenoids and linoleic acids, the extracted compounds were analyzed using a spectrophotometer UV-Vis. The residue of algae starting material was subsequently extracted by subcritical water at pressures of 3, 5, and 7 MPa, and temperatures of 120, 140, 160, and 180 °C. Carrageenan extracted by subcritical water was analyzed using Fourier Transform Infra Red (FTIR, while the total phenolic compound was analyzed with UV-vis spectrophotometer. Moreover, the antioxidant efficiency of extract was also examined by DPPH assay method. Based on the analytical result, β-carotene and linoleic acid content in Eucheuma cottonii were 209.91 and 321.025 μg/g sample, respectively. While β-carotene and linoleic acid content in Gracilaria sp were 219.99 and 286.52 μg/g sample, respectively. The optimum condition of subcritical water extraction was at 180°C and 7 MPa. At this condition, the highest TPC content in the extract from Eucheuma cottonii and Gracilaria sp were 18.51 mg GAE/g sample and 22.47 mg GAE/g sample, respectively; while the highest yield of carrageenan extracted from Eucheuma cottonii and Gracilaria sp were 61.33 and 65.54 g/100 g dried algae, respectively. At the same condition, the antioxidant efficiency was 0.513 min-1 for Eucheuma cottonii and 0,277 min-1 for Gracilaria sp. Based on the results the extraction method effectively separated non-polar and polar compounds, then increased the antioxidant efficiency of extract.

  17. Comparative analysis of operation and safety of subcritical nuclear systems and innovative critical reactors; Analyse comparative du fonctionnement et de la surete de systemes sous-critiques et de reacteurs critiques innovants

    Energy Technology Data Exchange (ETDEWEB)

    Bokov, P.M

    2005-05-01

    The main goal of this thesis work is to investigate the role of core subcriticality for safety enhancement of advanced nuclear systems, in particular, molten salt reactors, devoted to both energy production and waste incineration/transmutation. The inherent safety is considered as ultimate goal of this safety improvement. An attempt to apply a systematic approach for the analysis of the subcriticality contribution to inherent properties of hybrid system was performed. The results of this research prove that in many cases the subcriticality may improve radically the safety characteristics of nuclear reactors, and in some configurations it helps to reach the 'absolute' intrinsic safety. In any case, a proper choice of subcriticality level makes all analyzed transients considerably slower and monotonic. It was shown that the weakest point of the independent-source systems with respect to the intrinsic safety is thermohydraulic unprotected transients, while in the case of the coupled-source systems the excess reactivity/current insertion events remain a matter of concern. To overcome these inherent drawbacks a new principle of realization of a coupled sub-critical system (DENNY concept) is proposed. In addition, the ways to remedy some particular safety-related problems with the help of the core sub-criticality are demonstrated. A preliminary safety analysis of the fast-spectrum molten salt reactor (REBUS concept) is also carried out in this thesis work. Finally, the potential of the alternative (to spallation) neutron sources for application in hybrid systems is examined. (author)

  18. Numerical model for thermoeconomic diagnosis in commercial transcritical/subcritical booster refrigeration systems

    International Nuclear Information System (INIS)

    Ommen, Torben; Elmegaard, Brian

    2012-01-01

    Highlights: ► A transcritical booster refrigeration plant is modelled. ► We examine changes in cost flow at different operation parameters. ► The use of characteristic curves for diagnosis is studied. - Abstract: Transcritical/subcritical booster refrigeration systems are increasingly installed and used in Danish supermarkets. The systems operate in both transcritical and subcritical conditions dependent on the heat rejection performance and the ambient conditions. The plant consists of one refrigerant cycle supplying refrigerant for evaporators in both chilled and frozen display cases. In the paper, thermoeconomic theory is used to establish the cost of cooling at each individual temperature level based on operating costs. With a high amount of operating systems, faulty operation becomes an economic, and environmental, interest. A general solution for evaluation of these systems is considered, with the objective to reduce cost and power consumption of malfunctioning equipment in operation. An analysis of the use of thermoeconomic diagnosis methods is required, as these methods may prove applicable. To accommodate the analysis, a numerical model of a transcritical booster refrigeration plant is considered in this paper. Additionally the characteristic curves method is applied to the high pressure compressor unit of the refrigeration plant. The approach successfully determine whether an anomaly is intrinsic or induced in the component when no uncertainties are introduced in the steady state model.

  19. Controlling Self-Assembly in Al(110) Homoepitaxy

    Science.gov (United States)

    Tiwary, Yogesh; Fichthorn, Kristen

    2010-03-01

    Homoepitaxial growth on Al(110) exhibits nanoscale self-assembly into huts with well-defined (100) and (111) facets [1]. Although some of the diffusion mechanisms underlying this kinetic self-assembly were identified and incorporated into a two-dimensional model [2], we used density-functional theory (DFT) to identify many other mechanisms that are needed to describe the three-dimensional assembly seen experimentally [3]. We developed a three-dimensional kinetic Monte Carlo (KMC) model of Al(110) homoepitaxy. The inputs to the model were obtained from DFT [3,4]. Our model is in agreement with experimentally observed trends for this system. We used KMC to predict self-assembly under various growth conditions. To achieve precise placement of Al nanohuts, we simulated thermal-field-directed assembly [5]. Our results indicate that this technique can be used to create uniform arrays of nanostructures. [1] F. Buatier de Mongeot, W. Zhu, A. Molle, R. Buzio, C. Boragno, U. Valbusa, E. Wang, and Z. Zhang, Phys. Rev. Lett. 91, 016102 (2003). [2] W. Zhu, F. Buatier de Mongeot, U. Valbusa, E. G. Wang, and Z. Y. Zhang, Phys. Rev. Lett. 92, 106102 (2004). [3] Y. Tiwary and K. A. Fichthorn, submitted to Phys. Rev. B. [4] Y. Tiwary and K. A. Fichthorn, Phys. Rev. B 78, 205418 (2008). [5] C. Zhang and R. Kalyanaraman, Appl. Phys. Lett. 83, 4827 (2003).

  20. CRAB-II: a computer program to predict hydraulics and scram dynamics of LMFBR control assemblies and its validation

    International Nuclear Information System (INIS)

    Carelli, M.D.; Baker, L.A.; Willis, J.M.; Engel, F.C.; Nee, D.Y.

    1982-01-01

    This paper presents an analytical method, the computer code CRAB-II, which calculates the hydraulics and scram dynamics of LMFBR control assemblies of the rod bundle type and its validation against prototypic data obtained for the Clinch River Breeder Reactor (CRBR) primary control assemblies. The physical-mathematical model of the code is presented, followed by a description of the testing of prototypic CRBR control assemblies in water and sodium to characterize, respectively, their hydraulic and scram dynamics behavior. Comparison of code predictions against the experimental data are presened in detail; excellent agreement was found. Also reported are experimental data and empirical correlations for the friction factor of the absorber bundle in the entire flow range (laminar to turbulent) which represent an extension of the state-of-the-art, since only fuel and blanket assemblies friction factor correlations were previously reported in the open literature

  1. Operation aid device upon periodical inspection of nuclear power plant

    International Nuclear Information System (INIS)

    Fukusaka, Ryoji.

    1997-01-01

    The present invention provides an operation aid device upon periodical inspection of a nuclear power plant, capable of controlling a plurality of control rods safely at good operation efficiency while maintaining subcritical state. Namely, a fuel exchange computer controls an operation for exchanging fuel assemblies upon periodical inspection. An operation aiding computer aids the exchanging operation of fuel assemblies. A control rod position monitoring device allows withdrawal of one control rod under the condition of establishment of entire control rod insertion signal upon operation of exchanging fuel assemblies. Whether all of the four fuel assemblies around one control rod have been entirely taken out or not is judged based on information on the fuel assembly exchanging operation. When conditions for the judgement for operation aiding computer are established, the all insertion signals for the entire control rods as the condition for the withdrawal of the control rods are bypassed, and operation enable signals for plurality control rods are outputted to a control rod manual operation device. (I.S.)

  2. Simulation of reactor noise analysis measurement for light-water critical assembly TCA using MCNP-DSP

    International Nuclear Information System (INIS)

    Yamamoto, Toshihiro; Sakurai, Kiyoshi; Tonoike, Kotaro; Miyoshi, Yoshinori

    2001-01-01

    Reactor noise analysis methods using Monte Carlo technique have been proposed and developed in the field of nuclear criticality safety. The Monte Carlo simulation for noise analysis can be made by simulating physical phenomena in the course of neutron transport in a nuclear fuel as practically as possible. MCNP-DSP was developed by T. Valentine of ORNL for this purpose and it is a modified version of MCNP-4A. The authors applied this code to frequency analysis measurements performed in light-water critical assembly TCA. Prompt neutron generation times for critical and subcritical cores were measured by doing the frequency analysis of detector signals. The Monte Carlo simulations for these experiments were carried out using MCNP-DSP, and prompt neutron generation times were calculated. (author)

  3. Optically controlled three-dimensional assembly of microfabricated building blocks

    DEFF Research Database (Denmark)

    Rodrigo, Peter John; Kelemen, Lorand; Palima, Darwin

    2009-01-01

    We demonstrate a system for constructing reconfigurable microstructures using multiple, real-time configurable counterpropagating-beam traps. We optically assemble geometrically complementary microstructures with complex three-dimensional (3D) topologies produced by two-photon polymerization....... This demonstrates utilization of controllable 3D optical traps for building hierarchical structures from microfabricated building blocks. Optical microassembly with translational and tip-tilt control in 3D achieved by dynamic multiple CB traps can potentially facilitate the construction of functional microdevices...... and may also lead to the future realization of optically actuated micromachines. Fabricating morphologically complex microstructures and then optically manipulating these archetypal building blocks can also be used to construct reconfigurable microenvironments that can aid in understanding cellular...

  4. Subcriticality determination of low-enriched UO2 lattices in water by exponential experiment

    International Nuclear Information System (INIS)

    Suzaki, Takenori

    1991-01-01

    To determine the static k (effective neutron multiplication factor) ranging from the critical to an extremely subcritical states, the exponential experiments were performed using various sizes of light-water moderated and reflected low-enriched UO 2 lattice cores. For comparison, the pulsed neutron source experiments were also carried out. In the manner of the Gozani's bracketing method applied to the pulsed source experiment, a formula to obtain k from the measured spatial-decay constant was derived on the basis of diffusion theory. Parameters in the formulas needed to obtain k from the respective experiments were evaluated by 4-group neutron diffusion calculations. The results of the exponential experiments agreed well with those of the pulsed source experiments, the 4-group diffusion calculations and the 137-group Monte Carlo calculations. Therefore, the present data-processing method developed for the exponential experiment was demonstrated to be valid. Besides, through the examination on the parameters used in the data processing, it was found that the dependence of parameter value upon k is weak in the exponential experiment compared with that in the pulsed source experiment. This indicates the superiority of the exponential experiment over the pulsed source experiment for the subcriticality determination of a wide range. (author)

  5. An MCNP parametric study of George C. Laurence's subcritical pile experiment

    Energy Technology Data Exchange (ETDEWEB)

    Dranga, R.; Blomeley, L., E-mail: ruxandra.dranga@cnl.ca [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada); Carrington, R. [McGill Univ., Dept. of Mathematics and Statistics, Montreal, Quebec (Canada)

    2014-12-01

    In the early 1940s at the National Research Council (NRC) Laboratories in Ottawa, Canada, Dr. George Laurence conducted several experiments to determine if a sustained nuclear fission chain reaction in a carbon-uranium arrangement (or 'pile') was possible. Although Dr. Laurence did not achieve criticality, these pioneering experiments marked a significant historical event in nuclear science, and they provided a valuable reference for subsequent experiments that led to the design of Canada's first heavy-water reactors at the Chalk River Nuclear Laboratories. This paper summarizes the results of a recent collaborative project between Atomic Energy of Canada Limited and the Deep River Science Academy undertaken to numerically explore the experiments carried out at the NRC Laboratories by Dr. Laurence, while teaching high school students about nuclear science and technology. In this study, a modern Monte Carlo reactor physics code, MCNP6, was utilized to identify and study the key parameters impacting the subcritical pile's neutron multiplication factor (e.g., moderation, geometry, material impurities) and quantify their effect on the extent of subcriticality. The findings presented constitute the first endeavour to model, using a current computational reactor physics tool, the seminal experiment that provided the foundation of Canada's nuclear science and technology program. (author)

  6. Calculation and experimental measurements in the Argonauta reactor subcritical and exponential facility

    International Nuclear Information System (INIS)

    Voi, Dante L.; Furieri, Rosane C.A.A.; Renke, Carlos A.C.; Bastos, Wilma S.; Ferreira, Francisco J.O.

    1997-01-01

    Initial measurements were performed on the exponential and subcritical facility installed on the internal thermal column of the Argonauta reactor at IEN-CNEN-Rio de Janeiro, Brazil. The measurements are include in the reactor physics experimental program for integral parameters determination, for both valid and confirmed theoretical models for reactor calculation. Gamma doses and neutron fluxes were measured with telescopic, proportional counters, wire and foil detectors. Experimental data were compared with results obtained by application of CITATION code. (author). 4 refs., 8 figs

  7. Accelerator-driven assembly for plutonium transformation (ADAPT)

    Science.gov (United States)

    Tuyle, Greorgy J. Van; Todosow, Michael; Powell, James; Schweitzer, Donald

    1995-01-01

    A particle accelerator-driven spallation target and corresponding blanket region are proposed for the ultimate disposition of weapons-grade plutonium being retired from excess nuclear weapons in the U.S. and Russia. The highly fissle plutonium is contained within .25 to .5 cm diameter silicon-carbide coated graphite beads, which are cooled by helium, within the slightly subcritical blanket region. Major advantages include very high one-pass burnup (over 90%), a high integrity waste form (the coated beads), and operation in a subcritical mode, thereby minimizing the vulnerability to the positive reativity feedbacks often associated with plutonium fuel.

  8. Homoclinic connections and subcritical Neimark bifurcation in a duopoly model with adaptively adjusted productions

    International Nuclear Information System (INIS)

    Agliari, Anna

    2006-01-01

    In this paper we study some global bifurcations arising in the Puu's oligopoly model when we assume that the producers do not adjust to the best reply but use an adaptive process to obtain at each step the new production. Such bifurcations cause the appearance of a pair of closed invariant curves, one attracting and one repelling, this latter being involved in the subcritical Neimark bifurcation of the Cournot equilibrium point. The aim of the paper is to highlight the relationship between the global bifurcations causing the appearance/disappearance of two invariant closed curves and the homoclinic connections of some saddle cycle, already conjectured in [Agliari A, Gardini L, Puu T. Some global bifurcations related to the appearance of closed invariant curves. Comput Math Simul 2005;68:201-19]. We refine the results obtained in such a paper, showing that the appearance/disappearance of closed invariant curves is not necessarily related to the existence of an attracting cycle. The characterization of the periodicity tongues (i.e. a region of the parameter space in which an attracting cycle exists) associated with a subcritical Neimark bifurcation is also discussed

  9. Subcritical neutron generator-test facility for nuclear waste transmutation studies

    Energy Technology Data Exchange (ETDEWEB)

    Chuvilo, I.V.; Kolomiets, A.A.; Kozodaev, A.M. [ITEP, Moscow (Russian Federation)] [and others

    1995-10-01

    The development of the optimal design of high power facility for NPP transmutation and for a number of applications can not be carried out without preliminary tests of much cheaper prototypes. It has been proposed to combine in new test facility 36 MeV Linac ISTRA constructed in ITEP, original Be target and subcritical blanket that will be mounted on the place of partly disassembled heavy water ITEP experimental reactor. The basic parameters of Linac, schemes of the target and blanket are described. It will provide the direct experiments on installation which can be considered as prototype for future linac driven high power facilities.

  10. Controlled AFM manipulation of small nanoparticles and assembly of hybrid nanostructures

    International Nuclear Information System (INIS)

    Kim, Suenne; Shafiei, Farbod; Ratchford, Daniel; Li Xiaoqin

    2011-01-01

    We demonstrate controlled manipulation of semiconductor and metallic nanoparticles (NPs) with 5-15 nm diameters and assemble these NPs into hybrid structures. The manipulation is accomplished under ambient environment using a commercial atomic force microscope (AFM). There are particular difficulties associated with manipulating NPs this small. In addition to spatial drift, the shape of an asymmetric AFM tip has to be taken into account in order to understand the intended and actual manipulation results. Furthermore, small NPs often attach to the tip via electrostatic interaction and modify the effective tip shape. We suggest a method for detaching the NPs by performing a pseudo-manipulation step. Finally, we show by example the ability to assemble these small NPs into prototypical hybrid nanostructures with well-defined composition and geometry.

  11. Photo-crosslinking induced geometric restriction controls the self-assembly of diphenylalanine based peptides

    International Nuclear Information System (INIS)

    Tie Zuoxiu; Qin Meng; Zou Dawei; Cao Yi; Wang Wei

    2011-01-01

    The diphenylalanine (FF) motif has been widely used in the design of peptides that are capable of forming various ordered structures, such as nanotubes, nanospheres and hydrogels. In these assemblies, FF based peptides adopt an antiparallel structure and are stabilized by π-π stacking among the phenyl groups. Here we show that assembly of FF-based peptides can be controlled by their geometric restrictions. Using tripeptide FFY (L-Phe-L-Phe-L-Tyr) as an example, we demonstrate that photo-crosslinking of C-terminal tyrosine can impose a geometric restriction to the formation of an antiparallel structure, leading to a structural change of the assemblies from nanosphere to amorphous. This finding is confirmed using far-UV circular dichroism, Fourier transform infrared spectroscopy and atomic force microscopy. Based on such a mechanism, we are able to control the gel-sol transition of Fmoc-FFY using the geometric restriction induced by photo-crosslinking of C-terminal tyrosine groups. We believe that geometric restriction should be considered as an important factor in the design of peptide-based materials. It can also be implemented as a useful strategy for the construction of environment-responsive 'smart' materials. (authors)

  12. Economic analysis of the fusion-driven subcritical system

    International Nuclear Information System (INIS)

    Huang Desuo; Wu Yican; Chu Delin; Hu Liqin

    2004-01-01

    The economic performance of the Fusion-Driven Subcritical system (FDS) is discussed. At first, as an example, the impacts of parameters, such as plasma aspect-ratio, elongation, normalized beta, on-axis toroidal field and the blanket energy-gain are analyzed on the costs of the typical case (moderate aspect-ratio) of FDS. Then, the economic characteristics of the 3 possible scenarios of FDS are estimated with respect to the neutronics parameters. The results calculated with the SYSCODE developed by the FDS team show that the cost of electricity of Scenario-1 (low aspect-ratio) and Scenario-2 (moderate aspect-ratio) of FDS is cheaper than that of pure fusion power plant at the same plane size (1 GW e ). The cost of electricity of the FDS power plant depends heavily on the functions of blanket and the blanket energy-gain. (authors)

  13. Ginger and turmeric starches hydrolysis using subcritical water + CO2: the effect of the SFE pre-treatment

    Directory of Open Access Journals (Sweden)

    S. R. M. Moreschi

    2006-06-01

    Full Text Available In this work, the hydrolysis of fresh and dried turmeric (Curcuma longa L. and ginger (Zingiber officinale R. in the presence of subcritical water + CO2 was studied. The hydrolysis of ginger and turmeric bagasses from supercritical fluid extraction was also studied. The reactions were done using subcritical water and CO2 at 150 bar, 200 °C and reaction time of 11 minutes; the degree of reaction was monitored through the amount of starch hydrolyzed. Process yields were calculated using the amount of reducing and total sugars formed. The effects of supercritical fluid extraction in the starchy structures were observed by scanning electron microscopy. Higher degree of hydrolysis (97- 98 % were obtained for fresh materials and the highest total sugar yield (74% was established for ginger bagasse. The supercritical fluid extraction did not significantly modify the degree of hydrolysis in the tested conditions.

  14. Wave propagation visualization in an experimental model for a control rod drive mechanism assembly

    International Nuclear Information System (INIS)

    Lee, Jung-Ryul; Jeong, Hyomi; Kong, Churl-Won

    2011-01-01

    Highlights: → We fabricate a full-scale mock-up of the control rod drive mechanism (CRDM) assembly in the upper reactor head of the nuclear power plant. → An ultrasonic propagation imaging method using a scanning laser ultrasonic generator is proposed to visualize and simulate ultrasonic wave propagation around the CRDM assembly. → The ultrasonic source location and frequency are simulated by changing the sensor location and the band pass-filtering zone. → The ultrasonic propagation patterns before and after cracks in the weld and nozzle of the CRDM assembly are analyzed. - Abstract: Nondestructive inspection techniques such as ultrasonic testing, eddy current testing, and visual testing are being developed to detect primary water stress corrosion cracks in control rod drive mechanism (CRDM) assemblies of nuclear power plants. A unit CRDM assembly consists of a reactor upper head including cladding, a penetration nozzle, and J-groove dissimilar metal welds with buttering. In this study, we fabricated a full-scale CRDM assembly mock-up. An ultrasonic propagation imaging (UPI) method using a scanning laser ultrasonic generator is proposed to visualize and simulate ultrasonic wave propagation around the thick and complex CRDM assembly. First, the proposed laser UPI system was validated for a simple aluminium plate by comparing the ultrasonic wave propagation movie (UWPM) obtained using the system with numerical simulation results reported in the literature. Lamb wave mode identification and damage detectability, depending on the ultrasonic frequency, were also included in the UWPM analysis. A CRDM assembly mock-up was fabricated in full-size and its vertical cross section was scanned using the laser UPI system to investigate the propagation characteristics of the longitudinal and Rayleigh waves in the complex structure. The ultrasonic source location and frequency were easily simulated by changing the sensor location and the band pass filtering zone

  15. Rigid Biopolymer Nanocrystal Systems for Controlling Multicomponent Nanoparticle Assembly and Orientation in Thin Film Solar Cells

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Jennifer [Univ. of Colorado, Boulder, CO (United States)

    2016-10-31

    We have discovered techniques to synthesize well-defined DN conjugated nanostructures that are stable in a wide variety of conditions needed for DNA mediated assembly. Starting from this, we have shown that DNA can be used to control the assembly and integration of semiconductor nanocrystals into thin film devices that show photovoltaic effects.

  16. Transmutation of high-level radioactive waste by a charged particle accelerator

    International Nuclear Information System (INIS)

    Takahashi, Hiroshi.

    1993-01-01

    Transmutation of minor actinides and fission products using proton accelerators has many advantages over a transmutor operated in a critical condition. The energy required for this transmutation can be reduced by multiplying the spallation neutrons in a subcritical assembly surrounding the spallation target. The authors have studied the relation between the energy requirements and the multiplication factor, k, of the subcritical assembly, while varying the range of several parameters in the spallation target. A slightly subcritical reactor is superior to a reactor with large subcriticality in the context of the energy requirement of a small proton accelerator, the extent of radiation damage, and other safety problems. To transmute the fission products, the transmutor reactor must have a good neutron economy, which can be provided by a transmutor operated by a proton accelerator. The paper discusses the use of minor actinides to improve neutronics characteristics, such as a long fuel burn-up rather than simply transmuting this valuable material

  17. Design of a dry cask storage system for spent LWR fuels: radiation protection, subcriticality, and heat removal aspects

    Energy Technology Data Exchange (ETDEWEB)

    Yavuz, U. [Turkish Atomic Energy Authority, Ankara (Turkey). Nuclear Safety Dept.; Zabunoolu, O.H. [Hacettepe Univ., Ankara (Turkey). Dept. of Nuclear Engineering

    2006-08-15

    Spent nuclear fuel resulting from reactor operation must be safely stored and managed prior to reprocessing and/or final disposal of high-level waste. Any spent fuel storage system must provide for safe receipt, handling, retrieval, and storage of spent fuel. In order to achieve the safe storage, the design should primarily provide for radiation protection, subcriticality of spent fuel, and removal of spent fuel residual heat. This article is focused on the design of a metal-shielded dry-cask storage system, which will host spent LWR fuels burned to 33 000, 45 000, and 55 000 MWd/t U and cooled for 5 or 10 years after discharge from reactor. The storage system is analyzed by taking into account radiation protection, subcriticality, and heat-removal aspects; and appropriate designs, in accordance with the international standards. (orig.)

  18. Development of Mathematical Model and Analysis Code for Estimating Drop Behavior of the Control Rod Assembly in the Sodium Cooled Fast Reactor

    International Nuclear Information System (INIS)

    Oh, Se-Hong; Kang, SeungHoon; Choi, Choengryul; Yoon, Kyung Ho; Cheon, Jin Sik

    2016-01-01

    On receiving the scram signal, the control rod assemblies are released to fall into the reactor core by its weight. Thus drop time and falling velocity of the control rod assembly must be estimated for the safety evaluation. There are three typical ways to estimate the drop behavior of the control rod assembly in scram action: Experimental, numerical and theoretical methods. But experimental and numerical(CFD) method require a lot of cost and time. Thus, these methods are difficult to apply to the initial design process. In this study, mathematical model and theoretical analysis code have been developed in order to estimate drop behavior of the control rod assembly to provide the underlying data for the design optimization. Mathematical model and theoretical analysis code have been developed in order to estimate drop behavior of the control rod assembly to provide the underlying data for the design optimization. A simplified control rod assembly model is considered to minimize the uncertainty in the development process. And the hydraulic circuit analysis technique is adopted to evaluate the internal/external flow distribution of the control rod assembly. Finally, the theoretical analysis code(named as HEXCON) has been developed based on the mathematical model. To verify the reliability of the developed code, CFD analysis has been conducted. And a calculation using the developed analysis code was carried out under the same condition, and both results were compared

  19. Height control of self-assembled quantum dots by strain engineering during capping

    NARCIS (Netherlands)

    Grossi, D.; Smereka, P.; Keizer, J.G.; Ulloa, J.M.; Koenraad, P.M.

    2014-01-01

    Strain engineering during the capping of III-V quantum dots has been explored as a means to control the height of strained self-assembled quantum dots. Results of Kinetic Monte Carlo simulations are confronted with cross-sectional Scanning Tunnel Microscopy (STM) measurements performed on InAs

  20. Numerical studies of the flux-to-current ratio method in the KIPT neutron source facility

    International Nuclear Information System (INIS)

    Cao, Y.; Gohar, Y.; Zhong, Z.

    2013-01-01

    The reactivity of a subcritical assembly has to be monitored continuously in order to assure its safe operation. In this paper, the flux-to-current ratio method has been studied as an approach to provide the on-line reactivity measurement of the subcritical system. Monte Carlo numerical simulations have been performed using the KIPT neutron source facility model. It is found that the reactivity obtained from the flux-to-current ratio method is sensitive to the detector position in the subcritical assembly. However, if multiple detectors are located about 12 cm above the graphite reflector and 54 cm radially, the technique is shown to be very accurate in determining the k eff this facility in the range of 0.75 to 0.975. (authors)

  1. Benchmark Analysis of Subcritical Noise Measurements on a Nickel-Reflected Plutonium Metal Sphere

    Energy Technology Data Exchange (ETDEWEB)

    John D. Bess; Jesson Hutchinson

    2009-09-01

    Subcritical experiments using californium source-driven noise analysis (CSDNA) and Feynman variance-to-mean methods were performed with an alpha-phase plutonium sphere reflected by nickel shells, up to a maximum thickness of 7.62 cm. Both methods provide means of determining the subcritical multiplication of a system containing nuclear material. A benchmark analysis of the experiments was performed for inclusion in the 2010 edition of the International Handbook of Evaluated Criticality Safety Benchmark Experiments. Benchmark models have been developed that represent these subcritical experiments. An analysis of the computed eigenvalues and the uncertainty in the experiment and methods was performed. The eigenvalues computed using the CSDNA method were very close to those calculated using MCNP5; however, computed eigenvalues are used in the analysis of the CSDNA method. Independent calculations using KENO-VI provided similar eigenvalues to those determined using the CSDNA method and MCNP5. A slight trend with increasing nickel-reflector thickness was seen when comparing MCNP5 and KENO-VI results. For the 1.27-cm-thick configuration the MCNP eigenvalue was approximately 300 pcm greater. The calculated KENO eigenvalue was about 300 pcm greater for the 7.62-cm-thick configuration. The calculated results were approximately the same for a 5-cm-thick shell. The eigenvalues determined using the Feynman method are up to approximately 2.5% lower than those determined using either the CSDNA method or the Monte Carlo codes. The uncertainty in the results from either method was not large enough to account for the bias between the two experimental methods. An ongoing investigation is being performed to assess what potential uncertainties and/or biases exist that have yet to be properly accounted for. The dominant uncertainty in the CSDNA analysis was the uncertainty in selecting a neutron cross-section library for performing the analysis of the data. The uncertainty in the

  2. A three-dimensional thermal and fluid dynamics analysis of a gas cooled subcritical fast reactor driven by a D-T fusion neutron source

    International Nuclear Information System (INIS)

    Angelo, G.; Andrade, D.A.; Angelo, E.; Carluccio, T.; Rossi, P.C.R.; Talamo, A.

    2011-01-01

    Highlights: → A thermal fluid dynamics numerical model was created for a gas cooled subcritical fast reactor. → Standard k-ε model, Eddy Viscosity Transport Equation model underestimates the fuel temperature. → For a conservative assumption, SSG Reynolds stress model was chosen. → Creep strength is the most important parameter in fuel design. - Abstract: The entire nuclear fuel cycle involves partitioning classification and transmutation recycling. The usage of a tokamak as neutron sources to burn spent fuel in a gas cooled subcritical fast reactor (GCSFR) reduces the amount of long-lived radionuclide, thus increasing the repository capacity. This paper presents numerical thermal and fluid dynamics analysis for a gas cooled subcritical fast reactor. The analysis aim to determine the operational flow condition for this reactor, and to compare three distinct turbulence models (Eddy Viscosity Transport Equation, standard k-ε and SSG Reynolds stress) for this application. The model results are presented and discussed. The methodology used in this paper was developed to predict the coolant mass flow rate. It can be applied to any other gas cooled reactor.

  3. Neutronics analysis of minor actinides transmutation in a fusion-driven subcritical system

    International Nuclear Information System (INIS)

    Yang, Chao; Cao, Liangzhi; Wu, Hongchun; Zheng, Youqi; Zu, Tiejun

    2013-01-01

    Highlights: • A fusion fission hybrid system for MA transmutation is proposed. • The analysis of neutronics effects on the transmutation is performed. • The transmutation rate of MA reaches 86.5% by 25 times of recycling. -- Abstract: The minor actinides (MAs) transmutation in a fusion-driven subcritical system is analyzed in this paper. The subcritical reactor is driven by a tokamak D-T fusion device with relatively easily achieved plasma parameters and tokamak technologies. The MAs discharged from the light water reactor (LWR) are loaded in transmutation zone. Sodium is used as the coolant. The mass percentage of the reprocessed plutonium (Pu) in the fuel is raised from 0 to 48% and stepped by 12% to determine its effect on the MAs transmutation. The lesser the Pu is loaded, the larger the MAs transmutation rate is, but the smaller the energy multiplication factor is. The neutronics analysis of two loading patterns is performed and compared. The loading pattern where the mass percentage of Pu in two regions is 15% and 32.9% respectively is conducive to the improvement of the transmutation fraction within the limits of burn-up. The final transmutation fraction of MAs can reach 17.8% after five years of irradiation. The multiple recycling is investigated. The transmutation fraction of MAs can reach about 61.8% after six times of recycling, and goes up to about 86.5% after 25

  4. Benzo(a)pyrene accumulation in soils of technogenic emission zone by subcritical water extraction method

    Science.gov (United States)

    Sushkova, Svetlana; Minkina, Tatiana; Kizilkaya, Ridvan; Mandzhieva, Saglara; Batukaev, Abdulmalik; Bauer, Tatiana; Gulser, Coskun

    2016-04-01

    The purpose of research is the assessment of main marker of polycyclic aromatic hydrocarbons contamination, benzo[a]pyrene (BaP) content in soils of emission zone of the power complex plant in soils with use of ecologically clean and effective subcritical water extraction method. Studies were conducted on the soils of monitoring plots subjected to Novocherkassk Power Plant emissions from burning coal. In 2000, monitoring plots were established at different distances from the NPS (1.0-20.0 km). Soil samples for the determination of soil properties and the contents of BaP were taken from a depth of 0-20 cm. The soil cover in the region under study consisted of ordinary chernozems, meadow-chernozemic soils, and alluvial meadow soils. This soil revealed the following physical and chemical properties: Corg-3.1-5.0%, pH-7.3-7.6, ECE-31.2-47.6 mmol(+)/100g; CaCO3-0.2-1.0%, the content of physical clay - 51-67% and clay - 3-37%. BaP extraction from soils was carried out by a subcritical water extraction method. Subcritical water extraction of BaP from soil samples was conducted in a specially developed extraction cartridge made of stainless steel and equipped with screw-on caps at both ends. It was also equipped with a manometer that included a valve for pressure release to maintain an internal pressure of 100 atm. The extraction cartridge containing a sample and water was placed into an oven connected to a temperature regulator under temperature 250oC and pressure 60 atm. The BaP concentration in the acetonitrile extract was determined by HPLC. The efficiency of BaP extraction from soil was determined using a matrix spike. The main accumulation of pollutant in 20 cm layer of soils is noted directly in affected zone on the plots situated at 1.2, 1.6, 5.0, 8.0 km from emission source in the direction of prevailing winds. The maximum quantity of a pollutant was founded in the soil of the plot located mostly close to a source of pollution in the direction of prevailing winds

  5. Non-Catalytic and MgSO4 - Catalyst based Degradation of Glycerol in Subcritical and Supercritical Water Media

    Directory of Open Access Journals (Sweden)

    Mahfud Mahfud

    2011-02-01

    Full Text Available This research aims to study the glycerol degradation reaction in subcritical and supercritical water media. The degradation of glycerol into other products was performed both with sulphate salt catalysts and without catalyst. The reactant was made from glycerol and water with the mass ratio of 1:10. The experiments were carried out using a batch reactor at a constant pressure of 250 kgf/cm2, with the temperature range of 200-400oC, reaction time of 30 minutes, and catalyst mol ratio in glycerol of 1:10 and 1:8. The products of the non-catalytic glycerol degradation were acetaldehyde, methanol, and ethanol. The use of sulphate salt as catalyst has high selectivity to acetaldehyde and still allows the formation alcohol product in small quantities. The mechanism of ionic reaction and free radical reaction can occur at lower temperature in hydrothermal area or subcritical water. Conversion of glycerol on catalytic reaction showed a higher yield when compared with the reaction performed without catalyst

  6. Design and construction of an automatic measurement electronic system and graphical neutron flux for the subcritical reactor

    International Nuclear Information System (INIS)

    Gonzalez M, J.L.; Balderas, E.G.; Rivero G, T.

    1997-01-01

    The National Institute of Nuclear Research (ININ) has in its installations with a nuclear subcritical reactor which was designed and constructed with the main purpose to be used in the nuclear sciences education in the Physics areas and Reactors engineering. Within the nuclear experiments that can be realized in this reactor are very interesting those about determinations of neutron and gamma fluxes spectra, since starting from these some interesting nuclear parameters can be obtained. In order to carry out this type of experiments different radioactive sources are used which exceed the permissible doses by far to human beings. Therefore it is necessary the remote handling as of the source as of detectors used in different experiments. In this work it is presented the design of an electronic system which allows the different positions inside of the tank of subcritical reactor at ININ over the radial and axial axes in manual or automatic ways. (Author)

  7. Side-chain-controlled self-assembly of polystyrene-polypeptide miktoarm star copolymers

    KAUST Repository

    Junnila, Susanna

    2012-03-27

    We show how the self-assembly of miktoarm star copolymers can be controlled by modifying the side chains of their polypeptide arms, using A 2B and A 2B 2 type polymer/polypeptide hybrids (macromolecular chimeras). Initially synthesized PS 2PBLL and PS 2PBLL 2 (PS, polystyrene; PBLL, poly(ε-tert-butyloxycarbonyl-l-lysine) ) miktoarms were first deprotected to PS 2PLLHCl and PS 2PLLHCl 2 miktoarms (PLLHCl, poly(l-lysine hydrochloride)) and then complexed ionically with sodium dodecyl sulfonate (DS) to give the supramolecular complexes PS 2PLL(DS) and PS 2(PLL(DS)) 2. The solid-state self-assemblies of these six miktoarm systems were studied by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and small- and wide-angle X-ray scattering (SAXS, WAXS). The side chains of the polypeptide arms were observed to have a large effect on the solubility, polypeptide conformation, and self-assembly of the miktoarms. Three main categories were observed: (i) lamellar self-assemblies at the block copolymer length scale with packed layers of α-helices in PS 2PBLL and PS 2PBLL 2; (ii) charge-clustered polypeptide micelles with less-defined conformations in a nonordered lattice within a PS matrix in PS 2PLLHCl and PS 2PLLHCl 2; (iii) lamellar polypeptide-surfactant self-assemblies with β-sheet conformation in PS 2PLL(DS) and PS 2(PLL(DS)) 2 which dominate over the formation of block copolymer scale structures. Differences between the 3- and 4-arm systems illustrate how packing frustration between the coil-like PS arms and rigid polypeptide conformations can be relieved by the right number of arms, leading to differences in the extent of order. © 2012 American Chemical Society.

  8. Subcritical crack growth in a phosphate laser glass

    Energy Technology Data Exchange (ETDEWEB)

    Crichton, S.N.; Tomozawa, M.; Hayden, J.S.; Suratwala, T.I.; Campbell, J.H.

    1999-11-01

    The rate of subcritical crack growth in a metaphosphate Nd-doped laser glass was measured using the double-cleavage-drilled compression (DCDC) method. The crack velocity is reported as a function of stress intensity at temperatures ranging from 296 to 573 K and in nitrogen with water vapor pressures ranging from 40 Pa (0.3 mmHg) to 4.7 x 10{sup 4} Pa (355 mmHg). The measured crack velocities follow region I, II, and III behavior similar to that reported for silicate glasses. A chemical and mass-transport-limited reaction rate model explains the behavior of the data except at high temperatures and high water vapor pressures where crack tip blunting is observed. Blunting is characterized to reinitiate slow crack growth at higher stresses. A dynamic crack tip blunting mechanism is proposed to explain the deviation from the reaction rate model.

  9. Subcritical experiments at the FREYA experiment; Experimentos subcriticos en el proyecto FREYA

    Energy Technology Data Exchange (ETDEWEB)

    Becares Palacios, V.; Villamarin fernandez, D.

    2013-07-01

    The FREYA Project of the 7th Framework Program is aimed to the study of the kinetics of subcritical reactors coupled to an external neutron source, and, more specifically, to the validation of reactivity monitoring techniques. CIEMAT activities within the frame of this project have consisted in analyzing the possible ways of correcting the spatial and energy effects on these reactivity monitoring techniques, as well as analyzing the effects that may have on them the presence of different materials in the reflector and the position of the neutron source.

  10. Surface chemistry and corrosion behavior of Inconel 625 and 718 in subcritical, supercritical, and ultrasupercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, David; Merwin, Augustus; Karmiol, Zachary; Chidambaram, Dev, E-mail: dcc@unr.edu

    2017-05-15

    Highlights: • Mixtures of oxides containing Ni, Fe, Cr and Nb formed on the surface. • Short term exposure tests observed breakdown of native film. • Formation of a Fe rich oxide layer on Inconel 718 prevents mass loss. - Abstract: Corrosion behavior of Inconel 625 and 718 in subcritical, supercritical and ultrasupercritical water was studied as a function of temperature and time. The change in the chemistry of the as-received surface film on Inconel 625 and 718 after exposure to subcritical water at 325 °C and supercritical water at 425 °C and 527.5 °C for 2 h was studied. After exposure to 325 °C subcritical water, the CrO{sub 4}{sup 2−} based film formed; however minor quantities of NiFe{sub x}Cr{sub 2-x}O{sub 4} spinel compounds were observed. The oxide film formed on both alloys when exposed to supercritical water at 425 °C consisted of NiFe{sub x}Cr{sub 2-x}O{sub 4} spinel. The surface films on both alloys were identified as NiFe{sub 2}O{sub 4} when exposed to supercritical water at 527.5 °C. To characterize the fully developed oxide layer, studies were conducted at test solution temperatures of 527.5 and 600 °C. Samples were exposed to these temperatures for 24, 96, and 200 h. Surface chemistry was analyzed using X-ray diffraction, as well as Raman and X-ray photoelectron spectroscopies. Inconel 718 exhibited greater mass gain than Inconel 625 for all temperatures and exposure times. The differences in corrosion behavior of the two alloys are attributed to the lower content of chromium and increased iron content of Inconel 718 as compared to Inconel 625.

  11. Surface chemistry and corrosion behavior of Inconel 625 and 718 in subcritical, supercritical, and ultrasupercritical water

    International Nuclear Information System (INIS)

    Rodriguez, David; Merwin, Augustus; Karmiol, Zachary; Chidambaram, Dev

    2017-01-01

    Highlights: • Mixtures of oxides containing Ni, Fe, Cr and Nb formed on the surface. • Short term exposure tests observed breakdown of native film. • Formation of a Fe rich oxide layer on Inconel 718 prevents mass loss. - Abstract: Corrosion behavior of Inconel 625 and 718 in subcritical, supercritical and ultrasupercritical water was studied as a function of temperature and time. The change in the chemistry of the as-received surface film on Inconel 625 and 718 after exposure to subcritical water at 325 °C and supercritical water at 425 °C and 527.5 °C for 2 h was studied. After exposure to 325 °C subcritical water, the CrO_4"2"− based film formed; however minor quantities of NiFe_xCr_2_-_xO_4 spinel compounds were observed. The oxide film formed on both alloys when exposed to supercritical water at 425 °C consisted of NiFe_xCr_2_-_xO_4 spinel. The surface films on both alloys were identified as NiFe_2O_4 when exposed to supercritical water at 527.5 °C. To characterize the fully developed oxide layer, studies were conducted at test solution temperatures of 527.5 and 600 °C. Samples were exposed to these temperatures for 24, 96, and 200 h. Surface chemistry was analyzed using X-ray diffraction, as well as Raman and X-ray photoelectron spectroscopies. Inconel 718 exhibited greater mass gain than Inconel 625 for all temperatures and exposure times. The differences in corrosion behavior of the two alloys are attributed to the lower content of chromium and increased iron content of Inconel 718 as compared to Inconel 625.

  12. Photo-Crosslinking Induced Geometric Restriction Controls the Self-Assembly of Diphenylalanine Based Peptides

    International Nuclear Information System (INIS)

    Tie Zuo-Xiu; Qin Meng; Zou Da-Wei; Cao Yi; Wang Wei

    2011-01-01

    The diphenylalanine (FF) motif has been widely used in the design of peptides that are capable of forming various ordered structures, such as nanotubes, nanospheres and hydrogels. In these assemblies, FF based peptides adopt an antiparallel structure and are stabilized by π — π stacking among the phenyl groups. Here we show that assembly of FF-based peptides can be controlled by their geometric restrictions. Using tripeptide FFY (L-Phe-L-Phe-L-Tyr) as an example, we demonstrate that photo-crosslinking of C-terminal tyrosine can impose a geometric restriction to the formation of an antiparallel structure, leading to a structural change of the assemblies from nanosphere to amorphous. This finding is confirmed using far-UV circular dichroism, Fourier transform infrared spectroscopy and atomic force microscopy. Based on such a mechanism, we are able to control the gel-sol transition of Fmoc-FFY using the geometric restriction induced by photo-crosslinking of C-terminal tyrosine groups. We believe that geometric restriction should be considered as an important factor in the design of peptide-based materials. It can also be implemented as a useful strategy for the construction of environment-responsive 'smart' materials. (cross-disciplinary physics and related areas of science and technology)

  13. International conference on sub-critical accelerator driven systems. Proceedings

    International Nuclear Information System (INIS)

    Litovkina, L.P.; Titarenko, Yu.E.

    1999-01-01

    The International Meeting on Sub-Critical Accelerator Driven Systems was organized by the State Scientific Center - Institute for Theoretical and Experimental Physics with participation of Atomic Ministry of RF. The Meeting objective was to analyze the recent achievements and tendencies of the accelerator-driven systems development. The Meeting program covers a broad range of problems including the accelerator-driven systems (ADS) conceptual design; analyzing the ADS role in nuclear fuel cycle; accuracy of modeling the main parameters of ADS; conceptual design of high-current accelerators. Moreover, the results of recent experimental and theoretical studies on nuclear data accumulation to support the ADS technologies are presented. About 70 scientists from the main scientific centers of Russia, as well as scientists from USA, France, Belgium, India, and Yugoslavia, attended the meeting and presented 44 works [ru

  14. Selection of initial events of accelerator driven subcritical system

    International Nuclear Information System (INIS)

    Wang Qianglong; Hu Liqin; Wang Jiaqun; Li Yazhou; Yang Zhiyi

    2013-01-01

    The Probabilistic Safety Assessment (PSA) is an important tool in reactor safety analysis and a significant reference to the design and operation of reactor. It is the origin and foundation of the PSA for a reactor to select the initial events. Accelerator Driven Subcritical System (ADS) has advanced design characteristics, complicated subsystems and little engineering and operating experience, which makes it much more difficult to identify the initial events of ADS. Based on the current design project of ADS, the system's safety characteristics and special issues were analyzed in this article. After a series of deductions with Master Logic Diagram (MLD) and considering the relating experience of other advanced research reactors, a preliminary initial events was listed finally, which provided the foundation for the next safety assessment. (authors)

  15. Transesterification of soybean oil with methanol and acetic acid at lower reaction severity under subcritical conditions

    International Nuclear Information System (INIS)

    Go, Alchris Woo; Sutanto, Sylviana; NguyenThi, Bich Thuyen; Cabatingan, Luis K.; Ismadji, Suryadi; Ju, Yi-Hsu

    2014-01-01

    Highlights: • (trans)Esterification of oils under subcritical conditions. • Acetic acid as catalyst and co-solvent in biodiesel production. • Influence of reactor hydrodynamic (loading and stirring) on FAME yield. • High methyl ester yield can be obtained at less severe reaction conditions. - Abstract: Soybean oil (56–80 g) was reacted with methanol (40–106 mL) to produce fatty acid methyl ester in the presence of 1–6% acetic acid under subcritical condition at 250 °C. Stirring and loading of the reaction system affected the yield and severity of the process. The presence of acetic acid improved the yield of FAME from 32.1% to 89.5% at a methanol to oil molar ratio of 20 mL/g. Acetic acid was found to act strongly as an acid catalyst and to some extent improved the solubility between oil and methanol. Reaction pressure higher than the supercritical pressure of methanol (7.85 MPa) was not required to achieve high FAME yield (89.5–94.8%) in short time (30–60 min)

  16. Subcritical ethylic biodiesel production from wet animal fat and vegetable oils: A net energy ratio analysis

    International Nuclear Information System (INIS)

    Sales, Emerson A.; Ghirardi, Maria L.; Jorquera, Orlando

    2017-01-01

    Highlights: • Using ethanol in subcritical thermodynamic conditions, without catalysts. • The net energy ratio-NER identifies opportunities for industrial application. • The presence of water and free fatty acids improved the TG conversion. • Transesterification reactions of animal fat, soybean and palm oils. - Abstract: Ethylic transesterification process for biodiesel production without any chemical or biochemical catalysts at different subcritical thermodynamic conditions was performed using wet animal fat, soybean and palm oils as feedstock. The results indicate that 2 h of reaction at 240 °C with pressures varying from 20 to 45 bar was sufficient to transform almost all lipid fraction of the samples to biodiesel, depending on the reactor dead volume and proportions between reactants. Conversions of 100%, 84% and 98.5% were obtained for animal fat, soybean oil and palm oil, respectively, in the presence of water, with a net energy ration values of 2.6, 2.1 and 2.5 respectively. These results indicate that the process is energetically favorable, and thus represents a cleaner technology with environmental advantages when compared to traditional esterification or transesterification processes.

  17. Method of inspecting control rod drive mechanism

    International Nuclear Information System (INIS)

    Sato, Tomomi; Tatemichi, Shin-ichiro; Hasegawa, Hidenobu.

    1988-01-01

    Purpose: To conduct inspection for control rod drives and fuel handling operations in parallel without taking out the entire fuel, while maintaining the reactor in a subcritical state. Method: Control rod drives are inspected through the release of connection between control rods and control rod drives, detachment and dismantling of control rod drives, etc. In this case, structural materials having neutron absorbing power equal to or greater than the control rods are inserted into the gap after taking out fuels. Since the structural materials have neutron absorbing portion, subcriticality is maintained by the neutron absorbing effect. Accordingly, there is no requirement for taking out all of the fuels, thereby enabling to check the control rod drives and conduct handling for the fuels in parallel. As a result, the number of days required for the inspection can be shortened and it is possible to improve the working efficiency for the decomposition, inspection, etc. of the control rod drives and, thus, improve the operation efficiency of the nuclear power plant thereby attaining the predetermined purpose. (Kawakami, Y.)

  18. Integrity Evaluation of Control Rod Assembly for Sodium-Cooled Fast Reactor due to Drop Impact

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyun Seung; Yoon, Kyung Ho; Kim, Hyung Kyu; Cheon, Jin Sik; Lee, Chan Bock [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2017-03-15

    The CA (Control Assembly) of an SFR has a CRA(Control Rod Assembly) with an inner duct and control rod. During an emergency situation, the CRA falls into the duct of the CA for a rapid shut-down. The drop time and impact velocity of the CRA are important parameters with respect to the reactivity insertion time and the structural integrity of the CRA. The objective of this study was to investigate the dynamic behavior and integrity of the CRA owing to a drop impact. The impact analysis of the CRA under normal/abnormal drop conditions was carried out using the commercial FEM code LS-DYNA. Results of the drop impact analysis demonstrated that the CRA maintained structural integrity, and could be safely inserted into the flow hole of the damper under abnormal conditions.

  19. Integrity Evaluation of Control Rod Assembly for Sodium-Cooled Fast Reactor due to Drop Impact

    International Nuclear Information System (INIS)

    Lee, Hyun Seung; Yoon, Kyung Ho; Kim, Hyung Kyu; Cheon, Jin Sik; Lee, Chan Bock

    2017-01-01

    The CA (Control Assembly) of an SFR has a CRA(Control Rod Assembly) with an inner duct and control rod. During an emergency situation, the CRA falls into the duct of the CA for a rapid shut-down. The drop time and impact velocity of the CRA are important parameters with respect to the reactivity insertion time and the structural integrity of the CRA. The objective of this study was to investigate the dynamic behavior and integrity of the CRA owing to a drop impact. The impact analysis of the CRA under normal/abnormal drop conditions was carried out using the commercial FEM code LS-DYNA. Results of the drop impact analysis demonstrated that the CRA maintained structural integrity, and could be safely inserted into the flow hole of the damper under abnormal conditions.

  20. Numerical simulation of CO2 leakage from a geologic disposal reservoir, including transitions from super- to sub-critical conditions, and boiling of liquid of CO2

    International Nuclear Information System (INIS)

    Pruess, Karsten

    2003-01-01

    The critical point of CO 2 is at temperature and pressure conditions of T crit = 31.04 C, P crit = 73.82 bar. At lower (subcritical) temperatures and/or pressures, CO 2 can exist in two different phase states, a liquid and a gaseous state, as well as in two-phase mixtures of these states. Disposal of CO 2 into brine formations would be made at supercritical pressures. However, CO 2 escaping from the storage reservoir may migrate upwards towards regions with lower temperatures and pressures, where CO 2 would be in subcritical conditions. An assessment of the fate of leaking CO 2 requires a capability to model not only supercritical but also subcritical CO 2 , as well as phase changes between liquid and gaseous CO 2 in sub-critical conditions. We have developed a methodology for numerically simulating the behavior of water-CO 2 mixtures in permeable media under conditions that may include liquid, gaseous, and supercritical CO 2 . This has been applied to simulations of leakage from a deep storage reservoir in which a rising CO 2 plume undergoes transitions from supercritical to subcritical conditions. We find strong cooling effects when liquid CO 2 rises to elevations where it begins to boil and evolve a gaseous CO 2 phase. A three-phase zone forms (aqueous - liquid - gas), which over time becomes several hundred meters thick as decreasing temperatures permit liquid CO 2 to advance to shallower elevations. Fluid mobilities are reduced in the three-phase region from phase interference effects. This impedes CO 2 upflow, causes the plume to spread out laterally, and gives rise to dispersed CO 2 discharge at the land surface. Our simulation suggests that temperatures along a CO 2 leakage path may decline to levels low enough so that solid water ice and CO 2 hydrate phases may be formed

  1. 3D CAD model of the subcritical nuclear reactor of IPN; Modelo CAD 3D del reactor nuclear subcritico del IPN

    Energy Technology Data Exchange (ETDEWEB)

    Pahuamba V, F. de J.; Delfin L, A.; Gomez T, A. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Ibarra R, G.; Del Valle G, E.; Sanchez R, A., E-mail: narehc@hotmail.com [IPN, Escuela Superior de Fisica y Matematicas, Av. IPN, Edif. 9, Unidad Profesional Adolfo Lopez Mateos, San Pedro Zacatenco, 07738 Ciudad de Mexico (Mexico)

    2016-09-15

    The three-dimensional (3D) CAD model of the subcritical reactor Chicago model 9000 of Instituto Politecnico Nacional (IPN) allows obtaining a 3D view with the dimensions of each of its components, such as: natural uranium cylindrical rods, fuel elements, hexagonal reactor core arrangement, cylindrical stainless steel tank containing the core, fuel element support grids and reactor water cleaning system. As a starting point for the development of the model, the Chicago model 9000 subcritical reactor manual provided by the manufacturer was used, the measurement and verification of the components to adapt the geometric, physical and mechanical characteristics was carried out and materials standards were used to obtain a design that allows to elaborate a new manual according to the specifications. In addition, the 3D models of the building of the Advanced Physics Laboratory, neutron generator, cobalt source and the corridors connecting to the subcritical reactor facility were developed, allowing an animated ride, developed by computer-aided design software. The manual provided by the company Nuclear Chicago, dates from the year 1959 and presents diverse deviations in the design and dimensions of the reactor components. The model developed; in addition to supporting the development of the new manual represents a learning tool to visualize the reactor components. (Author)

  2. Subcritical convection of liquid metals in a rotating sphere using a quasi-geostrophic model

    Science.gov (United States)

    Guervilly, Céline; Cardin, Philippe

    2016-12-01

    We study nonlinear convection in a rapidly rotating sphere with internal heating for values of the Prandtl number relevant for liquid metals ($Pr\\in[10^{-2},10^{-1}]$). We use a numerical model based on the quasi-geostrophic approximation, in which variations of the axial vorticity along the rotation axis are neglected, whereas the temperature field is fully three-dimensional. We identify two separate branches of convection close to onset: (i) a well-known weak branch for Ekman numbers greater than $10^{-6}$, which is continuous at the onset (supercritical bifurcation) and consists of thermal Rossby waves, and (ii) a novel strong branch at lower Ekman numbers, which is discontinuous at the onset. The strong branch becomes subcritical for Ekman numbers of the order of $10^{-8}$. On the strong branch, the Reynolds number of the flow is greater than $10^3$, and a strong zonal flow with multiple jets develops, even close to the nonlinear onset of convection. We find that the subcriticality is amplified by decreasing the Prandtl number. The two branches can co-exist for intermediate Ekman numbers, leading to hysteresis ($Ek=10^{-6}$, $Pr=10^{-2}$). Nonlinear oscillations are observed near the onset of convection for $Ek=10^{-7}$ and $Pr=10^{-1}$.

  3. SP-100 nuclear assembly test: Test assembly functional requirements and system arrangement

    International Nuclear Information System (INIS)

    Fallas, T.T.; Gluck, R.; Motwani, K.; Clay, H.; O'Neill, G.

    1991-01-01

    This paper describes the functional requirements and the system that will be tested to validate the reactor, flight shield, and flight controller of the SP-100 Generic Flight System (GFS). The Nuclear Assembly Test (NAT) consists of the test article (SP-100 reactor with control devices and the flight shield) and its supporting systems. The NAT test assembly is being designed by GE. Westinghouse Hanford Company (WHC) is designing the test cell and vacuum vessel system that will contain the NAT test assembly (Renkey et al. 1989). Preliminary design reviews have been completed and the final design is under way

  4. Assembly-level analysis of heterogeneous Th–Pu PWR fuel

    International Nuclear Information System (INIS)

    Zainuddin, Nurjuanis Zara; Parks, Geoffrey T.; Shwageraus, Eugene

    2017-01-01

    Highlights: • We directly compare homogeneous and heterogeneous Th–Pu fuel. • Examine whether there is an increase in Pu incineration in the latter. • Homogeneous fuel was able to achieve much higher Pu incineration. • In the heterogeneous case, U-233 breeding is faster (larger power fraction), thus decreasing incineration of Pu. - Abstract: This study compares homogeneous and heterogeneous thorium–plutonium (Th–Pu) fuel assemblies (with high Pu content – 20 wt%), and examines whether there is an increase in Pu incineration in the latter. A seed-blanket configuration based on the Radkowsky thorium reactor concept is used for the heterogeneous assembly. This separates the thorium blanket from the uranium seed, or in this case a plutonium seed. The seed supplies neutrons to the subcritical thorium blanket which encourages the in situ breeding and burning of "2"3"3U, allowing the fuel to stay critical for longer, extending burnup of the fuel. While past work on Th–Pu seed-blanket units shows superior Pu incineration compared to conventional U–Pu mixed oxide fuel, there is no literature to date that directly compares the performance of homogeneous and heterogeneous Th–Pu assembly configurations. Use of exactly the same fuel loading for both configurations allows the effects of spatial separation to be fully understood. It was found that the homogeneous fuel with and without burnable poisons was able to achieve much higher Pu incinerations than the heterogeneous fuel configurations, while still attaining a reasonably high discharge burnup. This is because in the heterogeneous cases, "2"3"3U breeding is faster, thereby contributing to a much larger fraction of total power produced by the assembly. In contrast, "2"3"3U build-up is slower in the homogeneous case and therefore Pu burning is greater. This "2"3"3U begins to contribute a significant fraction of power produced only towards the end of life, thus extending criticality, allowing more Pu to

  5. Processing and analyses of the pulsed-neutron experimental data of the YALINA facility

    International Nuclear Information System (INIS)

    Cao, Y.; Gohar, Y.; Smith, D.; Talamo, A.; Zhong, Z.; Kiyavitskaya, H.; Bournos, V.; Fokov, Y.; Routkovskaya, C.; Sadovich, S.

    2010-01-01

    Full text: The YALINA subcritical assembly of the Joint Institute for Power and Nuclear Research (JIPNR)-Sosny, Belarus has been utilized to study the physics parameters of accelerator driven systems (ADS) with high intensity Deuterium-Tritium and Deuterium-Deuterium pulsed neutron sources. In particular, with the fast and thermal neutron zones of the YALINA-Booster subcritical assembly, the pulsed neutron experiments have been utilized to evaluate the pulsed neutron methods for determining the reactivity of the subcritical system. In this paper, the pulsed-neutron experiments performed in the YALINA-Booster 1141 configuration with 90% U 235 fuel and 1185 configuration with 36% and 21% U fuel are examined and analized. The Sjo:strand area-ratio method is utilized to determine the reactivities of the subcritical assembly configurations. The linear regression method is applied to obtain the prompt neutron decay constants from the pulsed-neutron experimental data. The reactivity values obtained from experimental data are shown to be dependent on the detector locations and also on the detector types. The large discrepancies between the reactivity values given by the detectors in the fast neutron zone was reduced by spatial correction methods, and the estimated reactivity after the spatial corrections are almost spatially independent.

  6. Concept of the thorium fuelled accelerator driven subcritical system for both energy production and TRU incineration - 'TASSE'

    International Nuclear Information System (INIS)

    Slessarev, I.; Berthou, V.; Salvatores, M.; Tchistiakov, A.

    1999-01-01

    The TASSE is the concept of the subcritical accelerator driven system with 'TRU-free' fuel cycle and the continuous Th-feed regime. The tightness of Th neutronics call inevitably the subcritical mode of work. Two types of neutron spectra are recommended: fast and super-thermal (well thermalized) ones. TASSE fuel cycle could have the following options: (i) without any fuel recycling and reprocessing (once-through fuel cycle option) for maximum fuel cycle simplicity. However, subcriticality level (1- K eff ) is essential and it requires high power accelerators; (ii) with the partial or, eventually, full U recycling 'on line' including the separation (U + Pa + Th) component from TRU + FP component which can be considered as wastes. Relatively small mass of fuel have to be reprocessed. Moreover, the requirement to separation is very soft. In this case, recycling allows to minimise subcriticality and smaller accelerators can be acceptable. The TASSE is oriented on 'clean' nuclear energy production and TRU burning with the following attractive features: (1) For the long term perspective, TASSEs have a rather limited mass of long-lived radioactive wastes, consisting mostly of Th, U and Pa nuclides. One can see the considerable reduction of waste toxicity by the factor of 1000 (or even more) in the magnitude regarding current PWR's and by the factor of 10-100 regarding (PWR's + dedicated burners) scenario. (2) Relatively low amounts of Th would have to be mined: approximately a factor of 100 lower than the U mined for PWR's. With TASSEs, nuclear power has practically inexhaustible (for a long future) and cheap fuel resources, taking into account that Thorium reserves exceed Uranium PWR fuel reserves by factor of 10 3 . (3) TASSEs are able to burnout all previously accumulated transuraniums as well as weapons grade materials during PWR's replacement over a period of approximately 50 years. No actinide fuel waste is foreseen for this period of time. There is no need to

  7. A vibrating membrane bioreactor operated at supra- and sub-critical flux: Influence of extracellular polymeric substances from yeast cells

    DEFF Research Database (Denmark)

    Beier, Søren Prip; Jonsson, Gunnar Eigil

    2007-01-01

    A vibrating membrane bioreactor, in which the fouling problems are reduced by vibrating a hollow fiber membrane module, has been tested in constant flux microfiltration above (supra-critical) and below (sub-critical) an experimentally determined critical flux. Suspensions of bakers yeast cells were...... chosen as filtration medium (dry weight 4 g/l). The influence of extracellular polymeric substances (EPS) from the yeast cells is evaluated by UV absorbance measurements of the bulk supernatant during filtration. The critical flux seems to be an interval or a relative value rather than an absolute value....... Filtration just below the critical flux (sub-critical) seems to be a good compromise between acceptable flux level and acceptable increase of fouling resistance and trans-membrane pressure (TMP) in a given time period. EPS from the yeast cells causes the membrane module to foul and part of the fouling...

  8. Critical and subcritical mass calculations of curium-243 to -247 based on JENDL-3.2 for revision of ANSI/ANS-8.15

    International Nuclear Information System (INIS)

    Okuno, Hiroshi

    2002-01-01

    Critical and subcritical masses were calculated for a sphere of five curium isotopes from 243 Cm to 247 Cm in metal and in metal-water mixtures considering three reflector conditions: bare, with a water reflector or a stainless steel reflector. The calculation were made mainly with a combination of a continuous energy Monte Carlo neutron transport calculation code, MCNP, and the Japanese Evaluated Nuclear Data Library, JENDL-3.2. Other evaluated nuclear data files, ENDF/B-VI and JEF-2.2, were also applied to find differences in calculation results of the neutron multiplication factor originated from different nuclear data files. A large dependence on the evaluated nuclear data files was found in the calculation results: more than 10%Δk/k relative differences in the neutron multiplication factor for a homogeneous mixture of 243 Cm metal and water when JENDL-3.2 was replaced with ENDF/B-VI and JEF-2.2, respectively; and a 44% reduction in the critical mass by changing from JENDL-3.2 to ENDF/B-VI for 246 Cm metal. The present study supplied basic information to the ANSI/ANS-8.15 Working Group for revision of the standard for nuclear criticality control of special actinide elements. The new or revised values of the subcritical mass limits for curium isotopes accepted by the ANSI/ANS-8.15 Working Group were finally summarized. (author)

  9. Prediction of drop time and impact velocity of rod cluster control assembly

    International Nuclear Information System (INIS)

    Choi, Kee Sung; Yim, Jeong Sik; Kim, Il Kon; Kim, Kyu Tae

    1992-01-01

    This paper deals with the drop modelling of rod cluster control assembly(RCCA) and the prediction of drop time and impact velocity of RCCA at scram event. On the scram, RCCA, dropping into the guide thimble of fuel assembly by the gravity, is subject to retarding forces such as hydraulic resistance, mechanical friction and buoyancy. Considering these retarding forces RCCA dynamic equation is derived and computerized it to solve the equation in conjunction with fluid equation which is coupled with the motion of the RCCA. Because the equation is nonlinear, coupled with fluid equations, the program is written in FORTRAN using numerical method in order to calculate the drop distance and velocity with time increment. To verify the program, its results are compared with those of other fuel vendors. Predicting identical tendency as other fuel vendors and the deviation is insignificant in values this program is expected to be used for predicting the drop time and impact velocity of RCCA when the parameters affecting the control rod drop time and impact velocity changes are occurred

  10. Self-assembly of coiled coil peptides into nanoparticles vs 2-d plates: effects of assembly pathway

    Science.gov (United States)

    Kim, Kyunghee; Pochan, Darrin

    Molecular solution assembly, or self-assembly, is a process by which ordered nanostructures or patterns are formed by non-covalent interactions during assembly. Biomimicry, the use of bioinspired molecules or biologically relevant materials, is an important area of self-assembly research with peptides serving a critical role as molecular tools. The morphology of peptide assemblies can be controlled by adjusting solution conditions such as the concentration of peptides, the temperature, and pH. Herein, spherical nanostructures, which have potential for creating an encapsulation system, are formed by self-assembly when coiled coil peptides are combined in solution. These peptides are homotrimeric and heterodimeric coiled-coil bundles and the homotrimer is connected with each of heterodimer through their external surfaces via disulfide bonds. The resultant covalent constructs could co-assemble into complementary trimeric hubs, respectively. The two peptide constructs are directly mixed and assembled in solution in order to produce either spherical particles or 2-d plates depending on the solution conditions and kinetic pathway of assembly. In particular, structural changes of the self-assembled peptides are explored by control of the thermal history of the assembly solution.

  11. Stoichiometric control of multiple different tectons in coordination-driven self-assembly: preparation of fused metallacyclic polygons.

    Science.gov (United States)

    Lee, Junseong; Ghosh, Koushik; Stang, Peter J

    2009-09-02

    We present a general strategy for the synthesis of stable, multicomponent fused polygon complexes in which coordination-driven self-assembly allows for single supramolecular species to be formed from multicomponent self-assembly and the shape of the obtained polygons can be controlled simply by changing the ratio of individual components. The compounds have been characterized by multinuclear NMR spectroscopy and electrospray ionization mass spectrometry.

  12. Experimental Study of Subcritical Water Liquefaction of Biomass

    DEFF Research Database (Denmark)

    Zhu, Zhe; Toor, Saqib; Rosendahl, Lasse

    2014-01-01

    In this work, hydrothermal liquefaction (HTL) of wood industry residues (wood, bark, sawdust) and macroalgae for producing biofuels has been investigated under subcritical water conditions (at temperature of 300 C), with and without the presence of catalyst. The effects of catalyst and biomass type...... bio-crudes were analyzed. The results showed that the higher heating values (HHVs) were in the range of 24.15 to 31.79 MJ/kg, and they were enhanced in the presence of catalyst, except for that of the macroalgae. The solid residues were characterized by heating value, SEM and FTIR. It was found...... that the addition of K2CO3 lowered the solids quality in terms of the heating values, while it did not have apparent effect on the functional groups of solid residues. SEM analysis of the raw biomass and solid residues revealed that the char formation for wood, sawdust and macroalgae had initially finished when...

  13. Onset of Fast Magnetic Reconnection via Subcritical Bifurcation

    Directory of Open Access Journals (Sweden)

    ZHIBIN eGUO

    2015-04-01

    Full Text Available We report a phase transition model for the onset of fast magnetic reconnection. By investigating the joint dynamics of streaming instability(i.e., current driven ion acoustic in this paper and current gradient driven whistler wave {color{blue} {prior to the onset of fast reconnection}}, we show that the nonlinear evolution of current sheet(CS can be described by a Landau-Ginzburg equation. The phase transition from slow reconnection to fast reconnection occurs at a critical thickness, $Delta_csimeq frac{2}{sqrt{pi}}left|frac{v_{the}}{v_c}right|d_e$, where $v_{the}$ is electron thermal velocity and $v_c$ is the velocity threshold of the streaming instability. For current driven ion acoustic, $Delta_c$ is $leq10d_e$. If the thickness of the CS is narrower than $Delta_c$, the CS subcritically bifurcates into a rough state, which facilitates breakage of the CS, and consequently initiates fast reconnection.

  14. Water ordering controls the dynamic equilibrium of micelle-fibre formation in self-assembly of peptide amphiphiles.

    Science.gov (United States)

    Deshmukh, Sanket A; Solomon, Lee A; Kamath, Ganesh; Fry, H Christopher; Sankaranarayanan, Subramanian K R S

    2016-08-24

    Understanding the role of water in governing the kinetics of the self-assembly processes of amphiphilic peptides remains elusive. Here, we use a multistage atomistic-coarse-grained approach, complemented by circular dichroism/infrared spectroscopy and dynamic light scattering experiments to highlight the dual nature of water in driving the self-assembly of peptide amphiphiles (PAs). We show computationally that water cage formation and breakage near the hydrophobic groups control the fusion dynamics and aggregation of PAs in the micellar stage. Simulations also suggest that enhanced structural ordering of vicinal water near the hydrophilic amino acids shifts the equilibrium towards the fibre phase and stimulates structure and order during the PA assembly into nanofibres. Experiments validate our simulation findings; the measured infrared O-H bond stretching frequency is reminiscent of an ice-like bond which suggests that the solvated water becomes increasingly ordered with time in the assembled peptide network, thus shedding light on the role of water in a self-assembly process.

  15. Accelerator-driven system design concept for disposing of spent nuclear fuels

    International Nuclear Information System (INIS)

    Gohar, Y.; Cao, Y.; Kellogg, R.; Merzari, E.

    2015-01-01

    At present, the US SNF (Spent Nuclear Fuel) inventory is growing by about 2,000 metric tonnes (MT) per year from the current operating nuclear power plants to reach about 70,000 MT by 2015. This SNF inventory contains about 1% transuranics (700 MT), which has about 115 MT of minor actinides. Accelerator-driven systems utilising proton accelerators with neutron spallation targets and subcritical blankets can be utilised for transmuting these transuranics, simultaneously generating carbon free energy, and significantly reducing the capacity of the required geological repository storage facility for the spent nuclear fuels. A fraction of the SNF plutonium can be used as a MOX fuel in the current/future thermal power reactors and as a starting fuel for future fast power reactors. The uranium of the spent nuclear fuel can be recycled for use in future nuclear power plants. This paper shows that only four to five accelerator-driven systems operating for less than 33 full power years can dispose of the US SNF inventory expected by 2015. In addition, a significant fraction of the long-lived fission products will be transmuted at the same time. Each system consists of a proton accelerator with a neutron spallation target and a subcritical assembly. The accelerator beam parameters are 1 GeV protons and 25 MW beam power, which produce 3 GWt in the subcritical assembly. A liquid metal (lead or lead-bismuth eutectic) spallation target is selected because of design advantages. This target is located at the centre of the subcritical assembly to maximise the utilisation of spallation neutrons. Because of the high power density in the target material, the target has its own coolant loop, which is independent of the subcritical assembly coolant loop. Mobile fuel forms with transuranic materials without uranium are considered in this work with liquid lead or lead-bismuth eutectic as fuel carrier

  16. Determination of the multiplication factor and its bias by the 252Cf-source technique: A method for code benchmarking with subcritical configurations

    International Nuclear Information System (INIS)

    Perez, R.B.; Valentine, T.E.; Mihalczo, J.T.; Mattingly, J.K.

    1997-01-01

    A brief discussion of the Cf-252 source driven method for subcritical measurements serves as an introduction to the concept and use of the spectral ratio, Γ. It has also been shown that the Monte Carlo calculation of spectral densities and effective multiplication factors have as a common denominator the transport propagator. This commonality follows from the fact that the Neumann series expansion of the propagator lends itself to the Monte Carlo method. On this basis a linear relationship between the spectral ratio and the effective multiplication factor has been shown. This relationship demonstrates the ability of subcritical measurements of the ratio of spectral densities to validate transport theory methods and cross sections

  17. Trace Contaminant Control During the International Space Station's On-Orbit Assembly and Outfitting

    Science.gov (United States)

    Perry, J. L.

    2017-01-01

    Achieving acceptable cabin air quality must balance competing elements during spacecraft design, assembly, ground processing, and flight operations. Among the elements that contribute to the trace chemical contaminant load and, therefore, the cabin air quality aboard crewed spacecraft are the vehicle configuration, crew size and activities, mission duration and objectives, materials selection, and vehicle manufacturing and preflight ground processing methods. Trace chemical contaminants produced from pervasive sources such as equipment offgassing, human metabolism, and cleaning fluids during preflight ground processing present challenges to maintaining acceptable cabin air quality. To address these challenges, both passive and active contamination control techniques are used during a spacecraft's design, manufacturing, preflight preparation, and operational phases. Passive contamination control methods seek to minimize the equipment offgassing load by selecting materials, manufacturing processes, preflight preparation processes, and in-flight operations that have low chemical offgassing characteristics. Passive methods can be employed across the spacecraft's entire life cycle from conceptual design through flight operations. However, because the passive contamination control techniques cannot fully eliminate the contaminant load, active contamination control equipment must be deployed aboard the spacecraft to purify and revitalize the cabin atmosphere during in-flight operations. Verifying that the passive contamination control techniques have successfully maintained the total trace contaminant load within the active contamination control equipment's capabilities occurs late in the preflight preparation stages. This verification consists of subjecting the spacecraft to an offgassing test to determine the trace contaminant load. This load is then assessed versus the active contamination control equipment's capabilities via trace contaminant control (TCC) engineering

  18. Hematite Thin Films with Various Nanoscopic Morphologies Through Control of Self-Assembly Structures

    Science.gov (United States)

    Liu, Jingling; Kim, Yong-Tae; Kwon, Young-Uk

    2015-05-01

    Hematite (α-Fe2O3) thin films with various nanostructures were synthesized through self-assembly between iron oxide hydroxide particles, generated by hydrolysis and condensation of Fe(NO3)3 · 6H2O, and a Pluronic triblock copolymer (F127, (EO)106(PO)70(EO)106, EO = ethylene oxide, PO = propylene oxide), followed by calcination. The self-assembly structure can be tuned by introducing water in a controlled manner through the control of the humidity level in the surrounding of the as-cast films during aging stage. For the given Fe(NO3)3 · 6H2O:F127 ratio, there appear to be three different thermodynamically stable self-assembly structures depending on the water content in the film material, which correspond to mesoporous, spherical micellar, and rod-like micellar structures after removal of F127. Coupled with the thermodynamic driving forces, the kinetics of the irreversible reactions of coalescence of iron oxide hydroxide particles into larger ones induce diverse nanostructures of the resultant films. The length scale of so-obtained nanostructures ranges from 6 nm to a few hundred nanometers. In addition to water content, the effects of other experimental parameters such as aging temperature, spin rate during spin coating, type of substrate, and type of iron reagent were investigated.

  19. An analysis of reactivity prediction during the reactor start-up process

    International Nuclear Information System (INIS)

    Bajgl, Josef; Krysl, Vaclav; Svarny, Jiri

    2015-01-01

    The different VVER-440 core fuel loadings subcriticality evaluations are performed during the start-up process by boron dilution or control assembly withdrawn by macrocode MOBY-DICK calculations. The dynamic reactivity and quasicritical reactivity are compared and sensitivity of reactivity prediction at the low boundary of start-up interval (ρ = -0,01) has been provided on the basis of different modelling of ionization chamber (IC) response calculation. Special attention is paid to the impact of power distribution and spontaneous fission distribution form factor on IC response correction during control assembly movement. Precision and robustness of different corrections of IC signal processing in real core start-up processed IC signals was evaluated.

  20. New breathing functions for the transverse breathing crack of the cracked rotor system: Approach for critical and subcritical harmonic analysis

    Science.gov (United States)

    Al-Shudeifat, Mohammad A.; Butcher, Eric A.

    2011-01-01

    The actual breathing mechanism of the transverse breathing crack in the cracked rotor system that appears due to the shaft weight is addressed here. As a result, the correct time-varying area moments of inertia for the cracked element cross-section during shaft rotation are also determined. Hence, two new breathing functions are identified to represent the actual breathing effect on the cracked element stiffness matrix. The new breathing functions are used in formulating the time-varying finite element stiffness matrix of the cracked element. The finite element equations of motion are then formulated for the cracked rotor system and solved via harmonic balance method for response, whirl orbits and the shift in the critical and subcritical speeds. The analytical results of this approach are compared with some previously published results obtained using approximate formulas for the breathing mechanism. The comparison shows that the previously used breathing function is a weak model for the breathing mechanism in the cracked rotor even for small crack depths. The new breathing functions give more accurate results for the dynamic behavior of the cracked rotor system for a wide range of the crack depths. The current approach is found to be efficient for crack detection since the critical and subcritical shaft speeds, the unique vibration signature in the neighborhood of the subcritical speeds and the sensitivity to the unbalance force direction all together can be utilized to detect the breathing crack before further damage occurs.