WorldWideScience

Sample records for subcortical-cortical eeg relations

  1. Analysis of EEG Related Saccadic Eye Movement

    Science.gov (United States)

    Funase, Arao; Kuno, Yoshiaki; Okuma, Shigeru; Yagi, Tohru

    Our final goal is to establish the model for saccadic eye movement that connects the saccade and the electroencephalogram(EEG). As the first step toward this goal, we recorded and analyzed the saccade-related EEG. In the study recorded in this paper, we tried detecting a certain EEG that is peculiar to the eye movement. In these experiments, each subject was instructed to point their eyes toward visual targets (LEDs) or the direction of the sound sources (buzzers). In the control cases, the EEG was recorded in the case of no eye movemens. As results, in the visual experiments, we found that the potential of EEG changed sharply on the occipital lobe just before eye movement. Furthermore, in the case of the auditory experiments, similar results were observed. In the case of the visual experiments and auditory experiments without eye movement, we could not observed the EEG changed sharply. Moreover, when the subject moved his/her eyes toward a right-side target, a change in EEG potential was found on the right occipital lobe. On the contrary, when the subject moved his/her eyes toward a left-side target, a sharp change in EEG potential was found on the left occipital lobe.

  2. EEG

    Science.gov (United States)

    ... brain dead. EEG cannot be used to measure intelligence. Normal Results Brain electrical activity has a certain ... 2018, A.D.A.M., Inc. Duplication for commercial use must be authorized in writing by ADAM ...

  3. Multivariate spectral-analysis of movement-related EEG data

    International Nuclear Information System (INIS)

    Andrew, C. M.

    1997-01-01

    The univariate method of event-related desynchronization (ERD) analysis, which quantifies the temporal evolution of power within specific frequency bands from electroencephalographic (EEG) data recorded during a task or event, is extended to an event related multivariate spectral analysis method. With this method, time courses of cross-spectra, phase spectra, coherence spectra, band-averaged coherence values (event-related coherence, ERCoh), partial power spectra and partial coherence spectra are estimated from an ensemble of multivariate event-related EEG trials. This provides a means of investigating relationships between EEG signals recorded over different scalp areas during the performance of a task or the occurrence of an event. The multivariate spectral analysis method is applied to EEG data recorded during three different movement-related studies involving discrete right index finger movements. The first study investigates the impact of the EEG derivation type on the temporal evolution of interhemispheric coherence between activity recorded at electrodes overlying the left and right sensorimotor hand areas during cued finger movement. The question results whether changes in coherence necessarily reflect changes in functional coupling of the cortical structures underlying the recording electrodes. The method is applied to data recorded during voluntary finger movement and a hypothesis, based on an existing global/local model of neocortical dynamics, is formulated to explain the coherence results. The third study applies partial spectral analysis too, and investigates phase relationships of, movement-related data recorded from a full head montage, thereby providing further results strengthening the global/local hypothesis. (author)

  4. EEG

    African Journals Online (AJOL)

    2017-09-03

    Sep 3, 2017 ... However, very few studies have examined the use of EEG in developing countries, including Ni- ... of evoked potentials from brain neurons, referred to as .... Percentage. Gender. Male. 89. 62.7. Female. 53. 37.3. Age. 0-10. 59.

  5. Blind Source Separation of Event-Related EEG/MEG.

    Science.gov (United States)

    Metsomaa, Johanna; Sarvas, Jukka; Ilmoniemi, Risto Juhani

    2017-09-01

    Blind source separation (BSS) can be used to decompose complex electroencephalography (EEG) or magnetoencephalography data into simpler components based on statistical assumptions without using a physical model. Applications include brain-computer interfaces, artifact removal, and identifying parallel neural processes. We wish to address the issue of applying BSS to event-related responses, which is challenging because of nonstationary data. We introduce a new BSS approach called momentary-uncorrelated component analysis (MUCA), which is tailored for event-related multitrial data. The method is based on approximate joint diagonalization of multiple covariance matrices estimated from the data at separate latencies. We further show how to extend the methodology for autocovariance matrices and how to apply BSS methods suitable for piecewise stationary data to event-related responses. We compared several BSS approaches by using simulated EEG as well as measured somatosensory and transcranial magnetic stimulation (TMS) evoked EEG. Among the compared methods, MUCA was the most tolerant one to noise, TMS artifacts, and other challenges in the data. With measured somatosensory data, over half of the estimated components were found to be similar by MUCA and independent component analysis. MUCA was also stable when tested with several input datasets. MUCA is based on simple assumptions, and the results suggest that MUCA is robust with nonideal data. Event-related responses and BSS are valuable and popular tools in neuroscience. Correctly designed BSS is an efficient way of identifying artifactual and neural processes from nonstationary event-related data.

  6. Intelligence related differences in EEG-bandpower.

    Science.gov (United States)

    Doppelmayr, Michael; Klimesch, W; Sauseng, P; Hödlmoser, K; Stadler, W; Hanslmayr, S

    2005-06-24

    Several studies on the relationship between event-related desynchronization/synchronization (ERD/ERS) and cognitive performance revealed contradictory results particularly for the alpha band. Studies from our laboratory have shown that good performers show a larger upper alpha ERD (interpreted in terms of larger cortical activation) than bad performers. In contrast, other researchers found evidence for the neural efficiency hypothesis, which states that more intelligent subjects exhibit a smaller extent of cortical activation, which is assumed to be reflected by a smaller upper alpha ERD. Here we address the question whether these divergent results may be due to differences in general task difficulty. Using a modified version of the RAVEN, individually divided into easy and difficult tasks, a group of average and a group of highly intelligent subjects (IQ- and IQ+) have been investigated. While in the theta frequency IQ+ subjects generally exhibited a significantly stronger activation, we found a significant interaction of task difficulty and IQ group in the upper alpha band, indicating both, a weaker activation for the high IQ group during the easy tasks, and a significant increase from easy to difficult tasks for IQ+ only.

  7. EEG Alpha Synchronization Is Related to Top-Down Processing in Convergent and Divergent Thinking

    Science.gov (United States)

    Benedek, Mathias; Bergner, Sabine; Konen, Tanja; Fink, Andreas; Neubauer, Aljoscha C.

    2011-01-01

    Synchronization of EEG alpha activity has been referred to as being indicative of cortical idling, but according to more recent evidence it has also been associated with active internal processing and creative thinking. The main objective of this study was to investigate to what extent EEG alpha synchronization is related to internal processing…

  8. Children's Depressive Symptoms in Relation to EEG Frontal Asymmetry and Maternal Depression

    Science.gov (United States)

    Feng, Xin; Forbes, Erika E.; Kovacs, Maria; George, Charles J.; Lopez-Duran, Nestor L.; Fox, Nathan A.; Cohn, Jeffrey F.

    2012-01-01

    This study examined the relations of school-age children's depressive symptoms, frontal EEG asymmetry, and maternal history of childhood-onset depression (COD). Participants were 73 children, 43 of whom had mothers with COD. Children's EEG was recorded at baseline and while watching happy and sad film clips. Depressive symptoms were measured using…

  9. Event-related EEG changes preceding saccadic eye movements before and after dry immersion.

    Science.gov (United States)

    Tomilovskaya, E S; Kirenskaya, A V; Novototski-Vlasov, V Yu; Kozlovskaya, I B

    2004-07-01

    Objectives of this work were to quantify antisaccade characteristics, presaccadic slow negative EEG-potentials, and event-related EEG frequency band power (theta, alpha1, alpha2, beta1, beta2 and beta3) changes (ERD) in healthy volunteers before and after 6-day simulated weightlessness (dry immersion).

  10. Relative power and coherence of EEG series are related to amnestic mild cognitive impairment in diabetes

    Directory of Open Access Journals (Sweden)

    Zhijie eBian

    2014-02-01

    Full Text Available Objective: Diabetes is a risk factor for dementia and mild cognitive impairment. The aim of this study was to investigate whether some features of resting-state EEG (rsEEG could be applied as a biomarker to distinguish the subjects with amnestic mild cognitive impairment (aMCI from normal cognitive function in type 2 diabetes. Materials and Methods: In this study, 28 patients with type 2 diabetes (16 aMCI patients and 12 controls were investigated. Recording of the rsEEG series and neuropsychological assessments were performed. The rsEEG signal was first decomposed into delta, theta, alpha, beta, gamma frequency bands. The relative power of each given band/sum of power and the coherence of waves from different brain areas were calculated. The extracted features from rsEEG and neuropsychological assessments were analyzed as well. Results: The main findings of this study were that: 1 compared with the control group, the ratios of power in theta band (P(theta versus power in alpha band (P(alpha (P(theta/P(alpha in the frontal region and left temporal region were significantly higher for aMCI, and 2 for aMCI, the alpha coherences in posterior, fronto-right temporal, fronto-posterior, right temporo-posterior were decreased; the theta coherences in left central-right central (LC-RC and left posterior-right posterior (LP-RP regions were also decreased; but the delta coherences in left temporal-right temporal (LT-RT region were increased. Conclusion: The proposed indexes from rsEEG recordings could be employed to track cognitive function of diabetic patients and also to help in the diagnosis of those who develop aMCI.

  11. Measurement and modification of the EEG and related behavior

    Science.gov (United States)

    Sterman, M. B.

    1991-01-01

    Electrophysiological changes in the sensorimotor pathways were found to accompany the effect of rhythmic EEG patterns in the sensorimotor cortex. Additionally, several striking behavioral changes were seen, including in particular an enhancement of sleep and an elevation of seizure threshold to epileptogenic agents. This raised the possibility that human seizure disorders might be influenced therapeutically by similar training. Our objective in human EEG feedback training became not only the facilitation of normal rhythmic patterns, but also the suppression of abnormal activity, thus requiring complex contingencies directed to the normalization of the sensorimotor EEG. To achieve this, a multicomponent frequency analysis was developed to extract and separate normal and abnormal elements of the EEG signal. Each of these elements was transduced to a specific component of a visual display system, and these were combined through logic circuits to present the subject with a symbolic display. Variable criteria provided for the gradual shaping of EEG elements towards the desired normal pattern. Some 50-70% of patients with poorly controlled seizure disorders experienced therapeutic benefits from this approach in our laboratory, and subsequently in many others. A more recent application of this approach to the modification of human brain function in our lab has been directed to the dichotomous problems of task overload and underload in the contemporary aviation environment. At least 70% of all aviation accidents have been attributed to the impact of these kinds of problems on crew performance. The use of EEG in this context has required many technical innovations and the application of the latest advances in EEG signal analysis. Our first goal has been the identification of relevant EEG characteristics. Additionally, we have developed a portable recording and analysis system for application in this context. Findings from laboratory and in-flight studies suggest that we

  12. Intracranial EEG correlates of implicit relational inference within the hippocampus.

    Science.gov (United States)

    Reber, T P; Do Lam, A T A; Axmacher, N; Elger, C E; Helmstaedter, C; Henke, K; Fell, J

    2016-01-01

    Drawing inferences from past experiences enables adaptive behavior in future situations. Inference has been shown to depend on hippocampal processes. Usually, inference is considered a deliberate and effortful mental act which happens during retrieval, and requires the focus of our awareness. Recent fMRI studies hint at the possibility that some forms of hippocampus-dependent inference can also occur during encoding and possibly also outside of awareness. Here, we sought to further explore the feasibility of hippocampal implicit inference, and specifically address the temporal evolution of implicit inference using intracranial EEG. Presurgical epilepsy patients with hippocampal depth electrodes viewed a sequence of word pairs, and judged the semantic fit between two words in each pair. Some of the word pairs entailed a common word (e.g., "winter-red," "red-cat") such that an indirect relation was established in following word pairs (e.g., "winter-cat"). The behavioral results suggested that drawing inference implicitly from past experience is feasible because indirect relations seemed to foster "fit" judgments while the absence of indirect relations fostered "do not fit" judgments, even though the participants were unaware of the indirect relations. A event-related potential (ERP) difference emerging 400 ms post-stimulus was evident in the hippocampus during encoding, suggesting that indirect relations were already established automatically during encoding of the overlapping word pairs. Further ERP differences emerged later post-stimulus (1,500 ms), were modulated by the participants' responses and were evident during encoding and test. Furthermore, response-locked ERP effects were evident at test. These ERP effects could hence be a correlate of the interaction of implicit memory with decision-making. Together, the data map out a time-course in which the hippocampus automatically integrates memories from discrete but related episodes to implicitly influence future

  13. Classification of Hand Grasp Kinetics and Types Using Movement-Related Cortical Potentials and EEG Rhythms

    Directory of Open Access Journals (Sweden)

    Mads Jochumsen

    2017-01-01

    Full Text Available Detection of single-trial movement intentions from EEG is paramount for brain-computer interfacing in neurorehabilitation. These movement intentions contain task-related information and if this is decoded, the neurorehabilitation could potentially be optimized. The aim of this study was to classify single-trial movement intentions associated with two levels of force and speed and three different grasp types using EEG rhythms and components of the movement-related cortical potential (MRCP as features. The feature importance was used to estimate encoding of discriminative information. Two data sets were used. 29 healthy subjects executed and imagined different hand movements, while EEG was recorded over the contralateral sensorimotor cortex. The following features were extracted: delta, theta, mu/alpha, beta, and gamma rhythms, readiness potential, negative slope, and motor potential of the MRCP. Sequential forward selection was performed, and classification was performed using linear discriminant analysis and support vector machines. Limited classification accuracies were obtained from the EEG rhythms and MRCP-components: 0.48±0.05 (grasp types, 0.41±0.07 (kinetic profiles, motor execution, and 0.39±0.08 (kinetic profiles, motor imagination. Delta activity contributed the most but all features provided discriminative information. These findings suggest that information from the entire EEG spectrum is needed to discriminate between task-related parameters from single-trial movement intentions.

  14. Exploring resting-state EEG brain oscillatory activity in relation to cognitive functioning in multiple sclerosis.

    Science.gov (United States)

    Keune, Philipp M; Hansen, Sascha; Weber, Emily; Zapf, Franziska; Habich, Juliane; Muenssinger, Jana; Wolf, Sebastian; Schönenberg, Michael; Oschmann, Patrick

    2017-09-01

    Neurophysiologic monitoring parameters related to cognition in Multiple Sclerosis (MS) are sparse. Previous work reported an association between magnetoencephalographic (MEG) alpha-1 activity and information processing speed. While this remains to be replicated by more available electroencephalographic (EEG) methods, also other established EEG markers, e.g. the slow-wave/fast-wave ratio (theta/beta ratio), remain to be explored in this context. Performance on standard tests addressing information processing speed and attention (Symbol-Digit Modalities Test, SDMT; Test of Attention Performance, TAP) was examined in relation to resting-state EEG alpha-1 and alpha-2 activity and the theta/beta ratio in 25MS patients. Increased global alpha-1 and alpha-2 activity and an increased frontal theta/beta ratio (pronounced slow-wave relative to fast-wave activity) were associated with lower SDMT processing speed. In an exploratory analysis, clinically impaired attention was associated with a significantly increased frontal theta/beta ratio whereas alpha power did not show sensitivity to clinical impairment. EEG global alpha power and the frontal theta/beta ratio were both associated with attention. The theta/beta ratio involved potential clinical sensitivity. Resting-state EEG recordings can be obtained during the routine clinical process. The examined resting-state measures may represent feasible monitoring parameters in MS. This notion should be explored in future intervention studies. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  15. Independent component analysis of gait-related movement artifact recorded using EEG electrodes during treadmill walking.

    Directory of Open Access Journals (Sweden)

    Kristine Lynne Snyder

    2015-12-01

    Full Text Available There has been a recent surge in the use of electroencephalography (EEG as a tool for mobile brain imaging due to its portability and fine time resolution. When EEG is combined with independent component analysis (ICA and source localization techniques, it can model electrocortical activity as arising from temporally independent signals located in spatially distinct cortical areas. However, for mobile tasks, it is not clear how movement artifacts influence ICA and source localization. We devised a novel method to collect pure movement artifact data (devoid of any electrophysiological signals with a 256-channel EEG system. We first blocked true electrocortical activity using a silicone swim cap. Over the silicone layer, we placed a simulated scalp with electrical properties similar to real human scalp. We collected EEG movement artifact signals from ten healthy, young subjects wearing this setup as they walked on a treadmill at speeds from 0.4-1.6 m/s. We performed ICA and dipole fitting on the EEG movement artifact data to quantify how accurately these methods would identify the artifact signals as non-neural. ICA and dipole fitting accurately localized 99% of the independent components in non-neural locations or lacked dipolar characteristics. The remaining 1% of sources had locations within the brain volume and low residual variances, but had topographical maps, power spectra, time courses, and event related spectral perturbations typical of non-neural sources. Caution should be exercised when interpreting ICA for data that includes semi-periodic artifacts including artifact arising from human walking. Alternative methods are needed for the identification and separation of movement artifact in mobile EEG signals, especially methods that can be performed in real time. Separating true brain signals from motion artifact could clear the way for EEG brain computer interfaces for assistance during mobile activities, such as walking.

  16. Event-Related EEG Oscillations to Semantically Unrelated Words in Normal and Learning Disabled Children

    Science.gov (United States)

    Fernandez, Thalia; Harmony, Thalia; Mendoza, Omar; Lopez-Alanis, Paula; Marroquin, Jose Luis; Otero, Gloria; Ricardo-Garcell, Josefina

    2012-01-01

    Learning disabilities (LD) are one of the most frequent problems for elementary school-aged children. In this paper, event-related EEG oscillations to semantically related and unrelated pairs of words were studied in a group of 18 children with LD not otherwise specified (LD-NOS) and in 16 children with normal academic achievement. We propose that…

  17. Task-related modulation of anterior theta and posterior alpha EEG reflects top-down preparation

    Directory of Open Access Journals (Sweden)

    Park Hae-Jeong

    2010-06-01

    Full Text Available Abstract Background Prestimulus EEG alpha activity in humans has been considered to reflect ongoing top-down preparation for the performance of subsequent tasks. Since theta oscillations may be related to poststimulus top-down processing, we investigated whether prestimulus EEG theta activity also reflects top-down cognitive preparation for a stimulus. Results We recorded EEG data from 15 healthy controls performing a color and shape discrimination task, and used the wavelet transformation to investigate the time course and power of oscillatory activity in the signals. We observed a relationship between both anterior theta and posterior alpha power in the prestimulus period and the type of subsequent task. Conclusions Since task-differences were reflected in both theta and alpha activities prior to stimulus onset, both prestimulus theta (particularly around the anterior region and prestimulus alpha (particularly around the posterior region activities may reflect prestimulus top-down preparation for the performance of subsequent tasks.

  18. EEG Oscillations Are Modulated in Different Behavior-Related Networks during Rhythmic Finger Movements.

    Science.gov (United States)

    Seeber, Martin; Scherer, Reinhold; Müller-Putz, Gernot R

    2016-11-16

    Sequencing and timing of body movements are essential to perform motoric tasks. In this study, we investigate the temporal relation between cortical oscillations and human motor behavior (i.e., rhythmic finger movements). High-density EEG recordings were used for source imaging based on individual anatomy. We separated sustained and movement phase-related EEG source amplitudes based on the actual finger movements recorded by a data glove. Sustained amplitude modulations in the contralateral hand area show decrease for α (10-12 Hz) and β (18-24 Hz), but increase for high γ (60-80 Hz) frequencies during the entire movement period. Additionally, we found movement phase-related amplitudes, which resembled the flexion and extension sequence of the fingers. Especially for faster movement cadences, movement phase-related amplitudes included high β (24-30 Hz) frequencies in prefrontal areas. Interestingly, the spectral profiles and source patterns of movement phase-related amplitudes differed from sustained activities, suggesting that they represent different frequency-specific large-scale networks. First, networks were signified by the sustained element, which statically modulate their synchrony levels during continuous movements. These networks may upregulate neuronal excitability in brain regions specific to the limb, in this study the right hand area. Second, movement phase-related networks, which modulate their synchrony in relation to the movement sequence. We suggest that these frequency-specific networks are associated with distinct functions, including top-down control, sensorimotor prediction, and integration. The separation of different large-scale networks, we applied in this work, improves the interpretation of EEG sources in relation to human motor behavior. EEG recordings provide high temporal resolution suitable to relate cortical oscillations to actual movements. Investigating EEG sources during rhythmic finger movements, we distinguish sustained from

  19. Relative Power of Specific EEG Bands and Their Ratios during Neurofeedback Training in Children with Autism Spectrum Disorder

    Directory of Open Access Journals (Sweden)

    Yao eWang

    2016-01-01

    Full Text Available Neurofeedback is a mode of treatment that is potentially useful for improving self-regulation skills in persons with autism spectrum disorder. We proposed that operant conditioning of EEG in neurofeedback mode can be accompanied by changes in the relative power of EEG bands. However, the details on the change of the relative power of EEG bands during neurofeedback training course in autism are not yet well explored. In this study, we analyzed the EEG recordings of children diagnosed with autism and enrolled in a prefrontal neurofeedback treatment course. The protocol used in this training was aimed at increasing the ability to focus attention, and the procedure represented the wide band EEG amplitude suppression training along with upregulation of the relative power of gamma activity. Quantitative EEG analysis was completed for each session of neurofeedback using wavelet transform to determine the relative power of gamma and theta/beta ratio, and further to detect the statistical changes within and between sessions. We found a linear decrease of theta/beta ratio and a liner increase of relative power of gamma activity over 18 weekly sessions of neurofeedback in 18 high functioning children with autism. The study indicates that neurofeedback is an effective method for altering EEG characteristics associated with the autism spectrum disorder. Also, it provides information about specific changes of EEG activities and details the correlation between changes of EEG and neurofeedback indexes during the course of neurofeedback. This pilot study contributes to the development of more effective approaches to EEG data analysis during prefrontal neurofeedback training in autism.Key word: Electroencephalography, Neurofeedback, Autism Spectrum Disorder, Gamma activity, EEG bands’ ratios

  20. EEG oscillatory power dissociates between distress- and depression-related psychopathology in subjective tinnitus.

    Science.gov (United States)

    Meyer, Martin; Neff, Patrick; Grest, Angelina; Hemsley, Colette; Weidt, Steffi; Kleinjung, Tobias

    2017-05-15

    Recent research has used source estimation approaches to identify spatially distinct neural configurations in individuals with chronic, subjective tinnitus (TI). The results of these studies are often heterogeneous, a fact which may be partly explained by an inherent heterogeneity in the TI population and partly by the applied EEG data analysis procedure and EEG hardware. Hence this study was performed to re-enact a formerly published study (Joos et al., 2012) to better understand the reason for differences and overlap between studies from different labs. We re-investigated the relationship between neural oscillations and behavioral measurements of affective states in TI, namely depression and tinnitus-related distress by recruiting 45 TI who underwent resting-state EEG. Comprehensive psychopathological (depression and tinnitus-related distress scores) and psychometric data (including other tinnitus characteristics) were gathered. A principal component analysis (PCA) was performed to unveil independent factors that predict distinct aspects of tinnitus-related pathology. Furthermore, we correlated EEG power changes in the standard frequency bands with the behavioral scores for both the whole-brain level and, as a post hoc approach, for selected regions of interest (ROI) based on sLORETA. Behavioral data revealed significant relationships between measurements of depression and tinnitus-related distress. Notably, no significant results were observed for the depressive scores and modulations of the EEG signal. However, akin to the former study we evidenced a significant relationship between a power increase in the β-bands and tinnitus-related distress. In conclusion, it has emerged that depression and tinnitus-related distress, even though they are assumed not to be completely independent, manifest in distinct neural configurations. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Relative Power of Specific EEG Bands and Their Ratios during Neurofeedback Training in Children with Autism Spectrum Disorder

    Science.gov (United States)

    Wang, Yao; Sokhadze, Estate M.; El-Baz, Ayman S.; Li, Xiaoli; Sears, Lonnie; Casanova, Manuel F.; Tasman, Allan

    2016-01-01

    Neurofeedback is a mode of treatment that is potentially useful for improving self-regulation skills in persons with autism spectrum disorder. We proposed that operant conditioning of EEG in neurofeedback mode can be accompanied by changes in the relative power of EEG bands. However, the details on the change of the relative power of EEG bands during neurofeedback training course in autism are not yet well explored. In this study, we analyzed the EEG recordings of children diagnosed with autism and enrolled in a prefrontal neurofeedback treatment course. The protocol used in this training was aimed at increasing the ability to focus attention, and the procedure represented the wide band EEG amplitude suppression training along with upregulation of the relative power of gamma activity. Quantitative EEG analysis was completed for each session of neurofeedback using wavelet transform to determine the relative power of gamma and theta/beta ratio, and further to detect the statistical changes within and between sessions. We found a linear decrease of theta/beta ratio and a liner increase of relative power of gamma activity over 18 weekly sessions of neurofeedback in 18 high functioning children with autism. The study indicates that neurofeedback is an effective method for altering EEG characteristics associated with the autism spectrum disorder. Also, it provides information about specific changes of EEG activities and details the correlation between changes of EEG and neurofeedback indexes during the course of neurofeedback. This pilot study contributes to the development of more effective approaches to EEG data analysis during prefrontal neurofeedback training in autism. PMID:26834615

  2. EEG patterns in theta and gamma frequency range and their probable relation to human voluntary movement organization.

    Science.gov (United States)

    Popivanov, D; Mineva, A; Krekule, I

    1999-05-21

    In experiments with EEG accompanying continuous slow goal-directed voluntary movements we found abrupt short-term transients (STs) of the coefficients of EEG time-varying autoregressive (TVAR) model. The onset of STs indicated (i) a positive EEG wave related to an increase of 3-7 Hz oscillations in time period before the movement start, (ii) synchronization of 35-40 Hz prior to movement start and during the movement when the target is nearly reached. Both these phenomena are expressed predominantly over supplementary motor area, premotor and parietal cortices. These patterns were detected after averaging of EEG segments synchronized to the abrupt changes of the TVAR coefficients computed in the time course of EEG single records. The results are discussed regarding the cognitive aspect of organization of goal-directed movements.

  3. Avoidance-related EEG asymmetry predicts circulating interleukin-6.

    Science.gov (United States)

    Shields, Grant S; Moons, Wesley G

    2016-03-01

    Recent research has linked avoidance-oriented motivational states to elevated pro-inflammatory cytokine levels. According to one of many theories regarding the association between avoidance and cytokine levels, because the evolutionarily basic avoidance system may be activated when an organism is threatened or overwhelmed, an associated inflammatory response may be adaptive for dealing with potential injury in such threatening situations. To examine this hypothesis, we tested whether the neural correlate of avoidance motivation associates with baseline levels of the circulating pro-inflammatory cytokine interleukin-6 (IL-6). Controlling for covariates, greater resting neural activity in the right frontal cortex relative to the left frontal cortex-the neural correlate of avoidance motivation-was associated with baseline IL-6. These results thus support the hypothesis that the avoidance motivational system may be closely linked to systemic inflammatory activity. (c) 2016 APA, all rights reserved).

  4. EEG Channel Selection Using Particle Swarm Optimization for the Classification of Auditory Event-Related Potentials

    Directory of Open Access Journals (Sweden)

    Alejandro Gonzalez

    2014-01-01

    Full Text Available Brain-machine interfaces (BMI rely on the accurate classification of event-related potentials (ERPs and their performance greatly depends on the appropriate selection of classifier parameters and features from dense-array electroencephalography (EEG signals. Moreover, in order to achieve a portable and more compact BMI for practical applications, it is also desirable to use a system capable of accurate classification using information from as few EEG channels as possible. In the present work, we propose a method for classifying P300 ERPs using a combination of Fisher Discriminant Analysis (FDA and a multiobjective hybrid real-binary Particle Swarm Optimization (MHPSO algorithm. Specifically, the algorithm searches for the set of EEG channels and classifier parameters that simultaneously maximize the classification accuracy and minimize the number of used channels. The performance of the method is assessed through offline analyses on datasets of auditory ERPs from sound discrimination experiments. The proposed method achieved a higher classification accuracy than that achieved by traditional methods while also using fewer channels. It was also found that the number of channels used for classification can be significantly reduced without greatly compromising the classification accuracy.

  5. Meditation and the EEG

    OpenAIRE

    West, Michael

    1980-01-01

    Previous research on meditation and the EEG is described, and findings relating to EEG patterns during meditation are discussed. Comparisons of meditation with other altered states are reviewed and it is concluded that, on the basis of existing EEG evidence, there is some reason for differentiating between meditation and drowsing. Research on alpha-blocking and habituation of the blocking response during meditation is reviewed, and the effects of meditation on EEG patterns outside of meditati...

  6. Time is of the Essence: A Review of Electroencephalography (EEG) and Event-Related Brain Potentials (ERPs) in Language Research.

    Science.gov (United States)

    Beres, Anna M

    2017-12-01

    The discovery of electroencephalography (EEG) over a century ago has changed the way we understand brain structure and function, in terms of both clinical and research applications. This paper starts with a short description of EEG and then focuses on the event-related brain potentials (ERPs), and their use in experimental settings. It describes the typical set-up of an ERP experiment. A description of a number of ERP components typically involved in language research is presented. Finally, the advantages and disadvantages of using ERPs in language research are discussed. EEG has an extensive use in today's world, including medical, psychology, or linguistic research. The excellent temporal resolution of EEG information allows one to track a brain response in milliseconds and therefore makes it uniquely suited to research concerning language processing.

  7. Cortical sources of resting state EEG rhythms are related to brain hypometabolism in subjects with Alzheimer's disease: an EEG-PET study.

    Science.gov (United States)

    Babiloni, Claudio; Del Percio, Claudio; Caroli, Anna; Salvatore, Elena; Nicolai, Emanuele; Marzano, Nicola; Lizio, Roberta; Cavedo, Enrica; Landau, Susan; Chen, Kewei; Jagust, William; Reiman, Eric; Tedeschi, Gioacchino; Montella, Patrizia; De Stefano, Manuela; Gesualdo, Loreto; Frisoni, Giovanni B; Soricelli, Andrea

    2016-12-01

    Cortical sources of resting state electroencephalographic (EEG) delta (2-4 Hz) and low-frequency alpha (8-10.5 Hz) rhythms show abnormal activity (i.e., current density) in patients with dementia due to Alzheimer's disease (AD). Here, we hypothesized that abnormality of this activity is related to relevant disease processes as revealed by cortical hypometabolism typically observed in AD patients by fluorodeoxyglucose positron emission tomography. Resting state eyes-closed EEG data were recorded in 19 AD patients with dementia and 40 healthy elderly (Nold) subjects. EEG frequency bands of interest were delta and low-frequency alpha. EEG sources were estimated in these bands by low-resolution brain electromagnetic tomography (LORETA). Fluorodeoxyglucose positron emission tomography images were recorded only in the AD patients, and cortical hypometabolism was indexed by the so-called Alzheimer's discrimination analysis tool (PALZ) in the frontal association, ventromedial frontal, temporoparietal association, posterior cingulate, and precuneus areas. Results showed that compared with the Nold group, the AD group pointed to higher activity of delta sources and lower activity of low-frequency alpha sources in a cortical region of interest formed by all cortical areas of the PALZ score. In the AD patients, there was a positive correlation between the PALZ score and the activity of delta sources in the cortical region of interest (p < 0.05). These results suggest a relationship between resting state cortical hypometabolism and synchronization of cortical neurons at delta rhythms in AD patients with dementia. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Human cortical activity related to unilateral movements. A high resolution EEG study.

    Science.gov (United States)

    Urbano, A; Babiloni, C; Onorati, P; Babiloni, F

    1996-12-20

    In the present study a modern high resolution electroencephalography (EEG) technique was used to investigate the dynamic functional topography of human cortical activity related to simple unilateral internally triggered finger movements. The sensorimotor area (M1-S1) contralateral to the movement as well as the supplementary motor area (SMA) and to a lesser extent the ipsilateral M1-S1 were active during the preparation and execution of these movements. These findings suggest that both hemispheres may cooperate in both planning and production of simple unilateral volitional acts.

  9. Relation of EEG alpha background to cognitive fuction, brain atrophy, and cerebral metabolism in Down's syndrome. Age-specific changes

    International Nuclear Information System (INIS)

    Devinsky, O.; Sato, S.; Conwit, R.A.; Schapiro, M.B.

    1990-01-01

    We studied 19 young adults (19 to 37 years old) and 9 older patients (42 to 66 years old) with Down's syndrome (DS) and a control group of 13 healthy adults (22 to 38 years old) to investigate the relation of electroencephalographic (EEG) alpha background to cognitive function and cerebral metabolism. Four of the older patients with DS had a history of mental deterioration, disorientation, and memory loss and were demented. Patients and control subjects had EEGs, psychometric testing, quantitative computed tomography, and positron emission tomography with fludeoxyglucose F 18. A blinded reader classified the EEGs into two groups--those with normal alpha background or those with abnormal background. All the control subjects, the 13 young adult patients with DS, and the 5 older patients with DS had normal EEG backgrounds. In comparison with the age-matched patients with DS with normal alpha background, older patients with DS with decreased alpha background had dementia, fewer visuospatial skills, decreased attention span, larger third ventricles, and a global decrease in cerebral glucose utilization with parietal hypometabolism. In the young patients with DS, the EEG background did not correlate with psychometric or positron emission tomographic findings, but the third ventricles were significantly larger in those with abnormal EEG background. The young patients with DS, with or without normal EEG background, had positron emission tomographic findings similar to those of the control subjects. The mechanism underlying the abnormal EEG background may be the neuropathologic changes of Alzheimer's disease in older patients with DS and may be cerebral immaturity in younger patients with DS

  10. Attention and Working Memory-Related EEG Markers of Subtle Cognitive Deterioration in Healthy Elderly Individuals.

    Science.gov (United States)

    Deiber, Marie-Pierre; Meziane, Hadj Boumediene; Hasler, Roland; Rodriguez, Cristelle; Toma, Simona; Ackermann, Marine; Herrmann, François; Giannakopoulos, Panteleimon

    2015-01-01

    Future treatments of Alzheimer's disease need the identification of cases at high risk at the preclinical stage of the disease before the development of irreversible structural damage. We investigated here whether subtle cognitive deterioration in a population of healthy elderly individuals could be predicted by EEG signals at baseline under cognitive activation. Continuous EEG was recorded in 97 elderly control subjects and 45 age-matched mild cognitive impairment (MCI) cases during a simple attentional and a 2-back working memory task. Upon 18-month neuropsychological follow-up, the final sample included 55 stable (sCON) and 42 deteriorated (dCON) controls. We examined the P1, N1, P3, and PNwm event-related components as well as the oscillatory activities in the theta (4-7 Hz), alpha (8-13 Hz), and beta (14-25 Hz) frequency ranges (ERD/ERS: event-related desynchronization/synchronization, and ITC: inter-trial coherence). Behavioral performance, P1, and N1 components were comparable in all groups. The P3, PNwm, and all oscillatory activity indices were altered in MCI cases compared to controls. Only three EEG indices distinguished the two control groups: alpha and beta ERD (dCON >  sCON) and beta ITC (dCON memory processes but mostly affects attention, resulting in an enhanced recruitment of attentional resources. In addition, cognitive decline alters neural firing synchronization at high frequencies (14-25 Hz) at early stages, and possibly affects lower frequencies (4-13 Hz) only at more severe stages.

  11. Joint Maximum Likelihood Time Delay Estimation of Unknown Event-Related Potential Signals for EEG Sensor Signal Quality Enhancement

    Science.gov (United States)

    Kim, Kyungsoo; Lim, Sung-Ho; Lee, Jaeseok; Kang, Won-Seok; Moon, Cheil; Choi, Ji-Woong

    2016-01-01

    Electroencephalograms (EEGs) measure a brain signal that contains abundant information about the human brain function and health. For this reason, recent clinical brain research and brain computer interface (BCI) studies use EEG signals in many applications. Due to the significant noise in EEG traces, signal processing to enhance the signal to noise power ratio (SNR) is necessary for EEG analysis, especially for non-invasive EEG. A typical method to improve the SNR is averaging many trials of event related potential (ERP) signal that represents a brain’s response to a particular stimulus or a task. The averaging, however, is very sensitive to variable delays. In this study, we propose two time delay estimation (TDE) schemes based on a joint maximum likelihood (ML) criterion to compensate the uncertain delays which may be different in each trial. We evaluate the performance for different types of signals such as random, deterministic, and real EEG signals. The results show that the proposed schemes provide better performance than other conventional schemes employing averaged signal as a reference, e.g., up to 4 dB gain at the expected delay error of 10°. PMID:27322267

  12. Joint Maximum Likelihood Time Delay Estimation of Unknown Event-Related Potential Signals for EEG Sensor Signal Quality Enhancement

    Directory of Open Access Journals (Sweden)

    Kyungsoo Kim

    2016-06-01

    Full Text Available Electroencephalograms (EEGs measure a brain signal that contains abundant information about the human brain function and health. For this reason, recent clinical brain research and brain computer interface (BCI studies use EEG signals in many applications. Due to the significant noise in EEG traces, signal processing to enhance the signal to noise power ratio (SNR is necessary for EEG analysis, especially for non-invasive EEG. A typical method to improve the SNR is averaging many trials of event related potential (ERP signal that represents a brain’s response to a particular stimulus or a task. The averaging, however, is very sensitive to variable delays. In this study, we propose two time delay estimation (TDE schemes based on a joint maximum likelihood (ML criterion to compensate the uncertain delays which may be different in each trial. We evaluate the performance for different types of signals such as random, deterministic, and real EEG signals. The results show that the proposed schemes provide better performance than other conventional schemes employing averaged signal as a reference, e.g., up to 4 dB gain at the expected delay error of 10°.

  13. Hidden pattern discovery on epileptic EEG with 1-D local binary patterns and epileptic seizures detection by grey relational analysis.

    Science.gov (United States)

    Kaya, Yılmaz

    2015-09-01

    This paper proposes a novel approach to detect epilepsy seizures by using Electroencephalography (EEG), which is one of the most common methods for the diagnosis of epilepsy, based on 1-Dimension Local Binary Pattern (1D-LBP) and grey relational analysis (GRA) methods. The main aim of this paper is to evaluate and validate a novel approach, which is a computer-based quantitative EEG analyzing method and based on grey systems, aimed to help decision-maker. In this study, 1D-LBP, which utilizes all data points, was employed for extracting features in raw EEG signals, Fisher score (FS) was employed to select the representative features, which can also be determined as hidden patterns. Additionally, GRA is performed to classify EEG signals through these Fisher scored features. The experimental results of the proposed approach, which was employed in a public dataset for validation, showed that it has a high accuracy in identifying epileptic EEG signals. For various combinations of epileptic EEG, such as A-E, B-E, C-E, D-E, and A-D clusters, 100, 96, 100, 99.00 and 100% were achieved, respectively. Also, this work presents an attempt to develop a new general-purpose hidden pattern determination scheme, which can be utilized for different categories of time-varying signals.

  14. EEG biofeedback

    OpenAIRE

    Dvořáček, Michael

    2010-01-01

    Vznik EEG aktivity v mozku, rozdělení EEG vln podle frekvence, způsob měření EEG, přístroje pro měření EEG. Dále popis biofeedback metody, její možnosti a návrh biofeedback her. Popis zpracování naměřených EEG signálů. EEG generation, brain rhythms, methods of recording EEG, EEG recorder. Description of biofeedback, potentialities of biofeedback, proposal of biofeedback games. Description of processing measured EEG signals. B

  15. Effects of rearranged vision on event-related lateralizations of the EEG during pointing.

    Science.gov (United States)

    Berndt, Isabelle; Franz, Volker H; Bülthoff, Heinrich H; Gotz, Karl G; Wascher, Edmund

    2005-01-01

    We used event-related lateralizations of the EEG (ERLs) and reversed vision to study visuomotor processing with conflicting proprioceptive and visual information during pointing. Reversed vision decreased arm-related lateralization, probably reflecting the simultaneous activity of left and right arm specific neurons: neurons in the hemisphere contralateral to the observed action were probably activated by visual feedback, neurons in the hemisphere contralateral to the response side by the somatomotor feedback. Lateralization related to the target in parietal cortex increased, indicating that visual to motor transformation in parietal cortex required additional time and resources with reversed vision. A short period of adaptation to an additional lateral displacement of the visual field increased arm-contralateral activity in parietal cortex during the movement. This is in agreement with the, which showed that adaptation to a lateral displacement of the visual field is reflected in increased parietal involvement during pointing.

  16. A Review of Issues Related to Data Acquisition and Analysis in EEG/MEG Studies.

    Science.gov (United States)

    Puce, Aina; Hämäläinen, Matti S

    2017-05-31

    Electroencephalography (EEG) and magnetoencephalography (MEG) are non-invasive electrophysiological methods, which record electric potentials and magnetic fields due to electric currents in synchronously-active neurons. With MEG being more sensitive to neural activity from tangential currents and EEG being able to detect both radial and tangential sources, the two methods are complementary. Over the years, neurophysiological studies have changed considerably: high-density recordings are becoming de rigueur; there is interest in both spontaneous and evoked activity; and sophisticated artifact detection and removal methods are available. Improved head models for source estimation have also increased the precision of the current estimates, particularly for EEG and combined EEG/MEG. Because of their complementarity, more investigators are beginning to perform simultaneous EEG/MEG studies to gain more complete information about neural activity. Given the increase in methodological complexity in EEG/MEG, it is important to gather data that are of high quality and that are as artifact free as possible. Here, we discuss some issues in data acquisition and analysis of EEG and MEG data. Practical considerations for different types of EEG and MEG studies are also discussed.

  17. A Review of Issues Related to Data Acquisition and Analysis in EEG/MEG Studies

    Directory of Open Access Journals (Sweden)

    Aina Puce

    2017-05-01

    Full Text Available Electroencephalography (EEG and magnetoencephalography (MEG are non-invasive electrophysiological methods, which record electric potentials and magnetic fields due to electric currents in synchronously-active neurons. With MEG being more sensitive to neural activity from tangential currents and EEG being able to detect both radial and tangential sources, the two methods are complementary. Over the years, neurophysiological studies have changed considerably: high-density recordings are becoming de rigueur; there is interest in both spontaneous and evoked activity; and sophisticated artifact detection and removal methods are available. Improved head models for source estimation have also increased the precision of the current estimates, particularly for EEG and combined EEG/MEG. Because of their complementarity, more investigators are beginning to perform simultaneous EEG/MEG studies to gain more complete information about neural activity. Given the increase in methodological complexity in EEG/MEG, it is important to gather data that are of high quality and that are as artifact free as possible. Here, we discuss some issues in data acquisition and analysis of EEG and MEG data. Practical considerations for different types of EEG and MEG studies are also discussed.

  18. Spectral analysis of the EEG during halothane anaesthesia: Input-output relations

    NARCIS (Netherlands)

    Silva, F.H. Lopes da; Smith, N. Ty; Zwart, Aart; Nichols, W.W.

    1. 1. The “Halothane-brain compartment” system was investigated in dogs. The input was the inspired concentration of Halothane. The output was the intensity of EEG spectral components. The EEG was analysed by a hybrid system (analogue filters and digital integration in a small computer). For the

  19. Magnetic resonance imaging in relation to EEG epileptic foci in tuberous sclerosis

    International Nuclear Information System (INIS)

    Tamaki, Kyoko; Okuno, Takehiko; Ito, Masatoshi; Asato, Reinin; Konishi, Junji; Mikawa, Haruki

    1990-01-01

    In 20 patients with tuberous sclerosis (TS), who were sequentially treated for epilepsy at our clinic, the high signal lesions in the cerebral cortex and subcortex detected on T2 weighted magnetic resonance imaging (MRI) were compared with the interictal EEG findings. In four cases who showed a unilateral distribution of the MRI lesions, there was a good correlation between the laterality of the affected lobes and the localization of the EEG epileptic foci. Thirteen cases with more than four affected lobes in both hemispheres also showed bilateral epileptic foci on EEG. The MRI lesions in the occipital lobes showed the best correlation with the EEG epileptic foci, while the worst correlation was seen in the frontal lobes. In addition, the cases with four or more affected lobes without laterality on MRI are more likely to show bilateral synchronization on EEG. The prognosis of epilepsy in these cases was found to be rather poor. (author)

  20. The interplay between feedback-related negativity and individual differences in altruistic punishment: An EEG study.

    Science.gov (United States)

    Mothes, Hendrik; Enge, Sören; Strobel, Alexander

    2016-04-01

    To date, the interplay betwexen neurophysiological and individual difference factors in altruistic punishment has been little understood. To examine this issue, 45 individuals participated in a Dictator Game with punishment option while the feedback-related negativity (FRN) was derived from the electroencephalogram (EEG). Unlike previous EEG studies on the Dictator Game, we introduced a third party condition to study the effect of fairness norm violations in addition to employing a first person perspective. For the first time, we also examined the role of individual differences, specifically fairness concerns, positive/negative affectivity, and altruism/empathy as well as recipients' financial situation during altruistic punishment. The main results show that FRN amplitudes were more pronounced for unfair than for fair assignments in both the first person and third party perspectives. These findings suggest that FRN amplitudes are sensitive to fairness norm violations and play a crucial role in the recipients' evaluation of dictator assignments. With respect to individual difference factors, recipients' current financial situation affected the FRN fairness effect in the first person perspective, indicating that when being directly affected by the assignments, more affluent participants experienced stronger violations of expectations in altruistic punishment decisions. Regarding individual differences in trait empathy, in the third party condition FRN amplitudes were more pronounced for those who scored lower in empathy. This may suggest empathy as another motive in third party punishment. Independent of the perspective taken, higher positive affect was associated with more punishment behavior, suggesting that positive emotions may play an important role in restoring violated fairness norms.

  1. EEG sensorimotor rhythms' variation and functional connectivity measures during motor imagery: linear relations and classification approaches.

    Science.gov (United States)

    Stefano Filho, Carlos A; Attux, Romis; Castellano, Gabriela

    2017-01-01

    Hands motor imagery (MI) has been reported to alter synchronization patterns amongst neurons, yielding variations in the mu and beta bands' power spectral density (PSD) of the electroencephalography (EEG) signal. These alterations have been used in the field of brain-computer interfaces (BCI), in an attempt to assign distinct MI tasks to commands of such a system. Recent studies have highlighted that information may be missing if knowledge about brain functional connectivity is not considered. In this work, we modeled the brain as a graph in which each EEG electrode represents a node. Our goal was to understand if there exists any linear correlation between variations in the synchronization patterns-that is, variations in the PSD of mu and beta bands-induced by MI and alterations in the corresponding functional networks. Moreover, we (1) explored the feasibility of using functional connectivity parameters as features for a classifier in the context of an MI-BCI; (2) investigated three different types of feature selection (FS) techniques; and (3) compared our approach to a more traditional method using the signal PSD as classifier inputs. Ten healthy subjects participated in this study. We observed significant correlations ( p  < 0.05) with values ranging from 0.4 to 0.9 between PSD variations and functional network alterations for some electrodes, prominently in the beta band. The PSD method performed better for data classification, with mean accuracies of (90 ± 8)% and (87 ± 7)% for the mu and beta band, respectively, versus (83 ± 8)% and (83 ± 7)% for the same bands for the graph method. Moreover, the number of features for the graph method was considerably larger. However, results for both methods were relatively close, and even overlapped when the uncertainties of the accuracy rates were considered. Further investigation regarding a careful exploration of other graph metrics may provide better alternatives.

  2. Only low frequency event-related EEG activity is compromised in multiple sclerosis: insights from an independent component clustering analysis.

    Directory of Open Access Journals (Sweden)

    Hanni Kiiski

    Full Text Available Cognitive impairment (CI, often examined with neuropsychological tests such as the Paced Auditory Serial Addition Test (PASAT, affects approximately 65% of multiple sclerosis (MS patients. The P3b event-related potential (ERP, evoked when an infrequent target stimulus is presented, indexes cognitive function and is typically compared across subjects' scalp electroencephalography (EEG data. However, the clustering of independent components (ICs is superior to scalp-based EEG methods because it can accommodate the spatiotemporal overlap inherent in scalp EEG data. Event-related spectral perturbations (ERSPs; event-related mean power spectral changes and inter-trial coherence (ITCs; event-related consistency of spectral phase reveal a more comprehensive overview of EEG activity. Ninety-five subjects (56 MS patients, 39 controls completed visual and auditory two-stimulus P3b event-related potential tasks and the PASAT. MS patients were also divided into CI and non-CI groups (n = 18 in each based on PASAT scores. Data were recorded from 128-scalp EEG channels and 4 IC clusters in the visual, and 5 IC clusters in the auditory, modality were identified. In general, MS patients had significantly reduced ERSP theta power versus controls, and a similar pattern was observed for CI vs. non-CI MS patients. The ITC measures were also significantly different in the theta band for some clusters. The finding that MS patients had reduced P3b task-related theta power in both modalities is a reflection of compromised connectivity, likely due to demyelination, that may have disrupted early processes essential to P3b generation, such as orientating and signal detection. However, for posterior sources, MS patients had a greater decrease in alpha power, normally associated with enhanced cognitive function, which may reflect a compensatory mechanism in response to the compromised early cognitive processing.

  3. Combining and comparing EEG, peripheral physiology and eye-related measures for the assessment of mental workload

    Directory of Open Access Journals (Sweden)

    Maarten Andreas Hogervorst

    2014-10-01

    Full Text Available While studies exist that compare different physiological variables with respect to their association with mental workload, it is still largely unclear which variables supply the best information about momentary workload of an individual and what is the benefit of combining them. We investigated workload using the n-back task, controlling for body movements and visual input. We recorded EEG, skin conductance, respiration, ECG, pupil size and eye blinks of 14 subjects. Various variables were extracted from these recordings and used as features in individually tuned classification models. Online classification was simulated by using the first part of the data as training set and the last part of the data for testing the models. The results indicate that EEG performs best, followed by eye related measures and peripheral physiology. Combining variables from different sensors did not significantly improve workload assessment over the best performing sensor alone. Best classification accuracy, a little over 90% (SD 4%, was reached for distinguishing between high and low workload on the basis of 2 minute segments of EEG and eye related variables. A similar and not significantly different performance of 86% (SD 5% was reached using only EEG from single electrode location Pz.

  4. Effect of Skull Resistivity on the Relative Sensitivity Distributions of EEG and MEG Measurements

    National Research Council Canada - National Science Library

    Malmivuo, J

    2001-01-01

    The authors have previously published calculations that show that, despite the high resistivity of the skull, the spatial sensitivity of magnetoencephalography, MEG, is no better than that of electroencephalography, EEG...

  5. Attentional selection of relative SF mediates global versus local processing: evidence from EEG.

    Science.gov (United States)

    Flevaris, Anastasia V; Bentin, Shlomo; Robertson, Lynn C

    2011-06-13

    Previous research on functional hemispheric differences in visual processing has associated global perception with low spatial frequency (LSF) processing biases of the right hemisphere (RH) and local perception with high spatial frequency (HSF) processing biases of the left hemisphere (LH). The Double Filtering by Frequency (DFF) theory expanded this hypothesis by proposing that visual attention selects and is directed to relatively LSFs by the RH and relatively HSFs by the LH, suggesting a direct causal relationship between SF selection and global versus local perception. We tested this idea in the current experiment by comparing activity in the EEG recorded at posterior right and posterior left hemisphere sites while participants' attention was directed to global or local levels of processing after selection of relatively LSFs versus HSFs in a previous stimulus. Hemispheric asymmetry in the alpha band (8-12 Hz) during preparation for global versus local processing was modulated by the selected SF. In contrast, preparatory activity associated with selection of SF was not modulated by the previously attended level (global/local). These results support the DFF theory that top-down attentional selection of SF mediates global and local processing.

  6. Immediate relativity: EEG reveals early engagement of comparison in social information processing.

    Science.gov (United States)

    Ohmann, Katharina; Stahl, Jutta; Mussweiler, Thomas; Kedia, Gayannée

    2016-11-01

    A wide array of social decisions relies on social comparisons. As such, these decisions require fast access to relative information. Therefore, we expect that signatures of the comparative process should be observable in electrophysiological components at an early stage of information processing. However, to date, little is known about the neural time course of social target comparisons. Therefore, we tested this hypothesis in 2 electroencephalography (EEG) studies using a social distance effect paradigm. The distance effect capitalizes on the fact that stimuli close on a certain dimension take longer to compare than stimuli clearly differing on this dimension. Here, we manipulated the distance of face characteristics regarding their levels of attractiveness (Study 1) and trustworthiness (Study 2), 2 essential social dimensions. In both studies, size comparisons served as a nonsocial control condition. In Study 1, distance related effects were apparent 170 ms (vertex positive potential, VPP) and 200 ms (N2) after stimulus onset for attractiveness comparisons. In Study 2, trustworthiness comparisons took effect already after 100 ms (N1) and likewise carried over to an event-related N2. Remarkably, we observed a similar temporal pattern for social (attractiveness, trustworthiness) and nonsocial (size) dimensions. These results speak in favor of an early encoding of comparative information and emphasize the primary role of comparison in social information processing. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  7. Validation of the Emotiv EPOC EEG system for research quality auditory event-related potentials in children.

    Science.gov (United States)

    Badcock, Nicholas A; Preece, Kathryn A; de Wit, Bianca; Glenn, Katharine; Fieder, Nora; Thie, Johnson; McArthur, Genevieve

    2015-01-01

    Background. Previous work has demonstrated that a commercial gaming electroencephalography (EEG) system, Emotiv EPOC, can be adjusted to provide valid auditory event-related potentials (ERPs) in adults that are comparable to ERPs recorded by a research-grade EEG system, Neuroscan. The aim of the current study was to determine if the same was true for children. Method. An adapted Emotiv EPOC system and Neuroscan system were used to make simultaneous EEG recordings in nineteen 6- to 12-year-old children under "passive" and "active" listening conditions. In the passive condition, children were instructed to watch a silent DVD and ignore 566 standard (1,000 Hz) and 100 deviant (1,200 Hz) tones. In the active condition, they listened to the same stimuli, and were asked to count the number of 'high' (i.e., deviant) tones. Results. Intraclass correlations (ICCs) indicated that the ERP morphology recorded with the two systems was very similar for the P1, N1, P2, N2, and P3 ERP peaks (r = .82 to .95) in both passive and active conditions, and less so, though still strong, for mismatch negativity ERP component (MMN; r = .67 to .74). There were few differences between peak amplitude and latency estimates for the two systems. Conclusions. An adapted EPOC EEG system can be used to index children's late auditory ERP peaks (i.e., P1, N1, P2, N2, P3) and their MMN ERP component.

  8. Error-related potentials during continuous feedback: using EEG to detect errors of different type and severity

    Directory of Open Access Journals (Sweden)

    Martin eSpüler

    2015-03-01

    Full Text Available When a person recognizes an error during a task, an error-related potential (ErrP can be measured as response. It has been shown that ErrPs can be automatically detected in tasks with time-discrete feedback, which is widely applied in the field of Brain-Computer Interfaces (BCIs for error correction or adaptation. However, there are only a few studies that concentrate on ErrPs during continuous feedback.With this study, we wanted to answer three different questions: (i Can ErrPs be measured in electroencephalography (EEG recordings during a task with continuous cursor control? (ii Can ErrPs be classified using machine learning methods and is it possible to discriminate errors of different origins? (iii Can we use EEG to detect the severity of an error? To answer these questions, we recorded EEG data from 10 subjects during a video game task and investigated two different types of error (execution error, due to inaccurate feedback; outcome error, due to not achieving the goal of an action. We analyzed the recorded data to show that during the same task, different kinds of error produce different ErrP waveforms and have a different spectral response. This allows us to detect and discriminate errors of different origin in an event-locked manner. By utilizing the error-related spectral response, we show that also a continuous, asynchronous detection of errors is possible.Although the detection of error severity based on EEG was one goal of this study, we did not find any significant influence of the severity on the EEG.

  9. Error-related potentials during continuous feedback: using EEG to detect errors of different type and severity

    Science.gov (United States)

    Spüler, Martin; Niethammer, Christian

    2015-01-01

    When a person recognizes an error during a task, an error-related potential (ErrP) can be measured as response. It has been shown that ErrPs can be automatically detected in tasks with time-discrete feedback, which is widely applied in the field of Brain-Computer Interfaces (BCIs) for error correction or adaptation. However, there are only a few studies that concentrate on ErrPs during continuous feedback. With this study, we wanted to answer three different questions: (i) Can ErrPs be measured in electroencephalography (EEG) recordings during a task with continuous cursor control? (ii) Can ErrPs be classified using machine learning methods and is it possible to discriminate errors of different origins? (iii) Can we use EEG to detect the severity of an error? To answer these questions, we recorded EEG data from 10 subjects during a video game task and investigated two different types of error (execution error, due to inaccurate feedback; outcome error, due to not achieving the goal of an action). We analyzed the recorded data to show that during the same task, different kinds of error produce different ErrP waveforms and have a different spectral response. This allows us to detect and discriminate errors of different origin in an event-locked manner. By utilizing the error-related spectral response, we show that also a continuous, asynchronous detection of errors is possible. Although the detection of error severity based on EEG was one goal of this study, we did not find any significant influence of the severity on the EEG. PMID:25859204

  10. Gender and Age Related Effects While Watching TV Advertisements: An EEG Study

    Directory of Open Access Journals (Sweden)

    Giulia Cartocci

    2016-01-01

    Full Text Available The aim of the present paper is to show how the variation of the EEG frontal cortical asymmetry is related to the general appreciation perceived during the observation of TV advertisements, in particular considering the influence of the gender and age on it. In particular, we investigated the influence of the gender on the perception of a car advertisement (Experiment 1 and the influence of the factor age on a chewing gum commercial (Experiment 2. Experiment 1 results showed statistically significant higher approach values for the men group throughout the commercial. Results from Experiment 2 showed significant lower values by older adults for the spot, containing scenes not very enjoyed by them. In both studies, there was no statistical significant difference in the scene relative to the product offering between the experimental populations, suggesting the absence in our study of a bias towards the specific product in the evaluated populations. These evidences state the importance of the creativity in advertising, in order to attract the target population.

  11. Gender and Age Related Effects While Watching TV Advertisements: An EEG Study.

    Science.gov (United States)

    Cartocci, Giulia; Cherubino, Patrizia; Rossi, Dario; Modica, Enrica; Maglione, Anton Giulio; di Flumeri, Gianluca; Babiloni, Fabio

    2016-01-01

    The aim of the present paper is to show how the variation of the EEG frontal cortical asymmetry is related to the general appreciation perceived during the observation of TV advertisements, in particular considering the influence of the gender and age on it. In particular, we investigated the influence of the gender on the perception of a car advertisement (Experiment 1) and the influence of the factor age on a chewing gum commercial (Experiment 2). Experiment 1 results showed statistically significant higher approach values for the men group throughout the commercial. Results from Experiment 2 showed significant lower values by older adults for the spot, containing scenes not very enjoyed by them. In both studies, there was no statistical significant difference in the scene relative to the product offering between the experimental populations, suggesting the absence in our study of a bias towards the specific product in the evaluated populations. These evidences state the importance of the creativity in advertising, in order to attract the target population.

  12. Trial latencies estimation of event-related potentials in EEG by means of genetic algorithms

    Science.gov (United States)

    Da Pelo, P.; De Tommaso, M.; Monaco, A.; Stramaglia, S.; Bellotti, R.; Tangaro, S.

    2018-04-01

    Objective. Event-related potentials (ERPs) are usually obtained by averaging thus neglecting the trial-to-trial latency variability in cognitive electroencephalography (EEG) responses. As a consequence the shape and the peak amplitude of the averaged ERP are smeared and reduced, respectively, when the single-trial latencies show a relevant variability. To date, the majority of the methodologies for single-trial latencies inference are iterative schemes providing suboptimal solutions, the most commonly used being the Woody’s algorithm. Approach. In this study, a global approach is developed by introducing a fitness function whose global maximum corresponds to the set of latencies which renders the trial signals most aligned as possible. A suitable genetic algorithm has been implemented to solve the optimization problem, characterized by new genetic operators tailored to the present problem. Main results. The results, on simulated trials, showed that the proposed algorithm performs better than Woody’s algorithm in all conditions, at the cost of an increased computational complexity (justified by the improved quality of the solution). Application of the proposed approach on real data trials, resulted in an increased correlation between latencies and reaction times w.r.t. the output from RIDE method. Significance. The above mentioned results on simulated and real data indicate that the proposed method, providing a better estimate of single-trial latencies, will open the way to more accurate study of neural responses as well as to the issue of relating the variability of latencies to the proper cognitive and behavioural correlates.

  13. The changes in relation of auditory and visual input activity between hemispheres analized in cartographic EEG in a child with hyperactivity syndrome

    Directory of Open Access Journals (Sweden)

    Radičević Zoran

    2015-01-01

    Full Text Available The paper discusses the changes in relations of visual and auditory inputs between the hemispheres in a child with hyperactive syndrome and its effects which may lead to better attention engagement in auditory and visual information analysis. The method included the use of cartographic EEG and clinical procedure in a 10-year-old boy with hyperactive syndrome and attention deficit disorder, who has theta dysfunction manifested in standard EEG. Cartographic EEG patterns was performed on NihonKohden Corporation, EEG - 1200K Neurofax apparatus in longitudinal bipolar electrode assembly schedule by utilizing10/20 International electrode positioning. Impedance was maintained below 5 kΩ, with not more than 1 kΩ differences between the electrodes. Lower filter was set at 0.53 Hz and higher filter at 35 Hz. Recording was performed in a quiet period and during stimulation procedures that include speech and language basis. Standard EEG and Neurofeedback (NFB treatment indicated higher theta load, alpha 2 and beta 1 activity measured in the cartographic EEG which was done after the relative failure of NFB treatment. After this, the NFB treatment was applied which lasted for six months, in a way that when the boy was reading, the visual input was enhanced to the left hemisphere and auditory input was reduced to the right hemisphere. Repeated EEG mapping analysis showed that there was a significant improvement, both in EEG findings as well as in attention, behavioural and learning disorders. The paper discusses some aspects of learning, attention and behaviour in relation to changes in the standard EEG, especially in cartographic EEG and NFB findings.

  14. EEG Beta Oscillations in the Temporoparietal Area Related to the Accuracy in Estimating Others' Preference

    Directory of Open Access Journals (Sweden)

    Jonghyeok Park

    2018-02-01

    Full Text Available Humans often attempt to predict what others prefer based on a narrow slice of experience, called thin-slicing. According to the theoretical bases for how humans can predict the preference of others, one tends to estimate the other's preference using a perceived difference between the other and self. Previous neuroimaging studies have revealed that the network of dorsal medial prefrontal cortex (dmPFC and right temporoparietal junction (rTPJ is related to the ability of predicting others' preference. However, it still remains unknown about the temporal patterns of neural activities for others' preference prediction through thin-slicing. To investigate such temporal aspects of neural activities, we investigated human electroencephalography (EEG recorded during the task of predicting the preference of others while only a facial picture of others was provided. Twenty participants (all female, average age: 21.86 participated in the study. In each trial of the task, participants were shown a picture of either a target person or self for 3 s, followed by the presentation of a movie poster over which participants predicted the target person's preference as liking or disliking. The time-frequency EEG analysis was employed to analyze temporal changes in the amplitudes of brain oscillations. Participants could predict others' preference for movies with accuracy of 56.89 ± 3.16% and 10 out of 20 participants exhibited prediction accuracy higher than a chance level (95% interval. There was a significant difference in the power of the parietal alpha (10~13 Hz oscillation 0.6~0.8 s after the onset of poster presentation between the cases when participants predicted others' preference and when they reported self-preference (p < 0.05. The power of brain oscillations at any frequency band and time period during the trial did not show a significant correlation with individual prediction accuracy. However, when we measured differences of the power between the

  15. Age-related reduction of hemispheric lateralisation for spatial attention: An EEG study.

    Science.gov (United States)

    Learmonth, Gemma; Benwell, Christopher S Y; Thut, Gregor; Harvey, Monika

    2017-06-01

    A group-level visuospatial attention bias towards the left side of space (pseudoneglect) is consistently observed in young adults, which is likely to be a consequence of right parieto-occipital dominance for spatial attention. Conversely, healthy older adults demonstrate a rightward shift of this behavioural bias, hinting that an age-related reduction of lateralised neural activity may occur within visuospatial attention networks. We compared young (aged 18-25) and older (aged 60-80) adults on a computerised line bisection (landmark) task whilst recording event-related potentials (ERPs). Full-scalp cluster mass permutation tests identified a larger right parieto-occipital response for long lines compared to short in young adults (confirming Benwell et al., 2014a) which was not present in the older group. To specifically investigate age-related differences in hemispheric lateralisation, cluster mass permutation tests were then performed on a lateralised EEG dataset (RH-LH electrodes). A period of right lateralisation was identified in response to long lines in young adults, which was not present for short lines. No lateralised clusters were present for either long or short lines in older adults. Additionally, a reduced P300 component amplitude was observed for older adults relative to young. We therefore report here, for the first time, an age-related and stimulus-driven reduction of right hemispheric control of spatial attention in older adults. Future studies will need to determine whether this is representative of the normal aging process or an early indicator of neurodegeneration. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  16. EEG, MRI, and SPECT in epilepsy. Relative contributions to preoperative evaluation

    International Nuclear Information System (INIS)

    Seki, Gaku; Hoshida, Tohru; Goda, Kazuo; Hashimoto, Hiroshi; Nakase, Hiroyuki; Hirabayashi, Hidehiro; Kawaguchi, Shoichiro; Morimoto, Tetsuya; Sakaki, Toshisuke

    1998-01-01

    We comparatively assessed detection of epileptogenic areas on preoperative evaluation in 33 patients with intractable partial epilepsy using scalp interictal and ictal electroencephalography (EEG), magnetic resonance imaging (MRI), and interictal single photon emission computed tomography (SPECT). There are 22 temporal and 11 extratemporal lobe epilepsies. All or almost of their seizures have stopped after resective surgery for more than 12 months follow-up period, averaged 43 months. MRI studies demonstrated 21 organic lesions, 11 mesial temporal sclerosis and one patient showed normal brain tissue. Scalp EEG could correctly identify the focus in 14 of 33 cases (42%), interictal SPECT in 18 of 26 (69%), MRI in 29 of 33 (88%), interictal scalp EEG-video monitoring in 17 of 24 (71%), and ictal scalp EEG-video monitoring in 15 of 22 (68%). Although neuroimaging studies, especially MRI, are useful to detect not only localization of epileptic lesions but also epileptogenic focus, for example, mesial temporal sclerosis, the exact localization of epileptogenic areas could be done by comprehensive evaluation including ictal scalp EEG-video monitoring. (author)

  17. EEG, MRI, and SPECT in epilepsy. Relative contributions to preoperative evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Seki, Gaku [Luoyang Medical Coll. Associated Hospital (China); Hoshida, Tohru; Goda, Kazuo; Hashimoto, Hiroshi; Nakase, Hiroyuki; Hirabayashi, Hidehiro; Kawaguchi, Shoichiro; Morimoto, Tetsuya; Sakaki, Toshisuke

    1998-07-01

    We comparatively assessed detection of epileptogenic areas on preoperative evaluation in 33 patients with intractable partial epilepsy using scalp interictal and ictal electroencephalography (EEG), magnetic resonance imaging (MRI), and interictal single photon emission computed tomography (SPECT). There are 22 temporal and 11 extratemporal lobe epilepsies. All or almost of their seizures have stopped after resective surgery for more than 12 months follow-up period, averaged 43 months. MRI studies demonstrated 21 organic lesions, 11 mesial temporal sclerosis and one patient showed normal brain tissue. Scalp EEG could correctly identify the focus in 14 of 33 cases (42%), interictal SPECT in 18 of 26 (69%), MRI in 29 of 33 (88%), interictal scalp EEG-video monitoring in 17 of 24 (71%), and ictal scalp EEG-video monitoring in 15 of 22 (68%). Although neuroimaging studies, especially MRI, are useful to detect not only localization of epileptic lesions but also epileptogenic focus, for example, mesial temporal sclerosis, the exact localization of epileptogenic areas could be done by comprehensive evaluation including ictal scalp EEG-video monitoring. (author)

  18. Déjà vu phenomenon-related EEG pattern. Case report

    OpenAIRE

    Vlasov, P.N.; Chervyakov, A.V.; Gnezditskii, V.V.

    2013-01-01

    Background D?j? vu (DV, from French d?j? vu ? ?already seen?) is an aberration of psychic activity associated with transitory erroneous perception of novel circumstances, objects, or people as already known. Objective This study aimed to record the EEG pattern of d?j? vu. Methods The subjects participated in a survey concerning d?j? vu characteristics and underwent ambulatory EEG monitoring (12?16?h). Results In patients with epilepsy, DV episodes began with polyspike activity in the right te...

  19. Validation of the Emotiv EPOC EEG system for research quality auditory event-related potentials in children

    Directory of Open Access Journals (Sweden)

    Nicholas A. Badcock

    2015-04-01

    Full Text Available Background. Previous work has demonstrated that a commercial gaming electroencephalography (EEG system, Emotiv EPOC, can be adjusted to provide valid auditory event-related potentials (ERPs in adults that are comparable to ERPs recorded by a research-grade EEG system, Neuroscan. The aim of the current study was to determine if the same was true for children.Method. An adapted Emotiv EPOC system and Neuroscan system were used to make simultaneous EEG recordings in nineteen 6- to 12-year-old children under “passive” and “active” listening conditions. In the passive condition, children were instructed to watch a silent DVD and ignore 566 standard (1,000 Hz and 100 deviant (1,200 Hz tones. In the active condition, they listened to the same stimuli, and were asked to count the number of ‘high’ (i.e., deviant tones.Results. Intraclass correlations (ICCs indicated that the ERP morphology recorded with the two systems was very similar for the P1, N1, P2, N2, and P3 ERP peaks (r = .82 to .95 in both passive and active conditions, and less so, though still strong, for mismatch negativity ERP component (MMN; r = .67 to .74. There were few differences between peak amplitude and latency estimates for the two systems.Conclusions. An adapted EPOC EEG system can be used to index children’s late auditory ERP peaks (i.e., P1, N1, P2, N2, P3 and their MMN ERP component.

  20. Brain wave correlates of attentional states: Event related potentials and quantitative EEG analysis during performance of cognitive and perceptual tasks

    Science.gov (United States)

    Freeman, Frederick G.

    1993-01-01

    The increased use of automation in the cockpits of commercial planes has dramatically decreased the workload requirements of pilots, enabling them to function more efficiently and with a higher degree of safety. Unfortunately, advances in technology have led to an unexpected problem: the decreased demands on pilots have increased the probability of inducing 'hazardous states of awareness.' A hazardous state of awareness is defined as a decreased level of alertness or arousal which makes an individual less capable of reacting to unique or emergency types of situations. These states tend to be induced when an individual is not actively processing information. Under such conditions a person is likely to let his/her mind wander, either to internal states or to irrelevant external conditions. As a result, they are less capable of reacting quickly to emergency situations. Since emergencies are relatively rare, and since the high automated cockpit requires progressively decreasing levels of engagement, the probability of being seduced into a lowered state of awareness is increasing. This further decreases the readiness of the pilot to react to unique circumstances such as system failures. The HEM Lab at NASA-Langley Research Center has been studying how these states of awareness are induced and what the physiological correlates of these different states are. Specifically, they have been interested in studying electroencephalographic (EEG) measures of different states of alertness to determine if such states can be identified and, hopefully, avoided. The project worked on this summer involved analyzing the EEG and the event related potentials (ERP) data collected while subjects performed under two conditions. Each condition required subjects to perform a relatively boring vigilance task. The purpose of using these tasks was to induce a decreased state of awareness while still requiring the subject to process information. Each task involved identifying an infrequently

  1. Dynamic functional coupling of high resolution EEG potentials related to unilateral internally triggered one-digit movements.

    Science.gov (United States)

    Urbano, A; Babiloni, C; Onorati, P; Babiloni, F

    1998-06-01

    Between-electrode cross-covariances of delta (0-3 Hz)- and theta (4-7 Hz)-filtered high resolution EEG potentials related to preparation, initiation. and execution of human unilateral internally triggered one-digit movements were computed to investigate statistical dynamic coupling between these potentials. Significant (P planning, starting, and performance of unilateral movement. The involvement of these cortical areas is supported by the observation that averaged spatially enhanced delta- and theta-bandpassed potentials were computed from the scalp regions where task-related electrical activation of primary sensorimotor areas and supplementary motor area was roughly represented.

  2. EEG frontal asymmetry related to pleasantness of music perception in healthy children and cochlear implanted users.

    Science.gov (United States)

    Vecchiato, G; Maglione, A G; Scorpecci, A; Malerba, P; Marsella, P; Di Francesco, G; Vitiello, S; Colosimo, A; Babiloni, Fabio

    2012-01-01

    Interestingly, the international debate about the quality of music fruition for cochlear implanted users does not take into account the hypothesis that bilateral users could perceive music in a more pleasant way with respect to monolateral users. In this scenario, the aim of the present study was to investigate if cerebral signs of pleasantness during music perception in healthy child are similar to those observed in monolateral and in bilateral cochlear implanted users. In fact, previous observations in literature on healthy subjects have indicated that variations of the frontal EEG alpha activity are correlated with the perceived pleasantness of the sensory stimulation received (approach-withdrawal theory). In particular, here we described differences between cortical activities estimated in the alpha frequency band for a healthy child and in patients having a monolateral or a bilateral cochlear implant during the fruition of a musical cartoon. The results of the present analysis showed that the alpha EEG asymmetry patterns observed in a healthy child and that of a bilateral cochlear implanted patient are congruent with the approach-withdrawal theory. Conversely, the scalp topographic distribution of EEG power spectra in the alpha band resulting from the monolateral cochlear user presents a different EEG pattern from the normal and bilateral implanted patients. Such differences could be explained at the light of the approach-withdrawal theory. In fact, the present findings support the hypothesis that a monolateral cochlear implanted user could perceive the music in a less pleasant way when compared to a healthy subject or to a bilateral cochlear user.

  3. Cognitive processes associated with compulsive buying behaviours and related EEG coherence.

    Science.gov (United States)

    Lawrence, Lee Matthew; Ciorciari, Joseph; Kyrios, Michael

    2014-01-30

    The behavioural and cognitive phenomena associated with Compulsive Buying (CB) have been investigated previously but the underlying neurophysiological cognitive process has received less attention. This study specifically investigated the electrophysiology of CB associated with executive processing and cue-reactivity in order to reveal differences in neural connectivity (EEG Coherence) and distinguish it from characteristics of addiction or mood disorder. Participants (N=24, M=25.38 yrs, S.D.=7.02 yrs) completed the Sensitivity to Punishment Sensitivity to Reward Questionnaire and a visual memory task associated with shopping items. Sensitivities to reward and punishment were examined with EEG coherence measures for preferred and non-preferred items and compared to CB psychometrics. Widespread EEG coherence differences were found in numerous regions, with an apparent left shifted lateralisation for preferred and right shifted lateralisation for non-preferred items. Different neurophysiological networks presented with CB phenomena, reflecting cue reactivity and episodic memory, from increased arousal and attachment to items. © 2013 Published by Elsevier Ireland Ltd.

  4. Neurofeedback Effects on Evoked and Induced EEG Gamma Band Reactivity to Drug-related Cues in Cocaine Addiction

    Science.gov (United States)

    Horrell, Timothy; El-Baz, Ayman; Baruth, Joshua; Tasman, Allan; Sokhadze, Guela; Stewart, Christopher; Sokhadze, Estate

    2010-01-01

    Introduction Preoccupation with drug and drug-related items is a typical characteristic of cocaine addicted individuals. It has been shown in multiple accounts that prolonged drug use has a profound effect on the EEG recordings of drug addicts when compared to controls during cue reactivity tests. Cue reactivity refers to a phenomenon in which individuals with a history of drug abuse exhibit excessive psychophysiological responses to cues associated with their drug of choice. One of the aims of this pilot study was to determine the presence of an attentional bias to preferentially process drug-related cues using evoked and induced gamma reactivity measures in cocaine addicts before and after biobehavioral treatment based on neurofeedback. Another aim was to show that central SMR amplitude increase and frontal theta control is possible in an experimental outpatient drug users group over 12 neurofeedback sessions. Method Ten current cocaine abusers participated in this pilot research study using neurofeedback combined with Motivational Interviewing sessions. Eight of them completed all planned pre- and post –neurofeedback cue reactivity tests with event-related EEG recording and clinical evaluations. Cue reactivity test represented a visual oddball task with images from the International Affective Picture System and drug-related pictures. Evoked and induced gamma responses to target and non-target drug cues were analyzed using wavelet analysis. Results Outpatient subjects with cocaine addiction completed the biobehavioral intervention and successfully increased SMR while keeping theta practically unchanged in 12 sessions of neurofeedback training. The addition of Motivational Interviewing helped retain patients in the study. Clinical evaluations immediately after completion of the treatment showed decreased self-reports on depression and stress scores, and urine tests collaborated reports of decreased use of cocaine and marijuana. Effects of neurofeedback resulted

  5. Brain single-photon emission tomography with {sup 99m}Tc-HMPAO in neuropsychiatric systemic lupus erythematosus: relations with EEG and MRI findings and clinical manifestations

    Energy Technology Data Exchange (ETDEWEB)

    Colamussi, P. [Dept. of Nuclear Medicine, Univ. of Ferrara (Italy); Giganti, M. [Dept. of Nuclear Medicine, Univ. of Ferrara (Italy); Cittanti, C. [Dept. of Nuclear Medicine, Univ. of Ferrara (Italy); Dovigo, L. [Inst. of Neurology, Univ. of Ferrara (Italy); Trotta, F. [Inst. of Neurology, Univ. of Ferrara (Italy); Tola, M.R. [Div. of Rheumatology, S. Anna Hospital, Ferrara (Italy); Tamarozzi, R. [Radiology Dept., S. Anna Hospital, Ferrara (Italy); Lucignani, G. [INB-CNR Dept. of Nuclear Medicine, H.S. Raffaele, Milan (Italy); Piffanelli, A. [Dept. of Nuclear Medicine, Univ. of Ferrara (Italy)

    1995-01-01

    In the reported study the role of single-photon emission tomography (SPET) with technetium-99m hexamethylpropylene amine oxime (HMPAO) in the evaluation of CNS involvement in SLE was assessed and the relations between SPET perfusion defects, EEG examination, magnetic resonance imaging (MRI) findings and clinical presentation were examined. Twenty SLE patients with different NP manifestations were studied. Multiple areas of hypoperfusion, especially in the territory of the middle cerebral artery, were demonstrated by SPET analysis in all 20 patients. The number of hypoperfused areas and the degree of hypoperfusion, expressed by an asymmetry index (AI), were more marked in patients with multiple NP manifestations. MRI and EEG evaluations were positive for 14 of 18 and for 12 of 20 patients, respectively. In the patients with positive SPET and MRI, 87 MRI focal lesions and 63 hypoperfused areas were found, and for 51 of these 63 at least one MRI lesion was found in the same anatomical region. SPET examination of patients with a normal EEG showed fewer hypoperfused areas and a lower degree of asymmetry compared to patients with an abnormal EEG. SPET of patients with focal EEG abnormalities showed more hypoperfused areas (difference not statistically significant) and a higher AI than did SPET of the patients with diffuse EEG abnormalities. Seven of 11 anatomical regions with focal EEG abnormalities. Seven of 11 anatomical regions with focal EEG abnormalities had co-localized hypoperfused areas and in two of these seven no detectable MRI lesions were found. The analysis of SPET and NP manifestations showed that 12 of 20 patients had at least one positive correlation, always involving the areas with the highest AI. In total, 51/88 (58%) hypoperfused areas correlated with the MRI findings and 31/88 (35%) with NP manifestations; for seven of the latter no concurrent MRI lesions were detected in the same anatomical region. (orig.)

  6. Brain single-photon emission tomography with 99mTc-HMPAO in neuropsychiatric systemic lupus erythematosus: relations with EEG and MRI findings and clinical manifestations

    International Nuclear Information System (INIS)

    Colamussi, P.; Giganti, M.; Cittanti, C.; Dovigo, L.; Trotta, F.; Tola, M.R.; Tamarozzi, R.; Lucignani, G.; Piffanelli, A.

    1995-01-01

    In the reported study the role of single-photon emission tomography (SPET) with technetium-99m hexamethylpropylene amine oxime (HMPAO) in the evaluation of CNS involvement in SLE was assessed and the relations between SPET perfusion defects, EEG examination, magnetic resonance imaging (MRI) findings and clinical presentation were examined. Twenty SLE patients with different NP manifestations were studied. Multiple areas of hypoperfusion, especially in the territory of the middle cerebral artery, were demonstrated by SPET analysis in all 20 patients. The number of hypoperfused areas and the degree of hypoperfusion, expressed by an asymmetry index (AI), were more marked in patients with multiple NP manifestations. MRI and EEG evaluations were positive for 14 of 18 and for 12 of 20 patients, respectively. In the patients with positive SPET and MRI, 87 MRI focal lesions and 63 hypoperfused areas were found, and for 51 of these 63 at least one MRI lesion was found in the same anatomical region. SPET examination of patients with a normal EEG showed fewer hypoperfused areas and a lower degree of asymmetry compared to patients with an abnormal EEG. SPET of patients with focal EEG abnormalities showed more hypoperfused areas (difference not statistically significant) and a higher AI than did SPET of the patients with diffuse EEG abnormalities. Seven of 11 anatomical regions with focal EEG abnormalities. Seven of 11 anatomical regions with focal EEG abnormalities had co-localized hypoperfused areas and in two of these seven no detectable MRI lesions were found. The analysis of SPET and NP manifestations showed that 12 of 20 patients had at least one positive correlation, always involving the areas with the highest AI. In total, 51/88 (58%) hypoperfused areas correlated with the MRI findings and 31/88 (35%) with NP manifestations; for seven of the latter no concurrent MRI lesions were detected in the same anatomical region. (orig.)

  7. C-fiber-related EEG-oscillations induced by laser radiant heat stimulation of capsaicin-treated skin

    Directory of Open Access Journals (Sweden)

    Claudia Domnick

    2009-03-01

    Full Text Available Claudia Domnick1, Michael Hauck1,2,3, Kenneth L Casey3, Andreas K Engel1, Jürgen Lorenz1,3,41Department of Neurophysiology and Pathophysiology; 2Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; 3Department of Neurology, University of Michigan, Ann Arbor, MI, USA; 4Faculty of Life Sciences, Hamburg University of Applied Sciences, Hamburg, GermanyAbstract: Nociceptive input reaches the brain via two different types of nerve fibers, moderately fast A-delta and slowly conducting C-fibers, respectively. To explore their distinct roles in normal and inflammatory pain we used laser stimulation of normal and capsaicin treated skin at proximal and distal arm sites in combination with time frequency transformation of electroencephalography (EEG data. Comparison of phase-locked (evoked and non-phase-locked (total EEG to laser stimuli revealed three significant pain-related oscillatory responses. First, an evoked response in the delta-theta band, mediated by A-fibers, was reduced by topical capsaicin treatment. Second, a decrease of total power in the alpha-to-gamma band reflected both an A- and C-nociceptor-mediated response with only the latter being reduced by capsaicin treatment. Finally, an enhancement of total power in the upper beta band was mediated exclusively by C-nociceptors and appeared strongly augmented by capsaicin treatment. These findings suggest that phase-locking of brain activity to stimulus onset is a critical feature of A-delta nociceptive input, allowing rapid orientation to salient and potentially threatening events. In contrast, the subsequent C-nociceptive input exhibits clearly less phase coupling to the stimulus. It may primarily signal the tissue status allowing more long-term behavioral adaptations during ongoing inflammatory events that accompany tissue damage.Keywords: C-fibers, oscillations, EEG, laser, capsaicin, inflammatory pain

  8. Predictable Internal Brain Dynamics in EEG and Its Relation to Conscious States

    Directory of Open Access Journals (Sweden)

    Jaewook eYoo

    2014-06-01

    Full Text Available Consciousness is a complex and multi-faceted phenomenon defying scientific explanation. Part of the reason why this is the case is due to its subjective nature. In our previous computational experiments, to avoid such a subjective trap, we took a strategy to investigate objective necessary conditions of consciousness. Our basic hypothesis was that predictive internal dynamics serves as such a condition. This is in line with theories of consciousness that treat retention (memory, protention (anticipation, and primary impression as the tripartite temporal structure of consciousness. To test our hypothesis, we analyzed publicly available sleep and awake electroencephalogram (EEG data. Our results show that EEG signals from awake or rapid eye movement (REM sleep states have more predictable dynamics compared to those from slow-wave sleep (SWS. Since awakeness and REM sleep are associated with conscious states and SWS with unconscious or less consciousness states, these results support our hypothesis. The results suggest an intricate relationship among prediction, consciousness, and time, with potential applications to time perception and neurorobotics.

  9. EEG (Electroencephalogram)

    Science.gov (United States)

    ... in diagnosing brain disorders, especially epilepsy or another seizure disorder. An EEG might also be helpful for diagnosing ... Sometimes seizures are intentionally triggered in people with epilepsy during the test, but appropriate medical care is ...

  10. Spatial attention related SEP amplitude modulations covary with BOLD signal in S1--a simultaneous EEG--fMRI study.

    Science.gov (United States)

    Schubert, Ruth; Ritter, Petra; Wüstenberg, Torsten; Preuschhof, Claudia; Curio, Gabriel; Sommer, Werner; Villringer, Arno

    2008-11-01

    Recent studies investigating the influence of spatial-selective attention on primary somatosensory processing have produced inconsistent results. The aim of this study was to explore the influence of tactile spatial-selective attention on spatiotemporal aspects of evoked neuronal activity in the primary somatosensory cortex (S1). We employed simultaneous electroencephalography (EEG)-functional magnetic resonance imaging (fMRI) in 14 right-handed subjects during bilateral index finger Braille stimulation to investigate the relationship between attentional effects on somatosensory evoked potential (SEP) components and the blood oxygenation level-dependent (BOLD) signal. The 1st reliable EEG response following left tactile stimulation (P50) was significantly enhanced by spatial-selective attention, which has not been reported before. FMRI analysis revealed increased activity in contralateral S1. Remarkably, the effect of attention on the P50 component as well as long-latency SEP components starting at 190 ms for left stimuli correlated with attentional effects on the BOLD signal in contralateral S1. The implications are 2-fold: First, the correlation between early and long-latency SEP components and the BOLD effect suggest that spatial-selective attention enhances processing in S1 at 2 time points: During an early passage of the signal and during a later passage, probably via re-entrant feedback from higher cortical areas. Second, attentional modulations of the fast electrophysiological signals and the slow hemodynamic response are linearly related in S1.

  11. C-fiber-related EEG-oscillations induced by laser radiant heat stimulation of capsaicin-treated skin

    Science.gov (United States)

    Domnick, Claudia; Hauck, Michael; Casey, Kenneth L; Engel, Andreas K; Lorenz, Jürgen

    2009-01-01

    Nociceptive input reaches the brain via two different types of nerve fibers, moderately fast A-delta and slowly conducting C-fibers, respectively. To explore their distinct roles in normal and inflammatory pain we used laser stimulation of normal and capsaicin treated skin at proximal and distal arm sites in combination with time frequency transformation of electroencephalography (EEG) data. Comparison of phase-locked (evoked) and non-phase-locked (total) EEG to laser stimuli revealed three significant pain-related oscillatory responses. First, an evoked response in the delta-theta band, mediated by A-fibers, was reduced by topical capsaicin treatment. Second, a decrease of total power in the alpha-to-gamma band reflected both an A- and C-nociceptor-mediated response with only the latter being reduced by capsaicin treatment. Finally, an enhancement of total power in the upper beta band was mediated exclusively by C-nociceptors and appeared strongly augmented by capsaicin treatment. These findings suggest that phase-locking of brain activity to stimulus onset is a critical feature of A-delta nociceptive input, allowing rapid orientation to salient and potentially threatening events. In contrast, the subsequent C-nociceptive input exhibits clearly less phase coupling to the stimulus. It may primarily signal the tissue status allowing more long-term behavioral adaptations during ongoing inflammatory events that accompany tissue damage. PMID:21197293

  12. TopoToolbox: using sensor topography to calculate psychologically meaningful measures from event-related EEG/MEG.

    Science.gov (United States)

    Tian, Xing; Poeppel, David; Huber, David E

    2011-01-01

    The open-source toolbox "TopoToolbox" is a suite of functions that use sensor topography to calculate psychologically meaningful measures (similarity, magnitude, and timing) from multisensor event-related EEG and MEG data. Using a GUI and data visualization, TopoToolbox can be used to calculate and test the topographic similarity between different conditions (Tian and Huber, 2008). This topographic similarity indicates whether different conditions involve a different distribution of underlying neural sources. Furthermore, this similarity calculation can be applied at different time points to discover when a response pattern emerges (Tian and Poeppel, 2010). Because the topographic patterns are obtained separately for each individual, these patterns are used to produce reliable measures of response magnitude that can be compared across individuals using conventional statistics (Davelaar et al. Submitted and Huber et al., 2008). TopoToolbox can be freely downloaded. It runs under MATLAB (The MathWorks, Inc.) and supports user-defined data structure as well as standard EEG/MEG data import using EEGLAB (Delorme and Makeig, 2004).

  13. Sex-related differences in sleep slow wave activity in major depressive disorder: a high-density EEG investigation.

    Science.gov (United States)

    Plante, David T; Landsness, Eric C; Peterson, Michael J; Goldstein, Michael R; Riedner, Brady A; Wanger, Timothy; Guokas, Jeffrey J; Tononi, Giulio; Benca, Ruth M

    2012-09-18

    Sleep disturbance plays an important role in major depressive disorder (MDD). Prior investigations have demonstrated that slow wave activity (SWA) during sleep is altered in MDD; however, results have not been consistent across studies, which may be due in part to sex-related differences in SWA and/or limited spatial resolution of spectral analyses. This study sought to characterize SWA in MDD utilizing high-density electroencephalography (hdEEG) to examine the topography of SWA across the cortex in MDD, as well as sex-related variation in SWA topography in the disorder. All-night recordings with 256 channel hdEEG were collected in 30 unipolar MDD subjects (19 women) and 30 age and sex-matched control subjects. Spectral analyses of SWA were performed to determine group differences. SWA was compared between MDD and controls, including analyses stratified by sex, using statistical non-parametric mapping to correct for multiple comparisons of topographic data. As a group, MDD subjects demonstrated significant increases in all-night SWA primarily in bilateral prefrontal channels. When stratified by sex, MDD women demonstrated global increases in SWA relative to age-matched controls that were most consistent in bilateral prefrontal regions; however, MDD men showed no significant differences relative to age-matched controls. Further analyses demonstrated increased SWA in MDD women was most prominent in the first portion of the night. Women, but not men with MDD demonstrate significant increases in SWA in multiple cortical areas relative to control subjects. Further research is warranted to investigate the role of SWA in MDD, and to clarify how increased SWA in women with MDD is related to the pathophysiology of the disorder.

  14. Topographic and sex-related differences in sleep spindles in major depressive disorder: a high-density EEG investigation.

    Science.gov (United States)

    Plante, D T; Goldstein, M R; Landsness, E C; Peterson, M J; Riedner, B A; Ferrarelli, F; Wanger, T; Guokas, J J; Tononi, G; Benca, R M

    2013-03-20

    Sleep spindles are believed to mediate several sleep-related functions including maintaining disconnection from the external environment during sleep, cortical development, and sleep-dependent memory consolidation. Prior studies that have examined sleep spindles in major depressive disorder (MDD) have not demonstrated consistent differences relative to control subjects, which may be due to sex-related variation and limited spatial resolution of spindle detection. Thus, this study sought to characterize sleep spindles in MDD using high-density electroencephalography (hdEEG) to examine the topography of sleep spindles across the cortex in MDD, as well as sex-related variation in spindle topography in the disorder. All-night hdEEG recordings were collected in 30 unipolar MDD participants (19 women) and 30 age and sex-matched controls. Topography of sleep spindle density, amplitude, duration, and integrated spindle activity (ISA) were assessed to determine group differences. Spindle parameters were compared between MDD and controls, including analysis stratified by sex. As a group, MDD subjects demonstrated significant increases in frontal and parietal spindle density and ISA compared to controls. When stratified by sex, MDD women demonstrated increases in frontal and parietal spindle density, amplitude, duration, and ISA; whereas MDD men demonstrated either no differences or decreases in spindle parameters. Given the number of male subjects, this study may be underpowered to detect differences in spindle parameters in male MDD participants. This study demonstrates topographic and sex-related differences in sleep spindles in MDD. Further research is warranted to investigate the role of sleep spindles and sex in the pathophysiology of MDD. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Neurofeedback training aimed to improve focused attention and alertness in children with ADHD: a study of relative power of EEG rhythms using custom-made software application.

    Science.gov (United States)

    Hillard, Brent; El-Baz, Ayman S; Sears, Lonnie; Tasman, Allan; Sokhadze, Estate M

    2013-07-01

    Neurofeedback is a nonpharmacological treatment for attention-deficit hyperactivity disorder (ADHD). We propose that operant conditioning of electroencephalogram (EEG) in neurofeedback training aimed to mitigate inattention and low arousal in ADHD, will be accompanied by changes in EEG bands' relative power. Patients were 18 children diagnosed with ADHD. The neurofeedback protocol ("Focus/Alertness" by Peak Achievement Trainer) has a focused attention and alertness training mode. The neurofeedback protocol provides one for Focus and one for Alertness. This does not allow for collecting information regarding changes in specific EEG bands (delta, theta, alpha, low and high beta, and gamma) power within the 2 to 45 Hz range. Quantitative EEG analysis was completed on each of twelve 25-minute-long sessions using a custom-made MatLab application to determine the relative power of each of the aforementioned EEG bands throughout each session, and from the first session to the last session. Additional statistical analysis determined significant changes in relative power within sessions (from minute 1 to minute 25) and between sessions (from session 1 to session 12). Analysis was of relative power of theta, alpha, low and high beta, theta/alpha, theta/beta, and theta/low beta and theta/high beta ratios. Additional secondary measures of patients' post-neurofeedback outcomes were assessed, using an audiovisual selective attention test (IVA + Plus) and behavioral evaluation scores from the Aberrant Behavior Checklist. Analysis of data computed in the MatLab application, determined that theta/low beta and theta/alpha ratios decreased significantly from session 1 to session 12, and from minute 1 to minute 25 within sessions. The findings regarding EEG changes resulting from brain wave self-regulation training, along with behavioral evaluations, will help elucidate neural mechanisms of neurofeedback aimed to improve focused attention and alertness in ADHD.

  16. EEG-based decoding of error-related brain activity in a real-world driving task

    Science.gov (United States)

    Zhang, H.; Chavarriaga, R.; Khaliliardali, Z.; Gheorghe, L.; Iturrate, I.; Millán, J. d. R.

    2015-12-01

    Objectives. Recent studies have started to explore the implementation of brain-computer interfaces (BCI) as part of driving assistant systems. The current study presents an EEG-based BCI that decodes error-related brain activity. Such information can be used, e.g., to predict driver’s intended turning direction before reaching road intersections. Approach. We executed experiments in a car simulator (N = 22) and a real car (N = 8). While subject was driving, a directional cue was shown before reaching an intersection, and we classified the presence or not of an error-related potentials from EEG to infer whether the cued direction coincided with the subject’s intention. In this protocol, the directional cue can correspond to an estimation of the driving direction provided by a driving assistance system. We analyzed ERPs elicited during normal driving and evaluated the classification performance in both offline and online tests. Results. An average classification accuracy of 0.698 ± 0.065 was obtained in offline experiments in the car simulator, while tests in the real car yielded a performance of 0.682 ± 0.059. The results were significantly higher than chance level for all cases. Online experiments led to equivalent performances in both simulated and real car driving experiments. These results support the feasibility of decoding these signals to help estimating whether the driver’s intention coincides with the advice provided by the driving assistant in a real car. Significance. The study demonstrates a BCI system in real-world driving, extending the work from previous simulated studies. As far as we know, this is the first online study in real car decoding driver’s error-related brain activity. Given the encouraging results, the paradigm could be further improved by using more sophisticated machine learning approaches and possibly be combined with applications in intelligent vehicles.

  17. A Brain–Computer Interface for Potential Nonverbal Facial Communication Based on EEG Signals Related to Specific Emotions

    Directory of Open Access Journals (Sweden)

    Koji eKashihara

    2014-08-01

    Full Text Available Unlike assistive technology for verbal communication, the brain–machine or brain–computer interface (BMI/BCI has not been established as a nonverbal communication tool for amyotrophic lateral sclerosis (ALS patients. Face-to-face communication enables access to rich emotional information, but individuals suffering from neurological disorders, such as ALS and autism, may not express their emotions or communicate their negative feelings. Although emotions may be inferred by looking at facial expressions, emotional prediction for neutral faces necessitates advanced judgment. The process that underlies brain neuronal responses to neutral faces and causes emotional changes remains unknown. To address this problem, therefore, this study attempted to decode conditioned emotional reactions to neutral face stimuli. This direction was motivated by the assumption that if electroencephalogram (EEG signals can be used to detect patients’ emotional responses to specific inexpressive faces, the results could be incorporated into the design and development of BMI/BCI-based nonverbal communication tools. To these ends, this study investigated how a neutral face associated with a negative emotion modulates rapid central responses in face processing and then identified cortical activities. The conditioned neutral face-triggered event-related potentials that originated from the posterior temporal lobe statistically significantly changed during late face processing (600–700 ms after stimulus, rather than in early face processing activities, such as P1 and N170 responses. Source localization revealed that the conditioned neutral faces increased activity in the right fusiform gyrus. This study also developed an efficient method for detecting implicit negative emotional responses to specific faces by using EEG signals.

  18. A brain-computer interface for potential non-verbal facial communication based on EEG signals related to specific emotions.

    Science.gov (United States)

    Kashihara, Koji

    2014-01-01

    Unlike assistive technology for verbal communication, the brain-machine or brain-computer interface (BMI/BCI) has not been established as a non-verbal communication tool for amyotrophic lateral sclerosis (ALS) patients. Face-to-face communication enables access to rich emotional information, but individuals suffering from neurological disorders, such as ALS and autism, may not express their emotions or communicate their negative feelings. Although emotions may be inferred by looking at facial expressions, emotional prediction for neutral faces necessitates advanced judgment. The process that underlies brain neuronal responses to neutral faces and causes emotional changes remains unknown. To address this problem, therefore, this study attempted to decode conditioned emotional reactions to neutral face stimuli. This direction was motivated by the assumption that if electroencephalogram (EEG) signals can be used to detect patients' emotional responses to specific inexpressive faces, the results could be incorporated into the design and development of BMI/BCI-based non-verbal communication tools. To these ends, this study investigated how a neutral face associated with a negative emotion modulates rapid central responses in face processing and then identified cortical activities. The conditioned neutral face-triggered event-related potentials that originated from the posterior temporal lobe statistically significantly changed during late face processing (600-700 ms) after stimulus, rather than in early face processing activities, such as P1 and N170 responses. Source localization revealed that the conditioned neutral faces increased activity in the right fusiform gyrus (FG). This study also developed an efficient method for detecting implicit negative emotional responses to specific faces by using EEG signals. A classification method based on a support vector machine enables the easy classification of neutral faces that trigger specific individual emotions. In

  19. Towards a Unified Understanding of Event-Related Changes in the EEG: The Firefly Model of Synchronization through Cross-Frequency Phase Modulation

    Science.gov (United States)

    Burgess, Adrian P.

    2012-01-01

    Although event-related potentials (ERPs) are widely used to study sensory, perceptual and cognitive processes, it remains unknown whether they are phase-locked signals superimposed upon the ongoing electroencephalogram (EEG) or result from phase-alignment of the EEG. Previous attempts to discriminate between these hypotheses have been unsuccessful but here a new test is presented based on the prediction that ERPs generated by phase-alignment will be associated with event-related changes in frequency whereas evoked-ERPs will not. Using empirical mode decomposition (EMD), which allows measurement of narrow-band changes in the EEG without predefining frequency bands, evidence was found for transient frequency slowing in recognition memory ERPs but not in simulated data derived from the evoked model. Furthermore, the timing of phase-alignment was frequency dependent with the earliest alignment occurring at high frequencies. Based on these findings, the Firefly model was developed, which proposes that both evoked and induced power changes derive from frequency-dependent phase-alignment of the ongoing EEG. Simulated data derived from the Firefly model provided a close match with empirical data and the model was able to account for i) the shape and timing of ERPs at different scalp sites, ii) the event-related desynchronization in alpha and synchronization in theta, and iii) changes in the power density spectrum from the pre-stimulus baseline to the post-stimulus period. The Firefly Model, therefore, provides not only a unifying account of event-related changes in the EEG but also a possible mechanism for cross-frequency information processing. PMID:23049827

  20. Adaptive autoregressive identification with spectral power decomposition for studying movement-related activity in scalp EEG signals and basal ganglia local field potentials

    Science.gov (United States)

    Foffani, Guglielmo; Bianchi, Anna M.; Priori, Alberto; Baselli, Giuseppe

    2004-09-01

    We propose a method that combines adaptive autoregressive (AAR) identification and spectral power decomposition for the study of movement-related spectral changes in scalp EEG signals and basal ganglia local field potentials (LFPs). This approach introduces the concept of movement-related poles, allowing one to study not only the classical event-related desynchronizations (ERD) and synchronizations (ERS), which correspond to modulations of power, but also event-related modulations of frequency. We applied the method to analyze movement-related EEG signals and LFPs contemporarily recorded from the sensorimotor cortex, the globus pallidus internus (GPi) and the subthalamic nucleus (STN) in a patient with Parkinson's disease who underwent stereotactic neurosurgery for the implant of deep brain stimulation (DBS) electrodes. In the AAR identification we compared the whale and the exponential forgetting factors, showing that the whale forgetting provides a better disturbance rejection and it is therefore more suitable to investigate movement-related brain activity. Movement-related power modulations were consistent with previous studies. In addition, movement-related frequency modulations were observed from both scalp EEG signals and basal ganglia LFPs. The method therefore represents an effective approach to the study of movement-related brain activity.

  1. Multichannel linear descriptors analysis for event-related EEG of vascular dementia patients during visual detection task.

    Science.gov (United States)

    Lou, Wutao; Xu, Jin; Sheng, Hengsong; Zhao, Songzhen

    2011-11-01

    Multichannel EEG recorded in a task condition could contain more information about cognition. However, that has not been widely investigated in the vascular-dementia (VaD)- related studies. The purpose of this study was to explore the differences of brain functional states between VaD patients and normal controls while performing a detection task. Three multichannel linear descriptors, i.e. spatial complexity (Ω), field strength (Σ) and frequency of field changes (Φ), were applied to analyse four frequency bands (delta, theta, alpha and beta) of multichannel event-related EEG signals for 12 VaD patients (mean age ± SD: 69.25 ± 10.56 years ; MMSE score ± SD: 22.58 ± 4.42) and 12 age-matched healthy subjects (mean age ± SD: 67.17 ± 5.97 years ; MMSE score ± SD: 29.08 ± 0.9). The correlations between the three measures and MMSE scores were also analysed. VaD patients showed a significant higher Ω value in the delta (p = 0.013) and theta (p = 0.021) frequency bands, a lower Σ value (p = 0.011) and a higher Φ (p = 0.008) value in the delta frequency band compared with normal controls. The MMSE scores were negatively correlated with the Ω (r = -0.52, p = 0.01) and Φ (r = -0.47, p = 0.02) values in the delta frequency band. The results indicated the VaD patients presented a reduction of synchronization in the slow frequency band during target detection, and suggested more neurons might be activated in VaD patients compared with normal controls. The Ω and Φ measures in the delta frequency band might be used to evaluate the degree of cognitive dysfunction. The multichannel linear descriptors are promising measures to reveal the differences in brain functions between VaD patients and normal subjects, and could potentially be used to evaluate the degree of cognitive dysfunction in VaD patients. Copyright © 2011 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  2. Emotional Stroop interference for threatening words is related to reduced EEG δ-β coupling and low attentional control.

    Science.gov (United States)

    Putman, Peter; Arias-Garcia, Elsa; Pantazi, Ioanna; van Schie, Charlotte

    2012-05-01

    Previously, electroencephalographic (EEG) delta-beta coupling (positive correlation between power in the fast beta and slow delta frequency bands) has been related to affective processing. For instance, differences in delta-beta coupling have been observed between people in a psychological stress condition and controls. We previously reported relationships between attentional threat processing and delta-beta coupling and individual differences in attentional control. The present study extended and replicated these findings in a large mixed gender sample (N=80). Results demonstrated that emotional Stroop task interference for threatening words was related to self-reported attentional inhibition capacity and frontal delta-beta coupling. There was no clear gender difference for delta-beta coupling (only a non-significant trend) and the relationship between delta-beta coupling and attentional threat-processing was not affected by gender. These results replicate and extend an earlier finding concerning delta-beta coupling and cognitive affect regulation and further clarify relationships between delta-beta coupling, attentional control, and threat-processing. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Age-Related Changes in Resting-State EEG Activity in Attention Deficit/Hyperactivity Disorder: A Cross-Sectional Study

    Directory of Open Access Journals (Sweden)

    Katarzyna Giertuga

    2017-05-01

    Full Text Available Numerous studies indicate that attention deficit/hyperactivity disorder (ADHD is related to some developmental trends, as its symptoms change widely over time. Nevertheless, the etiology of this phenomenon remains ambiguous. There is a disagreement whether ADHD is related to deviations in brain development or to a delay in brain maturation. The model of deviated brain development suggests that the ADHD brain matures in a fundamentally different way, and does not reach normal maturity at any developmental stage. On the contrary, the delayed brain maturation model assumes that the ADHD brain indeed matures in a different, delayed way in comparison to healthy age-matched controls, yet eventually reaches proper maturation. We investigated age-related changes in resting-state EEG activity to find evidence to support one of the alternative models. A total of 141 children and teenagers participated in the study; 67 diagnosed with ADHD and 74 healthy controls. The absolute power of delta, theta, alpha, and beta frequency bands was analyzed. We observed a significant developmental pattern of decreasing absolute EEG power in both groups. Nonetheless, ADHD was characterized by consistently lower absolute EGG power, mostly in the theta frequency band, in comparison to healthy controls. Our results are in line with the deviant brain maturation theory of ADHD, as the observed effects of age-related changes in EEG power are parallel but different in the two groups.

  4. Dissociations between motor-related EEG measures in a cued movement sequence task

    NARCIS (Netherlands)

    Gladwin, Thomas E.; t' Hart, Bernhard M.; de Jong, Ritske

    Different aspects of preparation, especially processes related to knowing what to prepare versus applying that foreknowledge effectively, may be reflected in different types of brain activity, e.g., the lateralized readiness potential (LRP), beta-band event-related desynchronization and phase

  5. [Event-related EEG potentials associated with error detection in psychiatric disorder: literature review].

    Science.gov (United States)

    Balogh, Lívia; Czobor, Pál

    2010-01-01

    Error-related bioelectric signals constitute a special subgroup of event-related potentials. Researchers have identified two evoked potential components to be closely related to error processing, namely error-related negativity (ERN) and error-positivity (Pe), and they linked these to specific cognitive functions. In our article first we give a brief description of these components, then based on the available literature, we review differences in error-related evoked potentials observed in patients across psychiatric disorders. The PubMed and Medline search engines were used in order to identify all relevant articles, published between 2000 and 2009. For the purpose of the current paper we reviewed publications summarizing results of clinical trials. Patients suffering from schizophrenia, anorexia nervosa or borderline personality disorder exhibited a decrease in the amplitude of error-negativity when compared with healthy controls, while in cases of depression and anxiety an increase in the amplitude has been observed. Some of the articles suggest specific personality variables, such as impulsivity, perfectionism, negative emotions or sensitivity to punishment to underlie these electrophysiological differences. Research in the field of error-related electric activity has come to the focus of psychiatry research only recently, thus the amount of available data is significantly limited. However, since this is a relatively new field of research, the results available at present are noteworthy and promising for future electrophysiological investigations in psychiatric disorders.

  6. [Changes in the EEG spectral power during perception of neutral and emotionally salient words in schizophrenic patients, their relatives and healthy individuals from the general population].

    Science.gov (United States)

    Alfimova, M V; Uvarova, L G

    2007-01-01

    To search for EEG-correlates of emotional processing that might be indicators of genetic predisposition to schizophrenia, changes in EEG spectral power during perception of neutral and emotionally salient words were examined in 36 schizophrenic patients, 50 of their unaffected first-degree relatives, and 47 healthy individuals without any family history of psychoses. In healthy persons, passive listening to neutral words induced minimum changes in cortical rhythmical activity, predominantly in the form of synchronization of slow and fast waves, whereas perception of emotional words was followed by a generalized depression of the alpha and beta1 activity and a locally specific decrease in the power of theta and beta2 frequency bands. The patients and their relatives showed a decrease in the alpha and beta1 activity simultaneously with an increase in the power of delta activity in response to both groups of words. Thus, in the patients and their relatives, reactions to neutral and emotional words were ulterior as a result of augmented reactions to the neutral words. These findings suggest that the EEG changes reflect familial and possibly hereditable abnormal involuntary attention. No prominent decrease in reactivity to emotional stimuli was revealed in schizophrenic families.

  7. Changes in EEG spectral power on perception of neutral and emotional words in patients with schizophrenia, their relatives, and healthy subjects from the general population.

    Science.gov (United States)

    Alfimova, M V; Uvarova, L G

    2008-06-01

    EEG correlates of impairments in the processing of emotiogenic information which might reflect a genetic predisposition to schizophrenia were sought by studying the dynamics of EEG rhythm powers on presentation of neutral and emotional words in 36 patients with schizophrenia, 50 of their unaffected first-degree relatives, and 47 healthy subjects without any inherited predisposition to psychoses. In controls, passive hearing of neutral words produced minimal changes in cortical rhythms, predominantly in the form of increases in the power levels of slow and fast waves, while perception of emotional words was accompanied by generalized reductions in the power of the alpha and beta(1) rhythms and regionally specific suppression of theta and beta(2) activity. Patients and their relatives demonstrated reductions in power of alpha and beta(1) activity, with an increase in delta power on hearing both groups of words. Thus, differences in responses to neutral and emotional words in patients and their relatives were weaker, because of increased reactions to neutral words. These results may identify EEG reflections of pathology of involuntary attention, which is familial and, evidently, inherited in nature. No reduction in reactions to emotiogenic stimuli was seen in patients' families.

  8. P300 amplitude variation is related to ventral striatum BOLD response during gain and loss anticipation: an EEG and fMRI experiment.

    Science.gov (United States)

    Pfabigan, Daniela M; Seidel, Eva-Maria; Sladky, Ronald; Hahn, Andreas; Paul, Katharina; Grahl, Arvina; Küblböck, Martin; Kraus, Christoph; Hummer, Allan; Kranz, Georg S; Windischberger, Christian; Lanzenberger, Rupert; Lamm, Claus

    2014-08-01

    The anticipation of favourable or unfavourable events is a key component in our daily life. However, the temporal dynamics of anticipation processes in relation to brain activation are still not fully understood. A modified version of the monetary incentive delay task was administered during separate functional magnetic resonance imaging (fMRI) and electroencephalogram (EEG) sessions in the same 25 participants to assess anticipatory processes with a multi-modal neuroimaging set-up. During fMRI, gain and loss anticipation were both associated with heightened activation in ventral striatum and reward-related areas. EEG revealed most pronounced P300 amplitudes for gain anticipation, whereas CNV amplitudes distinguished neutral from gain and loss anticipation. Importantly, P300, but not CNV amplitudes, were correlated to neural activation in the ventral striatum for both gain and loss anticipation. Larger P300 amplitudes indicated higher ventral striatum blood oxygen level dependent (BOLD) response. Early stimulus evaluation processes indexed by EEG seem to be positively related to higher activation levels in the ventral striatum, indexed by fMRI, which are usually associated with reward processing. The current results, however, point towards a more general motivational mechanism processing salient stimuli during anticipation. Copyright © 2014. Published by Elsevier Inc.

  9. Quantitative EEG in Children and Adults With Attention Deficit Hyperactivity Disorder: Comparison of Absolute and Relative Power Spectra and Theta/Beta Ratio.

    Science.gov (United States)

    Markovska-Simoska, Silvana; Pop-Jordanova, Nada

    2017-01-01

    In recent decades, resting state electroencephalographic (EEG) measures have been widely used to document underlying neurophysiological dysfunction in attention deficit hyperactivity disorder (ADHD). Although most EEG studies focus on children, there is a growing interest in adults with ADHD too. The aim of this study was to objectively assess and compare the absolute and relative EEG power as well as the theta/beta ratio in children and adults with ADHD. The evaluated sample comprised 30 male children and 30 male adults with ADHD diagnosed according to DSM-IV criteria. They were compared with 30 boys and 30 male adults matched by age. The mean age (±SD) of the children's group was 9 (±2.44) years and the adult group 35.8 (±8.65) years. EEG was recorded during an eyes-open condition. Spectral analysis of absolute (μV 2 ) and relative power (%) was carried out for 4 frequency bands: delta (2-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), and beta (13-21 Hz). The findings obtained for ADHD children are increased absolute power of slow waves (theta and delta), whereas adults exhibited no differences compared with normal subjects. For the relative power spectra there were no differences between the ADHD and control groups. Across groups, the children showed greater relative power than the adults in the delta and theta bands, but for the higher frequency bands (alpha and beta) the adults showed more relative power than children. Only ADHD children showed greater theta/beta ratio compared to the normal group. Classification analysis showed that ADHD children could be differentiated from the control group by the absolute theta values and theta/beta ratio at Cz, but this was not the case with ADHD adults. The question that should be further explored is if these differences are mainly due to maturation processes or if there is a core difference in cortical arousal between ADHD children and adults. © EEG and Clinical Neuroscience Society (ECNS) 2016.

  10. How Sex and College Major Relate to Mental Rotation Accuracy and Preferred Strategy: An Electroencephalographic (EEG) Investigation

    Science.gov (United States)

    Li, Yingli; O'Boyle, Michael

    2013-01-01

    The electroencephalogram (EEG) was used to investigate variation in mental rotation (MR) strategies between males and females and different college majors. Beta activation was acquired from 40 participants (10 males and 10 females in physical science; 10 males and 10 females in social science) when performing the Vandenberg and Kuse (1978) mental…

  11. Test-retest reliability of cognitive EEG

    Science.gov (United States)

    McEvoy, L. K.; Smith, M. E.; Gevins, A.

    2000-01-01

    OBJECTIVE: Task-related EEG is sensitive to changes in cognitive state produced by increased task difficulty and by transient impairment. If task-related EEG has high test-retest reliability, it could be used as part of a clinical test to assess changes in cognitive function. The aim of this study was to determine the reliability of the EEG recorded during the performance of a working memory (WM) task and a psychomotor vigilance task (PVT). METHODS: EEG was recorded while subjects rested quietly and while they performed the tasks. Within session (test-retest interval of approximately 1 h) and between session (test-retest interval of approximately 7 days) reliability was calculated for four EEG components: frontal midline theta at Fz, posterior theta at Pz, and slow and fast alpha at Pz. RESULTS: Task-related EEG was highly reliable within and between sessions (r0.9 for all components in WM task, and r0.8 for all components in the PVT). Resting EEG also showed high reliability, although the magnitude of the correlation was somewhat smaller than that of the task-related EEG (r0.7 for all 4 components). CONCLUSIONS: These results suggest that under appropriate conditions, task-related EEG has sufficient retest reliability for use in assessing clinical changes in cognitive status.

  12. EEG correlates of virtual reality hypnosis.

    Science.gov (United States)

    White, David; Ciorciari, Joseph; Carbis, Colin; Liley, David

    2009-01-01

    The study investigated hypnosis-related electroencephalographic (EEG) coherence and power spectra changes in high and low hypnotizables (Stanford Hypnotic Clinical Scale) induced by a virtual reality hypnosis (VRH) induction system. In this study, the EEG from 17 participants (Mean age = 21.35, SD = 1.58) were compared based on their hypnotizability score. The EEG recording associated with a 2-minute, eyes-closed baseline state was compared to the EEG during a hypnosis-related state. This novel induction system was able to produce EEG findings consistent with previous hypnosis literature. Interactions of significance were found with EEG beta coherence. The high susceptibility group (n = 7) showed decreased coherence, while the low susceptibility group (n = 10) demonstrated an increase in coherence between medial frontal and lateral left prefrontal sites. Methodological and efficacy issues are discussed.

  13. EEG analyses with SOBI.

    Energy Technology Data Exchange (ETDEWEB)

    Glickman, Matthew R.; Tang, Akaysha (University of New Mexico, Albuquerque, NM)

    2009-02-01

    The motivating vision behind Sandia's MENTOR/PAL LDRD project has been that of systems which use real-time psychophysiological data to support and enhance human performance, both individually and of groups. Relevant and significant psychophysiological data being a necessary prerequisite to such systems, this LDRD has focused on identifying and refining such signals. The project has focused in particular on EEG (electroencephalogram) data as a promising candidate signal because it (potentially) provides a broad window on brain activity with relatively low cost and logistical constraints. We report here on two analyses performed on EEG data collected in this project using the SOBI (Second Order Blind Identification) algorithm to identify two independent sources of brain activity: one in the frontal lobe and one in the occipital. The first study looks at directional influences between the two components, while the second study looks at inferring gender based upon the frontal component.

  14. Rett syndrome: EEG presentation.

    Science.gov (United States)

    Robertson, R; Langill, L; Wong, P K; Ho, H H

    1988-11-01

    Rett syndrome, a degenerative neurological disorder of girls, has a classical presentation and typical EEG findings. The electroencephalograms (EEGs) of 7 girls whose records have been followed from the onset of symptoms to the age of 5 or more are presented. These findings are tabulated with the Clinical Staging System of Hagberg and Witt-Engerström (1986). The records show a progressive deterioration in background rhythms in waking and sleep. The abnormalities of the background activity may only become evident at 4-5 years of age or during stage 2--the Rapid Destructive Stage. The marked contrast between waking and sleep background may not occur until stage 3--the Pseudostationary Stage. In essence EEG changes appear to lag behind clinical symptomatology by 1-3 years. An unexpected, but frequent, abnormality was central spikes seen in 5 of 7 girls. They appeared to be age related and could be evoked by tactile stimulation in 2 patients. We hypothesize that the prominent 'hand washing' mannerism may be self-stimulating and related to the appearance of central spike discharges.

  15. Concealed, Unobtrusive Ear-Centered EEG Acquisition: cEEGrids for Transparent EEG

    Science.gov (United States)

    Bleichner, Martin G.; Debener, Stefan

    2017-01-01

    Electroencephalography (EEG) is an important clinical tool and frequently used to study the brain-behavior relationship in humans noninvasively. Traditionally, EEG signals are recorded by positioning electrodes on the scalp and keeping them in place with glue, rubber bands, or elastic caps. This setup provides good coverage of the head, but is impractical for EEG acquisition in natural daily-life situations. Here, we propose the transparent EEG concept. Transparent EEG aims for motion tolerant, highly portable, unobtrusive, and near invisible data acquisition with minimum disturbance of a user's daily activities. In recent years several ear-centered EEG solutions that are compatible with the transparent EEG concept have been presented. We discuss work showing that miniature electrodes placed in and around the human ear are a feasible solution, as they are sensitive enough to pick up electrical signals stemming from various brain and non-brain sources. We also describe the cEEGrid flex-printed sensor array, which enables unobtrusive multi-channel EEG acquisition from around the ear. In a number of validation studies we found that the cEEGrid enables the recording of meaningful continuous EEG, event-related potentials and neural oscillations. Here, we explain the rationale underlying the cEEGrid ear-EEG solution, present possible use cases and identify open issues that need to be solved on the way toward transparent EEG. PMID:28439233

  16. Physiological artifacts in scalp EEG and ear-EEG.

    Science.gov (United States)

    Kappel, Simon L; Looney, David; Mandic, Danilo P; Kidmose, Preben

    2017-08-11

    A problem inherent to recording EEG is the interference arising from noise and artifacts. While in a laboratory environment, artifacts and interference can, to a large extent, be avoided or controlled, in real-life scenarios this is a challenge. Ear-EEG is a concept where EEG is acquired from electrodes in the ear. We present a characterization of physiological artifacts generated in a controlled environment for nine subjects. The influence of the artifacts was quantified in terms of the signal-to-noise ratio (SNR) deterioration of the auditory steady-state response. Alpha band modulation was also studied in an open/closed eyes paradigm. Artifacts related to jaw muscle contractions were present all over the scalp and in the ear, with the highest SNR deteriorations in the gamma band. The SNR deterioration for jaw artifacts were in general higher in the ear compared to the scalp. Whereas eye-blinking did not influence the SNR in the ear, it was significant for all groups of scalps electrodes in the delta and theta bands. Eye movements resulted in statistical significant SNR deterioration in both frontal, temporal and ear electrodes. Recordings of alpha band modulation showed increased power and coherence of the EEG for ear and scalp electrodes in the closed-eyes periods. Ear-EEG is a method developed for unobtrusive and discreet recording over long periods of time and in real-life environments. This study investigated the influence of the most important types of physiological artifacts, and demonstrated that spontaneous activity, in terms of alpha band oscillations, could be recorded from the ear-EEG platform. In its present form ear-EEG was more prone to jaw related artifacts and less prone to eye-blinking artifacts compared to state-of-the-art scalp based systems.

  17. Tele-transmission of EEG recordings.

    Science.gov (United States)

    Lemesle, M; Kubis, N; Sauleau, P; N'Guyen The Tich, S; Touzery-de Villepin, A

    2015-03-01

    EEG recordings can be sent for remote interpretation. This article aims to define the tele-EEG procedures and technical guidelines. Tele-EEG is a complete medical act that needs to be carried out with the same quality requirements as a local one in terms of indications, formulation of the medical request and medical interpretation. It adheres to the same quality requirements for its human resources and materials. It must be part of a medical organization (technical and medical network) and follow all rules and guidelines of good medical practices. The financial model of this organization must include costs related to performing the EEG recording, operating and maintenance of the tele-EEG network and medical fees of the physician interpreting the EEG recording. Implementing this organization must be detailed in a convention between all parties involved: physicians, management of the healthcare structure, and the company providing the tele-EEG service. This convention will set rules for network operation and finance, and also the continuous training of all staff members. The tele-EEG system must respect all rules for safety and confidentiality, and ensure the traceability and storing of all requests and reports. Under these conditions, tele-EEG can optimize the use of human resources and competencies in its zone of utilization and enhance the organization of care management. Copyright © 2015. Published by Elsevier SAS.

  18. Research on the relation of EEG signal chaos characteristics with high-level intelligence activity of human brain.

    Science.gov (United States)

    Wang, Xingyuan; Meng, Juan; Tan, Guilin; Zou, Lixian

    2010-04-27

    Using phase space reconstruct technique from one-dimensional and multi-dimensional time series and the quantitative criterion rule of system chaos, and combining the neural network; analyses, computations and sort are conducted on electroencephalogram (EEG) signals of five kinds of human consciousness activities (relaxation, mental arithmetic of multiplication, mental composition of a letter, visualizing a 3-dimensional object being revolved about an axis, and visualizing numbers being written or erased on a blackboard). Through comparative studies on the determinacy, the phase graph, the power spectra, the approximate entropy, the correlation dimension and the Lyapunov exponent of EEG signals of 5 kinds of consciousness activities, the following conclusions are shown: (1) The statistic results of the deterministic computation indicate that chaos characteristic may lie in human consciousness activities, and central tendency measure (CTM) is consistent with phase graph, so it can be used as a division way of EEG attractor. (2) The analyses of power spectra show that ideology of single subject is almost identical but the frequency channels of different consciousness activities have slight difference. (3) The approximate entropy between different subjects exist discrepancy. Under the same conditions, the larger the approximate entropy of subject is, the better the subject's innovation is. (4) The results of the correlation dimension and the Lyapunov exponent indicate that activities of human brain exist in attractors with fractional dimensions. (5) Nonlinear quantitative criterion rule, which unites the neural network, can classify different kinds of consciousness activities well. In this paper, the results of classification indicate that the consciousness activity of arithmetic has better differentiation degree than that of abstract.

  19. Removing an intersubject variance component in a general linear model improves multiway factoring of event-related spectral perturbations in group EEG studies.

    Science.gov (United States)

    Spence, Jeffrey S; Brier, Matthew R; Hart, John; Ferree, Thomas C

    2013-03-01

    Linear statistical models are used very effectively to assess task-related differences in EEG power spectral analyses. Mixed models, in particular, accommodate more than one variance component in a multisubject study, where many trials of each condition of interest are measured on each subject. Generally, intra- and intersubject variances are both important to determine correct standard errors for inference on functions of model parameters, but it is often assumed that intersubject variance is the most important consideration in a group study. In this article, we show that, under common assumptions, estimates of some functions of model parameters, including estimates of task-related differences, are properly tested relative to the intrasubject variance component only. A substantial gain in statistical power can arise from the proper separation of variance components when there is more than one source of variability. We first develop this result analytically, then show how it benefits a multiway factoring of spectral, spatial, and temporal components from EEG data acquired in a group of healthy subjects performing a well-studied response inhibition task. Copyright © 2011 Wiley Periodicals, Inc.

  20. Reduced Prefrontal Short—Latency Afferent Inhibition in Older Adults and Its Relation to Executive Function: A TMS-EEG Study

    Directory of Open Access Journals (Sweden)

    Daniel M. Blumberger

    2017-05-01

    Full Text Available Combining transcranial magnetic stimulation (TMS with electroencephalography (EEG allows for the assessment of various neurophysiological processes in the human cortex. One of these paradigms, short-latency afferent inhibition (SAI, is thought to be a sensitive measure of cholinergic activity. In a previous study, we demonstrated the temporal pattern of this paradigm from both the motor (M1 and dorsolateral prefrontal cortex (DLPFC using simultaneous TMS–EEG recording. The SAI paradigm led to marked modulations at N100. In this study, we aimed to investigate the age-related effects on TMS-evoked potentials (TEPs with the SAI from M1 and the DLPFC in younger (18–59 years old and older (≥60 years old participants. Older participants showed significantly lower N100 modulation in M1–SAI as well as DLPFC–SAI compared to the younger participants. Furthermore, the modulation of N100 by DLPFC–SAI in the older participants correlated with executive function as measured with the Trail making test. This paradigm has the potential to non-invasively identify cholinergic changes in cortical regions related to cognition in older participants.

  1. Mobile EEG in epilepsy

    NARCIS (Netherlands)

    Askamp, Jessica; van Putten, Michel Johannes Antonius Maria

    2014-01-01

    The sensitivity of routine EEG recordings for interictal epileptiform discharges in epilepsy is limited. In some patients, inpatient video-EEG may be performed to increase the likelihood of finding abnormalities. Although many agree that home EEG recordings may provide a cost-effective alternative

  2. EEG Findings in Burnout Patients

    NARCIS (Netherlands)

    Luijtelaar, E.L.J.M. van; Verbraak, M.J.P.M.; Bunt, P.M. van den; Keijsers, G.P.J.; Arns, M.W.

    2010-01-01

    The concept of burnout remains enigmatic since it is only determined by behavioral characteristics. Moreover, the differential diagnosis with depression and chronic fatigue syndrome is difficult. EEG-related variables in 13 patients diagnosed with burnout syndrome were compared with 13 healthy

  3. Frontal cortex electrophysiology in reward- and punishment-related feedback processing during advice-guided decision making: An interleaved EEG-DC stimulation study.

    Science.gov (United States)

    Wischnewski, Miles; Bekkering, Harold; Schutter, Dennis J L G

    2018-04-01

    During decision making, individuals are prone to rely on external cues such as expert advice when the outcome is not known. However, the electrophysiological correlates associated with outcome uncertainty and the use of expert advice are not completely understood. The feedback-related negativity (FRN), P3a, and P3b are event-related brain potentials (ERPs) linked to dissociable stages of feedback and attentional processing during decision making. Even though these ERPs are influenced by both reward- and punishment-related feedback, it remains unclear how extrinsic information during uncertainty modulates these brain potentials. In this study, the effects of advice cues on decision making were investigated in two separate experiments. In the first experiment, electroencephalography (EEG) was recorded in healthy volunteers during a decision-making task in which the participants received reward or punishment feedback preceded by novice, amateur, or expert advice. The results showed that the P3a component was significantly influenced by the subjective predictive value of an advice cue, whereas the FRN and P3b were unaffected by the advice cues. In the second, sham-controlled experiment, cathodal transcranial direct current stimulation (ctDCS) was administered in conjunction with EEG in order to explore the direct contributions of the frontal cortex to these brain potentials. Results showed no significant change in either advice-following behavior or decision times. However, ctDCS did decrease FRN amplitudes as compared to sham, with no effect on the P3a or P3b. Together, these findings suggest that advice information may act primarily on attention allocation during feedback processing, whereas the electrophysiological correlates of the detection and updating of internal prediction models are not affected.

  4. Functional Disorganization of Small-World Brain Networks in mild Alzheimer’s Disease and amnestic Mild Cognitive Impairment: An EEG Study using Relative Wavelet Entropy (RWE

    Directory of Open Access Journals (Sweden)

    Christos A. Frantzidis

    2014-08-01

    Full Text Available Previous neuroscientific findings have linked Alzheimer’s disease (AD with less efficient information processing and brain network disorganization. However, pathological alterations of the brain networks during the preclinical phase of amnestic Mild Cognitive Impairment (aMCI remain largely unknown. The present study aimed at comparing patterns of the detection of functional disorganization in MCI relative to Mild Dementia (MD. Participants consisted of 23 cognitively healthy adults, 17 aMCI and 24 mild AD patients who underwent electroencephalographic (EEG data acquisition during a resting-state condition. Synchronization analysis through the Orthogonal Discrete Wavelet Transform (ODWT, and directional brain network analysis were applied on the EEG data. This computational model was performed for networks that have the same number of edges (N=500, 600, 700, 800 edges across all participants and groups (fixed density values. All groups exhibited a small-world (SW brain architecture. However, we found a significant reduction in the SW brain architecture in both aMCI and MD patients relative to the group of Healthy controls. This functional disorganization was also correlated with the participant’s generic cognitive status. The deterioration of the network’s organization was caused mainly by deficient local information processing as quantified by the mean cluster coefficient value. Functional hubs were identified through the normalized betweenness centrality metric. Analysis of the local characteristics showed relative hub preservation even with statistically significant reduced strength. Compensatory phenomena were also evident through the formation of additional hubs on left frontal and parietal regions. Our results indicate a declined functional network organization even during the prodromal phase. Degeneration is evident even in the preclinical phase and coexists with transient network reorganization due to compensation.

  5. INTELLIGENT EEG ANALYSIS

    Directory of Open Access Journals (Sweden)

    M. Murugesan

    2011-04-01

    Full Text Available Brain is the wonderful organ of human body. It is the agent of information collection and transformation. The neural activity of the human brain starts between the 17th and 23rd week of prenatal development. It is believed that from this early stage and throughout life electrical signals are generated by the brain function but also the status of the whole body. Understanding of neuronal functions and neurophysiologic properties of the brain function together with the mechanisms underlying the generation of signals and their recording is, however, vital for those who deal with these signals for detection, diagnosis, and treatment of brain disorders and the related diseases. This research paper concentrated only on brain tumor detection. Using minimum electrode location the brain tumor possibility is detected. This paper is separated into two parts: the First part deals with electrode location on the scalp and the second part deals with how the fuzzy logic rule based algorithm is applied for estimation of brain tumor from EEG. Basically 8 locations are identified. After acquiring the pure EEG signal Fuzzy Logic Rule is applied to predict the possibility of brain tumor.

  6. Ragu: a free tool for the analysis of EEG and MEG event-related scalp field data using global randomization statistics.

    Science.gov (United States)

    Koenig, Thomas; Kottlow, Mara; Stein, Maria; Melie-García, Lester

    2011-01-01

    We present a program (Ragu; Randomization Graphical User interface) for statistical analyses of multichannel event-related EEG and MEG experiments. Based on measures of scalp field differences including all sensors, and using powerful, assumption-free randomization statistics, the program yields robust, physiologically meaningful conclusions based on the entire, untransformed, and unbiased set of measurements. Ragu accommodates up to two within-subject factors and one between-subject factor with multiple levels each. Significance is computed as function of time and can be controlled for type II errors with overall analyses. Results are displayed in an intuitive visual interface that allows further exploration of the findings. A sample analysis of an ERP experiment illustrates the different possibilities offered by Ragu. The aim of Ragu is to maximize statistical power while minimizing the need for a-priori choices of models and parameters (like inverse models or sensors of interest) that interact with and bias statistics.

  7. Emotion Regulation Training for Treating Warfighters with Combat-Related PTSD Using Real-Time fMRI and EEG-Assisted Neurofeedback

    Science.gov (United States)

    2014-10-01

    and business cards at local apartments, gyms, laundry facilities, liquor stores, colleges, and technology schools . Recruitment staff have reached out...E., Palmer, D.M., Cooper, N., EEG alpha assymetry in schizophrenia, depression, PTSD, panic disorders, ADHD and conduct disorder. Clinical EEG and

  8. A Preliminary Study of Muscular Artifact Cancellation in Single-Channel EEG

    OpenAIRE

    Chen, Xun; Liu, Aiping; Peng, Hu; Ward, Rabab K.

    2014-01-01

    Electroencephalogram (EEG) recordings are often contaminated with muscular artifacts that strongly obscure the EEG signals and complicates their analysis. For the conventional case, where the EEG recordings are obtained simultaneously over many EEG channels, there exists a considerable range of methods for removing muscular artifacts. In recent years, there has been an increasing trend to use EEG information in ambulatory healthcare and related physiological signal monitoring systems. For pra...

  9. EEG and Coma.

    Science.gov (United States)

    Ardeshna, Nikesh I

    2016-03-01

    Coma is defined as a state of extreme unresponsiveness, in which a person exhibits no voluntary movement or behavior even to painful stimuli. The utilization of EEG for patients in coma has increased dramatically over the last few years. In fact, many institutions have set protocols for continuous EEG (cEEG) monitoring for patients in coma due to potential causes such as subarachnoid hemorrhage or cardiac arrest. Consequently, EEG plays an important role in diagnosis, managenent, and in some cases even prognosis of coma patients.

  10. Sleep-related modifications of EEG connectivity in the sensory-motor networks in Huntington Disease: An eLORETA study and review of the literature.

    Science.gov (United States)

    Piano, Carla; Imperatori, Claudio; Losurdo, Anna; Bentivoglio, Anna Rita; Cortelli, Pietro; Della Marca, Giacomo

    2017-07-01

    To evaluate EEG functional connectivity in the sensory-motor network, during wake and sleep, in patients with Huntington Disease (HD). 23 patients with HD and 23 age- and sex-matched healthy controls were enrolled. EEG connectivity analysis was performed by means of exact Low Resolution Electric Tomography (eLORETA). In wake, HD patients showed an increase of delta lagged phase synchronization (T=3.60; p<0.05) among Broadman's Areas (BA) 6-8 bilaterally; right BA 6-8 and right BA 1-2-3; left BA 1-2-3 and left BA 4. In NREM, HD patients showed an increase of delta lagged phase synchronization (T=3.56; p<0.05) among left BA 1-2-3 and right BA 6-8. In REM, HD patients showed an increase of lagged phase synchronization (T=3.60; p<0.05) among the BA 6-8 bilaterally (delta band); left BA 1-2-3 and right BA 1-2-3 (theta); left BA 1-2-3 and right BA 4 (theta); left BA 1-2-3 and right BA 1-2-3 (alpha). Our results may reflect an abnormal function of the motor areas or an effort to counterbalance the pathological motor output. Our results may help to understand the pathophysiology of sleep-related movement disorders in Huntington's Disease, and to define therapeutically strategies. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  11. Signal Quality Evaluation of Emerging EEG Devices

    Directory of Open Access Journals (Sweden)

    Thea Radüntz

    2018-02-01

    Full Text Available Electroencephalogram (EEG registration as a direct measure of brain activity has unique potentials. It is one of the most reliable and predicative indicators when studying human cognition, evaluating a subject's health condition, or monitoring their mental state. Unfortunately, standard signal acquisition procedures limit the usability of EEG devices and narrow their application outside the lab. Emerging sensor technology allows gel-free EEG registration and wireless signal transmission. Thus, it enables quick and easy application of EEG devices by users themselves. Although a main requirement for the interpretation of an EEG is good signal quality, there is a lack of research on this topic in relation to new devices. In our work, we compared the signal quality of six very different EEG devices. On six consecutive days, 24 subjects wore each device for 60 min and completed tasks and games on the computer. The registered signals were evaluated in the time and frequency domains. In the time domain, we examined the percentage of artifact-contaminated EEG segments and the signal-to-noise ratios. In the frequency domain, we focused on the band power variation in relation to task demands. The results indicated that the signal quality of a mobile, gel-based EEG system could not be surpassed by that of a gel-free system. However, some of the mobile dry-electrode devices offered signals that were almost comparable and were very promising. This study provided a differentiated view of the signal quality of emerging mobile and gel-free EEG recording technology and allowed an assessment of the functionality of the new devices. Hence, it provided a crucial prerequisite for their general application, while simultaneously supporting their further development.

  12. EEG: Origin and measurement

    NARCIS (Netherlands)

    Lopes da Silva, F.; Mulert, C.; Lemieux, L.

    2010-01-01

    The existence of the electrical activity of the brain (i.e. the electroencephalogram or EEG) was discovered more than a century ago by Caton. After the demonstration that the EEG could be recorded from the human scalp by Berger in the 1920s, it made a slow start before it became accepted as a method

  13. Burst suppression in sleep in a routine outpatient EEG

    Directory of Open Access Journals (Sweden)

    Ammar Kheder

    2014-01-01

    Full Text Available Burst suppression (BS is an electroencephalogram (EEG pattern that is characterized by brief bursts of spikes, sharp waves, or slow waves of relatively high amplitude alternating with periods of relatively flat EEG or isoelectric periods. The pattern is usually associated with coma, severe encephalopathy of various etiologies, or general anesthesia. We describe an unusual case of anoxic brain injury in which a BS pattern was seen during behaviorally defined sleep during a routine outpatient EEG study.

  14. EEG activity during estral cycle in the rat.

    Science.gov (United States)

    Corsi-Cabrera, M; Juárez, J; Ponce-de-León, M; Ramos, J; Velázquez, P N

    1992-10-01

    EEG activity was recorded from right and left parietal cortex in adult female rats daily during 6 days. Immediately after EEG recording vaginal smears were taken and were microscopically analyzed to determine the estral stage. Absolute and relative powers and interhemispheric correlation of EEG activity were calculated and compared between estral stages. Interhemispheric correlation was significantly lower during diestrous as compared to proestrous and estrous. Absolute and relative powers did not show significant differences between estral stages. Absolute powers of alpha1, alpha2, beta1 and beta2 bands were significantly higher at the right parietal cortex. Comparisons of the same EEG records with estral stages randomly grouped showed no significant differences for any of the EEG parameters. EEG activity is a sensitive tool to study functional changes related to the estral cycle.

  15. Connectivity Measures in EEG Microstructural Sleep Elements.

    Science.gov (United States)

    Sakellariou, Dimitris; Koupparis, Andreas M; Kokkinos, Vasileios; Koutroumanidis, Michalis; Kostopoulos, George K

    2016-01-01

    During Non-Rapid Eye Movement sleep (NREM) the brain is relatively disconnected from the environment, while connectedness between brain areas is also decreased. Evidence indicates, that these dynamic connectivity changes are delivered by microstructural elements of sleep: short periods of environmental stimuli evaluation followed by sleep promoting procedures. The connectivity patterns of the latter, among other aspects of sleep microstructure, are still to be fully elucidated. We suggest here a methodology for the assessment and investigation of the connectivity patterns of EEG microstructural elements, such as sleep spindles. The methodology combines techniques in the preprocessing, estimation, error assessing and visualization of results levels in order to allow the detailed examination of the connectivity aspects (levels and directionality of information flow) over frequency and time with notable resolution, while dealing with the volume conduction and EEG reference assessment. The high temporal and frequency resolution of the methodology will allow the association between the microelements and the dynamically forming networks that characterize them, and consequently possibly reveal aspects of the EEG microstructure. The proposed methodology is initially tested on artificially generated signals for proof of concept and subsequently applied to real EEG recordings via a custom built MATLAB-based tool developed for such studies. Preliminary results from 843 fast sleep spindles recorded in whole night sleep of 5 healthy volunteers indicate a prevailing pattern of interactions between centroparietal and frontal regions. We demonstrate hereby, an opening to our knowledge attempt to estimate the scalp EEG connectivity that characterizes fast sleep spindles via an "EEG-element connectivity" methodology we propose. The application of the latter, via a computational tool we developed suggests it is able to investigate the connectivity patterns related to the occurrence

  16. The role of the standard EEG in clinical psychiatry.

    LENUS (Irish Health Repository)

    O'Sullivan, S S

    2012-02-03

    BACKGROUND: The EEG is a commonly requested test on patients attending psychiatric services, predominantly to investigate for a possible organic brain syndrome causing behavioural changes. AIMS: To assess referrals for EEG from psychiatric services in comparison with those from other sources. We determine which clinical factors were associated with an abnormal EEG in patients referred from psychiatric sources. METHODS: A retrospective review of EEG requests in a 1-year period was performed. Analysis of referral reasons for psychiatric patients was undertaken, and outcome of patients referred from psychiatric services post-EEG was reviewed. RESULTS: One thousand four hundred and seventy EEGs were reviewed, of which 91 (6.2%) were referred from psychiatry. Neurology service referrals had detection rates of abnormal EEGs of 27%, with psychiatric referrals having the lowest abnormality detection rate of 17.6% (p < 0.1). In psychiatric-referred patients the only significant predictors found of an abnormal EEG were a known history of epilepsy (p < 0.001), being on clozapine (p < 0.05), and a possible convulsive seizure (RR = 6.51). Follow-up data of 53 patients did not reveal a significant clinical impact of EEG results on patient management. CONCLUSIONS: Many patients are referred for EEG from psychiatric sources despite a relatively low index of suspicion of an organic brain disorders, based on reasons for referral documented, with an unsurprising low clinical yield.

  17. Screening EEG in Aircrew Selection: Clinical Aerospace Neurology Perspective

    Science.gov (United States)

    Clark, Jonathan B.; Riley, Terrence

    2001-01-01

    As clinical aerospace neurologists we do not favor using screening EEG in pilot selection on unselected and otherwise asymptomatic individuals. The role of EEG in aviation screening should be as an adjunct to diagnosis, and the decision to disqualify a pilot should never be based solely on the EEG. Although a policy of using a screening EEG in an unselected population might detect an individual with a potentially increased relative risk, it would needlessly exclude many applicants who would probably never have a seizure. A diagnostic test performed on an asymptomatic individual without clinical indications, in a population with a low prevalence of disease (seizure) may be of limited or possibly detrimental value. We feel that rather than do EEGs on all candidates, a better approach would be to perform an EEG for a specific indication, such as family history of seizure, single convulsion (seizure) , history of unexplained loss of consciousness or head injury. Routine screening EEGs in unselected aviation applications are not done without clinical indication in the U.S. Air Force, Navy, or NASA. The USAF discontinued routine screening EEGs for selection in 1978, the U.S. Navy discontinued it in 1981 , and NASA discontinued it in 1995. EEG as an aeromedical screening tool in the US Navy dates back to 1939. The US Navy routinely used EEGs to screen all aeromedical personnel from 1961 to 1981. The incidence of epileptiform activity on EEG in asymptomatic flight candidates ranges from 0.11 to 2.5%. In 3 studies of asymptomatic flight candidates with epileptiform activity on EEG followed for 2 to 15 years, 1 of 31 (3.2%), 1 of 30 (3.3%), and 0 of 14 (0%) developed a seizure, for a cumulative risk of an individual with an epileptiform EEG developing a seizure of 2.67% (2 in 75). Of 28,658 student naval aviation personnel screened 31 had spikes and/or slow waves on EEG, and only 1 later developed a seizure. Of the 28,627 who had a normal EEG, 4 later developed seizures, or

  18. Age-related Multiscale Changes in Brain Signal Variability in Pre-task versus Post-task Resting-state EEG.

    Science.gov (United States)

    Wang, Hongye; McIntosh, Anthony R; Kovacevic, Natasa; Karachalios, Maria; Protzner, Andrea B

    2016-07-01

    Recent empirical work suggests that, during healthy aging, the variability of network dynamics changes during task performance. Such variability appears to reflect the spontaneous formation and dissolution of different functional networks. We sought to extend these observations into resting-state dynamics. We recorded EEG in young, middle-aged, and older adults during a "rest-task-rest" design and investigated if aging modifies the interaction between resting-state activity and external stimulus-induced activity. Using multiscale entropy as our measure of variability, we found that, with increasing age, resting-state dynamics shifts from distributed to more local neural processing, especially at posterior sources. In the young group, resting-state dynamics also changed from pre- to post-task, where fine-scale entropy increased in task-positive regions and coarse-scale entropy increased in the posterior cingulate, a key region associated with the default mode network. Lastly, pre- and post-task resting-state dynamics were linked to performance on the intervening task for all age groups, but this relationship became weaker with increasing age. Our results suggest that age-related changes in resting-state dynamics occur across different spatial and temporal scales and have consequences for information processing capacity.

  19. Memories of attachment hamper EEG cortical connectivity in dissociative patients.

    Science.gov (United States)

    Farina, Benedetto; Speranza, Anna Maria; Dittoni, Serena; Gnoni, Valentina; Trentini, Cristina; Vergano, Carola Maggiora; Liotti, Giovanni; Brunetti, Riccardo; Testani, Elisa; Della Marca, Giacomo

    2014-08-01

    In this study, we evaluated cortical connectivity modifications by electroencephalography (EEG) lagged coherence analysis, in subjects with dissociative disorders and in controls, after retrieval of attachment memories. We asked thirteen patients with dissociative disorders and thirteen age- and sex-matched healthy controls to retrieve personal attachment-related autobiographical memories through adult attachment interviews (AAI). EEG was recorded in the closed eyes resting state before and after the AAI. EEG lagged coherence before and after AAI was compared in all subjects. In the control group, memories of attachment promoted a widespread increase in EEG connectivity, in particular in the high-frequency EEG bands. Compared to controls, dissociative patients did not show an increase in EEG connectivity after the AAI. Conclusions: These results shed light on the neurophysiology of the disintegrative effect of retrieval of traumatic attachment memories in dissociative patients.

  20. Using EEG to Study Cognitive Development: Issues and Practices

    Science.gov (United States)

    Bell, Martha Ann; Cuevas, Kimberly

    2012-01-01

    Developmental research is enhanced by use of multiple methodologies for examining psychological processes. The electroencephalogram (EEG) is an efficient and relatively inexpensive method for the study of developmental changes in brain-behavior relations. In this review, we highlight some of the challenges for using EEG in cognitive development…

  1. EEG Controlled Wheelchair

    Directory of Open Access Journals (Sweden)

    Swee Sim Kok

    2016-01-01

    Full Text Available This paper describes the development of a brainwave controlled wheelchair. The main objective of this project is to construct a wheelchair which can be directly controlled by the brain without requires any physical feedback as controlling input from the user. The method employed in this project is the Brain-computer Interface (BCI, which enables direct communication between the brain and the electrical wheelchair. The best method for recording the brain’s activity is electroencephalogram (EEG. EEG signal is also known as brainwaves signal. The device that used for capturing the EEG signal is the Emotiv EPOC headset. This headset is able to transmit the EEG signal wirelessly via Bluetooth to the PC (personal computer. By using the PC software, the EEG signals are processed and converted into mental command. According to the mental command (e.g. forward, left... obtained, the output electrical signal is sent out to the electrical wheelchair to perform the desired movement. Thus, in this project, a computer software is developed for translating the EEG signal into mental commands and transmitting out the controlling signal wirelessly to the electrical wheelchair.

  2. Age-Related Inter-region EEG Coupling Changes during the Control of Bottom-up and Top-down Attention

    Directory of Open Access Journals (Sweden)

    Ling eLi

    2015-12-01

    Full Text Available We investigated age-related changes in electroencephalographic (EEG coupling of theta-, alpha-, and beta-frequency bands during bottom-up and top-down attention. Arrays were presented with either automatic pop-out (bottom-up or effortful search (top-down behavior to younger and older participants. The phase-locking value (PLV was used to estimate coupling strength between scalp recordings. Behavioral performance decreased with age, with a greater age-related decline in accuracy for the search than for the pop-out condition. Aging was associated with a declined coupling strength of theta and alpha frequency bands, with a greater age-related decline in whole-brain coupling values for the search than for the pop-out condition. Specifically, prefronto-frontal coupling in theta- and alpha-bands, fronto-parietal and parieto-occipital couplings in beta-band for younger group showed a right hemispheric dominance, which was reduced with aging to compensate for the inhibitory dysfunction. While pop-out target detection was mainly associated with greater parieto-occipital beta-coupling strength compared to search condition regardless of aging. Furthermore, prefronto-frontal coupling in theta-, alpha- and beta-bands, and parieto-occipital coupling in beta-band functioned as predictors of behavior for both groups. Taken together these findings provide evidence that prefronto-frontal coupling of theta-, alpha-, and beta-bands may serve as a possible basis of aging during visual attention, while parieto-occipital coupling in beta-band could serve for a bottom-up function and be vulnerable to top-down attention control for younger and older groups.

  3. Transfer function between EEG and BOLD signals of epileptic activity

    Directory of Open Access Journals (Sweden)

    Marco eLeite

    2013-01-01

    Full Text Available Simultaneous EEG-fMRI recordings have seen growing application in the evaluation of epilepsy, namely in the characterization of brain networks related to epileptic activity. In EEG-correlated fMRI studies, epileptic events are usually described as boxcar signals based on the timing information retrieved from the EEG, and subsequently convolved with a heamodynamic response function to model the associated BOLD changes. Although more flexible approaches may allow a higher degree of complexity for the haemodynamics, the issue of how to model these dynamics based on the EEG remains an open question. In this work, a new methodology for the integration of simultaneous EEG-fMRI data in epilepsy is proposed, which incorporates a transfer function from the EEG to the BOLD signal. Independent component analysis (ICA of the EEG is performed, and a number of metrics expressing different models of the EEG-BOLD transfer function are extracted from the resulting time courses. These metrics are then used to predict the fMRI data and to identify brain areas associated with the EEG epileptic activity. The methodology was tested on both ictal and interictal EEG-fMRI recordings from one patient with a hypothalamic hamartoma. When compared to the conventional analysis approach, plausible, consistent and more significant activations were obtained. Importantly, frequency-weighted EEG metrics yielded superior results than those weighted solely on the EEG power, which comes in agreement with previous literature. Reproducibility, specificity and sensitivity should be addressed in an extended group of patients in order to further validate the proposed methodology and generalize the presented proof of concept.

  4. Emotion Regulation Training for Training Warfighters with Combat Related PTSD Using Real Time fMRI and EEG Assisted Neurofeedback

    Science.gov (United States)

    2016-10-01

    AWARD NUMBER: W81XWH-12-1-0607 TITLE: Emotion Regulation Training for Treating Warfighters with Combat-Related PTSD Using Real-Time fMRI...TYPE Annual 3. DATES COVERED 30 Sep 2015 - 29 Sep 2016 4. TITLE AND SUBTITLE Emotion Regulation Training for Treating Warfighters with Combat...emphasize dysregulation of the amygdala, which is involved in the regulation of PTSD-relevant emotions . We are utilizing real-time functional magnetic

  5. WHAT POPS OUT IN POSITIONAL PRIMING OF POP-OUT: INSIGHTS FROM EVENT-RELATED EEG LATERALIZATIONS

    Directory of Open Access Journals (Sweden)

    Ahu eGokce

    2014-07-01

    Full Text Available It is well established that, in visual pop-out search, reaction time (RT performance is influenced by cross-trial repetitions versus changes of target-defining attributes. One instance of this is referred to as ‘positional priming of pop-out (pPoP’ (Maljkovic & Nakayama, 1996. In positional PoP paradigms, the processing of the current target is examined depending on whether it occurs at the previous target or a previous distractor location, relative to a previously empty location (‘neutral’ baseline, permitting target facilitation and distractor inhibition to be dissociated. The present study combined RT measures with specific sensory- and motor-driven event-related lateralizations to track the time course of four distinct processing levels as a function of the target’s position across consecutive trials. The results showed that, relative to targets at previous target and ‘neutral’ locations, the appearance of a target at a previous distractor location was associated with a delayed build-up of the PCN wave, indicating that distractor positions are suppressed at early stages of visual processing. By contrast, presentation of a target at a previous target, relative to ‘neutral’ and distractor locations, modulated the elicitation of the subsequent sLRP wave, indicating that post-selective response selection is facilitated if the target occurred at the same position as on the previous trial. Overall, the results of present study provides electrophysiological evidence for the idea that target location priming (RT benefits does not originate from an enhanced coding of target saliency at repeated (target locations; instead, they arise (near- exclusively from processing levels subsequent to focal-attentional target selection.

  6. Brain Activity Related to the Judgment of Face-Likeness: Correlation between EEG and Face-Like Evaluation.

    Science.gov (United States)

    Nihei, Yuji; Minami, Tetsuto; Nakauchi, Shigeki

    2018-01-01

    Faces represent important information for social communication, because social information, such as face-color, expression, and gender, is obtained from faces. Therefore, individuals' tend to find faces unconsciously, even in objects. Why is face-likeness perceived in non-face objects? Previous event-related potential (ERP) studies showed that the P1 component (early visual processing), the N170 component (face detection), and the N250 component (personal detection) reflect the neural processing of faces. Inverted faces were reported to enhance the amplitude and delay the latency of P1 and N170. To investigate face-likeness processing in the brain, we explored the face-related components of the ERP through a face-like evaluation task using natural faces, cars, insects, and Arcimboldo paintings presented upright or inverted. We found a significant correlation between the inversion effect index and face-like scores in P1 in both hemispheres and in N170 in the right hemisphere. These results suggest that judgment of face-likeness occurs in a relatively early stage of face processing.

  7. Brain Activity Related to the Judgment of Face-Likeness: Correlation between EEG and Face-Like Evaluation

    Directory of Open Access Journals (Sweden)

    Yuji Nihei

    2018-02-01

    Full Text Available Faces represent important information for social communication, because social information, such as face-color, expression, and gender, is obtained from faces. Therefore, individuals' tend to find faces unconsciously, even in objects. Why is face-likeness perceived in non-face objects? Previous event-related potential (ERP studies showed that the P1 component (early visual processing, the N170 component (face detection, and the N250 component (personal detection reflect the neural processing of faces. Inverted faces were reported to enhance the amplitude and delay the latency of P1 and N170. To investigate face-likeness processing in the brain, we explored the face-related components of the ERP through a face-like evaluation task using natural faces, cars, insects, and Arcimboldo paintings presented upright or inverted. We found a significant correlation between the inversion effect index and face-like scores in P1 in both hemispheres and in N170 in the right hemisphere. These results suggest that judgment of face-likeness occurs in a relatively early stage of face processing.

  8. The effect of learning on feedback-related potentials in adolescents with dyslexia: an EEG-ERP study.

    Directory of Open Access Journals (Sweden)

    Dror Kraus

    Full Text Available INTRODUCTION: Individuals with dyslexia exhibit associated learning deficits and impaired executive functions. The Wisconsin Card Sorting Test (WCST is a learning-based task that relies heavily on executive functioning, in particular, attention shift and working memory. Performance during early and late phases of a series within the task represents learning and implementation of a newly learned rule. Here, we aimed to examine two event-related potentials associated with learning, feedback-related negativity (FRN-P300 complex, in individuals with dyslexia performing the WCST. METHODS: Adolescents with dyslexia and age-matched typical readers performed the Madrid card sorting test (MCST, a computerized version of the WCST. Task performance, reading measures, and cognitive measures were collected. FRN and the P300 complex were acquired using the event-related potentials methodology and were compared in early vs late errors within a series. RESULTS: While performing the MCST, both groups showed a significant reduction in average reaction times and a trend toward decreased error rates. Typical readers performed consistently better than individuals with dyslexia. FRN amplitudes in early phases were significantly smaller in dyslexic readers, but were essentially equivalent to typical readers in the late phase. P300 amplitudes were initially smaller among readers with dyslexia and tended to decrease further in late phases. Differences in FRN amplitudes for early vs late phases were positively correlated with those of P300 amplitudes in the entire sample. CONCLUSION: Individuals with dyslexia demonstrate a behavioral and electrophysiological change within single series of the MCST. However, learning patterns seem to differ between individuals with dyslexia and typical readers. We attribute these differences to the lower baseline performance of individuals with dyslexia. We suggest that these changes represent a fast compensatory mechanism, demonstrating

  9. EEG Signal Classification With Super-Dirichlet Mixture Model

    DEFF Research Database (Denmark)

    Ma, Zhanyu; Tan, Zheng-Hua; Prasad, Swati

    2012-01-01

    Classification of the Electroencephalogram (EEG) signal is a challengeable task in the brain-computer interface systems. The marginalized discrete wavelet transform (mDWT) coefficients extracted from the EEG signals have been frequently used in researches since they reveal features related...

  10. Analysis of Small Muscle Movement Effects on EEG Signals

    Science.gov (United States)

    2016-12-22

    different conditions are recorded in this experiment. These conditions are the resting state, left finger keyboard press, right finger keyboard...51 4.3.2. Right and Left Finger Keyboard Press Conditions ..................................... 57 4.4. Detection of Hand...solving Gamma 30 Hz and higher Blending of multiple brain functions ; Muscle related artifacts 2.2. EEG Artifacts EEG recordings are intended to

  11. Recording EEG In Young Children Without Sedation | Curuneaux ...

    African Journals Online (AJOL)

    Background Although it has been considered that sedation in children undergoing EEG tests is effective and safe and complications are infrequent, occasionally adverse sedation-related events are presented. Objective The aim of this work was to determine if it is possible to carry out EEG in children up to 4 years old ...

  12. EEG data during open heart surgery. Their automatic analysis related to anesthetic parameters and its use in peroperative monitoring of cerebral function

    NARCIS (Netherlands)

    Simons, A.J.R.; Pronk, R.A.F.

    1982-01-01

    It is generally agreed upon by experts that EEG monitoring of brain function during open heart surgery is of the utmost importance in preventing postoperative neurological and psychopathological consequences. Up to now, however, this monitoring has not been performed on a large scale: (1) it is a

  13. Hippocampal EEG and motor activity in the cat: The role of eye movements and body acceleration

    NARCIS (Netherlands)

    Kamp, A.; Arnolds, D.E.A.T.; Lopes da Silva, F.H.; Boeijinga, P.; Aitink, W.

    1984-01-01

    In cat the relation between various behaviours and the spectral properties of the hippocampal EEG was investigated. Both EEG and behaviour were quantified and results were evaluated statistically. Significant relationships were found between the properties of the hippocampal EEG and motor acts

  14. Standardized EEG interpretation in patients after cardiac arrest: Correlation with other prognostic predictors.

    OpenAIRE

    Beuchat, I.; Solari, D.; Novy, J.; Oddo, M.; Rossetti, A.O.

    2018-01-01

    Standardized EEG patterns according to the American Clinical Neurophysiology Society (ACNS) ("highly malignant", "malignant" and "benign") demonstrated good correlation with outcome after cardiac arrest (CA). However, this approach relates to EEGs after target temperature management (TTM), and correlation to other recognized outcome predictors remains unknown. To investigate the relationship between categorized EEG and other outcome predictors, during and after TTM, at different temperatur...

  15. Hypnagogic imagery and EEG activity.

    Science.gov (United States)

    Hayashi, M; Katoh, K; Hori, T

    1999-04-01

    The relationships between hypnagogic imagery and EEG activity were studied. 7 subjects (4 women and 3 men) reported the content of hypnagogic imagery every minute and the hypnagogic EEGs were classified into 5 stages according to Hori's modified criteria. The content of the hypnagogic imagery changed as a function of the hypnagogic EEG stages.

  16. EEG as an Indicator of Cerebral Functioning in Postanoxic Coma.

    Science.gov (United States)

    Juan, Elsa; Kaplan, Peter W; Oddo, Mauro; Rossetti, Andrea O

    2015-12-01

    Postanoxic coma after cardiac arrest is one of the most serious acute cerebral conditions and a frequent cause of admission to critical care units. Given substantial improvement of outcome over the recent years, a reliable and timely assessment of clinical evolution and prognosis is essential in this context, but may be challenging. In addition to the classic neurologic examination, EEG is increasingly emerging as an important tool to assess cerebral functions noninvasively. Although targeted temperature management and related sedation may delay clinical assessment, EEG provides accurate prognostic information in the early phase of coma. Here, the most frequently encountered EEG patterns in postanoxic coma are summarized and their relations with outcome prediction are discussed. This article also addresses the influence of targeted temperature management on brain signals and the implication of the evolution of EEG patterns over time. Finally, the article ends with a view of the future prospects for EEG in postanoxic management and prognostication.

  17. Frontal EEG asymmetry as a moderator and mediator of emotion.

    Science.gov (United States)

    Coan, James A; Allen, John J B

    2004-10-01

    Frontal EEG asymmetry appears to serve as (1) an individual difference variable related to emotional responding and emotional disorders, and (2) a state-dependent concomitant of emotional responding. Such findings, highlighted in this review, suggest that frontal EEG asymmetry may serve as both a moderator and a mediator of emotion- and motivation-related constructs. Unequivocal evidence supporting frontal EEG asymmetry as a moderator and/or mediator of emotion is lacking, as insufficient attention has been given to analyzing the frontal EEG asymmetries in terms of moderators and mediators. The present report reviews the frontal EEG asymmetry literature from the framework of moderators and mediators, and overviews data analytic strategies that would support claims of moderation and mediation.

  18. Highly Efficient Compression Algorithms for Multichannel EEG.

    Science.gov (United States)

    Shaw, Laxmi; Rahman, Daleef; Routray, Aurobinda

    2018-05-01

    The difficulty associated with processing and understanding the high dimensionality of electroencephalogram (EEG) data requires developing efficient and robust compression algorithms. In this paper, different lossless compression techniques of single and multichannel EEG data, including Huffman coding, arithmetic coding, Markov predictor, linear predictor, context-based error modeling, multivariate autoregression (MVAR), and a low complexity bivariate model have been examined and their performances have been compared. Furthermore, a high compression algorithm named general MVAR and a modified context-based error modeling for multichannel EEG have been proposed. The resulting compression algorithm produces a higher relative compression ratio of 70.64% on average compared with the existing methods, and in some cases, it goes up to 83.06%. The proposed methods are designed to compress a large amount of multichannel EEG data efficiently so that the data storage and transmission bandwidth can be effectively used. These methods have been validated using several experimental multichannel EEG recordings of different subjects and publicly available standard databases. The satisfactory parametric measures of these methods, namely percent-root-mean square distortion, peak signal-to-noise ratio, root-mean-square error, and cross correlation, show their superiority over the state-of-the-art compression methods.

  19. The Mozart Effect: A quantitative EEG study.

    Science.gov (United States)

    Verrusio, Walter; Ettorre, Evaristo; Vicenzini, Edoardo; Vanacore, Nicola; Cacciafesta, Mauro; Mecarelli, Oriano

    2015-09-01

    The aim of this study is to investigate the influence of Mozart's music on brain activity through spectral analysis of the EEG in young healthy adults (Adults), in healthy elderly (Elderly) and in elderly with Mild Cognitive Impairment (MCI). EEG recording was performed at basal rest conditions and after listening to Mozart's K448 or "Fur Elise" Beethoven's sonatas. After listening to Mozart, an increase of alpha band and median frequency index of background alpha rhythm activity (a pattern of brain wave activity linked to memory, cognition and open mind to problem solving) was observed both in Adults and in Elderly. No changes were observed in MCI. After listening to Beethoven, no changes in EEG activity were detected. This results may be representative of the fact that said Mozart's music is able to "activate" neuronal cortical circuits related to attentive and cognitive functions. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. [The comparative analysis of changes of short pieces of EEG at perception of music on the basis of the event-related synchronization/desynchronization and wavelet-synchrony].

    Science.gov (United States)

    Oknina, L B; Kuptsova, S V; Romanov, A S; Masherov, E L; Kuznetsova, O A; Sharova, E V

    2012-01-01

    The going of present pilot study is an analysis of features changes of EEG short pieces registered from 32 sites, at perception of musical melodies healthy examinees depending on logic (cognizance) and emotional (it was pleasant it was not pleasant) melody estimations. For this purpose changes of event-related synchronization/desynchronization, and also wavelet-synchrony of EEG-responses at 31 healthy examinees at the age from 18 till 60 years were compared. It is shown that at a logic estimation of music the melody cognizance is accompanied the event-related desynchronization in the left fronto-parietal-temporal area. At an emotional estimation of a melody the event-related synchronization in left fronto - temporal area for the pleasant melodies, desynchronization in temporal area for not pleasant and desynchronization in occipital area for the melodies which are not causing the emotional response is typical. At the analysis of wavelet-synchrony of EEG characterizing jet changes of interaction of cortical zones, it is revealed that the most distinct topographical distinctions concern type of processing of the heard music: logic (has learned-hasn't learned) or emotional (it was pleasant-it was not pleasant). If at an emotional estimation changes interhemispheric communications between associative cortical zones (central, frontal, temporal), are more expressed at logic - between inter - and intrahemispheric communications of projective zones of the acoustic analyzer (temporal area). It is supposed that the revealed event-related synchronization/desynhronization reflects, most likely, an activation component of an estimation of musical fragments whereas the wavelet-analysis provides guidance on character of processing of musical stimulus.

  1. Analysis of the Influence of Complexity and Entropy of Odorant on Fractal Dynamics and Entropy of EEG Signal

    OpenAIRE

    Hamidreza Namazi; Amin Akrami; Sina Nazeri; Vladimir V. Kulish

    2016-01-01

    An important challenge in brain research is to make out the relation between the features of olfactory stimuli and the electroencephalogram (EEG) signal. Yet, no one has discovered any relation between the structures of olfactory stimuli and the EEG signal. This study investigates the relation between the structures of EEG signal and the olfactory stimulus (odorant). We show that the complexity of the EEG signal is coupled with the molecular complexity of the odorant, where more structurally ...

  2. Causality within the Epileptic Network: An EEG-fMRI Study Validated by Intracranial EEG.

    Science.gov (United States)

    Vaudano, Anna Elisabetta; Avanzini, Pietro; Tassi, Laura; Ruggieri, Andrea; Cantalupo, Gaetano; Benuzzi, Francesca; Nichelli, Paolo; Lemieux, Louis; Meletti, Stefano

    2013-01-01

    Accurate localization of the Seizure Onset Zone (SOZ) is crucial in patients with drug-resistance focal epilepsy. EEG with fMRI recording (EEG-fMRI) has been proposed as a complementary non-invasive tool, which can give useful additional information in the pre-surgical work-up. However, fMRI maps related to interictal epileptiform activities (IED) often show multiple regions of signal change, or "networks," rather than highly focal ones. Effective connectivity approaches like Dynamic Causal Modeling (DCM) applied to fMRI data potentially offers a framework to address which brain regions drives the generation of seizures and IED within an epileptic network. Here, we present a first attempt to validate DCM on EEG-fMRI data in one patient affected by frontal lobe epilepsy. Pre-surgical EEG-fMRI demonstrated two distinct clusters of blood oxygenation level dependent (BOLD) signal increases linked to IED, one located in the left frontal pole and the other in the ipsilateral dorso-lateral frontal cortex. DCM of the IED-related BOLD signal favored a model corresponding to the left dorso-lateral frontal cortex as driver of changes in the fronto-polar region. The validity of DCM was supported by: (a) the results of two different non-invasive analysis obtained on the same dataset: EEG source imaging (ESI), and "psycho-physiological interaction" analysis; (b) the failure of a first surgical intervention limited to the fronto-polar region; (c) the results of the intracranial EEG monitoring performed after the first surgical intervention confirming a SOZ located over the dorso-lateral frontal cortex. These results add evidence that EEG-fMRI together with advanced methods of BOLD signal analysis is a promising tool that can give relevant information within the epilepsy surgery diagnostic work-up.

  3. Causality within the epileptic network: an EEG-fMRI study validated by intracranial EEG.

    Directory of Open Access Journals (Sweden)

    Anna Elisabetta eVaudano

    2013-11-01

    Full Text Available Accurate localization of the Seizure Onset Zone (SOZ is crucial in patients with drug-resistance focal epilepsy. EEG with fMRI recording (EEG-fMRI has been proposed as a complementary non-invasive tool, which can give useful additional information in the pre-surgical workup. However, fMRI maps related to interictal epileptiform activities (IED often show multiple regions of signal change, or networks, rather than highly focal ones. Effective connectivity approaches like Dynamic Causal Modelling (DCM applied to fMRI data potentially offers a framework to address which brain regions drives the generation of seizures and IED within an epileptic network. Here we present a first attempt to validate DCM on EEG-fMRI data in one patient affected by frontal lobe epilepsy. Pre-surgical EEG-fMRI demonstrated two distinct clusters of BOLD signal increases linked to IED, one located in the left frontal pole and the other in the ipsilateral dorso-lateral frontal cortex. DCM of the IED-related BOLD signal favoured a model corresponding to the left dorsolateral frontal cortex as driver of changes in the fronto-polar region. The validity of DCM was supported by: (a the results of two different non-invasive analysis obtained on the same dataset: EEG source imaging (ESI, and psychophysiological interaction analysis (PPI; (b the failure of a first surgical intervention limited to the fronto-polar region; (c the results of the intracranial EEG monitoring performed after the first surgical intervention confirming a SOZ located over the dorso-lateral frontal cortex. These results add evidence that EEG-fMRI together with advanced methods of BOLD signal analysis is a promising tool that can give relevant information within the epilepsy surgery diagnostic work-up.

  4. Diagnostic Accuracy of microEEG: A Miniature, Wireless EEG Device

    OpenAIRE

    Grant, Arthur C.; Abdel-Baki, Samah G.; Omurtag, Ahmet; Sinert, Richard; Chari, Geetha; Malhotra, Schweta; Weedon, Jeremy; Fenton, Andre A.; Zehtabchi, Shahriar

    2014-01-01

    Measuring the diagnostic accuracy (DA) of an EEG device is unconventional and complicated by imperfect interrater reliability. We sought to compare the DA of a miniature, wireless, battery-powered EEG device (“microEEG”) to a reference EEG machine in emergency department (ED) patients with altered mental status (AMS). 225 ED patients with AMS underwent 3 EEGs. EEG1 (Nicolet Monitor, “reference”) and EEG2 (microEEG) were recorded simultaneously with EEG cup electrodes using a signal splitter. ...

  5. Donepezil impairs memory in healthy older subjects: behavioural, EEG and simultaneous EEG/fMRI biomarkers.

    Directory of Open Access Journals (Sweden)

    Joshua H Balsters

    Full Text Available Rising life expectancies coupled with an increasing awareness of age-related cognitive decline have led to the unwarranted use of psychopharmaceuticals, including acetylcholinesterase inhibitors (AChEIs, by significant numbers of healthy older individuals. This trend has developed despite very limited data regarding the effectiveness of such drugs on non-clinical groups and recent work indicates that AChEIs can have negative cognitive effects in healthy populations. For the first time, we use a combination of EEG and simultaneous EEG/fMRI to examine the effects of a commonly prescribed AChEI (donepezil on cognition in healthy older participants. The short- and long-term impact of donepezil was assessed using two double-blind, placebo-controlled trials. In both cases, we utilised cognitive (paired associates learning (CPAL and electrophysiological measures (resting EEG power that have demonstrated high-sensitivity to age-related cognitive decline. Experiment 1 tested the effects of 5 mg/per day dosage on cognitive and EEG markers at 6-hour, 2-week and 4-week follow-ups. In experiment 2, the same markers were further scrutinised using simultaneous EEG/fMRI after a single 5 mg dose. Experiment 1 found significant negative effects of donepezil on CPAL and resting Alpha and Beta band power. Experiment 2 replicated these results and found additional drug-related increases in the Delta band. EEG/fMRI analyses revealed that these oscillatory differences were associated with activity differences in the left hippocampus (Delta, right frontal-parietal network (Alpha, and default-mode network (Beta. We demonstrate the utility of simple cognitive and EEG measures in evaluating drug responses after acute and chronic donepezil administration. The presentation of previously established markers of age-related cognitive decline indicates that AChEIs can impair cognitive function in healthy older individuals. To our knowledge this is the first study to identify

  6. Information-Theoretical Analysis of EEG Microstate Sequences in Python

    Directory of Open Access Journals (Sweden)

    Frederic von Wegner

    2018-06-01

    Full Text Available We present an open-source Python package to compute information-theoretical quantities for electroencephalographic data. Electroencephalography (EEG measures the electrical potential generated by the cerebral cortex and the set of spatial patterns projected by the brain's electrical potential on the scalp surface can be clustered into a set of representative maps called EEG microstates. Microstate time series are obtained by competitively fitting the microstate maps back into the EEG data set, i.e., by substituting the EEG data at a given time with the label of the microstate that has the highest similarity with the actual EEG topography. As microstate sequences consist of non-metric random variables, e.g., the letters A–D, we recently introduced information-theoretical measures to quantify these time series. In wakeful resting state EEG recordings, we found new characteristics of microstate sequences such as periodicities related to EEG frequency bands. The algorithms used are here provided as an open-source package and their use is explained in a tutorial style. The package is self-contained and the programming style is procedural, focusing on code intelligibility and easy portability. Using a sample EEG file, we demonstrate how to perform EEG microstate segmentation using the modified K-means approach, and how to compute and visualize the recently introduced information-theoretical tests and quantities. The time-lagged mutual information function is derived as a discrete symbolic alternative to the autocorrelation function for metric time series and confidence intervals are computed from Markov chain surrogate data. The software package provides an open-source extension to the existing implementations of the microstate transform and is specifically designed to analyze resting state EEG recordings.

  7. Pharmaco-EEG Studies in Animals: A History-Based Introduction to Contemporary Translational Applications.

    Science.gov (United States)

    Drinkenburg, Wilhelmus H I M; Ahnaou, Abdallah; Ruigt, Gé S F

    2015-01-01

    Current research on the effects of pharmacological agents on human neurophysiology finds its roots in animal research, which is also reflected in contemporary animal pharmaco-electroencephalography (p-EEG) applications. The contributions, present value and translational appreciation of animal p-EEG-based applications are strongly interlinked with progress in recording and neuroscience analysis methodology. After the pioneering years in the late 19th and early 20th century, animal p-EEG research flourished in the pharmaceutical industry in the early 1980s. However, around the turn of the millennium the emergence of structurally and functionally revealing imaging techniques and the increasing application of molecular biology caused a temporary reduction in the use of EEG as a window into the brain for the prediction of drug efficacy. Today, animal p-EEG is applied again for its biomarker potential - extensive databases of p-EEG and polysomnography studies in rats and mice hold EEG signatures of a broad collection of psychoactive reference and test compounds. A multitude of functional EEG measures has been investigated, ranging from simple spectral power and sleep-wake parameters to advanced neuronal connectivity and plasticity parameters. Compared to clinical p-EEG studies, where the level of vigilance can be well controlled, changes in sleep-waking behaviour are generally a prominent confounding variable in animal p-EEG studies and need to be dealt with. Contributions of rodent pharmaco-sleep EEG research are outlined to illustrate the value and limitations of such preclinical p-EEG data for pharmacodynamic and chronopharmacological drug profiling. Contemporary applications of p-EEG and pharmaco-sleep EEG recordings in animals provide a common and relatively inexpensive window into the functional brain early in the preclinical and clinical development of psychoactive drugs in comparison to other brain imaging techniques. They provide information on the impact of

  8. Comparison of Amplitude-Integrated EEG and Conventional EEG in a Cohort of Premature Infants.

    Science.gov (United States)

    Meledin, Irina; Abu Tailakh, Muhammad; Gilat, Shlomo; Yogev, Hagai; Golan, Agneta; Novack, Victor; Shany, Eilon

    2017-03-01

    To compare amplitude-integrated EEG (aEEG) and conventional EEG (EEG) activity in premature neonates. Biweekly aEEG and EEG were simultaneously recorded in a cohort of infants born less than 34 weeks gestation. aEEG recordings were visually assessed for lower and upper border amplitude and bandwidth. EEG recordings were compressed for visual evaluation of continuity and assessed using a signal processing software for interburst intervals (IBI) and frequencies' amplitude. Ten-minute segments of aEEG and EEG indices were compared using regression analysis. A total of 189 recordings from 67 infants were made, from which 1697 aEEG/EEG pairs of 10-minute segments were assessed. Good concordance was found for visual assessment of continuity between the 2 methods. EEG IBI, alpha and theta frequencies' amplitudes were negatively correlated to the aEEG lower border while conceptional age (CA) was positively correlated to aEEG lower border ( P continuity and amplitude.

  9. Burst suppression in sleep in a routine outpatient EEG ?

    OpenAIRE

    Kheder, Ammar; Bianchi, Matt T.; Westover, M. Brandon

    2014-01-01

    Burst suppression (BS) is an electroencephalogram (EEG) pattern that is characterized by brief bursts of spikes, sharp waves, or slow waves of relatively high amplitude alternating with periods of relatively flat EEG or isoelectric periods. The pattern is usually associated with coma, severe encephalopathy of various etiologies, or general anesthesia. We describe an unusual case of anoxic brain injury in which a BS pattern was seen during behaviorally defined sleep during a routine outpatient...

  10. EEG UPPER/LOW ALPHA FREQUENCY POWER RATIO RELATES TO TEMPORO-PARIETAL BRAIN ATROPHY AND MEMORY PERFORMANCES IN MILD COGNITIVE IMPAIRMENT

    Directory of Open Access Journals (Sweden)

    Davide Vito Moretti

    2013-10-01

    Full Text Available Objective: temporo-parietal cortex thinning is associated to mild cognitive impairment (MCI due to Alzheimer disease (AD. The increase of EEG upper/low alpha power ratio has been associated with AD-converter MCI subjects. We investigated the association of alpha3/alpha2 ratio with patterns of cortical thickness in MCI.Methods: 74 adult subjects with MCI underwent clinical and neuropsychological evaluation, electroencephalogram (EEG recording and high resolution 3D magnetic resonance imaging (MRI. Alpha3/alpha2 power ratio as well as cortical thickness was computed for each subject. Three MCI groups were detected according to increasing tertile values of upper/low alpha power ratio . Difference of cortical thikness among the groups was estimated. Pearson’s r was used to assess the topography of the correlation between cortical thinning and memory impairment.Results: High upper/low alpha power ratio group had total cortical grey matter (CGM volume reduction of 471 mm2 than low upper/low alpha power ratio group (p

  11. Assessment of Event-Related EEG Power After Single-Pulse TMS in Unresponsive Wakefulness Syndrome and Minimally Conscious State Patients.

    Science.gov (United States)

    Formaggio, Emanuela; Cavinato, Marianna; Storti, Silvia Francesca; Tonin, Paolo; Piccione, Francesco; Manganotti, Paolo

    2016-03-01

    In patients without a behavioral response, non-invasive techniques and new methods of data analysis can complement existing diagnostic tools by providing a method for detecting covert signs of residual cognitive function and awareness. The aim of this study was to investigate the brain oscillatory activities synchronized by single-pulse transcranial magnetic stimulation (TMS) delivered over the primary motor area in the time-frequency domain in patients with the unresponsive wakefulness syndrome or in a minimally conscious state as compared to healthy controls. A time-frequency analysis based on the wavelet transform was used to characterize rapid modifications of oscillatory EEG rhythms induced by TMS in patients as compared to healthy controls. The pattern of EEG changes in the patients differed from that of healthy controls. In the controls there was an early synchronization of slow waves immediately followed by a desynchronization of alpha and beta frequency bands over the frontal and centro-parietal electrodes, whereas an opposite early synchronization, particularly over motor areas for alpha and beta and over the frontal and parietal electrodes for beta power, was seen in the patients. In addition, no relevant modification in slow rhythms (delta and theta) after TMS was noted in patients. The clinical impact of these findings could be relevant in neurorehabilitation settings for increasing the awareness of these patients and defining new treatment procedures.

  12. "Just like EKGs!" Should EEGs undergo a confirmatory interpretation by a clinical neurophysiologist?

    Science.gov (United States)

    Benbadis, Selim R

    2013-01-01

    The misdiagnosis of epilepsy is common and has serious consequences. A major contributor to the misdiagnosis of epilepsy is the tendency to overread normal EEGs as abnormal. In fact, the wrong diagnosis of seizures is sometimes based solely on the "abnormal" EEG. Reasons for the common overinterpretation of normal EEGs are mostly related to the lack of standards or mandatory training in EEG, and the erroneous assumption that all neurologists are trained to read EEGs. The most common overread pattern consists of benign, nonspecific, sharply contoured temporal transients. In particular, there is a common misconception that "phase reversals" are indicative of abnormality. Potential solutions include defining and ensuring EEG competency of neurologists who read EEGs, and perhaps providing a confirmatory reading by an electroencephalographer, as is done for EKGs.

  13. Alzheimer's disease: relationship between cognitive aspects and power and coherence EEG measures

    Directory of Open Access Journals (Sweden)

    Lineu C. Fonseca

    2011-12-01

    Full Text Available OBJECTIVE: To evaluate the relationship between specific cognitive aspects and quantitative EEG measures, in patients with mild or moderate Alzheimer's disease (AD. METHOD: Thirty-eight AD patients and 31 controls were assessed by CERAD neuropsychological battery (Consortium to Establish a Registry for AD and the electroencephalogram (EEG. The absolute power and coherences EEG measures were calculated at rest. The correlations between the cognitive variables and the EEG were evaluated. RESULTS: In the AD group there were significant correlations between different coherence EEG measures and Mini-Mental State Examination, verbal fluency, modified Boston naming, word list memory with repetition, word list recall and recognition, and constructional praxis (p<0.01. These correlations were all negative for the delta and theta bands and positive for alpha and beta. There were no correlations between cognitive aspects and absolute EEG power. CONCLUSION: The coherence EEG measures reflect different forms in the relationship between regions related to various cognitive dysfunctions.

  14. Illumination influences working memory: an EEG study.

    Science.gov (United States)

    Park, Jin Young; Min, Byoung-Kyong; Jung, Young-Chul; Pak, Hyensou; Jeong, Yeon-Hong; Kim, Eosu

    2013-09-05

    Illumination conditions appear to influence working efficacy in everyday life. In the present study, we obtained electroencephalogram (EEG) correlates of working-memory load, and investigated how these waveforms are modulated by illumination conditions. We hypothesized that illumination conditions may affect cognitive performance. We designed an EEG study to monitor and record participants' EEG during the Sternberg working memory task under four different illumination conditions. Illumination conditions were generated with a factorial design of two color-temperatures (3000 and 7100 K) by two illuminance levels (150 and 700 lx). During a working memory task, we observed that high illuminance led to significantly lower frontal EEG theta activity than did low illuminance. These differences persisted despite no significant difference in task performance between illumination conditions. We found that the latency of an early event-related potential component, such as N1, was significantly modulated by the illumination condition. The fact that the illumination condition affects brain activity but not behavioral performance suggests that the lighting conditions used in the present study did not influence the performance stage of behavioral processing. Nevertheless, our findings provide objective evidence that illumination conditions modulate brain activity. Further studies are necessary to refine the optimal lighting parameters for facilitating working memory. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  15. Analysis and correction of ballistocardiogram contamination of EEG recordings in MR

    International Nuclear Information System (INIS)

    Jaeger, L.; Hoffmann, A.; Reiser, M.F.; Werhahn, K.J.

    2005-01-01

    Purpose: to examine the influence of cardiac activity-related head movements and varying blood pulse frequencies on the shape of electroencephalography (EEG) recordings in a high magnetic field, and to implement a post-processing technique to eliminate cardiac activity-related artifacts. Material and methods: respiratory thoracic movements, changes of blood pulse frequency and passive head movements to 20 healthy subjects were examined outside and inside an MR magnet at rest in a simultaneously recorded 21-channel surface EEG. An electrocardiogram (ECG) was recorded simultaneously. On the basis of the correlation of the left ventricular ejection time (LVET) with the heart-rate, a post-processing heart-rate dependent subtraction of the cardiac activity-related artifacts of the EEG was developed. The quality of the post-processed EEG was tested by detecting alpha-activity in the pre- and post-processed EEGs. Results: inside the magnet, passive head motion but not respiratory thoracic movements resulted in EEG artifacts that correlated strongly with cardiac activity-related artifacts of the EEG. The blood pulse frequency influenced the appearance of the cardiac activity-related artifacts of the EEG. The removal of the cardiac activity-related artifacts of the EEG by the implemented post-processing algorithm resulted in an EEG of diagnostic quality with detected alpha-activity. Conclusion: when recording an EEG in MR environment, heart rate-dependent subtraction of EEG artifacts caused by ballistocardiogram contamination is essential to obtain EEG recordings of diagnostic quality and reliability. (orig.)

  16. Discovering EEG resting state alterations of semantic dementia.

    Science.gov (United States)

    Grieder, Matthias; Koenig, Thomas; Kinoshita, Toshihiko; Utsunomiya, Keita; Wahlund, Lars-Olof; Dierks, Thomas; Nishida, Keiichiro

    2016-05-01

    Diagnosis of semantic dementia relies on cost-intensive MRI or PET, although resting EEG markers of other dementias have been reported. Yet the view still holds that resting EEG in patients with semantic dementia is normal. However, studies using increasingly sophisticated EEG analysis methods have demonstrated that slightest alterations of functional brain states can be detected. We analyzed the common four resting EEG microstates (A, B, C, and D) of 8 patients with semantic dementia in comparison with 8 healthy controls and 8 patients with Alzheimer's disease. Topographical differences between the groups were found in microstate classes B and C, while microstate classes A and D were comparable. The data showed that the semantic dementia group had a peculiar microstate E, but the commonly found microstate C was lacking. Furthermore, the presence of microstate E was significantly correlated with lower MMSE and language scores. Alterations in resting EEG can be found in semantic dementia. Topographical shifts in microstate C might be related to semantic memory deficits. This is the first study that discovered resting state EEG abnormality in semantic dementia. The notion that resting EEG in this dementia subtype is normal has to be revised. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  17. Hilbert-Huang Spectrum as a new field for the identification of EEG event related de-/synchronization for BCI applications.

    Science.gov (United States)

    Panoulas, Konstantinos I; Hadjileontiadis, Leontios J; Panas, Stavros M

    2008-01-01

    Brain Computer Interfaces (BCI) usually utilize the suppression of mu-rhythm during actual or imagined motor activity. In order to create a BCI system, a signal processing method is required to extract features upon which the discrimination is based. In this article, the Empirical Mode Decomposition along with the Hilbert-Huang Spectrum (HHS) is found to contain the necessary information to be considered as an input to a discriminator. Also, since the HHS defines amplitude and instantaneous frequency for each sample, it can be used for an online BCI system. Experimental results when the HHS applied to EEG signals from an on-line database (BCI Competition III) show the potentiality of the proposed analysis to capture the imagined motor activity, contributing to a more enhanced BCI performance.

  18. Multifractal analysis of real and imaginary movements: EEG study

    Science.gov (United States)

    Pavlov, Alexey N.; Maksimenko, Vladimir A.; Runnova, Anastasiya E.; Khramova, Marina V.; Pisarchik, Alexander N.

    2018-04-01

    We study abilities of the wavelet-based multifractal analysis in recognition specific dynamics of electrical brain activity associated with real and imaginary movements. Based on the singularity spectra we analyze electroencephalograms (EEGs) acquired in untrained humans (operators) during imagination of hands movements, and show a possibility to distinguish between the related EEG patterns and the recordings performed during real movements or the background electrical brain activity. We discuss how such recognition depends on the selected brain region.

  19. Mutual information measures applied to EEG signals for sleepiness characterization

    OpenAIRE

    Melia, Umberto Sergio Pio; Guaita, Marc; Vallverdú Ferrer, Montserrat; Embid, Cristina; Vilaseca, I; Salamero, Manuel; Santamaria, Joan

    2015-01-01

    Excessive daytime sleepiness (EDS) is one of the main symptoms of several sleep related disorders with a great impact on the patient lives. While many studies have been carried out in order to assess daytime sleepiness, the automatic EDS detection still remains an open problem. In this work, a novel approach to this issue based on non-linear dynamical analysis of EEG signal was proposed. Multichannel EEG signals were recorded during five maintenance of wakefulness (MWT) and multiple sleep lat...

  20. EEG-informed fMRI analysis during a hand grip task: estimating the relationship between EEG rhythms and the BOLD signal

    Directory of Open Access Journals (Sweden)

    Roberta eSclocco

    2014-04-01

    Full Text Available In the last decade, an increasing interest has arisen in investigating the relationship between the electrophysiological and hemodynamic measurements of brain activity, such as EEG and (BOLD fMRI. In particular, changes in BOLD have been shown to be associated with changes in the spectral profile of neural activity, rather than with absolute power. Concurrently, recent findings showed that different EEG rhythms are independently related to changes in the BOLD signal: therefore, it would be important to distinguish between the contributions of the different EEG rhythms to BOLD fluctuations when modeling the relationship between the two signals. Here we propose a method to perform EEG-informed fMRI analysis, in which the EEG regressors take into account both the changes in the spectral profile and the rhythms distinction. We applied it to EEG-fMRI data during a hand grip task in healthy subjects, and compared the results with those obtained by two existing models found in literature. Our results showed that the proposed method better captures the correlations between BOLD signal and EEG rhythms modulations, identifying task-related, well localized activated volumes. Furthermore, we showed that including among the regressors also EEG rhythms not primarily involved in the task enhances the performance of the analysis, even when only correlations with BOLD signal and specific EEG rhythms are explored.

  1. Predicting EEG complexity from sleep macro and microstructure

    International Nuclear Information System (INIS)

    Chouvarda, I; Maglaveras, N; Mendez, M O; Rosso, V; Parrino, L; Grassi, A; Terzano, M; Bianchi, A M; Cerutti, S

    2011-01-01

    This work investigates the relation between the complexity of electroencephalography (EEG) signal, as measured by fractal dimension (FD), and normal sleep structure in terms of its macrostructure and microstructure. Sleep features are defined, encoding sleep stage and cyclic alternating pattern (CAP) related information, both in short and long term. The relevance of each sleep feature to the EEG FD is investigated, and the most informative ones are depicted. In order to quantitatively assess the relation between sleep characteristics and EEG dynamics, a modeling approach is proposed which employs subsets of the sleep macrostructure and microstructure features as input variables and predicts EEG FD based on these features of sleep micro/macrostructure. Different sleep feature sets are investigated along with linear and nonlinear models. Findings suggest that the EEG FD time series is best predicted by a nonlinear support vector machine (SVM) model, employing both sleep stage/transitions and CAP features at different time scales depending on the EEG activation subtype. This combination of features suggests that short-term and long-term history of macro and micro sleep events interact in a complex manner toward generating the dynamics of sleep

  2. EEG-based characterization of flicker perception

    OpenAIRE

    Lazo, M.; Tsoneva, T.; Garcia Molina, G.

    2013-01-01

    Steady-State Visual Evoked Potential (SSVEP) is an oscillatory electrical response appearing in the electroencephalogram (EEG) in response to flicker stimulation. The SSVEP manifests more prominently in electrodes located near the visual cortex and has oscillatory components at the stimulation frequency and/or harmonics. The phase and amplitude of the SSVEP are sensitive to stimulus parameters such as frequency, modu-lation depth, and spatial frequency. Research related to SSVEP and the human...

  3. Educational simulation of the electroencephalogram (EEG)

    NARCIS (Netherlands)

    Beer, de N.A.M.; Meurs, van W.L.; Grit, M.B.M.; Good, M.L.; Gravenstein, D.

    2001-01-01

    We describe a model for simulating a spontaneous electroencephalogram (EEG) and for simulating the effects of anesthesia on the EEG, to allow anesthesiologists and EEG technicians to learn and practice intraoperative EEG monitoring. For this purpose, we developed a linear model to manipulate the

  4. EEG in connection with coma.

    Science.gov (United States)

    Wilson, John A; Nordal, Helge J

    2013-01-08

    Coma is a dynamic condition that may have various causes. Important changes may take place rapidly, often with consequences for treatment. The purpose of this article is to provide a brief overview of EEG patterns in comas with various causes, and indicate how EEG contributes in an assessment of the prognosis for coma patients. The article is based on many years of clinical and research-based experience of EEG used for patients in coma. A self-built reference database was supplemented by searches for relevant articles in PubMed. EEG reveals immediate changes in coma, and can provide early information on cause and prognosis. It is the only diagnostic tool for detecting a non-convulsive epileptic status. Locked-in- syndrome may be overseen without EEG. Repeated EEG scans increase diagnostic certainty and make it possible to monitor the development of coma. EEG reflects brain function continuously and therefore holds a key place in the assessment and treatment of coma.

  5. Methodological aspects of EEG and Body dynamics measurements during motion.

    Directory of Open Access Journals (Sweden)

    Pedro eReis

    2014-03-01

    Full Text Available EEG involves recording, analysis, and interpretation of voltages recorded on the human scalp originating from brain grey matter. EEG is one of the favorite methods to study and understand processes that underlie behavior. This is so, because EEG is relatively cheap, easy to wear, light weight and has high temporal resolution. In terms of behavior, this encompasses actions, such as movements, that are performed in response to the environment. However, there are methodological difficulties when recording EEG during movement such as movement artifacts. Thus, most studies about the human brain have examined activations during static conditions. This article attempts to compile and describe relevant methodological solutions that emerged in order to measure body and brain dynamics during motion. These descriptions cover suggestions of how to avoid and reduce motion artifacts, hardware, software and techniques for synchronously recording EEG, EMG, kinematics, kinetics and eye movements during motion. Additionally, we present various recording systems, EEG electrodes, caps and methods for determination of real/custom electrode positions. In the end we will conclude that it is possible to record and analyze synchronized brain and body dynamics related to movement or exercise tasks.

  6. Electroencephalogy (EEG) Feedback in Decision-Making

    Science.gov (United States)

    2015-08-26

    Electroencephalogy ( EEG ) Feedback In Decision- Making The goal of this project is to investigate whether Electroencephalogy ( EEG ) can provide useful...feedback when training rapid decision-making. More specifically, EEG will allow us to provide online feedback about the neural decision processes...Electroencephalogy ( EEG ) Feedback In Decision-Making Report Title The goal of this project is to investigate whether Electroencephalogy ( EEG ) can provide useful

  7. Effect of Brain-to-Skull Conductivity Ratio on EEG Source Localization Accuracy

    OpenAIRE

    Gang Wang; Doutian Ren

    2013-01-01

    The goal of this study was to investigate the influence of the brain-to-skull conductivity ratio (BSCR) on EEG source localization accuracy. In this study, we evaluated four BSCRs: 15, 20, 25, and 80, which were mainly discussed according to the literature. The scalp EEG signals were generated by BSCR-related forward computation for each cortical dipole source. Then, for each scalp EEG measurement, the source reconstruction was performed to identify the estimated dipole sources by the actual ...

  8. On the neural mechanisms underlying the protective function of retroactive cuing against perceptual interference: Evidence by event-related potentials of the EEG.

    Science.gov (United States)

    Schneider, Daniel; Barth, Anna; Getzmann, Stephan; Wascher, Edmund

    2017-03-01

    This EEG study investigated the protective effect of retroactive attentional focusing on working memory. To this effect, we used a visuo-spatial working memory task and presented block-wise distractor displays after working memory contents had been updated by means of a retroactive cue (retro-cue). Retroactive attention attenuated the interfering effect of distractors on memory precision. The reduction of working memory load by means of a selective retro-cue was reflected by a decline of a negative slow wave over parietal sites. Posterior N1 to the distractor was reduced following a selective retro-cue compared to a neutral retro-cue condition, most notably at left hemispheric sites. P3b referred to the distractor was suppressed completely only following a selective retro-cue. This suggests that focusing on only a subset of visuo-spatial information represented in working memory releases cognitive resources for preventing the in-depth processing of subsequently irrelevant visual events, thereby inhibiting their transfer into working memory. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Safety and EEG data quality of concurrent high-density EEG and high-speed fMRI at 3 Tesla

    DEFF Research Database (Denmark)

    Foged, Mette Thrane; Lindberg, Ulrich; Vakamudi, Kishore

    2017-01-01

    ) related heating, the effect of EEG on cortical signal-to-noise ratio (SNR) in fMRI, and assess EEG data quality. MATERIALS AND METHODS: The study compared EPI, multi-echo EPI, multi-band EPI and multi-slab echo-volumar imaging pulse sequences, using clinical 3 Tesla MR scanners from two different vendors...

  10. Frontal EEG asymmetry in borderline personality disorder is associated with alexithymia.

    Science.gov (United States)

    Flasbeck, Vera; Popkirov, Stoyan; Brüne, Martin

    2017-01-01

    Frontal EEG asymmetry is a widely studied correlate of emotion processing and psychopathology. Recent research suggests that frontal EEG asymmetry during resting state is related to approach/withdrawal motivation and is also found in affective disorders such as major depressive disorder. Patients with borderline personality disorder (BPD) show aberrant behavior in relation to both approach and withdrawal motivation, which may arguably be associated with their difficulties in emotion processing. The occurrence and significance of frontal EEG asymmetry in BPD, however, has received little attention. Thirty-seven BPD patients and 39 controls underwent resting EEG and completed several psychometric questionnaires. While there were no between-group differences in frontal EEG asymmetry, in BPD frontal EEG asymmetry scores correlated significantly with alexithymia. That is, higher alexithymia scores were associated with relatively lower right-frontal activity. A subsequent analysis corroborated the significant interaction between frontal EEG asymmetry and alexithymia, which was moderated by group. Our findings reveal that lower right frontal EEG asymmetry is associated with alexithymia in patients with BPD. This finding is in accordance with neurophysiological models of alexithymia that implicate a right hemisphere impairment in emotion processing, and could suggest frontal EEG asymmetry as a potential biomarker of relevant psychopathology in these patients.

  11. Development of grouped icEEG for the study of cognitive processing

    Directory of Open Access Journals (Sweden)

    Cihan Mehmet Kadipasaoglu

    2015-07-01

    Full Text Available Invasive intracranial EEG (icEEG offers a unique opportunity to study human cognitive networks at an unmatched spatiotemporal resolution. To date, the contributions of icEEG have been limited to the individual-level analyses or cohorts whose data are not integrated in any way. Here we discuss how grouped approaches to icEEG overcome challenges related to sparse-sampling, correct for individual variations in response and provide statistically valid models of brain activity in a population. By the generation of whole-brain activity maps, grouped icEEG enables the study of intra and interregional dynamics between distributed cortical substrates exhibiting task-dependent activity. In this fashion, grouped icEEG analyses can provide significant advances in understanding the mechanisms by which cortical networks give rise to cognitive functions.

  12. EEG datasets for motor imagery brain-computer interface.

    Science.gov (United States)

    Cho, Hohyun; Ahn, Minkyu; Ahn, Sangtae; Kwon, Moonyoung; Jun, Sung Chan

    2017-07-01

    Most investigators of brain-computer interface (BCI) research believe that BCI can be achieved through induced neuronal activity from the cortex, but not by evoked neuronal activity. Motor imagery (MI)-based BCI is one of the standard concepts of BCI, in that the user can generate induced activity by imagining motor movements. However, variations in performance over sessions and subjects are too severe to overcome easily; therefore, a basic understanding and investigation of BCI performance variation is necessary to find critical evidence of performance variation. Here we present not only EEG datasets for MI BCI from 52 subjects, but also the results of a psychological and physiological questionnaire, EMG datasets, the locations of 3D EEG electrodes, and EEGs for non-task-related states. We validated our EEG datasets by using the percentage of bad trials, event-related desynchronization/synchronization (ERD/ERS) analysis, and classification analysis. After conventional rejection of bad trials, we showed contralateral ERD and ipsilateral ERS in the somatosensory area, which are well-known patterns of MI. Finally, we showed that 73.08% of datasets (38 subjects) included reasonably discriminative information. Our EEG datasets included the information necessary to determine statistical significance; they consisted of well-discriminated datasets (38 subjects) and less-discriminative datasets. These may provide researchers with opportunities to investigate human factors related to MI BCI performance variation, and may also achieve subject-to-subject transfer by using metadata, including a questionnaire, EEG coordinates, and EEGs for non-task-related states. © The Authors 2017. Published by Oxford University Press.

  13. Changes in decibel scale wavelength properties of EEG with alertness levels while performing sustained attention tasks.

    Science.gov (United States)

    Arjunan, Sridhar P; Kumar, Dinesh K; Jung, Tzyy-Ping

    2009-01-01

    Loss of alertness can have dire consequences for people controlling motorized equipment or for people in professions such as defense. Electroencephalogram (EEG) is known to be related to alertness of the person, but due to high level of noise and low signal strength, the use of EEG for such applications has been considered to be unreliable. This study reports the fractal analysis of EEG and identifies the use of maximum fractal length (MFL) as a feature that is inversely correlated with the alertness of the subject. The results show that MFL (of only single channel of EEG) indicates the loss of alertness of the individual with mean (inverse) correlation coefficient = 0.82.

  14. Rhythms of EEG and cognitive processes

    Directory of Open Access Journals (Sweden)

    Novikova S.I.

    2015-06-01

    Full Text Available The study of cognitive processes is regarded to be more effective if it combines a psychological approach with a neurophysiological one. This approach makes it possible to come closer to understanding of the basic mechanisms of different cognitive processes, to describe the patterns of forming these mechanisms in ontogenesis, to investigate the origin of cognitive impairments, and to develop intervention techniques. The promising way of investigating the mechanisms of cognitive functions is the electroencephalography (EEG. This is a non-invasive, safe, and relatively cheap method of research of the functional condition of the brain. The characteristics of EEG rhythms, recorded with different cognitive loads, reflect the processes of functional modulation of neural network activity of the cortex, which serves the neurophysiologic basis for attention, memory and other cognitive processes. The article provides an overview of works containing the analysis of the alpha and theta rhythms’ dynamics in various states of wakefulness. It also introduces the substantiation of methodology of functional regulatory approach to the interpretation of behaviors of EEG rhythms.

  15. Rewarming affects EEG background in term newborns with hypoxic-ischemic encephalopathy undergoing therapeutic hypothermia.

    Science.gov (United States)

    Birca, Ala; Lortie, Anne; Birca, Veronica; Decarie, Jean-Claude; Veilleux, Annie; Gallagher, Anne; Dehaes, Mathieu; Lodygensky, Gregory A; Carmant, Lionel

    2016-04-01

    To investigate how rewarming impacts the evolution of EEG background in neonates with hypoxic-ischemic encephalopathy (HIE) undergoing therapeutic hypothermia (TH). We recruited a retrospective cohort of 15 consecutive newborns with moderate (9) and severe (6) HIE monitored with a continuous EEG during TH and at least 12h after its end. EEG background was analyzed using conventional visual and quantitative EEG analysis methods including EEG discontinuity, absolute and relative spectral magnitudes. One patient with seizures on rewarming was excluded from analyses. Visual and quantitative analyses demonstrated significant changes in EEG background from pre- to post-rewarming, characterized by an increased EEG discontinuity, more pronounced in newborns with severe compared to moderate HIE. Neonates with moderate HIE also had an increase in the relative magnitude of slower delta and a decrease in higher frequency theta and alpha waves with rewarming. Rewarming affects EEG background in HIE newborns undergoing TH, which may represent a transient adaptive response or reflect an evolving brain injury. EEG background impairment induced by rewarming may represent a biomarker of evolving encephalopathy in HIE newborns undergoing TH and underscores the importance of continuously monitoring the brain health in critically ill neonates. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  16. EEG-Annotate: Automated identification and labeling of events in continuous signals with applications to EEG.

    Science.gov (United States)

    Su, Kyung-Min; Hairston, W David; Robbins, Kay

    2018-01-01

    In controlled laboratory EEG experiments, researchers carefully mark events and analyze subject responses time-locked to these events. Unfortunately, such markers may not be available or may come with poor timing resolution for experiments conducted in less-controlled naturalistic environments. We present an integrated event-identification method for identifying particular responses that occur in unlabeled continuously recorded EEG signals based on information from recordings of other subjects potentially performing related tasks. We introduce the idea of timing slack and timing-tolerant performance measures to deal with jitter inherent in such non-time-locked systems. We have developed an implementation available as an open-source MATLAB toolbox (http://github.com/VisLab/EEG-Annotate) and have made test data available in a separate data note. We applied the method to identify visual presentation events (both target and non-target) in data from an unlabeled subject using labeled data from other subjects with good sensitivity and specificity. The method also identified actual visual presentation events in the data that were not previously marked in the experiment. Although the method uses traditional classifiers for initial stages, the problem of identifying events based on the presence of stereotypical EEG responses is the converse of the traditional stimulus-response paradigm and has not been addressed in its current form. In addition to identifying potential events in unlabeled or incompletely labeled EEG, these methods also allow researchers to investigate whether particular stereotypical neural responses are present in other circumstances. Timing-tolerance has the added benefit of accommodating inter- and intra- subject timing variations. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  17. EEG frequency PCA in EEG-ERP dynamics.

    Science.gov (United States)

    Barry, Robert J; De Blasio, Frances M

    2018-05-01

    Principal components analysis (PCA) has long been used to decompose the ERP into components, and these mathematical entities are increasingly accepted as meaningful and useful representatives of the electrophysiological components constituting the ERP. A similar expansion appears to be beginning in regard to decomposition of the EEG amplitude spectrum into frequency components via frequency PCA. However, to date, there has been no exploration of the brain's dynamic EEG-ERP linkages using PCA decomposition to assess components in each measure. Here, we recorded intrinsic EEG in both eyes-closed and eyes-open resting conditions, followed by an equiprobable go/no-go task. Frequency PCA of the EEG, including the nontask resting and within-task prestimulus periods, found seven frequency components within the delta to beta range. These differentially predicted PCA-derived go and no-go N1 and P3 ERP components. This demonstration suggests that it may be beneficial in future brain dynamics studies to implement PCA for the derivation of data-driven components from both the ERP and EEG. © 2017 Society for Psychophysiological Research.

  18. Stimulus-dependent spiking relationships with the EEG

    Science.gov (United States)

    Snyder, Adam C.

    2015-01-01

    The development and refinement of noninvasive techniques for imaging neural activity is of paramount importance for human neuroscience. Currently, the most accessible and popular technique is electroencephalography (EEG). However, nearly all of what we know about the neural events that underlie EEG signals is based on inference, because of the dearth of studies that have simultaneously paired EEG recordings with direct recordings of single neurons. From the perspective of electrophysiologists there is growing interest in understanding how spiking activity coordinates with large-scale cortical networks. Evidence from recordings at both scales highlights that sensory neurons operate in very distinct states during spontaneous and visually evoked activity, which appear to form extremes in a continuum of coordination in neural networks. We hypothesized that individual neurons have idiosyncratic relationships to large-scale network activity indexed by EEG signals, owing to the neurons' distinct computational roles within the local circuitry. We tested this by recording neuronal populations in visual area V4 of rhesus macaques while we simultaneously recorded EEG. We found substantial heterogeneity in the timing and strength of spike-EEG relationships and that these relationships became more diverse during visual stimulation compared with the spontaneous state. The visual stimulus apparently shifts V4 neurons from a state in which they are relatively uniformly embedded in large-scale network activity to a state in which their distinct roles within the local population are more prominent, suggesting that the specific way in which individual neurons relate to EEG signals may hold clues regarding their computational roles. PMID:26108954

  19. A preliminary study of muscular artifact cancellation in single-channel EEG.

    Science.gov (United States)

    Chen, Xun; Liu, Aiping; Peng, Hu; Ward, Rabab K

    2014-10-01

    Electroencephalogram (EEG) recordings are often contaminated with muscular artifacts that strongly obscure the EEG signals and complicates their analysis. For the conventional case, where the EEG recordings are obtained simultaneously over many EEG channels, there exists a considerable range of methods for removing muscular artifacts. In recent years, there has been an increasing trend to use EEG information in ambulatory healthcare and related physiological signal monitoring systems. For practical reasons, a single EEG channel system must be used in these situations. Unfortunately, there exist few studies for muscular artifact cancellation in single-channel EEG recordings. To address this issue, in this preliminary study, we propose a simple, yet effective, method to achieve the muscular artifact cancellation for the single-channel EEG case. This method is a combination of the ensemble empirical mode decomposition (EEMD) and the joint blind source separation (JBSS) techniques. We also conduct a study that compares and investigates all possible single-channel solutions and demonstrate the performance of these methods using numerical simulations and real-life applications. The proposed method is shown to significantly outperform all other methods. It can successfully remove muscular artifacts without altering the underlying EEG activity. It is thus a promising tool for use in ambulatory healthcare systems.

  20. [The Influence of the Functional State of Brain Regulatory Structures on the Programming, Selective Regulation and Control of Cognitive Activity in Children. Report I: Neuropsychological and EEG Analysis of Age-Related Changes in Brain Regulatory Functions in Children Aged 9-12 Years].

    Science.gov (United States)

    Semenova, A; Machinskaya, R I; Lomakin, D I

    2015-01-01

    Age-related changes in brain regulatory functions in children aged from 9 to 12 years with typical development were studied by means of neuropsychological and EEG analysis. The participants of the study were 107 children without learning difficulties and behavior deviations; they were devided into three groups (9-10, 10-11 and 11-12 years). The neuropsychological tests revealed nonlinear age-related changes in different executive brain functions. The group of 10-11-year-old children showed better results in programming, in- hibition of impulsive reactions and in the perception of socially relevant information than the group of 9-10- year-old children. At the same time, these children had more difficulties with selective activity regulation as compared with the younger group. The difficulties were mainly caused by switching from one element of the program to another and by retention of learned sequence of actions. These children also showed a lower level of motivation for task performance. The children aged 11-12 years had less difficulties with selective activity regulation; however, impulsive behavior was more frequent; these children also had a higher level of task performance motivation than in children aged 10-11 years. The analysis of resting state EEG revealed age-related differences in deviated EEG patterns associated with non-optimal functioning of fronto-thalamic system and hypothalamic structures. The incidence of these two types of EEG patterns was significantly higher in children aged 10-11 years as compared with children aged 9-10 years. The EEG of the groups of 10-11 and 11-12-years-old children did not show any significant differences.

  1. An Investigation of Stimulant Effects on the EEG of Children With Attention-Deficit/Hyperactivity Disorder.

    Science.gov (United States)

    Clarke, Adam R; Barry, Robert J; Baker, Iris E; McCarthy, Rory; Selikowitz, Mark

    2017-07-01

    Stimulant medications are the most commonly prescribed treatment for Attention-Deficit/Hyperactivity Disorder (AD/HD). These medications result in a normalization of the EEG. However, past research has found that complete normalization of the EEG is not always achieved. One reason for this may be that studies have used different medications interchangeably, or groups of subjects on different stimulants. This study investigated whether methylphenidate and dexamphetamine produce different levels of normalization of the EEG in children with AD/HD. Three groups of 20 boys participated in this study. There were 2 groups with a diagnosis of AD/HD; one group, good responders to methylphenidate, and the second, good responders to dexamphetamine. The third group was a normal control group. Baseline EEGs were recorded using an eyes-closed resting condition, and analyzed for total power and relative delta, theta, alpha, and beta. Subjects were placed on a 6-month trial of methylphenidate or dexamphetamine, after which a second EEG was recorded. At baseline, the children with AD/HD had elevated relative theta, less relative alpha and beta compared with controls. Baseline differences were found between the two medication groups, with the dexamphetamine group having greater EEG abnormalities than the methylphenidate group. The results indicate that good responders to methylphenidate and dexamphetamine have different EEG profiles when assessed before medication, and these differences may represent different underlying central nervous system deficits. The 2 medications were found to result in substantial normalization of the EEG, with no significant differences in EEG changes occurring between the 2 medications. This indicates that the degree of pretreatment EEG abnormality was the major factor contributing to the degree of normalization of the EEG. As good responders to the 2 medications appear to have different central nervous system abnormalities, it is recommended that

  2. Rhythmic EEG patterns in extremely preterm infants : Classification and association with brain injury and outcome

    NARCIS (Netherlands)

    Weeke, Lauren C; van Ooijen, Inge M; Groenendaal, Floris; van Huffelen, Alexander C.; van Haastert, Ingrid C; van Stam, Carolien; Benders, Manon J; Toet, Mona C; Hellström-Westas, Lena; de Vries, Linda S

    2017-01-01

    OBJECTIVE: Classify rhythmic EEG patterns in extremely preterm infants and relate these to brain injury and outcome. METHODS: Retrospective analysis of 77 infants born <28 weeks gestational age (GA) who had a 2-channel EEG during the first 72 h after birth. Patterns detected by the BrainZ seizure

  3. Sleep EEG Fingerprints Reveal Accelerated Thalamocortical Oscillatory Dynamics in Williams Syndrome

    Science.gov (United States)

    Bodizs, Robert; Gombos, Ferenc; Kovacs, Ilona

    2012-01-01

    Sleep EEG alterations are emerging features of several developmental disabilities, but detailed quantitative EEG data on the sleep phenotype of patients with Williams syndrome (WS, 7q11.23 microdeletion) is still lacking. Based on laboratory (Study I) and home sleep records (Study II) here we report WS-related features of the patterns of…

  4. Mapping human preictal and ictal haemodynamic networks using simultaneous intracranial EEG-fMRI

    Directory of Open Access Journals (Sweden)

    Umair J. Chaudhary

    2016-01-01

    In conclusion, icEEG-fMRI allowed us to reveal BOLD changes within and beyond the SOZ linked to very localised ictal fluctuations in beta and gamma activity measured in the amygdala and hippocampus. Furthermore, the BOLD changes within the SOZ structures were better captured by the quantitative models, highlighting the interest in considering seizure-related EEG fluctuations across the entire spectrum.

  5. Music perception and imagery in EEG: Alpha band effects of task and stimulus

    NARCIS (Netherlands)

    Schaefer, R.S.; Vlek, R.J.; Desain, P.W.M.

    2011-01-01

    Previous work has shown that mental imagination of sound generally elicits an increase of alpha band activity (8-12Hz) in the electroencephalogram (EEG). In addition, alpha activity has been shown to be related to music processing. In the current study, EEG signatures were investigated for

  6. Individual Differences in EEG Spectral Power Reflect Genetic Variance in Gray and White Matter Volumes

    NARCIS (Netherlands)

    Smit, D.J.A.; Boomsma, D.I.; Schnack, H.G.; Hulshoff Pol, H.E.; de Geus, E.J.C.

    2012-01-01

    The human electroencephalogram (EEG) consists of oscillations that reflect the summation of postsynaptic potentials at the dendritic tree of cortical neurons. The strength of the oscillations (EEG power) is a highly genetic trait that has been related to individual differences in many phenotypes,

  7. Engagement Assessment Using EEG Signals

    Science.gov (United States)

    Li, Feng; Li, Jiang; McKenzie, Frederic; Zhang, Guangfan; Wang, Wei; Pepe, Aaron; Xu, Roger; Schnell, Thomas; Anderson, Nick; Heitkamp, Dean

    2012-01-01

    In this paper, we present methods to analyze and improve an EEG-based engagement assessment approach, consisting of data preprocessing, feature extraction and engagement state classification. During data preprocessing, spikes, baseline drift and saturation caused by recording devices in EEG signals are identified and eliminated, and a wavelet based method is utilized to remove ocular and muscular artifacts in the EEG recordings. In feature extraction, power spectrum densities with 1 Hz bin are calculated as features, and these features are analyzed using the Fisher score and the one way ANOVA method. In the classification step, a committee classifier is trained based on the extracted features to assess engagement status. Finally, experiment results showed that there exist significant differences in the extracted features among different subjects, and we have implemented a feature normalization procedure to mitigate the differences and significantly improved the engagement assessment performance.

  8. Objective Audiometry using Ear-EEG

    DEFF Research Database (Denmark)

    Christensen, Christian Bech; Kidmose, Preben

    Recently, a novel electroencephalographic (EEG) method called ear-EEG [1], that enable recording of auditory evoked potentials (AEPs) from a personalized earpiece was introduced. Initial investigations show that well established AEPs, such as ASSR and P1-N1-P2 complex can be observed from ear-EEG...

  9. Hypnagogic EEG stages and polysomnogram

    OpenAIRE

    HAYASHI, Mitsuo; HIBINO, Kenji; HORI, Tadao

    1999-01-01

    The aim of this study is to show the polysomnogram of hypnagogic period. Sixteen subjects slept for two nights. Their EEGs (Fz, Cz, Pz, Oz), horizontal and vertical EOGs, submentalis EMG, thoracic and abdominal respiration were recorded. They pressed a button when pip tones (1000Hz, 50dB, max duration : 5s, ISI : 30-90s) were presented, and reported their psychological experiences, According to Hori et al. (1994), the hypnagogic EEGs just 5s before the pip tones were classified into 9 stages,...

  10. Brain oscillations in sport: toward EEG biomakers of performance

    Directory of Open Access Journals (Sweden)

    Guy eCheron

    2016-02-01

    Full Text Available Brain dynamics is at the basis of top performance accomplishment in sports. The search for neural biomarkers of performance remains a challenge in movement science and sport psychology. The noninvasive nature of high-density electroencephalography (EEG recording has made it a most promising avenue for providing quantitative feedback to practitioners and coaches. Here, we review the current relevance of the main types of EEG oscillations in order to trace a perspective for future practical applications of EEG and event-related potentials (ERP in sport. In this context, the hypotheses of unified brain rhythms and continuity between wake and sleep states should provide a functional template for EEG biomarkers in sport. The oscillations in the thalamo-cortical and hippocampal circuitry including the physiology of the place cells and the grid cells provide a frame of reference for the analysis of delta, theta, beta, alpha (incl.mu and gamma oscillations recorded in the space field of human performance. Based on recent neuronal models facilitating the distinction between the different dynamic regimes (selective gating and binding in these different oscillations we suggest an integrated approach articulating together the classical biomechanical factors (3D movements and EMG and the high-density EEG and ERP signals to allow finer mathematical analysis to optimize sport performance, such as microstates, coherency/directionality analysis and neural generators.

  11. Brain Oscillations in Sport: Toward EEG Biomarkers of Performance

    Science.gov (United States)

    Cheron, Guy; Petit, Géraldine; Cheron, Julian; Leroy, Axelle; Cebolla, Anita; Cevallos, Carlos; Petieau, Mathieu; Hoellinger, Thomas; Zarka, David; Clarinval, Anne-Marie; Dan, Bernard

    2016-01-01

    Brain dynamics is at the basis of top performance accomplishment in sports. The search for neural biomarkers of performance remains a challenge in movement science and sport psychology. The non-invasive nature of high-density electroencephalography (EEG) recording has made it a most promising avenue for providing quantitative feedback to practitioners and coaches. Here, we review the current relevance of the main types of EEG oscillations in order to trace a perspective for future practical applications of EEG and event-related potentials (ERP) in sport. In this context, the hypotheses of unified brain rhythms and continuity between wake and sleep states should provide a functional template for EEG biomarkers in sport. The oscillations in the thalamo-cortical and hippocampal circuitry including the physiology of the place cells and the grid cells provide a frame of reference for the analysis of delta, theta, beta, alpha (incl.mu), and gamma oscillations recorded in the space field of human performance. Based on recent neuronal models facilitating the distinction between the different dynamic regimes (selective gating and binding) in these different oscillations we suggest an integrated approach articulating together the classical biomechanical factors (3D movements and EMG) and the high-density EEG and ERP signals to allow finer mathematical analysis to optimize sport performance, such as microstates, coherency/directionality analysis and neural generators. PMID:26955362

  12. Brain Oscillations in Sport: Toward EEG Biomarkers of Performance.

    Science.gov (United States)

    Cheron, Guy; Petit, Géraldine; Cheron, Julian; Leroy, Axelle; Cebolla, Anita; Cevallos, Carlos; Petieau, Mathieu; Hoellinger, Thomas; Zarka, David; Clarinval, Anne-Marie; Dan, Bernard

    2016-01-01

    Brain dynamics is at the basis of top performance accomplishment in sports. The search for neural biomarkers of performance remains a challenge in movement science and sport psychology. The non-invasive nature of high-density electroencephalography (EEG) recording has made it a most promising avenue for providing quantitative feedback to practitioners and coaches. Here, we review the current relevance of the main types of EEG oscillations in order to trace a perspective for future practical applications of EEG and event-related potentials (ERP) in sport. In this context, the hypotheses of unified brain rhythms and continuity between wake and sleep states should provide a functional template for EEG biomarkers in sport. The oscillations in the thalamo-cortical and hippocampal circuitry including the physiology of the place cells and the grid cells provide a frame of reference for the analysis of delta, theta, beta, alpha (incl.mu), and gamma oscillations recorded in the space field of human performance. Based on recent neuronal models facilitating the distinction between the different dynamic regimes (selective gating and binding) in these different oscillations we suggest an integrated approach articulating together the classical biomechanical factors (3D movements and EMG) and the high-density EEG and ERP signals to allow finer mathematical analysis to optimize sport performance, such as microstates, coherency/directionality analysis and neural generators.

  13. Computerized spectral analyses of EEG in chronic schizophrenic patients

    International Nuclear Information System (INIS)

    Fujita, Haruhiro

    1985-01-01

    This study was aimed at clarifying the EEG difference between chronic schizophrenic patients and normal controls by using the EEG method of spectral analyses. Twelve comparatively homogenous chronic schizophrenic patients and the 10 healthy controls were subjected to EEG investigations. 1) The EEG of schizophrenic patients had a slowing tendency of the frequency in the frontal pole, anterior temporal and central regions of the scalp compared with control subjects. 2) There was a decrease of mutual relation among the five electrodes' peak frequency in the schizophrenic patients. 3) The EEG of schizophrenic patients had more fast waves of β 1 and β 2 band than that of control subjects. 4) A slowing tendency of the frequency in the first half regions of the scalp was not found in 3 chronic schizophrenic patients which showed defective functions in the frontal area by positron emission tomography. 5) When mental arithmetic was given, the schizophrenic patients showed an increase of fast wave in the central, posterior temporal and occipital regions of the scalp. 6) When they opened their eyes, attenuation in the α band was not so marked in the schizophrenic patients. (author)

  14. Frontal EEG Asymmetry of Mood: A Mini-Review

    Directory of Open Access Journals (Sweden)

    Massimiliano Palmiero

    2017-11-01

    Full Text Available The present mini-review was aimed at exploring the frontal EEG asymmetry of mood. With respect to emotion, interpreted as a discrete affective process, mood is more controllable, more nebulous, and more related to mind/cognition; in addition, causes are less well-defined than those eliciting emotion. Therefore, firstly, the rational for the distinction between emotion and mood was provided. Then, the main frontal EEG asymmetry models were presented, such as the motivational approach/withdrawal, valence/arousal, capability, and inhibition asymmetric models. Afterward, the frontal EEG asymmetry of mood was investigated following three research lines, that is considering studies involving different mood induction procedures, dispositional mood (positive and negative affect, and mood alterations in both healthy and clinical populations. In general, results were found to be contradictory, no model is unequivocally supported regardless the research line considered. Different methodological issues were raised, such as: the composition of samples used across studies, in particular, gender and age were found to be critical variables that should be better addressed in future studies; the importance of third variables that might mediate the relationship between frontal EEG asymmetries and mood, for example bodily states and hormonal responses; the role of cognition, namely the interplay between mood and executive functions. In light of these issues, future research directions were proposed. Amongst others, the need to explore the neural connectivity that underpins EEG asymmetries, and the need to include both positive and negative mood conditions in the experimental designs have been highlighted.

  15. Mutual information measures applied to EEG signals for sleepiness characterization.

    Science.gov (United States)

    Melia, Umberto; Guaita, Marc; Vallverdú, Montserrat; Embid, Cristina; Vilaseca, Isabel; Salamero, Manel; Santamaria, Joan

    2015-03-01

    Excessive daytime sleepiness (EDS) is one of the main symptoms of several sleep related disorders with a great impact on the patient lives. While many studies have been carried out in order to assess daytime sleepiness, the automatic EDS detection still remains an open problem. In this work, a novel approach to this issue based on non-linear dynamical analysis of EEG signal was proposed. Multichannel EEG signals were recorded during five maintenance of wakefulness (MWT) and multiple sleep latency (MSLT) tests alternated throughout the day from patients suffering from sleep disordered breathing. A group of 20 patients with excessive daytime sleepiness (EDS) was compared with a group of 20 patients without daytime sleepiness (WDS), by analyzing 60-s EEG windows in waking state. Measures obtained from cross-mutual information function (CMIF) and auto-mutual-information function (AMIF) were calculated in the EEG. These functions permitted a quantification of the complexity properties of the EEG signal and the non-linear couplings between different zones of the scalp. Statistical differences between EDS and WDS groups were found in β band during MSLT events (p-value CMIF measures yielded sensitivity and specificity above 80% and AUC of ROC above 0.85 in classifying EDS and WDS patients. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  16. Analysis of the Influence of Complexity and Entropy of Odorant on Fractal Dynamics and Entropy of EEG Signal.

    Science.gov (United States)

    Namazi, Hamidreza; Akrami, Amin; Nazeri, Sina; Kulish, Vladimir V

    2016-01-01

    An important challenge in brain research is to make out the relation between the features of olfactory stimuli and the electroencephalogram (EEG) signal. Yet, no one has discovered any relation between the structures of olfactory stimuli and the EEG signal. This study investigates the relation between the structures of EEG signal and the olfactory stimulus (odorant). We show that the complexity of the EEG signal is coupled with the molecular complexity of the odorant, where more structurally complex odorant causes less fractal EEG signal. Also, odorant having higher entropy causes the EEG signal to have lower approximate entropy. The method discussed here can be applied and investigated in case of patients with brain diseases as the rehabilitation purpose.

  17. A dry EEG-system for scientific research and brain-computer interfaces

    Directory of Open Access Journals (Sweden)

    Thorsten Oliver Zander

    2011-05-01

    Full Text Available Although it ranks among the oldest tools in neuroscientific research, electroencephalography (EEG still forms the method of choice in a wide variety of clinical and research applications. In the context of Brain-Computer Interfacing (BCI, EEG recently has become a tool to enhance Human-Machine Interaction (HMI. EEG could be employed in a wider range of environments, especially for the use of BCI systems in a clinical context or at the homes of patients. However, the application of EEG in these contexts is impeded by the cumbersome preparation of the electrodes with conductive gel that is necessary to lower the impedance between electrodes and scalp. Dry electrodes could provide a solution to this barrier and allow for EEG applications outside the laboratory. In addition, dry electrodes may reduce the time needed for neurological exams in clinical practice. This study evaluates a prototype of a three-channel dry electrode EEG system, comparing it to state-of-the-art conventional EEG electrodes. Two experimental paradigms were used: first, Event-Related Potentials (ERP were investigated with a variant of the oddball paradigm. Second, features of the frequency domain were compared by a paradigm inducing occipital alpha. Furthermore, both paradigms were used to evaluate BCI classification accuracies of both EEG systems. Amplitude and temporal structure of ERPs as well as features in the frequency domain did not differ significantly between the EEG systems. BCI classification accuracies were equally high in both systems when the frequency domain was considered. With respect to the oddball classification accuracy, there were slight differences between the wet and dry electrode systems. We conclude that the tested dry electrodes were capable to detect EEG signals with good quality and that these signals can be used for research or BCI applications. Easy to handle electrodes may help to foster the use of EEG among a wider range of potential users.

  18. Resting EEG deficits in accused murderers with schizophrenia.

    Science.gov (United States)

    Schug, Robert A; Yang, Yaling; Raine, Adrian; Han, Chenbo; Liu, Jianghong; Li, Liejia

    2011-10-31

    Empirical evidence continues to suggest a biologically distinct violent subtype of schizophrenia. The present study examined whether murderers with schizophrenia would demonstrate resting EEG deficits distinguishing them from both non-violent schizophrenia patients and murderers without schizophrenia. Resting EEG data were collected from five diagnostic groups (normal controls, non-murderers with schizophrenia, murderers with schizophrenia, murderers without schizophrenia, and murderers with psychiatric conditions other than schizophrenia) at a brain hospital in Nanjing, China. Murderers with schizophrenia were characterized by increased left-hemispheric fast-wave EEG activity relative to non-violent schizophrenia patients, while non-violent schizophrenia patients instead demonstrated increased diffuse slow-wave activity compared to all other groups. Results are discussed within the framework of a proposed left-hemispheric over-processing hypothesis specific to violent individuals with schizophrenia, involving left hemispheric hyperarousal deficits, which may lead to a homicidally violent schizophrenia outcome. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  19. Feasibility of Seizure Prediction from intracranial EEG Recordings

    DEFF Research Database (Denmark)

    Henriksen, Jonas; Kjær, Troels; Thomsen, Carsten E.

    2009-01-01

    Purpose: The current project evaluated the feasibility of providing an algorithm that could warn a patient of a forthcoming seizure based on iEEG recordings. Method: The mean phase coherence (MPC) feature (Mormann F et al. Phys Nonlinear Phenom 2000;3-4:358-369.) was implemented and tested...... in a rigorously, out-of-sample manner. The MPC-feature is based on the synchronization measure, explained through the analytic signal approach where the Hilbert transform is used to find the instantaneous phase of an arbitrary signal. By a relative comparison between two different iEEG channels the phase...

  20. Long-term EEG in children.

    Science.gov (United States)

    Montavont, A; Kaminska, A; Soufflet, C; Taussig, D

    2015-03-01

    Long-term video-EEG corresponds to a recording ranging from 1 to 24 h or even longer. It is indicated in the following situations: diagnosis of epileptic syndromes or unclassified epilepsy, pre-surgical evaluation for drug-resistant epilepsy, follow-up of epilepsy or in cases of paroxysmal symptoms whose etiology remains uncertain. There are some specificities related to paediatric care: a dedicated pediatric unit; continuous monitoring covering at least a full 24-hour period, especially in the context of pre-surgical evaluation; the requirement of presence by the parents, technician or nurse; and stronger attachment of electrodes (cup electrodes), the number of which is adapted to the age of the child. The chosen duration of the monitoring also depends on the frequency of seizures or paroxysmal events. The polygraphy must be adapted to the type and topography of movements. It is essential to have at least an electrocardiography (ECG) channel, respiratory sensor and electromyography (EMG) on both deltoids. There is no age limit for performing long-term video-EEG even in newborns and infants; nevertheless because of scalp fragility, strict surveillance of the baby's skin condition is required. In the specific context of pre-surgical evaluation, long-term video-EEG must record all types of seizures observed in the child. This monitoring is essential in order to develop hypotheses regarding the seizure onset zone, based on electroclinical correlations, which should be adapted to the child's age and the psychomotor development. Copyright © 2015. Published by Elsevier SAS.

  1. EEG changes and neuroimaging abnormalities in relevance to ...

    African Journals Online (AJOL)

    Background: Autism is currently viewed as a genetically determined neurodevelopmental disorder although its defi nite underlying etiology remains to be established. Aim of the Study: Our purpose was to assess autism related morphological neuroimaging changes of the brain and EEG abnormalities in correlation to the ...

  2. Health Instruction Packages: Medical Technologies--EEG, Radiology, & Biomedical Photography.

    Science.gov (United States)

    Brittenham, Dorothea; And Others

    Text, illustrations, and exercises are utilized in this set of four learning modules to instruct medical technology students in a variety of job-related skills. The first module, "EEG Technology: Measurement Technique of the 'International 10-20 System'" by Dorothea Brittenham, describes a procedure used by electroencephalograph…

  3. Anterior EEG asymmetries and opponent process theory.

    Science.gov (United States)

    Kline, John P; Blackhart, Ginette C; Williams, William C

    2007-03-01

    The opponent process theory of emotion [Solomon, R.L., and Corbit, J.D. (1974). An opponent-process theory of motivation: I. Temporal dynamics of affect. Psychological Review, 81, 119-143.] predicts a temporary reversal of emotional valence during the recovery from emotional stimulation. We hypothesized that this affective contrast would be apparent in asymmetrical activity patterns in the frontal lobes, and would be more apparent for left frontally active individuals. The present study tested this prediction by examining EEG asymmetries during and after blocked presentations of aversive pictures selected from the International Affective Picture System (IAPS). 12 neutral images, 12 aversive images, and 24 neutral images were presented in blocks. Participants who were right frontally active at baseline did not show changes in EEG asymmetry while viewing aversive slides or after cessation. Participants left frontally active at baseline, however, exhibited greater relative left frontal activity after aversive stimulation than before stimulation. Asymmetrical activity patterns in the frontal lobes may relate to affect regulatory processes, including contrasting opponent after-reactions to aversive stimuli.

  4. PyEEG: an open source Python module for EEG/MEG feature extraction.

    Science.gov (United States)

    Bao, Forrest Sheng; Liu, Xin; Zhang, Christina

    2011-01-01

    Computer-aided diagnosis of neural diseases from EEG signals (or other physiological signals that can be treated as time series, e.g., MEG) is an emerging field that has gained much attention in past years. Extracting features is a key component in the analysis of EEG signals. In our previous works, we have implemented many EEG feature extraction functions in the Python programming language. As Python is gaining more ground in scientific computing, an open source Python module for extracting EEG features has the potential to save much time for computational neuroscientists. In this paper, we introduce PyEEG, an open source Python module for EEG feature extraction.

  5. The effect of hypobaric hypoxia on multichannel EEG signal complexity.

    Science.gov (United States)

    Papadelis, Christos; Kourtidou-Papadeli, Chrysoula; Bamidis, Panagiotis D; Maglaveras, Nikos; Pappas, Konstantinos

    2007-01-01

    The objective of this study was the development and evaluation of nonlinear electroencephalography parameters which assess hypoxia-induced EEG alterations, and describe the temporal characteristics of different hypoxic levels' residual effect upon the brain electrical activity. Multichannel EEG, pO2, pCO2, ECG, and respiration measurements were recorded from 10 subjects exposed to three experimental conditions (100% oxygen, hypoxia, recovery) at three-levels of reduced barometric pressure. The mean spectral power of EEG under each session and altitude were estimated for the standard bands. Approximate Entropy (ApEn) of EEG segments was calculated, and the ApEn's time-courses were smoothed by a moving average filter. On the smoothed diagrams, parameters were defined. A significant increase in total power and power of theta and alpha bands was observed during hypoxia. Visual interpretation of ApEn time-courses revealed a characteristic pattern (decreasing during hypoxia and recovering after oxygen re-administration). The introduced qEEG parameters S1 and K1 distinguished successfully the three hypoxic conditions. The introduced parameters based on ApEn time-courses are assessing reliably and effectively the different hypoxic levels. ApEn decrease may be explained by neurons' functional isolation due to hypoxia since decreased complexity corresponds to greater autonomy of components, although this interpretation should be further supported by electrocorticographic animal studies. The introduced qEEG parameters seem to be appropriate for assessing the hypoxia-related neurophysiological state of patients in the hyperbaric chambers in the treatment of decompression sickness, carbon dioxide poisoning, and mountaineering.

  6. Single-session tDCS over the dominant hemisphere affects contralateral spectral EEG power, but does not enhance neurofeedback-guided event-related desynchronization of the non-dominant hemisphere's sensorimotor rhythm.

    Science.gov (United States)

    Mondini, Valeria; Mangia, Anna Lisa; Cappello, Angelo

    2018-01-01

    Transcranial direct current stimulation (tDCS) and neurofeedback-guided motor imagery (MI) have attracted considerable interest in neurorehabilitation, given their ability to influence neuroplasticity. As tDCS has been shown to modulate event-related desynchronization (ERD), the neural signature of motor imagery detected for neurofeedback, a combination of the techniques was recently proposed. One limitation of this approach is that the area targeted for stimulation is the same from which the signal for neurofeedback is acquired. As tDCS may interfere with proximal electroencephalographic (EEG) electrodes, in this study our aim was to test whether contralateral tDCS could have interhemispheric effects on the spectral power of the unstimulated hemisphere, possibly mediated by transcallosal connection, and whether such effects could be used to enhance ERD magnitudes. A contralateral stimulation approach would indeed facilitate co-registration, as the stimulation electrode would be far from the recording sites. Twenty right-handed healthy volunteers (aged 21 to 32) participated in the study: ten assigned to cathodal, ten to anodal versus sham stimulation. We applied stimulation over the dominant (left) hemisphere, and assessed ERD and spectral power over the non-dominant (right) hemisphere. The effect of tDCS was evaluated over time. Spectral power was assessed in theta, alpha and beta bands, under both rest and MI conditions, while ERD was evaluated in alpha and beta bands. Two main findings emerged: (1) contralateral alpha-ERD was reduced after anodal (p = 0.0147), but not enhanced after cathodal tDCS; (2) both stimulations had remote effects on the spectral power of the contralateral hemisphere, particularly in theta and alpha (significant differences in the topographical t-value maps). The absence of contralateral cathodal ERD enhancement suggests that the protocol is not applicable in the context of MI training. Nevertheless, ERD results of anodal and spectral

  7. Frontal cortex electrophysiology in reward- and punishment-related feedback processing during advice-guided decision making: An interleaved EEG-DC stimulation study

    NARCIS (Netherlands)

    Wischnewski, M.; Bekkering, H.; Schutter, D.J.L.G.

    2018-01-01

    During decision making, individuals are prone to rely on external cues such as expert advice when the outcome is not known. However, the electrophysiological correlates associated with outcome uncertainty and the use of expert advice are not completely understood. The feedback-related negativity

  8. EEG use in a tertiary referral centre.

    LENUS (Irish Health Repository)

    O'Toole, O

    2011-11-15

    The aim of this study was to retrospectively audit all electroencephalograms (EEGs) done over a 2-month period in 2009 by the Neurophysiology Department at Cork University Hospital. There were 316 EEGs performed in total, of which 176\\/316 (56%) were done within 24 hours of request. Out of 316 EEGs, 208 (66%) were considered \\'appropriate\\' by SIGN and NICE guidelines; 79\\/208 (38%) had abnormal EEGs and 28 of these abnormal EEGs had epileptiform features. There were 108\\/316 (34%) \\'inappropriate\\' requests for EEG; of these 15\\/108 (14%) were abnormal. Of the 67\\/316 (21%) patients who had EEGs requested based on a history of syncope\\/funny turns: none of these patients had epileptiform abnormalities on their EEGs. Our audit demonstrates that EEGs are inappropriately over-requested in our institution in particular for cases with reported \\'funny turns\\' and syncope. The yield from EEGs in this cohort of patients was low as would be expected.

  9. Rhythmic EEG patterns in extremely preterm infants: Classification and association with brain injury and outcome.

    Science.gov (United States)

    Weeke, Lauren C; van Ooijen, Inge M; Groenendaal, Floris; van Huffelen, Alexander C; van Haastert, Ingrid C; van Stam, Carolien; Benders, Manon J; Toet, Mona C; Hellström-Westas, Lena; de Vries, Linda S

    2017-12-01

    Classify rhythmic EEG patterns in extremely preterm infants and relate these to brain injury and outcome. Retrospective analysis of 77 infants born Rhythmic patterns were observed in 62.3% (ictal 1.3%, PEDs 44%, other waveforms 86.3%) with multiple patterns in 36.4%. Ictal discharges were only observed in one and excluded from further analyses. The EEG location of the other waveforms (pRhythmic waveforms related to head position are likely artefacts. Rhythmic EEG patterns may have a different significance in extremely preterm infants. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  10. Characteristics of late-onset epilepsy and EEG findings in children with autism spectrum disorders

    Directory of Open Access Journals (Sweden)

    Haneul Lee

    2011-01-01

    Full Text Available Purpose: To investigate the clinical characteristics of late-onset epilepsy combined with autism spectrum disorder (ASD, and the relationship between certain types of electroencephalography (EEG abnormalities in ASD and associated neuropsychological problems. Methods: Thirty patients diagnosed with ASD in early childhood and later developed clinical seizures were reviewed retrospectively. First, the clinical characteristics, language and behavioral regression, and EEG findings of these late-onset epilepsy patients with ASD were investigated. The patients were then classified into 2 groups according to the severity of the EEG abnormalities in the background rhythm and paroxysmal discharges. In the severe group, EEG showed persistent asymmetry, slow and disorganized background rhythms, and continuous sharp and slow waves during slow sleep (CSWS. Results: Between the two groups, there was no statistically significant difference in mean age (P=0.259, age of epilepsy diagnosis (P=0.237, associated family history (P=0.074, and positive abnormal magnetic resonance image (MRI findings (P=0.084. The severe EEG group tended to have more neuropsychological problems (P=0.074. The severe group statistically showed more electrographic seizures in EEG (P =0.000. Rett syndrome was correlated with more severe EEG abnormalities (P=0.002. Although formal cognitive function tests were not performed, the parents reported an improvement in neuropsychological function on the follow up checkup according to a parent’s questionnaire. Conclusion: Although some ASD patients with late-onset epilepsy showed severe EEG abnormalities, including CSWS, they generally showed an improvement in EEG and clinical symptoms in the longterm follow up. In addition, severe EEG abnormalities tended to be related to the neuropsychological function.

  11. Combining SPECT and Quantitative EEG Analysis for the Automated Differential Diagnosis of Disorders with Amnestic Symptoms

    Directory of Open Access Journals (Sweden)

    Yvonne Höller

    2017-09-01

    Full Text Available Single photon emission computed tomography (SPECT and Electroencephalography (EEG have become established tools in routine diagnostics of dementia. We aimed to increase the diagnostic power by combining quantitative markers from SPECT and EEG for differential diagnosis of disorders with amnestic symptoms. We hypothesize that the combination of SPECT with measures of interaction (connectivity in the EEG yields higher diagnostic accuracy than the single modalities. We examined 39 patients with Alzheimer's dementia (AD, 69 patients with depressive cognitive impairment (DCI, 71 patients with amnestic mild cognitive impairment (aMCI, and 41 patients with amnestic subjective cognitive complaints (aSCC. We calculated 14 measures of interaction from a standard clinical EEG-recording and derived graph-theoretic network measures. From regional brain perfusion measured by 99mTc-hexamethyl-propylene-aminoxime (HMPAO-SPECT in 46 regions, we calculated relative cerebral perfusion in these patients. Patient groups were classified pairwise with a linear support vector machine. Classification was conducted separately for each biomarker, and then again for each EEG- biomarker combined with SPECT. Combination of SPECT with EEG-biomarkers outperformed single use of SPECT or EEG when classifying aSCC vs. AD (90%, aMCI vs. AD (70%, and AD vs. DCI (100%, while a selection of EEG measures performed best when classifying aSCC vs. aMCI (82% and aMCI vs. DCI (90%. Only the contrast between aSCC and DCI did not result in above-chance classification accuracy (60%. In general, accuracies were higher when measures of interaction (i.e., connectivity measures were applied directly than when graph-theoretical measures were derived. We suggest that quantitative analysis of EEG and machine-learning techniques can support differentiating AD, aMCI, aSCC, and DCC, especially when being combined with imaging methods such as SPECT. Quantitative analysis of EEG connectivity could become

  12. Independent EEG sources are dipolar.

    Directory of Open Access Journals (Sweden)

    Arnaud Delorme

    Full Text Available Independent component analysis (ICA and blind source separation (BSS methods are increasingly used to separate individual brain and non-brain source signals mixed by volume conduction in electroencephalographic (EEG and other electrophysiological recordings. We compared results of decomposing thirteen 71-channel human scalp EEG datasets by 22 ICA and BSS algorithms, assessing the pairwise mutual information (PMI in scalp channel pairs, the remaining PMI in component pairs, the overall mutual information reduction (MIR effected by each decomposition, and decomposition 'dipolarity' defined as the number of component scalp maps matching the projection of a single equivalent dipole with less than a given residual variance. The least well-performing algorithm was principal component analysis (PCA; best performing were AMICA and other likelihood/mutual information based ICA methods. Though these and other commonly-used decomposition methods returned many similar components, across 18 ICA/BSS algorithms mean dipolarity varied linearly with both MIR and with PMI remaining between the resulting component time courses, a result compatible with an interpretation of many maximally independent EEG components as being volume-conducted projections of partially-synchronous local cortical field activity within single compact cortical domains. To encourage further method comparisons, the data and software used to prepare the results have been made available (http://sccn.ucsd.edu/wiki/BSSComparison.

  13. Safety of Simultaneous Scalp or Intracranial EEG during MRI: A Review

    Directory of Open Access Journals (Sweden)

    Hassan B. Hawsawi

    2017-10-01

    Full Text Available Understanding the brain and its activity is one of the great challenges of modern science. Normal brain activity (cognitive processes, etc. has been extensively studied using electroencephalography (EEG since the 1930's, in the form of spontaneous fluctuations in rhythms, and patterns, and in a more experimentally-driven approach in the form of event-related potentials (ERPs allowing us to relate scalp voltage waveforms to brain states and behavior. The use of EEG recorded during functional magnetic resonance imaging (EEG-fMRI is a more recent development that has become an important tool in clinical neuroscience, for example for the study of epileptic activity. The purpose of this review is to explore the magnetic resonance imaging safety aspects specifically associated with the use of scalp EEG and other brain-implanted electrodes such as intracranial EEG electrodes when they are subjected to the MRI environment. We provide a theoretical overview of the mechanisms at play specifically associated with the presence of EEG equipment connected to the subject in the MR environment, and of the resulting health hazards. This is followed by a survey of the literature on the safety of scalp or invasive EEG-fMRI data acquisitions across field strengths, with emphasis on the practical implications for the safe application of the techniques; in particular, we attempt to summarize the findings in terms of acquisition protocols when possible.

  14. Juvenile myoclonic epilepsy: clinical and EEG features

    DEFF Research Database (Denmark)

    Pedersen, S B; Petersen, K A

    1998-01-01

    We aimed to characterize the clinical profile and EEG features of 43 patients with juvenile myoclonic epilepsy. In a retrospective design we studied the records of, and re-interviewed, 43 patients diagnosed with JME from the epilepsy clinic data base. Furthermore, available EEGs were re...... were sleep deprivation (84%), stress (70%), and alcohol consumption (51%). EEG findings included rapid spike-wave and polyspike-wave....

  15. Juvenile myoclonic epilepsy: clinical and EEG features

    DEFF Research Database (Denmark)

    Pedersen, S B; Petersen, K A

    1998-01-01

    We aimed to characterize the clinical profile and EEG features of 43 patients with juvenile myoclonic epilepsy. In a retrospective design we studied the records of, and re-interviewed, 43 patients diagnosed with JME from the epilepsy clinic data base. Furthermore, available EEGs were re-evaluated...... were sleep deprivation (84%), stress (70%), and alcohol consumption (51%). EEG findings included rapid spike-wave and polyspike-wave....

  16. Frontal EEG asymmetry in borderline personality disorder is associated with alexithymia

    OpenAIRE

    Flasbeck, Vera; Popkirov, Stoyan; Brüne, Martin

    2017-01-01

    Background Frontal EEG asymmetry is a widely studied correlate of emotion processing and psychopathology. Recent research suggests that frontal EEG asymmetry during resting state is related to approach/withdrawal motivation and is also found in affective disorders such as major depressive disorder. Patients with borderline personality disorder (BPD) show aberrant behavior in relation to both approach and withdrawal motivation, which may arguably be associated with their difficulties in emotio...

  17. Diagnosis and interpretation of EEG on non-convulsive status epilepticus

    Directory of Open Access Journals (Sweden)

    Xiao-gang KANG

    2015-11-01

    Full Text Available It is difficult to diagnose non-convulsive status epilepticus (NCSE clinically because of the complicated etiology and various clinical and electroencephalographic features of NCSE without a universally accepted definition. Although the diagnosis of NCSE relies largely on electroencephalogram (EEG findings, the determination of NCSE on EEG is inevitably subjective, and the EEG changes of most patients is lack of specificity. As the diagnosis of NCSE is related to clinical and electroencephalographic manifestations, diagnostic criteria for NCSE should take into account both clinical and electroencephalographic features, and their response to antiepileptic drugs (AEDs. DOI: 10.3969/j.issn.1672-6731.2015.11.005

  18. Analysis of tractable distortion metrics for EEG compression applications

    International Nuclear Information System (INIS)

    Bazán-Prieto, Carlos; Blanco-Velasco, Manuel; Cruz-Roldán, Fernando; Cárdenas-Barrera, Julián

    2012-01-01

    Coding distortion in lossy electroencephalographic (EEG) signal compression methods is evaluated through tractable objective criteria. The percentage root-mean-square difference, which is a global and relative indicator of the quality held by reconstructed waveforms, is the most widely used criterion. However, this parameter does not ensure compliance with clinical standard guidelines that specify limits to allowable noise in EEG recordings. As a result, expert clinicians may have difficulties interpreting the resulting distortion of the EEG for a given value of this parameter. Conversely, the root-mean-square error is an alternative criterion that quantifies distortion in understandable units. In this paper, we demonstrate that the root-mean-square error is better suited to control and to assess the distortion introduced by compression methods. The experiments conducted in this paper show that the use of the root-mean-square error as target parameter in EEG compression allows both clinicians and scientists to infer whether coding error is clinically acceptable or not at no cost for the compression ratio. (paper)

  19. EEG activity in Muslim prayer: A pilot study

    Directory of Open Access Journals (Sweden)

    Haider H. Alwasiti

    2010-12-01

    Full Text Available Almost all religions incorporate some form of meditation. Muslim prayer is the meditation of Islam. It is an obligatory prayer for all Muslims that is performed five times a day. Although a large body of literature exists on EEG changes in meditation, to date there has been no research published in a peer-reviewed journal on EEG changes during Muslim prayer. The purpose of this pilot study is to encourage further investigation on this type of meditation. Results of EEG analysis in twenty-five trials of Muslim prayer are reported. Some of the findings are consistent with the majority of the previous meditation studies (alpha rhythm slowing, increased alpha rhythm coherence. However, Muslim prayer does not show an increase in alpha and/or theta power like most of the results of other meditation studies. The possible cause of this discrepancy in meditation-related studies is highlighted and a systematic and standardised roadmap for future Muslim prayer EEG research is proposed.

  20. Psychogenic seizures and frontal disconnection: EEG synchronisation study.

    Science.gov (United States)

    Knyazeva, Maria G; Jalili, Mahdi; Frackowiak, Richard S; Rossetti, Andrea O

    2011-05-01

    Psychogenic non-epileptic seizures (PNES) are paroxysmal events that, in contrast to epileptic seizures, are related to psychological causes without the presence of epileptiform EEG changes. Recent models suggest a multifactorial basis for PNES. A potentially paramount, but currently poorly understood factor is the interplay between psychiatric features and a specific vulnerability of the brain leading to a clinical picture that resembles epilepsy. Hypothesising that functional cerebral network abnormalities may predispose to the clinical phenotype, the authors undertook a characterisation of the functional connectivity in PNES patients. The authors analysed the whole-head surface topography of multivariate phase synchronisation (MPS) in interictal high-density EEG of 13 PNES patients as compared with 13 age- and sex-matched controls. MPS mapping reduces the wealth of dynamic data obtained from high-density EEG to easily readable synchronisation maps, which provide an unbiased overview of any changes in functional connectivity associated with distributed cortical abnormalities. The authors computed MPS maps for both Laplacian and common-average-reference EEGs. In a between-group comparison, only patchy, non-uniform changes in MPS survived conservative statistical testing. However, against the background of these unimpressive group results, the authors found widespread inverse correlations between individual PNES frequency and MPS within the prefrontal and parietal cortices. PNES appears to be associated with decreased prefrontal and parietal synchronisation, possibly reflecting dysfunction of networks within these regions.

  1. Synaptic damage underlies EEG abnormalities in postanoxic encephalopathy: A computational study.

    Science.gov (United States)

    Ruijter, B J; Hofmeijer, J; Meijer, H G E; van Putten, M J A M

    2017-09-01

    In postanoxic coma, EEG patterns indicate the severity of encephalopathy and typically evolve in time. We aim to improve the understanding of pathophysiological mechanisms underlying these EEG abnormalities. We used a mean field model comprising excitatory and inhibitory neurons, local synaptic connections, and input from thalamic afferents. Anoxic damage is modeled as aggravated short-term synaptic depression, with gradual recovery over many hours. Additionally, excitatory neurotransmission is potentiated, scaling with the severity of anoxic encephalopathy. Simulations were compared with continuous EEG recordings of 155 comatose patients after cardiac arrest. The simulations agree well with six common categories of EEG rhythms in postanoxic encephalopathy, including typical transitions in time. Plausible results were only obtained if excitatory synapses were more severely affected by short-term synaptic depression than inhibitory synapses. In postanoxic encephalopathy, the evolution of EEG patterns presumably results from gradual improvement of complete synaptic failure, where excitatory synapses are more severely affected than inhibitory synapses. The range of EEG patterns depends on the excitation-inhibition imbalance, probably resulting from long-term potentiation of excitatory neurotransmission. Our study is the first to relate microscopic synaptic dynamics in anoxic brain injury to both typical EEG observations and their evolution in time. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  2. Video-EEG epilepsian diagnostiikassa - milloin ja miksi?

    OpenAIRE

    Mervaala, Esa; Mäkinen, Riikka; Peltola, Jukka; Eriksson, Kai; Jutila, Leena; Immonen, Arto

    2009-01-01

    Aivosähkötoimintaa mittaava EEG on epilepsian spesifinen tutkimus. Video-EEG:llä (V-EEG) tarkoitetaan EEG:n ja videokuvan samanaikaista tallennusta. Valtaosa epilepsiapotilaista joudutaan diagnosoimaan ilman V-EEG:tä, varsinkin jos kohtauksia on esiintynyt vain muutama. Kohtausten toistuessa tavoite on päästä kohtauksenaikaiseen V-EEG-rekisteröintiin. V-EEG:n käyttöaiheista tärkein on epilepsian diagnostiikka ja erotusdiagnostiikka. V-EEG:llä pystytään erottamaan epileptiset kohtaukset esimer...

  3. Preterm EEG: a multimodal neurophysiological protocol.

    Science.gov (United States)

    Stjerna, Susanna; Voipio, Juha; Metsäranta, Marjo; Kaila, Kai; Vanhatalo, Sampsa

    2012-02-18

    Since its introduction in early 1950s, electroencephalography (EEG) has been widely used in the neonatal intensive care units (NICU) for assessment and monitoring of brain function in preterm and term babies. Most common indications are the diagnosis of epileptic seizures, assessment of brain maturity, and recovery from hypoxic-ischemic events. EEG recording techniques and the understanding of neonatal EEG signals have dramatically improved, but these advances have been slow to penetrate through the clinical traditions. The aim of this presentation is to bring theory and practice of advanced EEG recording available for neonatal units. In the theoretical part, we will present animations to illustrate how a preterm brain gives rise to spontaneous and evoked EEG activities, both of which are unique to this developmental phase, as well as crucial for a proper brain maturation. Recent animal work has shown that the structural brain development is clearly reflected in early EEG activity. Most important structures in this regard are the growing long range connections and the transient cortical structure, subplate. Sensory stimuli in a preterm baby will generate responses that are seen at a single trial level, and they have underpinnings in the subplate-cortex interaction. This brings neonatal EEG readily into a multimodal study, where EEG is not only recording cortical function, but it also tests subplate function via different sensory modalities. Finally, introduction of clinically suitable dense array EEG caps, as well as amplifiers capable of recording low frequencies, have disclosed multitude of brain activities that have as yet been overlooked. In the practical part of this video, we show how a multimodal, dense array EEG study is performed in neonatal intensive care unit from a preterm baby in the incubator. The video demonstrates preparation of the baby and incubator, application of the EEG cap, and performance of the sensory stimulations.

  4. Prediction of rhythmic and periodic EEG patterns and seizures on continuous EEG with early epileptiform discharges.

    Science.gov (United States)

    Koren, J; Herta, J; Draschtak, S; Pötzl, G; Pirker, S; Fürbass, F; Hartmann, M; Kluge, T; Baumgartner, C

    2015-08-01

    Continuous EEG (cEEG) is necessary to document nonconvulsive seizures (NCS), nonconvulsive status epilepticus (NCSE), as well as rhythmic and periodic EEG patterns of 'ictal-interictal uncertainty' (RPPIIU) including periodic discharges, rhythmic delta activity, and spike-and-wave complexes in neurological intensive care patients. However, cEEG is associated with significant recording and analysis efforts. Therefore, predictors from short-term routine EEG with a reasonably high yield are urgently needed in order to select patients for evaluation with cEEG. The aim of this study was to assess the prognostic significance of early epileptiform discharges (i.e., within the first 30 min of EEG recording) on the following: (1) incidence of ictal EEG patterns and RPPIIU on subsequent cEEG, (2) occurrence of acute convulsive seizures during the ICU stay, and (3) functional outcome after 6 months of follow-up. We conducted a separate analysis of the first 30 min and the remaining segments of prospective cEEG recordings according to the ACNS Standardized Critical Care EEG Terminology as well as NCS criteria and review of clinical data of 32 neurological critical care patients. In 17 patients with epileptiform discharges within the first 30 min of EEG (group 1), electrographic seizures were observed in 23.5% (n = 4), rhythmic or periodic EEG patterns of 'ictal-interictal uncertainty' in 64.7% (n = 11), and neither electrographic seizures nor RPPIIU in 11.8% (n = 2). In 15 patients with no epileptiform discharges in the first 30 min of EEG (group 2), no electrographic seizures were recorded on subsequent cEEG, RPPIIU were seen in 26.7% (n = 4), and neither electrographic seizures nor RPPIIU in 73.3% (n = 11). The incidence of EEG patterns on cEEG was significantly different between the two groups (p = 0.008). Patients with early epileptiform discharges developed acute seizures more frequently than patients without early epileptiform discharges (p = 0.009). Finally, functional

  5. Automatic seizure detection: going from sEEG to iEEG

    DEFF Research Database (Denmark)

    Henriksen, Jonas; Remvig, Line Sofie; Madsen, Rasmus Elsborg

    2010-01-01

    Several different algorithms have been proposed for automatic detection of epileptic seizures based on both scalp and intracranial electroencephalography (sEEG and iEEG). Which modality that renders the best result is hard to assess though. From 16 patients with focal epilepsy, at least 24 hours...... of ictal and non-ictal iEEG were obtained. Characteristics of the seizures are represented by use of wavelet transformation (WT) features and classified by a support vector machine. When implementing a method used for sEEG on iEEG data, a great improvement in performance was obtained when the high...... frequency containing lower levels in the WT were included in the analysis. We were able to obtain a sensitivity of 96.4% and a false detection rate (FDR) of 0.20/h. In general, when implementing an automatic seizure detection algorithm made for sEEG on iEEG, great improvement can be obtained if a frequency...

  6. EEG entropy measures in anesthesia

    Directory of Open Access Journals (Sweden)

    Zhenhu eLiang

    2015-02-01

    Full Text Available Objective: Entropy algorithms have been widely used in analyzing EEG signals during anesthesia. However, a systematic comparison of these entropy algorithms in assessing anesthesia drugs’ effect is lacking. In this study, we compare the capability of twelve entropy indices for monitoring depth of anesthesia (DoA and detecting the burst suppression pattern (BSP, in anesthesia induced by GA-BAergic agents.Methods: Twelve indices were investigated, namely Response Entropy (RE and State entropy (SE, three wavelet entropy (WE measures (Shannon WE (SWE, Tsallis WE (TWE and Renyi WE (RWE, Hilbert-Huang spectral entropy (HHSE, approximate entropy (ApEn, sample entropy (SampEn, Fuzzy entropy, and three permutation entropy (PE measures (Shannon PE (SPE, Tsallis PE (TPE and Renyi PE (RPE. Two EEG data sets from sevoflurane-induced and isoflu-rane-induced anesthesia respectively were selected to assess the capability of each entropy index in DoA monitoring and BSP detection. To validate the effectiveness of these entropy algorithms, phar-macokinetic / pharmacodynamic (PK/PD modeling and prediction probability analysis were applied. The multifractal detrended fluctuation analysis (MDFA as a non-entropy measure was compared.Results: All the entropy and MDFA indices could track the changes in EEG pattern during different anesthesia states. Three PE measures outperformed the other entropy indices, with less baseline vari-ability, higher coefficient of determination and prediction probability, and RPE performed best; ApEn and SampEn discriminated BSP best. Additionally, these entropy measures showed an ad-vantage in computation efficiency compared with MDFA.Conclusion: Each entropy index has its advantages and disadvantages in estimating DoA. Overall, it is suggested that the RPE index was a superior measure.Significance: Investigating the advantages and disadvantages of these entropy indices could help improve current clinical indices for monitoring DoA.

  7. Bristle-sensors—low-cost flexible passive dry EEG electrodes for neurofeedback and BCI applications

    Science.gov (United States)

    Grozea, Cristian; Voinescu, Catalin D.; Fazli, Siamac

    2011-04-01

    In this paper, we present a new, low-cost dry electrode for EEG that is made of flexible metal-coated polymer bristles. We examine various standard EEG paradigms, such as capturing occipital alpha rhythms, testing for event-related potentials in an auditory oddball paradigm and performing a sensory motor rhythm-based event-related (de-) synchronization paradigm to validate the performance of the novel electrodes in terms of signal quality. Our findings suggest that the dry electrodes that we developed result in high-quality EEG recordings and are thus suitable for a wide range of EEG studies and BCI applications. Furthermore, due to the flexibility of the novel electrodes, greater comfort is achieved in some subjects, this being essential for long-term use.

  8. An EEG-Based Person Authentication System with Open-Set Capability Combining Eye Blinking Signals.

    Science.gov (United States)

    Wu, Qunjian; Zeng, Ying; Zhang, Chi; Tong, Li; Yan, Bin

    2018-01-24

    The electroencephalogram (EEG) signal represents a subject's specific brain activity patterns and is considered as an ideal biometric given its superior forgery prevention. However, the accuracy and stability of the current EEG-based person authentication systems are still unsatisfactory in practical application. In this paper, a multi-task EEG-based person authentication system combining eye blinking is proposed, which can achieve high precision and robustness. Firstly, we design a novel EEG-based biometric evoked paradigm using self- or non-self-face rapid serial visual presentation (RSVP). The designed paradigm could obtain a distinct and stable biometric trait from EEG with a lower time cost. Secondly, the event-related potential (ERP) features and morphological features are extracted from EEG signals and eye blinking signals, respectively. Thirdly, convolutional neural network and back propagation neural network are severally designed to gain the score estimation of EEG features and eye blinking features. Finally, a score fusion technology based on least square method is proposed to get the final estimation score. The performance of multi-task authentication system is improved significantly compared to the system using EEG only, with an increasing average accuracy from 92.4% to 97.6%. Moreover, open-set authentication tests for additional imposters and permanence tests for users are conducted to simulate the practical scenarios, which have never been employed in previous EEG-based person authentication systems. A mean false accepted rate (FAR) of 3.90% and a mean false rejected rate (FRR) of 3.87% are accomplished in open-set authentication tests and permanence tests, respectively, which illustrate the open-set authentication and permanence capability of our systems.

  9. Assessing quantitative EEG spectrograms to identify non-epileptic events.

    Science.gov (United States)

    Goenka, Ajay; Boro, Alexis; Yozawitz, Elissa

    2017-09-01

    To evaluate the sensitivity and specificity of quantitative EEG (QEEG) spectrograms in order to distinguish epileptic from non-epileptic events. Seventeen patients with paroxysmal non-epileptic events, captured during EEG monitoring, were retrospectively assessed using QEEG spectrograms. These patients were compared to a control group of 13 consecutive patients (ages 25-60 years) with epileptic seizures of similar semiology. Assessment of raw EEG was employed as the gold standard against which epileptic and non-epileptic events were validated. QEEG spectrograms, available using Persyst 12 EEG system integration software, were each assessed with respect to their usefulness to distinguish epileptic from non-epileptic seizures. The given spectrogram was interpreted as indicating a seizure if, at the time of the clinically identified event, it showed a visually significant change from baseline. Eighty-two clinically identified paroxysmal events were analysed (46 non-epileptic and 36 epileptic). The "seizure detector trend analysis" spectrogram correctly classified 33/46 (71%) non-epileptic events (no seizure indicated during a clinically identified event) vs. 29/36 (81%) epileptic seizures (seizure indicated during a clinically identified event) (p=0.013). Similarly, "rhythmicity spectrogram", FFT spectrogram, "asymmetry relative spectrogram", and integrated-amplitude EEG spectrogram detected 28/46 (61%), 30/46 (65%), 22/46 (48%) and 27/46 (59%) non-epileptic events vs. 27/36 (75%), 25/36 (69%), 25/36 (69%) and 27/36 (75%) epileptic events, respectively. High sensitivities and specificities for QEEG seizure detection analyses suggest that QEEG may have a role at the bedside to facilitate early differentiation between epileptic seizures and non-epileptic events in order to avoid unnecessary administration of antiepileptic drugs and possible iatrogenic consequences.

  10. Increased theta band EEG power in sickle cell disease patients

    Directory of Open Access Journals (Sweden)

    Case M

    2017-12-01

    Full Text Available Michelle Case,1 Sina Shirinpour,1 Huishi Zhang,1 Yvonne H Datta,2 Stephen C Nelson,3 Karim T Sadak,4 Kalpna Gupta,2 Bin He1,5 1Department of Biomedical Engineering, 2Department of Medicine, University of Minnesota, 3Pediatric Hematology-Oncology, Children’s Hospitals and Clinics of Minnesota, 4Pediatric Hematology-Oncology, University of Minnesota Masonic Children’s Hospital, 5Institute for Engineering in Medicine, University of Minnesota, Minneapolis, MN, USA Objective: Pain is a major issue in the care of patients with sickle cell disease (SCD. The mechanisms behind pain and the best way to treat it are not well understood. We studied how electroencephalography (EEG is altered in SCD patients. Methods: We recruited 20 SCD patients and compared their resting state EEG to that of 14 healthy controls. EEG power was found across frequency bands using Welch’s method. Electrophysiological source imaging was assessed for each frequency band using the eLORETA algorithm. Results: SCD patients had increased theta power and decreased beta2 power compared to controls. Source localization revealed that areas of greater theta band activity were in areas related to pain processing. Imaging parameters were significantly correlated to emergency department visits, which indicate disease severity and chronic pain intensity. Conclusion: The present results support the pain mechanism referred to as thalamocortical dysrhythmia. This mechanism causes increased theta power in patients. Significance: Our findings show that EEG can be used to quantitatively evaluate differences between controls and SCD patients. Our results show the potential of EEG to differentiate between different levels of pain in an unbiased setting, where specific frequency bands could be used as biomarkers for chronic pain. Keywords: sickle cell disease, electroencephalography, chronic pain, electrophysiological source imaging, thalamocortical dysrhythmia

  11. EEG entropy measures in anesthesia

    Science.gov (United States)

    Liang, Zhenhu; Wang, Yinghua; Sun, Xue; Li, Duan; Voss, Logan J.; Sleigh, Jamie W.; Hagihira, Satoshi; Li, Xiaoli

    2015-01-01

    Highlights: ► Twelve entropy indices were systematically compared in monitoring depth of anesthesia and detecting burst suppression.► Renyi permutation entropy performed best in tracking EEG changes associated with different anesthesia states.► Approximate Entropy and Sample Entropy performed best in detecting burst suppression. Objective: Entropy algorithms have been widely used in analyzing EEG signals during anesthesia. However, a systematic comparison of these entropy algorithms in assessing anesthesia drugs' effect is lacking. In this study, we compare the capability of 12 entropy indices for monitoring depth of anesthesia (DoA) and detecting the burst suppression pattern (BSP), in anesthesia induced by GABAergic agents. Methods: Twelve indices were investigated, namely Response Entropy (RE) and State entropy (SE), three wavelet entropy (WE) measures [Shannon WE (SWE), Tsallis WE (TWE), and Renyi WE (RWE)], Hilbert-Huang spectral entropy (HHSE), approximate entropy (ApEn), sample entropy (SampEn), Fuzzy entropy, and three permutation entropy (PE) measures [Shannon PE (SPE), Tsallis PE (TPE) and Renyi PE (RPE)]. Two EEG data sets from sevoflurane-induced and isoflurane-induced anesthesia respectively were selected to assess the capability of each entropy index in DoA monitoring and BSP detection. To validate the effectiveness of these entropy algorithms, pharmacokinetic/pharmacodynamic (PK/PD) modeling and prediction probability (Pk) analysis were applied. The multifractal detrended fluctuation analysis (MDFA) as a non-entropy measure was compared. Results: All the entropy and MDFA indices could track the changes in EEG pattern during different anesthesia states. Three PE measures outperformed the other entropy indices, with less baseline variability, higher coefficient of determination (R2) and prediction probability, and RPE performed best; ApEn and SampEn discriminated BSP best. Additionally, these entropy measures showed an advantage in computation

  12. EEG applications for sport and performance.

    Science.gov (United States)

    Thompson, Trevor; Steffert, Tony; Ros, Tomas; Leach, Joseph; Gruzelier, John

    2008-08-01

    One approach to understanding processes that underlie skilled performing has been to study electrical brain activity using electroencephalography (EEG). A notorious problem with EEG is that genuine cerebral data is often contaminated by artifacts of non-cerebral origin. Unfortunately, such artifacts tend to be exacerbated when the subject is in motion, meaning that obtaining reliable data during exercise is inherently problematic. These problems may explain the limited number of studies using EEG as a methodological tool in the sports sciences. This paper discusses how empirical studies have generally tackled the problem of movement artifact by adopting alternative paradigms which avoid recording during actual physical exertion. Moreover, the specific challenges that motion presents to obtaining reliable EEG data are discussed along with practical and computational techniques to confront these challenges. Finally, as EEG recording in sports is often underpinned by a desire to optimise performance, a brief review of EEG-biofeedback and peak performance studies is also presented. A knowledge of practical aspects of EEG recording along with the advent of new technology and increasingly sophisticated processing models offer a promising approach to minimising, if perhaps not entirely circumventing, the problem of obtaining reliable EEG data during motion.

  13. Effects of oral amines on the EEG.

    Science.gov (United States)

    Scott, D F; Moffett, A M; Swash, M

    1977-02-01

    Oral tyramine activated pre-existing episodic EEG abnormalities--namely, sharp waves, spike and wave, and localised theta activity--in epileptic patients. Little change was found in the EEGs of migrainous subjects after chocolate or beta-phenylethylamine. The implications of the findings with tyramine are discussed.

  14. Source localization of rhythmic ictal EEG activity

    DEFF Research Database (Denmark)

    Beniczky, Sándor; Lantz, Göran; Rosenzweig, Ivana

    2013-01-01

    Although precise identification of the seizure-onset zone is an essential element of presurgical evaluation, source localization of ictal electroencephalography (EEG) signals has received little attention. The aim of our study was to estimate the accuracy of source localization of rhythmic ictal...... EEG activity using a distributed source model....

  15. Changes of hypnagogic imagery and EEG stages

    OpenAIRE

    Hayashi, Mitsuo; Katoh, Kohichi; Hori, Tadao

    1998-01-01

    The aim of this study is to investigate the relationships between hypnagogic imagery and EEG stages. According to Hori, et al. (1994), the hypnagogic EEGs was classified into 9 stages, those were 1) alpha wave train, 2) alpha wave intermittent (>50%), 3) alpha wave intermittent (

  16. Continuous EEG Monitoring in Aneurysmal Subarachnoid Hemorrhage

    DEFF Research Database (Denmark)

    Kondziella, Daniel; Friberg, Christian Kærsmose; Wellwood, Ian

    2015-01-01

    BACKGROUND: Continuous EEG (cEEG) may allow monitoring of patients with aneurysmal subarachnoid hemorrhage (SAH) for delayed cerebral ischemia (DCI) and seizures, including non-convulsive seizures (NCSz), and non-convulsive status epilepticus (NCSE). We aimed to evaluate: (a) the diagnostic...

  17. Slowing and Loss of Complexity in Alzheimer's EEG: Two Sides of the Same Coin?

    Directory of Open Access Journals (Sweden)

    Justin Dauwels

    2011-01-01

    Full Text Available Medical studies have shown that EEG of Alzheimer's disease (AD patients is “slower” (i.e., contains more low-frequency power and is less complex compared to age-matched healthy subjects. The relation between those two phenomena has not yet been studied, and they are often silently assumed to be independent. In this paper, it is shown that both phenomena are strongly related. Strong correlation between slowing and loss of complexity is observed in two independent EEG datasets: (1 EEG of predementia patients (a.k.a. Mild Cognitive Impairment; MCI and control subjects; (2 EEG of mild AD patients and control subjects. The two data sets are from different patients, different hospitals and obtained through different recording systems. The paper also investigates the potential of EEG slowing and loss of EEG complexity as indicators of AD onset. In particular, relative power and complexity measures are used as features to classify the MCI and MiAD patients versus age-matched control subjects. When combined with two synchrony measures (Granger causality and stochastic event synchrony, classification rates of 83% (MCI and 98% (MiAD are obtained. By including the compression ratios as features, slightly better classification rates are obtained than with relative power and synchrony measures alone.

  18. Evaluation of EEG Features in Decoding Individual Finger Movements from One Hand

    Directory of Open Access Journals (Sweden)

    Ran Xiao

    2013-01-01

    Full Text Available With the advancements in modern signal processing techniques, the field of brain-computer interface (BCI is progressing fast towards noninvasiveness. One challenge still impeding these developments is the limited number of features, especially movement-related features, available to generate control signals for noninvasive BCIs. A few recent studies investigated several movement-related features, such as spectral features in electrocorticography (ECoG data obtained through a spectral principal component analysis (PCA and direct use of EEG temporal data, and demonstrated the decoding of individual fingers. The present paper evaluated multiple movement-related features under the same task, that is, discriminating individual fingers from one hand using noninvasive EEG. The present results demonstrate the existence of a broadband feature in EEG to discriminate individual fingers, which has only been identified previously in ECoG. It further shows that multiple spectral features obtained from the spectral PCA yield an average decoding accuracy of 45.2%, which is significantly higher than the guess level (P<0.05 and other features investigated (P<0.05, including EEG spectral power changes in alpha and beta bands and EEG temporal data. The decoding of individual fingers using noninvasive EEG is promising to improve number of features for control, which can facilitate the development of noninvasive BCI applications with rich complexity.

  19. Automatic Seizure Detection in Rats Using Laplacian EEG and Verification with Human Seizure Signals

    Science.gov (United States)

    Feltane, Amal; Boudreaux-Bartels, G. Faye; Besio, Walter

    2012-01-01

    Automated detection of seizures is still a challenging problem. This study presents an approach to detect seizure segments in Laplacian electroencephalography (tEEG) recorded from rats using the tripolar concentric ring electrode (TCRE) configuration. Three features, namely, median absolute deviation, approximate entropy, and maximum singular value were calculated and used as inputs into two different classifiers: support vector machines and adaptive boosting. The relative performance of the extracted features on TCRE tEEG was examined. Results are obtained with an overall accuracy between 84.81 and 96.51%. In addition to using TCRE tEEG data, the seizure detection algorithm was also applied to the recorded EEG signals from Andrzejak et al. database to show the efficiency of the proposed method for seizure detection. PMID:23073989

  20. Concordance and discordance between PET images and foci of scalp EEG

    International Nuclear Information System (INIS)

    Iinuma, Kazuie; Haginoya, Kazuhiro; Yanai, Kazuhiko; Hatazawa, Jun; Ito, Masatoshi.

    1989-01-01

    Epileptic foci were determined by scalp EEG and positron emission tomography (PET) with fluorine 18 in 22 children with partial epilepsy (PE, n=13) and Lennoxy-Gastaut syndrome (LGS, n=9). The patients ranged in age from 6 to 18 years. The pattern of hypometabolism was classified into the following 4 categories: non-focal, localized, hemispheric, and diffuse. In the group of PE patients, 11 showed a relative agreement between the EEG foci and region of a low cerebral metabolic rate for glucose (CMRglc) determined by PET. A decreased CMRglc was matched with the EEG foci in 4 patients with LGS. A tendency of a higher relationship between the EEG foci and PET images was significant in PE than LGS. (N.K.)

  1. Long-Range Correlation in alpha-Wave Predominant EEG in Human

    Science.gov (United States)

    Sharif, Asif; Chyan Lin, Der; Kwan, Hon; Borette, D. S.

    2004-03-01

    The background noise in the alpha-predominant EEG taken from eyes-open and eyes-closed neurophysiological states is studied. Scale-free characteristic is found in both cases using the wavelet approach developed by Simonsen and Nes [1]. The numerical results further show the scaling exponent during eyes-closed is consistently lower than eyes-open. We conjecture the origin of this difference is related to the temporal reconfiguration of the neural network in the brain. To further investigate the scaling structure of the EEG background noise, we extended the second order statistics to higher order moments using the EEG increment process. We found that the background fluctuation in the alpha-predominant EEG is predominantly monofractal. Preliminary results are given to support this finding and its implication in brain functioning is discussed. [1] A.H. Simonsen and O.M. Nes, Physical Review E, 58, 2779¡V2748 (1998).

  2. The Performance of EEG-P300 Classification using Backpropagation Neural Networks

    Directory of Open Access Journals (Sweden)

    Arjon Turnip

    2013-12-01

    Full Text Available Electroencephalogram (EEG recordings signal provide an important function of brain-computer communication, but the accuracy of their classification is very limited in unforeseeable signal variations relating to artifacts. In this paper, we propose a classification method entailing time-series EEG-P300 signals using backpropagation neural networks to predict the qualitative properties of a subject’s mental tasks by extracting useful information from the highly multivariate non-invasive recordings of brain activity. To test the improvement in the EEG-P300 classification performance (i.e., classification accuracy and transfer rate with the proposed method, comparative experiments were conducted using Bayesian Linear Discriminant Analysis (BLDA. Finally, the result of the experiment showed that the average of the classification accuracy was 97% and the maximum improvement of the average transfer rate is 42.4%, indicating the considerable potential of the using of EEG-P300 for the continuous classification of mental tasks.

  3. Resting-state qEEG predicts rate of second language learning in adults.

    Science.gov (United States)

    Prat, Chantel S; Yamasaki, Brianna L; Kluender, Reina A; Stocco, Andrea

    2016-01-01

    Understanding the neurobiological basis of individual differences in second language acquisition (SLA) is important for research on bilingualism, learning, and neural plasticity. The current study used quantitative electroencephalography (qEEG) to predict SLA in college-aged individuals. Baseline, eyes-closed resting-state qEEG was used to predict language learning rate during eight weeks of French exposure using an immersive, virtual scenario software. Individual qEEG indices predicted up to 60% of the variability in SLA, whereas behavioral indices of fluid intelligence, executive functioning, and working-memory capacity were not correlated with learning rate. Specifically, power in beta and low-gamma frequency ranges over right temporoparietal regions were strongly positively correlated with SLA. These results highlight the utility of resting-state EEG for studying the neurobiological basis of SLA in a relatively construct-free, paradigm-independent manner. Published by Elsevier Inc.

  4. Drowsiness detection for single channel EEG by DWT best m-term approximation

    Directory of Open Access Journals (Sweden)

    Tiago da Silveira

    Full Text Available Introduction In this paper we propose a promising new technique for drowsiness detection. It consists of applying the best m-term approximation on a single-channel electroencephalography (EEG signal preprocessed through a discrete wavelet transform. Methods In order to classify EEG epochs as awake or drowsy states, the most significant m terms from the wavelet expansion of an EEG signal are selected according to the magnitude of their coefficients related to the alpha and beta rhythms. Results By using a simple thresholding strategy it provides hit rates comparable to those using more complex techniques. It was tested on a set of 6 hours and 50 minutes EEG drowsiness signals from PhysioNet Sleep Database yielding an overall sensitivity (TPR of 84.98% and 98.65% of precision (PPV. Conclusion The method has proved itself efficient at separating data from different brain rhythms, thus alleviating the requirement for complex post-processing classification algorithms.

  5. Quantitative topographic differentiation of the neonatal EEG.

    Science.gov (United States)

    Paul, Karel; Krajca, Vladimír; Roth, Zdenek; Melichar, Jan; Petránek, Svojmil

    2006-09-01

    To test the discriminatory topographic potential of a new method of the automatic EEG analysis in neonates. A quantitative description of the neonatal EEG can contribute to the objective assessment of the functional state of the brain, and may improve the precision of diagnosing cerebral dysfunctions manifested by 'disorganization', 'dysrhythmia' or 'dysmaturity'. 21 healthy, full-term newborns were examined polygraphically during sleep (EEG-8 referential derivations, respiration, ECG, EOG, EMG). From each EEG record, two 5-min samples (one from the middle of quiet sleep, the other from the middle of active sleep) were subject to subsequent automatic analysis and were described by 13 variables: spectral features and features describing shape and variability of the signal. The data from individual infants were averaged and the number of variables was reduced by factor analysis. All factors identified by factor analysis were statistically significantly influenced by the location of derivation. A large number of statistically significant differences were also established when comparing the effects of individual derivations on each of the 13 measured variables. Both spectral features and features describing shape and variability of the signal are largely accountable for the topographic differentiation of the neonatal EEG. The presented method of the automatic EEG analysis is capable to assess the topographic characteristics of the neonatal EEG, and it is adequately sensitive and describes the neonatal electroencephalogram with sufficient precision. The discriminatory capability of the used method represents a promise for their application in the clinical practice.

  6. Surface EEG-Transcranial Direct Current Stimulation (tDCS) Closed-Loop System.

    Science.gov (United States)

    Leite, Jorge; Morales-Quezada, Leon; Carvalho, Sandra; Thibaut, Aurore; Doruk, Deniz; Chen, Chiun-Fan; Schachter, Steven C; Rotenberg, Alexander; Fregni, Felipe

    2017-09-01

    Conventional transcranial direct current stimulation (tDCS) protocols rely on applying electrical current at a fixed intensity and duration without using surrogate markers to direct the interventions. This has led to some mixed results; especially because tDCS induced effects may vary depending on the ongoing level of brain activity. Therefore, the objective of this preliminary study was to assess the feasibility of an EEG-triggered tDCS system based on EEG online analysis of its frequency bands. Six healthy volunteers were randomized to participate in a double-blind sham-controlled crossover design to receive a single session of 10[Formula: see text]min 2[Formula: see text]mA cathodal and sham tDCS. tDCS trigger controller was based upon an algorithm designed to detect an increase in the relative beta power of more than 200%, accompanied by a decrease of 50% or more in the relative alpha power, based on baseline EEG recordings. EEG-tDCS closed-loop-system was able to detect the predefined EEG magnitude deviation and successfully triggered the stimulation in all participants. This preliminary study represents a proof-of-concept for the development of an EEG-tDCS closed-loop system in humans. We discuss and review here different methods of closed loop system that can be considered and potential clinical applications of such system.

  7. Contribution of EEG in transient neurological deficits.

    Science.gov (United States)

    Lozeron, Pierre; Tcheumeni, Nadine Carole; Turki, Sahar; Amiel, Hélène; Meppiel, Elodie; Masmoudi, Sana; Roos, Caroline; Crassard, Isabelle; Plaisance, Patrick; Benbetka, Houria; Guichard, Jean-Pierre; Houdart, Emmanuel; Baudoin, Hélène; Kubis, Nathalie

    2018-01-01

    Identification of stroke mimics and 'chameleons' among transient neurological deficits (TND) is critical. Diagnostic workup consists of a brain imaging study, for a vascular disease or a brain tumour and EEG, for epileptiform discharges. The precise role of EEG in this diagnostic workup has, however, never been clearly delineated. However, this could be crucial in cases of atypical or incomplete presentation with consequences on disease management and treatment. We analysed the EEG patterns on 95 consecutive patients referred for an EEG within 7 days of a TND with diagnostic uncertainty. Patients were classified at the discharge or the 3-month follow-up visit as: 'ischemic origin', 'migraine aura', 'focal seizure', and 'other'. All patients had a brain imaging study. EEG characteristics were correlated to the TND symptoms, imaging study, and final diagnosis. Sixty four (67%) were of acute onset. Median symptom duration was 45 min. Thirty two % were 'ischemic', 14% 'migraine aura', 19% 'focal seizure', and 36% 'other' cause. EEGs were recorded with a median delay of 1.6 day after symptoms onset. Forty EEGs (42%) were abnormal. Focal slow waves were the most common finding (43%), also in the ischemic group (43%), whether patients had a typical presentation or not. Epileptiform discharges were found in three patients, one with focal seizure and two with migraine aura. Non-specific EEG focal slowing is commonly found in TND, and may last several days. We found no difference in EEG presentation between stroke mimics and stroke chameleons, and between other diagnoses.

  8. Auto-correlation in the motor/imaginary human EEG signals: A vision about the FDFA fluctuations.

    Directory of Open Access Journals (Sweden)

    Gilney Figueira Zebende

    Full Text Available In this paper we analyzed, by the FDFA root mean square fluctuation (rms function, the motor/imaginary human activity produced by a 64-channel electroencephalography (EEG. We utilized the Physionet on-line databank, a publicly available database of human EEG signals, as a standardized reference database for this study. Herein, we report the use of detrended fluctuation analysis (DFA method for EEG analysis. We show that the complex time series of the EEG exhibits characteristic fluctuations depending on the analyzed channel in the scalp-recorded EEG. In order to demonstrate the effectiveness of the proposed technique, we analyzed four distinct channels represented here by F332, F637 (frontal region of the head and P349, P654 (parietal region of the head. We verified that the amplitude of the FDFA rms function is greater for the frontal channels than for the parietal. To tabulate this information in a better way, we define and calculate the difference between FDFA (in log scale for the channels, thus defining a new path for analysis of EEG signals. Finally, related to the studied EEG signals, we obtain the auto-correlation exponent, αDFA by DFA method, that reveals self-affinity at specific time scale. Our results shows that this strategy can be applied to study the human brain activity in EEG processing.

  9. Behavioral and EEG evidence for auditory memory suppression

    Directory of Open Access Journals (Sweden)

    Maya Elizabeth Cano

    2016-03-01

    Full Text Available The neural basis of motivated forgetting using the Think/No-Think (TNT paradigm is receiving increased attention with a particular focus on the mechanisms that enable memory suppression. However, most TNT studies have been limited to the visual domain. To assess whether and to what extent direct memory suppression extends across sensory modalities, we examined behavioral and electroencephalographic (EEG effects of auditory Think/No-Think in healthy young adults by adapting the TNT paradigm to the auditory modality. Behaviorally, suppression of memory strength was indexed by prolonged response times during the retrieval of subsequently remembered No-Think words. We examined task-related EEG activity of both attempted memory retrieval and inhibition of a previously learned target word during the presentation of its paired associate. Event-related EEG responses revealed two main findings: 1 a centralized Think > No-Think positivity during auditory word presentation (from approximately 0-500ms, and 2 a sustained Think positivity over parietal electrodes beginning at approximately 600ms reflecting the memory retrieval effect which was significantly reduced for No-Think words. In addition, word-locked theta (4-8 Hz power was initially greater for No-Think compared to Think during auditory word presentation over fronto-central electrodes. This was followed by a posterior theta increase indexing successful memory retrieval in the Think condition.The observed event-related potential pattern and theta power analysis are similar to that reported in visual Think/No-Think studies and support a modality non-specific mechanism for memory inhibition. The EEG data also provide evidence supporting differing roles and time courses of frontal and parietal regions in the flexible control of auditory memory.

  10. Behavioral and EEG Evidence for Auditory Memory Suppression.

    Science.gov (United States)

    Cano, Maya E; Knight, Robert T

    2016-01-01

    The neural basis of motivated forgetting using the Think/No-Think (TNT) paradigm is receiving increased attention with a particular focus on the mechanisms that enable memory suppression. However, most TNT studies have been limited to the visual domain. To assess whether and to what extent direct memory suppression extends across sensory modalities, we examined behavioral and electroencephalographic (EEG) effects of auditory TNT in healthy young adults by adapting the TNT paradigm to the auditory modality. Behaviorally, suppression of memory strength was indexed by prolonged response time (RTs) during the retrieval of subsequently remembered No-Think words. We examined task-related EEG activity of both attempted memory retrieval and inhibition of a previously learned target word during the presentation of its paired associate. Event-related EEG responses revealed two main findings: (1) a centralized Think > No-Think positivity during auditory word presentation (from approximately 0-500 ms); and (2) a sustained Think positivity over parietal electrodes beginning at approximately 600 ms reflecting the memory retrieval effect which was significantly reduced for No-Think words. In addition, word-locked theta (4-8 Hz) power was initially greater for No-Think compared to Think during auditory word presentation over fronto-central electrodes. This was followed by a posterior theta increase indexing successful memory retrieval in the Think condition. The observed event-related potential pattern and theta power analysis are similar to that reported in visual TNT studies and support a modality non-specific mechanism for memory inhibition. The EEG data also provide evidence supporting differing roles and time courses of frontal and parietal regions in the flexible control of auditory memory.

  11. Assessment of preconscious sucrose perception using EEG

    DEFF Research Database (Denmark)

    Rotvel, Camilla; Møller, Stine; Nielsen, Rene R

    The objective of the current study is to develop a methodology for food ingredient screening based on Electro-Encephalo-Graphy (EEG). EEG measures electrical activity in the central nervous system, allowing assessment of activity in the ascending gustatory pathway from the taste buds on the tongue...... stimulus. The EEG was recorded using a 64 electrode setup, and gustatory evoked potentials (GEP) were estimated by coherent averaging across all 60 stimulations for each concentration. Cortical source localization based on the GEP was performed using a low resolution electromagnetic tomography (LORETA...

  12. Analyzing Electroencephalogram Signal Using EEG Lab

    Directory of Open Access Journals (Sweden)

    Mukesh BHARDWAJ

    2009-01-01

    Full Text Available The EEG is composed of electrical potentials arising from several sources. Each source (including separate neural clusters, blink artifact or pulse artifact forms a unique topography onto the scalp – ‘scalp map‘. Scalp map may be 2-D or 3-D.These maps are mixed according to the principle of linear superposition. Independent component analysis (ICA attempts to reverse the superposition by separating the EEG into mutually independent scalp maps, or components. MATLAB toolbox and graphic user interface, EEGLAB is used for processing EEG data of any number of channels. Wavelet toolbox has been used for 2-D signal analysis.

  13. Combining Cryptography with EEG Biometrics.

    Science.gov (United States)

    Damaševičius, Robertas; Maskeliūnas, Rytis; Kazanavičius, Egidijus; Woźniak, Marcin

    2018-01-01

    Cryptographic frameworks depend on key sharing for ensuring security of data. While the keys in cryptographic frameworks must be correctly reproducible and not unequivocally connected to the identity of a user, in biometric frameworks this is different. Joining cryptography techniques with biometrics can solve these issues. We present a biometric authentication method based on the discrete logarithm problem and Bose-Chaudhuri-Hocquenghem (BCH) codes, perform its security analysis, and demonstrate its security characteristics. We evaluate a biometric cryptosystem using our own dataset of electroencephalography (EEG) data collected from 42 subjects. The experimental results show that the described biometric user authentication system is effective, achieving an Equal Error Rate (ERR) of 0.024.

  14. PyEEG: An Open Source Python Module for EEG/MEG Feature Extraction

    OpenAIRE

    Bao, Forrest Sheng; Liu, Xin; Zhang, Christina

    2011-01-01

    Computer-aided diagnosis of neural diseases from EEG signals (or other physiological signals that can be treated as time series, e.g., MEG) is an emerging field that has gained much attention in past years. Extracting features is a key component in the analysis of EEG signals. In our previous works, we have implemented many EEG feature extraction functions in the Python programming language. As Python is gaining more ground in scientific computing, an open source Python module for extracting ...

  15. Localizing Brain Activity from Multiple Distinct Sources via EEG

    Directory of Open Access Journals (Sweden)

    George Dassios

    2014-01-01

    Full Text Available An important question arousing in the framework of electroencephalography (EEG is the possibility to recognize, by means of a recorded surface potential, the number of activated areas in the brain. In the present paper, employing a homogeneous spherical conductor serving as an approximation of the brain, we provide a criterion which determines whether the measured surface potential is evoked by a single or multiple localized neuronal excitations. We show that the uniqueness of the inverse problem for a single dipole is closely connected with attaining certain relations connecting the measured data. Further, we present the necessary and sufficient conditions which decide whether the collected data originates from a single dipole or from numerous dipoles. In the case where the EEG data arouses from multiple parallel dipoles, an isolation of the source is, in general, not possible.

  16. Computerized EEG and brain imaging studies in untreated schizophrenic patients

    International Nuclear Information System (INIS)

    Miyauchi, Toshiro; Kishimoto, Hideji; Hagimoto, Hiroshi; Fujita, Haruhiro; Tanaka, Kenkichi

    1993-01-01

    We undertook routine EEG, Z-map, CT and PET scans in seven acute untreated schizophrenics. Routine EEGs showed slower activity in only one case. However, the Z-map showed slower activity in all the cases. CT demonstrated brain atrophy in three of the cases, and PET revealed hypofrontality in two, right hypoparietality in four, and both conditions in one case. There was no relation between CT and PET or the Z-map. However, a significant increase in alpha 1 activity was demonstrated on the Z-map in cases who were found to be the parietal type on PET; this was not conspicuous in the frontal type on PET. Moreover, in three of the patients, the Z-map findings were similar to the lesion indicated on PET. (author)

  17. High-accuracy user identification using EEG biometrics.

    Science.gov (United States)

    Koike-Akino, Toshiaki; Mahajan, Ruhi; Marks, Tim K; Ye Wang; Watanabe, Shinji; Tuzel, Oncel; Orlik, Philip

    2016-08-01

    We analyze brain waves acquired through a consumer-grade EEG device to investigate its capabilities for user identification and authentication. First, we show the statistical significance of the P300 component in event-related potential (ERP) data from 14-channel EEGs across 25 subjects. We then apply a variety of machine learning techniques, comparing the user identification performance of various different combinations of a dimensionality reduction technique followed by a classification algorithm. Experimental results show that an identification accuracy of 72% can be achieved using only a single 800 ms ERP epoch. In addition, we demonstrate that the user identification accuracy can be significantly improved to more than 96.7% by joint classification of multiple epochs.

  18. EEG potentials predict upcoming emergency brakings during simulated driving

    Science.gov (United States)

    Haufe, Stefan; Treder, Matthias S.; Gugler, Manfred F.; Sagebaum, Max; Curio, Gabriel; Blankertz, Benjamin

    2011-10-01

    Emergency braking assistance has the potential to prevent a large number of car crashes. State-of-the-art systems operate in two stages. Basic safety measures are adopted once external sensors indicate a potential upcoming crash. If further activity at the brake pedal is detected, the system automatically performs emergency braking. Here, we present the results of a driving simulator study indicating that the driver's intention to perform emergency braking can be detected based on muscle activation and cerebral activity prior to the behavioural response. Identical levels of predictive accuracy were attained using electroencephalography (EEG), which worked more quickly than electromyography (EMG), and using EMG, which worked more quickly than pedal dynamics. A simulated assistance system using EEG and EMG was found to detect emergency brakings 130 ms earlier than a system relying only on pedal responses. At 100 km h-1 driving speed, this amounts to reducing the braking distance by 3.66 m. This result motivates a neuroergonomic approach to driving assistance. Our EEG analysis yielded a characteristic event-related potential signature that comprised components related to the sensory registration of a critical traffic situation, mental evaluation of the sensory percept and motor preparation. While all these components should occur often during normal driving, we conjecture that it is their characteristic spatio-temporal superposition in emergency braking situations that leads to the considerable prediction performance we observed.

  19. Plethysmogram and EEG: Effects of Music and Voice Sound

    Science.gov (United States)

    Miao, Tiejun; Oyama-Higa, Mayumi; Sato, Sadaka; Kojima, Junji; Lin, Juan; Reika, Sato

    2011-06-01

    We studied a relation of chaotic dynamics of finger plethysmogram to complexity of high cerebral center in both theoretical and experimental approaches. We proposed a mathematical model to describe emergence of chaos in finger tip pulse wave, which gave a theoretical prediction indicating increased chaoticity in higher cerebral center leading to an increase of chaos dynamics in plethysmograms. We designed an experiment to observe scalp-EEG and finger plethysmogram using two mental tasks to validate the relationship. We found that scalp-EEG showed an increase of the largest Lyapunov exponents (LLE) during speaking certain voices. Topographical scalp map of LLE showed enhanced arise around occipital and right cerebral area. Whereas there was decreasing tendency during listening music, where LLE scalp map revealed a drop around center cerebral area. The same tendency was found for LLE obtained from finger plethysmograms as ones of EEG under either speaking or listening tasks. The experiment gave results that agreed well with the theoretical relation derived from our proposed model.

  20. Gender differences in association between serotonin transporter gene polymorphism and resting-state EEG activity.

    Science.gov (United States)

    Volf, N V; Belousova, L V; Knyazev, G G; Kulikov, A V

    2015-01-22

    Human brain oscillations represent important features of information processing and are highly heritable. Gender has been observed to affect association between the 5-HTTLPR (serotonin-transporter-linked polymorphic region) polymorphism and various endophenotypes. This study aimed to investigate the effects of 5-HTTLPR on the spontaneous electroencephalography (EEG) activity in healthy male and female subjects. DNA samples extracted from buccal swabs and resting EEG recorded at 60 standard leads were collected from 210 (101 men and 109 women) volunteers. Spectral EEG power estimates and cortical sources of EEG activity were investigated. It was shown that effects of 5-HTTLPR polymorphism on electrical activity of the brain vary as a function of gender. Women with the S/L genotype had greater global EEG power compared to men with the same genotype. In men, current source density was markedly different among genotype groups in only alpha 2 and alpha 3 frequency ranges: S/S allele carriers had higher current source density estimates in the left inferior parietal lobule in comparison with the L/L group. In women, genotype difference in global power asymmetry was found in the central-temporal region. Contrasting L/L and S/L genotype carriers also yielded significant effects in the right hemisphere inferior parietal lobule and the right postcentral gyrus with L/L genotype carriers showing lower current source density estimates than S/L genotype carriers in all but gamma bands. So, in women, the effects of 5-HTTLPR polymorphism were associated with modulation of the EEG activity in a wide range of EEG frequencies. The significance of the results lies in the demonstration of gene by sex interaction with resting EEG that has implications for understanding sex-related differences in affective states, emotion and cognition. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. Integration of EEG source imaging and fMRI during continuous viewing of natural movies.

    Science.gov (United States)

    Whittingstall, Kevin; Bartels, Andreas; Singh, Vanessa; Kwon, Soyoung; Logothetis, Nikos K

    2010-10-01

    Electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) are noninvasive neuroimaging tools which can be used to measure brain activity with excellent temporal and spatial resolution, respectively. By combining the neural and hemodynamic recordings from these modalities, we can gain better insight into how and where the brain processes complex stimuli, which may be especially useful in patients with different neural diseases. However, due to their vastly different spatial and temporal resolutions, the integration of EEG and fMRI recordings is not always straightforward. One fundamental obstacle has been that paradigms used for EEG experiments usually rely on event-related paradigms, while fMRI is not limited in this regard. Therefore, here we ask whether one can reliably localize stimulus-driven EEG activity using the continuously varying feature intensities occurring in natural movie stimuli presented over relatively long periods of time. Specifically, we asked whether stimulus-driven aspects in the EEG signal would be co-localized with the corresponding stimulus-driven BOLD signal during free viewing of a movie. Secondly, we wanted to integrate the EEG signal directly with the BOLD signal, by estimating the underlying impulse response function (IRF) that relates the BOLD signal to the underlying current density in the primary visual area (V1). We made sequential fMRI and 64-channel EEG recordings in seven subjects who passively watched 2-min-long segments of a James Bond movie. To analyze EEG data in this natural setting, we developed a method based on independent component analysis (ICA) to reject EEG artifacts due to blinks, subject movement, etc., in a way unbiased by human judgment. We then calculated the EEG source strength of this artifact-free data at each time point of the movie within the entire brain volume using low-resolution electromagnetic tomography (LORETA). This provided for every voxel in the brain (i.e., in 3D space) an

  2. Validation of the Emotiv EPOC(®) EEG gaming system for measuring research quality auditory ERPs.

    Science.gov (United States)

    Badcock, Nicholas A; Mousikou, Petroula; Mahajan, Yatin; de Lissa, Peter; Thie, Johnson; McArthur, Genevieve

    2013-01-01

    Background. Auditory event-related potentials (ERPs) have proved useful in investigating the role of auditory processing in cognitive disorders such as developmental dyslexia, specific language impairment (SLI), attention deficit hyperactivity disorder (ADHD), schizophrenia, and autism. However, laboratory recordings of auditory ERPs can be lengthy, uncomfortable, or threatening for some participants - particularly children. Recently, a commercial gaming electroencephalography (EEG) system has been developed that is portable, inexpensive, and easy to set up. In this study we tested if auditory ERPs measured using a gaming EEG system (Emotiv EPOC(®), www.emotiv.com) were equivalent to those measured by a widely-used, laboratory-based, research EEG system (Neuroscan). Methods. We simultaneously recorded EEGs with the research and gaming EEG systems, whilst presenting 21 adults with 566 standard (1000 Hz) and 100 deviant (1200 Hz) tones under passive (non-attended) and active (attended) conditions. The onset of each tone was marked in the EEGs using a parallel port pulse (Neuroscan) or a stimulus-generated electrical pulse injected into the O1 and O2 channels (Emotiv EPOC(®)). These markers were used to calculate research and gaming EEG system late auditory ERPs (P1, N1, P2, N2, and P3 peaks) and the mismatch negativity (MMN) in active and passive listening conditions for each participant. Results. Analyses were restricted to frontal sites as these are most commonly reported in auditory ERP research. Intra-class correlations (ICCs) indicated that the morphology of the research and gaming EEG system late auditory ERP waveforms were similar across all participants, but that the research and gaming EEG system MMN waveforms were only similar for participants with non-noisy MMN waveforms (N = 11 out of 21). Peak amplitude and latency measures revealed no significant differences between the size or the timing of the auditory P1, N1, P2, N2, P3, and MMN peaks

  3. Validation of the Emotiv EPOC® EEG gaming system for measuring research quality auditory ERPs

    Science.gov (United States)

    Mousikou, Petroula; Mahajan, Yatin; de Lissa, Peter; Thie, Johnson; McArthur, Genevieve

    2013-01-01

    Background. Auditory event-related potentials (ERPs) have proved useful in investigating the role of auditory processing in cognitive disorders such as developmental dyslexia, specific language impairment (SLI), attention deficit hyperactivity disorder (ADHD), schizophrenia, and autism. However, laboratory recordings of auditory ERPs can be lengthy, uncomfortable, or threatening for some participants – particularly children. Recently, a commercial gaming electroencephalography (EEG) system has been developed that is portable, inexpensive, and easy to set up. In this study we tested if auditory ERPs measured using a gaming EEG system (Emotiv EPOC®, www.emotiv.com) were equivalent to those measured by a widely-used, laboratory-based, research EEG system (Neuroscan). Methods. We simultaneously recorded EEGs with the research and gaming EEG systems, whilst presenting 21 adults with 566 standard (1000 Hz) and 100 deviant (1200 Hz) tones under passive (non-attended) and active (attended) conditions. The onset of each tone was marked in the EEGs using a parallel port pulse (Neuroscan) or a stimulus-generated electrical pulse injected into the O1 and O2 channels (Emotiv EPOC®). These markers were used to calculate research and gaming EEG system late auditory ERPs (P1, N1, P2, N2, and P3 peaks) and the mismatch negativity (MMN) in active and passive listening conditions for each participant. Results. Analyses were restricted to frontal sites as these are most commonly reported in auditory ERP research. Intra-class correlations (ICCs) indicated that the morphology of the research and gaming EEG system late auditory ERP waveforms were similar across all participants, but that the research and gaming EEG system MMN waveforms were only similar for participants with non-noisy MMN waveforms (N = 11 out of 21). Peak amplitude and latency measures revealed no significant differences between the size or the timing of the auditory P1, N1, P2, N2, P3, and MMN peaks. Conclusions

  4. Validation of the Emotiv EPOC® EEG gaming system for measuring research quality auditory ERPs

    Directory of Open Access Journals (Sweden)

    Nicholas A. Badcock

    2013-02-01

    Full Text Available Background. Auditory event-related potentials (ERPs have proved useful in investigating the role of auditory processing in cognitive disorders such as developmental dyslexia, specific language impairment (SLI, attention deficit hyperactivity disorder (ADHD, schizophrenia, and autism. However, laboratory recordings of auditory ERPs can be lengthy, uncomfortable, or threatening for some participants – particularly children. Recently, a commercial gaming electroencephalography (EEG system has been developed that is portable, inexpensive, and easy to set up. In this study we tested if auditory ERPs measured using a gaming EEG system (Emotiv EPOC®, www.emotiv.com were equivalent to those measured by a widely-used, laboratory-based, research EEG system (Neuroscan.Methods. We simultaneously recorded EEGs with the research and gaming EEG systems, whilst presenting 21 adults with 566 standard (1000 Hz and 100 deviant (1200 Hz tones under passive (non-attended and active (attended conditions. The onset of each tone was marked in the EEGs using a parallel port pulse (Neuroscan or a stimulus-generated electrical pulse injected into the O1 and O2 channels (Emotiv EPOC®. These markers were used to calculate research and gaming EEG system late auditory ERPs (P1, N1, P2, N2, and P3 peaks and the mismatch negativity (MMN in active and passive listening conditions for each participant.Results. Analyses were restricted to frontal sites as these are most commonly reported in auditory ERP research. Intra-class correlations (ICCs indicated that the morphology of the research and gaming EEG system late auditory ERP waveforms were similar across all participants, but that the research and gaming EEG system MMN waveforms were only similar for participants with non-noisy MMN waveforms (N = 11 out of 21. Peak amplitude and latency measures revealed no significant differences between the size or the timing of the auditory P1, N1, P2, N2, P3, and MMN peaks

  5. Continuous EEG-SEP monitoring in severe brain injury.

    Science.gov (United States)

    Amantini, A; Fossi, S; Grippo, A; Innocenti, P; Amadori, A; Bucciardini, L; Cossu, C; Nardini, C; Scarpelli, S; Roma, V; Pinto, F

    2009-04-01

    To monitor acute brain injury in the neurological intensive care unit (NICU), we used EEG and somatosensory evoked potentials (SEP) in combination to achieve more accuracy in detecting brain function deterioration. Sixty-eight patients (head trauma and intracranial hemorrhage; GCSSEP and intracranial pressure monitoring (ICP). Fifty-five patients were considered "stable" or improving, considering the GCS and CT scan: in this group, SEP didn't show significant changes. Thirteen patients showed neurological deteriorations and, in all patients, cortical SEP showed significant alterations (amplitude decrease>50% often till complete disappearance). SEP deterioration anticipated ICP increase in 30%, was contemporary in 38%, and followed ICP increase in 23%. Considering SEP and ICP in relation to clinical course, all patients but one with ICP less than 20 mmHg were stable, while the three patients with ICP greater than 40 mmHg all died. Among the 26 patients with ICP of 20-40 mmHg, 17 were stable, while nine showed clinical and neurophysiological deterioration. Thus, there is a range of ICP values (20-40 mmHg) were ICP is scarcely indicative of clinical deterioration, rather it is the SEP changes that identify brain function deterioration. Therefore, SEP have a twofold interest with respect to ICP: their changes can precede an ICP increase and they can constitute a complementary tool to interpret ICP trends. It has been very important to associate SEP and EEG: about 60% of our patients were deeply sedated and, because of their relative insensitivity to anesthetics, only SEP allowed us to monitor brain damage evolution when EEG was scarcely valuable. We observed 3% of nonconvulsive status epilepticus compared to 18% of neurological deterioration. If the aim of neurophysiological monitoring is to "detect and protect", it may not be limited to detecting seizures, rather it should be able to identify brain deterioration, so we propose the combined monitoring of EEG with SEP.

  6. Sleep in the human hippocampus: a stereo-EEG study.

    Directory of Open Access Journals (Sweden)

    Fabio Moroni

    Full Text Available BACKGROUND: There is compelling evidence indicating that sleep plays a crucial role in the consolidation of new declarative, hippocampus-dependent memories. Given the increasing interest in the spatiotemporal relationships between cortical and hippocampal activity during sleep, this study aimed to shed more light on the basic features of human sleep in the hippocampus. METHODOLOGY/PRINCIPAL FINDINGS: We recorded intracerebral stereo-EEG directly from the hippocampus and neocortical sites in five epileptic patients undergoing presurgical evaluations. The time course of classical EEG frequency bands during the first three NREM-REM sleep cycles of the night was evaluated. We found that delta power shows, also in the hippocampus, the progressive decrease across sleep cycles, indicating that a form of homeostatic regulation of delta activity is present also in this subcortical structure. Hippocampal sleep was also characterized by: i a lower relative power in the slow oscillation range during NREM sleep compared to the scalp EEG; ii a flattening of the time course of the very low frequencies (up to 1 Hz across sleep cycles, with relatively high levels of power even during REM sleep; iii a decrease of power in the beta band during REM sleep, at odds with the typical increase of power in the cortical recordings. CONCLUSIONS/SIGNIFICANCE: Our data imply that cortical slow oscillation is attenuated in the hippocampal structures during NREM sleep. The most peculiar feature of hippocampal sleep is the increased synchronization of the EEG rhythms during REM periods. This state of resonance may have a supportive role for the processing/consolidation of memory.

  7. Embedding Dimension Selection for Adaptive Singular Spectrum Analysis of EEG Signal

    Directory of Open Access Journals (Sweden)

    Shanzhi Xu

    2018-02-01

    Full Text Available The recorded electroencephalography (EEG signal is often contaminated with different kinds of artifacts and noise. Singular spectrum analysis (SSA is a powerful tool for extracting the brain rhythm from a noisy EEG signal. By analyzing the frequency characteristics of the reconstructed component (RC and the change rate in the trace of the Toeplitz matrix, it is demonstrated that the embedding dimension is related to the frequency bandwidth of each reconstructed component, in consistence with the component mixing in the singular value decomposition step. A method for selecting the embedding dimension is thereby proposed and verified by simulated EEG signal based on the Markov Process Amplitude (MPA EEG Model. Real EEG signal is also collected from the experimental subjects under both eyes-open and eyes-closed conditions. The experimental results show that based on the embedding dimension selection method, the alpha rhythm can be extracted from the real EEG signal by the adaptive SSA, which can be effectively utilized to distinguish between the eyes-open and eyes-closed states.

  8. Embedding Dimension Selection for Adaptive Singular Spectrum Analysis of EEG Signal.

    Science.gov (United States)

    Xu, Shanzhi; Hu, Hai; Ji, Linhong; Wang, Peng

    2018-02-26

    The recorded electroencephalography (EEG) signal is often contaminated with different kinds of artifacts and noise. Singular spectrum analysis (SSA) is a powerful tool for extracting the brain rhythm from a noisy EEG signal. By analyzing the frequency characteristics of the reconstructed component (RC) and the change rate in the trace of the Toeplitz matrix, it is demonstrated that the embedding dimension is related to the frequency bandwidth of each reconstructed component, in consistence with the component mixing in the singular value decomposition step. A method for selecting the embedding dimension is thereby proposed and verified by simulated EEG signal based on the Markov Process Amplitude (MPA) EEG Model. Real EEG signal is also collected from the experimental subjects under both eyes-open and eyes-closed conditions. The experimental results show that based on the embedding dimension selection method, the alpha rhythm can be extracted from the real EEG signal by the adaptive SSA, which can be effectively utilized to distinguish between the eyes-open and eyes-closed states.

  9. EEG entropy measures indicate decrease of cortical information processing in Disorders of Consciousness.

    Science.gov (United States)

    Thul, Alexander; Lechinger, Julia; Donis, Johann; Michitsch, Gabriele; Pichler, Gerald; Kochs, Eberhard F; Jordan, Denis; Ilg, Rüdiger; Schabus, Manuel

    2016-02-01

    Clinical assessments that rely on behavioral responses to differentiate Disorders of Consciousness are at times inapt because of some patients' motor disabilities. To objectify patients' conditions of reduced consciousness the present study evaluated the use of electroencephalography to measure residual brain activity. We analyzed entropy values of 18 scalp EEG channels of 15 severely brain-damaged patients with clinically diagnosed Minimally-Conscious-State (MCS) or Unresponsive-Wakefulness-Syndrome (UWS) and compared the results to a sample of 24 control subjects. Permutation entropy (PeEn) and symbolic transfer entropy (STEn), reflecting information processes in the EEG, were calculated for all subjects. Participants were tested on a modified active own-name paradigm to identify correlates of active instruction following. PeEn showed reduced local information content in the EEG in patients, that was most pronounced in UWS. STEn analysis revealed altered directed information flow in the EEG of patients, indicating impaired feed-backward connectivity. Responses to auditory stimulation yielded differences in entropy measures, indicating reduced information processing in MCS and UWS. Local EEG information content and information flow are affected in Disorders of Consciousness. This suggests local cortical information capacity and feedback information transfer as neural correlates of consciousness. The utilized EEG entropy analyses were able to relate to patient groups with different Disorders of Consciousness. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  10. Feature Extraction with GMDH-Type Neural Networks for EEG-Based Person Identification.

    Science.gov (United States)

    Schetinin, Vitaly; Jakaite, Livija; Nyah, Ndifreke; Novakovic, Dusica; Krzanowski, Wojtek

    2018-08-01

    The brain activity observed on EEG electrodes is influenced by volume conduction and functional connectivity of a person performing a task. When the task is a biometric test the EEG signals represent the unique "brain print", which is defined by the functional connectivity that is represented by the interactions between electrodes, whilst the conduction components cause trivial correlations. Orthogonalization using autoregressive modeling minimizes the conduction components, and then the residuals are related to features correlated with the functional connectivity. However, the orthogonalization can be unreliable for high-dimensional EEG data. We have found that the dimensionality can be significantly reduced if the baselines required for estimating the residuals can be modeled by using relevant electrodes. In our approach, the required models are learnt by a Group Method of Data Handling (GMDH) algorithm which we have made capable of discovering reliable models from multidimensional EEG data. In our experiments on the EEG-MMI benchmark data which include 109 participants, the proposed method has correctly identified all the subjects and provided a statistically significant ([Formula: see text]) improvement of the identification accuracy. The experiments have shown that the proposed GMDH method can learn new features from multi-electrode EEG data, which are capable to improve the accuracy of biometric identification.

  11. EEG Analytics for Early Detection of Autism Spectrum Disorder: A data-driven approach.

    Science.gov (United States)

    Bosl, William J; Tager-Flusberg, Helen; Nelson, Charles A

    2018-05-01

    Autism spectrum disorder (ASD) is a complex and heterogeneous disorder, diagnosed on the basis of behavioral symptoms during the second year of life or later. Finding scalable biomarkers for early detection is challenging because of the variability in presentation of the disorder and the need for simple measurements that could be implemented routinely during well-baby checkups. EEG is a relatively easy-to-use, low cost brain measurement tool that is being increasingly explored as a potential clinical tool for monitoring atypical brain development. EEG measurements were collected from 99 infants with an older sibling diagnosed with ASD, and 89 low risk controls, beginning at 3 months of age and continuing until 36 months of age. Nonlinear features were computed from EEG signals and used as input to statistical learning methods. Prediction of the clinical diagnostic outcome of ASD or not ASD was highly accurate when using EEG measurements from as early as 3 months of age. Specificity, sensitivity and PPV were high, exceeding 95% at some ages. Prediction of ADOS calibrated severity scores for all infants in the study using only EEG data taken as early as 3 months of age was strongly correlated with the actual measured scores. This suggests that useful digital biomarkers might be extracted from EEG measurements.

  12. Automatic Removal of Physiological Artifacts in EEG: The Optimized Fingerprint Method for Sports Science Applications.

    Science.gov (United States)

    Stone, David B; Tamburro, Gabriella; Fiedler, Patrique; Haueisen, Jens; Comani, Silvia

    2018-01-01

    Data contamination due to physiological artifacts such as those generated by eyeblinks, eye movements, and muscle activity continues to be a central concern in the acquisition and analysis of electroencephalographic (EEG) data. This issue is further compounded in EEG sports science applications where the presence of artifacts is notoriously difficult to control because behaviors that generate these interferences are often the behaviors under investigation. Therefore, there is a need to develop effective and efficient methods to identify physiological artifacts in EEG recordings during sports applications so that they can be isolated from cerebral activity related to the activities of interest. We have developed an EEG artifact detection model, the Fingerprint Method, which identifies different spatial, temporal, spectral, and statistical features indicative of physiological artifacts and uses these features to automatically classify artifactual independent components in EEG based on a machine leaning approach. Here, we optimized our method using artifact-rich training data and a procedure to determine which features were best suited to identify eyeblinks, eye movements, and muscle artifacts. We then applied our model to an experimental dataset collected during endurance cycling. Results reveal that unique sets of features are suitable for the detection of distinct types of artifacts and that the Optimized Fingerprint Method was able to correctly identify over 90% of the artifactual components with physiological origin present in the experimental data. These results represent a significant advancement in the search for effective means to address artifact contamination in EEG sports science applications.

  13. ORIGINAL ARTICLE EEG changes and neuroimaging abnormalities ...

    African Journals Online (AJOL)

    salah

    Clinical Genetics Department, Human Genetics & Genome Research Division, ... neuroimaging changes of the brain and EEG abnormalities in correlation to the ... level and by developmental changes2. .... for IQ as a confounding factor.30.

  14. Two channel EEG thought pattern classifier.

    Science.gov (United States)

    Craig, D A; Nguyen, H T; Burchey, H A

    2006-01-01

    This paper presents a real-time electro-encephalogram (EEG) identification system with the goal of achieving hands free control. With two EEG electrodes placed on the scalp of the user, EEG signals are amplified and digitised directly using a ProComp+ encoder and transferred to the host computer through the RS232 interface. Using a real-time multilayer neural network, the actual classification for the control of a powered wheelchair has a very fast response. It can detect changes in the user's thought pattern in 1 second. Using only two EEG electrodes at positions O(1) and C(4) the system can classify three mental commands (forward, left and right) with an accuracy of more than 79 %

  15. Correlation between intra- and extracranial background EEG

    DEFF Research Database (Denmark)

    Duun-Henriksen, Jonas; Kjaer, Troels W.; Madsen, Rasmus E.

    2012-01-01

    Scalp EEG is the most widely used modality to record the electrical signals of the brain. It is well known that the volume conduction of these brain waves through the brain, cerebrospinal fluid, skull and scalp reduces the spatial resolution and the signal amplitude. So far the volume conduction...... has primarily been investigated by realistic head models or interictal spike analysis. We have set up a novel and more realistic experiment that made it possible to compare the information in the intra- and extracranial EEG. We found that intracranial EEG channels contained correlated patterns when...... placed less than 30 mm apart, that intra- and extracranial channels were partly correlated when placed less than 40 mm apart, and that extracranial channels probably were correlated over larger distances. The underlying cortical area that influences the extracranial EEG is found to be up to 45 cm2...

  16. Amplitude-Integrated EEG in the Newborn

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2008-11-01

    Full Text Available Th value of amplitude-integrated electroencephalography (aEEG in the newborn is explored by researchers at Washington University, St Louis; Wilhelmina Children’s Hospital, Utrecht, Netherlands; and Uppsala University Hospital, Sweden.

  17. Predictive Values of Electroencephalography (EEG) in Epilepsy ...

    African Journals Online (AJOL)

    Predictive Values of Electroencephalography (EEG) in Epilepsy Patients with Abnormal Behavioural Symptoms. OR Obiako, SO Adeyemi, TL Sheikh, LF Owolabi, MA Majebi, MO Gomina, F Adebayo, EU Iwuozo ...

  18. EEG analysis in a telemedical virtual world

    NARCIS (Netherlands)

    Jovanov, E.; Starcevic, D.; Samardzic, A.; Marsh, A.; Obrenovic, Z.

    1999-01-01

    Telemedicine creates virtual medical collaborative environments. We propose here a novel concept of virtual medical devices (VMD) for telemedical applications. VMDs provide different views on biomedical recordings and efficient signal analysis. In this paper we present a telemedical EEG analysis

  19. Multimodal EEG Recordings, Psychometrics and Behavioural Analysis.

    Science.gov (United States)

    Boeijinga, Peter H

    2015-01-01

    High spatial and temporal resolution measurements of neuronal activity are preferably combined. In an overview on how this approach can take shape, multimodal electroencephalography (EEG) is treated in 2 main parts: by experiments without a task and in the experimentally cued working brain. It concentrates first on the alpha rhythm properties and next on data-driven search for patterns such as the default mode network. The high-resolution volumic distributions of neuronal metabolic indices result in distributed cortical regions and possibly relate to numerous nuclei, observable in a non-invasive manner in the central nervous system of humans. The second part deals with paradigms in which nowadays assessment of target-related networks can align level-dependent blood oxygenation, electrical responses and behaviour, taking the temporal resolution advantages of event-related potentials. Evidence-based electrical propagation in serial tasks during performance is now to a large extent attributed to interconnected pathways, particularly chronometry-dependent ones, throughout a chain including a dorsal stream, next ventral cortical areas taking the flow of information towards inferior temporal domains. The influence of aging is documented, and results of the first multimodal studies in neuropharmacology are consistent. Finally a scope on implementation of advanced clinical applications and personalized marker strategies in neuropsychiatry is indicated. © 2016 S. Karger AG, Basel.

  20. EEG review comments on the geotechnical reports provided by DOE to EEG under the stipulated agreement through March 1, 1983

    International Nuclear Information System (INIS)

    1983-04-01

    The purpose of the Environmental Evaluation Group (EEG) is to conduct an independent technical evaluation of the potential radiation exposure to people from the proposed federal radioactive Waste Isolation Pilot Plant (WIPP) near Carlsbad, in order to protect the public health and safety and ensure that there is minimal environmental degradation. Analyses are conducted of available data concerning the proposed site, the design of the repository, its planned operation, and its long-term stability. These analyses include assessments of reports issued by the US Department of Energy (DOE) and its contractors, other federal agencies and organizations, as they relate to the potential health, safety and environmental impacts from WIPP. This publication is a compilation of EEG's written comments on each of the following reports: Deep Dissolution; Breccia Pipes; DMG Hydrology; Natural Resources; Plans for Site and Preliminary Design Validation; Plans for Simulated Waste; Brine Reservoir Report; Disturbed Zone Exploration; and Fracture Flow in the Rustler Aquifers

  1. Parametric and Nonparametric EEG Analysis for the Evaluation of EEG Activity in Young Children with Controlled Epilepsy

    Directory of Open Access Journals (Sweden)

    Vangelis Sakkalis

    2008-01-01

    Full Text Available There is an important evidence of differences in the EEG frequency spectrum of control subjects as compared to epileptic subjects. In particular, the study of children presents difficulties due to the early stages of brain development and the various forms of epilepsy indications. In this study, we consider children that developed epileptic crises in the past but without any other clinical, psychological, or visible neurophysiological findings. The aim of the paper is to develop reliable techniques for testing if such controlled epilepsy induces related spectral differences in the EEG. Spectral features extracted by using nonparametric, signal representation techniques (Fourier and wavelet transform and a parametric, signal modeling technique (ARMA are compared and their effect on the classification of the two groups is analyzed. The subjects performed two different tasks: a control (rest task and a relatively difficult math task. The results show that spectral features extracted by modeling the EEG signals recorded from individual channels by an ARMA model give a higher discrimination between the two subject groups for the control task, where classification scores of up to 100% were obtained with a linear discriminant classifier.

  2. Analysis of the influence of memory content of auditory stimuli on the memory content of EEG signal.

    Science.gov (United States)

    Namazi, Hamidreza; Khosrowabadi, Reza; Hussaini, Jamal; Habibi, Shaghayegh; Farid, Ali Akhavan; Kulish, Vladimir V

    2016-08-30

    One of the major challenges in brain research is to relate the structural features of the auditory stimulus to structural features of Electroencephalogram (EEG) signal. Memory content is an important feature of EEG signal and accordingly the brain. On the other hand, the memory content can also be considered in case of stimulus. Beside all works done on analysis of the effect of stimuli on human EEG and brain memory, no work discussed about the stimulus memory and also the relationship that may exist between the memory content of stimulus and the memory content of EEG signal. For this purpose we consider the Hurst exponent as the measure of memory. This study reveals the plasticity of human EEG signals in relation to the auditory stimuli. For the first time we demonstrated that the memory content of an EEG signal shifts towards the memory content of the auditory stimulus used. The results of this analysis showed that an auditory stimulus with higher memory content causes a larger increment in the memory content of an EEG signal. For the verification of this result, we benefit from approximate entropy as indicator of time series randomness. The capability, observed in this research, can be further investigated in relation to human memory.

  3. EEG-MEG Integration Enhances the Characterization of Functional and Effective Connectivity in the Resting State Network

    Science.gov (United States)

    Mideksa, Kidist Gebremariam; Anwar, Abdul Rauf; Stephani, Ulrich; Deuschl, Günther; Freitag, Christine M.; Siniatchkin, Michael

    2015-01-01

    At the sensor level many aspects, such as spectral power, functional and effective connectivity as well as relative-power-ratio ratio (RPR) and spatial resolution have been comprehensively investigated through both electroencephalography (EEG) and magnetoencephalography (MEG). Despite this, differences between both modalities have not yet been systematically studied by direct comparison. It remains an open question as to whether the integration of EEG and MEG data would improve the information obtained from the above mentioned parameters. Here, EEG (64-channel system) and MEG (275 sensor system) were recorded simultaneously in conditions with eyes open (EO) and eyes closed (EC) in 29 healthy adults. Spectral power, functional and effective connectivity, RPR, and spatial resolution were analyzed at five different frequency bands (delta, theta, alpha, beta and gamma). Networks of functional and effective connectivity were described using a spatial filter approach called the dynamic imaging of coherent sources (DICS) followed by the renormalized partial directed coherence (RPDC). Absolute mean power at the sensor level was significantly higher in EEG than in MEG data in both EO and EC conditions. At the source level, there was a trend towards a better performance of the combined EEG+MEG analysis compared with separate EEG or MEG analyses for the source mean power, functional correlation, effective connectivity for both EO and EC. The network of coherent sources and the spatial resolution were similar for both the EEG and MEG data if they were analyzed separately. Results indicate that the combined approach has several advantages over the separate analyses of both EEG and MEG. Moreover, by a direct comparison of EEG and MEG, EEG was characterized by significantly higher values in all measured parameters in both sensor and source level. All the above conclusions are specific to the resting state task and the specific analysis used in this study to have general

  4. The EEG 2017 in the overview

    International Nuclear Information System (INIS)

    Altrock, Martin; Vollprecht, Jens

    2016-01-01

    On 08.07.2016, the German Bundestag, the German Renewable Energies Act (EEG) in 2017 passed together with the wind-at-sea law. At the same time, the legislature changed 22 other energy legislation, inter alia, also the EnWG. Here, the law de facto a law amending the EEG 2014 is: The EEG is thus not total re-promulgated. Rather essentially part 3 (''Payment of market premium and feed in rate'') of the EEG 2014 renewed, notably Section 3 supplemented by regulations on the newly introduced procurements. But beyond the framework of support is further developed in various details, like the definition of a plant, the promotion of storage facilities and of course, in the again very ambitious and complicated transitional arrangements. Other notable individual changes concern the introduction of regional evidence of directly marketed electricity from renewable sources, the increase of liability for balancing group deviations in paragraph 60 para. 1 EEG 2017 or readjustments in the special equalization scheme, paragraph 64 para. 2 no. 2 EEG. [de

  5. Sleep EEG of Microcephaly in Zika Outbreak.

    Science.gov (United States)

    Kanda, Paulo Afonso Medeiros; Aguiar, Aline de Almeida Xavier; Miranda, Jose Lucivan; Falcao, Alexandre Loverde; Andrade, Claudia Suenia; Reis, Luigi Neves Dos Santos; Almeida, Ellen White R Bacelar; Bello, Yanes Brum; Monfredinho, Arthur; Kanda, Rafael Guimaraes

    2018-01-01

    Microcephaly (MC), previously considered rare, is now a health emergency of international concern because of the devastating Zika virus pandemic outbreak of 2015. The authors describe the electroencephalogram (EEG) findings in sleep EEG of epileptic children who were born with microcephaly in areas of Brazil with active Zika virus transmission between 2014 and 2017. The authors reviewed EEGs from 23 children. Nine were females (39.2%), and the age distribution varied from 4 to 48 months. MC was associated with mother positive serology to toxoplasmosis (toxo), rubella (rub), herpes, and dengue (1 case); toxo (1 case); chikungunya virus (CHIKV) (1 case); syphilis (1 case); and Zika virus (ZIKV) (10 cases). In addition, 1 case was associated with perinatal hypoxia and causes of 9 cases remain unknown. The main background EEG abnormality was diffuse slowing (10 cases), followed by classic (3 cases) and modified (5 cases) hypsarrhythmia. A distinct EEG pattern was seen in ZIKV (5 cases), toxo (2 cases), and undetermined cause (1 case). It was characterized by runs of frontocentrotemporal 4.5-13 Hz activity (7 cases) or diffuse and bilateral runs of 18-24 Hz (1 case). In ZIKV, this rhythmic activity was associated with hypsarrhythmia or slow background. Further studies are necessary to determine if this association is suggestive of ZIKV infection. The authors believe that EEG should be included in the investigation of all newly diagnosed congenital MC, especially those occurring in areas of autochthonous transmission of ZIKV.

  6. Seizure classification in EEG signals utilizing Hilbert-Huang transform

    Directory of Open Access Journals (Sweden)

    Abdulhay Enas W

    2011-05-01

    Full Text Available Abstract Background Classification method capable of recognizing abnormal activities of the brain functionality are either brain imaging or brain signal analysis. The abnormal activity of interest in this study is characterized by a disturbance caused by changes in neuronal electrochemical activity that results in abnormal synchronous discharges. The method aims at helping physicians discriminate between healthy and seizure electroencephalographic (EEG signals. Method Discrimination in this work is achieved by analyzing EEG signals obtained from freely accessible databases. MATLAB has been used to implement and test the proposed classification algorithm. The analysis in question presents a classification of normal and ictal activities using a feature relied on Hilbert-Huang Transform. Through this method, information related to the intrinsic functions contained in the EEG signal has been extracted to track the local amplitude and the frequency of the signal. Based on this local information, weighted frequencies are calculated and a comparison between ictal and seizure-free determinant intrinsic functions is then performed. Methods of comparison used are the t-test and the Euclidean clustering. Results The t-test results in a P-value Conclusion An original tool for EEG signal processing giving physicians the possibility to diagnose brain functionality abnormalities is presented in this paper. The proposed system bears the potential of providing several credible benefits such as fast diagnosis, high accuracy, good sensitivity and specificity, time saving and user friendly. Furthermore, the classification of mode mixing can be achieved using the extracted instantaneous information of every IMF, but it would be most likely a hard task if only the average value is used. Extra benefits of this proposed system include low cost, and ease of interface. All of that indicate the usefulness of the tool and its use as an efficient diagnostic tool.

  7. Seizure classification in EEG signals utilizing Hilbert-Huang transform.

    Science.gov (United States)

    Oweis, Rami J; Abdulhay, Enas W

    2011-05-24

    Classification method capable of recognizing abnormal activities of the brain functionality are either brain imaging or brain signal analysis. The abnormal activity of interest in this study is characterized by a disturbance caused by changes in neuronal electrochemical activity that results in abnormal synchronous discharges. The method aims at helping physicians discriminate between healthy and seizure electroencephalographic (EEG) signals. Discrimination in this work is achieved by analyzing EEG signals obtained from freely accessible databases. MATLAB has been used to implement and test the proposed classification algorithm. The analysis in question presents a classification of normal and ictal activities using a feature relied on Hilbert-Huang Transform. Through this method, information related to the intrinsic functions contained in the EEG signal has been extracted to track the local amplitude and the frequency of the signal. Based on this local information, weighted frequencies are calculated and a comparison between ictal and seizure-free determinant intrinsic functions is then performed. Methods of comparison used are the t-test and the Euclidean clustering. The t-test results in a P-value with respect to its fast response and ease to use. An original tool for EEG signal processing giving physicians the possibility to diagnose brain functionality abnormalities is presented in this paper. The proposed system bears the potential of providing several credible benefits such as fast diagnosis, high accuracy, good sensitivity and specificity, time saving and user friendly. Furthermore, the classification of mode mixing can be achieved using the extracted instantaneous information of every IMF, but it would be most likely a hard task if only the average value is used. Extra benefits of this proposed system include low cost, and ease of interface. All of that indicate the usefulness of the tool and its use as an efficient diagnostic tool.

  8. Probing interval timing with scalp-recorded electroencephalography (EEG).

    Science.gov (United States)

    Ng, Kwun Kei; Penney, Trevor B

    2014-01-01

    Humans, and other animals, are able to easily learn the durations of events and the temporal relationships among them in spite of the absence of a dedicated sensory organ for time. This chapter summarizes the investigation of timing and time perception using scalp-recorded electroencephalography (EEG), a non-invasive technique that measures brain electrical potentials on a millisecond time scale. Over the past several decades, much has been learned about interval timing through the examination of the characteristic features of averaged EEG signals (i.e., event-related potentials, ERPs) elicited in timing paradigms. For example, the mismatch negativity (MMN) and omission potential (OP) have been used to study implicit and explicit timing, respectively, the P300 has been used to investigate temporal memory updating, and the contingent negative variation (CNV) has been used as an index of temporal decision making. In sum, EEG measures provide biomarkers of temporal processing that allow researchers to probe the cognitive and neural substrates underlying time perception.

  9. EEG Based Inference of Spatio-Temporal Brain Dynamics

    DEFF Research Database (Denmark)

    Hansen, Sofie Therese

    Electroencephalography (EEG) provides a measure of brain activity and has improved our understanding of the brain immensely. However, there is still much to be learned and the full potential of EEG is yet to be realized. In this thesis we suggest to improve the information gain of EEG using three...... different approaches; 1) by recovery of the EEG sources, 2) by representing and inferring the propagation path of EEG sources, and 3) by combining EEG with functional magnetic resonance imaging (fMRI). The common goal of the methods, and thus of this thesis, is to improve the spatial dimension of EEG...... recovery ability. The forward problem describes the propagation of neuronal activity in the brain to the EEG electrodes on the scalp. The geometry and conductivity of the head layers are normally required to model this path. We propose a framework for inferring forward models which is based on the EEG...

  10. The added value of simultaneous EEG and amplitude-integrated EEG recordings in three newborn infants

    NARCIS (Netherlands)

    de Vries, Nathalie K. S.; ter Horst, Hendrik J.; Bos, Arend F.

    2007-01-01

    Amplitude-integrated electroencephalograms (aEEGs) recorded by cerebral function monitors (CFMs) are used increasingly to monitor the cerebral activity of newborn infants with encephalopathy. Recently, new CFM devices became available which also reveal the original EEG signals from the same leads.

  11. EEG II. Annexes and regulations. Comment; EEG II. Anlagen und Verordnungen. Kommentar

    Energy Technology Data Exchange (ETDEWEB)

    Frenz, Walter (ed.) [Rheinisch-Westfaelische Technische Hochschule Aachen (Germany). Berg-, Umwelt- und Europarecht

    2016-11-01

    Berlin commentary EEG II: safe through the paraphernalia Like hardly any other law, the Renewable Energies Act (EEG) is subject to constant changes. With the 2014 amendment, the EEG was fundamentally redesigned. This makes the application of the complex rules a challenge even for experts. In addition, the sub-rules contain important statements in the form of numerous annexes and regulations - with the EEG amendment 2014, this has become even more detailed. In it, many calculations are only defined in detail and the legal provisions of the EEG are made more definite and supplemented. The Berlin commentary EEG II accompanies you expertly through this complex matter. Experts explain the widely divergent rules in practice. If necessary for a better understanding, the provisions of the EEG 2014 are also explained. Consistently designed for your practice As a buyer of the work, you also benefit from access to an extensive, regularly updated database. This contains important legal energy regulations of the EU, the federal government and the countries. Even earlier legal positions remain searchable and can be conveniently compared with current versions. So you can see at a glance what has changed. [German] Berliner Kommentar EEG II: sicher durch den Paragrafengeflecht Wie kaum ein anderes Gesetz ist das Erneuerbare-Energien-Gesetz (EEG) staendigen Aenderungen unterworfen. Mit der Novelle 2014 wurde das EEG grundlegend umgestaltet. Dies macht die Anwendung der komplexen Regeln selbst fuer Experten zu einer Herausforderung. Zudem enthaelt auch das untergesetzliche Regelwerk wichtige Aussagen in Form zahlreicher Anlagen und Verordnungen - mit der EEG-Novelle 2014 ist dieses noch ausfuehrlicher geworden. In ihm werden viele Berechnungen erst naeher festgelegt und gesetzliche Bestimmungen des EEG entscheidend konkretisiert und ergaenzt. Der Berliner Kommentar EEG II begleitet Sie fachkundig durch diese komplexe Materie. Experten erlaeutern Ihnen praxisorientiert die

  12. How do reference montage and electrodes setup affect the measured scalp EEG potentials?

    Science.gov (United States)

    Hu, Shiang; Lai, Yongxiu; Valdes-Sosa, Pedro A.; Bringas-Vega, Maria L.; Yao, Dezhong

    2018-04-01

    Objective. Human scalp electroencephalogram (EEG) is widely applied in cognitive neuroscience and clinical studies due to its non-invasiveness and ultra-high time resolution. However, the representativeness of the measured EEG potentials for the underneath neural activities is still a problem under debate. This study aims to investigate systematically how both reference montage and electrodes setup affect the accuracy of EEG potentials. Approach. First, the standard EEG potentials are generated by the forward calculation with a single dipole in the neural source space, for eleven channel numbers (10, 16, 21, 32, 64, 85, 96, 128, 129, 257, 335). Here, the reference is the ideal infinity implicitly determined by forward theory. Then, the standard EEG potentials are transformed to recordings with different references including five mono-polar references (Left earlobe, Fz, Pz, Oz, Cz), and three re-references (linked mastoids (LM), average reference (AR) and reference electrode standardization technique (REST)). Finally, the relative errors between the standard EEG potentials and the transformed ones are evaluated in terms of channel number, scalp regions, electrodes layout, dipole source position and orientation, as well as sensor noise and head model. Main results. Mono-polar reference recordings are usually of large distortions; thus, a re-reference after online mono-polar recording should be adopted in general to mitigate this effect. Among the three re-references, REST is generally superior to AR for all factors compared, and LM performs worst. REST is insensitive to head model perturbation. AR is subject to electrodes coverage and dipole orientation but no close relation with channel number. Significance. These results indicate that REST would be the first choice of re-reference and AR may be an alternative option for high level sensor noise case. Our findings may provide the helpful suggestions on how to obtain the EEG potentials as accurately as possible for

  13. Decoding Individual Finger Movements from One Hand Using Human EEG Signals

    Science.gov (United States)

    Gonzalez, Jania; Ding, Lei

    2014-01-01

    Brain computer interface (BCI) is an assistive technology, which decodes neurophysiological signals generated by the human brain and translates them into control signals to control external devices, e.g., wheelchairs. One problem challenging noninvasive BCI technologies is the limited control dimensions from decoding movements of, mainly, large body parts, e.g., upper and lower limbs. It has been reported that complicated dexterous functions, i.e., finger movements, can be decoded in electrocorticography (ECoG) signals, while it remains unclear whether noninvasive electroencephalography (EEG) signals also have sufficient information to decode the same type of movements. Phenomena of broadband power increase and low-frequency-band power decrease were observed in EEG in the present study, when EEG power spectra were decomposed by a principal component analysis (PCA). These movement-related spectral structures and their changes caused by finger movements in EEG are consistent with observations in previous ECoG study, as well as the results from ECoG data in the present study. The average decoding accuracy of 77.11% over all subjects was obtained in classifying each pair of fingers from one hand using movement-related spectral changes as features to be decoded using a support vector machine (SVM) classifier. The average decoding accuracy in three epilepsy patients using ECoG data was 91.28% with the similarly obtained features and same classifier. Both decoding accuracies of EEG and ECoG are significantly higher than the empirical guessing level (51.26%) in all subjects (pEEG as in ECoG, and demonstrates the feasibility of discriminating finger movements from one hand using EEG. These findings are promising to facilitate the development of BCIs with rich control signals using noninvasive technologies. PMID:24416360

  14. Developmental changes of BOLD signal correlations with global human EEG power and synchronization during working memory.

    Directory of Open Access Journals (Sweden)

    Lars Michels

    Full Text Available In humans, theta band (5-7 Hz power typically increases when performing cognitively demanding working memory (WM tasks, and simultaneous EEG-fMRI recordings have revealed an inverse relationship between theta power and the BOLD (blood oxygen level dependent signal in the default mode network during WM. However, synchronization also plays a fundamental role in cognitive processing, and the level of theta and higher frequency band synchronization is modulated during WM. Yet, little is known about the link between BOLD, EEG power, and EEG synchronization during WM, and how these measures develop with human brain maturation or relate to behavioral changes. We examined EEG-BOLD signal correlations from 18 young adults and 15 school-aged children for age-dependent effects during a load-modulated Sternberg WM task. Frontal load (in-dependent EEG theta power was significantly enhanced in children compared to adults, while adults showed stronger fMRI load effects. Children demonstrated a stronger negative correlation between global theta power and the BOLD signal in the default mode network relative to adults. Therefore, we conclude that theta power mediates the suppression of a task-irrelevant network. We further conclude that children suppress this network even more than adults, probably from an increased level of task-preparedness to compensate for not fully mature cognitive functions, reflected in lower response accuracy and increased reaction time. In contrast to power, correlations between instantaneous theta global field synchronization and the BOLD signal were exclusively positive in both age groups but only significant in adults in the frontal-parietal and posterior cingulate cortices. Furthermore, theta synchronization was weaker in children and was--in contrast to EEG power--positively correlated with response accuracy in both age groups. In summary we conclude that theta EEG-BOLD signal correlations differ between spectral power and

  15. Resting State EEG in Children With Learning Disabilities: An Independent Component Analysis Approach.

    Science.gov (United States)

    Jäncke, Lutz; Alahmadi, Nsreen

    2016-01-01

    In this study, the neurophysiological underpinnings of learning disabilities (LD) in children are examined using resting state EEG. We were particularly interested in the neurophysiological differences between children with learning disabilities not otherwise specified (LD-NOS), learning disabilities with verbal disabilities (LD-Verbal), and healthy control (HC) children. We applied 2 different approaches to examine the differences between the different groups. First, we calculated theta/beta and theta/alpha ratios in order to quantify the relationship between slow and fast EEG oscillations. Second, we used a recently developed method for analyzing spectral EEG, namely the group independent component analysis (gICA) model. Using these measures, we identified substantial differences between LD and HC children and between LD-NOS and LD-Verbal children in terms of their spectral EEG profiles. We obtained the following findings: (a) theta/beta and theta/alpha ratios were substantially larger in LD than in HC children, with no difference between LD-NOS and LD-Verbal children; (b) there was substantial slowing of EEG oscillations, especially for gICs located in frontal scalp positions, with LD-NOS children demonstrating the strongest slowing; (c) the estimated intracortical sources of these gICs were mostly located in brain areas involved in the control of executive functions, attention, planning, and language; and (d) the LD-Verbal children demonstrated substantial differences in EEG oscillations compared with LD-NOS children, and these differences were localized in language-related brain areas. The general pattern of atypical neurophysiological activation found in LD children suggests that they suffer from neurophysiological dysfunction in brain areas involved with the control of attention, executive functions, planning, and language functions. LD-Verbal children also demonstrate atypical activation, especially in language-related brain areas. These atypical

  16. The EEG as an index of neuromodulator balance in memory and mental illness

    Directory of Open Access Journals (Sweden)

    Costa eVakalopoulos

    2014-04-01

    Full Text Available There is a strong correlation between signature EEG frequency patterns and the relative levels of distinct neuromodulators. These associations become particularly evident during the sleep-wake cycle. The monoamine-acetylcholine balance hypothesis is a theory of neurophysiological markers of the EEG and a detailed description of the findings that support this proposal are presented in this paper. According to this model alpha rhythm reflects the relative predominance of cholinergic muscarinic signals and delta rhythm that of monoaminergic receptor effects. Both high voltage synchronized rhythms are likely mediated by inhibitory Gαi/o-mediated transduction of inhibitory interneurons. Cognitively, alpha and delta EEG measures are proposed to indicate automatic and flexible strategies, respectively. Sleep is associated with marked changes in relative neuromodulator levels corresponding to EEG markers of distinct stages. Sleep studies on memory consolidation present some of the strongest evidence yet for the respective roles of monoaminergic and cholinergic projections in declarative and non-declarative memory processes, a key theoretical premise for understanding the data. Affective dysregulation is reflected in altered EEG patterns during sleep.

  17. The EEG as an index of neuromodulator balance in memory and mental illness.

    Science.gov (United States)

    Vakalopoulos, Costa

    2014-01-01

    There is a strong correlation between signature EEG frequency patterns and the relative levels of distinct neuromodulators. These associations become particularly evident during the sleep-wake cycle. The monoamine-acetylcholine balance hypothesis is a theory of neurophysiological markers of the EEG and a detailed description of the findings that support this proposal are presented in this paper. According to this model alpha rhythm reflects the relative predominance of cholinergic muscarinic signals and delta rhythm that of monoaminergic receptor effects. Both high voltage synchronized rhythms are likely mediated by inhibitory Gαi/o-mediated transduction of inhibitory interneurons. Cognitively, alpha and delta EEG measures are proposed to indicate automatic and flexible strategies, respectively. Sleep is associated with marked changes in relative neuromodulator levels corresponding to EEG markers of distinct stages. Sleep studies on memory consolidation present some of the strongest evidence yet for the respective roles of monoaminergic and cholinergic projections in declarative and non-declarative memory processes, a key theoretical premise for understanding the data. Affective dysregulation is reflected in altered EEG patterns during sleep.

  18. Improving Cross-Day EEG-Based Emotion Classification Using Robust Principal Component Analysis

    Directory of Open Access Journals (Sweden)

    Yuan-Pin Lin

    2017-07-01

    Full Text Available Constructing a robust emotion-aware analytical framework using non-invasively recorded electroencephalogram (EEG signals has gained intensive attentions nowadays. However, as deploying a laboratory-oriented proof-of-concept study toward real-world applications, researchers are now facing an ecological challenge that the EEG patterns recorded in real life substantially change across days (i.e., day-to-day variability, arguably making the pre-defined predictive model vulnerable to the given EEG signals of a separate day. The present work addressed how to mitigate the inter-day EEG variability of emotional responses with an attempt to facilitate cross-day emotion classification, which was less concerned in the literature. This study proposed a robust principal component analysis (RPCA-based signal filtering strategy and validated its neurophysiological validity and machine-learning practicability on a binary emotion classification task (happiness vs. sadness using a five-day EEG dataset of 12 subjects when participated in a music-listening task. The empirical results showed that the RPCA-decomposed sparse signals (RPCA-S enabled filtering off the background EEG activity that contributed more to the inter-day variability, and predominately captured the EEG oscillations of emotional responses that behaved relatively consistent along days. Through applying a realistic add-day-in classification validation scheme, the RPCA-S progressively exploited more informative features (from 12.67 ± 5.99 to 20.83 ± 7.18 and improved the cross-day binary emotion-classification accuracy (from 58.31 ± 12.33% to 64.03 ± 8.40% as trained the EEG signals from one to four recording days and tested against one unseen subsequent day. The original EEG features (prior to RPCA processing neither achieved the cross-day classification (the accuracy was around chance level nor replicated the encouraging improvement due to the inter-day EEG variability. This result

  19. Attention-induced deactivations in very low frequency EEG oscillations: differential localisation according to ADHD symptom status.

    Directory of Open Access Journals (Sweden)

    Samantha J Broyd

    Full Text Available BACKGROUND: The default-mode network (DMN is characterised by coherent very low frequency (VLF brain oscillations. The cognitive significance of this VLF profile remains unclear, partly because of the temporally constrained nature of the blood oxygen-level dependent (BOLD signal. Previously we have identified a VLF EEG network of scalp locations that shares many features of the DMN. Here we explore the intracranial sources of VLF EEG and examine their overlap with the DMN in adults with high and low ADHD ratings. METHODOLOGY/PRINCIPAL FINDINGS: DC-EEG was recorded using an equidistant 66 channel electrode montage in 25 adult participants with high- and 25 participants with low-ratings of ADHD symptoms during a rest condition and an attention demanding Eriksen task. VLF EEG power was calculated in the VLF band (0.02 to 0.2 Hz for the rest and task condition and compared for high and low ADHD participants. sLORETA was used to identify brain sources associated with the attention-induced deactivation of VLF EEG power, and to examine these sources in relation to ADHD symptoms. There was significant deactivation of VLF EEG power between the rest and task condition for the whole sample. Using s-LORETA the sources of this deactivation were localised to medial prefrontal regions, posterior cingulate cortex/precuneus and temporal regions. However, deactivation sources were different for high and low ADHD groups: In the low ADHD group attention-induced VLF EEG deactivation was most significant in medial prefrontal regions while for the high ADHD group this deactivation was predominantly localised to the temporal lobes. CONCLUSIONS/SIGNIFICANCE: Attention-induced VLF EEG deactivations have intracranial sources that appear to overlap with those of the DMN. Furthermore, these seem to be related to ADHD symptom status, with high ADHD adults failing to significantly deactivate medial prefrontal regions while at the same time showing significant attenuation of

  20. On seeing the trees and the forest: single-signal and multisignal analysis of periictal intracranial EEG.

    Science.gov (United States)

    Schindler, Kaspar; Gast, Heidemarie; Goodfellow, Marc; Rummel, Christian

    2012-09-01

    Epileptic seizures are associated with a dysregulation of electrical brain activity on many different spatial scales. To better understand the dynamics of epileptic seizures, that is, how the seizures initiate, propagate, and terminate, it is important to consider changes of electrical brain activity on different spatial scales. Herein we set out to analyze periictal electrical brain activity on comparatively small and large spatial scales by assessing changes in single intracranial electroencephalography (EEG) signals and of averaged interdependences of pairs of EEG signals. Single and multiple EEG signals are analyzed by combining methods from symbolic dynamics and information theory. This computationally efficient approach is chosen because at its core it consists of analyzing the occurrence of patterns and bears analogy to classical visual EEG reading. Symbolization is achieved by first mapping the EEG signals into bit strings, that is, long sequences of zeros and ones, depending solely on whether their amplitudes increase or decrease. Bit strings reflect relational aspects between consecutive values of the original EEG signals, but not the values themselves. For each bit string the relative frequencies of the different constituent short bit patterns are then determined and used to compute two information theoretical measures: (1) redundancy (R) of single bit strings characterizes electrical brain activity on a comparatively small spatial scale represented by a single EEG signal and (2) averaged pair-wise mutual information with all other bit strings (M), which allows tracking of larger-scale EEG dynamics. We analyzed 20 periictal intracranial EEG recordings from five patients with pharmacoresistant temporal lobe epilepsy. At seizure onset, R first strongly increased and then decreased toward seizure termination, whereas M gradually increased throughout the seizure. Bit strings with maximal R were always derived from EEG signals recorded from the visually

  1. Correntropy measures to detect daytime sleepiness from EEG signals

    International Nuclear Information System (INIS)

    Melia, Umberto; Vallverdú, Montserrat; Caminal, Pere; Guaita, Marc; Montserrat, Josep M; Vilaseca, Isabel; Salamero, Manel; Gaig, Carles; Santamaria, Joan

    2014-01-01

    Excessive daytime sleepiness (EDS) is one of the main symptoms of several sleep related disorders and has a great impact on patients’ lives. While many studies have been carried out in order to assess daytime sleepiness, automatic EDS detection still remains an open problem. In this work, a novel approach to this issue based on correntropy function analysis of EEG signals was proposed in order to detect patients suffering from EDS. Multichannel EEG signals were recorded during five Maintenance of Wakefulness Tests (MWT) and Multiple Sleep Latency Tests (MSLT) alternated throughout the day for patients suffering from sleep disordered breathing (SDB). A group of 20 patients with EDS was compared with a group of 20 patients without daytime sleepiness (WDS), by analyzing 60 s EEG windows in a waking state. Measures obtained from the cross-correntropy function (CCORR) and auto-correntropy function (ACORR) were calculated in the EEG frequency bands: δ, 0.1–4 Hz; θ, 4–8 Hz; α, 8–12 Hz; β, 12–30 Hz; total band TB, 0.1–45 Hz. These functions permitted the quantification of complex signal properties and the non-linear couplings between different areas of the scalp. Statistical differences between EDS and WDS groups were mainly found in the β band during MSLT events (p-value < 0.0001). The WDS group presented more complexity in the occipital zone than the EDS group, while a stronger nonlinear coupling between the occipital and frontal regions was detected in EDS patients than in the WDS group. At best, ACORR and CCORR measures yielded sensitivity and specificity above 80% and the area under ROC curve (AUC) was above 0.85 in classifying EDS and WDS patients. These performances represent an improvement with respect to classical EEG indices applied in the same database (sensitivity and specificity were never above 80% and AUC was under 0.75). (paper)

  2. EEG Correlates of Ten Positive Emotions.

    Science.gov (United States)

    Hu, Xin; Yu, Jianwen; Song, Mengdi; Yu, Chun; Wang, Fei; Sun, Pei; Wang, Daifa; Zhang, Dan

    2017-01-01

    Compared with the well documented neurophysiological findings on negative emotions, much less is known about positive emotions. In the present study, we explored the EEG correlates of ten different positive emotions (joy, gratitude, serenity, interest, hope, pride, amusement, inspiration, awe, and love). A group of 20 participants were invited to watch 30 short film clips with their EEGs simultaneously recorded. Distinct topographical patterns for different positive emotions were found for the correlation coefficients between the subjective ratings on the ten positive emotions per film clip and the corresponding EEG spectral powers in different frequency bands. Based on the similarities of the participants' ratings on the ten positive emotions, these emotions were further clustered into three representative clusters, as 'encouragement' for awe, gratitude, hope, inspiration, pride, 'playfulness' for amusement, joy, interest, and 'harmony' for love, serenity. Using the EEG spectral powers as features, both the binary classification on the higher and lower ratings on these positive emotions and the binary classification between the three positive emotion clusters, achieved accuracies of approximately 80% and above. To our knowledge, our study provides the first piece of evidence on the EEG correlates of different positive emotions.

  3. Resting state EEG correlates of memory consolidation.

    Science.gov (United States)

    Brokaw, Kate; Tishler, Ward; Manceor, Stephanie; Hamilton, Kelly; Gaulden, Andrew; Parr, Elaine; Wamsley, Erin J

    2016-04-01

    Numerous studies demonstrate that post-training sleep benefits human memory. At the same time, emerging data suggest that other resting states may similarly facilitate consolidation. In order to identify the conditions under which non-sleep resting states benefit memory, we conducted an EEG (electroencephalographic) study of verbal memory retention across 15min of eyes-closed rest. Participants (n=26) listened to a short story and then either rested with their eyes closed, or else completed a distractor task for 15min. A delayed recall test was administered immediately following the rest period. We found, first, that quiet rest enhanced memory for the short story. Improved memory was associated with a particular EEG signature of increased slow oscillatory activity (rest can facilitate memory, and that this may occur via an active process of consolidation supported by slow oscillatory EEG activity and characterized by decreased attention to the external environment. Slow oscillatory EEG rhythms are proposed to facilitate memory consolidation during sleep by promoting hippocampal-cortical communication. Our findings suggest that EEG slow oscillations could play a significant role in memory consolidation during other resting states as well. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Does EEG-Neurofeedback Improve Neurocognitive Functioning in Children with Attention-Deficit/Hyperactivity Disorder? A Systematic Review and a Double-Blind Placebo-Controlled Study

    Science.gov (United States)

    Vollebregt, Madelon A.; van Dongen-Boomsma, Martine; Buitelaar, Jan K.; Slaats-Willemse, Dorine

    2014-01-01

    Background: The number of placebo-controlled randomized studies relating to EEG-neurofeedback and its effect on neurocognition in attention-deficient/hyperactivity disorder (ADHD) is limited. For this reason, a double blind, randomized, placebo-controlled study was designed to assess the effects of EEG-neurofeedback on neurocognitive functioning…

  5. Quantitative Analysis of the Effects of Slow Wave Sleep Deprivation During the First 3 h of Sleep on Subsequent EEG Power Density

    NARCIS (Netherlands)

    Dijk, Derk Jan; Beersma, Domien G.M.; Daan, Serge; Bloem, Gerda M.; Hoofdakker, Rutger H. van den

    1987-01-01

    The relation between EEG power density during slow wave sleep (SWS) deprivation and power density during subsequent sleep was investigated. Nine young male adults slept in the laboratory for 3 consecutive nights. Spectral analysis of the EEG on the 2nd (baseline) night revealed an exponential

  6. Preictal dynamics of EEG complexity in intracranially recorded epileptic seizure: a case report.

    Science.gov (United States)

    Bob, Petr; Roman, Robert; Svetlak, Miroslav; Kukleta, Miloslav; Chladek, Jan; Brazdil, Milan

    2014-11-01

    Recent findings suggest that neural complexity reflecting a number of independent processes in the brain may characterize typical changes during epileptic seizures and may enable to describe preictal dynamics. With respect to previously reported findings suggesting specific changes in neural complexity during preictal period, we have used measure of pointwise correlation dimension (PD2) as a sensitive indicator of nonstationary changes in complexity of the electroencephalogram (EEG) signal. Although this measure of complexity in epileptic patients was previously reported by Feucht et al (Applications of correlation dimension and pointwise dimension for non-linear topographical analysis of focal onset seizures. Med Biol Comput. 1999;37:208-217), it was not used to study changes in preictal dynamics. With this aim to study preictal changes of EEG complexity, we have examined signals from 11 multicontact depth (intracerebral) EEG electrodes located in 108 cortical and subcortical brain sites, and from 3 scalp EEG electrodes in a patient with intractable epilepsy, who underwent preoperative evaluation before epilepsy surgery. From those 108 EEG contacts, records related to 44 electrode contacts implanted into lesional structures and white matter were not included into the experimental analysis.The results show that in comparison to interictal period (at about 8-6 minutes before seizure onset), there was a statistically significant decrease in PD2 complexity in the preictal period at about 2 minutes before seizure onset in all 64 intracranial channels localized in various brain sites that were included into the analysis and in 3 scalp EEG channels as well. Presented results suggest that using PD2 in EEG analysis may have significant implications for research of preictal dynamics and prediction of epileptic seizures.

  7. Calibrating EEG-based motor imagery brain-computer interface from passive movement.

    Science.gov (United States)

    Ang, Kai Keng; Guan, Cuntai; Wang, Chuanchu; Phua, Kok Soon; Tan, Adrian Hock Guan; Chin, Zheng Yang

    2011-01-01

    EEG data from performing motor imagery are usually collected to calibrate a subject-specific model for classifying the EEG data during the evaluation phase of motor imagery Brain-Computer Interface (BCI). However, there is no direct objective measure to determine if a subject is performing motor imagery correctly for proper calibration. Studies have shown that passive movement, which is directly observable, induces Event-Related Synchronization patterns that are similar to those induced from motor imagery. Hence, this paper investigates the feasibility of calibrating EEG-based motor imagery BCI from passive movement. EEG data of 12 healthy subjects were collected during motor imagery and passive movement of the hand by a haptic knob robot. The calibration models using the Filter Bank Common Spatial Pattern algorithm on the EEG data from motor imagery were compared against using the EEG data from passive movement. The performances were compared based on the 10×10-fold cross-validation accuracies of the calibration data, and off-line session-to-session transfer kappa values to other sessions of motor imagery performed on another day. The results showed that the calibration performed using passive movement yielded higher model accuracy and off-line session-to-session transfer (73.6% and 0.354) than the calibration performed using motor imagery (71.3% and 0.311), and no significant differences were observed between the two groups (p=0.20, 0.23). Hence, this study shows that it is feasible to calibrate EEG-based motor imagery BCI from passive movement.

  8. One-Class FMRI-Inspired EEG Model for Self-Regulation Training.

    Directory of Open Access Journals (Sweden)

    Yehudit Meir-Hasson

    Full Text Available Recent evidence suggests that learned self-regulation of localized brain activity in deep limbic areas such as the amygdala, may alleviate symptoms of affective disturbances. Thus far self-regulation of amygdala activity could be obtained only via fMRI guided neurofeedback, an expensive and immobile procedure. EEG on the other hand is relatively inexpensive and can be easily implemented in any location. However the clinical utility of EEG neurofeedback for affective disturbances remains limited due to low spatial resolution, which hampers the targeting of deep limbic areas such as the amygdala. We introduce an EEG prediction model of amygdala activity from a single electrode. The gold standard used for training is the fMRI-BOLD signal in the amygdala during simultaneous EEG/fMRI recording. The suggested model is based on a time/frequency representation of the EEG data with varying time-delay. Previous work has shown a strong inhomogeneity among subjects as is reflected by the models created to predict the amygdala BOLD response from EEG data. In that work, different models were constructed for different subjects. In this work, we carefully analyzed the inhomogeneity among subjects and were able to construct a single model for the majority of the subjects. We introduce a method for inhomogeneity assessment. This enables us to demonstrate a choice of subjects for which a single model could be derived. We further demonstrate the ability to modulate brain-activity in a neurofeedback setting using feedback generated by the model. We tested the effect of the neurofeedback training by showing that new subjects can learn to down-regulate the signal amplitude compared to a sham group, which received a feedback obtained by a different participant. This EEG based model can overcome substantial limitations of fMRI-NF. It can enable investigation of NF training using multiple sessions and large samples in various locations.

  9. The probability of seizures during EEG monitoring in critically ill adults.

    Science.gov (United States)

    Westover, M Brandon; Shafi, Mouhsin M; Bianchi, Matt T; Moura, Lidia M V R; O'Rourke, Deirdre; Rosenthal, Eric S; Chu, Catherine J; Donovan, Samantha; Hoch, Daniel B; Kilbride, Ronan D; Cole, Andrew J; Cash, Sydney S

    2015-03-01

    To characterize the risk for seizures over time in relation to EEG findings in hospitalized adults undergoing continuous EEG monitoring (cEEG). Retrospective analysis of cEEG data and medical records from 625 consecutive adult inpatients monitored at a tertiary medical center. Using survival analysis methods, we estimated the time-dependent probability that a seizure will occur within the next 72-h, if no seizure has occurred yet, as a function of EEG abnormalities detected so far. Seizures occurred in 27% (168/625). The first seizure occurred early (monitoring) in 58% (98/168). In 527 patients without early seizures, 159 (30%) had early epileptiform abnormalities, versus 368 (70%) without. Seizures were eventually detected in 25% of patients with early epileptiform discharges, versus 8% without early discharges. The 72-h risk of seizures declined below 5% if no epileptiform abnormalities were present in the first two hours, whereas 16h of monitoring were required when epileptiform discharges were present. 20% (74/388) of patients without early epileptiform abnormalities later developed them; 23% (17/74) of these ultimately had seizures. Only 4% (12/294) experienced a seizure without preceding epileptiform abnormalities. Seizure risk in acute neurological illness decays rapidly, at a rate dependent on abnormalities detected early during monitoring. This study demonstrates that substantial risk stratification is possible based on early EEG abnormalities. These findings have implications for patient-specific determination of the required duration of cEEG monitoring in hospitalized patients. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  10. MATLAB Toolboxes for Reference Electrode Standardization Technique (REST) of Scalp EEG.

    Science.gov (United States)

    Dong, Li; Li, Fali; Liu, Qiang; Wen, Xin; Lai, Yongxiu; Xu, Peng; Yao, Dezhong

    2017-01-01

    Reference electrode standardization technique (REST) has been increasingly acknowledged and applied as a re-reference technique to transform an actual multi-channels recordings to approximately zero reference ones in electroencephalography/event-related potentials (EEG/ERPs) community around the world in recent years. However, a more easy-to-use toolbox for re-referencing scalp EEG data to zero reference is still lacking. Here, we have therefore developed two open-source MATLAB toolboxes for REST of scalp EEG. One version of REST is closely integrated into EEGLAB, which is a popular MATLAB toolbox for processing the EEG data; and another is a batch version to make it more convenient and efficient for experienced users. Both of them are designed to provide an easy-to-use for novice researchers and flexibility for experienced researchers. All versions of the REST toolboxes can be freely downloaded at http://www.neuro.uestc.edu.cn/rest/Down.html, and the detailed information including publications, comments and documents on REST can also be found from this website. An example of usage is given with comparative results of REST and average reference. We hope these user-friendly REST toolboxes could make the relatively novel technique of REST easier to study, especially for applications in various EEG studies.

  11. Applying Improved Multiscale Fuzzy Entropy for Feature Extraction of MI-EEG

    Directory of Open Access Journals (Sweden)

    Ming-ai Li

    2017-01-01

    Full Text Available Electroencephalography (EEG is considered the output of a brain and it is a bioelectrical signal with multiscale and nonlinear properties. Motor Imagery EEG (MI-EEG not only has a close correlation with the human imagination and movement intention but also contains a large amount of physiological or disease information. As a result, it has been fully studied in the field of rehabilitation. To correctly interpret and accurately extract the features of MI-EEG signals, many nonlinear dynamic methods based on entropy, such as Approximate Entropy (ApEn, Sample Entropy (SampEn, Fuzzy Entropy (FE, and Permutation Entropy (PE, have been proposed and exploited continuously in recent years. However, these entropy-based methods can only measure the complexity of MI-EEG based on a single scale and therefore fail to account for the multiscale property inherent in MI-EEG. To solve this problem, Multiscale Sample Entropy (MSE, Multiscale Permutation Entropy (MPE, and Multiscale Fuzzy Entropy (MFE are developed by introducing scale factor. However, MFE has not been widely used in analysis of MI-EEG, and the same parameter values are employed when the MFE method is used to calculate the fuzzy entropy values on multiple scales. Actually, each coarse-grained MI-EEG carries the characteristic information of the original signal on different scale factors. It is necessary to optimize MFE parameters to discover more feature information. In this paper, the parameters of MFE are optimized independently for each scale factor, and the improved MFE (IMFE is applied to the feature extraction of MI-EEG. Based on the event-related desynchronization (ERD/event-related synchronization (ERS phenomenon, IMFE features from multi channels are fused organically to construct the feature vector. Experiments are conducted on a public dataset by using Support Vector Machine (SVM as a classifier. The experiment results of 10-fold cross-validation show that the proposed method yields

  12. Correlation of BOLD Signal with Linear and Nonlinear Patterns of EEG in Resting State EEG-Informed fMRI

    Directory of Open Access Journals (Sweden)

    Galina V. Portnova

    2018-01-01

    Full Text Available Concurrent EEG and fMRI acquisitions in resting state showed a correlation between EEG power in various bands and spontaneous BOLD fluctuations. However, there is a lack of data on how changes in the complexity of brain dynamics derived from EEG reflect variations in the BOLD signal. The purpose of our study was to correlate both spectral patterns, as linear features of EEG rhythms, and nonlinear EEG dynamic complexity with neuronal activity obtained by fMRI. We examined the relationships between EEG patterns and brain activation obtained by simultaneous EEG-fMRI during the resting state condition in 25 healthy right-handed adult volunteers. Using EEG-derived regressors, we demonstrated a substantial correlation of BOLD signal changes with linear and nonlinear features of EEG. We found the most significant positive correlation of fMRI signal with delta spectral power. Beta and alpha spectral features had no reliable effect on BOLD fluctuation. However, dynamic changes of alpha peak frequency exhibited a significant association with BOLD signal increase in right-hemisphere areas. Additionally, EEG dynamic complexity as measured by the HFD of the 2–20 Hz EEG frequency range significantly correlated with the activation of cortical and subcortical limbic system areas. Our results indicate that both spectral features of EEG frequency bands and nonlinear dynamic properties of spontaneous EEG are strongly associated with fluctuations of the BOLD signal during the resting state condition.

  13. Investigating reading comprehension through EEG

    Directory of Open Access Journals (Sweden)

    Luciane Baretta

    2012-12-01

    Full Text Available http://dx.doi.org/10.5007/2175-8026.2012n63p69   Experimental studies point that different factors can influence reading comprehension, such as the topic, text type, reading task, and others. The advances in technologies for the past decades have provided researchers with several possibilities to investigate what goes on in one’s brain since their eyes meet the page until comprehension is achieved. Since the mid-80’s, numerous studies have been conducted with the use of the electroencephalogram (EEG to investigate the process of reading, through the analysis of different components – n400, n100 or n1, P2, among others. These components reveal, for example, how the brain integrates the meaning of a specific word in the semantic context of a given sentence.  based on previous studies, which demonstrate that different types of words affect cognitive load, this paper aims at investigating how the brain processes function and content words inserted in expository and narrative texts with suitable / unsuitable conclusions. results showed that the type of text and word influence the cognitive load in different scalp areas (midline, right and left hemispheres. The  n1s were more pronounced to the content words inserted in narrative texts and to the function words inserted in the expository type of texts, corroborating former studies.

  14. Identifying the effects of microsaccades in tripolar EEG signals.

    Science.gov (United States)

    Bellisle, Rachel; Steele, Preston; Bartels, Rachel; Lei Ding; Sunderam, Sridhar; Besio, Walter

    2017-07-01

    Microsaccades are tiny, involuntary eye movements that occur during fixation, and they are necessary to human sight to maintain a sharp image and correct the effects of other fixational movements. Researchers have theorized and studied the effects of microsaccades on electroencephalography (EEG) signals to understand and eliminate the unwanted artifacts from EEG. The tripolar concentric ring electrode (TCRE) sensors are used to acquire TCRE EEG (tEEG). The tEEG detects extremely focal signals from directly below the TCRE sensor. We have noticed a slow wave frequency found in some tEEG recordings. Therefore, we conducted the current work to determine if there was a correlation between the slow wave in the tEEG and the microsaccades. This was done by analyzing the coherence of the frequency spectrums of both tEEG and eye movement in recordings where microsaccades are present. Our preliminary findings show that there is a correlation between the two.

  15. Removal of ocular artifacts from the REM sleep EEG

    NARCIS (Netherlands)

    Waterman, D.; Woestenburg, J.C.; Elton, M.; Hofman, W.; Kok, A.

    1992-01-01

    The present report concerns the first study in which electrooculographic (EOG) contamination of electroencephalographic (EEG) recordings in rapid eye movement (REM) sleep is systematically investigated. Contamination of REM sleep EEG recordings in six subjects was evaluated in the frequency domain.

  16. Extended seizure detection algorithm for intracranial EEG recordings

    DEFF Research Database (Denmark)

    Kjaer, T. W.; Remvig, L. S.; Henriksen, J.

    2010-01-01

    Objective: We implemented and tested an existing seizure detection algorithm for scalp EEG (sEEG) with the purpose of improving it to intracranial EEG (iEEG) recordings. Method: iEEG was obtained from 16 patients with focal epilepsy undergoing work up for resective epilepsy surgery. Each patient...... had 4 or 5 recorded seizures and 24 hours of non-ictal data were used for evaluation. Data from three electrodes placed at the ictal focus were used for the analysis. A wavelet based feature extraction algorithm delivered input to a support vector machine (SVM) classifier for distinction between ictal...... and non-ictal iEEG. We compare our results to a method published by Shoeb in 2004. While the original method on sEEG was optimal with the use of only four subbands in the wavelet analysis, we found that better seizure detection could be made if all subbands were used for iEEG. Results: When using...

  17. Spatial-temporal-spectral EEG patterns of BOLD functional network connectivity dynamics

    Science.gov (United States)

    Lamoš, Martin; Mareček, Radek; Slavíček, Tomáš; Mikl, Michal; Rektor, Ivan; Jan, Jiří

    2018-06-01

    Objective. Growing interest in the examination of large-scale brain network functional connectivity dynamics is accompanied by an effort to find the electrophysiological correlates. The commonly used constraints applied to spatial and spectral domains during electroencephalogram (EEG) data analysis may leave part of the neural activity unrecognized. We propose an approach that blindly reveals multimodal EEG spectral patterns that are related to the dynamics of the BOLD functional network connectivity. Approach. The blind decomposition of EEG spectrogram by parallel factor analysis has been shown to be a useful technique for uncovering patterns of neural activity. The simultaneously acquired BOLD fMRI data were decomposed by independent component analysis. Dynamic functional connectivity was computed on the component’s time series using a sliding window correlation, and between-network connectivity states were then defined based on the values of the correlation coefficients. ANOVA tests were performed to assess the relationships between the dynamics of between-network connectivity states and the fluctuations of EEG spectral patterns. Main results. We found three patterns related to the dynamics of between-network connectivity states. The first pattern has dominant peaks in the alpha, beta, and gamma bands and is related to the dynamics between the auditory, sensorimotor, and attentional networks. The second pattern, with dominant peaks in the theta and low alpha bands, is related to the visual and default mode network. The third pattern, also with peaks in the theta and low alpha bands, is related to the auditory and frontal network. Significance. Our previous findings revealed a relationship between EEG spectral pattern fluctuations and the hemodynamics of large-scale brain networks. In this study, we suggest that the relationship also exists at the level of functional connectivity dynamics among large-scale brain networks when no standard spatial and spectral

  18. The Oft-Neglected Role of Parietal EEG Asymmetry and Risk for Major Depressive Disorder

    Science.gov (United States)

    Stewart, Jennifer L.; Towers, David N.; Coan, James A.; Allen, John J.B.

    2010-01-01

    Relatively less right parietal activity may reflect reduced arousal and signify risk for major depressive disorder (MDD). Inconsistent findings with parietal electroencephalographic (EEG) asymmetry, however, suggest issues such as anxiety comorbidity and sex differences have yet to be resolved. Resting parietal EEG asymmetry was assessed in 306 individuals (31% male) with (n = 143) and without (n = 163) a DSM-IV diagnosis of lifetime MDD and no comorbid anxiety disorders. Past MDD+ women displayed relatively less right parietal activity than current MDD+ and MDD- women, replicating prior work. Recent caffeine intake, an index of arousal, moderated the relationship between depression and EEG asymmetry for women and men. Findings suggest that sex differences and arousal should be examined in studies of depression and regional brain activity. PMID:20525011

  19. [EEG changes in symptomatic headache caused by bruxism].

    Science.gov (United States)

    Wieselmann, G; Grabmair, W; Logar, C; Permann, R; Moser, F

    1987-02-20

    EEG recordings were carried out on 36 patients with the verified diagnosis of bruxism and unilateral headache. Occlusal splints were applied in the long-term management of these patients. Initial EEG recordings showed pathological changes in 56% of the patients. The EEG recordings were repeated two and six weeks later in these patients and following improvement in the clinical symptomatology pathological EEG patterns were detected in only 22% of all cases. This decrease is of statistical significance.

  20. Temporal lobe deficits in murderers: EEG findings undetected by PET.

    Science.gov (United States)

    Gatzke-Kopp, L M; Raine, A; Buchsbaum, M; LaCasse, L

    2001-01-01

    This study evaluates electroencephalography (EEG) and positron emission tomography (PET) in the same subjects. Fourteen murderers were assessed by using both PET (while they were performing the continuous performance task) and EEG during a resting state. EEG revealed significant increases in slow-wave activity in the temporal, but not frontal, lobe in murderers, in contrast to prior PET findings that showed reduced prefrontal, but not temporal, glucose metabolism. Results suggest that resting EEG shows empirical utility distinct from PET activation findings.

  1. EEG-guided meditation: A personalized approach.

    Science.gov (United States)

    Fingelkurts, Andrew A; Fingelkurts, Alexander A; Kallio-Tamminen, Tarja

    2015-12-01

    The therapeutic potential of meditation for physical and mental well-being is well documented, however the possibility of adverse effects warrants further discussion of the suitability of any particular meditation practice for every given participant. This concern highlights the need for a personalized approach in the meditation practice adjusted for a concrete individual. This can be done by using an objective screening procedure that detects the weak and strong cognitive skills in brain function, thus helping design a tailored meditation training protocol. Quantitative electroencephalogram (qEEG) is a suitable tool that allows identification of individual neurophysiological types. Using qEEG screening can aid developing a meditation training program that maximizes results and minimizes risk of potential negative effects. This brief theoretical-conceptual review provides a discussion of the problem and presents some illustrative results on the usage of qEEG screening for the guidance of mediation personalization. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Lateralized EEG components with direction information for the preparation of saccades versus finger movements

    NARCIS (Netherlands)

    van der Lubbe, Robert Henricus Johannes; Wauschkuhn, Bernd; Wascher, Edmund; Niehoff, Torsten; Kömpf, Detlef; Verleger, Rolf

    2000-01-01

    During preparation of horizontal saccades in humans, several lateralized (relative to saccade direction), event-related EEG components occur that have been interpreted as reflecting activity of frontal and parietal eye fields. We investigated to what degree these components are specific to saccade

  3. Widespread EEG changes precede focal seizures.

    Directory of Open Access Journals (Sweden)

    Piero Perucca

    Full Text Available The process by which the brain transitions into an epileptic seizure is unknown. In this study, we investigated whether the transition to seizure is associated with changes in brain dynamics detectable in the wideband EEG, and whether differences exist across underlying pathologies. Depth electrode ictal EEG recordings from 40 consecutive patients with pharmacoresistant lesional focal epilepsy were low-pass filtered at 500 Hz and sampled at 2,000 Hz. Predefined EEG sections were selected immediately before (immediate preictal, and 30 seconds before the earliest EEG sign suggestive of seizure activity (baseline. Spectral analysis, visual inspection and discrete wavelet transform were used to detect standard (delta, theta, alpha, beta and gamma and high-frequency bands (ripples and fast ripples. At the group level, each EEG frequency band activity increased significantly from baseline to the immediate preictal section, mostly in a progressive manner and independently of any modification in the state of vigilance. Preictal increases in each frequency band activity were widespread, being observed in the seizure-onset zone and lesional tissue, as well as in remote regions. These changes occurred in all the investigated pathologies (mesial temporal atrophy/sclerosis, local/regional cortical atrophy, and malformations of cortical development, but were more pronounced in mesial temporal atrophy/sclerosis. Our findings indicate that a brain state change with distinctive features, in the form of unidirectional changes across the entire EEG bandwidth, occurs immediately prior to seizure onset. We postulate that these changes might reflect a facilitating state of the brain which enables a susceptible region to generate seizures.

  4. EEG. Renewables Act. Comment. 3. new rev. and enl. ed.; EEG. Erneuerbare-Energien-Gesetz. Kommentar

    Energy Technology Data Exchange (ETDEWEB)

    Frenz, Walter [Rheinisch-Westfaelische Technische Hochschule (RWTH), Aachen (Germany). Lehr- und Forschungsgebiet Berg-, Umwelt- und Europarecht; Mueggenborg, Hans-Juergen (eds.) [Kassel Univ. (Germany)

    2013-05-01

    Like hardly any other law, the Renewable Energy Sources Law (EEG) is a subject to continuing modifications. This makes the application of the already complicated regulations even for experts to a special challenge. With the proven Berliner comment EEG, now a reliable companion through the bureaucratic jungle is available. All regulations of the EEG are commented precisely and easily to understand by profound experts. An extensive selection of terminology enables a rapid orientation within this book. In addition to the excursions to renewable energy technologies, this book also describes the structural aspects in the establishment of a photovoltaic system.

  5. The colorful brain: Visualization of EEG background patterns

    NARCIS (Netherlands)

    van Putten, Michel Johannes Antonius Maria

    2008-01-01

    This article presents a method to transform routine clinical EEG recordings to an alternative visual domain. The method is intended to support the classic visual interpretation of the EEG background pattern and to facilitate communication about relevant EEG characteristics. In addition, it provides

  6. A comparison of EEG spectral entropy with conventional quantitative ...

    African Journals Online (AJOL)

    A comparison of EEG spectral entropy with conventional quantitative EEG at varying depths of sevoflurane anaesthesia. PR Bartel, FJ Smith, PJ Becker. Abstract. Background and Aim: Recently an electroencephalographic (EEG) spectral entropy module (M-ENTROPY) for an anaesthetic monitor has become commercially ...

  7. Improving the Specificity of EEG for Diagnosing Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    François-B. Vialatte

    2011-01-01

    Full Text Available Objective. EEG has great potential as a cost-effective screening tool for Alzheimer's disease (AD. However, the specificity of EEG is not yet sufficient to be used in clinical practice. In an earlier study, we presented preliminary results suggesting improved specificity of EEG to early stages of Alzheimer's disease. The key to this improvement is a new method for extracting sparse oscillatory events from EEG signals in the time-frequency domain. Here we provide a more detailed analysis, demonstrating improved EEG specificity for clinical screening of MCI (mild cognitive impairment patients. Methods. EEG data was recorded of MCI patients and age-matched control subjects, in rest condition with eyes closed. EEG frequency bands of interest were θ (3.5–7.5 Hz, α1 (7.5–9.5 Hz, α2 (9.5–12.5 Hz, and β (12.5–25 Hz. The EEG signals were transformed in the time-frequency domain using complex Morlet wavelets; the resulting time-frequency maps are represented by sparse bump models. Results. Enhanced EEG power in the θ range is more easily detected through sparse bump modeling; this phenomenon explains the improved EEG specificity obtained in our previous studies. Conclusions. Sparse bump modeling yields informative features in EEG signal. These features increase the specificity of EEG for diagnosing AD.

  8. Analysis of routine EEG usage in a general adult ICU.

    LENUS (Irish Health Repository)

    McHugh, J C

    2009-09-01

    Non-convulsive seizures and status epilepticus are common in brain-injured patients in intensive care units. Continuous electroencephalography (cEEG) monitoring is the most sensitive means of their detection. In centres where cEEG is unavailable, routine EEG is often utilized for diagnosis although its sensitivity is lower.

  9. Single-trial EEG-informed fMRI analysis of emotional decision problems in hot executive function.

    Science.gov (United States)

    Guo, Qian; Zhou, Tiantong; Li, Wenjie; Dong, Li; Wang, Suhong; Zou, Ling

    2017-07-01

    Executive function refers to conscious control in psychological process which relates to thinking and action. Emotional decision is a part of hot executive function and contains emotion and logic elements. As a kind of important social adaptation ability, more and more attention has been paid in recent years. Gambling task can be well performed in the study of emotional decision. As fMRI researches focused on gambling task show not completely consistent brain activation regions, this study adopted EEG-fMRI fusion technology to reveal brain neural activity related with feedback stimuli. In this study, an EEG-informed fMRI analysis was applied to process simultaneous EEG-fMRI data. First, relative power-spectrum analysis and K-means clustering method were performed separately to extract EEG-fMRI features. Then, Generalized linear models were structured using fMRI data and using different EEG features as regressors. The results showed that in the win versus loss stimuli, the activated regions almost covered the caudate, the ventral striatum (VS), the orbital frontal cortex (OFC), and the cingulate. Wide activation areas associated with reward and punishment were revealed by the EEG-fMRI integration analysis than the conventional fMRI results, such as the posterior cingulate and the OFC. The VS and the medial prefrontal cortex (mPFC) were found when EEG power features were performed as regressors of GLM compared with results entering the amplitudes of feedback-related negativity (FRN) as regressors. Furthermore, the brain region activation intensity was the strongest when theta-band power was used as a regressor compared with the other two fusion results. The EEG-based fMRI analysis can more accurately depict the whole-brain activation map and analyze emotional decision problems.

  10. EEG, transmission computed tomography, and positron emission tomography with fluorodeoxyglucose 18F. Their use in adults with gliomas

    International Nuclear Information System (INIS)

    Newmark, M.E.; Theodore, W.H.; Sato, S.; De La Paz, R.; Patronas, N.; Brooks, R.; Jabbari, B.; Di Chiro, G.

    1983-01-01

    We evaluated the relationship between findings from EEG, transmission computed tomography (CT), and positron emission tomography in 23 adults with gliomas. The cortical metabolic rate was suppressed in patients with and without focal slowing. Focal delta activity was not related to involvement of gray or white matter. Rhythmic delta activity and focal attenuation of background amplitude on EEG, however, were correlated with involvement of the thalamus

  11. Optimal use of EEG recordings to target active brain areas with transcranial electrical stimulation.

    Science.gov (United States)

    Dmochowski, Jacek P; Koessler, Laurent; Norcia, Anthony M; Bikson, Marom; Parra, Lucas C

    2017-08-15

    To demonstrate causal relationships between brain and behavior, investigators would like to guide brain stimulation using measurements of neural activity. Particularly promising in this context are electroencephalography (EEG) and transcranial electrical stimulation (TES), as they are linked by a reciprocity principle which, despite being known for decades, has not led to a formalism for relating EEG recordings to optimal stimulation parameters. Here we derive a closed-form expression for the TES configuration that optimally stimulates (i.e., targets) the sources of recorded EEG, without making assumptions about source location or distribution. We also derive a duality between TES targeting and EEG source localization, and demonstrate that in cases where source localization fails, so does the proposed targeting. Numerical simulations with multiple head models confirm these theoretical predictions and quantify the achieved stimulation in terms of focality and intensity. We show that constraining the stimulation currents automatically selects optimal montages that involve only a few (4-7) electrodes, with only incremental loss in performance when targeting focal activations. The proposed technique allows brain scientists and clinicians to rationally target the sources of observed EEG and thus overcomes a major obstacle to the realization of individualized or closed-loop brain stimulation. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Moving Beyond ERP Components: A Selective Review of Approaches to Integrate EEG and Behavior

    Science.gov (United States)

    Bridwell, David A.; Cavanagh, James F.; Collins, Anne G. E.; Nunez, Michael D.; Srinivasan, Ramesh; Stober, Sebastian; Calhoun, Vince D.

    2018-01-01

    Relationships between neuroimaging measures and behavior provide important clues about brain function and cognition in healthy and clinical populations. While electroencephalography (EEG) provides a portable, low cost measure of brain dynamics, it has been somewhat underrepresented in the emerging field of model-based inference. We seek to address this gap in this article by highlighting the utility of linking EEG and behavior, with an emphasis on approaches for EEG analysis that move beyond focusing on peaks or “components” derived from averaging EEG responses across trials and subjects (generating the event-related potential, ERP). First, we review methods for deriving features from EEG in order to enhance the signal within single-trials. These methods include filtering based on user-defined features (i.e., frequency decomposition, time-frequency decomposition), filtering based on data-driven properties (i.e., blind source separation, BSS), and generating more abstract representations of data (e.g., using deep learning). We then review cognitive models which extract latent variables from experimental tasks, including the drift diffusion model (DDM) and reinforcement learning (RL) approaches. Next, we discuss ways to access associations among these measures, including statistical models, data-driven joint models and cognitive joint modeling using hierarchical Bayesian models (HBMs). We think that these methodological tools are likely to contribute to theoretical advancements, and will help inform our understandings of brain dynamics that contribute to moment-to-moment cognitive function. PMID:29632480

  13. Early post-traumatic epilepsy following serious craniocerebral trauma, with emphasis on EEG and CT findings

    International Nuclear Information System (INIS)

    Goeller, T.

    1981-01-01

    In the study on hand, eighty patients with craniocerebral trauma were regularly examined by EEG. Twenty-two of the patients had clinically observable fits. In five other patients, only the EEG revealed paroxysmal events in the first week following trauma. In six patients who were observed to have fits, no corresponding EEG equivalent could be recorded for technical reasons. In case of early epileptical fits, CT always revealed an intercranial hemorrhage, except for two cases, the findings being in agreement with the lateral location of the focus as determined by EEG. The seriousness of cranial injury was directly related to the number of fits observed in the first post-traumatic week. Patients over thirty showed an increase of eraly post-traumatic fits. The lethality of patients with early fits was significantly increased as compared with patients without early fits. EEG examination as early as possible after the craniocerebral trauma is necessary and useful, both for detection of lesions and for appropriate drug therapy. (orig./MG) [de

  14. Overcoming Inter-Subject Variability in BCI Using EEG-Based Identification

    Directory of Open Access Journals (Sweden)

    J. Stastny

    2014-04-01

    Full Text Available The high dependency of the Brain Computer Interface (BCI system performance on the BCI user is a well-known issue of many BCI devices. This contribution presents a new way to overcome this problem using a synergy between a BCI device and an EEG-based biometric algorithm. Using the biometric algorithm, the BCI device automatically identifies its current user and adapts parameters of the classification process and of the BCI protocol to maximize the BCI performance. In addition to this we present an algorithm for EEG-based identification designed to be resistant to variations in EEG recordings between sessions, which is also demonstrated by an experiment with an EEG database containing two sessions recorded one year apart. Further, our algorithm is designed to be compatible with our movement-related BCI device and the evaluation of the algorithm performance took place under conditions of a standard BCI experiment. Estimation of the mu rhythm fundamental frequency using the Frequency Zooming AR modeling is used for EEG feature extraction followed by a classifier based on the regularized Mahalanobis distance. An average subject identification score of 96 % is achieved.

  15. Associations among family socioeconomic status, EEG power at birth, and cognitive skills during infancy

    Directory of Open Access Journals (Sweden)

    Natalie H. Brito

    2016-06-01

    Full Text Available Past research has demonstrated links between cortical activity, measured via EEG power, and cognitive processes during infancy. In a separate line of research, family socioeconomic status (SES has been strongly associated with children’s early cognitive development, with socioeconomic disparities emerging during the second year of life for both language and declarative memory skills. The present study examined associations among resting EEG power at birth, SES, and language and memory skills at 15-months in a sample of full-term infants. Results indicate no associations between SES and EEG power at birth. However, EEG power at birth was related to both language and memory outcomes at 15-months. Specifically, frontal power (24–48 Hz was positively correlated with later Visual Paired Comparison (VPC memory scores. Power (24–35 Hz in the parietal region was positively correlated with later PLS-Auditory Comprehension language scores. These findings suggest that SES disparities in brain activity may not be apparent at birth, but measures of resting neonatal EEG power are correlated with later memory and language skills independently of SES.

  16. Could the beta rebound in the EEG be suitable to realize a "brain switch"?

    Science.gov (United States)

    Pfurtscheller, G; Solis-Escalante, T

    2009-01-01

    Performing foot motor imagery is accompanied by a peri-imagery ERD and a post-imagery beta ERS (beta rebound). Our aim was to study whether the post-imagery beta rebound is a suitable feature for a simple "brain switch". Such a brain switch is a specifically designed brain-computer interface (BCI) with the aim to detect only one predefined brain state (e.g. EEG pattern) in ongoing brain activity. One EEG (Laplacian) recorded at the vertex during cue-based brisk foot motor imagery was analysed in 5 healthy subjects. The peri-imagery ERD and the post-imagery beta rebound (ERS) were analysed in detail between 6 and 40Hz and classified with two support vector machines. The ERD was detected in ongoing EEG (simulation of asynchronous BCI) with a true positive rate (TPR) of 28.4%+/-13.5 and the beta rebound with a TPR of 59.2%+/-20.3. In single runs with 30 cues each, the TPR for beta rebound detection was 78.6%+/-12.8. The false positive rate was always kept below 10%. The findings suggest that the beta rebound at Cz during foot motor imagery is a relatively stable and reproducible phenomenon detectable in single EEG trials. Our results indicate that the beta rebound is a suitable feature to realize a "brain switch" with one single EEG (Laplacian) channel only.

  17. Prognostic and diagnostic value of EEG signal coupling measures in coma.

    Science.gov (United States)

    Zubler, Frederic; Koenig, Christa; Steimer, Andreas; Jakob, Stephan M; Schindler, Kaspar A; Gast, Heidemarie

    2016-08-01

    Our aim was to assess the diagnostic and predictive value of several quantitative EEG (qEEG) analysis methods in comatose patients. In 79 patients, coupling between EEG signals on the left-right (inter-hemispheric) axis and on the anterior-posterior (intra-hemispheric) axis was measured with four synchronization measures: relative delta power asymmetry, cross-correlation, symbolic mutual information and transfer entropy directionality. Results were compared with etiology of coma and clinical outcome. Using cross-validation, the predictive value of measure combinations was assessed with a Bayes classifier with mixture of Gaussians. Five of eight measures showed a statistically significant difference between patients grouped according to outcome; one measure revealed differences in patients grouped according to the etiology. Interestingly, a high level of synchrony between the left and right hemisphere was associated with mortality on intensive care unit, whereas higher synchrony between anterior and posterior brain regions was associated with survival. The combination with the best predictive value reached an area-under the curve of 0.875 (for patients with post anoxic encephalopathy: 0.946). EEG synchronization measures can contribute to clinical assessment, and provide new approaches for understanding the pathophysiology of coma. Prognostication in coma remains a challenging task. qEEG could improve current multi-modal approaches. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  18. Infant EEG and temperament negative affectivity: Coherence of vulnerabilities to mothers' perinatal depression.

    Science.gov (United States)

    Lusby, Cara M; Goodman, Sherryl H; Yeung, Ellen W; Bell, Martha Ann; Stowe, Zachary N

    2016-11-01

    Associations between infants' frontal EEG asymmetry and temperamental negative affectivity (NA) across infants' first year of life and the potential moderating role of maternal prenatal depressive symptoms were examined prospectively in infants (n = 242) of mothers at elevated risk for perinatal depression. In predicting EEG, in the context of high prenatal depressive symptoms, infant NA and frontal EEG asymmetry were negatively associated at 3 months of age and positively associated by 12 months of age. By contrast, for low depression mothers, infant NA and EEG were not significantly associated at any age. Postnatal depressive symptoms did not add significantly to the models. Dose of infants' exposure to maternal depression mattered: infants exposed either pre- or postnatally shifted from a positive association at 3 months to a negative association at 12 months; those exposed both pre- and postnatally shifted from a negative association at 3 months to a positive association at 12 months. Prenatal relative to postnatal exposure did not matter for patterns of association between NA and EEG. The findings highlight the importance of exploring how vulnerabilities at two levels of analysis, behavioral and psychophysiological, co-occur over the course of infancy and in the context of mothers' depressive symptomatology.

  19. A Context-Aware EEG Headset System for Early Detection of Driver Drowsiness

    Directory of Open Access Journals (Sweden)

    Gang Li

    2015-08-01

    Full Text Available Driver drowsiness is a major cause of mortality in traffic accidents worldwide. Electroencephalographic (EEG signal, which reflects the brain activities, is more directly related to drowsiness. Thus, many Brain-Machine-Interface (BMI systems have been proposed to detect driver drowsiness. However, detecting driver drowsiness at its early stage poses a major practical hurdle when using existing BMI systems. This study proposes a context-aware BMI system aimed to detect driver drowsiness at its early stage by enriching the EEG data with the intensity of head-movements. The proposed system is carefully designed for low-power consumption with on-chip feature extraction and low energy Bluetooth connection. Also, the proposed system is implemented using JAVA programming language as a mobile application for on-line analysis. In total, 266 datasets obtained from six subjects who participated in a one-hour monotonous driving simulation experiment were used to evaluate this system. According to a video-based reference, the proposed system obtained an overall detection accuracy of 82.71% for classifying alert and slightly drowsy events by using EEG data alone and 96.24% by using the hybrid data of head-movement and EEG. These results indicate that the combination of EEG data and head-movement contextual information constitutes a robust solution for the early detection of driver drowsiness.

  20. [Intracerebral EEG functioning as a reflexion of the systemic brain organization in norm and pathology].

    Science.gov (United States)

    Boldyreva, G N; Zhavoronkova, L A; Sharova, E V; Dobronravova, I S

    2003-01-01

    The authors summarized the EEG findings and defined the nature of intercentral EEG relationships in different functional states of healthy subjects and patients with organic cerebral pathology based on coherence analysis. The EEG features typical of healthy subjects were identified: an anterior-posterior gradient of the mean coherence and the character of cortical-subcortical relationships in the anterior cerebral structures. Right- and lefthanded subjects showed the frequency and regional differences in EEG coherence, which reflected, mainly, specific intracortical relationships. Development and regression of pathologic signs in right- and lefthanded patients with organic brain lesions are thought to be determined by these differences. As distinct from cortical pathology, lesions of regulatory structures (diencephalic, brainstem, and limbic) were shown to produce more diffuse changes in intercentral relationships with a tendency to reciprocity. Intercentral relations, including their interhemispheric differences, varied with changes in the functional state of healthy subjects (increase and decrease in the level of functioning). A certain time course of changes in intercentral relationships was also revealed in patients with organic brain lesions during recovery of their consciousness and mental activity. Changes in the dominance of activity of individual regulatory structures are considered to be one of the most important factors that determine the dynamic character of EEG coherence.

  1. EEG-neurofeedback training of beta band (12-22Hz) affects alpha and beta frequencies - A controlled study of a healthy population.

    Science.gov (United States)

    Jurewicz, Katarzyna; Paluch, Katarzyna; Kublik, Ewa; Rogala, Jacek; Mikicin, Mirosław; Wróbel, Andrzej

    2018-01-08

    The frequency-function relation of various EEG bands has inspired EEG-neurofeedback procedures intending to improve cognitive abilities in numerous clinical groups. In this study, we administered EEG-neurofeedback (EEG-NFB) to a healthy population to determine the efficacy of this procedure. We evaluated feedback manipulation in the beta band (12-22Hz), known to be involved in visual attention processing. Two groups of healthy adults were trained to either up- or down-regulate beta band activity, thus providing mutual control. Up-regulation training induced increases in beta and alpha band (8-12Hz) amplitudes during the first three sessions. Group-independent increases in the activity of both bands were observed in the later phase of training. EEG changes were not matched by measured behavioural indices of attention. Parallel changes in the two bands challenge the idea of frequency-specific EEG-NFB protocols and suggest their interdependence. Our study exposes the possibility (i) that the alpha band is more prone to manipulation, and (ii) that changes in the bands' amplitudes are independent from specified training. We therefore encourage a more comprehensive approach to EEG-neurofeedback training embracing physiological and/or operational relations among various EEG bands. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Oscillatory EEG correlates of arithmetic strategies: A training study

    Directory of Open Access Journals (Sweden)

    Roland H. Grabner

    2012-10-01

    Full Text Available There has been a long tradition of research on mathematics education showing that children and adults use different strategies to solve arithmetic problems. Neurophysiological studies have recently begun to investigate the brain correlates of these strategies. The existing body of data, however, reflect static end points of the learning process and do not provide information on how brain activity changes in response to training or intervention. In this study, we explicitly address this issue by training participants in using fact retrieval strategies. We also investigate whether brain activity related to arithmetic fact learning is domain-specific or whether this generalizes to other learning materials, such as the solution of figural-spatial problems. Twenty adult students were trained on sets of two-digit multiplication problems and figural-spatial problems. After the training, they were presented with the trained and untrained problems while their brain activity was recorded by means of electroencephalography (EEG . In both problem types, the training resulted in accuracies over 90 % and significant decreases in solution times. Analyses of the oscillatory EEG data also revealed training effects across both problem types. Specifically, we observed training-related activity increases in the theta band (3-6 Hz and decreases in the lower alpha band (8-10 Hz, especially over parieto-occipital and parietal brain regions. These results provide the first evidence that a short term fact retrieval training results in significant changes in oscillatory EEG activity. These findings further corroborate the role of the theta band in the retrieval of semantic information from memory and suggest that theta activity is not only sensitive to fact retrieval in mental arithmetic but also in other domains.

  3. Source-Modeling Auditory Processes of EEG Data Using EEGLAB and Brainstorm

    Directory of Open Access Journals (Sweden)

    Maren Stropahl

    2018-05-01

    Full Text Available Electroencephalography (EEG source localization approaches are often used to disentangle the spatial patterns mixed up in scalp EEG recordings. However, approaches differ substantially between experiments, may be strongly parameter-dependent, and results are not necessarily meaningful. In this paper we provide a pipeline for EEG source estimation, from raw EEG data pre-processing using EEGLAB functions up to source-level analysis as implemented in Brainstorm. The pipeline is tested using a data set of 10 individuals performing an auditory attention task. The analysis approach estimates sources of 64-channel EEG data without the prerequisite of individual anatomies or individually digitized sensor positions. First, we show advanced EEG pre-processing using EEGLAB, which includes artifact attenuation using independent component analysis (ICA. ICA is a linear decomposition technique that aims to reveal the underlying statistical sources of mixed signals and is further a powerful tool to attenuate stereotypical artifacts (e.g., eye movements or heartbeat. Data submitted to ICA are pre-processed to facilitate good-quality decompositions. Aiming toward an objective approach on component identification, the semi-automatic CORRMAP algorithm is applied for the identification of components representing prominent and stereotypic artifacts. Second, we present a step-wise approach to estimate active sources of auditory cortex event-related processing, on a single subject level. The presented approach assumes that no individual anatomy is available and therefore the default anatomy ICBM152, as implemented in Brainstorm, is used for all individuals. Individual noise modeling in this dataset is based on the pre-stimulus baseline period. For EEG source modeling we use the OpenMEEG algorithm as the underlying forward model based on the symmetric Boundary Element Method (BEM. We then apply the method of dynamical statistical parametric mapping (dSPM to obtain

  4. Alpha-contingent EEG feedback reduces SPECT rCBF variability

    DEFF Research Database (Denmark)

    McLaughlin, Thomas; Steinberg, Bruce; Mulholland, Thomas

    2005-01-01

    EEG feedback methods, which link the occurrence of alpha to the presentation of repeated visual stimuli, reduce the relative variability of subsequent, alpha-blocking event durations. The temporal association between electro-cortical field activation and regional cerebral blood flow (rCBF) led us...... to investigate whether the reduced variability of alpha-blocking durations with feedback is associated with a reduction in rCBF variability. Reduced variability in the rCBF response domain under EEG feedback control might have methodological implications for future brain-imaging studies. Visual stimuli were...... to quantify the variance-reducing effects of ACS across multiple, distributed areas of the brain. Both EEG and rCBF measures demonstrated decreased variability under ACS. This improved control was seen for localized as well as anatomically distributed rCBF measures....

  5. Extraction of features from sleep EEG for Bayesian assessment of brain development.

    Directory of Open Access Journals (Sweden)

    Vitaly Schetinin

    Full Text Available Brain development can be evaluated by experts analysing age-related patterns in sleep electroencephalograms (EEG. Natural variations in the patterns, noise, and artefacts affect the evaluation accuracy as well as experts' agreement. The knowledge of predictive posterior distribution allows experts to estimate confidence intervals within which decisions are distributed. Bayesian approach to probabilistic inference has provided accurate estimates of intervals of interest. In this paper we propose a new feature extraction technique for Bayesian assessment and estimation of predictive distribution in a case of newborn brain development assessment. The new EEG features are verified within the Bayesian framework on a large EEG data set including 1,100 recordings made from newborns in 10 age groups. The proposed features are highly correlated with brain maturation and their use increases the assessment accuracy.

  6. Classification of EEG signals using a genetic-based machine learning classifier.

    Science.gov (United States)

    Skinner, B T; Nguyen, H T; Liu, D K

    2007-01-01

    This paper investigates the efficacy of the genetic-based learning classifier system XCS, for the classification of noisy, artefact-inclusive human electroencephalogram (EEG) signals represented using large condition strings (108bits). EEG signals from three participants were recorded while they performed four mental tasks designed to elicit hemispheric responses. Autoregressive (AR) models and Fast Fourier Transform (FFT) methods were used to form feature vectors with which mental tasks can be discriminated. XCS achieved a maximum classification accuracy of 99.3% and a best average of 88.9%. The relative classification performance of XCS was then compared against four non-evolutionary classifier systems originating from different learning techniques. The experimental results will be used as part of our larger research effort investigating the feasibility of using EEG signals as an interface to allow paralysed persons to control a powered wheelchair or other devices.

  7. Behavioral approach system sensitivity and risk taking interact to predict left-frontal EEG asymmetry.

    Science.gov (United States)

    Black, Chelsea L; Goldstein, Kim E; LaBelle, Denise R; Brown, Christopher W; Harmon-Jones, Eddie; Abramson, Lyn Y; Alloy, Lauren B

    2014-09-01

    The Behavioral Approach System (BAS) hypersensitivity theory of bipolar disorder (BD; Alloy & Abramson, 2010; Depue & Iacono, 1989) suggests that hyperreactivity in the BAS results in the extreme fluctuations of mood characteristic of BD. In addition to risk conferred by BAS hypersensitivity, cognitive and personality variables may play a role in determining risk. We evaluated relationships among BAS sensitivity, risk taking, and an electrophysiological correlate of approach motivation, relative left-frontal electroencephalography (EEG) asymmetry. BAS sensitivity moderated the relationship between risk taking and EEG asymmetry. More specifically, individuals who were high in BAS sensitivity showed left-frontal EEG asymmetry regardless of their level of risk-taking behavior. However, among individuals who were moderate in BAS sensitivity, risk taking was positively associated with asymmetry. These findings suggest that cognitive and personality correlates of bipolar risk may evidence unique contributions to a neural measure of trait-approach motivation. Clinical implications of these findings are discussed. Copyright © 2014. Published by Elsevier Ltd.

  8. Qualitative and quantitative EEG abnormalities in violent offenders with antisocial personality disorder.

    Science.gov (United States)

    Reyes, Ana Calzada; Amador, Alfredo Alvarez

    2009-02-01

    Resting eyes closed electroencephalogram was studied in a group of violent offenders evaluated at Psychiatric Department of the Legal Medicine Institute in Cuba (18 with antisocial personality disorder, ASPD, and 10 without psychiatric diagnosis). Characteristics of the EEG visual inspection and the use of frequency domain quantitative analysis techniques (narrow band spectral parameters) are described. Both groups were compared to Cuban normative database. High incidences of electroencephalographic abnormalities were found in both groups of violent offenders. The most frequent were: electrogenesis alterations, attenuated alpha rhythm and theta and delta activities increase in the frontal lobe. In the quantitative analysis theta and delta frequencies were increased and alpha activity was decreased in both groups. Differences appear for the topographical patterns present in subjects of both groups. EEG abnormalities were more severe in ASPD than in control group. Results suggest that EEG abnormalities in violent offenders should reflect aspects of brain dysfunction related to antisocial behaviour.

  9. High-Frequency EEG Variations in Children with Autism Spectrum Disorder during Human Faces Visualization

    Directory of Open Access Journals (Sweden)

    Celina A. Reis Paula

    2017-01-01

    Full Text Available Autism spectrum disorder (ASD is a neuropsychiatric disorder characterized by the impairment in the social reciprocity, interaction/language, and behavior, with stereotypes and signs of sensory function deficits. Electroencephalography (EEG is a well-established and noninvasive tool for neurophysiological characterization and monitoring of the brain electrical activity, able to identify abnormalities related to frequency range, connectivity, and lateralization of brain functions. This research aims to evidence quantitative differences in the frequency spectrum pattern between EEG signals of children with and without ASD during visualization of human faces in three different expressions: neutral, happy, and angry. Quantitative clinical evaluations, neuropsychological evaluation, and EEG of children with and without ASD were analyzed paired by age and gender. The results showed stronger activation in higher frequencies (above 30 Hz in frontal, central, parietal, and occipital regions in the ASD group. This pattern of activation may correlate with developmental characteristics in the children with ASD.

  10. Modification of EEG power spectra and EEG connectivity in autobiographical memory: a sLORETA study.

    Science.gov (United States)

    Imperatori, Claudio; Brunetti, Riccardo; Farina, Benedetto; Speranza, Anna Maria; Losurdo, Anna; Testani, Elisa; Contardi, Anna; Della Marca, Giacomo

    2014-08-01

    The aim of the present study was to explore the modifications of scalp EEG power spectra and EEG connectivity during the autobiographical memory test (AM-T) and during the retrieval of an autobiographical event (the high school final examination, Task 2). Seventeen healthy volunteers were enrolled (9 women and 8 men, mean age 23.4 ± 2.8 years, range 19-30). EEG was recorded at baseline and while performing the autobiographical memory (AM) tasks, by means of 19 surface electrodes and a nasopharyngeal electrode. EEG analysis was conducted by means of the standardized LOw Resolution Electric Tomography (sLORETA) software. Power spectra and lagged EEG coherence were compared between EEG acquired during the memory tasks and baseline recording. The frequency bands considered were as follows: delta (0.5-4 Hz); theta (4.5-7.5 Hz); alpha (8-12.5 Hz); beta1 (13-17.5 Hz); beta2 (18-30 Hz); gamma (30.5-60 Hz). During AM-T, we observed a significant delta power increase in left frontal and midline cortices (T = 3.554; p < 0.05) and increased EEG connectivity in delta band in prefrontal, temporal, parietal, and occipital areas, and for gamma bands in the left temporo-parietal regions (T = 4.154; p < 0.05). In Task 2, we measured an increased power in the gamma band located in the left posterior midline areas (T = 3.960; p < 0.05) and a significant increase in delta band connectivity in the prefrontal, temporal, parietal, and occipital areas, and in the gamma band involving right temporo-parietal areas (T = 4.579; p < 0.05). These results indicate that AM retrieval engages in a complex network which is mediated by both low- (delta) and high-frequency (gamma) EEG bands.

  11. EEG. Renewables Act. Comment. 4. new rev. and enl. ed.; EEG. Erneuerbare-Energien-Gesetz. Kommentar

    Energy Technology Data Exchange (ETDEWEB)

    Frenz, Walter [RWTH Aachen Univ. (Germany). Lehr- und Forschungsgebiet Berg-, Umwelt- und Europarecht; Mueggenborg, Hans-Juergen [Technische Hochschule Aachen (Germany); Kassel Univ. (Germany); Cosack, Tilman [Hochschule Trier, Umwelt-Campus Birkenfeld (Germany). IREK - Inst. fuer das Recht der Erneuerbaren Energien, Energieeffizienzrecht und Klimaschutzrecht; Ekardt, Felix (ed.) [Forschungsstelle Nachhaltigkeit und Klimapolitik, Leipzig (Germany)

    2015-07-01

    Unlike any other Act, the Renewable Energy Sources Act (EEG) changes continuously. Recently it has been fundamentally transformed with the amendment 2014. Comprehensive, readable and practice-oriented. The proven Berliner comment EEG is your reliable companion through the new regulatory regime. All provisions of the EEG 2014 thorough and easy to understand commented by experts of the matter. 2. The EEG Amending Act of 29.6.2015 has already been considered. A detailed introduction and contributions to the relevant European law and the antitrust aspects of the renewable energy sources to guarantee you a broad understanding of the rules. Valuable background information you provide, the digressions of the most important renewable energy technologies, will explain the pictures thanks to numerous the scientific and technical foundations. Moreover you the construction law aspects in the construction of photovoltaic and wind turbines are explained clearly. [German] Wie kaum ein anderes Gesetz veraendert sich das Erneuerbare-Energien-Gesetz (EEG) laufend. Zuletzt wurde es mit der Novelle 2014 grundlegend umgestaltet. Umfassend, verstaendlich und praxisgerecht Der bewaehrte Berliner Kommentar EEG ist Ihr verlaesslicher Begleiter durch das neue Regelungsregime. Alle Vorschriften des EEG 2014 werden gruendlich und leicht verstaendlich von Kennern der Materie kommentiert. Das 2. EEG-Aenderungsgesetz vom 29.06.2015 ist bereits beruecksichtigt. Eine ausfuehrliche Einleitung sowie Beitraege zum einschlaegigen europaeischen Recht und zu den kartellrechtlichen Aspekten der erneuerbaren Energien verhelfen Ihnen zu einem breiten Verstaendnis der Vorschriften. Wertvolles Hintergrundwissen liefern Ihnen auch die Exkurse zu den wichtigsten Erneuerbare-Energien-Technologien, die Ihnen dank zahlreicher Abbildungen die naturwissenschaftlich-technischen Grundlagen erlaeutern. Zudem werden Ihnen die baurechtlichen Aspekte bei der Errichtung von Photovoltaik- und Windenergieanlagen

  12. EEG predictors of covert vigilant attention

    Science.gov (United States)

    Martel, Adrien; Dähne, Sven; Blankertz, Benjamin

    2014-06-01

    Objective. The present study addressed the question whether neurophysiological signals exhibit characteristic modulations preceding a miss in a covert vigilant attention task which mimics a natural environment in which critical stimuli may appear in the periphery of the visual field. Approach. Subjective, behavioural and encephalographic (EEG) data of 12 participants performing a modified Mackworth Clock task were obtained and analysed offline. The stimulus consisted of a pointer performing regular ticks in a clockwise sequence across 42 dots arranged in a circle. Participants were requested to covertly attend to the pointer and press a response button as quickly as possible in the event of a jump, a rare and random event. Main results. Significant increases in response latencies and decreases in the detection rates were found as a function of time-on-task, a characteristic effect of sustained attention tasks known as the vigilance decrement. Subjective sleepiness showed a significant increase over the duration of the experiment. Increased activity in the α-frequency range (8-14 Hz) was observed emerging and gradually accumulating 10 s before a missed target. Additionally, a significant gradual attenuation of the P3 event-related component was found to antecede misses by 5 s. Significance. The results corroborate recent findings that behavioural errors are presaged by specific neurophysiological activity and demonstrate that lapses of attention can be predicted in a covert setting up to 10 s in advance reinforcing the prospective use of brain-computer interface (BCI) technology for the detection of waning vigilance in real-world scenarios. Combining these findings with real-time single-trial analysis from BCI may pave the way for cognitive states monitoring systems able to determine the current, and predict the near-future development of the brain's attentional processes.

  13. Random matrix analysis of human EEG data

    Czech Academy of Sciences Publication Activity Database

    Šeba, Petr

    2003-01-01

    Roč. 91, - (2003), s. 198104-1 - 198104-4 ISSN 0031-9007 R&D Projects: GA ČR GA202/02/0088 Institutional research plan: CEZ:AV0Z1010914 Keywords : random matrix theory * EEG signal Subject RIV: BE - Theoretical Physics Impact factor: 7.035, year: 2003

  14. Discriminant Multitaper Component Analysis of EEG

    DEFF Research Database (Denmark)

    Dyrholm, Mads; Sajda, Paul

    the method for predicting the handedness of a subject’s button press given multivariate EEG data. We show that our method learns multitapers sensitive to oscillatory activity in the 8–12 Hz range with spatial filters selective for lateralized motor cortex. This finding is consistent with the well-known mu...

  15. EEG-based characterization of flicker perception

    NARCIS (Netherlands)

    Lazo, M.; Tsoneva, T.; Garcia Molina, G.

    2013-01-01

    Steady-State Visual Evoked Potential (SSVEP) is an oscillatory electrical response appearing in the electroencephalogram (EEG) in response to flicker stimulation. The SSVEP manifests more prominently in electrodes located near the visual cortex and has oscillatory components at the stimulation

  16. EEG source imaging during two Qigong meditations.

    Science.gov (United States)

    Faber, Pascal L; Lehmann, Dietrich; Tei, Shisei; Tsujiuchi, Takuya; Kumano, Hiroaki; Pascual-Marqui, Roberto D; Kochi, Kieko

    2012-08-01

    Experienced Qigong meditators who regularly perform the exercises "Thinking of Nothing" and "Qigong" were studied with multichannel EEG source imaging during their meditations. The intracerebral localization of brain electric activity during the two meditation conditions was compared using sLORETA functional EEG tomography. Differences between conditions were assessed using t statistics (corrected for multiple testing) on the normalized and log-transformed current density values of the sLORETA images. In the EEG alpha-2 frequency, 125 voxels differed significantly; all were more active during "Qigong" than "Thinking of Nothing," forming a single cluster in parietal Brodmann areas 5, 7, 31, and 40, all in the right hemisphere. In the EEG beta-1 frequency, 37 voxels differed significantly; all were more active during "Thinking of Nothing" than "Qigong," forming a single cluster in prefrontal Brodmann areas 6, 8, and 9, all in the left hemisphere. Compared to combined initial-final no-task resting, "Qigong" showed activation in posterior areas whereas "Thinking of Nothing" showed activation in anterior areas. The stronger activity of posterior (right) parietal areas during "Qigong" and anterior (left) prefrontal areas during "Thinking of Nothing" may reflect a predominance of self-reference, attention and input-centered processing in the "Qigong" meditation, and of control-centered processing in the "Thinking of Nothing" meditation.

  17. 3D Printed Dry EEG Electrodes.

    Science.gov (United States)

    Krachunov, Sammy; Casson, Alexander J

    2016-10-02

    Electroencephalography (EEG) is a procedure that records brain activity in a non-invasive manner. The cost and size of EEG devices has decreased in recent years, facilitating a growing interest in wearable EEG that can be used out-of-the-lab for a wide range of applications, from epilepsy diagnosis, to stroke rehabilitation, to Brain-Computer Interfaces (BCI). A major obstacle for these emerging applications is the wet electrodes, which are used as part of the EEG setup. These electrodes are attached to the human scalp using a conductive gel, which can be uncomfortable to the subject, causes skin irritation, and some gels have poor long-term stability. A solution to this problem is to use dry electrodes, which do not require conductive gel, but tend to have a higher noise floor. This paper presents a novel methodology for the design and manufacture of such dry electrodes. We manufacture the electrodes using low cost desktop 3D printers and off-the-shelf components for the first time. This allows quick and inexpensive electrode manufacturing and opens the possibility of creating electrodes that are customized for each individual user. Our 3D printed electrodes are compared against standard wet electrodes, and the performance of the proposed electrodes is suitable for BCI applications, despite the presence of additional noise.

  18. 3D Printed Dry EEG Electrodes

    Directory of Open Access Journals (Sweden)

    Sammy Krachunov

    2016-10-01

    Full Text Available Electroencephalography (EEG is a procedure that records brain activity in a non-invasive manner. The cost and size of EEG devices has decreased in recent years, facilitating a growing interest in wearable EEG that can be used out-of-the-lab for a wide range of applications, from epilepsy diagnosis, to stroke rehabilitation, to Brain-Computer Interfaces (BCI. A major obstacle for these emerging applications is the wet electrodes, which are used as part of the EEG setup. These electrodes are attached to the human scalp using a conductive gel, which can be uncomfortable to the subject, causes skin irritation, and some gels have poor long-term stability. A solution to this problem is to use dry electrodes, which do not require conductive gel, but tend to have a higher noise floor. This paper presents a novel methodology for the design and manufacture of such dry electrodes. We manufacture the electrodes using low cost desktop 3D printers and off-the-shelf components for the first time. This allows quick and inexpensive electrode manufacturing and opens the possibility of creating electrodes that are customized for each individual user. Our 3D printed electrodes are compared against standard wet electrodes, and the performance of the proposed electrodes is suitable for BCI applications, despite the presence of additional noise.

  19. An overview of an amplitude integrated EEG

    Directory of Open Access Journals (Sweden)

    Setyo Handryastuti

    2007-05-01

    for neurodevelopmental problem in conditions such as hypoxic-ischemic encephalopathy (HIE, prematurity, neonatal seizures, central nervous system infection, metabolic disorders, intraventricular or intracranial bleeding and brain malformation. This article gives an overview about aEEG and its role in newborn.

  20. Microneedle array electrode for human EEG recording.

    NARCIS (Netherlands)

    Lüttge, Regina; van Nieuwkasteele-Bystrova, Svetlana Nikolajevna; van Putten, Michel Johannes Antonius Maria; Vander Sloten, Jos; Verdonck, Pascal; Nyssen, Marc; Haueisen, Jens

    2009-01-01

    Microneedle array electrodes for EEG significantly reduce the mounting time, particularly by circumvention of the need for skin preparation by scrubbing. We designed a new replication process for numerous types of microneedle arrays. Here, polymer microneedle array electrodes with 64 microneedles,

  1. Simultaneous recording of EEG and electromyographic polygraphy increases the diagnostic yield of video-EEG monitoring.

    Science.gov (United States)

    Hill, Aron T; Briggs, Belinda A; Seneviratne, Udaya

    2014-06-01

    To investigate the usefulness of adjunctive electromyographic (EMG) polygraphy in the diagnosis of clinical events captured during long-term video-EEG monitoring. A total of 40 patients (21 women, 19 men) aged between 19 and 72 years (mean 43) investigated using video-EEG monitoring were studied. Electromyographic activity was simultaneously recorded with EEG in four patients selected on clinical grounds. In these patients, surface EMG electrodes were placed over muscles suspected to be activated during a typical clinical event. Of the 40 patients investigated, 24 (60%) were given a diagnosis, whereas 16 (40%) remained undiagnosed. All four patients receiving adjunctive EMG polygraphy obtained a diagnosis, with three of these diagnoses being exclusively reliant on the EMG recordings. Specifically, one patient was diagnosed with propriospinal myoclonus, another patient was diagnosed with facio-mandibular myoclonus, and a third patient was found to have bruxism and periodic leg movements of sleep. The information obtained from surface EMG recordings aided the diagnosis of clinical events captured during video-EEG monitoring in 7.5% of the total cohort. This study suggests that EEG-EMG polygraphy may be used as a technique of improving the diagnostic yield of video-EEG monitoring in selected cases.

  2. Serial EEG findings in anti-NMDA receptor encephalitis: correlation between clinical course and EEG.

    Science.gov (United States)

    Ueda, Jun; Kawamoto, Michi; Hikiami, Ryota; Ishii, Junko; Yoshimura, Hajime; Matsumoto, Riki; Kohara, Nobuo

    2017-12-01

    Anti-NMDA receptor encephalitis is a paraneoplastic encephalitis characterised by psychiatric features, involuntary movement, and autonomic instability. Various EEG findings in patients with anti-NMDA receptor encephalitis have been reported, however, the correlation between the EEG findings and clinical course of anti-NMDA receptor encephalitis remains unclear. We describe a patient with anti-NMDA receptor encephalitis with a focus on EEG findings, which included: status epilepticus, generalised rhythmic delta activity, excess beta activity, extreme delta brush, and paroxysmal alpha activity upon arousal from sleep, which we term"arousal alpha pattern". Initially, status epilepticus was observed on the EEG when the patient was comatose with conjugate deviation. The EEG then indicated excess beta activity, followed by the emergence of continuous slow activity, including generalised rhythmic delta activity and extreme delta brush, in the most severe phase. Slow activity gradually faded in parallel with clinical amelioration. Excess beta activity persisted, even after the patient became almost independent in daily activities, and finally disappeared with full recovery. In summary, our patient with anti-NMDA receptor encephalitis demonstrated slow activity on the EEG, including extreme delta brush during the most severe phase, which gradually faded in parallel with clinical amelioration, with excess beta activity persisting into the recovery phase.

  3. Measurement of neurovascular coupling in human motor cortex using simultaneous transcranial doppler (TCD) and electroencephalography (EEG).

    Science.gov (United States)

    Alam, Monzurul; Ahmed, Ghazanfar; Ling, Yan To; Zheng, Yong-Ping

    2018-05-25

    Event-related desynchronization (ERD) is a relative power decrease of electroencephalogram (EEG) signals in a specific frequency band during physical motor execution, while transcranial Doppler (TCD) measures cerebral blood flow velocity. The objective of this study was to investigate the neurovascular coupling in the motor cortex by using an integrated EEG and TCD system, and to find any difference in hemodynamic responses in healthy young male and female adults. Approach: 30 healthy volunteers, aged 20-30 years were recruited for this study. The subjects were asked to perform a motor task for the duration of a provided visual cue. Simultaneous EEG and TCD recording was carried out using a new integrated system to detect the ERD arising from the EEG signals, and to measure the mean blood flow velocity of the left and right middle cerebral arteries from bilateral TCD signals. Main Results: The results showed a significant decrease in EEG power in mu band (7.5-12.5 Hz) during the motor task compared to the resting phase. It showed significant increase in desynchronization on the contralateral side of the motor task compared to the ipsilateral side. Mean blood flow velocity during the task phase was significantly higher in comparison with the resting phase at the contralateral side. The results also showed a significantly higher increase in the percentage of mean blood flow velocity in the contralateral side of motor task compared to the ipsilateral side. However, no significant difference in desynchronization, or change of mean blood flow velocity was found between males and females. Significance: A combined TCD-EEG system successfully detects ERD and blood flow velocity in cerebral arteries, and can be used as a useful tool to study neurovascular coupling in the brain. There is no significant difference in the hemodynamic responses in healthy young males and females. © 2018 Institute of Physics and Engineering in Medicine.

  4. Identification of scalp EEG circadian variation using a novel correlation sum measure

    Science.gov (United States)

    Shahidi Zandi, Ali; Boudreau, Philippe; Boivin, Diane B.; Dumont, Guy A.

    2015-10-01

    Objective. In this paper, we propose a novel method to determine the circadian variation of scalp electroencephalogram (EEG) in both individual and group levels using a correlation sum measure, quantifying self-similarity of the EEG relative energy across waking epochs. Approach. We analysed EEG recordings from central-parietal and occipito-parietal montages in nine healthy subjects undergoing a 72 h ultradian sleep-wake cycle protocol. Each waking epoch (˜1 s) of every nap opportunity was decomposed using the wavelet packet transform, and the relative energy for that epoch was calculated in the desired frequency band using the corresponding wavelet coefficients. Then, the resulting set of energy values was resampled randomly to generate different subsets with equal number of elements. The correlation sum of each subset was then calculated over a range of distance thresholds, and the average over all subsets was computed. This average value was finally scaled for each nap opportunity and considered as a new circadian measure. Main results. According to the evaluation results, a clear circadian rhythm was identified in some EEG frequency ranges, particularly in 4-8 Hz and 10-12 Hz. The correlation sum measure not only was able to disclose the circadian rhythm on the group data but also revealed significant circadian variations in most individual cases, as opposed to previous studies only reporting the circadian rhythms on a population of subjects. Compared to a naive measure based on the EEG absolute energy in the frequency band of interest, the proposed measure showed a clear superiority using both individual and group data. Results also suggested that the acrophase (i.e., the peak) of the circadian rhythm in 10-12 Hz occurs close to the core body temperature minimum. Significance. These results confirm the potential usefulness of the proposed EEG-based measure as a non-invasive circadian marker.

  5. Changes in EEG during graded exercise on a recumbent cycle ergometer.

    Science.gov (United States)

    Bailey, Stephen P; Hall, Eric E; Folger, Stephen E; Miller, Paul C

    2008-01-01

    Previous studies have shown changes in brain activity as a result of exercise; however, few studies have examined changes during exercise. The purpose of this study was to examine brain activity during a graded exercise test. Twenty male participants performed a graded exercise test on a recumbent cycle ergometer. Exercise intensity was set initially at 50W and was increased by 50W every 2 minutes until volitional fatigue was reached. Electroencephalography (EEG) was measured prior to the onset of exercise, during the last minute of each stage of exercise, immediately post-exercise, and 10 minutes into recovery. EEG was recorded from 8 scalp sites leading to analysis of alpha 1, alpha 2, beta 1, beta 2, and theta activities. Expired air was collected and analyzed for ventilation rate (VE), VO2, % of peak VO2, and Respiratory Exchange Ratio (RER). No differences were seen in EEG between the hemispheres of the brain. There was, however, a significant increase in brain activity across the spectrum occurring at 200 W through immediately post-exercise. Brain activity returned to pre- exercise levels by 10 minutes post. VO2, % of peak VO2 and RER increased linearly with exercise intensity. VE increased linearly through 200 W; however, a disproportionate increase was seen in VE from 200 W to peak exercise. The results of this investigation demonstrate that brain activity may be related to exercise intensity. Future research will want to examine how these changes in brain activity influence affective, perceptual and cognitive changes often associated with exercise. Efforts will also need to be made to determine if changes in brain activity during exercise are mediated by central (within the brain) or peripheral mechanisms. Key pointsEEG can be recorded during exercise.Brain EEG activity increases during exercise and may be related to exercise intensity.Brain EEG activity returns to resting levels quickly after the cessation of exercise.

  6. Interrater variability of EEG interpretation in comatose cardiac arrest patients

    DEFF Research Database (Denmark)

    Westhall, Erik; Rosén, Ingmar; Rossetti, Andrea O

    2015-01-01

    OBJECTIVE: EEG is widely used to predict outcome in comatose cardiac arrest patients, but its value has been limited by lack of a uniform classification. We used the EEG terminology proposed by the American Clinical Neurophysiology Society (ACNS) to assess interrater variability in a cohort...... who were blinded for patient outcome. Percent agreement and kappa (κ) for the categories in the ACNS EEG terminology and for prespecified malignant EEG-patterns were calculated. RESULTS: There was substantial interrater agreement (κ 0.71) for highly malignant patterns and moderate agreement (κ 0.......42) for malignant patterns. Substantial agreement was found for malignant periodic or rhythmic patterns (κ 0.72) while agreement for identifying an unreactive EEG was fair (κ 0.26). CONCLUSIONS: The ACNS EEG terminology can be used to identify highly malignant EEG-patterns in post cardiac arrest patients...

  7. Combining features from ERP components in single-trial EEG for discriminating four-category visual objects

    Science.gov (United States)

    Wang, Changming; Xiong, Shi; Hu, Xiaoping; Yao, Li; Zhang, Jiacai

    2012-10-01

    Categorization of images containing visual objects can be successfully recognized using single-trial electroencephalograph (EEG) measured when subjects view images. Previous studies have shown that task-related information contained in event-related potential (ERP) components could discriminate two or three categories of object images. In this study, we investigated whether four categories of objects (human faces, buildings, cats and cars) could be mutually discriminated using single-trial EEG data. Here, the EEG waveforms acquired while subjects were viewing four categories of object images were segmented into several ERP components (P1, N1, P2a and P2b), and then Fisher linear discriminant analysis (Fisher-LDA) was used to classify EEG features extracted from ERP components. Firstly, we compared the classification results using features from single ERP components, and identified that the N1 component achieved the highest classification accuracies. Secondly, we discriminated four categories of objects using combining features from multiple ERP components, and showed that combination of ERP components improved four-category classification accuracies by utilizing the complementarity of discriminative information in ERP components. These findings confirmed that four categories of object images could be discriminated with single-trial EEG and could direct us to select effective EEG features for classifying visual objects.

  8. The Removal of EOG Artifacts From EEG Signals Using Independent Component Analysis and Multivariate Empirical Mode Decomposition.

    Science.gov (United States)

    Wang, Gang; Teng, Chaolin; Li, Kuo; Zhang, Zhonglin; Yan, Xiangguo

    2016-09-01

    The recorded electroencephalography (EEG) signals are usually contaminated by electrooculography (EOG) artifacts. In this paper, by using independent component analysis (ICA) and multivariate empirical mode decomposition (MEMD), the ICA-based MEMD method was proposed to remove EOG artifacts (EOAs) from multichannel EEG signals. First, the EEG signals were decomposed by the MEMD into multiple multivariate intrinsic mode functions (MIMFs). The EOG-related components were then extracted by reconstructing the MIMFs corresponding to EOAs. After performing the ICA of EOG-related signals, the EOG-linked independent components were distinguished and rejected. Finally, the clean EEG signals were reconstructed by implementing the inverse transform of ICA and MEMD. The results of simulated and real data suggested that the proposed method could successfully eliminate EOAs from EEG signals and preserve useful EEG information with little loss. By comparing with other existing techniques, the proposed method achieved much improvement in terms of the increase of signal-to-noise and the decrease of mean square error after removing EOAs.

  9. Use Case Analysis: The Ambulatory EEG in Navy Medicine for Traumatic Brain Injuries

    Science.gov (United States)

    2016-12-01

    science of binaural beats . Retrieved from http://binauralbrains.com/the-science-of- binaural - beats / Biosignal. (2016). MicroEEG. Retrieved from http...Cap. Source: Binaural Brains (n.d.). ....................................4  Figure 3.  EEG Machine. Source: Refine Medical Technology (n.d...EEG. Figures 2, 3, and 4 display images of a standard EEG cap, EEG machine, and an EEG recording. Figure 2. Standard EEG Cap. Source: Binaural Brains

  10. EEG Mind Controlled Smart Prosthetic Arm – A Comprehensive Study

    Directory of Open Access Journals (Sweden)

    Taha Beyrouthy

    2017-06-01

    Full Text Available Recently, the field of prosthetics has seen many accomplishments especially with the integration of technological advancements. In this paper, different arm types (robotic, surgical, bionic, prosthetic and static are analyzed in terms of resistance, usage, flexibility, cost and potential. Most of these techniques have some problems; they are extremely expensive, hard to install and maintain and may require surgery. Therefore, our work introduces the initial design of an EEG mind controlled smart prosthetic arm. The arm is controlled by the brain commands, obtained from an electroencephalography (EEG headset, and equipped with a network of smart sensors and actuators that give the patient intelligent feedback about the surrounding environment and the object in contact. This network provides the arm with normal hand functionality, smart reflexes and smooth movements. Various types of sensors are used including temperature, pressure, ultrasonic proximity sensors, accelerometers, potentiometers, strain gauges and gyroscopes. The arm is completely 3D printed built from various lightweight and high strength materials that can handle high impacts and fragile elements as well. Our project requires the use of nine servomotors installed at different places in the arm. Therefore, the static and dynamic modes of servomotors are analyzed. The total cost of the project is estimated to be relatively cheap compared to other previously built arms. Many scenarios are analyzed corresponding to the actions that the prosthetic arm can perform, and an algorithm is created to match these scenarios. Experimental results show that the proposed EEG Mind-controlled Arm is a promising alternative for current solutions that require invasive and expensive surgical procedures.

  11. Integration of EEG lead placement templates into traditional technologist-based staffing models reduces costs in continuous video-EEG monitoring service.

    Science.gov (United States)

    Kolls, Brad J; Lai, Amy H; Srinivas, Anang A; Reid, Robert R

    2014-06-01

    The purpose of this study was to determine the relative cost reductions within different staffing models for continuous video-electroencephalography (cvEEG) service by introducing a template system for 10/20 lead application. We compared six staffing models using decision tree modeling based on historical service line utilization data from the cvEEG service at our center. Templates were integrated into technologist-based service lines in six different ways. The six models studied were templates for all studies, templates for intensive care unit (ICU) studies, templates for on-call studies, templates for studies of ≤ 24-hour duration, technologists for on-call studies, and technologists for all studies. Cost was linearly related to the study volume for all models with the "templates for all" model incurring the lowest cost. The "technologists for all" model carried the greatest cost. Direct cost comparison shows that any introduction of templates results in cost savings, with the templates being used for patients located in the ICU being the second most cost efficient and the most practical of the combined models to implement. Cost difference between the highest and lowest cost models under the base case produced an annual estimated savings of $267,574. Implementation of the ICU template model at our institution under base case conditions would result in a $205,230 savings over our current "technologist for all" model. Any implementation of templates into a technologist-based cvEEG service line results in cost savings, with the most significant annual savings coming from using the templates for all studies, but the most practical implementation approach with the second highest cost reduction being the template used in the ICU. The lowered costs determined in this work suggest that a template-based cvEEG service could be supported at smaller centers with significantly reduced costs and could allow for broader use of cvEEG patient monitoring.

  12. Ear-EEG detects ictal and interictal abnormalities in focal and generalized epilepsy - A comparison with scalp EEG monitoring.

    Science.gov (United States)

    Zibrandtsen, I C; Kidmose, P; Christensen, C B; Kjaer, T W

    2017-12-01

    Ear-EEG is recording of electroencephalography from a small device in the ear. This is the first study to compare ictal and interictal abnormalities recorded with ear-EEG and simultaneous scalp-EEG in an epilepsy monitoring unit. We recorded and compared simultaneous ear-EEG and scalp-EEG from 15 patients with suspected temporal lobe epilepsy. EEGs were compared visually by independent neurophysiologists. Correlation and time-frequency analysis was used to quantify the similarity between ear and scalp electrodes. Spike-averages were used to assess similarity of interictal spikes. There were no differences in sensitivity or specificity for seizure detection. Mean correlation coefficient between ear-EEG and nearest scalp electrode was above 0.6 with a statistically significant decreasing trend with increasing distance away from the ear. Ictal morphology and frequency dynamics can be observed from visual inspection and time-frequency analysis. Spike averages derived from ear-EEG electrodes yield a recognizable spike appearance. Our results suggest that ear-EEG can reliably detect electroencephalographic patterns associated with focal temporal lobe seizures. Interictal spike morphology from sufficiently large temporal spike sources can be sampled using ear-EEG. Ear-EEG is likely to become an important tool in clinical epilepsy monitoring and diagnosis. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  13. Intensity Ratio, Coherence and Phase of EEG during Sensory Focused Attention.

    Science.gov (United States)

    1981-09-01

    intensity increases as reaction time increases. There have been fewer studies of the relation of EEG coherence to cognitive vari- ables. Busk and...RUGG, X.D.uAsymmtry in EEGalpha coherence and Power: Effects oftask and sex. Electroenceph. dlin. Neurophysiol. 45, 393-401, 1978. BUSK , J. and

  14. A systematic study of head tissue inhomogeneity and anisotropy on EEG forward problem computing

    International Nuclear Information System (INIS)

    Bashar, M.R.; Li, Y.; Wen, P.

    2010-01-01

    Full text: In this study, we propose a stochastic method to analyze the effects of inhomogeneous anisotropic tissue conductivity on electroencephalogram (EEG) in forward computation. We apply this method to an inhomogeneous and anisotropic spherical human head model. We apply stochastic finite element method based on Legendre polynomials, Karhunen-Loeve expansion and stochastic Galerkin methods. We apply Volume and Wang's constraints to restrict the anisotropic conductivities for both the white matter (WM) and the skull tissue compartments. The EEGs resulting from deterministic and stochastic FEMs are compared using statistical measurement techniques. Based on these comparisons, we find that EEGs generated by incorporating WM and skull inhomogeneous anisotropic tissue properties individually result in an average of 56.5 and 57.5% relative errors, respectively. Incorporating these tissue properties for both layers together generate 43.5% average relative error. Inhomogeneous scalp tissue causes 27% average relative error and a full inhomogeneous anisotropic model brings in an average of 45.5% relative error. The study results demonstrate that the effects of inhomogeneous anisotropic tissue conductivity are significant on EEG.

  15. EEG and MR Spectroscopy in Hypoxic-Ischemic Encephalopathy in Term Newborns

    OpenAIRE

    J Gordon Millichap

    2010-01-01

    Researchers from the University of Bologna, Italy, studied the relation of amplitude integrated EEG findings in the first 24 hrs of life to brain metabolic changes, detected by proton MR spectroscopy (H-MRS) at 7-10 days of life, in 32 term newborns with hypoxic-ischemic encephalopathy (HIE).

  16. Aberrant brain response after auditory deviance in PTSD compared to trauma controls: An EEG study

    NARCIS (Netherlands)

    Bangel, Katrin A.; van Buschbach, Susanne; Smit, Dirk J. A.; Mazaheri, Ali; Olff, Miranda

    2017-01-01

    Part of the symptomatology of post-traumatic stress disorder (PTSD) are alterations in arousal and reactivity which could be related to a maladaptive increase in the automated sensory change detection system of the brain. In the current EEG study we investigated whether the brain's response to a

  17. EEG-distributed inverse solutions for a spherical head model

    Science.gov (United States)

    Riera, J. J.; Fuentes, M. E.; Valdés, P. A.; Ohárriz, Y.

    1998-08-01

    The theoretical study of the minimum norm solution to the MEG inverse problem has been carried out in previous papers for the particular case of spherical symmetry. However, a similar study for the EEG is remarkably more difficult due to the very complicated nature of the expression relating the voltage differences on the scalp to the primary current density (PCD) even for this simple symmetry. This paper introduces the use of the electric lead field (ELF) on the dyadic formalism in the spherical coordinate system to overcome such a drawback using an expansion of the ELF in terms of longitudinal and orthogonal vector fields. This approach allows us to represent EEG Fourier coefficients on a 2-sphere in terms of a current multipole expansion. The choice of a suitable basis for the Hilbert space of the PCDs on the brain region allows the current multipole moments to be related by spatial transfer functions to the PCD spectral coefficients. Properties of the most used distributed inverse solutions are explored on the basis of these results. Also, a part of the ELF null space is completely characterized and those spherical components of the PCD which are possible silent candidates are discussed.

  18. EEG phase reset due to auditory attention: an inverse time-scale approach

    International Nuclear Information System (INIS)

    Low, Yin Fen; Strauss, Daniel J

    2009-01-01

    We propose a novel tool to evaluate the electroencephalograph (EEG) phase reset due to auditory attention by utilizing an inverse analysis of the instantaneous phase for the first time. EEGs were acquired through auditory attention experiments with a maximum entropy stimulation paradigm. We examined single sweeps of auditory late response (ALR) with the complex continuous wavelet transform. The phase in the frequency band that is associated with auditory attention (6–10 Hz, termed as theta–alpha border) was reset to the mean phase of the averaged EEGs. The inverse transform was applied to reconstruct the phase-modified signal. We found significant enhancement of the N100 wave in the reconstructed signal. Analysis of the phase noise shows the effects of phase jittering on the generation of the N100 wave implying that a preferred phase is necessary to generate the event-related potential (ERP). Power spectrum analysis shows a remarkable increase of evoked power but little change of total power after stabilizing the phase of EEGs. Furthermore, by resetting the phase only at the theta border of no attention data to the mean phase of attention data yields a result that resembles attention data. These results show strong connections between EEGs and ERP, in particular, we suggest that the presentation of an auditory stimulus triggers the phase reset process at the theta–alpha border which leads to the emergence of the N100 wave. It is concluded that our study reinforces other studies on the importance of the EEG in ERP genesis

  19. Deep learning with convolutional neural networks for EEG decoding and visualization.

    Science.gov (United States)

    Schirrmeister, Robin Tibor; Springenberg, Jost Tobias; Fiederer, Lukas Dominique Josef; Glasstetter, Martin; Eggensperger, Katharina; Tangermann, Michael; Hutter, Frank; Burgard, Wolfram; Ball, Tonio

    2017-11-01

    Deep learning with convolutional neural networks (deep ConvNets) has revolutionized computer vision through end-to-end learning, that is, learning from the raw data. There is increasing interest in using deep ConvNets for end-to-end EEG analysis, but a better understanding of how to design and train ConvNets for end-to-end EEG decoding and how to visualize the informative EEG features the ConvNets learn is still needed. Here, we studied deep ConvNets with a range of different architectures, designed for decoding imagined or executed tasks from raw EEG. Our results show that recent advances from the machine learning field, including batch normalization and exponential linear units, together with a cropped training strategy, boosted the deep ConvNets decoding performance, reaching at least as good performance as the widely used filter bank common spatial patterns (FBCSP) algorithm (mean decoding accuracies 82.1% FBCSP, 84.0% deep ConvNets). While FBCSP is designed to use spectral power modulations, the features used by ConvNets are not fixed a priori. Our novel methods for visualizing the learned features demonstrated that ConvNets indeed learned to use spectral power modulations in the alpha, beta, and high gamma frequencies, and proved useful for spatially mapping the learned features by revealing the topography of the causal contributions of features in different frequency bands to the decoding decision. Our study thus shows how to design and train ConvNets to decode task-related information from the raw EEG without handcrafted features and highlights the potential of deep ConvNets combined with advanced visualization techniques for EEG-based brain mapping. Hum Brain Mapp 38:5391-5420, 2017. © 2017 Wiley Periodicals, Inc. © 2017 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  20. Regional reductions in sleep electroencephalography power in obstructive sleep apnea: a high-density EEG study.

    Science.gov (United States)

    Jones, Stephanie G; Riedner, Brady A; Smith, Richard F; Ferrarelli, Fabio; Tononi, Giulio; Davidson, Richard J; Benca, Ruth M

    2014-02-01

    Obstructive sleep apnea (OSA) is associated with significant alterations in neuronal integrity resulting from either hypoxemia and/or sleep loss. A large body of imaging research supports reductions in gray matter volume, alterations in white matter integrity and resting state activity, and functional abnormalities in response to cognitive challenge in various brain regions in patients with OSA. In this study, we used high-density electroencephalography (hdEEG), a functional imaging tool that could potentially be used during routine clinical care, to examine the regional distribution of neural activity in a non-clinical sample of untreated men and women with moderate/severe OSA. Sleep was recorded with 256-channel EEG in relatively healthy subjects with apnea-hypopnea index (AHI) > 10, as well as age-, sex-, and body mass index-matched controls selected from a research population initially recruited for a study on sleep and meditation. Sleep laboratory. Nine subjects with AHI > 10 and nine matched controls. N/A. Topographic analysis of hdEEG data revealed a broadband reduction in EEG power in a circumscribed region overlying the parietal cortex in OSA subjects. This parietal reduction in neural activity was present, to some extent, across all frequency bands in all stages and episodes of nonrapid eye movement sleep. This investigation suggests that regional deficits in electroencephalography (EEG) power generation may be a useful clinical marker for neural disruption in obstructive sleep apnea, and that high-density EEG may have the sensitivity to detect pathological cortical changes early in the disease process.

  1. Analysis of absence seizure generation using EEG spatial-temporal regularity measures.

    Science.gov (United States)

    Mammone, Nadia; Labate, Domenico; Lay-Ekuakille, Aime; Morabito, Francesco C

    2012-12-01

    Epileptic seizures are thought to be generated and to evolve through an underlying anomaly of synchronization in the activity of groups of neuronal populations. The related dynamic scenario of state transitions is revealed by detecting changes in the dynamical properties of Electroencephalography (EEG) signals. The recruitment procedure ending with the crisis can be explored through a spatial-temporal plot from which to extract suitable descriptors that are able to monitor and quantify the evolving synchronization level from the EEG tracings. In this paper, a spatial-temporal analysis of EEG recordings based on the concept of permutation entropy (PE) is proposed. The performance of PE are tested on a database of 24 patients affected by absence (generalized) seizures. The results achieved are compared to the dynamical behavior of the EEG of 40 healthy subjects. Being PE a feature which is dependent on two parameters, an extensive study of the sensitivity of the performance of PE with respect to the parameters' setting was carried out on scalp EEG. Once the optimal PE configuration was determined, its ability to detect the different brain states was evaluated. According to the results here presented, it seems that the widely accepted model of "jump" transition to absence seizure should be in some cases coupled (or substituted) by a gradual transition model characteristic of self-organizing networks. Indeed, it appears that the transition to the epileptic status is heralded before the preictal state, ever since the interictal stages. As a matter of fact, within the limits of the analyzed database, the frontal-temporal scalp areas appear constantly associated to PE levels higher compared to the remaining electrodes, whereas the parieto-occipital areas appear associated to lower PE values. The EEG of healthy subjects neither shows any similar dynamic behavior nor exhibits any recurrent portrait in PE topography.

  2. ReliefF-Based EEG Sensor Selection Methods for Emotion Recognition.

    Science.gov (United States)

    Zhang, Jianhai; Chen, Ming; Zhao, Shaokai; Hu, Sanqing; Shi, Zhiguo; Cao, Yu

    2016-09-22

    Electroencephalogram (EEG) signals recorded from sensor electrodes on the scalp can directly detect the brain dynamics in response to different emotional states. Emotion recognition from EEG signals has attracted broad attention, partly due to the rapid development of wearable computing and the needs of a more immersive human-computer interface (HCI) environment. To improve the recognition performance, multi-channel EEG signals are usually used. A large set of EEG sensor channels will add to the computational complexity and cause users inconvenience. ReliefF-based channel selection methods were systematically investigated for EEG-based emotion recognition on a database for emotion analysis using physiological signals (DEAP). Three strategies were employed to select the best channels in classifying four emotional states (joy, fear, sadness and relaxation). Furthermore, support vector machine (SVM) was used as a classifier to validate the performance of the channel selection results. The experimental results showed the effectiveness of our methods and the comparison with the similar strategies, based on the F-score, was given. Strategies to evaluate a channel as a unity gave better performance in channel reduction with an acceptable loss of accuracy. In the third strategy, after adjusting channels' weights according to their contribution to the classification accuracy, the number of channels was reduced to eight with a slight loss of accuracy (58.51% ± 10.05% versus the best classification accuracy 59.13% ± 11.00% using 19 channels). In addition, the study of selecting subject-independent channels, related to emotion processing, was also implemented. The sensors, selected subject-independently from frontal, parietal lobes, have been identified to provide more discriminative information associated with emotion processing, and are distributed symmetrically over the scalp, which is consistent with the existing literature. The results will make a contribution to the

  3. ReliefF-Based EEG Sensor Selection Methods for Emotion Recognition

    Directory of Open Access Journals (Sweden)

    Jianhai Zhang

    2016-09-01

    Full Text Available Electroencephalogram (EEG signals recorded from sensor electrodes on the scalp can directly detect the brain dynamics in response to different emotional states. Emotion recognition from EEG signals has attracted broad attention, partly due to the rapid development of wearable computing and the needs of a more immersive human-computer interface (HCI environment. To improve the recognition performance, multi-channel EEG signals are usually used. A large set of EEG sensor channels will add to the computational complexity and cause users inconvenience. ReliefF-based channel selection methods were systematically investigated for EEG-based emotion recognition on a database for emotion analysis using physiological signals (DEAP. Three strategies were employed to select the best channels in classifying four emotional states (joy, fear, sadness and relaxation. Furthermore, support vector machine (SVM was used as a classifier to validate the performance of the channel selection results. The experimental results showed the effectiveness of our methods and the comparison with the similar strategies, based on the F-score, was given. Strategies to evaluate a channel as a unity gave better performance in channel reduction with an acceptable loss of accuracy. In the third strategy, after adjusting channels’ weights according to their contribution to the classification accuracy, the number of channels was reduced to eight with a slight loss of accuracy (58.51% ± 10.05% versus the best classification accuracy 59.13% ± 11.00% using 19 channels. In addition, the study of selecting subject-independent channels, related to emotion processing, was also implemented. The sensors, selected subject-independently from frontal, parietal lobes, have been identified to provide more discriminative information associated with emotion processing, and are distributed symmetrically over the scalp, which is consistent with the existing literature. The results will make a

  4. Multi-Class Motor Imagery EEG Decoding for Brain-Computer Interfaces

    Science.gov (United States)

    Wang, Deng; Miao, Duoqian; Blohm, Gunnar

    2012-01-01

    Recent studies show that scalp electroencephalography (EEG) as a non-invasive interface has great potential for brain-computer interfaces (BCIs). However, one factor that has limited practical applications for EEG-based BCI so far is the difficulty to decode brain signals in a reliable and efficient way. This paper proposes a new robust processing framework for decoding of multi-class motor imagery (MI) that is based on five main processing steps. (i) Raw EEG segmentation without the need of visual artifact inspection. (ii) Considering that EEG recordings are often contaminated not just by electrooculography (EOG) but also other types of artifacts, we propose to first implement an automatic artifact correction method that combines regression analysis with independent component analysis for recovering the original source signals. (iii) The significant difference between frequency components based on event-related (de-) synchronization and sample entropy is then used to find non-contiguous discriminating rhythms. After spectral filtering using the discriminating rhythms, a channel selection algorithm is used to select only relevant channels. (iv) Feature vectors are extracted based on the inter-class diversity and time-varying dynamic characteristics of the signals. (v) Finally, a support vector machine is employed for four-class classification. We tested our proposed algorithm on experimental data that was obtained from dataset 2a of BCI competition IV (2008). The overall four-class kappa values (between 0.41 and 0.80) were comparable to other models but without requiring any artifact-contaminated trial removal. The performance showed that multi-class MI tasks can be reliably discriminated using artifact-contaminated EEG recordings from a few channels. This may be a promising avenue for online robust EEG-based BCI applications. PMID:23087607

  5. EEG phase reset due to auditory attention: an inverse time-scale approach.

    Science.gov (United States)

    Low, Yin Fen; Strauss, Daniel J

    2009-08-01

    We propose a novel tool to evaluate the electroencephalograph (EEG) phase reset due to auditory attention by utilizing an inverse analysis of the instantaneous phase for the first time. EEGs were acquired through auditory attention experiments with a maximum entropy stimulation paradigm. We examined single sweeps of auditory late response (ALR) with the complex continuous wavelet transform. The phase in the frequency band that is associated with auditory attention (6-10 Hz, termed as theta-alpha border) was reset to the mean phase of the averaged EEGs. The inverse transform was applied to reconstruct the phase-modified signal. We found significant enhancement of the N100 wave in the reconstructed signal. Analysis of the phase noise shows the effects of phase jittering on the generation of the N100 wave implying that a preferred phase is necessary to generate the event-related potential (ERP). Power spectrum analysis shows a remarkable increase of evoked power but little change of total power after stabilizing the phase of EEGs. Furthermore, by resetting the phase only at the theta border of no attention data to the mean phase of attention data yields a result that resembles attention data. These results show strong connections between EEGs and ERP, in particular, we suggest that the presentation of an auditory stimulus triggers the phase reset process at the theta-alpha border which leads to the emergence of the N100 wave. It is concluded that our study reinforces other studies on the importance of the EEG in ERP genesis.

  6. EEG indices correlate with sustained attention performance in patients affected by diffuse axonal injury.

    Science.gov (United States)

    Coelli, Stefania; Barbieri, Riccardo; Reni, Gianluigi; Zucca, Claudio; Bianchi, Anna Maria

    2018-06-01

    The aim of this study is to assess the ability of EEG-based indices in providing relevant information about cognitive engagement level during the execution of a clinical sustained attention (SA) test in healthy volunteers and DAI (diffused axonal injury)-affected patients. We computed three continuous power-based engagement indices (P β /P α , 1/P α , and P β / (P α + P θ )) from EEG recordings in a control group (n = 7) and seven DAI-affected patients executing a 10-min Conners' "not-X" continuous performance test (CPT). A correlation analysis was performed in order to investigate the existence of relations between the EEG metrics and behavioral parameters in both the populations. P β /P α and 1/P α indices were found to be correlated with reaction times in both groups while P β / (P α + P θ ) and P β /P α also correlated with the errors rate for DAI patients. In line with previous studies, time course fluctuations revealed a first strong decrease of attention after 2 min from the beginning of the test and a final fading at the end. Our results provide evidence that EEG-derived indices extraction and evaluation during SA tasks are helpful in the assessment of attention level in healthy subjects and DAI patients, offering motivations for including EEG monitoring in cognitive rehabilitation practice. Graphical abstract Three EEG-derived indices were computed from four electrodes montages in a population of seven healthy volunteers and a group of seven DAI-affected patients. Results show a significant correlation between the time course of the indices and behavioral parameters, thus demonstrating their usefulness in monitoring mental engagement level during a sustained attention task.

  7. Binaural Beat: A Failure to Enhance EEG Power and Emotional Arousal

    Directory of Open Access Journals (Sweden)

    Fran López-Caballero

    2017-11-01

    Full Text Available When two pure tones of slightly different frequencies are delivered simultaneously to the two ears, is generated a beat whose frequency corresponds to the frequency difference between them. That beat is known as acoustic beat. If these two tones are presented one to each ear, they still produce the sensation of the same beat, although no physical combination of the tones occurs outside the auditory system. This phenomenon is called binaural beat. In the present study, we explored the potential contribution of binaural beats to the enhancement of specific electroencephalographic (EEG bands, as previous studies suggest the potential usefulness of binaural beats as a brainwave entrainment tool. Additionally, we analyzed the effects of binaural-beat stimulation on two psychophysiological measures related to emotional arousal: heart rate and skin conductance. Beats of five different frequencies (4.53 Hz -theta-, 8.97 Hz -alpha-, 17.93 Hz -beta-, 34.49 Hz -gamma- or 57.3 Hz -upper-gamma were presented binaurally and acoustically for epochs of 3 min (Beat epochs, preceded and followed by pink noise epochs of 90 s (Baseline and Post epochs, respectively. In each of these epochs, we analyzed the EEG spectral power, as well as calculated the heart rate and skin conductance response (SCR. For all the beat frequencies used for stimulation, no significant changes between Baseline and Beat epochs were observed within the corresponding EEG bands, neither with binaural or with acoustic beats. Additional analysis of spectral EEG topographies yielded negative results for the effect of binaural beats in the scalp distribution of EEG spectral power. In the psychophysiological measures, no changes in heart rate and skin conductance were observed for any of the beat frequencies presented. Our results do not support binaural-beat stimulation as a potential tool for the enhancement of EEG oscillatory activity, nor to induce changes in emotional arousal.

  8. Binaural Beat: A Failure to Enhance EEG Power and Emotional Arousal.

    Science.gov (United States)

    López-Caballero, Fran; Escera, Carles

    2017-01-01

    When two pure tones of slightly different frequencies are delivered simultaneously to the two ears, is generated a beat whose frequency corresponds to the frequency difference between them. That beat is known as acoustic beat. If these two tones are presented one to each ear, they still produce the sensation of the same beat, although no physical combination of the tones occurs outside the auditory system. This phenomenon is called binaural beat. In the present study, we explored the potential contribution of binaural beats to the enhancement of specific electroencephalographic (EEG) bands, as previous studies suggest the potential usefulness of binaural beats as a brainwave entrainment tool. Additionally, we analyzed the effects of binaural-beat stimulation on two psychophysiological measures related to emotional arousal: heart rate and skin conductance. Beats of five different frequencies (4.53 Hz -theta-, 8.97 Hz -alpha-, 17.93 Hz -beta-, 34.49 Hz -gamma- or 57.3 Hz -upper-gamma) were presented binaurally and acoustically for epochs of 3 min (Beat epochs), preceded and followed by pink noise epochs of 90 s (Baseline and Post epochs, respectively). In each of these epochs, we analyzed the EEG spectral power, as well as calculated the heart rate and skin conductance response (SCR). For all the beat frequencies used for stimulation, no significant changes between Baseline and Beat epochs were observed within the corresponding EEG bands, neither with binaural or with acoustic beats. Additional analysis of spectral EEG topographies yielded negative results for the effect of binaural beats in the scalp distribution of EEG spectral power. In the psychophysiological measures, no changes in heart rate and skin conductance were observed for any of the beat frequencies presented. Our results do not support binaural-beat stimulation as a potential tool for the enhancement of EEG oscillatory activity, nor to induce changes in emotional arousal.

  9. Using robust principal component analysis to alleviate day-to-day variability in EEG based emotion classification.

    Science.gov (United States)

    Ping-Keng Jao; Yuan-Pin Lin; Yi-Hsuan Yang; Tzyy-Ping Jung

    2015-08-01

    An emerging challenge for emotion classification using electroencephalography (EEG) is how to effectively alleviate day-to-day variability in raw data. This study employed the robust principal component analysis (RPCA) to address the problem with a posed hypothesis that background or emotion-irrelevant EEG perturbations lead to certain variability across days and somehow submerge emotion-related EEG dynamics. The empirical results of this study evidently validated our hypothesis and demonstrated the RPCA's feasibility through the analysis of a five-day dataset of 12 subjects. The RPCA allowed tackling the sparse emotion-relevant EEG dynamics from the accompanied background perturbations across days. Sequentially, leveraging the RPCA-purified EEG trials from more days appeared to improve the emotion-classification performance steadily, which was not found in the case using the raw EEG features. Therefore, incorporating the RPCA with existing emotion-aware machine-learning frameworks on a longitudinal dataset of each individual may shed light on the development of a robust affective brain-computer interface (ABCI) that can alleviate ecological inter-day variability.

  10. Quantitative EEG and its Correlation with Cardiovascular, Cognition and mood State: an Integrated Study in Simulated Microgravity

    Science.gov (United States)

    Zhang, Jianyuan; Hu, Bin; Chen, Wenjuan; Moore, Philip; Xu, Tingting; Dong, Qunxi; Liu, Zhenyu; Luo, Yuejia; Chen, Shanguang

    2014-12-01

    The focus of the study is the estimation of the effects of microgravity on the central nervous activity and its underlying influencing mechanisms. To validate the microgravity-induced physiological and psychological effects on EEG, quantitative EEG features, cardiovascular indicators, mood state, and cognitive performances data collection was achieved during a 45 day period using a -6°head-down bed rest (HDBR) integrated approach. The results demonstrated significant differences in EEG data, as an increased Theta wave, a decreased Beta wave and a reduced complexity of brain, accompanied with an increased heart rate and pulse rate, decreased positive emotion, and degraded emotion conflict monitoring performance. The canonical correlation analysis (CCA) based cardiovascular and cognitive related EEG model showed the cardiovascular effect on EEG mainly affected bilateral temporal region and the cognitive effect impacted parietal-occipital and frontal regions. The results obtained in the study support the use of an approach which combines a multi-factor influential mechanism hypothesis. The changes in the EEG data may be influenced by both cardiovascular and cognitive effects.

  11. [EEG frequency and regional properties in patients with paranoid schizophrenia: effects of positive and negative symptomatology prevalence].

    Science.gov (United States)

    Bochkarev, V K; Kirenskaya, A V; Tkachenko, A A; Samylkin, D V; Novototsky-Vlasov, V Yu; Kovaleva, M E

    2015-01-01

    EEG changes in schizophrenic patients are caused by a multitude of factors related to clinical heterogeneity of the disease, current state of patients, and conducted therapy. EEG spectral analysis remains an actual methodical approach for the investigation of the neurophysiological mechanisms of the disease. The goal of the investigation was the study of frequency and regional EEG correlating with the intensity of productive and negative disorders. Models of summary prevalence of positive/negative disorders and evidence of concrete clinical indices of the PANSS scale were used. Spectral characteristics of background EEG in the frequency range of 1-60 Hz were studied in 35 patients with paranoid schizophrenia free from psychoactive medication and in 19 healthy volunteers. It was established that the main index of negative symptomatology in summary assessment was diffuse increase of spectral power of gamma and delta ranges. Deficient states with the predominance of volitional disorders were characterized by a lateralized increase of spectral power of beta-gamma ranges in the left hemisphere, and of delta range - in frontal areas of this hemisphere. Positive symptomatology was noticeably less reflected in EEG changes than negative ones. An analysis of psychopathological symptom complexes revealed the significance of spatially structured EEG patterns in the beta range: for the delusion disturbances with psychic automatism phenomena - in frontal areas of the left hemisphere, and for the paranoid syndrome with primary interpretative delusion - in cortical areas of the right hemisphere.

  12. Novel artefact removal algorithms for co-registered EEG/fMRI based on selective averaging and subtraction.

    Science.gov (United States)

    de Munck, Jan C; van Houdt, Petra J; Gonçalves, Sónia I; van Wegen, Erwin; Ossenblok, Pauly P W

    2013-01-01

    Co-registered EEG and functional MRI (EEG/fMRI) is a potential clinical tool for planning invasive EEG in patients with epilepsy. In addition, the analysis of EEG/fMRI data provides a fundamental insight into the precise physiological meaning of both fMRI and EEG data. Routine application of EEG/fMRI for localization of epileptic sources is hampered by large artefacts in the EEG, caused by switching of scanner gradients and heartbeat effects. Residuals of the ballistocardiogram (BCG) artefacts are similarly shaped as epileptic spikes, and may therefore cause false identification of spikes. In this study, new ideas and methods are presented to remove gradient artefacts and to reduce BCG artefacts of different shapes that mutually overlap in time. Gradient artefacts can be removed efficiently by subtracting an average artefact template when the EEG sampling frequency and EEG low-pass filtering are sufficient in relation to MR gradient switching (Gonçalves et al., 2007). When this is not the case, the gradient artefacts repeat themselves at time intervals that depend on the remainder between the fMRI repetition time and the closest multiple of the EEG acquisition time. These repetitions are deterministic, but difficult to predict due to the limited precision by which these timings are known. Therefore, we propose to estimate gradient artefact repetitions using a clustering algorithm, combined with selective averaging. Clustering of the gradient artefacts yields cleaner EEG for data recorded during scanning of a 3T scanner when using a sampling frequency of 2048 Hz. It even gives clean EEG when the EEG is sampled with only 256 Hz. Current BCG artefacts-reduction algorithms based on average template subtraction have the intrinsic limitation that they fail to deal properly with artefacts that overlap in time. To eliminate this constraint, the precise timings of artefact overlaps were modelled and represented in a sparse matrix. Next, the artefacts were disentangled with

  13. A New Approach to Eliminate High Amplitude Artifacts in EEG Signals

    Directory of Open Access Journals (Sweden)

    Ana Rita Teixeira

    2016-09-01

    Full Text Available High amplitude artifacts represent a problem during EEG recordings in neuroscience research. Taking this into account, this paper proposes a method to identify high amplitude artifacts with no requirement for visual inspection, electrooscillogram (EOG reference channel or user assigned parameters. A potential solution to the high amplitude artifacts (HAA elimination is presented based on blind source separation methods. The assumption underlying the selection of components is that HAA are independent of the EEG signal and different HAA can be generated during the EEG recordings. Therefore, the number of components related to HAA is variable and depends on the processed signal, which means that the method is adaptable to the input signal. The results show, when removing the HAA artifacts, the delta band is distorted but all the other frequency bands are preserved. A case study with EEG signals recorded while participants performed on the Halstead Category Test (HCT is presented. After HAA removal, data analysis revealed, as expected, an error-related frontal ERP wave: the feedback-related negativity (FRN in response to feedback stimuli.

  14. Human cortical EEG rhythms during long-term episodic memory task. A high-resolution EEG study of the HERA model.

    Science.gov (United States)

    Babiloni, Claudio; Babiloni, Fabio; Carducci, Filippo; Cappa, Stefano; Cincotti, Febo; Del Percio, Claudio; Miniussi, Carlo; Moretti, Davide Vito; Pasqualetti, Patrizio; Rossi, Simone; Sosta, Katiuscia; Rossini, Paolo Maria

    2004-04-01

    Many recent neuroimaging studies of episodic memory have indicated an asymmetry in prefrontal involvement, with the left prefrontal cortex more involved than the right in encoding, the right more than the left in retrieval (hemispheric encoding and retrieval asymmetry, or HERA model). In this electroencephalographic (EEG) high-resolution study, we studied brain rhythmicity during a visual episodic memory (recognition) task. The theta (4-6 Hz), alpha (6-12 Hz) and gamma (28-48 Hz) oscillations were investigated during a visuospatial long-term episodic memory task including an encoding (ENC) and retrieval (RET) phases. During the ENC phase, 25 figures representing interiors of buildings ("indoor") were randomly intermingled with 25 figures representing landscapes ("landscapes"). Subject's response was given at left ("indoor") or right ("landscapes") mouse button. During the RET phase (1 h later), 25 figures representing previously presented "indoor" pictures ("tests") were randomly intermingled with 25 figures representing novel "indoor" ("distractors"). Again, a mouse response was required. Theta and alpha EEG results showed no change of frontal rhythmicity. In contrast, the HERA prediction of asymmetry was fitted only by EEG gamma responses, but only in the posterior parietal areas. The ENC phase was associated with gamma EEG oscillations over left parietal cortex. Afterward, the RET phase was associated with gamma EEG oscillations predominantly over right parietal cortex. The predicted HERA asymmetry was thus observed in an unexpected location. This discrepancy may be due to the differential sensitivity of neuroimaging methods to selected components of cognitive processing. The strict relation between gamma response and perception suggests that retrieval processes of long-term memory deeply impinged upon sensory representation of the stored material.

  15. Study on patterns and prevalence of EEG abnormalities in children presenting with behavioural disturbances in psychiatry OPD, Gauhati Medical College and Hospital

    Directory of Open Access Journals (Sweden)

    Bobby Hmar

    2016-01-01

    Full Text Available Background of the study: Children with behavioural abnormalities and developmental disorders are often advised electroencephalography (EEG for evaluation of electrophysiological process of the brain to rule out any organic pathology. Various studies have reported abnormal EEG in these groups of children without history of clinical seizure on routine EEG and sleep EEG. Aim of the study: To study pattern and prevalence of EEG abnormalities in children with behavioural abnormalities without history of clinical seizure. Materials and methods: The study is a retrospective study. Ethical clearance has been obtained from institutional ethical committee for the study. To collect data, socio-demographic and clinical data proforma has been used. Data has been evaluated during the period from June 2011 to June 2014 as per selection criteria from the case history record of children with behavioural abnormalities attending child guidance clinic (CGC. Associations of abnormal EEG with various psychiatric diagnoses has been analysed and chi-square test has been used. p value <0.05 has been taken as test of significance. Result: Total 2011 children attended CGC from 2011 June to 2014 June. One hundred and ninety two children of various psychiatric diagnoses as per the tenth revision of the International Statistical Classification of Diseases and Related Health Problems (ICD-10 criteria had fulfilled the selection criteria and 113 children had done EEG. Abnormal EEG was found in 26.54% of children with various psychiatric diagnoses. Association was statistically significant (p<0.05. The EEG abnormalities were found more in male gender than female (p<0.05 and more in younger age group (four to ten years, p<0.05. Conclusion: Children with various psychiatric diagnoses have significant association with abnormal EEG without history of clinical seizure.

  16. Use of electroencephalography (EEG) to assess CNS changes produced by pesticides with different modes of action: Effects of permethrin, deltamethrin, fipronil, imidacloprid, carbaryl, and triadimefon

    International Nuclear Information System (INIS)

    Freeborn, Danielle L.; McDaniel, Katherine L.; Moser, Virginia C.; Herr, David W.

    2015-01-01

    The electroencephalogram (EEG) is an apical measure, capable of detecting changes in brain neuronal activity produced by internal or external stimuli. We assessed whether pesticides with different modes of action produced different changes in the EEG of adult male Long–Evans rats. The EEG was recorded using two montages (visual cortex referenced to the cerebellum and to the frontal cortex) in unrestrained rats at the time of peak behavioral effects. Pesticides included: permethrin and deltamethrin (Type I and Type II pyrethroids; 2 h), fipronil (single and repeated doses; phenylpyrazole; 6 h), imidacloprid (neonicotinoid; 2 h), carbaryl (carbamate; 0.5 h), and triadimefon (triazole; 1 h), using dosages that produced approximately an ED 30 or an ED 50 –ED 80 change in motor activity. Permethrin (43, 100 mg/kg) increased amplitudes or areas (delta, alpha, or gamma bands) in the EEG. Deltamethrin (2.5, 5.5 mg/kg) reduced the amplitudes or areas of the delta, theta, alpha, beta, and gamma bands, but the changes were not dose-related. A single treatment with fipronil (25, 50 mg/kg, but not 5, 10 mg/kg) decreased gamma band area. Additional changes in the delta, theta, and gamma bands were observed when fipronil (5, 10 mg/kg) was administered for 14 days. Imidacloprid (50, 100 mg/kg) did not alter the EEG. Carbaryl (10, 50 mg/kg) decreased theta area, and decreased delta and increased beta frequency. Triadimefon (75, 150 mg/kg) produced minimal changes in the EEG. The results show that the EEG is affected differently by approximately equipotent doses of pesticides with different modes of action. - Highlights: • Pesticides with different modes of action have different effects on in vivo rodent EEG. • The EEG was also changed differently after single vs. repeated treatment with fipronil. • The data suggest that EEG may be used as an apical measure for detecting chemical effects on the central nervous system

  17. EEG Topographic Mapping of Visual and Kinesthetic Imagery in Swimmers.

    Science.gov (United States)

    Wilson, V E; Dikman, Z; Bird, E I; Williams, J M; Harmison, R; Shaw-Thornton, L; Schwartz, G E

    2016-03-01

    This study investigated differences in QEEG measures between kinesthetic and visual imagery of a 100-m swim in 36 elite competitive swimmers. Background information and post-trial checks controlled for the modality of imagery, swimming skill level, preferred imagery style, intensity of image and task equality. Measures of EEG relative magnitude in theta, low (7-9 Hz) and high alpha (8-10 Hz), and low and high beta were taken from 19 scalp sites during baseline, visual, and kinesthetic imagery. QEEG magnitudes in the low alpha band during the visual and kinesthetic conditions were attenuated from baseline in low band alpha but no changes were seen in any other bands. Swimmers produced more low alpha EEG magnitude during visual versus kinesthetic imagery. This was interpreted as the swimmers having a greater efficiency at producing visual imagery. Participants who reported a strong intensity versus a weaker feeling of the image (kinesthetic) had less low alpha magnitude, i.e., there was use of more cortical resources, but not for the visual condition. These data suggest that low band (7-9 Hz) alpha distinguishes imagery modalities from baseline, visual imagery requires less cortical resources than kinesthetic imagery, and that intense feelings of swimming requires more brain activity than less intense feelings.

  18. Music increases frontal EEG coherence during verbal learning.

    Science.gov (United States)

    Peterson, David A; Thaut, Michael H

    2007-02-02

    Anecdotal and some empirical evidence suggests that music can enhance learning and memory. However, the mechanisms by which music modulates the neural activity associated with learning and memory remain largely unexplored. We evaluated coherent frontal oscillations in the electroencephalogram (EEG) while subjects were engaged in a modified version of Rey's Auditory Verbal Learning Test (AVLT). Subjects heard either a spoken version of the AVLT or the conventional AVLT word list sung. Learning-related changes in coherence (LRCC) were measured by comparing the EEG during word encoding on correctly recalled trials to the immediately preceding trial on which the same word was not recalled. There were no significant changes in coherence associated with conventional verbal learning. However, musical verbal learning was associated with increased coherence within and between left and right frontal areas in theta, alpha, and gamma frequency bands. It is unlikely that the different patterns of LRCC reflect general performance differences; the groups exhibited similar learning performance. The results suggest that verbal learning with a musical template strengthens coherent oscillations in frontal cortical networks involved in verbal encoding.

  19. LORETA EEG phase reset of the default mode network.

    Science.gov (United States)

    Thatcher, Robert W; North, Duane M; Biver, Carl J

    2014-01-01

    The purpose of this study was to explore phase reset of 3-dimensional current sources in Brodmann areas located in the human default mode network (DMN) using Low Resolution Electromagnetic Tomography (LORETA) of the human electroencephalogram (EEG). The EEG was recorded from 19 scalp locations from 70 healthy normal subjects ranging in age from 13 to 20 years. A time point by time point computation of LORETA current sources were computed for 14 Brodmann areas comprising the DMN in the delta frequency band. The Hilbert transform of the LORETA time series was used to compute the instantaneous phase differences between all pairs of Brodmann areas. Phase shift and lock durations were calculated based on the 1st and 2nd derivatives of the time series of phase differences. Phase shift duration exhibited three discrete modes at approximately: (1) 25 ms, (2) 50 ms, and (3) 65 ms. Phase lock duration present primarily at: (1) 300-350 ms and (2) 350-450 ms. Phase shift and lock durations were inversely related and exhibited an exponential change with distance between Brodmann areas. The results are explained by local neural packing density of network hubs and an exponential decrease in connections with distance from a hub. The results are consistent with a discrete temporal model of brain function where anatomical hubs behave like a "shutter" that opens and closes at specific durations as nodes of a network giving rise to temporarily phase locked clusters of neurons for specific durations.

  20. Making the case for mobile cognition: EEG and sports performance.

    Science.gov (United States)

    Park, Joanne L; Fairweather, Malcolm M; Donaldson, David I

    2015-05-01

    In the high stakes world of International sport even the smallest change in performance can make the difference between success and failure, leading sports professionals to become increasingly interested in the potential benefits of neuroimaging. Here we describe evidence from EEG studies that either identify neural signals associated with expertise in sport, or employ neurofeedback to improve performance. Evidence for the validity of neurofeedback as a technique for enhancing sports performance remains limited. By contrast, progress in characterizing the neural correlates of sporting behavior is clear: frequency domain studies link expert performance to changes in alpha rhythms, whilst time-domain studies link expertise in response evaluation and motor output with modulations of P300 effects and readiness potentials. Despite early promise, however, findings have had relatively little impact for sports professionals, at least in part because there has been a mismatch between lab tasks and real sporting activity. After selectively reviewing existing findings and outlining limitations, we highlight developments in mobile EEG technology that offer new opportunities for sports neuroscience. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Biogas plants in EEG. 4. new rev. and enl. ed.; Biogasanlagen im EEG

    Energy Technology Data Exchange (ETDEWEB)

    Loibl, Helmut; Maslaton, Martin; Bredow, Hartwig von; Walter, Rene (eds.)

    2016-08-01

    With the EEG 2014, the legislature has created a complete revision of all the RES plants. Specifically for biogas plants fundamental changes have been made with the maximum rated power or a new landscape conservation concept. For new biogas plants the legislator arranges not only a much lower remuneration, but also the direct marketing as a rule, which entails fundamental changes in the overall compensation system by itself. The new edition of this highly regarded standard work revives the extensive practical experience to EEG 2009, 2012 and 2014 in detail and in particular and takes into account the large number of newly issued clearinghouses decisions and judgments. All current legal issues and challenges of biogas plants can be found comprehensively presented here. [German] Mit dem EEG 2014 hat der Gesetzgeber eine komplette Neuregelung fuer alle EEG-Anlagen geschaffen. Speziell fuer Biogasanlagen wurden mit der Hoechstbemessungsleistung oder einem neuen Landschaftspflegebegriff grundlegende Aenderungen vorgenommen. Fuer neue Biogasanlagen ordnet der Gesetzgeber nicht nur eine deutlich geringere Verguetung, sondern zudem die Direktvermarktung als Regelfall an, was grundlegende Veraenderungen des gesamten Verguetungssystems nach sich zieht. Die Neuauflage dieses vielbeachteten Standardwerks greift die umfangreichen Praxiserfahrungen zum EEG 2009, 2012 und 2014 detailliert auf und beruecksichtigt insbesondere auch die Vielzahl der neu ergangenen Clearingstellenentscheidungen und Urteile. Alle aktuellen rechtlichen Themen und Herausforderungen bei Biogasanlagen finden Sie hier umfassend dargestellt.

  2. Classifying Drivers' Cognitive Load Using EEG Signals.

    Science.gov (United States)

    Barua, Shaibal; Ahmed, Mobyen Uddin; Begum, Shahina

    2017-01-01

    A growing traffic safety issue is the effect of cognitive loading activities on traffic safety and driving performance. To monitor drivers' mental state, understanding cognitive load is important since while driving, performing cognitively loading secondary tasks, for example talking on the phone, can affect the performance in the primary task, i.e. driving. Electroencephalography (EEG) is one of the reliable measures of cognitive load that can detect the changes in instantaneous load and effect of cognitively loading secondary task. In this driving simulator study, 1-back task is carried out while the driver performs three different simulated driving scenarios. This paper presents an EEG based approach to classify a drivers' level of cognitive load using Case-Based Reasoning (CBR). The results show that for each individual scenario as well as using data combined from the different scenarios, CBR based system achieved approximately over 70% of classification accuracy.

  3. An EEG Data Investigation Using Only Artifacts

    Science.gov (United States)

    2017-02-22

    hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and...some conditions, an automation feature was implemented to help the participants find the HVT. When the HVT was within the sensor footprint, a tone...EEG Data Investigation Using Only Artifacts 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 1 Chelsey

  4. Detection of EEG electrodes in brain volumes.

    Science.gov (United States)

    Graffigna, Juan P; Gómez, M Eugenia; Bustos, José J

    2010-01-01

    This paper presents a method to detect 128 EEG electrodes in image study and to merge with the Nuclear Magnetic Resonance volume for better diagnosis. First we propose three hypotheses to define a specific acquisition protocol in order to recognize the electrodes and to avoid distortions in the image. In the second instance we describe a method for segmenting the electrodes. Finally, registration is performed between volume of the electrodes and NMR.

  5. Removal of the ballistocardiographic artifact from EEG-fMRI data: a canonical correlation approach

    International Nuclear Information System (INIS)

    Assecondi, Sara; Hallez, Hans; Staelens, Steven; Lemahieu, Ignace; Bianchi, Anna M; Huiskamp, Geertjan M

    2009-01-01

    The simultaneous recording of electroencephalogram (EEG) and functional magnetic resonance imaging (fMRI) can give new insights into how the brain functions. However, the strong electromagnetic field of the MR scanner generates artifacts that obscure the EEG and diminish its readability. Among them, the ballistocardiographic artifact (BCGa) that appears on the EEG is believed to be related to blood flow in scalp arteries leading to electrode movements. Average artifact subtraction (AAS) techniques, used to remove the BCGa, assume a deterministic nature of the artifact. This assumption may be too strong, considering the blood flow related nature of the phenomenon. In this work we propose a new method, based on canonical correlation analysis (CCA) and blind source separation (BSS) techniques, to reduce the BCGa from simultaneously recorded EEG-fMRI. We optimized the method to reduce the user's interaction to a minimum. When tested on six subjects, recorded in 1.5 T or 3 T, the average artifact extracted with BSS-CCA and AAS did not show significant differences, proving the absence of systematic errors. On the other hand, when compared on the basis of intra-subject variability, we found significant differences and better performance of the proposed method with respect to AAS. We demonstrated that our method deals with the intrinsic subject variability specific to the artifact that may cause averaging techniques to fail.

  6. Convergence of EEG and fMRI measures of reward anticipation.

    Science.gov (United States)

    Gorka, Stephanie M; Phan, K Luan; Shankman, Stewart A

    2015-12-01

    Deficits in reward anticipation are putative mechanisms for multiple psychopathologies. Research indicates that these deficits are characterized by reduced left (relative to right) frontal electroencephalogram (EEG) activity and blood oxygenation level-dependent (BOLD) signal abnormalities in mesolimbic and prefrontal neural regions during reward anticipation. Although it is often assumed that these two measures capture similar mechanisms, no study to our knowledge has directly examined the convergence between frontal EEG alpha asymmetry and functional magnetic resonance imaging (fMRI) during reward anticipation in the same sample. Therefore, the aim of the current study was to investigate if and where in the brain frontal EEG alpha asymmetry and fMRI measures were correlated in a sample of 40 adults. All participants completed two analogous reward anticipation tasks--once during EEG data collection and the other during fMRI data collection. Results indicated that the two measures do converge and that during reward anticipation, increased relative left frontal activity is associated with increased left anterior cingulate cortex (ACC)/medial prefrontal cortex (mPFC) and left orbitofrontal cortex (OFC) activation. This suggests that the two measures may similarly capture PFC functioning, which is noteworthy given the role of these regions in reward processing and the pathophysiology of disorders such as depression and schizophrenia. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. On the use of EEG or MEG brain imaging tools in neuromarketing research.

    Science.gov (United States)

    Vecchiato, Giovanni; Astolfi, Laura; De Vico Fallani, Fabrizio; Toppi, Jlenia; Aloise, Fabio; Bez, Francesco; Wei, Daming; Kong, Wanzeng; Dai, Jounging; Cincotti, Febo; Mattia, Donatella; Babiloni, Fabio

    2011-01-01

    Here we present an overview of some published papers of interest for the marketing research employing electroencephalogram (EEG) and magnetoencephalogram (MEG) methods. The interest for these methodologies relies in their high-temporal resolution as opposed to the investigation of such problem with the functional Magnetic Resonance Imaging (fMRI) methodology, also largely used in the marketing research. In addition, EEG and MEG technologies have greatly improved their spatial resolution in the last decades with the introduction of advanced signal processing methodologies. By presenting data gathered through MEG and high resolution EEG we will show which kind of information it is possible to gather with these methodologies while the persons are watching marketing relevant stimuli. Such information will be related to the memorization and pleasantness related to such stimuli. We noted that temporal and frequency patterns of brain signals are able to provide possible descriptors conveying information about the cognitive and emotional processes in subjects observing commercial advertisements. These information could be unobtainable through common tools used in standard marketing research. We also show an example of how an EEG methodology could be used to analyze cultural differences between fruition of video commercials of carbonated beverages in Western and Eastern countries.

  8. On the Use of EEG or MEG Brain Imaging Tools in Neuromarketing Research

    Directory of Open Access Journals (Sweden)

    Giovanni Vecchiato

    2011-01-01

    Full Text Available Here we present an overview of some published papers of interest for the marketing research employing electroencephalogram (EEG and magnetoencephalogram (MEG methods. The interest for these methodologies relies in their high-temporal resolution as opposed to the investigation of such problem with the functional Magnetic Resonance Imaging (fMRI methodology, also largely used in the marketing research. In addition, EEG and MEG technologies have greatly improved their spatial resolution in the last decades with the introduction of advanced signal processing methodologies. By presenting data gathered through MEG and high resolution EEG we will show which kind of information it is possible to gather with these methodologies while the persons are watching marketing relevant stimuli. Such information will be related to the memorization and pleasantness related to such stimuli. We noted that temporal and frequency patterns of brain signals are able to provide possible descriptors conveying information about the cognitive and emotional processes in subjects observing commercial advertisements. These information could be unobtainable through common tools used in standard marketing research. We also show an example of how an EEG methodology could be used to analyze cultural differences between fruition of video commercials of carbonated beverages in Western and Eastern countries.

  9. Dataset of quantitative spectral EEG of different stages of kindling acquisition in rats.

    Science.gov (United States)

    Jalilifar, Mostafa; Yadollahpour, Ali

    2018-02-01

    The data represented here are in relation with the manuscript "Quantitative assessments of extracellular EEG to classify specific features of main phases of seizure acquisition based on kindling model in Rat" (Jalilifar et al., 2017) [1] which quantitatively classified different main stages of the kindling process based on their electrophysiological characteristics using EEG signal processing. The data in the graphical form reported the contribution of different sub bands of EEG in different stages of kindling- induced epileptogenesis. Only EEG signals related to stages 1-2 (initial seizure stages (ISSs)), 3 (localized seizure stage (LSS)), and 4-5 (generalized seizure stages (GSSs) were transferred into frequency function by Fast Fourier Transform (FFT) and their power spectrum and power of each sub bands including delta (1-4 Hz), Theta (4-8 Hz), alpha (8-12 Hz), beta (12-28 Hz), gamma (28-40 Hz) were calculated with MATLAB 2013b. Accordingly, all results were obtained quantitatively which can contribute to reduce the errors in the behavioral assessments.

  10. Plastic modulation of PTSD resting-state networks by EEG neurofeedback

    Science.gov (United States)

    Kluetsch, Rosemarie C.; Ros, Tomas; Théberge, Jean; Frewen, Paul A.; Calhoun, Vince D.; Schmahl, Christian; Jetly, Rakesh; Lanius, Ruth A.

    2015-01-01

    Objective Electroencephalographic (EEG) neurofeedback training has been shown to produce plastic modulations in salience network and default mode network functional connectivity in healthy individuals. In this study, we investigated whether a single session of neurofeedback training aimed at the voluntary reduction of alpha rhythm (8–12 Hz) amplitude would be related to differences in EEG network oscillations, functional MRI (fMRI) connectivity, and subjective measures of state anxiety and arousal in a group of individuals with PTSD. Method 21 individuals with PTSD related to childhood abuse underwent 30 minutes of EEG neurofeedback training preceded and followed by a resting-state fMRI scan. Results Alpha desynchronizing neurofeedback was associated with decreased alpha amplitude during training, followed by a significant increase (‘rebound’) in resting-state alpha synchronization. This rebound was linked to increased calmness, greater salience network connectivity with the right insula, and enhanced default mode network connectivity with bilateral posterior cingulate, right middle frontal gyrus, and left medial prefrontal cortex. Conclusion Our study represents a first step in elucidating the potential neurobehavioral mechanisms mediating the effects of neurofeedback treatment on regulatory systems in PTSD. Moreover, it documents for the first time a spontaneous EEG ‘rebound’ after neurofeedback, pointing to homeostatic/compensatory mechanisms operating in the brain. PMID:24266644

  11. Plastic modulation of PTSD resting-state networks and subjective wellbeing by EEG neurofeedback.

    Science.gov (United States)

    Kluetsch, R C; Ros, T; Théberge, J; Frewen, P A; Calhoun, V D; Schmahl, C; Jetly, R; Lanius, R A

    2014-08-01

    Electroencephalographic (EEG) neurofeedback training has been shown to produce plastic modulations in salience network and default mode network functional connectivity in healthy individuals. In this study, we investigated whether a single session of neurofeedback training aimed at the voluntary reduction of alpha rhythm (8-12 Hz) amplitude would be related to differences in EEG network oscillations, functional MRI (fMRI) connectivity, and subjective measures of state anxiety and arousal in a group of individuals with post-traumatic stress disorder (PTSD). Twenty-one individuals with PTSD related to childhood abuse underwent 30 min of EEG neurofeedback training preceded and followed by a resting-state fMRI scan. Alpha desynchronizing neurofeedback was associated with decreased alpha amplitude during training, followed by a significant increase ('rebound') in resting-state alpha synchronization. This rebound was linked to increased calmness, greater salience network connectivity with the right insula, and enhanced default mode network connectivity with bilateral posterior cingulate, right middle frontal gyrus, and left medial prefrontal cortex. Our study represents a first step in elucidating the potential neurobehavioural mechanisms mediating the effects of neurofeedback treatment on regulatory systems in PTSD. Moreover, it documents for the first time a spontaneous EEG 'rebound' after neurofeedback, pointing to homeostatic/compensatory mechanisms operating in the brain. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Multi-Variate EEG Analysis as a Novel Tool to Examine Brain Responses to Naturalistic Music Stimuli.

    Directory of Open Access Journals (Sweden)

    Irene Sturm

    Full Text Available Note onsets in music are acoustic landmarks providing auditory cues that underlie the perception of more complex phenomena such as beat, rhythm, and meter. For naturalistic ongoing sounds a detailed view on the neural representation of onset structure is hard to obtain, since, typically, stimulus-related EEG signatures are derived by averaging a high number of identical stimulus presentations. Here, we propose a novel multivariate regression-based method extracting onset-related brain responses from the ongoing EEG. We analyse EEG recordings of nine subjects who passively listened to stimuli from various sound categories encompassing simple tone sequences, full-length romantic piano pieces and natural (non-music soundscapes. The regression approach reduces the 61-channel EEG to one time course optimally reflecting note onsets. The neural signatures derived by this procedure indeed resemble canonical onset-related ERPs, such as the N1-P2 complex. This EEG projection was then utilized to determine the Cortico-Acoustic Correlation (CACor, a measure of synchronization between EEG signal and stimulus. We demonstrate that a significant CACor (i can be detected in an individual listener's EEG of a single presentation of a full-length complex naturalistic music stimulus, and (ii it co-varies with the stimuli's average magnitudes of sharpness, spectral centroid, and rhythmic complexity. In particular, the subset of stimuli eliciting a strong CACor also produces strongly coordinated tension ratings obtained from an independent listener group in a separate behavioral experiment. Thus musical features that lead to a marked physiological reflection of tone onsets also contribute to perceived tension in music.

  13. Wearable ear EEG for brain interfacing

    Science.gov (United States)

    Schroeder, Eric D.; Walker, Nicholas; Danko, Amanda S.

    2017-02-01

    Brain-computer interfaces (BCIs) measuring electrical activity via electroencephalogram (EEG) have evolved beyond clinical applications to become wireless consumer products. Typically marketed for meditation and neu- rotherapy, these devices are limited in scope and currently too obtrusive to be a ubiquitous wearable. Stemming from recent advancements made in hearing aid technology, wearables have been shrinking to the point that the necessary sensors, circuitry, and batteries can be fit into a small in-ear wearable device. In this work, an ear-EEG device is created with a novel system for artifact removal and signal interpretation. The small, compact, cost-effective, and discreet device is demonstrated against existing consumer electronics in this space for its signal quality, comfort, and usability. A custom mobile application is developed to process raw EEG from each device and display interpreted data to the user. Artifact removal and signal classification is accomplished via a combination of support matrix machines (SMMs) and soft thresholding of relevant statistical properties.

  14. Robust power spectral estimation for EEG data.

    Science.gov (United States)

    Melman, Tamar; Victor, Jonathan D

    2016-08-01

    Typical electroencephalogram (EEG) recordings often contain substantial artifact. These artifacts, often large and intermittent, can interfere with quantification of the EEG via its power spectrum. To reduce the impact of artifact, EEG records are typically cleaned by a preprocessing stage that removes individual segments or components of the recording. However, such preprocessing can introduce bias, discard available signal, and be labor-intensive. With this motivation, we present a method that uses robust statistics to reduce dependence on preprocessing by minimizing the effect of large intermittent outliers on the spectral estimates. Using the multitaper method (Thomson, 1982) as a starting point, we replaced the final step of the standard power spectrum calculation with a quantile-based estimator, and the Jackknife approach to confidence intervals with a Bayesian approach. The method is implemented in provided MATLAB modules, which extend the widely used Chronux toolbox. Using both simulated and human data, we show that in the presence of large intermittent outliers, the robust method produces improved estimates of the power spectrum, and that the Bayesian confidence intervals yield close-to-veridical coverage factors. The robust method, as compared to the standard method, is less affected by artifact: inclusion of outliers produces fewer changes in the shape of the power spectrum as well as in the coverage factor. In the presence of large intermittent outliers, the robust method can reduce dependence on data preprocessing as compared to standard methods of spectral estimation. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Data-driven forward model inference for EEG brain imaging

    DEFF Research Database (Denmark)

    Hansen, Sofie Therese; Hauberg, Søren; Hansen, Lars Kai

    2016-01-01

    Electroencephalography (EEG) is a flexible and accessible tool with excellent temporal resolution but with a spatial resolution hampered by volume conduction. Reconstruction of the cortical sources of measured EEG activity partly alleviates this problem and effectively turns EEG into a brain......-of-concept study, we show that, even when anatomical knowledge is unavailable, a suitable forward model can be estimated directly from the EEG. We propose a data-driven approach that provides a low-dimensional parametrization of head geometry and compartment conductivities, built using a corpus of forward models....... Combined with only a recorded EEG signal, we are able to estimate both the brain sources and a person-specific forward model by optimizing this parametrization. We thus not only solve an inverse problem, but also optimize over its specification. Our work demonstrates that personalized EEG brain imaging...

  16. EEG signatures of arm isometric exertions in preparation, planning and execution.

    Science.gov (United States)

    Nasseroleslami, Bahman; Lakany, Heba; Conway, Bernard A

    2014-04-15

    The electroencephalographic (EEG) activity patterns in humans during motor behaviour provide insight into normal motor control processes and for diagnostic and rehabilitation applications. While the patterns preceding brisk voluntary movements, and especially movement execution, are well described, there are few EEG studies that address the cortical activation patterns seen in isometric exertions and their planning. In this paper, we report on time and time-frequency EEG signatures in experiments in normal subjects (n=8), using multichannel EEG during motor preparation, planning and execution of directional centre-out arm isometric exertions performed at the wrist in the horizontal plane, in response to instruction-delay visual cues. Our observations suggest that isometric force exertions are accompanied by transient and sustained event-related potentials (ERP) and event-related (de-)synchronisations (ERD/ERS), comparable to those of a movement task. Furthermore, the ERPs and ERD/ERS are also observed during preparation and planning of the isometric task. Comparison of ear-lobe-referenced and surface Laplacian ERPs indicates the contribution of superficial sources in supplementary and pre-motor (FC(z)), parietal (CP(z)) and primary motor cortical areas (C₁ and FC₁) to ERPs (primarily negative peaks in frontal and positive peaks in parietal areas), but contribution of deep sources to sustained time-domain potentials (negativity in planning and positivity in execution). Transient and sustained ERD patterns in μ and β frequency bands of ear-lobe-referenced and surface Laplacian EEG indicate the contribution of both superficial and deep sources to ERD/ERS. As no physical displacement happens during the task, we can infer that the underlying mechanisms of motor-related ERPs and ERD/ERS patterns do not only depend on change in limb coordinate or muscle-length-dependent ascending sensory information and are primary generated by motor preparation, direction

  17. Overt foot movement detection in one single Laplacian EEG derivation.

    Science.gov (United States)

    Solis-Escalante, Teodoro; Müller-Putz, Gernot; Pfurtscheller, Gert

    2008-10-30

    In this work one single Laplacian derivation and a full description of band power values in a broad frequency band are used to detect brisk foot movement execution in the ongoing EEG. Two support vector machines (SVM) are trained to detect the event-related desynchronization (ERD) during motor execution and the following beta rebound (event-related synchronization, ERS) independently. Their performance is measured through the simulation of an asynchronous brain switch. ERS (true positive rate=0.74+/-0.21) after motor execution is shown to be more stable than ERD (true positive rate=0.21+/-0.12). A novel combination of ERD and post-movement ERS is introduced. The SVM outputs are combined with a product rule to merge ERD and ERS detection. For this novel approach the average information transfer rate obtained was 11.19+/-3.61bits/min.

  18. EEG simulation by 2D interconnected chaotic oscillators

    International Nuclear Information System (INIS)

    Kubany, Adam; Mhabary, Ziv; Gontar, Vladimir

    2011-01-01

    Research highlights: → ANN of 2D interconnected chaotic oscillators is explored for EEG simulation. → An inverse problem solution (PRCGA) is proposed. → Good matching between the simulated and experimental EEG signals has been achieved. - Abstract: An artificial neuronal network composed by 2D interconnected chaotic oscillators is explored for brain waves (EEG) simulation. For the inverse problem solution a parallel real-coded genetic algorithm (PRCGA) is proposed. In order to conduct thorough comparison between the simulated and target signal characteristics, a spectrum analysis of the signals is undertaken. A good matching between the theoretical and experimental EEG signals has been achieved. Numerical results of calculations are presented and discussed.

  19. EEG Signal Decomposition and Improved Spectral Analysis Using Wavelet Transform

    National Research Council Canada - National Science Library

    Bhatti, Muhammad

    2001-01-01

    EEG (Electroencephalograph), as a noninvasive testing method, plays a key role in the diagnosing diseases, and is useful for both physiological research and medical applications. Wavelet transform (WT...

  20. Synchronization of EEG activity in patients with bipolar disorder

    International Nuclear Information System (INIS)

    Panischev, O Yu; Demin, S A; Muhametshin, I G; Yu Demina, N

    2015-01-01

    In paper we apply the method based on the Flicker-Noise Spectroscopy (FNS) to determine the differences in frequency-phase synchronization of the cortical electroencephalographic (EEG) activities in patients with bipolar disorder (BD). We found that for healthy subjects the frequency-phase synchronization of EEGs from long-range electrodes was significantly better for BD patients. In BD patients a high synchronization of EEGs was observed only for short-range electrodes. Thus, the FNS is a simple graphical method for qualitative analysis can be applied to identify the synchronization effects in EEG activity and, probably, may be used for the diagnosis of this syndrome. (paper)

  1. Synchronization of EEG activity in patients with bipolar disorder

    Science.gov (United States)

    Panischev, O. Yu; Demin, S. A.; Muhametshin, I. G.; Demina, N. Yu

    2015-12-01

    In paper we apply the method based on the Flicker-Noise Spectroscopy (FNS) to determine the differences in frequency-phase synchronization of the cortical electroencephalographic (EEG) activities in patients with bipolar disorder (BD). We found that for healthy subjects the frequency-phase synchronization of EEGs from long-range electrodes was significantly better for BD patients. In BD patients a high synchronization of EEGs was observed only for short-range electrodes. Thus, the FNS is a simple graphical method for qualitative analysis can be applied to identify the synchronization effects in EEG activity and, probably, may be used for the diagnosis of this syndrome.

  2. Deep Neural Architectures for Mapping Scalp to Intracranial EEG.

    Science.gov (United States)

    Antoniades, Andreas; Spyrou, Loukianos; Martin-Lopez, David; Valentin, Antonio; Alarcon, Gonzalo; Sanei, Saeid; Took, Clive Cheong

    2018-03-19

    Data is often plagued by noise which encumbers machine learning of clinically useful biomarkers and electroencephalogram (EEG) data is no exemption. Intracranial EEG (iEEG) data enhances the training of deep learning models of the human brain, yet is often prohibitive due to the invasive recording process. A more convenient alternative is to record brain activity using scalp electrodes. However, the inherent noise associated with scalp EEG data often impedes the learning process of neural models, achieving substandard performance. Here, an ensemble deep learning architecture for nonlinearly mapping scalp to iEEG data is proposed. The proposed architecture exploits the information from a limited number of joint scalp-intracranial recording to establish a novel methodology for detecting the epileptic discharges from the sEEG of a general population of subjects. Statistical tests and qualitative analysis have revealed that the generated pseudo-intracranial data are highly correlated with the true intracranial data. This facilitated the detection of IEDs from the scalp recordings where such waveforms are not often visible. As a real-world clinical application, these pseudo-iEEGs are then used by a convolutional neural network for the automated classification of intracranial epileptic discharges (IEDs) and non-IED of trials in the context of epilepsy analysis. Although the aim of this work was to circumvent the unavailability of iEEG and the limitations of sEEG, we have achieved a classification accuracy of 68% an increase of 6% over the previously proposed linear regression mapping.

  3. EEG simulation by 2D interconnected chaotic oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Kubany, Adam, E-mail: adamku@bgu.ac.i [Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105 (Israel); Mhabary, Ziv; Gontar, Vladimir [Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105 (Israel)

    2011-01-15

    Research highlights: ANN of 2D interconnected chaotic oscillators is explored for EEG simulation. An inverse problem solution (PRCGA) is proposed. Good matching between the simulated and experimental EEG signals has been achieved. - Abstract: An artificial neuronal network composed by 2D interconnected chaotic oscillators is explored for brain waves (EEG) simulation. For the inverse problem solution a parallel real-coded genetic algorithm (PRCGA) is proposed. In order to conduct thorough comparison between the simulated and target signal characteristics, a spectrum analysis of the signals is undertaken. A good matching between the theoretical and experimental EEG signals has been achieved. Numerical results of calculations are presented and discussed.

  4. Altered resting state EEG in chronic pancreatitis patients: toward a marker for chronic pain

    NARCIS (Netherlands)

    Vries, M. de; Wilder-Smith, O.H.G.; Jongsma, M.L.A.; Broeke, E.N. van den; Arns, M.W.; Goor, H. van; Rijn, C.M. van

    2013-01-01

    OBJECTIVES: Electroencephalography (EEG) may be a promising source of physiological biomarkers accompanying chronic pain. Several studies in patients with chronic neuropathic pain have reported alterations in central pain processing, manifested as slowed EEG rhythmicity and increased EEG power in

  5. Altered resting state EEG in chronic pancreatitis patients: toward a marker for chronic pain

    NARCIS (Netherlands)

    Vries, M. de; Wilder-Smith, O.H.G.; Jongsma, M.L.A.; Broeke, E.N. van den; Arns, M.W.; Goor, H. van; Rijn, C.M. van

    2013-01-01

    Objectives: Electroencephalography (EEG) may be a promising source of physiological biomarkers accompanying chronic pain. Several studies in patients with chronic neuropathic pain have reported alterations in central pain processing, manifested as slowed EEG rhythmicity and increased EEG power in

  6. [Digital electroencephalography in brain death diagnostics : Technical requirements and results of a survey on the compatibility with medical guidelines of digital EEG systems from providers in Germany].

    Science.gov (United States)

    Walter, U; Noachtar, S; Hinrichs, H

    2018-02-01

    The guidelines of the German Medical Association and the German Society for Clinical Neurophysiology and Functional Imaging (DGKN) require a high procedural and technical standard for electroencephalography (EEG) as an ancillary method for diagnosing the irreversible cessation of brain function (brain death). Nowadays, digital EEG systems are increasingly being applied in hospitals. So far it is unclear to what extent the digital EEG systems currently marketed in Germany meet the guidelines for diagnosing brain death. In the present article, the technical und safety-related requirements for digital EEG systems and the EEG documentation for diagnosing brain death are described in detail. On behalf of the DGKN, the authors sent out a questionnaire to all identified distributors of digital EEG systems in Germany with respect to the following technical demands: repeated recording of the calibration signals during an ongoing EEG recording, repeated recording of all electrode impedances during an ongoing EEG recording, assessability of intrasystem noise and galvanic isolation of measurement earthing from earthing conductor (floating input). For 15 of the identified 20 different digital EEG systems the specifications were provided by the distributors (among them all distributors based in Germany). All of these EEG systems are provided with a galvanic isolation (floating input). The internal noise can be tested with all systems; however, some systems do not allow repeated recording of the calibration signals and/or the electrode impedances during an ongoing EEG recording. The majority but not all of the currently available digital EEG systems offered for clinical use are eligible for use in brain death diagnostics as per German guidelines.

  7. Behavioural Inhibition System (BIS) sensitivity differentiates EEG theta responses during goal conflict in a continuous monitoring task.

    Science.gov (United States)

    Moore, Roger A; Mills, Matthew; Marshman, Paul; Corr, Philip J

    2012-08-01

    Previous research has revealed that EEG theta oscillations are affected during goal conflict processing. This is consistent with the behavioural inhibition system (BIS) theory of anxiety (Gray & McNaughton, 2000). However, studies have not attempted to relate these BIS-related theta effects to BIS personality measures. Confirmation of such an association would provide further support for BIS theory, especially as it relates to trait differences. EEG was measured (32 electrodes) from extreme groups (low/high trait BIS) engaged in a target detection task. Goal conflicts were introduced throughout the task. Results show that the two groups did not differ in behavioural performance. The major EEG result was that a stepwise discriminant analysis indicated discrimination by 6 variables derived from coherence and power, with 5 of the 6 in the theta range as predicted by BIS theory and one in the beta range. Also, across the whole sample, EEG theta coherence increased at a variety of regions during primary goal conflict and showed a general increase during response execution; EEG theta power, in contrast, was primarily reactive to response execution. This is the first study to reveal a three-way relationship between the induction of goal conflict, the induction of theta power and coherence, and differentiation by psychometrically-defined low/high BIS status. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Attentional Selection in a Cocktail Party Environment Can Be Decoded from Single-Trial EEG

    Science.gov (United States)

    O'Sullivan, James A.; Power, Alan J.; Mesgarani, Nima; Rajaram, Siddharth; Foxe, John J.; Shinn-Cunningham, Barbara G.; Slaney, Malcolm; Shamma, Shihab A.; Lalor, Edmund C.

    2015-01-01

    How humans solve the cocktail party problem remains unknown. However, progress has been made recently thanks to the realization that cortical activity tracks the amplitude envelope of speech. This has led to the development of regression methods for studying the neurophysiology of continuous speech. One such method, known as stimulus-reconstruction, has been successfully utilized with cortical surface recordings and magnetoencephalography (MEG). However, the former is invasive and gives a relatively restricted view of processing along the auditory hierarchy, whereas the latter is expensive and rare. Thus it would be extremely useful for research in many populations if stimulus-reconstruction was effective using electroencephalography (EEG), a widely available and inexpensive technology. Here we show that single-trial (≈60 s) unaveraged EEG data can be decoded to determine attentional selection in a naturalistic multispeaker environment. Furthermore, we show a significant correlation between our EEG-based measure of attention and performance on a high-level attention task. In addition, by attempting to decode attention at individual latencies, we identify neural processing at ∼200 ms as being critical for solving the cocktail party problem. These findings open up new avenues for studying the ongoing dynamics of cognition using EEG and for developing effective and natural brain–computer interfaces. PMID:24429136

  9. Recognizing of stereotypic patterns in epileptic EEG using empirical modes and wavelets

    Science.gov (United States)

    Grubov, V. V.; Sitnikova, E.; Pavlov, A. N.; Koronovskii, A. A.; Hramov, A. E.

    2017-11-01

    Epileptic activity in the form of spike-wave discharges (SWD) appears in the electroencephalogram (EEG) during absence seizures. This paper evaluates two approaches for detecting stereotypic rhythmic activities in EEG, i.e., the continuous wavelet transform (CWT) and the empirical mode decomposition (EMD). The CWT is a well-known method of time-frequency analysis of EEG, whereas EMD is a relatively novel approach for extracting signal's waveforms. A new method for pattern recognition based on combination of CWT and EMD is proposed. It was found that this combined approach resulted to the sensitivity of 86.5% and specificity of 92.9% for sleep spindles and 97.6% and 93.2% for SWD, correspondingly. Considering strong within- and between-subjects variability of sleep spindles, the obtained efficiency in their detection was high in comparison with other methods based on CWT. It is concluded that the combination of a wavelet-based approach and empirical modes increases the quality of automatic detection of stereotypic patterns in rat's EEG.

  10. Relationships between automated EEG and cranial CT in patients with senile dementia

    International Nuclear Information System (INIS)

    Mori, Katsumi; Miyasaka, Mutue; Nakano, Takashi; Ohtaka, Tadashi

    1988-01-01

    The degree of dementia was examined in relation to findings of automated EEG and cranial CT in 50 demented old patients aged 51 - 86. Slow waves on EEC, and dilated ventricle and atrophied cortex on cranial CT were frequently associated with poor psychological scores. As the degree of dilated ventricle increased, the frequency and amplitude of slow waves increased and the frequency and continuity of α waves decreased. Dilated ventricle was more strongly correlated with abnormal EEG findings than atrophied cortex. This was more marked in cases of severer patients. Abnormal EEC findings associated with poor psychological scores were more frequently observed in the group of patients with vascular dementia (VD, n = 30) than the group of patients with senile dementia of Alzheimer type (SDAT, n = 20). Abnormal EEG findings were correlated with poor scores on Hasegawa test in the VD group and with those on Bender Gestalt test in the SDAT group. The degree of dilated ventricle was more correlated with abnormal EEG findings in the SDAT group than the VD group. (Namekawa, K.)

  11. Idiopathic normal pressure hydrocephalus, quantitative EEG findings, and the cerebrospinal fluid tap test: a pilot study.

    Science.gov (United States)

    Seo, Jong-Geun; Kang, Kyunghun; Jung, Ji-Young; Park, Sung-Pa; Lee, Maan-Gee; Lee, Ho-Won

    2014-12-01

    In this pilot study, we analyzed relationships between quantitative EEG measurements and clinical parameters in idiopathic normal pressure hydrocephalus patients, along with differences in these quantitative EEG markers between cerebrospinal fluid tap test responders and nonresponders. Twenty-six idiopathic normal pressure hydrocephalus patients (9 cerebrospinal fluid tap test responders and 17 cerebrospinal fluid tap test nonresponders) constituted the final group for analysis. The resting EEG was recorded and relative powers were computed for seven frequency bands. Cerebrospinal fluid tap test nonresponders, when compared with responders, showed a statistically significant increase in alpha2 band power at the right frontal and centrotemporal regions. Higher delta2 band powers in the frontal, central, parietal, and occipital regions and lower alpha1 band powers in the right temporal region significantly correlated with poorer cognitive performance. Higher theta1 band powers in the left parietal and occipital regions significantly correlated with gait dysfunction. And higher delta1 band powers in the right frontal regions significantly correlated with urinary disturbance. Our findings may encourage further research using quantitative EEG in patients with ventriculomegaly as a potential electrophysiological marker for predicting cerebrospinal fluid tap test responders. This study additionally suggests that the delta, theta, and alpha bands are statistically correlated with the severity of symptoms in idiopathic normal pressure hydrocephalus patients.

  12. Bayesian learning for spatial filtering in an EEG-based brain-computer interface.

    Science.gov (United States)

    Zhang, Haihong; Yang, Huijuan; Guan, Cuntai

    2013-07-01

    Spatial filtering for EEG feature extraction and classification is an important tool in brain-computer interface. However, there is generally no established theory that links spatial filtering directly to Bayes classification error. To address this issue, this paper proposes and studies a Bayesian analysis theory for spatial filtering in relation to Bayes error. Following the maximum entropy principle, we introduce a gamma probability model for describing single-trial EEG power features. We then formulate and analyze the theoretical relationship between Bayes classification error and the so-called Rayleigh quotient, which is a function of spatial filters and basically measures the ratio in power features between two classes. This paper also reports our extensive study that examines the theory and its use in classification, using three publicly available EEG data sets and state-of-the-art spatial filtering techniques and various classifiers. Specifically, we validate the positive relationship between Bayes error and Rayleigh quotient in real EEG power features. Finally, we demonstrate that the Bayes error can be practically reduced by applying a new spatial filter with lower Rayleigh quotient.

  13. Epileptiform discharges in EEG and seizure risk in adolescent children of women with epilepsy.

    Science.gov (United States)

    Samuel, Joseph; Jose, Manna; Nandini, V S; Thomas, Sanjeev V

    2017-09-01

    We aimed to study the epileptiform discharges (ED) and seizure risk in EEG of 12-18-year-old children of women with epilepsy (WWE). Children of WWE who were prospectively followed up in the Kerala registry of epilepsy and pregnancy (KREP), aged 12-16years (n=92; males 48, females 44) underwent clinical evaluation and a 30-min digital 18-channel EEG. The EEG showed epileptiform discharges in 13 children (5 males and 8 females). The EDs were generalized in 9 and focal in 4 (occipital 2, frontal 1, and centroparietal 1). They had significantly higher risk of ED (odds ratio 4.02, 95% CI 1.04-15.51) when compared to published prevalence of ED in healthy children. There were 2 children with epilepsy (one with localization-related epilepsy and the other generalized epilepsy). The children under study had a trend towards higher prevalence of epilepsy (odds ratio 3.39, 95% CI 0.82-13.77) when compared to age specific prevalence of epilepsy from community surveys in same region. Children of WWE showed increased risk of ED in EEG and trend towards increased seizure risk when compared to healthy children. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Electroencephalography(EEG)-based instinctive brain-control of a quadruped locomotion robot.

    Science.gov (United States)

    Jia, Wenchuan; Huang, Dandan; Luo, Xin; Pu, Huayan; Chen, Xuedong; Bai, Ou

    2012-01-01

    Artificial intelligence and bionic control have been applied in electroencephalography (EEG)-based robot system, to execute complex brain-control task. Nevertheless, due to technical limitations of the EEG decoding, the brain-computer interface (BCI) protocol is often complex, and the mapping between the EEG signal and the practical instructions lack of logic associated, which restrict the user's actual use. This paper presents a strategy that can be used to control a quadruped locomotion robot by user's instinctive action, based on five kinds of movement related neurophysiological signal. In actual use, the user drives or imagines the limbs/wrists action to generate EEG signal to adjust the real movement of the robot according to his/her own motor reflex of the robot locomotion. This method is easy for real use, as the user generates the brain-control signal through the instinctive reaction. By adopting the behavioral control of learning and evolution based on the proposed strategy, complex movement task may be realized by instinctive brain-control.

  15. REM Sleep EEG Instability in REM Sleep Behavior Disorder and Clonazepam Effects.

    Science.gov (United States)

    Ferri, Raffaele; Rundo, Francesco; Silvani, Alessandro; Zucconi, Marco; Bruni, Oliviero; Ferini-Strambi, Luigi; Plazzi, Giuseppe; Manconi, Mauro

    2017-08-01

    We aimed to analyze quantitatively rapid eye movement (REM) sleep electroencephalogram (EEG) in controls, drug-naïve idiopathic REM sleep behavior disorder patients (iRBD), and iRBD patients treated with clonazepam. Twenty-nine drug-naïve iRBD patients (mean age 68.2 years), 14 iRBD patients under chronic clonazepam therapy (mean age 66.3 years), and 21 controls (mean age 66.8 years) were recruited. Power spectra were obtained from sleep EEG (central derivation), using a 2-second sliding window, with 1-second steps. The power values of each REM sleep EEG spectral band (one every second) were normalized with respect to the average power value obtained during sleep stage 2 in the same individual. In drug-naïve patients, the normalized power values showed a less pronounced REM-related decrease of power in all bands with frequency sleep EEG structure changes found in this study disclose subtle but significant alterations in the cortical electrophysiology of RBD that might represent the early expression of the supposed neurodegenerative processes already taking place at this stage of the disease and might be the target of better and effective future therapeutic strategies for this condition. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  16. Relationships between automated EEG and cranial CT in patients with senile dementia

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Katsumi; Miyasaka, Mutue; Nakano, Takashi; Ohtaka, Tadashi

    1988-08-01

    The degree of dementia was examined in relation to findings of automated EEG and cranial CT in 50 demented old patients aged 51 - 86. Slow waves on EEC, and dilated ventricle and atrophied cortex on cranial CT were frequently associated with poor psychological scores. As the degree of dilated ventricle increased, the frequency and amplitude of slow waves increased and the frequency and continuity of ..cap alpha.. waves decreased. Dilated ventricle was more strongly correlated with abnormal EEG findings than atrophied cortex. This was more marked in cases of severer patients. Abnormal EEC findings associated with poor psychological scores were more frequently observed in the group of patients with vascular dementia (VD, n = 30) than the group of patients with senile dementia of Alzheimer type (SDAT, n = 20). Abnormal EEG findings were correlated with poor scores on Hasegawa test in the VD group and with those on Bender Gestalt test in the SDAT group. The degree of dilated ventricle was more correlated with abnormal EEG findings in the SDAT group than the VD group. (Namekawa, K.).

  17. EEG potentials associated with artificial grammar learning in the primate brain.

    Science.gov (United States)

    Attaheri, Adam; Kikuchi, Yukiko; Milne, Alice E; Wilson, Benjamin; Alter, Kai; Petkov, Christopher I

    2015-09-01

    Electroencephalography (EEG) has identified human brain potentials elicited by Artificial Grammar (AG) learning paradigms, which present participants with rule-based sequences of stimuli. Nonhuman animals are sensitive to certain AGs; therefore, evaluating which EEG Event Related Potentials (ERPs) are associated with AG learning in nonhuman animals could identify evolutionarily conserved processes. We recorded EEG potentials during an auditory AG learning experiment in two Rhesus macaques. The animals were first exposed to sequences of nonsense words generated by the AG. Then surface-based ERPs were recorded in response to sequences that were 'consistent' with the AG and 'violation' sequences containing illegal transitions. The AG violations strongly modulated an early component, potentially homologous to the Mismatch Negativity (mMMN), a P200 and a late frontal positivity (P500). The macaque P500 is similar in polarity and time of occurrence to a late EEG positivity reported in human AG learning studies but might differ in functional role. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Long-term and within-day variability of working memory performance and EEG in individuals.

    Science.gov (United States)

    Gevins, Alan; McEvoy, Linda K; Smith, Michael E; Chan, Cynthia S; Sam-Vargas, Lita; Baum, Cliff; Ilan, Aaron B

    2012-07-01

    Assess individual-subject long-term and within-day variability of a combined behavioral and EEG test of working memory. EEGs were recorded from 16 adults performing n-back working memory tasks, with 10 tested in morning and afternoon sessions over several years. Participants were also tested after ingesting non-prescription medications or recreational substances. Performance and EEG measures were analyzed to derive an Overall score and three constituent sub-scores characterizing changes in performance, cortical activation, and alertness from each individual's baseline. Long-term and within-day variability were determined for each score; medication effects were assessed by reference to each individual's normal day-to-day variability. Over the several year period, the mean Overall score and sub-scores were approximately zero with standard deviations less than one. Overall scores were lower and their variability higher in afternoon relative to morning sessions. At the group level, alcohol, diphenhydramine and marijuana produced significant effects, but there were large individual differences. Objective working memory measures incorporating performance and EEG are stable over time and sensitive at the level of individual subjects to interventions that affect neurocognitive function. With further research these measures may be suitable for use in individualized medical care by providing a sensitive assessment of incipient illness and response to treatment. Published by Elsevier Ireland Ltd.

  19. Interval analysis of interictal EEG: pathology of the alpha rhythm in focal epilepsy

    Science.gov (United States)

    Pyrzowski, Jan; Siemiński, Mariusz; Sarnowska, Anna; Jedrzejczak, Joanna; Nyka, Walenty M.

    2015-11-01

    The contemporary use of interictal scalp electroencephalography (EEG) in the context of focal epilepsy workup relies on the visual identification of interictal epileptiform discharges. The high-specificity performance of this marker comes, however, at a cost of only moderate sensitivity. Zero-crossing interval analysis is an alternative to Fourier analysis for the assessment of the rhythmic component of EEG signals. We applied this method to standard EEG recordings of 78 patients divided into 4 subgroups: temporal lobe epilepsy (TLE), frontal lobe epilepsy (FLE), psychogenic nonepileptic seizures (PNES) and nonepileptic patients with headache. Interval-analysis based markers were capable of effectively discriminating patients with epilepsy from those in control subgroups (AUC~0.8) with diagnostic sensitivity potentially exceeding that of visual analysis. The identified putative epilepsy-specific markers were sensitive to the properties of the alpha rhythm and displayed weak or non-significant dependences on the number of antiepileptic drugs (AEDs) taken by the patients. Significant AED-related effects were concentrated in the theta interval range and an associated marker allowed for identification of patients on AED polytherapy (AUC~0.9). Interval analysis may thus, in perspective, increase the diagnostic yield of interictal scalp EEG. Our findings point to the possible existence of alpha rhythm abnormalities in patients with epilepsy.

  20. Relationship between speed and EEG activity during imagined and executed hand movements

    Science.gov (United States)

    Yuan, Han; Perdoni, Christopher; He, Bin

    2010-04-01

    The relationship between primary motor cortex and movement kinematics has been shown in nonhuman primate studies of hand reaching or drawing tasks. Studies have demonstrated that the neural activities accompanying or immediately preceding the movement encode the direction, speed and other information. Here we investigated the relationship between the kinematics of imagined and actual hand movement, i.e. the clenching speed, and the EEG activity in ten human subjects. Study participants were asked to perform and imagine clenching of the left hand and right hand at various speeds. The EEG activity in the alpha (8-12 Hz) and beta (18-28 Hz) frequency bands were found to be linearly correlated with the speed of imagery clenching. Similar parametric modulation was also found during the execution of hand movements. A single equation relating the EEG activity to the speed and the hand (left versus right) was developed. This equation, which contained a linear independent combination of the two parameters, described the time-varying neural activity during the tasks. Based on the model, a regression approach was developed to decode the two parameters from the multiple-channel EEG signals. We demonstrated the continuous decoding of dynamic hand and speed information of the imagined clenching. In particular, the time-varying clenching speed was reconstructed in a bell-shaped profile. Our findings suggest an application to providing continuous and complex control of noninvasive brain-computer interface for movement-impaired paralytics.

  1. Functional connectivity among multi-channel EEGs when working memory load reaches the capacity.

    Science.gov (United States)

    Zhang, Dan; Zhao, Huipo; Bai, Wenwen; Tian, Xin

    2016-01-15

    Evidence from behavioral studies has suggested a capacity existed in working memory. As the concept of functional connectivity has been introduced into neuroscience research in the recent years, the aim of this study is to investigate the functional connectivity in the brain when working memory load reaches the capacity. 32-channel electroencephalographs (EEGs) were recorded for 16 healthy subjects, while they performed a visual working memory task with load 1-6. Individual working memory capacity was calculated according to behavioral results. Short-time Fourier transform was used to determine the principal frequency band (theta band) related to working memory. The functional connectivity among EEGs was measured by the directed transform function (DTF) via spectral Granger causal analysis. The capacity was 4 calculated from the behavioral results. The power was focused in the frontal midline region. The strongest connectivity strengths of EEG theta components from load 1 to 6 distributed in the frontal midline region. The curve of DTF values vs load numbers showed that DTF increased from load 1 to 4, peaked at load 4, then decreased after load 4. This study finds that the functional connectivity between EEGs, described quantitatively by DTF, became less strong when working memory load exceeded the capacity. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Reduction in time-to-sleep through EEG based brain state detection and audio stimulation.

    Science.gov (United States)

    Zhuo Zhang; Cuntai Guan; Ti Eu Chan; Juanhong Yu; Aung Aung Phyo Wai; Chuanchu Wang; Haihong Zhang

    2015-08-01

    We developed an EEG- and audio-based sleep sensing and enhancing system, called iSleep (interactive Sleep enhancement apparatus). The system adopts a closed-loop approach which optimizes the audio recording selection based on user's sleep status detected through our online EEG computing algorithm. The iSleep prototype comprises two major parts: 1) a sleeping mask integrated with a single channel EEG electrode and amplifier, a pair of stereo earphones and a microcontroller with wireless circuit for control and data streaming; 2) a mobile app to receive EEG signals for online sleep monitoring and audio playback control. In this study we attempt to validate our hypothesis that appropriate audio stimulation in relation to brain state can induce faster onset of sleep and improve the quality of a nap. We conduct experiments on 28 healthy subjects, each undergoing two nap sessions - one with a quiet background and one with our audio-stimulation. We compare the time-to-sleep in both sessions between two groups of subjects, e.g., fast and slow sleep onset groups. The p-value obtained from Wilcoxon Signed Rank Test is 1.22e-04 for slow onset group, which demonstrates that iSleep can significantly reduce the time-to-sleep for people with difficulty in falling sleep.

  3. Efficacy of Alfa EEG wave biofeedback in the management of anxiety

    Directory of Open Access Journals (Sweden)

    Pookala Bhat

    2010-01-01

    Full Text Available Background: Biofeedback is a technique in which people are trained to improve their health by learning to control certain internal bodily processes that normally occur involuntarily. Various studies in the past have shown usefulness of Alfa electroencephalographic (EEG biofeedback in the alleviation of anxiety symptoms. Though most of the psychiatric centers in the armed forces have this facility, not much work has been done in our setup to assess its efficacy in the management of anxiety. Hence this study was undertaken. Materials and Methods: This study was carried out in a multispecialty Command Hospital by enrolling 100 patients with psychiatric diagnosis from both inpatient and outpatient services. The anxiety level was assessed clinically and by using Hamilton Anxiety Scale and Taylor′s Manifest Anxiety Scale. One group of 50 patients was treated with Alfa EEG biofeedback sessions only, 5 times in a week for 8 weeks, along with specific pharmacotherapy. The other group was treated with appropriate dose of anxiolytics. The anxiety level was reassessed after 4 weeks and 8 weeks. Results: The response was better for mixed anxiety and depressive disorder with pharmacotherapy than with the biofeedback, but female patients showed better response with EEG biofeedback. Conclusion: In the short term, Alfa EEG biofeedback therapy is almost as efficacious as pharmacological intervention in the management of anxiety symptoms, and relatively more useful in females.

  4. Development of Brain EEG Connectivity across Early Childhood: Does Sleep Play a Role?

    Directory of Open Access Journals (Sweden)

    Monique K. LeBourgeois

    2013-11-01

    Full Text Available Sleep has beneficial effects on brain function and learning, which are reflected in plastic changes in the cortex. Early childhood is a time of rapid maturation in fundamental skills—e.g., language, cognitive control, working memory—that are predictive of future functioning. Little is currently known about the interactions between sleep and brain maturation during this developmental period. We propose coherent electroencephalogram (EEG activity during sleep may provide unique insight into maturational processes of functional brain connectivity. Longitudinal sleep EEG assessments were performed in eight healthy subjects at ages 2, 3 and 5 years. Sleep EEG coherence increased across development in a region- and frequency-specific manner. Moreover, although connectivity primarily decreased intra-hemispherically across a night of sleep, an inter-hemispheric overnight increase occurred in the frequency range of slow waves (0.8–2 Hz, theta (4.8–7.8 Hz and sleep spindles (10–14 Hz, with connectivity changes of up to 20% across a night of sleep. These findings indicate sleep EEG coherence reflects processes of brain maturation—i.e., programmed unfolding of neuronal networks—and moreover, sleep-related alterations of brain connectivity during the sensitive maturational window of early childhood.

  5. Real Time Hand Motion Reconstruction System for Trans-Humeral Amputees Using EEG and EMG

    Directory of Open Access Journals (Sweden)

    Jacobo Fernandez-Vargas

    2016-08-01

    Full Text Available Predicting a hand’s position using only biosignals is a complex problem that has not been completely solved. The only reliable solutions currently available require invasive surgery. The attempts using non-invasive technologies are rare, and usually have led to lower correlation values between the real and the reconstructed position than those required for real-world applications. In this study, we propose a solution for reconstructing the hand’s position in three dimensions using EEG and EMG to detect from the shoulder area. This approach would be valid for most trans-humeral amputees. In order to find the best solution, we tested four different architectures for the system based on artificial neural networks. Our results show that it is possible to reconstruct the hand’s motion trajectory with a correlation value up to 0.809 compared to a typical value in the literature of 0.6. We also demonstrated that both EEG and EMG contribute jointly to the motion reconstruction. Furthermore, we discovered that the system architectures do not change the results radically. In addition, our results suggest that different motions may have different brain activity patterns that could be detected through EEG. Finally, we suggest a method to study non-linear relations in the brain through the EEG signals, which may lead to a more accurate system.

  6. Diagnosis of autism through EEG processed by advanced computational algorithms: A pilot study.

    Science.gov (United States)

    Grossi, Enzo; Olivieri, Chiara; Buscema, Massimo

    2017-04-01

    Multi-Scale Ranked Organizing Map coupled with Implicit Function as Squashing Time algorithm(MS-ROM/I-FAST) is a new, complex system based on Artificial Neural networks (ANNs) able to extract features of interest in computerized EEG through the analysis of few minutes of their EEG without any preliminary pre-processing. A proof of concept study previously published showed accuracy values ranging from 94%-98% in discerning subjects with Mild Cognitive Impairment and/or Alzheimer's Disease from healthy elderly people. The presence of deviant patterns in simple resting state EEG recordings in autism, consistent with the atypical organization of the cerebral cortex present, prompted us in applying this potent analytical systems in search of a EEG signature of the disease. The aim of the study is to assess how effectively this methodology distinguishes subjects with autism from typically developing ones. Fifteen definite ASD subjects (13 males; 2 females; age range 7-14; mean value = 10.4) and ten typically developing subjects (4 males; 6 females; age range 7-12; mean value 9.2) were included in the study. Patients received Autism diagnoses according to DSM-V criteria, subsequently confirmed by the ADOS scale. A segment of artefact-free EEG lasting 60 seconds was used to compute input values for subsequent analyses. MS-ROM/I-FAST coupled with a well-documented evolutionary system able to select predictive features (TWIST) created an invariant features vector input of EEG on which supervised machine learning systems acted as blind classifiers. The overall predictive capability of machine learning system in sorting out autistic cases from normal control amounted consistently to 100% with all kind of systems employed using training-testing protocol and to 84% - 92.8% using Leave One Out protocol. The similarities among the ANN weight matrixes measured with apposite algorithms were not affected by the age of the subjects. This suggests that the ANNs do not read age-related

  7. Developing an EEG based On-line Closed-loop Lapse Detection and Mitigation System

    Directory of Open Access Journals (Sweden)

    Yu-Te eWang

    2014-10-01

    Full Text Available In America, sixty percent of adults reported that they have driven a motor vehicle while feeling drowsy, and at least 15-20% of fatal car accidents are fatigue-related. This study translates previous laboratory-oriented neurophysiological research to design, develop, and test an On-line Closed-loop Lapse Detection and Mitigation (OCLDM System featuring a mobile wireless dry-sensor EEG headgear and a cell-phone based real-time EEG processing platform. Eleven subjects participated in an event-related lane-keeping task, in which they were instructed to manipulate a randomly deviated, fixed-speed cruising car on a 4-lane highway. This was simulated in a 1st person view with an 8-screen and 8-projector immersive virtual-realty environment. When the subjects experienced lapses or failed to respond to events during the experiment, auditory feedback was delivered to rectify the performance decrements. However, the arousing auditory signals were not always effective. The EEG spectra exhibited statistically significant differences between effective and ineffective arousing signals, suggesting that EEG spectra could be used as a countermeasure of the efficacy of arousing signals. In this on-line pilot study, the proposed OCLDM System was able to continuously detect EEG signatures of fatigue, deliver arousing feedback to subjects suffering momentary cognitive lapses, and assess the efficacy of the feedback in near real-time to rectify cognitive lapses. The on-line testing results of the OCLDM System validated the efficacy of the arousing signals in improving subjects' response times to the subsequent lane-departure events. This study may lead to a practical on-line lapse detection and mitigation system in real-world environments.

  8. Stable Sparse Classifiers Identify qEEG Signatures that Predict Learning Disabilities (NOS) Severity.

    Science.gov (United States)

    Bosch-Bayard, Jorge; Galán-García, Lídice; Fernandez, Thalia; Lirio, Rolando B; Bringas-Vega, Maria L; Roca-Stappung, Milene; Ricardo-Garcell, Josefina; Harmony, Thalía; Valdes-Sosa, Pedro A

    2017-01-01

    In this paper, we present a novel methodology to solve the classification problem, based on sparse (data-driven) regressions, combined with techniques for ensuring stability, especially useful for high-dimensional datasets and small samples number. The sensitivity and specificity of the classifiers are assessed by a stable ROC procedure, which uses a non-parametric algorithm for estimating the area under the ROC curve. This method allows assessing the performance of the classification by the ROC technique, when more than two groups are involved in the classification problem, i.e., when the gold standard is not binary. We apply this methodology to the EEG spectral signatures to find biomarkers that allow discriminating between (and predicting pertinence to) different subgroups of children diagnosed as Not Otherwise Specified Learning Disabilities (LD-NOS) disorder. Children with LD-NOS have notable learning difficulties, which affect education but are not able to be put into some specific category as reading (Dyslexia), Mathematics (Dyscalculia), or Writing (Dysgraphia). By using the EEG spectra, we aim to identify EEG patterns that may be related to specific learning disabilities in an individual case. This could be useful to develop subject-based methods of therapy, based on information provided by the EEG. Here we study 85 LD-NOS children, divided in three subgroups previously selected by a clustering technique over the scores of cognitive tests. The classification equation produced stable marginal areas under the ROC of 0.71 for discrimination between Group 1 vs. Group 2; 0.91 for Group 1 vs. Group 3; and 0.75 for Group 2 vs. Group1. A discussion of the EEG characteristics of each group related to the cognitive scores is also presented.

  9. Integrative EEG biomarkers predict progression to Alzheimer's disease at the MCI stage

    Directory of Open Access Journals (Sweden)

    Simon-Shlomo ePoil

    2013-10-01

    Full Text Available Alzheimer's disease (AD is a devastating disorder of increasing prevalence in modern society. Mild cognitive impairment (MCI is considered a transitional stage between normal aging and AD; however, not all subjects with MCI progress to AD. Prediction of conversion to AD at an early stage would enable an earlier, and potentially more effective, treatment of AD. Electroencephalography (EEG biomarkers would provide a non-invasive and relatively cheap screening tool to predict conversion to AD; however, traditional EEG biomarkers have not been considered accurate enough to be useful in clinical practice. Here, we aim to combine the information from multiple EEG biomarkers into a diagnostic classification index in order to improve the accuracy of predicting conversion from MCI to AD within a two-year period. We followed 86 patients initially diagnosed with MCI for two years during which 25 patients converted to AD. We show that multiple EEG biomarkers mainly related to activity in the beta-frequency range (13–30 Hz can predict conversion from MCI to AD. Importantly, by integrating six EEG biomarkers into a diagnostic index using logistic regression the prediction improved compared with the classification using the individual biomarkers, with a sensitivity of 88% and specificity of 82%, compared with a sensitivity of 64% and specificity of 62% of the best individual biomarker in this index. In order to identify this diagnostic index we developed a data mining approach implemented in the Neurophysiological Biomarker Toolbox (http://www.nbtwiki.net/. We suggest that this approach can be used to identify optimal combinations of biomarkers (integrative biomarkers also in other modalities. Potentially, these integrative biomarkers could be more sensitive to disease progression and response to therapeutic intervention.

  10. Stable Sparse Classifiers Identify qEEG Signatures that Predict Learning Disabilities (NOS Severity

    Directory of Open Access Journals (Sweden)

    Jorge Bosch-Bayard

    2018-01-01

    Full Text Available In this paper, we present a novel methodology to solve the classification problem, based on sparse (data-driven regressions, combined with techniques for ensuring stability, especially useful for high-dimensional datasets and small samples number. The sensitivity and specificity of the classifiers are assessed by a stable ROC procedure, which uses a non-parametric algorithm for estimating the area under the ROC curve. This method allows assessing the performance of the classification by the ROC technique, when more than two groups are involved in the classification problem, i.e., when the gold standard is not binary. We apply this methodology to the EEG spectral signatures to find biomarkers that allow discriminating between (and predicting pertinence to different subgroups of children diagnosed as Not Otherwise Specified Learning Disabilities (LD-NOS disorder. Children with LD-NOS have notable learning difficulties, which affect education but are not able to be put into some specific category as reading (Dyslexia, Mathematics (Dyscalculia, or Writing (Dysgraphia. By using the EEG spectra, we aim to identify EEG patterns that may be related to specific learning disabilities in an individual case. This could be useful to develop subject-based methods of therapy, based on information provided by the EEG. Here we study 85 LD-NOS children, divided in three subgroups previously selected by a clustering technique over the scores of cognitive tests. The classification equation produced stable marginal areas under the ROC of 0.71 for discrimination between Group 1 vs. Group 2; 0.91 for Group 1 vs. Group 3; and 0.75 for Group 2 vs. Group1. A discussion of the EEG characteristics of each group related to the cognitive scores is also presented.

  11. Developing an EEG-based on-line closed-loop lapse detection and mitigation system.

    Science.gov (United States)

    Wang, Yu-Te; Huang, Kuan-Chih; Wei, Chun-Shu; Huang, Teng-Yi; Ko, Li-Wei; Lin, Chin-Teng; Cheng, Chung-Kuan; Jung, Tzyy-Ping

    2014-01-01

    In America, 60% of adults reported that they have driven a motor vehicle while feeling drowsy, and at least 15-20% of fatal car accidents are fatigue-related. This study translates previous laboratory-oriented neurophysiological research to design, develop, and test an On-line Closed-loop Lapse Detection and Mitigation (OCLDM) System featuring a mobile wireless dry-sensor EEG headgear and a cell-phone based real-time EEG processing platform. Eleven subjects participated in an event-related lane-keeping task, in which they were instructed to manipulate a randomly deviated, fixed-speed cruising car on a 4-lane highway. This was simulated in a 1st person view with an 8-screen and 8-projector immersive virtual-reality environment. When the subjects experienced lapses or failed to respond to events during the experiment, auditory warning was delivered to rectify the performance decrements. However, the arousing auditory signals were not always effective. The EEG spectra exhibited statistically significant differences between effective and ineffective arousing signals, suggesting that EEG spectra could be used as a countermeasure of the efficacy of arousing signals. In this on-line pilot study, the proposed OCLDM System was able to continuously detect EEG signatures of fatigue, deliver arousing warning to subjects suffering momentary cognitive lapses, and assess the efficacy of the warning in near real-time to rectify cognitive lapses. The on-line testing results of the OCLDM System validated the efficacy of the arousing signals in improving subjects' response times to the subsequent lane-departure events. This study may lead to a practical on-line lapse detection and mitigation system in real-world environments.

  12. Online Reduction of Artifacts in EEG of Simultaneous EEG-fMRI Using Reference Layer Adaptive Filtering (RLAF).

    Science.gov (United States)

    Steyrl, David; Krausz, Gunther; Koschutnig, Karl; Edlinger, Günter; Müller-Putz, Gernot R

    2018-01-01

    Simultaneous electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) allow us to study the active human brain from two perspectives concurrently. Signal processing based artifact reduction techniques are mandatory for this, however, to obtain reasonable EEG quality in simultaneous EEG-fMRI. Current artifact reduction techniques like average artifact subtraction (AAS), typically become less effective when artifact reduction has to be performed on-the-fly. We thus present and evaluate a new technique to improve EEG quality online. This technique adds up with online AAS and combines a prototype EEG-cap for reference recordings of artifacts, with online adaptive filtering and is named reference layer adaptive filtering (RLAF). We found online AAS + RLAF to be highly effective in improving EEG quality. Online AAS + RLAF outperformed online AAS and did so in particular online in terms of the chosen performance metrics, these being specifically alpha rhythm amplitude ratio between closed and opened eyes (3-45% improvement), signal-to-noise-ratio of visual evoked potentials (VEP) (25-63% improvement), and VEPs variability (16-44% improvement). Further, we found that EEG quality after online AAS + RLAF is occasionally even comparable with the offline variant of AAS at a 3T MRI scanner. In conclusion RLAF is a very effective add-on tool to enable high quality EEG in simultaneous EEG-fMRI experiments, even when online artifact reduction is necessary.

  13. Standardized Computer-based Organized Reporting of EEG: SCORE

    Science.gov (United States)

    Beniczky, Sándor; Aurlien, Harald; Brøgger, Jan C; Fuglsang-Frederiksen, Anders; Martins-da-Silva, António; Trinka, Eugen; Visser, Gerhard; Rubboli, Guido; Hjalgrim, Helle; Stefan, Hermann; Rosén, Ingmar; Zarubova, Jana; Dobesberger, Judith; Alving, Jørgen; Andersen, Kjeld V; Fabricius, Martin; Atkins, Mary D; Neufeld, Miri; Plouin, Perrine; Marusic, Petr; Pressler, Ronit; Mameniskiene, Ruta; Hopfengärtner, Rüdiger; Emde Boas, Walter; Wolf, Peter

    2013-01-01

    The electroencephalography (EEG) signal has a high complexity, and the process of extracting clinically relevant features is achieved by visual analysis of the recordings. The interobserver agreement in EEG interpretation is only moderate. This is partly due to the method of reporting the findings in free-text format. The purpose of our endeavor was to create a computer-based system for EEG assessment and reporting, where the physicians would construct the reports by choosing from predefined elements for each relevant EEG feature, as well as the clinical phenomena (for video-EEG recordings). A working group of EEG experts took part in consensus workshops in Dianalund, Denmark, in 2010 and 2011. The faculty was approved by the Commission on European Affairs of the International League Against Epilepsy (ILAE). The working group produced a consensus proposal that went through a pan-European review process, organized by the European Chapter of the International Federation of Clinical Neurophysiology. The Standardised Computer-based Organised Reporting of EEG (SCORE) software was constructed based on the terms and features of the consensus statement and it was tested in the clinical practice. The main elements of SCORE are the following: personal data of the patient, referral data, recording conditions, modulators, background activity, drowsiness and sleep, interictal findings, “episodes” (clinical or subclinical events), physiologic patterns, patterns of uncertain significance, artifacts, polygraphic channels, and diagnostic significance. The following specific aspects of the neonatal EEGs are scored: alertness, temporal organization, and spatial organization. For each EEG finding, relevant features are scored using predefined terms. Definitions are provided for all EEG terms and features. SCORE can potentially improve the quality of EEG assessment and reporting; it will help incorporate the results of computer-assisted analysis into the report, it will make

  14. Can an early 24-hour EEG predict the response to the ketogenic diet? A prospective study in 34 children and adults with refractory epilepsy treated with the ketogenic diet

    NARCIS (Netherlands)

    Ebus, S.C.M.; Lambrechts, D.A.J.E.; Herraets, I.J.T.; Majoie, H.J.M.; Louw, de A.J.A.; Boon, P.; Aldenkamp, A.P.; Arends, J.B.A.M.

    2014-01-01

    Purpose We examined whether early EEG changes in a 24-h EEG at 6 weeks of treatment were related to the later clinical response to the ketogenic diet (KD) in a 6-month period of treatment. Methods We examined 34 patients with heterogeneous epilepsy syndromes (21 children, 13 adults) and found 9

  15. Correlated alpha activity with the facial expression processing network in a simultaneous EEG-fMRI experiment.

    Science.gov (United States)

    Simoes, Marco; Direito, Bruno; Lima, Joao; Castelhano, Joao; Ferreira, Carlos; Couceiro, Ricardo; Carvalho, Paulo; Castelo-Branco, Miguel

    2017-07-01

    The relationship between EEG and fMRI data is poorly covered in the literature. Extensive work has been conducted in resting-state and epileptic activity, highlighting a negative correlation between the alpha power band of the EEG and the BOLD activity in the default-mode-network. The identification of an appropriate task-specific relationship between fMRI and EEG data for predefined regions-of-interest, would allow the transfer of interventional paradigms (such as BOLD-based neurofeedback sessions) from fMRI to EEG, enhancing its application range by lowering its costs and improving its flexibility. In this study, we present an analysis of the correlation between task-specific alpha band fluctuations and BOLD activity in the facial expressions processing network. We characterized the network ROIs through a stringent localizer and identified two clusters on the scalp (one frontal, one parietal-occipital) with marked alpha fluctuations, related to the task. We then check whether such power variations throughout the time correlate with the BOLD activity in the network. Our results show statistically significant negative correlations between the alpha power in both clusters and for all the ROIs of the network. The correlation levels have still not met the requirements for transferring the protocol to an EEG setup, but they pave the way towards a better understand on how frontal and parietal-occipital alpha relates to the activity of the facial expressions processing network.

  16. From swing to cane: Sex differences of EEG resting-state temporal patterns during maturation and aging

    Directory of Open Access Journals (Sweden)

    M.I. Tomescu

    2018-06-01

    Full Text Available While many insights on brain development and aging have been gained by studying resting-state networks with fMRI, relating these changes to cognitive functions is limited by the temporal resolution of fMRI. In order to better grasp short-lasting and dynamically changing mental activities, an increasing number of studies utilize EEG to define resting-state networks, thereby often using the concept of EEG microstates. These are brief (around 100 ms periods of stable scalp potential fields that are influenced by cognitive states and are sensitive to neuropsychiatric diseases. Despite the rising popularity of the EEG microstate approach, information about age changes is sparse and nothing is known about sex differences. Here we investigated age and sex related changes of the temporal dynamics of EEG microstates in 179 healthy individuals (6–87 years old, 90 females, 204-channel EEG. We show strong sex-specific changes in microstate dynamics during adolescence as well as at older age. In addition, males and females differ in the duration and occurrence of specific microstates. These results are of relevance for the comparison of studies in populations of different age and sex and for the understanding of the changes in neuropsychiatric diseases.

  17. Detecting interictal discharges in first seizure patients: ambulatory EEG or EEG after sleep deprivation?

    NARCIS (Netherlands)

    Geut, I.; Weenink, S.; Knottnerus, I.L.H.; van Putten, Michel J.A.M.

    2017-01-01

    Purpose Uncertainty about recurrence after a first unprovoked seizure is a significant psychological burden for patients, and motivates the need for diagnostic tools with high sensitivity and specificity to assess recurrence risk. As the sensitivity of a routine EEG after a first unprovoked seizure

  18. Hippocampal EEG and behaviour in dog. I. Hippocampal EEG correlates of gross motor behaviour

    NARCIS (Netherlands)

    Arnolds, D.E.A.T.; Lopes da Silva, F.H.; Aitink, J.W.; Kamp, A.

    It was shown that rewarding spectral shifts (i.e. increase in amplitude or peak frequency of the hippocampal EEG) causes a solitary dog to show increased motor behaviour. Rewarded spectral shifts concurred with a variety of behavioural transitions. It was found that statistically significant

  19. Characterizing nonlinearity in invasive EEG recordings from temporal lobe epilepsy

    Science.gov (United States)

    Casdagli, M. C.; Iasemidis, L. D.; Sackellares, J. C.; Roper, S. N.; Gilmore, R. L.; Savit, R. S.

    Invasive electroencephalographic (EEG) recordings from depth and subdural electrodes, performed in eight patients with temporal lobe epilepsy, are analyzed using a variety of nonlinear techniques. A surrogate data technique is used to find strong evidence for nonlinearities in epileptogenic regions of the brain. Most of these nonlinearities are characterized as “spiking” by a wavelet analysis. A small fraction of the nonlinearities are characterized as “recurrent” by a nonlinear prediction algorithm. Recurrent activity is found to occur in spatio-temporal patterns related to the location of the epileptogenic focus. Residual delay maps, used to characterize “lag-one nonlinearity”, are remarkably stationary for a given electrode, and exhibit striking variations among electrodes. The clinical and theoretical implications of these results are discussed.

  20. A New Generation of Brain-Computer Interfaces Driven by Discovery of Latent EEG-fMRI Linkages Using Tensor Decomposition

    Directory of Open Access Journals (Sweden)

    Gopikrishna Deshpande

    2017-06-01

    Full Text Available A Brain-Computer Interface (BCI is a setup permitting the control of external devices by decoding brain activity. Electroencephalography (EEG has been extensively used for decoding brain activity since it is non-invasive, cheap, portable, and has high temporal resolution to allow real-time operation. Due to its poor spatial specificity, BCIs based on EEG can require extensive training and multiple trials to decode brain activity (consequently slowing down the operation of the BCI. On the other hand, BCIs based on functional magnetic resonance imaging (fMRI are more accurate owing to its superior spatial resolution and sensitivity to underlying neuronal processes which are functionally localized. However, due to its relatively low temporal resolution, high cost, and lack of portability, fMRI is unlikely to be used for routine BCI. We propose a new approach for transferring the capabilities of fMRI to EEG, which includes simultaneous EEG/fMRI sessions for finding a mapping from EEG to fMRI, followed by a BCI run from only EEG data, but driven by fMRI-like features obtained from the mapping identified previously. Our novel data-driven method is likely to discover latent linkages between electrical and hemodynamic signatures of neural activity hitherto unexplored using model-driven methods, and is likely to serve as a template for a novel multi-modal strategy wherein cross-modal EEG-fMRI interactions are exploited for the operation of a unimodal EEG system, leading to a new generation of EEG-based BCIs.

  1. A New Generation of Brain-Computer Interfaces Driven by Discovery of Latent EEG-fMRI Linkages Using Tensor Decomposition.

    Science.gov (United States)

    Deshpande, Gopikrishna; Rangaprakash, D; Oeding, Luke; Cichocki, Andrzej; Hu, Xiaoping P

    2017-01-01

    A Brain-Computer Interface (BCI) is a setup permitting the control of external devices by decoding brain activity. Electroencephalography (EEG) has been extensively used for decoding brain activity since it is non-invasive, cheap, portable, and has high temporal resolution to allow real-time operation. Due to its poor spatial specificity, BCIs based on EEG can require extensive training and multiple trials to decode brain activity (consequently slowing down the operation of the BCI). On the other hand, BCIs based on functional magnetic resonance imaging (fMRI) are more accurate owing to its superior spatial resolution and sensitivity to underlying neuronal processes which are functionally localized. However, due to its relatively low temporal resolution, high cost, and lack of portability, fMRI is unlikely to be used for routine BCI. We propose a new approach for transferring the capabilities of fMRI to EEG, which includes simultaneous EEG/fMRI sessions for finding a mapping from EEG to fMRI, followed by a BCI run from only EEG data, but driven by fMRI-like features obtained from the mapping identified previously. Our novel data-driven method is likely to discover latent linkages between electrical and hemodynamic signatures of neural activity hitherto unexplored using model-driven methods, and is likely to serve as a template for a novel multi-modal strategy wherein cross-modal EEG-fMRI interactions are exploited for the operation of a unimodal EEG system, leading to a new generation of EEG-based BCIs.

  2. Odds Ratio Product of Sleep EEG as a Continuous Measure of Sleep State

    Science.gov (United States)

    Younes, Magdy; Ostrowski, Michele; Soiferman, Marc; Younes, Henry; Younes, Mark; Raneri, Jill; Hanly, Patrick

    2015-01-01

    Study Objectives: To develop and validate an algorithm that provides a continuous estimate of sleep depth from the electroencephalogram (EEG). Design: Retrospective analysis of polysomnograms. Setting: Research laboratory. Participants: 114 patients who underwent clinical polysomnography in sleep centers at the University of Manitoba (n = 58) and the University of Calgary (n = 56). Interventions: None. Measurements and Results: Power spectrum of EEG was determined in 3-second epochs and divided into delta, theta, alpha-sigma, and beta frequency bands. The range of powers in each band was divided into 10 aliquots. EEG patterns were assigned a 4-digit number that reflects the relative power in the 4 frequency ranges (10,000 possible patterns). Probability of each pattern occurring in 30-s epochs staged awake was determined, resulting in a continuous probability value from 0% to 100%. This was divided by 40 (% of epochs staged awake) producing the odds ratio product (ORP), with a range of 0–2.5. In validation testing, average ORP decreased progressively as EEG progressed from wakefulness (2.19 ± 0.29) to stage N3 (0.13 ± 0.05). ORP sleep and ORP > 2.0 predicted wakefulness in > 95% of 30-s epochs. Epochs with intermediate ORP occurred in unstable sleep with a high arousal index (> 70/h) and were subject to much interrater scoring variability. There was an excellent correlation (r2 = 0.98) between ORP in current 30-s epochs and the likelihood of arousal or awakening occurring in the next 30-s epoch. Conclusions: Our results support the use of the odds ratio product (ORP) as a continuous measure of sleep depth. Citation: Younes M, Ostrowski M, Soiferman M, Younes H, Younes M, Raneri J, Hanly P. Odds ratio product of sleep EEG as a continuous measure of sleep state. SLEEP 2015;38(4):641–654. PMID:25348125

  3. Interictal functional connectivity of human epileptic networks assessed by intracerebral EEG and BOLD signal fluctuations.

    Directory of Open Access Journals (Sweden)

    Gaelle Bettus

    Full Text Available In this study, we aimed to demonstrate whether spontaneous fluctuations in the blood oxygen level dependent (BOLD signal derived from resting state functional magnetic resonance imaging (fMRI reflect spontaneous neuronal activity in pathological brain regions as well as in regions spared by epileptiform discharges. This is a crucial issue as coherent fluctuations of fMRI signals between remote brain areas are now widely used to define functional connectivity in physiology and in pathophysiology. We quantified functional connectivity using non-linear measures of cross-correlation between signals obtained from intracerebral EEG (iEEG and resting-state functional MRI (fMRI in 5 patients suffering from intractable temporal lobe epilepsy (TLE. Functional connectivity was quantified with both modalities in areas exhibiting different electrophysiological states (epileptic and non affected regions during the interictal period. Functional connectivity as measured from the iEEG signal was higher in regions affected by electrical epileptiform abnormalities relative to non-affected areas, whereas an opposite pattern was found for functional connectivity measured from the BOLD signal. Significant negative correlations were found between the functional connectivities of iEEG and BOLD signal when considering all pairs of signals (theta, alpha, beta and broadband and when considering pairs of signals in regions spared by epileptiform discharges (in broadband signal. This suggests differential effects of epileptic phenomena on electrophysiological and hemodynamic signals and/or an alteration of the neurovascular coupling secondary to pathological plasticity in TLE even in regions spared by epileptiform discharges. In addition, indices of directionality calculated from both modalities were consistent showing that the epileptogenic regions exert a significant influence onto the non epileptic areas during the interictal period. This study shows that functional

  4. Dissociable Decoding of Spatial Attention and Working Memory from EEG Oscillations and Sustained Potentials.

    Science.gov (United States)

    Bae, Gi-Yeul; Luck, Steven J

    2018-01-10

    In human scalp EEG recordings, both sustained potentials and alpha-band oscillations are present during the delay period of working memory tasks and may therefore reflect the representation of information in working memory. However, these signals may instead reflect support mechanisms rather than the actual contents of memory. In particular, alpha-band oscillations have been tightly tied to spatial attention and may not reflect location-independent memory representations per se. To determine how sustained and oscillating EEG signals are related to attention and working memory, we attempted to decode which of 16 orientations was being held in working memory by human observers (both women and men). We found that sustained EEG activity could be used to decode the remembered orientation of a stimulus, even when the orientation of the stimulus varied independently of its location. Alpha-band oscillations also carried clear information about the location of the stimulus, but they provided little or no information about orientation independently of location. Thus, sustained potentials contain information about the object properties being maintained in working memory, consistent with previous evidence of a tight link between these potentials and working memory capacity. In contrast, alpha-band oscillations primarily carry location information, consistent with their link to spatial attention. SIGNIFICANCE STATEMENT Working memory plays a key role in cognition, and working memory is impaired in several neurological and psychiatric disorders. Previous research has suggested that human scalp EEG recordings contain signals that reflect the neural representation of information in working memory. However, to conclude that a neural signal actually represents the object being remembered, it is necessary to show that the signal contains fine-grained information about that object. Here, we show that sustained voltages in human EEG recordings contain fine-grained information about the

  5. Human brain networks in physiological aging: a graph theoretical analysis of cortical connectivity from EEG data.

    Science.gov (United States)

    Vecchio, Fabrizio; Miraglia, Francesca; Bramanti, Placido; Rossini, Paolo Maria

    2014-01-01

    Modern analysis of electroencephalographic (EEG) rhythms provides information on dynamic brain connectivity. To test the hypothesis that aging processes modulate the brain connectivity network, EEG recording was conducted on 113 healthy volunteers. They were divided into three groups in accordance with their ages: 36 Young (15-45 years), 46 Adult (50-70 years), and 31 Elderly (>70 years). To evaluate the stability of the investigated parameters, a subgroup of 10 subjects underwent a second EEG recording two weeks later. Graph theory functions were applied to the undirected and weighted networks obtained by the lagged linear coherence evaluated by eLORETA on cortical sources. EEG frequency bands of interest were: delta (2-4 Hz), theta (4-8 Hz), alpha1 (8-10.5 Hz), alpha2 (10.5-13 Hz), beta1 (13-20 Hz), beta2 (20-30 Hz), and gamma (30-40 Hz). The spectral connectivity analysis of cortical sources showed that the normalized Characteristic Path Length (λ) presented the pattern Young > Adult>Elderly in the higher alpha band. Elderly also showed a greater increase in delta and theta bands than Young. The correlation between age and λ showed that higher ages corresponded to higher λ in delta and theta and lower in the alpha2 band; this pattern reflects the age-related modulation of higher (alpha) and decreased (delta) connectivity. The Normalized Clustering coefficient (γ) and small-world network modeling (σ) showed non-significant age-modulation. Evidence from the present study suggests that graph theory can aid in the analysis of connectivity patterns estimated from EEG and can facilitate the study of the physiological and pathological brain aging features of functional connectivity networks.

  6. Deep learning with convolutional neural networks for EEG decoding and visualization

    Science.gov (United States)

    Springenberg, Jost Tobias; Fiederer, Lukas Dominique Josef; Glasstetter, Martin; Eggensperger, Katharina; Tangermann, Michael; Hutter, Frank; Burgard, Wolfram; Ball, Tonio

    2017-01-01

    Abstract Deep learning with convolutional neural networks (deep ConvNets) has revolutionized computer vision through end‐to‐end learning, that is, learning from the raw data. There is increasing interest in using deep ConvNets for end‐to‐end EEG analysis, but a better understanding of how to design and train ConvNets for end‐to‐end EEG decoding and how to visualize the informative EEG features the ConvNets learn is still needed. Here, we studied deep ConvNets with a range of different architectures, designed for decoding imagined or executed tasks from raw EEG. Our results show that recent advances from the machine learning field, including batch normalization and exponential linear units, together with a cropped training strategy, boosted the deep ConvNets decoding performance, reaching at least as good performance as the widely used filter bank common spatial patterns (FBCSP) algorithm (mean decoding accuracies 82.1% FBCSP, 84.0% deep ConvNets). While FBCSP is designed to use spectral power modulations, the features used by ConvNets are not fixed a priori. Our novel methods for visualizing the learned features demonstrated that ConvNets indeed learned to use spectral power modulations in the alpha, beta, and high gamma frequencies, and proved useful for spatially mapping the learned features by revealing the topography of the causal contributions of features in different frequency bands to the decoding decision. Our study thus shows how to design and train ConvNets to decode task‐related information from the raw EEG without handcrafted features and highlights the potential of deep ConvNets combined with advanced visualization techniques for EEG‐based brain mapping. Hum Brain Mapp 38:5391–5420, 2017. © 2017 Wiley Periodicals, Inc. PMID:28782865

  7. Marked EEG worsening following Levetiracetam overdose: How a pharmacological issue can confound coma prognosis.

    Science.gov (United States)

    Bouchier, Baptiste; Demarquay, Geneviève; Guérin, Claude; André-Obadia, Nathalie; Gobert, Florent

    2017-01-01

    Levetiracetam is an anti-epileptic drug commonly used in intensive care when seizure is suspected as a possible cause of coma. We propose to question the cofounding effect of Levetiracetam during the prognostication process in a case of anoxic coma. We report the story of a young woman presenting a comatose state following a hypoxic cardiac arrest. After a first EEG presenting an intermediate EEG pattern, a seizure suspicion led to prescribe Levetiracetam. The EEG showed then the appearance of burst suppression, which was compatible with a very severe pattern of post-anoxic coma. This aggravation was in fact related to an overdose of Levetiracetam (the only medication introduced recently) and was reversible after Levetiracetam cessation. The increased plasmatic dosages of Levetiracetam confirming this overdose could have been favoured by a moderate reduction of renal clearance, previously underestimated because of a low body-weight. This EEG dynamic was unexpected under Levetiracetam and could sign a functional instability after anoxia. Burst suppression is classically observed with high doses of anaesthetics, but is not expected after a minor anti-epileptic drug. This report proposes that Levetiracetam tolerance might not be straightforward after brain lesions and engages us to avoid confounding factors during the awakening prognostication, which is mainly based on the severity of the EEG. Hence, prognosis should not be decided on an isolated parameter, especially if the dynamic is atypical after a new prescription, even for well-known drugs. For any suspicion, the drug's dosage and replacement should be managed before any premature care's withdrawal. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Structure constrained semi-nonnegative matrix factorization for EEG-based motor imagery classification.

    Science.gov (United States)

    Lu, Na; Li, Tengfei; Pan, Jinjin; Ren, Xiaodong; Feng, Zuren; Miao, Hongyu

    2015-05-01

    Electroencephalogram (EEG) provides a non-invasive approach to measure the electrical activities of brain neurons and has long been employed for the development of brain-computer interface (BCI). For this purpose, various patterns/features of EEG data need to be extracted and associated with specific events like cue-paced motor imagery. However, this is a challenging task since EEG data are usually non-stationary time series with a low signal-to-noise ratio. In this study, we propose a novel method, called structure constrained semi-nonnegative matrix factorization (SCS-NMF), to extract the key patterns of EEG data in time domain by imposing the mean envelopes of event-related potentials (ERPs) as constraints on the semi-NMF procedure. The proposed method is applicable to general EEG time series, and the extracted temporal features by SCS-NMF can also be combined with other features in frequency domain to improve the performance of motor imagery classification. Real data experiments have been performed using the SCS-NMF approach for motor imagery classification, and the results clearly suggest the superiority of the proposed method. Comparison experiments have also been conducted. The compared methods include ICA, PCA, Semi-NMF, Wavelets, EMD and CSP, which further verified the effectivity of SCS-NMF. The SCS-NMF method could obtain better or competitive performance over the state of the art methods, which provides a novel solution for brain pattern analysis from the perspective of structure constraint. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Human-machine interfaces based on EMG and EEG applied to robotic systems

    Directory of Open Access Journals (Sweden)

    Sarcinelli-Filho Mario

    2008-03-01

    Full Text Available Abstract Background Two different Human-Machine Interfaces (HMIs were developed, both based on electro-biological signals. One is based on the EMG signal and the other is based on the EEG signal. Two major features of such interfaces are their relatively simple data acquisition and processing systems, which need just a few hardware and software resources, so that they are, computationally and financially speaking, low cost solutions. Both interfaces were applied to robotic systems, and their performances are analyzed here. The EMG-based HMI was tested in a mobile robot, while the EEG-based HMI was tested in a mobile robot and a robotic manipulator as well. Results Experiments using the EMG-based HMI were carried out by eight individuals, who were asked to accomplish ten eye blinks with each eye, in order to test the eye blink detection algorithm. An average rightness rate of about 95% reached by individuals with the ability to blink both eyes allowed to conclude that the system could be used to command devices. Experiments with EEG consisted of inviting 25 people (some of them had suffered cases of meningitis and epilepsy to test the system. All of them managed to deal with the HMI in only one training session. Most of them learnt how to use such HMI in less than 15 minutes. The minimum and maximum training times observed were 3 and 50 minutes, respectively. Conclusion Such works are the initial parts of a system to help people with neuromotor diseases, including those with severe dysfunctions. The next steps are to convert a commercial wheelchair in an autonomous mobile vehicle; to implement the HMI onboard the autonomous wheelchair thus obtained to assist people with motor diseases, and to explore the potentiality of EEG signals, making the EEG-based HMI more robust and faster, aiming at using it to help individuals with severe motor dysfunctions.

  10. Induction and separation of motion artifacts in EEG data using a mobile phantom head device.

    Science.gov (United States)

    Oliveira, Anderson S; Schlink, Bryan R; Hairston, W David; König, Peter; Ferris, Daniel P

    2016-06-01

    Electroencephalography (EEG) can assess brain activity during whole-body motion in humans but head motion can induce artifacts that obfuscate electrocortical signals. Definitive solutions for removing motion artifact from EEG have yet to be found, so creating methods to assess signal processing routines for removing motion artifact are needed. We present a novel method for investigating the influence of head motion on EEG recordings as well as for assessing the efficacy of signal processing approaches intended to remove motion artifact. We used a phantom head device to mimic electrical properties of the human head with three controlled dipolar sources of electrical activity embedded in the phantom. We induced sinusoidal vertical motions on the phantom head using a custom-built platform and recorded EEG signals with three different acquisition systems while the head was both stationary and in varied motion conditions. Recordings showed up to 80% reductions in signal-to-noise ratio (SNR) and up to 3600% increases in the power spectrum as a function of motion amplitude and frequency. Independent component analysis (ICA) successfully isolated the three dipolar sources across all conditions and systems. There was a high correlation (r > 0.85) and marginal increase in the independent components' (ICs) power spectrum (∼15%) when comparing stationary and motion parameters. The SNR of the IC activation was 400%-700% higher in comparison to the channel data SNR, attenuating the effects of motion on SNR. Our results suggest that the phantom head and motion platform can be used to assess motion artifact removal algorithms and compare different EEG systems for motion artifact sensitivity. In addition, ICA is effective in isolating target electrocortical events and marginally improving SNR in relation to stationary recordings.

  11. Decoding sequence learning from single-trial intracranial EEG in humans.

    Directory of Open Access Journals (Sweden)

    Marzia De Lucia

    Full Text Available We propose and validate a multivariate classification algorithm for characterizing changes in human intracranial electroencephalographic data (iEEG after learning motor sequences. The algorithm is based on a Hidden Markov Model (HMM that captures spatio-temporal properties of the iEEG at the level of single trials. Continuous intracranial iEEG was acquired during two sessions (one before and one after a night of sleep in two patients with depth electrodes implanted in several brain areas. They performed a visuomotor sequence (serial reaction time task, SRTT using the fingers of their non-dominant hand. Our results show that the decoding algorithm correctly classified single iEEG trials from the trained sequence as belonging to either the initial training phase (day 1, before sleep or a later consolidated phase (day 2, after sleep, whereas it failed to do so for trials belonging to a control condition (pseudo-random sequence. Accurate single-trial classification was achieved by taking advantage of the distributed pattern of neural activity. However, across all the contacts the hippocampus contributed most significantly to the classification accuracy for both patients, and one fronto-striatal contact for one patient. Together, these human intracranial findings demonstrate that a multivariate decoding approach can detect learning-related changes at the level of single-trial iEEG. Because it allows an unbiased identification of brain sites contributing to a behavioral effect (or experimental condition at the level of single subject, this approach could be usefully applied to assess the neural correlates of other complex cognitive functions in patients implanted with multiple electrodes.

  12. Wireless recording systems: from noninvasive EEG-NIRS to invasive EEG devices.

    Science.gov (United States)

    Sawan, Mohamad; Salam, Muhammad T; Le Lan, Jérôme; Kassab, Amal; Gelinas, Sébastien; Vannasing, Phetsamone; Lesage, Frédéric; Lassonde, Maryse; Nguyen, Dang K

    2013-04-01

    In this paper, we present the design and implementation of a wireless wearable electronic system dedicated to remote data recording for brain monitoring. The reported wireless recording system is used for a) simultaneous near-infrared spectrometry (NIRS) and scalp electro-encephalography (EEG) for noninvasive monitoring and b) intracerebral EEG (icEEG) for invasive monitoring. Bluetooth and dual radio links were introduced for these recordings. The Bluetooth-based device was embedded in a noninvasive multichannel EEG-NIRS system for easy portability and long-term monitoring. On the other hand, the 32-channel implantable recording device offers 24-bit resolution, tunable features, and a sampling frequency up to 2 kHz per channel. The analog front-end preamplifier presents low input-referred noise of 5 μ VRMS and a signal-to-noise ratio of 112 dB. The communication link is implemented using a dual-band radio frequency transceiver offering a half-duplex 800 kb/s data rate, 16.5 mW power consumption and less than 10(-10) post-correction Bit-Error Rate (BER). The designed system can be accessed and controlled by a computer with a user-friendly graphical interface. The proposed wireless implantable recording device was tested in vitro using real icEEG signals from two patients with refractory epilepsy. The wirelessly recorded signals were compared to the original signals recorded using wired-connection, and measured normalized root-mean square deviation was under 2%.

  13. Standardized EEG interpretation accurately predicts prognosis after cardiac arrest

    NARCIS (Netherlands)

    Westhall, Erik; Rossetti, Andrea O.; van Rootselaar, Anne-Fleur; Wesenberg Kjaer, Troels; Horn, Janneke; Ullén, Susann; Friberg, Hans; Nielsen, Niklas; Rosén, Ingmar; Åneman, Anders; Erlinge, David; Gasche, Yvan; Hassager, Christian; Hovdenes, Jan; Kjaergaard, Jesper; Kuiper, Michael; Pellis, Tommaso; Stammet, Pascal; Wanscher, Michael; Wetterslev, Jørn; Wise, Matt P.; Cronberg, Tobias; Saxena, Manoj; Miller, Jennene; Inskip, Deborah; Macken, Lewis; Finfer, Simon; Eatough, Noel; Hammond, Naomi; Bass, Frances; Yarad, Elizabeth; O'Connor, Anne; Bird, Simon; Jewell, Timothy; Davies, Gareth; Ng, Karl; Coward, Sharon; Stewart, Antony; Micallef, Sharon; Parker, Sharyn; Cortado, Dennis; Gould, Ann; Harward, Meg; Thompson, Kelly; Glass, Parisa; Myburgh, John; Smid, Ondrej; Belholavek, Jan; Juffermans, Nicole P.; Boerma, EC

    2016-01-01

    To identify reliable predictors of outcome in comatose patients after cardiac arrest using a single routine EEG and standardized interpretation according to the terminology proposed by the American Clinical Neurophysiology Society. In this cohort study, 4 EEG specialists, blinded to outcome,

  14. Convolutive ICA for Spatio-Temporal Analysis of EEG

    DEFF Research Database (Denmark)

    Dyrholm, Mads; Makeig, Scott; Hansen, Lars Kai

    2007-01-01

    in the convolutive model can be correctly detected using Bayesian model selection. We demonstrate a framework for deconvolving an EEG ICA subspace. Initial results suggest that in some cases convolutive mixing may be a more realistic model for EEG signals than the instantaneous ICA model....

  15. Correlations of CT and EEG findings in brain affections

    International Nuclear Information System (INIS)

    Roth, B.; Nevsimalova, S.; Kvicala, V.

    1984-01-01

    The results were compared of electroencephalography (EEG) and computerized tomography (CT) examinations of 250 patients with different brain affections. In intracranial expansive processes the pre-operative CT findings were positive in 100% cases, the EEG findings in 89.7% of cases. In severe traumatic affections the EEG and CT findings were positive in all cases, in mild injuries and post-traumatic conditions the EEG findings were more frequently positive than the CT. In focal and diffuse vascular affections the EEG and CT findings were consistent, in transitory ischemic conditions the EEG findings were more frequently positive. In inflammatory cerebral affections and in paroxymal diseases the EEG findings were positive more frequently than the CT. The same applies for demyelinating and degenerative affections. Findings of other authors were confirmed to the effect that CT very reliably reveals morphological changes in cerebral tissue while EEG records the functional state of the central nervous system and its changes. The two methods are complementary. (author)

  16. EOG Artifacts Removal in EEG Measurements for Affective Interaction

    NARCIS (Netherlands)

    Qi, Wen

    2014-01-01

    A brain-computer interface (BCI) is a direct link between the brain and a computer. Multi-modal input with BCI forms a promising solution for creating rich gaming experience. Electroencephalography (EEG) measurement is the sole necessary component for a BCI system. EEG signals have the

  17. Quantitative EEG Applying the Statistical Recognition Pattern Method

    DEFF Research Database (Denmark)

    Engedal, Knut; Snaedal, Jon; Hoegh, Peter

    2015-01-01

    BACKGROUND/AIM: The aim of this study was to examine the discriminatory power of quantitative EEG (qEEG) applying the statistical pattern recognition (SPR) method to separate Alzheimer's disease (AD) patients from elderly individuals without dementia and from other dementia patients. METHODS...

  18. A computerised EEG-analyzing system for small laboratory animals

    NARCIS (Netherlands)

    Kropveld, D.; Chamuleau, R. A.; Popken, R. J.; Smith, J.

    1983-01-01

    The experimental setup, including instrumentation and software packaging, is described for the use of a minicomputer as an on-line analyzing system of the EEG in rats. Complete fast Fourier transformation of the EEG sampled in 15 episodes of 10 s each is plotted out within 7 min after the start of

  19. Diagnostic Role of ECG Recording Simultaneously With EEG Testing.

    Science.gov (United States)

    Kendirli, Mustafa Tansel; Aparci, Mustafa; Kendirli, Nurten; Tekeli, Hakan; Karaoglan, Mustafa; Senol, Mehmet Guney; Togrol, Erdem

    2015-07-01

    Arrhythmia is not uncommon in the etiology of syncope which mimics epilepsy. Data about the epilepsy induced vagal tonus abnormalities have being increasingly reported. So we aimed to evaluate what a neurologist may gain by a simultaneous electrocardiogram (ECG) and electroencephalogram (EEG) recording in the patients who underwent EEG testing due to prediagnosis of epilepsy. We retrospectively evaluated and detected ECG abnormalities in 68 (18%) of 376 patients who underwent EEG testing. A minimum of 20 of minutes artifact-free recording were required for each patient. Standard 1-channel ECG was simultaneously recorded in conjunction with the EEG. In all, 28% of females and 14% of males had ECG abnormalities. Females (mean age 49 years, range 18-88 years) were older compared with the male group (mean age 28 years, range 16-83 years). Atrial fibrillation was more frequent in female group whereas bradycardia and respiratory sinus arrhythmia was higher in male group. One case had been detected a critical asystole indicating sick sinus syndrome in the female group and treated with a pacemaker implantation in the following period. Simultaneous ECG recording in conjunction with EEG testing is a clinical prerequisite to detect and to clarify the coexisting ECG and EEG abnormalities and their clinical relevance. Potentially rare lethal causes of syncope that mimic seizure or those that could cause resistance to antiepileptic therapy could effectively be distinguished by detecting ECG abnormalities coinciding with the signs and abnormalities during EEG recording. © EEG and Clinical Neuroscience Society (ECNS) 2014.

  20. A comparison of EEG spectral entropy with conventional quantitative ...

    African Journals Online (AJOL)

    Adele

    and decrease with increasing depth of anaesthesia. Spectral en- tropy yields two scales: Response Entropy (RE), ranging between. 0 to100, is an amalgam of EEG and frontal muscle activity while. State Entropy (SE), consisting mainly of EEG activity in a lower frequency band, ranges from 0 to 91.2 Initial reports have pro-.

  1. The effect of CPAP treatment on EEG of OSAS patients.

    Science.gov (United States)

    Zhang, Cheng; Lv, Jun; Zhou, Junhong; Su, Li; Feng, Liping; Ma, Jing; Wang, Guangfa; Zhang, Jue

    2015-12-01

    Continuous positive airway pressure (CPAP) is currently the most effective treatment method for obstructive sleep apnea syndrome (OSAS). The purpose of this study was to compare the sleep electroencephalogram (EEG) changes before and after the application of CPAP to OSAS patients. A retrospective study was conducted and 45 sequential patients who received both polysomnography (PSG) and CPAP titration were included. The raw data of sleep EEG were extracted and analyzed by engineers using two main factors: fractal dimension (FD) and the zero-crossing rate of detrended FD (zDFD). FD was an effective indicator reflecting the EEG complexity and zDFD was useful to reflect the variability of the EEG complexity. The FD and zDFD indexes of sleep EEG of 45 OSAS patients before and after CPAP titration were analyzed. The age of 45 OSAS patients was 52.7 ± 5.6 years old and the patients include 12 females and 33 males. After CPAP treatment, FD of EEG in non-rapid eye movement (NREM) sleep decreased significantly (P CPAP therapy (P CPAP therapy had a significant influence on sleep EEG in patients with OSAHS, which lead to a more stable EEG pattern. This may be one of the mechanisms that CPAP could improve sleep quality and brain function of OSAS patients.

  2. CT scan findings and EEG in systemic lupus erythematodes patients with neuro-psychiatric disorders

    Energy Technology Data Exchange (ETDEWEB)

    Kan, Rumiko; Hagiwara, Mariko; Katayose, Keiko; Yashima, Yuko; Kumashiro, Hisashi

    1988-06-01

    In 14 patients with systemic lupus erythematodes presenting with neuro-psychiatric disorders, CT scans were compared with encephalographic (EEG) findings. CT findings were markedly abnormal in 6, slight with a sulcal enlargement in 3, and normal in 5. In the group of markedly abnormal CT findings, focal abnormal low density areas were detected in 2, severe generalized cerebral atrophy in one, and severe atrophy of the right hemisphere in one. EEG findings included focal paroxysmal abnormality of high voltage slow burst at the left frontal dominance and positive spike on the right hemisphere. Epileptic seizure and depressed sensorium seemed to be related to CT abnormality. In 3 patients with epileptic seizures, their symptoms were closely related to CT abnormality. Parkinsonisms and depressed sensorium were also related to CT abnormality. (Namekawa, K).