WorldWideScience

Sample records for subcortical regions involved

  1. An unusual case of cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy with occipital lobe involvement

    Directory of Open Access Journals (Sweden)

    Bhavesh Trikamji

    2016-01-01

    Full Text Available Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL is an autosomal dominant angiopathy caused by a mutation in the notch 3 gene on chromosome 19. Clinically, patients may be asymptomatic or can present with recurrent ischemic episodes and strokes leading to dementia, depression, pseudobulbar palsy, and hemi- or quadraplegia. Additional manifestations that have been described include migraine (mostly with aura, psychiatric disturbances, and epileptic seizures. Neuroimaging is essential to the diagnosis of CADASIL. On imaging CADASIL is characterized by symmetric involvement by confluent lesions located subcortically in the frontal and temporal lobes as well as in the insula, periventricularly, in the centrum semiovale, in the internal and external capsule, basal ganglia, and brain stem; with relative sparing of the fronto-orbital and the occipital subcortical regions. We describe a 49 year old male with CADASIL with absence of temporal lobe findings on MRI but predominant lesions within the periventricular white matter, occipital lobes with extension into the subcortical frontal lobes, corpus callosum and cerebellar white matter. Although CADASIL characteristically presents with anterior temporal lobe involvement, these findings may be absent and our case addresses the atypical imaging findings in CADASIL.

  2. Subcortical regional morphology correlates with fluid and spatial intelligence.

    Science.gov (United States)

    Burgaleta, Miguel; MacDonald, Penny A; Martínez, Kenia; Román, Francisco J; Álvarez-Linera, Juan; Ramos González, Ana; Karama, Sherif; Colom, Roberto

    2014-05-01

    Neuroimaging studies have revealed associations between intelligence and brain morphology. However, researchers have focused primarily on the anatomical features of the cerebral cortex, whereas subcortical structures, such as the basal ganglia (BG), have often been neglected despite extensive functional evidence on their relation with higher-order cognition. Here we performed shape analyses to understand how individual differences in BG local morphology account for variability in cognitive performance. Structural MRI was acquired in 104 young adults (45 men, 59 women, mean age = 19.83, SD = 1.64), and the outer surface of striatal structures (caudate, nucleus accumbens, and putamen), globus pallidus, and thalamus was estimated for each subject and hemisphere. Further, nine cognitive tests were used to measure fluid (Gf), crystallized (Gc), and spatial intelligence (Gv). Latent scores for these factors were computed by means of confirmatory factor analysis and regressed vertex-wise against subcortical shape (local displacements of vertex position), controlling for age, sex, and adjusted for brain size. Significant results (FDR intelligence-related prefrontal areas. Copyright © 2013 Wiley Periodicals, Inc.

  3. Quantitative analysis of [{sup 18}F]FDDNP PET using subcortical white matter as reference region

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Koon-Pong; Shao, Weber; Dahlbom, Magnus; Kepe, Vladimir; Liu, Jie; Satyamurthy, Nagichettiar; Barrio, Jorge R. [David Geffen School of Medicine at UCLA, Department of Molecular and Medical Pharmacology, Los Angeles, CA (United States); Wardak, Mirwais; Huang, Sung-Cheng [David Geffen School of Medicine at UCLA, Department of Molecular and Medical Pharmacology, Los Angeles, CA (United States); David Geffen School of Medicine at UCLA, Department of Biomathematics, Los Angeles, CA (United States); Small, Gary W. [David Geffen School of Medicine at UCLA, Department of Psychiatry and Biobehavioral Sciences, Los Angeles, CA (United States); David Geffen School of Medicine at UCLA, Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA (United States); David Geffen School of Medicine at UCLA, UCLA Center on Aging, Los Angeles, CA (United States); Mary S. Easton Center for Alzheimer' s Disease Research, Los Angeles, CA (United States)

    2010-03-15

    Subcortical white matter is known to be relatively unaffected by amyloid deposition in Alzheimer's disease (AD). We investigated the use of subcortical white matter as a reference region to quantify [{sup 18}F]FDDNP binding in the human brain. Dynamic [{sup 18}F]FDDNP PET studies were performed on 7 control subjects and 12 AD patients. Population efflux rate constants (k{sup '}{sub 2}) from subcortical white matter (centrum semiovale) and cerebellar cortex were derived by a simplified reference tissue modeling approach incorporating physiological constraints. Regional distribution volume ratio (DVR) estimates were derived using Logan and simplified reference tissue approaches, with either subcortical white matter or cerebellum as reference input. Discriminant analysis with cross-validation was performed to classify control subjects and AD patients. The population estimates of k{sup '}{sub 2} in subcortical white matter did not differ significantly between control subjects and AD patients but the variability of individual estimates of k{sup '}{sub 2} determined in white matter was lower than that in cerebellum. Logan DVR showed dependence on the efflux rate constant in white matter. The DVR estimates in the frontal, parietal, posterior cingulate, and temporal cortices were significantly higher in the AD group (p<0.01). Incorporating all these regional DVR estimates as predictor variables in discriminant analysis yielded accurate classification of control subjects and AD patients with high sensitivity and specificity, and the results agreed well with those using the cerebellum as the reference region. Subcortical white matter can be used as a reference region for quantitative analysis of [{sup 18}F]FDDNP with the Logan method which allows more accurate and less biased binding estimates, but a population efflux rate constant has to be determined a priori. (orig.)

  4. Regional brain differences in cortical thickness, surface area and subcortical volume in individuals with Williams syndrome.

    Directory of Open Access Journals (Sweden)

    Shashwath A Meda

    Full Text Available Williams syndrome (WS is a rare genetic neurodevelopmental disorder characterized by increased non-social anxiety, sensitivity to sounds and hypersociability. Previous studies have reported contradictory findings with regard to regional brain variation in WS, relying on only one type of morphological measure (usually volume in each study. The present study aims to contribute to this body of literature and perhaps elucidate some of these discrepancies by examining concurrent measures of cortical thickness, surface area and subcortical volume between WS subjects and typically-developing (TD controls. High resolution MRI scans were obtained on 31 WS subjects and 50 typically developing control subjects. We derived quantitative regional estimates of cortical thickness, cortical surface area, and subcortical volume using FreeSurfer software. We evaluated between-group ROI differences while controlling for total intracranial volume. In post-hoc exploratory analyses within the WS group, we tested for correlations between regional brain variation and Beck Anxiety Inventory scores. Consistent with our hypothesis, we detected complex patterns of between-group cortical variation, which included lower surface area in combination with greater thickness in the following cortical regions: post central gyrus, cuneus, lateral orbitofrontal cortex and lingual gyrus. Additional cortical regions showed between-group differences in one (but not both morphological measures. Subcortical volume was lower in the basal ganglia and the hippocampus in WS versus TD controls. Exploratory correlations revealed that anxiety scores were negatively correlated with gray matter surface area in insula, OFC, rostral middle frontal, superior temporal and lingual gyrus. Our results were consistent with previous reports showing structural alterations in regions supporting the socio-affective and visuospatial impairments in WS. However, we also were able to effectively capture novel and

  5. Acute phencyclidine administration induces c-Fos-immunoreactivity in interneurons in cortical and subcortical regions.

    Science.gov (United States)

    Hervig, Mona E; Thomsen, Morten S; Kalló, Imre; Mikkelsen, Jens D

    2016-10-15

    Dysfunction of N-Methyl-d-aspartate receptors (NMDARs) is believed to underlie some of the symptoms in schizophrenia, and non-competitive NMDAR antagonists (including phencyclidine (PCP)) are widely used as pharmacological schizophrenia models. Furthermore, mounting evidence suggests that impaired γ-aminobutyric acid (GABA) neurotransmission contributes to the cognitive deficits in schizophrenia. Thus alterations in GABAergic interneurons have been observed in schizophrenia patients and animal models. Acute systemic administration of PCP increases levels of c-Fos in several cortical and subcortical areas, but whether such induction occurs in specific populations of GABAergic interneuron subtypes still remains to be established. We performed an immunohistochemical analysis of the PCP-induced c-Fos-immunoreactivity (IR) in parvalbumin (PV) and calbindin (CB) interneuron subtypes in the cortex and thalamus of rats. A single dose of PCP (10mg/kg, s.c.) significantly increased total number of c-Fos-IR in: (1) the prelimbic, infralimbic, anterior cingulate, ventrolateral orbital, motor, somatosensory and retrosplenial cortices as well as the nucleus accumbens (NAc), field CA1 of the hippocampus (CA1) field of hippocampus and mediodorsal thalamus (MD); (2) PV-IR cells in the ventrolateral orbitofrontal and retrosplenial cortices and CA1 field of hippocampus; and (3) CB-IR cells in the motor cortex. Overall, our data indicate that PCP activates a wide range of cortical and subcortical brain regions and that a substantial part of this activation is present in GABAergic interneurons in certain regions. This suggests that the psychotomimetic effect of PCP may be mediated via GABAergic interneurons. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. Decreased centrality of subcortical regions during the transition to adolescence: a functional connectivity study.

    Science.gov (United States)

    Sato, João Ricardo; Salum, Giovanni Abrahão; Gadelha, Ary; Vieira, Gilson; Zugman, André; Picon, Felipe Almeida; Pan, Pedro Mario; Hoexter, Marcelo Queiroz; Anés, Mauricio; Moura, Luciana Monteiro; Del'Aquilla, Marco Antonio Gomes; Crossley, Nicolas; Amaro Junior, Edson; Mcguire, Philip; Lacerda, Acioly L T; Rohde, Luis Augusto; Miguel, Euripedes Constantino; Jackowski, Andrea Parolin; Bressan, Rodrigo Affonseca

    2015-01-01

    Investigations of brain maturation processes are a key step to understand the cognitive and emotional changes of adolescence. Although structural imaging findings have delineated clear brain developmental trajectories for typically developing individuals, less is known about the functional changes of this sensitive development period. Developmental changes, such as abstract thought, complex reasoning, and emotional and inhibitory control, have been associated with more prominent cortical control. The aim of this study is to assess brain networks connectivity changes in a large sample of 7- to 15-year-old subjects, testing the hypothesis that cortical regions will present an increasing relevance in commanding the global network. Functional magnetic resonance imaging (fMRI) data were collected in a sample of 447 typically developing children from a Brazilian community sample who were submitted to a resting state acquisition protocol. The fMRI data were used to build a functional weighted graph from which eigenvector centrality (EVC) was extracted. For each brain region (a node of the graph), the age-dependent effect on EVC was statistically tested and the developmental trajectories were estimated using polynomial functions. Our findings show that angular gyrus become more central during this maturation period, while the caudate; cerebellar tonsils, pyramis, thalamus; fusiform, parahippocampal and inferior semilunar lobe become less central. In conclusion, we report a novel finding of an increasing centrality of the angular gyrus during the transition to adolescence, with a decreasing centrality of many subcortical and cerebellar regions. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Altered Spontaneous Brain Activity in Cortical and Subcortical Regions in Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Jie Xiang

    2016-01-01

    Full Text Available Purpose. The present study aimed to explore the changes of amplitude of low-frequency fluctuations (ALFF at rest in patients with Parkinson’s disease (PD. Methods. Twenty-four PD patients and 22 healthy age-matched controls participated in the study. ALFF was measured on the whole brain of all participants. A two-sample t-test was then performed to detect the group differences with age, gender, education level, head motion, and gray matter volume as covariates. Results. It was showed that PD patients had significantly decreased ALFF in the left thalamus/caudate and right insula/inferior prefrontal gyrus, whereas they had increased ALFF in the right medial prefrontal cortex (BA 8/6 and dorsolateral prefrontal cortex (BA 9/10. Conclusions. Our results indicated that significant alterations of ALFF in the subcortical regions and prefrontal cortex have been detected in PD patients, independent of age, gender, education, head motion, and structural atrophy. The current findings further provide insights into the biological mechanism of the disease.

  8. Lesion Explorer: a comprehensive segmentation and parcellation package to obtain regional volumetrics for subcortical hyperintensities and intracranial tissue.

    Science.gov (United States)

    Ramirez, J; Gibson, E; Quddus, A; Lobaugh, N J; Feinstein, A; Levine, B; Scott, C J M; Levy-Cooperman, N; Gao, F Q; Black, S E

    2011-01-15

    Subcortical hyperintensities (SH) are a commonly observed phenomenon on MRI of the aging brain (Kertesz et al., 1988). Conflicting behavioral, cognitive and pathological associations reported in the literature underline the need to develop an intracranial volumetric analysis technique to elucidate pathophysiological origins of SH in Alzheimer's disease (AD), vascular cognitive impairment (VCI) and normal aging (De Leeuw et al., 2001; Mayer and Kier, 1991; Pantoni and Garcia, 1997; Sachdev et al., 2008). The challenge is to develop processing tools that effectively and reliably quantify subcortical small vessel disease in the context of brain tissue compartments. Segmentation and brain region parcellation should account for SH subtypes which are often classified as: periventricular (pvSH) and deep white (dwSH), incidental white matter disease or lacunar infarcts and Virchow-Robin spaces. Lesion Explorer (LE) was developed as the final component of a comprehensive volumetric segmentation and parcellation image processing stream built upon previously published methods (Dade et al., 2004; Kovacevic et al., 2002). Inter-rater and inter-method reliability was accomplished both globally and regionally. Volumetric analysis showed high inter-rater reliability both globally (ICC=.99) and regionally (ICC=.98). Pixel-wise spatial congruence was also high (SI=.97). Whole brain pvSH volumes yielded high inter-rater reliability (ICC=.99). Volumetric analysis against an alternative kNN segmentation revealed high inter-method reliability (ICC=.97). Comparison with visual rating scales showed high significant correlations (ARWMC: r=.86; CHIPS: r=.87). The pipeline yields a comprehensive and reliable individualized volumetric profile for subcortical vasculopathy that includes regionalized (26 brain regions) measures for: GM, WM, sCSF, vCSF, lacunar and non-lacunar pvSH and dwSH. Copyright © 2010 Elsevier Inc. All rights reserved.

  9. Impairment of visuospatial/visuoconstructional skills in multiple sclerosis patients: the correlation with regional lesion load and subcortical atrophy.

    Science.gov (United States)

    Marasescu, R; Cerezo Garcia, M; Aladro Benito, Y

    2016-04-01

    About 20% to 26% of patients with multiple sclerosis (MS) show alterations in visuospatial/visuoconstructive (VS-VC) skills even though temporo-parieto-occipital impairment is a frequent finding in magnetic resonance imaging. No studies have specifically analysed the relationship between these functions and lesion volume (LV) in these specific brain areas. To evaluate the relationship between VS-VC impairment and magnetic resonance imaging temporo-parieto-occipital LV with subcortical atrophy in patients with MS. Of 100 MS patients undergoing a routine neuropsychological evaluation, 21 were selected because they displayed VS-VC impairments in the following tests: Incomplete picture, Block design (WAIS-III), and Rey-Osterrieth complex figure test. We also selected 13 MS patients without cognitive impairment (control group). Regional LV was measured in FLAIR and T1-weighted images using a semiautomated method; subcortical atrophy was measured by bicaudate ratio and third ventricle width. Partial correlations (controlling for age and years of school) and linear regression analysis were employed to analyse correlations between magnetic resonance imaging parameters and cognitive performance. All measures of LV and brain atrophy were significantly higher in patients with cognitive impairment. Regional LV, bicaudate ratio, and third ventricle width are significantly and inversely correlated with cognitive performance; the strongest correlation was between third ventricle width and VC performance (Block design: P=.001; Rey-Osterrieth complex figure: P<.000). In the multivariate analysis, third ventricle width only had a significant effect on performance of VC tasks (Block design: P=.000; Rey-Osterrieth complex figure: P=.000), and regional FLAIR VL was linked to the VS task (Incomplete picture; P=.002). Measures of subcortical atrophy explain the variations in performance on visuocostructive tasks, and regional FLAIR VL measures are linked to VS tasks. Copyright © 2015

  10. Subcortical connections of an 'oculomotor' region in the ventral bank of the anterior ectosylvian sulcus in the cat.

    Science.gov (United States)

    Tamai, Y; Miyashita, E

    1989-12-01

    Subcortical connections of an 'oculomotor' region in the ventral bank of the anterior ectosylvian sulcus (AESo), where eye movements were evoked by intracortical microstimulation, were studied in cats using a wheatgerm agglutinin horseradish peroxidase (WGA-HRP) tracing method. Following injection of WGA-HRP into the AESo, both anterogradely-labeled terminals and retrogradely-labeled cells were found with the highest concentration in the suprageniculate nucleus and the medial zone of the lateroposterior nucleus of the thalamus. In the brainstem, anterogradely-labeled terminals were found in the superior colliculus, the pontine reticular formation, the pontine tegmental reticular formation and the pontine nuclei.

  11. Extra-hippocampal subcortical limbic involvement predicts episodic recall performance in multiple sclerosis.

    Science.gov (United States)

    Dineen, Robert A; Bradshaw, Christopher M; Constantinescu, Cris S; Auer, Dorothee P

    2012-01-01

    Episodic memory impairment is a common but poorly-understood phenomenon in multiple sclerosis (MS). We aim to establish the relative contributions of reduced integrity of components of the extended hippocampal-diencephalic system to memory performance in MS patients using quantitative neuroimaging. 34 patients with relapsing-remitting MS and 24 healthy age-matched controls underwent 3 T MRI including diffusion tensor imaging and 3-D T1-weighted volume acquisition. Manual fornix regions-of-interest were used to derive fornix fractional anisotropy (FA). Normalized hippocampal, mammillary body and thalamic volumes were derived by manual segmentation. MS subjects underwent visual recall, verbal recall, verbal recognition and verbal fluency assessment. Significant differences between MS patients and controls were found for fornix FA (0.38 vs. 0.46, means adjusted for age and fornix volume, Pvisual recall (R(2) = .31, P = .003, P = .006), and thalamic volume as predictive of verbal recall (R(2) = .37, Precall in MS patients with mild memory dysfunction.

  12. Central cortico-subcortical involvement: a distinct pattern of brain damage caused by perinatal and postnatal asphyxia in term infants

    NARCIS (Netherlands)

    Rademakers, R. P.; van der Knaap, M. S.; Verbeeten, B.; Barth, P. G.; Valk, J.

    1995-01-01

    The MR findings in a characteristic pattern of hypoxic-ischemic brain damage in term infants are described. The MR images of seven patients with cerebral palsy and a specific pattern of central cortico-subcortical cerebral damage were studied retrospectively and correlated with clinical findings.

  13. A novel CNS gene required for neuronal migration and involved in X-linked subcortical laminar heterotopia and lissencephaly syndrome.

    Science.gov (United States)

    des Portes, V; Pinard, J M; Billuart, P; Vinet, M C; Koulakoff, A; Carrié, A; Gelot, A; Dupuis, E; Motte, J; Berwald-Netter, Y; Catala, M; Kahn, A; Beldjord, C; Chelly, J

    1998-01-09

    X-SCLH/LIS syndrome is a neuronal migration disorder with disruption of the six-layered neocortex. It consists of subcortical laminar heterotopia (SCLH, band heterotopia, or double cortex) in females and lissencephaly (LIS) in males, leading to epilepsy and cognitive impairment. We report the characterization of a novel CNS gene encoding a 40 kDa predicted protein that we named Doublecortin and the identification of mutations in four unrelated X-SCLH/LIS cases. The predicted protein shares significant homology with the N-terminal segment of a protein containing a protein kinase domain at its C-terminal part. This novel gene is highly expressed during brain development, mainly in fetal neurons including precursors. The complete disorganization observed in lissencephaly and heterotopia thus seems to reflect a failure of early events associated with neuron dispersion.

  14. Rapid Changes in Cortical and Subcortical Brain Regions after Early Bilateral Enucleation in the Mouse.

    Directory of Open Access Journals (Sweden)

    Olga O Kozanian

    Full Text Available Functional sensory and motor areas in the developing mammalian neocortex are formed through a complex interaction of cortically intrinsic mechanisms, such as gene expression, and cortically extrinsic mechanisms such as those mediated by thalamic input from the senses. Both intrinsic and extrinsic mechanisms are believed to be involved in cortical patterning and the establishment of areal boundaries in early development; however, the nature of the interaction between intrinsic and extrinsic processes is not well understood. In a previous study, we used a perinatal bilateral enucleation mouse model to test some aspects of this interaction by reweighting sensory input to the developing cortex. Visual deprivation at birth resulted in a shift of intraneocortical connections (INCs that aligned with ectopic ephrin A5 expression in the same location ten days later at postnatal day (P 10. A prevailing question remained: Does visual deprivation first induce a change in gene expression, followed by a shift in INCs, or vice versa? In the present study, we address this question by investigating the neuroanatomy and patterns of gene expression in post-natal day (P 1 and 4 mice following bilateral enucleation at birth. Our results demonstrate a rapid reduction in dorsal lateral geniculate nucleus (dLGN size and ephrin A5 gene expression 24-hours post-enucleation, with more profound effects apparent at P4. The reduced nuclear size and diminished gene expression mirrors subtle changes in ephrin A5 expression evident in P1 and P4 enucleated neocortex, 11 and 8 days prior to natural eye opening, respectively. Somatosensory and visual INCs were indistinguishable between P1 and P4 mice bilaterally enucleated at birth, indicating that perinatal bilateral enucleation initiates a rapid change in gene expression (within one day followed by an alteration of sensory INCs later on (second postnatal week. With these results, we gain a deeper understanding of how gene

  15. Subcortical surgical anatomy of the lateral frontal region: human white matter dissection and correlations with functional insights provided by intraoperative direct brain stimulation: laboratory investigation.

    Science.gov (United States)

    De Benedictis, Alessandro; Sarubbo, Silvio; Duffau, Hugues

    2012-12-01

    Recent neuroimaging and surgical results support the crucial role of white matter in mediating motor and higher-level processing within the frontal lobe, while suggesting the limited compensatory capacity after damage to subcortical structures. Consequently, an accurate knowledge of the anatomofunctional organization of the pathways running within this region is mandatory for planning safe and effective surgical approaches to different diseases. The aim of this dissection study was to improve the neurosurgeon's awareness of the subcortical anatomofunctional architecture for a lateral approach to the frontal region, to optimize both resection and postoperative outcome. Ten human hemispheres (5 left, 5 right) were dissected according to the Klingler technique. Proceeding lateromedially, the main association and projection tracts as well as the deeper basal structures were identified. The authors describe the anatomy and the relationships among the exposed structures in both a systematic and topographical surgical perspective. Structural results were also correlated to the functional responses obtained during resections of infiltrative frontal tumors guided by direct cortico-subcortical electrostimulation with patients in the awake condition. The eloquent boundaries crucial for a safe frontal lobectomy or an extensive lesionectomy are as follows: 1) the motor cortex; 2) the pyramidal tract and premotor fibers in the posterior and posteromedial part of the surgical field; 3) the inferior frontooccipital fascicle and the superior longitudinal fascicle posterolaterally; and 4) underneath the inferior frontal gyrus, the head of the caudate nucleus, and the tip of the frontal horn of the lateral ventricle in the depth. Optimization of results following brain surgery, especially within the frontal lobe, requires a perfect knowledge of functional anatomy, not only at the cortical level but also with regard to subcortical white matter connectivity.

  16. May functional imaging be helpful for behavioral assessment in children? Regions of motor and associative cortico-subcortical circuits can be differentiated by laterality and rostrality

    Directory of Open Access Journals (Sweden)

    Julia M. August

    2015-06-01

    Full Text Available Background: Cortico-subcortical circuits are organized into the sensorimotor, associative and limbic loop. These neuronal preconditions play an important role regarding the understanding and treatment of behavioral problems in children. Differencing evidence argues for a lateralized organization of the sensorimotor loop and a bilateral (i.e. non-lateralized organization of the associative loop. However, a firm behavioral-neurobiological distinction of these circuits has been difficult, specifically in children. Objectives: Thus, the aim was a comprehensive functional visualization and differentiation of the sensorimotor and the associative circuit during childhood. As a new approach, laterality and rostrality features were used to distinguish between the two circuits within one single motor task. Methods: 24 healthy boys performed self-paced index finger tapping with each hand separately during functional magnetic resonance imaging at 3 Tesla. Results: A contrast analysis for left against right hand movement revealed lateralized activation in typical sensorimotor regions such as primary sensorimotor cortex, caudal supplementary motor area (SMA, caudal putamen and thalamus. A conjunction analysis confirmed bilateral involvement of known associative regions including pre-SMA, rostral SMA and rostral putamen. Conclusion: A functional visualization of two distinct corticostriatal circuits is provided in childhood. Both, the sensorimotor and associative circuit may be discriminated by their laterality characteristics already in minors. Additionally, the results support the concept of a modified functional subdivision of the SMA in a rostral (associative and caudal (motor part. A further development of this approach might help to nurture behavioral assessment and neurofeedback training in child mental health.

  17. Neuropsychology of subcortical dementias.

    Science.gov (United States)

    Savage, C R

    1997-12-01

    Subcortical dementias are a heterogeneous group of disorders that share primary pathology in subcortical structure and a characteristic pattern of neuropsychological impairment. This article describes the neurobiological and cognitive features of three prototypical subcortical dementias, Parkinson's disease, Huntington's disease, and progressive supranuclear palsy, concentrating of traits shared by disorders. Clinical features are also discussed, especially those which differentiate subcortical dementias from cortical dementias, such as Alzheimer's disease. The cortical-subcortical nomenclature has been criticized over the years, but it continues to provide an effective means of classifying dementia profiles in clinically and theoretically useful ways.

  18. Artefactual subcortical hyperperfusion in PET studies normalized to global mean: lessons from Parkinson's disease

    DEFF Research Database (Denmark)

    Borghammer, Per; Cumming, Paul; Aanerud, Joel

    2008-01-01

    AIM: Recent studies of Parkinson's disease (PD) report subcortical increases of cerebral blood flow (CBF) or cerebral metabolic rate of glucose (CMRglc), after conventional normalization to the global mean. However, if the global mean CBF or CMRglc is decreased in the PD group, this normalization...... necessarily generates artificial relative increases in regions unaffected by the disease. This potential bias may explain the reported subcortical increases in PD. To test this hypothesis, we performed simulations with manipulation and subsequently analysis of sets of quantitative CBF maps by voxel...... the global mean or to the white matter mean. RESULTS: In Simulation I, global normalization robustly created artefactual subcortical increases, irrespective of analysis methodology. Simulation II demonstrated that an increased signal from the small subcortical structures involved in PD can probably...

  19. Brain regions involved in the recognition of happiness and sadness in music.

    Science.gov (United States)

    Khalfa, Stéphanie; Schon, Daniele; Anton, Jean-Luc; Liégeois-Chauvel, Catherine

    2005-12-19

    Here, we used functional magnetic resonance imaging to test for the lateralization of the brain regions specifically involved in the recognition of negatively and positively valenced musical emotions. The manipulation of two major musical features (mode and tempo), resulting in the variation of emotional perception along the happiness-sadness axis, was shown to principally involve subcortical and neocortical brain structures, which are known to intervene in emotion processing in other modalities. In particular, the minor mode (sad excerpts) involved the left orbito and mid-dorsolateral frontal cortex, which does not confirm the valence lateralization model. We also show that the recognition of emotions elicited by variations of the two perceptual determinants rely on both common (BA 9) and distinct neural mechanisms.

  20. Serotonin-stimulated phosphoinositide turnover: mediation by the S2 binding site in rat cerebral cortex but not in subcortical regions

    Energy Technology Data Exchange (ETDEWEB)

    Conn, P.J.; Sanders-Bush, E.

    1985-07-01

    In rat cerebral cortex, serotonin (5-HT) stimulates phosphoinositide turnover with an EC50 of 1 microM in the presence of pargyline. The EC50 is 16-fold higher in the absence of pargyline. Selective S2 antagonists inhibit 5-HT-stimulated phosphoinositide turnover. Schild analysis of the blockade by ketanserin of the 5-HT effect gives an estimated Kd of ketanserin for the phosphoinositide-linked receptor of 11.7 nM, which agrees with the Kd (3.5 nM) of (/sup 3/H)ketanserin for the S2 site. Furthermore, MK-212, 5-HT and 5-fluorotryptamine stimulate phosphoinositide turnover with potencies that resemble their potencies at the S2 but not the S1 binding site. Of 11 agonists tested, the tryptamine derivatives tend to be more efficacious than the piperazine derivatives. The selective S1 agonist 8-hydroxy-2-(di-N-propylamino)tetralin is inactive at stimulating phosphoinositide turnover. No significant relationship exists between the regional distributions of 5-HT-stimulated phosphoinositide turnover and S2 binding sites. Furthermore, the S2 antagonist ketanserin is less potent and less efficacious in hippocampus and limbic forebrain than in cerebral cortex. These data suggest that 5-HT-stimulated phosphoinositide turnover is linked to the S2 binding site in rat cerebral cortex. However, 5-HT increases phosphoinositide turnover in subcortical regions by mechanisms other than stimulation of the S2 receptor.

  1. Context-induced relapse to cocaine seeking after punishment-imposed abstinence is associated with activation of cortical and subcortical brain regions.

    Science.gov (United States)

    Pelloux, Yann; Hoots, Jennifer K; Cifani, Carlo; Adhikary, Sweta; Martin, Jennifer; Minier-Toribio, Angelica; Bossert, Jennifer M; Shaham, Yavin

    2017-06-29

    We recently developed a rat model of context-induced relapse to alcohol seeking after punishment-imposed abstinence to mimic relapse after self-imposed abstinence due to adverse consequences of drug use. Here, we determined the model's generality to cocaine and have begun to explore brain mechanisms of context-induced relapse to cocaine seeking after punishment-imposed abstinence, using the activity marker Fos. In exp. 1, we trained rats to self-administer cocaine (0.75 mg/kg/infusion, 6 hours/day, 12 days) in context A. Next, we transferred them to context B where for the paired group, but not unpaired group, 50 percent of cocaine-reinforced lever presses caused aversive footshock. We then tested the rats for cocaine seeking under extinction conditions in contexts A and B. We also retested them for relapse after retraining in context A and repunishment in context B. In exp. 2, we used Fos immunoreactivity to determine relapse-associated neuronal activation in brain regions of rats exposed to context A, context B or neither context. Results showed the selective shock-induced suppression of cocaine self-administration and context-induced relapse after punishment-imposed abstinence in rats exposed to paired, but not unpaired, footshock. Additionally, context-induced relapse was associated with selective activation of dorsal and ventral medial prefrontal cortex, anterior insula, dorsal striatum, basolateral amygdala, paraventricular nucleus of the thalamus, lateral habenula, substantia nigra, ventral subiculum, and dorsal raphe, but not nucleus accumbens, central amygdala, lateral hypothalamus, ventral tegmental area and other brain regions. Together, context-induced relapse after punishment-imposed abstinence generalizes to rats with a history of cocaine self-administration and is associated with selective activation of cortical and subcortical regions. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  2. Multi-scale radiomic analysis of sub-cortical regions in MRI related to autism, gender and age

    Science.gov (United States)

    Chaddad, Ahmad; Desrosiers, Christian; Toews, Matthew

    2017-03-01

    We propose using multi-scale image textures to investigate links between neuroanatomical regions and clinical variables in MRI. Texture features are derived at multiple scales of resolution based on the Laplacian-of-Gaussian (LoG) filter. Three quantifier functions (Average, Standard Deviation and Entropy) are used to summarize texture statistics within standard, automatically segmented neuroanatomical regions. Significance tests are performed to identify regional texture differences between ASD vs. TDC and male vs. female groups, as well as correlations with age (corrected p Autism spectrum disorder (ASD, 65 female and 474 male) subjects. Statistically significant texture differences between ASD vs. TDC groups are identified asymmetrically in the right hippocampus, left choroid-plexus and corpus callosum (CC), and symmetrically in the cerebellar white matter. Sex-related texture differences in TDC subjects are found in primarily in the left amygdala, left cerebellar white matter, and brain stem. Correlations between age and texture in TDC subjects are found in the thalamus-proper, caudate and pallidum, most exhibiting bilateral symmetry.

  3. Altered modulation of prefrontal and subcortical brain activity in newly diagnosed schizophrenia and schizophreniform disorder. A regional cerebral blood flow study

    DEFF Research Database (Denmark)

    Rubin, P; Holm, S; Friberg, L

    1991-01-01

    To measure prefrontal and subcortical activity during a cognitive task, we examined 19 newly diagnosed schizophrenics and patients with schizophreniform psychosis. Seven healthy volunteers served as controls. The patients were drug naive or had received neuroleptics for a few days only. Cerebral ...

  4. Common genetic variants influence human subcortical brain structures

    OpenAIRE

    Hibar, Derrek P; Stein, Jason L; Renteria, Miguel E; Arias-Vasquez, Alejandro; Desrivières, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S; Armstrong, Nicola J; Bernard, Manon; Bohlken, Marc M; Boks, Marco P

    2015-01-01

    The highly complex structure of the human brain is strongly shaped by genetic influences. Subcortical brain regions form circuits with cortical areas to coordinate movement, learning, memory and motivation, and altered circuits can lead to abnormal behaviour and disease. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magn...

  5. Examining the subcortical infarcts in the era of acute multimodality CT imaging

    Directory of Open Access Journals (Sweden)

    Mindy Tan

    2016-12-01

    Full Text Available Background: Lacunar infarcts have been characterized as small subcortical infarcts, resulting from in situ microatheroma or lipohyalinosis in small vessels. Based on this hypothesis, such infarcts should not be associated with large areas of perfusion deficits extending beyond subcortical regions to involve cortical regions. By contrast, selected small subcortical infarcts, as defined by MR imaging in the subacute or chronic stage, may initially have large perfusion deficits or related large vessel occlusions. These infarcts with ‘lacunar’ phenotype may also be caused by disease in the parent vessel and may have very different stroke mechanisms from small vessel disease. Our aim was to describe differences in imaging characteristics between patients with small subcortical infarction with ‘lacunar phenotype’ from those with lacunar mechanism. Methods: Patients undergoing acute CT Perfusion/angiography (CTP/CTA within 6 hours of symptom onset and follow-up magnetic resonance imaging (MRI for ischaemic stroke were included (2009-2013. A lacunar infarct was defined as a single subcortical infarct (SSI ≤20 mm on follow-up MRI. Presence of perfusion deficits, vessel occlusion and infarct dimensions were compared between lacunar infarcts and other topographical infarct types. Results: Overall, 182 patients (mean age 66.4±15.3 years, 66% male were included. SSI occurred in 31 (17% patients. Of these, 12 (39% patients had a perfusion deficit compared with those with any cortical infarction (120/142, 67%, and the smallest SSI with a perfusion deficit had a diameter of <5mm. The majority of patients with SSI (8/12, 66.7% had a relevant vessel occlusion. A quarter of SSIs had a large-artery stroke mechanism evident on acute CTP/CTA. Lacunar mechanism was present in 3/8 patients with corona radiata, 5/10 lentiform nucleus, 5/6 posterior limb of internal capsule PLIC, 3/5 thalamic infarcts and 1/2 miscellaneous locations. There was a trend toward

  6. Dysphagia Post Subcortical and Supratentorial Stroke.

    Science.gov (United States)

    Wan, Ping; Chen, Xuhui; Zhu, Lequn; Xu, Shuangjin; Huang, Li; Li, Xiangcui; Ye, Qing; Ding, Ruiying

    2016-01-01

    Studies have recognized that the damage in the subcortical and supratentorial regions may affect voluntary and involuntary aspects of the swallowing function. The current study attempted to explore the dysphagia characteristics in patients with subcortical and supratentorial stroke. Twelve post first or second subcortical and supratentorial stroke patients were included in the study. The location of the stroke was ascertained by computed tomography and magnetic resonance imaging. The characteristics of swallowing disorder were assessed by video fluoroscopic swallowing assessment/fiberoptic endoscopic evaluation of swallowing. The following main parameters were analyzed: oral transit time, pharyngeal delay time, presence of cricopharyngeal muscle achalasia (CMA), distance of laryngeal elevation, the amounts of vallecular residue and pyriform sinus residue (PSR), and the extent of pharyngeal contraction. Eighty-three percent of the 12 patients were found suffering from pharyngeal dysphagia, with 50% having 50%-100% PSRs, 50% having pharyngeal delay, and 41.6% cases demonstrating CMA. Simple regression analysis showed PSRs were most strongly associated with CMA. Pharyngeal delay in the study can be caused by infarcts of basal ganglia/thalamus, infarcts of sensory tract, infarcts of swallowing motor pathways in the centrum semiovale, or a combination of the three. Subcortical and supratentorial stroke may result in pharyngeal dysphagia such as PSR and pharyngeal delay. PSR was mainly caused by CMA. Copyright © 2015 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  7. Subcortical Facilitation of Behavioral Responses to Threat.

    Science.gov (United States)

    Vida, Mark D; Behrmann, Marlene

    2017-10-12

    Behavioral responses to threat are critical to survival. Several cortical and subcortical brain regions respond selectively to threat. However, the relation of these neural responses and their underlying representations to behavior is unclear. We examined the contribution of lower-order subcortical representations to behavioral responses to threat in adult humans. In Experiments 1 and 2, participants viewed pairs of images presented to the same eye or to different eyes. We observed a monocular advantage, which indicates subcortical facilitation, for ancestral threats (snakes, spiders), but not for modern threats, positive images, or neutral images. In Experiment 3, we presented pairs of snakes or neutral images into the temporal or nasal hemifield. For snakes only, we observed a temporal hemifield advantage, which indicates facilitation by the retino-tectal subcortical pathway. These results advance the current understanding of processing of threat by adult humans by revealing the characteristics of behaviors driven by a lower-order neural mechanism that is specialized for the processing of ancestral threats. The results also contribute to ongoing debates concerning the biological generality of neural mechanisms for processing of complex, emotionally-relevant stimuli by providing evidence for conservation of lower-order neural mechanisms for processing of ancestral threats across both ontogeny and phylogeny.

  8. FACTORS OF DIRECT FOREIGN INVESTMENTS INVOLVEMENT INTO RUSSIAN REGIONS

    Directory of Open Access Journals (Sweden)

    D.V. Nesterova

    2005-12-01

    Full Text Available The factors of direct foreign investments involvement into Russian regions are analyzed, and the classification of groups of factors forming regional comparable advantages in the process of direct foreign investments involvement is worked out in the article: economical indicators, the level of physical infrastructure development, the level of regional institutional development, regional economic policy, regional openness for the external economic relations, geographical peculiarities of the region. Ranging of factors of direct foreign investments involvement is conducted on the base of econometrical research, the recommendations for working out of economic policy on the foreign capital income to the Russian economy stimulation are given in the article.

  9. Cortical and subcortical mechanisms of brain-machine interfaces.

    Science.gov (United States)

    Marchesotti, Silvia; Martuzzi, Roberto; Schurger, Aaron; Blefari, Maria Laura; Del Millán, José R; Bleuler, Hannes; Blanke, Olaf

    2017-06-01

    Technical advances in the field of Brain-Machine Interfaces (BMIs) enable users to control a variety of external devices such as robotic arms, wheelchairs, virtual entities and communication systems through the decoding of brain signals in real time. Most BMI systems sample activity from restricted brain regions, typically the motor and premotor cortex, with limited spatial resolution. Despite the growing number of applications, the cortical and subcortical systems involved in BMI control are currently unknown at the whole-brain level. Here, we provide a comprehensive and detailed report of the areas active during on-line BMI control. We recorded functional magnetic resonance imaging (fMRI) data while participants controlled an EEG-based BMI inside the scanner. We identified the regions activated during BMI control and how they overlap with those involved in motor imagery (without any BMI control). In addition, we investigated which regions reflect the subjective sense of controlling a BMI, the sense of agency for BMI-actions. Our data revealed an extended cortical-subcortical network involved in operating a motor-imagery BMI. This includes not only sensorimotor regions but also the posterior parietal cortex, the insula and the lateral occipital cortex. Interestingly, the basal ganglia and the anterior cingulate cortex were involved in the subjective sense of controlling the BMI. These results inform basic neuroscience by showing that the mechanisms of BMI control extend beyond sensorimotor cortices. This knowledge may be useful for the development of BMIs that offer a more natural and embodied feeling of control for the user. Hum Brain Mapp 38:2971-2989, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  10. Subcortical shape and volume abnormalities in an elderly HIV+ cohort

    Science.gov (United States)

    Wade, Benjamin S. C.; Valcour, Victor; Busovaca, Edgar; Esmaeili-Firidouni, Pardis; Joshi, Shantanu H.; Wang, Yalin; Thompson, Paul M.

    2015-03-01

    Over 50% of HIV+ individuals show significant impairment in psychomotor functioning, processing speed, working memory and attention [1, 2]. Patients receiving combination antiretroviral therapy may still have subcortical atrophy, but the profile of HIV-associated brain changes is poorly understood. With parametric surface-based shape analyses, we mapped the 3D profile of subcortical morphometry in 63 elderly HIV+ subjects (4 female; age=65.35 ± 2.21) and 31 uninfected elderly controls (2 female; age=64.68 ± 4.57) scanned with MRI as part of a San Francisco Bay Area study of elderly people with HIV. We also investigated whether morphometry was associated with nadir CD4+ (T-cell) counts, viral load and illness duration among HIV+ participants. FreeSurfer was used to segment the thalamus, caudate, putamen, pallidum, hippocampus, amygdala, accumbens, brainstem, callosum and ventricles from brain MRI scans. To study subcortical shape, we analyzed: (1) the Jacobian determinant (JD) indexed over structures' surface coordinates and (2) radial distances (RD) of structure surfaces from a medial curve. A JD less than 1 reflects regional tissue atrophy and greater than 1 reflects expansion. The volumes of several subcortical regions were found to be associated with HIV status. No regional volumes showed detectable associations with CD4 counts, viral load or illness duration. The shapes of numerous subcortical regions were significantly linked to HIV status, detectability of viral RNA and illness duration. Our results show subcortical brain differences in HIV+ subjects in both shape and volumetric domains.

  11. Subcortical correlates of individual differences in aptitude.

    Science.gov (United States)

    Jung, Rex E; Ryman, Sephira G; Vakhtin, Andrei A; Carrasco, Jessica; Wertz, Chris; Flores, Ranee A

    2014-01-01

    The study of individual differences encompasses broad constructs including intelligence, creativity, and personality. However, substantially less research is devoted to the study of specific aptitudes in spite of their importance to educational, occupational, and avocational success. We sought to determine subcortical brain structural correlates of several broad aptitudes including Math, Vocabulary, Foresight, Paper Folding, and Inductive Reasoning in a large (N = 107), healthy, young (age range  = 16-29) cohort. Subcortical volumes were measured using an automated technique (FreeSurfer) across structures including bilateral caudate, putamen, globus pallidus, thalamus, nucleus accumbens, hippocampus, amygdala, and five equal regions of the corpus callosum. We found that performance on measures of each aptitude was predicted by different subcortical structures: Math--higher right nucleus accumbens volume; Vocabulary--higher left hippocampus volume; Paper Folding--higher right thalamus volume; Foresight--lower right thalamus and higher mid anterior corpus callosum volume; Inductive Reasoning--higher mid anterior corpus callosum volume. Our results support general findings, within the cognitive neurosciences, showing lateralization of structure-function relationships, as well as more specific relationships between individual structures (e.g., left hippocampus) and functions relevant to particular aptitudes (e.g., Vocabulary).

  12. Subcortical correlates of individual differences in aptitude.

    Directory of Open Access Journals (Sweden)

    Rex E Jung

    Full Text Available The study of individual differences encompasses broad constructs including intelligence, creativity, and personality. However, substantially less research is devoted to the study of specific aptitudes in spite of their importance to educational, occupational, and avocational success. We sought to determine subcortical brain structural correlates of several broad aptitudes including Math, Vocabulary, Foresight, Paper Folding, and Inductive Reasoning in a large (N = 107, healthy, young (age range  = 16-29 cohort. Subcortical volumes were measured using an automated technique (FreeSurfer across structures including bilateral caudate, putamen, globus pallidus, thalamus, nucleus accumbens, hippocampus, amygdala, and five equal regions of the corpus callosum. We found that performance on measures of each aptitude was predicted by different subcortical structures: Math--higher right nucleus accumbens volume; Vocabulary--higher left hippocampus volume; Paper Folding--higher right thalamus volume; Foresight--lower right thalamus and higher mid anterior corpus callosum volume; Inductive Reasoning--higher mid anterior corpus callosum volume. Our results support general findings, within the cognitive neurosciences, showing lateralization of structure-function relationships, as well as more specific relationships between individual structures (e.g., left hippocampus and functions relevant to particular aptitudes (e.g., Vocabulary.

  13. The Involvement of Rural Entrepreneurship In The Regional Development

    Directory of Open Access Journals (Sweden)

    Marin Burcea

    2014-12-01

    Full Text Available The aims of the present paper are to emphasize the importance of the rural entrepreneurship involvement in the regional development and to analyse the results of a research regarding the cooperation between the stakeholders of the local and regional development. A set of two hypotheses has been tested by using the data of a sociological survey focused on entrepreneurship and on the potential entrepreneurs from the rural area, belonging to five development regions. The results of our research highlight that the relationships between the rural area business environment and the other actors involved in the regional development (local public authorities, professional associations, institutions centred on regional development are influenced by the framework of organisation and cooperation with the local business environment.

  14. Subcortical biophysical abnormalities in patients with mood disorders.

    Science.gov (United States)

    Kumar, A; Yang, S; Ajilore, O; Wu, M; Charlton, R; Lamar, M

    2014-06-01

    Cortical-subcortical circuits have been implicated in the pathophysiology of mood disorders. Structural and biochemical abnormalities have been identified in patients diagnosed with mood disorders using magnetic resonance imaging-related approaches. In this study, we used magnetization transfer (MT), an innovative magnetic resonance approach, to study biophysical changes in both gray and white matter regions in cortical-subcortical circuits implicated in emotional regulation and behavior. Our study samples comprised 28 patients clinically diagnosed with major depressive disorder (MDD) and 31 non-depressed subjects of comparable age and gender. MT ratio (MTR), representing the biophysical integrity of macromolecular proteins within key components of cortical-subcortical circuits-the caudate, thalamic, striatal, orbitofrontal, anterior cingulate and dorsolateral regions-was the primary outcome measure. In our study, the MTR in the head of the right caudate nucleus was significantly lower in the MDD group when compared with the comparison group. MTR values showed an inverse relationship with age in both groups, with more widespread relationships observed in the MDD group. These data indicate that focal biophysical abnormalities in the caudate nucleus may be central to the pathophysiology of depression and critical to the cortical-subcortical abnormalities that underlie mood disorders. Depression may also accentuate age-related changes in the biophysical properties of cortical and subcortical regions. These observations have broad implications for the neuronal circuitry underlying mood disorders across the lifespan.

  15. Preserved episodic memory in subcortical band heterotopia.

    Science.gov (United States)

    Janzen, Laura; Sherman, Elisabeth; Langfitt, John; Berg, Michel; Connolly, Mary

    2004-05-01

    Neuropsychological profiles of four patients with subcortical band heterotopia (SBH) are presented to delineate further the phenotype of this disorder. Standardized, norm-referenced measures of cognitive functioning, including intelligence, processing speed, attention, language, visuomotor skills, memory, and fine motor ability were administered to four patients with magnetic resonance imaging evidence of SBH. Despite intellectual impairment and other severe cognitive deficits, all four patients displayed relatively intact episodic memory. This selective sparing of memory functions has not been previously reported in individuals with SBH and suggests that doublecortin does not play a role in the development of memory systems in the mesial temporal region, which tend to be spared in SBH.

  16. Comparative neuropsychology of cortical and subcortical dementia.

    Science.gov (United States)

    Freedman, M; Oscar-Berman, M

    1986-11-01

    The terms "cortical" and "subcortical" dementia are controversial; however, the clinical distinction between them is real. For example, although Alzheimer's and Parkinson's disease (prototypical of cortical and subcortical dementia, respectively) share clinical features, they differ in the presence of aphasia, apraxia, and agnosia in Alzheimer's disease but not in Parkinson's dementia. We review our studies aimed at clarifying the mechanisms underlying the differences between these neurological disorders. Experimental paradigms adopted from animal models were used to study the functional anatomy and neuropsychological characteristics of Alzheimer's and Parkinson's disease. The tasks administered include delayed alternation (DA) and delayed response (DR), which are sensitive to frontal system damage, and tactile discrimination learning (TOL) and reversal (TRL) paradigms sensitive to parietal system damage. Alzheimer's patients were significantly impaired on all tasks whereas Parkinsonians with dementia were impaired only on DR and TRL. Consideration of neuroanatomical and neuropsychological mechanisms involved in DA, DR, TOL, and TRL appears to have sharpened the distinction between Alzheimer's and Parkinson's dementia. Dementia in Alzheimer's disease may involve dorsolateral frontal, orbitofrontal and parietal systems. In contrast, dementia in Parkinson's disease may involve prominent dorsolateral frontal system damage.

  17. Physical fitness and shapes of subcortical brain structures in children.

    Science.gov (United States)

    Ortega, Francisco B; Campos, Daniel; Cadenas-Sanchez, Cristina; Altmäe, Signe; Martínez-Zaldívar, Cristina; Martín-Matillas, Miguel; Catena, Andrés; Campoy, Cristina

    2017-03-27

    A few studies have recently reported that higher cardiorespiratory fitness is associated with higher volumes of subcortical brain structures in children. It is, however, unknown how different fitness measures relate to shapes of subcortical brain nuclei. We aimed to examine the association of the main health-related physical fitness components with shapes of subcortical brain structures in a sample of forty-four Spanish children aged 9·7 (sd 0·2) years from the NUtraceuticals for a HEALthier life project. Cardiorespiratory fitness, muscular strength and speed agility were assessed using valid and reliable tests (ALPHA-fitness test battery). Shape of the subcortical brain structures was assessed by MRI, and its relationship with fitness was examined after controlling for a set of potential confounders using a partial correlation permutation approach. Our results showed that all physical fitness components studied were significantly related to the shapes of subcortical brain nuclei. These associations were both positive and negative, indicating that a higher level of fitness in childhood is related to both expansions and contractions in certain regions of the accumbens, amygdala, caudate, hippocampus, pallidum, putamen and thalamus. Cardiorespiratory fitness was mainly associated with expansions, whereas handgrip was mostly associated with contractions in the structures studied. Future randomised-controlled trials will confirm or contrast our findings, demonstrating whether changes in fitness modify the shapes of brain structures and the extent to which those changes influence cognitive function.

  18. Common genetic variants influence human subcortical brain structures

    NARCIS (Netherlands)

    Hibar, Derrek P.; Stein, Jason L.; Renteria, Miguel E.; Arias-Vasquez, Alejandro; Desrivieres, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S.; Armstrong, Nicola J.; Bernard, Manon; Bohlken, Marc M.; Boks, Marco P.; Bralten, Janita; Brown, Andrew A.; Chakravarty, M. Mallar; Chen, Qiang; Ching, Christopher R. K.; Cuellar-Partida, Gabriel; den Braber, Anouk; Giddaluru, Sudheer; Goldman, Aaron L.; Grimm, Oliver; Guadalupe, Tulio; Hass, Johanna; Woldehawariat, Girma; Holmes, Avram J.; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H.; Loohuis, Loes M. Olde; Luciano, Michelle; Macare, Christine; Mather, Karen A.; Mattheisen, Manuel; Milaneschi, Yuri; Nho, Kwangsik; Papmeyer, Martina; Ramasamy, Adaikalavan; Risacher, Shannon L.; Roiz-Santianez, Roberto; Rose, Emma J.; Salami, Alireza; Saemann, Philipp G.; Schmaal, Lianne; Schork, Andrew J.; Shin, Jean; Strike, Lachlan T.; Teumer, Alexander; van Donkelaar, Marjolein M. J.; van Eijk, Kristel R.; Walters, Raymond K.; Westlye, Lars T.; Whelan, Christopher D.; Winkler, Anderson M.; Zwiers, Marcel P.; Alhusaini, Saud; Athanasiu, Lavinia; Ehrlich, Stefan; Hakobjan, Marina M. H.; Hartberg, Cecilie B.; Haukvik, Unn K.; Heister, Angelien J. G. A. M.; Hoehn, David; Kasperaviciute, Dalia; Liewald, David C. M.; Lopez, Lorna M.; Makkinje, Remco R. R.; Matarin, Mar; Naber, Marlies A. M.; McKay, D. Reese; Needham, Margaret; Nugent, Allison C.; Puetz, Benno; Royle, Natalie A.; Shen, Li; Sprooten, Emma; Trabzuni, Daniah; van der Marel, Saskia S. L.; van Hulzen, Kimm J. E.; Walton, Esther; Wolf, Christiane; Almasy, Laura; Ames, David; Arepalli, Sampath; Assareh, Amelia A.; Bastin, Mark E.; Brodaty, Henry; Bulayeva, Kazima B.; Carless, Melanie A.; Cichon, Sven; Corvin, Aiden; Curran, Joanne E.; Czisch, Michael; de Zubicaray, Greig I.; Dillman, Allissa; Duggirala, Ravi; Dyer, Thomas D.; Erk, Susanne; Fedko, Iryna O.; Ferrucci, Luigi; Foroud, Tatiana M.; Fox, Peter T.; Fukunaga, Masaki; Gibbs, J. Raphael; Goering, Harald H. H.; Green, Robert C.; Guelfi, Sebastian; Hansell, Narelle K.; Hartman, Catharina A.; Hegenscheid, Katrin; Heinz, Andreas; Hernandez, Dena G.; Heslenfeld, Dirk J.; Hoekstra, Pieter J.; Holsboer, Florian; Homuth, Georg; Hottenga, Jouke-Jan; Ikeda, Masashi; Jack, Clifford R.; Jenkinson, Mark; Johnson, Robert; Kanai, Ryota; Keil, Maria; Kent, Jack W.; Kochunov, Peter; Kwok, John B.; Lawrie, Stephen M.; Liu, Xinmin; Longo, Dan L.; McMahon, Katie L.; Meisenzah, Eva; Melle, Ingrid; Mahnke, Sebastian; Montgomery, Grant W.; Mostert, Jeanette C.; Muehleisen, Thomas W.; Nalls, Michael A.; Nichols, Thomas E.; Nilsson, Lars G.; Noethen, Markus M.; Ohi, Kazutaka; Olvera, Rene L.; Perez-Iglesias, Rocio; Pike, G. Bruce; Potkin, Steven G.; Reinvang, Ivar; Reppermund, Simone; Rietschel, Marcella; Romanczuk-Seiferth, Nina; Rosen, Glenn D.; Rujescu, Dan; Schnell, Knut; Schofield, Peter R.; Smith, Colin; Steen, Vidar M.; Sussmann, Jessika E.; Thalamuthu, Anbupalam; Toga, Arthur W.; Traynor, Bryan J.; Troncoso, Juan; Turner, Jessica A.; Valdes Hernandez, Maria C.; van't Ent, Dennis; van der Brug, Marcel; van der Wee, Nic J. A.; van Tol, Marie-Jose; Veltman, Dick J.; Wassink, Thomas H.; Westman, Eric; Zielke, Ronald H.; Zonderman, Alan B.; Ashbrook, David G.; Hager, Reinmar; Lu, Lu; McMahon, Francis J.; Morris, Derek W.; Williams, Robert W.; Brunner, Han G.; Buckner, Randy L.; Buitelaar, Jan K.; Cahn, Wiepke; Calhoun, Vince D.; Cavalleri, Gianpiero L.; Crespo-Facorro, Benedicto; Dale, Anders M.; Davies, Gareth E.; Delanty, Norman; Depondt, Chantal; Djurovic, Srdjan; Drevets, Wayne C.; Espeseth, Thomas; Gollub, Randy L.; Ho, Beng-Choon; Hoffman, Wolfgang; Hosten, Norbert; Kahn, Rene S.; Le Hellard, Stephanie; Meyer-Lindenberg, Andreas; Mueller-Myhsok, Bertram; Nauck, Matthias; Nyberg, Lars; Pandolfo, Massimo; Penninx, Brenda W. J. H.; Roffman, Joshua L.; Sisodiya, Sanjay M.; Smoller, Jordan W.; van Bokhoven, Hans; van Haren, Neeltje E. M.; Voelzke, Henry; Walter, Henrik; Weiner, Michael W.; Wen, Wei; White, Tonya; Agartz, Ingrid; Andreassen, Ole A.; Blangero, John; Boomsma, Dorret I.; Brouwer, Rachel M.; Cannon, Dara M.; Cookson, Mark R.; de Geus, Eco J. C.; Deary, Ian J.; Donohoe, Gary; Fernandez, Guillen; Fisher, Simon E.; Francks, Clyde; Glahn, David C.; Grabe, Hans J.; Gruber, Oliver; Hardy, John; Hashimoto, Ryota; Pol, Hilleke E. Hulshoff; Joensson, Erik G.; Kloszewska, Iwona; Lovestone, Simon; Mattay, Venkata S.; Mecocci, Patrizia; McDonald, Colm; McIntosh, Andrew M.; Ophoff, Roel A.; Paus, Tomas; Pausova, Zdenka; Ryten, Mina; Sachdev, Perminder S.; Saykin, Andrew J.; Simmons, Andy; Singleton, Andrew; Soininen, Hilkka; Wardlaw, Joanna M.; Weale, Michael E.; Weinberger, Daniel R.; Adams, Hieab H. H.; Launer, Lenore J.; Seiler, Stephan; Schmidt, Reinhold; Chauhan, Ganesh; Satizabal, Claudia L.; Becker, James T.; Yanek, Lisa; van der Lee, Sven J.; Ebling, Maritza; Fischl, Bruce; Longstreth, W. T.; Greve, Douglas; Schmidt, Helena; Nyquist, Paul; Vinke, Louis N.; van Duijn, Cornelia M.; Xue, Luting; Mazoyer, Bernard; Bis, Joshua C.; Gudnason, Vilmundur; Seshadri, Sudha; Ikram, M. Arfan; Martin, Nicholas G.; Wright, Margaret J.; Schumann, Gunter; Franke, Barbara; Thompson, Paul M.; Medland, Sarah E.

    2015-01-01

    The highly complex structure of the human brain is strongly shaped by genetic influences(1). Subcortical brain regions form circuits with cortical areas to coordinate movement(2), learning, memory(3) and motivation(4), and altered circuits can lead to abnormal behaviour and disease(5). To

  19. Common genetic variants influence human subcortical brain structures

    NARCIS (Netherlands)

    D.P. Hibar (Derrek); J.L. Stein; M.E. Rentería (Miguel); A. Arias-Vásquez (Alejandro); S. Desrivières (Sylvane); N. Jahanshad (Neda); R. Toro (Roberto); K. Wittfeld (Katharina); L. Abramovic (Lucija); M. Andersson (Micael); B. Aribisala (Benjamin); N.J. Armstrong (Nicola J.); M. Bernard (Manon); M.M. Bohlken (Marc M.); M.P.M. Boks (Marco); L.B.C. Bralten (Linda); A.A. Brown (Andrew); M.M. Chakravarty (M. Mallar); Q. Chen (Qiang); C.R.K. Ching (Christopher); G. Cuellar-Partida (Gabriel); A. den Braber (Anouk); S. Giddaluru (Sudheer); A.L. Goldman (Aaron L.); O. Grimm (Oliver); T. Guadalupe (Tulio); J. Hass (Johanna); G. Woldehawariat (Girma); A.J. Holmes (Avram); M. Hoogman (Martine); D. Janowitz (Deborah); T. Jia (Tianye); S. Kim (Shinseog); M. Klein (Marieke); B. Kraemer (Bernd); P.H. Lee (Phil H.); L.M. Olde Loohuis (Loes M.); M. Luciano (Michelle); C. MacAre (Christine); R. Mather; M. Mattheisen (Manuel); Y. Milaneschi (Yuri); K. Nho (Kwangsik); M. Papmeyer (Martina); A. Ramasamy (Adaikalavan); S.L. Risacher (Shannon); R. Roiz-Santiañez (Roberto); E.J. Rose (Emma); A. Salami (Alireza); P.G. Sämann (Philipp); L. Schmaal (Lianne); N.J. Schork (Nicholas); J. Shin (Jean); V.M. Strike (Vanessa); A. Teumer (Alexander); M.M.J. Van Donkelaar (Marjolein M. J.); K.R. van Eijk (Kristel); R.K. Walters (Raymond); L.T. Westlye (Lars); C.D. Whelan (Christopher); A.M. Winkler (Anderson); M.P. Zwiers (Marcel); S. Alhusaini (Saud); L. Athanasiu (Lavinia); S.M. Ehrlich (Stefan); M. Hakobjan (Marina); C.B. Hartberg (Cecilie B.); U.K. Haukvik (Unn); A.J.G.A.M. Heister (Angelien J. G. A. M.); D. Hoehn (David); D. Kasperaviciute (Dalia); D.C. Liewald (David C.); L.M. Lopez (Lorna); R.R.R. Makkinje (Remco R. R.); M. Matarin (Mar); M.A.M. Naber (Marlies A. M.); D. Reese McKay; M. Needham (Margaret); A.C. Nugent (Allison); B. Pütz (Benno); N.A. Royle (Natalie); L. Shen (Li); R. Sprooten (Roy); D. Trabzuni (Danyah); S.S.L. Van Der Marel (Saskia S. L.); K.J.E. Van Hulzen (Kimm J. E.); E. Walton (Esther); A. Björnsson (Asgeir); L. Almasy (Laura); D.J. Ames (David); S. Arepalli (Sampath); A.A. Assareh; M.E. Bastin (Mark); H. Brodaty (Henry); K. Bulayeva (Kazima); M.A. Carless (Melanie); S. Cichon (Sven); A. Corvin (Aiden); J.E. Curran (Joanne); M. Czisch (Michael); G.I. de Zubicaray (Greig); A. Dillman (Allissa); A. Duggirala (Aparna); M.D. Dyer (Matthew); S. Erk; I. Fedko (Iryna); L. Ferrucci (Luigi); T. Foroud (Tatiana); P.T. Fox (Peter); M. Fukunaga (Masaki); J. Raphael Gibbs; H.H.H. Göring (Harald H.); R.C. Green (Robert C.); S. Guelfi (Sebastian); N.K. Hansell (Narelle); C.A. Hartman (Catharina); K. Hegenscheid (Katrin); J. Heinz (Judith); D.G. Hernandez (Dena); D.J. Heslenfeld (Dirk); P.J. Hoekstra (Pieter); F. Holsboer; G. Homuth (Georg); J.J. Hottenga (Jouke Jan); M. Ikeda (Masashi); C.R. Jack Jr. (Clifford); S. Jenkinson (Sarah); R. Johnson (Robert); R. Kanai (Ryota); M. Keil (Maria); J.W. Kent (Jack W.); P. Kochunov (Peter); J.B. Kwok (John B.); S. Lawrie (Stephen); X. Liu (Xinmin); D.L. Longo (Dan L.); K.L. Mcmahon (Katie); E. Meisenzahl (Eva); I. Melle (Ingrid); S. Mohnke (Sebastian); G.W. Montgomery (Grant); J.C. Mostert (Jeanette C.); T.W. Mühleisen (Thomas); M.A. Nalls (Michael); T.E. Nichols (Thomas); L.G. Nilsson; M.M. Nöthen (Markus); K. Ohi (Kazutaka); R.L. Olvera (Rene); R. Perez-Iglesias (Rocio); G. Bruce Pike; S.G. Potkin (Steven); I. Reinvang (Ivar); S. Reppermund; M. Rietschel (Marcella); N. Seiferth (Nina); G.D. Rosen (Glenn D.); D. Rujescu (Dan); K. Schnell (Kerry); C.J. Schofield (Christopher); C. Smith (Colin); V.M. Steen (Vidar); J. Sussmann (Jessika); A. Thalamuthu (Anbupalam); A.W. Toga (Arthur W.); B. Traynor (Bryan); J.C. Troncoso (Juan); J. Turner (Jessica); M.C. Valdés Hernández (Maria); D. van 't Ent (Dennis); M.P. van der Brug (Marcel); N.J. van der Wee (Nic); M.J.D. van Tol (Marie-José); D.J. Veltman (Dick); A.M.J. Wassink (Annemarie); E. Westman (Eric); R.H. Zielke (Ronald H.); A.B. Zonderman (Alan B.); D.G. Ashbrook (David G.); R. Hager (Reinmar); L. Lu (Lu); F.J. Mcmahon (Francis J); D.W. Morris (Derek W); R.W. Williams (Robert W.); H.G. Brunner; M. Buckner; J.K. Buitelaar (Jan K.); W. Cahn (Wiepke); V.D. Calhoun Vince D. (V.); G. Cavalleri (Gianpiero); B. Crespo-Facorro (Benedicto); A.M. Dale (Anders); G.E. Davies (Gareth); N. Delanty; C. Depondt (Chantal); S. Djurovic (Srdjan); D.A. Drevets (Douglas); T. Espeseth (Thomas); R.L. Gollub (Randy); B.C. Ho (Beng ); W. Hoffmann (Wolfgang); N. Hosten (Norbert); R. Kahn (René); S. Le Hellard (Stephanie); A. Meyer-Lindenberg; B. Müller-Myhsok (B.); M. Nauck (Matthias); L. Nyberg (Lars); M. Pandolfo (Massimo); B.W.J.H. Penninx (Brenda); J.L. Roffman (Joshua); S.M. Sisodiya (Sanjay); J.W. Smoller; H. van Bokhoven (Hans); N.E.M. van Haren (Neeltje E.); H. Völzke (Henry); H.J. Walter (Henrik); M.W. Weiner (Michael); W. Wen (Wei); T.J.H. White (Tonya); I. Agartz (Ingrid); O.A. Andreassen (Ole); J. Blangero (John); D.I. Boomsma (Dorret); R.M. Brouwer (Rachel); D.M. Cannon (Dara); M.R. Cookson (Mark); E.J.C. de Geus (Eco); I.J. Deary (Ian J.); D.J. Donohoe (Dennis); G. Fernandez (Guillén); S.E. Fisher (Simon); C. Francks (Clyde); D.C. Glahn (David); H.J. Grabe (Hans Jörgen); O. Gruber (Oliver); J. Hardy (John); R. Hashimoto (Ryota); H.E. Hulshoff Pol (Hilleke); E.G. Jönsson (Erik); I. Kloszewska (Iwona); S. Lovestone (Simon); V.S. Mattay (Venkata S.); P. Mecocci (Patrizia); C. McDonald (Colm); A.M. McIntosh (Andrew); R.A. Ophoff (Roel); T. Paus (Tomas); Z. Pausova (Zdenka); M. Ryten (Mina); P.S. Sachdev (Perminder); A.J. Saykin (Andrew); A. Simmons (Andrew); A. Singleton (Andrew); H. Soininen (H.); J.M. Wardlaw (J.); M.E. Weale (Michael); D.R. Weinberger (Daniel); H.H.H. Adams (Hieab); L.J. Launer (Lenore); S. Seiler (Stephan); R. Schmidt (Reinhold); G. Chauhan (Ganesh); C.L. Satizabal (Claudia L.); J.T. Becker (James); L.R. Yanek (Lisa); S.J. van der Lee (Sven); M. Ebling (Maritza); B. Fischl (Bruce); W.T. Longstreth Jr; D. Greve (Douglas); R. Schmidt (Reinhold); P. Nyquist (Paul); L.N. Vinke (Louis N.); C.M. van Duijn (Cornelia); L. Xue (Luting); B. Mazoyer (Bernard); J.C. Bis (Joshua); V. Gudnason (Vilmundur); S. Seshadri (Sudha); M.A. Ikram (Arfan); N.G. Martin (Nicholas); M.J. Wright (Margaret); G. Schumann (Gunter); B. Franke (Barbara); P.M. Thompson (Paul); S.E. Medland (Sarah Elizabeth)

    2015-01-01

    textabstractThe highly complex structure of the human brain is strongly shaped by genetic influences. Subcortical brain regions form circuits with cortical areas to coordinate movement, learning, memory and motivation, and altered circuits can lead to abnormal behaviour and disease. To investigate

  20. Dynamic brain structural changes after left hemisphere subcortical stroke.

    Science.gov (United States)

    Fan, Fengmei; Zhu, Chaozhe; Chen, Hai; Qin, Wen; Ji, Xunming; Wang, Liang; Zhang, Yujin; Zhu, Litao; Yu, Chunshui

    2013-08-01

    This study aimed to quantify dynamic structural changes in the brain after subcortical stroke and identify brain areas that contribute to motor recovery of affected limbs. High-resolution structural MRI and neurological examinations were conducted at five consecutive time points during the year following stroke in 10 patients with left hemisphere subcortical infarctions involving motor pathways. Gray matter volume (GMV) was calculated using an optimized voxel-based morphometry technique, and dynamic changes in GMV were evaluated using a mixed-effects model. After stroke, GMV was decreased bilaterally in brain areas that directly or indirectly connected with lesions, which suggests the presence of regional damage in these "healthy" brain tissues in stroke patients. Moreover, the GMVs of these brain areas were not correlated with the Motricity Index (MI) scores when controlling for time intervals after stroke, which indicates that these structural changes may reflect an independent process (such as axonal degeneration) but cannot affect the improvement of motor function. In contrast, the GMV was increased in several brain areas associated with motor and cognitive functions after stroke. When controlling for time intervals after stroke, only the GMVs in the cognitive-related brain areas (hippocampus and precuneus) were positively correlated with MI scores, which suggests that the structural reorganization in cognitive-related brain areas may facilitate the recovery of motor function. However, considering the small sample size of this study, further studies are needed to clarify the exact relationships between structural changes and recovery of motor function in stroke patients. Copyright © 2012 Wiley Periodicals, Inc.

  1. Abnormalities in emotion processing within cortical and subcortical regions in criminal psychopaths: evidence from a functional magnetic resonance imaging study using pictures with emotional content.

    Science.gov (United States)

    Müller, Jürgen L; Sommer, Monika; Wagner, Verena; Lange, Kirsten; Taschler, Heidrun; Röder, Christian H; Schuierer, Gerhardt; Klein, Helmfried E; Hajak, Göran

    2003-07-15

    Neurobiology of psychopathy is important for our understanding of current neuropsychiatric questions. Despite a growing interest in biological research in psychopathy, its neural underpinning remains obscure. We used functional magnetic resonance imaging to study the influence of affective contents on brain activation in psychopaths. Series containing positive and negative pictures from the International Affective Picture System were shown to six male psychopaths and six male control subjects while 100 whole-brain echo-planar-imaging measurements were acquired. Differences in brain activation were evaluated using BrainVoyager software 4.6. In psychopaths, increased activation through negative contents was found right-sided in prefrontal regions and amygdala. Activation was reduced right-sided in the subgenual cingulate and the temporal gyrus, and left-sided in the dorsal cingulate and the parahippocampal gyrus. Increased activation through positive contents was found left-sided in the orbitofrontal regions. Activation was reduced in right medial frontal and medial temporal regions. These findings underline the hypotheses that psychopathy is neurobiologically reflected by dysregulation and disturbed functional connectivity of emotion-related brain regions. These findings may be interpreted within a framework including prefrontal regions that provide top-down control to and regulate bottom-up signals from limbic areas. Because of the small sample size, the results of this study have to be regarded as preliminary.

  2. The action of pulse-modulated GSM radiation increases regional changes in brain activity and c-Fos expression in cortical and subcortical areas in a rat model of picrotoxin-induced seizure proneness.

    Science.gov (United States)

    López-Martín, E; Bregains, J; Relova-Quinteiro, J L; Cadarso-Suárez, C; Jorge-Barreiro, F J; Ares-Pena, F J

    2009-05-01

    The action of the pulse-modulated GSM radiofrequency of mobile phones has been suggested as a physical phenomenon that might have biological effects on the mammalian central nervous system. In the present study, GSM-exposed picrotoxin-pretreated rats showed differences in clinical and EEG signs, and in c-Fos expression in the brain, with respect to picrotoxin-treated rats exposed to an equivalent dose of unmodulated radiation. Neither radiation treatment caused tissue heating, so thermal effects can be ruled out. The most marked effects of GSM radiation on c-Fos expression in picrotoxin-treated rats were observed in limbic structures, olfactory cortex areas and subcortical areas, the dentate gyrus, and the central lateral nucleus of the thalamic intralaminar nucleus group. Nonpicrotoxin-treated animals exposed to unmodulated radiation showed the highest levels of neuronal c-Fos expression in cortical areas. These results suggest a specific effect of the pulse modulation of GSM radiation on brain activity of a picrotoxin-induced seizure-proneness rat model and indicate that this mobile-phone-type radiation might induce regional changes in previous preexcitability conditions of neuronal activation.

  3. Malignant transformation in a case of megalencephalic leukoencephalopathy with subcortical cysts: An extreme rarity in a rare disorder.

    Science.gov (United States)

    Jain, Rajendra Singh; Gupta, Pankaj Kumar; Kumar, Sunil; Agrawal, Rakesh

    2016-01-01

    Megalencephalic leukoencephalopathy with subcortical cysts (MLC) is an autosomal recessive inherited disorder characterized by macrocephaly, progressive motor disability, seizures, mild cognitive decline, slow progression, and typical magnetic resonance imaging (MRI) findings. Age of onset of symptoms is described from birth to 25 years. Late onset presentation is very rare, only few cases have been reported worldwide. Most important clue for diagnosis is the characteristic MRI changes that include diffuse involvement of subcortical white matter mainly in frontoparietal region with relative sparing of central white matter along with subcortical cysts mostly in anterior temporal region. Cysts are usually benign and slowly progressive. Malignant transformation of cysts has not been reported as yet. We herein report a very unusual and probably the first case of MLC who presented to us in a unique manner with late onset and malignant transformation of cyst in left temporal region leading to rapid neurological decline. This case report highlights a possible life-threatening complication of a previously known slowly progressive disease warranting urgent neurosurgical intervention.

  4. Glutamate concentration in the medial prefrontal cortex predicts resting-state cortical-subcortical functional connectivity in humans.

    Directory of Open Access Journals (Sweden)

    Niall W Duncan

    Full Text Available Communication between cortical and subcortical regions is integral to a wide range of psychological processes and has been implicated in a number of psychiatric conditions. Studies in animals have provided insight into the biochemical and connectivity processes underlying such communication. However, to date no experiments that link these factors in humans in vivo have been carried out. To investigate the role of glutamate in individual differences in communication between the cortex--specifically the medial prefrontal cortex (mPFC--and subcortical regions in humans, a combination of resting-state fMRI, DTI and MRS was performed. The subcortical target regions were the nucleus accumbens (NAc, dorsomedial thalamus (DMT, and periaqueductal grey (PAG. It was found that functional connectivity between the mPFC and each of the NAc and DMT was positively correlated with mPFC glutamate concentrations, whilst functional connectivity between the mPFC and PAG was negatively correlated with glutamate concentration. The correlations involving mPFC glutamate and FC between the mPFC and each of the DMT and PAG were mirrored by correlations with structural connectivity, providing evidence that the glutamatergic relationship may, in part, be due to direct connectivity. These results are in agreement with existing results from animal studies and may have relevance for MDD and schizophrenia.

  5. Cortical regions involved in the observation of bimanual actions.

    Science.gov (United States)

    Heitger, Marcus H; Macé, Marc J-M; Jastorff, Jan; Swinnen, Stephan P; Orban, Guy A

    2012-11-01

    Although we are beginning to understand how observed actions performed by conspecifics with a single hand are processed and how bimanual actions are controlled by the motor system, we know very little about the processing of observed bimanual actions. We used fMRI to compare the observation of bimanual manipulative actions with their unimanual components, relative to visual control conditions equalized for visual motion. Bimanual action observation did not activate any region specialized for processing visual signals related to this more elaborated action. On the contrary, observation of bimanual and unimanual actions activated similar occipito-temporal, parietal and premotor networks. However, whole-brain as well as region of interest (ROI) analyses revealed that this network functions differently under bimanual and unimanual conditions. Indeed, in bimanual conditions, activity in the network was overall more bilateral, especially in parietal cortex. In addition, ROI analyses indicated bilateral parietal activation patterns across hand conditions distinctly different from those at other levels of the action-observation network. These activation patterns suggest that while occipito-temporal and premotor levels are involved with processing the kinematics of the observed actions, the parietal cortex is more involved in the processing of static, postural aspects of the observed action. This study adds bimanual cooperation to the growing list of distinctions between parietal and premotor cortex regarding factors affecting visual processing of observed actions.

  6. Toxocara canis myelitis involving the lumbosacral region: a case report.

    Science.gov (United States)

    Hiramatsu, Yu; Yoshimura, Michiyoshi; Saigo, Ryuji; Arata, Hitoshi; Okamoto, Yuji; Matsuura, Eiji; Maruyama, Haruhiko; Takashima, Hiroshi

    2017-03-01

    Toxocara canis is a parasite known to cause visceral larva migrans. The infection rarely affects the central nervous system but there have been several reports of myelitis caused by visceral larva migrans due to Toxocara canis. In previous reported cases, the lesions were located in the thoracic or cervical spinal cord. To the best of our knowledge, this is the first report of a lesion involving the lumbosacral region. A 60-year-old man developed weakness and dysesthesia in the lower limbs. The symptoms resolved spontaneously, but recurred after five months. One month later, the patient developed pollakiuria and constipation. He was a dog owner and frequently ate raw chicken meat and beef liver. Sagittal T2-weighted image (T2WI) showed swelling and hyperintensity in the spinal cord from T10 to the lumbosacral region and focal nodular enhancement on the posterior segment of the lumbar spinal cord. Blood cell counts showed slight eosinophilia and elevated serum immunoglobulin E level. Cerebrospinal fluid examination showed slight pleocytosis with eosinophilia. Enzyme-linked immunosorbent assay showed high levels of anti-Toxocara antibodies in the serum and cerebrospinal fluid. In addition, confirmatory test by Western blot was positive. The patient was initially treated with intravenous methylprednisolone with slight improvement in muscle weakness. Albendazole was added with a second course of intravenous methylprednisolone. The muscle weakness in the lower limbs improved considerably, and swelling and hyperintensity on T2WI almost disappeared. Our results suggest that Toxocara canis myelitis cannot be discounted even if the myelitis involves the lumbosacral region.

  7. Hippocampal-cortical interaction during periods of subcortical silence.

    Science.gov (United States)

    Logothetis, N K; Eschenko, O; Murayama, Y; Augath, M; Steudel, T; Evrard, H C; Besserve, M; Oeltermann, A

    2012-11-22

    Hippocampal ripples, episodic high-frequency field-potential oscillations primarily occurring during sleep and calmness, have been described in mice, rats, rabbits, monkeys and humans, and so far they have been associated with retention of previously acquired awake experience. Although hippocampal ripples have been studied in detail using neurophysiological methods, the global effects of ripples on the entire brain remain elusive, primarily owing to a lack of methodologies permitting concurrent hippocampal recordings and whole-brain activity mapping. By combining electrophysiological recordings in hippocampus with ripple-triggered functional magnetic resonance imaging, here we show that most of the cerebral cortex is selectively activated during the ripples, whereas most diencephalic, midbrain and brainstem regions are strongly and consistently inhibited. Analysis of regional temporal response patterns indicates that thalamic activity suppression precedes the hippocampal population burst, which itself is temporally bounded by massive activations of association and primary cortical areas. These findings suggest that during off-line memory consolidation, synergistic thalamocortical activity may be orchestrating a privileged interaction state between hippocampus and cortex by silencing the output of subcortical centres involved in sensory processing or potentially mediating procedural learning. Such a mechanism would cause minimal interference, enabling consolidation of hippocampus-dependent memory.

  8. Morphologic characteristics of subcortical heterotopia: MR imaging study.

    Science.gov (United States)

    Barkovich, A J

    2000-02-01

    Gray matter heterotopia have been divided into three groups based on clinical and imaging characteristics: subependymal, subcortical, and band heterotopia. Nonetheless, subcortical heterotopia can have variable morphologic findings. The purpose of this study was to perform a morphologic analysis of a series of cases of subcortical heterotopia based on MR images, to correlate the morphologic appearance with clinical characteristics, and to speculate about the embryologic implications of our results. The MR imaging studies and clinical records of 24 patients with subcortical heterotopia were retrospectively reviewed. The morphologic findings of the heterotopia were recorded along with presence and type of associated malformations. These results were correlated with available data on development and neurologic status. Analysis revealed that, in six cases, the heterotopia were composed exclusively of multiple nodules, in 13, they appeared primarily as curvilinear ribbons of cortex extending into the white matter, and in five, they had deep nodular regions with curvilinear areas more peripherally. All of the curvilinear regions were contiguous with the cerebral cortex in at least two locations. In eight cases, curvilinear heterotopia contained curvilinear areas of flow void that were thought to be blood vessels; in 10, they contained fluid resembling CSF. No difference in developmental or neurologic manifestations was noted among patients with heterotopia of different morphologic appearances. Subcortical heterotopia can have nodular or curvilinear morphologic appearances. Although no difference was found in the clinical conditions of the patients with differing morphologic appearances, additional analysis of these patients or studies of animal models of these malformations may further our understanding of normal and abnormal brain development.

  9. Automated localization of periventricular and subcortical white matter lesions

    Science.gov (United States)

    van der Lijn, Fedde; Vernooij, Meike W.; Ikram, M. Arfan; Vrooman, Henri A.; Rueckert, Daniel; Hammers, Alexander; Breteler, Monique M. B.; Niessen, Wiro J.

    2007-03-01

    It is still unclear whether periventricular and subcortical white matter lesions (WMLs) differ in etiology or clinical consequences. Studies addressing this issue would benefit from automated segmentation and localization of WMLs. Several papers have been published on WML segmentation in MR images. Automated localization however, has not been investigated as much. This work presents and evaluates a novel method to label segmented WMLs as periventricular and subcortical. The proposed technique combines tissue classification and registration-based segmentation to outline the ventricles in MRI brain data. The segmented lesions can then be labeled into periventricular WMLs and subcortical WMLs by applying region growing and morphological operations. The technique was tested on scans of 20 elderly subjects in which neuro-anatomy experts manually segmented WMLs. Localization accuracy was evaluated by comparing the results of the automated method with a manual localization. Similarity indices and volumetric intraclass correlations between the automated and the manual localization were 0.89 and 0.95 for periventricular WMLs and 0.64 and 0.89 for subcortical WMLs, respectively. We conclude that this automated method for WML localization performs well to excellent in comparison to the gold standard.

  10. Cortical and subcortical networks in human secondarily generalized tonic–clonic seizures

    Science.gov (United States)

    Varghese, G. I.; Purcaro, M.J.; Motelow, J.E.; Enev, M.; McNally, K. A.; Levin, A.R.; Hirsch, L. J.; Tikofsky, R.; Zubal, I. G.; Paige, A. L.; Spencer, S. S.

    2009-01-01

    Generalized tonic–clonic seizures are among the most dramatic physiological events in the nervous system. The brain regions involved during partial seizures with secondary generalization have not been thoroughly investigated in humans. We used single photon emission computed tomography (SPECT) to image cerebral blood flow (CBF) changes in 59 secondarily generalized seizures from 53 patients. Images were analysed using statistical parametric mapping to detect cortical and subcortical regions most commonly affected in three different time periods: (i) during the partial seizure phase prior to generalization; (ii) during the generalization period; and (iii) post-ictally. We found that in the pre-generalization period, there were focal CBF increases in the temporal lobe on group analysis, reflecting the most common region of partial seizure onset. During generalization, individual patients had focal CBF increases in variable regions of the cerebral cortex. Group analysis during generalization revealed that the most consistent increase occurred in the superior medial cerebellum, thalamus and basal ganglia. Post-ictally, there was a marked progressive CBF increase in the cerebellum which spread to involve the bilateral lateral cerebellar hemispheres, as well as CBF increases in the midbrain and basal ganglia. CBF decreases were seen in the fronto-parietal association cortex, precuneus and cingulate gyrus during and following seizures, similar to the ‘default mode’ regions reported previously to show decreased activity in seizures and in normal behavioural tasks. Analysis of patient behaviour during and following seizures showed impaired consciousness at the time of SPECT tracer injections. Correlation analysis across patients demonstrated that cerebellar CBF increases were related to increases in the upper brainstem and thalamus, and to decreases in the fronto-parietal association cortex. These results reveal a network of cortical and subcortical structures that

  11. Cortical and subcortical networks in human secondarily generalized tonic-clonic seizures.

    Science.gov (United States)

    Blumenfeld, H; Varghese, G I; Purcaro, M J; Motelow, J E; Enev, M; McNally, K A; Levin, A R; Hirsch, L J; Tikofsky, R; Zubal, I G; Paige, A L; Spencer, S S

    2009-04-01

    Generalized tonic-clonic seizures are among the most dramatic physiological events in the nervous system. The brain regions involved during partial seizures with secondary generalization have not been thoroughly investigated in humans. We used single photon emission computed tomography (SPECT) to image cerebral blood flow (CBF) changes in 59 secondarily generalized seizures from 53 patients. Images were analysed using statistical parametric mapping to detect cortical and subcortical regions most commonly affected in three different time periods: (i) during the partial seizure phase prior to generalization; (ii) during the generalization period; and (iii) post-ictally. We found that in the pre-generalization period, there were focal CBF increases in the temporal lobe on group analysis, reflecting the most common region of partial seizure onset. During generalization, individual patients had focal CBF increases in variable regions of the cerebral cortex. Group analysis during generalization revealed that the most consistent increase occurred in the superior medial cerebellum, thalamus and basal ganglia. Post-ictally, there was a marked progressive CBF increase in the cerebellum which spread to involve the bilateral lateral cerebellar hemispheres, as well as CBF increases in the midbrain and basal ganglia. CBF decreases were seen in the fronto-parietal association cortex, precuneus and cingulate gyrus during and following seizures, similar to the 'default mode' regions reported previously to show decreased activity in seizures and in normal behavioural tasks. Analysis of patient behaviour during and following seizures showed impaired consciousness at the time of SPECT tracer injections. Correlation analysis across patients demonstrated that cerebellar CBF increases were related to increases in the upper brainstem and thalamus, and to decreases in the fronto-parietal association cortex. These results reveal a network of cortical and subcortical structures that are most

  12. Gene co-expression analysis identifies brain regions and cell types involved in migraine pathophysiology: a GWAS-based study using the Allen Human Brain Atlas.

    Science.gov (United States)

    Eising, Else; Huisman, Sjoerd M H; Mahfouz, Ahmed; Vijfhuizen, Lisanne S; Anttila, Verneri; Winsvold, Bendik S; Kurth, Tobias; Ikram, M Arfan; Freilinger, Tobias; Kaprio, Jaakko; Boomsma, Dorret I; van Duijn, Cornelia M; Järvelin, Marjo-Riitta R; Zwart, John-Anker; Quaye, Lydia; Strachan, David P; Kubisch, Christian; Dichgans, Martin; Davey Smith, George; Stefansson, Kari; Palotie, Aarno; Chasman, Daniel I; Ferrari, Michel D; Terwindt, Gisela M; de Vries, Boukje; Nyholt, Dale R; Lelieveldt, Boudewijn P F; van den Maagdenberg, Arn M J M; Reinders, Marcel J T

    2016-04-01

    Migraine is a common disabling neurovascular brain disorder typically characterised by attacks of severe headache and associated with autonomic and neurological symptoms. Migraine is caused by an interplay of genetic and environmental factors. Genome-wide association studies (GWAS) have identified over a dozen genetic loci associated with migraine. Here, we integrated migraine GWAS data with high-resolution spatial gene expression data of normal adult brains from the Allen Human Brain Atlas to identify specific brain regions and molecular pathways that are possibly involved in migraine pathophysiology. To this end, we used two complementary methods. In GWAS data from 23,285 migraine cases and 95,425 controls, we first studied modules of co-expressed genes that were calculated based on human brain expression data for enrichment of genes that showed association with migraine. Enrichment of a migraine GWAS signal was found for five modules that suggest involvement in migraine pathophysiology of: (i) neurotransmission, protein catabolism and mitochondria in the cortex; (ii) transcription regulation in the cortex and cerebellum; and (iii) oligodendrocytes and mitochondria in subcortical areas. Second, we used the high-confidence genes from the migraine GWAS as a basis to construct local migraine-related co-expression gene networks. Signatures of all brain regions and pathways that were prominent in the first method also surfaced in the second method, thus providing support that these brain regions and pathways are indeed involved in migraine pathophysiology.

  13. Fast synaptic subcortical control of hippocampal circuits.

    Science.gov (United States)

    Varga, Viktor; Losonczy, Attila; Zemelman, Boris V; Borhegyi, Zsolt; Nyiri, Gábor; Domonkos, Andor; Hangya, Balázs; Holderith, Noémi; Magee, Jeffrey C; Freund, Tamás F

    2009-10-16

    Cortical information processing is under state-dependent control of subcortical neuromodulatory systems. Although this modulatory effect is thought to be mediated mainly by slow nonsynaptic metabotropic receptors, other mechanisms, such as direct synaptic transmission, are possible. Yet, it is currently unknown if any such form of subcortical control exists. Here, we present direct evidence of a strong, spatiotemporally precise excitatory input from an ascending neuromodulatory center. Selective stimulation of serotonergic median raphe neurons produced a rapid activation of hippocampal interneurons. At the network level, this subcortical drive was manifested as a pattern of effective disynaptic GABAergic inhibition that spread throughout the circuit. This form of subcortical network regulation should be incorporated into current concepts of normal and pathological cortical function.

  14. Formulaic language in cortical and subcortical disease: Evidence of the dual process model.

    Directory of Open Access Journals (Sweden)

    Kelly Bridges

    2014-04-01

    of formulaic language is at least partially modulated by the intact subcortical region, supporting the dual process model. Subcortical disease: Parkinson’s disease and recited speech Evidence of the involvement of subcortical structures in the production of formulaic language also comes from studies of subcortical injury. An examination of the spontaneous speech of people with basal ganglia stroke found fewer formulaic expressions than healthy adults or people with left hemisphere lesions (Sidtis et al., 2009; Illes et al., 1988. Similarly, a case study of a man post-subcortical stroke described deficits in the ability to recite prayers, a longer form of formulaic language (Speedie et al., 1993. A study of individuals with Parkinson’s disease (PD, a progressive disease causing dysfunction of the basal ganglia circuitry, sought to extend Speedie et al.’s (1993 findings with group data (Bridges et al., 2013b. Two groups of people with PD (M age = 60.9, 6 with deep brain stimulation of the subthalamic nucleus (STN-DBS, and 7 without STN-DBS, and another 7 healthy participants (HC were asked to recite familiar poems, prayers and rhymes (Humpty Dumpty, Twinkle Twinkle Little Star, Mary Had a Little Lamb, Jack and Jill, Roses are Red, Sticks and Stones, The Lord’s Prayer, and The Pledge of Allegiance. Groups were compared for the percent of error words produced (out of all non-target words produced during the task. The STN-DBS group in the OFF condition (a more severe state of subcortical dysfunction produced significantly more error words (37.13% than HCs (17.44%. The STN-DBS group in the ON condition (33.34% and the PD group without STN-DBS (21.53% fell between the STN-DBS OFF condition and HCs. These results provide further support for the dual process model of language production, as individuals with the most severe state of subcortical dysfunction perform poorly on recited speech tasks when compared to healthy adults, indicating the importance of intact

  15. Mapping abnormal subcortical brain morphometry in an elderly HIV+ cohort

    Directory of Open Access Journals (Sweden)

    Benjamin S.C. Wade

    2015-01-01

    Full Text Available Over 50% of HIV+ individuals exhibit neurocognitive impairment and subcortical atrophy, but the profile of brain abnormalities associated with HIV is still poorly understood. Using surface-based shape analyses, we mapped the 3D profile of subcortical morphometry in 63 elderly HIV+ participants and 31 uninfected controls. The thalamus, caudate, putamen, pallidum, hippocampus, amygdala, brainstem, accumbens, callosum and ventricles were segmented from high-resolution MRIs. To investigate shape-based morphometry, we analyzed the Jacobian determinant (JD and radial distances (RD defined on each region's surfaces. We also investigated effects of nadir CD4+ T-cell counts, viral load, time since diagnosis (TSD and cognition on subcortical morphology. Lastly, we explored whether HIV+ participants were distinguishable from unaffected controls in a machine learning context. All shape and volume features were included in a random forest (RF model. The model was validated with 2-fold cross-validation. Volumes of HIV+ participants' bilateral thalamus, left pallidum, left putamen and callosum were significantly reduced while ventricular spaces were enlarged. Significant shape variation was associated with HIV status, TSD and the Wechsler adult intelligence scale. HIV+ people had diffuse atrophy, particularly in the caudate, putamen, hippocampus and thalamus. Unexpectedly, extended TSD was associated with increased thickness of the anterior right pallidum. In the classification of HIV+ participants vs. controls, our RF model attained an area under the curve of 72%.

  16. Safety of eptifibatide for subcortical stroke progression.

    Science.gov (United States)

    Martin-Schild, Sheryl; Shaltoni, Hashem; Abraham, Anitha T; Barreto, Andrew D; Hallevi, Hen; Gonzales, Nicole R; Grotta, James C; Savitz, Sean I

    2009-01-01

    There is no proven treatment for stroke progression in patients with subcortical infarcts. Eptifibatide, a glycoprotein IIb/IIIa inhibitor, might halt stroke progression by improving flow in the microcirculation. We conducted a retrospective analysis of patients with subcortical stroke who experienced deterioration and were treated with eptifibatide (loading dose 180 microg/kg; infusion 2 m microg/kg/min) for 24-48 h. Oral antiplatelet agents were started 6 h before discontinuation of eptifibatide. Twenty-four patients with subcortical strokes were treated. The median admission NIHSS score was 5.0, which worsened to 8.5 (motor 5.0) before starting eptifibatide. The median NIHSS score 24 h after starting eptifibatide was 5.5. At 24 h, 42% had motor NIHSS scores less than or equal to pre-deterioration scores (50% for total NIHSS), and 50% had improved at least 1 motor point compared to pre-eptifibatide scores, which was sustained until hospital discharge. At discharge, the median total NIHSS score was 4.5. Ninety-two percent of patients were discharged home or to inpatient rehabilitation. Treatment was stopped early in 1 case due to a platelet drop Eptifibatide infusion may be safe in patients with subcortical ischemic strokes. Future studies are needed to test the safety and potential efficacy of this agent in subcortical stroke progression. Copyright (c) 2009 S. Karger AG, Basel.

  17. Cognitively Engaging Activity is Associated with Greater Cortical and Subcortical Volumes

    Directory of Open Access Journals (Sweden)

    Talia R. Seider

    2016-05-01

    Full Text Available As the population ages and dementia becomes a growing healthcare concern, it is increasingly important to identify targets for intervention to delay or attenuate cognitive decline. Research has shown that the most successful interventions aim at altering lifestyle factors. Thus, this study examined how involvement in physical, cognitive, and social activity is related to brain structure in older adults. Sixty-five adults (mean age = 71.4 years, standard deviation = 8.9 received the Community Healthy Activities Model Program for Seniors (CHAMPS, a questionnaire that polls everyday activities in which older adults may be involved, and also underwent structural magnetic resonance imaging. Stepwise regression with backwards selection was used to predict weekly time spent in either social, cognitive, light physical, or heavy physical activity from the volume of one of the cortical or subcortical regions of interest (corrected by intracranial volume as well as age, education, and gender as control variables. Regressions revealed that more time spent in cognitive activity was associated with greater volumes of all brain regions studied: total cortex (β = .289, p = .014, frontal (β = .276, p = .019, parietal (β = .305, p = .009, temporal (β = .275, p = .020, and occipital (β = .256, p = .030 lobes, and thalamus (β = .310, p = .010, caudate (β = .233, p = .049, hippocampus (β = .286, p = .017, and amygdala (β = .336, p = .004. These effects remained even after accounting for the positive association between cognitive activity and education. No other activity variable was associated with brain volumes. Results indicate that time spent in cognitively engaging activity is associated with greater cortical and subcortical brain volume. Findings suggest that interventions aimed at increasing levels of cognitive activity may delay cognitive consequences of aging and decrease the risk of developing dementia.

  18. Subcortical White Matter Changes with Normal Aging Detected by Multi-Shot High Resolution Diffusion Tensor Imaging.

    Directory of Open Access Journals (Sweden)

    Sheng Xie

    Full Text Available Subcortical white matter builds neural connections between cortical and subcortical regions and constitutes the basis of neural networks. It plays a very important role in normal brain function. Various studies have shown that white matter deteriorates with aging. However, due to the limited spatial resolution provided by traditional diffusion imaging techniques, microstructural information from subcortical white matter with normal aging has not been comprehensively assessed. This study aims to investigate the deterioration effect with aging in the subcortical white matter and provide a baseline standard for pathological disorder diagnosis. We apply our newly developed multi-shot high resolution diffusion tensor imaging, using self-feeding multiplexed sensitivity-encoding, to measure subcortical white matter changes in regions of interest of healthy persons with a wide age range. Results show significant fractional anisotropy decline and radial diffusivity increasing with age, especially in the anterior part of the brain. We also find that subcortical white matter has more prominent changes than white matter close to the central brain. The observed changes in the subcortical white matter may be indicative of a mild demyelination and a loss of myelinated axons, which may contribute to normal age-related functional decline.

  19. Subcortical White Matter Changes with Normal Aging Detected by Multi-Shot High Resolution Diffusion Tensor Imaging.

    Science.gov (United States)

    Xie, Sheng; Zhang, Zhe; Chang, Feiyan; Wang, Yishi; Zhang, Zhenxia; Zhou, Zhenyu; Guo, Hua

    2016-01-01

    Subcortical white matter builds neural connections between cortical and subcortical regions and constitutes the basis of neural networks. It plays a very important role in normal brain function. Various studies have shown that white matter deteriorates with aging. However, due to the limited spatial resolution provided by traditional diffusion imaging techniques, microstructural information from subcortical white matter with normal aging has not been comprehensively assessed. This study aims to investigate the deterioration effect with aging in the subcortical white matter and provide a baseline standard for pathological disorder diagnosis. We apply our newly developed multi-shot high resolution diffusion tensor imaging, using self-feeding multiplexed sensitivity-encoding, to measure subcortical white matter changes in regions of interest of healthy persons with a wide age range. Results show significant fractional anisotropy decline and radial diffusivity increasing with age, especially in the anterior part of the brain. We also find that subcortical white matter has more prominent changes than white matter close to the central brain. The observed changes in the subcortical white matter may be indicative of a mild demyelination and a loss of myelinated axons, which may contribute to normal age-related functional decline.

  20. Hippocampal atrophy in subcortical vascular dementia

    NARCIS (Netherlands)

    van de Pol, L.A.; Gertz, H.J.; Scheltens, P.; Wolf, H

    2011-01-01

    Background and Purpose: New research criteria for subcortical vascular dementia (SVaD) have been suggested to define a more homogeneous subgroup of vascular dementia. Hippocampal (Hc) atrophy is a hallmark of Alzheimer's disease (AD), but it also occurs in other dementia disorders including vascular

  1. Common genetic variants influence human subcortical brain structures

    Science.gov (United States)

    Hibar, Derrek P.; Stein, Jason L.; Renteria, Miguel E.; Arias-Vasquez, Alejandro; Desrivières, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S.; Armstrong, Nicola J.; Bernard, Manon; Bohlken, Marc M.; Boks, Marco P.; Bralten, Janita; Brown, Andrew A.; Chakravarty, M. Mallar; Chen, Qiang; Ching, Christopher R. K.; Cuellar-Partida, Gabriel; den Braber, Anouk; Giddaluru, Sudheer; Goldman, Aaron L.; Grimm, Oliver; Guadalupe, Tulio; Hass, Johanna; Woldehawariat, Girma; Holmes, Avram J.; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H.; Olde Loohuis, Loes M.; Luciano, Michelle; Macare, Christine; Mather, Karen A.; Mattheisen, Manuel; Milaneschi, Yuri; Nho, Kwangsik; Papmeyer, Martina; Ramasamy, Adaikalavan; Risacher, Shannon L.; Roiz-Santiañez, Roberto; Rose, Emma J.; Salami, Alireza; Sämann, Philipp G.; Schmaal, Lianne; Schork, Andrew J.; Shin, Jean; Strike, Lachlan T.; Teumer, Alexander; van Donkelaar, Marjolein M. J.; van Eijk, Kristel R.; Walters, Raymond K.; Westlye, Lars T.; Whelan, Christopher D.; Winkler, Anderson M.; Zwiers, Marcel P.; Alhusaini, Saud; Athanasiu, Lavinia; Ehrlich, Stefan; Hakobjan, Marina M. H.; Hartberg, Cecilie B.; Haukvik, Unn K.; Heister, Angelien J. G. A. M.; Hoehn, David; Kasperaviciute, Dalia; Liewald, David C. M.; Lopez, Lorna M.; Makkinje, Remco R. R.; Matarin, Mar; Naber, Marlies A. M.; McKay, D. Reese; Needham, Margaret; Nugent, Allison C.; Pütz, Benno; Royle, Natalie A.; Shen, Li; Sprooten, Emma; Trabzuni, Daniah; van der Marel, Saskia S. L.; van Hulzen, Kimm J. E.; Walton, Esther; Wolf, Christiane; Almasy, Laura; Ames, David; Arepalli, Sampath; Assareh, Amelia A.; Bastin, Mark E.; Brodaty, Henry; Bulayeva, Kazima B.; Carless, Melanie A.; Cichon, Sven; Corvin, Aiden; Curran, Joanne E.; Czisch, Michael; de Zubicaray, Greig I.; Dillman, Allissa; Duggirala, Ravi; Dyer, Thomas D.; Erk, Susanne; Fedko, Iryna O.; Ferrucci, Luigi; Foroud, Tatiana M.; Fox, Peter T.; Fukunaga, Masaki; Gibbs, J. Raphael; Göring, Harald H. H.; Green, Robert C.; Guelfi, Sebastian; Hansell, Narelle K.; Hartman, Catharina A.; Hegenscheid, Katrin; Heinz, Andreas; Hernandez, Dena G.; Heslenfeld, Dirk J.; Hoekstra, Pieter J.; Holsboer, Florian; Homuth, Georg; Hottenga, Jouke-Jan; Ikeda, Masashi; Jack, Clifford R.; Jenkinson, Mark; Johnson, Robert; Kanai, Ryota; Keil, Maria; Kent, Jack W.; Kochunov, Peter; Kwok, John B.; Lawrie, Stephen M.; Liu, Xinmin; Longo, Dan L.; McMahon, Katie L.; Meisenzahl, Eva; Melle, Ingrid; Mohnke, Sebastian; Montgomery, Grant W.; Mostert, Jeanette C.; Mühleisen, Thomas W.; Nalls, Michael A.; Nichols, Thomas E.; Nilsson, Lars G.; Nöthen, Markus M.; Ohi, Kazutaka; Olvera, Rene L.; Perez-Iglesias, Rocio; Pike, G. Bruce; Potkin, Steven G.; Reinvang, Ivar; Reppermund, Simone; Rietschel, Marcella; Romanczuk-Seiferth, Nina; Rosen, Glenn D.; Rujescu, Dan; Schnell, Knut; Schofield, Peter R.; Smith, Colin; Steen, Vidar M.; Sussmann, Jessika E.; Thalamuthu, Anbupalam; Toga, Arthur W.; Traynor, Bryan J.; Troncoso, Juan; Turner, Jessica A.; Valdés Hernández, Maria C.; van ’t Ent, Dennis; van der Brug, Marcel; van der Wee, Nic J. A.; van Tol, Marie-Jose; Veltman, Dick J.; Wassink, Thomas H.; Westman, Eric; Zielke, Ronald H.; Zonderman, Alan B.; Ashbrook, David G.; Hager, Reinmar; Lu, Lu; McMahon, Francis J.; Morris, Derek W.; Williams, Robert W.; Brunner, Han G.; Buckner, Randy L.; Buitelaar, Jan K.; Cahn, Wiepke; Calhoun, Vince D.; Cavalleri, Gianpiero L.; Crespo-Facorro, Benedicto; Dale, Anders M.; Davies, Gareth E.; Delanty, Norman; Depondt, Chantal; Djurovic, Srdjan; Drevets, Wayne C.; Espeseth, Thomas; Gollub, Randy L.; Ho, Beng-Choon; Hoffmann, Wolfgang; Hosten, Norbert; Kahn, René S.; Le Hellard, Stephanie; Meyer-Lindenberg, Andreas; Müller-Myhsok, Bertram; Nauck, Matthias; Nyberg, Lars; Pandolfo, Massimo; Penninx, Brenda W. J. H.; Roffman, Joshua L.; Sisodiya, Sanjay M.; Smoller, Jordan W.; van Bokhoven, Hans; van Haren, Neeltje E. M.; Völzke, Henry; Walter, Henrik; Weiner, Michael W.; Wen, Wei; White, Tonya; Agartz, Ingrid; Andreassen, Ole A.; Blangero, John; Boomsma, Dorret I.; Brouwer, Rachel M.; Cannon, Dara M.; Cookson, Mark R.; de Geus, Eco J. C.; Deary, Ian J.; Donohoe, Gary; Fernández, Guillén; Fisher, Simon E.; Francks, Clyde; Glahn, David C.; Grabe, Hans J.; Gruber, Oliver; Hardy, John; Hashimoto, Ryota; Hulshoff Pol, Hilleke E.; Jönsson, Erik G.; Kloszewska, Iwona; Lovestone, Simon; Mattay, Venkata S.; Mecocci, Patrizia; McDonald, Colm; McIntosh, Andrew M.; Ophoff, Roel A.; Paus, Tomas; Pausova, Zdenka; Ryten, Mina; Sachdev, Perminder S.; Saykin, Andrew J.; Simmons, Andy; Singleton, Andrew; Soininen, Hilkka; Wardlaw, Joanna M.; Weale, Michael E.; Weinberger, Daniel R.; Adams, Hieab H. H.; Launer, Lenore J.; Seiler, Stephan; Schmidt, Reinhold; Chauhan, Ganesh; Satizabal, Claudia L.; Becker, James T.; Yanek, Lisa; van der Lee, Sven J.; Ebling, Maritza; Fischl, Bruce; Longstreth, W. T.; Greve, Douglas; Schmidt, Helena; Nyquist, Paul; Vinke, Louis N.; van Duijn, Cornelia M.; Xue, Luting; Mazoyer, Bernard; Bis, Joshua C.; Gudnason, Vilmundur; Seshadri, Sudha; Ikram, M. Arfan; Martin, Nicholas G.; Wright, Margaret J.; Schumann, Gunter; Franke, Barbara; Thompson, Paul M.; Medland, Sarah E.

    2015-01-01

    The highly complex structure of the human brain is strongly shaped by genetic influences1. Subcortical brain regions form circuits with cortical areas to coordinate movement2, learning, memory3 and motivation4, and altered circuits can lead to abnormal behaviour and disease2. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume5 and intracranial volume6. These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08 × 10−33; 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these genetic variants provides insight into the causes of variability inhuman brain development, and may help to determine mechanisms of neuropsychiatric dysfunction. PMID:25607358

  2. Magnetisation transfer measurements of the subcortical grey and white matter in Parkinson's disease with and without dementia and in progressive supranuclear palsy

    Energy Technology Data Exchange (ETDEWEB)

    Hanyu, H.; Asano, T.; Sakurai, H.; Takasaki, M. [Dept. of Geriatric Medicine, Tokyo Medical University (Japan); Shindo, H.; Abe, K. [Dept. of Radiology, Tokyo Medical University (Japan)

    2001-07-01

    We measured the magnetisation transfer ratio (MTR) in the subcortical grey and white matter of 11 patients with idiopathic Parkinson's disease (PD) without dementia, six with PD with dementia (PDD), six with progressive supranuclear palsy (PSP), and 12 elderly control subjects to assess regional differences in structural brain damage. There were no significant differences in MTR in any region between PD and controls. However, patients with PDD had significantly lower MTR in the subcortical white matter, including the frontal white matter and the genu of the corpus callosum than the controls, whereas PSP had significantly lower MTR in the subcortical grey matter, including the putamen, globus pallidus and thalamus, in addition to the subcortical white matter. This suggests that regional patterns of structural brain damage can be detected using the magnetisation transfer technique. Measurement of MTR in the subcortical grey and white matter may be useful in differential diagnosis. (orig.)

  3. An Allometric Analysis of Sex and Sex Chromosome Dosage Effects on Subcortical Anatomy in Humans

    Science.gov (United States)

    Clasen, Liv; Giedd, Jay N.; Blumenthal, Jonathan; Lerch, Jason P.; Chakravarty, M. Mallar; Raznahan, Armin

    2016-01-01

    , regional brain allometry (nonlinear scaling) poses largely unaddressed methodological and theoretical challenges for such research. We build the first set of allometric norms for global and regional subcortical anatomy, and use these to dissect out the complex, distributed and topologically organized patterns of areal contraction and expansion, which characterize sex and SCD effects on subcortical anatomy. Our data inform basic research into the patterning of neuroanatomical variation, and the clinical neuroscience of sex-chromosome aneuploidy. PMID:26911691

  4. Subcortical structure alterations impact language processing in individuals with schizophrenia and those at high genetic risk.

    Science.gov (United States)

    Li, Xiaobo; Black, Margaret; Xia, Shugao; Zhan, Chenyang; Bertisch, Hilary C; Branch, Craig A; DeLisi, Lynn E

    2015-12-01

    Cortical structural and functional anomalies have been found to associate with language impairments in both schizophrenia patients and genetic high risk individuals for developing schizophrenia. However, subcortical structures that contribute to language processing haven't been well studied in this population, and thus became the main objective of this study. We examined structural MRI data from 20 patients with schizophrenia, 21 individuals at genetic high risk, and 48 controls. Surface shape and volume differences of 6 subcortical structures that are involved in language processing, including nuclei pallidum, putamen, caudate, amygdala, thalamus, and hippocampus from both hemispheres, were compared between groups. Performance scores of language-associated cognitive tests were obtained to identify relationships of subcortical structures to language-related behaviors. Significantly reduced volumes of both the left and right side caudate nuclei, thalami and right side amygdala were shown in patients when compared with controls. Very interestingly, the high risk group demonstrated significantly increased correlations between volumes of left side pallidum nucleus and bilateral thalami and language-related cognitive test scores when compared to controls. This study furthers our understanding of subcortical structural alterations in schizophrenia and high risk individuals, and suggests the contribution of subcortical structures to the language impairments that may serve as an early sign for impending development of schizophrenia. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Technical, Anatomical, and Functional Study after Removal of a Symptomatic Cavernous Angioma Located in Deep Wernicke’s Territories with Cortico-Subcortical Awake Mapping

    Directory of Open Access Journals (Sweden)

    Silvio Sarubbo

    2013-01-01

    Full Text Available Introduction. The subcortical region underneath Wernicke’s area (WA is a critical crossing of the eloquent language pathways involved in all semantic, phonological, syntactic, and working memory elaboration. We report the resection of a CA located underneath the dominant WA discussing the functional and anatomical evidence provided by fMRI, dissections with Klingler’s technique, and intraoperative mapping during awake surgery. Case Report. A 64-year-old right-handed female affected by daily complex focal seizures underwent f-MRI, showing language activations in the middle and inferior temporal gyri and an unusual free entry zone in the “classical” WA. The cortical intraoperative mapping partially confirmed the f-MRI results, and we approached the lesion directly through WA. Subcortical DES allowed the identification of the eloquent language pathways and the radical resection of the perilesional gliotic rim. The patient did not report deficits and she is seizures and drug free after 1-year surgery. Discussion. Cortical DES demonstrated the variability of the eloquent areas within the cortex of the dominant temporal lobe. The subcortical DES confirmed the crucial role in language elaboration and the anatomical course of the bundles underneath WA. Conclusions. Awake surgery with DES represents a reliable and dynamic technique also for safer and functional-customized resection of CAs.

  6. Decreased activation of subcortical brain areas in the motor fatigue state: an fMRI study

    Directory of Open Access Journals (Sweden)

    Lijuan Hou

    2016-08-01

    Full Text Available One aspect of motor fatigue is the exercise-induced reduction of neural activity to voluntarily drive the muscle or muscle group. Functional magnetic resonance imaging provides access to investigate the neural activation on the whole brain level and studies observed changes of activation intensity after exercise-induced motor fatigue in the sensorimotor cortex. However, in human, little evidence exists to demonstrate the role of subcortical brain regions in motor fatigue, which is contradict to abundant researches in rodent indicating that during simple movement, the activity of the basal ganglia is modulated by the state of motor fatigue. Thus, in present study, we explored the effect of motor fatigue on subcortical areas in human. A series of fMRI data were collected from 11 healthy subjects while they were executing simple motor tasks in two conditions: before and under the motor fatigue state. The results showed that in both conditions, movements evoked activation volumes in the sensorimotor areas, SMA, cerebellum, thalamus and basal ganglia. Of primary importance are the results that the intensity and size of activation volumes in the subcortical areas (i.e. thalamus and basal ganglia areas are significantly decreased during the motor fatigue state, implying that motor fatigue disturbs the motor control processing in a way that both sensorimotor areas and subcortical brain areas are less active. Further study is needed to clarify how subcortical areas contribute to the overall decreased activity of CNS during motor fatigue state.

  7. A case of generalized auditory agnosia with unilateral subcortical brain lesion.

    Science.gov (United States)

    Suh, Hyee; Shin, Yong-Il; Kim, Soo Yeon; Kim, Sook Hee; Chang, Jae Hyeok; Shin, Yong Beom; Ko, Hyun-Yoon

    2012-12-01

    The mechanisms and functional anatomy underlying the early stages of speech perception are still not well understood. Auditory agnosia is a deficit of auditory object processing defined as a disability to recognize spoken languages and/or nonverbal environmental sounds and music despite adequate hearing while spontaneous speech, reading and writing are preserved. Usually, either the bilateral or unilateral temporal lobe, especially the transverse gyral lesions, are responsible for auditory agnosia. Subcortical lesions without cortical damage rarely causes auditory agnosia. We present a 73-year-old right-handed male with generalized auditory agnosia caused by a unilateral subcortical lesion. He was not able to repeat or dictate but to perform fluent and comprehensible speech. He could understand and read written words and phrases. His auditory brainstem evoked potential and audiometry were intact. This case suggested that the subcortical lesion involving unilateral acoustic radiation could cause generalized auditory agnosia.

  8. Comparison between Alzheimer's disease and subcortical vascular dementia: attentional cortex study in functional magnetic resonance imaging.

    Science.gov (United States)

    Li, C; Zheng, J; Wang, J; Gui, L

    2011-01-01

    Blood oxygen level dependent functional magnetic resonance imaging (fMRI) and the Stroop test were used to assess attentional cortex activation in patients with Alzheimer's disease, subcortical vascular dementia, and normal control subjects. Patients with Alzheimer's disease and subcortical vascular dementia demonstrated similar locations of cortical activation, including the bilateral middle and inferior frontal gyri, anterior cingulate and inferior parietal lobule in response to Stroop colour word stimuli. This activation was distinctly decreased in patients with dementia compared with normal control subjects. Different regions of the brain were activated in patients with Alzheimer's disease and subcortical vascular dementia compared with normal controls. fMRI is a useful tool for the study of dementia in humans and has some potential diagnostic value. Further studies with larger numbers of participants are required.

  9. Neuropsychological performance in patients with subcortical stroke

    Directory of Open Access Journals (Sweden)

    Silviane Pinheiro Campos de Andrade

    2012-05-01

    Full Text Available Vascular cognitive impairment (VCI is characterized by cognitive compromise predominantly of executive dysfunction. OBJECTIVES: To assess cognitive functions in VCI, focusing on executive functions, to observe functional losses in relation to activities of daily living (ADLs and to detect early symptoms prior to the onset of dementia. METHODS: We evaluated healthy subjects matched for gender, education and age to patients with diagnosis of subcortical vascular disease who had a stroke classified into three groups: 1 vascular lesions and no impairment; 2 vascular cognitive impairment with no dementia (VCIND; 3 vascular dementia (VaD. RESULTS AND DISCUSSION: The performance on neuropsychological tests differed among groups, worsening with increased impairment level. The probable VaD group demonstrated impaired performance in memory, processing speed and verbal production, while the VCIND group showed attention deficits. CONCLUSION: Impairment in executive functions and difficulties in ADLs allow us to differentiate levels of impairment in groups of subcortical vascular disease.

  10. Implications of Subcortical structures in Aphasia.

    Directory of Open Access Journals (Sweden)

    Saleh Alamri

    2015-04-01

    Taken together, the results indicate that aphasia is a common outcome after a lesion to subcortical structures. Findings show that 110 out of 394 aphasic patients with lesion in the basal ganglia exhibited comprehension deficits, while 31 participants out of 288 with thalamic aphasia. Likewise, 129 aphasics of affected basal ganglia out of 394 had impaired naming, whereas 12 participants had impaired naming out of 288 individuals with thalamic aphasia. See figure 1. Figure 1: The percentage of language impairment in two sets of aphasic patients (the thalamus and the basal ganglia. Despite contradictory results and even cases of double dissociation (for an example of absence of language deficits in the event of thalamic lesions see Cappa et al., 1986, our literature review confirms the major role of subcortical structures in language processing.

  11. Subcortical cerebral infarctions in sickle cell trait.

    OpenAIRE

    Reyes, M G

    1989-01-01

    At necropsy, two patients with sickle cell trait and progressive motor and visual deficits, lethargy and coma showed infarctions of the deep cerebral white matter and brain stem. The findings in these patients and another reported in the literature suggest that subcortical infarctions may be more common in sickle cell trait than has been recognised and should be suspected in any patient with sickle cell trait who presents with an unusual neurological illness.

  12. Motor recovery and microstructural change in rubro-spinal tract in subcortical stroke.

    Science.gov (United States)

    Takenobu, Yohei; Hayashi, Takuya; Moriwaki, Hiroshi; Nagatsuka, Kazuyuki; Naritomi, Hiroaki; Fukuyama, Hidenao

    2014-01-01

    The mechanism of motor recovery after stroke may involve reorganization of the surviving networks. However, details of adaptive changes in structural connectivity are not well understood. Here, we show long-term changes in white matter microstructure that relate to motor recovery in stroke patients. We studied ten subcortical ischemic stroke patients who showed motor hemiparesis at the initial clinical examination and an infarcted lesion centered in the posterior limb of internal capsule of the unilateral hemisphere at the initial diffusion-weighted magnetic resonance imaging scan. The participants underwent serial diffusion tensor imaging and motor function assessments at three consecutive time points; within 2 weeks, and at 1 and 3 months after the onset. Fractional anisotropy (FA) was analyzed for regional differences between hemispheres and time points, as well as for correlation with motor recovery using a tract-based spatial statistics analysis. The results showed significantly increased FA in the red nucleus and dorsal pons in the ipsi-lesional side at 3 months, and significantly decreased FA in the ipsi-lesional internal capsule at all time points, and in the cerebral peduncle, corona radiata, and corpus callosum at 3 months. In the correlation analysis, FA values of clusters in the red nucleus, dorsal pons, midbody of corpus callosum, and cingulum were positively correlated with recovery of motor function. Our study suggests that changes in white matter microstructure in alternative descending motor tracts including the rubro-spinal pathway, and interhemispheric callosal connections may play a key role in compensating for motor impairment after subcortical stroke.

  13. Frontal Eye Field, Where Art Thou? Anatomy, function and non-invasive manipulation of frontal regions involved in eye movements and associated cognitive operations

    Directory of Open Access Journals (Sweden)

    Marine eVernet

    2014-08-01

    Full Text Available The planning, control and execution of eye movements in 3D space relies on a distributed system of cortical and subcortical brain regions. Within this network, the Eye Fields have been described in animals as cortical regions in which electrical stimulation is able to trigger eye movements and influence their latency or accuracy. This review will focus on the Frontal Eye Field (FEF a hub region located in Humans in the vicinity of the pre-central sulcus and the dorsal-most portion of the superior frontal sulcus. The straightforward localization of the FEF through electrical stimulation in animals is difficult to translate to the healthy human brain, particularly with non-invasive neuroimaging techniques. Hence, in the first part of this review, we will describe attempts made to characterize the anatomical localization of this area in the human brain. The outcome of functional Magnetic Resonance Imaging (fMRI, Magneto-encephalography (MEG and particularly, non-invasive mapping methods such a Transcranial Magnetic Stimulation (TMS will be described and the variability of FEF localization across individuals and mapping techniques will be discussed. In the second part of this review, we will address the role of the FEF. We will explore its involvement both in the physiology of fixation, saccade, pursuit and vergence movements and in associated cognitive processes such as attentional orienting, visual awareness and perceptual modulation. Finally in the third part, we will review recent evidence suggesting the high level of malleability and plasticity of these regions and associated networks to non-invasive stimulation. The exploratory, diagnostic and therapeutic interest of such interventions for the modulation and improvement of perception in 3D space will be discussed.

  14. Disruptions in cortico-subcortical covariance networks associated with anxiety in new-onset childhood epilepsy

    Directory of Open Access Journals (Sweden)

    Camille Garcia-Ramos

    2016-01-01

    Full Text Available Anxiety disorders represent a prevalent psychiatric comorbidity in both adults and children with epilepsy for which the etiology remains controversial. Neurobiological contributions have been suggested, but only limited evidence suggests abnormal brain volumes particularly in children with epilepsy and anxiety. Since the brain develops in an organized fashion, covariance analyses between different brain regions can be investigated as a network and analyzed using graph theory methods. We examined 46 healthy children (HC and youth with recent onset idiopathic epilepsies with (n = 24 and without (n = 62 anxiety disorders. Graph theory (GT analyses based on the covariance between the volumes of 85 cortical/subcortical regions were investigated. Both groups with epilepsy demonstrated less inter-modular relationships in the synchronization of cortical/subcortical volumes compared to controls, with the epilepsy and anxiety group presenting the strongest modular organization. Frontal and occipital regions in non-anxious epilepsy, and areas throughout the brain in children with epilepsy and anxiety, showed the highest centrality compared to controls. Furthermore, most of the nodes correlating to amygdala volumes were subcortical structures, with the exception of the left insula and the right frontal pole, which presented high betweenness centrality (BC; therefore, their influence in the network is not necessarily local but potentially influencing other more distant regions. In conclusion, children with recent onset epilepsy and anxiety demonstrate large scale disruptions in cortical and subcortical brain regions. Network science may not only provide insight into the possible neurobiological correlates of important comorbidities of epilepsy, but also the ways that cortical and subcortical disruption occurs.

  15. Bilingualism at the core of the brain. Structural differences between bilinguals and monolinguals revealed by subcortical shape analysis.

    Science.gov (United States)

    Burgaleta, Miguel; Sanjuán, Ana; Ventura-Campos, Noelia; Sebastian-Galles, Núria; Ávila, César

    2016-01-15

    Naturally acquiring a language shapes the human brain through a long-lasting learning and practice process. This is supported by previous studies showing that managing more than one language from early childhood has an impact on brain structure and function. However, to what extent bilingual individuals present neuroanatomical peculiarities at the subcortical level with respect to monolinguals is yet not well understood, despite the key role of subcortical gray matter for a number of language functions, including monitoring of speech production and language control - two processes especially solicited by bilinguals. Here we addressed this issue by performing a subcortical surface-based analysis in a sample of monolinguals and simultaneous bilinguals (N=88) that only differed in their language experience from birth. This analysis allowed us to study with great anatomical precision the potential differences in morphology of key subcortical structures, namely, the caudate, accumbens, putamen, globus pallidus and thalamus. Vertexwise analyses revealed significantly expanded subcortical structures for bilinguals compared to monolinguals, localized in bilateral putamen and thalamus, as well as in the left globus pallidus and right caudate nucleus. A topographical interpretation of our results suggests that a more complex phonological system in bilinguals may lead to a greater development of a subcortical brain network involved in monitoring articulatory processes. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. The brain subcortical white matter and aging: A quantitative fractional anisotropy analysis

    Directory of Open Access Journals (Sweden)

    Eliasz Engelhardt

    Full Text Available Abstract To study the integrity of hemispheric subcortical white matter by comparing normal young and elderly subjects using quantitative fractional anisotropy (DTI-FA. Methods: Subjects of two different age groups (young=12, elderly=12 were included. MR - GE Signa Horizon - 1.5T scans were performed. Cases with Fazekas scores £3 were assessed on FLAIR sequence. Standard parameters for DTI-FA were used. ROIs were placed at various sites of the subcortical white matter, and the genu and splenium of the midline corpus callosum. Analysis was performed using Functool. Statistics for anterior and posterior white matter, as well as the genu and splenium were compared between the groups. The study was approved by the Ethics Committee of IPUB-UFRJ and informed consent obtained. Results: DTI-FA showed lower anisotropy values in the anterior region (subcortical white matter and genu, but not in the posterior region (subcortical white matter and splenium, in elderly normal subjects compared to young subjects. Conclusion: The results may represent loss of integrity of anterior (frontal white matter fibers in the elderly subjects. These fibers constitute important intra- and inter-hemispheric tracts, components of neural networks that provide cognitive, behavioral, motor and sensory integration. The loss of integrity of the anterior segments of the studied fiber systems with ageing, represents a disconnection process that may underlie clinical manifestations found in elderly subjects such as executive dysfunction.

  17. The developing human brain: age-related changes in cortical, subcortical, and cerebellar anatomy.

    Science.gov (United States)

    Sussman, Dafna; Leung, Rachel C; Chakravarty, M Mallar; Lerch, Jason P; Taylor, Margot J

    2016-04-01

    This study is the first to characterize normal development and sex differences across neuroanatomical structures in cortical, subcortical, and cerebellar brain regions in a single large cohort. One hundred and ninety-two magnetic resonance images were examined from 96 typically developing females and 96 age-matched typically developing males from 4 to 18 years of age. Image segmentation of the cortex was conducted with CIVET, while that of the cerebellum, hippocampi, thalamus, and basal ganglia were conducted using the MAGeT algorithm. Cortical thickness analysis revealed that most cortical regions decrease linearly, while surface area increases linearly with age. Volume relative to total cerebrum followed a quadratic trend with age, with only the left supramarginal gyrus showing sexual dimorphism. Hippocampal relative volume increased linearly, while the thalamus, caudate, and putamen decreased linearly, and the cerebellum did not change with age. The relative volumes of several subcortical subregions followed inverted U-shaped trends that peaked at ~12 years of age. Many subcortical structures were found to be larger in females than in males, independently of age, while others showed a sex-by-age interaction. This study provides a comprehensive assessment of cortical, subcortical, and cerebellar growth patterns during normal development, and draws attention to the role of sex on neuroanatomical maturation throughout childhood and adolescence.

  18. Brain regions involved in observing and trying to interpret dog behaviour.

    Science.gov (United States)

    Desmet, Charlotte; van der Wiel, Alko; Brass, Marcel

    2017-01-01

    Humans and dogs have interacted for millennia. As a result, humans (and especially dog owners) sometimes try to interpret dog behaviour. While there is extensive research on the brain regions that are involved in mentalizing about other peoples' behaviour, surprisingly little is known of whether we use these same brain regions to mentalize about animal behaviour. In this fMRI study we investigate whether brain regions involved in mentalizing about human behaviour are also engaged when observing dog behaviour. Here we show that these brain regions are more engaged when observing dog behaviour that is difficult to interpret compared to dog behaviour that is easy to interpret. Interestingly, these results were not only obtained when participants were instructed to infer reasons for the behaviour but also when they passively viewed the behaviour, indicating that these brain regions are activated by spontaneous mentalizing processes.

  19. Anatomical distance affects cortical-subcortical connectivity in first-episode, drug-naive somatization disorder.

    Science.gov (United States)

    Guo, Wenbin; Liu, Feng; Chen, Jindong; Wu, Renrong; Li, Lehua; Zhang, Zhikun; Chen, Huafu; Zhao, Jingping

    2017-08-01

    Brain structural and functional alterations in the cortical-subcortical circuits have been observed in somatization disorder (SD). However, whether and how anatomical distance affects the cortical-subcortical connectivity in SD remain unclear. This study aims to examine whether anatomical distance affects the cortical-subcortical in first-episode, drug-naive SD. Twenty-five first-episode, drug-naive patients with SD and twenty-eight healthy controls were recruited for a resting-state scan. Regional functional connectivity strength (FCS) was calculated for each voxel in the brain, which was further divided into short- and long-range FCSs. Correlation analyses were conducted between abnormal FCS and clinical/cognitive variables in the patients. Compared with the controls, the patients showed increased short-range positive FCS (spFCS) in the right superior frontal gyrus (SFG) and decreased spFCS in the left pallidum, and increased long-range positive FCS (lpFCS) in the left middle frontal gyrus and right inferior temporal gyrus (ITG). Positive correlations were observed between the spFCS values in the right SFG and Eysenck Personality Questionnaire psychoticism scores (r=0.441, p=0.027, uncorrected) and between the lpFCS values in the right ITG and scores of digit symbol-coding of Wechsler Adult Intelligence Scale (r=0.416, p=0.039, uncorrected) in the patients CONCLUSIONS: The patients exhibited increased spFCS/lpFCS in the cortical regions and decreased spFCS in the subcortical regions. The left pallidum is first reported here to show decreased spFCS in SD. The present results suggest that abnormal cortical-subcortical circuits may play an important role in SD neurobiology. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. A novel mutation of the doublecortin gene in Japanese patients with X-linked lissencephaly and subcortical band heterotopia.

    Science.gov (United States)

    Kato, M; Kimura, T; Lin, C; Ito, A; Kodama, S; Morikawa, T; Soga, T; Hayasaka, K

    1999-04-01

    The doublecortin (DCX) gene was recently found to be involved in patients with X-linked lissencephaly and subcortical band heterotopia or double cortex syndrome. We have studied the coding regions of the DCX gene in 11 Japanese patients with cortical dysplasia and have identified three different mutations (R186C in exon 3, R272X and R303X in exon 5) in four sporadic female cases. R272X, which has been detected in two unrelated cases, is a novel mutation. Although the number of cases studied remains limited, exon 5 may be a common mutational site in Japanese patients in contrast to many previous reports concerning exons 2 and 3.

  1. Cortical and subcortical anatomy of chronic spatial neglect following vascular damage

    Directory of Open Access Journals (Sweden)

    Schnider Armin

    2008-09-01

    Full Text Available Abstract Background The role of the inferior parietal lobule (IPL and superior temporal gyrus (STG or subcortical pathways as possible anatomical correlates of spatial neglect is currently intensely discussed. Some of the conflicting results might have arisen because patients were examined in the acute stage of disease. Methods We examined the anatomical basis of spatial neglect in a sample of patients examined in the post-acute stage following right-hemispheric vascular brain damage. Lesions of 28 patients with chronic spatial neglect were contrasted to lesions of 22 control patients without neglect using lesion subtraction techniques and voxel-wise comparisons. Results The comparisons identified the temporo-parietal junction (TPJ with underlying white matter, the supramarginal gyrus, the posterior STG, and the insula as brain regions damaged significantly more often in neglect compared to non-neglect patients. In a subgroup of neglect patients showing particularly large cancellation bias together with small errors on line bisection damage was prevalent deep in the frontal lobe while damage of patients with the reverse pattern was located in the white matter of the TPJ. Conclusion Considering our results and the findings of previous studies, spatial neglect appears to be associated with a network of regions involving the TPJ, inferior IPL, posterior STG, the insular cortex, and posterior-frontal projections. Frontal structures or projections may be of particular relevance for spatial exploration, while the IPL may be important for object-based attention as required for line bisection.

  2. Intra- and interhemispheric variations of diffusivity in subcortical white matter in normal human brain

    Energy Technology Data Exchange (ETDEWEB)

    Yoshiura, Takashi; Noguchi, Tomoyuki; Hiwatashi, Akio; Togao, Osamu; Yamashita, Koji; Nagao, Eiki; Kamano, Hironori; Honda, Hiroshi [Kyushu University, Department of Clinical Radiology, Graduate School of Medical Sciences, Fukuoka (Japan)

    2010-01-15

    Our purpose was to reveal potential regional variations in water molecular diffusivity within each cerebral hemisphere and across the right and left hemispheres. Diffusion-weighted images of 44 healthy right-handed adult male subjects were obtained using a diffusion tensor imaging sequence. Mean diffusivity (MD) values in subcortical white matter (WM) within 39 regions in each hemisphere were measured using an automated method. Intrahemispheric comparisons of MDs in subcortical WM were performed among six brain regions (frontal, parietal, occipital and temporal lobes and pre- and postcentral gyri). Interhemispheric comparisons of MDs were performed between the right and left counterparts of the 39 regions. In both hemispheres, diffusivity in the precentral gyrus was lower than those in other regions, while diffusivity in the parietal lobe was higher than others. MD asymmetry in which the left was lower than the right was found in the parietal lobe, middle occipital gyrus, and medial and orbital aspects of the frontal lobe. The converse asymmetry was revealed in the frontal operculum, supplementary motor cortex, temporal lobe, limbic cortices, precuneus and cuneus. Our results revealed significant intra- and interhemispheric regional variations in MD in subcortical WM, which may be related to different densities of axons and myelin sheaths. (orig.)

  3. Early neurone loss in Alzheimer's disease: cortical or subcortical?

    Science.gov (United States)

    Arendt, Thomas; Brückner, Martina K; Morawski, Markus; Jäger, Carsten; Gertz, Hermann-Josef

    2015-02-10

    Alzheimer's disease (AD) is a degenerative disorder where the distribution of pathology throughout the brain is not random but follows a predictive pattern used for pathological staging. While the involvement of defined functional systems is fairly well established for more advanced stages, the initial sites of degeneration are still ill defined. The prevailing concept suggests an origin within the transentorhinal and entorhinal cortex (EC) from where pathology spreads to other areas. Still, this concept has been challenged recently suggesting a potential origin of degeneration in nonthalamic subcortical nuclei giving rise to cortical innervation such as locus coeruleus (LC) and nucleus basalis of Meynert (NbM). To contribute to the identification of the early site of degeneration, here, we address the question whether cortical or subcortical degeneration occurs more early and develops more quickly during progression of AD. To this end, we stereologically assessed neurone counts in the NbM, LC and EC layer-II in the same AD patients ranging from preclinical stages to severe dementia. In all three areas, neurone loss becomes detectable already at preclinical stages and is clearly manifest at prodromal AD/MCI. At more advanced AD, cell loss is most pronounced in the NbM > LC > layer-II EC. During early AD, however, the extent of cell loss is fairly balanced between all three areas without clear indications for a preference of one area. We can thus not rule out that there is more than one way of spreading from its site of origin or that degeneration even occurs independently at several sites in parallel.

  4. The Consolidation of Object and Context Recognition Memory Involve Different Regions of the Temporal Lobe

    Science.gov (United States)

    Balderas, Israela; Rodriguez-Ortiz, Carlos J.; Salgado-Tonda, Paloma; Chavez-Hurtado, Julio; McGaugh, James L.; Bermudez-Rattoni, Federico

    2008-01-01

    These experiments investigated the involvement of several temporal lobe regions in consolidation of recognition memory. Anisomycin, a protein synthesis inhibitor, was infused into the hippocampus, perirhinal cortex, insular cortex, or basolateral amygdala of rats immediately after the sample phase of object or object-in-context recognition memory…

  5. Re-establishing the relationship with the public: Regional journalism and citizens' involvement in the news

    NARCIS (Netherlands)

    Hermans, E.A.H.M.; Schaap, G.J.; Bardoel, J.L.H.

    2014-01-01

    Public journalism is viewed by many as a solution to the decreasing media presence and public involvement in regional news media. Core values in this approach are public deliberation, participation, and connectedness. This study investigates the added value of a citizen-centred approach to

  6. Long-term outcomes for patients with limited stage follicular lymphoma: involved regional radiotherapy versus involved node radiotherapy.

    Science.gov (United States)

    Campbell, Belinda A; Voss, Nick; Woods, Ryan; Gascoyne, Randy D; Morris, James; Pickles, Tom; Connors, Joseph M; Savage, Kerry J

    2010-08-15

    Given the indolent behavior of follicular lymphoma (FL), it is controversial whether limited stage FL can be cured using radiotherapy (RT). Furthermore, the optimal RT field size is unclear. The authors of this report investigated the long-term outcomes of patients with limited stage FL who received RT alone and studied the impact of reducing the RT field size from involved regional RT (IRRT) to involved node RT with margins up to 5 cm (INRTor=1 adjacent, uninvolved lymph node group(s). INRT60 years, stage IA disease in 76% of patients, elevated lactate dehydrogenase (LDH) in 7% of patients, grade 3A tumors in 12% of patients, and lymph node size>or=5 cm in 19% of patients. The 2 RT groups were IRRT (142 patients; 60%) and INRTsurvival (PFS) rate was 49%, and the overall survival (OS) rate was 66%. Only 2 patients developed recurrent disease beyond 10 years. The most common pattern of first failure was a distant recurrence only, which developed in 38% of patients who received IRRT and in 32% of patients who received INRTor=5 cm (P=.008) and male gender (P=.042). Risk factors for OS were age>60 years (Por=5 cm (P=.016), and grade 3A tumors (P=.036). RT field size did not have an impact on PFS or OS. Disease recurrence after 10 years was uncommon in patients who had limited stage FL, suggesting that a cure is possible. Reducing RT fields to INRT

  7. International Regional Patterns of R&D Networks Involving Low Tech SMEs

    Directory of Open Access Journals (Sweden)

    Aurora A.C. Teixeira

    2013-03-01

    Full Text Available A large number of studies have emphasized the spatial proximity of economic activity and its relation to the spatiality of knowledge creation in various types of connections. Far less attention has been paid to the understanding of the determinants of ‘cultural’ and geographical proximity in international R&D cooperation projects involving SMEs and the role of the quality of the Regional Innovation System (RIS. Using a database of completed European Cooperative Research projects, we conclude that: 1 technologically more complex projects are more likely to involve ‘culturally’ and geographically distant partners; 2 RIS related variables determine ‘cultural’ proximity but not geographical proximity; 3 at first sight surprisingly, international cooperation projects involving the 1st promoters of innovation-led regions (high patent propensity and high human capital levels are culturally more distant.

  8. Binge drinking differentially affects cortical and subcortical microstructure.

    Science.gov (United States)

    Morris, Laurel S; Dowell, Nicholas G; Cercignani, Mara; Harrison, Neil A; Voon, Valerie

    2017-01-20

    Young adult binge drinkers represent a model for endophenotypic risk factors for alcohol misuse and early exposure to repeated binge cycles. Chronic or harmful alcohol use leads to neurochemical, structural and morphological neuroplastic changes, particularly in regions associated with reward processing and motivation. We investigated neural microstructure in 28 binge drinkers compared with 38 matched healthy controls. We used a recently developed diffusion magnetic resonance imaging acquisition and analysis, which uses three-compartment modelling (of intracellular, extracellular and cerebrospinal fluid) to determine brain tissue microstructure features including neurite density and orientation dispersion index (ODI). Binge drinkers had reduced ODI, a proxy of neurite complexity, in frontal cortical grey matter and increased ODI in parietal grey matter. Neurite density was higher in cortical white matter in adjacent regions of lower ODI in binge drinkers. Furthermore, binge drinkers had higher ventral striatal grey matter ODI that was positively correlated with binge score. Healthy volunteers showed no such relationships. We demonstrate disturbed dendritic complexity of higher-order prefrontal and parietal regions, along with higher dendritic complexity of a subcortical region known to mediate reward-related motivation. The findings illustrate novel microstructural abnormalities that may reflect an infnce of alcohol bingeing on critical neurodevelopmental processes in an at-risk young adult group. © 2017 The Authors.Addiction Biology published by John Wiley & Sons Ltd on behalf of Society for the Study of Addiction.

  9. Gait and Equilibrium in Subcortical Vascular Dementia

    Directory of Open Access Journals (Sweden)

    Rita Moretti

    2011-01-01

    Full Text Available Subcortical vascular dementia is a clinical entity, widespread, even challenging to diagnose and correctly treat. Patients with this diagnosis are old, frail, often with concomitant pathologies, and therefore, with many drugs in therapy. We tried to diagnose and follow up for three years more than 600 patients. Study subjects were men and women, not bedridden, aged 68–94 years, outpatients, recruited from June, 1st 2007 to June, 1st 2010. We examined them clinically, neurologically, with specific consideration on drug therapies. Our aim has been to define gait and imbalance problem, if eventually coexistent with the pathology of white matter and/or with the worsening of the deterioration. Drug intake interference has been detected and considered.

  10. Cortical and subcortical predictive dynamics and learning during perception, cognition, emotion and action

    Science.gov (United States)

    Grossberg, Stephen

    2009-01-01

    An intimate link exists between the predictive and learning processes in the brain. Perceptual/cognitive and spatial/motor processes use complementary predictive mechanisms to learn, recognize, attend and plan about objects in the world, determine their current value, and act upon them. Recent neural models clarify these mechanisms and how they interact in cortical and subcortical brain regions. The present paper reviews and synthesizes data and models of these processes, and outlines a unified theory of predictive brain processing. PMID:19528003

  11. Mutation screening in a cohort of patients with lissencephaly and subcortical band heterotopia.

    Science.gov (United States)

    Torres, F R; Montenegro, M A; Marques-De-Faria, A P; Guerreiro, M M; Cendes, F; Lopes-Cendes, I

    2004-03-09

    The authors describe clinical, neuroimaging and molecular findings in a group of 15 patients with classic lissencephaly (LIS) and subcortical band heterotopia (SBH). A 1385A-->C mutation was found in the LIS1 gene in one patient with LIS more severe than expected for individuals with missense mutations in LIS1. The authors believe that the site of the mutation, present in a functionally critical region of the protein, could explain the unusual severe phenotype found in this patient.

  12. Mutation screening in a cohort of patients with lissencephaly and subcortical band heterotopia

    OpenAIRE

    Torres, FR; Montenegro, MA; Marques-de-Faria, AP; Guerreiro, MM; Cendes, F.; Lopes-Cendes, I

    2004-01-01

    The authors describe clinical, neuroimaging and molecular findings in a group of 15 patients with classic lissencephaly ( LIS) and subcortical band heterotopia (SBH). A 1385A-->C mutation was found in the LIS1 gene in one patient with LIS more severe than expected for individuals with missense mutations in LIS1. The authors believe that the site of the mutation, present in a functionally critical region of the protein, could explain the unusual severe phenotype found in this patient.

  13. Early Developmental Gene Enhancers Affect Subcortical Volumes in the Adult Human Brain

    Science.gov (United States)

    Becker, Martin; Guadalupe, Tulio; Franke, Barbara; Hibar, Derrek P.; Renteria, Miguel E.; Stein, Jason L.; Thompson, Paul M.; Francks, Clyde; Vernes, Sonja C.; Fisher, Simon E.

    2016-01-01

    Genome-wide association screens aim to identify common genetic variants contributing to the phenotypic variability of complex traits, such as human height or brain morphology. The identified genetic variants are mostly within noncoding genomic regions and the biology of the genotype–phenotype association typically remains unclear. In this article, we propose a complementary targeted strategy to reveal the genetic underpinnings of variability in subcortical brain volumes, by specifically selecting genomic loci that are experimentally validated forebrain enhancers, active in early embryonic development. We hypothesized that genetic variation within these enhancers may affect the development and ultimately the structure of subcortical brain regions in adults. We tested whether variants in forebrain enhancer regions showed an overall enrichment of association with volumetric variation in subcortical structures of >13,000 healthy adults. We observed significant enrichment of genomic loci that affect the volume of the hippocampus within forebrain enhancers (empirical P = 0.0015), a finding which robustly passed the adjusted threshold for testing of multiple brain phenotypes (cutoff of P < 0.0083 at an alpha of 0.05). In analyses of individual single nucleotide polymorphisms (SNPs), we identified an association upstream of the ID2 gene with rs7588305 and variation in hippocampal volume. This SNP-based association survived multiple-testing correction for the number of SNPs analyzed but not for the number of subcortical structures. Targeting known regulatory regions offers a way to understand the underlying biology that connects genotypes to phenotypes, particularly in the context of neuroimaging genetics. This biology-driven approach generates testable hypotheses regarding the functional biology of identified associations. PMID:26890892

  14. Vestibular and Attractor Network Basis of the Head Direction Cell Signal in Subcortical Circuits

    Directory of Open Access Journals (Sweden)

    Benjamin J Clark

    2012-03-01

    Full Text Available Accurate navigation depends on a network of neural systems that encode the moment-to-moment changes in an animal’s directional orientation and location in space. Within this navigation system are head direction (HD cells, which fire persistently when an animal’s head is pointed in a particular direction (Sharp et al., 2001a; Taube, 2007. HD cells are widely thought to underlie an animal’s sense of spatial orientation, and research over the last 25+ years has revealed that this robust spatial signal is widely distributed across subcortical and cortical limbic areas. Much of this work has been directed at understanding the functional organization of the HD cell circuitry, and precisely how this signal is generated from sensory and motor systems. The purpose of the present review is to summarize some of the recent studies arguing that the HD cell circuit is largely processed in a hierarchical fashion, following a pathway involving the dorsal tegmental nuclei → lateral mammillary nuclei → anterior thalamus → parahippocampal and retrosplenial cortical regions. We also review recent work identifying bursting cellular activity in the HD cell circuit after lesions of the vestibular system, and relate these observations to the long held view that attractor network mechanisms underlie HD signal generation. Finally, we summarize the work to date suggesting that this network architecture may reside within the tegmento-mammillary circuit.

  15. Anastomosing hemangioma involving the para-arotic region: A case report

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung Min; KIm, Hyun Cheol; Yang, Dal Mo; Kim, Sang Won; Won, Kyu Yeoun [Kyung Hee University Hospital at Gangdong, School of Medicine, Kyung Hee University, Seoul (Korea, Republic of)

    2017-05-15

    Anastomosing hemangioma (AH) is a rare and benign vascular neoplasm that is regarded as a morphological variant of capillary hemangioma. AH has been encountered primarily in the kidney. To our knowledge, para-aortic involvement of AH has not been reported previously. Here, we report a case of slowly progressing AH involving the left para-aortic region in a 72-year-old woman with a history of breast cancer surgery. A contrast-enhanced, dynamic abdominal CT scan revealed that the lesion had peripheral enhancement with slow centripetal fashion, which is an enhancement pattern similar to that of hepatic hemangioma.

  16. The influence of puberty on subcortical brain development.

    Science.gov (United States)

    Goddings, Anne-Lise; Mills, Kathryn L; Clasen, Liv S; Giedd, Jay N; Viner, Russell M; Blakemore, Sarah-Jayne

    2014-03-01

    Puberty is characterized by hormonal, physical and psychological transformation. The human brain undergoes significant changes between childhood and adulthood, but little is known about how puberty influences its structural development. Using a longitudinal sample of 711 magnetic resonance imaging scans from 275 individuals aged 7-20years, we examined how subcortical brain regions change in relation to puberty. Our regions of interest included the amygdala, hippocampus and corpus striatum including the nucleus accumbens (NA), caudate, putamen and globus pallidus (GP). Pubertal development was significantly related to structural volume in all six regions in both sexes. Pubertal development and age had both independent and interactive influences on volume for the amygdala, hippocampus and putamen in both sexes, and the caudate in females. There was an interactive puberty-by-age effect on volume for the NA and GP in both sexes, and the caudate in males. These findings suggest a significant role for puberty in structural brain development. © 2013. Published by Elsevier Inc. All rights reserved.

  17. Noradrenergic mechanism involved in the nociceptive modulation of hippocampal CA3 region of normal rats.

    Science.gov (United States)

    Jin, Hua; Teng, Yueqiu; Zhang, Xuexin; Yang, Chunxiao; Xu, Manying; Yang, Lizhuang

    2014-06-27

    Norepinephrine (NE) is an important neurotransmitter in the brain, and regulates antinociception. However, the mechanism of action of NE on pain-related neurons in the hippocampal CA3 region is not clear. This study examines the effects of NE, phentolamine on the electrical activities of pain-excited neurons (PENs) and pain-inhibited neurons (PINs) in the hippocampal CA3 region of rats. Trains of electric impulses applied to the right sciatic nerve were used as noxious stimulation. The electrical activities of PENs or PINs in the hippocampal CA3 region were recorded by using a glass microelectrode. Our results revealed that, in the hippocampal CA3 region, the intra-CA3 region microinjection of NE decreased the pain-evoked discharged frequency and prolonged the discharged latency of PEN, and increased the pain-evoked discharged frequency and shortened discharged inhibitory duration (ID) of PIN, exhibiting the specific analgesic effect of NE. While intra-CA3 region microinjection of phentolamine produced the opposite response. It implies that phentolamine can block the effect of endogenous NE to cause the enhanced response of PEN and PIN to noxious stimulation. On the basis of above findings we can deduce that NE, phentolamine and alpha-adrenoceptor are involved in the modulation of nociceptive information transmission in the hippocampal CA3 region. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Genomic regions repeatedly involved in divergence among plant-specialized pea aphid biotypes.

    Science.gov (United States)

    Nouhaud, P; Peccoud, J; Mahéo, F; Mieuzet, L; Jaquiéry, J; Simon, J-C

    2014-09-01

    Understanding the genetic bases of biological diversification is a long-standing goal in evolutionary biology. Here, we investigate whether replicated cases of adaptive divergence involve the same genomic regions in the pea aphid, Acyrthosiphon pisum, a large complex of genetically differentiated biotypes, each specialized on different species of legumes. A previous study identified genomic regions putatively involved in host-plant adaptation and/or reproductive isolation by performing a hierarchical genome scan in three biotypes. This led to the identification of 11 F(ST) outliers among 390 polymorphic microsatellite markers. In this study, the outlier status of these 11 loci was assessed in eight biotypes specialized on other host plants. Four of the 11 previously identified outliers showed greater genetic differentiation among these additional biotypes than expected under the null hypothesis of neutral evolution (α Biology © 2014 European Society For Evolutionary Biology.

  19. Subcortical volumes differ in Parkinson's disease motor subtypes: New insights into the pathophysiology of disparate symptoms

    Directory of Open Access Journals (Sweden)

    Keren Rosenberg-Katz

    2016-07-01

    Full Text Available Objectives: Patients with Parkinson’s disease (PD can be classified, based on their motor symptoms, into the Postural Instability Gait Difficulty (PIGD subtype or the Tremor Dominant (TD subtype. Gray matter changes between the subtypes have been reported using whole brain Voxel-Based Morphometry, however, the evaluation of subcortical gray matter volumetric differences between these subtypes using automated volumetric analysis has only been studied in relatively small sample sizes and needs further study to confirm that the negative findings were not due to the sample size. Therefore, we aim to evaluate volumetric changes in subcortical regions and their association with PD motor subtypes. Methods: Automated volumetric MRI analysis quantified the subcortical gray matter volumes of patients with PD in the PIGD subtype (n=30, in the TD subtype (n=30, and in 28 healthy controls. Results: Significantly lower amygdala and globus pallidus gray matter volume was detected in the PIGD, as compared to the TD subtype, with a trend for an association between globus pallidus degeneration and higher (worse PIGD scores. Furthermore, among all the patients with PD, higher hippocampal volumes were correlated with a higher (better dual tasking gait speed (r=0.30, p<0.002 and with a higher global cognitive score (r=0.36, p<0.0001. Lower putamen volume was correlated (r=-0.28, p<0.004 with higher (worse freezing of gait score, an episodic symptom which is common among the PIGD subtype. As expected, differences detected between healthy controls and patients in the PD subgroups included regions within the amygdala and the dorsal striatum but not the ventral striatum, a brain region that is generally considered to be more preserved in PD.Conclusions: The disparate patterns of subcortical degeneration can explain some of the differences in symptoms between the PD subtypes such as gait disturbances and cognitive functions. These findings may, in the future, help to

  20. Molecular characterization of HIV-1 subtype C gp-120 regions potentially involved in virus adaptive mechanisms.

    Directory of Open Access Journals (Sweden)

    Alessandra Cenci

    Full Text Available The role of variable regions of HIV-1 gp120 in immune escape of HIV has been investigated. However, there is scant information on how conserved gp120 regions contribute to virus escaping. Here we have studied how molecular sequence characteristics of conserved C3, C4 and V3 regions of clade C HIV-1 gp120 that are involved in HIV entry and are target of the immune response, are modulated during the disease course. We found an increase of "shifting" putative N-glycosylation sites (PNGSs in the α2 helix (in C3 and in C4 and an increase of sites under positive selection pressure in the α2 helix during the chronic stage of disease. These sites are close to CD4 and to co-receptor binding sites. We also found a negative correlation between electric charges of C3 and V4 during the late stage of disease counteracted by a positive correlation of electric charges of α2 helix and V5 during the same stage. These data allow us to hypothesize possible mechanisms of virus escape involving constant and variable regions of gp120. In particular, new mutations, including new PNGSs occurring near the CD4 and CCR5 binding sites could potentially affect receptor binding affinity and shield the virus from the immune response.

  1. Pathophysiology of language switching and mixing in an early bilingual child with subcortical aphasia.

    Science.gov (United States)

    Mariën, Peter; Abutalebi, Jubin; Engelborghs, Sebastiaan; De Deyn, Peter P

    2005-12-01

    Acquired aphasia after circumscribed vascular subcortical lesions has not been reported in bilingual children. We report clinical and neuroimaging findings in an early bilingual boy who incurred equally severe transcortical sensory aphasia in his first language (L1) and second language (L2) after a posterior left thalamic hemorrhage. Following recurrent bleeding of the lesion the aphasic symptoms substantially aggravated. Spontaneous pathological language switching and mixing were found in both languages. Remission of these phenomena was reflected on brain perfusion SPECT revealing improved perfusion in the left frontal lobe and left caudate nucleus. The parallelism between the evolution of language symptoms and the SPECT findings may demonstrate that a subcortical left frontal lobe circuity is crucially involved in language switching and mixing.

  2. Subcortical frontal lesions on MRI in patients with motor neurone disease

    Energy Technology Data Exchange (ETDEWEB)

    Andreadou, E.; Sgouropoulos, P.; Varelas, P.; Papageorgiou, C. [Eginition Hospital, Athens (Greece); Gouliamos, A. [Department of Radiology, CT/MRI Unit, Areteion Hospital, University of Athens (Greece)

    1998-05-01

    MRI was performed in 32 patients with motor neurone disease (26 men and 6 women, aged 40-77 years) and in a control group of 21 subjects. Of the patients studied, 19 had definite and 11 probable amyotrophic lateral sclerosis (ALS) and two had progressive bulbar palsy. In 10 patients there were asymmetrical bilateral foci of increased signal intensity on proton-density and T{sub 2}-weighted images, confined to the white matter. Two patients had only cortical frontal atrophy and slightly increased ventricular size, whereas 20 had normal MRI. The focal lesions were not confined to corticospinal tracts, but were also observed in subcortical frontal areas. While the lesions along the corticospinal tracts correspond to pyramidal tract degeneration, the subcortical foci correlate with degeneration of the frontal bundles and indicate generalised involvement of the central nervous system. (orig.) With 3 figs., 2 tabs., 25 refs.

  3. Cortical and subcortical brain alterations in Juvenile Absence Epilepsy

    Directory of Open Access Journals (Sweden)

    Manuela Tondelli

    2016-01-01

    Full Text Available Despite the common assumption that genetic generalized epilepsies are characterized by a macroscopically normal brain on magnetic resonance imaging, subtle structural brain alterations have been detected by advanced neuroimaging techniques in Childhood Absence Epilepsy syndrome. We applied quantitative structural MRI analysis to a group of adolescents and adults with Juvenile Absence Epilepsy (JAE in order to investigate micro-structural brain changes using different brain measures. We examined grey matter volumes, cortical thickness, surface areas, and subcortical volumes in 24 patients with JAE compared to 24 healthy controls; whole-brain voxel-based morphometry (VBM and Freesurfer analyses were used. When compared to healthy controls, patients revealed both grey matter volume and surface area reduction in bilateral frontal regions, anterior cingulate, and right mesial-temporal lobe. Correlation analysis with disease duration showed that longer disease was correlated with reduced surface area in right pre- and post-central gyrus. A possible effect of valproate treatment on brain structures was excluded. Our results indicate that subtle structural brain changes are detectable in JAE and are mainly located in anterior nodes of regions known to be crucial for awareness, attention and memory.

  4. Biophysical changes in subcortical nuclei: the impact of diabetes and major depression.

    Science.gov (United States)

    Kumar, A; Yang, S; Ajilore, O; Wu, M; Cohen, J; Lamar, M; Bhaumik, D

    2016-04-01

    Magnetization transfer (MT) is a neuroimaging technique that is frequently used to characterize the biophysical abnormalities in both gray and white matter regions of the brain. In our study, we used MT to examine the integrity of key nodes in frontal-subcortical circuits in four subject groups: patients diagnosed with type 2 diabetes with and without major depression (MDD), a healthy control group, and a group diagnosed with MDD without diabetes. In the MDD group, MT studies demonstrated lower magnetization transfer ratios (MTR), a marker of abnormalities in the macromolecular protein pool, in the thalami when compared with the control groups. The group with diabetes and MDD showed lower MTR in the globus pallidus when compared with the group with MDD. Biophysical measures, in subcortical nuclei, correlated inversely with measures of glycemic control, cerebrovascular burden and depression scores. These findings have broad implications for the underlying neuronal circuitry and neurobiology of mood disorders.

  5. Megalencephalic leukoencephalopathy with subcortical cysts in an adult: quantitative proton MR spectroscopy and diffusion tensor MRI

    Energy Technology Data Exchange (ETDEWEB)

    Brockmann, K.; Hanefeld, F. [Dept. of Paediatrics and Neuropaediatrics, Children' s Hospital, Georg-August-Univ., Goettingen (Germany); Finsterbusch, J.; Frahm, J. [Biomedizinische NMR Forschungs GmbH am Max-Planck-Inst. fuer biophysikalische Chemie, Goettingen (Germany); Terwey, B. [Inst. fuer Magnet-Resonanz-Diagnostik, Zentralkrankenhaus, Bremen (Germany)

    2003-03-01

    A 37-year-old macrocephalic woman was investigated for increasing gait disturbance due to longstanding spasticity and ataxia. MRI showed widespread bilateral increase in signal from cerebral white matter on T2-weighted images. Numerous subcortical cysts were visible in anterior-temporal and parietal regions. These clinical and neuroradiological features are those of megalencephalic leukoencephalopathy with subcortical cysts (MLC), a recently delineated white-matter disease with onset in childhood. Quantitative localised proton MR spectroscopy of white matter revealed marked reduction of N-acetylaspartate, creatine, and choline with normal values for myoinositol, consistent with axonal loss and astrocytic proliferation. Diffusion tensor imaging showed an increased apparent diffusion coefficient and reduced anisotropy in affected white matter pointing to reduced cell density with an increased extracellular space. These findings are in line with histological changes alterations known to occur in MLC. (orig.)

  6. Expanded functional coupling of subcortical nuclei with the motor resting-state network in multiple sclerosis

    DEFF Research Database (Denmark)

    Dogonowski, Anne-Marie; Siebner, Hartwig R; Sørensen, Per Soelberg

    2013-01-01

    BACKGROUND: Multiple sclerosis (MS) impairs signal transmission along cortico-cortical and cortico-subcortical connections, affecting functional integration within the motor network. Functional magnetic resonance imaging (fMRI) during motor tasks has revealed altered functional connectivity in MS...... controls underwent a 20-minute resting-state fMRI session at 3 Tesla. Independent component analysis was applied to the fMRI data to identify disease-related changes in motor resting-state connectivity. RESULTS: Patients with MS showed a spatial expansion of motor resting-state connectivity in deep...... subcortical nuclei but not at the cortical level. The anterior and middle parts of the putamen, adjacent globus pallidus, anterior and posterior thalamus and the subthalamic region showed stronger functional connectivity with the motor network in the MS group compared with controls. CONCLUSION: MS...

  7. Regulation of the fear network by mediators of stress: Norepinephrine alters the balance between Cortical and Subcortical afferent excitation of the Lateral Amygdala

    Directory of Open Access Journals (Sweden)

    Luke R Johnson

    2011-05-01

    Full Text Available Pavlovian auditory fear conditioning crucially involves the integration of information about and acoustic conditioned stimulus (CS and an aversive unconditioned stimulus (US in the lateral nucleus of the amygdala (LA. The auditory CS reaches the LA subcortically via a direct connection from the auditory thalamus and also from the auditory association cortex itself. How neural modulators, especially those activated during stress, such as norepinephrine (NE, regulate synaptic transmission and plasticity in this network is poorly understood. Here we show that NE inhibits synaptic transmission in both the subcortical and cortical input pathway but that sensory processing is biased towards the subcortical pathway. In addition binding of NE to β-adrenergic receptors further dissociates sensory processing in the LA. These findings suggest a network mechanism that shifts sensory balance towards the faster but more primitive subcortical input.

  8. Distribution and initiation of seizure activity in a rat brain with subcortical band heterotopia.

    Science.gov (United States)

    Chen, Z F; Schottler, F; Bertram, E; Gall, C M; Anzivino, M J; Lee, K S

    2000-05-01

    Misplaced (heterotopic) cortical neurons are a common feature of developmental epilepsies. To better understand seizure disorders associated with cortical heterotopia, the sites of aberrant discharge activity were investigated in vivo and in vitro in a seizure-prone mutant rat (tish) exhibiting subcortical band heterotopia. Depth electrode recordings and postmortem assessment of regional c-fos mRNA levels were used to characterize the distribution of aberrant discharge activity during spontaneous seizures in vivo. Electrophysiologic recordings of spontaneous and evoked activity also were performed by using in vitro brain slices from the tish rat treated with proconvulsant drugs (penicillin and 4-aminopyridine). Depth electrode recordings demonstrate that seizure activity begins almost simultaneously in the normotopic and heterotopic areas of the tish neocortex. Spontaneous seizures induce c-fos mRNA in normotopic and heterotopic neocortical areas, and limbic regions. The threshold concentrations of proconvulsant drugs for inducing epileptiform spiking were similar in the normotopic and heterotopic areas of tish brain slices. Manipulations that blocked communication between the normotopic and heterotopic areas of the cortex inhibited spiking in the heterotopic, but not the normotopic, area of the cortex. These findings indicate that aberrant discharge activity occurs in normotopic and heterotopic areas of the neocortex, and in certain limbic regions during spontaneous seizures in the tish rat. Normotopic neurons are more prone to exhibit epileptiform activity than are heterotopic neurons in the tish cortex, and heterotopic neurons are recruited into spiking by activity initiated in normotopic neurons. The findings indicate that seizures in the tish brain primarily involve telencephalic structures, and suggest that normotopic neurons are responsible for initiating seizures in the dysplastic neocortex.

  9. Double Cortex Syndrome (Subcortical Band Heterotopia): A Case Report

    National Research Council Canada - National Science Library

    Momen, Ali Akbar; Momen, Mehdi

    2015-01-01

    .... Many congenital or acquired brain anomalies are revealed with MRIs. Although the majority of these abnormalities are sporadic but patients with subcortical band heterotopia or double cortex syndrome have sex-linked inheritance...

  10. Regional Variation in Primary Care Involvement at the End of Life.

    Science.gov (United States)

    Ankuda, Claire K; Petterson, Stephen M; Wingrove, Peter; Bazemore, Andrew W

    2017-01-01

    Variation in end-of-life care in the United States is frequently driven by the health care system. We assessed the association of primary care physician involvement at the end of life with end-of-life care patterns. We analyzed 2010 Medicare Part B claims data for US hospital referral regions (HRRs). The independent variable was the ratio of primary care physicians to specialist visits in the last 6 months of life. Dependent variables included the rate of hospital deaths, hospital and intensive care use in the last 6 months of life, percentage of patients seen by more than 10 physicians, and Medicare spending in the last 2 years of life. Robust linear regression analysis was used to measure the association of primary care physician involvement at the end of life with the outcome variables, adjusting for regional characteristics. We assessed 306 HRRs, capturing 1,107,702 Medicare Part B beneficiaries with chronic disease who died. The interquartile range of the HRR ratio of primary care to specialist end-of-life visits was 0.77 to 1.21. HRRs with high vs low primary care physician involvement at the end of life had significantly different patient, population, and health system characteristics. Adjusting for these differences, HRRs with the greatest primary care physician involvement had lower Medicare spending in the last 2 years of life ($65,160 vs $69,030; P = .003) and fewer intensive care unit days in the last 6 months of life (2.90 vs 4.29; P care physician involvement in end-of-life care have overall less intensive end-of-life care. © 2017 Annals of Family Medicine, Inc.

  11. Characterization of the promoter region of biosynthetic enzyme genes involved in berberine biosynthesis in Coptis japonica

    Directory of Open Access Journals (Sweden)

    Yasuyuki Yamada

    2016-09-01

    Full Text Available The presence of alkaloids is rather specific to certain plant species. However, berberine, an isoquinoline alkaloid, is relatively broadly distributed in the plant kingdom. Thus, berberine biosynthesis has been intensively investigated, especially using Coptis japonica cell cultures. Almost all biosynthetic enzyme genes have already been characterized at the molecular level. Particularly, two transcription factors (TFs, a plant-specific WRKY-type transcription factor, CjWRKY1, and a basic helix-loop-helix (bHLH transcription factor, CjbHLH1, were shown to comprehensively regulate berberine biosynthesis in C. japonica cells. In this study, we characterized the promoter region of some biosynthetic enzyme genes and associated cis-acting elements involved in the transcriptional regulation via two TFs. The promoter regions of three berberine biosynthetic enzyme genes (CYP80B2, 4’OMT and CYP719A1 were isolated, and their promoter activities were dissected by a transient assay involving the sequentially truncated promoter::luciferase (LUC reporter constructs. Furthermore, transactivation activities of CjWRKY1 were determined using the truncated promoter::LUC reporter constructs or constructs with mutated cis-elements. These results suggest the involvement of a putative W-box in the regulation of biosynthetic enzyme genes. Direct binding of CjWRKY1 to the W-box DNA sequence was also confirmed by an electrophoresis mobility shift assay (EMSA and by a chromatin immunoprecipitation (ChIP assay. In addition, CjbHLH1 also activated transcription from truncated 4’OMT and CYP719A1 promoters independently of CjWRKY1, suggesting the involvement of a putative E-box. Unexpected transcriptional activation of biosynthetic enzyme genes via a non-W-box sequence and by CjWRKY1 as well as the possible involvement of a GCC-box in berberine biosynthesis in C. japonica are discussed.

  12. Quantity language speakers show enhanced subcortical processing.

    Science.gov (United States)

    Dawson, Caitlin; Aalto, Daniel; Šimko, Juraj; Putkinen, Vesa; Tervaniemi, Mari; Vainio, Martti

    2016-07-01

    The complex auditory brainstem response (cABR) can reflect language-based plasticity in subcortical stages of auditory processing. It is sensitive to differences between language groups as well as stimulus properties, e.g. intensity or frequency. It is also sensitive to the synchronicity of the neural population stimulated by sound, which results in increased amplitude of wave V. Finnish is a full-fledged quantity language, in which word meaning is dependent upon duration of the vowels and consonants. Previous studies have shown that Finnish speakers have enhanced behavioural sound duration discrimination ability and larger cortical mismatch negativity (MMN) to duration change compared to German and French speakers. The next step is to find out whether these enhanced duration discrimination abilities of quantity language speakers originate at the brainstem level. Since German has a complementary quantity contrast which restricts the possible patterns of short and long vowels and consonants, the current experiment compared cABR between nonmusician Finnish and German native speakers using seven short complex stimuli. Finnish speakers had a larger cABR peak amplitude than German speakers, while the peak onset latency was only affected by stimulus intensity and spectral band. The results suggest that early cABR responses are better synchronised for Finns, which could underpin the enhanced duration sensitivity of quantity language speakers. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Carcinoma Cuniculatum of the Right Thenar Region with Bone Involvement and Lymph Node Metastases

    Directory of Open Access Journals (Sweden)

    Robert Feldmann

    2017-11-01

    Full Text Available Squamous cell carcinoma (SCC is the second most common type of skin cancer after basal cell carcinoma (BCC. The overall prevalence of BCC is 3 times higher than that of SCC, but this can vary when looking at specific locations such as the hand, where SCC is much more common than BCC. Carcinoma (or epithelioma cuniculatum is a rare variant of SCC. It was originally described as a verrucous carcinoma of the soles. Exceptionally, it can arise in other parts of the skin. We report a rare case of carcinoma cuniculatum of the right thenar region with bone and lymph node involvement.

  14. Characterization of regions of chromosomes 12 and 16 involved in nephroblastoma tumorigenesis.

    Science.gov (United States)

    Austruy, E; Candon, S; Henry, I; Gyapay, G; Tournade, M F; Mannens, M; Callen, D; Junien, C; Jeanpierre, C

    1995-12-01

    There are at least three loci involved in Wilms' tumor (WT) tumorigenesis: WT1 in 11p13, WT2 in 11p15.5, and WT3, as yet unmapped. A compilation of cytogenetic data published for 107 WT revealed that deletion of chromosome 16 and duplication of chromosome 12 occur as frequently as the well-documented 11p deletions. Allelic imbalance for chromosomes 16 and 12 was investigated in a series of 28 WT. By use of a large panel of restriction fragment length polymorphisms and (CA)n probes, we demonstrated loss of heterozygosity (LOH) for 16q in seven (25%) of the tumors. The whole length of 16q was involved in six of the tumors. Moreover, consistent with a previous report of 16q13 LOH in a sporadic WT and a constitutional breakpoint with a Beckwith-Wiedemann patient, we map a region of particular interest to between D16S308 and D16S320. The assumption that 16q LOH may be an early event was based on: 1) the detection of 16q LOH in one case of nephroblastomatosis; 2) the presence of a complete (clonal) 16q LOH in a tumor with partial (mosaic) 11p LOH; and 3) 16q LOH as the sole abnormality in one WT. By quantification of chromosome 12 allelic imbalance, we detected duplication in 18% of the total series and in 25% of the sporadic unilateral cases. The common region extended from the centromere to D12S7 in 12q21.1-q23. We also suggest that the various pathogenetically important loci are not equally involved in the different forms of WT and that their sequential involvement may differ.

  15. Graph theory analysis of cortical-subcortical networks in late-life depression.

    Science.gov (United States)

    Ajilore, Olusola; Lamar, Melissa; Leow, Alex; Zhang, Aifeng; Yang, Shaolin; Kumar, Anand

    2014-02-01

    Late-life major depression (LLD) is characterized by distinct epidemiologic and psychosocial factors, as well as medical comorbidities that are associated with specific neuroanatomical differences. The purpose of this study was to use interregional correlations of cortical and subcortical volumes to examine cortical-subcortical structural network properties in subjects with LLD compared with healthy comparison subjects. This was a cross-sectional neuroimaging study conducted in the general community. We recruited 73 healthy elderly comparison subjects and 53 subjects with LLD who volunteered in response to advertisements. Brain network connectivity measures were generated by correlating regional volumes after controlling for age, gender, and intracranial volume by using the Brain Connectivity Toolbox. Results for overall network strength revealed that LLD networks showed a greater magnitude of associations for both positive and negative correlation weights compared with healthy elderly networks. LLD networks also demonstrated alterations in brain network structure compared with healthy comparison subjects. LLD networks were also more vulnerable to targeted attacks compared with healthy elderly comparison subjects, and this vulnerability was attenuated when controlling for white matter alterations. Overall, this study demonstrates that cortical-subcortical network properties are altered in LLD and may reflect the underlying neuroanatomical vulnerabilities of the disorder. Copyright © 2014 American Association for Geriatric Psychiatry. Published by Elsevier Inc. All rights reserved.

  16. The dysexecutive syndrome associated with ischaemic vascular disease and related subcortical neuropathology: a Boston process approach.

    Science.gov (United States)

    Lamar, Melissa; Price, Cate C; Giovannetti, Tania; Swenson, Rod; Libon, David J

    2010-01-01

    The introduction of diagnostic criteria for vascular dementia has helped to re-define the impact of various subcortical neuropathologies on aging; however, state-of-the-art neuroimaging techniques and autopsy studies suggest that not all structural brain alterations associated with vascular dementia are exclusive to this neurodegenerative process alone. Thus, a detailed analysis of the cognitive phenotype associated with ischaemic vascular disease is key to our understanding of subcortical neuropathology and its associated behaviors. Over the past twenty years, we have operationally defined this cognitive phenotype using the Boston Process Approach to neuropsychological assessment. This has led to both an empirical, as well as a theoretical understanding of three core constructs related to the dysexecutive syndrome associated with ischaemic vascular disease affecting periventricular and deep white matter as well as subcortical structures connecting these regions with the prefrontal cortex. Thus, difficulties with mental set, cognitive control and mental manipulation negatively impact executive functioning. This review will outline the subtle markers underlying this prefrontal dysfunction, i.e., the dysexecutive phenotype, associated with ischaemic vascular disease and relate it to fundamental impairments of gating subserved by basal ganglia-thalamic pathways within and across various dementia syndromes.

  17. The Dysexecutive Syndrome Associated with Ischaemic Vascular Disease and Related Subcortical Neuropathology: A Boston Process Approach

    Directory of Open Access Journals (Sweden)

    Melissa Lamar

    2010-01-01

    Full Text Available The introduction of diagnostic criteria for vascular dementia has helped to re-define the impact of various subcortical neuropathologies on aging; however, state-of-the-art neuroimaging techniques and autopsy studies suggest that not all structural brain alterations associated with vascular dementia are exclusive to this neurodegenerative process alone. Thus, a detailed analysis of the cognitive phenotype associated with ischaemic vascular disease is key to our understanding of subcortical neuropathology and its associated behaviors. Over the past twenty years, we have operationally defined this cognitive phenotype using the Boston Process Approach to neuropsychological assessment. This has led to both an empirical, as well as a theoretical understanding of three core constructs related to the dysexecutive syndrome associated with ischaemic vascular disease affecting periventricular and deep white matter as well as subcortical structures connecting these regions with the prefrontal cortex. Thus, difficulties with mental set, cognitive control and mental manipulation negatively impact executive functioning. This review will outline the subtle markers underlying this prefrontal dysfunction, i.e., the dysexecutive phenotype, associated with ischaemic vascular disease and relate it to fundamental impairments of gating subserved by basal ganglia-thalamic pathways within and across various dementia syndromes.

  18. Expanded functional coupling of subcortical nuclei with the motor resting-state network in multiple sclerosis.

    Science.gov (United States)

    Dogonowski, Anne-Marie; Siebner, Hartwig R; Sørensen, Per Soelberg; Wu, Xingchen; Biswal, Bharat; Paulson, Olaf B; Dyrby, Tim B; Skimminge, Arnold; Blinkenberg, Morten; Madsen, Kristoffer H

    2013-04-01

    Multiple sclerosis (MS) impairs signal transmission along cortico-cortical and cortico-subcortical connections, affecting functional integration within the motor network. Functional magnetic resonance imaging (fMRI) during motor tasks has revealed altered functional connectivity in MS, but it is unclear how much motor disability contributed to these abnormal functional interaction patterns. To avoid any influence of impaired task performance, we examined disease-related changes in functional motor connectivity in MS at rest. A total of 42 patients with MS and 30 matched controls underwent a 20-minute resting-state fMRI session at 3 Tesla. Independent component analysis was applied to the fMRI data to identify disease-related changes in motor resting-state connectivity. Patients with MS showed a spatial expansion of motor resting-state connectivity in deep subcortical nuclei but not at the cortical level. The anterior and middle parts of the putamen, adjacent globus pallidus, anterior and posterior thalamus and the subthalamic region showed stronger functional connectivity with the motor network in the MS group compared with controls. MS is characterised by more widespread motor connectivity in the basal ganglia while cortical motor resting-state connectivity is preserved. The expansion of subcortical motor resting-state connectivity in MS indicates less efficient funnelling of neural processing in the executive motor cortico-basal ganglia-thalamo-cortical loops.

  19. Identifying gp85-regions involved in Epstein-Barr virus binding to B-lymphocytes.

    Science.gov (United States)

    Urquiza, Mauricio; Suarez, Jorge; Lopez, Ramses; Vega, Erika; Patino, Helena; Garcia, Javier; Patarroyo, Manuel A; Guzman, Fanny; Patarroyo, Manuel E

    2004-06-18

    Epstein-Barr virus lacking glycoprotein gp85 cannot infect B-cells and epithelial cells. The gp85 belongs to the molecular complex required for virus invasion of B-lymphocyte or epithelial cells. Moreover, there is evidence that gp85 is necessary for virus attachment to epithelial cells. Thirty-six peptides from the entire gp85-sequence were tested in epithelial and lymphoblastoid cell line binding assays to identify gp85-regions involved in virus-cell interaction. Five of these peptides presented high binding activity to Raji, Ramos, P3HR-1, and HeLa cells, but not to erythrocytes; Raji-cell affinity constants were between 80 and 140nM. Of these five peptides, 11435 ((181)TYKRVTEKGDEHVLSLVFGK(200)), 11436 ((201)TKDLPDLRGPFSYPSLTSAQ(220)), and 11438 ((241)YFVPNLKDMFSRAVTMTAAS(260)) bound to a 65kDa protein on Raji-cell surface. These peptides and antibodies induced by them (recognising live EBV-infected cells) inhibited Epstein-Barr virus interaction with cord blood lymphocytes. It is thus probable that gp85-regions defined by peptides 11435, 11436, and 11438 are involved in EBV invasion of B-lymphocytes.

  20. Parent Involvement Activities in School Improvement Plans in the Northwest Region. Summary. Issues & Answers. REL 2008-No. 064

    Science.gov (United States)

    Speth, Timothy; Saifer, Steffen; Forehand, Gregory

    2008-01-01

    This document presents a summary of the larger report, "Parent Involvement Activities in School Improvement Plans in the Northwest Region." Although the No Child Left Behind Act of 2001 (NCLB) spells out parent involvement requirements for schools in need of improvement, the majority of the Northwest Region school improvement plans…

  1. Evaluation of FDG-PET and ECD-SPECT in patients with subcortical band heterotopia.

    Science.gov (United States)

    Ito, Kimiteru; Nakata, Yasuhiro; Matsuda, Hiroshi; Sugai, Kenji; Watanabe, Masako; Kamiya, Kouhei; Kimura, Yukio; Shigemoto, Yoko; Okazaki, Mitsutoshi; Sasaki, Masayuki; Sato, Noriko

    2014-08-01

    The purpose of this retrospective study was to clarify the cellular activities of ectopic neurons in subcortical bands and to evaluate the imaging features of (18)F-fluorodeoxyglucose (FDG) positron emission tomography (PET) and (99m)Tc ethyl cysteinate dimer (ECD) single-photon emission computed tomography (SPECT) in a series of patients with subcortical band heterotopia (SBH). The cases of 12 patients with SBH (3 men and 9 women; age range, 2-51 years) were evaluated on the basis of their MRI findings. Eight (18)F-FDG PET and 12 (99m)Tc-ECD SPECT images were obtained. The uptakes of these images were compared with electroencephalography (EEG) or MRI findings such as band thickness. In all patients, easy Z-score Imaging System (eZIS) software was used to statistically analyze the SPECT images. Of the eight (18)F-FDG PET images, five showed higher uptake in the thick subcortical bands than in the overlying cortex. Of the 12 (99m)Tc-ECD SPECT examinations with eZIS images, nine indicated increased regional cerebral blood flow (rCBF) areas corresponding to the band locations. Of the eight (18)F-FDG PET examination findings, six were congruent with the rCBF distributions on the eZIS images. Eight of the 12 patients showed correspondence to the increased rCBF on the eZIS images, the band locations on MRI, and abnormal discharge sites on EEG. Ectopic neurons in subcortical bands may have higher glucose metabolism and/or increased rCBF compared to the overlying cortex. (18)F-FDG PET and (99m)Tc-ECD SPECT using eZIS can be helpful to clearly detect the cellular activities of ectopic neurons in patients with SBH. Copyright © 2013 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  2. Magnetic Resonance Finding of Acute Marchiafava-Bignami Disease with Diffuse Involvement: A Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Young Jin; Jeong, Hae Woong; In, Hyun Sin [Dept. of Radiology, Busan Paik Hospital, Inje University College of Medicine, Busan (Korea, Republic of)

    2011-11-15

    Marchiafava-Bignami disease (MBD) is a rare toxic disorder strongly associated with chronic alcoholism. It is characterized by progressive demyelination and necrosis of the corpus callosum. The process may extend to neighboring white matter and subcortical regions. We report a case of MBD in which fluid-attenuated inversion recovery and diffusion-weighted imaging revealed symmetrical hyperintense lesions with diffuse involvement of the corpus callosum, white matter, corticospinal tract, internal capsule, and middle cerebellar peduncle.

  3. The effect of duration of illness and antipsychotics on subcortical volumes in schizophrenia: Analysis of 778 subjects.

    Science.gov (United States)

    Hashimoto, Naoki; Ito, Yoichi M; Okada, Naohiro; Yamamori, Hidenaga; Yasuda, Yuka; Fujimoto, Michiko; Kudo, Noriko; Takemura, Ariyoshi; Son, Shuraku; Narita, Hisashi; Yamamoto, Maeri; Tha, Khin Khin; Katsuki, Asuka; Ohi, Kazutaka; Yamashita, Fumio; Koike, Shinsuke; Takahashi, Tsutomu; Nemoto, Kiyotaka; Fukunaga, Masaki; Onitsuka, Toshiaki; Watanabe, Yoshiyuki; Yamasue, Hidenori; Suzuki, Michio; Kasai, Kiyoto; Kusumi, Ichiro; Hashimoto, Ryota

    2018-01-01

    The effect of duration of illness and antipsychotic medication on the volumes of subcortical structures in schizophrenia is inconsistent among previous reports. We implemented a large sample analysis utilizing clinical data from 11 institutions in a previous meta-analysis. Imaging and clinical data of 778 schizophrenia subjects were taken from a prospective meta-analysis conducted by the COCORO consortium in Japan. The effect of duration of illness and daily dose and type of antipsychotics were assessed using the linear mixed effect model where the volumes of subcortical structures computed by FreeSurfer were used as a dependent variable and age, sex, duration of illness, daily dose of antipsychotics and intracranial volume were used as independent variables, and the type of protocol was incorporated as a random effect for intercept. The statistical significance of fixed-effect of dependent variable was assessed. Daily dose of antipsychotics was positively associated with left globus pallidus volume and negatively associated with right hippocampus. It was also positively associated with laterality index of globus pallidus. Duration of illness was positively associated with bilateral globus pallidus volumes. Type of antipsychotics did not have any effect on the subcortical volumes. A large sample size, uniform data collection methodology and robust statistical analysis are strengths of the current study. This result suggests that we need special attention to discuss about relationship between subcortical regional brain volumes and pathophysiology of schizophrenia because regional brain volumes may be affected by antipsychotic medication.

  4. Brain regions involved in human movement perception: a quantitative voxel-based meta-analysis.

    Science.gov (United States)

    Grosbras, Marie-Hélène; Beaton, Susan; Eickhoff, Simon B

    2012-02-01

    Face, hands, and body movements are powerful signals essential for social interactions. In the last 2 decades, a large number of brain imaging studies have explored the neural correlates of the perception of these signals. Formal synthesis is crucially needed, however, to extract the key circuits involved in human motion perception across the variety of paradigms and stimuli that have been used. Here, we used the activation likelihood estimation (ALE) meta-analysis approach with random effect analysis. We performed meta-analyses on three classes of biological motion: movement of the whole body, hands, and face. Additional analyses of studies of static faces or body stimuli and sub-analyses grouping experiments as a function of their control stimuli or task employed allowed us to identify main effects of movements and forms perception, as well as effects of task demand. In addition to specific features, all conditions showed convergence in occipito-temporal and fronto-parietal regions, but with different peak location and extent. The conjunction of the three ALE maps revealed convergence in all categories in a region of the right posterior superior temporal sulcus as well as in a bilateral region at the junction between middle temporal and lateral occipital gyri. Activation in these regions was not a function of attentional demand and was significant also when controlling for non-specific motion perception. This quantitative synthesis points towards a special role for posterior superior temporal sulcus for integrating human movement percept, and supports a specific representation for body parts in middle temporal, fusiform, precentral, and parietal areas. Copyright © 2011 Wiley Periodicals, Inc.

  5. Conserved regions of ribonucleoprotein ribonuclease MRP are involved in interactions with its substrate.

    Science.gov (United States)

    Esakova, Olga; Perederina, Anna; Berezin, Igor; Krasilnikov, Andrey S

    2013-08-01

    Ribonuclease (RNase) MRP is a ubiquitous and essential site-specific eukaryotic endoribonuclease involved in the metabolism of a wide range of RNA molecules. RNase MRP is a ribonucleoprotein with a large catalytic RNA moiety that is closely related to the RNA component of RNase P, and multiple proteins, most of which are shared with RNase P. Here, we report the results of an ultraviolet-cross-linking analysis of interactions between a photoreactive RNase MRP substrate and the Saccharomyces cerevisiae RNase MRP holoenzyme. The results show that the substrate interacts with phylogenetically conserved RNA elements universally found in all enzymes of the RNase P/MRP family, as well as with a phylogenetically conserved RNA region that is unique to RNase MRP, and demonstrate that four RNase MRP protein components, all shared with RNase P, interact with the substrate. Implications for the structural organization of RNase MRP and the roles of its components are discussed.

  6. Pituitary adenoma, craniopharyngioma, and Rathke cleft cyst involving both intrasellar and suprasellar regions: differentiation using MRI

    Energy Technology Data Exchange (ETDEWEB)

    Choi, S.H. [Department of Radiology, Seoul National University College of Medicine (Korea, Republic of); Kwon, B.J. [Department of Radiology, Seoul National University College of Medicine (Korea, Republic of)]. E-mail: bjkwon@radiol.snu.ac.kr; Na, D.G. [Department of Radiology, Seoul National University College of Medicine (Korea, Republic of); Kim, J.-H. [Department of Radiology, Seoul National University College of Medicine (Korea, Republic of); Han, M.H. [Department of Radiology, Seoul National University College of Medicine (Korea, Republic of); Clinical Research Institute, Seoul National University Hospital (Korea, Republic of); Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul (Korea, Republic of); Chang, K.-H. [Department of Radiology, Seoul National University College of Medicine (Korea, Republic of); Clinical Research Institute, Seoul National University Hospital (Korea, Republic of); Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul (Korea, Republic of)

    2007-05-15

    Aims: To determine the differential magnetic resonance imaging (MRI) features of pituitary adenoma, craniopharyngioma, and Rathke cleft cyst involving both intrasellar and suprasellar regions. Materials and methods: The MRI images of 64 patients with pituitary adenoma (n = 38), craniopharyngioma (n = 13), or Rathke cleft cyst (n = 13) were retrospectively reviewed by three neuroradiologists. The following characteristics were evaluated: shape, volume, extent, component characteristics, signal intensities of solid portions on T2-weighted images, signal intensities of cystic portions on T1-weighted images, and enhancement patterns of solid portions and cyst walls of tumours. Fisher's exact test applied with Bonferroni correction was used for multiple comparison. A flowchart for differential diagnosis was constructed based on statistical analysis of the results. Results: A snowman shape, solid characteristics, and homogeneous enhancement of the solid portion were more common in pituitary adenomas (p < 0.017). A superiorly lobulated shape, third ventricle compression by superior tumour extension, mixed solid and cystic characteristics, and reticular enhancement of the solid portion were more common in craniopharyngiomas (p < 0.017). Finally, an ovoid shape, a small tumour volume, cystic characteristics, and no or thin cyst wall enhancement were more common in Rathke cleft cysts (p < 0.017). The flowchart yielded diagnostic accuracies as follows: 92.1% in pituitary adenoma; 92.3% in craniopharyngioma; 92.3% in Rathke cleft cyst; and 92.2% overall. Conclusion: A combination of MRI findings is helpful in the differential diagnosis of the three tumours involving both intrasellar and suprasellar regions.

  7. Causes of fatal childhood accidents involving head injury in northern region, 1979-86.

    Science.gov (United States)

    Sharples, P M; Storey, A; Aynsley-Green, A; Eyre, J A

    1990-11-24

    To examine the causes and circumstances surrounding fatal accidents involving head injuries in children in the Northern region. Retrospective review of the hospital case notes, necropsy reports, and records of the coroners' inquests. Northern Regional Health Authority. All 255 children aged less than 16 years who died with a head injury during 1979-86. Cause of injury and circumstances of accident according to reports of inquests; injury severity score; number of fatal accidents and mortality per 100,000 children in 10 groups of local authority wards ranked according to their score on the overall deprivation index; and distance of site of accident from child's home. Of the 255 children who died after a head injury, 136 (53%) children were playing at the time of the accident. 195 (76%) children sustained the head injury in road traffic accidents, 135 as pedestrians, 35 as cyclists, and 25 as passengers in a vehicle. In 120 accidents in child pedestrians the primary cause of accident was the unsafe behaviour of the child. 172 (67%) accidents occurred within one to two km of the child's home and 153 (63%) between 3 pm and 9 pm. The mortality was significantly related to social deprivation; excluding eight children injured while on holiday in the region, 15-fold decrease in mortality was recorded between the local authority wards that ranked highest on the overall deprivation index and those that ranked lowest (14.0/100,000 children, group 10 v 0.9/100,000, group 1 respectively, p less than 0.00001). The finding that most accidents occurred in children living in deprived areas who were playing unsupervised near their home suggests that childhood mortality might be appreciably reduced if children at play were protected from traffic, particularly in socially deprived areas.

  8. Relative activity of cerebral subcortical gray matter in varying states of attention and awareness in normal subjects and patient studies

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, M.; Chen, C.T.; Levy, J.; Wagner, N.; Spire, J.P.; Jacobsen, J.; Meltzer, H.; Metz, J.; Beck, R.N.

    1985-05-01

    An important aspect of the study of brain function involves measurement of the relationships; between activities in the subcortical gray matter of the caudate and of the thalamus; and between these structures and functional cortical areas. The authors have studied these relationships in 22 subjects under different conditions of activation, sleep and sensory deprivation using a PET VI system and F-18-2DG to determine regional cerebral metabolism. Subject activating conditions were maintained throughout the period of equilibration of F-18-2DG and E.E.G.'s were monitored. Multiple tomographic slices of 1-2 million counts were obtained simultaneously with slice separation of 14mm and each plane parallel to the cantho-meatal line. In activated and non-activated awake conditions for normal subjects, left and right thalmus-to-caudate ratios were similar and greater than unity. This relationship was maintained in non-REM sleep, but was reversed and divergent in REM sleep and sensory deprivation; this was also evident in 3/4 narcoleptics awake and asleep in non-REM and REM and 2/3 schizophrenics and affective disorder, subjects. This approach appears to have potential for characterizating normal and disordered regional cerebral function.

  9. Cortical and subcortical mapping of language areas: correlation of functional MRI and tractography in a 3T scanner with intraoperative cortical and subcortical stimulation in patients with brain tumors located in eloquent areas.

    Science.gov (United States)

    Jiménez de la Peña, M; Gil Robles, S; Recio Rodríguez, M; Ruiz Ocaña, C; Martínez de Vega, V

    2013-01-01

    To describe the detection of cortical areas and subcortical pathways involved in language observed in MRI activation studies and tractography in a 3T MRI scanner and to correlate the findings of these functional studies with direct intraoperative cortical and subcortical stimulation. We present a series of 14 patients with focal brain tumors adjacent to eloquent brain areas. All patients underwent neuropsychological evaluation before and after surgery. All patients underwent MRI examination including structural sequences, perfusion imaging, spectroscopy, functional imaging to determine activation of motor and language areas, and 3D tractography. All patients underwent cortical mapping through cortical and subcortical stimulation during the operation to resect the tumor. Postoperative follow-up studies were done 24 hours after surgery. The correlation of motor function and of the corticospinal tract determined by functional MRI and tractography with intraoperative mapping of cortical and subcortical motor areas was complete. The eloquent brain areas of language expression and reception were strongly correlated with intraoperative cortical mapping in all but two cases (a high grade infiltrating glioma and a low grade glioma located in the frontal lobe). 3D tractography identified the arcuate fasciculus, the lateral part of the superior longitudinal fasciculus, the subcallosal fasciculus, the inferior fronto-occipital fasciculus, and the optic radiations, which made it possible to mark the limits of the resection. The correlation with the subcortical mapping of the anatomic arrangement of the fasciculi with respect to the lesions was complete. The best treatment for brain tumors is maximum resection without associated deficits, so high quality functional studies are necessary for preoperative planning. Copyright © 2011 SERAM. Published by Elsevier Espana. All rights reserved.

  10. A genomic region involved in the formation of adhesin fibers in Bacillus cereus biofilms

    Directory of Open Access Journals (Sweden)

    Joaquín eCaro-Astorga

    2015-01-01

    Full Text Available Bacillus cereus is a bacterial pathogen that is responsible for many recurrent disease outbreaks due to food contamination. Spores and biofilms are considered the most important reservoirs of B. cereus in contaminated fresh vegetables and fruits. Biofilms are bacterial communities that are difficult to eradicate from biotic and abiotic surfaces because of their stable and extremely strong extracellular matrix. These extracellular matrixes contain exopolysaccharides, proteins, extracellular DNA, and other minor components. Although B. cereus can form biofilms, the bacterial features governing assembly of the protective extracellular matrix are not known. Using the well-studied bacterium B. subtilis as a model, we identified two genomic loci in B. cereus, which encodes two orthologs of the amyloid-like protein TasA of B. subtilis and a SipW signal peptidase. Deletion of this genomic region in B. cereus inhibited biofilm assembly; notably, mutation of the putative signal peptidase SipW caused the same phenotype. However, mutations in tasA or calY did not completely prevent biofilm formation; strains that were mutated for either of these genes formed phenotypically different surface attached biofilms. Electron microscopy studies revealed that TasA polymerizes to form long and abundant fibers on cell surfaces, whereas CalY does not aggregate similarly. Heterologous expression of this amyloid-like cassette in a B. subtilis strain lacking the factors required for the assembly of TasA amyloid-like fibers revealed i the involvement of this B. cereus genomic region in formation of the air-liquid interphase pellicles and ii the intrinsic ability of TasA to form fibers similar to the amyloid-like fibers produced by its B. subtilis ortholog.

  11. Parent Involvement Activities in School Improvement Plans in the Northwest Region. Issues & Answers. REL 2008-No. 064

    Science.gov (United States)

    Speth, Timothy; Saifer, Steffen; Forehand, Gregory

    2008-01-01

    Although the No Child Left Behind Act of 2001 (NCLB) spells out parent involvement requirements for schools in need of improvement, the majority of the Northwest Region school improvement plans reviewed failed to include such provisions. Reported findings include: (1) Despite a wide range of parent involvement practices discussed in legislation…

  12. System Model Bias Processing Approach for Regional Coordinated States Information Involved Filtering

    Directory of Open Access Journals (Sweden)

    Zebo Zhou

    2016-01-01

    Full Text Available In the Kalman filtering applications, the conventional dynamic model which connects the states information of two consecutive epochs by state transition matrix is usually predefined and assumed to be invariant. Aiming to improve the adaptability and accuracy of dynamic model, we propose multiple historical states involved filtering algorithm. An autoregressive model is used as the dynamic model which is subsequently combined with observation model for deriving the optimal window-recursive filter formulae in the sense of minimum mean square error principle. The corresponding test statistics characteristics of system residuals are discussed in details. The test statistics of regional predicted residuals are then constructed in a time-window for model bias testing with two hypotheses, that is, the null and alternative hypotheses. Based on the innovations test statistics, we develop a model bias processing procedure including bias detection, location identification, and state correction. Finally, the minimum detectable bias and bias-to-noise ratio are both computed for evaluating the internal and external reliability of overall system, respectively.

  13. Vertebral body integrity: a review of various anatomical factors involved in the lumbar region.

    Science.gov (United States)

    Prakash; Prabhu, L V; Saralaya, V V; Pai, M M; Ranade, A V; Singh, G; Madhyastha, S

    2007-07-01

    The body of the vertebra can be affected in the majority of the conditions involving the lumbar spine. Multiple references, both books and periodicals, have been reviewed, and the anatomical factors responsible for the vertebral body integrity in the lumbar spine have been included under the following important areas, namely, morphology, development, genetics, microscopic examination using histology, structural architecture, blood supply, neuromuscular control, and biomechanics. The anatomy provides a three-dimensional frame work to support the interaction between the physiological and pathological alterations. The body of the vertebra can be affected in a majority of acute or chronic conditions involving the lumbar spine. The etiology of these conditions is multifactorial, which has been dealt with in previous studies sporadically. This study aims to review and incorporate the important anatomical factors which can influence the integrity of vertebral bodies in the lumbar region and manifest as low back pain. Multiple references, both books and periodicals, have been reviewed for the literature. Electronic databases, including Medline and PubMed, were used to collect the latest information. They were finally arranged in an anatomical framework for the article. An attempt has been made to cover these relevant issues in an integrated way in the article and have been structured into introduction, morphology, development, genetics, microscopic examination using histology, structural architecture, blood supply, neuromuscular control, biomechanics, and conclusion. The aforementioned anatomical aspects, some of which have received less attention in the literature, may be helpful to clinicians for restoring the mobility, stability, and load bearing capacity of the lumbar spine as well as planning better management strategies, especially for the chronic low back pain. In our article all the anatomical factors affecting the integrity of vertebral body, including the

  14. Subcortical Shape Changes, Hippocampal Atrophy and Cortical Thinning in Future Alzheimer's Disease Patients.

    Science.gov (United States)

    Kälin, Andrea M; Park, Min T M; Chakravarty, M Mallar; Lerch, Jason P; Michels, Lars; Schroeder, Clemens; Broicher, Sarah D; Kollias, Spyros; Nitsch, Roger M; Gietl, Anton F; Unschuld, Paul G; Hock, Christoph; Leh, Sandra E

    2017-01-01

    Efficacy of future treatments depends on biomarkers identifying patients with mild cognitive impairment at highest risk for transitioning to Alzheimer's disease. Here, we applied recently developed analysis techniques to investigate cross-sectional differences in subcortical shape and volume alterations in patients with stable mild cognitive impairment (MCI) (n = 23, age range 59-82, 47.8% female), future converters at baseline (n = 10, age range 66-84, 90% female) and at time of conversion (age range 68-87) compared to group-wise age and gender matched healthy control subjects (n = 23, age range 61-81, 47.8% female; n = 10, age range 66-82, 80% female; n = 10, age range 68-82, 70% female). Additionally, we studied cortical thinning and global and local measures of hippocampal atrophy as known key imaging markers for Alzheimer's disease. Apart from bilateral striatal volume reductions, no morphometric alterations were found in cognitively stable patients. In contrast, we identified shape alterations in striatal and thalamic regions in future converters at baseline and at time of conversion. These shape alterations were paralleled by Alzheimer's disease like patterns of left hemispheric morphometric changes (cortical thinning in medial temporal regions, hippocampal total and subfield atrophy) in future converters at baseline with progression to similar right hemispheric alterations at time of conversion. Additionally, receiver operating characteristic curve analysis indicated that subcortical shape alterations may outperform hippocampal volume in identifying future converters at baseline. These results further confirm the key role of early cortical thinning and hippocampal atrophy in the early detection of Alzheimer's disease. But first and foremost, and by distinguishing future converters but not patients with stable cognitive abilities from cognitively normal subjects, our results support the value of early subcortical shape alterations and reduced hippocampal

  15. Phonemic Characteristics of Apraxia of Speech Resulting from Subcortical Hemorrhage

    Science.gov (United States)

    Peach, Richard K.; Tonkovich, John D.

    2004-01-01

    Reports describing subcortical apraxia of speech (AOS) have received little consideration in the development of recent speech processing models because the speech characteristics of patients with this diagnosis have not been described precisely. We describe a case of AOS with aphasia secondary to basal ganglia hemorrhage. Speech-language symptoms…

  16. Neuropsychological Profile of Children with Subcortical Band Heterotopia

    Science.gov (United States)

    Spencer-Smith, Megan; Leventer, Richard; Jacobs, Rani; De Luca, Cinzia; Anderson, Vicki

    2009-01-01

    Aim: Subcortical band heterotopia (SBH) or "double cortex" is a malformation of cortical development resulting from impaired neuronal migration. So far, research has focused on the neurological, neuroimaging, and genetic correlates of SBH. More recently, clinical reports and small sample studies have documented neuropsychological dysfunction in…

  17. Childhood adversity impacts on brain subcortical structures relevant to depression

    NARCIS (Netherlands)

    Frodl, Thomas; Janowitz, Deborah; Schmaal, Lianne; Tozzi, Leonardo; Dobrowolny, Henrik; Stein, Dan J.; Veltman, Dick. J.; Wittfeld, Katharina; van Erp, Theo G. M.; Jahanshad, Neda; Block, Andrea; Hegenscheid, Katrin; Voelzke, Henry; Lagopoulos, Jim; Hatton, Sean N.; Hickie, Ian B.; Frey, Eva Maria; Carballedo, Angela; Brooks, Samantha J; Vuletic, Daniella; Uhlmann, Anne; Veer, Ilya M.; Walter, Henrik; Schnell, Knut; Grotegerd, Dominik; Arolt, Volker; Kugel, Harald; Schramm, Elisabeth; Konrad, Carsten; Zurowski, Bartosz; Baune, Bernhard T; van der Wee, Nic J. A.; van Tol, Marie-Jose; Penninx, Brenda W. J. H.; Thompson, Paul M.; Hibar, Derrek P.; Dannlowski, Udo; Grabe, Hans J.

    Childhood adversity plays an important role for development of major depressive disorder (MDD). There are differences in subcortical brain structures between patients with MDD and healthy controls, but the specific impact of childhood adversity on such structures in MDD remains unclear. Thus, aim of

  18. 21 CFR 882.5840 - Implanted intracerebral/subcortical stimulator for pain relief.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Implanted intracerebral/subcortical stimulator for... Devices § 882.5840 Implanted intracerebral/subcortical stimulator for pain relief. (a) Identification. An implanted intracerebral/subcortical stimulator for pain relief is a device that applies electrical current...

  19. Subcortical band heterotopia (SBH) in males: clinical, imaging and genetic findings in comparison with females.

    Science.gov (United States)

    D'Agostino, Maria Daniela; Bernasconi, Andrea; Das, Soma; Bastos, Alexandre; Valerio, Rosa M; Palmini, André; Costa da Costa, Jaderson; Scheffer, Ingrid E; Berkovic, Samuel; Guerrini, Renzo; Dravet, Charlotte; Ono, Jiro; Gigli, GianLuigi; Federico, Antonio; Booth, Fran; Bernardi, Bruno; Volpi, Lilia; Tassinari, Carlo Alberto; Guggenheim, Mary Anne; Ledbetter, David H; Gleeson, Joseph G; Lopes-Cendes, Iscia; Vossler, David G; Malaspina, Elisabetta; Franzoni, Emilio; Sartori, Roberto J; Mitchell, Michael H; Mercho, Suha; Dubeau, François; Andermann, Frederick; Dobyns, William B; Andermann, Eva

    2002-11-01

    Subcortical band heterotopia (SBH) or double cortex syndrome is a neuronal migration disorder, which occurs very rarely in males: to date, at least 110 females but only 11 in males have been reported. The syndrome is usually associated with mutations in the doublecortin (DCX) (Xq22.3-q23) gene, and much less frequently in the LIS1 (17p13.3) gene. To determine whether the phenotypic spectrum, the genetic basis and genotype-phenotype correlations of SBH in males are similar to those in females, we compared the clinical, imaging and molecular features in 30 personally evaluated males and 60 previously reported females with SBH. Based on the MRI findings, we defined the following band subtypes: partial, involving one or two cerebral lobes; intermediate, involving two lobes and a portion of a third; diffuse, with substantial involvement of three or more lobes; and pachygyria-SBH, in which posterior SBH merges with anterior pachygyria. Karyo typing and mutation analysis of DCX and/or LIS1 were performed in 23 and 24 patients, respectively. The range of clinical phenotypes in males with SBH greatly overlapped that in females. MRI studies revealed that some anatomical subtypes of SBH, such as partial and intermediate posterior, pachygyria-SBH and diffuse bands with posterior predominance, were more frequently or exclusively present in males. Conversely, classical diffuse SBH and diffuse bands with anterior predominance were more frequent in females. Males had either mild or the most severe band subtypes, and these correlated with the over-representation of normal/borderline intelligence and severe mental retardation, respectively. Conversely, females who had predominantly diffuse bands exhibited mostly mild or moderate mental retardation. Seven patients (29%) had missense mutations in DCX; in four, these were germline mutations, whereas in three there was evidence for somatic mosaicism. A germline missense mutation of LIS1 and a partial trisomy of chromosome 9p were

  20. Evidence for a role of a cortico-subcortical network for automatic and unconscious motor inhibition of manual responses.

    Directory of Open Access Journals (Sweden)

    Kevin D'Ostilio

    Full Text Available It is now clear that non-consciously perceived stimuli can bias our decisions. Although previous researches highlighted the importance of automatic and unconscious processes involved in voluntary action, the neural correlates of such processes remain unclear. Basal ganglia dysfunctions have long been associated with impairment in automatic motor control. In addition, a key role of the medial frontal cortex has been suggested by administrating a subliminal masked prime task to a patient with a small lesion restricted to the supplementary motor area (SMA. In this task, invisible masked arrows stimuli were followed by visible arrow targets for a left or right hand response at different interstimuli intervals (ISI, producing a traditional facilitation effect for compatible trials at short ISI and a reversal inhibitory effect at longer ISI. Here, by using fast event-related fMRI and a weighted parametric analysis, we showed BOLD related activity changes in a cortico-subcortical network, especially in the SMA and the striatum, directly linked to the individual behavioral pattern. This new imaging result corroborates previous works on subliminal priming using lesional approaches. This finding implies that one of the roles of these regions was to suppress a partially activated movement below the threshold of awareness.

  1. Intraosseous migration of tendinous calcifications: cortical erosions, subcortical migration and extensive intramedullary diffusion, a SIMS series

    Energy Technology Data Exchange (ETDEWEB)

    Malghem, Jacques; Omoumi, Patrick; Lecouvet, Frederic; Berg, Bruno vande [Universite Catholique de Louvain, Departement de radiologie et d' imagerie medicale, Bruxelles (Belgium)

    2015-10-15

    Calcium hydroxyapatite crystal deposition is a common disorder, which sometimes causes acute pain as calcifications dissolve and migrate into adjacent soft tissue. Intraosseous calcium penetration has also been described. We illustrate the appearance of these lesions using a series of 35 cases compiled by members of the French Society of Musculoskeletal Imaging (Societe d'Imagerie Musculo-Squelettique, SIMS). The first group in our series (7 cases) involved calcification-related cortical erosions of the humeral and femoral diaphyses, in particular at the pectoralis major and gluteus maximus insertions. A second group (28 cases) involved the presence of calcium material in subcortical areas. The most common site was the greater tubercle of the humerus, accompanying a calcifying tendinopathy of the supraspinatus. In addition, an extensive intramedullary diffusion of calcium deposits was observed in four of these cases, associated with cortical erosion in one case and subcortical lesions in three cases. Cortical erosions and intraosseous migration of calcifications associated with calcific tendinitis may be confused with neoplasm or infection. It is important to recognize atypical presentations of hydroxyapatite deposition to avoid unnecessary investigation or surgery. (orig.)

  2. Use of Anisotropy, 3D Segmented Atlas, and Computational Analysis to Identify Gray Matter Subcortical Lesions Common to Concussive Injury from Different Sites on the Cortex.

    Directory of Open Access Journals (Sweden)

    Praveen Kulkarni

    Full Text Available Traumatic brain injury (TBI can occur anywhere along the cortical mantel. While the cortical contusions may be random and disparate in their locations, the clinical outcomes are often similar and difficult to explain. Thus a question that arises is, do concussions at different sites on the cortex affect similar subcortical brain regions? To address this question we used a fluid percussion model to concuss the right caudal or rostral cortices in rats. Five days later, diffusion tensor MRI data were acquired for indices of anisotropy (IA for use in a novel method of analysis to detect changes in gray matter microarchitecture. IA values from over 20,000 voxels were registered into a 3D segmented, annotated rat atlas covering 150 brain areas. Comparisons between left and right hemispheres revealed a small population of subcortical sites with altered IA values. Rostral and caudal concussions were of striking similarity in the impacted subcortical locations, particularly the central nucleus of the amygdala, laterodorsal thalamus, and hippocampal complex. Subsequent immunohistochemical analysis of these sites showed significant neuroinflammation. This study presents three significant findings that advance our understanding and evaluation of TBI: 1 the introduction of a new method to identify highly localized disturbances in discrete gray matter, subcortical brain nuclei without postmortem histology, 2 the use of this method to demonstrate that separate injuries to the rostral and caudal cortex produce the same subcortical, disturbances, and 3 the central nucleus of the amygdala, critical in the regulation of emotion, is vulnerable to concussion.

  3. Mosaic mutations of the LIS1 gene cause subcortical band heterotopia.

    Science.gov (United States)

    Sicca, F; Kelemen, A; Genton, P; Das, S; Mei, D; Moro, F; Dobyns, W B; Guerrini, R

    2003-10-28

    Subcortical band heterotopia (SBH) is a neuronal migration disorder. DCX mutations are responsible for almost all familial cases, 80% of sporadic female cases, and 25% of sporadic male cases of SBH, and are associated with more severe gyral and migration abnormality over the anterior brain regions. Somatic mosaicism has previously been hypothesized in a patient with posteriorly predominant SBH and a mutation of the LIS1 gene, which is usually mutated in patients with severe lissencephaly. The authors identified mosaic mutations of LIS1 in two patients (Patients 1 and 2) with predominantly posterior SBH. After ruling out DCX mutations, the authors performed sequencing of the LIS1 gene in lymphocyte DNA. Because sequence peaks in both patients were suggestive of mosaic mutations, they followed up with denaturing high-pressure liquid chromatography analysis on blood and hair root DNA and compared the areas of heteroduplex and homoduplex peaks. A third patient showing the same mutation as Patient 2 but with no evidence of mosaicism was used for comparing the phenotype of mosaic vs full mutation. The two patients with posterior SBH harbored a missense (Arg241Pro) and a nonsense (R8X) mosaic mutation of LIS1. The rate of mosaicism in Patient 1 was 18% in the blood and 21% in the hair roots, whereas in Patient 2 it was 24% and 31% in the same tissues. The patient with a full R8X mutation of LIS1 had severe lissencephaly. Subcortical band heterotopia can occur with mosaic mutations of the LIS1 gene. Mutation analysis of LIS1, using highly sensitive techniques such as denaturing high-pressure liquid chromatography, should be considered for patients with posteriorly predominant subcortical band heterotopia and pachygyria.

  4. Comparative genomic analysis of duplicated homoeologous regions involved in the resistance of Brassica napus to stem canker

    Directory of Open Access Journals (Sweden)

    Berline eFopa Fomeju

    2015-09-01

    Full Text Available All crop species are current or ancient polyploids. Following whole genome duplication, structural and functional modifications result in differential gene content or regulation in the duplicated regions, which can play a fundamental role in the diversification of genes underlying complex traits. We have investigated this issue in Brassica napus, a species with a highly duplicated genome, with the aim of studying the structural and functional organization of duplicated regions involved in quantitative resistance to stem canker, a disease caused by the fungal pathogen Leptosphaeria maculans. Genome-wide association analysis on two oilseed rape panels confirmed that duplicated regions of ancestral blocks E, J, R, U and W were involved in resistance to stem canker. The structural analysis of the duplicated genomic regions showed a higher gene density on the A genome than on the C genome and a better collinearity between homoeologous regions than paralogous regions, as overall in the whole B. napus genome. The three ancestral sub-genomes were involved in the resistance to stem canker and the fractionation profile of the duplicated regions corresponded to what was expected from results on the B. napus progenitors. About 60% of the genes identified in these duplicated regions were single-copy genes while less than 5% were retained in all the duplicated copies of a given ancestral block. Genes retained in several copies were mainly involved in response to stress, signaling or transcription regulation. Genes with resistance-associated markers were mainly retained in more than two copies. These results suggested that some genes underlying quantitative resistance to stem canker might be duplicated genes. Genes with a hydrolase activity that were retained in one copy or R-like genes might also account for resistance in some regions. Further analyses need to be conducted to indicate to what extent duplicated genes contribute to the expression of the

  5. Comparative genomic analysis of duplicated homoeologous regions involved in the resistance of Brassica napus to stem canker

    Science.gov (United States)

    Fopa Fomeju, Berline; Falentin, Cyril; Lassalle, Gilles; Manzanares-Dauleux, Maria J.; Delourme, Régine

    2015-01-01

    All crop species are current or ancient polyploids. Following whole genome duplication, structural and functional modifications result in differential gene content or regulation in the duplicated regions, which can play a fundamental role in the diversification of genes underlying complex traits. We have investigated this issue in Brassica napus, a species with a highly duplicated genome, with the aim of studying the structural and functional organization of duplicated regions involved in quantitative resistance to stem canker, a disease caused by the fungal pathogen Leptosphaeria maculans. Genome-wide association analysis on two oilseed rape panels confirmed that duplicated regions of ancestral blocks E, J, R, U, and W were involved in resistance to stem canker. The structural analysis of the duplicated genomic regions showed a higher gene density on the A genome than on the C genome and a better collinearity between homoeologous regions than paralogous regions, as overall in the whole B. napus genome. The three ancestral sub-genomes were involved in the resistance to stem canker and the fractionation profile of the duplicated regions corresponded to what was expected from results on the B. napus progenitors. About 60% of the genes identified in these duplicated regions were single-copy genes while less than 5% were retained in all the duplicated copies of a given ancestral block. Genes retained in several copies were mainly involved in response to stress, signaling, or transcription regulation. Genes with resistance-associated markers were mainly retained in more than two copies. These results suggested that some genes underlying quantitative resistance to stem canker might be duplicated genes. Genes with a hydrolase activity that were retained in one copy or R-like genes might also account for resistance in some regions. Further analyses need to be conducted to indicate to what extent duplicated genes contribute to the expression of the resistance phenotype

  6. Involvement of the endosomal-lysosomal system correlates with regional pathology in Creutzfeldt-Jakob disease

    DEFF Research Database (Denmark)

    Kovács, Gábor G; Gelpi, Ellen; Ströbel, Thomas

    2007-01-01

    these with the severity of neuropathologic changes. In regions with mild pathology and scant abnormal prion protein (PrP) deposition, neurons showed an increased volume of Rab5-immunopositive early endosomes. In contrast, neurons in regions with prominent pathology had an increased volume of cathepsin D- or B...... correlate with regional pathology. Overloading of this system might impair the function of lysosomal enzymes and thus may mimic some features of lysosomal storage disorders. Udgivelsesdato: 2007-Jul...

  7. Common behavioral clusters and subcortical anatomy in stroke

    Science.gov (United States)

    Corbetta, Maurizio; Ramsey, Lenny; Callejas, Alicia; Baldassarre, Antonello; Hacker, Carl D.; Siegel, Joshua S.; Astafiev, Serguei V.; Rengachary, Jennifer; Zinn, Kristina; Lang, Catherine E.; Connor, Lisa Tabor; Fucetola, Robert; Strube, Michael; Carter, Alex R.; Shulman, Gordon L.

    2015-01-01

    SUMMARY A long-held view is that stroke causes many distinct neurological syndromes due to damage of specialized cortical and subcortical centers. However, it is unknown if a syndrome-based description is helpful in characterizing behavioral deficits across a large number of patients. We studied a large prospective sample of first-time stroke patients with heterogeneous lesions at 1–2 weeks post-stroke. We measured behavior over multiple domains and lesion anatomy with structural MRI and a probabilistic atlas of white matter pathways. Multivariate methods estimated the percentage of behavioral variance explained by structural damage. A few clusters of behavioral deficits spanning multiple functions explained neurological impairment. Stroke topography was predominantly subcortical, and disconnection of white matter tracts critically contributed to behavioral deficits and their correlation. The locus of damage explained more variance for motor and language than memory or attention deficits. Our findings highlight the need for better models of white matter damage on cognition. PMID:25741721

  8. [The CADASIL syndrome: a model of subcortical-cortical disconnection].

    Science.gov (United States)

    Blanco Menéndez, R; Aguado Balsas, A M; Blanco, E; Lobo Rodríguez, B; Vera De La Puente, E

    CADASIL syndrome (Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarts and Leukoencephalopathy) includes some neurological signs and symptoms (gait disturbances, epileptic seizures, pseudobulbar palsy, migraines, etc.), as well as neuropsychological dysfunctions (cognitive and executive impairment, emotional disorders and, frequently, dementia). This syndrome is a good model of white matter damage and potential disconnection syndromes. In this article, the neuropsychological profile of a 47 year-old woman diagnosed of CADASIL is investigated and thoroughly discussed. Results show the presence of a moderate cognitive and executive impairment, specially of memory, psychomotor abilities, executive functions and verbal fluency, but not dementia, overall suggesting the presence of a temporal-frontal-subcortical disfunction. This clinical pattern is an illuminating example of the neuropsychological consequences of the partial disconnection of prefrontal cortex from the thalamus and basal ganglia.

  9. Impact of left versus right hemisphere subcortical stroke on the neural processing of action observation and imagery.

    Science.gov (United States)

    Dettmers, Christian; Nedelko, Violetta; Schoenfeld, Mircea Ariel

    2015-01-01

    Mental training appears to be an attractive tool in stroke rehabilitation. The objective of this study was to investigate whether any differences in the processing of action observation and imagery might exist between patients with left and right hemisphere subcortical strokes. Eighteen patients with strictly subcortical stroke (nine right-hemispheric) underwent a functional magnetic resonance imaging (fMRI) study with an experimental paradigm in which motor acts had to be observed and/or imagined from a first person perspective. Changes in hemodynamic activity were measured using fMRI. The activity level was found to be higher in the non-lesioned compared to the lesioned hemisphere. Patients with lesions in the left hemisphere had a higher activation level in visual (fusiform and lingual gyri), superior temporal areas and dorsal premotor regions across all performed comparisons than those with right hemisphere lesions. Furthermore they had more vivid imagery experiences and lower scores on the Stroke Impact Scale. Patients with left hemisphere subcortical lesions recruit more cortical regions in the processing of action pictures and videos. This recruitment was further enhanced during imagery. This is most likely related to the fact that the lesion touched the dominant hemisphere.

  10. The implication of subcortical motor centers in voluntary human activities

    OpenAIRE

    Queralt Blasco, Ana

    2009-01-01

    The main objective of the present dissertation was to analyse the subcortical implications in the preparation and execution of complex voluntary movements. Three different tasks were selected on purpose. They all are everyday activities which although functionally related have differential characteristics. The first task was the sit-to-stand manoeuvre. Simple ballistic movements are executed faster in reaction time task paradigms when the imperative signal is accompanied by a startling audito...

  11. Double Cortex Syndrome (Subcortical Band Heterotopia): A Case Report

    OpenAIRE

    Momen, Ali Akbar; Momen, Mehdi

    2015-01-01

    AbstractObjectiveApproximately 5–10% of preschool age children are considered developmentally disabled. Brain Magnetic Resonance Imaging (MRI) plays a key role in the diagnostic evaluation in these children. Many congenital or acquired brain anomalies are revealed with MRIs. Although the majority of these abnormalities are sporadic but patients with subcortical band heterotopia or double cortex syndrome have sex-linked inheritance. We are going to present the first case in Iran from Ahvaz cit...

  12. Altered Functional Connectivity in Patients with Subcortical Vascular Cognitive Impairment--A Resting-State Functional Magnetic Resonance Imaging Study.

    Directory of Open Access Journals (Sweden)

    Weina Ding

    Full Text Available Recent neuroimaging studies have shown that people with subcortical vascular cognitive impairment (sVCI have structural and functional abnormalities in the frontal lobe and subcortical brain sites. In this study, we used seed-based resting-state functional connectivity (rsFC analysis and voxel-mirrored homotopic connectivity (VMHC techniques to investigate the alteration of rsFC in patients with sVCI. rsFC and structural magnetic resonance images were acquired for 51 patients with subcortical cerebrovascular disease. All patients were subdivided based on cognitive status into 29 with sVCI and 22 controls; patient characteristics were matched. rsFC of the posterior cingulate cortex (PCC and VMHC were calculated separately, and rsFC of the PCC and VMHC between the two groups were compared. The regions showing abnormal rsFC of the PCC or VMHC in sVCI patients were adopted as regions of interest for correlation analyses. Our results are as follows: The patients with sVCI exhibited increases in rsFC in the left middle temporal lobe, right inferior temporal lobe and left superior frontal gyrus, and significant decreases in rsFC of the left thalamus with the PCC. sVCI patients showed a significant deficit in VMHC between the bilateral lingual gyrus, putamen, and precentral gyrus. Additionally, the z-memory score was significantly positively associated with connectivity between the left thalamus and the PCC (r = 0.41, p = 0.03, uncorrected in the sVCI group. Our findings suggest that the frontal lobe and subcortical brain sites play an important role in the pathogenesis of sVCI. Furthermore, rsFC between the left thalamus and the PCC might indicate the severity of sVCI.

  13. Gene expression meta-analysis identifies chromosomal regions involved in ovarian cancer survival

    DEFF Research Database (Denmark)

    Thomassen, Mads; Jochumsen, Kirsten M; Mogensen, Ole

    2009-01-01

    Ovarian cancer cells exhibit complex karyotypic alterations causing deregulation of numerous genes. Some of these genes are probably causal for cancer formation and local growth, whereas others are causal for metastasis and recurrence. By using publicly available data sets, we have investigated...... the relation of gene expression and chromosomal position to identify chromosomal regions of importance for early recurrence of ovarian cancer. By use of *Gene Set Enrichment Analysis*, we have ranked chromosomal regions according to their association to survival. Over-representation analysis including 1...... summarized mutation load in these regions by a combined mutation score that is statistical significantly associated to survival by analysis in the data sets used for identification of the regions. Furthermore, the prognostic value of the combined mutation score was validated in an independent large data set...

  14. Clinical presentation and outcome of geriatric depression in subcortical ischemic vascular disease.

    Science.gov (United States)

    Bella, R; Pennisi, G; Cantone, M; Palermo, F; Pennisi, M; Lanza, G; Zappia, M; Paolucci, S

    2010-01-01

    Vascular damage of frontal-subcortical circuits involved in mood regulation and cognition might be the main contributor to the pathogenesis of late-life depression, and it is linked to poor response to treatment. To investigate the relationship between executive dysfunction and outcome of depressive symptoms among elderly patients with subcortical ischemic vascular disease. Ninety-two elderly patients with white matter lesions (WMLs) or lacunar infarcts (LAs) on brain MRI and depressive symptomatology were consecutively recruited. Depression was rated with the Hamilton Depression Rating Scale (HDRS). Evaluation of executive functions by means of the Stroop color-word test was performed at entry of the study, and WMLs were categorized into mild, moderate or severe. Mood was reevaluated by means of HDRS after the 12th week of pharmacological treatment. Psychomotor retardation, difficulties at work, apathy, and lack of insight were the predominant symptoms. Fifty-six patients (62.8%) had a neuroradiological picture of WMLs, while the remaining 33 (37.1%) had LAs. Executive dysfunctions significantly and independently predict poor outcome of depressive symptoms. Patients with the severest WMLs showed not only a greater executive dysfunction, but also a minor response to antidepressant treatment. This study supports the vascular depression hypothesis. WMLs are of crucial clinical relevance as they are linked with cognitive symptoms and poor antidepressant outcome. 2009 S. Karger AG, Basel.

  15. Neurolinguistic and follow-up study of an unusual pattern of recovery from bilingual subcortical aphasia.

    Science.gov (United States)

    Aglioti, S; Beltramello, A; Girardi, F; Fabbro, F

    1996-10-01

    We report on the neuropsychological and neurolinguistic features of a bilingual patient, E.M., who presented with an uncommon pattern of aphasic deficit consequent to subcortical lesions mainly involving the left basal ganglia. Not only are reports of bilingual subcortical aphasia rare, but E.M.'s deficit is particularly uncommon for it concerns the most used mother tongue (Venetian) much more than a less practiced second language (standard Italian). In this patient, the linguistic deficit in mother tongue production has been observed in spontaneous speech and in cross language translation tasks, where an asymmetrical paradoxical performance has been revealed. Indeed, unlike neurologically intact subjects, E.M. has more difficulties when translating into her mother tongue than into her second language. Although E.M.'s mother tongue is prevalently an oral language, the asymmetrical translation pattern is similar in written and oral translation tasks, thus ruling out the possibility that the deficit simply reflects differences between written and oral language codes. Finally, another remarkable feature of E.M.'s impairment is its stability over almost 5 years from the stroke. We propose that this unusual type of recovery in E.M. is related to the higher degree of automatization of the first language with respect to the second one. This proposal fits with the role of basal ganglia in automatized motor and cognitive performance.

  16. Modulation of Cortical-subcortical Networks in Parkinson’s Disease by Applied Field Effects

    Directory of Open Access Journals (Sweden)

    Christopher William Hess

    2013-09-01

    Full Text Available Studies suggest that endogenous field effects may play a role in neuronal oscillations and communication. Non-invasive transcranial electrical stimulation with low-intensity currents can also have direct effects on the underlying cortex as well as distant network effects. While Parkinson's disease (PD is amenable to invasive neuromodulation in the basal ganglia by deep brain stimulation, techniques of non-invasive neuromodulation like transcranial direct current stimulation (tDCS and transcranial alternating current stimulation (tACS are being investigated as possible therapies. tDCS and tACS have the potential to influence the abnormal cortical-subcortical network activity that occurs in PD through sub-threshold changes in cortical excitability or through entrainment or disruption of ongoing rhythmic cortical activity. This may allow for the targeting of specific features of the disease involving abnormal oscillatory activity, as well as the enhancement of potential cortical compensation for basal ganglia dysfunction and modulation of cortical plasticity in neurorehabilitation. However, little is currently known about how cortical stimulation will affect subcortical structures, the size of any effect, and the factors of stimulation that will influence these effects.

  17. [Subcortical dementia in HTLV-I tropical spastic paraparesis. Study of 43 cases].

    Science.gov (United States)

    Cartier, L; Gormaz, A

    1999-04-01

    Central nervous system damage associated to HTLV-I does not limit itself to the spinal cord, but also involves subcortical structures, producing cognitive impairment and behavioral changes which eventually could conform a new form of subcortical dementia. To study cognitive changes in patients with HTLV-I associated myelopathy. Forty three patients (31 female) with Tropical Spastic Paraparesis, aged 52 years old as a mean and with a disease lasting a mean of 7.5 years, were studied. The diagnosis was based on clinical, radiological and neurophysiological changes. The virus was identified with ELISA, indirect immunofluorescence, Western Blot or proviral DNA identification. Cognitive assessment was done using the Wechler Adult Intelligence Scale (WAIS) and Benton Visual Retention Test (form D). Patients were grouped according to their motor disability in; 23 patients with independent spastic gait, 11 patients that needed support to walk and 9 patients unable to walk. WAIS test demonstrated cognitive impairment with special deficit in some subtests such as Digit Span, Digit Symbol, Picture Arrangement and Object Assembly. Benton Test also disclosed cognitive impairment. There was a positive relationship between cognitive and motor performance. At least 50% of patients with Tropical Spastic Paraparesis have certain degree of intellectual and affective impairment.

  18. Subcortical auditory structures in the Mongolian gerbil: I. Golgi architecture.

    Science.gov (United States)

    Mylius, Judith; Brosch, Michael; Scheich, Henning; Budinger, Eike

    2013-04-15

    By means of the Golgi-Cox and Nissl methods we investigated the cyto- and fiberarchitecture as well as the morphology of neurons in the subcortical auditory structures of the Mongolian gerbil (Meriones unguiculatus), a frequently used animal model in auditory neuroscience. We describe the divisions and subdivisions of the auditory thalamus including the medial geniculate body, suprageniculate nucleus, and reticular thalamic nucleus, as well as of the inferior colliculi, nuclei of the lateral lemniscus, superior olivary complex, and cochlear nuclear complex. In this study, we 1) confirm previous results about the organization of the gerbil's subcortical auditory pathway using other anatomical staining methods (e.g., Budinger et al. [2000] Eur J Neurosci 12:2452-2474); 2) add substantially to the knowledge about the laminar and cellular organization of the gerbil's subcortical auditory structures, in particular about the orientation of their fibrodendritic laminae and about the morphology of their most distinctive neuron types; and 3) demonstrate that the cellular organization of these structures, as seen by the Golgi technique, corresponds generally to that of other mammalian species, in particular to that of rodents. Copyright © 2012 Wiley Periodicals, Inc.

  19. Pigmentary mosaicism, subcortical band heterotopia, and brain cystic lesions.

    Science.gov (United States)

    Ruggieri, Martino; Roggini, Mario; Spalice, Alberto; Addis, Maria; Iannetti, Paola

    2009-05-01

    A 10-year-old boy presented with a severe and diffuse mosaic skin hypopigmentation running (in narrow bands) along the lines of Blaschko associated with mosaic areas of alopecia, facial dysmorphism with midface hypoplasia, bilateral punctate cataract, microretrognathia, short neck, pectus excavatum, joint hypermobility, mild muscular hypotonia, generalized seizures, and mild mental retardation. Cranial magnetic resonance imaging revealed hypoplastic corpus callosum (primarily posterior), subcortical band heterotopia, and diffuse subcortical, periventricular cystic-like lesions. Similar dysmorphic features were observed in the child's mother, but with no imaging abnormalities. The facial phenotype coupled with the cysts in the brain was strongly reminiscent of the oculocerebrorenal Lowe syndrome. Full chromosome studies in the parents and the proband and mutation analysis on peripheral blood lymphocytes (and on skin cultured fibroblasts from affected and unaffected skin areas in the child) in the genes for subcortical band heterotopia (DCX (Xq22.3-q23)], lissencephaly (PAFAH1B1, alias LIS1, at 17p13.3), and oculocerebrorenal syndrome of Lowe (OCRL at Xq23-q24)] were unrevealing. This constellation of multiple congenital anomalies including skin hypopigmentation and eye, musculoskeletal, and nervous system abnormalities was sufficiently characterized to be regarded as a novel example of pigmentary mosaicism of the Ito type (i.e., hypomelanosis of Ito).

  20. Subcortical encoding of sound is enhanced in bilinguals and relates to executive function advantages

    Science.gov (United States)

    Krizman, Jennifer; Marian, Viorica; Shook, Anthony; Skoe, Erika; Kraus, Nina

    2012-01-01

    Bilingualism profoundly affects the brain, yielding functional and structural changes in cortical regions dedicated to language processing and executive function [Crinion J, et al. (2006) Science 312:1537–1540; Kim KHS, et al. (1997) Nature 388:171–174]. Comparatively, musical training, another type of sensory enrichment, translates to expertise in cognitive processing and refined biological processing of sound in both cortical and subcortical structures. Therefore, we asked whether bilingualism can also promote experience-dependent plasticity in subcortical auditory processing. We found that adolescent bilinguals, listening to the speech syllable [da], encoded the stimulus more robustly than age-matched monolinguals. Specifically, bilinguals showed enhanced encoding of the fundamental frequency, a feature known to underlie pitch perception and grouping of auditory objects. This enhancement was associated with executive function advantages. Thus, through experience-related tuning of attention, the bilingual auditory system becomes highly efficient in automatically processing sound. This study provides biological evidence for system-wide neural plasticity in auditory experts that facilitates a tight coupling of sensory and cognitive functions. PMID:22547804

  1. Subcortical Hypoperfusion following Surgery For Aneurysmal Subarachnoid Haemorrhage: Implications For Cognitive Performance?

    Directory of Open Access Journals (Sweden)

    C. L. Tooth

    2000-01-01

    Full Text Available The incidence and severity of cognitive deficits after surgery for aneurysmal subarachnoid haemorrhage and their relationship to aneurysm site remains controversial. The aim of this study was to investigate the pattern of regional cerebral blood flow which exists in patients one year post-surgery and to identify whether different patterns exist which may be related to the type of cognitive deficit or the location of the aneurysm. 62 patients underwent cognitive assessment and HMPAO SPECT imaging at a mean time of 12 months following surgery. Results were compared to those from healthy control subjects (n = 55 for neuropsychological testing; n = 14 for SPECT imaging. In the patient group, significant stable cognitive deficits occurred in all cognitive domains but no cognitive measure differentiated aneurysm site. On SPECT images, statistical parametric mapping identified a large common area of subcortical hypoperfusion in the patient group as a whole. The findings of this study suggest a possible link between reduced subcortical function and the extent and severity of cognitive deficits.

  2. Minimally Invasive Subcortical Parafascicular Transsulcal Access for Clot Evacuation (Mi SPACE for Intracerebral Hemorrhage

    Directory of Open Access Journals (Sweden)

    Benjamin Ritsma

    2014-01-01

    Full Text Available Background. Spontaneous intracerebral hemorrhage (ICH is common and causes significant mortality and morbidity. To date, optimal medical and surgical intervention remains uncertain. A lack of definitive benefit for operative management may be attributable to adverse surgical effect, collateral tissue injury. This is particularly relevant for ICH in dominant, eloquent cortex. Minimally invasive surgery (MIS offers the potential advantage of reduced collateral damage. MIS utilizing a parafascicular approach has demonstrated such benefit for intracranial tumor resection. Methods. We present a case of dominant hemisphere spontaneous ICH evacuated via the minimally invasive subcortical parafascicular transsulcal access clot evacuation (Mi SPACE model. We use this report to introduce Mi SPACE and to examine the application of this novel MIS paradigm. Case Presentation. The featured patient presented with a left temporal ICH and severe global aphasia. The hematoma was evacuated via the Mi SPACE approach. Postoperative reassessments showed significant improvement. At two months, bedside language testing was normal. MRI tractography confirmed limited collateral injury. Conclusions. This case illustrates successful application of the Mi SPACE model to ICH in dominant, eloquent cortex and subcortical regions. MRI tractography illustrates collateral tissue preservation. Safety and feasibility studies are required to further assess this promising new therapeutic paradigm.

  3. The evolution of vertebrate somatostatin receptors and their gene regions involves extensive chromosomal rearrangements

    Directory of Open Access Journals (Sweden)

    Ocampo Daza Daniel

    2012-11-01

    Full Text Available Abstract Background Somatostatin and its related neuroendocrine peptides have a wide variety of physiological functions that are mediated by five somatostatin receptors with gene names SSTR1-5 in mammals. To resolve their evolution in vertebrates we have investigated the SSTR genes and a large number of adjacent gene families by phylogeny and conserved synteny analyses in a broad range of vertebrate species. Results We find that the SSTRs form two families that belong to distinct paralogons. We observe not only chromosomal similarities reflecting the paralogy relationships between the SSTR-bearing chromosome regions, but also extensive rearrangements between these regions in teleost fish genomes, including fusions and translocations followed by reshuffling through intrachromosomal rearrangements. These events obscure the paralogy relationships but are still tractable thanks to the many genomes now available. We have identified a previously unrecognized SSTR subtype, SSTR6, previously misidentified as either SSTR1 or SSTR4. Conclusions Two ancestral SSTR-bearing chromosome regions were duplicated in the two basal vertebrate tetraploidizations (2R. One of these ancestral SSTR genes generated SSTR2, -3 and -5, the other gave rise to SSTR1, -4 and -6. Subsequently SSTR6 was lost in tetrapods and SSTR4 in teleosts. Our study shows that extensive chromosomal rearrangements have taken place between related chromosome regions in teleosts, but that these events can be resolved by investigating several distantly related species.

  4. Isolated posterior fossa involvement of progressive multifocal ...

    African Journals Online (AJOL)

    2017-11-14

    Nov 14, 2017 ... Open Access frontal lobe. Supratentorial lesions typically involve the subcortical white matter with a scalloping appearance.2. White matter of the posterior fossa is the next common area of involvement; however, isolated cerebellar white matter or isolated medullary involvement is less common.2. One study ...

  5. Cortical-subcortical interactions in hypersomnia disorders: mechanisms underlying cognitive and behavioral aspects of the sleep-wake cycle

    Directory of Open Access Journals (Sweden)

    Linda J Larson-Prior

    2014-09-01

    Full Text Available Subcortical circuits mediating sleep-wake functions have been well characterized in animal models, and corroborated by more recent human studies. Disruptions in these circuits have been identified in hypersomnia disorders such as narcolepsy and Klein-Levin Syndrome, as well as in neurodegenerative disorders expressing excessive daytime sleepiness. However, the behavioral expression of sleep-wake functions is not a simple on-or-off state determined by subcortical circuits, but encompasses a complex range of behaviors determined by the interaction between cortical networks and subcortical circuits. While conceived as disorders of sleep, hypersomnia disorders are equally disorders of wake, representing a fundamental instability in neural state characterized by lapses of alertness during wake. These episodic lapses in alertness and wakefulness are also frequently seen in neurodegenerative disorders where EEG demonstrates abnormal function in cortical regions associated with cognitive fluctuations. Moreover, functional connectivity MRI shows instability of cortical networks in individuals with cognitive fluctuations. We propose that the inability to stabilize neural state due to disruptions in the sleep-wake control networks is common to the sleep and cognitive dysfunctions seen in hypersomnia and neurodegenerative disorders.

  6. Identification of three gp350/220 regions involved in Epstein-Barr virus invasion of host cells.

    Science.gov (United States)

    Urquiza, Mauricio; Lopez, Ramses; Patiño, Helena; Rosas, Jaiver E; Patarroyo, Manuel E

    2005-10-21

    Epstein-Barr virus (EBV) invasion of B-lymphocytes involves EBV gp350/220 binding to B-lymphocyte CR2. The anti-gp350 monoclonal antibody (mAb)-72A1 Fab inhibits this binding and therefore blocks EBV invasion of target cells. However, gp350/220 regions interacting with mAb 72A1 and involved in EBV invasion of target cells have not yet been identified. This work reports three gp350/220 regions, defined by peptide 11382, 11389, and 11416 sequences, that are involved in EBV binding to B-lymphocytes. Peptides 11382, 11389, and 11416 bound to CR2(+) but not to CR2(-) cells, inhibited EBV invasion of cord blood lymphocytes (CBLs), were recognized by mAb 72A1, and inhibited mAb 72A1 binding to EBV. Peptides 11382 and 11416 binding to peripheral blood lymphocytes (PBLs) induced interleukin-6 protein synthesis in these cells, this phenomenon being inhibited by mAb 72A1. The same behavior has been reported for gp350/220 binding to PBLs. Anti-peptide 11382, 11389, and 11416 antibodies inhibited EBV binding and EBV invasion of PBLs and CBLs. Peptide 11382, 11389, and 11416 sequences presented homology with the C3dg regions coming into contact with CR2 (C3dg and gp350 bound to similar CR2 regions). These peptides could be used in designing strategies against EBV infection.

  7. Identification of the regions involved in phonological assembly using a novel paradigm.

    Science.gov (United States)

    Twomey, Tae; Waters, Dafydd; Price, Cathy J; Kherif, Ferath; Woll, Bencie; MacSweeney, Mairéad

    2015-11-01

    Here we adopt a novel strategy to investigate phonological assembly. Participants performed a visual lexical decision task in English in which the letters in words and letterstrings were delivered either sequentially (promoting phonological assembly) or simultaneously (not promoting phonological assembly). A region of interest analysis confirmed that regions previously associated with phonological assembly, in studies contrasting different word types (e.g. words versus pseudowords), were also identified using our novel task that controls for a number of confounding variables. Specifically, the left pars opercularis, the superior part of the ventral precentral gyrus and the supramarginal gyrus were all recruited more during sequential delivery than simultaneous delivery, even when various psycholinguistic characteristics of the stimuli were controlled. This suggests that sequential delivery of orthographic stimuli is a useful tool to explore how readers, with various levels of proficiency, use sublexical phonological processing during visual word recognition. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Male partner involvement in the prevention of mother to child transmission of HIV infection in Mwanza Region, Tanzania.

    Science.gov (United States)

    Elias, Munda; Mmbaga, Elia John; Mohamed, Ahmed Abade; Kishimba, Rogath Saika

    2017-01-01

    Globally, there are 3.3 million children Transmission (PMTCT) coverage of highly active anti-retroviral therapy (HAART) has increased to 77%, the MTCT rate remains high (15%). Poor male partner involvement in PMTCT services is one of the factors contributing to reduced effectiveness of the PMTCT and hence failure to achieve the elimination of maternal to child transmission of HIV. This study examined the predictors of male involvement in PMTCT services in Mwanza Region, Tanzania from perspectives of the mother. A cross sectional study involving selected health facilities was conducted in Mwanza urban from October 2013 through January 2014. HIV positive pregnant women attending ante-natal clinic (ANC) were interviewed using a semi structured questionnaire. Univariate analysis was used to describe the study respondents where bivariate and logistic regression was used to determine predictors of male involvement. A total of 300 HIV positive mothers attending ANC with the mean age of 27.5 + 5.6 were interviewed. Few mothers (24.7%) had their male partners involved in PMTCT. Predictors of male partner involvement in PMTCT were mothers being proactive (Adjusted Odds Ratio (AOR) 28.6; Confidence Interval (CI) 7-116), perceived partners knowledge on PMTCT (AOR 24.6, CI 5.9-102.8), exposure to TV/Radio announcements on PMTCT (AOR 4.6, CI 1.5-14) and married status of the mother (AOR 3.7, CI 1.5-9). Mothers who never wanted to be escorted by their male partners and busy partners were associated with reduced odds of male involvement into PMTCT (AOR 0.07, CI 0.007-0.68) and (AOR 0.46 CI 0.21-0.99) respectively. Male partner involvement was associated with 98% reduced odds of violence (Crude Odds Ratio 0.018 CI 0.002-0.14). Male partner involvement in PMTCT is still low in Mwanza Region. Proactive mothers, partner's knowledge on PMTCT and announcements from television/radio were the major facilitating factors for male involvement in PMTCT as perceived by mothers. Busy male

  9. Partly segregated cortico-subcortical pathways support phonologic and semantic verbal fluency: A lesion study.

    Science.gov (United States)

    Chouiter, Leila; Holmberg, Josefina; Manuel, Aurelie L; Colombo, Françoise; Clarke, Stephanie; Annoni, Jean-Marie; Spierer, Lucas

    2016-08-04

    Verbal fluency refers to the ability to generate as many words as possible in a limited time interval, without repetition and according to either a phonologic (each word begins with a given letter) or a semantic rule (each word belongs to a given semantic category). While current literature suggests the involvement of left fronto-temporal structures in fluency tasks, whether the same or distinct brain areas are necessary for each type of fluency remains unclear. We tested the hypothesis for an involvement of partly segregated cortico-subcortical structures between phonologic and semantic fluency by examining with a voxel-based lesion symptom mapping approach the effects of brain lesions on fluency scores corrected for age and education level in a group of 191 unselected brain-damaged patients with a first left or right hemispheric lesion. There was a positive correlation between the scores to the two types of fluency, suggesting that common mechanisms underlie the word generation independent of the production rule. The lesion-symptom mapping revealed that lesions to left basal ganglia impaired both types of fluency and that left superior temporal, supramarginal and rolandic operculum lesions selectively impaired phonologic fluency and left middle temporal lesions impaired semantic fluency. Our results corroborate current neurocognitive models of word retrieval and production, and refine the role of cortical-subcortical interaction in lexical search by highlighting the common executive role of basal ganglia in both types of verbal fluency and the preferential involvement of the ventral and dorsal language pathway in semantic and phonologic fluency, respectively. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. Aspects of Subcortical Ischaemic Vascular Disease : Early clinical manifestations and associations with Type 2 diabetes mellitus

    OpenAIRE

    Harten, van, B.

    2006-01-01

    Summary Subcortical ischaemic vascular disease (SIVD) is an important cause of cognitive impairment in elderly patients. Screening and diagnostic tests are needed to identify these patients. The HIV dementia scale (HDS) is a reliable and quantitative scale for identifying HIV dementia1. The cognitive profile of HIV dementia has subcortical features that resemble subcortical ischaemic vascular disease (SIVD). The clinical syndrome is characterized by early impairment of attention and executive...

  11. Simultaneously Uncovering the Patterns of Brain Regions Involved in Different Story Reading Subprocesses

    Science.gov (United States)

    Wehbe, Leila; Murphy, Brian; Talukdar, Partha; Fyshe, Alona; Ramdas, Aaditya; Mitchell, Tom

    2014-01-01

    Story understanding involves many perceptual and cognitive subprocesses, from perceiving individual words, to parsing sentences, to understanding the relationships among the story characters. We present an integrated computational model of reading that incorporates these and additional subprocesses, simultaneously discovering their fMRI signatures. Our model predicts the fMRI activity associated with reading arbitrary text passages, well enough to distinguish which of two story segments is being read with 74% accuracy. This approach is the first to simultaneously track diverse reading subprocesses during complex story processing and predict the detailed neural representation of diverse story features, ranging from visual word properties to the mention of different story characters and different actions they perform. We construct brain representation maps that replicate many results from a wide range of classical studies that focus each on one aspect of language processing and offer new insights on which type of information is processed by different areas involved in language processing. Additionally, this approach is promising for studying individual differences: it can be used to create single subject maps that may potentially be used to measure reading comprehension and diagnose reading disorders. PMID:25426840

  12. Simultaneously uncovering the patterns of brain regions involved in different story reading subprocesses.

    Directory of Open Access Journals (Sweden)

    Leila Wehbe

    Full Text Available Story understanding involves many perceptual and cognitive subprocesses, from perceiving individual words, to parsing sentences, to understanding the relationships among the story characters. We present an integrated computational model of reading that incorporates these and additional subprocesses, simultaneously discovering their fMRI signatures. Our model predicts the fMRI activity associated with reading arbitrary text passages, well enough to distinguish which of two story segments is being read with 74% accuracy. This approach is the first to simultaneously track diverse reading subprocesses during complex story processing and predict the detailed neural representation of diverse story features, ranging from visual word properties to the mention of different story characters and different actions they perform. We construct brain representation maps that replicate many results from a wide range of classical studies that focus each on one aspect of language processing and offer new insights on which type of information is processed by different areas involved in language processing. Additionally, this approach is promising for studying individual differences: it can be used to create single subject maps that may potentially be used to measure reading comprehension and diagnose reading disorders.

  13. Impact of Vortioxetine on Synaptic Integration in Prefrontal-Subcortical Circuits: Comparisons with Escitalopram

    Science.gov (United States)

    Chakroborty, Shreaya; Geisbush, Thomas R.; Dale, Elena; Pehrson, Alan L.; Sánchez, Connie; West, Anthony R.

    2017-01-01

    complex modulation of 5-HT receptors by vortioxetine may offset SSRI-like effects in this region. Lastly, neurons in the msNAc were more responsive to stimulation of the HF following both vortioxetine and escitalopram administration, indicating that elevation of 5-HT tone and 5-HT receptor modulation may facilitate excitatory hippocampal synaptic drive in this region. The above findings point to complex 5-HT receptor-dependent effects of vortioxetine which may contribute to its unique impact on the function of prefrontal-subcortical circuits and the development of novel strategies for treating mood disorders. PMID:29123483

  14. Impact of Vortioxetine on Synaptic Integration in Prefrontal-Subcortical Circuits: Comparisons with Escitalopram

    Directory of Open Access Journals (Sweden)

    Shreaya Chakroborty

    2017-10-01

    , indicating that complex modulation of 5-HT receptors by vortioxetine may offset SSRI-like effects in this region. Lastly, neurons in the msNAc were more responsive to stimulation of the HF following both vortioxetine and escitalopram administration, indicating that elevation of 5-HT tone and 5-HT receptor modulation may facilitate excitatory hippocampal synaptic drive in this region. The above findings point to complex 5-HT receptor-dependent effects of vortioxetine which may contribute to its unique impact on the function of prefrontal-subcortical circuits and the development of novel strategies for treating mood disorders.

  15. Impact of Vortioxetine on Synaptic Integration in Prefrontal-Subcortical Circuits: Comparisons with Escitalopram.

    Science.gov (United States)

    Chakroborty, Shreaya; Geisbush, Thomas R; Dale, Elena; Pehrson, Alan L; Sánchez, Connie; West, Anthony R

    2017-01-01

    complex modulation of 5-HT receptors by vortioxetine may offset SSRI-like effects in this region. Lastly, neurons in the msNAc were more responsive to stimulation of the HF following both vortioxetine and escitalopram administration, indicating that elevation of 5-HT tone and 5-HT receptor modulation may facilitate excitatory hippocampal synaptic drive in this region. The above findings point to complex 5-HT receptor-dependent effects of vortioxetine which may contribute to its unique impact on the function of prefrontal-subcortical circuits and the development of novel strategies for treating mood disorders.

  16. Hypertensive brainstem encephalopathy involving deep supratentorial regions: does only blood pressure matter?

    Directory of Open Access Journals (Sweden)

    Jong-Ho Park

    2010-04-01

    Full Text Available We report on a 42-year-old female patient who presented with high arterial blood pressure of 245/150 mmHg and hypertensive brainstem encephalopathy that involved the brainstem and extensive supratentorial deep gray and white matter. The lesions were nearly completely resolved several days after stabilization of the arterial blood pressure. Normal diffusion-weighted imaging findings and high apparent diffusion coefficient values suggested that the main pathomechanism was vasogenic edema owing to severe hypertension. On the basis of a literature review, the absolute value of blood pressure or whether the patient can control his/her blood pressure seems not to be associated with the degree of the lesions evident on magnetic resonance imaging. It remains to be determined if the acceleration rate and the duration of elevated arterial blood pressure might play a key role in the development of the hypertensive encephalopathy pattern.

  17. Reducing uncertainty in flood frequency analyses: A comparison of local and regional approaches involving information on extreme historical floods

    Science.gov (United States)

    Halbert, K.; Nguyen, C. C.; Payrastre, O.; Gaume, E.

    2016-10-01

    This paper proposes a detailed comparison of local and regional approaches for flood frequency analyses, with a special emphasis on the effects of (a) the information on extreme floods used in the analysis (historical data or recent extreme floods observed at ungauged sites), and (b) the assumptions associated with regional approaches (statistical homogeneity of considered series, independence of observations). The results presented are based on two case studies: the Ard e ̀ che and Argens rivers regions in south-east of France. Four approaches are compared: 1 - local analysis based on continuous measured series, 2 - local analysis with historical information, 3 - regional index-flood analysis based on continuous series, 4 - regional analysis involving information on extremes (including both historical floods and recent floods observed at ungauged sites). The inference approach used is based on a GEV distribution and a Bayesian Monte Carlo Markov Chain approach for parameters estimation. The comparison relies both on (1) available observed datasets and (2) Monte Carlo simulations in order to evaluate the effects of sampling variability and to analyze the possible influence of regional heterogeneities. The results indicate that a relatively limited level of regional heterogeneity, which may not be detected through homogeneity tests, may significantly affect the performances of regional approaches. These results also illustrate the added value of information on extreme floods, historical floods or recent floods observed at ungauged sites, in both local and regional approaches. As far as possible, gathering such information and incorporating it into flood frequency studies should be promoted. Finally, the presented Monte Carlo simulations appear as an interesting analysis tool for adapting the estimation strategy to the available data for each specific case study.

  18. Conduction aphasia in a 3-year-old with a left posterior cortical/subcortical abscess.

    Science.gov (United States)

    Nass, R; Leventhal, F; Levine, B; Lebron, D; Maxfield, C; McCaul, P; George, A; Allen, J

    1998-03-01

    A 3-year-old, right-handed girl developed a conduction-type aphasia following a second generalized seizure in the setting of a developing abscess involving left subcortical and cortical angular gyrus and arcuate fasciculus, and the posterior corpus callosum. The language disorder was fluent, characterized by age appropriate mean length of utterance and syntax, but with markedly reduced spontaneity of output, rapid rate of speech and mild dysarthria. Comprehension was relatively, but not completely spared. Naming, repetition, and reading (letters) were initially markedly impaired. Improvements in naming and repetition were associated with both literal and semantic paraphasias. Writing skills in the form of drawing were spared, but a mild apraxia to verbal command and imitation was initially present. Despite her young age, this child's fluent conduction aphasia and lesion localization were adult-like. Multimodal memory difficulties appeared to underlie what is best described as conduction aphasia.

  19. The role of the thalamus in the human subcortical vestibular system.

    Science.gov (United States)

    Conrad, Julian; Baier, Bernhard; Dieterich, Marianne

    2014-01-01

    Most of our knowledge concerning central vestibular pathways is derived from animal studies while evidence of the functional importance and localization of these pathways in humans is less well defined. The termination of these pathways at the thalamic level in humans is even less known. In this review we summarize the findings concerning the central subcortical vestibular pathways in humans and the role of these structures in the central vestibular system with regard to anatomical localization and function. Also, we review the role of the thalamus in the pathogenesis of higher order sensory deficits such as spatial neglect, pusher syndrome or thalamic astasia and the correlation of these phenomena with findings of a vestibular tone imbalance at the thalamic level. By highlighting thalamic structures involved in vestibular signal processing and relating the different nomenclatures we hope to provide a base for future studies on thalamic sensory signal processing.

  20. Mosaic DCX deletion causes subcortical band heterotopia in males.

    Science.gov (United States)

    Quélin, Chloé; Saillour, Yoann; Souville, Isabelle; Poirier, Karine; N'guyen-Morel, Marie Ange; Vercueil, Laurent; Millisher-Bellaiche, Anne Elodie; Boddaert, Nathalie; Dubois, Fanny; Chelly, Jamel; Beldjord, Cherif; Bahi-Buisson, Nadia

    2012-11-01

    Subcortical band heterotopia (SBH) is a neuronal migration disorder usually described in females carrying heterozygous mutations in the X-linked doublecortin (DCX) gene. Hemizygous DCX mutations in males result in lissencephaly. Recently, exonic deletions of DCX resulting in a severer form of agyria have been reported. Nevertheless, rare male patients with SBH have been described with somatic mosaicism of point mutations. Here, we identified a somatic mosaicism for a deletion of exon 4 in the DCX gene in a male patient with SBH detected prenatally. This finding points to the possible implication of mosaic deletions in the DCX gene in unexplained forms of SBH and may allow for detection of SBH prenatally.

  1. Fractal Dimension Analysis of Subcortical Gray Matter Structures in Schizophrenia.

    Directory of Open Access Journals (Sweden)

    Guihu Zhao

    Full Text Available A failure of adaptive inference-misinterpreting available sensory information for appropriate perception and action-is at the heart of clinical manifestations of schizophrenia, implicating key subcortical structures in the brain including the hippocampus. We used high-resolution, three-dimensional (3D fractal geometry analysis to study subtle and potentially biologically relevant structural alterations (in the geometry of protrusions, gyri and indentations, sulci in subcortical gray matter (GM in patients with schizophrenia relative to healthy individuals. In particular, we focus on utilizing Fractal Dimension (FD, a compact shape descriptor that can be computed using inputs with irregular (i.e., not necessarily smooth surfaces in order to quantify complexity (of geometrical properties and configurations of structures across spatial scales of subcortical GM in this disorder. Probabilistic (entropy-based information FD was computed based on the box-counting approach for each of the seven subcortical structures, bilaterally, as well as the brainstem from high-resolution magnetic resonance (MR images in chronic patients with schizophrenia (n = 19 and age-matched healthy controls (n = 19 (age ranges: patients, 22.7-54.3 and healthy controls, 24.9-51.6 years old. We found a significant reduction of FD in the left hippocampus (median: 2.1460, range: 2.07-2.18 vs. median: 2.1730, range: 2.15-2.23, p<0.001; Cohen's effect size, U3 = 0.8158 (95% Confidence Intervals, CIs: 0.6316, 1.0, the right hippocampus (median: 2.1430, range: 2.05-2.19 vs. median: 2.1760, range: 2.12-2.21, p = 0.004; U3 = 0.8421 (CIs: 0.5263, 1, as well as left thalamus (median: 2.4230, range: 2.40-2.44, p = 0.005; U3 = 0.7895 (CIs: 0.5789, 0.9473 in schizophrenia patients, relative to healthy individuals. Our findings provide in-vivo quantitative evidence for reduced surface complexity of hippocampus, with reduced FD indicating a less complex, less regular GM surface detected in

  2. Identification of genomic regions involved in resistance against Sclerotinia sclerotiorum from wild Brassica oleracea.

    Science.gov (United States)

    Mei, Jiaqin; Ding, Yijuan; Lu, Kun; Wei, Dayong; Liu, Yao; Disi, Joseph Onwusemu; Li, Jiana; Liu, Liezhao; Liu, Shengyi; McKay, John; Qian, Wei

    2013-02-01

    The lack of resistant source has greatly restrained resistance breeding of rapeseed (Brassica napus, AACC) against Sclerotinia sclerotiorum which causes severe yield losses in rapeseed production all over the world. Recently, several wild Brassica oleracea accessions (CC) with high level of resistance have been identified (Mei et al. in Euphytica 177:393-400, 2011), bringing a new hope to improve Sclerotinia resistance of rapeseed. To map quantitative trait loci (QTL) for Sclerotinia resistance from wild B. oleracea, an F2 population consisting of 149 genotypes, with several clones of each genotypes, was developed from one F1 individual derived from the cross between a resistant accession of wild B. oleracea (B. incana) and a susceptible accession of cultivated B. oleracea var. alboglabra. The F2 population was evaluated for Sclerotinia reaction in 2009 and 2010 under controlled condition. Significant differences among genotypes and high heritability for leaf and stem reaction indicated that genetic components accounted for a large portion of the phenotypic variance. A total of 12 QTL for leaf resistance and six QTL for stem resistance were identified in 2 years, each explaining 2.2-28.4 % of the phenotypic variation. The combined effect of alleles from wild B. oleracea reduced the relative susceptibility by 22.5 % in leaves and 15 % in stems on average over 2 years. A 12.8-cM genetic region on chromosome C09 of B. oleracea consisting of two major QTL intervals for both leaf and stem resistance was assigned into a 2.7-Mb genomic region on chromosome A09 of B. rapa, harboring about 30 putative resistance-related genes. Significant negative corrections were found between flowering time and relative susceptibility of leaf and stem. The association of flowering time with Sclerotinia resistance is discussed.

  3. Family history of alcoholism interacts with alcohol to affect brain regions involved in behavioral inhibition.

    Science.gov (United States)

    Kareken, David A; Dzemidzic, Mario; Wetherill, Leah; Eiler, William; Oberlin, Brandon G; Harezlak, Jaroslaw; Wang, Yang; O'Connor, Sean J

    2013-07-01

    Impulsive behavior is associated with both alcohol use disorders and a family history of alcoholism (FHA). One operational definition of impulsive behavior is the stop-signal task (SST) which measures the time needed to stop a ballistic hand movement. Employ functional magnetic resonance imaging (fMRI) to study right frontal responses to stop signals in heavy drinking subjects with and without FHA, and as a function of alcohol exposure. Twenty-two family history-positive (FHP; age = 22.7 years, SD = 1.9) and 18 family history-negative (FHN; age = 23.7, SD = 1.8) subjects performed the SST in fMRI in two randomized visits: once during intravenous infusion of alcohol, clamped at a steady-state breath alcohol (BrAC) concentration of 60 mg/dL, and once during infusion of placebo saline. An independent reference group (n = 13, age = 23.7, SD = 1.8) was used to identify a priori right prefrontal regions activated by successful inhibition (Inh) trials, relative to "Go" trials that carried no need for inhibition [Inh > Go]. FHA interacted with alcohol exposure in right prefrontal cortex, where alcohol reduced [Inh > Go] activation in FHN subjects but not in FHP subjects. Within this right frontal cortical region, stop-signal reaction time also correlated negatively with [Inh > Go] activation, suggesting that the [Inh > Go] activity was related to inhibitory behavior. The results are consistent with the low level of response theory (Schuckit, J Stud Alcohol 55:149-158, 1980; Quinn and Fromme, Alcohol Clin Exp Res 35:1759-1770, 2011), with FHP being less sensitive to alcohol's effects.

  4. The C-terminal region of alpha-crystallin: involvement in protection against heat-induced denaturation

    Science.gov (United States)

    Takemoto, L.; Emmons, T.; Horwitz, J.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    Recent studies have demonstrated that the alpha-crystallins can protect other proteins against heat-induced denaturation and aggregation. To determine the possible involvement of the C-terminal region in this activity, the alpha-crystallins were subjected to limited tryptic digestion, and the amount of cleavage from the N-terminal and C-terminal regions of the alpha-A and alpha-B crystallin chains was assessed using antisera specific for these regions. Limited tryptic digestion resulted in cleavage only from the C-terminal region of alpha-A crystallin. This trypsin-treated alpha-A crystallin preparation showed a decreased ability to protect proteins from heat-induced aggregation using an in vitro assay. Together, these results demonstrate that the C-terminal region of alpha-A crystallin is important for its ability to protect against heat-induced aggregation, which is consistent with the hypothesis that post-translational changes that are known to occur at the C-terminal region may have significant effects on the ability of alpha-A crystallin to protect against protein denaturation in vivo.

  5. Structure/function analysis of Na(+)-K(+)-ATPase central isoform-specific region: involvement in PKC regulation.

    Science.gov (United States)

    Pierre, Sandrine V; Duran, Marie-Josée; Carr, Deborah L; Pressley, Thomas A

    2002-11-01

    Specific functions served by the various Na(+)-K(+)-ATPase alpha-isoforms are likely to originate in regions of structural divergence within their primary structures. The isoforms are nearly identical, with the exception of the NH(2) terminus and a 10-residue region near the center of each molecule (isoform-specific region; ISR). Although the NH(2) terminus has been clearly identified as a source of isoform functional diversity, other regions seem to be involved. We investigated whether the central ISR could also contribute to isoform variability. We constructed chimeric molecules in which the central ISRs of rat alpha(1)- and alpha(2)-isoforms were exchanged. After stable transfection into opossum kidney cells, the chimeras were characterized for two properties known to differ dramatically among the isoforms: their K(+) deocclusion pattern and their response to PKC activation. Comparisons with rat full-length alpha(1)- and alpha(2)-isoforms expressed under the same conditions suggest an involvement of the central ISR in the response to PKC but not in K(+) deocclusion.

  6. Cortical thickness and hippocampal shape in pure vascular mild cognitive impairment and dementia of subcortical type.

    Science.gov (United States)

    Kim, H J; Ye, B S; Yoon, C W; Noh, Y; Kim, G H; Cho, H; Jeon, S; Lee, J M; Kim, J-H; Seong, J-K; Kim, C-H; Choe, Y S; Lee, K H; Kim, S T; Kim, J S; Park, S E; Kim, J-H; Chin, J; Cho, J; Kim, C; Lee, J H; Weiner, M W; Na, D L; Seo, S W

    2014-05-01

    The progression pattern of brain structural changes in patients with isolated cerebrovascular disease (CVD) remains unclear. To investigate the role of isolated CVD in cognitive impairment patients, patterns of cortical thinning and hippocampal atrophy in pure subcortical vascular mild cognitive impairment (svMCI) and pure subcortical vascular dementia (SVaD) patients were characterized. Forty-five patients with svMCI and 46 patients with SVaD who were negative on Pittsburgh compound B (PiB) positron emission tomography imaging and 75 individuals with normal cognition (NC) were recruited. Compared with NC, patients with PiB(-) svMCI exhibited frontal, language and retrieval type memory dysfunctions, which in patients with PiB(-) SVaD were further impaired and accompanied by visuospatial and recognition memory dysfunctions. Compared with NC, patients with PiB(-) svMCI exhibited cortical thinning in the frontal, perisylvian, basal temporal and posterior cingulate regions. This atrophy was more prominent and extended further toward the lateral parietal and medial temporal regions in patients with PiB(-) SVaD. Compared with NC subjects, patients with PiB(-) svMCI exhibited hippocampal shape deformities in the lateral body, whilst patients with PiB(-) SVaD exhibited additional deformities within the lateral head and inferior body. Our findings suggest that patients with CVD in the absence of Alzheimer's disease pathology can be demented, showing cognitive impairment in multiple domains, which is consistent with the topography of cortical thinning and hippocampal shape deformity. © 2014 The Author(s) European Journal of Neurology © 2014 EFNS.

  7. Dysfunctional involvement of emotion and reward brain regions on social decision making in excess weight adolescents.

    Science.gov (United States)

    Verdejo-García, Antonio; Verdejo-Román, Juan; Rio-Valle, Jacqueline S; Lacomba, Juan A; Lagos, Francisco M; Soriano-Mas, Carles

    2015-01-01

    Obese adolescents suffer negative social experiences, but no studies have examined whether obesity is associated with dysfunction of the social brain or whether social brain abnormalities relate to disadvantageous traits and social decisions. We aimed at mapping functional activation differences in the brain circuitry of social decision making in adolescents with excess versus normal weight, and at examining whether these separate patterns correlate with reward/punishment sensitivity, disordered eating features, and behavioral decisions. In this fMRI study, 80 adolescents aged 12 to 18 years old were classified in two groups based on age adjusted body mass index (BMI) percentiles: normal weight (n = 44, BMI percentiles 5th-84th) and excess weight (n = 36, BMI percentile ≥ 85th). Participants were scanned while performing a social decision-making task (ultimatum game) in which they chose to "accept" or "reject" offers to split monetary stakes made by another peer. Offers varied in fairness (Fair vs. Unfair) but in all cases "accepting" meant both players win the money, whereas "rejecting" meant both lose it. We showed that adolescents with excess weight compared to controls display significantly decreased activation of anterior insula, anterior cingulate, and midbrain during decisions about Unfair versus Fair offers. Moreover, excess weight subjects show lower sensitivity to reward and more maturity fears, which correlate with insula activation. Indeed, blunted insula activation accounted for the relationship between maturity fears and acceptance of unfair offers. Excess weight adolescents have diminished activation of brain regions essential for affective tracking of social decision making, which accounts for the association between maturity fears and social decisions. © 2014 Wiley Periodicals, Inc.

  8. Exercise increases mTOR signaling in brain regions involved in cognition and emotional behavior.

    Science.gov (United States)

    Lloyd, Brian A; Hake, Holly S; Ishiwata, Takayuki; Farmer, Caroline E; Loetz, Esteban C; Fleshner, Monika; Bland, Sondra T; Greenwood, Benjamin N

    2017-04-14

    Exercise can enhance learning and memory and produce resistance against stress-related psychiatric disorders such as depression and anxiety. In rats, these beneficial effects of exercise occur regardless of exercise controllability: both voluntary and forced wheel running produce stress-protective effects. The mechanisms underlying these beneficial effects of exercise remain unknown. The mammalian target of rapamycin (mTOR) is a translation regulator important for cell growth, proliferation, and survival. mTOR has been implicated in enhancing learning and memory as well as antidepressant effects. Moreover, mTOR is sensitive to exercise signals such as metabolic factors. The effects of exercise on mTOR signaling, however, remain unknown. The goal of the present study was to test the hypothesis that exercise, regardless of controllability, increases levels of phosphorylated mTOR (p-mTOR) in brain regions important for learning and emotional behavior. Rats were exposed to 6 weeks of either sedentary (locked wheel), voluntary, or forced wheel running conditions. At 6 weeks, rats were sacrificed during peak running and levels of p-mTOR were measured using immunohistochemistry. Overall, both voluntary and forced exercise increased p-mTOR-positive neurons in the medial prefrontal cortex, striatum, hippocampus, hypothalamus, and amygdala compared to locked wheel controls. Exercise, regardless of controllability, also increased numbers of p-mTOR-positive glia in the striatum, hippocampus, and amygdala. For both neurons and glia, the largest increase in p-mTOR positive cells was observed after voluntary running, with forced exercise causing a more modest increase. Interestingly, voluntary exercise preferentially increased p-mTOR in astrocytes (GFAP+), while forced running increased p-mTOR in microglia (CD11+) in the inferior dentate gyrus. Results suggest that mTOR signaling is sensitive to exercise, but subtle differences exist depending on exercise controllability

  9. Mapping Subcortical Brain Maturation during Adolescence: Evidence of Hemisphere-and Sex-Specific Longitudinal Changes

    Science.gov (United States)

    Dennison, Meg; Whittle, Sarah; Yücel, Murat; Vijayakumar, Nandita; Kline, Alexandria; Simmons, Julian; Allen, Nicholas B.

    2013-01-01

    Early to mid-adolescence is an important developmental period for subcortical brain maturation, but longitudinal studies of these neurodevelopmental changes are lacking. The present study acquired repeated magnetic resonance images from 60 adolescent subjects (28 female) at ages 12.5 and 16.5 years to map changes in subcortical structure volumes.…

  10. Cortical and subcortical processing of short duration speech stimuli in trained rock musicians: a pilot study.

    Science.gov (United States)

    Kumar, Prawin; Anil, Sam Publius; Grover, Vibhu; Sanju, Himanshu Kumar; Sinha, Sachchidanand

    2017-02-01

    Most trained musicians are actively involved in rigorous practice from several years to achieve a high level of proficiency. Therefore, musicians are best group to research changes or modification in brain structures and functions across several information processing systems. This study aimed to investigate cortical and subcortical processing of short duration speech stimuli in trained rock musicians and non-musicians. Two groups of participant (experimental and control groups) in the age range of 18-25 years were selected for the study. Experimental group includes 15 rock musicians who had minimum professional training of 5 years of rock music, and each member had to be a regular performer of rock music for at least 15 h a week. Further age-matched 15 participants who were not having any formal training of any music served as non-musicians, in the control group. The speech-evoked ABR (S-ABR) and speech-evoked ALLR (S-LLR) with short duration speech 'synthetic /da/' was elicited in both groups. Different measures were analyzed for S-ABR and S-LLR. For S-ABR, MANOVA revealed significant main effect of groups on latencies of wave V, wave A, and amplitude of wave V/A slope. Similarly, Kruskal-Wallis test showed significantly higher F 0 amplitude in rock musicians compared with non-musicians. For S-LLR, MANOVA showed statistically significant differences observed for latencies of wave P2 and N2 and amplitude measures of P2-N2 amplitude. This study indicated better neural processing of short duration speech stimuli at subcortical as well as cortical level among rock musicians when compared with non-musicians.

  11. Multi-atlas segmentation of subcortical brain structures via the AutoSeg software pipeline

    Science.gov (United States)

    Wang, Jiahui; Vachet, Clement; Rumple, Ashley; Gouttard, Sylvain; Ouziel, Clémentine; Perrot, Emilie; Du, Guangwei; Huang, Xuemei; Gerig, Guido; Styner, Martin

    2014-01-01

    Automated segmenting and labeling of individual brain anatomical regions, in MRI are challenging, due to the issue of individual structural variability. Although atlas-based segmentation has shown its potential for both tissue and structure segmentation, due to the inherent natural variability as well as disease-related changes in MR appearance, a single atlas image is often inappropriate to represent the full population of datasets processed in a given neuroimaging study. As an alternative for the case of single atlas segmentation, the use of multiple atlases alongside label fusion techniques has been introduced using a set of individual “atlases” that encompasses the expected variability in the studied population. In our study, we proposed a multi-atlas segmentation scheme with a novel graph-based atlas selection technique. We first paired and co-registered all atlases and the subject MR scans. A directed graph with edge weights based on intensity and shape similarity between all MR scans is then computed. The set of neighboring templates is selected via clustering of the graph. Finally, weighted majority voting is employed to create the final segmentation over the selected atlases. This multi-atlas segmentation scheme is used to extend a single-atlas-based segmentation toolkit entitled AutoSeg, which is an open-source, extensible C++ based software pipeline employing BatchMake for its pipeline scripting, developed at the Neuro Image Research and Analysis Laboratories of the University of North Carolina at Chapel Hill. AutoSeg performs N4 intensity inhomogeneity correction, rigid registration to a common template space, automated brain tissue classification based skull-stripping, and the multi-atlas segmentation. The multi-atlas-based AutoSeg has been evaluated on subcortical structure segmentation with a testing dataset of 20 adult brain MRI scans and 15 atlas MRI scans. The AutoSeg achieved mean Dice coefficients of 81.73% for the subcortical structures

  12. Anatomical pathways involved in generating and sensing rhythmic whisker movements.

    Science.gov (United States)

    Bosman, Laurens W J; Houweling, Arthur R; Owens, Cullen B; Tanke, Nouk; Shevchouk, Olesya T; Rahmati, Negah; Teunissen, Wouter H T; Ju, Chiheng; Gong, Wei; Koekkoek, Sebastiaan K E; De Zeeuw, Chris I

    2011-01-01

    The rodent whisker system is widely used as a model system for investigating sensorimotor integration, neural mechanisms of complex cognitive tasks, neural development, and robotics. The whisker pathways to the barrel cortex have received considerable attention. However, many subcortical structures are paramount to the whisker system. They contribute to important processes, like filtering out salient features, integration with other senses, and adaptation of the whisker system to the general behavioral state of the animal. We present here an overview of the brain regions and their connections involved in the whisker system. We do not only describe the anatomy and functional roles of the cerebral cortex, but also those of subcortical structures like the striatum, superior colliculus, cerebellum, pontomedullary reticular formation, zona incerta, and anterior pretectal nucleus as well as those of level setting systems like the cholinergic, histaminergic, serotonergic, and noradrenergic pathways. We conclude by discussing how these brain regions may affect each other and how they together may control the precise timing of whisker movements and coordinate whisker perception.

  13. Cortical and Subcortical Structural Plasticity Associated with the Glioma Volumes in Patients with Cerebral Gliomas Revealed by Surface-Based Morphometry

    Directory of Open Access Journals (Sweden)

    Jinping Xu

    2017-06-01

    Full Text Available Postlesional plasticity has been identified in patients with cerebral gliomas by inducing a large functional reshaping of brain networks. Although numerous non-invasive functional neuroimaging methods have extensively investigated the mechanisms of this functional redistribution in patients with cerebral gliomas, little effort has been made to investigate the structural plasticity of cortical and subcortical structures associated with the glioma volume. In this study, we aimed to investigate whether the contralateral cortical and subcortical structures are able to actively reorganize by themselves in these patients. The compensation mechanism following contralateral cortical and subcortical structural plasticity is considered. We adopted the surface-based morphometry to investigate the difference of cortical and subcortical gray matter (GM volumes in a cohort of 14 healthy controls and 13 patients with left-hemisphere cerebral gliomas [including 1 patients with World Health Organization (WHO I, 8 WHO II, and 4 WHO III]. The glioma volume ranges from 5.1633 to 208.165 cm2. Compared to healthy controls, we found significantly increased GM volume of the right cuneus and the left thalamus, as well as a trend toward enlargement in the right globus pallidus in patients with cerebral gliomas. Moreover, the GM volumes of these regions were positively correlated with the glioma volumes of the patients. These results provide evidence of cortical and subcortical enlargement, suggesting the usefulness of surface-based morphometry to investigate the structural plasticity. Moreover, the structural plasticity might be acted as the compensation mechanism to better fulfill its functions in patients with cerebral gliomas as the gliomas get larger.

  14. Subcortical intelligence: caudate volume predicts IQ in healthy adults.

    Science.gov (United States)

    Grazioplene, Rachael G; G Ryman, Sephira; Gray, Jeremy R; Rustichini, Aldo; Jung, Rex E; DeYoung, Colin G

    2015-04-01

    This study examined the association between size of the caudate nuclei and intelligence. Based on the central role of the caudate in learning, as well as neuroimaging studies linking greater caudate volume to better attentional function, verbal ability, and dopamine receptor availability, we hypothesized the existence of a positive association between intelligence and caudate volume in three large independent samples of healthy adults (total N = 517). Regression of IQ onto bilateral caudate volume controlling for age, sex, and total brain volume indicated a significant positive correlation between caudate volume and intelligence, with a comparable magnitude of effect across each of the three samples. No other subcortical structures were independently associated with IQ, suggesting a specific biological link between caudate morphology and intelligence. © 2014 Wiley Periodicals, Inc.

  15. Subcortical band heterotopia with simplified gyral pattern and syndactyly.

    Science.gov (United States)

    Sicca, Federico; Silengo, Margherita; Parrini, Elena; Ferrero, Giovanni B; Guerrini, Renzo

    2003-06-01

    We describe a girl with an unusual form of subcortical band heterotopia (SBH) and a complex malformation syndrome. SBH had an irregular inner margin, organized in contiguous fascicles of migrating neurons, sometimes giving the appearance of many small contiguous gyri. The true cortex had decreased thickness and showed a simplified gyral pattern with decreased number of gyri, which were usually of increased width, and shallow sulci. The cerebellum was hypoplastic. Additional features included epicanthal folds, hypertelorism, small nose with hypoplastic nares, bilateral syndactyly of the toes, pulmonary valve stenosis, atrial and ventricular septal defects. At the age of 1 year the patient had severe developmental delay and epilepsy. Chromosome studies and mutation analysis of the DCX and LIS1 genes gave negative results. This observation delineates a new multiple congenital abnormalities mental retardation syndrome and confirms genetic heterogeneity of SBH. Copyright 2003 Wiley-Liss, Inc.

  16. Lissencephaly and subcortical band heterotopia: molecular basis and diagnosis.

    Science.gov (United States)

    Leventer, R J; Pilz, D T; Matsumoto, N; Ledbetter, D H; Dobyns, W B

    2000-07-01

    Magnetic resonance imaging is now used routinely in the evaluation of developmental and neurological disorders and provides exquisite images of the living human brain. Consequently, it is evident that cortical malformations are more common than previously thought. Among the most severe is classical lissencephaly, in which the cortex lacks the complex folding that characterizes the normal human brain. Lissencephaly includes agyria and pachygyria, and merges with subcortical band heterotopia. Current molecular genetic techniques combined with the identification of affected patients have enabled the detection of two of the genes responsible: LIS1 (PAFAH1B1) on chromosome 17 and DCX (doublecortin) on the X chromosome. This review highlights the discovery of these genes and discusses the advances made in understanding the molecular basis of cortical development and improvements in diagnosis and genetic counseling.

  17. Transcranial sonography of subcortical structures in patients with multiple sclerosis.

    Science.gov (United States)

    Puz, P; Lasek-Bal, A; Radecka, P

    2017-07-01

    Transcranial sonography may be applied to assess the basal ganglia nuclei and brain atrophy by the measurement of the width of the third ventricle. The aim of this study was to assess usefulness of transcranial sonography (TCS) in patients with multiple sclerosis (MS) by examining the echogenicity of subcortical structures and the width of the third ventricle. Transcranial sonography evaluation of substantia nigra, brain stem raphe nuclei, diameter of the third ventricle, width of the anterior horn of the lateral ventricle, thalamus, lenticular nucleus, and head of the caudate nucleus in 41 patients with relapsing-remitting MS (RRMS), 23 with secondary progressive MS (SPMS), and 20 healthy controls was compared. A potential link between the patients' age, sex, Expanded Disability Status Scale (EDSS) score, relapse index, and ultrasound parameters was assessed. The following were found in patients with MS, as compared to the control group: a greater area of the substantia nigra, a longer diameter of the third ventricle and wider frontal horns of the lateral ventricles, hypo-echogenicity of the brain stem raphe, and hyperechogenicity of the lenticular nucleus. The study group was found to have a significant correlation between the area of the substantia nigra, and the age of patients, the duration of the illness, EDSS score, and the number of relapses. There was a significant correlation between the diameter of the third ventricle and the age of patients and EDSS score. Patients with MS reveal ultrasound features of subcortical structure atrophy. Selected TCS findings show a correlation with disease progression and activity. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Distinct subcortical volume alterations in pediatric and adult OCD

    Science.gov (United States)

    Boedhoe, Premika S.W.; Schmaal, Lianne; Abe, Yoshinari; Ameis, Stephanie H.; Arnold, Paul D.; Batistuzzo, Marcelo C.; Benedetti, Francesco; Beucke, Jan C.; Bollettini, Irene; Bose, Anushree; Brem, Silvia; Calvo, Anna; Cheng, Yuqi; Cho, Kang Ik K.; Dallaspezia, Sara; Denys, Damiaan; Fitzgerald, Kate D.; Fouche, Jean-Paul; Giménez, Mònica; Gruner, Patricia; Hanna, Gregory L.; Hibar, Derrek P.; Hoexter, Marcelo Q.; Huyser, Chaim; Ikari, Keisuke; Jahanshad, Neda; Kathmann, Norbert; Kaufmann, Christian; Koch, Kathrin; Kwon, Jun Soo; Lazaro, Luisa; Liu, Yanni; Lochner, Christine; Marsh, Rachel; Martínez-Zalacaín, Ignacio; Mataix-Cols, David; Menchón, José M.; Minuzzii, Luciano; Nakamae, Takashi; Nakao, Tomohiro; Narayanaswamy, Janardhanan C.; Piras, Fabrizio; Piras, Federica; Pittenger, Christopher; Reddy, Y.C. Janardhan; Sato, Joao R.; Simpson, H. Blair; Soreni, Noam; Soriano-Mas, Carles; Spalletta, Gianfranco; Stevens, Michael C.; Szeszko, Philip R.; Tolin, David F.; Venkatasubramanian, Ganesan; Walitza, Susanne; Wang, Zhen; van Wingen, Guido A.; Xu, Jian; Xu, Xiufeng; Yun, Je-Yeon; Zhao, Qing; Thompson, Paul M.; Stein, Dan J.; van den Heuvel, Odile A.

    2016-01-01

    Objective Structural brain imaging studies in Obsessive-Compulsive Disorder (OCD) have produced inconsistent findings. This may be partially due to limited statistical power from relatively small samples and clinical heterogeneity related to variation in disease profile and developmental stage. Methods To address these limitations, we conducted a meta- and mega-analysis of data from OCD sites worldwide. T1 images from 1,830 OCD patients and 1,759 controls were analyzed, using coordinated and standardized processing, to identify subcortical brain volumes that differ in OCD patients and healthy controls. We additionally examined potential modulating effects of clinical characteristics on morphological differences in OCD patients. Results The meta-analysis indicated that adult patients had significantly smaller hippocampal volumes (Cohen’s d=−0.13; p=5.1x10−3, % difference −2.80) and larger pallidum volumes (d=0.16; p=1.6x10−3, % difference 3.16) compared to adult controls. Both effects were stronger in medicated patients compared to controls (d=−0.29; p=2.4x10−5, % difference −4.18 and d=0.29; p=1.2x10−5, % difference 4.38, respectively). Unmedicated pediatric patients had larger thalamic volumes (d=0.38, p=2.1x10−3) compared to pediatric controls. None of these findings were mediated by sample characteristics such as mean age or field strength. Overall the mega-analysis yielded similar results. Conclusion Our study indicates a different pattern of subcortical abnormalities in pediatric versus adult OCD patients. The pallidum and hippocampus seem to be of importance in adult OCD, whereas the thalamus seems to be key in pediatric OCD. This highlights the potential importance of neurodevelopmental alterations in OCD, and suggests that further research on neuroplasticity in OCD may be useful. PMID:27609241

  19. A 5'-proximal region of the Citrus tristeza virus genome encoding two leader proteases is involved in virus superinfection exclusion.

    Science.gov (United States)

    Atallah, Osama O; Kang, Sung-Hwan; El-Mohtar, Choaa A; Shilts, Turksen; Bergua, María; Folimonova, Svetlana Y

    2016-02-01

    Superinfection exclusion (SIE), a phenomenon in which a primary virus infection prevents a secondary infection with the same or closely related virus, has been observed with various viruses. Earlier we demonstrated that SIE by Citrus tristeza virus (CTV) requires viral p33 protein. In this work we show that p33 alone is not sufficient for virus exclusion. To define the additional viral components that are involved in this phenomenon, we engineered a hybrid virus in which a 5'-proximal region in the genome of the T36 isolate containing coding sequences for the two leader proteases L1 and L2 has been substituted with a corresponding region from the genome of a heterologous T68-1 isolate. Sequential inoculation of plants pre-infected with the CTV L1L2T68 hybrid with T36 CTV resulted in superinfection with the challenge virus, which indicated that the substitution of the L1-L2 coding region affected SIE ability of the virus. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Characterization of the HeCo Mutant Mouse: A New Model of Subcortical Band Heterotopia Associated with Seizures and Behavioral Deficits

    OpenAIRE

    Croquelois, Alexandre; Giuliani, Fabienne; Savary, Christine; Kielar, Michel; Amiot, Clotilde; Schenk, Françoise; Welker, Egbert

    2017-01-01

    In human, neuronal migration disorders are commonly associated with developmental delay, mental retardation, and epilepsy. We describe here a new mouse mutant that develops a heterotopic cortex (HeCo) lying in the dorsolateral hemispheric region, between the homotopic cortex (HoCo) and subcortical white matter. Cross-breeding demonstrated an autosomal recessive transmission. Birthdating studies and immunochemistry for layer-specific markers revealed that HeCo formation was due to a transit pr...

  1. Structural insights into the human RyR2 N-terminal region involved in cardiac arrhythmias

    Energy Technology Data Exchange (ETDEWEB)

    Borko, Ľubomír; Bauerová-Hlinková, Vladena, E-mail: vladena.bauerova@savba.sk; Hostinová, Eva; Gašperík, Juraj [Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava (Slovakia); Beck, Konrad [Cardiff University School of Dentistry, Heath Park, Cardiff CF14 4XY Wales (United Kingdom); Lai, F. Anthony [Cardiff University School of Medicine, Cardiff CF14 4XN Wales (United Kingdom); Zahradníková, Alexandra, E-mail: vladena.bauerova@savba.sk [Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava (Slovakia); Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Vlárska 5, 833 34 Bratislava (Slovakia); Ševčík, Jozef, E-mail: vladena.bauerova@savba.sk [Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava (Slovakia)

    2014-11-01

    X-ray and solution structures of the human RyR2 N-terminal region were obtained under near-physiological conditions. The structure exhibits a unique network of interactions between its three domains, revealing an important stabilizing role of the central helix. Human ryanodine receptor 2 (hRyR2) mediates calcium release from the sarcoplasmic reticulum, enabling cardiomyocyte contraction. The N-terminal region of hRyR2 (amino acids 1–606) is the target of >30 arrhythmogenic mutations and contains a binding site for phosphoprotein phosphatase 1. Here, the solution and crystal structures determined under near-physiological conditions, as well as a homology model of the hRyR2 N-terminal region, are presented. The N-terminus is held together by a unique network of interactions among its three domains, A, B and C, in which the central helix (amino acids 410–437) plays a prominent stabilizing role. Importantly, the anion-binding site reported for the mouse RyR2 N-terminal region is notably absent from the human RyR2. The structure concurs with the differential stability of arrhythmogenic mutations in the central helix (R420W, I419F and I419F/R420W) which are owing to disparities in the propensity of mutated residues to form energetically favourable or unfavourable contacts. In solution, the N-terminus adopts a globular shape with a prominent tail that is likely to involve residues 545–606, which are unresolved in the crystal structure. Docking the N-terminal domains into cryo-electron microscopy maps of the closed and open RyR1 conformations reveals C{sup α} atom movements of up to 8 Å upon channel gating, and predicts the location of the leucine–isoleucine zipper segment and the interaction site for spinophilin and phosphoprotein phosphatase 1 on the RyR surface.

  2. Microstructural abnormalities in subcortical reward circuitry of subjects with major depressive disorder.

    Directory of Open Access Journals (Sweden)

    Anne J Blood

    2010-11-01

    Full Text Available Previous studies of major depressive disorder (MDD have focused on abnormalities in the prefrontal cortex and medial temporal regions. There has been little investigation in MDD of midbrain and subcortical regions central to reward/aversion function, such as the ventral tegmental area/substantia nigra (VTA/SN, and medial forebrain bundle (MFB.We investigated the microstructural integrity of this circuitry using diffusion tensor imaging (DTI in 22 MDD subjects and compared them with 22 matched healthy control subjects. Fractional anisotropy (FA values were increased in the right VT and reduced in dorsolateral prefrontal white matter in MDD subjects. Follow-up analysis suggested two distinct subgroups of MDD patients, which exhibited non-overlapping abnormalities in reward/aversion circuitry. The MDD subgroup with abnormal FA values in VT exhibited significantly greater trait anxiety than the subgroup with normal FA values in VT, but the subgroups did not differ in levels of anhedonia, sadness, or overall depression severity.These findings suggest that MDD may be associated with abnormal microstructure in brain reward/aversion regions, and that there may be at least two subtypes of microstructural abnormalities which each impact core symptoms of depression.

  3. Temporal Lobe and Frontal-Subcortical Dissociations in Non-Demented Parkinson's Disease with Verbal Memory Impairment.

    Science.gov (United States)

    Tanner, Jared J; Mareci, Thomas H; Okun, Michael S; Bowers, Dawn; Libon, David J; Price, Catherine C

    2015-01-01

    The current investigation examined verbal memory in idiopathic non-dementia Parkinson's disease and the significance of the left entorhinal cortex and left entorhinal-retrosplenial region connections (via temporal cingulum) on memory impairment in Parkinson's disease. Forty non-demented Parkinson's disease patients and forty non-Parkinson's disease controls completed two verbal memory tests--a wordlist measure (Philadelphia repeatable Verbal Memory Test) and a story measure (Logical Memory). All participants received T1-weighted and diffusion magnetic resonance imaging (3T; Siemens) sequences. Left entorhinal volume and left entorhinal-retrosplenial connectivity (temporal cingulum edge weight) were the primary imaging variables of interest with frontal lobe thickness and subcortical structure volumes as dissociating variables. Individuals with Parkinson's disease showed worse verbal memory, smaller entorhinal volumes, but did not differ in entorhinal-retrosplenial connectivity. For Parkinson's disease entorhinal-retrosplenial edge weight had the strongest associations with verbal memory. A subset of Parkinson's disease patients (23%) had deficits (z-scores frontal-subcortical gray or frontal white matter regions. These findings argue for additional investigation into medial temporal lobe gray and white matter connectivity for understanding memory in Parkinson's disease.

  4. Combined Invasive Subcortical and Non-invasive Surface Neurophysiological Recordings for the Assessment of Cognitive and Emotional Functions in Humans.

    Science.gov (United States)

    Trenado, Carlos; Elben, Saskia; Petri, David; Hirschmann, Jan; Groiss, Stefan J; Vesper, Jan; Schnitzler, Alfons; Wojtecki, Lars

    2016-05-19

    In spite of the success in applying non-invasive electroencephalography (EEG), magneto-encephalography (MEG) and functional magnetic resonance imaging (fMRI) for extracting crucial information about the mechanism of the human brain, such methods remain insufficient to provide information about physiological processes reflecting cognitive and emotional functions at the subcortical level. In this respect, modern invasive clinical approaches in humans, such as deep brain stimulation (DBS), offer a tremendous possibility to record subcortical brain activity, namely local field potentials (LFPs) representing coherent activity of neural assemblies from localized basal ganglia or thalamic regions. Notwithstanding the fact that invasive approaches in humans are applied only after medical indication and thus recorded data correspond to altered brain circuits, valuable insight can be gained regarding the presence of intact brain functions in relation to brain oscillatory activity and the pathophysiology of disorders in response to experimental cognitive paradigms. In this direction, a growing number of DBS studies in patients with Parkinson's disease (PD) target not only motor functions but also higher level processes such as emotions, decision-making, attention, memory and sensory perception. Recent clinical trials also emphasize the role of DBS as an alternative treatment in neuropsychiatric disorders ranging from obsessive compulsive disorder (OCD) to chronic disorders of consciousness (DOC). Consequently, we focus on the use of combined invasive (LFP) and non-invasive (EEG) human brain recordings in assessing the role of cortical-subcortical structures in cognitive and emotional processing trough experimental paradigms (e.g. speech stimuli with emotional connotation or paradigms of cognitive control such as the Flanker task), for patients undergoing DBS treatment.

  5. Cortical and Subcortical Coordination of Visual Spatial Attention Revealed by Simultaneous EEG-fMRI Recording.

    Science.gov (United States)

    Green, Jessica J; Boehler, Carsten N; Roberts, Kenneth C; Chen, Ling-Chia; Krebs, Ruth M; Song, Allen W; Woldorff, Marty G

    2017-08-16

    Visual spatial attention has been studied in humans with both electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) individually. However, due to the intrinsic limitations of each of these methods used alone, our understanding of the systems-level mechanisms underlying attentional control remains limited. Here, we examined trial-to-trial covariations of concurrently recorded EEG and fMRI in a cued visual spatial attention task in humans, which allowed delineation of both the generators and modulators of the cue-triggered event-related oscillatory brain activity underlying attentional control function. The fMRI activity in visual cortical regions contralateral to the cued direction of attention covaried positively with occipital gamma-band EEG, consistent with activation of cortical regions representing attended locations in space. In contrast, fMRI activity in ipsilateral visual cortical regions covaried inversely with occipital alpha-band oscillations, consistent with attention-related suppression of the irrelevant hemispace. Moreover, the pulvinar nucleus of the thalamus covaried with both of these spatially specific, attention-related, oscillatory EEG modulations. Because the pulvinar's neuroanatomical geometry makes it unlikely to be a direct generator of the scalp-recorded EEG, these covariational patterns appear to reflect the pulvinar's role as a regulatory control structure, sending spatially specific signals to modulate visual cortex excitability proactively. Together, these combined EEG/fMRI results illuminate the dynamically interacting cortical and subcortical processes underlying spatial attention, providing important insight not realizable using either method alone.SIGNIFICANCE STATEMENT Noninvasive recordings of changes in the brain's blood flow using functional magnetic resonance imaging and electrical activity using electroencephalography in humans have individually shown that shifting attention to a location in space

  6. High Dose Involved Field Radiation Therapy as Salvage for Loco-Regional Recurrence of Non-Small Cell Lung Cancer

    Science.gov (United States)

    Bae, Sun Hyun; Nam, Heerim; Park, Hee Chul; Pyo, Hong Ryull; Shim, Young Mog; Kim, Jhingook; Kim, Kwhanmien; Ahn, Jin Seok; Ahn, Myung-Ju; Park, Keunchil

    2012-01-01

    Purpose To determine the effectiveness of salvage radiation therapy (RT) in patients with loco-regional recurrences (LRR) following initial complete resection of non-small cell lung cancer (NSCLC) and assess prognostic factors affecting survivals. Materials and Methods Between 1994 and 2007, 64 patients with LRR after surgery of NSCLC were treated with high dose RT alone (78.1%) or concurrent chemo-radiation therapy (CCRT, 21.9%) at Samsung Medical Center. Twenty-nine patients (45.3%) had local recurrence, 26 patients (40.6%) had regional recurrence and 9 patients (14.1%) had recurrence of both components. The median RT dose was 54 Gy (range, 44-66 Gy). The radiation target volume included the recurrent lesions only. Results The median follow-up time from the start of RT in survivors was 32.0 months. The rates of in-field failure free survival, intra-thoracic failure free survival and extra-thoracic failure free survival at 2 years were 52.3%, 33.9% and 59.4%, respectively. The median survival after RT was 18.5 months, and 2-year overall survival (OS) rate was 47.9%. On both univariate and multivariate analysis, the interval from surgery till recurrence and CCRT were significant prognostic factors for OS. Conclusion The current study demonstrates that involved field salvage RT is effective for LRR of NSCLC following surgery. PMID:23074111

  7. Cortical and Subcortical Brain Morphometry Differences Between Patients With Autism Spectrum Disorder and Healthy Individuals Across the Lifespan: Results From the ENIGMA ASD Working Group.

    Science.gov (United States)

    van Rooij, Daan; Anagnostou, Evdokia; Arango, Celso; Auzias, Guillaume; Behrmann, Marlene; Busatto, Geraldo F; Calderoni, Sara; Daly, Eileen; Deruelle, Christine; Di Martino, Adriana; Dinstein, Ilan; Duran, Fabio Luis Souza; Durston, Sarah; Ecker, Christine; Fair, Damien; Fedor, Jennifer; Fitzgerald, Jackie; Freitag, Christine M; Gallagher, Louise; Gori, Ilaria; Haar, Shlomi; Hoekstra, Liesbeth; Jahanshad, Neda; Jalbrzikowski, Maria; Janssen, Joost; Lerch, Jason; Luna, Beatriz; Martinho, Mauricio Moller; McGrath, Jane; Muratori, Filippo; Murphy, Clodagh M; Murphy, Declan G M; O'Hearn, Kirsten; Oranje, Bob; Parellada, Mara; Retico, Alessandra; Rossa, Pedro; Rubia, Katya; Shook, Devon; Taylor, Margot; Thompson, Paul M; Tosetti, Michela; Wallace, Gregory L; Zhou, Fengfeng; Buitelaar, Jan K

    2017-11-17

    Neuroimaging studies show structural differences in both cortical and subcortical brain regions in children and adults with autism spectrum disorder (ASD) compared with healthy subjects. Findings are inconsistent, however, and it is unclear how differences develop across the lifespan. The authors investigated brain morphometry differences between individuals with ASD and healthy subjects, cross-sectionally across the lifespan, in a large multinational sample from the Enhancing Neuroimaging Genetics Through Meta-Analysis (ENIGMA) ASD working group. The sample comprised 1,571 patients with ASD and 1,651 healthy control subjects (age range, 2-64 years) from 49 participating sites. MRI scans were preprocessed at individual sites with a harmonized protocol based on a validated automated-segmentation software program. Mega-analyses were used to test for case-control differences in subcortical volumes, cortical thickness, and surface area. Development of brain morphometry over the lifespan was modeled using a fractional polynomial approach. The case-control mega-analysis demonstrated that ASD was associated with smaller subcortical volumes of the pallidum, putamen, amygdala, and nucleus accumbens (effect sizes [Cohen's d], 0.13 to -0.13), as well as increased cortical thickness in the frontal cortex and decreased thickness in the temporal cortex (effect sizes, -0.21 to 0.20). Analyses of age effects indicate that the development of cortical thickness is altered in ASD, with the largest differences occurring around adolescence. No age-by-ASD interactions were observed in the subcortical partitions. The ENIGMA ASD working group provides the largest study of brain morphometry differences in ASD to date, using a well-established, validated, publicly available analysis pipeline. ASD patients showed altered morphometry in the cognitive and affective parts of the striatum, frontal cortex, and temporal cortex. Complex developmental trajectories were observed for the different

  8. Surgical Management of Giant Cell Tumors in Temporomandibular Joint Region Involving Lateral Skull Base: A Multidisciplinary Approach.

    Science.gov (United States)

    Shen, Yi; Ma, Chunyue; Wang, Liang; Li, Jun; Wu, Yiqun; Sun, Jian

    2016-11-01

    Giant cell tumors (GCTs) in the temporomandibular joint (TMJ) region invading the lateral skull base are relatively uncommon. The management of these lesions is still controversial because of their proximity to vital neurovascular structures. Although sporadically reported, the clinical outcomes of such disease after surgery are still largely unknown. We retrospectively reviewed the records of 28 patients with resectable GCTs in the TMJ region involving the lateral skull base treated from 1994 to 2013. A multidisciplinary team, formed by oral and maxillofacial surgeons, neurosurgeons, and otorhinolaryngologists, had surgically treated all these patients by craniomaxillofacial resection. Clinical variables, different treatment modalities, and outcomes are compared. Representative cases also are presented. Our case series consisted of 15 male and 13 female patients with a median age of 41 years. The median follow-up duration for our series was 5.4 years (range, 0.8-18.5 years). The average tumor size measured 8.6 cm. Most of the GCTs (n = 19, 67.9%) extended through the skull base bones into the brain parenchyma and other surrounding soft tissues. Titanium meshes for cranioplasty of skull base bones was used in 9 patients (32.1%), whereas temporalis fascia (n = 5, 17.9%) or free flaps (n = 6, 21.4%) were used more frequently for duraplasty. A postoperative cerebrospinal fluid leak was found in only 1 patient. During follow-up, the local control rate reached 85.7%. Thoroughness of tumor resection (hazard ratio, 15.763; 95% confidence interval, 1.630-152.437; P = .017) was found to be associated with recurrence-free survival. Craniomaxillofacial surgery for GCTs in the TMJ region invading the skull base is feasible in selected patients. A meticulous plan via a multidisciplinary approach is mandatory for the success of such treatment. Copyright © 2016 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  9. The non-conserved region of MRP is involved in the virulence of Streptococcus suis serotype 2.

    Science.gov (United States)

    Li, Quan; Fu, Yang; Ma, Caifeng; He, Yanan; Yu, Yanfei; Du, Dechao; Yao, Huochun; Lu, Chengping; Zhang, Wei

    2017-10-03

    Muramidase-released protein (MRP) of Streptococcus suis serotype 2 (SS2) is an important epidemic virulence marker with an unclear role in bacterial infection. To investigate the biologic functions of MRP, 3 mutants named Δmrp, Δmrp domain 1 (Δmrp-d1), and Δmrp domain 2 (Δmrp-d2) were constructed to assess the phenotypic changes between the parental strain and the mutant strains. The results indicated that MRP domain 1 (MRP-D1, the non-conserved region of MRP from a virulent strain, a.a. 242-596) played a critical role in adherence of SS2 to host cells, compared with MRP domain 1* (MRP-D1*, the non-conserved region of MRP from a low virulent strain, a.a. 239-598) or MRP domain 2 (MRP-D2, the conserved region of MRP, a.a. 848-1222). We found that MRP-D1 but not MRP-D2, could bind specifically to fibronectin (FN), factor H (FH), fibrinogen (FG), and immunoglobulin G (IgG). Additionally, we confirmed that mrp-d1 mutation significantly inhibited bacteremia and brain invasion in a mouse infection model. The mrp-d1 mutation also attenuated the intracellular survival of SS2 in RAW246.7 macrophages, shortened the growth ability in pig blood and decreased the virulence of SS2 in BALB/c mice. Furthermore, antiserum against MRP-D1 was found to dramatically impede SS2 survival in pig blood. Finally, immunization with recombinant MRP-D1 efficiently enhanced murine viability after SS2 challenge, indicating its potential use in vaccination strategies. Collectively, these results indicated that MRP-D1 is involved in SS2 virulence and eloquently demonstrate the function of MRP in pathogenesis of infection.

  10. Subcortical cerebral blood flow and metabolic changes elicited by cortical spreading depression in rat

    Energy Technology Data Exchange (ETDEWEB)

    Mraovitch, S.; Calando, Y.; Goadsby, P.J.; Seylaz, J. (Laboratoire de Recherches Cerebrovasculaire, Paris (France))

    1992-06-01

    Changes in cerebral cortical perfusion (CBF{sub LDF}), local cerebral blood flow (lCBF) and local cerebral glucose utilization (lCGU) elicited by unilateral cortical spreading depression (SD) were monitored and measured in separate groups of rats anesthetized with {alpha}-chloralose. CBF{sub LDF} was recorded with laser Doppler flowmetry, while lCBF and lCGU were measured by the quantitative autoradiographic ({sup 14}C)iodoantipyrine and ({sup 14}C)-2-deoxyglucose methods, respectively. SD elicited a wave of hyperemia after a latency of 2 to 3 min followed by an oligemic phase. Ninety minutes following the onset of SD cortical lCBF and lCGU were essentially the same as on the contralateral side and in sham-treated rats. However, alteration in the lCBF and lCGU in upper and lower brainstem persisted. The present results demonstrate that long-lasting cerebrovascular and metabolic alterations take place within the subcortical regions following SD. These regions provide an attractive site to integrate observations in man concerning spreading depression and the aura of migraine with the other features of the syndrome. 19 refs., 2 figs., 1 tab.

  11. Subcortical cerebral blood flow and metabolic changes elicited by cortical spreading depression in rat.

    Science.gov (United States)

    Mraovitch, S; Calando, Y; Goadsby, P J; Seylaz, J

    1992-06-01

    Changes in cerebral cortical perfusion (CBFLDF), local cerebral blood flow (lCBF) and local cerebral glucose utilization (lCGU) elicited by unilateral cortical spreading depression (SD) were monitored and measured in separate groups of rats anesthetized with alpha-chloralose. CBFLDF was recorded with laser Doppler flowmetry, while lCBF and lCGU were measured by the quantitative autoradiographic [14C]iodoantipyrine and [14C]-2-deoxyglucose methods, respectively. SD elicited a wave of hyperemia after a latency of 2 to 3 min followed by an oligemic phase. Ninety minutes following the onset of SD cortical (frontal, parietal and occipital) lCBF and lCGU were essentially the same as on the contralateral side and in sham-treated rats. However, alteration in the lCBF and lCGU in upper and lower brainstem persisted. The present results demonstrate, for the first time, that long-lasting cerebrovascular and metabolic alterations take place within the subcortical regions following SD. These regions provide an attractive site to integrate observations in man concerning spreading depression and the aura of migraine with the other features of the syndrome.

  12. Intermittent cortical involvement in the preservation of tremor in essential tremor

    NARCIS (Netherlands)

    Sharifi, Sarvi; Luft, Frauke; Verhagen, Rens; Heida, Tjitske; Speelman, Johannes D.; Bour, Lo J.; van Rootselaar, Anne-Fleur

    2017-01-01

    Cortical involvement in essential tremor, an involuntary action tremor supposedly of subcortical origin, is uncertain. Conflicting results of corticomuscular coherence studies in essential tremor suggest an intermittent corticomuscular coupling. On the basis of the literature, we hypothesized that

  13. Eight novel mutations in MLC1 from 18 Iranian patients with megalencephalic leukoencephalopathy with subcortical cysts

    NARCIS (Netherlands)

    Kariminejad, Ariana; Rajaee, Ahmad; Ashrafi, Mahmoud Reza; Alizadeh, Houman; Tonekaboni, Seyed Hasan; Malamiri, Reza Azizi; Ghofrani, Mohamad; Karimzadeh, Parvaneh; Mohammadi, Mohsen Molla; Baghalshooshtari, Ali; Bozorgmehr, Bita; Kariminejad, Mohamad Hasan; Postma, N.; Abbink, Truus E. M.; van der Knaap, Marjo S.

    2015-01-01

    Megalencephalic leukoencephalopathy with subcortical cysts (MLC) (MIM #604004) is a rare autosomal recessive neurological disorder characterized by macrocephaly, motor and cognitive decline, ataxia, spasticity and occasional seizures. Magnetic resonance imaging (MRI) shows diffusely abnormal and

  14. [Subcortical laminal heterotopia and lissencephaly: cerebral malformations of X-linked inheritance].

    Science.gov (United States)

    Pinard, J M; Desguerre, I; Motte, J; Dulac, O; Ponsot, G

    1995-03-01

    Subcortical laminar heterotopia (band heterotopia) is a brain malformation now recognized by MRI. We report 3 families (2 previously described) in which several members had subcortical laminar heterotopia or a more severe malformation (agyria/pachygyria). In these families, subcortical laminar heterotopia were observed in women and were associated with epilepsy or slight mental retardation depending on the extend of heterotopia. Males had lissencephaly with refractory epilepsy and severe mental retardation. The pedigrees of these families demonstrate that these 2 malformations originate from a single genetic origin. A single X-linked dominant gene is postulated. Diagnosis of subcortical laminar heterotopia in a female or lissencephaly in a male (except in the case of Miller-Dieker syndrome) requires appropriate genetic counselling in the family: brain imaging should be performed in relatives.

  15. Subcortical Band Heterotopia (SBH) in Rat Offspring Following Maternal Hypothyroxinemia: Structural and Functional Characteristics

    Science.gov (United States)

    Thyroid hormones (TH) play crucial roles in brain maturation, neuronal migration, and neocortical lamination. Subcortical band heterotopia (SBH) represent a class of neuronal migration errors in humans that are often associated with childhood epilepsy. We have previously reported...

  16. Genotype-phenotype correlation in lissencephaly and subcortical band heterotopia: the key questions answered.

    Science.gov (United States)

    Leventer, Richard Jacob

    2005-04-01

    Lissencephaly and subcortical band heterotopia are closely related cortical malformations and are true disorders of neuronal migration. The genetic basis of approximately 70% of classic lissencephaly and 80% of typical subcortical band heterotopia is known. Most are due to abnormalities within the LIS1 or DCX genes, with abnormalities ranging from single basepair substitutions to contiguous gene deletions. Understanding the genetic basis of these disorders has led to the elucidation of the molecular and developmental mechanisms that are adversely affected. There is a robust correlation between many of the clinical aspects of lissencephaly or subcortical band heterotopia and the type and location of mutations in the affected gene. Using this knowledge, the clinician can predict with some accuracy which gene is likely to be affected based on the clinical and imaging features. This review answers some of the key questions regarding the genotype-phenotype correlation for lissencephaly and subcortical band heterotopia.

  17. Delayed visual maturation: pupillary responses implicate subcortical and cortical visual systems

    National Research Council Canada - National Science Library

    Cocker, K D; Moseley, M J; Stirling, H F; Fielder, A R

    1998-01-01

    .... The improvement of vision in delayed visual maturation (DVM) occurs around this time, and this has given rise to the suggestion that the condition may have a subcortical basis that resolves with the appearance of cortical function...

  18. Regional differences in glutathione accumulation pathways in the rat cornea: Mapping of amino acid transporters involved in glutathione synthesis.

    Science.gov (United States)

    Yoganandarajah, Vithushiya; Li, Bo; Umapathy, Ankita; Donaldson, Paul J; Lim, Julie C

    2017-08-01

    In this study we have sought to complete the identification and localisation of uptake pathways involved in accumulating precursor amino acids involved in GSH synthesis in the rat cornea. To do this, we performed reverse transcription PCR (RT-PCR) to identify the Excitatory Amino Acid Transporters (EAAT 1-5) responsible for glutamate uptake, and glycine transporters (GLYT 1-2) at the transcript level. Western blotting was used to verify protein expression, while immunolabelling of sagittal sections was used to localise transporters to the different layers of the cornea. Immunolabelling of en face sections was used to examine the subcellular distribution of proteins in the corneal endothelium. Our findings revealed EAAT 1-5 and GLYT 1-2 to be expressed at the transcript and protein level in the rat cornea. Immunohistochemistry revealed all amino acid transporters to be localised to the epithelium. In the majority of cases, labelling was restricted to the epithelium, and labelling absent from the stroma or endothelium. However, EAAT 4 and GLYT 2 labelling was detected in the stroma with EAAT 4 labelling also present in the endothelium. Overall, the identification of amino acid transporters strongly supports the existence of an intracellular GSH synthesis pathway in the rat corneal epithelium. This suggests that regional differences in GSH accumulation pathways exist, with direct uptake of GSH and intracellular synthesis of GSH restricted to the endothelial and epithelial cell layers, respectively. This information is important in the design of targeted strategies to enhance GSH levels in specific layers of the cornea to prevent against oxidative damage, corneal swelling and loss of corneal transparency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Male brain ages faster: the age and gender dependence of subcortical volumes.

    Science.gov (United States)

    Király, András; Szabó, Nikoletta; Tóth, Eszter; Csete, Gergő; Faragó, Péter; Kocsis, Krisztián; Must, Anita; Vécsei, László; Kincses, Zsigmond Tamás

    2016-09-01

    Effects of gender on grey matter (GM) volume differences in subcortical structures of the human brain have consistently been reported. Recent research evidence suggests that both gender and brain size influences volume distribution in subcortical areas independently. The goal of this study was to determine the effects of the interplay between brain size, gender and age contributing to volume differences of subcortical GM in the human brain. High-resolution T1-weighted images were acquired from 53 healthy males and 50 age-matched healthy females. Total GM volume was determined using voxel-based morphometry. We used model-based subcortical segmentation analysis to measure the volume of subcortical nuclei. Main effects of gender, brain volume and aging on subcortical structures were examined using multivariate analysis of variance. No significant difference was found in total brain volume between the two genders after correcting for total intracranial volume. Our analysis revealed significantly larger hippocampus volume for females. Additionally, GM volumes of the caudate nucleus, putamen and thalamus displayed a significant age-related decrease in males as compared to females. In contrast to this only the thalamic volume loss proved significant for females. Strikingly, GM volume decreases faster in males than in females emphasizing the interplay between aging and gender on subcortical structures. These findings might have important implications for the interpretation of the effects of unalterable factors (i.e. gender and age) in cross-sectional structural MRI studies. Furthermore, the volume distribution and changes of subcortical structures have been consistently related to several neuropsychiatric disorders (e.g. Parkinson's disease, attention deficit hyperactivity disorder, etc.). Understanding these changes might yield further insight in the course and prognosis of these disorders.

  20. Two cases with megalencephalic leukoencephalopathy with subcortical cysts and MLC1 mutations in the Turkish population.

    Science.gov (United States)

    Yiş, Uluç; Scheper, Gert C; Uran, Nedret; Unalp, Aycan; Cakmakçi, Handan; Hiz-Kurul, Semra; Dirik, Eray; van der Knaap, Marjo S

    2010-01-01

    Megalencephalic leukoencephalopathy with subcortical cysts is a rare leukodystrophy that is characterized by macrocephaly and a slowly progressive clinical course. It is one of the most commonly reported leukoencephalopathies in Turkey. Mutations in the MLC1 gene are the main cause of the disease. We report two patients with megalencephalic leukoencephalopathy with subcortical cysts with confirmed mutations in the MLC1 gene. The mutation in the second patient was novel. We also review identified mutations in the Turkish population.

  1. Assessing cortical and subcortical changes in a western diet mouse model using spectral/Fourier domain OCT (Conference Presentation)

    Science.gov (United States)

    Bernucci, Marcel T.; Norman, Jennifer E.; Merkle, Conrad W.; Aung, Hnin H.; Rutkowsky, Jennifer; Rutledge, John C.; Srinivasan, Vivek J.

    2017-02-01

    The Western diet, causative in the development of atherosclerotic cardiovascular disease, has recently been associated with the development of diffuse white matter disease (WMD) and other subcortical changes. Yet, little is known about the pathophysiological mechanisms by which a high-fat diet can cause WMD. Mechanistic studies of deep brain regions in mice have been challenging due to a lack of non-invasive, high-resolution, and deep imaging technologies. Here we used Optical Coherence Tomography to study mouse cortical/subcortical structures noninvasively and in vivo. To better understand the role of Western Diet in the development of WMD, intensity and Doppler flow OCT images, obtained using a 1300 nm spectral / Fourier domain OCT system, were used to observe the structural and functional alterations in the cortex and corpus callosum of Western Diet and control diet mouse models. Specifically, we applied segmentation to the OCT images to identify the boundaries of the cortex/corpus callosum, and further quantify the layer thicknesses across animals between the two diet groups. Furthermore, microvasculature alterations such as changes in spatiotemporal flow profiles within diving arterioles, arteriole diameter, and collateral tortuosity were analyzed. In the current study, while the arteriole vessel diameters between the two diet groups was comparable, we show that collateral tortuosity was significantly higher in the Western diet group, compared to control diet group, possibly indicating remodeling of brain vasculature due to dietary changes. Moreover, there is evidence showing that the corpus callosum is thinner in Western diet mice, indicative of tissue atrophy.

  2. Comparative Study of Subcortical Atrophy in Patients with Frontotemporal Dementia and Dementia with Extrapyramidal Signs

    Science.gov (United States)

    Caixeta, Leonardo; Vieira, Renata Teles; Paes, Flávia; Carta, Mauro Giovanni; Nardi, Antonio Egidio; Arias-Carrión, Oscar; Rocha, Nuno B. F; Budde, Henning; Machado, Sergio

    2015-01-01

    Objectives : To investigate the severity of subcortical atrophy in frontotemporal dementia (FTD) without extrapyramidal symptoms (EPS) and dementia with EPS. In addition, we aim to verify if there is correlation between demographic and clinical characteristics and subcortical atrophy in the groups. Methodology : The sample was composed of 21 patients with dementia and EPS as well as 19 patients with FTD without EPS. A linear assessment was conducted in order to identify the degree of subcortical atrophy (i.e., bifrontal index - BFI) using MRI. Moreover, the Mini-Mental State Examination (MMSE), Pfeffer Functional Activities Questionnaire (FAQ) and the Clinical Dementia Rating (CDR) were used to investigate clinical aspects. Results : It was verified that patients with dementia and EPS was older than the patients with FTD (p=0.01). The severity of cognitive deficits was associated with BFI, as well as the dementia severity in the EPS group. Conclusion : FTD group presented mean BFI scores above the cutoff for normal elderly population, indicating the presence of subcortical atrophy in this group. Mean BFI was higher (although not statistically significant) in FTD group than in dementia with EPS, which can suggest at least that subcortical pathology in FTD may be as important as in the dementia with EPS group. Subcortical atrophy is a good biological marker for cognitive deterioration in FTD and in dementia with EPS. PMID:25870648

  3. Improved labeling of subcortical brain structures in atlas-based segmentation of magnetic resonance images.

    Science.gov (United States)

    Yousefi, Siamak; Kehtarnavaz, Nasser; Gholipour, Ali

    2012-07-01

    Precise labeling of subcortical structures plays a key role in functional neurosurgical applications. Labels from an atlas image are propagated to a patient image using atlas-based segmentation. Atlas-based segmentation is highly dependent on the registration framework used to guide the atlas label propagation. This paper focuses on atlas-based segmentation of subcortical brain structures and the effect of different registration methods on the generated subcortical labels. A single-step and three two-step registration methods appearing in the literature based on affine and deformable registration algorithms in the ANTS and FSL algorithms are considered. Experiments are carried out with two atlas databases of IBSR and LPBA40. Six segmentation metrics consisting of Dice overlap, relative volume error, false positive, false negative, surface distance, and spatial extent are used for evaluation. Segmentation results are reported individually and as averages for nine subcortical brain structures. Based on two statistical tests, the results are ranked. In general, among four different registration strategies investigated in this paper, a two-step registration consisting of an initial affine registration followed by a deformable registration applied to subcortical structures provides superior segmentation outcomes. This method can be used to provide an improved labeling of the subcortical brain structures in MRIs for different applications.

  4. Sparsity enables estimation of both subcortical and cortical activity from MEG and EEG.

    Science.gov (United States)

    Krishnaswamy, Pavitra; Obregon-Henao, Gabriel; Ahveninen, Jyrki; Khan, Sheraz; Babadi, Behtash; Iglesias, Juan Eugenio; Hämäläinen, Matti S; Purdon, Patrick L

    2017-11-14

    Subcortical structures play a critical role in brain function. However, options for assessing electrophysiological activity in these structures are limited. Electromagnetic fields generated by neuronal activity in subcortical structures can be recorded noninvasively, using magnetoencephalography (MEG) and electroencephalography (EEG). However, these subcortical signals are much weaker than those generated by cortical activity. In addition, we show here that it is difficult to resolve subcortical sources because distributed cortical activity can explain the MEG and EEG patterns generated by deep sources. We then demonstrate that if the cortical activity is spatially sparse, both cortical and subcortical sources can be resolved with M/EEG. Building on this insight, we develop a hierarchical sparse inverse solution for M/EEG. We assess the performance of this algorithm on realistic simulations and auditory evoked response data, and show that thalamic and brainstem sources can be correctly estimated in the presence of cortical activity. Our work provides alternative perspectives and tools for characterizing electrophysiological activity in subcortical structures in the human brain. Copyright © 2017 the Author(s). Published by PNAS.

  5. Restoration of sodic soils involving chemical and biological amendments and phytoremediation by Eucalyptus camaldulensis in a semiarid region.

    Science.gov (United States)

    Seenivasan, R; Prasath, V; Mohanraj, R

    2015-06-01

    Salt-affected soils in semiarid regions impede the agricultural productivity and degrade the ecosystem health. In South India, several hectares of land are salt-affected, where the evapotranspiration exceeds the annual precipitation. This study is an attempt to ameliorate sodic soils, by an experiment involving chemical treatment (addition of gypsum), organic amendments (decomposed bagasse pith and green manuring with Sesbania rostrata) and phytoremediation by plantation of Eucalyptus camaldulensis. The prime focus is to minimize the use of gypsum and improve the soil health in terms of nutrients, microbial population and enzyme activity in addition to sodicity reclamation. At the end of the third year, a reduction of 10 % in soil pH, 33 % in electrical conductivity and 20 % in exchangeable sodium percentage was achieved compared to the initial values. Three- to fourfold increases in organic carbon content were observed. Significant improvement in the available major and micronutrients of soil, microbial growth and enzyme activity was observed, suggesting phytoremediation by E. camaldulensis as a sustainable option for restoration of similar kind of degraded lands.

  6. Signaling by the heavy-metal sensor CusS involves rearranged helical interactions in specific transmembrane regions.

    Science.gov (United States)

    Fung, Danny Ka Chun; Ma, Yongzheng; Xia, Tingying; Luk, Jakson Chak Hon; Yan, Aixin

    2016-06-01

    Two-component systems (TCSs) play important roles in the adaptation of bacteria to stress. Despite their increasingly well understood mechanistic features, it remains poorly understood how TCSs transduce signals across membranes. Here, we use the E. coli Cu/Ag-responsive CusSR TCS as a model to investigate the roles of CusS transmembrane (TM) residues. Proline scanning of TM1 domain led to identification of the T17P, F18P, and S21P variants, which display higher kinase activities relative to wild type. A single point mutation, V202G, in the adjacent TM2 domain specifically suppresses the hyperactivities of these mutants. Disulfide crosslinking analysis demonstrated that T17 and V202 are situated in close proximity, and Cys residues substituted at those two positions form exclusive intramolecular crosslinks when CusS is in the signaling-inactive state. In the signaling-active variant of CusS, however, only intermolecular crosslinking between the two Cys residues could be observed, suggesting that destabilization of an intramolecular constraint and a subsequent rearrangement of helical interactions in this TM region is involved in the activation of CusS. An analogous TM helical interface in the P. aeruginosa heavy metal sensor kinase CzcS is also observed. Together, these results suggested a conserved transmembrane signal transduction mechanism in the heavy metal sensing TCSs. © 2016 John Wiley & Sons Ltd.

  7. Brain-wide Maps Reveal Stereotyped Cell-Type-Based Cortical Architecture and Subcortical Sexual Dimorphism.

    Science.gov (United States)

    Kim, Yongsoo; Yang, Guangyu Robert; Pradhan, Kith; Venkataraju, Kannan Umadevi; Bota, Mihail; García Del Molino, Luis Carlos; Fitzgerald, Greg; Ram, Keerthi; He, Miao; Levine, Jesse Maurica; Mitra, Partha; Huang, Z Josh; Wang, Xiao-Jing; Osten, Pavel

    2017-10-05

    The stereotyped features of neuronal circuits are those most likely to explain the remarkable capacity of the brain to process information and govern behaviors, yet it has not been possible to comprehensively quantify neuronal distributions across animals or genders due to the size and complexity of the mammalian brain. Here we apply our quantitative brain-wide (qBrain) mapping platform to document the stereotyped distributions of mainly inhibitory cell types. We discover an unexpected cortical organizing principle: sensory-motor areas are dominated by output-modulating parvalbumin-positive interneurons, whereas association, including frontal, areas are dominated by input-modulating somatostatin-positive interneurons. Furthermore, we identify local cell type distributions with more cells in the female brain in 10 out of 11 sexually dimorphic subcortical areas, in contrast to the overall larger brains in males. The qBrain resource can be further mined to link stereotyped aspects of neuronal distributions to known and unknown functions of diverse brain regions. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. A novel missense mutation of doublecortin: mutation analysis of Korean patients with subcortical band heterotopia.

    Science.gov (United States)

    Kim, Myeong-Kyu; Park, Man-Seok; Kim, Byeong-Chae; Cho, Ki-Hyun; Kim, Young-Seon; Kim, Jin-Hee; Lee, Min-Cheol; Heo, Tag; Kim, Eun-Young

    2005-08-01

    The neuronal migration disorders, X-linked lissencephaly syndrome (XLIS) and subcortical band heterotopia (SBH), also called "double cortex", have been linked to missense, nonsense, aberrant splicing, deletion, and insertion mutations in doublecortin (DCX) in families and sporadic cases. Most DCX mutations identified to date are located in two evolutionarily conserved domains. We performed mutation analysis of DCX in two Korean patients with SBH. The SBH patients had mild to moderate developmental delays, drug-resistant generalized seizures, and diffuse thick SBH upon brain MRI. Sequence analysis of the DCX coding region in Patient 1 revealed a c.386 C>T change in exon 3. The sequence variation results in a serine to leucine amino acid change at position 129 (S129L), which has not been found in other family members of Patient 1 or in a large panel of 120 control X-chromosomes. We report here a novel c.386 C>T mutation of DCX that is responsible for SBH.

  9. Disturbances in the positioning, proliferation and apoptosis of neural progenitors contribute to subcortical band heterotopia formation.

    Science.gov (United States)

    Fitzgerald, M P; Covio, M; Lee, K S

    2011-03-10

    Cortical malformations are commonly associated with intractable epilepsy and other developmental disorders. Our studies utilize the tish rat, a spontaneously occurring genetic model of subcortical band heterotopia (SBH) associated with epilepsy, to evaluate the developmental events underlying SBH formation in the neocortex. Our results demonstrate that Pax6(+) and Tbr2(+) progenitors are mislocalized in tish(+/-) and tish(-/-)- neocortex throughout neurogenesis. In addition, mislocalized tish(-/-) progenitors possess a longer cell cycle than wild type or normally-positioned tish(-/-) progenitors, owing to a lengthened G(2)+M+G(1) time. This mislocalization is not associated with adherens junction breakdown or loss of radial glial polarity in the ventricular zone (VZ), as assessed by immunohistochemistry against phalloidin (to identify F-actin), aPKC-λ and Par3. However, vimentin immunohistochemistry indicates that the radial glial scaffold is disrupted in the region of the tish(-/-) heterotopia. Moreover, lineage tracing experiments using in utero electroporation in tish(-/-) neocortex demonstrate that mislocalized progenitors do not retain contact with the ventricular surface and that ventricular/subventricular zone (SVZ) progenitors produce neurons that migrate into both the heterotopia and cortical plate (CP). Taken together, these findings define a series of developmental errors contributing to SBH formation that differs fundamentally from a primary error in neuronal migration. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. Training conquers multitasking costs by dividing task representations in the frontoparietal-subcortical system

    Science.gov (United States)

    Garner, K. G.; Dux, Paul E.

    2015-01-01

    Negotiating the information-rich sensory world often requires the concurrent management of multiple tasks. Despite this requirement, humans are thought to be poor at multitasking because of the processing limitations of frontoparietal and subcortical (FP-SC) brain regions. Although training is known to improve multitasking performance, it is unknown how the FP-SC system functionally changes to support improved multitasking. To address this question, we characterized the FP-SC changes that predict training outcomes using an individual differences approach. Participants (n = 100) performed single and multiple tasks in pre- and posttraining magnetic resonance imaging (fMRI) sessions interspersed by either a multitasking or an active-control training regimen. Multivoxel pattern analyses (MVPA) revealed that training induced multitasking improvements were predicted by divergence in the FP-SC blood oxygen level-dependent (BOLD) response patterns to the trained tasks. Importantly, this finding was only observed for participants who completed training on the component (single) tasks and their combination (multitask) and not for the control group. Therefore, the FP-SC system supports multitasking behavior by segregating constituent task representations. PMID:26460014

  11. Training conquers multitasking costs by dividing task representations in the frontoparietal-subcortical system.

    Science.gov (United States)

    Garner, K G; Dux, Paul E

    2015-11-17

    Negotiating the information-rich sensory world often requires the concurrent management of multiple tasks. Despite this requirement, humans are thought to be poor at multitasking because of the processing limitations of frontoparietal and subcortical (FP-SC) brain regions. Although training is known to improve multitasking performance, it is unknown how the FP-SC system functionally changes to support improved multitasking. To address this question, we characterized the FP-SC changes that predict training outcomes using an individual differences approach. Participants (n = 100) performed single and multiple tasks in pre- and posttraining magnetic resonance imaging (fMRI) sessions interspersed by either a multitasking or an active-control training regimen. Multivoxel pattern analyses (MVPA) revealed that training induced multitasking improvements were predicted by divergence in the FP-SC blood oxygen level-dependent (BOLD) response patterns to the trained tasks. Importantly, this finding was only observed for participants who completed training on the component (single) tasks and their combination (multitask) and not for the control group. Therefore, the FP-SC system supports multitasking behavior by segregating constituent task representations.

  12. Double Cortex Syndrome (Subcortical Band Heterotopia): A Case Report.

    Science.gov (United States)

    Momen, Ali Akbar; Momen, Mehdi

    2015-01-01

    Objective Approximately 5-10% of preschool age children are considered developmentally disabled. Brain Magnetic Resonance Imaging (MRI) plays a key role in the diagnostic evaluation in these children. Many congenital or acquired brain anomalies are revealed with MRIs. Although the majority of these abnormalities are sporadic but patients with subcortical band heterotopia or double cortex syndrome have sex-linked inheritance. We are going to present the first case in Iran from Ahvaz city, which was presented with status epilepticus associated with developmental delay and finally diagnosed as double cortex syndrome, because band heterotopia cases especially for continuous or generalized form is rare. A 4.5-year-old developmentally delayed girl was admitted for generalized tonic clonic seizure attack of 1 hr, upward gaze, locked mouth, and urinary incontinence (status epilepticus) in the child neurology ward. She had a history of recurrent seizures that started as febrile seizures since she was 12 months of age and had frequent admissions for having recurrent seizure attacks. She was the only child of consanguineous parents with negative family history of any neurologic problems. She was a product of uneventful term pregnancy, vaginal delivery with a low Apgar score at birth who was admitted for six days in the neonatal ward for hypotonia and cyanosis. At 4.5 years of age, she had HC: 45cm (band heterotopia, and polymicrogyria. She was discharged home with oral valproate and regular outpatient follow-ups. In the diagnostic evaluation of developmentally delayed and epileptic children, a brain MRI is strongly recommended for accurate diagnosis of anomalies such as neuronal migration disorders (band heterotopia) and others, because appropriate therapeutic management, prognosis, prevention, and genetic counseling for prenatal diagnosis are dependent on definite diagnosis of the proband case.

  13. Dynamic functional brain networks involved in simple visual discrimination learning.

    Science.gov (United States)

    Fidalgo, Camino; Conejo, Nélida María; González-Pardo, Héctor; Arias, Jorge Luis

    2014-10-01

    Visual discrimination tasks have been widely used to evaluate many types of learning and memory processes. However, little is known about the brain regions involved at different stages of visual discrimination learning. We used cytochrome c oxidase histochemistry to evaluate changes in regional brain oxidative metabolism during visual discrimination learning in a water-T maze at different time points during training. As compared with control groups, the results of the present study reveal the gradual activation of cortical (prefrontal and temporal cortices) and subcortical brain regions (including the striatum and the hippocampus) associated to the mastery of a simple visual discrimination task. On the other hand, the brain regions involved and their functional interactions changed progressively over days of training. Regions associated with novelty, emotion, visuo-spatial orientation and motor aspects of the behavioral task seem to be relevant during the earlier phase of training, whereas a brain network comprising the prefrontal cortex was found along the whole learning process. This study highlights the relevance of functional interactions among brain regions to investigate learning and memory processes. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Frequency and pathogenesis of silent subcortical brain infarction in acute first-ever ischemic stroke

    Energy Technology Data Exchange (ETDEWEB)

    Adachi, Tomohide; Kobayashi, Shotai; Yamaguchi, Shuhei [Shimane Medical Univ., Izumo (Japan)

    2002-02-01

    We have often observed silent subcortical brain lesions on CT or MRI in first-ever ischemic stroke, but there is little published information on the relationship of these lesions to stroke subtypes. Here, we describe the incidence of MRI-detected silent subcortical brain lesions, including infarctions and white matter lesions, in a series of patients with first-ever ischemic stroke classified according to stroke subtypes. We also discuss the pathogenesis of these silent subcortical lesions. We evaluated 171 patients with acute first-ever ischemic stroke. The subjects were divided into three groups: lacunar, atherothrombotic and cardioembolic infarction groups. We evaluated silent subcortical brain infarction (SSBI), enlargement of perivascular space (EPS), and other white-matter lesions using MRI. Hypertension was observed in 67.6% of lacunar infarction, 57.1% of atherosclerotic infarction, and 54.1% of cardioembolic infarction. SSBI was more frequently observed in lacunar infarction than the others (lacunar vs. atherothrombotic vs. cardiogenic infarction, 81.5% vs. 44.4% vs. 42.1%, p=0.006). High-grade EPS (grade 2 or higher) was also observed more frequently in lacunar infarction than in the others (lacunar vs. atherothrombotic vs. cardiogenic infarction, 63.3% vs. 24.2% vs. 0%, p<0.001). Scheltens' score of silent subcortical lesions was significantly higher in lacunar infarction than in the others. The frequency of silent subcortical ischemic brain lesions was significantly higher in lacunar infarction than in atherosclerotic or cardioembolic infarction. We suggest that the pathogenesis of silent subcortical ischemic brain lesions is common to that of lacunar infarction, that is, small-vessel vasculopathy. (author)

  15. Intraoperative subcortical motor evoked potential stimulation: how close is the corticospinal tract?

    Science.gov (United States)

    Shiban, Ehab; Krieg, Sandro M; Haller, Bernhard; Buchmann, Niels; Obermueller, Thomas; Boeckh-Behrens, Tobias; Wostrack, Maria; Meyer, Bernhard; Ringel, Florian

    2015-09-01

    Subcortical stimulation is a method used to evaluate the distance from the stimulation site to the corticospinal tract (CST) and to decide whether the resection of an adjacent lesion should be terminated to prevent damage to the CST. However, the correlation between stimulation intensity and distance to the CST has not yet been clearly assessed. The objective of this study was to investigate the appropriate correlation between the subcortical stimulation pattern and the distance to the CST. Monopolar subcortical motor evoked potential (MEP) mapping was performed in addition to continuous MEP monitoring in 37 consecutive patients with lesions located in motor-eloquent locations. The proximity of the resection cavity to the CST was identified by subcortical MEP mapping. At the end of resection, the point at which an MEP response was still measurable with minimal subcortical MEP intensity was marked with a titanium clip. At this location, different stimulation paradigms were executed with cathodal or anodal stimulation at 0.3-, 0.5-, and 0.7-msec pulse durations. Postoperatively, the distance between the CST as defined by postoperative diffusion tensor imaging fiber tracking and the titanium clip was measured. The correlation between this distance and the subcortical MEP electrical charge was calculated. Subcortical MEP mapping was successful in all patients. There were no new permanent motor deficits. Transient new postoperative motor deficits were observed in 14% (5/36) of cases. Gross-total resection was achieved in 75% (27/36) and subtotal resection (> 80% of tumor mass) in 25% (9/36) of cases. Stimulation intensity with various pulse durations as well as current intensity was plotted against the measured distance between the CST and the titanium clip on postoperative MRI using diffusion-weighted imaging fiberitracking tractography. Correlational and regression analyses showed a nonlinear correlation between stimulation intensity and the distance to the CST

  16. Gray matter volume changes in chronic subcortical stroke: A cross-sectional study

    Directory of Open Access Journals (Sweden)

    Qingqing Diao

    2017-01-01

    Full Text Available This study aimed to investigate the effects of lesion side and degree of motor recovery on gray matter volume (GMV difference relative to healthy controls in right-handed subcortical stroke. Structural MRI data were collected in 97 patients with chronic subcortical ischemic stroke and 79 healthy controls. Voxel-wise GMV analysis was used to investigate the effects of lesion side and degree of motor recovery on GMV difference in right-handed chronic subcortical stroke patients. Compared with healthy controls, right-lesion patients demonstrated GMV increase (P < 0.05, voxel-wise false discovery rate correction in the bilateral paracentral lobule (PCL and supplementary motor area (SMA and the right middle occipital gyrus (MOG; while left-lesion patients did not exhibit GMV difference under the same threshold. Patients with complete and partial motor recovery showed similar degree of GMV increase in right-lesion patients. However, the motor recovery was correlated with the GMV increase in the bilateral SMA in right-lesion patients. These findings suggest that there exists a lesion-side effect on GMV difference relative to healthy controls in right-handed patients with chronic subcortical stroke. The GMV increase in the SMA may facilitate motor recovery in subcortical stroke patients.

  17. Delayed visual maturation: pupillary responses implicate subcortical and cortical visual systems.

    Science.gov (United States)

    Cocker, K D; Moseley, M J; Stirling, H F; Fielder, A R

    1998-03-01

    Vision in very early infancy is probably subserved by subcortical pathways, with many cortical processes only fully emerging by 3 months of age. The improvement of vision in delayed visual maturation (DVM) occurs around this time, and this has given rise to the suggestion that the condition may have a subcortical basis that resolves with the appearance of cortical function. To explore further the role of cortical and subcortical visual systems in DVM we studied the visual development in identical twins, one of whom had type 1b DVM. Two non-invasive methods of investigating visual pathway function were employed: the acuity card procedure (a behavioural response) and luminance and grating pupillometry. While the former reflects both subcortical and cortical function and can be detected at birth, pupil responses to gratings reflect cortical activity alone and normally become measurable at 1 month of age. Development of both behavioural and pupillary responses was delayed in DVM, indicating that although the underlying defect is primarily subcortical, secondarily it delays the emergence of cortically mediated responses. The observed rapidity of improvement--over a very few days and within a narrow age range--suggests a discrete rather than a widespread structural abnormality, the improvement of which is closely linked to postmenstrual age.

  18. Brain Regions Involved in the Learning and Application of Reward Rules in a Two-Deck Gambling Task

    Science.gov (United States)

    Hartstra, E.; Oldenburg, J. F. E.; Van Leijenhorst, L.; Rombouts, S. A. R. B.; Crone, E. A.

    2010-01-01

    Decision-making involves the ability to choose between competing actions that are associated with uncertain benefits and penalties. The Iowa Gambling Task (IGT), which mimics real-life decision-making, involves learning a reward-punishment rule over multiple trials. Patients with damage to ventromedial prefrontal cortex (VMPFC) show deficits…

  19. A cortical-subcortical syntax pathway linking Broca's area and the striatum.

    Science.gov (United States)

    Teichmann, Marc; Rosso, Charlotte; Martini, Jean-Baptiste; Bloch, Isabelle; Brugières, Pierre; Duffau, Hugues; Lehéricy, Stéphane; Bachoud-Lévi, Anne-Catherine

    2015-06-01

    Combinatorial syntax has been shown to be underpinned by cortical key regions such as Broca's area and temporal cortices, and by subcortical structures such as the striatum. The cortical regions are connected via several cortico-to-cortical tracts impacting syntactic processing (e.g., the arcuate) but it remains unclear whether and how the striatum can be integrated into this cortex-centered syntax network. Here, we used a systematic stepwise approach to investigate the existence and syntactic function of an additional deep Broca-striatum pathway. We first asked 15 healthy controls and 12 patients with frontal/striatal lesions to perform three syntax tests. The results obtained were subjected to voxel-based lesion-symptom mapping (VLSM) to provide an anatomo-functional approximation of the pathway. The significant VLSM clusters were then overlapped with the probability maps of four cortico-cortical language tracts generated for 12 healthy participants (arcuate, extreme capsule fiber system, uncinate, aslant), including a probabilistic Broca-striatum tract. Finally, we carried out quantitative analyses of the relationship between the lesion load along the tracts and syntactic processing, by calculating tract-lesion overlap for each patient and analyzing the correlation with syntactic data. Our findings revealed a Broca-striatum tract linking BA45 with the left caudate head and overlapping with VLSM voxel clusters relating to complex syntax. The lesion load values for this tract were correlated with complex syntax scores, whereas no such correlation was observed for the other tracts. These results extend current syntax-network models, by adding a deep "Broca-caudate pathway," and are consistent with functional accounts of frontostriatal circuits. © 2015 Wiley Periodicals, Inc.

  20. Increased Pittsburgh Compound-B Accumulation in the Subcortical White Matter of Alzheimer's Disease Brain.

    Science.gov (United States)

    Wakabayashi, Yuichi; Ishii, Kazunari; Hosokawa, Chisa; Hyodo, Tomoko; Kaida, Hayato; Yamada, Minoru; Yagyu, Yukinobu; Tsurusaki, Masakatsu; Kozuka, Takenori; Sugimura, Kazuro; Murakami, Takamichi

    2017-03-13

    Using 11C-Pittsburgh compound B (PiB)-PET and MRI volume data, we investigated whether white matter (WM) PiB uptake in Alzheimer's disease (AD) brain is larger than that of cortical PiB uptake-negative (PiB-negative) brain. Forty-five subjects who underwent both PiB-PET and MRI were included in the study (32 AD patients with cortical PiB-positive and 13 cortical amyloid -negative patients). Individual areas of gray matter (GM) and WM were segmented, then regional GM and WM standard uptake value ratio (SUVR) normalized to cerebellar GM with partial volume effects correction was calculated. Three regional SUVRs except WM in the centrum semiovale in the AD group were significantly larger than those in the PiB-negative groups. Frontal WM SUVR in the AD group vs frontal WM SUVR in the PiB-negative group was 2.57 ± 0.55 vs 1.64 ± 0.22; parietal, 2.50 ± 0.52 vs 1.74 ± 0.22; posterior cingulate, 2.84 ± 0.59 vs 1.73 ± 0.22; and WM in the centrum semiovale, 2.21 ± 0.53 vs 2.42 ± 0.36, respectively. We found that PiB uptake in AD brain is significantly larger than that in PiB-negative brain in the frontal, parietal and posterior cingulate subcortical WM, except in the centrum semiovale.

  1. Temporal Lobe and Frontal-Subcortical Dissociations in Non-Demented Parkinson's Disease with Verbal Memory Impairment.

    Directory of Open Access Journals (Sweden)

    Jared J Tanner

    Full Text Available The current investigation examined verbal memory in idiopathic non-dementia Parkinson's disease and the significance of the left entorhinal cortex and left entorhinal-retrosplenial region connections (via temporal cingulum on memory impairment in Parkinson's disease.Forty non-demented Parkinson's disease patients and forty non-Parkinson's disease controls completed two verbal memory tests--a wordlist measure (Philadelphia repeatable Verbal Memory Test and a story measure (Logical Memory. All participants received T1-weighted and diffusion magnetic resonance imaging (3T; Siemens sequences. Left entorhinal volume and left entorhinal-retrosplenial connectivity (temporal cingulum edge weight were the primary imaging variables of interest with frontal lobe thickness and subcortical structure volumes as dissociating variables.Individuals with Parkinson's disease showed worse verbal memory, smaller entorhinal volumes, but did not differ in entorhinal-retrosplenial connectivity. For Parkinson's disease entorhinal-retrosplenial edge weight had the strongest associations with verbal memory. A subset of Parkinson's disease patients (23% had deficits (z-scores < -1.5 across both memory measures. Relative to non-impaired Parkinson's peers, this memory-impaired group had smaller entorhinal volumes.Although entorhinal cortex volume was significantly reduced in Parkinson's disease patients relative to non-Parkinson's peers, only white matter connections associated with the entorhinal cortex were significantly associated with verbal memory performance in our sample. There was also no suggestion of contribution from frontal-subcortical gray or frontal white matter regions. These findings argue for additional investigation into medial temporal lobe gray and white matter connectivity for understanding memory in Parkinson's disease.

  2. Autoimmune Responses to Soluble Aggregates of Amyloidogenic Proteins Involved in Neurodegenerative Diseases: Overlapping Aggregation Prone and Autoimmunogenic regions

    Science.gov (United States)

    Kumar, Sandeep; Thangakani, A. Mary; Nagarajan, R.; Singh, Satish K.; Velmurugan, D.; Gromiha, M. Michael

    2016-01-01

    Why do patients suffering from neurodegenerative diseases generate autoantibodies that selectively bind soluble aggregates of amyloidogenic proteins? Presently, molecular basis of interactions between the soluble aggregates and human immune system is unknown. By analyzing sequences of experimentally validated T-cell autoimmune epitopes, aggregating peptides, amyloidogenic proteins and randomly generated peptides, here we report overlapping regions that likely drive aggregation as well as generate autoantibodies against the aggregates. Sequence features, that make short peptides susceptible to aggregation, increase their incidence in human T-cell autoimmune epitopes by 4–6 times. Many epitopes are predicted to be significantly aggregation prone (aggregation propensities ≥10%) and the ones containing experimentally validated aggregating regions are enriched in hydrophobicity by 10–20%. Aggregate morphologies also influence Human Leukocyte Antigen (HLA) - types recognized by the aggregating regions containing epitopes. Most (88%) epitopes that contain amyloid fibril forming regions bind HLA-DR, while majority (63%) of those containing amorphous β-aggregating regions bind HLA-DQ. More than two-thirds (70%) of human amyloidogenic proteins contain overlapping regions that are simultaneously aggregation prone and auto-immunogenic. Such regions help clear soluble aggregates by generating selective autoantibodies against them. This can be harnessed for early diagnosis of proteinopathies and for drug/vaccine design against them. PMID:26924748

  3. Focal cortical dysplasia type IIb: completeness of cortical, not subcortical, resection is necessary for seizure freedom.

    Science.gov (United States)

    Wagner, Jan; Urbach, Horst; Niehusmann, Pitt; von Lehe, Marec; Elger, Christian E; Wellmer, Jörg

    2011-08-01

    Focal cortical dysplasia type IIb (FCD IIb) lesions are highly epileptogenic and frequently cause pharmacoresistant epilepsy. Complete surgical resection leads to seizure freedom in most cases. However, the term "complete" resection is controversial with regard to the necessity of performing resections of the subcortical zone, which is frequently seen in these lesions on magnetic resonance imaging (MRI). We retrospectively analyzed 50 epilepsy patients with histologically proven FCD IIb. The extent of surgical resection was determined by SPM5-based coregistration of the preoperative and postoperative MRI scans. Postoperative outcome was analyzed with regard to (1) the completeness of the resection of the cortical abnormality and (2) the completeness of the resection of the subcortical abnormality. Complete resection of the cortical abnormality led to postoperative seizure freedom (Engel class Ia) in 34 of 37 patients (92%), whereas incomplete cortical resection achieved this in only one of 13 patients (8%, p < 0.001). Among the patients with complete cortical resection, 36 had FCDs with a subcortical hyperintensity according to MRI. In this group, complete resection of the subcortical abnormality did not result in a better postoperative outcome than incomplete resection (90% vs. 93% for Engel class Ia, n.s.). Complete resection of the MRI-documented cortical abnormality in FCD IIb is crucial for a favorable postoperative outcome. However, resection of the subcortical hyperintense zone is not essential for seizure freedom. Therefore, sparing of the subcortical white matter may reduce the surgical risk of encroaching on relevant fiber tracts. In addition, these findings give an interesting insight into the epileptogenic propensity of different parts of these lesions. Wiley Periodicals, Inc. © 2011 International League Against Epilepsy.

  4. A Rapid Subcortical Amygdala Route for Faces Irrespective of Spatial Frequency and Emotion.

    Science.gov (United States)

    McFadyen, Jessica; Mermillod, Martial; Mattingley, Jason B; Halász, Veronika; Garrido, Marta I

    2017-04-05

    There is significant controversy over the existence and function of a direct subcortical visual pathway to the amygdala. It is thought that this pathway rapidly transmits low spatial frequency information to the amygdala independently of the cortex, and yet the directionality of this function has never been determined. We used magnetoencephalography to measure neural activity while human participants discriminated the gender of neutral and fearful faces filtered for low or high spatial frequencies. We applied dynamic causal modeling to demonstrate that the most likely underlying neural network consisted of a pulvinar-amygdala connection that was uninfluenced by spatial frequency or emotion, and a cortical-amygdala connection that conveyed high spatial frequencies. Crucially, data-driven neural simulations revealed a clear temporal advantage of the subcortical connection over the cortical connection in influencing amygdala activity. Thus, our findings support the existence of a rapid subcortical pathway that is nonselective in terms of the spatial frequency or emotional content of faces. We propose that that the "coarseness" of the subcortical route may be better reframed as "generalized." SIGNIFICANCE STATEMENT The human amygdala coordinates how we respond to biologically relevant stimuli, such as threat or reward. It has been postulated that the amygdala first receives visual input via a rapid subcortical route that conveys "coarse" information, namely, low spatial frequencies. For the first time, the present paper provides direction-specific evidence from computational modeling that the subcortical route plays a generalized role in visual processing by rapidly transmitting raw, unfiltered information directly to the amygdala. This calls into question a widely held assumption across human and animal research that fear responses are produced faster by low spatial frequencies. Our proposed mechanism suggests organisms quickly generate fear responses to a wide range

  5. Paleozoic-involving thrust array in the central Sierras Interiores (South Pyrenean Zone, Central Pyrenees): regional implications

    Science.gov (United States)

    Rodriguez, L.; Cuevas, J.; Tubía, J. M.

    2012-04-01

    This work deals with the structural evolution of the Sierras Interiores between the Tena and Aragon valleys. The Sierras Interiores is a WNW-trending mountain range that bounds the South Pyrenean Zone to the north and that is characterized by a thrust-fold system with a strong lithological control that places preferably decollements in Triassic evaporites. In the studied area of the Sierras Interiores Cenomanian limestones cover discordantly the Paleozoic rocks of the Axial Zone because there is a stratigraphic lacuna developed from Triassic to Late Cretaceous times. A simple lithostratigraphy of the study area is made up of Late Cenomanian to Early Campanian limestones with grey colour and massive aspect in landscape (170 m, Lower calcareous section), Campanian to Maastrichtian brown coloured sandstones (400-600 m, Marboré sandstones) and, finally, Paleocene light-coloured massive limestones (130-230 m), that often generate the higher topographic levels of the Sierras Interiores due to their greater resistance to erosion. Above the sedimentary sequence of the Sierras Interiores, the Jaca Basin flysch succession crops out discordantly. Based on a detailed mapping of the studied area of the Sierras Interiores, together with well and structural data of the Jaca Basin (Lanaja, 1987; Rodríguez and Cuevas, 2008) we have constructed a 12 km long NS cross section, approximately parallel to the movement direction deduced for this region (Rodríguez et al., 2011). The main structure is a thrust array made up of at least four Paleozoic-involving thrusts (the deeper thrust system) of similar thickness in a probably piggyback sequence, some of which are blind thrusts that generate fold-propagation-folds in upper levels. The higher thrust of the thrust array crops out duplicating the lower calcareous section all over the Sierras Interiores. The emplacement of the deeper thrust system generated the tightness of previous structures: south directed piggyback duplexes (the upper

  6. An assessment of public involvement for the 2006 regional transportation coordination planning process in selected Texas cities

    Science.gov (United States)

    2010-12-01

    Regional mobility is cumbersome, confusing, and often a frustrating experience for many Texans. Those living in : larger urban areas have access to public transportation, while others depend on social service agencies and are : required to meet finan...

  7. Subcortical contribution to late TMS-induced I-waves in intact humans

    Science.gov (United States)

    Cirillo, John; Perez, Monica A.

    2015-01-01

    Paired-pulse transcranial magnetic stimulation (TMS) of the human motor cortex results in consecutive facilitatory motor evoked potential (MEP) peaks in surface electromyography. It has been proposed that early and late MEP peaks involve different mechanisms of action; however, little is known about the characteristics of the later peaks. Using paired-pulse TMS over the hand motor cortex at different test (S1) and conditioning (S2) interstimulus intervals and intensities we examined early (first) and late (second and third) MEP peaks in a resting finger muscle. We demonstrate that the third peak had reduced amplitude and duration compared with the second, regardless of the S1 intensity. Higher S2 intensity increased the amplitude of the third but not the second peak, suggesting that the third peak had a higher threshold. The interval between the second and third peak was longer than between the first and second peak in all conditions even though all peaks had a similar latency dispersion. No differences were found in the amplitude, duration, and threshold of the first and second peaks. A threshold electrical S2 over the cervicomedullary junction facilitated the second and third but not the first peak similarly to TMS. Our results indicate that the third MEP peak is smaller and has higher threshold than the second peak and the similarities between the first and second peak suggest that this is less likely explained by a reduced effectiveness in recruitment. We argue that subcortical pathways might contribute to differences found between late TMS-induced peaks in intact humans. PMID:26069470

  8. Large-scale cortico-subcortical functional networks in focal epilepsies: The role of the basal ganglia

    Directory of Open Access Journals (Sweden)

    Eva Výtvarová

    2017-01-01

    Significance: Focal epilepsies affect large-scale brain networks beyond the epileptogenic zones. Cortico-subcortical functional connectivity disturbance was displayed in LTLE, FLE, and POLE. Significant changes in the resting-state functional connectivity between cortical and subcortical structures suggest an important role of the BG and thalamus in focal epilepsies.

  9. Voxel-based 3D MRI analysis helps to detect subtle forms of subcortical band heterotopia.

    Science.gov (United States)

    Huppertz, Hans-Jürgen; Wellmer, Jörg; Staack, Anke Maren; Altenmüller, Dirk-Matthias; Urbach, Horst; Kröll, Judith

    2008-05-01

    To evaluate the potential diagnostic value of a novel magnetic resonance image (MRI) postprocessing technique in subtle forms of subcortical band heterotopia (SBH). The method was introduced to improve the visualization of blurred gray-white matter junctions associated with focal cortical dysplasia but was found to be applicable also to SBH. In the voxel-based MRI analysis presented here, T1-weighted MRI volume data sets are normalized and segmented using standard algorithms of SPM5. The distribution of gray and white matter is analyzed on a voxelwise basis and compared with a normal database of 150 controls. Based on this analysis, a three-dimensional feature map is created that highlights brain areas if their signal intensities fall within the range between normal gray and white matter and differ from the normal database in this respect. The method was applied to the MRI data of 378 patients with focal epilepsy in three different epilepsy centers. SBH was diagnosed in seven patients with five of them showing subtle forms of SBH that had gone unrecognized in conventional visual analysis of MRI and were only detected by MRI postprocessing. In contrast to distinct double cortex syndrome, these patients had partial double cortex with SBH mostly confined to posterior brain regions. The results of this study suggest that a considerable part of cases with SBH might remain unrecognized by conventional MRI. Voxel-based MRI analysis may help to identify subtle forms and appears to be a valuable additional diagnostic tool in the evaluation of patients with cryptogenic epilepsy.

  10. Effects of cannabis and familial loading on subcortical brain volumes in first-episode schizophrenia.

    Science.gov (United States)

    Malchow, Berend; Hasan, Alkomiet; Schneider-Axmann, Thomas; Jatzko, Alexander; Gruber, Oliver; Schmitt, Andrea; Falkai, Peter; Wobrock, Thomas

    2013-11-01

    Schizophrenia is a severe neuropsychiatric disorder with familial loading as heritable risk factor and cannabis abuse as the most relevant environmental risk factor up to date. Cannabis abuse has been related to an earlier onset of the disease and persisting cannabis consumption is associated with reduced symptom improvement. However, the underlying morphological and biochemical brain alterations due to these risk factors as well as the effects of gene-environmental interaction are still unclear. In this magnetic resonance imaging (MRI) study in 47 first-episode schizophrenia patients and 30 healthy control subjects, we investigated effects of previous cannabis abuse and increased familial risk on subcortical brain regions such as hippocampus, amygdala, caudate nucleus, putamen, thalamus and subsegments of the corpus callosum (CC). In a subsequent single-volume (1)H-magnetic resonance spectroscopy study, we investigated spectra in the left hippocampus and putamen to detect metabolic alterations. Compared to healthy controls, schizophrenia patients displayed decreased volumes of the left hippocampus, bilateral amygdala and caudate nucleus as well as an increased area of the midsagittal CC1 segment of the corpus callosum. Patients fulfilling the criteria for cannabis abuse at admission showed an increased area of the CC2 segment compared to those who did not fulfill the criteria. Patients with a family history of schizophrenia combined with previous cannabis abuse showed lower volumes of the bilateral caudate nucleus compared to all other patients, implicating an interaction between the genetic background and cannabis abuse as environmental factor. Patients with cannabis abuse also had higher ratios of N-acetyl aspartate/choline in the left putamen, suggesting a possible neuroprotective effect in this area. However, antipsychotic medication prior to MRI acquisition and gender effects may have influenced our results. Future longitudinal studies in first

  11. Subcortical band heterotopia in rat offspring following maternal hypothyroxinaemia: structural and functional characteristics.

    Science.gov (United States)

    Gilbert, M E; Ramos, R L; McCloskey, D P; Goodman, J H

    2014-08-01

    Thyroid hormones (TH) play crucial roles in brain maturation and are important for neuronal migration and neocortical lamination. Subcortical band heterotopia (SBH) represent a class of neuronal migration errors in humans that are often associated with childhood epilepsy. We have previously reported the presence of SBH in a rodent model of low level hypothyroidism induced by maternal exposure to the goitrogen, propylthiouracil (PTU). In the present study, we report the dose-response characteristics of this developmental malformation and the connectivity of heterotopic neurones with other brain regions, as well as their functionality. Pregnant rats were exposed to varying concentrations of PTU through the drinking water (0-10 p.p.m.) beginning on gestational day 6 to produce graded levels of TH insufficiency. Dose-dependent increases in the volume of the SBH present in the corpus callosum were documented in the adult offspring, with a clear presence at concentrations of PTU that resulted in minor (< 15%) reductions in maternal serum thyroxine as measured when pups were weaned. SBH contain neurones, oligodendrocytes, astrocytes and microglia. Monoaminergic and cholinergic processes were prevalent and many of the axons were myelinated. Anatomical connectivity of SBH neurones to cortical neurones and the synaptic functionality of these anatomical connections was verified by ex vivo field potential recordings. SBH persisted in adult offspring despite a return to euthyroid status on termination of exposure and these offspring displayed an increased sensitivity to seizures. Features of this model are attractive with respect to the investigation of the molecular mechanisms of cortical development, the effectiveness of therapeutic intervention in hypothyroxinaemia during pregnancy and the impact of the very modest TH imbalance that accompanies exposure to environmental contaminants. © Published 2014. This article is a U.S. Government work and is in the public domain in the

  12. Distinctive Resting State Network Disruptions Among Alzheimer's Disease, Subcortical Vascular Dementia, and Mixed Dementia Patients.

    Science.gov (United States)

    Kim, Hee Jin; Cha, Jungho; Lee, Jong-Min; Shin, Ji Soo; Jung, Na-Yeon; Kim, Yeo Jin; Choe, Yearn Seong; Lee, Kyung Han; Kim, Sung Tae; Kim, Jae Seung; Lee, Jae Hong; Na, Duk L; Seo, Sang Won

    2016-01-01

    Recent advances in resting-state functional MRI have revealed altered functional networks in Alzheimer's disease (AD), especially those of the default mode network (DMN) and central executive network (CEN). However, few studies have evaluated whether small vessel disease (SVD) or combined amyloid and SVD burdens affect the DMN or CEN. The aim of this study was to evaluate whether SVD or combined amyloid and SVD burdens affect the DMN or CEN. In this cross-sectional study, we investigated the resting-state functional connectivity within DMN and CEN in 37 Pittsburgh compound-B (PiB)(+) AD, 37 PiB(-) subcortical vascular dementia (SVaD), 13 mixed dementia patients, and 65 normal controls. When the resting-state DMN of PiB(+) AD and PiB(-) SVaD patients were compared, the PiB(+) AD patients displayed lower functional connectivity in the inferior parietal lobule while the PiB(-) SVaD patients displayed lower functional connectivity in the medial frontal and superior frontal gyri. Compared to the PiB(-) SVaD or PiB(+) AD, the mixed dementia patients displayed lower functional connectivity within the DMN in the posterior cingulate gyrus. When the resting-state CEN connectivity of PiB(+) AD and PiB(-) SVaD patients were compared, the PiB(-) SVaD patients displayed lower functional connectivity in the anterior insular region. Compared to the PiB(-) SVaD or PiB(+) AD, the mixed dementia patients displayed lower functional connectivity within the CEN in the inferior frontal gyrus. Our findings suggest that in PiB(+) AD and PiB(-) SVaD, there is divergent disruptions in resting-state DMN and CEN. Furthermore, patients with combined amyloid and SVD burdens exhibited more disrupted resting-state DMN and CEN than patients with only amyloid or SVD burden.

  13. Subcortical volume and white matter integrity abnormalities in major depressive disorder: findings from UK Biobank imaging data.

    Science.gov (United States)

    Shen, Xueyi; Reus, Lianne M; Cox, Simon R; Adams, Mark J; Liewald, David C; Bastin, Mark E; Smith, Daniel J; Deary, Ian J; Whalley, Heather C; McIntosh, Andrew M

    2017-07-17

    Previous reports of altered grey and white matter structure in Major Depressive Disorder (MDD) have been inconsistent. Recent meta-analyses have, however, reported reduced hippocampal grey matter volume in MDD and reduced white matter integrity in several brain regions. The use of different diagnostic criteria, scanners and imaging sequences may, however, obscure further anatomical differences. In this study, we tested for differences in subcortical grey matter volume (n = 1157) and white matter integrity (n = 1089) between depressed individuals and controls in the subset of 8590 UK Biobank Imaging study participants who had undergone depression assessments. Whilst we found no significant differences in subcortical volumes, significant reductions were found in depressed individuals versus controls in global white matter integrity, as measured by fractional anisotropy (FA) (β = -0.182, p = 0.005). We also found reductions in FA in association/commissural fibres (β = -0.184, pcorrected = 0.010) and thalamic radiations (β = -0.159, pcorrected = 0.020). Tract-specific FA reductions were also found in the left superior longitudinal fasciculus (β = -0.194, pcorrected = 0.025), superior thalamic radiation (β = -0.224, pcorrected = 0.009) and forceps major (β = -0.193, pcorrected = 0.025) in depression (all betas standardised). Our findings provide further evidence for disrupted white matter integrity in MDD.

  14. From Cortical and Subcortical Grey Matter Abnormalities to Neurobehavioral Phenotype of Angelman Syndrome: A Voxel-Based Morphometry Study.

    Science.gov (United States)

    Aghakhanyan, Gayane; Bonanni, Paolo; Randazzo, Giovanna; Nappi, Sara; Tessarotto, Federica; De Martin, Lara; Frijia, Francesca; De Marchi, Daniele; De Masi, Francesco; Kuppers, Beate; Lombardo, Francesco; Caramella, Davide; Montanaro, Domenico

    2016-01-01

    Angelman syndrome (AS) is a rare neurogenetic disorder due to loss of expression of maternal ubiquitin-protein ligase E3A (UBE3A) gene. It is characterized by severe developmental delay, speech impairment, movement or balance disorder and typical behavioral uniqueness. Affected individuals show normal magnetic resonance imaging (MRI) findings, although mild dysmyelination may be observed. In this study, we adopted a quantitative MRI analysis with voxel-based morphometry (FSL-VBM) method to investigate disease-related changes in the cortical/subcortical grey matter (GM) structures. Since 2006 to 2013 twenty-six AS patients were assessed by our multidisciplinary team. From those, sixteen AS children with confirmed maternal 15q11-q13 deletions (mean age 7.7 ± 3.6 years) and twenty-one age-matched controls were recruited. The developmental delay and motor dysfunction were assessed using Bayley III and Gross Motor Function Measure (GMFM). Principal component analysis (PCA) was applied to the clinical and neuropsychological datasets. High-resolution T1-weighted images were acquired and FSL-VBM approach was applied to investigate differences in the local GM volume and to correlate clinical and neuropsychological changes in the regional distribution of GM. We found bilateral GM volume loss in AS compared to control children in the striatum, limbic structures, insular and orbitofrontal cortices. Voxel-wise correlation analysis with the principal components of the PCA output revealed a strong relationship with GM volume in the superior parietal lobule and precuneus on the left hemisphere. The anatomical distribution of cortical/subcortical GM changes plausibly related to several clinical features of the disease and may provide an important morphological underpinning for clinical and neurobehavioral symptoms in children with AS.

  15. From Cortical and Subcortical Grey Matter Abnormalities to Neurobehavioral Phenotype of Angelman Syndrome: A Voxel-Based Morphometry Study.

    Directory of Open Access Journals (Sweden)

    Gayane Aghakhanyan

    Full Text Available Angelman syndrome (AS is a rare neurogenetic disorder due to loss of expression of maternal ubiquitin-protein ligase E3A (UBE3A gene. It is characterized by severe developmental delay, speech impairment, movement or balance disorder and typical behavioral uniqueness. Affected individuals show normal magnetic resonance imaging (MRI findings, although mild dysmyelination may be observed. In this study, we adopted a quantitative MRI analysis with voxel-based morphometry (FSL-VBM method to investigate disease-related changes in the cortical/subcortical grey matter (GM structures. Since 2006 to 2013 twenty-six AS patients were assessed by our multidisciplinary team. From those, sixteen AS children with confirmed maternal 15q11-q13 deletions (mean age 7.7 ± 3.6 years and twenty-one age-matched controls were recruited. The developmental delay and motor dysfunction were assessed using Bayley III and Gross Motor Function Measure (GMFM. Principal component analysis (PCA was applied to the clinical and neuropsychological datasets. High-resolution T1-weighted images were acquired and FSL-VBM approach was applied to investigate differences in the local GM volume and to correlate clinical and neuropsychological changes in the regional distribution of GM. We found bilateral GM volume loss in AS compared to control children in the striatum, limbic structures, insular and orbitofrontal cortices. Voxel-wise correlation analysis with the principal components of the PCA output revealed a strong relationship with GM volume in the superior parietal lobule and precuneus on the left hemisphere. The anatomical distribution of cortical/subcortical GM changes plausibly related to several clinical features of the disease and may provide an important morphological underpinning for clinical and neurobehavioral symptoms in children with AS.

  16. From Cortical and Subcortical Grey Matter Abnormalities to Neurobehavioral Phenotype of Angelman Syndrome: A Voxel-Based Morphometry Study

    Science.gov (United States)

    Aghakhanyan, Gayane; Bonanni, Paolo; Randazzo, Giovanna; Nappi, Sara; Tessarotto, Federica; De Martin, Lara; Frijia, Francesca; De Marchi, Daniele; De Masi, Francesco; Kuppers, Beate; Lombardo, Francesco; Caramella, Davide; Montanaro, Domenico

    2016-01-01

    Angelman syndrome (AS) is a rare neurogenetic disorder due to loss of expression of maternal ubiquitin-protein ligase E3A (UBE3A) gene. It is characterized by severe developmental delay, speech impairment, movement or balance disorder and typical behavioral uniqueness. Affected individuals show normal magnetic resonance imaging (MRI) findings, although mild dysmyelination may be observed. In this study, we adopted a quantitative MRI analysis with voxel-based morphometry (FSL-VBM) method to investigate disease-related changes in the cortical/subcortical grey matter (GM) structures. Since 2006 to 2013 twenty-six AS patients were assessed by our multidisciplinary team. From those, sixteen AS children with confirmed maternal 15q11-q13 deletions (mean age 7.7 ± 3.6 years) and twenty-one age-matched controls were recruited. The developmental delay and motor dysfunction were assessed using Bayley III and Gross Motor Function Measure (GMFM). Principal component analysis (PCA) was applied to the clinical and neuropsychological datasets. High-resolution T1-weighted images were acquired and FSL-VBM approach was applied to investigate differences in the local GM volume and to correlate clinical and neuropsychological changes in the regional distribution of GM. We found bilateral GM volume loss in AS compared to control children in the striatum, limbic structures, insular and orbitofrontal cortices. Voxel-wise correlation analysis with the principal components of the PCA output revealed a strong relationship with GM volume in the superior parietal lobule and precuneus on the left hemisphere. The anatomical distribution of cortical/subcortical GM changes plausibly related to several clinical features of the disease and may provide an important morphological underpinning for clinical and neurobehavioral symptoms in children with AS. PMID:27626634

  17. Two immigrants with tuberculosis of the ear, nose, and throat region with skull base and cranial nerve involvement

    NARCIS (Netherlands)

    Richardus, R.A.; Jansen, J.C.; Steens, S.C.A.; Arend, S.M.

    2011-01-01

    We report two immigrants with tuberculosis of the skull base and a review of the literature. A Somalian man presented with bilateral otitis media, hearing loss, and facial and abducens palsy. Imaging showed involvement of both mastoid and petrous bones, extending via the skull base to the

  18. A Grounded Theory for Regional Development through the IT Offshoring Industry with the Triple-Helix Involvment

    Science.gov (United States)

    Villarreal de la Garza, Sonia

    2011-01-01

    The purpose of this qualitative grounded study was to explore the thoughts, experiences, and needs of potential clients and of the triple-helix members with the intention to establish a framework to support the development of the regional economy through the information technology (IT) and business processing outsourcing (BPO) offshoring industry.…

  19. The Responsive Amygdala: Treatment-induced Alterations in Functional Connectivity in Pediatric Complex Regional Pain Syndrome

    Science.gov (United States)

    Simons, LE; Pielech, M; Erpelding, N; Linnman, C; Moulton, E; Sava, S; Lebel, A; Serrano, P; Sethna, N; Berde, C; Becerra, L; Borsook, D

    2014-01-01

    The amygdala is a key brain region with efferent and afferent neural connections that involve complex behaviors such as pain, reward, fear and anxiety. This study evaluated resting state functional connectivity of the amygdala with cortical and subcortical regions in a group of chronic pain patients (pediatric complex regional pain syndrome) with age-gender matched controls before and after intensive physical-biobehavioral pain treatment. Our main findings include (1) enhanced functional connectivity from the amygdala to multiple cortical, subcortical, and cerebellar regions in patients compared to controls, with differences predominantly in the left amygdala in the pre-treated condition (disease state); (2) dampened hyperconnectivity from the left amygdala to the motor cortex, parietal lobe, and cingulate cortex after intensive pain rehabilitation treatment within patients with nominal differences observed among healthy controls from Time 1 to Time 2 (treatment effects); (3) functional connectivity to several regions key to fear circuitry (prefrontal cortex, bilateral middle temporal lobe, bilateral cingulate, hippocampus) correlated with higher pain-related fear scores and (4) decreases in pain-related fear associated with decreased connectivity between the amygdala and the motor and somatosensory cortex, cingulate, and frontal areas. Our data suggest that there are rapid changes in amygdala connectivity following an aggressive treatment program in children with chronic pain and intrinsic amygdala functional connectivity activity serving as a potential indicator of treatment response. PMID:24861582

  20. Body Region Involvement and Quality of Life in Psoriasis: Analysis of a Randomized Controlled Trial of Adalimumab.

    Science.gov (United States)

    Armstrong, April W; Villanueva Quintero, Delfina Guadalupe; Echeverría, Cristina M; Gu, Yihua; Karunaratne, Mahinda; Reyes Servín, Ofelia

    2016-12-01

    Psoriasis severity and treatment responsiveness vary by body region, which differentially impacts quality of life (QoL). The objective of the study was to examine adalimumab efficacy by body region and regional response and QoL relationship. Patients (n = 1212) with moderate-to-severe psoriasis were randomized 2:1 to 80 mg at week 0, followed by adalimumab 40 mg or placebo every other week for 16 weeks in the double-blind REVEAL study. Psoriasis Area and Severity Index (PASI) responses and Dermatology Life Quality Index outcomes were analyzed. Week 16 regional mean PASI improvements were significantly greater with adalimumab (83.1 ± 1.57, 81.3 ± 1.58, 75.7 ± 1.34, and 73.9 ± 1.26% in the trunk, head, upper extremities, and lower extremities, respectively; all p < 0.001 vs. placebo). Likewise, percentages of patients with regional PASI ≥75/≥90/100% reduction from baseline were significantly higher with adalimumab (all p < 0.001); adalimumab responses were greater for the trunk (77.9/65.0/59.1%) and head (74.6/66.1/62.8%; all p ≤ 0.0001 vs. lower) than upper (67.7/45.1/39.6%; p = 0.4, p = 0.04, p = 0.0005, respectively, vs. lower) and lower extremities (65.7/40.0/31.3%). Adalimumab significantly improved Dermatology Life Quality Index scores vs. placebo (8.2- vs 1.7-point decrease from baseline; p < 0.001). The study was a post hoc analysis. Adalimumab treatment resulted in statistically significant and clinically meaningful improvements in disease severity and QoL. QoL improvements were associated with PASI responses in all body regions. ClinicalTrials.gov identifier NCT00237887.

  1. Study of diffusion tensor imaging in subcortical ischemic vascular cognitive impairment

    Directory of Open Access Journals (Sweden)

    Hui-ying GUO

    2014-04-01

    Full Text Available Objective Using diffusion tensor imaging (DTI to explore the microstructure changes of white matter in subcortical ischemic vascular cognitive impairment (SIVCI and its correlation with cognitive function.  Methods Forty-nine patients with subcortical ischemic cerebrovascular diseases were collected. By using Clinical Dementia Rating Scale (CDR, they were classified into 10 cases of vascular dementia (VaD group, 20 cases of vascular cognitive impairment-no dementia (VCIND group and 19 cases of normal cognitive function (control group. Conventional MRI and DTI were performed in all cases. Based on the DTI data, voxel-based analysis was used to assess the whole brain region. Correlation analysis was applied to illustrate the relationship between DTI parameters and cognitive scale in VaD patients.  Results Compared with the control group, fractional anisotropy (FA values of patients in VaD group decreased in medial prefrontal cortex, anterior cingulate cortex, corpus callosum stem, bilateral parietal lobes, right temporal lobe and bilateral orbitofrontal lobes (P = 0.000, for all, and FA values of patients in VCIND group decreased in right inferior frontal gyrus, right hippocampus and bilateral precuneus (P = 0.000, for all. Compared with VCIND group, FA values of patients in VaD group decreased in medial prefrontal cortex, anterior cingulate, corpus callosum, bilateral parietal lobes and right temporal lobe (P = 0.000, for all. Compared with the control group, mean diffusivity (MD values in VaD group increased in medial prefrontal cortex, corpus callosum, bilateral parietal lobes, bilateral temporal lobes and anterior cingulate (P = 0.000, for all, while in VCIND group increased in bilateral precuneus and right hippocampus (P = 0.000, for all. Compared with VCIND group, MD values in VaD group increased in right medial prefrontal cortex, anterior cingulate cortex, corpus callosum stem, bilateral parietal lobes and bilateral temporal lobes (P = 0

  2. Neuron-Glia Crosstalk and Neuropathic Pain: Involvement in the Modulation of Motor Activity in the Orofacial Region.

    Science.gov (United States)

    Hossain, Mohammad Zakir; Unno, Shumpei; Ando, Hiroshi; Masuda, Yuji; Kitagawa, Junichi

    2017-09-26

    Neuropathic orofacial pain (NOP) is a debilitating condition. Although the pathophysiology remains unclear, accumulating evidence suggests the involvement of multiple mechanisms in the development of neuropathic pain. Recently, glial cells have been shown to play a key pathogenetic role. Nerve injury leads to an immune response near the site of injury. Satellite glial cells are activated in the peripheral ganglia. Various neural and immune mediators, released at the central terminals of primary afferents, lead to the sensitization of postsynaptic neurons and the activation of glia. The activated glia, in turn, release pro-inflammatory factors, further sensitizing the neurons, and resulting in central sensitization. Recently, we observed the involvement of glia in the alteration of orofacial motor activity in NOP. Microglia and astroglia were activated in the trigeminal sensory and motor nuclei, in parallel with altered motor functions and a decreased pain threshold. A microglial blocker attenuated the reduction in pain threshold, reduced the number of activated microglia, and restored motor activity. We also found an involvement of the astroglial glutamate-glutamine shuttle in the trigeminal motor nucleus in the alteration of the jaw reflex. Neuron-glia crosstalk thus plays an important role in the development of pain and altered motor activity in NOP.

  3. Formulaic Language in Parkinson's Disease and Alzheimer's Disease: Complementary Effects of Subcortical and Cortical Dysfunction

    Science.gov (United States)

    Van Lancker Sidtis, Diana; Choi, JiHee; Alken, Amy; Sidtis, John J.

    2015-01-01

    Purpose: The production of formulaic expressions (conversational speech formulas, pause fillers, idioms, and other fixed expressions) is excessive in the left hemisphere and deficient in the right hemisphere and in subcortical stroke. Speakers with Alzheimer's disease (AD), having functional basal ganglia, reveal abnormally high proportions of…

  4. Aspects of Subcortical Ischaemic Vascular Disease : Early clinical manifestations and associations with Type 2 diabetes mellitus

    NARCIS (Netherlands)

    Harten, van B.

    2006-01-01

    Summary Subcortical ischaemic vascular disease (SIVD) is an important cause of cognitive impairment in elderly patients. Screening and diagnostic tests are needed to identify these patients. The HIV dementia scale (HDS) is a reliable and quantitative scale for identifying HIV dementia1. The

  5. A neuropathological, stereo-EEG, and MRI study of subcortical band heterotopia.

    Science.gov (United States)

    Mai, R; Tassi, L; Cossu, M; Francione, S; Lo Russo, G; Garbelli, R; Ferrario, A; Galli, C; Taroni, F; Citterio, A; Spreafico, R

    2003-06-10

    The authors performed an MRI, stereo-EEG, and pathology study on a woman with subcortical band heterotopia and partial epilepsy. Clinical manifestations of seizures always started when ictal discharges were present in outer and heterotopic cortices. Simultaneous activation of both cortices and presence of differentiated neurons in the white matter and the heterotopia strongly suggest that the cortices were anatomically and functionally interconnected.

  6. Subcortical laminar heterotopia in two sisters and their mother : MRI, clinical findings and pathogenesis

    NARCIS (Netherlands)

    van der Valk, PHM; Snoeck, [No Value; Meiners, LC; des Portes, [No Value; Chelly, J; Pinard, JM; Ippel, PF; van Nieuwenhuizen, O

    MR imaging, clinical data and underlying pathogenesis of subcortical laminar heterotopia (SCLH), also known as band heterotopia, in two sisters and their mother are presented. On MR imaging a different degree of SCLH was found in all three affected family-members. The inversion recovery sequence was

  7. Double inversion recovery magnetic resonance imaging of subcortical band heterotopia: a report of 2 cases.

    Science.gov (United States)

    Zhang, Quan; Zhang, Yunting; Zhang, Jing; Li, Qiong

    2011-01-01

    We report 2 cases of subcortical band heterotopia (SBH) with emphasis on double inversion recovery (DIR) magnetic resonance imaging (MRI). The heterotopic gray matter demonstrated homogeneous high signal intensity and the delineation between the SBH and white matter was distinctly depicted on DIR MRI. Double inversion recovery is a useful adjunct to conventional MRI for the diagnosis of SBH.

  8. Identification of DCX gene mutation in lissencephaly spectrum with subcortical band heterotopia using whole exome sequencing.

    Science.gov (United States)

    Jang, Mi-Ae; Woo, Hye In; Kim, Jong-Won; Lee, Jeehun; Ki, Chang-Seok

    2013-05-01

    Malformations of cortical development include a wide range of brain developmental anomalies that commonly lead to developmental delay and epilepsy. Lissencephaly and subcortical band heterotopia are major malformations of cortical development due to abnormal neuronal migration and several genes have been identified including ARX, DCX, LIS1, RELN, TUBA1A, and VLDLR. Traditionally, genetic testing for lissencephaly and subcortical band heterotopia has been done in the order of the probability of detection of mutation according to the radiologic features, but the success rate could be variable with this time-consuming approach. In this study we used whole-exome sequencing to identify mutations in a 5-year-old girl with lissencephaly spectrum with subcortical band heterotopia. After excluding lissencephaly-related genes, one deleterious mutation (NM_178153.2:c.665C > T, p.Thr222Ile) in the DCX gene was identified. Further Sanger sequencing validated the variant in the patient but not in both parents indicating a de novo mutation. The present report demonstrates that whole-exome sequencing may be a useful tool for the identification of mutations in patients with lissencephaly and subcortical band heterotopias as well as malformations of cortical development. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Human subcortical brain asymmetries in 15,847 people worldwide reveal effects of age and sex

    NARCIS (Netherlands)

    Guadalupe, Tulio; Mathias, Samuel R.; Vanerp, Theo G. M.; Whelan, Christopher D.; Zwiers, Marcel P.; Abe, Yoshinari; Abramovic, Lucija; Agartz, Ingrid; Andreassen, Ole A.; Arias-Vasquez, Alejandro; Aribisala, Benjamin S.; Armstrong, Nicola J.; Arolt, Volker; Artiges, Eric; Ayesa-Arriola, Rosa; Baboyan, Vatche G.; Banaschewski, Tobias; Barker, Gareth; Bastin, Mark E.; Baune, Bernhard T.; Blangero, John; Bokde, Arun L. . W.; Boedhoe, Premika S. . W.; Bose, Anushree; Brem, Silvia; Brodaty, Henry; Bromberg, Uli; Brooks, Samantha; Buechel, Christian; Buitelaar, Jan; Calhoun, Vince D.; Cannon, Dara M.; Cattrell, Anna; Cheng, Yuqi; Conrod, Patricia J.; Conzelmann, Annette; Corvin, Aiden; Crespo-Facorro, Benedicto; Crivello, Fabrice; Dannlowski, Udo; De Zubicaray, Greig I.; De Zwarte, Sonja M. C.; Deary, Ian J.; Desrivieres, Sylvane; Doan, Nhat Trung; Donohoe, Gary; Dorum, Erlend S.; Ehrlich, Stefan; Espeseth, Thomas; Fernandez, Guillen; Flor, Herta; Fouche, Jean-Paul; Frouin, Vincent; Fukunaga, Masaki; Gallinat, Jurgen; Garavan, Hugh; Gill, Michael; Suarez, Andrea Gonzalez; Gowland, Penny; Grabe, Hans J.; Grotegerd, Dominik; Gruber, Oliver; Hagenaars, Saskia; Hashimoto, Ryota; Hauser, Tobias U.; Heinz, Andreas; Hibar, Derrek P.; Hoekstra, Pieter J.; Hoogman, Martine; Howells, Fleur M.; Hu, Hao; Pol, Hilleke E. Hulshoff; Huyser, Chaim; Ittermann, Bernd; Jahanshad, Neda; Jonsson, Erik G.; Jurk, Sarah; Kahn, Rene S.; Kelly, Sinead; Kraemer, Bernd; Kugel, Harald; Kwon, Jun Soo; Lemaitre, Herve; Lesch, Klaus-Peter; Lochner, Christine; Luciano, Michelle; Marquand, Andre F.; Martin, Nicholas G.; Martinez-Zalacain, Ignacio; Martinot, Jean-Luc; Mataix-Cols, David; Mather, Karen; McDonald, Colm; McMahon, Katie L.; Medland, Sarah E.; Menchon, Jose M.; Morris, Derek W.; Mothersill, Omar; Maniega, Susana Munoz; Mwangi, Benson; Nakamae, Takashi; Nakao, Tomohiro; Narayanaswaamy, Janardhanan C.; Nees, Frauke; Nordvik, Jan E.; Onnink, A. Marten H.; Opel, Nils; Ophoff, Roel; Martinot, Marie-Laure Paillere; Orfanos, Dimitri Papadopoulos; Pauli, Paul; Paus, Tomas; Poustka, Luise; Reddy, Janardhan Y. C.; Renteria, Miguel E.; Roiz-Santianez, Roberto; Roos, Annerine; Royle, Natalie A.; Sachdev, Perminder; Sanchez-Juan, Pascual; Schmaal, Lianne; Schumann, Gunter; Shumskaya, Elena; Smolka, Michael N.; Soares, Jair C.; Soriano-Mas, Carles; Stein, Dan J.; Strike, Lachlan T.; Toro, Roberto; Turner, Jessica A.; Tzourio-Mazoyer, Nathalie; Uhlmann, Anne; Hernandez, Maria Valdes; Van den Heuvel, Odile A.; Van der Meer, Dennis; Van Haren, Neeltje E. M.; Veltman, Dick J.; Venkatasubramanian, Ganesan; Vetter, Nora C.; Vuletic, Daniella; Walitza, Susanne; Walter, Henrik; Walton, Esther; Wang, Zhen; Wardlaw, Joanna; Wen, Wei; Westlye, Lars T.; Whelan, Robert; Wittfeld, Katharina; Wolfers, Thomas; Wright, Margaret J.; Xu, Jian; Xu, Xiufeng; Yun, Je-Yeon; Zhao, JingJing; Franke, Barbara; Thompson, Paul M.; Glahn, David C.; Mazoyer, Bernard; Fisher, Simon E.; Francks, Clyde

    2017-01-01

    The two hemispheres of the human brain differ functionally and structurally. Despite over a century of research, the extent to which brain asymmetry is influenced by sex, handedness, age, and genetic factors is still controversial. Here we present the largest ever analysis of subcortical brain

  10. Developmentally Sensitive Interaction Effects of Genes and the Social Environment on Total and Subcortical Brain Volumes

    NARCIS (Netherlands)

    Richards, Jennifer S; Arias Vásquez, Alejandro; Franke, Barbara; Hoekstra, Pieter J; Heslenfeld, Dirk J; Oosterlaan, Jaap; Faraone, Stephen V; Buitelaar, Jan K; Hartman, Catharina A

    2016-01-01

    Smaller total brain and subcortical volumes have been linked to psychopathology including attention-deficit/hyperactivity disorder (ADHD). Identifying mechanisms underlying these alterations, therefore, is of great importance. We investigated the role of gene-environment interactions (GxE) in

  11. Functional overlap between regions involved in speech perception and in monitoring one's own voice during speech production.

    Science.gov (United States)

    Zheng, Zane Z; Munhall, Kevin G; Johnsrude, Ingrid S

    2010-08-01

    The fluency and the reliability of speech production suggest a mechanism that links motor commands and sensory feedback. Here, we examined the neural organization supporting such links by using fMRI to identify regions in which activity during speech production is modulated according to whether auditory feedback matches the predicted outcome or not and by examining the overlap with the network recruited during passive listening to speech sounds. We used real-time signal processing to compare brain activity when participants whispered a consonant-vowel-consonant word ("Ted") and either heard this clearly or heard voice-gated masking noise. We compared this to when they listened to yoked stimuli (identical recordings of "Ted" or noise) without speaking. Activity along the STS and superior temporal gyrus bilaterally was significantly greater if the auditory stimulus was (a) processed as the auditory concomitant of speaking and (b) did not match the predicted outcome (noise). The network exhibiting this Feedback Type x Production/Perception interaction includes a superior temporal gyrus/middle temporal gyrus region that is activated more when listening to speech than to noise. This is consistent with speech production and speech perception being linked in a control system that predicts the sensory outcome of speech acts and that processes an error signal in speech-sensitive regions when this and the sensory data do not match.

  12. Processing by MRE11 is involved in the sensitivity of subtelomeric regions to DNA double-strand breaks.

    Science.gov (United States)

    Muraki, Keiko; Han, Limei; Miller, Douglas; Murnane, John P

    2015-09-18

    The caps on the ends of chromosomes, called telomeres, keep the ends of chromosomes from appearing as DNA double-strand breaks (DSBs) and prevent chromosome fusion. However, subtelomeric regions are sensitive to DSBs, which in normal cells is responsible for ionizing radiation-induced cell senescence and protection against oncogene-induced replication stress, but promotes chromosome instability in cancer cells that lack cell cycle checkpoints. We have previously reported that I-SceI endonuclease-induced DSBs near telomeres in a human cancer cell line are much more likely to generate large deletions and gross chromosome rearrangements (GCRs) than interstitial DSBs, but found no difference in the frequency of I-SceI-induced small deletions at interstitial and subtelomeric DSBs. We now show that inhibition of MRE11 3'-5' exonuclease activity with Mirin reduces the frequency of large deletions and GCRs at both interstitial and subtelomeric DSBs, but has little effect on the frequency of small deletions. We conclude that large deletions and GCRs are due to excessive processing of DSBs, while most small deletions occur during classical nonhomologous end joining (C-NHEJ). The sensitivity of subtelomeric regions to DSBs is therefore because they are prone to undergo excessive processing, and not because of a deficiency in C-NHEJ in subtelomeric regions. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. The Relationship between Intelligence and Anxiety: An Association with Subcortical White Matter Metabolism.

    Science.gov (United States)

    Coplan, Jeremy D; Hodulik, Sarah; Mathew, Sanjay J; Mao, Xiangling; Hof, Patrick R; Gorman, Jack M; Shungu, Dikoma C

    2011-01-01

    We have demonstrated in a previous study that a high degree of worry in patients with generalized anxiety disorder (GAD) correlates positively with intelligence and that a low degree of worry in healthy subjects correlates positively with intelligence. We have also shown that both worry and intelligence exhibit an inverse correlation with certain metabolites in the subcortical white matter. Here we re-examine the relationships among generalized anxiety, worry, intelligence, and subcortical white matter metabolism in an extended sample. Results from the original study were combined with results from a second study to create a sample comprised of 26 patients with GAD and 18 healthy volunteers. Subjects were evaluated using the Penn State Worry Questionnaire, the Wechsler Brief intelligence quotient (IQ) assessment, and proton magnetic resonance spectroscopic imaging ((1)H-MRSI) to measure subcortical white matter metabolism of choline and related compounds (CHO). Patients with GAD exhibited higher IQ's and lower metabolite concentrations of CHO in the subcortical white matter in comparison to healthy volunteers. When data from GAD patients and healthy controls were combined, relatively low CHO predicted both relatively higher IQ and worry scores. Relatively high anxiety in patients with GAD predicted high IQ whereas relatively low anxiety in controls also predicted high IQ. That is, the relationship between anxiety and intelligence was positive in GAD patients but inverse in healthy volunteers. The collective data suggest that both worry and intelligence are characterized by depletion of metabolic substrate in the subcortical white matter and that intelligence may have co-evolved with worry in humans.

  14. Is Drosophila-microbe association species-specific or region specific? A study undertaken involving six Indian Drosophila species.

    Science.gov (United States)

    Singhal, Kopal; Khanna, Radhika; Mohanty, Sujata

    2017-06-01

    The present work aims to identify the microbial diversity associated with six Indian Drosophila species using next generation sequencing (NGS) technology and to discover the nature of their distribution across species and eco-geographic regions. Whole fly gDNA of six Drosophila species were used to generate sequences in an Illumina platform using NGS technology. De novo based assembled raw reads were blasted against the NR database of NCBI using BLASTn for identification of their bacterial loads. We have tried to include Drosophila species from different taxonomical groups and subgroups and from three different eco-climatic regions India; four species belong to Central India, while the rest two, D. melanogaster and D. ananassae, belong to West and South India to determine both their species-wise and region-wide distribution. We detected the presence of 33 bacterial genera across all six study species, predominated by the class Proteobacteria. Amongst all, D. melanogaster was found to be the most diverse by carrying around 85% of the bacterial diversity. Our findings infer both species-specific and environment-specific nature of the bacterial species inhabiting the Drosophila host. Though the present results are consistent with most of the earlier studies, they also remain incoherent with some. The present study outcome on the host-bacteria association and their species specific adaptation may provide some insight to understand the host-microbial interactions and the phenotypic implications of microbes on the host physiology. The knowledge gained may be importantly applied into the recent insect and pest population control strategy going to implement through gut microflora in India and abroad.

  15. Involvement of calcitonin gene-related peptide in migraine: regional cerebral blood flow and blood flow velocity in migraine patients

    DEFF Research Database (Denmark)

    Lassen, L.H.; Jacobsen, V.B.; Haderslev, P.A.

    2008-01-01

    Calcitonin gene-related peptide (CGRP)-containing nerves are closely associated with cranial blood vessels. CGRP is the most potent vasodilator known in isolated cerebral blood vessels. CGRP can induce migraine attacks, and two selective CGRP receptor antagonists are effective in the treatment...... g/min) or placebo for 20 min was studied in 12 patients with migraine without aura outside attacks. Xenon-133 inhalation SPECT-determined regional cerebral blood flow (rCBF) and transcranial Doppler (TCD)-determined blood velocity (V-mean) in the middle cerebral artery (MCA), as well as the heart...

  16. Genome wide expression profiling of the mesodiencephalic region identifies novel factors involved in early and late dopaminergic development

    Directory of Open Access Journals (Sweden)

    Koushik Chakrabarty

    2012-05-01

    Meso-diencephalic dopaminergic (mdDA neurons are critical for motor control and cognitive functioning and their loss or dysfunction is associated with disorders such as Parkinson's disease (PD, schizophrenia and addiction. However, relatively little is known about the molecular mechanisms underlying mdDA neuron development and maintenance. Here, we determined the spatiotemporal map of genes involved in the development of mdDA neurons to gain further insight into their molecular programming. Genome-wide gene expression profiles of the developing ventral mesencephalon (VM were compared at different developmental stages leading to the identification of novel regulatory roles of neuronal signaling through nicotinic acthylcholine receptors (Chrna6 and Chrnb3 subunits and the identification of novel transcription factors (Oc2 and 3 involved in the generation of the mdDA neuronal field. We show here that Pitx3, in cooperation with Nurr1, is the critical component in the activation of the Chrna6 and Chrnb3 subunits in mdDA neurons. Furthermore, we provide evidence of two divergent regulatory pathways resulting in the expression of Chrna6 and Chrnb3 respectively.

  17. Comparative In silico Study of Sex-Determining Region Y (SRY Protein Sequences Involved in Sex-Determining

    Directory of Open Access Journals (Sweden)

    Masoume Vakili Azghandi

    2016-05-01

    Full Text Available Background: The SRY gene (SRY provides instructions for making a transcription factor called the sex-determining region Y protein. The sex-determining region Y protein causes a fetus to develop as a male. In this study, SRY of 15 spices included of human, chimpanzee, dog, pig, rat, cattle, buffalo, goat, sheep, horse, zebra, frog, urial, dolphin and killer whale were used for determine of bioinformatic differences. Methods: Nucleotide sequences of SRY were retrieved from the NCBI databank. Bioinformatic analysis of SRY is done by CLC Main Workbench version 5.5 and ClustalW (http:/www.ebi.ac.uk/clustalw/ and MEGA6 softwares. Results: The multiple sequence alignment results indicated that SRY protein sequences from Orcinus orca (killer whale and Tursiopsaduncus (dolphin have least genetic distance of 0.33 in these 15 species and are 99.67% identical at the amino acid level. Homosapiens and Pantroglodytes (chimpanzee have the next lowest genetic distance of 1.35 and are 98.65% identical at the amino acid level. Conclusion: These findings indicate that the SRY proteins are conserved in the 15 species, and their evolutionary relationships are similar.

  18. Thermography imaging during static and controlled thermoregulation in complex regional pain syndrome type 1: diagnostic value and involvement of the central sympathetic system.

    OpenAIRE

    Westra Mirjam; van der Weerd Rick WP; Huygen Frank JPM; Niehof Sjoerd P; Zijlstra Freek J

    2006-01-01

    Abstract Background Complex Regional Pain Syndrome type 1 (CRPS1) is a clinical diagnosis based on criteria describing symptoms of the disease. The main aim of the present study was to compare the sensitivity and specificity of calculation methods used to assess thermographic images (infrared imaging) obtained during temperature provocation. The secondary objective was to obtain information about the involvement of the sympathetic system in CRPS1. Methods We studied 12 patients in whom CRPS1 ...

  19. Two Immigrants with Tuberculosis of the Ear, Nose, and Throat Region with Skull Base and Cranial Nerve Involvement

    Directory of Open Access Journals (Sweden)

    Renate A. Richardus

    2011-01-01

    Full Text Available We report two immigrants with tuberculosis of the skull base and a review of the literature. A Somalian man presented with bilateral otitis media, hearing loss, and facial and abducens palsy. Imaging showed involvement of both mastoid and petrous bones, extending via the skull base to the nasopharynx, suggesting tuberculosis which was confirmed by characteristic histology and positive auramine staining, while Ziehl-Neelsen staining and PCR were negative. A Sudanese man presented with torticollis and deviation of the uvula due to paresis of N. IX and XI. Imaging showed a retropharyngeal abscess and lysis of the clivus. Histology, acid-fast staining, and PCR were negative. Both patients had a positive Quantiferon TB Gold in-tube result and improved rapidly after empiric treatment for tuberculosis. Cultures eventually yielded M. tuberculosis. These unusual cases exemplify the many faces of tuberculosis and the importance to include tuberculosis in the differential diagnosis of unexplained problems.

  20. Renal angiomyolipoma: report of three cases with regional lymph node involvement and/or with renal cell carcinoma.

    Science.gov (United States)

    Csanaky, G; Szereday, Z; Magyarlaki, T; Méhes, G; Herbert, T; Buzogány, I

    1995-01-01

    Angiomyolipomas (AMLs) are benign hamartoid tumors which frequently occur in tuberous sclerosis (TS). They may be manifest at different organ sites such as kidneys, lymph nodes, liver and lung and may be associated with renal cell carcinoma (RCC). The nature of multiple organ involvement in AML (metastasis versus multicentric synchronous tumors), the malignant transformation and the relation of AML to RCC have not been sufficiently clarified. Three cases of renal AMLs in patients with tuberous sclerosis associated with lymphangioleiomyomatosis of the paraaortic lymph nodes and/or with RCC are reported. The concise clinical history of the patients as well as the findings of histology, immunohistochemistry and quantitative DNA analysis are presented. The multicentric form of AML and coincidence of renal AML and RCC were observed in 2 patients. AML and RCC were found within the same focus in one of the cases. RCCs were either aneuploid or "near diploid", whereas one of the multicentric AMLs showed a discordant DNA ploidy pattern, namely aneuploidy in the kidney and diploidy in the lymph nodes. The presented cases (all of them underwent periaortic lymphadenectomy) suggest that lymph node involvement in renal AML may be more frequent than expected (1-2% of all AMLs) on the basis of the few reported cases. The discordant DNA ploidy (renal versus lymph node lesions) observed in one of the cases with multicentric AML implies synchronous tumor growth at different sites rather than metastatic disease. The intimate coexistance of RCC and AML (RCC revealed by immunohistochemistry within a larger mass of renal AML) may indicate that malignant transformation of an AML should only be accepted, if such a coincidence is unequivocally excluded.

  1. Frontal-subcortical volumetric deficits in single episode, medication-naive depressed patients and the effects of 8 weeks fluoxetine treatment: a VBM-DARTEL study.

    Directory of Open Access Journals (Sweden)

    Lingtao Kong

    Full Text Available BACKGROUND: Convergent studies suggest that morphological abnormalities of frontal-subcortical circuits which involved with emotional and cognitive processing may contribute to the pathophysiology of major depressive disorder (MDD. Antidepressant treatment which has been reported to reverse the functional abnormalities of frontal-subcortical circuits in MDD may have treating effects to related brain morphological abnormalities. In this study, we used voxel-based morphometry method to investigate whole brain structural abnormalities in single episode, medication-naïve MDD patients. Furthermore, we investigated the effects of an 8 weeks pharmacotherapy with fluoxetine. METHODS: 28 single episode, medication-naïve MDD participants and 28 healthy controls (HC acquired the baseline high-resolution structural magnetic resonance imaging (sMRI scan. 24 MDD participants acquired a follow-up sMRI scan after 8 weeks antidepressant treatment. Gray matter volumetric (GMV difference between groups was examined. RESULTS: Medication-naïve MDD had significantly decreased GMV in the right dorsolateral prefrontal cortex and left middle frontal gyrus as well as increased GMV in the left thalamus and right insula compared to HC (P<0.05, corrected. Moreover, treated MDD had significantly increased GMV in the left middle frontal gyrus and right orbitofrontal cortex compared to HC (P<0.05, corrected. No difference on GMV was detected between medication-naïve MDD group and treated MDD group. CONCLUSIONS: This study of single episode, medication-naïve MDD subjects demonstrated structural abnormalities of frontal-subcortical circuitsin the early stage of MDD and the effects of 8 weeks successful antidepressant treatment, suggesting these abnormalities may play an important role in the neuropathophysiology of MDD at its onset.

  2. Brain Regions Related to Impulsivity Mediate the Effects of Early Adversity on Antisocial Behavior.

    Science.gov (United States)

    Mackey, Scott; Chaarani, Bader; Kan, Kees-Jan; Spechler, Philip A; Orr, Catherine; Banaschewski, Tobias; Barker, Gareth; Bokde, Arun L W; Bromberg, Uli; Büchel, Christian; Cattrell, Anna; Conrod, Patricia J; Desrivières, Sylvane; Flor, Herta; Frouin, Vincent; Gallinat, Jürgen; Gowland, Penny; Heinz, Andreas; Ittermann, Bernd; Paillère Martinot, Marie-Laure; Artiges, Eric; Nees, Frauke; Papadopoulos-Orfanos, Dimitri; Poustka, Luise; Smolka, Michael N; Jurk, Sarah; Walter, Henrik; Whelan, Robert; Schumann, Gunter; Althoff, Robert R; Garavan, Hugh

    2017-08-15

    Individual differences in impulsivity and early adversity are known to be strong predictors of adolescent antisocial behavior. However, the neurobiological bases of impulsivity and their relation to antisocial behavior and adversity are poorly understood. Impulsivity was estimated with a temporal discounting task. Voxel-based morphometry was used to determine the brain structural correlates of temporal discounting in a large cohort (n = 1830) of 14- to 15-year-old children. Mediation analysis was then used to determine whether the volumes of brain regions associated with temporal discounting mediate the relation between adverse life events (e.g., family conflict, serious accidents) and antisocial behaviors (e.g., precocious sexual activity, bullying, illicit substance use). Greater temporal discounting (more impulsivity) was associated with 1) lower volume in frontomedial cortex and bilateral insula and 2) greater volume in a subcortical region encompassing the ventral striatum, hypothalamus and anterior thalamus. The volume ratio between these cortical and subcortical regions was found to partially mediate the relation between adverse life events and antisocial behavior. Temporal discounting is related to regions of the brain involved in reward processing and interoception. The results support a developmental imbalance model of impulsivity and are consistent with the idea that negative environmental factors can alter the developing brain in ways that promote antisocial behavior. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  3. Acute phencyclidine administration induces c-Fos-immunoreactivity in interneurons in cortical and subcortical regions

    DEFF Research Database (Denmark)

    Hervig, Mona E; Thomsen, Morten S; Kalló, Imre

    2016-01-01

    Dysfunction of N-Methyl-d-aspartate receptors (NMDARs) is believed to underlie some of the symptoms in schizophrenia, and non-competitive NMDAR antagonists (including phencyclidine (PCP)) are widely used as pharmacological schizophrenia models. Furthermore, mounting evidence suggests that impaired...

  4. Positron Emission Tomography Imaging Reveals Auditory and Frontal Cortical Regions Involved with Speech Perception and Loudness Adaptation.

    Directory of Open Access Journals (Sweden)

    Georg Berding

    Full Text Available Considerable progress has been made in the treatment of hearing loss with auditory implants. However, there are still many implanted patients that experience hearing deficiencies, such as limited speech understanding or vanishing perception with continuous stimulation (i.e., abnormal loudness adaptation. The present study aims to identify specific patterns of cerebral cortex activity involved with such deficiencies. We performed O-15-water positron emission tomography (PET in patients implanted with electrodes within the cochlea, brainstem, or midbrain to investigate the pattern of cortical activation in response to speech or continuous multi-tone stimuli directly inputted into the implant processor that then delivered electrical patterns through those electrodes. Statistical parametric mapping was performed on a single subject basis. Better speech understanding was correlated with a larger extent of bilateral auditory cortex activation. In contrast to speech, the continuous multi-tone stimulus elicited mainly unilateral auditory cortical activity in which greater loudness adaptation corresponded to weaker activation and even deactivation. Interestingly, greater loudness adaptation was correlated with stronger activity within the ventral prefrontal cortex, which could be up-regulated to suppress the irrelevant or aberrant signals into the auditory cortex. The ability to detect these specific cortical patterns and differences across patients and stimuli demonstrates the potential for using PET to diagnose auditory function or dysfunction in implant patients, which in turn could guide the development of appropriate stimulation strategies for improving hearing rehabilitation. Beyond hearing restoration, our study also reveals a potential role of the frontal cortex in suppressing irrelevant or aberrant activity within the auditory cortex, and thus may be relevant for understanding and treating tinnitus.

  5. Positron Emission Tomography Imaging Reveals Auditory and Frontal Cortical Regions Involved with Speech Perception and Loudness Adaptation.

    Science.gov (United States)

    Berding, Georg; Wilke, Florian; Rode, Thilo; Haense, Cathleen; Joseph, Gert; Meyer, Geerd J; Mamach, Martin; Lenarz, Minoo; Geworski, Lilli; Bengel, Frank M; Lenarz, Thomas; Lim, Hubert H

    2015-01-01

    Considerable progress has been made in the treatment of hearing loss with auditory implants. However, there are still many implanted patients that experience hearing deficiencies, such as limited speech understanding or vanishing perception with continuous stimulation (i.e., abnormal loudness adaptation). The present study aims to identify specific patterns of cerebral cortex activity involved with such deficiencies. We performed O-15-water positron emission tomography (PET) in patients implanted with electrodes within the cochlea, brainstem, or midbrain to investigate the pattern of cortical activation in response to speech or continuous multi-tone stimuli directly inputted into the implant processor that then delivered electrical patterns through those electrodes. Statistical parametric mapping was performed on a single subject basis. Better speech understanding was correlated with a larger extent of bilateral auditory cortex activation. In contrast to speech, the continuous multi-tone stimulus elicited mainly unilateral auditory cortical activity in which greater loudness adaptation corresponded to weaker activation and even deactivation. Interestingly, greater loudness adaptation was correlated with stronger activity within the ventral prefrontal cortex, which could be up-regulated to suppress the irrelevant or aberrant signals into the auditory cortex. The ability to detect these specific cortical patterns and differences across patients and stimuli demonstrates the potential for using PET to diagnose auditory function or dysfunction in implant patients, which in turn could guide the development of appropriate stimulation strategies for improving hearing rehabilitation. Beyond hearing restoration, our study also reveals a potential role of the frontal cortex in suppressing irrelevant or aberrant activity within the auditory cortex, and thus may be relevant for understanding and treating tinnitus.

  6. Memory loss from a subcortical white matter infarct.

    OpenAIRE

    Kooistra, C A; Heilman, K M

    1988-01-01

    Clinical disorders of memory are believed to occur from the dysfunction of either the mesial temporal lobe, the mesial thalamus, or the basal forebrain. Fibre tract damage at the level of the fornix has only inconsistently produced amnesia. A patient is reported who suffered a cerebrovascular accident involving the posterior limb of the left internal capsule that resulted in a persistent and severe disorder of verbal memory. The inferior extent of the lesion effectively disconnected the mesia...

  7. Identification and characterization of the regions involved in the nuclear translocation of the heterodimeric leishmanial DNA topoisomerase IB.

    Directory of Open Access Journals (Sweden)

    Christopher F Prada

    Full Text Available Leishmania donovani, the causative organism for visceral leishmaniasis, contains a unique heterodimeric DNA-topoisomerase IB (LdTopIB. LdTopIB is a heterodimer made up of a large subunit and a small subunit that must interact with each other to build an active enzyme able to solve the topological tensions on the DNA. As LdTopIB is located within the nucleus, one or more nuclear localization signals (NLS should exist to ensure its nuclear translocation. In this report three novel NLS have been identified through a sequential deletion study of the genes encoding of both subunits fused to that encoding the green fluorescent protein (GFP. NLS1 is a highly basic sequence of 43 amino acids in the C-terminal extension of the large protomer. We found two well-defined sequences in the small protomer: NLS2 is a 10-amino acid motif located in the N-terminal extension of the protein; NLS3 consists of a complex region of 28 amino acids placed in the vicinity of the catalytic Tyr-222 included at the conserved SKINY signature within the C-terminal. Furthermore, by means of yeast cell viability assays, conducted with several LdTopIB chimeras lacking any of the NLS motives, we have revealed that both subunits are transported independently to the nucleus. There was no evidence of LdTopIB accumulation in mitochondria or association to the kinetoplast DNA network. The results rule out the former hypothesis, which attributes nucleocytoplasmic transport of LdTopIB entirely to the large subunit. The LdTopIB is localized to the nucleus only.

  8. Regional lymph node involvement in T1 papillary thyroid carcinoma: a bicentric prospective SPECT/CT study

    Energy Technology Data Exchange (ETDEWEB)

    Mustafa, Mona [Ludwig Maximilian University, Department of Nuclear Medicine, Munich (Germany); Klinikum Grosshadern, Department of Nuclear Medicine, Munich (Germany); Kuwert, Torsten; Linke, Rainer; Schmidt, Daniela [University of Erlangen-Nuernberg, Department of Nuclear Medicine, Erlangen (Germany); Weber, Kathrin; Knesewitsch, Peter; Haug, Alexander; Bartenstein, Peter [Ludwig Maximilian University, Department of Nuclear Medicine, Munich (Germany); Negele, Thomas [Hospital Martha Maria, Department of Surgery, Munich (Germany)

    2010-08-15

    Hybrid imaging combining single photon emission computed tomography (SPECT) with {sup 131}I and X-ray computed tomography (CT) performed at radioablation (RA) for thyroid carcinoma more accurately detects regional lymph node metastases (LNM) than does planar imaging. In this bicentric prospective study we used hybrid imaging in conjunction with histopathological examination to measure LNM frequency in a consecutive group of patients referred for RA due to stage T1 papillary thyroid carcinoma (PTC). At the Departments of Nuclear Medicine of the Ludwig Maximilian University of Munich and the Friedrich Alexander University of Erlangen-Nuremberg SPECT/spiral CT is routinely performed in all PTC subjects at the time of RA. Screening of our SPECT/CT databases for PTC patients with T1 histology produced 98 patients from Munich and 53 patients from Erlangen, including 96 of 151 patients with microcarcinoma. In 69 patients of the entire group, cervical lymph node dissection had been performed, whereas nodal staging in the remaining 82 subjects was based on SPECT/CT. LNM incidence in the whole group was 26% [95% confidence interval (CI): 20-33%] versus 22% (95% CI: 15-31%) in the microcarcinoma subgroup. SPECT/CT was more accurate in 24.5% of our patients than planar imaging with regard to nodal staging. LNM occurs in one quarter of all patients with T1 PTC, and also in the subset with microcarcinoma. Performing {sup 131}I SPECT/CT, either with therapeutic or diagnostic radioactivities, directly after thyroidectomy should provide more accurate staging of T1 PTC, thus facilitating optimal therapeutic management. (orig.)

  9. Suppression subtractive hybridization identifies bacterial genomic regions that are possibly involved in hBD-2 regulation by enterocytes.

    Science.gov (United States)

    Ghadimi, Darab; Hassan, Mohamed; Njeru, Patrisio Njiru; de Vrese, Michael; Geis, Arnold; Shalabi, Samweul I; Abdel-Razek, Sabah T; Abdel-Khair, Abd El-Al A; Heller, Knut J; Schrezenmeir, Jürgen

    2011-10-01

    Human β-defensin 2 (hBD-2) is an inducible antimicrobial peptide synthesized by the epithelium to counteract bacterial adherence and invasion. It has been suggested that probiotic bacteria sustain gut barrier function via induction of defensins. The goals of this study were (i) to evaluate the potential immunomodulatory effects of 11 different Lactobacillus fermentum strains isolated from Kimere, an African fermented pearl millet (Pennisetum glaucum) dough, on the hBD-2 secretion by human intestinal CaCo-2 cell line and (ii) to examine genetic differences between two strains of L. fermentum (K2-Lb4 and K11-Lb3) which differed in their effect on the production of hBD-2 in this study. Totally, 46 strains of L. fermentum from Kimere were isolated and characterized using molecular biology methods including pulsed-field gel electrophoresis patterns. After performing time- and dose-experiments, CaCo-2 cells were incubated with or without bacteria for 12 h. L. fermentum PZ1162 was included as the positive control. Cell-free supernatants were analyzed for hBD-2 protein by enzyme-linked immunosorbent assay (ELISA). To identify potential bacterial genes associated with hBD-2 regulation, suppression subtractive hybridization (SSH) was used. Among the 11 strains tested, only two strains of bacteria, K11-Lb3 and K2-Lb6, significantly induced the production of hBD-2 by CaCo-2 cells. This effect was strain-specific, dose-dependent and particularly seems to be bacterial genomic-dependent as manifested by SSH. L. fermentum strains with and without hBD-2 inducing effect differed in genes encoding proteins involved in glycosylation of cell-wall proteins e.g. glycosyltransferase, UDP-N-acetylglucosamine 2-epimerase, rod shape-determining protein MreC, lipoprotein precursors, sugar ABC transporters, and glutamine ABC transporter ATP-binding protein. This study implies that certain strains of L. fermentum isolated from Kimere may stimulate the intestinal innate defense through the

  10. Trends in Deaths Involving Heroin and Synthetic Opioids Excluding Methadone, and Law Enforcement Drug Product Reports, by Census Region - United States, 2006-2015.

    Science.gov (United States)

    O'Donnell, Julie K; Gladden, R Matthew; Seth, Puja

    2017-09-01

    Opioid overdose deaths quadrupled from 8,050 in 1999 to 33,091 in 2015 and accounted for 63% of drug overdose deaths in the United States in 2015. During 2010-2015, heroin overdose deaths quadrupled from 3,036 to 12,989 (1). Sharp increases in the supply of heroin and illicitly manufactured fentanyl (IMF) are likely contributing to increased deaths (2-6). CDC examined trends in unintentional and undetermined deaths involving heroin or synthetic opioids excluding methadone (i.e., synthetic opioids)* by the four U.S. Census regions during 2006-2015. Drug exhibits (i.e., drug products) obtained by law enforcement and reported to the Drug Enforcement Administration's (DEA's) National Forensic Laboratory Information System (NFLIS) that tested positive for heroin or fentanyl (i.e., drug reports) also were examined. All U.S. Census regions experienced substantial increases in deaths involving heroin from 2006 to 2015. Since 2010, the South and West experienced increases in heroin drug reports, whereas the Northeast and Midwest experienced steady increases during 2006-2015.(†) In the Northeast, Midwest, and South, deaths involving synthetic opioids and fentanyl drug reports increased considerably after 2013. These broad changes in the U.S. illicit drug market highlight the urgent need to track illicit drugs and enhance public health interventions targeting persons using or at high risk for using heroin or IMF.

  11. Gerstmann meets Geschwind: a crossing (or kissing) variant of a subcortical disconnection syndrome?

    Science.gov (United States)

    Kleinschmidt, Andreas; Rusconi, Elena

    2011-12-01

    That disconnection causes clinical symptoms is a very influential concept in behavioral neurology. Criteria for subcortical disconnection usually are symptoms that are distinct from those following cortical lesions and damage to a single, long-range fiber tract. Yet, a recent study combining functional magnetic resonance imaging and fiber tracking concluded that a focal lesion in left parietal white matter provides the only tenable explanation for pure Gerstmann's syndrome, an enigmatic tetrad of acalculia, agraphia, finger agnosia, and left-right disorientation. Such a lesion would affect not only a single fiber tract but crossing or "kissing" of different fiber tracts and hence disconnect separate cortical networks. As fiber crossing is prominent in the cerebral white matter, the authors propose an extension to the subcortical disconnection framework that opens the door to ascribing a more diversified clinical phenomenology to white matter damage and ensuing disconnection than has been the case so far.

  12. "Venous congestion" as a cause of subcortical white matter T2 hypointensity on magnetic resonance images

    Directory of Open Access Journals (Sweden)

    Jayaprakash Harsha Kamble

    2016-01-01

    Full Text Available Subcortical T2 hypointensity is an uncommon finding seen in very limited conditions such as multiple sclerosis, Sturge-Weber syndrome, and meningitis. Some of the conditions such as moyamoya disease, severe ischemic-anoxic insults, early cortical ischemia, and infarcts are of "arterial origin." We describe two conditions in which "venous congestion" plays a major role in T2 hypointensity - cerebral venous sinus thrombosis (CVST and dural arteriovenous fistula (dAVF. The third case is a case of meningitis, showing T2 hypointensity as well, and can be explained by the "venous congestion" hypothesis. The same hypothesis can explain few of the other conditions causing subcortical T2 hypointensity.

  13. Cortical and subcortical vascular hypointensity on T2* weighted imaging in moyamoya disease.

    Science.gov (United States)

    Noshiro, Shouhei; Mikami, Takeshi; Komatsu, Katsuya; Miyata, Kei; Akiyama, Yukinori; Wanibuchi, Masahiko; Mikuni, Nobuhiro

    2016-02-01

    Decreased cortical and subcortical vascular signals in gradient echo T2* weighted imaging have been reported in acute stroke due to major artery occlusion. The purpose of this study was to evaluate this cortical and subcortical vascular hypointensity (CSVH) in patients with moyamoya disease. Subjects were 20 consecutive patients with moyamoya disease. The numbers of CSVH in each hemisphere were counted and the numbers were compared between patients with moyamoya disease and controls. The distribution of CSVH, clinical features of cases exhibiting large numbers of CSVH and post-operative changes were analysed. Patients with moyamoya disease had significantly more CSVH in the middle cerebral artery territory (p moyamoya disease. Our small series study shows that revascularization surgery can decrease the number of CSVH.

  14. Association between exercise habits and subcortical gray matter volumes in healthy elderly people: A population-based study in Japan

    Directory of Open Access Journals (Sweden)

    Mikie Yamamoto

    2017-06-01

    Conclusion: Subjects with exercise habits show larger subcortical gray matter volumes than subjects without exercise habits in community-dwelling elderly subjects in Japan. Specifically, the volume of the nucleus accumbens correlates with both exercise habits and cognitive preservation.

  15. The Effects of Modified Constraint-Induced Movement Therapy in Acute Subcortical Cerebral Infarction

    Directory of Open Access Journals (Sweden)

    Changshen Yu

    2017-05-01

    Full Text Available Background: Constraint-induced movement therapy (CIMT promotes upper extremity recovery post stroke, however, it is difficult to implement clinically due to its high resource demand and safety of the restraint. Therefore, we propose that modified CIMT (mCIMT be used to treat individuals with acute subcortical infarction.Objective: To evaluate the therapeutic effects of mCIMT in patients with acute subcortical infarction, and investigate the possible mechanisms underlying the effect.Methods: The role of mCIMT was investigated in 26 individuals experiencing subcortical infarction in the preceding 14 days. Patients were randomly assigned to either mCIMT or standard therapy. mCIMT group was treated daily for 3 h over 10 consecutive working days, using a mitt on the unaffected arm for up to 30% of waking hours. The control group was treated with an equal dose of occupational therapy and physical therapy. During the 3-month follow-up, the motor functions of the affected limb were assessed by the Wolf Motor Function Test (WMFT and Motor Activity Log (MAL. Altered cortical excitability was assessed via transcranial magnetic stimulation (TMS.Results: Treatment significantly improved the movement in the mCIMT group compared with the control group. The mean WMF score was significantly higher in the mCIMT group compared with the control group. Further, the appearance of motor-evoked potentials (MEPs were significantly higher in the mCIMT group compared with the baseline data. A significant change in ipsilesional silent period (SP occurred in the mCIMT group compared with the control group. However, we found no difference between two groups in motor function or electrophysiological parameters after 3 months of follow-up.Conclusions: mCIMT resulted in significant functional changes in timed movement immediately following treatment in patients with acute subcortical infarction. Further, early mCIMT improved ipsilesional cortical excitability. However, no long

  16. Hearing it again and again: on-line subcortical plasticity in humans.

    Directory of Open Access Journals (Sweden)

    Erika Skoe

    2010-10-01

    Full Text Available Human brainstem activity is sensitive to local sound statistics, as reflected in an enhanced response in repetitive compared to pseudo-random stimulus conditions [1]. Here we probed the short-term time course of this enhancement using a paradigm that assessed how the local sound statistics (i.e., repetition within a five-note melody interact with more global statistics (i.e., repetition of the melody.To test the hypothesis that subcortical repetition enhancement builds over time, we recorded auditory brainstem responses in young adults to a five-note melody containing a repeated note, and monitored how the response changed over the course of 1.5 hrs. By comparing response amplitudes over time, we found a robust time-dependent enhancement to the locally repeating note that was superimposed on a weaker enhancement of the globally repeating pattern.We provide the first demonstration of on-line subcortical plasticity in humans. This complements previous findings that experience-dependent subcortical plasticity can occur on a number of time scales, including life-long experiences with music and language, and short-term auditory training. Our results suggest that the incoming stimulus stream is constantly being monitored, even when the stimulus is physically invariant and attention is directed elsewhere, to augment the neural response to the most statistically salient features of the ongoing stimulus stream. These real-time transformations, which may subserve humans' strong disposition for grouping auditory objects, likely reflect a mix of local processes and corticofugal modulation arising from statistical regularities and the influences of expectation. Our results contribute to our understanding of the biological basis of statistical learning and initiate a new investigational approach relating to the time-course of subcortical plasticity. Although the reported time-dependent enhancements are believed to reflect universal neurophysiological

  17. The role of frontal-subcortical circuits in the development of obsessive-compulsive disorders

    OpenAIRE

    M. A. Kutlubaev

    2016-01-01

    The paper presents a concise review of investigations into the role of impaired frontal-subcortical circuits in the development of obsessive-compulsive disorder (OCD). It gives data on the frequency of neurosis-like symptoms of the OCD spectrum in neurological diseases.The development of OCD is associated with an imbalance between the activity of the direct (activating) and indirect (inhibitory) pathways of the cortico-striatal-thalamo-cortical feedback loop. These data are confirmed by the r...

  18. Disturbances in the positioning, proliferation, and apoptosis of neural progenitors contribute to subcortical band heterotopia formation

    OpenAIRE

    Fitzgerald, MP; Covio, M; Lee, KS

    2010-01-01

    Cortical malformations are commonly associated with intractable epilepsy and other developmental disorders. Our studies utilize the tish rat, a spontaneously occurring genetic model of subcortical band heterotopia (SBH) associated with epilepsy, to evaluate the developmental events underlying SBH formation in the neocortex. Our results demonstrate that Pax6+ and Tbr2+ progenitors are mislocalized in tish+/− and tish−/− neocortex throughout neurogenesis. In addition, mislocalized tish−/− proge...

  19. Males with epilepsy, complete subcortical band heterotopia, and somatic mosaicism for DCX.

    Science.gov (United States)

    Poolos, N P; Das, S; Clark, G D; Lardizabal, D; Noebels, J L; Wyllie, E; Dobyns, W B

    2002-05-28

    Subcortical band heterotopia (SBH) is seen predominantly in females, resulting from mutations in the X-linked doublecortin (DCX) gene, and can present with mild mental retardation and epilepsy. Males carrying DCX mutations usually demonstrate lissencephaly and are clinically much more severely affected. This article reports two cases of males with SBH indistinguishable from the female phenotype, both resulting from somatic mosaicism for DCX mutation.

  20. Genetic influences on schizophrenia and subcortical brain volumes:large-scale proof of concept

    OpenAIRE

    Franke, Barbara; Stein, Jason L.; Ripke, Stephan; Anttila, Verneri; Hibar, Derrek P.; van Hulzen, Kimm J E; Arias-Vasquez, Alejandro; Smoller, Jordan W.; Nichols, Thomas E.; Neale, Michael C.; Mcintosh, Andrew M.; Lee, Phil; McMahon, Francis J; Meyer-Lindenberg, Andreas; Mattheisen, Manuel

    2016-01-01

    Schizophrenia is a devastating psychiatric illness with high heritability. Brain structure and function differ, on average, between people with schizophrenia and healthy individuals. As common genetic associations are emerging for both schizophrenia and brain imaging phenotypes, we can now use genome-wide data to investigate genetic overlap. Here we integrated results from common variant studies of schizophrenia (33,636 cases, 43,008 controls) and volumes of several (mainly subcortical) brain...

  1. Diffusion tractography of the subcortical auditory system in a postmortem human brain

    OpenAIRE

    Sitek, Kevin

    2017-01-01

    The subcortical auditory system is challenging to identify with standard human brain imaging techniques: MRI signal decreases toward the center of the brain as well as at higher resolution, both of which are necessary for imaging small brainstem auditory structures.Using high-resolution diffusion-weighted MRI, we asked:Can we identify auditory structures and connections in high-resolution ex vivo images?Which structures and connections can be mapped in vivo?

  2. Modeling the Effect of Olivocochlear Efferents on the Subcortical Envelope Following Response in Humans

    Science.gov (United States)

    2016-11-28

    Title: Modeling the Effect of Olivocochlear Efferents on the Subcortical Envelope Following Response in Humans Christopher J. Smalt*, Michael G...added some of the dynamic characteristics of the MOCR with the more recent “ humanized ” version (Zilany, et al., 2014). This effect of the model is to...effectively reduce the outer hair cell gain, depending on the stimulus frequency, level, and timing. Human Envelope Following Responses (EFRs

  3. Focal Cortical and Subcortical Atrophy in Early Parkinson’s Disease

    OpenAIRE

    Tinaz, Sule; Courtney, Maureen G.; Stern, Chantal E.; Phil, D.

    2010-01-01

    Neurodegeneration in clinically manifest Parkinson’s disease affects the substantia nigra pars compacta, and gradually spreads to the limbic cortices and the neocortex. We used MRI imaging coupled with automated surface reconstruction and segmentation methods to examine cortical thickness and subcortical volumes in nondemented, early-stage Parkinson’s disease patients compared to matched healthy control participants. These methods, which have been previously used to document cortical thicknes...

  4. The Association Between Specific Substances of Abuse and Subcortical Intracerebral Hemorrhage versus Ischemic Lacunar Infarction

    Directory of Open Access Journals (Sweden)

    Emma H Kaplan

    2014-09-01

    Full Text Available Background: Hypertension damages small vessels, resulting in both lacunar infarction and subcortical intracerebral hemorrhage (ICH. Substance abuse has also been linked to small vessel pathology. This study explores whether the use of specific substances (eg., cocaine, tobacco is associated with subcortical ICH over ischemia in hypertensive individuals.Methods: Patients with hypertension, admitted with lacunar infarcts (measuring 1 drink per day (women, >2 drinks per day (men. Logistic regression was performed with ICH as the dependent variable comparing those presenting with ICH to those presenting with ischemia.Results: Of the 580 patients included in analysis, 217 (37% presented with ICH. The average age was similar between the two groups (64.7 versus 66.3 years. Illicit/controlled drug use was associated with a significantly increased risk of ICH over stroke in unadjusted models (25% versus 15%, p=0.02, with the largest effect seen in users ≥65 years old (not statistically significant. Smoking was associated with ischemia over ICH in a dose-dependent manner: any history of smoking OR 1.84, CI 1.19-2.84; current use OR 2.23, CI 1.37-3.62; heavy use OR 2.48, CI 1.50-4.13. Alcohol use was not preferentially associated with either outcome (p=0.29.Conclusions: In hypertensive patients, tobacco use is associated with an increased risk of subcortical ischemia compared to ICH; while use of illicit/controlled substances appears to be predictive of hemorrhage.

  5. [A clinical study of single subcortical cerebral infarction of middle cerebral artery territory].

    Science.gov (United States)

    Yang, L; Yu, L; Qin, W; Zhang, X Y; Li, Y; Xu, J H; Hu, X Z; Yuan, J L; Gu, H; Hu, W L

    2016-10-01

    Objective: To explore the clinical characteristics of single subcortical cerebral infarction of middle cerebral artery (MCA) territory and the possible pathogenesis. Methods: A total of 344 cases diagnosed as single subcortical cerebral infarction of MCA territory were enrolled in the study and divided into the parent artery disease (PAD) group and the non-PAD group according to whether the MCA stenosis was presented or not. A total of 312 cases diagnosed as single subcortical cerebral infarction of MCA territory were divided into the BAD group and the SVD group according to the relationship between the lesion sites and MCA. Differences in the clinical and imaging feature were compared between different groups. Results: A total of 32 patients were in the PAD group. Compared with the non-PAD group, patients in the PAD group were found with higher prevalence of asymptomatic cerebral arterial atherosclerosis [93.8%(30/32) vs 57.1%(178/312), P territory has different etiology and pathogenesis. Evidence of systemic atherosclerosis should be carefully searched in patients with branch atheromatous disease.

  6. Perineuronal nets in subcortical auditory nuclei of four rodent species with differing hearing ranges.

    Science.gov (United States)

    Beebe, Nichole L; Schofield, Brett R

    2017-12-26

    Perineuronal nets (PNs) are aggregates of extracellular matrix molecules that surround some neurons in the brain. While PNs occur widely across many cortical areas, subcortical PNs are especially associated with motor and auditory systems. The auditory system has recently been suggested as an ideal model system for studying PNs and their functions. However, descriptions of PNs in subcortical auditory areas vary, and it is unclear whether the variation reflects species differences or differences in staining techniques. Here, we used two staining techniques (one lectin stain and one antibody stain) to examine PN distribution in the subcortical auditory system of four different species: guinea pigs (Cavia porcellus), mice (Mus musculus, CBA/CaJ strain), Long-Evans rats (Rattus norvegicus), and naked mole-rats (Heterocephalus glaber). We found that some auditory nuclei exhibit dramatic differences in PN distribution among species while other nuclei have consistent PN distributions. We also found that PNs exhibit molecular heterogeneity, and can stain with either marker individually or with both. PNs within a given nucleus can be heterogeneous or homogenous in their staining patterns. We compared PN staining across the frequency axes of tonotopically organized nuclei and among species with different hearing ranges. PNs were distributed non-uniformly across some nuclei, but only rarely did this appear related to the tonotopic axis. PNs were prominent in all four species; we found no systematic relationship between the hearing range and the number, staining patterns or distribution of PNs in the auditory nuclei. © 2017 Wiley Periodicals, Inc.

  7. Low- and high-frequency subcortical SEP amplitude reduction during pure passive movement.

    Science.gov (United States)

    Insola, Angelo; Padua, Luca; Mazzone, Paolo; Valeriani, Massimiliano

    2015-12-01

    To investigate the effect of pure passive movement on both cortical and subcortical somatosensory evoked potentials (SEPs). Median nerve SEPs were recorded in 8 patients suffering from Parkinson's disease (PD) and two patients with essential tremor. PD patients underwent electrode implantation in the subthalamic (STN) nucleus (3 patients) and pedunculopontine (PPTg) nucleus (5 patients), while 2 patients with essential tremor were implanted in the ventral intermediate nucleus (VIM) of the thalamus. In anesthetized patients, SEPs were recorded at rest and during a passive movement of the thumb of the stimulated wrist from the intracranial electrode contacts and from the scalp. Also the high-frequency oscillations (HFOs) were analyzed. Amplitudes of both deep and scalp components were decreased during passive movement, but the reduction was higher at cortical than subcortical level. Also the HFOs were reduced by movement. The different amount of the movement-related decrease suggests that the cortical SEP gating is not only the result of a subcortical somatosensory volley attenuation, but a further mechanism acting at cortical level should be considered. Our results are important for understanding the physiological mechanism of the sensory-motor interaction during passive movement. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  8. Treatment of seizures in subcortical laminar heterotopia with corpus callosotomy and lamotrigine.

    Science.gov (United States)

    Vossler, D G; Lee, J K; Ko, T S

    1999-05-01

    Focal and generalized cortical dysgeneses are sometimes seen on the magnetic resonance images (MRI) of patients with epilepsy. Subcortical laminar heterotopia are bilateral collections of gray matter in the centrum semiovale that resemble a band or "double cortex" on MRI. We studied one male and two female patients with subcortical laminar heterotopia who had moderate to severe developmental delay, early-onset epilepsy, and medically refractory seizures. Atonic, atypical absence, tonic, myoclonic, complex partial, and generalized tonic-clonic seizures were recorded. Interictal and ictal electroencephalographic patterns were generalized and, less commonly, multifocal. Two years after corpus callosotomy, one patient was free of generalized tonic-clonic and atonic seizures, but the other patient who had undergone callosotomy had no significant reduction in seizure frequency. With lamotrigine treatment, the patient who had not had surgery had complete cessation of monthly episodes of status epilepticus and a dramatic reduction of generalized tonic-clonic seizures, and the other patient who received lamotrigine had a 50% reduction of her atonic seizures. In patients with subcortical laminar heterotopia, atonic and generalized tonic-clonic seizures can be substantially reduced or eliminated by corpus callosotomy or treatment with lamotrigine.

  9. Characterizing Brain Iron Deposition in Patients with Subcortical Vascular Mild Cognitive Impairment Using Quantitative Susceptibility Mapping: A Potential Biomarker

    OpenAIRE

    Sun, Yawen; Ge, Xin; Han, Xu; Cao, Wenwei; Wang, Yao; Ding, Weina; Cao, Mengqiu; Zhang, Yong; Xu, Qun; Zhou, Yan; Xu, Jianrong

    2017-01-01

    The presence and pattern of iron accumulation in subcortical vascular mild cognitive impairment (svMCI) and their effects on cognition have rarely been investigated. We aimed to examine brain iron deposition in svMCI subjects using quantitative susceptibility mapping (QSM). Moreover, we aimed to investigate the correlation between brain iron deposition and the severity of cognitive impairment as indicated by z-scores. We recruited 20 subcortical ischemic vascular disease (SIVD) patients who f...

  10. Relative cortico-subcortical shift in brain activity but preserved training-induced neural modulation in older adults during bimanual motor learning.

    Science.gov (United States)

    Santos Monteiro, Thiago; Beets, Iseult A M; Boisgontier, Matthieu P; Gooijers, Jolien; Pauwels, Lisa; Chalavi, Sima; King, Brad; Albouy, Geneviève; Swinnen, Stephan P

    2017-10-01

    To study age-related differences in neural activation during motor learning, functional magnetic resonance imaging scans were acquired from 25 young (mean 21.5-year old) and 18 older adults (mean 68.6-year old) while performing a bimanual coordination task before (pretest) and after (posttest) a 2-week training intervention on the task. We studied whether task-related brain activity and training-induced brain activation changes differed between age groups, particularly with respect to the hyperactivation typically observed in older adults. Findings revealed that older adults showed lower performance levels than younger adults but similar learning capability. At the cerebral level, the task-related hyperactivation in parietofrontal areas and underactivation in subcortical areas observed in older adults were not differentially modulated by the training intervention. However, brain activity related to task planning and execution decreased from pretest to posttest in temporo-parieto-frontal areas and subcortical areas in both age groups, suggesting similar processes of enhanced activation efficiency with advanced skill level. Furthermore, older adults who displayed higher activity in prefrontal regions at pretest demonstrated larger training-induced performance gains. In conclusion, in spite of prominent age-related brain activation differences during movement planning and execution, the mechanisms of learning-related reduction of brain activation appear to be similar in both groups. Importantly, cerebral activity during early learning can differentially predict the amplitude of the training-induced performance benefit between young and older adults. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Characterization of the HeCo mutant mouse: a new model of subcortical band heterotopia associated with seizures and behavioral deficits.

    Science.gov (United States)

    Croquelois, Alexandre; Giuliani, Fabienne; Savary, Christine; Kielar, Michel; Amiot, Clotilde; Schenk, Françoise; Welker, Egbert

    2009-03-01

    In human, neuronal migration disorders are commonly associated with developmental delay, mental retardation, and epilepsy. We describe here a new mouse mutant that develops a heterotopic cortex (HeCo) lying in the dorsolateral hemispheric region, between the homotopic cortex (HoCo) and subcortical white matter. Cross-breeding demonstrated an autosomal recessive transmission. Birthdating studies and immunochemistry for layer-specific markers revealed that HeCo formation was due to a transit problem in the intermediate zone affecting both radially and tangentially migrating neurons. The scaffold of radial glial fibers, as well as the expression of doublecortin is not altered in the mutant. Neurons within the HeCo are generated at a late embryonic age (E18) and the superficial layers of the HoCo have a correspondingly lower cell density and layer thickness. Parvalbumin immunohistochemistry showed the presence of gamma-aminobutyric acidergic cells in the HeCo and the mutant mice have a lowered threshold for the induction of epileptic seizures. The mutant showed a developmental delay but, in contrast, memory function was relatively spared. Therefore, this unique mouse model resembles subcortical band heterotopia observed in human. This model represents a new and rare tool to better understand cortical development and to investigate future therapeutic strategies for refractory epilepsy.

  12. Detection of cerebral amyloid angiopathy by 3-T magnetic resonance imaging and amyloid positron emission tomography in a patient with subcortical ischaemic vascular dementia.

    Science.gov (United States)

    Kida, Hirotaka; Satoh, Masayuki; Ii, Yuichiro; Fukuyama, Hidenao; Maeda, Masayuki; Tomimoto, Hidekazu

    2017-01-01

    The patient was an 81-year-old man who had been treated for hypertension for several decades. In 2012, he developed gait disturbance and mild amnesia. One year later, his gait disturbance worsened, and he developed urinary incontinence. Conventional brain magnetic resonance imaging using T 2 -weighted images and fluid-attenuated inversion recovery showed multiple lacunar infarctions. These findings fulfilled the diagnostic criteria for subcortical ischaemic vascular dementia. However, susceptibility weighted imaging showed multiple lobar microbleeds in the bilateral occipitoparietal lobes, and double inversion recovery and 3-D fluid-attenuated inversion recovery images on 3-T magnetic resonance imaging revealed cortical microinfarctions in the left parietal-temporo-occipito region. Pittsburgh compound B-positron emission tomography revealed diffuse uptake in the cerebral cortex. Therefore, we diagnosed the patient with subcortical ischaemic vascular dementia associated with Alzheimer's disease. The use of the double inversion recovery and susceptibility weighted imaging on 3-T magnetic resonance imaging may be a supplemental strategy for diagnosing cerebral amyloid angiopathy, which is closely associated with Alzheimer's disease. © 2016 The Authors. Psychogeriatrics © 2016 Japanese Psychogeriatric Society.

  13. Details of out-field regional recurrence after involved-field irradiation with concurrent chemotherapy for locally advanced esophageal squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Zhang X

    2016-05-01

    Full Text Available Xiaoli Zhang,1,2 Jinming Yu,1,2 Minghuan Li,2 Hui Zhu2 1Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 2Department of Radiation Oncology, Shandong Cancer Hospital affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, People’s Republic of China Background: The purpose of this study was to describe the patterns of out-field regional recurrence after involved-field irradiation (IFI in definitive concurrent chemoradiotherapy (CCRT for locally advanced esophageal squamous cell carcinoma (LA-ESCC and identify the possible risk factors. Patients and methods: Eighty patients with LA-ESCC who received CCRT with IFI between January 2003 and January 2009 at the Shandong Cancer Hospital were recruited and analyzed. Imaging scans demonstrating first sites of failure were compared with original computed tomography-based radiation treatment plans, and failure patterns were defined as in-field, out-field regional (failures in initially uninvolved regional nodes, and distant failures. Results: After a median follow-up time of 52.6 months, 24 patients had evidence of out-field regional failure, 43 patients had evidence of in-field failure, and 33 patients had the evidence of distant failure. Multivariate analysis revealed that out-field regional failure was associated with clinical tumor status (T4 vs T1–3, odds ratio [OR] =6.547, P=0.002, tumor length (>8 cm vs ≤8 cm, OR =4.130, P=0.036, response to CCRT (complete response vs no complete response, OR =2.646, P=0.035, and in-field failure (no in-field failure vs in-field failure, OR =1.32, P=0.016. Survival analyses indicated that, compared to in-field failure or distant failure alone group, out-field regional failure alone group tended to have longer overall (P=0.006 and progression-free survival (P=0.164. Conclusion: Our data suggested that the predominant failure pattern after IFI was not out-field regional failure, which also did not influence survival

  14. Transcortical sensory aphasia due to a left frontal subcortical haemorrhage.

    Science.gov (United States)

    Maeshima, S; Kuwata, T; Masuo, O; Yamaga, H; Okita, R; Ozaki, F; Moriwaki, H; Roger, P

    1999-11-01

    A case of transcortical sensory aphasia caused by a cerebral haemorrhage in the left frontal lobe is presented. A 72-year-old right-handed woman was admitted to the hospital, with a history of acute onset of speech disturbance and headache. On initial assessment, her spontaneous speech was fluent. She had no difficulty initiating speech, articulated normally, and did not exhibit logorrhea. Her ability to repeat phonemes and short sentences (5-6 words) was fully preserved, however she had severe difficulty with visual recognition of words, and with aural comprehension at the word level, although she was able to read words aloud. Computed tomography and magnetic resonance imaging showed cerebral haemorrhage in the left frontal lobe, involving the superior and middle frontal gyrus. Single photon emission CT revealed a wider area of low perfusion over the entire left frontal lobe, including the superior, middle and inferior frontal gyrus. The aphasia symptoms, mainly poor comprehension, disappeared quickly several weeks after the event. This may have been due to a reduction in the size of the haematoma and a resolution of the oedema around the haematoma. Clinically, the transcortical sensory aphasia in this case was indistinguishable from that caused by damage to the posterior language areas. Further case reports of transcortical sensory aphasia associated with frontal lobe lesions would help to confirm whether a relatively rapid recovery is characteristic in cases such as this.

  15. The contribution of brain sub-cortical loops in the expression and acquisition of action understanding abilities☆

    Science.gov (United States)

    Caligiore, Daniele; Pezzulo, Giovanni; Miall, R. Chris; Baldassarre, Gianluca

    2013-01-01

    Research on action understanding in cognitive neuroscience has led to the identification of a wide “action understanding network” mainly encompassing parietal and premotor cortical areas. Within this cortical network mirror neurons are critically involved implementing a neural mechanism according to which, during action understanding, observed actions are reflected in the motor patterns for the same actions of the observer. We suggest that focusing only on cortical areas and processes could be too restrictive to explain important facets of action understanding regarding, for example, the influence of the observer's motor experience, the multiple levels at which an observed action can be understood, and the acquisition of action understanding ability. In this respect, we propose that aside from the cortical action understanding network, sub-cortical processes pivoting on cerebellar and basal ganglia cortical loops could crucially support both the expression and the acquisition of action understanding abilities. Within the paper we will discuss how this extended view can overcome some limitations of the “pure” cortical perspective, supporting new theoretical predictions on the brain mechanisms underlying action understanding that could be tested by future empirical investigations. PMID:23911926

  16. Thermography imaging during static and controlled thermoregulation in complex regional pain syndrome type 1: diagnostic value and involvement of the central sympathetic system.

    Science.gov (United States)

    Niehof, Sjoerd P; Huygen, Frank J P M; van der Weerd, Rick W P; Westra, Mirjam; Zijlstra, Freek J

    2006-05-12

    Complex Regional Pain Syndrome type 1 (CRPS1) is a clinical diagnosis based on criteria describing symptoms of the disease. The main aim of the present study was to compare the sensitivity and specificity of calculation methods used to assess thermographic images (infrared imaging) obtained during temperature provocation. The secondary objective was to obtain information about the involvement of the sympathetic system in CRPS1. We studied 12 patients in whom CRPS1 was diagnosed according to the criteria of Bruehl. High and low whole body cooling and warming induced and reduced sympathetic vasoconstrictor activity. The degree of vasoconstrictor activity in both hands was monitored using a videothermograph. The sensitivity and specificity of the calculation methods used to assess the thermographic images were calculated. The temperature difference between the hands in the CRPS patients increases significantly when the sympathetic system is provoked. At both the maximum and minimum vasoconstriction no significant differences were found in fingertip temperatures between both hands. The majority of CRPS1 patients do not show maximal obtainable temperature differences between the involved and contralateral extremity at room temperature (static measurement). During cold and warm temperature challenges this temperature difference increases significantly. As a result a higher sensitivity and specificity could be achieved in the diagnosis of CRPS1. These findings suggest that the sympathetic efferent system is involved in CRPS1.

  17. Thermography imaging during static and controlled thermoregulation in complex regional pain syndrome type 1: diagnostic value and involvement of the central sympathetic system

    Directory of Open Access Journals (Sweden)

    Westra Mirjam

    2006-05-01

    Full Text Available Abstract Background Complex Regional Pain Syndrome type 1 (CRPS1 is a clinical diagnosis based on criteria describing symptoms of the disease. The main aim of the present study was to compare the sensitivity and specificity of calculation methods used to assess thermographic images (infrared imaging obtained during temperature provocation. The secondary objective was to obtain information about the involvement of the sympathetic system in CRPS1. Methods We studied 12 patients in whom CRPS1 was diagnosed according to the criteria of Bruehl. High and low whole body cooling and warming induced and reduced sympathetic vasoconstrictor activity. The degree of vasoconstrictor activity in both hands was monitored using a videothermograph. The sensitivity and specificity of the calculation methods used to assess the thermographic images were calculated. Results The temperature difference between the hands in the CRPS patients increases significantly when the sympathetic system is provoked. At both the maximum and minimum vasoconstriction no significant differences were found in fingertip temperatures between both hands. Conclusion The majority of CRPS1 patients do not show maximal obtainable temperature differences between the involved and contralateral extremity at room temperature (static measurement. During cold and warm temperature challenges this temperature difference increases significantly. As a result a higher sensitivity and specificity could be achieved in the diagnosis of CRPS1. These findings suggest that the sympathetic efferent system is involved in CRPS1.

  18. Computed tomography evaluation of loco-regional involvement of squamous cell carcinoma of the vocal cord; Avaliacao por tomografia computadorizada do envolvimento loco-regional do carcinoma espinocelular de corda vocal

    Energy Technology Data Exchange (ETDEWEB)

    Paiva, Roberto Guido Santos; Rapoport, Abrao [Complexo Hospitalar Heliopolis, Sao Paulo, SP (Brazil). Curso de Pos-graduacao em Cirurgia de Cabeca e Pescoco; Souza, Ricardo Pires de [Complexo Hospitalar Heliopolis, Sao Paulo, SP (Brazil). Servico de Diagnostico por Imagem; Soares, Aldemir Humberto [Colegio Brasileiro de Radiologia, Sao Paulo, SP (Brazil)]. E-mail: ricapires@ig.com.br

    2001-08-01

    We reviewed the case notes and computed tomography scans of 22 patients with squamous cell carcinoma of the vocal cord, in the period between 1992 and 1998. Interobserver concordance for all cases and accuracy and concordance between the methods for the operated patients were evaluated using the kappa test. Concordance was classified as follows: excellent for evaluating tumoral involvement of the thyroid and cricoid cartilages, extra laryngeal extension and lymph node staging; very good for tumoral involvement of vocal cords, posterior commissure and para glottic space; good for tumoral involvement of the supraglottic and sub glottic regions and tumoral staging; regular for tumoral involvement of the anterior commissure and arytenoid cartilage. The combination of clinical and computed tomography evaluation for T staging resulted in an accuracy and concordance with the pathological results of 89.47% and 84.9%, respectively, which were superior to isolated clinical or computed tomography analysis. The accuracy and pathological concordance of computed tomography for N staging was 100%, which was superior to clinical evaluation. (author)

  19. Species characterization and responses of subcortical insects to trap-logs and ethanol in a hardwood biomass plantation: Subcortical insects in hardwood plantations

    Energy Technology Data Exchange (ETDEWEB)

    Coyle, David R. [D. B. Warnell School of Forestry and Natural Resources; University of Georgia; 180 E. Green Street Athens GA 30602 U.S.A.; Brissey, Courtney L. [D. B. Warnell School of Forestry and Natural Resources; University of Georgia; 180 E. Green Street Athens GA 30602 U.S.A.; Gandhi, Kamal J. K. [D. B. Warnell School of Forestry and Natural Resources; University of Georgia; 180 E. Green Street Athens GA 30602 U.S.A.

    2015-01-02

    1. We characterized subcortical insect assemblages in economically important eastern cottonwood (Populus deltoides Bartr.), sycamore (Platanus occidentalis L.) and sweetgum (Liquidambar styraciflua L.) plantations in the southeastern U.S.A. Furthermore, we compared insect responses between freshly-cut plant material by placing traps directly over cut hardwood logs (trap-logs), traps baited with ethanol lures and unbaited (control) traps. 2. We captured a total of 15 506 insects representing 127 species in four families in 2011 and 2013. Approximately 9% and 62% of total species and individuals, respectively, and 23% and 79% of total Scolytinae species and individuals, respectively, were non-native to North America. 3. We captured more Scolytinae using cottonwood trap-logs compared with control traps in both years, although this was the case with sycamore and sweetgum only in 2013. More woodborers were captured using cottonwood and sweetgum trap-logs compared with control traps in both years, although only with sycamore in 2013. 4. Ethanol was an effective lure for capturing non-native Scolytinae; however, not all non-native species were captured using ethanol lures. Ambrosiophilus atratus (Eichhoff) and Hypothenemus crudiae (Panzer) were captured with both trap-logs and control traps, whereas Coccotrypes distinctus (Motschulsky) and Xyleborus glabratus Eichhoff were only captured on trap-logs. 5. Indicator species analysis revealed that certain scolytines [e.g. Cnestus mutilates (Blandford) and Xylosandrus crassiusculus (Motschulsky)] showed significant associations with trap-logs or ethanol baits in poplar or sweetgum trap-logs. In general, the species composition of subcortical insects, especially woodboring insects, was distinct among the three tree species and between those associated with trap-logs and control traps.

  20. Brain regions involved in subprocesses of small-space episodic object-location memory: a systematic review of lesion and functional neuroimaging studies.

    Science.gov (United States)

    Zimmermann, Kathrin; Eschen, Anne

    2017-04-01

    Object-location memory (OLM) enables us to keep track of the locations of objects in our environment. The neurocognitive model of OLM (Postma, A., Kessels, R. P. C., & Van Asselen, M. (2004). The neuropsychology of object-location memory. In G. L. Allen (Ed.), Human spatial memory: Remembering where (pp. 143-160). Mahwah, NJ: Lawrence Erlbaum, Postma, A., Kessels, R. P. C., & Van Asselen, M. (2008). How the brain remembers and forgets where things are: The neurocognition of object-location memory. Neuroscience & Biobehavioral Reviews, 32, 1339-1345. doi: 10.1016/j.neubiorev.2008.05.001 ) proposes that distinct brain regions are specialised for different subprocesses of OLM (object processing, location processing, and object-location binding; categorical and coordinate OLM; egocentric and allocentric OLM). It was based mainly on findings from lesion studies. However, recent episodic memory studies point to a contribution of additional or different brain regions to object and location processing within episodic OLM. To evaluate and update the neurocognitive model of OLM, we therefore conducted a systematic literature search for lesion as well as functional neuroimaging studies contrasting small-space episodic OLM with object memory or location memory. We identified 10 relevant lesion studies and 8 relevant functional neuroimaging studies. We could confirm some of the proposals of the neurocognitive model of OLM, but also differing hypotheses from episodic memory research, about which brain regions are involved in the different subprocesses of small-space episodic OLM. In addition, we were able to identify new brain regions as well as important research gaps.

  1. Subcortical atrophy in frontotemporal dementia and Alzheimer's disease: Significance for differential diagnosis and correlation with clinical manifestations

    Directory of Open Access Journals (Sweden)

    Renata Teles Vieira

    Full Text Available Abstract Cerebral subcortical atrophy occurs in both Alzheimer's disease (AD and frontotemporal dementia (FTD but its significance for clinical manifestations and differential diagnosis between these common types of dementia has not been extensively investigated. Objectives: To compare the severity of cerebral subcortical atrophy in FTD and AD and to analyze the correlations between cerebral subcortical atrophy and demographics and clinical characteristics. Methods: Twenty three patients with FTD and 21 with AD formed the sample, which comprised 22 men and 22 women, aged 33 to 89, with mean age (±SD of 68.52±12.08 years, with schooling ranging from 1 to 20 years, with a mean (±SD of 7.35±5.54 years, and disease duration with a mean (±SD of 3.66±3.44 years. The degree of cerebral subcortical atrophy was measured indirectly with a linear measurement of subcortical atrophy, the Bifrontal Index (BFI, using magnetic resonance imaging. We evaluated cognition, activities of daily living and dementia severity with the Mini-Mental State Examination, Functional Activities Questionnaire and the Clinical Dementia Rating, respectively. Results: There was no significant difference (p>0.05 in BFI between FTD and AD. The severity of cognitive deficits (for both FTD and AD groups and level of daily living activities (only for AD group were correlated with BFI. Conclusions: A linear measurement of cerebral subcortical atrophy did not differentiate AD from FTD in this sample. Cognitive function (in both FTD and AD groups and capacity for independent living (only in AD group were inversely correlated with cerebral subcortical atrophy.

  2. Association between subcortical volumes and verbal memory in unmedicated depressed patients and healthy controls.

    Science.gov (United States)

    Turner, Arlener D; Furey, Maura L; Drevets, Wayne C; Zarate, Carlos; Nugent, Allison C

    2012-07-01

    Research has shown poor performance on verbal memory tasks in patients with major depressive disorder relative to healthy controls, as well as structural abnormalities in the subcortical structures that form the limbic-cortical-striatal-pallidal-thalamic circuitry. Few studies, however, have attempted to link the impairments in learning and memory in depression with these structural abnormalities, and of those which have done so, most have included patients medicated with psychotropic agents likely to influence cognitive performance. This study thus examines the relationship between subcortical structural abnormalities and verbal memory using the California Verbal Learning Test (CVLT) in unmedicated depressed patients. A T1 weighted magnetic resonance imaging scan and the CVLT were obtained on 45 subjects with major depressive disorder and 44 healthy controls. Using the FMRIB's Integrated Registration and Segmentation Tool (FIRST) volumes of selected subcortical structures were segmented and correlated with CVLT performance. Depressed participants showed significantly smaller right thalamus and right hippocampus volumes than healthy controls. Depressed participants also showed impaired performance on global verbal learning ability, and appeared to depend upon an inferior memory strategy (serial clustering). Measures of serial clustering were correlated significantly with right hippocampal volumes in depressed participants. Our findings indicate that depressed participants and healthy controls differ in the memory strategies they employ, and that while depressed participants had a smaller hippocampal volume, there was a positive correlation between volume and use of an inferior memory strategy. This suggests that larger hippocampal volume is related to better memory recall in depression, but specifically with regard to utilizing an inferior memory strategy. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Apraxia for differentiating Alzheimer’s disease from subcortical vascular dementia and mild cognitive impairment

    Directory of Open Access Journals (Sweden)

    Ozkan S

    2013-07-01

    Full Text Available Serhat Ozkan,1 Demet Ozbabalik Adapinar,1 Nese Tuncer Elmaci,2 Didem Arslantas31Department of Neurology, Eskisehir Osmangazi University Medical Faculty, Eskisehir, Turkey; 2Department of Neurology, Marmara University Medical Faculty, Istanbul, Turkey; 3Department of Public Health, Eskisehir Osmangazi University Medical Faculty, Eskisehir, TurkeyAbstract: Although ideomotor limb apraxia is considered to be a typical sign of cortical pathologies such as Alzheimer’s disease (AD, it has been also reported in subcortical neurodegenerative diseases and vascular lesions. We aimed to investigate the difference between AD, subcortical vascular dementia (SVaD and mild cognitive impairment (MCI patients by means of ideomotor limb apraxia frequency and severity. Ninety-six AD, 72 SVaD, and 84 MCI patients were assessed with the mini-mental status examination (MMSE, clinical dementia rating (CDR and the apraxia screening test of TULIA (AST. Apraxia was significantly more frequent in the AD patients (32.3% than in both of the SVaD (16.7% and MCI (4.8% patients. The frequency of apraxia was also significantly higher in SVaD patients than in MCI patients. AD patients had significantly lower apraxia scores than both SVaD and MCI patients. In addition, a significant difference was found between SVaD and MCI patients in terms of apraxia scores. These results suggest that the widespread belief of the association between apraxia and cortical dementias is not exactly correct. The significant difference between both of the dementia groups and the MCI patients suggests that the absence of apraxia can be an indicator for MCI diagnosis.Keywords: apraxia, Alzheimer’s disease, subcortical vascular dementia, mild cognitive impairment

  4. Cortical and subcortical functional neuroanatomy for low-grade glioma surgery.

    Science.gov (United States)

    Chenin, L; Lefranc, M; Velut, S; Foulon, P; Havet, E; Peltier, J

    2017-06-01

    Knowledge of the encephalon anatomy is crucial for neurosurgical practice, especially the main cortical functional structures and their connections. General organisation of the encephalon is presented with frontal, parietal, occipital, temporal, limbic and insular lobes and their Brodmann correspondence. Secondly, subcortical anatomy will be presented with main white matter fasciculi in three separated categories: association, commissural and projection fibers. Main association fibers are inferior occipitofrontal fasciculus, superior longitudinal fasciculus, arcuate fasciculus, inferior longitudinal fasciculus, uncinate fasciculus, and cingulum. Commissural fibers include anterior commissure, corpus callosum and fornix. Projection fibers are internal capsule and optic radiations. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  5. Longitudinal cognitive decline in subcortical ischemic vascular disease--the LADIS Study

    DEFF Research Database (Denmark)

    Jokinen, Hanna; Kalska, Hely; Ylikoski, Raija

    2009-01-01

    BACKGROUND: Cross-sectional studies have indicated that subcortical ischemic vascular disease (SIVD), as defined according to imaging criteria, is associated with a specific clinical and cognitive profile. Much less is known about the long-term cognitive consequences of SIVD. The aim of the study......, education and medial temporal lobe atrophy. CONCLUSIONS: SIVD, as a manifestation of cerebral small vessel disease, is related to progressive cognitive impairment and a considerable risk of developing dementia. SIVD seems to specifically contribute to the deterioration of psychomotor speed, executive...

  6. Marchiafava-Bignami disease: magnetic resonance imaging findings in corpus callosum and subcortical white matter

    Energy Technology Data Exchange (ETDEWEB)

    Kawarabuki, Kentaro E-mail: bukky@h2.dion.ne.jp; Sakakibara, Takehiko; Hirai, Makoto; Yoshioka, Yuji; Yamamoto, Yasumasa; Yamaki, Tarumi

    2003-11-01

    A case of Marchiafava-Bignami disease (MBD) is presented using magnetic resonance imaging (MRI). A patient with a long history of alcoholism developed a gait disturbance with involuntary movements at the lower extremities. MRI scans taken at the onset showed no particular abnormalities. He progressed to a coma 10 days later. MRI scans taken 20 days after the onset showed a focal lesion at the genu of the corpus callosum and he was diagnosed as having MBD. In addition, multiple lesions were observed in bilateral frontoparietal subcortical white matter. These lesions demonstrated similar intense MRI signals as the corpus callosum.

  7. The solution structure of REF2-I reveals interdomain interactions and regions involved in binding mRNA export factors and RNA.

    Science.gov (United States)

    Golovanov, Alexander P; Hautbergue, Guillaume M; Tintaru, Aura M; Lian, Lu-Yun; Wilson, Stuart A

    2006-11-01

    The RNA binding and export factor (REF) family of mRNA export adaptors are found in several nuclear protein complexes including the spliceosome, TREX, and exon junction complexes. They bind RNA, interact with the helicase UAP56/DDX39, and are thought to bridge the interaction between the export factor TAP/NXF1 and mRNA. REF2-I consists of three domains, with the RNA recognition motif (RRM) domain positioned in the middle. Here we dissect the interdomain interactions of REF2-I and present the solution structure of a functionally competent double domain (NM; residues 1-155). The N-terminal domain comprises a transient helix (N-helix) linked to the RRM by a flexible arm that includes an Arg-rich region. The N-helix, which is required for REF2-I function in vivo, overlaps the highly conserved REF-N motif and, together with the adjacent Arg-rich region, interacts transiently with the RRM. RNA interacts with REF2-I through arginine-rich regions in its N- and C-terminal domains, but we show that it also interacts weakly with the RRM. The mode of interaction is unusual for an RRM since it involves loops L1 and L5. NMR signal mapping and biochemical analysis with NM indicate that DDX39 and TAP interact with both the N and RRM domains of REF2-I and show that binding of these proteins and RNA will favor an open conformation for the two domains. The proximity of the RNA, TAP, and DDX39 binding sites on REF2-I suggests their binding may be mutually exclusive, which would lead to successive ligand binding events in the course of mRNA export.

  8. A computational approach identifies two regions of Hepatitis C Virus E1 protein as interacting domains involved in viral fusion process

    Directory of Open Access Journals (Sweden)

    El Sawaf Gamal

    2009-07-01

    Full Text Available Abstract Background The E1 protein of Hepatitis C Virus (HCV can be dissected into two distinct hydrophobic regions: a central domain containing an hypothetical fusion peptide (FP, and a C-terminal domain (CT comprising two segments, a pre-anchor and a trans-membrane (TM region. In the currently accepted model of the viral fusion process, the FP and the TM regions are considered to be closely juxtaposed in the post-fusion structure and their physical interaction cannot be excluded. In the present study, we took advantage of the natural sequence variability present among HCV strains to test, by purely sequence-based computational tools, the hypothesis that in this virus the fusion process involves the physical interaction of the FP and CT regions of E1. Results Two computational approaches were applied. The first one is based on the co-evolution paradigm of interacting peptides and consequently on the correlation between the distance matrices generated by the sequence alignment method applied to FP and CT primary structures, respectively. In spite of the relatively low random genetic drift between genotypes, co-evolution analysis of sequences from five HCV genotypes revealed a greater correlation between the FP and CT domains than respect to a control HCV sequence from Core protein, so giving a clear, albeit still inconclusive, support to the physical interaction hypothesis. The second approach relies upon a non-linear signal analysis method widely used in protein science called Recurrence Quantification Analysis (RQA. This method allows for a direct comparison of domains for the presence of common hydrophobicity patterns, on which the physical interaction is based upon. RQA greatly strengthened the reliability of the hypothesis by the scoring of a lot of cross-recurrences between FP and CT peptides hydrophobicity patterning largely outnumbering chance expectations and pointing to putative interaction sites. Intriguingly, mutations in the CT

  9. Involvement of the carboxyl-terminal region of the yeast peroxisomal half ABC transporter Pxa2p in its interaction with Pxa1p and in transporter function.

    Directory of Open Access Journals (Sweden)

    Cheng-Yi Chuang

    Full Text Available The peroxisome is a single membrane-bound organelle in eukaryotic cells involved in lipid metabolism, including β-oxidation of fatty acids. The human genetic disorder X-linked adrenoleukodystrophy (X-ALD is caused by mutations in the ABCD1 gene (encoding ALDP, a peroxisomal half ATP-binding cassette [ABC] transporter. This disease is characterized by defective peroxisomal β-oxidation and a large accumulation of very long-chain fatty acids in brain white matter, adrenal cortex, and testis. ALDP forms a homodimer proposed to be the functional transporter, whereas the peroxisomal transporter in yeast is a heterodimer comprising two half ABC transporters, Pxa1p and Pxa2p, both orthologs of human ALDP. While the carboxyl-terminal domain of ALDP is engaged in dimerization, it remains unknown whether the same region is involved in the interaction between Pxa1p and Pxa2p.Using a yeast two-hybrid assay, we found that the carboxyl-terminal region (CT of Pxa2p, but not of Pxa1p, is required for their interaction. Further analysis indicated that the central part of the CT (designated CT2 of Pxa2p was indispensable for its interaction with the carboxyl terminally truncated Pxa1_NBD. An interaction between the CT of Pxa2p and Pxa1_NBD was not detected, but could be identified in the presence of Pxa2_NBD-CT1. A single mutation of two conserved residues (aligned with X-ALD-associated mutations at the same positions in ALDP in the CT2 of the Pxa2_NBD-CT protein impaired its interaction with Pxa1_NBD or Pxa1_NBD-CT, resulting in a mutant protein that exhibited a proteinase K digestion profile different from that of the wild-type protein. Functional analysis of these mutant proteins on oleate plates indicated that they were defective in transporter function.The CT of Pxa2p is involved in its interaction with Pxa1p and in transporter function. This concept may be applied to human ALDP studies, helping to establish the pathological mechanism for CT-related X

  10. Cortical thickness, cortical surface area and subcortical volumes in schizophrenia and bipolar disorder patients with cannabis use.

    Science.gov (United States)

    Hartberg, Cecilie Bhandari; Lange, Elisabeth H; Lagerberg, Trine Vik; Haukvik, Unn K; Andreassen, Ole A; Melle, Ingrid; Agartz, Ingrid

    2018-01-01

    Cannabis is associated with increased risk for severe mental illness and is commonly used among individuals with schizophrenia or bipolar disorder. In this study we investigated associations between cannabis use and brain structures among patients with schizophrenia or bipolar disorders. Magnetic resonance imaging scans were obtained for 77 schizophrenia and 55 bipolar patients with a history of cannabis use (defined as lifetime use >10 times during one month or abuse/dependence), and 97 schizophrenia, 85 bipolar disorder patients and 277 healthy controls without any previous cannabis use. Cortical thickness, cortical surface area and subcortical volumes were compared between groups. Both hypothesis-driven region-of-interest analyses from 11 preselected brain regions in each hemisphere and exploratory point-by-point analyses were performed. We tested for diagnostic interactions and controlled for potential confounders. After controlling for confounders such as tobacco use and alcohol use disorders we found reduced cortical thickness in the caudal middle frontal gyrus compared to non-user patients and healthy controls. The findings were not significant when patients with co-morbid alcohol and illicit drug use were excluded from the analyses, but onset of cannabis use before illness onset was associated with cortical thinning in the caudal middle frontal gyrus. To conclude, we found no structural brain changes associated with cannabis use among patients with severe mental illness, but the findings indicate excess cortical thinning among those who use cannabis before illness onset. The present findings support the understanding that cannabis use is associated with limited brain effects in schizophrenia as well as bipolar disorder. Copyright © 2017 Elsevier B.V. and ECNP. All rights reserved.

  11. Cerebral blood flow alterations as assessed by 3D ASL in cognitive impairment in patients with subcortical vascular cognitive impairment: A marker for disease severity

    Directory of Open Access Journals (Sweden)

    Yawen Sun

    2016-08-01

    Full Text Available Abnormal reductions in cortical cerebral blood flow (CBF have been identified in subcortical vascular cognitive impairment (SVCI. However, little is known about the pattern of CBF reduction in relation with degree of cognitive impairment. CBF measured with 3D Arterial Spin Labeling (ASL perfusion MRI helps detect functional changes in subjects with SVCI. We aimed to compare CBF maps in subcortical ischemic vascular disease (SIVD subjects with and without cognitive impairment and to detect the relationship of the regions of CBF reduction in the brain with the degree of cognitive impairment according to the z-score. A total of 53 subjects with SVCI and 23 matched SIVD subjects without cognitive impairment (controls underwent a whole-brain 3D ASL MRI in the resting state. Regional CBF (rCBF was compared voxel wise by using an analysis of variance design in a statistical parametric mapping program, with patient age and sex as covariates. Correlations were calculated between the rCBF value in the whole brain and the z-score in the 53 subjects with SVCI. Compared with the control subjects, SVCI group demonstrated diffuse decreased CBF in the brain. Significant positive correlations were determined in the rCBF values in the left hippocampus, left superior temporal pole gyrus, right superior frontal orbital lobe, right medial frontal orbital lobe, right middle temporal lobe, left thalamus, and right insula with the z-scores in SVCI group. The noninvasively quantified resting CBF demonstrated altered CBF distributions in the SVCI brain. The deficit brain perfusions in the temporal and frontal lobe, hippocampus, thalamus, and insula was related to the degree of cognitive impairment. Its relationship to cognition indicates the clinical relevance of this functional marker. Thus, our results provide further evidence for the mechanism underlying the cognitive deficit in patients with SVCI.

  12. An Italian kindred with cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL).

    Science.gov (United States)

    Ragno, M; Tournier-Lasserve, E; Fiori, M G; Manca, A; Patrosso, M C; Ferlini, A; Sirocchi, G; Trojano, L; Chabriat, H; Salvi, F

    1995-08-01

    Vascular dementia is usually sporadic and associated with definite risk factors. Several cases also occur in a familial fashion, and may affect middle-aged or even younger subjects. Recently, an autosomal dominant inheritance was demonstrated in two unrelated French families, the members of which were affected by stroke-like episodes culminating in progressive dementia. Genetic linkage analysis assigned the disease locus to chromosome 19q12. We report an additional kindred of Italian origin in which at least 16 subjects presented leukoencephalopathic alterations. Recurrent strokes, psychiatric disturbances, dementia, and in 2 members, tetraplegia and pseudobulbar palsy were the hallmarks of this syndrome. Notably, 5 asymptomatic individuals had neuroradiological signs of leukoencephalopathy. Pathological examination of 1 subject revealed a widespread vasculopathy of the perforating arterioles, characterized by deposition of eosinophilic-congophilic material that did not immunostain with antibodies against prion protein, beta-amyloid, cystatin C, transthyretin, or heat-shock protein 70 and was similar to that described in the French families. Based on the maximum lod score, the most likely location for the disease locus was also mapped to chromosome 19q12, and found to coincide with the CADASIL (cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy) locus. The present results confirm the existence of a nosologically distinct, autosomal dominant cerebrovascular disease, presenting with recurrent subcortical ischemic strokes independent of vascular risk factors.

  13. Continuous subcortical motor evoked potential stimulation using the tip of an ultrasonic aspirator for the resection of motor eloquent lesions.

    Science.gov (United States)

    Shiban, Ehab; Krieg, Sandro M; Obermueller, Thomas; Wostrack, Maria; Meyer, Bernhard; Ringel, Florian

    2015-08-01

    Resection of a motor eloquent lesion has become safer because of intraoperative neurophysiological monitoring (IOM). Stimulation of subcortical motor evoked potentials (scMEPs) is increasingly used to optimize patient safety. So far, scMEP stimulation has been performed intermittently during resection of eloquently located lesions. Authors of the present study assessed the possibility of using a resection instrument for continuous stimulation of scMEPs. An ultrasonic surgical aspirator was attached to an IOM stimulator and was used as a monopolar subcortical stimulation probe. The effect of the aspirator's use at different ultrasound power levels (0%, 25%, 50%, 75%, and 100%) on stimulation intensity was examined in a saline bath. Afterward monopolar stimulation with the surgical aspirator was used during the resection of subcortical lesions in the vicinity of the corticospinal tract in 14 patients in comparison with scMEP stimulation via a standard stimulation electrode. During resection, the stimulation current at which an MEP response was still measurable with subcortical stimulation using the surgical aspirator was compared with the corresponding stimulation current needed using a standard monopolar subcortical stimulation probe at the same location. The use of ultrasound at different energy levels did result in a slight but irrelevant increase in stimulation energy via the tip of the surgical aspirator in the saline bath. Stimulation of scMEPs using the surgical aspirator or monopolar probe was successful and almost identical in all patients. One patient developed a new permanent neurological deficit. Transient new postoperative paresis was observed in 28% (4 of 14) of cases. Gross-total resection was achieved in 64% (9 of 14) cases and subtotal resection (> 80% of tumor mass) in 35% (5 of 14). Continuous motor mapping using subcortical stimulation via a surgical aspirator, in comparison with the sequential use of a standard monopolar stimulation probe, is a

  14. The Hinge Region of Bovine Zona Pellucida Glycoprotein ZP3 Is Involved in the Formation of the Sperm-Binding Active ZP3/ZP4 Complex

    Directory of Open Access Journals (Sweden)

    Kaori Suzuki

    2015-11-01

    Full Text Available The zona pellucida (ZP surrounds the mammalian oocyte and mediates species-selective sperm-oocyte interactions. Bovine ZP consists of glycoproteins ZP2, ZP3, and ZP4. Neither ZP3 nor ZP4 alone shows inhibitory activity for the binding of sperm to the ZP; however, this activity is seen with the ZP3/ZP4 heterocomplex. Here, we constructed a series of bovine ZP3 mutants to identify the ZP4-binding site on ZP3. Each ZP3 mutant was co-expressed with ZP4 using a baculovirus-Sf9 cell expression system and examined for interaction with ZP4 as well as inhibitory activity for sperm-ZP binding. N-terminal fragment Arg-32 to Arg-160 of ZP3 interacted with ZP4 and inhibited sperm-ZP binding, whereas fragment Arg-32 to Thr-155 showed much weaker interaction with ZP4. Mutation of N-glycosylated Asn-146 to Asp in the N-terminal fragment Arg-32 to Glu-178 of ZP3 did not interrupt the interaction of this fragment with ZP4, but it did reduce the inhibitory activity of the complex for sperm-ZP binding. In contrast, mutation of N-glycosylated Asn-124 to Asp did not significantly reduce the activity. Taken together, these results suggest that one of the ZP4 binding sites exists in the flexible hinge region of ZP3 and that the N-glycosylation in this region is involved in the sperm binding.

  15. The Hinge Region of Bovine Zona Pellucida Glycoprotein ZP3 Is Involved in the Formation of the Sperm-Binding Active ZP3/ZP4 Complex

    Science.gov (United States)

    Suzuki, Kaori; Tatebe, Nanami; Kojima, Sayuri; Hamano, Ayumi; Orita, Misaki; Yonezawa, Naoto

    2015-01-01

    The zona pellucida (ZP) surrounds the mammalian oocyte and mediates species-selective sperm-oocyte interactions. Bovine ZP consists of glycoproteins ZP2, ZP3, and ZP4. Neither ZP3 nor ZP4 alone shows inhibitory activity for the binding of sperm to the ZP; however, this activity is seen with the ZP3/ZP4 heterocomplex. Here, we constructed a series of bovine ZP3 mutants to identify the ZP4-binding site on ZP3. Each ZP3 mutant was co-expressed with ZP4 using a baculovirus-Sf9 cell expression system and examined for interaction with ZP4 as well as inhibitory activity for sperm-ZP binding. N-terminal fragment Arg-32 to Arg-160 of ZP3 interacted with ZP4 and inhibited sperm-ZP binding, whereas fragment Arg-32 to Thr-155 showed much weaker interaction with ZP4. Mutation of N-glycosylated Asn-146 to Asp in the N-terminal fragment Arg-32 to Glu-178 of ZP3 did not interrupt the interaction of this fragment with ZP4, but it did reduce the inhibitory activity of the complex for sperm-ZP binding. In contrast, mutation of N-glycosylated Asn-124 to Asp did not significantly reduce the activity. Taken together, these results suggest that one of the ZP4 binding sites exists in the flexible hinge region of ZP3 and that the N-glycosylation in this region is involved in the sperm binding. PMID:26610590

  16. White matter involvement in sporadic Creutzfeldt-Jakob disease.

    Science.gov (United States)

    Caverzasi, Eduardo; Mandelli, Maria Luisa; DeArmond, Stephen J; Hess, Christopher P; Vitali, Paolo; Papinutto, Nico; Oehler, Abby; Miller, Bruce L; Lobach, Irina V; Bastianello, Stefano; Geschwind, Michael D; Henry, Roland G

    2014-12-01

    Sporadic Creutzfeldt-Jakob disease is considered primarily a disease of grey matter, although the extent of white matter involvement has not been well described. We used diffusion tensor imaging to study the white matter in sporadic Creutzfeldt-Jakob disease compared to healthy control subjects and to correlated magnetic resonance imaging findings with histopathology. Twenty-six patients with sporadic Creutzfeldt-Jakob disease and nine age- and gender-matched healthy control subjects underwent volumetric T1-weighted and diffusion tensor imaging. Six patients had post-mortem brain analysis available for assessment of neuropathological findings associated with prion disease. Parcellation of the subcortical white matter was performed on 3D T1-weighted volumes using Freesurfer. Diffusion tensor imaging maps were calculated and transformed to the 3D-T1 space; the average value for each diffusion metric was calculated in the total white matter and in regional volumes of interest. Tract-based spatial statistics analysis was also performed to investigate the deeper white matter tracts. There was a significant reduction of mean (P=0.002), axial (P=0.0003) and radial (P=0.0134) diffusivities in the total white matter in sporadic Creutzfeldt-Jakob disease. Mean diffusivity was significantly lower in most white matter volumes of interest (Pchanges in white matter anisotropy. Tract-based spatial statistics analysis showed significant reductions of mean diffusivity within the white matter of patients with sporadic Creutzfeldt-Jakob disease, mainly in the left hemisphere, with a strong trend (P=0.06) towards reduced mean diffusivity in most of the white matter bilaterally. In contrast, by visual assessment there was no white matter abnormality either on T2-weighted or diffusion-weighted images. Widespread reduction in white matter mean diffusivity, however, was apparent visibly on the quantitative attenuation coefficient maps compared to healthy control subjects

  17. Endogenous oscillations of electric potential difference in the cambial region of the pine stem. II. Possible involvement of the oscillations in xylogenesis

    Directory of Open Access Journals (Sweden)

    Wojciech Kurek

    2014-01-01

    Full Text Available Direct and indirect interrelations between xylogenic processes and the endogenous electric potential difference (PD oscillations generated in the cambial region of isolated tissue blocks from pine trunks were investigated. The frequency of transient PD changes varied during the season and displayed three minima which were concurrent with periods of initiation and termination of cambial activity and with the time of transition from early- to late-wood production. The oscillations were damped by TIBA - an inhibitor of polar auxin transport and stimulated by IAA, but only when the hormone was supplied to the apical end of the tissue block. This suggests that the polar transport of auxin may be involved in generation of the transient PD changes. Results of 2-channel recordings in one tissue block suggest that a part of the recorded oscillations (10-25 % exhibit coordination in space and time: a wave-like pattern along the trunk axis is created by PD changes. The pattern might be a physical carrier of information coordinating processes of growth and differentiation in distant parts of the tree.

  18. Contribution of the resting-state functional connectivity of the contralesional primary sensorimotor cortex to motor recovery after subcortical stroke.

    Directory of Open Access Journals (Sweden)

    Huijuan Xu

    Full Text Available It remains uncertain if the contralesional primary sensorimotor cortex (CL_PSMC contributes to motor recovery after stroke. Here we investigated longitudinal changes in the resting-state functional connectivity (rsFC of the CL_PSMC and their association with motor recovery. Thirteen patients who had experienced subcortical stroke underwent a series of resting-state fMRI and clinical assessments over a period of 1 year at 5 time points, i.e., within the first week, at 2 weeks, 1 month, 3 months, and 1 year after stroke onset. Thirteen age- and gender-matched healthy subjects were recruited as controls. The CL_PSMC was defined as a region centered at the voxel that had greatest activation during hand motion task. The dynamic changes in the rsFCs of the CL_PSMC within the whole brain were evaluated and correlated with the Motricity Index (MI scores. Compared with healthy controls, the rsFCs of the CL_PSMC with the bilateral PSMC were initially decreased, then gradually increased, and finally restored to the normal level 1 year later. Moreover, the dynamic change in the inter-hemispheric rsFC between the bilateral PSMC in these patients was positively correlated with the MI scores. However, the intra-hemispheric rsFC of the CL_PSMC was not correlated with the MI scores. This study shows dynamic changes in the rsFCs of the CL_PSMC after stroke and suggests that the increased inter-hemispheric rsFC between the bilateral PSMC may facilitate motor recovery in stroke patients. However, generalization of our findings is limited by the small sample size of our study and needs to be confirmed.

  19. High thickness histological sections as alternative to study the three-dimensional microscopic human sub-cortical neuroanatomy.

    Science.gov (United States)

    Alho, Eduardo Joaquim Lopes; Alho, Ana Tereza Di Lorenzo; Grinberg, Lea; Amaro, Edson; Dos Santos, Gláucia Aparecida Bento; da Silva, Rafael Emídio; Neves, Ricardo Caires; Alegro, Maryana; Coelho, Daniel Boari; Teixeira, Manoel Jacobsen; Fonoff, Erich Talamoni; Heinsen, Helmut

    2017-11-01

    Stereotaxy is based on the precise image-guided spatial localization of targets within the human brain. Even with the recent advances in MRI technology, histological examination renders different (and complementary) information of the nervous tissue. Although several maps have been selected as a basis for correlating imaging results with the anatomical locations of sub-cortical structures, technical limitations interfere in a point-to-point correlation between imaging and anatomy due to the lack of precise correction for post-mortem tissue deformations caused by tissue fixation and processing. We present an alternative method to parcellate human brain cytoarchitectural regions, minimizing deformations caused by post-mortem and tissue-processing artifacts and enhancing segmentation by means of modified high thickness histological techniques and registration with MRI of the same specimen and into MNI space (ICBM152). A three-dimensional (3D) histological atlas of the human thalamus, basal ganglia, and basal forebrain cholinergic system is displayed. Structure's segmentations were performed in high-resolution dark-field and light-field microscopy. Bidimensional non-linear registration of the histological slices was followed by 3D registration with in situ MRI of the same subject. Manual and automated registration procedures were adopted and compared. To evaluate the quality of the registration procedures, Dice similarity coefficient and normalized weighted spectral distance were calculated and the results indicate good overlap between registered volumes and a small shape difference between them in both manual and automated registration methods. High thickness high-resolution histological slices in combination with registration to in situ MRI of the same subject provide an effective alternative method to study nuclear boundaries in the human brain, enhancing segmentation and demanding less resources and time for tissue processing than traditional methods.

  20. Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, genetic homogeneity, and mapping of the locus within a 2-cM interval

    Energy Technology Data Exchange (ETDEWEB)

    Ducros, A.; Alamowitch, S.; Nagy, T. [INSERM U25, Paris (France)] [and others

    1996-01-01

    Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a recently identified autosomal dominant cerebral arteriopathy characterized by the recurrence of subcortical infarcts leading to dementia. A genetic linkage analysis conducted in two large families recently allowed us to map the affected gene on chromosome 19 in a 12-cM interval bracketed by D19S221 and D19S215. In the present study, these first 2 families and 13 additional ones, including a total of 199 potentially informative meiosis, have been genotyped with eight polymorphic markers located between D19S221 and D19S215. All families were linked to chromosome 19. The highest combined lod score (Z{sub max} = 37.24 at {theta} = .01) was obtained with marker D19S841, a new CA{sub n} microsatellite marker that we isolated from chromosome 19 cosmids. The recombinant events observed within these families were used to refine the genetic mapping of CADASIL within a 2-cM interval that is now bracketed by D19S226 and D19S199 on 19p13.1. These data strongly suggest the genetic homogeneity of this recently identified condition and establish the value of its clinical and neuroimaging diagnostic criteria. Besides their importance for the ongoing positional cloning of the CADASIL gene, these data help to refine the genetic mapping of CADASIL relative to familial hemiplegic migraine and hereditary paroxysmal cerebellar ataxia, conditions that we both mapped within the same chromosome 19 region. 35 refs., 5 figs., 2 tabs.

  1. [Preoperative direct cortical and sub-cortical electric stimulation during cerebral surgery in functional areas].

    Science.gov (United States)

    Duffau, H; Capelle, L; Sichez, J P; Bitar, A; Faillot, T; Arthuis, F; Van Effenterre, R; Fohanno, D

    1999-09-01

    Indications of surgical treatment for lesions in functional cerebral areas depend on the ratio between the definitive neurological deficit and the beneficial effect of resection. Detection of eloquent cortex is difficult because of important individual variability. Peroperative direct cortical and subcortical electrical stimulations (DCS) provide the most precise and reliable method currently available allowing identification and preservation of neurons essential for motricity, sensitivity++ and language. We report our preliminary experience with DCS in surgery of intracerebral infiltrative tumors with a consecutive series of 15 patients operated from November 96 through September 97 in our institution. Presenting symptoms in the 15 patients (8 males, 7 females, mean age 43 years) were seizures in 11 cases (73%) and neurological deficit in 4 cases (27%). Clinical examination was normal in 11 patients and revealed hemiparesia in 4. Magnetic resonance imaging (MRI) with three-dimensional reconstruction showed a precentral tumor in 10 cases, central lesion in one patient, postcentral lesion in two cases, right insular tumor (non-dominant hemisphere) in one case. All patients underwent surgical resection using DCS with detection in 13 cases of motor cortex and subcortical pathways under genera anesthesia, in one case of somatosensory area under local anesthesia, and in one case of language areas also under local anesthesia. The tumor was recurrent in two patients had been operated earlier but without DCS. Resection, verified by postoperative MRI, was total in 12 cases (80%) and estimated at 80% in 3 patients. Histological examination revealed an infiltrative glioma in 12 cases (8 low grade astrocytomas, 3 low grade oligodendrogliomas, and one anaplastic oligodendroglioma), and metastases in 3 cases. Eight patients had no postoperative deficit, while the other 7 patients were impaired, with, in all cases except one, complete recovery in 15 days to 2 months. Direct

  2. Mutant GlialCAM Causes Megalencephalic Leukoencephalopathy with Subcortical Cysts, Benign Familial Macrocephaly, and Macrocephaly with Retardation and Autism

    NARCIS (Netherlands)

    López-Hernández, T.; Ridder, M.C.; Montolio, M.; Capdevila-Nortes, X.; Polder, E.; Sirisi, S.; Duarri, A.; Schulte, U.; Fakler, B.; Nunes, V.; Scheper, G.C.; Martinez, A; Estevez, R.; van der Knaap, M.S.

    2011-01-01

    Megalencephalic leukoencephalopathy with subcortical cysts (MLC) is a leukodystrophy characterized by early-onset macrocephaly and delayed-onset neurological deterioration. Recessive MLC1 mutations are observed in 75% of patients with MLC. Genetic-linkage studies failed to identify another gene. We

  3. Efficacy of two insecticides for protecting loblolly pines (Pinus taeda L.) from subcortical beetles (Coleoptera: Curculionidae and Cerambycidae)

    Science.gov (United States)

    Jordon L. Burke; James L. Hanula; Scott Horn; Jackson P. Audley; Kamal JK. Gandhi

    2012-01-01

    Tests were conducted on two insecticides (carbaryl and bifenthrin) for excluding subcortical beetles (Coleoptera: Curculionidae and Cerambycidae) from loblolly pine trees (Pinus taeda L.). Two trap designs (single- and double-pane windows) and two trapping heights (1.5 and 4m) were also evaluated for maximizing beetle catches.

  4. Brainstem Evoked Potential Indices of Subcortical Auditory Processing After Mild Traumatic Brain Injury.

    Science.gov (United States)

    Vander Werff, Kathy R; Rieger, Brian

    The primary aim of this study was to assess subcortical auditory processing in individuals with chronic symptoms after mild traumatic brain injury (mTBI) by measuring auditory brainstem responses (ABRs) to standard click and complex speech stimuli. Consistent with reports in the literature of auditory problems after mTBI (despite normal-hearing thresholds), it was hypothesized that individuals with mTBI would have evidence of impaired neural encoding in the auditory brainstem compared to noninjured controls, as evidenced by delayed latencies and reduced amplitudes of ABR components. We further hypothesized that the speech-evoked ABR would be more sensitive than the click-evoked ABR to group differences because of its complex nature, particularly when recorded in a background noise condition. Click- and speech-ABRs were collected in 32 individuals diagnosed with mTBI in the past 3 to 18 months. All mTBI participants were experiencing ongoing injury symptoms for which they were seeking rehabilitation through a brain injury rehabilitation management program. The same data were collected in a group of 32 age- and gender-matched controls with no history of head injury. ABRs were recorded in both left and right ears for all participants in all conditions. Speech-ABRs were collected in both quiet and in a background of continuous 20-talker babble ipsilateral noise. Peak latencies and amplitudes were compared between groups and across subgroups of mTBI participants categorized by their behavioral auditory test performance. Click-ABR results were not significantly different between the mTBI and control groups. However, when comparing the control group to only those mTBI subjects with measurably decreased performance on auditory behavioral tests, small differences emerged, including delayed latencies for waves I, III, and V. Similarly, few significant group differences were observed for peak amplitudes and latencies of the speech-ABR when comparing at the whole group level

  5. Neuropsychological profile of a 9-year-old child with subcortical band heterotopia or 'double cortex'.

    Science.gov (United States)

    Jacobs, R; Anderson, V; Harvey, A S

    2001-09-01

    Subcortical band heterotopia (SBH) or 'double cortex', is a congenital brain abnormality that results from aberrant migration of neurons during development of the cortex. MRI shows a continuous band of heterotopic grey matter located between the cortex and ventricular walls, separated from them by a thin layer of white matter. The condition is quite rare, found predominantly in females, and is occasionally familial with an X-linked dominant inheritance. Current research has focused on genetic and neurological correlates, with cognitive assessment restricted to a global measure of general intellectual functioning. This paper describes in detail the results of a neuropsychological assessment of a 9-year-old female recently diagnosed with SBH. Predominant features were a significantly reduced speed of processing for visuomotor and oral output and reduced immediate registration of information. This difficulty has functional implications affecting skill acquisition, learning in the classroom, and social interaction.

  6. Advanced structural multimodal imaging of a patient with subcortical band heterotopia.

    Science.gov (United States)

    Kini, Lohith G; Nasrallah, Ilya M; Coto, Carlos; Ferraro, Lindsay C; Davis, Kathryn A

    2016-12-01

    Subcortical band heterotopia (SBH) is a disorder of neuronal migration most commonly due to mutations of the Doublecortin (DCX) gene. A range of phenotypes is seen, with most patients having some degree of epilepsy and intellectual disability. Advanced diffusion and structural magnetic resonance imaging (MRI) sequences may be useful in identifying heterotopias and dysplasias of different sizes in drug-resistant epilepsy. We describe a patient with SBH and drug-resistant epilepsy and investigate neurite density, neurite dispersion, and diffusion parameters as compared to a healthy control through the use of multiple advanced MRI modalities. Neurite density and dispersion in heterotopia was found to be more similar to white matter than gray matter. Neurite density and dispersion maps obtained using diffusion imaging may be able to better characterize different subtypes of heterotopia.

  7. [A male case of subcortical band heterotopia with somatic mosaicism of DCX mutation].

    Science.gov (United States)

    Igarashi, Aiko; Kawatani, Masao; Ohta, Genrei; Kometani, Hiroshi; Ohshima, Yusei; Kato, Mitsuhiro

    2013-09-01

    This report describes a male case of subcortical band heterotopia (SBH) with somatic mosaicism of doublecortin (DCX) mutation. His brain MRI revealed bilateral SBH with anterior dominant pachygyria. Although he had infantile spasms from 5-months old and showed mild developmental delay, he responded well to vitamin B6 and ACTH therapy. We conducted DCX mutation analysis using peripheral blood lymphocytes of the proband and his parents. Only the present case showed the mixture pattern of missense mutation (c. 167 G>C) and normal sequence of DCX gene indicating that the present case resulted from somatic mosaicism of de novo DCX mutation. Male patients with DCX mutations generally present with the classical type of lissencephaly, severe developmental delay, and intractable epilepsy. However, somatic mosaic mutation of DCX can lead to SBH in males.

  8. Subcortical laminar heterotopia in two sisters and their mother: MRI, clinical findings and pathogenesis.

    Science.gov (United States)

    van der Valk, P H; Snoeck, I; Meiners, L C; des Portes, V; Chelly, J; Pinard, J M; Ippel, P F; van Nieuwenhuizen, O; Peters, A C

    1999-06-01

    MR imaging, clinical data and underlying pathogenesis of subcortical laminar heterotopia (SCLH), also known as band heterotopia, in two sisters and their mother are presented. On MR imaging a different degree of SCLH was found in all three affected family-members. The inversion recovery sequence was considered most useful in the demonstration of the heterotopic band of gray matter and the assessment of cortical thickness. The younger sister presented with epileptic seizures at the age of five months and a delayed achievement of developmental milestones. The older sister of seven years had epileptic seizures since the age of one year, and developmental delay. Their mother has only had one seizure-like episode at the age of 39. Her psychomotor development had been normal. Investigation of DNA samples of the three female family-members revealed a mutation in the X-linked doublecortin gene. Within families with band heterotopia, this gene has also been related to male family members with lissencephaly.

  9. Elderly listeners with low intelligibility scores under reverberation show degraded subcortical representation of reverberant speech.

    Science.gov (United States)

    Fujihira, H; Shiraishi, K; Remijn, G B

    2017-01-10

    In order to elucidate why many elderly listeners have difficulty understanding speech under reverberation, we investigated the relationship between word intelligibility and auditory brainstem responses (ABRs) in 28 elderly listeners. We hypothesized that the elderly listeners with low word intelligibility scores under reverberation would show degraded subcortical encoding information of reverberant speech as expressed in their ABRs towards a reverberant /da/ syllable. The participants were divided into two groups (top and bottom performance groups) according to their word intelligibility scores for anechoic and reverberant words, and ABR characteristics between groups were compared. We found that correlation coefficients between responses to anechoic and reverberant /da/ were lower in the bottom performance group than in the top performance group. This result suggests that degraded neural representation toward information of reverberant speech may account for lower intelligibility of reverberant speech in elderly listeners. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  10. Degranulating mast cells in fibrotic regions of human tumors and evidence that mast cell heparin interferes with the growth of tumor cells through a mechanism involving fibroblasts

    Directory of Open Access Journals (Sweden)

    Kanakubo Emi

    2005-09-01

    Full Text Available Abstract Background The purpose of this study was to test the hypothesis that mast cells that are present in fibrotic regions of cancer can suppress the growth of tumor cells through an indirect mechanism involving peri-tumoral fibroblasts. Methods We first immunostained a wide variety of human cancers for the presence of degranulated mast cells. In a subsequent series of controlled in vitro experiments, we then co-cultured UACC-812 human breast cancer cells with normal fibroblasts in the presence or absence of different combinations and doses of mast cell tryptase, mast cell heparin, a lysate of the human mast cell line HMC-1, and fibroblast growth factor-7 (FGF-7, a powerful, heparin-binding growth factor for breast epithelial cells. Results Degranulating mast cells were localized predominantly in the fibrous tissue of every case of breast cancer, head and neck cancer, lung cancer, ovarian cancer, non-Hodgkin's lymphoma, and Hodgkin's disease that we examined. Mast cell tryptase and HMC-1 lysate had no significant effect on the clonogenic growth of cancer cells co-cultured with fibroblasts. By contrast, mast cell heparin at multiple doses significantly reduced the size and number of colonies of tumor cells co-cultured with fibroblasts, especially in the presence of FGF-7. Neither heparin nor FGF-7, individually or in combination, produced any significant effect on the clonogenic growth of breast cancer cells cultured without fibroblasts. Conclusion Degranulating mast cells are restricted to peri-tumoral fibrous tissue, and mast cell heparin is a powerful inhibitor of clonogenic growth of tumor cells co-cultured with fibroblasts. These results may help to explain the well-known ability of heparin to inhibit the growth of primary and metastatic tumors.

  11. Identifying novel transcription factors involved in the inflammatory response by using binding site motif scanning in genomic regions defined by histone acetylation.

    Science.gov (United States)

    Askovich, Peter S; Ramsey, Stephen A; Diercks, Alan H; Kennedy, Kathleen A; Knijnenburg, Theo A; Aderem, Alan

    2017-01-01

    The innate immune response to pathogenic challenge is a complex, multi-staged process involving thousands of genes. While numerous transcription factors that act as master regulators of this response have been identified, the temporal complexity of gene expression changes in response to pathogen-associated molecular pattern receptor stimulation strongly suggest that additional layers of regulation remain to be uncovered. The evolved pathogen response program in mammalian innate immune cells is understood to reflect a compromise between the probability of clearing the infection and the extent of tissue damage and inflammatory sequelae it causes. Because of that, a key challenge to delineating the regulators that control the temporal inflammatory response is that an innate immune regulator that may confer a selective advantage in the wild may be dispensable in the lab setting. In order to better understand the complete transcriptional response of primary macrophages to the bacterial endotoxin lipopolysaccharide (LPS), we designed a method that integrates temporally resolved gene expression and chromatin-accessibility measurements from mouse macrophages. By correlating changes in transcription factor binding site motif enrichment scores, calculated within regions of accessible chromatin, with the average temporal expression profile of a gene cluster, we screened for transcriptional factors that regulate the cluster. We have validated our predictions of LPS-stimulated transcriptional regulators using ChIP-seq data for three transcription factors with experimentally confirmed functions in innate immunity. In addition, we predict a role in the macrophage LPS response for several novel transcription factors that have not previously been implicated in immune responses. This method is applicable to any experimental situation where temporal gene expression and chromatin-accessibility data are available.

  12. Limbic justice--amygdala involvement in immediate rejection in the Ultimatum Game.

    Directory of Open Access Journals (Sweden)

    Katarina Gospic

    2011-05-01

    Full Text Available Imaging studies have revealed a putative neural account of emotional bias in decision making. However, it has been difficult in previous studies to identify the causal role of the different sub-regions involved in decision making. The Ultimatum Game (UG is a game to study the punishment of norm-violating behavior. In a previous influential paper on UG it was suggested that frontal insular cortex has a pivotal role in the rejection response. This view has not been reconciled with a vast literature that attributes a crucial role in emotional decision making to a subcortical structure (i.e., amygdala. In this study we propose an anatomy-informed model that may join these views. We also present a design that detects the functional anatomical response to unfair proposals in a subcortical network that mediates rapid reactive responses. We used a functional MRI paradigm to study the early components of decision making and challenged our paradigm with the introduction of a pharmacological intervention to perturb the elicited behavioral and neural response. Benzodiazepine treatment decreased the rejection rate (from 37.6% to 19.0% concomitantly with a diminished amygdala response to unfair proposals, and this in spite of an unchanged feeling of unfairness and unchanged insular response. In the control group, rejection was directly linked to an increase in amygdala activity. These results allow a functional anatomical detection of the early neural components of rejection associated with the initial reactive emotional response. Thus, the act of immediate rejection seems to be mediated by the limbic system and is not solely driven by cortical processes, as previously suggested. Our results also prompt an ethical discussion as we demonstrated that a commonly used drug influences core functions in the human brain that underlie individual autonomy and economic decision making.

  13. Neuropsychiatric characteristics of PiB-negative subcortical vascular dementia versus behavioral variant frontotemporal dementia.

    Science.gov (United States)

    Jung, Na-Yeon; Kim, Hee Jin; Kim, Yeo Jin; Kim, Seonwoo; Seo, Sang Won; Kim, Eun-Joo; Na, Duk L

    2016-01-01

    Neuropsychiatric symptoms of subcortical vascular dementia (SVaD) are mainly associated with damage to frontal-subcortical circuits and may be similar to symptoms of behavioral variant frontotemporal dementia (bvFTD). The aim of this study was to determine whether the neuropsychiatric manifestations of the Pittsburgh compound B (PiB)-negative SVaD and bvFTD groups differ. We compared the Caregiver-Administered Neuropsychiatry Inventory (CGA-NPI) between 48 patients with PiB(-) SVaD and 31 patients with bvFTD. A stepwise logistic regression was applied to determine the best model to predict SVaD. The SVaD group showed a higher frequency of depression, whereas the bvFTD group had a higher frequency of elation, aberrant motor behavior and appetite/eating disorders. Regarding NPI subscores, the bvFTD group had greater severity of elation, apathy, disinhibition, aberrant motor behavior and appetite/eating disorders, whereas SVaD did not have significantly higher subscores in any domains. The most predictive models that tend to find suggestions of SVaD, as opposed to bvFTD, are as follows: (1) the presence of depression and the absence of appetite/eating disorders, (2) higher NPI subscores of depression and lower NPI subscores of irritability and aberrant motor behavior. Apart from apathy, SVaD differed from bvFTD in that negative symptoms were more common in SVaD than bvFTD, whereas positive symptoms were predominant in bvFTD compared to SVaD. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Subcortical processing of speech regularities underlies reading and music aptitude in children

    Science.gov (United States)

    2011-01-01

    Background Neural sensitivity to acoustic regularities supports fundamental human behaviors such as hearing in noise and reading. Although the failure to encode acoustic regularities in ongoing speech has been associated with language and literacy deficits, how auditory expertise, such as the expertise that is associated with musical skill, relates to the brainstem processing of speech regularities is unknown. An association between musical skill and neural sensitivity to acoustic regularities would not be surprising given the importance of repetition and regularity in music. Here, we aimed to define relationships between the subcortical processing of speech regularities, music aptitude, and reading abilities in children with and without reading impairment. We hypothesized that, in combination with auditory cognitive abilities, neural sensitivity to regularities in ongoing speech provides a common biological mechanism underlying the development of music and reading abilities. Methods We assessed auditory working memory and attention, music aptitude, reading ability, and neural sensitivity to acoustic regularities in 42 school-aged children with a wide range of reading ability. Neural sensitivity to acoustic regularities was assessed by recording brainstem responses to the same speech sound presented in predictable and variable speech streams. Results Through correlation analyses and structural equation modeling, we reveal that music aptitude and literacy both relate to the extent of subcortical adaptation to regularities in ongoing speech as well as with auditory working memory and attention. Relationships between music and speech processing are specifically driven by performance on a musical rhythm task, underscoring the importance of rhythmic regularity for both language and music. Conclusions These data indicate common brain mechanisms underlying reading and music abilities that relate to how the nervous system responds to regularities in auditory input

  15. Subcortical processing of speech regularities underlies reading and music aptitude in children.

    Science.gov (United States)

    Strait, Dana L; Hornickel, Jane; Kraus, Nina

    2011-10-17

    Neural sensitivity to acoustic regularities supports fundamental human behaviors such as hearing in noise and reading. Although the failure to encode acoustic regularities in ongoing speech has been associated with language and literacy deficits, how auditory expertise, such as the expertise that is associated with musical skill, relates to the brainstem processing of speech regularities is unknown. An association between musical skill and neural sensitivity to acoustic regularities would not be surprising given the importance of repetition and regularity in music. Here, we aimed to define relationships between the subcortical processing of speech regularities, music aptitude, and reading abilities in children with and without reading impairment. We hypothesized that, in combination with auditory cognitive abilities, neural sensitivity to regularities in ongoing speech provides a common biological mechanism underlying the development of music and reading abilities. We assessed auditory working memory and attention, music aptitude, reading ability, and neural sensitivity to acoustic regularities in 42 school-aged children with a wide range of reading ability. Neural sensitivity to acoustic regularities was assessed by recording brainstem responses to the same speech sound presented in predictable and variable speech streams. Through correlation analyses and structural equation modeling, we reveal that music aptitude and literacy both relate to the extent of subcortical adaptation to regularities in ongoing speech as well as with auditory working memory and attention. Relationships between music and speech processing are specifically driven by performance on a musical rhythm task, underscoring the importance of rhythmic regularity for both language and music. These data indicate common brain mechanisms underlying reading and music abilities that relate to how the nervous system responds to regularities in auditory input. Definition of common biological underpinnings

  16. Subcortical processing of speech regularities underlies reading and music aptitude in children

    Directory of Open Access Journals (Sweden)

    Strait Dana L

    2011-10-01

    Full Text Available Abstract Background Neural sensitivity to acoustic regularities supports fundamental human behaviors such as hearing in noise and reading. Although the failure to encode acoustic regularities in ongoing speech has been associated with language and literacy deficits, how auditory expertise, such as the expertise that is associated with musical skill, relates to the brainstem processing of speech regularities is unknown. An association between musical skill and neural sensitivity to acoustic regularities would not be surprising given the importance of repetition and regularity in music. Here, we aimed to define relationships between the subcortical processing of speech regularities, music aptitude, and reading abilities in children with and without reading impairment. We hypothesized that, in combination with auditory cognitive abilities, neural sensitivity to regularities in ongoing speech provides a common biological mechanism underlying the development of music and reading abilities. Methods We assessed auditory working memory and attention, music aptitude, reading ability, and neural sensitivity to acoustic regularities in 42 school-aged children with a wide range of reading ability. Neural sensitivity to acoustic regularities was assessed by recording brainstem responses to the same speech sound presented in predictable and variable speech streams. Results Through correlation analyses and structural equation modeling, we reveal that music aptitude and literacy both relate to the extent of subcortical adaptation to regularities in ongoing speech as well as with auditory working memory and attention. Relationships between music and speech processing are specifically driven by performance on a musical rhythm task, underscoring the importance of rhythmic regularity for both language and music. Conclusions These data indicate common brain mechanisms underlying reading and music abilities that relate to how the nervous system responds to

  17. 3D fully convolutional networks for subcortical segmentation in MRI: A large-scale study.

    Science.gov (United States)

    Dolz, Jose; Desrosiers, Christian; Ben Ayed, Ismail

    2017-04-24

    This study investigates a 3D and fully convolutional neural network (CNN) for subcortical brain structure segmentation in MRI. 3D CNN architectures have been generally avoided due to their computational and memory requirements during inference. We address the problem via small kernels, allowing deeper architectures. We further model both local and global context by embedding intermediate-layer outputs in the final prediction, which encourages consistency between features extracted at different scales and embeds fine-grained information directly in the segmentation process. Our model is efficiently trained end-to-end on a graphics processing unit (GPU), in a single stage, exploiting the dense inference capabilities of fully CNNs. We performed comprehensive experiments over two publicly available datasets. First, we demonstrate a state-of-the-art performance on the ISBR dataset. Then, we report a large-scale multi-site evaluation over 1112 unregistered subject datasets acquired from 17 different sites (ABIDE dataset), with ages ranging from 7 to 64 years, showing that our method is robust to various acquisition protocols, demographics and clinical factors. Our method yielded segmentations that are highly consistent with a standard atlas-based approach, while running in a fraction of the time needed by atlas-based methods and avoiding registration/normalization steps. This makes it convenient for massive multi-site neuroanatomical imaging studies. To the best of our knowledge, our work is the first to study subcortical structure segmentation on such large-scale and heterogeneous data. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Subcortical encoding of speech cues in children with congenital blindness.

    Science.gov (United States)

    Jafari, Zahra; Malayeri, Saeed

    2016-09-21

    Congenital visual deprivation underlies neural plasticity in different brain areas, and provides an outstanding opportunity to study the neuroplastic capabilities of the brain. The present study aimed to investigate the effect of congenital blindness on subcortical auditory processing using electrophysiological and behavioral assessments in children. A total of 47 children aged 8-12 years, including 22 congenitally blind (CB) children and 25 normal-sighted (NS) control, were studied. All children were tested using an auditory brainstem response (ABR) test with both click and speech stimuli. Speech recognition and musical abilities were tested using standard tools. Significant differences were observed between the two groups in speech ABR wave latencies A, F and O (p≤0.043), wave amplitude F (p = 0.039), V-A slope (p = 0.026), and three spectral magnitudes F0, F1 and HF (p≤0.002). CB children showed a superior performance compared to NS peers in all the subtests and the total score of musical abilities (p≤0.003). Moreover, they had significantly higher scores during the nonsense syllable test in noise than the NS children (p = 0.034). Significant negative correlations were found only in CB children between the total music score and both wave A (p = 0.039) and wave F (p = 0.029) latencies, as well as nonsense-syllable test in noise and the wave A latency (p = 0.041). Our results suggest that neuroplasticity resulting from congenital blindness can be measured subcortically and has a heightened effect on temporal, musical and speech processing abilities. The findings have been discussed based on models of plasticity and the influence of corticofugal modulation in synthesizing complex auditory stimuli.

  19. Brain networks involved in early versus late response anticipation and their relation to conflict processing.

    Science.gov (United States)

    Lütcke, Henry; Gevensleben, Holger; Albrecht, Björn; Frahm, Jens

    2009-11-01

    Previous electrophysiological studies have clearly identified separable neural events underlying early and late components of response anticipation. Functional neuroimaging studies, however, have so far failed to account for this separation. Here, we performed functional magnetic resonance imaging (fMRI) of an anticipation paradigm in 12 healthy adult subjects that reliably produced early and late expectancy waves in the electroencephalogram. We furthermore compared fMRI activations elicited during early and late anticipation to those associated with response conflict. Our results demonstrate the existence of distinct cortical and subcortical brain regions underlying early and late anticipation. Although late anticipatory behavior was associated with activations in dorsal ACC, frontal cortex, and thalamus, brain responses linked to the early expectancy wave were localized mainly in motor and premotor cortical areas as well as the caudate nucleus. Additionally, late anticipation was associated with increased activity in midbrain dopaminergic nuclei, very likely corresponding to the substantia nigra. Furthermore, whereas regions involved in late anticipation proved to be very similar to activations elicited by response conflict, this was not the case for early anticipation. The current study supports a distinction between early and late anticipatory processes, in line with a plethora of neurophysiological work, and for the first time describes the brain structures differentially involved in these processes.

  20. Drug Addiction and Its Underlying Neurobiological Basis: Neuroimaging Evidence for the Involvement of the Frontal Cortex

    Science.gov (United States)

    Goldstein, Rita Z.; Volkow, Nora D.

    2005-01-01

    Objective Studies of the neurobiological processes underlying drug addiction primarily have focused on limbic subcortical structures. Here the authors evaluated the role of frontal cortical structures in drug addiction. Method An integrated model of drug addiction that encompasses intoxication, bingeing, withdrawal, and craving is proposed. This model and findings from neuroimaging studies on the behavioral, cognitive, and emotional processes that are at the core of drug addiction were used to analyze the involvement of frontal structures in drug addiction. Results The orbitofrontal cortex and the anterior cingulate gyrus, which are regions neuroanatomically connected with limbic structures, are the frontal cortical areas most frequently implicated in drug addiction. They are activated in addicted subjects during intoxication, craving, and bingeing, and they are deactivated during withdrawal. These regions are also involved in higher-order cognitive and motivational functions, such as the ability to track, update, and modulate the salience of a reinforcer as a function of context and expectation and the ability to control and inhibit prepotent responses. Conclusions These results imply that addiction connotes cortically regulated cognitive and emotional processes, which result in the overvaluing of drug reinforcers, the undervaluing of alternative reinforcers, and deficits in inhibitory control for drug responses. These changes in addiction, which the authors call I-RISA (impaired response inhibition and salience attribution), expand the traditional concepts of drug dependence that emphasize limbic-regulated responses to pleasure and reward. PMID:12359667

  1. HOMOZYGOUS DELETION IN A SMALL-CELL LUNG-CANCER CELL-LINE INVOLVING A 3P21 REGION WITH A MARKED INSTABILITY IN YEAST ARTIFICIAL CHROMOSOMES

    NARCIS (Netherlands)

    KOK, K; van den Berg, Anke; VELDHUIS, PMJF; VANDERVEEN, AY; FRANKE, M; SCHOENMAKERS, EFPM; HULSBEEK, MMF; VANDERHOUT, AH; DELEIJ, L; VANDEVEN, W; BUYS, CHCM

    1994-01-01

    All types of lung carcinoma are characterized by a high frequency of loss of sequences from the short arm of chromosome 3, the smallest region of overlap containing D3F15S2 in band p21. Here we characterize a 440-kilobase segment from this region, which we found homozygously deleted in one of our

  2. The subcortical hidden side of focal motor seizures: evidence from micro-recordings and local field potentials.

    Science.gov (United States)

    Devergnas, Annaelle; Piallat, Brigitte; Prabhu, Shivadatta; Torres, Napoleon; Louis Benabid, Alim; David, Olivier; Chabardès, Stephan

    2012-07-01

    cortical activity throughout the seizure. In putamen, the synchronization appeared only by the end of seizures and for the two output structures, despite some increase of the oscillatory activity, the synchronization with the cortex was not significant. Our results suggest that the subthalamo-(external)-pallidal pathway is the main subcortical route involved during ictal motor seizures. Surprisingly, ictal activity did not propagate to the output structure of basal ganglia in that model. This finding may be important for clinical decisions of targeting when considering anti-epileptic neuromodulation in human beings suffering from disabling, drug resistant motor epilepsy.

  3. Common proteomic changes in the hippocampus in schizophrenia and bipolar disorder and particular evidence for involvement of cornu ammonis regions 2 and 3.

    LENUS (Irish Health Repository)

    2011-05-01

    The hippocampus is strongly implicated in schizophrenia and, to a lesser degree, bipolar disorder. Proteomic investigations of the different regions of the hippocampus may help us to clarify the basis and the disease specificity of the changes.

  4. Decreased subcortical and increased cortical degree centrality in a nonclinical college student sample with subclinical depressive symptoms: a resting-state fMRI study

    Directory of Open Access Journals (Sweden)

    Cuihua Gao

    2016-12-01

    Full Text Available Abnormal functional connectivity (FC at rest has been identified in clinical depressive disorder. However, very few studies have been conducted to understand the underlying neural substrates of subclinical depression. The newly proposed centrality analysis approach has been increasingly used to explore the large-scale brain network of mental diseases. This study aimed to identify the degree centrality (DC alteration of the brain network in subclinical depressive subjects. Thirty-seven candidates with subclinical depression and 34 well-matched healthy controls (HCs were recruited from the same sample of college students. All subjects underwent a resting-state fMRI (rs-fMRI scan to assess the DC of the whole brain. Compared with controls, subclinical depressive subjects displayed decreased DC in the right parahippocampal gyrus (PHG, left PHG/amygdala, and left caudate and elevated DC in the right posterior parietal lobule (PPL, left inferior frontal gyrus (IFG and left middle frontal gyrus (MFG. In addition, by using receiver operating characteristic (ROC analysis, we determined that the DC values in the regions with altered FC between the two groups can be used to differentiate subclinical depressive subjects from HCs. We suggest that decreased DC in subcortical and increased DC in cortical regions might be the neural substrates of subclinical depression.

  5. Decreased Subcortical and Increased Cortical Degree Centrality in a Nonclinical College Student Sample with Subclinical Depressive Symptoms: A Resting-State fMRI Study.

    Science.gov (United States)

    Gao, Cuihua; Wenhua, Liu; Liu, Yanli; Ruan, Xiuhang; Chen, Xin; Liu, Lingling; Yu, Shaode; Chan, Raymond C K; Wei, Xinhua; Jiang, Xinqing

    2016-01-01

    Abnormal functional connectivity (FC) at rest has been identified in clinical depressive disorder. However, very few studies have been conducted to understand the underlying neural substrates of subclinical depression. The newly proposed centrality analysis approach has been increasingly used to explore the large-scale brain network of mental diseases. This study aimed to identify the degree centrality (DC) alteration of the brain network in subclinical depressive subjects. Thirty-seven candidates with subclinical depression and 34 well-matched healthy controls (HCs) were recruited from the same sample of college students. All subjects underwent a resting-state fMRI (rs-fMRI) scan to assess the DC of the whole brain. Compared with controls, subclinical depressive subjects displayed decreased DC in the right parahippocampal gyrus (PHG), left PHG/amygdala, and left caudate and elevated DC in the right posterior parietal lobule (PPL), left inferior frontal gyrus (IFG) and left middle frontal gyrus (MFG). In addition, by using receiver operating characteristic (ROC) analysis, we determined that the DC values in the regions with altered FC between the two groups can be used to differentiate subclinical depressive subjects from HCs. We suggest that decreased DC in subcortical and increased DC in cortical regions might be the neural substrates of subclinical depression.

  6. Genetic influences on schizophrenia and subcortical brain volumes: large-scale proof-of-concept and roadmap for future studies

    Science.gov (United States)

    Anttila, Verneri; Hibar, Derrek P; van Hulzen, Kimm J E; Arias-Vasquez, Alejandro; Smoller, Jordan W; Nichols, Thomas E; Neale, Michael C; McIntosh, Andrew M; Lee, Phil; McMahon, Francis J; Meyer-Lindenberg, Andreas; Mattheisen, Manuel; Andreassen, Ole A; Gruber, Oliver; Sachdev, Perminder S; Roiz-Santiañez, Roberto; Saykin, Andrew J; Ehrlich, Stefan; Mather, Karen A; Turner, Jessica A; Schwarz, Emanuel; Thalamuthu, Anbupalam; Shugart, Yin Yao; Ho, Yvonne YW; Martin, Nicholas G; Wright, Margaret J

    2016-01-01

    Schizophrenia is a devastating psychiatric illness with high heritability. Brain structure and function differ, on average, between schizophrenia cases and healthy individuals. As common genetic associations are emerging for both schizophrenia and brain imaging phenotypes, we can now use genome-wide data to investigate genetic overlap. Here we integrated results from common variant studies of schizophrenia (33,636 cases, 43,008 controls) and volumes of several (mainly subcortical) brain structures (11,840 subjects). We did not find evidence of genetic overlap between schizophrenia risk and subcortical volume measures either at the level of common variant genetic architecture or for single genetic markers. The current study provides proof-of-concept (albeit based on a limited set of structural brain measures), and defines a roadmap for future studies investigating the genetic covariance between structural/functional brain phenotypes and risk for psychiatric disorders. PMID:26854805

  7. A clinical case of a patient with probable cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL from Chuvashia

    Directory of Open Access Journals (Sweden)

    Tatiana Vladimirovna Mokina

    2015-01-01

    Full Text Available Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL syndrome is a congenital small-vessel disease running with recurrent lacunar infarcts and leading to gradually progressive subcortical, pseudobulbar, and cerebellar syndromes and dementia. Neuroimaging reveal multiple lacunar infarcts in the basal ganglia, thalamus, pons Varolii, and cerebral hemispheric white matter, as well as cerebral atrophy. The specific feature of the disease is white matter lesion adjacent to the temporal horns of the lateral ventricles and to the external capsules. The paper describes a patient with CADASIL syndrome. The latter runs a progressive course and includes the following neurological disorders: cognitive, pyramidal, extrapyramidal, and axial ones. This clinical case was differentially diagnosed with multiple sclerosis, including with consideration for neuroimaging findings. The CADASIL syndrome is a rare potentially menacing neurological condition that is observed in young patients and requires a detailed examination using current diagnostic techniques.

  8. Faster scaling of visual neurons in cortical areas relative to subcortical structures in non-human primate brains

    OpenAIRE

    Collins, C. E.; Leitch, D. B.; Wong, P.; Kaas, J. H.; Herculano-Houzel, Suzana

    2012-01-01

    Cortical expansion, both in absolute terms and in relation to subcortical structures, is considered a major trend in mammalian brain evolution with important functional implications, given that cortical computations should add complexity and flexibility to information processing. Here, we investigate the numbers of neurons that compose 4 structures in the visual pathway across 11 non-human primate species to determine the scaling relationships that apply to these structures and among them. We...

  9. Subcortical connections of normotopic and heterotopic neurons in sensory and motor cortices of the tish mutant rat.

    Science.gov (United States)

    Schottler, F; Couture, D; Rao, A; Kahn, H; Lee, K S

    1998-05-25

    Orthograde and retrograde tracers were used to examine subcortical connections of neurons in the neurological mutant tish rat. This animal exhibits bilateral heterotopia similar to those observed in epileptic humans with subcortical band heterotopia. Terminal varicosities were labeled in the striatum, thalamus, brainstem, and spinal cord following injections of the anterograde tracer biotinylated dextran amine (BDA) into the heterotopic cortex. The general topography of corticothalamic projections was evaluated by injecting the retrograde tracer Fluoro-Gold (FG) into ventral thalamic nuclei. Retrograde labeling of small-to-medium sized neurons was observed in layer VI of topographically restricted portions of the normotopic cortex. Similar appearing cells were labeled in the neighboring portions of the underlying heterotopia; however, these neurons did not display characteristic lamination or radial orientation. Thalamocortical terminals labeled by injecting BDA into the ventroposterolateral nucleus (VPL) were observed primarily in layer IV of the medial aspect of the normotopic somatosensory cortex. In contrast, a radial column of terminals was present in the underlying heterotopia. Typical barrel labeling was found in the lateral aspect of the normotopic somatosensory cortex after injecting the ventroposteromedial nucleus (VPM), whereas more diffuse patches of labeling were observed in the underlying heterotopia. Heterotopic neurons in the tish cortex, thus, exhibit characteristic features of subcortical connectivity. Both normotopic and heterotopic neurons in the tish brain project to appropriate subcortical sites and establish bidirectional topographic connections with the thalamus. These results suggest that primary sensory-motor information is represented in a parallel manner in the normotopic and heterotopic cortices of the tish rat.

  10. Reduced frontal-subcortical white matter connectivity in association with suicidal ideation in major depressive disorder

    Science.gov (United States)

    Myung, W; Han, C E; Fava, M; Mischoulon, D; Papakostas, G I; Heo, J-Y; Kim, K W; Kim, S T; Kim, D J H; Kim, D K; Seo, S W; Seong, J-K; Jeon, H J

    2016-01-01

    Major depressive disorder (MDD) and suicidal behavior have been associated with structural and functional changes in the brain. However, little is known regarding alterations of brain networks in MDD patients with suicidal ideation. We investigated whether or not MDD patients with suicidal ideation have different topological organizations of white matter networks compared with MDD patients without suicidal ideation. Participants consisted of 24 patients with MDD and suicidal ideation, 25 age- and gender-matched MDD patients without suicidal ideation and 31 healthy subjects. A network-based statistics (NBS) and a graph theoretical analysis were performed to assess differences in the inter-regional connectivity. Diffusion tensor imaging (DTI) was performed to assess topological changes according to suicidal ideation in MDD patients. The Scale for Suicide Ideation (SSI) and the Korean version of the Barrett Impulsiveness Scale (BIS) were used to assess the severity of suicidal ideation and impulsivity, respectively. Reduced structural connectivity in a characterized subnetwork was found in patients with MDD and suicidal ideation by utilizing NBS analysis. The subnetwork included the regions of the frontosubcortical circuits and the regions involved in executive function in the left hemisphere (rostral middle frontal, pallidum, superior parietal, frontal pole, caudate, putamen and thalamus). The graph theoretical analysis demonstrated that network measures of the left rostral middle frontal had a significant positive correlation with severity of SSI (r=0.59, P=0.02) and BIS (r=0.59, P=0.01). The total edge strength that was significantly associated with suicidal ideation did not differ between MDD patients without suicidal ideation and healthy subjects. Our findings suggest that the reduced frontosubcortical circuit of structural connectivity, which includes regions associated with executive function and impulsivity, appears to have a role in the emergence of suicidal

  11. Circulating Biomarkers in Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy Patients.

    Science.gov (United States)

    Pescini, Francesca; Donnini, Ida; Cesari, Francesca; Nannucci, Serena; Valenti, Raffaella; Rinnoci, Valentina; Poggesi, Anna; Gori, Anna Maria; Giusti, Betti; Rogolino, Angela; Carluccio, Alessandra; Bianchi, Silvia; Dotti, Maria Teresa; Federico, Antonio; Balestrino, Maurizio; Adriano, Enrico; Abbate, Rosanna; Inzitari, Domenico; Pantoni, Leonardo

    2017-04-01

    Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is an inherited cerebral microangiopathy presenting with variable features, including migraine, psychiatric disorders, stroke, and cognitive decline and variable disability. On neuroimaging, CADASIL is characterized by leukoencephalopathy, multiple lacunar infarcts, and microbleeds. Previous studies suggest a possible role of endothelial impairment in the pathogenesis of the disease. We assessed plasma levels of von Willebrand factor (vWF) and thrombomodulin (TM) and the blood levels of endothelial progenitor cells (EPCs) and circulating progenitor cells (CPCs) in 49 CADASIL patients and 49 age-matched controls and their association with clinical/functional and neuroimaging features. In multivariate analysis, CADASIL patients had significantly higher vWF and lower EPC levels. TM levels were similar in the 2 groups. CADASIL patients with a more severe clinical phenotype (history of stroke or dementia) presented lower CPC levels in comparison with patients with a milder phenotype. On correlation analysis, lower CPC levels were associated with worse performances on neuropsychological, motor and functional tests, and with higher lesion load on brain magnetic resonance imaging (degree of leukoencephalopathy and number of lacunar infarcts). This is the first CADASIL series in which multiple circulating biomarkers have been studied. Our findings support previous studies on the presence and the possible modulating effect of endothelial impairment in the disease. Furthermore, our research data suggest that blood CPCs may be markers of disease severity. Copyright © 2017 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  12. Giant subcortical high-frequency SEPs in idiopathic generalized epilepsy: a protective mechanism against seizures?

    Science.gov (United States)

    Restuccia, Domenico; Valeriani, Massimiliano; Della Marca, Giacomo

    2007-01-01

    Recently, we found that high-frequency somatosensory evoked potentials (HF-SEPs), which are modulated by arousal-related structures, were abnormally enhanced during N-REM sleep in two seizure-free IGE patients [Restuccia D, Rubino M, Valeriani M, Della Marca G. Increase of brainstem high-frequency SEP subcomponents during light sleep in seizure-free epileptic patients. Clin Neurophysiol 2005; 116: 1774-1778]. Here, we aimed at verifying whether similar HF-SEP abnormalities were significantly correlated to the clinical outcome in a larger population of untreated IGE patients. Patients were classified as Juvenile Myoclonic epilepsy (JME; six patients) and Childhood or Juvenile Absence epilepsy (CAE and JAE, six patients). They were untreated because newly diagnosed, or because seizure-free. HF-SEPs from patients were compared with those obtained from 21 healthy volunteers. HF-SEPs were abnormally enhanced in all seizure-free CAE-JAE patients, whereas they were normal in all JME patients and in CAE-JAE patients with frequent seizures. Not only scalp distribution, but also dipolar source analysis suggested a subcortical origin for these enhanced subcomponents, possibly in the brainstem. The enhancement of HF-SEPs might reflect the hyperactivity of arousal-related brainstem structures; such an enhancement was found in all seizure-free CAE-JAE patients, while it was never observed in JME patients. We speculate that the hyperactivity of arousal-related brainstem structures might account for the different clinical outcome among IGE subsyndromes.

  13. NEUROPSI battery subtest profile in subcortical vascular dementia and Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Maria Niures P.S. Matioli

    Full Text Available ABSTRACT Objective: To investigate the diagnostic value of subtests of the NEUROPSI battery for differentiating subcortical vascular dementia (SVaD from Alzheimer's disease (AD. Methods: Thirteen patients with mild SVaD, 15 patients with mild probable AD, and 30 healthy controls, matched for age, education and dementia severity (in the case of patients, were submitted to the Mini-Mental State Examination (MMSE and NEUROPSI battery. The performance of AD and SVaD groups on NEUROPSI subtests was compared. The statistical analyses were performed using Kruskal-Wallis, Chi-square and Mann-Whitney tests. The results were interpreted at the 5% significance level (p<0.05. Bonferroni's correction was applied to multiple comparisons (a=0.02. Results: SVaD and AD patients showed no statistical difference in MMSE scores (SVaD=20.8 and AD=21.0; p=1.0 or in NEUROPSI total score (SVaD=65.0 and AD=64.3; p=0.56, suggesting a similar severity of dementia. The AD group performed worse on memory recall (<0.01 and SVaD group was worse in verbal fluency subtests (p=0.02. Conclusion: NEUROPSI's memory and language subtests can be an auxiliary tool for differentiating SVaD from AD.

  14. The Chinese (Cantonese Montreal Cognitive Assessment in Patients with Subcortical Ischemic Vascular Dementia

    Directory of Open Access Journals (Sweden)

    Jin-song You

    2011-09-01

    Full Text Available Background: Subcortical ischemic vascular dementia (SIVD has been proposed as the most frequent subtype of vascular cognitive impairment. The aim of this study was to evaluate the psychometric properties of the Chinese (Cantonese Montreal Cognitive Assessment (CC- MoCA in patients with SIVD in the Guangdong Province of China. Methods: 71 SIVD patients and 60 matched controls were recruited for the CC-MoCA, Mini Mental State Examination and executive clock drawing tasks. Receiver-operating characteristic curve analyses were performed to determine optimal sensitivity and specificity of the CC-MoCA total score in differentiating mild vascular dementia (VaD patients from moderate VaD patients and controls. Results: The mean CC-MoCA scores of the controls, and mild and moderate VaD patients were 25.2 ± 3.8, 16.4 ± 3.7, and 10.0 ± 5.1, respectively. In our study, the optimal cutoff value for the CC-MoCA to be able to differentiate patients with mild VaD from controls is 21/22, and 13/14 to differentiate mild VaD from moderate VaD. Conclusion: The CC-MoCA is a useful cognitive screening instrument in SIVD patients.

  15. A translational study on looming-evoked defensive response and the underlying subcortical pathway in autism.

    Science.gov (United States)

    Hu, Yu; Chen, Zhuoming; Huang, Lu; Xi, Yue; Li, Bingxiao; Wang, Hong; Yan, Jiajian; Lee, Tatia M C; Tao, Qian; So, Kwok-Fai; Ren, Chaoran

    2017-11-07

    Rapidly approaching objects indicating threats can induce defensive response through activating a subcortical pathway comprising superior colliculus (SC), lateral posterior nucleus (LP), and basolateral amygdala (BLA). Abnormal defensive response has been reported in autism, and impaired synaptic connections could be the underlying mechanism. Whether the SC-LP-BLA pathway processes looming stimuli abnormally in autism is not clear. Here, we found that looming-evoked defensive response is impaired in a subgroup of the valproic acid (VPA) mouse model of autism. By combining the conventional neurotracer and transneuronal rabies virus tracing techniques, we demonstrated that synaptic connections in the SC-LP-BLA pathway were abnormal in VPA mice whose looming-evoked defensive responses were absent. Importantly, we further translated the finding to children with autism and observed that they did not present looming-evoked defensive response. Furthermore, the findings of the DTI with the probabilistic tractography showed that the structural connections of SC-pulvinar-amygdala in autism children were weak. The pulvinar is parallel to the LP in a mouse. Because looming-evoked defensive response is innate in humans and emerges much earlier than do social and language functions, the absence of defensive response could be an earlier sign of autism in children.

  16. The role of frontal-subcortical circuits in the development of obsessive-compulsive disorders

    Directory of Open Access Journals (Sweden)

    M. A. Kutlubaev

    2016-01-01

    Full Text Available The paper presents a concise review of investigations into the role of impaired frontal-subcortical circuits in the development of obsessive-compulsive disorder (OCD. It gives data on the frequency of neurosis-like symptoms of the OCD spectrum in neurological diseases.The development of OCD is associated with an imbalance between the activity of the direct (activating and indirect (inhibitory pathways of the cortico-striatal-thalamo-cortical feedback loop. These data are confirmed by the results of neuroimaging and neuropsychological studies in patients with OCD. The frequency of OCD symptoms is high in organic brain lesions. OCP may be a manifestation of neurological diseases so their timely detection is an important aspect of a neurologist's work. The treatment of patients with neurosis-like disorders of the OCD spectrum within neurological diseases requires a multidisciplinary approach with the participation of a neurologist, a psychiatrist/psychotherapist, and a psychologist. It is necessary to combine pathogenetic treatment of the underlying disease and its neurosis-like manifestations. 

  17. Cortical Thickness, Surface Area and Subcortical Volume Differentially Contribute to Cognitive Heterogeneity in Parkinson's Disease.

    Directory of Open Access Journals (Sweden)

    Niels J H M Gerrits

    Full Text Available Parkinson's disease (PD is often associated with cognitive deficits, although their severity varies considerably between patients. Recently, we used voxel-based morphometry (VBM to show that individual differences in gray matter (GM volume relate to cognitive heterogeneity in PD. VBM does, however, not differentiate between cortical thickness (CTh and surface area (SA, which might be independently affected in PD. We therefore re-analyzed our cohort using the surface-based method FreeSurfer, and investigated (i CTh, SA, and (subcortical GM volume differences between 93 PD patients and 45 matched controls, and (ii the relation between these structural measures and cognitive performance on six neuropsychological tasks within the PD group. We found cortical thinning in PD patients in the left pericalcarine gyrus, extending to cuneus, precuneus and lingual areas and left inferior parietal cortex, bilateral rostral middle frontal cortex, and right cuneus, and increased cortical surface area in the left pars triangularis. Within the PD group, we found negative correlations between (i CTh of occipital areas and performance on a verbal memory task, (ii SA and volume of the frontal cortex and visuospatial memory performance, and, (iii volume of the right thalamus and scores on two verbal fluency tasks. Our primary findings illustrate that i CTh and SA are differentially affected in PD, and ii VBM and FreeSurfer yield non-overlapping results in an identical dataset. We argue that this discrepancy is due to technical differences and the subtlety of the PD-related structural changes.

  18. Mutation analysis of the DCX gene and genotype/phenotype correlation in subcortical band heterotopia.

    Science.gov (United States)

    Matsumoto, N; Leventer, R J; Kuc, J A; Mewborn, S K; Dudlicek, L L; Ramocki, M B; Pilz, D T; Mills, P L; Das, S; Ross, M E; Ledbetter, D H; Dobyns, W B

    2001-01-01

    Subcortical band heterotopia (SBH) comprises part of a spectrum of phenotypes associated with classical lissencephaly (LIS). LIS and SBH are caused by alterations in at least two genes: LIS1 (PAFAH1B1) at 17p13.3 and DCX (doublecortin) at Xq22.3-q23. DCX mutations predominantly cause LIS in hemizygous males and SBH in heterozygous females, and we have evaluated several families with LIS male and SBH female siblings. In this study, we performed detailed DCX mutation analysis and genotype-phenotype correlation in a large cohort with typical SBH. We screened 26 sporadic SBH females and 11 LIS/SBH families for DCX mutations by direct sequencing. We found 29 mutations in 22 sporadic patients and 11 pedigrees, including five deletions, four nonsense mutations, 19 missense mutations and one splice donor site mutation. The DCX mutation prevalence was 84.6% (22 of 26) in sporadic SBH patients and 100% (11 of 11) in SBH pedigrees. Maternal germline mosaicism was found in one family. Significant differences in genotype were found in relation to band thickness and familial vs sporadic status.

  19. Functional MRI study of verbal fluency in a patient with subcortical laminar heterotopia.

    Science.gov (United States)

    Keene, Daniel L; Olds, Janet; Logan, William J

    2004-05-01

    Double cortex syndrome is a malformation in which there is a band of subcortical heterotopic grey matter separated from the cortex by white matter. The functional activity of the heterotopic neurons is unclear. A 13-year-old female was evaluated for seizures. The EEG showed bifrontal spike wave disturbance. Band heterotopia, in association with mild reduction of sulcation of the cerebral hemispheres, was found on MRI. Psychological assessment indicated the presence of variable cognitive abilities, with verbal IQ [82] generally better than nonverbal IQ [59], and specific difficulties in language comprehension and mathematics. Functional MRI was used to localize the areas of language and motor activation. The language activation paradigm was a visual verb generation task with a visual fixation baseline. The motor paradigm consisted of alternating blocks of sequential finger tapping and rest. Coronal functional and anatomical images were obtained. The motor paradigm produced activation of the primary motor cortex, the band heterotopia and the supplementary motor cortex. The language paradigm produced activation of the left inferior frontal gyrus and left supplementary motor area, but not of the band heterotopia. The activation of heterotopic grey matter during a motor task demonstrates a hemodynamic association with motor activity and suggests that this tissue may be functional. Such association was not seen with the language task. We speculate that later maturing functions such as language are restricted in their development to the normal situated superficial cortex in our patient.

  20. Lack of Association between Apolipoprotein E Polymorphism with Age at Onset of Subcortical Vascular Dementia

    Directory of Open Access Journals (Sweden)

    Hye Guk Ryu

    2012-01-01

    Full Text Available Background and Purpose: The relationship between apolipoprotein E (ApoE and onset of vascular dementia remains controversial. The aim of this study was to evaluate the relationship between ApoE polymorphism and the onset of subcortical vascular dementia (SVaD compared to Alzheimer’s disease (AD and normal controls. Methods: The study was comprised of 61 patients with SVaD (42 Binswanger type, 19 lacunar type and 112 patients with AD (16 early-onset AD, 96 late-onset AD as well as 284 age-, gender- and education-matched normal controls. The diagnosis of SVaD was based on modified NINDS-AIREN criteria, and the diagnosis of AD was based on NINCDS-ADRDA criteria. ApoE polymorphism was genotyped in all participants. Results: None of the three ApoE alleles was more prevalent in SVaD patients compared to normal controls, which was the case when both Binswanger and lacunar types were analyzed separately. ApoE Ε4 did not accelerate the onset of SVaD (OR 1.66, 95% CI: 0.8–3.4, in contrast to a significant relation with late-onset AD (OR 3.78, 95% CI: 2.2–6.5. Conclusion: Our results suggest that ApoE polymorphism is not associated with the onset of SVaD and that the two subtypes of SVaD may share similar pathophysiologies.

  1. Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL: Three case reports from Serbia

    Directory of Open Access Journals (Sweden)

    Zidverc-Trajković Jasna

    2008-01-01

    Full Text Available Introduction Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL is a hereditary microangiopathy leading to recurrent strokes and vascular dementia in young and middleaged patients. The diagnosis of CADASIL is based on typical clinical presentation and characteristic magnetic resonance imaging (MRI changes, and has to be confirmed by biopsy of the sural nerve, muscle and skin, as well as by genetic analysis. Mutations within the Notch3 gene were identified as the underlying genetic defect in CADASIL. Case Outline The clinical manifestations of the first presented patient with migraine from the age of thirteen, stroke without vascular risk factors and stepwise progression of vascular dementia comprising the typical clinical picture of CADASIL, were confirmed after seven years with pathological verification. The second presented case did not satisfy the clinical criteria for CADASIL. His stroke was considered to be related with vascular risk factors - diabetes mellitus and hypertension. The aetiological diagnosis was established only when his brother without vascular risk factors presented with similar clinical manifestations. Conclusion Until the development of the new neuroimaging techniques like MRI, pathologic and genetic analysis, CADASIL was considered as a rare disorder. However, the increasing number of CADASIL families has been identified throughout the world showing that this entity is usually underdiagnosed. This article presents three patients from two Serbian families with clinical suspicion of CADASIL verified by pathologic examination. .

  2. Screening for New Biomarkers for Subcortical Vascular Dementia and Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Annika Öhrfelt

    2011-01-01

    Full Text Available Background: Novel biomarkers are important for identifying as well as differentiating subcortical vascular dementia (SVD and Alzheimer’s disease (AD at an early stage in the disease process. Methods: In two independent cohorts, a multiplex immunoassay was utilized to analyze 90 proteins in cerebrospinal fluid (CSF samples from dementia patients and patients at risk of developing dementia (mild cognitive impairment. Results: The levels of several CSF proteins were increased in SVD and its incipient state, and in moderate-to-severe AD compared with the control group. In contrast, some CSF proteins were altered in AD, but not in SVD. The levels of heart-type fatty acid binding protein (H-FABP were consistently increased in all groups with dementia but only in some of their incipient states. Conclusions: In summary, these results support the notion that SVD and AD are driven by different pathophysiological mechanisms reflected in the CSF protein profile and that H-FABP in CSF is a general marker of neurodegeneration.

  3. Vitamin D, Homocysteine, and Folate in Subcortical Vascular Dementia and Alzheimer Dementia

    Directory of Open Access Journals (Sweden)

    Rita Moretti

    2017-05-01

    Full Text Available Dementia is a worldwide health problem which affects millions of patients; Alzheimer's disease (AD and subcortical vascular dementia (sVAD are the two most frequent forms of its presentation. As no definite therapeutic options have been discovered, different risk factors for cognitive impairment have been searched for potential therapies. This report focuses on the possible evidence that vitamin D deficiency and hyper-homocysteinemia can be considered as two important factors for the development or the progression of neurodegenerative or vascular pathologies. To this end, we assessed: the difference in vascular risk factors and vitamin D-OH25 levels among groups of sVAD, AD, and healthy age-matched controls; the association of folate, B12, homocysteine, and vitamin D with sVAD/AD and whether a deficiency of vitamin D and an increment in homocysteine levels may be related to neurodegenerative or vessel damages. The commonly-considered vascular risk factors were collected in 543 patients and compared with those obtained from a healthy old volunteer population. ANOVA group comparison showed that vitamin D deficiency was present in demented cases, as well as low levels of folate and high levels of homocysteine, more pronounced in sVAD cases. The statistical models we employed, with regression models built, and adjustments for biochemical, demographic and neuropsychiatric scores, confirmed the association between the three measures (folate decrease, hyperhomocysteinemia and vitamin D decrease and dementia, more pronounced in sVAD than in AD.

  4. Focal neuronal loss, reversible subcortical focal T2 hypointensity in seizures with a nonketotic hyperglycemic hyperosmolar state

    Energy Technology Data Exchange (ETDEWEB)

    Raghavendra, S.; Ashalatha, R.; Thomas, Sanjeev V. [Sree Chitra Tirunal Institute for Medical Sciences and Technology, Department of Neurology, Trivandrum, Kerala (India); Kesavadas, C. [Sree Chitra Tirunal Institute for Medical Sciences and Technology, Department of Imaging Sciences and Interventional Radiology, Trivandrum (India)

    2007-04-15

    Neuroimaging in seizures associated with nonketotic hyperglycemia (NKH) is considered normal. We report magnetic resonance imaging (MRI) abnormalities in four patients with NKH and seizures. We prospectively evaluated clinical and radiological abnormalities in four patients with NKH during the period March 2004 to December 2005. All patients presented with seizures, either simple or complex partial seizures or epilepsia partialis continua. Two of them had transient hemianopia. MRI showed subcortical T2 hypointensity in the occipital white matter and in or around the central sulcus (two patients each), T2 hyperintensity of the overlying cortex (two patients), focal overlying cortical enhancement (three patients) and bilateral striatal hyperintensity (one patient). Diffusion-weighted imaging (DWI) performed in three patients showed restricted diffusion. The ictal semiology and electroencephalographic (EEG) findings correlated with the MRI abnormalities. On clinical recovery, the subcortical T2 hypointensity and striatal hyperintensity reversed in all patients. The initial cortical change evolved to FLAIR hyperintensity suggestive of focal cortical gliosis. The radiological differential diagnosis considered initially included encephalitis, malignancy and hemorrhagic infarct rendering a diagnostic dilemma. We identified subcortical T2 hypointensity rather than hyperintensity as a characteristic feature of seizures associated with NKH. Only very few similar reports exist in literature. Reversible bilateral striatal T2 hyperintensity in NKH has not been reported to the best of our knowledge. (orig.)

  5. Speech and language disorders secondary to diffuse subcortical vascular lesions: Neurolinguistic and acoustic analysis. A case report.

    Science.gov (United States)

    Tomić, Gordana; Stojanović, Milena; Pavlović, Aleksandra; Stanković, Predrag; Zidverc-Trajković, Jasna; Pavlović, Dragan; Marković-Jovanović, Zagorka; Covicković-Sternić, Nadezda

    2009-08-15

    Subcortical white matter (WM) plays an important role in speech production and language processing. Most frequently, cerebral WM lesions are secondary to small vessel disease in patients with vascular risk factors. We report the case of a 53-year-old man with history of hypertension and ischemic subcortical lesions, who presented with speech difficulties and mild cognitive impairment. Language and cognitive assessment included Boston Diagnostic Aphasia Examination, Boston Naming Test, Rey Auditory-Verbal Learning Test, Rey-Osterrieth Complex Figure Test, Trail Making Test A and B, Wisconsin Card Sorting Test, Scale for Evaluation of Perceptive Characteristics of Voice and Speech, and Multidimensional Evaluation of Speech and Voice. Brain MRI showed ischemic WM lesions and lacunar infarcts in the brainstem and right cerebellum. Cognitive testing revealed mild cognitive impairment, predominantly affecting attention and executive functions. Speech and language analysis demonstrated dysarthria, dysphonia with hypophonia, and imprecise articulation, as well as short rushes of speech, palilalia and mild subcortical dysphasia. Neurolinguistic and acoustic analysis in patients with ischemic WM lesions can provide additional information in the understanding of language and speech disturbances, and can assist in patient management.

  6. Periventricular nodular and subcortical neuronal heterotopia in adult epileptic patients Heterotopía neuronal nodular y subcortical en pacientes adultos con epilepsia

    Directory of Open Access Journals (Sweden)

    Damián E. Consalvo

    2006-04-01

    Full Text Available Developmental malformations are brain abnormalities that occur during embryogenesis. Neuronal migration disorders, including heterotopic lesions, constitute one type of such abnormalities. The aim of the study was to compare the epileptic clinical patterns of patients with periventricular nodular heterotopia (PNH (G1 with those affected by subcortical heterotopia (SCH (G2 looking for differences between both groups which, eventually, might suggest the type of the underlying malformation. The variables studied in both groups were: type of the heterotopia depicted on MRI studies, sex, age, age at seizure onset, annual seizure frequency, localization of the ictal symptomatogenic zone, characteristics of the EEG, other associated anomalies on the magnetic resonance images (MRI besides the heterotopia, and response to treatment. The only difference found between both groups was the type of heterotopia as shown by MRI studies. The other assessed variables did not significantly (p>0.05 differ between groups. No differences in the clinical features characterizing epilepsy could be found in patients with PNH or SCH, being the images the only tool able to differentiate them.Las malformaciones de la corteza cerebral son un grupo de entidades que se producen durante las etapas del desarrollo embrionario y cuya manifestación clínica puede ser la epilepsia. Estas malformaciones pueden ser diagnosticadas in vivo a través de las imágenes por resonancia magnética (IRM. Un subtipo particular de éstas lo constituyen los trastornos en la migración neuronal, dentro de los cuales se ubican las heterotopías (HT. El objetivo del estudio fue comparar enfermos portadores de HT periventriculares (G1 con aquellos portadores de HT subcorticales (G2. Se analizaron las variables sexo, edad y edad de inicio de la epilepsia (EI en años, antecedentes familiares (AF o prenatales (AP, frecuencia anual de crisis (FAC y características semiológicas de las crisis

  7. Differences in Parental Involvement Typologies among Baby Boomers, Generation X, and Generation Y Parents: A Study of Select Bay Area Region of Houston Elementary Schools

    Science.gov (United States)

    Veloz, Elizabeth Andrea

    2010-01-01

    The purpose of this study was to determine whether differences existed among generations (Baby Boomers, Generation X, and Generation Y) regarding the levels of parental involvement within each of these generations. Also examined were additional factors such as the parents. socioeconomic status, educational level, marital status, and ethnicity. The…

  8. The Differences in the Involvements of Loci of Promoter Region and Ile50Val in Interleukin-4 Receptor α Chain Gene between Atopic Dermatitis and Japanese Cedar Pollinosis

    Directory of Open Access Journals (Sweden)

    Takeshi Tanaka

    2012-01-01

    Conclusions: Our data suggest that -3223 T and the -3223 T/Ile50 haplotype were risk factors for AD. Ile50 allele seems to be involved in both JCP and AD. Interactions of the IL-4RA loci may play a role both conferring susceptibility and modulating severity of AD.

  9. Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL in Argentina

    Directory of Open Access Journals (Sweden)

    Maximiliano A Hawkes

    2015-09-01

    Full Text Available CADASIL is the most common cause of hereditary stroke and vascular dementia. Published information about this disease in South America is scant. We describe clinical and demographic characteristics of 13 patients (10 families with CADASIL from Argentina.Methods Medical records, diagnostic tests and family history of patients with CADASIL were reviewed.Results Thirteen patients with CADASIL (10 families were included. All patients had European ancestry. Initial presentation was stroke in most patients (n = 11. Stroke patients later developed cognitive complaints (n = 9, migraine with aura (n = 1, apathy (n = 4 and depression (n = 6. External capsule and temporal lobe involvement on MRI were characteristic imaging findings. Two patients died after intracerebral hemorrhage.Conclusion This is the first report of non-related patients with CADASIL in South America addressing ancestry. Since European ancestry is not highly prevalent in all South American countries, there may be variable incidence of CADASIL within this region.

  10. Thermography imaging during static and controlled thermoregulation in complex regional pain syndrome type 1: diagnostic value and involvement of the central sympathetic system.

    NARCIS (Netherlands)

    S.P. Niehof (Sjoerd); F.J.P.M. Huygen (Frank); R.W. van der Weerd (Rick); M. Westra (Mirjam); F.J. Zijlstra (Freek)

    2006-01-01

    textabstractBACKGROUND: Complex Regional Pain Syndrome type 1 (CRPS1) is a clinical diagnosis based on criteria describing symptoms of the disease.The main aim of the present study was to compare the sensitivity and specificity of calculation methods used to assess thermographic images (infrared

  11. Visual motion imagery neurofeedback based on the hMT+/V5 complex: evidence for a feedback-specific neural circuit involving neocortical and cerebellar regions

    Science.gov (United States)

    Banca, Paula; Sousa, Teresa; Catarina Duarte, Isabel; Castelo-Branco, Miguel

    2015-12-01

    Objective. Current approaches in neurofeedback/brain-computer interface research often focus on identifying, on a subject-by-subject basis, the neural regions that are best suited for self-driven modulation. It is known that the hMT+/V5 complex, an early visual cortical region, is recruited during explicit and implicit motion imagery, in addition to real motion perception. This study tests the feasibility of training healthy volunteers to regulate the level of activation in their hMT+/V5 complex using real-time fMRI neurofeedback and visual motion imagery strategies. Approach. We functionally localized the hMT+/V5 complex to further use as a target region for neurofeedback. An uniform strategy based on motion imagery was used to guide subjects to neuromodulate hMT+/V5. Main results. We found that 15/20 participants achieved successful neurofeedback. This modulation led to the recruitment of a specific network as further assessed by psychophysiological interaction analysis. This specific circuit, including hMT+/V5, putative V6 and medial cerebellum was activated for successful neurofeedback runs. The putamen and anterior insula were recruited for both successful and non-successful runs. Significance. Our findings indicate that hMT+/V5 is a region that can be modulated by focused imagery and that a specific cortico-cerebellar circuit is recruited during visual motion imagery leading to successful neurofeedback. These findings contribute to the debate on the relative potential of extrinsic (sensory) versus intrinsic (default-mode) brain regions in the clinical application of neurofeedback paradigms. This novel circuit might be a good target for future neurofeedback approaches that aim, for example, the training of focused attention in disorders such as ADHD.

  12. Parental involvement

    OpenAIRE

    Ezra S Simon

    2005-01-01

    This study was conducted in Ghana to investigate, (1) factors that predict parental involvement, (2) the relationship between parental home and school involvement and the educational achievement of adolescents, (3) the relationship between parental authoritativeness and the educational achievement of adolescent students, (4) parental involvement serving as a mediator between their authoritativeness and the educational achievement of the students, and (5) whether parental involvement decreases...

  13. The impact of ADHD persistence, recent cannabis use, and age of regular cannabis use onset on subcortical volume and cortical thickness in young adults.

    Science.gov (United States)

    Lisdahl, Krista M; Tamm, Leanne; Epstein, Jeffery N; Jernigan, Terry; Molina, Brooke S G; Hinshaw, Stephen P; Swanson, James M; Newman, Erik; Kelly, Clare; Bjork, James M

    2016-04-01

    Both Attention Deficit Hyperactivity Disorder (ADHD) and chronic cannabis (CAN) use have been associated with brain structural abnormalities, although little is known about the effects of both in young adults. Participants included: those with a childhood diagnosis of ADHD who were CAN users (ADHD_CAN; n=37) and non-users (NU) (ADHD_NU; n=44) and a local normative comparison group (LNCG) who did (LNCG_CAN; n=18) and did not (LNCG_NU; n=21) use CAN regularly. Multiple regressions and MANCOVAs were used to examine the independent and interactive effects of a childhood ADHD diagnosis and CAN group status and age of onset (CUO) on subcortical volumes and cortical thickness. After controlling for age, gender, total brain volume, nicotine use, and past-year binge drinking, childhood ADHD diagnosis did not predict brain structure; however, persistence of ADHD was associated with smaller left precentral/postcentral cortical thickness. Compared to all non-users, CAN users had decreased cortical thickness in right hemisphere superior frontal sulcus, anterior cingulate, and isthmus of cingulate gyrus regions and left hemisphere superior frontal sulcus and precentral gyrus regions. Early cannabis use age of onset (CUO) in those with ADHD predicted greater right hemisphere superior frontal and postcentral cortical thickness. Young adults with persistent ADHD demonstrated brain structure abnormalities in regions underlying motor control, working memory and inhibitory control. Further, CAN use was linked with abnormal brain structure in regions with high concentrations of cannabinoid receptors. Additional large-scale longitudinal studies are needed to clarify how substance use impacts neurodevelopment in youth with and without ADHD. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Deletion involving D15S113 in a mother and son without Angelman syndrome: Refinement of the Angelman syndrome critical deletion region

    Energy Technology Data Exchange (ETDEWEB)

    Michaelis, R.C.; Skinner, S.A.; Lethco, B.A. [Greenwood Genetic Center, SC (United States)] [and others

    1995-01-02

    Deletions of 15q11-q13 typically result in Angelman syndrome when inherited from the mother and Prader-Willi syndrome when inherited from the father. The critical deletion region for Angelman syndrome has recently been restricted by a report of an Angelman syndrome patient with a deletion spanning less than 200 kb around the D15S113 locus. We report here on a mother and son with a deletion of chromosome 15 that includes the D15S113 locus. The son has mild to moderate mental retardation and minor anomalies, while the mother has a borderline intellectual deficit and slightly downslanting palpebral fissures. Neither patient has the seizures, excessive laughter and hand clapping, ataxia or the facial anomalies which are characteristic of Angelman syndrome. The proximal boundary of the deletion in our patients lies between the D15S10 and The D15S113 loci. Our patients do not have Angelman syndrome, despite the deletion of the D15S113 marker. This suggests that the Angelman syndrome critical deletion region is now defined as the overlap between the deletion found in the previously reported Angelman syndrome patient and the region that is intact in our patients. 28 refs., 6 figs.

  15. Analysis of ageing-associated grey matter volume in patients with multiple sclerosis shows excess atrophy in subcortical regions

    Directory of Open Access Journals (Sweden)

    Courtney A Bishop

    2017-01-01

    These results provide a potential imaging correlate of published neuropsychological studies that reported the association of younger age at disease onset with impaired cognitive performance, including decreased working memory.

  16. Seoul criteria for PiB(-) subcortical vascular dementia based on clinical and MRI variables.

    Science.gov (United States)

    Kim, Geon Ha; Lee, Jae Hong; Seo, Sang Won; Ye, Byoung Seok; Cho, Hanna; Kim, Hee Jin; Noh, Young; Yoon, Cindy W; Chin, Ju Hee; Oh, Seung Jun; Kim, Jae Seung; Choe, Yearn Seong; Lee, Kyung Han; Kim, Sung Tae; Jeong, Jee Hyang; Na, Duk L

    2014-04-29

    The purpose of this study was to propose new criteria for differentiating Pittsburgh compound B (PiB)-negative from PiB-positive subcortical vascular dementia (SVaD) using clinical and MRI variables. We measured brain amyloid deposition using PiB-PET in 77 patients with SVaD. All patients met DSM-IV criteria for vascular dementia and had severe white matter hyperintensities on MRI, defined as a cap or band ≥ 10 mm as well as a deep white matter lesion ≥ 25 mm. Eleven models were considered to differentiate PiB(-) from PiB(+) SVaD using 4 variables, including age, number of lacunes, medial temporal atrophy (MTA), and APOE ε4. The ideal cutoff values in each of the 11 models were selected using the highest Youden index. A total of 49 of 77 patients (63.6%) tested negative for PiB retention, while 28 (36.4%) tested positive for PiB retention. The ideal model for differentiating PiB(-) from PiB(+) SVaD was as follows: age ≤ 75 years, ≥ 5 lacunes, and MTA ≤ 3, which together yielded an accuracy of 67.5%. When patients meet the DSM-IV criteria for vascular dementia and also have severe white matter hyperintensities, younger age, greater number of lacunes, and lesser MTA, these are predictive of a PiB(-) scan in patients with SVaD. This study provides Class II evidence that the combination of younger age, greater number of lacunes, and lesser MTA identifies patients with SVaD at lower risk of Alzheimer disease pathology.

  17. Developmentally Sensitive Interaction Effects of Genes and the Social Environment on Total and Subcortical Brain Volumes.

    Directory of Open Access Journals (Sweden)

    Jennifer S Richards

    Full Text Available Smaller total brain and subcortical volumes have been linked to psychopathology including attention-deficit/hyperactivity disorder (ADHD. Identifying mechanisms underlying these alterations, therefore, is of great importance. We investigated the role of gene-environment interactions (GxE in interindividual variability of total gray matter (GM, caudate, and putamen volumes. Brain volumes were derived from structural magnetic resonance imaging scans in participants with (N = 312 and without ADHD (N = 437 from N = 402 families (age M = 17.00, SD = 3.60. GxE effects between DAT1, 5-HTT, and DRD4 and social environments (maternal expressed warmth and criticism; positive and deviant peer affiliation as well as the possible moderating effect of age were examined using linear mixed modeling. We also tested whether findings depended on ADHD severity. Deviant peer affiliation was associated with lower caudate volume. Participants with low deviant peer affiliations had larger total GM volumes with increasing age. Likewise, developmentally sensitive GxE effects were found on total GM and putamen volume. For total GM, differential age effects were found for DAT1 9-repeat and HTTLPR L/L genotypes, depending on the amount of positive peer affiliation. For putamen volume, DRD4 7-repeat carriers and DAT1 10/10 homozygotes showed opposite age relations depending on positive peer affiliation and maternal criticism, respectively. All results were independent of ADHD severity. The presence of differential age-dependent GxE effects might explain the diverse and sometimes opposing results of environmental and genetic effects on brain volumes observed so far.

  18. Electroacupuncture decreases excessive alcohol consumption involving reduction of FosB/ΔFosB levels in reward-related brain regions.

    Directory of Open Access Journals (Sweden)

    Jing Li

    Full Text Available New therapies are needed for alcohol abuse, a major public health problem in the U.S. and worldwide. There are only three FDA-approved drugs for treatment of alcohol abuse (naltrexone, acamprosate and disulfuram. On average these drugs yield only moderate success in reducing long-term alcohol consumption. Electroacupuncture has been shown to alleviate various drugs of abuse, including alcohol. Although previous studies have shown that electroacupuncture reduced alcohol consumption, the underlying mechanisms have not been fully elucidated. ΔFosB and FosB are members of the Fos family of transcription factors implicated in neural plasticity in drug addiction; a connection between electroacupuncture's treatment of alcohol abuse and the Fos family has not been established. In this study, we trained rats to drink large quantities of ethanol in a modified intermittent access two-bottle choice drinking procedure. When rats achieved a stable baseline of ethanol consumption, electroacupuncture (100 Hz or 2 Hz, 30 min each day was administered at Zusanli (ST36 for 6 consecutive days. The level of FosB/ΔFosB in reward-related brain regions was assessed by immunohistochemistry. We found that the intake of and preference for ethanol in rats under 100 Hz, but not 2 Hz electroacupuncture regiment were sharply reduced. The reduction was maintained for at least 72 hours after the termination of electroacupuncture treatment. Conversely, 100 Hz electroacupuncture did not alter the intake of and preference for the natural rewarding agent sucrose. Additionally, FosB/ΔFosB levels in the prefrontal cortex, striatal region and the posterior region of ventral tegmental area were increased following excessive ethanol consumption, but were reduced after six-day 100 Hz electroacupuncture. Thus, this study demonstrates that six-day 100 Hz electroacupuncture treatment effectively reduces ethanol consumption and preference in rats that chronically drink excessive amount of

  19. Mutations in the human papillomavirus type 16 E2 protein identify multiple regions of the protein involved in binding to E1.

    Science.gov (United States)

    Piccini, A; Storey, A; Massimi, P; Banks, L

    1995-11-01

    Human papillomavirus type 16 (HPV-16) DNA replicates episomally and requires two virally expressed proteins, E1 and E2. The E1 protein has both helicase and ATPase activities and is absolutely required for viral DNA replication. The E2 protein is a potent transcriptional activator and greatly increases viral DNA replication by colocalizing E1 to the origin of replication. Recently, we characterized a region of the E2 protein essential for the binding to E1. In this study we have analysed in further detail the nature of the association between E1 and E2. Using an extensive set of E2 mutant proteins we have identified two widely separate regions of the E2 protein which are essential for binding to E1. Interestingly, two E2 mutants which fail to bind E1 also fail to activate gene expression, indicating the existence of multifunctional domains on the E2 protein. In addition, cotransfection of E1 with E2 significantly increases E2 transcriptional activity on an heterologous promoter.

  20. Leukoencephalopathy with brainstem and spinal cord involvement and lactate elevation (LBSL): Assessment of the involved white matter tracts by MRI

    Energy Technology Data Exchange (ETDEWEB)

    Kassem, Hassan [Department of Radiology, Benha University (Egypt); Wafaie, Ahmed, E-mail: a_wafaie@yahoo.com [Department of Radiology, Cairo University (Egypt); Abdelfattah, Sherif [Department of Radiology, Cairo University (Egypt); Farid, Tarek [Pediatric Department, Egyptian National Research Center (Egypt)

    2014-01-15

    Background and purpose: Leukoencephalopathy with brain stem and spinal cord involvement and lactate elevation (LBSL) is a recently identified autosomal recessive disorder with early onset of symptoms and slowly progressive pyramidal, cerebellar and dorsal column dysfunction. LBSL is characterized by distinct white matter abnormalities and selective involvement of brainstem and spinal cord tracts. The purpose of this study is to assess the imaging features of the involved white matter tracts in cases of LBSL by MRI. Patients and methods: We retrospectively reviewed the imaging features of the selectively involved white matter tracts in sixteen genetically proven cases of leukoencephalopathy with brainstem and spinal cord involvement and elevated brain lactate (LBSL). All patients presented with slowly progressive cerebellar sensory ataxia with spasticity and dorsal column dysfunction. MRI of the brain and spine using 1.5 T machine and proton magnetic resonance spectroscopy ({sup 1}H MRS) on the abnormal white matter were done to all patients. The MRI and MRS data sets were analyzed according to lesion location, extent, distribution and signal pattern as well as metabolite values and ratios in MRS. Laboratory examinations ruled out classic leukodystrophies. Results: In all cases, MRI showed high signal intensity in T2-weighted and FLAIR images within the cerebral subcortical, periventricular and deep white matter, posterior limbs of internal capsules, centrum semiovale, medulla oblongata, intraparenchymal trajectory of trigeminal nerves and deep cerebellar white matter. In the spine, the signal intensity of the dorsal column and lateral cortico-spinal tracts were altered in all patients. The subcortical U fibers, globi pallidi, thalami, midbrain and transverse pontine fibers were spared in all cases. In 11 cases (68.8%), the signal changes were inhomogeneous and confluent whereas in 5 patients (31.2%), the signal abnormalities were spotty. MRI also showed variable

  1. Differences of Tc-99m HMPAO SPECT imaging in the early stage of subcortical vascular dementia compared with Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kyung Won; Kang, Do Young; Park, Min Jeong; Cheon, Sang Myung; Cha, Jae Kwan; Kim, Sang Ho; Kim, Jae Woo [College of Medicine, Dong-A University, Busan (Korea, Republic of)

    2007-12-15

    The aim of this study is to assess the specific patterns of regional cerebral blood flow (rCBF) in patients with the early stage of subcortical vascular dementia (SVaD) and Alzheimer's disease (AD) using Tc-99m HMPAO SPECT, and to compare the differences between the two conditions. Sixteen SVaD, 46 AD and 12 control subjects participated in this study. We included the patients with SVaD and AD according to NINCDS-ADRDA and NINDS-AIREN criteria. They were all matched for age, education and clinical dementia rating scores. Three groups were evaluated by Tc-99m HMPAO SPECT using statistical parametric mapping (SPM) for measuring rCBF. The SPECT data of patients with SVaD and AD were compared with those of normal control subjects and then compared with each other. SPM analysis of the SPECT image showed significant perfusion deficits on the right temporal region and thalamus, left insula and superior temporal gyrus, both cingulate gyri and frontal subgyri in patients with SVaD and on the left supramarginal gyrus, superior temporal gyrus, postcentral gyrus and inferior parietal lobule, right fugiform gyrus and both cingulate gyri in AD compared with control subjects (uncorrected {rho} < 0.01). SVaD patients revealed significant hypoperfusion in the right parahippocampal gyrus with cingulated gyrus, left insula and both frontal subgyral regions compared with AD (uncorrected {rho} < 0.01). Our study shows characteristic and different pattern of perfusion deficits in patients with SVaD and AD, and these results may be helpful to discriminate the two conditions in the early stage of illness.

  2. Exploring background risk factors for fatigue crashes involving truck drivers on regional roadway networks: a case control study in Jiangxi and Shaanxi, China.

    Science.gov (United States)

    Chen, Changkun; Zhang, Jun

    2016-01-01

    Fatigue driving is a leading cause of traffic fatalities and injuries in China, especially among heavy truck drivers. The present study tried to examine which and how factors within the human-vehicle-roadway-environment system contribute to the occurrence of crashes involving fatigued truck drivers. To reduce such risk on the road, a total of 9168 crashes which occurred in Jiangxi and Shaanxi between 2003 and 2014 were selected to measure the effects of potential factors on fatigue related truck crashes using a case control study. Pearson Chi-square test was used to determine the relationship between crash risk and independent factors, and a stepwise logistic regression model was developed to determine the significant risk factors. According to the data analysis results, driver's gender, age, driving experience, and overspeeding behavior, vehicle's commercial status, overloading conditions and brake performance, road's type, slippery pavement and existence of sharp curve and long steep grade, and time of day, season, weather and visibility conditions, etc. were identified to be significantly associated with fatigue related truck crashes on Jiangxi and Shaanxi highways. Moreover, it is found that (a) in Jiangxi, an employed truck driver has a higher risk of crash involving multi-vehicles or a passenger car at bridge locations, and (b) in Shaanxi, the adult, tunnel location, summer and winter days prohibit statistically significant association with the occurrence of multi-vehicle and single-vehicle run-off-road/rollover crashes. Young employed male truck drivers with less experience are at high risk, especially while driving across sharp curves, down long steep grades, over bridge or through tunnels, during the midnight period, on rainy, snowy or foggy days in rural areas. All these help recommend potential policy initiatives as well as effective safety promotion strategies at the public health scale for professional truck drivers.

  3. China’s Challenges and Its Countermeasures to Hunt the Fugitives Who are Involved in Corruption and Fled to the Asia Pacific Region

    Directory of Open Access Journals (Sweden)

    Hu Rong

    2015-12-01

    Full Text Available Objective to identify the main problems faced by the Chinese justice in anticorruption prosecution and to find their solutions. Methods the method of analysis theoretical methods of cognition. Results the article attempts to systemically analyze the lessons of history and legal issues facing in the implementation of anticorruption prosecution in the AsiaPacific region in order to ensure its effectiveness in China. Scientific novelty the research proposes solutions to the problem of corrupt officials escaping from justice and seeks to find a compromise in the issues of international cooperation in this field. Practical significance the Chinese experience can be used in Russia to improve the legal system in the struggle against corruption and the international cooperation on criminal justice matters. nbsp

  4. The heparin-binding site in tetranectin is located in the N-terminal region and binding does not involve the carbohydrate recognition domain

    DEFF Research Database (Denmark)

    Lorentsen, R H; Graversen, Jonas Heilskov; Caterer, N R

    2000-01-01

    Tetranectin is a homotrimeric plasma and extracellular-matrix protein that binds plasminogen and complex sulphated polysaccharides including heparin. In terms of primary and tertiary structure, tetranectin is related to the collectin family of Ca(2+)-binding C-type lectins. Tetranectin is encoded...... in three exons. Exon 3 encodes the carbohydrate recognition domain, which binds to kringle 4 in plasminogen at low levels of Ca(2+). Exon 2 encodes an alpha-helix, which is necessary and sufficient to govern the trimerization of tetranectin by assembling into a triple-helical coiled-coil structural element....... Here we show that the heparin-binding site in tetranectin resides not in the carbohydrate recognition domain but within the N-terminal region, comprising the 16 amino acid residues encoded by exon 1. In particular, the lysine residues in the decapeptide segment KPKKIVNAKK (tetranectin residues 6...

  5. Comparative Investigation of the Genomic Regions Involved in Antigenic Variation of the TprK Antigen among Treponemal Species, Subspecies, and Strains

    Science.gov (United States)

    Brandt, Stephanie L.; Puray-Chavez, Maritza; Reid, Tara Brinck; Godornes, Charmie; Molini, Barbara J.; Benzler, Martin; Hartig, Jörg S.; Lukehart, Sheila A.; Centurion-Lara, Arturo

    2012-01-01

    Although the three Treponema pallidum subspecies (T. pallidum subsp. pallidum, T. pallidum subsp. pertenue, and T. pallidum subsp. endemicum), Treponema paraluiscuniculi, and the unclassified Fribourg-Blanc treponeme cause clinically distinct diseases, these pathogens are genetically and antigenically highly related and are able to cause persistent infection. Recent evidence suggests that the putative surface-exposed variable antigen TprK plays an important role in both treponemal immune evasion and persistence. tprK heterogeneity is generated by nonreciprocal gene conversion between the tprK expression site and donor sites. Although each of the above-mentioned species and subspecies has a functional tprK antigenic variation system, it is still unclear why the level of expression and the rate at which tprK diversifies during infection can differ significantly among isolates. To identify genomic differences that might affect the generation and expression of TprK variants among these pathogens, we performed comparative sequence analysis of the donor sites, as well as the tprK expression sites, among eight T. pallidum subsp. pallidum isolates (Nichols Gen, Nichols Sea, Chicago, Sea81-4, Dal-1, Street14, UW104, and UW126), three T. pallidum subsp. pertenue isolates (Gauthier, CDC2, and Samoa D), one T. pallidum subsp. endemicum isolate (Iraq B), the unclassified Fribourg-Blanc isolate, and the Cuniculi A strain of T. paraluiscuniculi. Synteny and sequence conservation, as well as deletions and insertions, were found in the regions harboring the donor sites. These data suggest that the tprK recombination system is harbored within dynamic genomic regions and that genomic differences might be an important key to explain discrepancies in generation and expression of tprK variants among these Treponema isolates. PMID:22661689

  6. Association mapping and haplotype analysis of a 3.1-Mb genomic region involved in Fusarium head blight resistance on wheat chromosome 3BS.

    Directory of Open Access Journals (Sweden)

    Chenyang Hao

    Full Text Available A previous study provided an in-depth understanding of molecular population genetics of European and Asian wheat gene pools using a sequenced 3.1-Mb contig (ctg954 on chromosome 3BS. This region is believed to carry the Fhb1 gene for response to Fusarium head blight. In this study, 266 wheat accessions were evaluated in three environments for Type II FHB response based on the single floret inoculation method. Hierarchical clustering (UPGMA based on a Manhattan dissimilarity matrix divided the accessions into eight groups according to five FHB-related traits which have a high correlation between them; Group VIII comprised six accessions with FHB response levels similar to variety Sumai 3. Based on the compressed mixed linear model (MLM, association analysis between five FHB-related traits and 42 molecular markers along the 3.1-Mb region revealed 12 significant association signals at a threshold of P0.1 and P0.05 within each HapB at r(2>0.1 and P<0.001 showed significant differences between the Hap carried by FHB resistant resources, such as Sumai 3 and Wangshuibai, and susceptible genotypes in HapB3 and HapB6. These results suggest that Fhb1 is located within HapB6, with the possibility that another gene is located at or near HapB3. SSR markers and Haps detected in this study will be helpful in further understanding the genetic basis of FHB resistance, and provide useful information for marker-assisted selection of Fhb1 in wheat breeding.

  7. Development of the subcortical brain structures in the second trimester: assessment with 7.0-T MRI

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Haiwei; Geng, Hequn; Lin, Xiangtao; Feng, Lei; Liu, Shuwei [Shandong University, Research Center for Sectional and Imaging Anatomy, School of Medicine, Jinan, Shandong Province (China); Zhang, Zhonghe [Provincial Hospital Affiliated to Shandong University, Department of Medical Imaging, Jinan, Shandong (China); Teng, Gaojun; Fang, Fang; Zang, Fengchao [Southeast University School of Clinical Medicine, Department of Radiology, Zhong Da Hospital, Nanjing, Jiangsu (China)

    2012-10-15

    This study aims to obtain the signal intensity changes and quantitative measurements of the subcortical brain structures of 12-22 weeks gestational age (GA). Sixty-nine fetal specimens were selected and scanned by 7.0-T MR. The signal intensity changes of the subcortical brain structures were analyzed. The three-dimensional visualization models of the germinal matrix, caudate nucleus, lentiform nucleus, and dorsal thalamus were rebuilt with Amira 4.1, and the developmental trends between the measurements and GA were analyzed. The germinal matrix was delineated on 7.0-T MR images at 12 weeks GA, with high signals on T1-weighted images (WI). While at 16 weeks GA, the caudate nucleus, lentiform nucleus, and internal and external capsules could be distinguished. The caudate nucleus was high signal intensity on T1WI. The signal intensity of the putamen was high on T1WI during 15-17 weeks GA and was delineated as an area with uneven signal intensities. The signal intensity of the peripheral area of the putamen became higher after 18 weeks GA. The signal intensity of the globus pallidus was high on T1WI and low on T2WI after 20 weeks GA. At 18 weeks GA, the claustrum was delineated with low signals on T2WI. Measurements of the germinal matrix, caudate nucleus, lentiform nucleus, and dorsal thalamus linearly increased with the GA. Development of the subcortical brain structures during 12-22 weeks GA could be displayed with 7.0-T MRI. The measurement provides significant reference beneficial to the clinical evaluation of fetal brain development. (orig.)

  8. Characterization of the Promoter Region of an Arabidopsis Gene for 9-cis-Epoxycarotenoid Dioxygenase Involved in Dehydration-Inducible Transcription

    Science.gov (United States)

    Behnam, Babak; Iuchi, Satoshi; Fujita, Miki; Fujita, Yasunari; Takasaki, Hironori; Osakabe, Yuriko; Yamaguchi-Shinozaki, Kazuko; Kobayashi, Masatomo; Shinozaki, Kazuo

    2013-01-01

    Plants respond to dehydration stress and tolerate water-deficit status through complex physiological and cellular processes. Many genes are induced by water deficit. Abscisic acid (ABA) plays important roles in tolerance to dehydration stress by inducing many stress genes. ABA is synthesized de novo in response to dehydration. Most of the genes involved in ABA biosynthesis have been identified, and they are expressed mainly in leaf vascular tissues. Of the products of such genes, 9-cis-epoxycarotenoid dioxygenase (NCED) is a key enzyme in ABA biosynthesis. One of the five NCED genes in Arabidopsis, AtNCED3, is significantly induced by dehydration. To understand the regulatory mechanism of the early stages of the dehydration stress response, it is important to analyse the transcriptional regulatory systems of AtNCED3. In the present study, we found that an overlapping G-box recognition sequence (5′-CACGTG-3′) at −2248 bp from the transcriptional start site of AtNCED3 is an important cis-acting element in the induction of the dehydration response. We discuss the possible transcriptional regulatory system of dehydration-responsive AtNCED3 expression, and how this may control the level of ABA under water-deficit conditions. PMID:23604098

  9. Stabilization of beta-lactoglobulin by polyols and sugars against temperature-induced denaturation involves diverse and specific structural regions of the protein.

    Science.gov (United States)

    Barbiroli, Alberto; Marengo, Mauro; Fessas, Dimitrios; Ragg, Enzio; Renzetti, Stefano; Bonomi, Francesco; Iametti, Stefania

    2017-11-01

    Temperature sensitivity of bovine milk beta-lactoglobulin (BLG) was assessed in the presence/absence of non-reducing sugars (sucrose and trehalose) and polyols (glycerol and sorbitol). None of them affected the structural features of the protein at room temperature, where the only observed effect was an increased affinity towards hydrophobic probes in the presence of all co-solutes but glycerol. Although most of the observed effects in temperature-ramp experiments are due to entropic effects (fitting within the "preferential exclusion" theory of protein stabilization), this study indicates that each co-solute exhibit different efficacy at stabilizing specific regions of BLG, suggesting that each of them acts in a specific way on the solvent/protein system. The relevance of these observations with respect to systems of practical relevance is discussed, given the widespread use of heat-polymerizing proteins - such as BLG - in many food formulations that very often include significant amounts of sugars and/or polyols. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Real-time quantitative PCR analysis of regions involved in gene amplification reveals gene overdose in low-grade astrocytic gliomas.

    Science.gov (United States)

    Arjona, Dolores; Bello, M Josefa; Alonso, M Eva; Isla, Alberto; De Campos, Jose M; Vaquero, Jesus; Sarasa, Jose L; Gutierrez, Manuel; Rey, Juan A

    2005-12-01

    We have studied gene amplification of genes located in 1q32 (GAC1, ELF3, MDM4, and ren1), 4q11 (PDGFR-alpha), and in 12q13-14 (MDM2 and CDK4) using quantitative real-time PCR in a group of 86 tumors consisting of 44 WHO grade IV glioblastomas (GBM) (34 primary and 10 secondary tumors), 21 WHO grade III anaplastic astrocytomas (AA), and 21 WHO grade II astrocytomas (AII). Gene amplification was present in 56 of the 86 samples (65%) in at least 1 gene in our series. GAC1 (51%) and MDM4 (27%) were the most frequently amplified genes within the 1q32 amplicon, and their higher amplification frequency was statistically significant (P<0.05, chi) in the low-grade astrocytomas. Concordant co-amplification was determined for ELF3 and ren1 or ren1 and MDM4 in the grade III-IV tumors. MDM2 amplification was significantly more frequent in primary GBM (16%) than was in secondary GBM (0%). The present study shows that gene amplification in the studied regions is already present in low-grade astrocytic tumors and that amplification of some genes may represent another molecular marker to differentiate primary from secondary GBM.

  11. Determination of methylated CpG sites in the promoter region of catechol-O-methyltransferase (COMT and their involvement in the etiology of tobacco smoking

    Directory of Open Access Journals (Sweden)

    Qing Xu

    2010-06-01

    Full Text Available We previously reported that catechol-O-methyltransferase (COMT is significantly associated with nicotine dependence (ND in humans. In this study, we examined whether there exists any difference in the extent of methylation of CpG dinucleotides in the promoter region of COMT in smokers and nonsmokers by analyzing the methylation status of cytosines at 33 CpG sites through direct sequencing of bisulfite-treated DNA (N = 50 per group. The cytosine was methylated at 13 of 33 CpG sites, and two of these sites showed significant differences between smokers and matched nonsmoker controls. Specifically, in the -193 CpG site, the degree of methylation was 19.1% in smokers and 13.2% in nonsmokers (P < 0.01. This finding was confirmed by methylation-specific PCR using an additional 100 smoker and 100 nonsmoker control samples, which showed the degree of methylation to be 22.2% in smokers and 18.3% in nonsmokers (P < 0.01. For the -39 CpG site, the degree of methylation was 9.2% in smokers, whereas no methylation was found in nonsmoker controls. Together, our findings provide the first molecular explanation at the epigenetic level for the association of ND with methylation of the COMT promoter, implying that methylation plays a role in smoking dependence.

  12. Assessment of cerebral hemodynamics to acetazolamide using brain perfusion SPECT in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy.

    Science.gov (United States)

    Park, Soon-Ah; Yang, Chung-Yong; Choi, See-Sung; Kim, Woo Hyoung

    2011-02-01

    Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a hereditary microangiopathy caused by mutations in the Notch3 gene located on chromosome 19, leading to 4 cardinal features with aura, cerebrovascular ischemic events, mood disturbances, and dementia. Acetazolamide (ACZ) has been promoted as a drug to determine cerebral hemodynamics, including cerebral blood flow (CBF) and cerebrovascular reactivity (CVR) in patients with cerebrovascular disease. In CADASIL patients with small-vessel disease, ACZ may be possible to increase CBF. We present that reduced CBF was dramatically improved after administration of ACZ on Tc-99m ECD brain perfusion SPECT in a CADASIL patient.

  13. Subcortical elevation of metabolism in Parkinson's disease--a critical reappraisal in the context of global mean normalization

    DEFF Research Database (Denmark)

    Borghammer, Per; Cumming, Paul; Aanerud, Joel

    2009-01-01

    article, Ma and colleagues presented a study seeking to establish that a pattern of widespread hypermetabolism, known as the Parkinson's disease related pattern (PDRP) is a genuine metabolic feature of PD. In the present paper, we respond to the arguments presented by Ma et al., and we provide a critical...... reappraisal of the evidence for the existence of the PDRP. To this end, we present new analyses of PET data sets, which demonstrate that very similar patterns of relative subcortical increases are seen in PD, Alzheimer's disease, hepatic encephalopathy, healthy aging, and simulation data. Furthermore...

  14. Neuropsychological performance in patients with subcortical stroke Perfil neuropsicológico em pacientes com lesões vasculares subcorticais

    Directory of Open Access Journals (Sweden)

    Silviane Pinheiro Campos de Andrade

    2012-05-01

    Full Text Available Vascular cognitive impairment (VCI is characterized by cognitive compromise predominantly of executive dysfunction. OBJECTIVES: To assess cognitive functions in VCI, focusing on executive functions, to observe functional losses in relation to activities of daily living (ADLs and to detect early symptoms prior to the onset of dementia. METHODS: We evaluated healthy subjects matched for gender, education and age to patients with diagnosis of subcortical vascular disease who had a stroke classified into three groups: 1 vascular lesions and no impairment; 2 vascular cognitive impairment with no dementia (VCIND; 3 vascular dementia (VaD. RESULTS AND DISCUSSION: The performance on neuropsychological tests differed among groups, worsening with increased impairment level. The probable VaD group demonstrated impaired performance in memory, processing speed and verbal production, while the VCIND group showed attention deficits. CONCLUSION: Impairment in executive functions and difficulties in ADLs allow us to differentiate levels of impairment in groups of subcortical vascular disease.O comprometimento cognitivo vascular (CCV é caracterizado por comprometimento cognitivo predominantemente sob a forma de disfunção executiva. OBJETIVOS: Avaliar as funções cognitivas no CCV, enfocando as funções executivas, observar as perdas funcionais em relação às atividades cotidianas (AVDs e detectar os primeiros sintomas antes do início da demência. MÉTODOS: Foram avaliados indivíduos controles saudáveis pareados por sexo, escolaridade e idade com pacientes com diagnóstico de doença vascular subcortical que sofreram derrame classificados em três grupos: 1 lesões vasculares sem déficit; 2 comprometimento cognitivo vascular sem demência (CCVSD; 3 demência vascular (DV. RESULTADOS E DISCUSSÃO: O desempenho em testes neuropsicológicos diferiu entre os grupos, sendo o desempenho tanto pior quanto maior o comprometimento. O grupo DV prov

  15. Cortical and subcortical 5-HT2A receptor binding in neuroleptic-naive first-episode schizophrenic patients

    DEFF Research Database (Denmark)

    Erritzoe, David; Rasmussen, Hans; Kristiansen, Klaus Nyegaard

    2008-01-01

    .5+/-5.7 years) and gender underwent a 40 min positron emission tomography (PET) study using the 5-HT(2A) antagonist, [(18)F]altanserin, as a radioligand. PET images were co-registered to 3 T magnetic resonance images (MRIs) for each individual subject, and ROIs were applied automatically onto the individual...... and age- and gender-matched healthy control subjects. However, a preliminary finding of increased 5-HT(2A) binding in the caudate nucleus requires further investigation to explore the relation of subcortical and cortical 5-HT(2A) receptor binding....

  16. Paranormal and religious beliefs may be mediated differentially by subcortical and cortical phenomenological processes of the temporal (limbic) lobes.

    Science.gov (United States)

    Persinger, M A

    1993-02-01

    The vectorial hemisphericity concept predicts that endorsements of beliefs in paranormal phenomena are associated with elevated subcortical (complex partial epileptic-like signs) temporal lobe experiences while endorsements of religious beliefs are associated with experiences of the right (cortical) hemispheric equivalent (the sensed presence) of the linguistic sense of self. Partial correlation analyses, which removed the expected shared variance, supported this hypothesis for 400 men and 400 women; religious affiliation did not contribute any statistically significant influence. However, agreements with extreme religious beliefs, such as killing others in God's name, were associated with weekly church attendance and were primarily endorsed by men but not by women.

  17. Differential activation of brain regions involved with error-feedback and imitation based motor simulation when observing self and an expert's actions in pilots and non-pilots on a complex glider landing task.

    Science.gov (United States)

    Callan, Daniel E; Terzibas, Cengiz; Cassel, Daniel B; Callan, Akiko; Kawato, Mitsuo; Sato, Masa-Aki

    2013-05-15

    In this fMRI study we investigate neural processes related to the action observation network using a complex perceptual-motor task in pilots and non-pilots. The task involved landing a glider (using aileron, elevator, rudder, and dive brake) as close to a target as possible, passively observing a replay of one's own previous trial, passively observing a replay of an expert's trial, and a baseline do nothing condition. The objective of this study is to investigate two types of motor simulation processes used during observation of action: imitation based motor simulation and error-feedback based motor simulation. It has been proposed that the computational neurocircuitry of the cortex is well suited for unsupervised imitation based learning, whereas, the cerebellum is well suited for error-feedback based learning. Consistent with predictions, pilots (to a greater extent than non-pilots) showed significant differential activity when observing an expert landing the glider in brain regions involved with imitation based motor simulation (including premotor cortex PMC, inferior frontal gyrus IFG, anterior insula, parietal cortex, superior temporal gyrus, and middle temporal MT area) than when observing one's own previous trial which showed significant differential activity in the cerebellum (only for pilots) thought to be concerned with error-feedback based motor simulation. While there was some differential brain activity for pilots in regions involved with both Execution and Observation of the flying task (potential Mirror System sites including IFG, PMC, superior parietal lobule) the majority was adjacent to these areas (Observation Only Sites) (predominantly in PMC, IFG, and inferior parietal loblule). These regions showing greater activity for observation than for action may be involved with processes related to motor-based representational transforms that are not necessary when actually carrying out the task. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Diagnosis of Autism Spectrum Disorders Using Regional and Interregional Morphological Features

    OpenAIRE

    Wee, Chong-Yaw; Wang, Li; Shi, Feng; Yap, Pew-Thian; Shen, Dinggang

    2013-01-01

    This article describes a novel approach to identify autism spectrum disorder (ASD) utilizing regional and interregional morphological patterns extracted from structural magnetic resonance images. Two types of features are extracted to characterize the morphological patterns: (1) Regional features, which includes the cortical thickness, volumes of cortical gray matter, and cortical-associated white matter regions, and several subcortical structures extracted from different regions-of-interest ...

  19. de novo interstitial deletions at the 11q23.3-q24.2 region.

    Science.gov (United States)

    Su, Jiasun; Chen, Rongyu; Luo, Jingsi; Fan, Xin; Fu, Chunyun; Wang, Jin; He, Sheng; Hu, Xuyun; Zhang, ShuJie; Yi, Shang; Chen, Shaoke; Shen, Yiping

    2016-01-01

    Jacobsen syndrome (JBS) is a contiguous gene deletion syndrome involving 11q terminal deletion. Interstitial deletions at distal 11q are rare and their contributions to the clinical phenotype of JBS are unknown. We presented the chromosome microarray (CMA) data and the clinical features of two individuals carrying a non-overlapping de novo deletion each at the 11q23.3-q24.2 region in an effort to analyze the correlation between region of deletion at 11q and phenotype. Both deletions are likely pathogenic for patient's condition. The deletion at 11q23.3q24.1 is associated with short stature, relative microcephaly, failure to thrive, hypotonia and sleeping disorder. The deletion at 11q24.2 involves HEPACAM and our patient's clinical presentation (relative macrocephaly, abnormal MRI, mild developmental delay and seizure) is not inconsistent with Megalencephalic leukoencephalopathy with subcortical cysts 2B. Our finds support the notion that more than one critical region at 11q23.3-qter are responsible for the variable clinical presentation of JBS, thus JBS is a true contiguous gene deletion syndrome where multiple loci contributed to the clinical characteristics of JBS. Small interstitial deletions at 11q23.3-q24.2 and their associated unique features also suggest emerging novel genomic disorders.

  20. A novel missense mutation in LIS1 in a child with subcortical band heterotopia and pachygyria inherited from his mildly affected mother with somatic mosaicism.

    Science.gov (United States)

    Mineyko, Aleksandra; Doja, Asif; Hurteau, Julie; Dobyns, William B; Das, Soma; Boycott, Kym M

    2010-06-01

    Mutations in the LIS1 gene result in isolated lissencephaly or subcortical band heterotopia. We report a 5-year-old male who presented with seizures and global developmental delay. Magnetic resonance imaging (MRI) demonstrated posteriorly predominant pachygyria and subcortical band heterotopia. His mother had a history of epilepsy, with onset in her teenage years. Her MRI revealed no abnormalities. Sequence analysis of the LIS1 gene identified a novel p.H389Y mutation in exon 11 (c.1165C>T). The child's mother was found to have the identical mutation as her son, with the signal intensity of the mutant allele being much lower than the normal allele, suggesting somatic mosaicism. This patient is one of only a few reported with a missense mutation in LIS1 associated with subcortical band heterotopia, and this is the first report of a mosaic individual having an affected child.

  1. Bark beetles and fungal associates colonizing white spruce in the Great Lakes region.

    Science.gov (United States)

    Kirsten E. Haberkern; Barbara L. Illman; Kenneth F. Raffa

    2002-01-01

    We examined the major bark beetles and associated fungi colonizing subcortical tissues of white spruce (Picea glauca (Moench) Voss) in the Great Lakes region. Trees were felled at one northwestern Wisconsin site in a preliminary study in 1997 and at 10 sites throughout northern Wisconsin, Minnesota, and Michigan in 1998. Fungal isolations were made from beetles...

  2. Functions of gamma-band synchronization in cognition: from single circuits to functional diversity across cortical and subcortical systems.

    Science.gov (United States)

    Bosman, Conrado A; Lansink, Carien S; Pennartz, Cyriel M A

    2014-06-01

    Gamma-band activity (30-90 Hz) and the synchronization of neural activity in the gamma-frequency range have been observed in different cortical and subcortical structures and have been associated with different cognitive functions. However, it is still unknown whether gamma-band synchronization subserves a single universal function or a diversity of functions across the full spectrum of cognitive processes. Here, we address this question reviewing the mechanisms of gamma-band oscillation generation and the functions associated with gamma-band activity across several cortical and subcortical structures. Additionally, we raise a plausible explanation of why gamma rhythms are found so ubiquitously across brain structures. Gamma band activity originates from the interplay between inhibition and excitation. We stress that gamma oscillations, associated with this interplay, originate from basic functional motifs that conferred advantages for low-level system processing and multiple cognitive functions throughout evolution. We illustrate the multifunctionality of gamma-band activity by considering its role in neural systems for perception, selective attention, memory, motivation and behavioral control. We conclude that gamma-band oscillations support multiple cognitive processes, rather than a single one, which, however, can be traced back to a limited set of circuit motifs which are found universally across species and brain structures. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  3. Identification of the pyramidal tract by neuronavigation based on intraoperative magnetic resonance tractography: correlation with subcortical stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Bozzao, Alessandro; Romano, Andrea; Calabria, Luigi Fausto; Coppola, Valeria; Fantozzi, Luigi Maria [University of Rome Sapienza, Department of Neuroradiology, Rome (Italy); Angelini, Albina; D' Andrea, Giancarlo; Mastronardi, Luciano; Ferrante, Luigi [University of Rome Sapienza, Department of Neurosurgery, Rome (Italy)

    2010-10-15

    To demonstrate the accuracy of magnetic resonance tractography (MRT) in localizing the cortical spinal tract (CST) close to brain tumours by using intraoperative electric subcortical stimulation. Nine patients with intra-axial brain tumours underwent neurosurgery. Planning was based on analysis of the course of streamlines compatible with the CST. After tumour removal, intraoperative MRT was reacquired. Sites at various distance from the CST were repeatedly stimulated to assess whether registered motor evoked potential (MEP) could be elicited. All patients were assessed clinically both pre- and postoperatively. The motor function was preserved in all patients. In all patients intraoperative MRT demonstrated shift of the bundle position caused by the surgical procedure. The distance between the estimated intraoperative CST and the point of elicited MEP was 1 cm or less in all nine patients. At distances greater than 2 cm, no patient reported positive MEP. Intraoperative MRT is a reliable technique for localization of CST. In all patients MEP were elicited by direct subcortical electrical stimulation at a distance below 1 cm from the CST as represented by MRT. Brain shifting might impact this evaluation since CST position may change during surgery in the range of 8 mm. (orig.)

  4. Intraoperative subcortical stimulation mapping of language pathways in a consecutive series of 115 patients with Grade II glioma in the left dominant hemisphere.

    Science.gov (United States)

    Duffau, Hugues; Peggy Gatignol, S T; Mandonnet, Emmanuel; Capelle, Laurent; Taillandier, Luc

    2008-09-01

    Despite better knowledge of cortical language organization, its subcortical anatomofunctional connectivity remains poorly understood. The authors used intraoperative subcortical stimulation in awake patients undergoing operation for a glioma in the left dominant hemisphere to map the language pathways and to determine the contribution of such a method to surgical results. One hundred fifteen patients harboring a World Health Organization Grade II glioma within language areas underwent operation after induction of local anesthesia, using direct electrical stimulation to perform online cortical and subcortical language mapping throughout the resection. After detection of cortical language sites, the authors identified 1 or several of the following subcortical language pathways in all patients: 1) arcuate fasciculus, eliciting phonemic paraphasia when stimulated; 2) inferior frontooccipital fasciculus, generating semantic paraphasia when stimulated; 3) subcallosal fasciculus, inducing transcortical motor aphasia during stimulation; 4) frontoparietal phonological loop, eliciting speech apraxia during stimulation; and 5) fibers coming from the ventral premotor cortex, inducing anarthria when stimulated. These structures were preserved, representing the limits of the resection. Despite a transient immediate postoperative worsening, all but 2 patients (98%) returned to baseline or better. On control MR imaging, 83% of resections were total or subtotal. These results represent the largest experience with human subcortical language mapping ever reported. The use of intraoperative cortical and subcortical stimulation gives a unique opportunity to perform an accurate and reliable real-time anatomofunctional study of language connectivity. Such knowledge of the individual organization of language networks enables practitioners to optimize the benefit-to-risk ratio of surgery for Grade II glioma within the left dominant hemisphere.

  5. Sequence analysis of the MYC oncogene involved in the t(8; 14)(q24; q11) chromosome translocation in a human leukemia T-cell line indicates that putative regulatory regions are not altered

    Energy Technology Data Exchange (ETDEWEB)

    Finver, S.N.; Nishikura, K.; Finger, L.R.; Haluska, F.G.; Finan, J.; Nowell, P.C.; Croce, C.M.

    1988-05-01

    The authors cloned the translocation-associated and homologous normal MYC alleles from SKW-3, a leukemia T-cell line with the t(8; 14)(q24; q11) translocation, and determined the sequence of the MYC oncogene first exon and flanking 5' putative regulatory regions. S1 nuclease protection experiments utilizing a MYC first exon probe demonstrated transcriptional deregulation of the MYC gene associated with the T-cell receptor ..cap alpha.. locus on the 8q + chromosome of SKW-3 cells. Nucleotide sequence analysis of the translocation-associated (8q +) MYC allele identified a single base substitution within the upstream flanking region; the homologous nontranslocated allele contained an additional substitution and a two-base deletion. None of the deletions or substitutions localized to putative 5' regulatory regions. The MYC first exon sequence was germ line in both alleles. These results demonstrate that alterations within the putative 5' MYC regulatory regions are not necessarily involved in MYC deregulation in T-cell leukemias, and they show that juxtaposition of the T-cell receptor ..cap alpha.. locus to a germ-line MYC oncogene results in MYC deregulation.

  6. Intragenic deletions and duplications of the LIS1 and DCX genes: a major disease-causing mechanism in lissencephaly and subcortical band heterotopia.

    Science.gov (United States)

    Haverfield, Eden V; Whited, Amanda J; Petras, Kristin S; Dobyns, William B; Das, Soma

    2009-07-01

    Classical lissencephaly, or isolated lissencephaly sequence (ILS), and subcortical band heterotopia (SBH) are neuronal migration disorders associated with severe mental retardation and epilepsy. Abnormalities of the LIS1 and DCX genes are implicated in the majority of patients with these disorders and account for approximately 75% of patients with ILS, whereas mutations of DCX account for 85% of patients with SBH. The molecular basis of disease in patients with ILS and SBH, in whom no abnormalities have been identified, has been questioned. We studied a series of 83 patients with ILS, SBH or pachygyria, in whom no abnormalities of the LIS1 or DCX genes had been identified, for intragenic deletions and duplications by multiplex ligation-dependent probe amplification (MLPA). In 52 patients with ILS, we identified 12 deletions and 6 duplications involving the LIS1 gene (35%), with the majority resulting in grade 3 lissencephaly. Three deletions of the DCX gene were identified in the group of nine female patients with SBH (out of 31 patients with DCX-suggestive brain anomalies), ie 33%. We estimate an overall mutation detection rate of approximately 85% by LIS1 and DCX sequencing and MLPA in ILS, and 90% by DCX sequencing and MLPA in SBH. Our results show that intragenic deletions and duplications of the LIS1 and DCX genes account for a significant number of patients with ILS and SBH, where no molecular defect had previously been identified. Incorporation of deletion/duplication analysis of the LIS1 and DCX genes will be important for the molecular diagnosis of patients with ILS and SBH.

  7. Cortical and Subcortical Grey and White Matter Atrophy in Myotonic Dystrophies Type 1 and 2 Is Associated with Cognitive Impairment, Depression and Daytime Sleepiness.

    Directory of Open Access Journals (Sweden)

    Christiane Schneider-Gold

    Full Text Available Central nervous system involvement is one important clinical aspect of myotonic dystrophy type 1 and 2 (DM1 and DM2. We assessed CNS involvement DM1 and DM2 by 3T MRI and correlated clinical and neuocognitive symptoms with brain volumetry and voxel-based morphometry (VBM.12 patients with juvenile or classical DM1 and 16 adult DM2 patients underwent 3T MRI, a thorough neurological and neuropsychological examination and scoring of depression and daytime sleepiness. Volumes of brain, ventricles, cerebellum, brainstem, cervical cord, lesion load and VBM results of the patient groups were compared to 33 matched healthy subjects.Clinical symptoms were depression (more pronounced in DM2, excessive daytime sleepiness (more pronounced in DM1, reduced attention and flexibility of thinking, and deficits of short-term memory and visuo-spatial abilities in both patient groups. Both groups showed ventricular enlargement and supratentorial GM and WM atrophy, with prevalence for more GM atrophy and involvement of the motor system in DM1 and more WM reduction and affection of limbic structures in DM2. White matter was reduced in DM1 in the splenium of the corpus callosum and in left-hemispheric WM adjacent to the pre- and post-central gyrus. In DM2, the bilateral cingulate gyrus and subgyral medio-frontal and primary somato-sensory WM was affected. Significant structural-functional correlations of morphological MRI findings (global volumetry and VBM with clinical findings were found for reduced flexibility of thinking and atrophy of the left secondary visual cortex in DM1 and of distinct subcortical brain structures in DM2. In DM2, depression was associated with brainstem atrophy, Daytime sleepiness correlated with volume decrease in the middle cerebellar peduncles, pons/midbrain and the right medio-frontal cortex.GM and WM atrophy was significant in DM1 and DM2. Specific functional-structural associations related morphological changes to cognitive impairment

  8. Ketamine Dysregulates the Amplitude and Connectivity of High-Frequency Oscillations in Cortical–Subcortical Networks in Humans: Evidence From Resting-State Magnetoencephalography-Recordings

    Science.gov (United States)

    Rivolta, Davide; Heidegger, Tonio; Scheller, Bertram; Sauer, Andreas; Schaum, Michael; Birkner, Katharina; Singer, Wolf; Wibral, Michael; Uhlhaas, Peter J.

    2015-01-01

    Hypofunctioning of the N-methyl-D-aspartate receptor (NMDA-R) has been prominently implicated in the pathophysiology of schizophrenia (ScZ). The current study tested the effects of ketamine, a dissociative anesthetic and NMDA-R antagonist, on resting-state activity recorded with magnetoencephalography (MEG) in healthy volunteers. In a single-blind cross-over design, each participant (n = 12) received, on 2 different sessions, a subanesthetic dose of S-ketamine (0.006mg/Kg) and saline injection. MEG-data were analyzed at sensor- and source-level in the beta (13–30 Hz) and gamma (30–90 Hz) frequency ranges. In addition, connectivity analysis at source-level was performed using transfer entropy (TE). Ketamine increased gamma-power while beta-band activity was decreased. Specifically, elevated 30–90 Hz activity was pronounced in subcortical (thalamus and hippocampus) and cortical (frontal and temporal cortex) regions, whilst reductions in beta-band power were localized to the precuneus, cerebellum, anterior cingulate, temporal and visual cortex. TE analysis demonstrated increased information transfer in a thalamo-cortical network after ketamine administration. The findings are consistent with the pronounced dysregulation of high-frequency oscillations following the inhibition of NMDA-R in animal models of ScZ as well as with evidence from electroencephalogram-data in ScZ-patients and increased functional connectivity during early illness stages. Moreover, our data highlight the potential contribution of thalamo-cortical connectivity patterns towards ketamine-induced neuronal dysregulation, which may be relevant for the understanding of ScZ as a disorder of disinhibition of neural circuits. PMID:25987642

  9. Ketamine Dysregulates the Amplitude and Connectivity of High-Frequency Oscillations in Cortical-Subcortical Networks in Humans: Evidence From Resting-State Magnetoencephalography-Recordings.

    Science.gov (United States)

    Rivolta, Davide; Heidegger, Tonio; Scheller, Bertram; Sauer, Andreas; Schaum, Michael; Birkner, Katharina; Singer, Wolf; Wibral, Michael; Uhlhaas, Peter J

    2015-09-01

    Hypofunctioning of the N-methyl-D-aspartate receptor (NMDA-R) has been prominently implicated in the pathophysiology of schizophrenia (ScZ). The current study tested the effects of ketamine, a dissociative anesthetic and NMDA-R antagonist, on resting-state activity recorded with magnetoencephalography (MEG) in healthy volunteers. In a single-blind cross-over design, each participant (n = 12) received, on 2 different sessions, a subanesthetic dose of S-ketamine (0.006 mg/Kg) and saline injection. MEG-data were analyzed at sensor- and source-level in the beta (13-30 Hz) and gamma (30-90 Hz) frequency ranges. In addition, connectivity analysis at source-level was performed using transfer entropy (TE). Ketamine increased gamma-power while beta-band activity was decreased. Specifically, elevated 30-90 Hz activity was pronounced in subcortical (thalamus and hippocampus) and cortical (frontal and temporal cortex) regions, whilst reductions in beta-band power were localized to the precuneus, cerebellum, anterior cingulate, temporal and visual cortex. TE analysis demonstrated increased information transfer in a thalamo-cortical network after ketamine administration. The findings are consistent with the pronounced dysregulation of high-frequency oscillations following the inhibition of NMDA-R in animal models of ScZ as well as with evidence from electroencephalogram-data in ScZ-patients and increased functional connectivity during early illness stages. Moreover, our data highlight the potential contribution of thalamo-cortical connectivity patterns towards ketamine-induced neuronal dysregulation, which may be relevant for the understanding of ScZ as a disorder of disinhibition of neural circuits. © The Author 2015. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  10. Characteristic pattern of cerebral perfusion in patients with the early stage of subcortical vascular dementia compared with Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Young Jin; Kang, Do Young; Park, Kyung Won; Cheon, Sang Myung; Kim, Jong Kuk; Kim, Jae Woo [Dong-A University School of Medicine, Busan (Korea, Republic of)

    2004-07-01

    Brain perfusion SPECT has been commonly used to evaluate several different types of dementia. The aim of this study is to assess the specific patterns of regional cerebral blood flow (rCBF) in patients with the early stage of subcortical vascular dementia (SVD) and Alzheimer's disease (AD) using Tc-99m HMPAO SPECT, and to compare the differences between the two conditions. Sixteen SVD (mean age; 68.0{+-}7.0 years, educational period; 6.3{+-}5.6 years, CDR; 0.80{+-}0.26). 46 AD (mean age; 69.9{+-}7.4 years, educational period; 5.4{+-}4.7 years, CDR; 0.86{+-}0.23) and 12 normal control subjects (mean age; 67.1{+-}7.7 years, educational period; 6.2{+-}4.2 years) participated in this study. We included the patients with SVD and AD according to NINCDS-ADRDA criteria for probable AD and NINDS-AIREN criteria for probable or possible VD. They were all matched for age, education and clinical dementia scale scores. SPM analysis of the SPECT image showed significant perfusion deficits on the right temporal region and right thalamus, left insula and superior temporal gyrus, both cingulate gyri and frontal subgyral regions in patients with SVD and on the left supramarginal gyrus, superior temporal gyrus, postcentral gyrus and inferior parietal lobule, right fugiform gyrus and both cingulate gyri in patients with AD compared with control subjects (uncorrected p<0.01). SVD patients revealed significant hypoperfusion in the right parahippocampal gyrus, right cingulated gyrus, left insula, and both frontal subgyral regions compared with AD patients (uncorrected p<0.01). SVD patients revealed significant hyperperfusion in right superior frontal gyrus, left pre- and postcentral gyri, left paracentral lobule, left precuneus and both medial frontal gyri compared with AD patients (uncorrected p<0.01). Our study shows characteristic and different pattern of perfusion deficits in patients with SVD and AD, and these results may be helpful to discriminate the two conditions in the

  11. CYP2C19 Metabolizer Status and Clopidogrel Efficacy in the Secondary Prevention of Small Subcortical Strokes (SPS3) Study

    Science.gov (United States)

    McDonough, Caitrin W; McClure, Leslie A; Mitchell, Braxton D; Gong, Yan; Horenstein, Richard B; Lewis, Joshua P; Field, Thalia S; Talbert, Robert L; Benavente, Oscar R; Johnson, Julie A; Shuldiner, Alan R

    2015-01-01

    Background The role of the CYP2C19 genotype on clopidogrel efficacy has been studied widely, with data suggesting reduced clopidogrel efficacy in loss-of-function variant carriers taking clopidogrel after percutaneous coronary intervention; however, data are limited regarding the association between CYP2C19 genetic variants and outcomes in stroke patients. We investigated whether CYP2C19 metabolizer status affects the risk of recurrent stroke or major bleeding in subcortical stroke patients taking dual antiplatelet therapy with aspirin and clopidogrel. Methods and Results CYP2C19*2 and CYP2C19*17 were genotyped in 522 patients treated with dual antiplatelet therapy from the Secondary Prevention of Small Subcortical Strokes (SPS3) study. CYP2C19 metabolizer status was inferred from genotype, and associations with the risk of recurrent stroke and major bleeding were assessed in the overall cohort and by race/ethnic group with logistic regression modeling. In the overall cohort, there were no differences in outcomes by CYP2C19 metabolizer status (recurrent stroke, odds ratio 1.81 [95% CI 0.76 to 4.30]; major bleeding, odds ratio 0.67 [95% CI 0.22 to 2.03]). In white participants, those with CYP2C19 intermediate or poor metabolizer status had higher odds of recurrent stroke (odds ratio 5.19 [95% CI 1.08 to 24.90]) than those with extensive or ultrarapid metabolizer status, but there was no evidence of difference in major bleeding. Conclusions There were significant differences in recurrent stroke by CYP2C19 genotype-inferred metabolizer status in white subcortical stroke patients receiving dual antiplatelet therapy with aspirin and clopidogrel, consistent with cardiovascular studies on CYP2C19 and clopidogrel; however, the bleeding risk that led to early termination of the antiplatelet arm of the SPS3 trial does not appear to be explained by CYP2C19 genotype. This study was relatively underpowered; therefore, these findings should be interpreted with caution and

  12. Mapping patterns of depression-related brain regions with cytochrome oxidase histochemistry: relevance of animal affective systems to human disorders, with a focus on resilience to adverse events.

    Science.gov (United States)

    Harro, Jaanus; Kanarik, Margus; Matrov, Denis; Panksepp, Jaak

    2011-10-01

    The search for novel antidepressants may be facilitated by pre-clinical animal models that relay on specific neural circuit and related neurochemical endpoint measures, which are anchored in concrete neuro-anatomical and functional neural-network analyzes. One of the most important initial considerations must be which regions of the brain are candidates for the maladaptive response to depressogenic challenges. Consideration of persistent differences or changes in the activity of cerebral networks can be achieved by mapping oxidative metabolism in ethologically or pathogenetically relevant animal models. Cytochrome oxidase histochemistry is a technique suitable to detect regional long-term brain activity changes relative to control conditions and has been used in a variety of animal models. This work is summarized and indicates that major changes occur mainly in subcortical areas, highlighting specific brain regions where some alterations in regional oxidative metabolism may represent adaptive changes to depressogenic adverse life events, while others may reflect failures of adaptation. Many of these changes in oxidative metabolism may depend upon the integrity of serotonergic neurotransmission, and occur in several brain regions shown by other techniques to be involved in endogenous affective circuits that control emotional behaviors as well as related higher brain regions that integrate learning and cognitive information processing. These brain regions appear as primary targets for further identification of endophenotypes specific to affective disorders. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Computerized evaluation method of white matter hyperintensities related to subcortical vascular dementia in brain MR images

    Science.gov (United States)

    Arimura, Hidetaka; Kawata, Yasuo; Yamashita, Yasuo; Magome, Taiki; Ohki, Masafumi; Toyofuku, Fukai; Higashida, Yoshiharu; Tsuchiya, Kazuhiro

    2010-03-01

    We have developed a computerized evaluation method of white matter hyperintensity (WMH) regions for the diagnosis of vascular dementia (VaD) based on magnetic resonance (MR) images, and implemented the proposed method as a graphical interface program. The WMH regions were segmented using either a region growing technique or a level set method, one of which was selected by using a support vector machine. We applied the proposed method to MR images acquired from 10 patients with a diagnosis of VaD. The mean similarity index between WMH regions determined by a manual method and the proposed method was 78.2+/-11.0%. The proposed method could effectively assist neuroradiologists in evaluating WMH regions.

  14. Subcortical brain volume differences in participants with attention deficit hyperactivity disorder in children and adults: a cross-sectional mega-analysis.

    Science.gov (United States)

    Hoogman, Martine; Bralten, Janita; Hibar, Derrek P; Mennes, Maarten; Zwiers, Marcel P; Schweren, Lizanne S J; van Hulzen, Kimm J E; Medland, Sarah E; Shumskaya, Elena; Jahanshad, Neda; Zeeuw, Patrick de; Szekely, Eszter; Sudre, Gustavo; Wolfers, Thomas; Onnink, Alberdingk M H; Dammers, Janneke T; Mostert, Jeanette C; Vives-Gilabert, Yolanda; Kohls, Gregor; Oberwelland, Eileen; Seitz, Jochen; Schulte-Rüther, Martin; Ambrosino, Sara; Doyle, Alysa E; Høvik, Marie F; Dramsdahl, Margaretha; Tamm, Leanne; van Erp, Theo G M; Dale, Anders; Schork, Andrew; Conzelmann, Annette; Zierhut, Kathrin; Baur, Ramona; McCarthy, Hazel; Yoncheva, Yuliya N; Cubillo, Ana; Chantiluke, Kaylita; Mehta, Mitul A; Paloyelis, Yannis; Hohmann, Sarah; Baumeister, Sarah; Bramati, Ivanei; Mattos, Paulo; Tovar-Moll, Fernanda; Douglas, Pamela; Banaschewski, Tobias; Brandeis, Daniel; Kuntsi, Jonna; Asherson, Philip; Rubia, Katya; Kelly, Clare; Martino, Adriana Di; Milham, Michael P; Castellanos, Francisco X; Frodl, Thomas; Zentis, Mariam; Lesch, Klaus-Peter; Reif, Andreas; Pauli, Paul; Jernigan, Terry L; Haavik, Jan; Plessen, Kerstin J; Lundervold, Astri J; Hugdahl, Kenneth; Seidman, Larry J; Biederman, Joseph; Rommelse, Nanda; Heslenfeld, Dirk J; Hartman, Catharina A; Hoekstra, Pieter J; Oosterlaan, Jaap; Polier, Georg von; Konrad, Kerstin; Vilarroya, Oscar; Ramos-Quiroga, Josep Antoni; Soliva, Joan Carles; Durston, Sarah; Buitelaar, Jan K; Faraone, Stephen V; Shaw, Philip; Thompson, Paul M; Franke, Barbara

    2017-04-01

    Neuroimaging studies have shown structural alterations in several brain regions in children and adults with attention deficit hyperactivity disorder (ADHD). Through the formation of the international ENIGMA ADHD Working Group, we aimed to address weaknesses of previous imaging studies and meta-analyses, namely inadequate sample size and methodological heterogeneity. We aimed to investigate whether there are structural differences in children and adults with ADHD compared with those without this diagnosis. In this cross-sectional mega-analysis, we used the data from the international ENIGMA Working Group collaboration, which in the present analysis was frozen at Feb 8, 2015. Individual sites analysed structural T1-weighted MRI brain scans with harmonised protocols of individuals with ADHD compared with those who do not have this diagnosis. Our primary outcome was to assess case-control differences in subcortical structures and intracranial volume through pooling of all individual data from all cohorts in this collaboration. For this analysis, p values were significant at the false discovery rate corrected threshold of p=0·0156. Our sample comprised 1713 participants with ADHD and 1529 controls from 23 sites with a median age of 14 years (range 4-63 years). The volumes of the accumbens (Cohen's d=-0·15), amygdala (d=-0·19), caudate (d=-0·11), hippocampus (d=-0·11), putamen (d=-0·14), and intracranial volume (d=-0·10) were smaller in individuals with ADHD compared with controls in the mega-analysis. There was no difference in volume size in the pallidum (p=0·95) and thalamus (p=0·39) between people with ADHD and controls. Exploratory lifespan modelling suggested a delay of maturation and a delay of degeneration, as effect sizes were highest in most subgroups of children (21 years): in the accumbens (Cohen's d=-0·19 vs -0·10), amygdala (d=-0·18 vs -0·14), caudate (d=-0·13 vs -0·07), hippocampus (d=-0·12 vs -0·06), putamen (d=-0·18 vs -0·08), and

  15. Patient with rapidly evolving neurological disease with neuropathological lesions of Creutzfeldt-Jakob disease, Lewy body dementia, chronic subcortical vascular encephalopathy and meningothelial meningioma.

    Science.gov (United States)

    Vita, Maria Gabriella; Tiple, Dorina; Bizzarro, Alessandra; Ladogana, Anna; Colaizzo, Elisa; Capellari, Sabina; Rossi, Marcello; Parchi, Piero; Masullo, Carlo; Pocchiari, Maurizio

    2017-04-01

    We report a case of rapidly evolving neurological disease in a patient with neuropathological lesions of Creutzfeldt-Jakob disease (CJD), Lewy body dementia (LBD), chronic subcortical vascular encephalopathy and meningothelial meningioma. The coexistence of severe multiple pathologies in a single patient strengthens the need to perform accurate clinical differential diagnoses in rapidly progressive dementias. © 2016 Japanese Society of Neuropathology.

  16. Thyroid Hormone-Dependent Formation of a Subcortical Band Heterotopia (SBH) in the Neonatal Brain is not Exacerbated Under Conditions of Low Dietary Iron

    Science.gov (United States)

    Thyroid hormones (TH) are critical for brain development. Modest TH insufficiency in pregnant rats induced by propylthiouracil (PTU) results in formation of a structural abnormality, a subcortical band heterotopia (SBH), in brains of offspring. PTU reduces TH by inhibiting the s...

  17. Striatal dopaminergic innervation regulates subthalamic beta-oscillations and cortical-subcortical coupling during movements: evidence in three subjects with Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Andrea Canessa

    2016-12-01

    Full Text Available Activation of the basal ganglia has been shown during the preparation and execution of movement. However, the functional interaction of cortical and subcortical brain areas during movement and the relative contribution of dopaminergic striatal innervation remain unclear. We recorded local field potential activity from the subthalamic nucleus and high-density electroencephalography signals in four patients with Parkinson’s disease off dopaminergic medication during a multi-joint motor task performed with their dominant and non-dominant hand. Recordings were performed by means of a fully-implantable deep brain stimulation device at four months after surgery. Three patients also performed a single-photon computed tomography with 123IN-ω-fluoropropyl-2β-carbomethoxy-3β-(4-iodophenylnortropane to assess striatal dopaminergic innervation. Unilateral movement execution led to event-related desynchronization followed by a rebound after movement termination (event-related synchronization of oscillatory beta activity in the subthalamic nucleus and primary sensorimotor cortex of both hemispheres. Dopamine deficiency directly influenced movement-related beta-modulation, with greater beta-suppression in the most dopamine-depleted hemisphere for both ipsi- and contralateral hand movements. Cortical-subcortical, but not interhemispheric subcortical coherencies were modulated by movement and influenced by striatal dopaminergic innervation, being stronger in the most dopamine-depleted hemisphere. The data are consistent with a role of dopamine in shielding subcortical structures from an excessive cortical entrapment and cross-hemispheric coupling, thus allowing fine-tuning of movement.

  18. Subcortical vascular cognitive impairment, no dementia : EEG global power independently predicts vascular impairment and brain symmetry index reflects severity of cognitive decline

    NARCIS (Netherlands)

    Sheorajpanday, Rishi V.A.; Mariën, Peter; Nagels, Guy; Weeren, Arie J.T.M.; Saerens, Jos; Van Putten, Michel J.A.M.; de Deyn, Peter P.

    2014-01-01

    Background and Purpose: Vascular cognitive impairment, no dementia (vCIND) is a prevalent and potentially preventable disorder. Clinical presentation of the small-vessel subcortical subtype may be insidious, and differential difficulties can arise with mild cognitive impairment. We investigated EEG

  19. Subcortical Vascular Cognitive Impairment, No Dementia : EEG Global Power Independently Predicts Vascular Impairment and Brain Symmetry Index Reflects Severity of Cognitive Decline

    NARCIS (Netherlands)

    Sheorajpanday, Rishi V. A.; Marien, Peter; Nagels, Guy; Weeren, Arie J. T. M.; Saerens, Jos; van Putten, Michel J. A. M.; De Deyn, Peter P.

    2014-01-01

    Background and Purpose:Vascular cognitive impairment, no dementia (vCIND) is a prevalent and potentially preventable disorder. Clinical presentation of the small-vessel subcortical subtype may be insidious, and differential difficulties can arise with mild cognitive impairment. We investigated EEG

  20. Diffuse subcortical band heterotopia, periodic limb movements during sleep and a novel "de novo" mutation in the DCX gene.

    Science.gov (United States)

    Parisi, Pasquale; Miano, Silvia; Mei, Davide; Paolino, Maria Chiara; Castaldo, Rosa; Villa, Maria Pia

    2010-06-01

    Mutations of the DCX gene (Xp22.3) cause X-linked lissencephaly in males and double cortex syndrome (DCS) or subcortical band heterotopia (SBH) in females. SBH is characterized by bilateral bands of grey matter interposed in the white matter between the cortex and the lateral ventricles. The main clinical manifestation in patients with SBH is epilepsy, which may be partial or generalized and is intractable in approximately 65% of the patients. An association of periodic limb movements (PLMs) and SBH has not been documented previously. We describe a 2-year-old girl affected by SBH with epilepsy and periodic limb movements (PLMs), in whom a novel "de novo" missense substitution, Met1Val (M1V), was identified in the DCX gene. Physiopathological links between PLMs and SBH are discussed. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  1. Dcx reexpression reduces subcortical band heterotopia and seizure threshold in an animal model of neuronal migration disorder.

    Science.gov (United States)

    Manent, Jean-Bernard; Wang, Yu; Chang, Yoonjeung; Paramasivam, Murugan; LoTurco, Joseph J

    2009-01-01

    Disorders of neuronal migration can lead to malformations of the cerebral neocortex that greatly increase the risk of seizures. It remains untested whether malformations caused by disorders in neuronal migration can be reduced by reactivating cellular migration and whether such repair can decrease seizure risk. Here we show, in a rat model of subcortical band heterotopia (SBH) generated by in utero RNA interference of the Dcx gene, that aberrantly positioned neurons can be stimulated to migrate by reexpressing Dcx after birth. Restarting migration in this way both reduces neocortical malformations and restores neuronal patterning. We further find that the capacity to reduce SBH continues into early postnatal development. Moreover, intervention after birth reduces the convulsant-induced seizure threshold to a level similar to that in malformation-free controls. These results suggest that disorders of neuronal migration may be eventually treatable by reengaging developmental programs both to reduce the size of cortical malformations and to reduce seizure risk.

  2. A case of Baraitser-Winter syndrome with unusual brain MRI findings: pachygyria, subcortical-band heterotopia, and periventricular heterotopia.

    Science.gov (United States)

    Shiihara, Takashi; Maruyama, Ken-ichi; Yamada, Yoshiyuki; Nishimura, Akira; Matsumoto, Naomichi; Kato, Mitsuhiro; Sakazume, Satoru

    2010-06-01

    Baraitser-Winter syndrome (BaWS) is characterized by iris coloboma, ptosis, hypertelorism, and mental retardation; it is a rare multiple congenital anomaly or a mental-retardation syndrome of unknown etiology. Patients suffering from this syndrome have been also found to show brain anomalies such as pachygyria, subcortical-band heterotopia (SBH), and hippocampal malformations; therefore, these anomalies have been included in the phenotypic spectrum of this syndrome. We report the case of a Japanese boy suffering from BaWS; the patient's brain magnetic resonance imaging scan revealed pachygyria, SBH, and periventricular heterotopia. However, the results of the genome-wide array comparative genomic hybridization did not reveal any chromosomal rearrangements. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  3. Extensive Direct Subcortical Cerebellum-Basal Ganglia Connections in Human Brain as Revealed by Constrained Spherical Deconvolution Tractography.

    Science.gov (United States)

    Milardi, Demetrio; Arrigo, Alessandro; Anastasi, Giuseppe; Cacciola, Alberto; Marino, Silvia; Mormina, Enricomaria; Calamuneri, Alessandro; Bruschetta, Daniele; Cutroneo, Giuseppina; Trimarchi, Fabio; Quartarone, Angelo

    2016-01-01

    The connections between the cerebellum and basal ganglia were assumed to occur at the level of neocortex. However evidences from animal data have challenged this old perspective showing extensive subcortical pathways linking the cerebellum with the basal ganglia. Here we tested the hypothesis if these connections also exist between the cerebellum and basal ganglia in the human brain by using diffusion magnetic resonance imaging and tractography. Fifteen healthy subjects were analyzed by using constrained spherical deconvolution technique obtained with a 3T magnetic resonance imaging scanner. We found extensive connections running between the subthalamic nucleus and cerebellar cortex and, as novel result, we demonstrated a direct route linking the dentate nucleus to the internal globus pallidus as well as to the substantia nigra. These findings may open a new scenario on the interpretation of basal ganglia disorders.

  4. Pulse transit time and blood pressure changes following auditory-evoked subcortical arousal and waking of infants.

    Science.gov (United States)

    Galland, Barbara C; Tan, Evan; Taylor, Barry J

    2007-07-01

    To establish a normal range of data in 3-month-old infants in relation to changes in cardiovascular measurements, with particular reference to pulse transit time (PTT), following subcortical arousals and awakenings from sleep. Prospective study. Sleep laboratory, Dunedin Hospital Twenty healthy infants aged 9-12 weeks. Nap studies were performed using a standard polysomnographic setup with the addition of a Portapres blood pressure (BP) cuff (wrist application) and a piezoelectric sensor on the foot. PTT was measured from the ECG-R waveform to the arrival of the pulse peripherally. Infants were exposed to white noise from 50 to 100 dB at 10 dB intervals within REM and NREM sleep. Awakening thresholds were higher (P = 0.01) in NREM (>90 dB) than REM sleep (mean +/- SD; 74.3 +/- 9.4dB). Subcortical thresholds were always 10 dB below waking thresholds. Following awakening, there was an immediate increase in HR, SBP, and DBP of 21%, 14%, and 17%, respectively, and a 13% decrease in PTT returning to baseline within 25-30 seconds. PTT at baseline measured 140 +/- 11 and 139 +/- 9 msec in NREM and REM sleep, respectively, and decreased approximately 20 msec with waking. PTT changes were negatively correlated with heart rate (HR) but not BP, although a trend was evident. At 3 months of age, infants provoked to arouse from sleep showed PTT changes that inversely mimicked BP trends, suggesting that PTT could be useful in infant studies as a marker for autonomic perturbations that occur during sleep in both clinical and research settings.

  5. Subcortical Low-Intensity Lesions on Fluid-Attenuated Inversion Recovery Images After Revascularization Surgery for Moyamoya Disease.

    Science.gov (United States)

    Machida, Toshio; Nakano, Shigeki; Ishige, Satoshi; Ono, Junichi; Fujikawa, Atsushi

    2017-02-01

    Although uncommon, subcortical low-intensity (SCLI) changes on fluid-attenuated inversion recovery images are observed in various diseases, including cerebral ischemia. Here, we aimed to clarify the incidence and clinical implications of SCLI changes after revascularization surgery for moyamoya disease, focusing on the correlation with postoperative transient neurologic events (TNEs). In this retrospective case series analysis, we included 10 hemispheres from 9 adults with moyamoya disease who underwent revascularization surgery. Subcortical signal intensity at the 5 gyri around the anastomosis point was quantitatively measured at 1 week and 3 months postoperatively. Changes in cerebral blood flow (CBF) were assessed using single-photon emission computed tomography. Images taken 1 week after surgery showed widespread SCLI changes below the operative fields in all 10 cases, but these changes normalized by 3 months. In addition, the changes in signal intensity at anastomoses negatively correlated with the changes in CBF (R(2) = 0.36; P = 0.039). Postoperative TNEs occurred in 6 cases (60%) but were resolved within 17 days after surgery. Postoperative CBF increased in 9 of the 10 cases, with a median of 23%; however, these increases were not associated with the development of TNEs. The SCLI changes at the anastomosis points did not differ by the experience of TNEs. Early after surgery, SCLI changes are common findings below the operative fields but negatively correlate with increases in CBF. Although no significant association was found between TNEs and the SCLI changes, the synchronized development of these phenomena may suggest a common underlying pathogenesis. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. FISH studies in a girl with sporadic aniridia and an apparently balanced de novo t(11;13(p13;q33 translocation detect a microdeletion involving the WAGR region

    Directory of Open Access Journals (Sweden)

    Llerena Jr. J.C.

    2000-01-01

    Full Text Available Conventional cytogenetic studies on a female infant with sporadic aniridia revealed what appeared to be a balanced de novo t(11;13 (p13;q33 translocation. Fluorescence in situ hybridization (FISH investigations, however, detected the presence of a cryptic 11p13p14 deletion which included the WAGR region and involved approximately 7.5 Mb of DNA, including the PAX6 and WT1 genes. These results account for the patient's aniridia, and place her at high risk for developing Wilms' tumour. The absence of mental retardation in the patient suggests that the position of the distal breakpoint may also help to refine the mental retardation locus in the WAGR contiguous gene syndrome (Wilms', aniridia, genital anomalies and mental retardation.

  7. Regional Cerebral Perfusion in Progressive Supranuclear Palsy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Won Yong; Lee, Ki Hyeong; Yoon, Byung Woo; Lee, Sang Bok; Jeon, Beom S. [Samsung Medical Center, Seoul (Korea, Republic of); Lee, Kyung Han; Lee, Myung Chul [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    1996-03-15

    Progressive supranuclear palsy (PSP) is a Parkinson-plus syndrome characterized clinically by supranuclear ophthalmoplegia, pseudobulbar palsy, axial rigidity, bradykinesia, postural instability and dementia. Presence of dementia and lack of cortical histopathology suggest the derangement of cortical function by pathological changes in subcortical structures in PSP, which is supported by the pattern of behavioral changes and measurement of brain metabolism using positron emission tomography. This study was done to examine whether there are specific changes of regional cerebral perfusion in PSP and whether there is a correlation between severity of motor abnormaility and degree of changes in cerebral perfusion. We measured regional cerebral perfusion indices in 5 cortical and 2 subcortical areas in 6 patients with a clinical diagnosis of PSP and 6 healthy age and sex matched controls using Tc-99m-HMPAO SPECT. Compared with age and sex matched controls, only superior frontal regional perfusion index was significantly decreased in PSP (p<0.05). There was no correlation between the severity of the motor abnormality and any of the regional cerebral perfusion indices (p>0.05). We affirm the previous reports that perfusion in superior frontal cortex is decreased in PSP. Based on our results that there was no correlation between severity of motor abnormality and cerebral perfusion in the superior frontal cortex, nonmotoric symptoms including dementia needs to be looked at whether there is a correlation with the perfusion abnormality in superior frontal cortex

  8. An N-terminal region of a Myb-like protein is involved in its intracellular localization and activation of a gibberellin-inducible proteinase gene in germinated rice seeds.

    Science.gov (United States)

    Sutoh, Keita; Washio, Kenji; Imai, Ryozo; Wada, Masamitsu; Nakai, Tomonori; Yamauchi, Daisuke

    2015-01-01

    The expression of the gene for a proteinase (Rep1) is upregulated by gibberellins. The CAACTC regulatory element (CARE) of the Rep1 promoter is involved in the gibberellin response. We isolated a cDNA for a CARE-binding protein containing a Myb domain in its carboxyl-terminal region and designated the gene Carboxyl-terminal Myb1 (CTMyb1). This gene encodes two polypeptides of two distinctive lengths, CTMyb1L and CTMyb1S, which include or exclude 213 N-terminal amino acid residues, respectively. CTMyb1S transactivated the Rep1 promoter in the presence of OsGAMyb, but not CTMyb1L. We observed an interaction between CTMyb1S and the rice prolamin box-binding factor (RPBF). A bimolecular fluorescence complex analysis detected the CTMyb1S and RPBF complex in the nucleus, but not the CTMyb1L and RPBF complex. The results suggest that the arrangement of the transfactors is involved in gibberellin-inducible expression of Rep1.

  9. Post-transcriptional control of the Escherichia coli PhoQ-PhoP two-component system by multiple sRNAs involves a novel pairing region of GcvB.

    Directory of Open Access Journals (Sweden)

    Audrey Coornaert

    Full Text Available PhoQ/PhoP is a central two-component system involved in magnesium homeostasis, pathogenicity, cell envelope composition, and acid resistance in several bacterial species. The small RNA GcvB is identified here as a novel direct regulator of the synthesis of PhoQ/PhoP in Escherichia coli, and this control relies on a novel pairing region of GcvB. After MicA, this is the second Hfq-dependent small RNA that represses expression of the phoPQ operon. Both MicA and GcvB bind phoPQ mRNA in vivo and in vitro around the translation initiation region of phoP. Binding of either small RNA is sufficient to inhibit ribosome binding and induce mRNA degradation. Surprisingly, however, MicA and GcvB have different effects on the levels of the PhoP protein and therefore on the expression of the PhoP regulon. These results highlight the complex connections between small RNAs and transcriptional regulation networks in bacteria.

  10. D1- and D2-like dopamine receptors in the CA1 region of the hippocampus are involved in the acquisition and reinstatement of morphine-induced conditioned place preference.

    Science.gov (United States)

    Assar, Nasim; Mahmoudi, Dorna; Farhoudian, Ali; Farhadi, Mohammad Hasan; Fatahi, Zahra; Haghparast, Abbas

    2016-10-01

    The hippocampus plays a vital role in processing contextual memories and reward related learning tasks, such as conditioned place preference (CPP). Among the neurotransmitters in the hippocampus, dopamine is deeply involved in reward-related processes. This study assessed the role of D1- and D2-like dopamine receptors within the CA1 region of the hippocampus in the acquisition and reinstatement of morphine-CPP. To investigate the role of D1 and D2 receptors in morphine acquisition, the animals received different doses of D1- and/or D2-like dopamine receptor antagonists (SCH23390 and sulpiride, respectively) into the CA1, 5min before the administration of morphine (5mg/kg, subcutaneously) during a 3-days conditioning phase. To evaluate the involvement of these receptors in morphine reinstatement, the animals received different doses of SCH23390 or sulpiride (after extinction period) 5min before the administration of a low dose of morphine (1mg/kg) in order to reinstate the extinguished morphine-CPP. Conditioning scores were recorded by Ethovision software. The results of this study showed that the administration of SCH23390 or sulpiride, significantly decreased the acquisition of morphine-CPP. Besides, the injection of these antagonists before the administration of a priming dose of morphine, following the extinction period, decreased the reinstatement of morphine-CPP in sacrificed rats. However, the effect of sulpiride on the acquisition and reinstatement of morphine-CPP was more significant than that of SCH23390. These findings suggested that D1- and D2-like dopamine receptors in the CA1 are involved in the acquisition and reinstatement of morphine-CPP, and antagonism of these receptors can reduce the rewarding properties of morphine. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. A PET study on cortical and subcortical control of pelvic floor musculature in women

    NARCIS (Netherlands)

    Blok, Bertil F.M.; Sturms, Leontien M.; Holstege, Gert

    1997-01-01

    The pelvic floor musculature plays an important role in behaviors such as defecation, micturition, mating behavior, and vomiting. A recent positron emission tomography (PET) study revealed that structures belonging to the emotional motor system are involved in the control of the pelvic floor during

  12. Subcortical Gray Matter Volume Abnormalities in Healthy Bipolar Offspring: Potential Neuroanatomical Risk Marker for Bipolar Disorder?

    Science.gov (United States)

    Ladouceur, Cecile D.; Almeida, Jorge R. C.; Birmaher, Boris; Axelson, David A.; Nau, Sharon; Kalas, Catherine; Monk, Kelly; Kupfer, David J.; Phillips, Mary L.

    2008-01-01

    A study is conducted to examine the extent to which bipolar disorder (BD) is associated with gray matter volume abnormalities in brain regions in healthy bipolar offspring relative to age-matched controls. Results show increased gray matter volume in the parahippocampus/hippocampus in healthy offspring at genetic risk for BD.

  13. Persistent developmental stuttering as a cortical-subcortical dysfunction: evidence from muscle activation Gagueira persistente do desenvolvimento como disfunção córtico-subcortical: evidências pela ativação muscular

    Directory of Open Access Journals (Sweden)

    Claudia Regina Furquim de Andrade

    2008-01-01

    Full Text Available BACKGROUND: One contemporary view of stuttering posits that speech disfluencies arise from anomalous speech motor control. PURPOSE: To verify the rest muscle tension and speech reaction time of fluent and stuttering adults. METHOD: 22 adults, divided in two groups: G1 - 11 fluent individuals; G2 - 11 stutterers. Electromyography recordings (inferior orbicularis oris were collected in two different situations: during rest and in a reaction time activity. RESULTS: The groups were significantly different considering rest muscle tension (G2 higher recordings and did not differ when considering speech reaction time and muscle activity during speech. There was a strong positive correlation between speech reaction time and speech muscle activity for G2 - the longer the speech reaction time, the higher the muscle activity during speech. CONCLUSION: In addition to perceptible episodes of speech disfluency, stutterers exhibit anomalies in speech motor output during fluent speech. Correlations with a possible cortical-subcortical disorder are discussed.INTRODUÇÃO: Atualmente considera-se que as disfluências da fala na gagueira sejam decorrentes de controle motor anormal. OBJETIVO: Verificar o repouso e tempo de reação para fala em adultos fluentes e gagos. MÉTODO: 22 adultos, divididos em dois grupos: G1 - 11 fluentes; G2 - 11 gagos. Os dados eletromiográficos (orbicular dos lábios inferior foram obtidos em duas situações: repouso e atividade de tempo de reação. RESULTADOS: Os grupos apresentaram diferenças significantes para a tensão muscular de repouso (G2 valores maiores e não se diferenciaram quanto ao tempo de reação e atividade muscular de fala. Houve correlação positiva entre o tempo de reação e a atividade muscular de fala para G2 - quanto maior o tempo de reação maior a atividade muscular de fala. CONCLUSÃO: Além dos episódios perceptíveis de disfluência, gagos apresentam alterações no output motor de fala durante a

  14. Leukoencephalopathy associated with 11q24 deletion involving the gene encoding hepatic and glial cell adhesion molecule in two patients.

    Science.gov (United States)

    Yamamoto, Toshiyuki; Shimada, Shino; Shimojima, Keiko; Sangu, Noriko; Ninomiya, Shinsuke; Kubota, Masaya

    2015-09-01

    Leukoencephalopathies are heterogeneous entities with white matter abnormalities. Mutations of the gene encoding hepatic and glial cell adhesion molecule (HEPACAM) located on 11q24 are related to one of the leukoencephalopathies: megalencephalic leukoencephalopathy with subcortical cysts type 2 (MLC2). Genomic copy number aberrations were analyzed by microarray comparative hybridization for two patients. One patient who presented with abnormal intensity of the white matter had been previously been diagnosed with the typical genotype and phenotype of Jacobsen syndrome due to an 11q subtelomere deletion, which was further characterized here. In a second patient who exhibited the characteristic finding of leukoencephalopathy, an interstitial deletion of 11q24 was also identified. HEPACAM was involved in both deletions. We therefore suggest that haploinsufficiency of HEPACAM, a gene previously associated with the features of MLC2 and located on the overlapping deletion region between the two patients, might be related to the observed white matter abnormalities. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  15. Auditory cortex involvement in emotional learning and memory.

    Science.gov (United States)

    Grosso, A; Cambiaghi, M; Concina, G; Sacco, T; Sacchetti, B

    2015-07-23

    Emotional memories represent the core of human and animal life and drive future choices and behaviors. Early research involving brain lesion studies in animals lead to the idea that the auditory cortex participates in emotional learning by processing the sensory features of auditory stimuli paired with emotional consequences and by transmitting this information to the amygdala. Nevertheless, electrophysiological and imaging studies revealed that, following emotional experiences, the auditory cortex undergoes learning-induced changes that are highly specific, associative and long lasting. These studies suggested that the role played by the auditory cortex goes beyond stimulus elaboration and transmission. Here, we discuss three major perspectives created by these data. In particular, we analyze the possible roles of the auditory cortex in emotional learning, we examine the recruitment of the auditory cortex during early and late memory trace encoding, and finally we consider the functional interplay between the auditory cortex and subcortical nuclei, such as the amygdala, that process affective information. We conclude that, starting from the early phase of memory encoding, the auditory cortex has a more prominent role in emotional learning, through its connections with subcortical nuclei, than is typically acknowledged. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Regional differences in astrocyte activation in HIV-associated dementia Diferencias regionales en la activación astrocitaria en demencia asociada a HIV

    Directory of Open Access Journals (Sweden)

    María C. Vanzani

    2006-04-01

    Full Text Available Since astrogliosis is a histological marker usually observed in HIV-associated dementia (HIV-D, we decided to investigate the potential relationship between the expression of glial fibrillary acidic protein (GFAP and the regional distribution of cells positive (+ for this specific marker of astrocyte activation. Histological sections of brain tissues obtained at necropsy from 5 HIV-D patients and 5 age-matched controls without history of neuropsychiatric illness were immunostained with peroxidase. Mean numbers of GFAP(+ astrocytes were significantly increased in entorhinal cortex, hippocampus and subcortical white matter of patients, but values in frontal cortex and basal ganglia were similar to those of controls. In contrast, surface density of immunoreactive GFAP was significantly increased in all tested brain areas from all patients, including unusually affected regions such as entorhinal cortex and hippocampus. Therefore, such consistent finding of hypertrophic astrocytes, ranging from highest cell percentajes in subcortical white matter to lowest in basal ganglia indicates that quantification of surface density in GFAP (+ cells appears to be a more reliable approach to score gliosis than the counting of their cell nuclei. Because astrocyte activation involves both protective and detrimental effects on adjacent neuronal subsets, the evidence of regional differences in this reactive potential highlights the importance of accurately defining their contribution to the neuropathogenesis not only of HIV-D, but of a wide range of neurodegenerative disorders.Siendo la astrogliosis un signo histológico habitualmente presente en demencia asociada a HIV, se investigó la eventual relación entre expresión de proteína gliofibrilar ácida (GFAP y localización regional de células positivas para ese marcador específico de la activación astrocitaria. Por inmunoperoxidasa, se procesaron cortes histológicos de tejidos cerebrales obtenidos por

  17. Subcortical brain segmentation of two dimensional T1-weighted data sets with FMRIB's Integrated Registration and Segmentation Tool (FIRST

    Directory of Open Access Journals (Sweden)

    Michael Amann

    2015-01-01

    Full Text Available Brain atrophy has been identified as an important contributing factor to the development of disability in multiple sclerosis (MS. In this respect, more and more interest is focussing on the role of deep grey matter (DGM areas. Novel data analysis pipelines are available for the automatic segmentation of DGM using three-dimensional (3D MRI data. However, in clinical trials, often no such high-resolution data are acquired and hence no conclusions regarding the impact of new treatments on DGM atrophy were possible so far. In this work, we used FMRIB's Integrated Registration and Segmentation Tool (FIRST to evaluate the possibility of segmenting DGM structures using standard two-dimensional (2D T1-weighted MRI. In a cohort of 70 MS patients, both 2D and 3D T1-weighted data were acquired. The thalamus, putamen, pallidum, nucleus accumbens, and caudate nucleus were bilaterally segmented using FIRST. Volumes were calculated for each structure and for the sum of basal ganglia (BG as well as for the total DGM. The accuracy and reliability of the 2D data segmentation were compared with the respective results of 3D segmentations using volume difference, volume overlap and intra-class correlation coefficients (ICCs. The mean differences for the individual substructures were between 1.3% (putamen and −25.2% (nucleus accumbens. The respective values for the BG were −2.7% and for DGM 1.3%. Mean volume overlap was between 89.1% (thalamus and 61.5% (nucleus accumbens; BG: 84.1%; DGM: 86.3%. Regarding ICC, all structures showed good agreement with the exception of the nucleus accumbens. The results of the segmentation were additionally validated through expert manual delineation of the caudate nucleus and putamen in a subset of the 3D data. In conclusion, we demonstrate that subcortical segmentation of 2D data are feasible using FIRST. The larger subcortical GM structures can be segmented with high consistency. This forms the basis for the application of

  18. Neurons in Vulnerable Regions of the Alzheimer's Disease Brain Display Reduced ATM Signaling.

    Science.gov (United States)

    Shen, Xuting; Chen, Jianmin; Li, Jiali; Kofler, Julia; Herrup, Karl

    2016-01-01

    Ataxia telangiectasia (A-T) is a multisystemic disease caused by mutations in the ATM (A-T mutated) gene. It strikes before 5 years of age and leads to dysfunctions in many tissues, including the CNS, where it leads to neurodegeneration, primarily in cerebellum. Alzheimer's disease (AD), by contrast, is a largely sporadic neurodegenerative disorder that rarely strikes before the 7th decade of life with primary neuronal losses in hippocampus, frontal cortex, and certain subcortical nuclei. Despite these differences, we present data supporting the hypothesis that a failure of ATM signaling is involved in the neuronal death in individuals with AD. In both, partially ATM-deficient mice and AD mouse models, neurons show evidence for a loss of ATM. In human AD, three independent indices of reduced ATM function-nuclear translocation of histone deacetylase 4, trimethylation of histone H3, and the presence of cell cycle activity-appear coordinately in neurons in regions where degeneration is prevalent. These same neurons also show reduced ATM protein levels. And though they represent only a fraction of the total neurons in each affected region, their numbers significantly correlate with disease stage. This previously unknown role for the ATM kinase in AD pathogenesis suggests that the failure of ATM function may be an important contributor to the death of neurons in AD individuals.

  19. The subthalamic microlesion story in Parkinson's disease: electrode insertion-related motor improvement with relative cortico-subcortical hypoactivation in fMRI.

    Directory of Open Access Journals (Sweden)

    Robert Jech

    Full Text Available Electrode implantation into the subthalamic nucleus for deep brain stimulation in Parkinson's disease (PD is associated with a temporary motor improvement occurring prior to neurostimulation. We studied this phenomenon by functional magnetic resonance imaging (fMRI when considering the Unified Parkinson's Disease Rating Scale (UPDRS-III and collateral oedema. Twelve patients with PD (age 55.9± (SD6.8 years, PD duration 9-15 years underwent bilateral electrode implantation into the subthalamic nucleus. The fMRI was carried out after an overnight withdrawal of levodopa (OFF condition: (i before and (ii within three days after surgery in absence of neurostimulation. The motor task involved visually triggered finger tapping. The OFF/UPDRS-III score dropped from 33.8±8.7 before to 23.3±4.8 after the surgery (p<0.001, correlating with the postoperative oedema score (p<0.05. During the motor task, bilateral activation of the thalamus and basal ganglia, motor cortex and insula were preoperatively higher than after surgery (p<0.001. The results became more enhanced after compensation for the oedema and UPDRS-III scores. In addition, the rigidity and axial symptoms score correlated inversely with activation of the putamen and globus pallidus (p<0.0001. One month later, the OFF/UPDRS-III score had returned to the preoperative level (35.8±7.0, p = 0.4.In conclusion, motor improvement induced by insertion of an inactive electrode into the subthalamic nucleus caused an acute microlesion which was at least partially related to the collateral oedema and associated with extensive impact on the motor network. This was postoperatively manifested as lowered movement-related activation at the cortical and subcortical levels and differed from the known effects of neurostimulation or levodopa. The motor system finally adapted to the microlesion within one month as suggested by loss of motor improvement and good efficacy of deep brain stimulation.

  20. BARHL1 homeogene, the human ortholog of the mouse Barhl1 involved in cerebellum developm