WorldWideScience

Sample records for subcortical brain structures

  1. Common genetic variants influence human subcortical brain structures

    NARCIS (Netherlands)

    Hibar, D.P.; Stein, J.L.; Renteria, M.E.; Arias-Vasquez, A.; Desrivières, S.; Jahanshad, N.; Toro, R.; Wittfeld, K.; Abramovic, L.; Andersson, M.; Aribisala, B.S.; Armstrong, N.J.; Bernard, M.; Bohlken, M.M.; Biks, M.P.; Bralten, J.; Brown, A.A.; Chakravarty, M.M.; Chen, Q.; Ching, C.R.K.; Cuellar-Partida, G.; den Braber, A.; Giddaluru, S.; Goldman, A.L.; Grimm, O.; Guadalupe, T.; Hass, J.; Woldehawariat, G.; Holmes, A.J.; Hoogman, M.; Janowitz, D.; Jia, T.; Kim, S.; Klein, M.; Kraemer, B.; Lee, P.H.; Olde Loohuis, L.M.; Luciano, M.; Macare, C.; Mather, K.A.; Mattheisen, M.; Milaneschi, Y.; Nho, K.; Papmeyer, M.; Ramasamy, A.; Risacher, S.L.; Roiz-Santiañez, R.; Rose, E.J.; Salami, A.; Sämann, P.G.; Schmaal, L.; Schork, A.J.; Shin, J.; Strike, L.T.; Teumer, A.; Donkelaar, M.M.J.; van Eijk, K.R.; Walters, R.K.; Westlye, L.T.; Welan, C.D.; Winkler, A.M.; Zwiers, M.P.; Alhusaini, S.; Athanasiu, L.; Ehrlich, S.; Hakobjan, M.M.H.; Hartberg, C.B.; Haukvik, U.K.; Heister, A.J.G.A.M.; Hoehn, D.; Kasperaviciute, D.; Liewald, D.C.M.; Lopez, L.M.; Makkinje, R.R.; Matarin, M.; Naber, M.A.M.; Reese McKay, D.; Needham, M.; Nugent, A.C.; Pütz, B.; Royle, N.A.; Shen, L.; Sprooten, E.; Trabzuni, D.; van der Marel, S.S.L.; van Hulzen, K.J.E.; Walton, E.; Wolf, C.; Almasy, L.; Ames, D.; Arepalli, S.; Assareh, A.A.; Bastin, M.E.; Brodaty, H.; Bulayeva, K.B.; Carless, M.A.; Cichon, S.; Corvin, A.; Curran, J.E.; Czisch, M.; de Zubicaray, G.I.; Dillman, A.; Duggirala, R.; Dyer, T.D.; Erk, S.; Fedko, I.O.; Ferrucci, L.; Foroud, T.M.; Fox, P.T.; Fukunaga, M.; Gibbs, J.R.; Göring, H.H.H.; Green, R.C.; Guelfi, S.; Hansell, N.K.; Hartman, C.A.; Hegenscheid, K.; Heinz, A.; Hernandez, D.G.; Heslenfeld, D.J.; Hoekstra, P.J.; Holsboer, F.; Homuth, G.; Hottenga, J.J.; Ikeda, M.; Jack, C.R., Jr.; Jenkinson, M.; Johnson, R.; Kanai, R.; Keil, M.; Kent, J.W. Jr.; Kochunov, P.; Kwok, J.B.; Lawrie, S.M.; Liu, X.; Longo, D.L.; McMahon, K.L.; Meisenzahl, E.; Melle, I.; Mohnke, S.; Montgomery, G.W.; Mostert, J.C.; Mühleisen, T.W.; Nalls, M.A.; Nichols, T.E.; Nilsson, L.G.; Nöthen, M.M.; Ohi, K.; Olvera, R.L.; Perez-Iglesias, R.; Pike, G.B.; Potkin, S.G.; Reinvang, I.; Reppermund, S.; Rietschel, M.; Romanczuk-Seiferth, N.; Rosen, G.D.; Rujescu, D.; Schnell, K.; Schofield, P.R.; Smith, C.; Steen, V.M.; Sussmann, J.E.; Thalamuthu, A.; Toga, A.W.; Traynor, B.J.; Troncoso, J.; Turner, J.A.; Valdés Hernández, M.C.; van t Ent, D.; van der Brug, M.; van der Wee, N.J.A.; van Tol, M.J.; Veltman, D.J.; Wassink, T.H.; Westmann, E.; Zielke, R.H.; Zonderman, A.B.; Ashbrook, D.G.; Hager, R.; Lu, L.; McMahon, F.J.; Morris, D.W.; Williams, R.W.; Brunner, H.G.; Buckner, R.L.; Buitelaar, J.K.; Cahn, W.; Calhoun, V.D.; Cavalleri, G.L.; Crespo-Facorro, B.; Dale, A.M.; Davies, G.E.; Delanty, N.; Depondt, C.; Djurovic, S.; Drevets, W.C.; Espeseth, T.; Gollub, R.L.; Ho, B.C.; Hoffmann, W.; Hosten, N.; Kahn, R.S.; Le Hellard, S.; Meyer-Lindenberg, A.; Müller-Myhsok, B.; Nauck, M.; Nyberg, L.; Pandolfo, M.; Penninx, B.W.J.H.; Roffman, J.L.; Sisodiya, SM; Smoller, J.W.; van Bokhoven, H.; van Haren, N.E.M.; Völzke, H.; Walter, H.; Weiner, M.W.; Wen, W.; White, T.; Agartz, I.; Andreassen, O.A.; Blangero, J.; Boomsma, D.I.; Brouwer, R.M.; Cannon, D.M.; Cookson, M.R.; de Geus, E.J.C.; Deary, I.J.; Donohoe, G.; Fernandez, G.; Fisher, S.E.; Francks, C.; Glahn, D.C.; Grabe, H.J.; Gruber, O.; Hardy, J.; Hashimoto, R.; Hulshoff Pol, H.E.; Jönsson, E.G.; Kloszewska, I.; Lovestone, S.; Mattay, V.S.; Mecocci, P.; McDonald, C.; McIntosh, A.M.; Ophoff, R.A.; Paus, T.; Pausova, Z.; Ryten, M.; Sachdev, P.S.; Saykin, A.J.; Simmons, A.; Singleton, A.; Soininen, H.; Wardlaw, J.M.; Weale, M.E.; Weinberger, D.R.; Adams, H.H.H.; Launer, L.J.; Seiler, S.; Schmidt, R.; Chauhan, G.; Satizabal, C.L.; Becker, J.T.; Yanek, L.; van der Lee, S.J.; Ebling, M.; Fischl, B.; Longstreth, Jr. W.T.; Greve, D.; Schmidt, H.; Nyquist, P.; Vinke, L.N.; van Duijn, C.M.; Xue, L.; Mazoyer, B.; Bis, J.C.; Gudnason, V.; Seshadri, S.; Arfan Ikram, M.; Martin, N.G.; Wright, M.J.; Schumann, G.; Franke, B.; Thompson, P.M.; Medland, S.E.

    2015-01-01

    The highly complex structure of the human brain is strongly shaped by genetic influences. Subcortical brain regions form circuits with cortical areas to coordinate movement, learning, memory and motivation, and altered circuits can lead to abnormal behaviour and disease. To investigate how common

  2. Common genetic variants influence human subcortical brain structures

    NARCIS (Netherlands)

    D.P. Hibar (Derrek); J.L. Stein; M.E. Rentería (Miguel); A. Arias-Vásquez (Alejandro); S. Desrivières (Sylvane); N. Jahanshad (Neda); R. Toro (Roberto); K. Wittfeld (Katharina); L. Abramovic (Lucija); M. Andersson (Micael); B. Aribisala (Benjamin); N.J. Armstrong (Nicola J.); M. Bernard (Manon); M.M. Bohlken (Marc M.); M.P.M. Boks (Marco); L.B.C. Bralten (Linda); A.A. Brown (Andrew); M.M. Chakravarty (M. Mallar); Q. Chen (Qiang); C.R.K. Ching (Christopher); G. Cuellar-Partida (Gabriel); A. den Braber (Anouk); S. Giddaluru (Sudheer); A.L. Goldman (Aaron L.); O. Grimm (Oliver); T. Guadalupe (Tulio); J. Hass (Johanna); G. Woldehawariat (Girma); A.J. Holmes (Avram); M. Hoogman (Martine); D. Janowitz (Deborah); T. Jia (Tianye); S. Kim (Shinseog); M. Klein (Marieke); B. Kraemer (Bernd); P.H. Lee (Phil H.); L.M. Olde Loohuis (Loes M.); M. Luciano (Michelle); C. MacAre (Christine); R. Mather; M. Mattheisen (Manuel); Y. Milaneschi (Yuri); K. Nho (Kwangsik); M. Papmeyer (Martina); A. Ramasamy (Adaikalavan); S.L. Risacher (Shannon); R. Roiz-Santiañez (Roberto); E.J. Rose (Emma); A. Salami (Alireza); P.G. Sämann (Philipp); L. Schmaal (Lianne); N.J. Schork (Nicholas); J. Shin (Jean); L.T. Strike (Lachlan); A. Teumer (Alexander); M.M.J. Van Donkelaar (Marjolein M. J.); K.R. van Eijk (Kristel); R.K. Walters (Raymond); L.T. Westlye (Lars); C.D. Whelan (Christopher); A.M. Winkler (Anderson); M.P. Zwiers (Marcel); S. Alhusaini (Saud); L. Athanasiu (Lavinia); S.M. Ehrlich (Stefan); M. Hakobjan (Marina); C.B. Hartberg (Cecilie B.); U.K. Haukvik (Unn); A.J.G.A.M. Heister (Angelien J. G. A. M.); D. Hoehn (David); D. Kasperaviciute (Dalia); D.C. Liewald (David C.); L.M. Lopez (Lorna); R.R.R. Makkinje (Remco R. R.); M. Matarin (Mar); M.A.M. Naber (Marlies A. M.); D. Reese McKay; M. Needham (Margaret); A.C. Nugent (Allison); B. Pütz (Benno); N.A. Royle (Natalie); L. Shen (Li); R. Sprooten (Roy); D. Trabzuni (Danyah); S.S.L. Van Der Marel (Saskia S. L.); K.J.E. Van Hulzen (Kimm J. E.); E. Walton (Esther); A. Björnsson (Asgeir); L. Almasy (Laura); D.J. Ames (David); S. Arepalli (Sampath); A.A. Assareh; M.E. Bastin (Mark); H. Brodaty (Henry); K. Bulayeva (Kazima); M.A. Carless (Melanie); S. Cichon (Sven); A. Corvin (Aiden); J.E. Curran (Joanne); M. Czisch (Michael); G.I. de Zubicaray (Greig); A. Dillman (Allissa); A. Duggirala (Aparna); M.D. Dyer (Matthew); S. Erk; I. Fedko (Iryna); L. Ferrucci (Luigi); T. Foroud (Tatiana); P.T. Fox (Peter); M. Fukunaga (Masaki); J. Raphael Gibbs; H.H.H. Göring (Harald H.); R.C. Green (Robert C.); S. Guelfi (Sebastian); N.K. Hansell (Narelle); C.A. Hartman (Catharina); K. Hegenscheid (Katrin); J. Heinz (Judith); D.G. Hernandez (Dena); D.J. Heslenfeld (Dirk); P.J. Hoekstra (Pieter); F. Holsboer; G. Homuth (Georg); J.J. Hottenga (Jouke Jan); M. Ikeda (Masashi); C.R. Jack Jr. (Clifford); S. Jenkinson (Sarah); R. Johnson (Robert); R. Kanai (Ryota); M. Keil (Maria); J.W. Kent (Jack W.); P. Kochunov (Peter); J.B. Kwok (John B.); S. Lawrie (Stephen); X. Liu (Xinmin); D.L. Longo (Dan L.); K.L. Mcmahon (Katie); E. Meisenzahl (Eva); I. Melle (Ingrid); S. Mohnke (Sebastian); G.W. Montgomery (Grant); J.C. Mostert (Jeanette C.); T.W. Mühleisen (Thomas); M.A. Nalls (Michael); T.E. Nichols (Thomas); L.G. Nilsson; M.M. Nöthen (Markus); K. Ohi (Kazutaka); R.L. Olvera (Rene); R. Perez-Iglesias (Rocio); G. Bruce Pike; S.G. Potkin (Steven); I. Reinvang (Ivar); S. Reppermund; M. Rietschel (Marcella); N. Seiferth (Nina); G.D. Rosen (Glenn D.); D. Rujescu (Dan); K. Schnell (Kerry); C.J. Schofield (Christopher); C. Smith (Colin); V.M. Steen (Vidar); J. Sussmann (Jessika); A. Thalamuthu (Anbupalam); A.W. Toga (Arthur W.); B. Traynor (Bryan); J.C. Troncoso (Juan); J. Turner (Jessica); M.C. Valdés Hernández (Maria); D. van 't Ent (Dennis); M.P. van der Brug (Marcel); N.J. van der Wee (Nic); M.J.D. van Tol (Marie-José); D.J. Veltman (Dick); A.M.J. Wassink (Annemarie); E. Westman (Eric); R.H. Zielke (Ronald H.); A.B. Zonderman (Alan B.); D.G. Ashbrook (David G.); R. Hager (Reinmar); L. Lu (Lu); F.J. Mcmahon (Francis J); D.W. Morris (Derek W); R.W. Williams (Robert W.); H.G. Brunner; M. Buckner; J.K. Buitelaar (Jan K.); W. Cahn (Wiepke); V.D. Calhoun Vince D. (V.); G. Cavalleri (Gianpiero); B. Crespo-Facorro (Benedicto); A.M. Dale (Anders); G.E. Davies (Gareth); N. Delanty; C. Depondt (Chantal); S. Djurovic (Srdjan); D.A. Drevets (Douglas); T. Espeseth (Thomas); R.L. Gollub (Randy); B.C. Ho (Beng ); W. Hoffmann (Wolfgang); N. Hosten (Norbert); R. Kahn (René); S. Le Hellard (Stephanie); A. Meyer-Lindenberg; B. Müller-Myhsok (B.); M. Nauck (Matthias); L. Nyberg (Lars); M. Pandolfo (Massimo); B.W.J.H. Penninx (Brenda); J.L. Roffman (Joshua); S.M. Sisodiya (Sanjay); J.W. Smoller; H. van Bokhoven (Hans); N.E.M. van Haren (Neeltje E.); H. Völzke (Henry); H.J. Walter (Henrik); M.W. Weiner (Michael); W. Wen (Wei); T.J.H. White (Tonya); I. Agartz (Ingrid); O.A. Andreassen (Ole); J. Blangero (John); D.I. Boomsma (Dorret); R.M. Brouwer (Rachel); D.M. Cannon (Dara); M.R. Cookson (Mark); E.J.C. de Geus (Eco); I.J. Deary (Ian J.); D.J. Donohoe (Dennis); G. Fernandez (Guillén); S.E. Fisher (Simon); C. Francks (Clyde); D.C. Glahn (David); H.J. Grabe (Hans Jörgen); O. Gruber (Oliver); J. Hardy (John); R. Hashimoto (Ryota); H.E. Hulshoff Pol (Hilleke); E.G. Jönsson (Erik); I. Kloszewska (Iwona); S. Lovestone (Simon); V.S. Mattay (Venkata S.); P. Mecocci (Patrizia); C. McDonald (Colm); A.M. McIntosh (Andrew); R.A. Ophoff (Roel); T. Paus (Tomas); Z. Pausova (Zdenka); M. Ryten (Mina); P.S. Sachdev (Perminder); A.J. Saykin (Andrew); A. Simmons (Andrew); A. Singleton (Andrew); H. Soininen (H.); J.M. Wardlaw (J.); M.E. Weale (Michael); D.R. Weinberger (Daniel); H.H.H. Adams (Hieab); L.J. Launer (Lenore); S. Seiler (Stephan); R. Schmidt (Reinhold); G. Chauhan (Ganesh); C.L. Satizabal (Claudia L.); J.T. Becker (James); L.R. Yanek (Lisa); S.J. van der Lee (Sven); M. Ebling (Maritza); B. Fischl (Bruce); W.T. Longstreth Jr; D. Greve (Douglas); R. Schmidt (Reinhold); P. Nyquist (Paul); L.N. Vinke (Louis N.); C.M. van Duijn (Cornelia); L. Xue (Luting); B. Mazoyer (Bernard); J.C. Bis (Joshua); V. Gudnason (Vilmundur); S. Seshadri (Sudha); M.A. Ikram (Arfan); N.G. Martin (Nicholas); M.J. Wright (Margaret); G. Schumann (Gunter); B. Franke (Barbara); P.M. Thompson (Paul); S.E. Medland (Sarah Elizabeth)

    2015-01-01

    textabstractThe highly complex structure of the human brain is strongly shaped by genetic influences. Subcortical brain regions form circuits with cortical areas to coordinate movement, learning, memory and motivation, and altered circuits can lead to abnormal behaviour and disease. To investigate

  3. Common genetic variants influence human subcortical brain structures

    NARCIS (Netherlands)

    Hibar, Derrek P.; Stein, Jason L.; Renteria, Miguel E.; Arias-Vasquez, Alejandro; Desrivieres, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S.; Armstrong, Nicola J.; Bernard, Manon; Bohlken, Marc M.; Boks, Marco P.; Bralten, Janita; Brown, Andrew A.; Chakravarty, M. Mallar; Chen, Qiang; Ching, Christopher R. K.; Cuellar-Partida, Gabriel; den Braber, Anouk; Giddaluru, Sudheer; Goldman, Aaron L.; Grimm, Oliver; Guadalupe, Tulio; Hass, Johanna; Woldehawariat, Girma; Holmes, Avram J.; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H.; Loohuis, Loes M. Olde; Luciano, Michelle; Macare, Christine; Mather, Karen A.; Mattheisen, Manuel; Milaneschi, Yuri; Nho, Kwangsik; Papmeyer, Martina; Ramasamy, Adaikalavan; Risacher, Shannon L.; Roiz-Santianez, Roberto; Rose, Emma J.; Salami, Alireza; Saemann, Philipp G.; Schmaal, Lianne; Schork, Andrew J.; Shin, Jean; Strike, Lachlan T.; Teumer, Alexander; van Donkelaar, Marjolein M. J.; van Eijk, Kristel R.; Walters, Raymond K.; Westlye, Lars T.; Whelan, Christopher D.; Winkler, Anderson M.; Zwiers, Marcel P.; Alhusaini, Saud; Athanasiu, Lavinia; Ehrlich, Stefan; Hakobjan, Marina M. H.; Hartberg, Cecilie B.; Haukvik, Unn K.; Heister, Angelien J. G. A. M.; Hoehn, David; Kasperaviciute, Dalia; Liewald, David C. M.; Lopez, Lorna M.; Makkinje, Remco R. R.; Matarin, Mar; Naber, Marlies A. M.; McKay, D. Reese; Needham, Margaret; Nugent, Allison C.; Puetz, Benno; Royle, Natalie A.; Shen, Li; Sprooten, Emma; Trabzuni, Daniah; van der Marel, Saskia S. L.; van Hulzen, Kimm J. E.; Walton, Esther; Wolf, Christiane; Almasy, Laura; Ames, David; Arepalli, Sampath; Assareh, Amelia A.; Bastin, Mark E.; Brodaty, Henry; Bulayeva, Kazima B.; Carless, Melanie A.; Cichon, Sven; Corvin, Aiden; Curran, Joanne E.; Czisch, Michael; de Zubicaray, Greig I.; Dillman, Allissa; Duggirala, Ravi; Dyer, Thomas D.; Erk, Susanne; Fedko, Iryna O.; Ferrucci, Luigi; Foroud, Tatiana M.; Fox, Peter T.; Fukunaga, Masaki; Gibbs, J. Raphael; Goering, Harald H. H.; Green, Robert C.; Guelfi, Sebastian; Hansell, Narelle K.; Hartman, Catharina A.; Hegenscheid, Katrin; Heinz, Andreas; Hernandez, Dena G.; Heslenfeld, Dirk J.; Hoekstra, Pieter J.; Holsboer, Florian; Homuth, Georg; Hottenga, Jouke-Jan; Ikeda, Masashi; Jack, Clifford R.; Jenkinson, Mark; Johnson, Robert; Kanai, Ryota; Keil, Maria; Kent, Jack W.; Kochunov, Peter; Kwok, John B.; Lawrie, Stephen M.; Liu, Xinmin; Longo, Dan L.; McMahon, Katie L.; Meisenzah, Eva; Melle, Ingrid; Mahnke, Sebastian; Montgomery, Grant W.; Mostert, Jeanette C.; Muehleisen, Thomas W.; Nalls, Michael A.; Nichols, Thomas E.; Nilsson, Lars G.; Noethen, Markus M.; Ohi, Kazutaka; Olvera, Rene L.; Perez-Iglesias, Rocio; Pike, G. Bruce; Potkin, Steven G.; Reinvang, Ivar; Reppermund, Simone; Rietschel, Marcella; Romanczuk-Seiferth, Nina; Rosen, Glenn D.; Rujescu, Dan; Schnell, Knut; Schofield, Peter R.; Smith, Colin; Steen, Vidar M.; Sussmann, Jessika E.; Thalamuthu, Anbupalam; Toga, Arthur W.; Traynor, Bryan J.; Troncoso, Juan; Turner, Jessica A.; Valdes Hernandez, Maria C.; van't Ent, Dennis; van der Brug, Marcel; van der Wee, Nic J. A.; van Tol, Marie-Jose; Veltman, Dick J.; Wassink, Thomas H.; Westman, Eric; Zielke, Ronald H.; Zonderman, Alan B.; Ashbrook, David G.; Hager, Reinmar; Lu, Lu; McMahon, Francis J.; Morris, Derek W.; Williams, Robert W.; Brunner, Han G.; Buckner, Randy L.; Buitelaar, Jan K.; Cahn, Wiepke; Calhoun, Vince D.; Cavalleri, Gianpiero L.; Crespo-Facorro, Benedicto; Dale, Anders M.; Davies, Gareth E.; Delanty, Norman; Depondt, Chantal; Djurovic, Srdjan; Drevets, Wayne C.; Espeseth, Thomas; Gollub, Randy L.; Ho, Beng-Choon; Hoffman, Wolfgang; Hosten, Norbert; Kahn, Rene S.; Le Hellard, Stephanie; Meyer-Lindenberg, Andreas; Mueller-Myhsok, Bertram; Nauck, Matthias; Nyberg, Lars; Pandolfo, Massimo; Penninx, Brenda W. J. H.; Roffman, Joshua L.; Sisodiya, Sanjay M.; Smoller, Jordan W.; van Bokhoven, Hans; van Haren, Neeltje E. M.; Voelzke, Henry; Walter, Henrik; Weiner, Michael W.; Wen, Wei; White, Tonya; Agartz, Ingrid; Andreassen, Ole A.; Blangero, John; Boomsma, Dorret I.; Brouwer, Rachel M.; Cannon, Dara M.; Cookson, Mark R.; de Geus, Eco J. C.; Deary, Ian J.; Donohoe, Gary; Fernandez, Guillen; Fisher, Simon E.; Francks, Clyde; Glahn, David C.; Grabe, Hans J.; Gruber, Oliver; Hardy, John; Hashimoto, Ryota; Pol, Hilleke E. Hulshoff; Joensson, Erik G.; Kloszewska, Iwona; Lovestone, Simon; Mattay, Venkata S.; Mecocci, Patrizia; McDonald, Colm; McIntosh, Andrew M.; Ophoff, Roel A.; Paus, Tomas; Pausova, Zdenka; Ryten, Mina; Sachdev, Perminder S.; Saykin, Andrew J.; Simmons, Andy; Singleton, Andrew; Soininen, Hilkka; Wardlaw, Joanna M.; Weale, Michael E.; Weinberger, Daniel R.; Adams, Hieab H. H.; Launer, Lenore J.; Seiler, Stephan; Schmidt, Reinhold; Chauhan, Ganesh; Satizabal, Claudia L.; Becker, James T.; Yanek, Lisa; van der Lee, Sven J.; Ebling, Maritza; Fischl, Bruce; Longstreth, W. T.; Greve, Douglas; Schmidt, Helena; Nyquist, Paul; Vinke, Louis N.; van Duijn, Cornelia M.; Xue, Luting; Mazoyer, Bernard; Bis, Joshua C.; Gudnason, Vilmundur; Seshadri, Sudha; Ikram, M. Arfan; Martin, Nicholas G.; Wright, Margaret J.; Schumann, Gunter; Franke, Barbara; Thompson, Paul M.; Medland, Sarah E.

    2015-01-01

    The highly complex structure of the human brain is strongly shaped by genetic influences(1). Subcortical brain regions form circuits with cortical areas to coordinate movement(2), learning, memory(3) and motivation(4), and altered circuits can lead to abnormal behaviour and disease(5). To

  4. Common genetic variants influence human subcortical brain structures

    Science.gov (United States)

    Hibar, Derrek P.; Stein, Jason L.; Renteria, Miguel E.; Arias-Vasquez, Alejandro; Desrivières, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S.; Armstrong, Nicola J.; Bernard, Manon; Bohlken, Marc M.; Boks, Marco P.; Bralten, Janita; Brown, Andrew A.; Chakravarty, M. Mallar; Chen, Qiang; Ching, Christopher R. K.; Cuellar-Partida, Gabriel; den Braber, Anouk; Giddaluru, Sudheer; Goldman, Aaron L.; Grimm, Oliver; Guadalupe, Tulio; Hass, Johanna; Woldehawariat, Girma; Holmes, Avram J.; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H.; Olde Loohuis, Loes M.; Luciano, Michelle; Macare, Christine; Mather, Karen A.; Mattheisen, Manuel; Milaneschi, Yuri; Nho, Kwangsik; Papmeyer, Martina; Ramasamy, Adaikalavan; Risacher, Shannon L.; Roiz-Santiañez, Roberto; Rose, Emma J.; Salami, Alireza; Sämann, Philipp G.; Schmaal, Lianne; Schork, Andrew J.; Shin, Jean; Strike, Lachlan T.; Teumer, Alexander; van Donkelaar, Marjolein M. J.; van Eijk, Kristel R.; Walters, Raymond K.; Westlye, Lars T.; Whelan, Christopher D.; Winkler, Anderson M.; Zwiers, Marcel P.; Alhusaini, Saud; Athanasiu, Lavinia; Ehrlich, Stefan; Hakobjan, Marina M. H.; Hartberg, Cecilie B.; Haukvik, Unn K.; Heister, Angelien J. G. A. M.; Hoehn, David; Kasperaviciute, Dalia; Liewald, David C. M.; Lopez, Lorna M.; Makkinje, Remco R. R.; Matarin, Mar; Naber, Marlies A. M.; McKay, D. Reese; Needham, Margaret; Nugent, Allison C.; Pütz, Benno; Royle, Natalie A.; Shen, Li; Sprooten, Emma; Trabzuni, Daniah; van der Marel, Saskia S. L.; van Hulzen, Kimm J. E.; Walton, Esther; Wolf, Christiane; Almasy, Laura; Ames, David; Arepalli, Sampath; Assareh, Amelia A.; Bastin, Mark E.; Brodaty, Henry; Bulayeva, Kazima B.; Carless, Melanie A.; Cichon, Sven; Corvin, Aiden; Curran, Joanne E.; Czisch, Michael; de Zubicaray, Greig I.; Dillman, Allissa; Duggirala, Ravi; Dyer, Thomas D.; Erk, Susanne; Fedko, Iryna O.; Ferrucci, Luigi; Foroud, Tatiana M.; Fox, Peter T.; Fukunaga, Masaki; Gibbs, J. Raphael; Göring, Harald H. H.; Green, Robert C.; Guelfi, Sebastian; Hansell, Narelle K.; Hartman, Catharina A.; Hegenscheid, Katrin; Heinz, Andreas; Hernandez, Dena G.; Heslenfeld, Dirk J.; Hoekstra, Pieter J.; Holsboer, Florian; Homuth, Georg; Hottenga, Jouke-Jan; Ikeda, Masashi; Jack, Clifford R.; Jenkinson, Mark; Johnson, Robert; Kanai, Ryota; Keil, Maria; Kent, Jack W.; Kochunov, Peter; Kwok, John B.; Lawrie, Stephen M.; Liu, Xinmin; Longo, Dan L.; McMahon, Katie L.; Meisenzahl, Eva; Melle, Ingrid; Mohnke, Sebastian; Montgomery, Grant W.; Mostert, Jeanette C.; Mühleisen, Thomas W.; Nalls, Michael A.; Nichols, Thomas E.; Nilsson, Lars G.; Nöthen, Markus M.; Ohi, Kazutaka; Olvera, Rene L.; Perez-Iglesias, Rocio; Pike, G. Bruce; Potkin, Steven G.; Reinvang, Ivar; Reppermund, Simone; Rietschel, Marcella; Romanczuk-Seiferth, Nina; Rosen, Glenn D.; Rujescu, Dan; Schnell, Knut; Schofield, Peter R.; Smith, Colin; Steen, Vidar M.; Sussmann, Jessika E.; Thalamuthu, Anbupalam; Toga, Arthur W.; Traynor, Bryan J.; Troncoso, Juan; Turner, Jessica A.; Valdés Hernández, Maria C.; van ’t Ent, Dennis; van der Brug, Marcel; van der Wee, Nic J. A.; van Tol, Marie-Jose; Veltman, Dick J.; Wassink, Thomas H.; Westman, Eric; Zielke, Ronald H.; Zonderman, Alan B.; Ashbrook, David G.; Hager, Reinmar; Lu, Lu; McMahon, Francis J.; Morris, Derek W.; Williams, Robert W.; Brunner, Han G.; Buckner, Randy L.; Buitelaar, Jan K.; Cahn, Wiepke; Calhoun, Vince D.; Cavalleri, Gianpiero L.; Crespo-Facorro, Benedicto; Dale, Anders M.; Davies, Gareth E.; Delanty, Norman; Depondt, Chantal; Djurovic, Srdjan; Drevets, Wayne C.; Espeseth, Thomas; Gollub, Randy L.; Ho, Beng-Choon; Hoffmann, Wolfgang; Hosten, Norbert; Kahn, René S.; Le Hellard, Stephanie; Meyer-Lindenberg, Andreas; Müller-Myhsok, Bertram; Nauck, Matthias; Nyberg, Lars; Pandolfo, Massimo; Penninx, Brenda W. J. H.; Roffman, Joshua L.; Sisodiya, Sanjay M.; Smoller, Jordan W.; van Bokhoven, Hans; van Haren, Neeltje E. M.; Völzke, Henry; Walter, Henrik; Weiner, Michael W.; Wen, Wei; White, Tonya; Agartz, Ingrid; Andreassen, Ole A.; Blangero, John; Boomsma, Dorret I.; Brouwer, Rachel M.; Cannon, Dara M.; Cookson, Mark R.; de Geus, Eco J. C.; Deary, Ian J.; Donohoe, Gary; Fernández, Guillén; Fisher, Simon E.; Francks, Clyde; Glahn, David C.; Grabe, Hans J.; Gruber, Oliver; Hardy, John; Hashimoto, Ryota; Hulshoff Pol, Hilleke E.; Jönsson, Erik G.; Kloszewska, Iwona; Lovestone, Simon; Mattay, Venkata S.; Mecocci, Patrizia; McDonald, Colm; McIntosh, Andrew M.; Ophoff, Roel A.; Paus, Tomas; Pausova, Zdenka; Ryten, Mina; Sachdev, Perminder S.; Saykin, Andrew J.; Simmons, Andy; Singleton, Andrew; Soininen, Hilkka; Wardlaw, Joanna M.; Weale, Michael E.; Weinberger, Daniel R.; Adams, Hieab H. H.; Launer, Lenore J.; Seiler, Stephan; Schmidt, Reinhold; Chauhan, Ganesh; Satizabal, Claudia L.; Becker, James T.; Yanek, Lisa; van der Lee, Sven J.; Ebling, Maritza; Fischl, Bruce; Longstreth, W. T.; Greve, Douglas; Schmidt, Helena; Nyquist, Paul; Vinke, Louis N.; van Duijn, Cornelia M.; Xue, Luting; Mazoyer, Bernard; Bis, Joshua C.; Gudnason, Vilmundur; Seshadri, Sudha; Ikram, M. Arfan; Martin, Nicholas G.; Wright, Margaret J.; Schumann, Gunter; Franke, Barbara; Thompson, Paul M.; Medland, Sarah E.

    2015-01-01

    The highly complex structure of the human brain is strongly shaped by genetic influences1. Subcortical brain regions form circuits with cortical areas to coordinate movement2, learning, memory3 and motivation4, and altered circuits can lead to abnormal behaviour and disease2. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume5 and intracranial volume6. These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08 × 10−33; 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these genetic variants provides insight into the causes of variability inhuman brain development, and may help to determine mechanisms of neuropsychiatric dysfunction. PMID:25607358

  5. Common genetic variants influence human subcortical brain structures.

    Science.gov (United States)

    Hibar, Derrek P; Stein, Jason L; Renteria, Miguel E; Arias-Vasquez, Alejandro; Desrivières, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S; Armstrong, Nicola J; Bernard, Manon; Bohlken, Marc M; Boks, Marco P; Bralten, Janita; Brown, Andrew A; Chakravarty, M Mallar; Chen, Qiang; Ching, Christopher R K; Cuellar-Partida, Gabriel; den Braber, Anouk; Giddaluru, Sudheer; Goldman, Aaron L; Grimm, Oliver; Guadalupe, Tulio; Hass, Johanna; Woldehawariat, Girma; Holmes, Avram J; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H; Olde Loohuis, Loes M; Luciano, Michelle; Macare, Christine; Mather, Karen A; Mattheisen, Manuel; Milaneschi, Yuri; Nho, Kwangsik; Papmeyer, Martina; Ramasamy, Adaikalavan; Risacher, Shannon L; Roiz-Santiañez, Roberto; Rose, Emma J; Salami, Alireza; Sämann, Philipp G; Schmaal, Lianne; Schork, Andrew J; Shin, Jean; Strike, Lachlan T; Teumer, Alexander; van Donkelaar, Marjolein M J; van Eijk, Kristel R; Walters, Raymond K; Westlye, Lars T; Whelan, Christopher D; Winkler, Anderson M; Zwiers, Marcel P; Alhusaini, Saud; Athanasiu, Lavinia; Ehrlich, Stefan; Hakobjan, Marina M H; Hartberg, Cecilie B; Haukvik, Unn K; Heister, Angelien J G A M; Hoehn, David; Kasperaviciute, Dalia; Liewald, David C M; Lopez, Lorna M; Makkinje, Remco R R; Matarin, Mar; Naber, Marlies A M; McKay, D Reese; Needham, Margaret; Nugent, Allison C; Pütz, Benno; Royle, Natalie A; Shen, Li; Sprooten, Emma; Trabzuni, Daniah; van der Marel, Saskia S L; van Hulzen, Kimm J E; Walton, Esther; Wolf, Christiane; Almasy, Laura; Ames, David; Arepalli, Sampath; Assareh, Amelia A; Bastin, Mark E; Brodaty, Henry; Bulayeva, Kazima B; Carless, Melanie A; Cichon, Sven; Corvin, Aiden; Curran, Joanne E; Czisch, Michael; de Zubicaray, Greig I; Dillman, Allissa; Duggirala, Ravi; Dyer, Thomas D; Erk, Susanne; Fedko, Iryna O; Ferrucci, Luigi; Foroud, Tatiana M; Fox, Peter T; Fukunaga, Masaki; Gibbs, J Raphael; Göring, Harald H H; Green, Robert C; Guelfi, Sebastian; Hansell, Narelle K; Hartman, Catharina A; Hegenscheid, Katrin; Heinz, Andreas; Hernandez, Dena G; Heslenfeld, Dirk J; Hoekstra, Pieter J; Holsboer, Florian; Homuth, Georg; Hottenga, Jouke-Jan; Ikeda, Masashi; Jack, Clifford R; Jenkinson, Mark; Johnson, Robert; Kanai, Ryota; Keil, Maria; Kent, Jack W; Kochunov, Peter; Kwok, John B; Lawrie, Stephen M; Liu, Xinmin; Longo, Dan L; McMahon, Katie L; Meisenzahl, Eva; Melle, Ingrid; Mohnke, Sebastian; Montgomery, Grant W; Mostert, Jeanette C; Mühleisen, Thomas W; Nalls, Michael A; Nichols, Thomas E; Nilsson, Lars G; Nöthen, Markus M; Ohi, Kazutaka; Olvera, Rene L; Perez-Iglesias, Rocio; Pike, G Bruce; Potkin, Steven G; Reinvang, Ivar; Reppermund, Simone; Rietschel, Marcella; Romanczuk-Seiferth, Nina; Rosen, Glenn D; Rujescu, Dan; Schnell, Knut; Schofield, Peter R; Smith, Colin; Steen, Vidar M; Sussmann, Jessika E; Thalamuthu, Anbupalam; Toga, Arthur W; Traynor, Bryan J; Troncoso, Juan; Turner, Jessica A; Valdés Hernández, Maria C; van 't Ent, Dennis; van der Brug, Marcel; van der Wee, Nic J A; van Tol, Marie-Jose; Veltman, Dick J; Wassink, Thomas H; Westman, Eric; Zielke, Ronald H; Zonderman, Alan B; Ashbrook, David G; Hager, Reinmar; Lu, Lu; McMahon, Francis J; Morris, Derek W; Williams, Robert W; Brunner, Han G; Buckner, Randy L; Buitelaar, Jan K; Cahn, Wiepke; Calhoun, Vince D; Cavalleri, Gianpiero L; Crespo-Facorro, Benedicto; Dale, Anders M; Davies, Gareth E; Delanty, Norman; Depondt, Chantal; Djurovic, Srdjan; Drevets, Wayne C; Espeseth, Thomas; Gollub, Randy L; Ho, Beng-Choon; Hoffmann, Wolfgang; Hosten, Norbert; Kahn, René S; Le Hellard, Stephanie; Meyer-Lindenberg, Andreas; Müller-Myhsok, Bertram; Nauck, Matthias; Nyberg, Lars; Pandolfo, Massimo; Penninx, Brenda W J H; Roffman, Joshua L; Sisodiya, Sanjay M; Smoller, Jordan W; van Bokhoven, Hans; van Haren, Neeltje E M; Völzke, Henry; Walter, Henrik; Weiner, Michael W; Wen, Wei; White, Tonya; Agartz, Ingrid; Andreassen, Ole A; Blangero, John; Boomsma, Dorret I; Brouwer, Rachel M; Cannon, Dara M; Cookson, Mark R; de Geus, Eco J C; Deary, Ian J; Donohoe, Gary; Fernández, Guillén; Fisher, Simon E; Francks, Clyde; Glahn, David C; Grabe, Hans J; Gruber, Oliver; Hardy, John; Hashimoto, Ryota; Hulshoff Pol, Hilleke E; Jönsson, Erik G; Kloszewska, Iwona; Lovestone, Simon; Mattay, Venkata S; Mecocci, Patrizia; McDonald, Colm; McIntosh, Andrew M; Ophoff, Roel A; Paus, Tomas; Pausova, Zdenka; Ryten, Mina; Sachdev, Perminder S; Saykin, Andrew J; Simmons, Andy; Singleton, Andrew; Soininen, Hilkka; Wardlaw, Joanna M; Weale, Michael E; Weinberger, Daniel R; Adams, Hieab H H; Launer, Lenore J; Seiler, Stephan; Schmidt, Reinhold; Chauhan, Ganesh; Satizabal, Claudia L; Becker, James T; Yanek, Lisa; van der Lee, Sven J; Ebling, Maritza; Fischl, Bruce; Longstreth, W T; Greve, Douglas; Schmidt, Helena; Nyquist, Paul; Vinke, Louis N; van Duijn, Cornelia M; Xue, Luting; Mazoyer, Bernard; Bis, Joshua C; Gudnason, Vilmundur; Seshadri, Sudha; Ikram, M Arfan; Martin, Nicholas G; Wright, Margaret J; Schumann, Gunter; Franke, Barbara; Thompson, Paul M; Medland, Sarah E

    2015-04-09

    The highly complex structure of the human brain is strongly shaped by genetic influences. Subcortical brain regions form circuits with cortical areas to coordinate movement, learning, memory and motivation, and altered circuits can lead to abnormal behaviour and disease. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume and intracranial volume. These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08 × 10(-33); 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these genetic variants provides insight into the causes of variability in human brain development, and may help to determine mechanisms of neuropsychiatric dysfunction.

  6. Subcortical Brain Morphology in Schizophrenia : Descriptive analysis based on MRI findings of subcortical brain volumes

    OpenAIRE

    Gunleiksrud, Sindre

    2009-01-01

    The aim of this study was to investigate magnetic resonance images (MR) from patients with schizophrenia and healthy control subjects for difference in brain morphology with focus on subcortical brain volumes. Method: The study compared fourteen subcortical brain structure volumes of 96 patients diagnosed with schizophrenia (n=81) or schizoaffective disorder (n=15) with 106 healthy control subjects. Volume measures were obtained using voxel-based morphometry (FreeSurfer software suite) of ...

  7. Genetic influences on schizophrenia and subcortical brain volumes

    DEFF Research Database (Denmark)

    Franke, Barbara; Stein, Jason L; Ripke, Stephan

    2016-01-01

    and subcortical volume measures either at the level of common variant genetic architecture or for single genetic markers. These results provide a proof of concept (albeit based on a limited set of structural brain measures) and define a roadmap for future studies investigating the genetic covariance between...... genome-wide data to investigate genetic overlap. Here we integrated results from common variant studies of schizophrenia (33,636 cases, 43,008 controls) and volumes of several (mainly subcortical) brain structures (11,840 subjects). We did not find evidence of genetic overlap between schizophrenia risk...

  8. Bilingualism at the core of the brain. Structural differences between bilinguals and monolinguals revealed by subcortical shape analysis.

    Science.gov (United States)

    Burgaleta, Miguel; Sanjuán, Ana; Ventura-Campos, Noelia; Sebastian-Galles, Núria; Ávila, César

    2016-01-15

    Naturally acquiring a language shapes the human brain through a long-lasting learning and practice process. This is supported by previous studies showing that managing more than one language from early childhood has an impact on brain structure and function. However, to what extent bilingual individuals present neuroanatomical peculiarities at the subcortical level with respect to monolinguals is yet not well understood, despite the key role of subcortical gray matter for a number of language functions, including monitoring of speech production and language control - two processes especially solicited by bilinguals. Here we addressed this issue by performing a subcortical surface-based analysis in a sample of monolinguals and simultaneous bilinguals (N=88) that only differed in their language experience from birth. This analysis allowed us to study with great anatomical precision the potential differences in morphology of key subcortical structures, namely, the caudate, accumbens, putamen, globus pallidus and thalamus. Vertexwise analyses revealed significantly expanded subcortical structures for bilinguals compared to monolinguals, localized in bilateral putamen and thalamus, as well as in the left globus pallidus and right caudate nucleus. A topographical interpretation of our results suggests that a more complex phonological system in bilinguals may lead to a greater development of a subcortical brain network involved in monitoring articulatory processes. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Development and heritability of subcortical brain volumes at age 9 and 12

    NARCIS (Netherlands)

    Swagerman, S.C.; Brouwer, R.; de Geus, E.J.C.; Hulshoff Pol, H.E.; Boomsma, D.I.

    2014-01-01

    Subcortical brain structures are involved in a variety of cognitive and emotional functions and follow different trajectories of increase and decrease in volume from childhood to adulthood. The heritability of development of subcortical brain volumes during adolescence has not been studied

  10. Parcellating an individual subject's cortical and subcortical brain structures using snowball sampling of resting-state correlations.

    Science.gov (United States)

    Wig, Gagan S; Laumann, Timothy O; Cohen, Alexander L; Power, Jonathan D; Nelson, Steven M; Glasser, Matthew F; Miezin, Francis M; Snyder, Abraham Z; Schlaggar, Bradley L; Petersen, Steven E

    2014-08-01

    We describe methods for parcellating an individual subject's cortical and subcortical brain structures using resting-state functional correlations (RSFCs). Inspired by approaches from social network analysis, we first describe the application of snowball sampling on RSFC data (RSFC-Snowballing) to identify the centers of cortical areas, subdivisions of subcortical nuclei, and the cerebellum. RSFC-Snowballing parcellation is then compared with parcellation derived from identifying locations where RSFC maps exhibit abrupt transitions (RSFC-Boundary Mapping). RSFC-Snowballing and RSFC-Boundary Mapping largely complement one another, but also provide unique parcellation information; together, the methods identify independent entities with distinct functional correlations across many cortical and subcortical locations in the brain. RSFC parcellation is relatively reliable within a subject scanned across multiple days, and while the locations of many area centers and boundaries appear to exhibit considerable overlap across subjects, there is also cross-subject variability-reinforcing the motivation to parcellate brains at the level of individuals. Finally, examination of a large meta-analysis of task-evoked functional magnetic resonance imaging data reveals that area centers defined by task-evoked activity exhibit correspondence with area centers defined by RSFC-Snowballing. This observation provides important evidence for the ability of RSFC to parcellate broad expanses of an individual's brain into functionally meaningful units. © The Author 2013. Published by Oxford University Press.

  11. Early developmental gene enhancers affect subcortical volumes in the adult human brain.

    Science.gov (United States)

    Becker, Martin; Guadalupe, Tulio; Franke, Barbara; Hibar, Derrek P; Renteria, Miguel E; Stein, Jason L; Thompson, Paul M; Francks, Clyde; Vernes, Sonja C; Fisher, Simon E

    2016-05-01

    Genome-wide association screens aim to identify common genetic variants contributing to the phenotypic variability of complex traits, such as human height or brain morphology. The identified genetic variants are mostly within noncoding genomic regions and the biology of the genotype-phenotype association typically remains unclear. In this article, we propose a complementary targeted strategy to reveal the genetic underpinnings of variability in subcortical brain volumes, by specifically selecting genomic loci that are experimentally validated forebrain enhancers, active in early embryonic development. We hypothesized that genetic variation within these enhancers may affect the development and ultimately the structure of subcortical brain regions in adults. We tested whether variants in forebrain enhancer regions showed an overall enrichment of association with volumetric variation in subcortical structures of >13,000 healthy adults. We observed significant enrichment of genomic loci that affect the volume of the hippocampus within forebrain enhancers (empirical P = 0.0015), a finding which robustly passed the adjusted threshold for testing of multiple brain phenotypes (cutoff of P < 0.0083 at an alpha of 0.05). In analyses of individual single nucleotide polymorphisms (SNPs), we identified an association upstream of the ID2 gene with rs7588305 and variation in hippocampal volume. This SNP-based association survived multiple-testing correction for the number of SNPs analyzed but not for the number of subcortical structures. Targeting known regulatory regions offers a way to understand the underlying biology that connects genotypes to phenotypes, particularly in the context of neuroimaging genetics. This biology-driven approach generates testable hypotheses regarding the functional biology of identified associations. Hum Brain Mapp 37:1788-1800, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Human subcortical brain asymmetries in 15,847 people worldwide reveal effects of age and sex.

    Science.gov (United States)

    Guadalupe, Tulio; Mathias, Samuel R; vanErp, Theo G M; Whelan, Christopher D; Zwiers, Marcel P; Abe, Yoshinari; Abramovic, Lucija; Agartz, Ingrid; Andreassen, Ole A; Arias-Vásquez, Alejandro; Aribisala, Benjamin S; Armstrong, Nicola J; Arolt, Volker; Artiges, Eric; Ayesa-Arriola, Rosa; Baboyan, Vatche G; Banaschewski, Tobias; Barker, Gareth; Bastin, Mark E; Baune, Bernhard T; Blangero, John; Bokde, Arun L W; Boedhoe, Premika S W; Bose, Anushree; Brem, Silvia; Brodaty, Henry; Bromberg, Uli; Brooks, Samantha; Büchel, Christian; Buitelaar, Jan; Calhoun, Vince D; Cannon, Dara M; Cattrell, Anna; Cheng, Yuqi; Conrod, Patricia J; Conzelmann, Annette; Corvin, Aiden; Crespo-Facorro, Benedicto; Crivello, Fabrice; Dannlowski, Udo; de Zubicaray, Greig I; de Zwarte, Sonja M C; Deary, Ian J; Desrivières, Sylvane; Doan, Nhat Trung; Donohoe, Gary; Dørum, Erlend S; Ehrlich, Stefan; Espeseth, Thomas; Fernández, Guillén; Flor, Herta; Fouche, Jean-Paul; Frouin, Vincent; Fukunaga, Masaki; Gallinat, Jürgen; Garavan, Hugh; Gill, Michael; Suarez, Andrea Gonzalez; Gowland, Penny; Grabe, Hans J; Grotegerd, Dominik; Gruber, Oliver; Hagenaars, Saskia; Hashimoto, Ryota; Hauser, Tobias U; Heinz, Andreas; Hibar, Derrek P; Hoekstra, Pieter J; Hoogman, Martine; Howells, Fleur M; Hu, Hao; Hulshoff Pol, Hilleke E; Huyser, Chaim; Ittermann, Bernd; Jahanshad, Neda; Jönsson, Erik G; Jurk, Sarah; Kahn, Rene S; Kelly, Sinead; Kraemer, Bernd; Kugel, Harald; Kwon, Jun Soo; Lemaitre, Herve; Lesch, Klaus-Peter; Lochner, Christine; Luciano, Michelle; Marquand, Andre F; Martin, Nicholas G; Martínez-Zalacaín, Ignacio; Martinot, Jean-Luc; Mataix-Cols, David; Mather, Karen; McDonald, Colm; McMahon, Katie L; Medland, Sarah E; Menchón, José M; Morris, Derek W; Mothersill, Omar; Maniega, Susana Munoz; Mwangi, Benson; Nakamae, Takashi; Nakao, Tomohiro; Narayanaswaamy, Janardhanan C; Nees, Frauke; Nordvik, Jan E; Onnink, A Marten H; Opel, Nils; Ophoff, Roel; Paillère Martinot, Marie-Laure; Papadopoulos Orfanos, Dimitri; Pauli, Paul; Paus, Tomáš; Poustka, Luise; Reddy, Janardhan Yc; Renteria, Miguel E; Roiz-Santiáñez, Roberto; Roos, Annerine; Royle, Natalie A; Sachdev, Perminder; Sánchez-Juan, Pascual; Schmaal, Lianne; Schumann, Gunter; Shumskaya, Elena; Smolka, Michael N; Soares, Jair C; Soriano-Mas, Carles; Stein, Dan J; Strike, Lachlan T; Toro, Roberto; Turner, Jessica A; Tzourio-Mazoyer, Nathalie; Uhlmann, Anne; Hernández, Maria Valdés; van den Heuvel, Odile A; van der Meer, Dennis; van Haren, Neeltje E M; Veltman, Dick J; Venkatasubramanian, Ganesan; Vetter, Nora C; Vuletic, Daniella; Walitza, Susanne; Walter, Henrik; Walton, Esther; Wang, Zhen; Wardlaw, Joanna; Wen, Wei; Westlye, Lars T; Whelan, Robert; Wittfeld, Katharina; Wolfers, Thomas; Wright, Margaret J; Xu, Jian; Xu, Xiufeng; Yun, Je-Yeon; Zhao, JingJing; Franke, Barbara; Thompson, Paul M; Glahn, David C; Mazoyer, Bernard; Fisher, Simon E; Francks, Clyde

    2017-10-01

    The two hemispheres of the human brain differ functionally and structurally. Despite over a century of research, the extent to which brain asymmetry is influenced by sex, handedness, age, and genetic factors is still controversial. Here we present the largest ever analysis of subcortical brain asymmetries, in a harmonized multi-site study using meta-analysis methods. Volumetric asymmetry of seven subcortical structures was assessed in 15,847 MRI scans from 52 datasets worldwide. There were sex differences in the asymmetry of the globus pallidus and putamen. Heritability estimates, derived from 1170 subjects belonging to 71 extended pedigrees, revealed that additive genetic factors influenced the asymmetry of these two structures and that of the hippocampus and thalamus. Handedness had no detectable effect on subcortical asymmetries, even in this unprecedented sample size, but the asymmetry of the putamen varied with age. Genetic drivers of asymmetry in the hippocampus, thalamus and basal ganglia may affect variability in human cognition, including susceptibility to psychiatric disorders.

  13. Diffusion tractography of the subcortical auditory system in a postmortem human brain

    OpenAIRE

    Sitek, Kevin

    2017-01-01

    The subcortical auditory system is challenging to identify with standard human brain imaging techniques: MRI signal decreases toward the center of the brain as well as at higher resolution, both of which are necessary for imaging small brainstem auditory structures.Using high-resolution diffusion-weighted MRI, we asked:Can we identify auditory structures and connections in high-resolution ex vivo images?Which structures and connections can be mapped in vivo?

  14. Mapping Subcortical Brain Maturation during Adolescence: Evidence of Hemisphere-and Sex-Specific Longitudinal Changes

    Science.gov (United States)

    Dennison, Meg; Whittle, Sarah; Yücel, Murat; Vijayakumar, Nandita; Kline, Alexandria; Simmons, Julian; Allen, Nicholas B.

    2013-01-01

    Early to mid-adolescence is an important developmental period for subcortical brain maturation, but longitudinal studies of these neurodevelopmental changes are lacking. The present study acquired repeated magnetic resonance images from 60 adolescent subjects (28 female) at ages 12.5 and 16.5 years to map changes in subcortical structure volumes.…

  15. Reduced prefrontal and increased subcortical brain functioning assessed using positron emission tomography in predatory and affective murderers.

    Science.gov (United States)

    Raine, A; Meloy, J R; Bihrle, S; Stoddard, J; LaCasse, L; Buchsbaum, M S

    1998-01-01

    There appear to be no brain imaging studies investigating which brain mechanisms subserve affective, impulsive violence versus planned, predatory violence. It was hypothesized that affectively violent offenders would have lower prefrontal activity, higher subcortical activity, and reduced prefrontal/subcortical ratios relative to controls, while predatory violent offenders would show relatively normal brain functioning. Glucose metabolism was assessed using positron emission tomography in 41 comparisons, 15 predatory murderers, and nine affective murderers in left and right hemisphere prefrontal (medial and lateral) and subcortical (amygdala, midbrain, hippocampus, and thalamus) regions. Affective murderers relative to comparisons had lower left and right prefrontal functioning, higher right hemisphere subcortical functioning, and lower right hemisphere prefrontal/subcortical ratios. In contrast, predatory murderers had prefrontal functioning that was more equivalent to comparisons, while also having excessively high right subcortical activity. Results support the hypothesis that emotional, unplanned impulsive murderers are less able to regulate and control aggressive impulses generated from subcortical structures due to deficient prefrontal regulation. It is hypothesized that excessive subcortical activity predisposes to aggressive behaviour, but that while predatory murderers have sufficiently good prefrontal functioning to regulate these aggressive impulses, the affective murderers lack such prefrontal control over emotion regulation.

  16. Cortical and subcortical brain alterations in Juvenile Absence Epilepsy

    Directory of Open Access Journals (Sweden)

    Manuela Tondelli

    2016-01-01

    Full Text Available Despite the common assumption that genetic generalized epilepsies are characterized by a macroscopically normal brain on magnetic resonance imaging, subtle structural brain alterations have been detected by advanced neuroimaging techniques in Childhood Absence Epilepsy syndrome. We applied quantitative structural MRI analysis to a group of adolescents and adults with Juvenile Absence Epilepsy (JAE in order to investigate micro-structural brain changes using different brain measures. We examined grey matter volumes, cortical thickness, surface areas, and subcortical volumes in 24 patients with JAE compared to 24 healthy controls; whole-brain voxel-based morphometry (VBM and Freesurfer analyses were used. When compared to healthy controls, patients revealed both grey matter volume and surface area reduction in bilateral frontal regions, anterior cingulate, and right mesial-temporal lobe. Correlation analysis with disease duration showed that longer disease was correlated with reduced surface area in right pre- and post-central gyrus. A possible effect of valproate treatment on brain structures was excluded. Our results indicate that subtle structural brain changes are detectable in JAE and are mainly located in anterior nodes of regions known to be crucial for awareness, attention and memory.

  17. The influence of puberty on subcortical brain development.

    Science.gov (United States)

    Goddings, Anne-Lise; Mills, Kathryn L; Clasen, Liv S; Giedd, Jay N; Viner, Russell M; Blakemore, Sarah-Jayne

    2014-03-01

    Puberty is characterized by hormonal, physical and psychological transformation. The human brain undergoes significant changes between childhood and adulthood, but little is known about how puberty influences its structural development. Using a longitudinal sample of 711 magnetic resonance imaging scans from 275 individuals aged 7-20years, we examined how subcortical brain regions change in relation to puberty. Our regions of interest included the amygdala, hippocampus and corpus striatum including the nucleus accumbens (NA), caudate, putamen and globus pallidus (GP). Pubertal development was significantly related to structural volume in all six regions in both sexes. Pubertal development and age had both independent and interactive influences on volume for the amygdala, hippocampus and putamen in both sexes, and the caudate in females. There was an interactive puberty-by-age effect on volume for the NA and GP in both sexes, and the caudate in males. These findings suggest a significant role for puberty in structural brain development. © 2013. Published by Elsevier Inc. All rights reserved.

  18. A high-resolution probabilistic in vivo atlas of human subcortical brain nuclei.

    Science.gov (United States)

    Pauli, Wolfgang M; Nili, Amanda N; Tyszka, J Michael

    2018-04-17

    Recent advances in magnetic resonance imaging methods, including data acquisition, pre-processing and analysis, have benefited research on the contributions of subcortical brain nuclei to human cognition and behavior. At the same time, these developments have led to an increasing need for a high-resolution probabilistic in vivo anatomical atlas of subcortical nuclei. In order to address this need, we constructed high spatial resolution, three-dimensional templates, using high-accuracy diffeomorphic registration of T 1 - and T 2 - weighted structural images from 168 typical adults between 22 and 35 years old. In these templates, many tissue boundaries are clearly visible, which would otherwise be impossible to delineate in data from individual studies. The resulting delineations of subcortical nuclei complement current histology-based atlases. We further created a companion library of software tools for atlas development, to offer an open and evolving resource for the creation of a crowd-sourced in vivo probabilistic anatomical atlas of the human brain.

  19. Human subcortical brain asymmetries in 15,847 people worldwide reveal effects of age and sex

    NARCIS (Netherlands)

    Guadalupe, Tulio; Mathias, Samuel R.; vanErp, Theo G.M.; Whelan, Christopher D.; Zwiers, Marcel P.; Abe, Yoshinari; Abramovic, Lucija; Agartz, Ingrid; Andreassen, Ole A.; Arias-Vásquez, Alejandro; Aribisala, Benjamin S.; Armstrong, Nicola J.; Arolt, Volker; Artiges, Eric; Ayesa-Arriola, Rosa; Baboyan, Vatche G.; Banaschewski, Tobias; Barker, Gareth; Bastin, Mark E.; Baune, Bernhard T.; Blangero, John; Bokde, Arun L.W.; Boedhoe, Premika S.W.; Bose, Anushree; Brem, Silvia; Brodaty, Henry; Bromberg, Uli; Brooks, Samantha; Büchel, Christian; Buitelaar, Jan; Calhoun, Vince D.; Cannon, Dara M.; Cattrell, Anna; Cheng, Yuqi; Conrod, Patricia J.; Conzelmann, Annette; Corvin, Aiden; Crespo-Facorro, Benedicto; Crivello, Fabrice; Dannlowski, Udo; de Zubicaray, Greig I.; de Zwarte, Sonja M.C.; Deary, Ian J.; Desrivières, Sylvane; Doan, Nhat Trung; Donohoe, Gary; Dørum, Erlend S.; Ehrlich, Stefan; Espeseth, Thomas; Fernández, Guillén; Flor, Herta; Fouche, Jean Paul; Frouin, Vincent; Fukunaga, Masaki; Gallinat, Jürgen; Garavan, Hugh; Gill, Michael; Suarez, Andrea Gonzalez; Gowland, Penny; Grabe, Hans J.; Grotegerd, Dominik; Gruber, Oliver; Hagenaars, Saskia; Hashimoto, Ryota; Hauser, Tobias U.; Heinz, Andreas; Hibar, Derrek P.; Hoekstra, Pieter J.; Hoogman, Martine; Howells, Fleur M.; Hu, Hao; Hulshoff Pol, Hilleke E.; Huyser, Chaim; Ittermann, Bernd; Jahanshad, Neda; Jönsson, Erik G.; Jurk, Sarah; Kahn, Rene S.; Kelly, Sinead; Kraemer, Bernd; Kugel, Harald; Kwon, Jun Soo; Lemaitre, Herve; Lesch, Klaus Peter; Lochner, Christine; Luciano, Michelle; Marquand, Andre F.; Martin, Nicholas G.; Martínez-Zalacaín, Ignacio; Martinot, Jean Luc; Mataix-Cols, David; Mather, Karen; McDonald, Colm; McMahon, Katie L.; Medland, Sarah E.; Menchón, José M.; Morris, Derek W.; Mothersill, Omar; Maniega, Susana Munoz; Mwangi, Benson; Nakamae, Takashi; Nakao, Tomohiro; Narayanaswaamy, Janardhanan C.; Nees, Frauke; Nordvik, Jan E.; Onnink, A. Marten H.; Opel, Nils; Ophoff, Roel; Paillère Martinot, Marie Laure; Papadopoulos Orfanos, Dimitri; Pauli, Paul; Paus, Tomáš; Poustka, Luise; Reddy, Janardhan Yc; Renteria, Miguel E.; Roiz-Santiáñez, Roberto; Roos, Annerine; Royle, Natalie A.; Sachdev, Perminder; Sánchez-Juan, Pascual; Schmaal, Lianne; Schumann, Gunter; Shumskaya, Elena; Smolka, Michael N.; Soares, Jair C.; Soriano-Mas, Carles; Stein, Dan J.; Strike, Lachlan T.; Toro, Roberto; Turner, Jessica A.; Tzourio-Mazoyer, Nathalie; Uhlmann, Anne; Hernández, Maria Valdés; van den Heuvel, Odile A.; van der Meer, Dennis; van Haren, Neeltje E.M.; Veltman, Dick J.; Venkatasubramanian, Ganesan; Vetter, Nora C.; Vuletic, Daniella; Walitza, Susanne; Walter, Henrik; Walton, Esther; Wang, Zhen; Wardlaw, Joanna; Wen, Wei; Westlye, Lars T.; Whelan, Robert; Wittfeld, Katharina; Wolfers, Thomas; Wright, Margaret J.; Xu, Jian; Xu, Xiufeng; Yun, Je Yeon; Zhao, Jing Jing; Franke, Barbara; Thompson, Paul M.; Glahn, David C.; Mazoyer, Bernard; Fisher, Simon E.; Francks, Clyde

    2017-01-01

    The two hemispheres of the human brain differ functionally and structurally. Despite over a century of research, the extent to which brain asymmetry is influenced by sex, handedness, age, and genetic factors is still controversial. Here we present the largest ever analysis of subcortical brain

  20. Morphology of subcortical brain nuclei is associated with autonomic function in healthy humans.

    Science.gov (United States)

    Ruffle, James K; Coen, Steven J; Giampietro, Vincent; Williams, Steven C R; Apkarian, A Vania; Farmer, Adam D; Aziz, Qasim

    2018-01-01

    The autonomic nervous system (ANS) is a brain body interface which serves to maintain homeostasis by influencing a plethora of physiological processes, including metabolism, cardiorespiratory regulation and nociception. Accumulating evidence suggests that ANS function is disturbed in numerous prevalent clinical disorders, including irritable bowel syndrome and fibromyalgia. While the brain is a central hub for regulating autonomic function, the association between resting autonomic activity and subcortical morphology has not been comprehensively studied and thus was our aim. In 27 healthy subjects [14 male and 13 female; mean age 30 years (range 22-53 years)], we quantified resting ANS function using validated indices of cardiac sympathetic index (CSI) and parasympathetic cardiac vagal tone (CVT). High resolution structural magnetic resonance imaging scans were acquired, and differences in subcortical nuclei shape, that is, 'deformation', contingent on resting ANS activity were investigated. CSI positively correlated with outward deformation of the brainstem, right nucleus accumbens, right amygdala and bilateral pallidum (all thresholded to corrected P right amygdala and pallidum (all thresholded to corrected P Left and right putamen volume positively correlated with CVT (r = 0.62, P = 0.0047 and r = 0.59, P = 0.008, respectively), as did the brainstem (r = 0.46, P = 0.049). These data provide novel evidence that resting autonomic state is associated with differences in the shape and volume of subcortical nuclei. Thus, subcortical morphological brain differences in various disorders may partly be attributable to perturbation in autonomic function. Further work is warranted to investigate these findings in clinical populations. Hum Brain Mapp 39:381-392, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. Subcortical structures in humans can be facilitated by transcranial direct current stimulation

    NARCIS (Netherlands)

    Nonnekes, Johan Hendrik; Arrogi, Anass; Munneke, Moniek; van Asseldonk, Edwin H.F.; Oude Nijhuis, Lars; Geurts, Alexander; Weerdesteyn, Vivian

    2014-01-01

    BACKGROUND: Transcranial direct current stimulation (tDCS) is a noninvasive brain stimulation technique that alters cortical excitability via application of a weak direct current. Interestingly, it was demonstrated in cats that tDCS can facilitate subcortical structures as well (Bolzonii et al., J

  2. Subcortical structures in humans can be facilitated by transcranial direct current stimulation

    NARCIS (Netherlands)

    Nonnekes, J.H.; Arrogi, A.; Munneke, M.A.M.; Asseldonk, E.H. van; Nijhuis, L.B.; Geurts, A.C.H.; Weerdesteyn, V.G.M.

    2014-01-01

    Transcranial direct current stimulation (tDCS) is a noninvasive brain stimulation technique that alters cortical excitability. Interestingly, in recent animal studies facilitatory effects of tDCS have also been observed on subcortical structures. Here, we sought to provide evidence for the potential

  3. Subcortical Structures in Humans Can Be Facilitated by Transcranial Direct Current Stimulation

    NARCIS (Netherlands)

    Nonnekes, Johan Hendrik; Arrogi, A.; Munneke, M.A.M.; van Asseldonk, Edwin H.F.; Oude Nijhuis, L.B.; Geurts, A.C.; Weerdesteyn, V.

    2014-01-01

    Transcranial direct current stimulation (tDCS) is a noninvasive brain stimulation technique that alters cortical excitability. Interestingly, in recent animal studies facilitatory effects of tDCS have also been observed on subcortical structures. Here, we sought to provide evidence for the potential

  4. An improved FSL-FIRST pipeline for subcortical gray matter segmentation to study abnormal brain anatomy using quantitative susceptibility mapping (QSM).

    Science.gov (United States)

    Feng, Xiang; Deistung, Andreas; Dwyer, Michael G; Hagemeier, Jesper; Polak, Paul; Lebenberg, Jessica; Frouin, Frédérique; Zivadinov, Robert; Reichenbach, Jürgen R; Schweser, Ferdinand

    2017-06-01

    Accurate and robust segmentation of subcortical gray matter (SGM) nuclei is required in many neuroimaging applications. FMRIB's Integrated Registration and Segmentation Tool (FIRST) is one of the most popular software tools for automated subcortical segmentation based on T 1 -weighted (T1w) images. In this work, we demonstrate that FIRST tends to produce inaccurate SGM segmentation results in the case of abnormal brain anatomy, such as present in atrophied brains, due to a poor spatial match of the subcortical structures with the training data in the MNI space as well as due to insufficient contrast of SGM structures on T1w images. Consequently, such deviations from the average brain anatomy may introduce analysis bias in clinical studies, which may not always be obvious and potentially remain unidentified. To improve the segmentation of subcortical nuclei, we propose to use FIRST in combination with a special Hybrid image Contrast (HC) and Non-Linear (nl) registration module (HC-nlFIRST), where the hybrid image contrast is derived from T1w images and magnetic susceptibility maps to create subcortical contrast that is similar to that in the Montreal Neurological Institute (MNI) template. In our approach, a nonlinear registration replaces FIRST's default linear registration, yielding a more accurate alignment of the input data to the MNI template. We evaluated our method on 82 subjects with particularly abnormal brain anatomy, selected from a database of >2000 clinical cases. Qualitative and quantitative analyses revealed that HC-nlFIRST provides improved segmentation compared to the default FIRST method. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. The developing human brain: age-related changes in cortical, subcortical, and cerebellar anatomy.

    Science.gov (United States)

    Sussman, Dafna; Leung, Rachel C; Chakravarty, M Mallar; Lerch, Jason P; Taylor, Margot J

    2016-04-01

    This study is the first to characterize normal development and sex differences across neuroanatomical structures in cortical, subcortical, and cerebellar brain regions in a single large cohort. One hundred and ninety-two magnetic resonance images were examined from 96 typically developing females and 96 age-matched typically developing males from 4 to 18 years of age. Image segmentation of the cortex was conducted with CIVET, while that of the cerebellum, hippocampi, thalamus, and basal ganglia were conducted using the MAGeT algorithm. Cortical thickness analysis revealed that most cortical regions decrease linearly, while surface area increases linearly with age. Volume relative to total cerebrum followed a quadratic trend with age, with only the left supramarginal gyrus showing sexual dimorphism. Hippocampal relative volume increased linearly, while the thalamus, caudate, and putamen decreased linearly, and the cerebellum did not change with age. The relative volumes of several subcortical subregions followed inverted U-shaped trends that peaked at ~12 years of age. Many subcortical structures were found to be larger in females than in males, independently of age, while others showed a sex-by-age interaction. This study provides a comprehensive assessment of cortical, subcortical, and cerebellar growth patterns during normal development, and draws attention to the role of sex on neuroanatomical maturation throughout childhood and adolescence.

  6. Cortical thickness and subcortical brain volumes in professional rugby league players

    Directory of Open Access Journals (Sweden)

    Magdalena Wojtowicz

    Full Text Available Purpose: The purpose of this study was to examine cortical thickness and subcortical volumes in professional rugby players with an extensive history of concussions compared to control subjects. Method: Participants included 24 active and former professional rugby league players [Age M(SD = 33.3(6.3; Range = 21–44] with an extensive history of concussion and 18 age- and education-matched controls with no history of neurotrauma or participation in contact sports. Participants underwent T1-weighted imaging and completed a neuropsychological battery, including two tests of memory. Whole brain cortical thickness analysis and structural volume analysis was performed using FreeSurfer version 6.0. Results: Professional rugby league players reported greater alcohol consumption (p < .001 and had significantly worse delayed recall of a visually complex design (p = .04. They did not differ from controls on other clinical outcome measures. There were no differences in cortical thickness between the groups. Professional players had smaller whole brain (p = .003, bilateral hippocampi (ps = .03, and left amygdala volumes (p = .01 compared to healthy controls. Within the players group, there were significant associations between greater alcohol use and smaller bilateral hippocampi and left amygdala volumes. There were no associations between structural volumes and history of concussions or memory performance. Conclusions: The literature examining cortical thickness in athletes with a history of multiple concussions is mixed. We did not observe differences in cortical thickness in professional rugby league players compared to controls. However, smaller subcortical volumes were found in players that were, in part, associated with greater alcohol consumption. Keywords: Volumetric MRI, Cortical thickness, Concussion, Brain morphometry, Athletes, Rugby

  7. Altered structural brain changes and neurocognitive performance in pediatric HIV

    Directory of Open Access Journals (Sweden)

    Santosh K. Yadav

    2017-01-01

    Full Text Available Pediatric HIV patients often suffer with neurodevelopmental delay and subsequently cognitive impairment. While tissue injury in cortical and subcortical regions in the brain of adult HIV patients has been well reported there is sparse knowledge about these changes in perinatally HIV infected pediatric patients. We analyzed cortical thickness, subcortical volume, structural connectivity, and neurocognitive functions in pediatric HIV patients and compared with those of pediatric healthy controls. With informed consent, 34 perinatally infected pediatric HIV patients and 32 age and gender matched pediatric healthy controls underwent neurocognitive assessment and brain magnetic resonance imaging (MRI on a 3 T clinical scanner. Altered cortical thickness, subcortical volumes, and abnormal neuropsychological test scores were observed in pediatric HIV patients. The structural network connectivity analysis depicted lower connection strengths, lower clustering coefficients, and higher path length in pediatric HIV patients than healthy controls. The network betweenness and network hubs in cortico-limbic regions were distorted in pediatric HIV patients. The findings suggest that altered cortical and subcortical structures and regional brain connectivity in pediatric HIV patients may contribute to deficits in their neurocognitive functions. Further, longitudinal studies are required for better understanding of the effect of HIV pathogenesis on brain structural changes throughout the brain development process under standard ART treatment.

  8. Cortical and subcortical mechanisms of brain-machine interfaces.

    Science.gov (United States)

    Marchesotti, Silvia; Martuzzi, Roberto; Schurger, Aaron; Blefari, Maria Laura; Del Millán, José R; Bleuler, Hannes; Blanke, Olaf

    2017-06-01

    Technical advances in the field of Brain-Machine Interfaces (BMIs) enable users to control a variety of external devices such as robotic arms, wheelchairs, virtual entities and communication systems through the decoding of brain signals in real time. Most BMI systems sample activity from restricted brain regions, typically the motor and premotor cortex, with limited spatial resolution. Despite the growing number of applications, the cortical and subcortical systems involved in BMI control are currently unknown at the whole-brain level. Here, we provide a comprehensive and detailed report of the areas active during on-line BMI control. We recorded functional magnetic resonance imaging (fMRI) data while participants controlled an EEG-based BMI inside the scanner. We identified the regions activated during BMI control and how they overlap with those involved in motor imagery (without any BMI control). In addition, we investigated which regions reflect the subjective sense of controlling a BMI, the sense of agency for BMI-actions. Our data revealed an extended cortical-subcortical network involved in operating a motor-imagery BMI. This includes not only sensorimotor regions but also the posterior parietal cortex, the insula and the lateral occipital cortex. Interestingly, the basal ganglia and the anterior cingulate cortex were involved in the subjective sense of controlling the BMI. These results inform basic neuroscience by showing that the mechanisms of BMI control extend beyond sensorimotor cortices. This knowledge may be useful for the development of BMIs that offer a more natural and embodied feeling of control for the user. Hum Brain Mapp 38:2971-2989, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  9. Structural plasticity of remote cortical brain regions is determined by connectivity to the primary lesion in subcortical stroke.

    Science.gov (United States)

    Cheng, Bastian; Schulz, Robert; Bönstrup, Marlene; Hummel, Friedhelm C; Sedlacik, Jan; Fiehler, Jens; Gerloff, Christian; Thomalla, Götz

    2015-09-01

    Cortical atrophy as demonstrated by measurement of cortical thickness (CT) is a hallmark of various neurodegenerative diseases. In the wake of an acute ischemic stroke, brain architecture undergoes dynamic changes that can be tracked by structural and functional magnetic resonance imaging studies as soon as 3 months after stroke. In this study, we measured changes of CT in cortical areas connected to subcortical stroke lesions in 12 patients with upper extremity paresis combining white-matter tractography and semi-automatic measurement of CT using the Freesurfer software. Three months after stroke, a significant decrease in CT of -2.6% (median, upper/lower boundary of 95% confidence interval -4.1%/-1.1%) was detected in areas connected to ischemic lesions, whereas CT in unconnected cortical areas remained largely unchanged. A cluster of significant cortical thinning was detected in the superior frontal gyrus of the stroke hemisphere using a surface-based general linear model correcting for multiple comparisons. There was no significant correlation of changes in CT with clinical outcome parameters. Our results show a specific impact of subcortical lesions on distant, yet connected cortical areas explainable by secondary neuro-axonal degeneration of distant areas.

  10. Fractal Dimension Analysis of Subcortical Gray Matter Structures in Schizophrenia.

    Directory of Open Access Journals (Sweden)

    Guihu Zhao

    Full Text Available A failure of adaptive inference-misinterpreting available sensory information for appropriate perception and action-is at the heart of clinical manifestations of schizophrenia, implicating key subcortical structures in the brain including the hippocampus. We used high-resolution, three-dimensional (3D fractal geometry analysis to study subtle and potentially biologically relevant structural alterations (in the geometry of protrusions, gyri and indentations, sulci in subcortical gray matter (GM in patients with schizophrenia relative to healthy individuals. In particular, we focus on utilizing Fractal Dimension (FD, a compact shape descriptor that can be computed using inputs with irregular (i.e., not necessarily smooth surfaces in order to quantify complexity (of geometrical properties and configurations of structures across spatial scales of subcortical GM in this disorder. Probabilistic (entropy-based information FD was computed based on the box-counting approach for each of the seven subcortical structures, bilaterally, as well as the brainstem from high-resolution magnetic resonance (MR images in chronic patients with schizophrenia (n = 19 and age-matched healthy controls (n = 19 (age ranges: patients, 22.7-54.3 and healthy controls, 24.9-51.6 years old. We found a significant reduction of FD in the left hippocampus (median: 2.1460, range: 2.07-2.18 vs. median: 2.1730, range: 2.15-2.23, p<0.001; Cohen's effect size, U3 = 0.8158 (95% Confidence Intervals, CIs: 0.6316, 1.0, the right hippocampus (median: 2.1430, range: 2.05-2.19 vs. median: 2.1760, range: 2.12-2.21, p = 0.004; U3 = 0.8421 (CIs: 0.5263, 1, as well as left thalamus (median: 2.4230, range: 2.40-2.44, p = 0.005; U3 = 0.7895 (CIs: 0.5789, 0.9473 in schizophrenia patients, relative to healthy individuals. Our findings provide in-vivo quantitative evidence for reduced surface complexity of hippocampus, with reduced FD indicating a less complex, less regular GM surface detected in

  11. Thyroid Hormone-Dependent Formation of a Subcortical Band Heterotopia (SBH) in the Neonatal Brain is not Exacerbated Under Conditions of Low Dietary Iron

    Science.gov (United States)

    Thyroid hormones (TH) are critical for brain development. Modest TH insufficiency in pregnant rats induced by propylthiouracil (PTU) results in formation of a structural abnormality, a subcortical band heterotopia (SBH), in brains of offspring. PTU reduces TH by inhibiting the s...

  12. Genetic influences on individual differences in longitudinal changes in global and subcortical brain volumes: Results of the ENIGMA plasticity working group.

    Science.gov (United States)

    Brouwer, Rachel M; Panizzon, Matthew S; Glahn, David C; Hibar, Derrek P; Hua, Xue; Jahanshad, Neda; Abramovic, Lucija; de Zubicaray, Greig I; Franz, Carol E; Hansell, Narelle K; Hickie, Ian B; Koenis, Marinka M G; Martin, Nicholas G; Mather, Karen A; McMahon, Katie L; Schnack, Hugo G; Strike, Lachlan T; Swagerman, Suzanne C; Thalamuthu, Anbupalam; Wen, Wei; Gilmore, John H; Gogtay, Nitin; Kahn, René S; Sachdev, Perminder S; Wright, Margaret J; Boomsma, Dorret I; Kremen, William S; Thompson, Paul M; Hulshoff Pol, Hilleke E

    2017-09-01

    Structural brain changes that occur during development and ageing are related to mental health and general cognitive functioning. Individuals differ in the extent to which their brain volumes change over time, but whether these differences can be attributed to differences in their genotypes has not been widely studied. Here we estimate heritability (h 2 ) of changes in global and subcortical brain volumes in five longitudinal twin cohorts from across the world and in different stages of the lifespan (N = 861). Heritability estimates of brain changes were significant and ranged from 16% (caudate) to 42% (cerebellar gray matter) for all global and most subcortical volumes (with the exception of thalamus and pallidum). Heritability estimates of change rates were generally higher in adults than in children suggesting an increasing influence of genetic factors explaining individual differences in brain structural changes with age. In children, environmental influences in part explained individual differences in developmental changes in brain structure. Multivariate genetic modeling showed that genetic influences of change rates and baseline volume significantly overlapped for many structures. The genetic influences explaining individual differences in the change rate for cerebellum, cerebellar gray matter and lateral ventricles were independent of the genetic influences explaining differences in their baseline volumes. These results imply the existence of genetic variants that are specific for brain plasticity, rather than brain volume itself. Identifying these genes may increase our understanding of brain development and ageing and possibly have implications for diseases that are characterized by deviant developmental trajectories of brain structure. Hum Brain Mapp 38:4444-4458, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  13. MR imaging of brain surface structures

    International Nuclear Information System (INIS)

    Katada, Kazuhiro; Anno, Hirofumi; Takesita, Gen; Koga, Sukehiko; Kanno, Tetuo; Sakakibara, Tatuo; Yamada, Kazuhiro; Suzuki, Hirokazu; Saito, Sigeki.

    1989-01-01

    An imaging technique that permits direct and non-invasive visualization of brain surface structures was proposed. This technique (Surface anatomy scanning, SAS) consists of long TE-long TR spin echo sequence, thick slice and surface coil. Initial clinical trials in 31 patients with various cerebral pathology showed excellent visualization of sulci, gyri and major cortical veins on the lateral surface of the brain together with cortical and subcortical lesions. Our preliminary results indicate that the SAS is an effective method for the diagnosis and localization of cortical and subcortical pathology, and the possible application of SAS to the surgical and the radiation therapy planning is sugessted. (author)

  14. Toward defining deep brain stimulation targets in MNI space: A subcortical atlas based on multimodal MRI, histology and structural connectivity.

    Science.gov (United States)

    Ewert, Siobhan; Plettig, Philip; Li, Ningfei; Chakravarty, M Mallar; Collins, D Louis; Herrington, Todd M; Kühn, Andrea A; Horn, Andreas

    2018-04-15

    Three-dimensional atlases of subcortical brain structures are valuable tools to reference anatomy in neuroscience and neurology. For instance, they can be used to study the position and shape of the three most common deep brain stimulation (DBS) targets, the subthalamic nucleus (STN), internal part of the pallidum (GPi) and ventral intermediate nucleus of the thalamus (VIM) in spatial relationship to DBS electrodes. Here, we present a composite atlas based on manual segmentations of a multimodal high resolution brain template, histology and structural connectivity. In a first step, four key structures were defined on the template itself using a combination of multispectral image analysis and manual segmentation. Second, these structures were used as anchor points to coregister a detailed histological atlas into standard space. Results show that this approach significantly improved coregistration accuracy over previously published methods. Finally, a sub-segmentation of STN and GPi into functional zones was achieved based on structural connectivity. The result is a composite atlas that defines key nuclei on the template itself, fills the gaps between them using histology and further subdivides them using structural connectivity. We show that the atlas can be used to segment DBS targets in single subjects, yielding more accurate results compared to priorly published atlases. The atlas will be made publicly available and constitutes a resource to study DBS electrode localizations in combination with modern neuroimaging methods. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Implications of Subcortical structures in Aphasia.

    Directory of Open Access Journals (Sweden)

    Saleh Alamri

    2015-04-01

    Taken together, the results indicate that aphasia is a common outcome after a lesion to subcortical structures. Findings show that 110 out of 394 aphasic patients with lesion in the basal ganglia exhibited comprehension deficits, while 31 participants out of 288 with thalamic aphasia. Likewise, 129 aphasics of affected basal ganglia out of 394 had impaired naming, whereas 12 participants had impaired naming out of 288 individuals with thalamic aphasia. See figure 1. Figure 1: The percentage of language impairment in two sets of aphasic patients (the thalamus and the basal ganglia. Despite contradictory results and even cases of double dissociation (for an example of absence of language deficits in the event of thalamic lesions see Cappa et al., 1986, our literature review confirms the major role of subcortical structures in language processing.

  16. Progressively Disrupted Brain Functional Connectivity Network in Subcortical Ischemic Vascular Cognitive Impairment Patients.

    Science.gov (United States)

    Sang, Linqiong; Chen, Lin; Wang, Li; Zhang, Jingna; Zhang, Ye; Li, Pengyue; Li, Chuanming; Qiu, Mingguo

    2018-01-01

    Cognitive impairment caused by subcortical ischemic vascular disease (SIVD) has been elucidated by many neuroimaging studies. However, little is known regarding the changes in brain functional connectivity networks in relation to the severity of cognitive impairment in SIVD. In the present study, 20 subcortical ischemic vascular cognitive impairment no dementia patients (SIVCIND) and 20 dementia patients (SIVaD) were enrolled; additionally, 19 normal controls were recruited. Each participant underwent a resting-state functional MRI scan. Whole-brain functional networks were analyzed with graph theory and network-based statistics (NBS) to study the functional organization of networks and find alterations in functional connectivity among brain regions. After adjustments for age, gender, and duration of formal education, there were significant group differences for two network functional organization indices, global efficiency and local efficiency, which decreased (NC > SIVCIND > SIVaD) as cognitive impairment worsened. Between-group differences in functional connectivity (NBS corrected, p  impairment worsened, with an increased number of decreased connections between brain regions. We also observed more reductions in nodal efficiency in the prefrontal and temporal cortices for SIVaD than for SIVCIND. These findings indicated a progressively disrupted pattern of the brain functional connectivity network with increased cognitive impairment and showed promise for the development of reliable biomarkers of network metric changes related to cognitive impairment caused by SIVD.

  17. Cortical and Subcortical Structural Plasticity Associated with the Glioma Volumes in Patients with Cerebral Gliomas Revealed by Surface-Based Morphometry

    Directory of Open Access Journals (Sweden)

    Jinping Xu

    2017-06-01

    Full Text Available Postlesional plasticity has been identified in patients with cerebral gliomas by inducing a large functional reshaping of brain networks. Although numerous non-invasive functional neuroimaging methods have extensively investigated the mechanisms of this functional redistribution in patients with cerebral gliomas, little effort has been made to investigate the structural plasticity of cortical and subcortical structures associated with the glioma volume. In this study, we aimed to investigate whether the contralateral cortical and subcortical structures are able to actively reorganize by themselves in these patients. The compensation mechanism following contralateral cortical and subcortical structural plasticity is considered. We adopted the surface-based morphometry to investigate the difference of cortical and subcortical gray matter (GM volumes in a cohort of 14 healthy controls and 13 patients with left-hemisphere cerebral gliomas [including 1 patients with World Health Organization (WHO I, 8 WHO II, and 4 WHO III]. The glioma volume ranges from 5.1633 to 208.165 cm2. Compared to healthy controls, we found significantly increased GM volume of the right cuneus and the left thalamus, as well as a trend toward enlargement in the right globus pallidus in patients with cerebral gliomas. Moreover, the GM volumes of these regions were positively correlated with the glioma volumes of the patients. These results provide evidence of cortical and subcortical enlargement, suggesting the usefulness of surface-based morphometry to investigate the structural plasticity. Moreover, the structural plasticity might be acted as the compensation mechanism to better fulfill its functions in patients with cerebral gliomas as the gliomas get larger.

  18. Mapping abnormal subcortical brain morphometry in an elderly HIV+ cohort.

    Science.gov (United States)

    Wade, Benjamin S C; Valcour, Victor G; Wendelken-Riegelhaupt, Lauren; Esmaeili-Firidouni, Pardis; Joshi, Shantanu H; Gutman, Boris A; Thompson, Paul M

    2015-01-01

    Over 50% of HIV + individuals exhibit neurocognitive impairment and subcortical atrophy, but the profile of brain abnormalities associated with HIV is still poorly understood. Using surface-based shape analyses, we mapped the 3D profile of subcortical morphometry in 63 elderly HIV + participants and 31 uninfected controls. The thalamus, caudate, putamen, pallidum, hippocampus, amygdala, brainstem, accumbens, callosum and ventricles were segmented from high-resolution MRIs. To investigate shape-based morphometry, we analyzed the Jacobian determinant (JD) and radial distances (RD) defined on each region's surfaces. We also investigated effects of nadir CD4 + T-cell counts, viral load, time since diagnosis (TSD) and cognition on subcortical morphology. Lastly, we explored whether HIV + participants were distinguishable from unaffected controls in a machine learning context. All shape and volume features were included in a random forest (RF) model. The model was validated with 2-fold cross-validation. Volumes of HIV + participants' bilateral thalamus, left pallidum, left putamen and callosum were significantly reduced while ventricular spaces were enlarged. Significant shape variation was associated with HIV status, TSD and the Wechsler adult intelligence scale. HIV + people had diffuse atrophy, particularly in the caudate, putamen, hippocampus and thalamus. Unexpectedly, extended TSD was associated with increased thickness of the anterior right pallidum. In the classification of HIV + participants vs. controls, our RF model attained an area under the curve of 72%.

  19. Mapping abnormal subcortical brain morphometry in an elderly HIV+ cohort

    Directory of Open Access Journals (Sweden)

    Benjamin S.C. Wade

    2015-01-01

    Full Text Available Over 50% of HIV+ individuals exhibit neurocognitive impairment and subcortical atrophy, but the profile of brain abnormalities associated with HIV is still poorly understood. Using surface-based shape analyses, we mapped the 3D profile of subcortical morphometry in 63 elderly HIV+ participants and 31 uninfected controls. The thalamus, caudate, putamen, pallidum, hippocampus, amygdala, brainstem, accumbens, callosum and ventricles were segmented from high-resolution MRIs. To investigate shape-based morphometry, we analyzed the Jacobian determinant (JD and radial distances (RD defined on each region's surfaces. We also investigated effects of nadir CD4+ T-cell counts, viral load, time since diagnosis (TSD and cognition on subcortical morphology. Lastly, we explored whether HIV+ participants were distinguishable from unaffected controls in a machine learning context. All shape and volume features were included in a random forest (RF model. The model was validated with 2-fold cross-validation. Volumes of HIV+ participants' bilateral thalamus, left pallidum, left putamen and callosum were significantly reduced while ventricular spaces were enlarged. Significant shape variation was associated with HIV status, TSD and the Wechsler adult intelligence scale. HIV+ people had diffuse atrophy, particularly in the caudate, putamen, hippocampus and thalamus. Unexpectedly, extended TSD was associated with increased thickness of the anterior right pallidum. In the classification of HIV+ participants vs. controls, our RF model attained an area under the curve of 72%.

  20. Subcortical heterotopia appearing as huge midline mass in the newborn brain.

    Science.gov (United States)

    Fukumura, Shinobu; Watanabe, Toshihide; Kimura, Sachiko; Ochi, Satoko; Yoshifuji, Kazuhisa; Tsutsumi, Hiroyuki

    2016-02-01

    We report the case of a 2-year-old boy who showed a huge midline mass in the brain at prenatal assessment. After birth, magnetic resonance imaging (MRI) revealed a conglomerate mass with an infolded microgyrus at the midline, which was suspected as a midline brain-in-brain malformation. MRI also showed incomplete cleavage of his frontal cortex and thalamus, consistent with lobar holoprosencephaly. The patient underwent an incisional biopsy of the mass on the second day of life. The mass consisted of normal central nervous tissue with gray and white matter, representing a heterotopic brain. The malformation was considered to be a subcortical heterotopia. With maturity, focal signal changes and decreased cerebral perfusion became clear on brain imaging, suggesting secondary glial degeneration. Coincident with these MRI abnormalities, the child developed psychomotor retardation and severe epilepsy focused on the side of the intracranial mass.

  1. An Allometric Analysis of Sex and Sex Chromosome Dosage Effects on Subcortical Anatomy in Humans

    Science.gov (United States)

    Clasen, Liv; Giedd, Jay N.; Blumenthal, Jonathan; Lerch, Jason P.; Chakravarty, M. Mallar; Raznahan, Armin

    2016-01-01

    Structural neuroimaging of humans with typical and atypical sex-chromosome complements has established the marked influence of both Yand X-/Y-chromosome dosage on total brain volume (TBV) and identified potential cortical substrates for the psychiatric phenotypes associated with sex-chromosome aneuploidy (SCA). Here, in a cohort of 354 humans with varying karyotypes (XX, XY, XXX, XXY, XYY, XXYY, XXXXY), we investigate sex and SCA effects on subcortical size and shape; focusing on the striatum, pallidum and thalamus. We find large effect-size differences in the volume and shape of all three structures as a function of sex and SCA. We correct for TBV effects with a novel allometric method harnessing normative scaling rules for subcortical size and shape in humans, which we derive here for the first time. We show that all three subcortical volumes scale sublinearly with TBV among healthy humans, mirroring known relationships between subcortical volume and TBV among species. Traditional TBV correction methods assume linear scaling and can therefore invert or exaggerate sex and SCA effects on subcortical anatomy. Allometric analysis restricts sex-differences to: (1) greater pallidal volume (PV) in males, and (2) relative caudate head expansion and ventral striatum contraction in females. Allometric analysis of SCA reveals that supernumerary X- and Y-chromosomes both cause disproportionate reductions in PV, and coordinated deformations of striatopallidal shape. Our study provides a novel understanding of sex and sex-chromosome dosage effects on subcortical organization, using an allometric approach that can be generalized to other basic and clinical structural neuroimaging settings. SIGNIFICANCE STATEMENT Sex and sex-chromosome dosage (SCD) are known to modulate human brain size and cortical anatomy, but very little is known regarding their impact on subcortical structures that work with the cortex to subserve a range of behaviors in health and disease. Moreover

  2. Large-scale cortico-subcortical functional networks in focal epilepsies: The role of the basal ganglia

    Directory of Open Access Journals (Sweden)

    Eva Výtvarová

    2017-01-01

    Significance: Focal epilepsies affect large-scale brain networks beyond the epileptogenic zones. Cortico-subcortical functional connectivity disturbance was displayed in LTLE, FLE, and POLE. Significant changes in the resting-state functional connectivity between cortical and subcortical structures suggest an important role of the BG and thalamus in focal epilepsies.

  3. PET studies of brain energy metabolism in a model of subcortical dementia: progressive supranuclear Palsy

    International Nuclear Information System (INIS)

    Blin, J.; Baron, J.C.; Cambon, H.

    1988-01-01

    In 41 patients with clinically determined Progressive Supranuclear Palsy, a model of degenerative subcortical dementia, alterations in regional brain energy metabolism with respect to control subjects have been investigated using positron computed tomography and correlated to clinical and neuropsychological scores. A generalized significant reduction in brain metabolism was found, which predominated in the prefrontal cortex in accordance with, and statistically correlated to, the frontal neuropsychological score

  4. Subcortical regional morphology correlates with fluid and spatial intelligence.

    Science.gov (United States)

    Burgaleta, Miguel; MacDonald, Penny A; Martínez, Kenia; Román, Francisco J; Álvarez-Linera, Juan; Ramos González, Ana; Karama, Sherif; Colom, Roberto

    2014-05-01

    Neuroimaging studies have revealed associations between intelligence and brain morphology. However, researchers have focused primarily on the anatomical features of the cerebral cortex, whereas subcortical structures, such as the basal ganglia (BG), have often been neglected despite extensive functional evidence on their relation with higher-order cognition. Here we performed shape analyses to understand how individual differences in BG local morphology account for variability in cognitive performance. Structural MRI was acquired in 104 young adults (45 men, 59 women, mean age = 19.83, SD = 1.64), and the outer surface of striatal structures (caudate, nucleus accumbens, and putamen), globus pallidus, and thalamus was estimated for each subject and hemisphere. Further, nine cognitive tests were used to measure fluid (Gf), crystallized (Gc), and spatial intelligence (Gv). Latent scores for these factors were computed by means of confirmatory factor analysis and regressed vertex-wise against subcortical shape (local displacements of vertex position), controlling for age, sex, and adjusted for brain size. Significant results (FDR intelligence-related prefrontal areas. Copyright © 2013 Wiley Periodicals, Inc.

  5. Involvement of Subcortical Brain Structures During Olfactory Stimulation in Multiple Chemical Sensitivity.

    Science.gov (United States)

    Alessandrini, Marco; Micarelli, Alessandro; Chiaravalloti, Agostino; Bruno, Ernesto; Danieli, Roberta; Pierantozzi, Mariangela; Genovesi, Giuseppe; Öberg, Johanna; Pagani, Marco; Schillaci, Orazio

    2016-03-01

    Multiple chemical sensitivity (MCS) patients usually react to odour compounds and the majority of neuroimaging studies assessed, especially at the cortical level, many olfactory-related correlates. The purpose of the present study was to depict sub-cortical metabolic changes during a neutral (NC) and pure (OC) olfactory stimulation by using a recently validated (18)F-2-fluoro-2-deoxy-D-glucose (FDG)-positron emission tomography/computer tomography procedure in 26 MCS and 11 healthy (HC) resting subjects undergoing a battery of clinical tests. Twelve subcortical volumes of interest were identified by the automated anatomical labeling library and normalized to thalamus FDG uptake. In both groups, when comparing OC to NC, the within-subjects ANOVA demonstrated a relative decreased metabolism in bilateral putamen and hippocampus and a relative increased metabolism in bilateral amygdala, olfactory cortex (OLF), caudate and pallidum. The between-groups ANOVA demonstrated in MCS a significant higher metabolism in bilateral OLF during NC. As in HC subjects negative correlations were found in OC between FDG uptake in bilateral amygdala and hippocampus and odor pleasantness scale, the latter positively correlated with MCS subjects' bilateral putamen FDG uptake in OC. Besides FDG uptake resemblances in both groups were found, for the first time a relative higher metabolism increase in OLF in MCS subjects at rest with respect to HC was found. When merging this aspect to the different subcortical FDG uptake correlations patterns in the two groups, the present study demonstrated to describe a peculiar metabolic index of behavioral and neurological aspects of MCS complaints.

  6. Disruptions in cortico-subcortical covariance networks associated with anxiety in new-onset childhood epilepsy

    Directory of Open Access Journals (Sweden)

    Camille Garcia-Ramos

    2016-01-01

    Full Text Available Anxiety disorders represent a prevalent psychiatric comorbidity in both adults and children with epilepsy for which the etiology remains controversial. Neurobiological contributions have been suggested, but only limited evidence suggests abnormal brain volumes particularly in children with epilepsy and anxiety. Since the brain develops in an organized fashion, covariance analyses between different brain regions can be investigated as a network and analyzed using graph theory methods. We examined 46 healthy children (HC and youth with recent onset idiopathic epilepsies with (n = 24 and without (n = 62 anxiety disorders. Graph theory (GT analyses based on the covariance between the volumes of 85 cortical/subcortical regions were investigated. Both groups with epilepsy demonstrated less inter-modular relationships in the synchronization of cortical/subcortical volumes compared to controls, with the epilepsy and anxiety group presenting the strongest modular organization. Frontal and occipital regions in non-anxious epilepsy, and areas throughout the brain in children with epilepsy and anxiety, showed the highest centrality compared to controls. Furthermore, most of the nodes correlating to amygdala volumes were subcortical structures, with the exception of the left insula and the right frontal pole, which presented high betweenness centrality (BC; therefore, their influence in the network is not necessarily local but potentially influencing other more distant regions. In conclusion, children with recent onset epilepsy and anxiety demonstrate large scale disruptions in cortical and subcortical brain regions. Network science may not only provide insight into the possible neurobiological correlates of important comorbidities of epilepsy, but also the ways that cortical and subcortical disruption occurs.

  7. Assessing denoising strategies to increase signal to noise ratio in spinal cord and in brain cortical and subcortical regions

    Science.gov (United States)

    Maugeri, L.; Moraschi, M.; Summers, P.; Favilla, S.; Mascali, D.; Cedola, A.; Porro, C. A.; Giove, F.; Fratini, M.

    2018-02-01

    Functional Magnetic Resonance Imaging (fMRI) based on Blood Oxygenation Level Dependent (BOLD) contrast has become one of the most powerful tools in neuroscience research. On the other hand, fMRI approaches have seen limited use in the study of spinal cord and subcortical brain regions (such as the brainstem and portions of the diencephalon). Indeed obtaining good BOLD signal in these areas still represents a technical and scientific challenge, due to poor control of physiological noise and to a limited overall quality of the functional series. A solution can be found in the combination of optimized experimental procedures at acquisition stage, and well-adapted artifact mitigation procedures in the data processing. In this framework, we studied two different data processing strategies to reduce physiological noise in cortical and subcortical brain regions and in the spinal cord, based on the aCompCor and RETROICOR denoising tools respectively. The study, performed in healthy subjects, was carried out using an ad hoc isometric motor task. We observed an increased signal to noise ratio in the denoised functional time series in the spinal cord and in the subcortical brain region.

  8. Structural covariance networks in the mouse brain.

    Science.gov (United States)

    Pagani, Marco; Bifone, Angelo; Gozzi, Alessandro

    2016-04-01

    The presence of networks of correlation between regional gray matter volume as measured across subjects in a group of individuals has been consistently described in several human studies, an approach termed structural covariance MRI (scMRI). Complementary to prevalent brain mapping modalities like functional and diffusion-weighted imaging, the approach can provide precious insights into the mutual influence of trophic and plastic processes in health and pathological states. To investigate whether analogous scMRI networks are present in lower mammal species amenable to genetic and experimental manipulation such as the laboratory mouse, we employed high resolution morphoanatomical MRI in a large cohort of genetically-homogeneous wild-type mice (C57Bl6/J) and mapped scMRI networks using a seed-based approach. We show that the mouse brain exhibits robust homotopic scMRI networks in both primary and associative cortices, a finding corroborated by independent component analyses of cortical volumes. Subcortical structures also showed highly symmetric inter-hemispheric correlations, with evidence of distributed antero-posterior networks in diencephalic regions of the thalamus and hypothalamus. Hierarchical cluster analysis revealed six identifiable clusters of cortical and sub-cortical regions corresponding to previously described neuroanatomical systems. Our work documents the presence of homotopic cortical and subcortical scMRI networks in the mouse brain, thus supporting the use of this species to investigate the elusive biological and neuroanatomical underpinnings of scMRI network development and its derangement in neuropathological states. The identification of scMRI networks in genetically homogeneous inbred mice is consistent with the emerging view of a key role of environmental factors in shaping these correlational networks. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Disrupted topological organization of resting-state functional brain network in subcortical vascular mild cognitive impairment.

    Science.gov (United States)

    Yi, Li-Ye; Liang, Xia; Liu, Da-Ming; Sun, Bo; Ying, Sun; Yang, Dong-Bo; Li, Qing-Bin; Jiang, Chuan-Lu; Han, Ying

    2015-10-01

    Neuroimaging studies have demonstrated both structural and functional abnormalities in widespread brain regions in patients with subcortical vascular mild cognitive impairment (svMCI). However, whether and how these changes alter functional brain network organization remains largely unknown. We recruited 21 patients with svMCI and 26 healthy control (HC) subjects who underwent resting-state functional magnetic resonance imaging scans. Graph theory-based network analyses were used to investigate alterations in the topological organization of functional brain networks. Compared with the HC individuals, the patients with svMCI showed disrupted global network topology with significantly increased path length and modularity. Modular structure was also impaired in the svMCI patients with a notable rearrangement of the executive control module, where the parietal regions were split out and grouped as a separate module. The svMCI patients also revealed deficits in the intra- and/or intermodule connectivity of several brain regions. Specifically, the within-module degree was decreased in the middle cingulate gyrus while it was increased in the left anterior insula, medial prefrontal cortex and cuneus. Additionally, increased intermodule connectivity was observed in the inferior and superior parietal gyrus, which was associated with worse cognitive performance in the svMCI patients. Together, our results indicate that svMCI patients exhibit dysregulation of the topological organization of functional brain networks, which has important implications for understanding the pathophysiological mechanism of svMCI. © 2015 John Wiley & Sons Ltd.

  10. Maturation of Cortico-Subcortical Structural Networks-Segregation and Overlap of Medial Temporal and Fronto-Striatal Systems in Development.

    Science.gov (United States)

    Walhovd, Kristine B; Tamnes, Christian K; Bjørnerud, Atle; Due-Tønnessen, Paulina; Holland, Dominic; Dale, Anders M; Fjell, Anders M

    2015-07-01

    The brain consists of partly segregated neural circuits within which structural convergence and functional integration occurs during development. The relationship of structural cortical and subcortical maturation is largely unknown. We aimed to study volumetric development of the hippocampus and basal ganglia (caudate, putamen, pallidum, accumbens) in relation to volume changes throughout the cortex. Longitudinal MRI data were obtained across a mean interval of 2.6 years in 85 participants with an age range of 8-19 years at study start. Left and right subcortical changes were related to cortical change vertex-wise in the ipsilateral hemisphere with general linear models with age, sex, interval between scans, and mean cortical volume change as covariates. Hippocampal-cortical change relationships centered on parts of the Papez circuit, including entorhinal, parahippocampal, and isthmus cingulate areas, and lateral temporal, insular, and orbitofrontal cortices in the left hemisphere. Basal ganglia-cortical change relationships were observed in mostly nonoverlapping and more anterior cortical areas, all including the anterior cingulate. Other patterns were unique to specific basal ganglia structures, including pre-, post-, and paracentral patterns relating to putamen change. In conclusion, patterns of cortico-subcortical development as assessed by morphometric analyses in part map out segregated neural circuits at the macrostructural level. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Magnetisation transfer measurements of the subcortical grey and white matter in Parkinson's disease with and without dementia and in progressive supranuclear palsy

    International Nuclear Information System (INIS)

    Hanyu, H.; Asano, T.; Sakurai, H.; Takasaki, M.; Shindo, H.; Abe, K.

    2001-01-01

    We measured the magnetisation transfer ratio (MTR) in the subcortical grey and white matter of 11 patients with idiopathic Parkinson's disease (PD) without dementia, six with PD with dementia (PDD), six with progressive supranuclear palsy (PSP), and 12 elderly control subjects to assess regional differences in structural brain damage. There were no significant differences in MTR in any region between PD and controls. However, patients with PDD had significantly lower MTR in the subcortical white matter, including the frontal white matter and the genu of the corpus callosum than the controls, whereas PSP had significantly lower MTR in the subcortical grey matter, including the putamen, globus pallidus and thalamus, in addition to the subcortical white matter. This suggests that regional patterns of structural brain damage can be detected using the magnetisation transfer technique. Measurement of MTR in the subcortical grey and white matter may be useful in differential diagnosis. (orig.)

  12. Subcortical Band Heterotopia (SBH) in Rat Offspring Following Maternal Hypothyroxinemia: Structural and Functional Characteristics

    Science.gov (United States)

    Thyroid hormones (TH) play crucial roles in brain maturation, neuronal migration, and neocortical lamination. Subcortical band heterotopia (SBH) represent a class of neuronal migration errors in humans that are often associated with childhood epilepsy. We have previously reported...

  13. Serial recording of median nerve stimulated subcortical somatosensory evoked potentials (SEPs) in developing brain death.

    Science.gov (United States)

    Buchner, H; Ferbert, A; Hacke, W

    1988-01-01

    Subcortical somatosensory evoked potentials (SEPs) to median nerve stimulation were recorded serially in 35 patients during the evolution towards brain death and in brain death. Neuropathological alterations of the central nervous system down to the C1/C2 spinal cord segment in brain death are well known. SEP components supposed to be generated above this level should be lost in brain death, while components generated below should not be altered. Erb's point, scalp and neck potentials were recorded at C3/4, or over the spinous process C7, using an Fz reference. In 10 patients additional montages, including spinous process C2-Fz, a non-cephalic reference (Fz-contralateral shoulder) and a posterior to anterior neck montage (spinous process C7-jugulum) were used. The cephalic referenced N9 and N11 peaks remained unchanged until brain death. N9 and N11 decreased in parallel in amplitude and increased in latency after systemic effects like hypoxia or hypothermia occurred. The cephalic referenced 'N14' decreased in amplitude and increased in latency after the clinical brain death syndrome was observed, while N13 in the posterior to anterior neck montage remained unchanged. The alteration of 'N14' went parallel to the decrease of the P14 amplitude. The subcortical SEPs in the cephalic referenced lead are supposed to be a peak composed by a horizontally orientated dorsal horn generated N13 and a rostrally orientated P14 arising at the level of the foramen magnum. The deterioration of the non-cephalic referenced P14 and of its cephalic referenced reflection 'N14' seems to provide an additional objective criterion for the diagnosis of brain death.

  14. Brain-wide Maps Reveal Stereotyped Cell-Type-Based Cortical Architecture and Subcortical Sexual Dimorphism.

    Science.gov (United States)

    Kim, Yongsoo; Yang, Guangyu Robert; Pradhan, Kith; Venkataraju, Kannan Umadevi; Bota, Mihail; García Del Molino, Luis Carlos; Fitzgerald, Greg; Ram, Keerthi; He, Miao; Levine, Jesse Maurica; Mitra, Partha; Huang, Z Josh; Wang, Xiao-Jing; Osten, Pavel

    2017-10-05

    The stereotyped features of neuronal circuits are those most likely to explain the remarkable capacity of the brain to process information and govern behaviors, yet it has not been possible to comprehensively quantify neuronal distributions across animals or genders due to the size and complexity of the mammalian brain. Here we apply our quantitative brain-wide (qBrain) mapping platform to document the stereotyped distributions of mainly inhibitory cell types. We discover an unexpected cortical organizing principle: sensory-motor areas are dominated by output-modulating parvalbumin-positive interneurons, whereas association, including frontal, areas are dominated by input-modulating somatostatin-positive interneurons. Furthermore, we identify local cell type distributions with more cells in the female brain in 10 out of 11 sexually dimorphic subcortical areas, in contrast to the overall larger brains in males. The qBrain resource can be further mined to link stereotyped aspects of neuronal distributions to known and unknown functions of diverse brain regions. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Cortical and Subcortical Brain Morphometry Differences Between Patients With Autism Spectrum Disorder and Healthy Individuals Across the Lifespan: Results From the ENIGMA ASD Working Group.

    Science.gov (United States)

    van Rooij, Daan; Anagnostou, Evdokia; Arango, Celso; Auzias, Guillaume; Behrmann, Marlene; Busatto, Geraldo F; Calderoni, Sara; Daly, Eileen; Deruelle, Christine; Di Martino, Adriana; Dinstein, Ilan; Duran, Fabio Luis Souza; Durston, Sarah; Ecker, Christine; Fair, Damien; Fedor, Jennifer; Fitzgerald, Jackie; Freitag, Christine M; Gallagher, Louise; Gori, Ilaria; Haar, Shlomi; Hoekstra, Liesbeth; Jahanshad, Neda; Jalbrzikowski, Maria; Janssen, Joost; Lerch, Jason; Luna, Beatriz; Martinho, Mauricio Moller; McGrath, Jane; Muratori, Filippo; Murphy, Clodagh M; Murphy, Declan G M; O'Hearn, Kirsten; Oranje, Bob; Parellada, Mara; Retico, Alessandra; Rosa, Pedro; Rubia, Katya; Shook, Devon; Taylor, Margot; Thompson, Paul M; Tosetti, Michela; Wallace, Gregory L; Zhou, Fengfeng; Buitelaar, Jan K

    2018-04-01

    Neuroimaging studies show structural differences in both cortical and subcortical brain regions in children and adults with autism spectrum disorder (ASD) compared with healthy subjects. Findings are inconsistent, however, and it is unclear how differences develop across the lifespan. The authors investigated brain morphometry differences between individuals with ASD and healthy subjects, cross-sectionally across the lifespan, in a large multinational sample from the Enhancing Neuroimaging Genetics Through Meta-Analysis (ENIGMA) ASD working group. The sample comprised 1,571 patients with ASD and 1,651 healthy control subjects (age range, 2-64 years) from 49 participating sites. MRI scans were preprocessed at individual sites with a harmonized protocol based on a validated automated-segmentation software program. Mega-analyses were used to test for case-control differences in subcortical volumes, cortical thickness, and surface area. Development of brain morphometry over the lifespan was modeled using a fractional polynomial approach. The case-control mega-analysis demonstrated that ASD was associated with smaller subcortical volumes of the pallidum, putamen, amygdala, and nucleus accumbens (effect sizes [Cohen's d], 0.13 to -0.13), as well as increased cortical thickness in the frontal cortex and decreased thickness in the temporal cortex (effect sizes, -0.21 to 0.20). Analyses of age effects indicate that the development of cortical thickness is altered in ASD, with the largest differences occurring around adolescence. No age-by-ASD interactions were observed in the subcortical partitions. The ENIGMA ASD working group provides the largest study of brain morphometry differences in ASD to date, using a well-established, validated, publicly available analysis pipeline. ASD patients showed altered morphometry in the cognitive and affective parts of the striatum, frontal cortex, and temporal cortex. Complex developmental trajectories were observed for the different

  16. Aberrant topological patterns of brain structural network in temporal lobe epilepsy.

    Science.gov (United States)

    Yasuda, Clarissa Lin; Chen, Zhang; Beltramini, Guilherme Coco; Coan, Ana Carolina; Morita, Marcia Elisabete; Kubota, Bruno; Bergo, Felipe; Beaulieu, Christian; Cendes, Fernando; Gross, Donald William

    2015-12-01

    Although altered large-scale brain network organization in patients with temporal lobe epilepsy (TLE) has been shown using morphologic measurements such as cortical thickness, these studies, have not included critical subcortical structures (such as hippocampus and amygdala) and have had relatively small sample sizes. Here, we investigated differences in topological organization of the brain volumetric networks between patients with right TLE (RTLE) and left TLE (LTLE) with unilateral hippocampal atrophy. We performed a cross-sectional analysis of 86 LTLE patients, 70 RTLE patients, and 116 controls. RTLE and LTLE groups were balanced for gender (p = 0.64), seizure frequency (Mann-Whitney U test, p = 0.94), age (p = 0.39), age of seizure onset (p = 0.21), and duration of disease (p = 0.69). Brain networks were constructed by thresholding correlation matrices of volumes from 80 cortical/subcortical regions (parcellated with Freesurfer v5.3 https://surfer.nmr.mgh.harvard.edu/) that were then analyzed using graph theoretical approaches. We identified reduced cortical/subcortical connectivity including bilateral hippocampus in both TLE groups, with the most significant interregional correlation increases occurring within the limbic system in LTLE and contralateral hemisphere in RTLE. Both TLE groups demonstrated less optimal topological organization, with decreased global efficiency and increased local efficiency and clustering coefficient. LTLE also displayed a more pronounced network disruption. Contrary to controls, hub nodes in both TLE groups were not distributed across whole brain, but rather found primarily in the paralimbic/limbic and temporal association cortices. Regions with increased centrality were concentrated in occipital lobes for LTLE and contralateral limbic/temporal areas for RTLE. These findings provide first evidence of altered topological organization of the whole brain volumetric network in TLE, with disruption of the coordinated patterns of

  17. Intra- and interhemispheric variations of diffusivity in subcortical white matter in normal human brain

    International Nuclear Information System (INIS)

    Yoshiura, Takashi; Noguchi, Tomoyuki; Hiwatashi, Akio; Togao, Osamu; Yamashita, Koji; Nagao, Eiki; Kamano, Hironori; Honda, Hiroshi

    2010-01-01

    Our purpose was to reveal potential regional variations in water molecular diffusivity within each cerebral hemisphere and across the right and left hemispheres. Diffusion-weighted images of 44 healthy right-handed adult male subjects were obtained using a diffusion tensor imaging sequence. Mean diffusivity (MD) values in subcortical white matter (WM) within 39 regions in each hemisphere were measured using an automated method. Intrahemispheric comparisons of MDs in subcortical WM were performed among six brain regions (frontal, parietal, occipital and temporal lobes and pre- and postcentral gyri). Interhemispheric comparisons of MDs were performed between the right and left counterparts of the 39 regions. In both hemispheres, diffusivity in the precentral gyrus was lower than those in other regions, while diffusivity in the parietal lobe was higher than others. MD asymmetry in which the left was lower than the right was found in the parietal lobe, middle occipital gyrus, and medial and orbital aspects of the frontal lobe. The converse asymmetry was revealed in the frontal operculum, supplementary motor cortex, temporal lobe, limbic cortices, precuneus and cuneus. Our results revealed significant intra- and interhemispheric regional variations in MD in subcortical WM, which may be related to different densities of axons and myelin sheaths. (orig.)

  18. Intra- and interhemispheric variations of diffusivity in subcortical white matter in normal human brain

    Energy Technology Data Exchange (ETDEWEB)

    Yoshiura, Takashi; Noguchi, Tomoyuki; Hiwatashi, Akio; Togao, Osamu; Yamashita, Koji; Nagao, Eiki; Kamano, Hironori; Honda, Hiroshi [Kyushu University, Department of Clinical Radiology, Graduate School of Medical Sciences, Fukuoka (Japan)

    2010-01-15

    Our purpose was to reveal potential regional variations in water molecular diffusivity within each cerebral hemisphere and across the right and left hemispheres. Diffusion-weighted images of 44 healthy right-handed adult male subjects were obtained using a diffusion tensor imaging sequence. Mean diffusivity (MD) values in subcortical white matter (WM) within 39 regions in each hemisphere were measured using an automated method. Intrahemispheric comparisons of MDs in subcortical WM were performed among six brain regions (frontal, parietal, occipital and temporal lobes and pre- and postcentral gyri). Interhemispheric comparisons of MDs were performed between the right and left counterparts of the 39 regions. In both hemispheres, diffusivity in the precentral gyrus was lower than those in other regions, while diffusivity in the parietal lobe was higher than others. MD asymmetry in which the left was lower than the right was found in the parietal lobe, middle occipital gyrus, and medial and orbital aspects of the frontal lobe. The converse asymmetry was revealed in the frontal operculum, supplementary motor cortex, temporal lobe, limbic cortices, precuneus and cuneus. Our results revealed significant intra- and interhemispheric regional variations in MD in subcortical WM, which may be related to different densities of axons and myelin sheaths. (orig.)

  19. Disturbed oscillatory brain dynamics in subcortical ischemic vascular dementia

    Directory of Open Access Journals (Sweden)

    van Straaten Elisabeth CW

    2012-07-01

    Full Text Available Abstract Background White matter hyperintensities (WMH can lead to dementia but the underlying physiological mechanisms are unclear. We compared relative oscillatory power from electroencephalographic studies (EEGs of 17 patients with subcortical ischemic vascular dementia, based on extensive white matter hyperintensities (SIVD-WMH with 17 controls to investigate physiological changes underlying this diagnosis. Results Differences between the groups were large, with a decrease of relative power of fast activity in patients (alpha power 0.25 ± 0.12 versus 0.38 ± 0.13, p = 0.01; beta power 0.08 ± 0.04 versus 0.19 ± 0.07; p Conclusions This pattern of disturbance in oscillatory brain activity indicate loss of connections between neurons, providing a first step in the understanding of cognitive dysfunction in SIVD-WMH.

  20. Altered Spontaneous Brain Activity in Cortical and Subcortical Regions in Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Jie Xiang

    2016-01-01

    Full Text Available Purpose. The present study aimed to explore the changes of amplitude of low-frequency fluctuations (ALFF at rest in patients with Parkinson’s disease (PD. Methods. Twenty-four PD patients and 22 healthy age-matched controls participated in the study. ALFF was measured on the whole brain of all participants. A two-sample t-test was then performed to detect the group differences with age, gender, education level, head motion, and gray matter volume as covariates. Results. It was showed that PD patients had significantly decreased ALFF in the left thalamus/caudate and right insula/inferior prefrontal gyrus, whereas they had increased ALFF in the right medial prefrontal cortex (BA 8/6 and dorsolateral prefrontal cortex (BA 9/10. Conclusions. Our results indicated that significant alterations of ALFF in the subcortical regions and prefrontal cortex have been detected in PD patients, independent of age, gender, education, head motion, and structural atrophy. The current findings further provide insights into the biological mechanism of the disease.

  1. Cortical grey matter and subcortical white matter brain microstructural changes in schizophrenia are localised and age independent: a case-control diffusion tensor imaging study.

    Science.gov (United States)

    Chiapponi, Chiara; Piras, Fabrizio; Piras, Federica; Fagioli, Sabrina; Caltagirone, Carlo; Spalletta, Gianfranco

    2013-01-01

    It is still unknown whether the structural brain impairments that characterize schizophrenia (SZ) worsen during the lifetime. Here, we aimed to describe age-related microstructural brain changes in cortical grey matter and subcortical white matter of patients affected by SZ. In this diffusion tensor imaging study, we included 69 patients diagnosed with SZ and 69 healthy control (HC) subjects, age and gender matched. We carried out analyses of covariance, with diagnosis as fixed factor and brain diffusion-related parameters as dependent variables, and controlled for the effect of education. White matter fractional anisotropy decreased in the entire age range spanned (18-65 years) in both SZ and HC and was significantly lower in younger patients with SZ, with no interaction (age by diagnosis) effect in fiber tracts including corpus callosum, corona radiata, thalamic radiations and external capsule. Also, grey matter mean diffusivity increased in the entire age range in both SZ and HC and was significantly higher in younger patients, with no age by diagnosis interaction in the left frontal operculum cortex, left insula and left planum polare and in the right temporal pole and right intracalcarine cortex. In individuals with SZ we found that localized brain cortical and white matter subcortical microstructural impairments appear early in life but do not worsen in the 18-65 year age range.

  2. Cortical grey matter and subcortical white matter brain microstructural changes in schizophrenia are localised and age independent: a case-control diffusion tensor imaging study.

    Directory of Open Access Journals (Sweden)

    Chiara Chiapponi

    Full Text Available It is still unknown whether the structural brain impairments that characterize schizophrenia (SZ worsen during the lifetime. Here, we aimed to describe age-related microstructural brain changes in cortical grey matter and subcortical white matter of patients affected by SZ. In this diffusion tensor imaging study, we included 69 patients diagnosed with SZ and 69 healthy control (HC subjects, age and gender matched. We carried out analyses of covariance, with diagnosis as fixed factor and brain diffusion-related parameters as dependent variables, and controlled for the effect of education. White matter fractional anisotropy decreased in the entire age range spanned (18-65 years in both SZ and HC and was significantly lower in younger patients with SZ, with no interaction (age by diagnosis effect in fiber tracts including corpus callosum, corona radiata, thalamic radiations and external capsule. Also, grey matter mean diffusivity increased in the entire age range in both SZ and HC and was significantly higher in younger patients, with no age by diagnosis interaction in the left frontal operculum cortex, left insula and left planum polare and in the right temporal pole and right intracalcarine cortex. In individuals with SZ we found that localized brain cortical and white matter subcortical microstructural impairments appear early in life but do not worsen in the 18-65 year age range.

  3. Structural changes in brain substance in children with epilepsy (MRI findings)

    International Nuclear Information System (INIS)

    Kaduk, Je.G.

    2000-01-01

    The structural changes in the brain substance and the parameters of liquor-containing spaces in children with epilepsy are studied. Structural morphological changes in the brain were found in 30, 7 % of cases. In 27, 7 % MRI findings did not differ from the control. The number of porencephalic changes in the both groups was similar (4, 2 - 4, 3 % of cases). Hypotrophy of cortical and subcortical structures, dysgenesis of the colossal body were observed in the group of local epilepsy. Typodense changes of pervantricular structures were more frequent in the patients will local disease. Hypodense changes of the periventricular structures were more frequent in the patients with local disturbances

  4. Subcortical surgical anatomy of the lateral frontal region: human white matter dissection and correlations with functional insights provided by intraoperative direct brain stimulation: laboratory investigation.

    Science.gov (United States)

    De Benedictis, Alessandro; Sarubbo, Silvio; Duffau, Hugues

    2012-12-01

    Recent neuroimaging and surgical results support the crucial role of white matter in mediating motor and higher-level processing within the frontal lobe, while suggesting the limited compensatory capacity after damage to subcortical structures. Consequently, an accurate knowledge of the anatomofunctional organization of the pathways running within this region is mandatory for planning safe and effective surgical approaches to different diseases. The aim of this dissection study was to improve the neurosurgeon's awareness of the subcortical anatomofunctional architecture for a lateral approach to the frontal region, to optimize both resection and postoperative outcome. Ten human hemispheres (5 left, 5 right) were dissected according to the Klingler technique. Proceeding lateromedially, the main association and projection tracts as well as the deeper basal structures were identified. The authors describe the anatomy and the relationships among the exposed structures in both a systematic and topographical surgical perspective. Structural results were also correlated to the functional responses obtained during resections of infiltrative frontal tumors guided by direct cortico-subcortical electrostimulation with patients in the awake condition. The eloquent boundaries crucial for a safe frontal lobectomy or an extensive lesionectomy are as follows: 1) the motor cortex; 2) the pyramidal tract and premotor fibers in the posterior and posteromedial part of the surgical field; 3) the inferior frontooccipital fascicle and the superior longitudinal fascicle posterolaterally; and 4) underneath the inferior frontal gyrus, the head of the caudate nucleus, and the tip of the frontal horn of the lateral ventricle in the depth. Optimization of results following brain surgery, especially within the frontal lobe, requires a perfect knowledge of functional anatomy, not only at the cortical level but also with regard to subcortical white matter connectivity.

  5. MR imaging of brain surface structures: Surface anatomy scanning

    International Nuclear Information System (INIS)

    Katada, K.; Koga, S.; Asahina, M.; Kanno, T.; Asahina, K.

    1987-01-01

    Preoperative evaluation of brain surface anatomy, including cortical sulci and veins, relative to cerebral and cerebellar lesions is an important subject for surgeons. Until now, no imaging modality existed that allowed direct visualization of brain surface anatomy. A new MR imaging technique (surface anatomy scanning) was developed to visualize brain surface structures. The technique uses a spin-echo pulse sequence with long repetition and echo times, thick sections and a surface coil. Cortical sulci, fissures, veins, and intracranial lesions were clearly identified with this technique. Initial clinical results indicate that surface anatomy scanning is useful for lesion localization and for detailed evaluation of cortical and subcortical lesions

  6. The relationship between subcortical brain volume and striatal dopamine D2/3 receptor availability in healthy humans assessed with [11 C]-raclopride and [11 C]-(+)-PHNO PET.

    Science.gov (United States)

    Caravaggio, Fernando; Ku Chung, Jun; Plitman, Eric; Boileau, Isabelle; Gerretsen, Philip; Kim, Julia; Iwata, Yusuke; Patel, Raihaan; Chakravarty, M Mallar; Remington, Gary; Graff-Guerrero, Ariel

    2017-11-01

    Abnormalities in dopamine (DA) and brain morphology are observed in several neuropsychiatric disorders. However, it is not fully understood how these abnormalities may relate to one another. For such in vivo findings to be used as biomarkers for neuropsychiatric disease, it must be understood how variability in DA relates to brain structure under healthy conditions. We explored how the availability of striatal DA D 2/3 receptors (D 2/3 R) is related to the volume of subcortical brain structures in a sample of healthy humans. Differences in D 2/3 R availability measured with an antagonist radiotracer ([ 11 C]-raclopride) versus an agonist radiotracer ([ 11 C]-(+)-PHNO) were examined. Data from 62 subjects scanned with [ 11 C]-raclopride (mean age = 38.98 ± 14.45; 23 female) and 68 subjects scanned with [ 11 C]-(+)-PHNO (mean age = 38.54 ± 14.59; 25 female) were used. Subcortical volumes were extracted from T1-weighted images using the Multiple Automatically Generated Templates (MAGeT-Brain) algorithm. Partial correlations were used controlling for age, gender, and total brain volume. For [ 11 C]-(+)-PHNO, ventral caudate volumes were positively correlated with BP ND in the dorsal caudate and globus pallidus (GP). Ventral striatum (VS) volumes were positively correlated with BP ND in the VS. With [ 11 C]-raclopride, BP ND in the VS was negatively correlated with subiculum volume of the hippocampus. Moreover, BP ND in the GP was negatively correlated with the volume of the lateral posterior nucleus of the thalamus. Findings are purely exploratory and presented corrected and uncorrected for multiple comparisons. We hope they will help inform the interpretation of future PET studies where concurrent changes in D 2/3 R and brain morphology are observed. Hum Brain Mapp 38:5519-5534, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  7. Subcortical White Matter Changes with Normal Aging Detected by Multi-Shot High Resolution Diffusion Tensor Imaging.

    Directory of Open Access Journals (Sweden)

    Sheng Xie

    Full Text Available Subcortical white matter builds neural connections between cortical and subcortical regions and constitutes the basis of neural networks. It plays a very important role in normal brain function. Various studies have shown that white matter deteriorates with aging. However, due to the limited spatial resolution provided by traditional diffusion imaging techniques, microstructural information from subcortical white matter with normal aging has not been comprehensively assessed. This study aims to investigate the deterioration effect with aging in the subcortical white matter and provide a baseline standard for pathological disorder diagnosis. We apply our newly developed multi-shot high resolution diffusion tensor imaging, using self-feeding multiplexed sensitivity-encoding, to measure subcortical white matter changes in regions of interest of healthy persons with a wide age range. Results show significant fractional anisotropy decline and radial diffusivity increasing with age, especially in the anterior part of the brain. We also find that subcortical white matter has more prominent changes than white matter close to the central brain. The observed changes in the subcortical white matter may be indicative of a mild demyelination and a loss of myelinated axons, which may contribute to normal age-related functional decline.

  8. Structural brain abnormalities in the common epilepsies assessed in a worldwide ENIGMA study

    Science.gov (United States)

    Altmann, Andre; Botía, Juan A; Jahanshad, Neda; Hibar, Derrek P; Absil, Julie; Alhusaini, Saud; Alvim, Marina K M; Auvinen, Pia; Bartolini, Emanuele; Bergo, Felipe P G; Bernardes, Tauana; Blackmon, Karen; Braga, Barbara; Caligiuri, Maria Eugenia; Calvo, Anna; Carr, Sarah J; Chen, Jian; Chen, Shuai; Cherubini, Andrea; David, Philippe; Domin, Martin; Foley, Sonya; França, Wendy; Haaker, Gerrit; Isaev, Dmitry; Keller, Simon S; Kotikalapudi, Raviteja; Kowalczyk, Magdalena A; Kuzniecky, Ruben; Langner, Soenke; Lenge, Matteo; Leyden, Kelly M; Liu, Min; Loi, Richard Q; Martin, Pascal; Mascalchi, Mario; Morita, Marcia E; Pariente, Jose C; Rodríguez-Cruces, Raul; Rummel, Christian; Saavalainen, Taavi; Semmelroch, Mira K; Severino, Mariasavina; Thomas, Rhys H; Tondelli, Manuela; Tortora, Domenico; Vaudano, Anna Elisabetta; Vivash, Lucy; von Podewils, Felix; Wagner, Jan; Weber, Bernd; Yao, Yi; Yasuda, Clarissa L; Zhang, Guohao; Bargalló, Nuria; Bender, Benjamin; Bernasconi, Neda; Bernasconi, Andrea; Bernhardt, Boris C; Blümcke, Ingmar; Carlson, Chad; Cavalleri, Gianpiero L; Cendes, Fernando; Concha, Luis; Delanty, Norman; Depondt, Chantal; Devinsky, Orrin; Doherty, Colin P; Focke, Niels K; Gambardella, Antonio; Guerrini, Renzo; Hamandi, Khalid; Jackson, Graeme D; Kälviäinen, Reetta; Kochunov, Peter; Kwan, Patrick; Labate, Angelo; McDonald, Carrie R; Meletti, Stefano; O'Brien, Terence J; Ourselin, Sebastien; Richardson, Mark P; Striano, Pasquale; Thesen, Thomas; Wiest, Roland; Zhang, Junsong; Vezzani, Annamaria; Ryten, Mina; Thompson, Paul M

    2018-01-01

    Abstract Progressive functional decline in the epilepsies is largely unexplained. We formed the ENIGMA-Epilepsy consortium to understand factors that influence brain measures in epilepsy, pooling data from 24 research centres in 14 countries across Europe, North and South America, Asia, and Australia. Structural brain measures were extracted from MRI brain scans across 2149 individuals with epilepsy, divided into four epilepsy subgroups including idiopathic generalized epilepsies (n =367), mesial temporal lobe epilepsies with hippocampal sclerosis (MTLE; left, n = 415; right, n = 339), and all other epilepsies in aggregate (n = 1026), and compared to 1727 matched healthy controls. We ranked brain structures in order of greatest differences between patients and controls, by meta-analysing effect sizes across 16 subcortical and 68 cortical brain regions. We also tested effects of duration of disease, age at onset, and age-by-diagnosis interactions on structural measures. We observed widespread patterns of altered subcortical volume and reduced cortical grey matter thickness. Compared to controls, all epilepsy groups showed lower volume in the right thalamus (Cohen’s d = −0.24 to −0.73; P left, but not right, MTLE (d = −0.29 to −0.54; P right, but not left, MTLE (d = −0.27 to −0.51; P right MTLE groups (beta, b brain measures that can be further targeted for study in genetic and neuropathological studies. This worldwide initiative identifies patterns of shared grey matter reduction across epilepsy syndromes, and distinctive abnormalities between epilepsy syndromes, which inform our understanding of epilepsy as a network disorder, and indicate that certain epilepsy syndromes involve more widespread structural compromise than previously assumed. PMID:29365066

  9. Divergent structural brain abnormalities between different genetic subtypes of children with Prader–Willi syndrome

    OpenAIRE

    Lukoshe, Akvile; White, Tonya; Schmidt, Marcus N; van der Lugt, Aad; Hokken-Koelega, Anita C

    2013-01-01

    Background Prader–Willi syndrome (PWS) is a complex neurogenetic disorder with symptoms that indicate not only hypothalamic, but also a global, central nervous system (CNS) dysfunction. However, little is known about developmental differences in brain structure in children with PWS. Thus, our aim was to investigate global brain morphology in children with PWS, including the comparison between different genetic subtypes of PWS. In addition, we performed exploratory cortical and subcortical foc...

  10. Technical principles of direct bipolar electrostimulation for cortical and subcortical mapping in awake craniotomy.

    Science.gov (United States)

    Pallud, J; Mandonnet, E; Corns, R; Dezamis, E; Parraga, E; Zanello, M; Spena, G

    2017-06-01

    Intraoperative application of electrical current to the brain is a standard technique during brain surgery for inferring the function of the underlying brain. The purpose of intraoperative functional mapping is to reliably identify cortical areas and subcortical pathways involved in eloquent functions, especially motor, sensory, language and cognitive functions. The aim of this article is to review the rationale and the electrophysiological principles of the use of direct bipolar electrostimulation for cortical and subcortical mapping under awake conditions. Direct electrical stimulation is a window into the whole functional network that sustains a particular function. It is an accurate (spatial resolution of about 5mm) and a reproducible technique particularly adapted to clinical practice for brain resection in eloquent areas. If the procedure is rigorously applied, the sensitivity of direct electrical stimulation for the detection of cortical and subcortical eloquent areas is nearly 100%. The main disadvantage of this technique is its suboptimal specificity. Another limitation is the identification of eloquent areas during surgery, which, however, could have been functionally compensated postoperatively if removed surgically. Direct electrical stimulation is an easy, accurate, reliable and safe invasive technique for the intraoperative detection of both cortical and subcortical functional brain connectivity for clinical purpose. In our opinion, it is the optimal technique for minimizing the risk of neurological sequelae when resecting in eloquent brain areas. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  11. Relative cortico-subcortical shift in brain activity but preserved training-induced neural modulation in older adults during bimanual motor learning.

    Science.gov (United States)

    Santos Monteiro, Thiago; Beets, Iseult A M; Boisgontier, Matthieu P; Gooijers, Jolien; Pauwels, Lisa; Chalavi, Sima; King, Brad; Albouy, Geneviève; Swinnen, Stephan P

    2017-10-01

    To study age-related differences in neural activation during motor learning, functional magnetic resonance imaging scans were acquired from 25 young (mean 21.5-year old) and 18 older adults (mean 68.6-year old) while performing a bimanual coordination task before (pretest) and after (posttest) a 2-week training intervention on the task. We studied whether task-related brain activity and training-induced brain activation changes differed between age groups, particularly with respect to the hyperactivation typically observed in older adults. Findings revealed that older adults showed lower performance levels than younger adults but similar learning capability. At the cerebral level, the task-related hyperactivation in parietofrontal areas and underactivation in subcortical areas observed in older adults were not differentially modulated by the training intervention. However, brain activity related to task planning and execution decreased from pretest to posttest in temporo-parieto-frontal areas and subcortical areas in both age groups, suggesting similar processes of enhanced activation efficiency with advanced skill level. Furthermore, older adults who displayed higher activity in prefrontal regions at pretest demonstrated larger training-induced performance gains. In conclusion, in spite of prominent age-related brain activation differences during movement planning and execution, the mechanisms of learning-related reduction of brain activation appear to be similar in both groups. Importantly, cerebral activity during early learning can differentially predict the amplitude of the training-induced performance benefit between young and older adults. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. CT findings and clinical analysis of subcortical hematomas in elderly patients

    International Nuclear Information System (INIS)

    Ueno, Yasushi; Tanaka, Akira; Yoshinaga, Shinya; Kimura, Masato

    1991-01-01

    Ten elderly patients (73-87 years, 78.4 years on the average) with subcortical hematomas were divided into two groups according to the shape of the hematoma on a CT scan: a lobulated group (6 patients) and a global group (4 patients). The lobulated group had a history of hypertension in one patient. The hematomas extended widely around the parietal lobe and were accompanied by perifocal edema, brain shifts and subarachnoid hemorrhages, deep consciousness disturbances, and poor prognosis of life and function. Amyloid depositions in the arteries around the hematomas were confirmed histologically in one patient. The global group had a history of hypertension in two patients. The hematomas were localized in the parietal, temporal, or occipital lobe without perifocal edema, brain shift and subarachnoid hemorrhages, and accompanied by mild consciousness disturbances. The life prognosis was good, but the functional prognosis was poor, with a subsequent development of dementia. A lobulated subcortical hematoma is thought to be due to amyloid angiopathy, while a global subcortical hematoma is thought to be due to hypertension. A surgical evacuation is seldom indicated for either type of subcortical hematoma in elderly patients. (author)

  13. A Case of Generalized Auditory Agnosia with Unilateral Subcortical Brain Lesion

    Science.gov (United States)

    Suh, Hyee; Kim, Soo Yeon; Kim, Sook Hee; Chang, Jae Hyeok; Shin, Yong Beom; Ko, Hyun-Yoon

    2012-01-01

    The mechanisms and functional anatomy underlying the early stages of speech perception are still not well understood. Auditory agnosia is a deficit of auditory object processing defined as a disability to recognize spoken languages and/or nonverbal environmental sounds and music despite adequate hearing while spontaneous speech, reading and writing are preserved. Usually, either the bilateral or unilateral temporal lobe, especially the transverse gyral lesions, are responsible for auditory agnosia. Subcortical lesions without cortical damage rarely causes auditory agnosia. We present a 73-year-old right-handed male with generalized auditory agnosia caused by a unilateral subcortical lesion. He was not able to repeat or dictate but to perform fluent and comprehensible speech. He could understand and read written words and phrases. His auditory brainstem evoked potential and audiometry were intact. This case suggested that the subcortical lesion involving unilateral acoustic radiation could cause generalized auditory agnosia. PMID:23342322

  14. Aggrecan-based extracellular matrix shows unique cortical features and conserved subcortical principles of mammalian brain organization in the Madagascan lesser hedgehog tenrec (Echinops telfairi Martin, 1838).

    Science.gov (United States)

    Morawski, M; Brückner, G; Jäger, C; Seeger, G; Künzle, H; Arendt, T

    2010-02-03

    The Madagascan tenrecs (Afrotheria), an ancient mammalian clade, are characterized by unique brain anatomy. Striking features are an expanded paleocortex but a small and poorly differentiated neocortex devoid of a distinct granular layer IV. To investigate the organization of cortical areas we analyzed extracellular matrix components in perineuronal nets (PNs) using antibodies to aggrecan, lectin staining and hyaluronan-binding protein. Selected subcortical regions were studied to correlate the cortical patterns with features in evolutionary conserved systems. In the neocortex, paleocortex and hippocampus PNs were associated with nonpyramidal neurons. Quantitative analysis in the cerebral cortex revealed area-specific proportions and laminar distribution patterns of neurons ensheathed by PNs. Cortical PNs showed divergent structural phenotypes. Diffuse PNs forming a cotton wool-like perisomatic rim were characteristic of the paleocortex. These PNs were associated with a dense pericellular plexus of calretinin-immunoreactive fibres. Clearly contoured PNs were devoid of a calretinin-positive plexus and predominated in the neocortex and hippocampus. The organization of the extracellular matrix in subcortical nuclei followed the widely distributed mammalian type. We conclude that molecular properties of the aggrecan-based extracellular matrix are conserved during evolution of mammals; however, the matrix scaffold is adapted to specific wiring patterns of cortical and subcortical neuronal networks. Copyright 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  15. Measurement and genetics of human subcortical and hippocampal asymmetries in large datasets.

    Science.gov (United States)

    Guadalupe, Tulio; Zwiers, Marcel P; Teumer, Alexander; Wittfeld, Katharina; Vasquez, Alejandro Arias; Hoogman, Martine; Hagoort, Peter; Fernandez, Guillen; Buitelaar, Jan; Hegenscheid, Katrin; Völzke, Henry; Franke, Barbara; Fisher, Simon E; Grabe, Hans J; Francks, Clyde

    2014-07-01

    Functional and anatomical asymmetries are prevalent features of the human brain, linked to gender, handedness, and cognition. However, little is known about the neurodevelopmental processes involved. In zebrafish, asymmetries arise in the diencephalon before extending within the central nervous system. We aimed to identify genes involved in the development of subtle, left-right volumetric asymmetries of human subcortical structures using large datasets. We first tested the feasibility of measuring left-right volume differences in such large-scale samples, as assessed by two automated methods of subcortical segmentation (FSL|FIRST and FreeSurfer), using data from 235 subjects who had undergone MRI twice. We tested the agreement between the first and second scan, and the agreement between the segmentation methods, for measures of bilateral volumes of six subcortical structures and the hippocampus, and their volumetric asymmetries. We also tested whether there were biases introduced by left-right differences in the regional atlases used by the methods, by analyzing left-right flipped images. While many bilateral volumes were measured well (scan-rescan r = 0.6-0.8), most asymmetries, with the exception of the caudate nucleus, showed lower repeatabilites. We meta-analyzed genome-wide association scan results for caudate nucleus asymmetry in a combined sample of 3,028 adult subjects but did not detect associations at genome-wide significance (P left-right patterning of the viscera. Our results provide important information for researchers who are currently aiming to carry out large-scale genome-wide studies of subcortical and hippocampal volumes, and their asymmetries. Copyright © 2013 Wiley Periodicals, Inc.

  16. Regional growth and atlasing of the developing human brain.

    Science.gov (United States)

    Makropoulos, Antonios; Aljabar, Paul; Wright, Robert; Hüning, Britta; Merchant, Nazakat; Arichi, Tomoki; Tusor, Nora; Hajnal, Joseph V; Edwards, A David; Counsell, Serena J; Rueckert, Daniel

    2016-01-15

    Detailed morphometric analysis of the neonatal brain is required to characterise brain development and define neuroimaging biomarkers related to impaired brain growth. Accurate automatic segmentation of neonatal brain MRI is a prerequisite to analyse large datasets. We have previously presented an accurate and robust automatic segmentation technique for parcellating the neonatal brain into multiple cortical and subcortical regions. In this study, we further extend our segmentation method to detect cortical sulci and provide a detailed delineation of the cortical ribbon. These detailed segmentations are used to build a 4-dimensional spatio-temporal structural atlas of the brain for 82 cortical and subcortical structures throughout this developmental period. We employ the algorithm to segment an extensive database of 420 MR images of the developing brain, from 27 to 45weeks post-menstrual age at imaging. Regional volumetric and cortical surface measurements are derived and used to investigate brain growth and development during this critical period and to assess the impact of immaturity at birth. Whole brain volume, the absolute volume of all structures studied, cortical curvature and cortical surface area increased with increasing age at scan. Relative volumes of cortical grey matter, cerebellum and cerebrospinal fluid increased with age at scan, while relative volumes of white matter, ventricles, brainstem and basal ganglia and thalami decreased. Preterm infants at term had smaller whole brain volumes, reduced regional white matter and cortical and subcortical grey matter volumes, and reduced cortical surface area compared with term born controls, while ventricular volume was greater in the preterm group. Increasing prematurity at birth was associated with a reduction in total and regional white matter, cortical and subcortical grey matter volume, an increase in ventricular volume, and reduced cortical surface area. Copyright © 2015 The Authors. Published by

  17. Reliability and statistical power analysis of cortical and subcortical FreeSurfer metrics in a large sample of healthy elderly.

    Science.gov (United States)

    Liem, Franziskus; Mérillat, Susan; Bezzola, Ladina; Hirsiger, Sarah; Philipp, Michel; Madhyastha, Tara; Jäncke, Lutz

    2015-03-01

    FreeSurfer is a tool to quantify cortical and subcortical brain anatomy automatically and noninvasively. Previous studies have reported reliability and statistical power analyses in relatively small samples or only selected one aspect of brain anatomy. Here, we investigated reliability and statistical power of cortical thickness, surface area, volume, and the volume of subcortical structures in a large sample (N=189) of healthy elderly subjects (64+ years). Reliability (intraclass correlation coefficient) of cortical and subcortical parameters is generally high (cortical: ICCs>0.87, subcortical: ICCs>0.95). Surface-based smoothing increases reliability of cortical thickness maps, while it decreases reliability of cortical surface area and volume. Nevertheless, statistical power of all measures benefits from smoothing. When aiming to detect a 10% difference between groups, the number of subjects required to test effects with sufficient power over the entire cortex varies between cortical measures (cortical thickness: N=39, surface area: N=21, volume: N=81; 10mm smoothing, power=0.8, α=0.05). For subcortical regions this number is between 16 and 76 subjects, depending on the region. We also demonstrate the advantage of within-subject designs over between-subject designs. Furthermore, we publicly provide a tool that allows researchers to perform a priori power analysis and sensitivity analysis to help evaluate previously published studies and to design future studies with sufficient statistical power. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Cognitively Engaging Activity is Associated with Greater Cortical and Subcortical Volumes

    Directory of Open Access Journals (Sweden)

    Talia R. Seider

    2016-05-01

    Full Text Available As the population ages and dementia becomes a growing healthcare concern, it is increasingly important to identify targets for intervention to delay or attenuate cognitive decline. Research has shown that the most successful interventions aim at altering lifestyle factors. Thus, this study examined how involvement in physical, cognitive, and social activity is related to brain structure in older adults. Sixty-five adults (mean age = 71.4 years, standard deviation = 8.9 received the Community Healthy Activities Model Program for Seniors (CHAMPS, a questionnaire that polls everyday activities in which older adults may be involved, and also underwent structural magnetic resonance imaging. Stepwise regression with backwards selection was used to predict weekly time spent in either social, cognitive, light physical, or heavy physical activity from the volume of one of the cortical or subcortical regions of interest (corrected by intracranial volume as well as age, education, and gender as control variables. Regressions revealed that more time spent in cognitive activity was associated with greater volumes of all brain regions studied: total cortex (β = .289, p = .014, frontal (β = .276, p = .019, parietal (β = .305, p = .009, temporal (β = .275, p = .020, and occipital (β = .256, p = .030 lobes, and thalamus (β = .310, p = .010, caudate (β = .233, p = .049, hippocampus (β = .286, p = .017, and amygdala (β = .336, p = .004. These effects remained even after accounting for the positive association between cognitive activity and education. No other activity variable was associated with brain volumes. Results indicate that time spent in cognitively engaging activity is associated with greater cortical and subcortical brain volume. Findings suggest that interventions aimed at increasing levels of cognitive activity may delay cognitive consequences of aging and decrease the risk of developing dementia.

  19. Developmentally Sensitive Interaction Effects of Genes and the Social Environment on Total and Subcortical Brain Volumes.

    Directory of Open Access Journals (Sweden)

    Jennifer S Richards

    Full Text Available Smaller total brain and subcortical volumes have been linked to psychopathology including attention-deficit/hyperactivity disorder (ADHD. Identifying mechanisms underlying these alterations, therefore, is of great importance. We investigated the role of gene-environment interactions (GxE in interindividual variability of total gray matter (GM, caudate, and putamen volumes. Brain volumes were derived from structural magnetic resonance imaging scans in participants with (N = 312 and without ADHD (N = 437 from N = 402 families (age M = 17.00, SD = 3.60. GxE effects between DAT1, 5-HTT, and DRD4 and social environments (maternal expressed warmth and criticism; positive and deviant peer affiliation as well as the possible moderating effect of age were examined using linear mixed modeling. We also tested whether findings depended on ADHD severity. Deviant peer affiliation was associated with lower caudate volume. Participants with low deviant peer affiliations had larger total GM volumes with increasing age. Likewise, developmentally sensitive GxE effects were found on total GM and putamen volume. For total GM, differential age effects were found for DAT1 9-repeat and HTTLPR L/L genotypes, depending on the amount of positive peer affiliation. For putamen volume, DRD4 7-repeat carriers and DAT1 10/10 homozygotes showed opposite age relations depending on positive peer affiliation and maternal criticism, respectively. All results were independent of ADHD severity. The presence of differential age-dependent GxE effects might explain the diverse and sometimes opposing results of environmental and genetic effects on brain volumes observed so far.

  20. Developmentally Sensitive Interaction Effects of Genes and the Social Environment on Total and Subcortical Brain Volumes.

    Science.gov (United States)

    Richards, Jennifer S; Arias Vásquez, Alejandro; Franke, Barbara; Hoekstra, Pieter J; Heslenfeld, Dirk J; Oosterlaan, Jaap; Faraone, Stephen V; Buitelaar, Jan K; Hartman, Catharina A

    2016-01-01

    Smaller total brain and subcortical volumes have been linked to psychopathology including attention-deficit/hyperactivity disorder (ADHD). Identifying mechanisms underlying these alterations, therefore, is of great importance. We investigated the role of gene-environment interactions (GxE) in interindividual variability of total gray matter (GM), caudate, and putamen volumes. Brain volumes were derived from structural magnetic resonance imaging scans in participants with (N = 312) and without ADHD (N = 437) from N = 402 families (age M = 17.00, SD = 3.60). GxE effects between DAT1, 5-HTT, and DRD4 and social environments (maternal expressed warmth and criticism; positive and deviant peer affiliation) as well as the possible moderating effect of age were examined using linear mixed modeling. We also tested whether findings depended on ADHD severity. Deviant peer affiliation was associated with lower caudate volume. Participants with low deviant peer affiliations had larger total GM volumes with increasing age. Likewise, developmentally sensitive GxE effects were found on total GM and putamen volume. For total GM, differential age effects were found for DAT1 9-repeat and HTTLPR L/L genotypes, depending on the amount of positive peer affiliation. For putamen volume, DRD4 7-repeat carriers and DAT1 10/10 homozygotes showed opposite age relations depending on positive peer affiliation and maternal criticism, respectively. All results were independent of ADHD severity. The presence of differential age-dependent GxE effects might explain the diverse and sometimes opposing results of environmental and genetic effects on brain volumes observed so far.

  1. Adolescent Brain and Cognitive Developments: Implications for Clinical Assessment in Traumatic Brain Injury

    Science.gov (United States)

    Ciccia, Angela Hein; Meulenbroek, Peter; Turkstra, Lyn S.

    2009-01-01

    Adolescence is a time of significant physical, social, and emotional developments, accompanied by changes in cognitive and language skills. Underlying these are significant developments in brain structures and functions including changes in cortical and subcortical gray matter and white matter tracts. Among the brain regions that develop during…

  2. Larger Gray Matter Volume in the Basal Ganglia of Heavy Cannabis Users Detected by Voxel-Based Morphometry and Subcortical Volumetric Analysis

    Directory of Open Access Journals (Sweden)

    Ana Moreno-Alcázar

    2018-05-01

    Full Text Available Background: Structural imaging studies of cannabis users have found evidence of both cortical and subcortical volume reductions, especially in cannabinoid receptor-rich regions such as the hippocampus and amygdala. However, the findings have not been consistent. In the present study, we examined a sample of adult heavy cannabis users without other substance abuse to determine whether long-term use is associated with brain structural changes, especially in the subcortical regions.Method: We compared the gray matter volume of 14 long-term, heavy cannabis users with non-using controls. To provide robust findings, we conducted two separate studies using two different MRI techniques. Each study used the same sample of cannabis users and a different control group, respectively. Both control groups were independent of each other. First, whole-brain voxel-based morphometry (VBM was used to compare the cannabis users against 28 matched controls (HC1 group. Second, a volumetric analysis of subcortical regions was performed to assess differences between the cannabis users and a sample of 100 matched controls (HC2 group obtained from a local database of healthy volunteers.Results: The VBM study revealed that, compared to the control group HC1, the cannabis users did not show cortical differences nor smaller volume in any subcortical structure but showed a cluster (p < 0.001 of larger GM volume in the basal ganglia, involving the caudate, putamen, pallidum, and nucleus accumbens, bilaterally. The subcortical volumetric analysis revealed that, compared to the control group HC2, the cannabis users showed significantly larger volumes in the putamen (p = 0.001 and pallidum (p = 0.0015. Subtle trends, only significant at the uncorrected level, were also found in the caudate (p = 0.05 and nucleus accumbens (p = 0.047.Conclusions: This study does not support previous findings of hippocampal and/or amygdala structural changes in long-term, heavy cannabis users. It

  3. Mapping a2 Adrenoceptors of the Human Brain with 11C-Yohimbine

    DEFF Research Database (Denmark)

    Nahimi, Adjmal; Jakobsen, Steen; Munk, Ole

    2015-01-01

    A previous study from this laboratory suggested that 11C-yohimbine, a selective α2-adrenoceptor antagonist, is an appropriate ligand for PET of α2 adrenoceptors that passes readily from blood to brain tissue in pigs but not in rodents. To test usefulness in humans, we determined blood–brain...... values of VT ranged from 0.82 mL cm−3 in the right frontal cortex to 0.46 mL cm−3 in the corpus callosum, with intermediate VT values in subcortical structures. Binding potentials averaged 0.6–0.8 in the cortex and 0.2–0.5 in subcortical regions. Conclusion: The maps of 11C-yohimbine binding to α2...... adrenoceptors in human brain had the highest values in cortical areas and hippocampus, with moderate values in subcortical structures, as found also in vitro. The results confirm the usefulness of the tracer 11C-yohimbine for mapping α2 adrenoceptors in human brain in vivo....

  4. Divergent structural brain abnormalities between different genetic subtypes of children with Prader-Willi syndrome.

    Science.gov (United States)

    Lukoshe, Akvile; White, Tonya; Schmidt, Marcus N; van der Lugt, Aad; Hokken-Koelega, Anita C

    2013-10-22

    Prader-Willi syndrome (PWS) is a complex neurogenetic disorder with symptoms that indicate not only hypothalamic, but also a global, central nervous system (CNS) dysfunction. However, little is known about developmental differences in brain structure in children with PWS. Thus, our aim was to investigate global brain morphology in children with PWS, including the comparison between different genetic subtypes of PWS. In addition, we performed exploratory cortical and subcortical focal analyses. High resolution structural magnetic resonance images were acquired in 20 children with genetically confirmed PWS (11 children carrying a deletion (DEL), 9 children with maternal uniparental disomy (mUPD)), and compared with 11 age- and gender-matched typically developing siblings as controls. Brain morphology measures were obtained using the FreeSurfer software suite. Both children with DEL and mUPD showed smaller brainstem volume, and a trend towards smaller cortical surface area and white matter volume. Children with mUPD had enlarged lateral ventricles and larger cortical cerebrospinal fluid (CSF) volume. Further, a trend towards increased cortical thickness was found in children with mUPD. Children with DEL had a smaller cerebellum, and smaller cortical and subcortical grey matter volumes. Focal analyses revealed smaller white matter volumes in left superior and bilateral inferior frontal gyri, right cingulate cortex, and bilateral precuneus areas associated with the default mode network (DMN) in children with mUPD. Children with PWS show signs of impaired brain growth. Those with mUPD show signs of early brain atrophy. In contrast, children with DEL show signs of fundamentally arrested, although not deviant brain development and presented few signs of cortical atrophy. Our results of global brain measurements suggest divergent neurodevelopmental patterns in children with DEL and mUPD.

  5. Larger Gray Matter Volume in the Basal Ganglia of Heavy Cannabis Users Detected by Voxel-Based Morphometry and Subcortical Volumetric Analysis.

    Science.gov (United States)

    Moreno-Alcázar, Ana; Gonzalvo, Begoña; Canales-Rodríguez, Erick J; Blanco, Laura; Bachiller, Diana; Romaguera, Anna; Monté-Rubio, Gemma C; Roncero, Carlos; McKenna, Peter J; Pomarol-Clotet, Edith

    2018-01-01

    Background: Structural imaging studies of cannabis users have found evidence of both cortical and subcortical volume reductions, especially in cannabinoid receptor-rich regions such as the hippocampus and amygdala. However, the findings have not been consistent. In the present study, we examined a sample of adult heavy cannabis users without other substance abuse to determine whether long-term use is associated with brain structural changes, especially in the subcortical regions. Method: We compared the gray matter volume of 14 long-term, heavy cannabis users with non-using controls. To provide robust findings, we conducted two separate studies using two different MRI techniques. Each study used the same sample of cannabis users and a different control group, respectively. Both control groups were independent of each other. First, whole-brain voxel-based morphometry (VBM) was used to compare the cannabis users against 28 matched controls (HC1 group). Second, a volumetric analysis of subcortical regions was performed to assess differences between the cannabis users and a sample of 100 matched controls (HC2 group) obtained from a local database of healthy volunteers. Results: The VBM study revealed that, compared to the control group HC1, the cannabis users did not show cortical differences nor smaller volume in any subcortical structure but showed a cluster ( p users showed significantly larger volumes in the putamen ( p = 0.001) and pallidum ( p = 0.0015). Subtle trends, only significant at the uncorrected level, were also found in the caudate ( p = 0.05) and nucleus accumbens ( p = 0.047). Conclusions: This study does not support previous findings of hippocampal and/or amygdala structural changes in long-term, heavy cannabis users. It does, however, provide evidence of basal ganglia volume increases.

  6. Subcortical functional reorganization due to early blindness.

    Science.gov (United States)

    Coullon, Gaelle S L; Jiang, Fang; Fine, Ione; Watkins, Kate E; Bridge, Holly

    2015-04-01

    Lack of visual input early in life results in occipital cortical responses to auditory and tactile stimuli. However, it remains unclear whether cross-modal plasticity also occurs in subcortical pathways. With the use of functional magnetic resonance imaging, auditory responses were compared across individuals with congenital anophthalmia (absence of eyes), those with early onset (in the first few years of life) blindness, and normally sighted individuals. We find that the superior colliculus, a "visual" subcortical structure, is recruited by the auditory system in congenital and early onset blindness. Additionally, auditory subcortical responses to monaural stimuli were altered as a result of blindness. Specifically, responses in the auditory thalamus were equally strong to contralateral and ipsilateral stimulation in both groups of blind subjects, whereas sighted controls showed stronger responses to contralateral stimulation. These findings suggest that early blindness results in substantial reorganization of subcortical auditory responses. Copyright © 2015 the American Physiological Society.

  7. Structural changes induced by daily music listening in the recovering brain after middle cerebral artery stroke: a voxel-based morphometry study

    OpenAIRE

    Särkämö, Teppo; Ripollés, Pablo; Vepsäläinen, Henna; Autti, Taina; Silvennoinen, Heli M.; Salli, Eero; Laitinen, Sari; Forsblom, Anita; Soinila, Seppo; Rodríguez Fornells, Antoni

    2014-01-01

    [Abstract.] Music is a highly complex and versatile stimulus for the brain that engages many temporal, frontal, parietal, cerebellar, and subcortical areas involved in auditory, cognitive, emotional, and motor processing. Regular musical activities have been shown to effectively enhance the structure and function of many brain areas, making music a potential tool also in neuro- logical rehabilitation. In our previous randomized controlled study, we found that listening to music...

  8. Subcortical encoding of sound is enhanced in bilinguals and relates to executive function advantages

    Science.gov (United States)

    Krizman, Jennifer; Marian, Viorica; Shook, Anthony; Skoe, Erika; Kraus, Nina

    2012-01-01

    Bilingualism profoundly affects the brain, yielding functional and structural changes in cortical regions dedicated to language processing and executive function [Crinion J, et al. (2006) Science 312:1537–1540; Kim KHS, et al. (1997) Nature 388:171–174]. Comparatively, musical training, another type of sensory enrichment, translates to expertise in cognitive processing and refined biological processing of sound in both cortical and subcortical structures. Therefore, we asked whether bilingualism can also promote experience-dependent plasticity in subcortical auditory processing. We found that adolescent bilinguals, listening to the speech syllable [da], encoded the stimulus more robustly than age-matched monolinguals. Specifically, bilinguals showed enhanced encoding of the fundamental frequency, a feature known to underlie pitch perception and grouping of auditory objects. This enhancement was associated with executive function advantages. Thus, through experience-related tuning of attention, the bilingual auditory system becomes highly efficient in automatically processing sound. This study provides biological evidence for system-wide neural plasticity in auditory experts that facilitates a tight coupling of sensory and cognitive functions. PMID:22547804

  9. Application of Intraoperative Ultrasonography for Guiding Microneurosurgical Resection of Small Subcortical Lesions

    International Nuclear Information System (INIS)

    Wang, Jia; Duan, Yun You; Liu, Xi; Wang, Yu; Gao, Guo Dong; Qin, Huai Zhou; Wang, Liang

    2011-01-01

    We wanted to evaluate the clinical value of intraoperative ultrasonography for real-time guidance when performing microneurosurgical resection of small subcortical lesions. Fifty-two patients with small subcortical lesions were involved in this study. The pathological diagnoses were cavernous hemangioma in 25 cases, cerebral glioma in eight cases, abscess in eight cases, small inflammatory lesion in five cases, brain parasite infection in four cases and the presence of an intracranial foreign body in two cases. An ultrasonic probe was sterilized and lightly placed on the surface of the brain during the operation. The location, extent, characteristics and adjacent tissue of the lesion were observed by high frequency ultrasonography during the operation. All the lesions were located in the cortex and their mean size was 1.3 ± 0.2 cm. Intraoperative ultrasonography accurately located all the small subcortical lesions, and so the neurosurgeon could provide appropriate treatment. Different lesion pathologies presented with different ultrasonic appearances. Cavernous hemangioma exhibited irregular shapes with distinct margins and it was mildly hyperechoic or hyperechoic. The majority of the cerebral gliomas displayed irregular shapes with indistinct margins, and they often showed cystic and solid mixed echoes. Postoperative imaging identified that the lesions had completely disappeared, and the original symptoms of all the patients were significantly alleviated. Intraoperative ultrasonography can help accurately locate small subcortical lesions and it is helpful for selecting the proper approach and guiding thorough resection of these lesions.

  10. Application of Intraoperative Ultrasonography for Guiding Microneurosurgical Resection of Small Subcortical Lesions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jia; Duan, Yun You; Liu, Xi; Wang, Yu; Gao, Guo Dong; Qin, Huai Zhou; Wang, Liang [Tangdu Hospital of the Fourth Military Medicine University, Xi an (China)

    2011-10-15

    We wanted to evaluate the clinical value of intraoperative ultrasonography for real-time guidance when performing microneurosurgical resection of small subcortical lesions. Fifty-two patients with small subcortical lesions were involved in this study. The pathological diagnoses were cavernous hemangioma in 25 cases, cerebral glioma in eight cases, abscess in eight cases, small inflammatory lesion in five cases, brain parasite infection in four cases and the presence of an intracranial foreign body in two cases. An ultrasonic probe was sterilized and lightly placed on the surface of the brain during the operation. The location, extent, characteristics and adjacent tissue of the lesion were observed by high frequency ultrasonography during the operation. All the lesions were located in the cortex and their mean size was 1.3 {+-} 0.2 cm. Intraoperative ultrasonography accurately located all the small subcortical lesions, and so the neurosurgeon could provide appropriate treatment. Different lesion pathologies presented with different ultrasonic appearances. Cavernous hemangioma exhibited irregular shapes with distinct margins and it was mildly hyperechoic or hyperechoic. The majority of the cerebral gliomas displayed irregular shapes with indistinct margins, and they often showed cystic and solid mixed echoes. Postoperative imaging identified that the lesions had completely disappeared, and the original symptoms of all the patients were significantly alleviated. Intraoperative ultrasonography can help accurately locate small subcortical lesions and it is helpful for selecting the proper approach and guiding thorough resection of these lesions.

  11. The impact of large structural brain changes in chronic stroke patients on the electric field caused by transcranial brain stimulation

    DEFF Research Database (Denmark)

    Minjoli, Sena; Saturnino, Guilherme B.; Blicher, Jakob Udby

    2017-01-01

    Transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (TDCS) are two types of non-invasive transcranial brain stimulation (TBS). They are useful tools for stroke research and may be potential adjunct therapies for functional recovery. However, stroke often causes large...... cerebral lesions, which are commonly accompanied by a secondary enlargement of the ventricles and atrophy. These structural alterations substantially change the conductivity distribution inside the head, which may have potentially important consequences for both brain stimulation methods. We therefore....... Realistic head models containing large cortical and subcortical stroke lesions in the right parietal cortex were created using MR images of two patients. For TMS, the electric field of a double coil was simulated using the finite-element method. Systematic variations of the coil position relative...

  12. Postnatal brain development

    DEFF Research Database (Denmark)

    Jernigan, Terry L; Baaré, William F C; Stiles, Joan

    2011-01-01

    After birth, there is striking biological and functional development of the brain's fiber tracts as well as remodeling of cortical and subcortical structures. Behavioral development in children involves a complex and dynamic set of genetically guided processes by which neural structures interact...... in children and adolescents, as well as studies that link these changes to behavioral differences. Finally, we discuss evidence for effects on the brain of several factors that may play a role in mediating these brain-behavior associations in children, including genetic variation, behavioral interventions...... constantly with the environment. This is a protracted process, beginning in the third week of gestation and continuing into early adulthood. Reviewed here are studies using structural imaging techniques, with a special focus on diffusion weighted imaging, describing age-related brain maturational changes...

  13. Postnatal brain development

    DEFF Research Database (Denmark)

    Jernigan, Terry L; Baaré, William F C; Stiles, Joan

    2011-01-01

    After birth, there is striking biological and functional development of the brain's fiber tracts as well as remodeling of cortical and subcortical structures. Behavioral development in children involves a complex and dynamic set of genetically guided processes by which neural structures interact...... constantly with the environment. This is a protracted process, beginning in the third week of gestation and continuing into early adulthood. Reviewed here are studies using structural imaging techniques, with a special focus on diffusion weighted imaging, describing age-related brain maturational changes...... in children and adolescents, as well as studies that link these changes to behavioral differences. Finally, we discuss evidence for effects on the brain of several factors that may play a role in mediating these brain-behavior associations in children, including genetic variation, behavioral interventions...

  14. Intelligence is associated with the modular structure of intrinsic brain networks.

    Science.gov (United States)

    Hilger, Kirsten; Ekman, Matthias; Fiebach, Christian J; Basten, Ulrike

    2017-11-22

    General intelligence is a psychological construct that captures in a single metric the overall level of behavioural and cognitive performance in an individual. While previous research has attempted to localise intelligence in circumscribed brain regions, more recent work focuses on functional interactions between regions. However, even though brain networks are characterised by substantial modularity, it is unclear whether and how the brain's modular organisation is associated with general intelligence. Modelling subject-specific brain network graphs from functional MRI resting-state data (N = 309), we found that intelligence was not associated with global modularity features (e.g., number or size of modules) or the whole-brain proportions of different node types (e.g., connector hubs or provincial hubs). In contrast, we observed characteristic associations between intelligence and node-specific measures of within- and between-module connectivity, particularly in frontal and parietal brain regions that have previously been linked to intelligence. We propose that the connectivity profile of these regions may shape intelligence-relevant aspects of information processing. Our data demonstrate that not only region-specific differences in brain structure and function, but also the network-topological embedding of fronto-parietal as well as other cortical and subcortical brain regions is related to individual differences in higher cognitive abilities, i.e., intelligence.

  15. Recreational marijuana use impacts white matter integrity and subcortical (but not cortical morphometry

    Directory of Open Access Journals (Sweden)

    Joseph M. Orr

    2016-01-01

    Full Text Available A recent shift in legal and social attitudes toward marijuana use has also spawned a surge of interest in understanding the effects of marijuana use on the brain. There is considerable evidence that an adolescent onset of marijuana use negatively impacts white matter coherence. On the other hand, a recent well-controlled study demonstrated no effects of marijuana use on the morphometry of subcortical or cortical structures when users and non-users were matched for alcohol use. Regardless, most studies have involved small, carefully selected samples, so the ability to generalize to larger populations is limited. In an attempt to address this issue, we examined the effects of marijuana use on white matter integrity and cortical and subcortical morphometry using data from the Human Connectome Project (HCP consortium. The HCP data consists of ultra-high resolution neuroimaging data from a large community sample, including 466 adults reporting recreational marijuana use. Rather than just contrasting two groups of individuals who vary significantly in marijuana usage as typifies prior studies, we leveraged the large sample size provided by the HCP data to examine parametric effects of recreational marijuana use. Our results indicate that the earlier the age of onset of marijuana use, the lower was white matter coherence. Age of onset also also affected the shape of the accumbens, while the number of lifetime uses impacted the shape of the amygdala and hippocampus. Marijuana use had no effect on cortical volumes. These findings suggest subtle but significant effects of recreational marijuana use on brain structure.

  16. Recreational marijuana use impacts white matter integrity and subcortical (but not cortical) morphometry.

    Science.gov (United States)

    Orr, Joseph M; Paschall, Courtnie J; Banich, Marie T

    2016-01-01

    A recent shift in legal and social attitudes toward marijuana use has also spawned a surge of interest in understanding the effects of marijuana use on the brain. There is considerable evidence that an adolescent onset of marijuana use negatively impacts white matter coherence. On the other hand, a recent well-controlled study demonstrated no effects of marijuana use on the morphometry of subcortical or cortical structures when users and non-users were matched for alcohol use. Regardless, most studies have involved small, carefully selected samples, so the ability to generalize to larger populations is limited. In an attempt to address this issue, we examined the effects of marijuana use on white matter integrity and cortical and subcortical morphometry using data from the Human Connectome Project (HCP) consortium. The HCP data consists of ultra-high resolution neuroimaging data from a large community sample, including 466 adults reporting recreational marijuana use. Rather than just contrasting two groups of individuals who vary significantly in marijuana usage as typifies prior studies, we leveraged the large sample size provided by the HCP data to examine parametric effects of recreational marijuana use. Our results indicate that the earlier the age of onset of marijuana use, the lower was white matter coherence. Age of onset also also affected the shape of the accumbens, while the number of lifetime uses impacted the shape of the amygdala and hippocampus. Marijuana use had no effect on cortical volumes. These findings suggest subtle but significant effects of recreational marijuana use on brain structure.

  17. Preterm birth and structural brain alterations in early adulthood

    Directory of Open Access Journals (Sweden)

    Chiara Nosarti

    2014-01-01

    Full Text Available Alterations in cortical development and impaired neurodevelopmental outcomes have been described following very preterm (VPT birth in childhood and adolescence, but only a few studies to date have investigated grey matter (GM and white matter (WM maturation in VPT samples in early adult life. Using voxel-based morphometry (VBM we studied regional GM and WM volumes in 68 VPT-born individuals (mean gestational age 30 weeks and 43 term-born controls aged 19–20 years, and their association with cognitive outcomes (Hayling Sentence Completion Test, Controlled Oral Word Association Test, Visual Reproduction test of the Wechsler Memory Scale-Revised and gestational age. Structural MRI data were obtained with a 1.5 Tesla system and analysed using the VBM8 toolbox in SPM8 with a customized study-specific template. Similarly to results obtained at adolescent assessment, VPT young adults compared to controls demonstrated reduced GM volume in temporal, frontal, insular and occipital areas, thalamus, caudate nucleus and putamen. Increases in GM volume were noted in medial/anterior frontal gyrus. Smaller subcortical WM volume in the VPT group was observed in temporal, parietal and frontal regions, and in a cluster centred on posterior corpus callosum/thalamus/fornix. Larger subcortical WM volume was found predominantly in posterior brain regions, in areas beneath the parahippocampal and occipital gyri and in cerebellum. Gestational age was associated with GM and WM volumes in areas where VPT individuals demonstrated GM and WM volumetric alterations, especially in temporal, parietal and occipital regions. VPT participants scored lower than controls on measures of IQ, executive function and non-verbal memory. When investigating GM and WM alterations and cognitive outcome scores, subcortical WM volume in an area beneath the left inferior frontal gyrus accounted for 14% of the variance of full-scale IQ (F = 12.9, p < 0.0001. WM volume in posterior corpus

  18. Segregation of Brain Structural Networks Supports Spatio-Temporal Predictive Processing

    Directory of Open Access Journals (Sweden)

    Valentina Ciullo

    2018-05-01

    Full Text Available The ability to generate probabilistic expectancies regarding when and where sensory stimuli will occur, is critical to derive timely and accurate inferences about updating contexts. However, the existence of specialized neural networks for inferring predictive relationships between events is still debated. Using graph theoretical analysis applied to structural connectivity data, we tested the extent of brain connectivity properties associated with spatio-temporal predictive performance across 29 healthy subjects. Participants detected visual targets appearing at one out of three locations after one out of three intervals; expectations about stimulus location (spatial condition or onset (temporal condition were induced by valid or invalid symbolic cues. Connectivity matrices and centrality/segregation measures, expressing the relative importance of, and the local interactions among specific cerebral areas respect to the behavior under investigation, were calculated from whole-brain tractography and cortico-subcortical parcellation.Results: Response preparedness to cued stimuli relied on different structural connectivity networks for the temporal and spatial domains. Significant covariance was observed between centrality measures of regions within a subcortical-fronto-parietal-occipital network -comprising the left putamen, the right caudate nucleus, the left frontal operculum, the right inferior parietal cortex, the right paracentral lobule and the right superior occipital cortex-, and the ability to respond after a short cue-target delay suggesting that the local connectedness of such nodes plays a central role when the source of temporal expectation is explicit. When the potential for functional segregation was tested, we found highly clustered structural connectivity across the right superior, the left middle inferior frontal gyrus and the left caudate nucleus as related to explicit temporal orienting. Conversely, when the interaction between

  19. Segregation of Brain Structural Networks Supports Spatio-Temporal Predictive Processing.

    Science.gov (United States)

    Ciullo, Valentina; Vecchio, Daniela; Gili, Tommaso; Spalletta, Gianfranco; Piras, Federica

    2018-01-01

    The ability to generate probabilistic expectancies regarding when and where sensory stimuli will occur, is critical to derive timely and accurate inferences about updating contexts. However, the existence of specialized neural networks for inferring predictive relationships between events is still debated. Using graph theoretical analysis applied to structural connectivity data, we tested the extent of brain connectivity properties associated with spatio-temporal predictive performance across 29 healthy subjects. Participants detected visual targets appearing at one out of three locations after one out of three intervals; expectations about stimulus location (spatial condition) or onset (temporal condition) were induced by valid or invalid symbolic cues. Connectivity matrices and centrality/segregation measures, expressing the relative importance of, and the local interactions among specific cerebral areas respect to the behavior under investigation, were calculated from whole-brain tractography and cortico-subcortical parcellation. Results: Response preparedness to cued stimuli relied on different structural connectivity networks for the temporal and spatial domains. Significant covariance was observed between centrality measures of regions within a subcortical-fronto-parietal-occipital network -comprising the left putamen, the right caudate nucleus, the left frontal operculum, the right inferior parietal cortex, the right paracentral lobule and the right superior occipital cortex-, and the ability to respond after a short cue-target delay suggesting that the local connectedness of such nodes plays a central role when the source of temporal expectation is explicit. When the potential for functional segregation was tested, we found highly clustered structural connectivity across the right superior, the left middle inferior frontal gyrus and the left caudate nucleus as related to explicit temporal orienting. Conversely, when the interaction between explicit and

  20. Assessment of T2- and T1-weighted MRI brain lesion load in patients with subcortical vascular encephalopathy

    International Nuclear Information System (INIS)

    Gass, A.; Oster, M.; Cohen, S.; Daffertshofer, M.; Schwartz, A.; Hennerici, M.G.

    1998-01-01

    Previous cross-sectional studies in patients with subcortical vascular encephalopathy (SVE) have shown little or no correlation between brain lesion load and clinical disability, which could be due to the low specificity of T2-weighted MRI. Recent studies have indicated that T1-weighted MRI may be more specific than T2-weighted MRI for severe tissue destruction. We studied 37 patients with a diagnosis of SVE and 11 normal controls with standardised T1- and T2-weighted MRI. All patients underwent detailed clinical assessment including a neuropsychological test battery and computerised gait analysis. Both the T2- and T1-weighted total MRI lesion loads different between patients and controls different, particularly T1. The ratio of T2-/T1-weighted lesion load was lower in controls than in patients. There was no overall correlation of T1- or T2-weighted lesion load with clinical disability, but group comparison of patients with severe and mild clinical deficits showed different lesion loads. We suggest that T1- and T2-weighted MRI lesion loads demonstrate relevant structural abnormality in patients with SVE. (orig.)

  1. Correspondence Between Aberrant Intrinsic Network Connectivity and Gray-Matter Volume in the Ventral Brain of Preterm Born Adults.

    Science.gov (United States)

    Bäuml, Josef G; Daamen, Marcel; Meng, Chun; Neitzel, Julia; Scheef, Lukas; Jaekel, Julia; Busch, Barbara; Baumann, Nicole; Bartmann, Peter; Wolke, Dieter; Boecker, Henning; Wohlschläger, Afra M; Sorg, Christian

    2015-11-01

    Widespread brain changes are present in preterm born infants, adolescents, and even adults. While neurobiological models of prematurity facilitate powerful explanations for the adverse effects of preterm birth on the developing brain at microscale, convincing linking principles at large-scale level to explain the widespread nature of brain changes are still missing. We investigated effects of preterm birth on the brain's large-scale intrinsic networks and their relation to brain structure in preterm born adults. In 95 preterm and 83 full-term born adults, structural and functional magnetic resonance imaging at-rest was used to analyze both voxel-based morphometry and spatial patterns of functional connectivity in ongoing blood oxygenation level-dependent activity. Differences in intrinsic functional connectivity (iFC) were found in cortical and subcortical networks. Structural differences were located in subcortical, temporal, and cingulate areas. Critically, for preterm born adults, iFC-network differences were overlapping and correlating with aberrant regional gray-matter (GM) volume specifically in subcortical and temporal areas. Overlapping changes were predicted by prematurity and in particular by neonatal medical complications. These results provide evidence that preterm birth has long-lasting effects on functional connectivity of intrinsic networks, and these changes are specifically related to structural alterations in ventral brain GM. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Large-scale structural alteration of brain in epileptic children with SCN1A mutation.

    Science.gov (United States)

    Lee, Yun-Jeong; Yum, Mi-Sun; Kim, Min-Jee; Shim, Woo-Hyun; Yoon, Hee Mang; Yoo, Il Han; Lee, Jiwon; Lim, Byung Chan; Kim, Ki Joong; Ko, Tae-Sung

    2017-01-01

    Mutations in SCN1A gene encoding the alpha 1 subunit of the voltage gated sodium channel are associated with several epilepsy syndromes including genetic epilepsy with febrile seizures plus (GEFS +) and severe myoclonic epilepsy of infancy (SMEI). However, in most patients with SCN1A mutation, brain imaging has reported normal or non-specific findings including cerebral or cerebellar atrophy. The aim of this study was to investigate differences in brain morphometry in epileptic children with SCN1A mutation compared to healthy control subjects. We obtained cortical morphology (thickness, and surface area) and brain volume (global, subcortical, and regional) measurements using FreeSurfer (version 5.3.0, https://surfer.nmr.mgh.harvard.edu) and compared measurements of children with epilepsy and SCN1A gene mutation ( n  = 21) with those of age and gender matched healthy controls ( n  = 42). Compared to the healthy control group, children with epilepsy and SCN1A gene mutation exhibited smaller total brain, total gray matter and white matter, cerebellar white matter, and subcortical volumes, as well as mean surface area and mean cortical thickness. A regional analysis revealed significantly reduced gray matter volume in the patient group in the bilateral inferior parietal, left lateral orbitofrontal, left precentral, right postcentral, right isthmus cingulate, right middle temporal area with smaller surface area and white matter volume in some of these areas. However, the regional cortical thickness was not significantly different in two groups. This study showed large-scale developmental brain changes in patients with epilepsy and SCN1A gene mutation, which may be associated with the core symptoms of the patients. Further longitudinal MRI studies with larger cohorts are required to confirm the effect of SCN1A gene mutation on structural brain development.

  3. Subcortical intelligence: caudate volume predicts IQ in healthy adults.

    Science.gov (United States)

    Grazioplene, Rachael G; G Ryman, Sephira; Gray, Jeremy R; Rustichini, Aldo; Jung, Rex E; DeYoung, Colin G

    2015-04-01

    This study examined the association between size of the caudate nuclei and intelligence. Based on the central role of the caudate in learning, as well as neuroimaging studies linking greater caudate volume to better attentional function, verbal ability, and dopamine receptor availability, we hypothesized the existence of a positive association between intelligence and caudate volume in three large independent samples of healthy adults (total N = 517). Regression of IQ onto bilateral caudate volume controlling for age, sex, and total brain volume indicated a significant positive correlation between caudate volume and intelligence, with a comparable magnitude of effect across each of the three samples. No other subcortical structures were independently associated with IQ, suggesting a specific biological link between caudate morphology and intelligence. © 2014 Wiley Periodicals, Inc.

  4. Structural brain correlates associated with professional handball playing.

    Science.gov (United States)

    Hänggi, Jürgen; Langer, Nicolas; Lutz, Kai; Birrer, Karin; Mérillat, Susan; Jäncke, Lutz

    2015-01-01

    There is no doubt that good bimanual performance is very important for skilled handball playing. The control of the non-dominant hand is especially demanding since efficient catching and throwing needs both hands. We investigated training-induced structural neuroplasticity in professional handball players using several structural neuroimaging techniques and analytic approaches and also provide a review of the literature about sport-induced structural neuroplastic alterations. Structural brain adaptations were expected in regions relevant for motor and somatosensory processing such as the grey matter (GM) of the primary/secondary motor (MI/supplementary motor area, SMA) and somatosensory cortex (SI/SII), basal ganglia, thalamus, and cerebellum and in the white matter (WM) of the corticospinal tract (CST) and corpus callosum, stronger in brain regions controlling the non-dominant left hand. Increased GM volume in handball players compared with control subjects were found in the right MI/SI, bilateral SMA/cingulate motor area, and left intraparietal sulcus. Fractional anisotropy (FA) and axial diffusivity were increased within the right CST in handball players compared with control women. Age of handball training commencement correlated inversely with GM volume in the right and left MI/SI and years of handball training experience correlated inversely with radial diffusivity in the right CST. Subcortical structures tended to be larger in handball players. The anatomical measures of the brain regions associated with handball playing were positively correlated in handball players, but not interrelated in control women. Training-induced structural alterations were found in the somatosensory-motor network of handball players, more pronounced in the right hemisphere controlling the non-dominant left hand. Correlations between handball training-related measures and anatomical differences suggest neuroplastic adaptations rather than a genetic predisposition for a ball playing

  5. Structural brain correlates associated with professional handball playing.

    Directory of Open Access Journals (Sweden)

    Jürgen Hänggi

    Full Text Available There is no doubt that good bimanual performance is very important for skilled handball playing. The control of the non-dominant hand is especially demanding since efficient catching and throwing needs both hands.We investigated training-induced structural neuroplasticity in professional handball players using several structural neuroimaging techniques and analytic approaches and also provide a review of the literature about sport-induced structural neuroplastic alterations. Structural brain adaptations were expected in regions relevant for motor and somatosensory processing such as the grey matter (GM of the primary/secondary motor (MI/supplementary motor area, SMA and somatosensory cortex (SI/SII, basal ganglia, thalamus, and cerebellum and in the white matter (WM of the corticospinal tract (CST and corpus callosum, stronger in brain regions controlling the non-dominant left hand.Increased GM volume in handball players compared with control subjects were found in the right MI/SI, bilateral SMA/cingulate motor area, and left intraparietal sulcus. Fractional anisotropy (FA and axial diffusivity were increased within the right CST in handball players compared with control women. Age of handball training commencement correlated inversely with GM volume in the right and left MI/SI and years of handball training experience correlated inversely with radial diffusivity in the right CST. Subcortical structures tended to be larger in handball players. The anatomical measures of the brain regions associated with handball playing were positively correlated in handball players, but not interrelated in control women.Training-induced structural alterations were found in the somatosensory-motor network of handball players, more pronounced in the right hemisphere controlling the non-dominant left hand. Correlations between handball training-related measures and anatomical differences suggest neuroplastic adaptations rather than a genetic predisposition for a

  6. Structural Brain Correlates Associated with Professional Handball Playing

    Science.gov (United States)

    Hänggi, Jürgen; Langer, Nicolas; Lutz, Kai; Birrer, Karin; Mérillat, Susan; Jäncke, Lutz

    2015-01-01

    Background There is no doubt that good bimanual performance is very important for skilled handball playing. The control of the non-dominant hand is especially demanding since efficient catching and throwing needs both hands. Methodology/Hypotheses We investigated training-induced structural neuroplasticity in professional handball players using several structural neuroimaging techniques and analytic approaches and also provide a review of the literature about sport-induced structural neuroplastic alterations. Structural brain adaptations were expected in regions relevant for motor and somatosensory processing such as the grey matter (GM) of the primary/secondary motor (MI/supplementary motor area, SMA) and somatosensory cortex (SI/SII), basal ganglia, thalamus, and cerebellum and in the white matter (WM) of the corticospinal tract (CST) and corpus callosum, stronger in brain regions controlling the non-dominant left hand. Results Increased GM volume in handball players compared with control subjects were found in the right MI/SI, bilateral SMA/cingulate motor area, and left intraparietal sulcus. Fractional anisotropy (FA) and axial diffusivity were increased within the right CST in handball players compared with control women. Age of handball training commencement correlated inversely with GM volume in the right and left MI/SI and years of handball training experience correlated inversely with radial diffusivity in the right CST. Subcortical structures tended to be larger in handball players. The anatomical measures of the brain regions associated with handball playing were positively correlated in handball players, but not interrelated in control women. Discussion/Conclusion Training-induced structural alterations were found in the somatosensory-motor network of handball players, more pronounced in the right hemisphere controlling the non-dominant left hand. Correlations between handball training-related measures and anatomical differences suggest neuroplastic

  7. Distinct subcortical volume alterations in pediatric and adult OCD

    Science.gov (United States)

    Boedhoe, Premika S.W.; Schmaal, Lianne; Abe, Yoshinari; Ameis, Stephanie H.; Arnold, Paul D.; Batistuzzo, Marcelo C.; Benedetti, Francesco; Beucke, Jan C.; Bollettini, Irene; Bose, Anushree; Brem, Silvia; Calvo, Anna; Cheng, Yuqi; Cho, Kang Ik K.; Dallaspezia, Sara; Denys, Damiaan; Fitzgerald, Kate D.; Fouche, Jean-Paul; Giménez, Mònica; Gruner, Patricia; Hanna, Gregory L.; Hibar, Derrek P.; Hoexter, Marcelo Q.; Huyser, Chaim; Ikari, Keisuke; Jahanshad, Neda; Kathmann, Norbert; Kaufmann, Christian; Koch, Kathrin; Kwon, Jun Soo; Lazaro, Luisa; Liu, Yanni; Lochner, Christine; Marsh, Rachel; Martínez-Zalacaín, Ignacio; Mataix-Cols, David; Menchón, José M.; Minuzzii, Luciano; Nakamae, Takashi; Nakao, Tomohiro; Narayanaswamy, Janardhanan C.; Piras, Fabrizio; Piras, Federica; Pittenger, Christopher; Reddy, Y.C. Janardhan; Sato, Joao R.; Simpson, H. Blair; Soreni, Noam; Soriano-Mas, Carles; Spalletta, Gianfranco; Stevens, Michael C.; Szeszko, Philip R.; Tolin, David F.; Venkatasubramanian, Ganesan; Walitza, Susanne; Wang, Zhen; van Wingen, Guido A.; Xu, Jian; Xu, Xiufeng; Yun, Je-Yeon; Zhao, Qing; Thompson, Paul M.; Stein, Dan J.; van den Heuvel, Odile A.

    2016-01-01

    Objective Structural brain imaging studies in Obsessive-Compulsive Disorder (OCD) have produced inconsistent findings. This may be partially due to limited statistical power from relatively small samples and clinical heterogeneity related to variation in disease profile and developmental stage. Methods To address these limitations, we conducted a meta- and mega-analysis of data from OCD sites worldwide. T1 images from 1,830 OCD patients and 1,759 controls were analyzed, using coordinated and standardized processing, to identify subcortical brain volumes that differ in OCD patients and healthy controls. We additionally examined potential modulating effects of clinical characteristics on morphological differences in OCD patients. Results The meta-analysis indicated that adult patients had significantly smaller hippocampal volumes (Cohen’s d=−0.13; p=5.1x10−3, % difference −2.80) and larger pallidum volumes (d=0.16; p=1.6x10−3, % difference 3.16) compared to adult controls. Both effects were stronger in medicated patients compared to controls (d=−0.29; p=2.4x10−5, % difference −4.18 and d=0.29; p=1.2x10−5, % difference 4.38, respectively). Unmedicated pediatric patients had larger thalamic volumes (d=0.38, p=2.1x10−3) compared to pediatric controls. None of these findings were mediated by sample characteristics such as mean age or field strength. Overall the mega-analysis yielded similar results. Conclusion Our study indicates a different pattern of subcortical abnormalities in pediatric versus adult OCD patients. The pallidum and hippocampus seem to be of importance in adult OCD, whereas the thalamus seems to be key in pediatric OCD. This highlights the potential importance of neurodevelopmental alterations in OCD, and suggests that further research on neuroplasticity in OCD may be useful. PMID:27609241

  8. Disrupted topological organization of brain structural network associated with prior overt hepatic encephalopathy in cirrhotic patients

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hua-Jun [Fujian Medical University Union Hospital, Department of Radiology, Fuzhou (China); The First Affiliated Hospital of Nanjing Medical University, Department of Radiology, Nanjing (China); Shi, Hai-Bin [The First Affiliated Hospital of Nanjing Medical University, Department of Radiology, Nanjing (China); Jiang, Long-Feng [The First Affiliated Hospital of Nanjing Medical University, Department of Infectious Diseases, Nanjing (China); Li, Lan [Fujian Medical University Union Hospital, Department of Radiology, Fuzhou (China); Chen, Rong [University of Maryland School of Medicine, Department of Diagnostic Radiology and Nuclear Medicine, Baltimore, MD (United States); Beijing Institute of Technology, Advanced Innovation Center for Intelligent Robots and Systems, Beijing (China)

    2018-01-15

    To investigate structural brain connectome alterations in cirrhotic patients with prior overt hepatic encephalopathy (OHE). Seventeen cirrhotic patients with prior OHE (prior-OHE), 18 cirrhotic patients without prior OHE (non-prior-OHE) and 18 healthy controls (HC) underwent diffusion tensor imaging. Neurocognitive functioning was assessed with Psychometric Hepatic Encephalopathy Score (PHES). Using a probabilistic fibre tracking approach, we depicted the whole-brain structural network as a connectivity matrix of 90 regions (derived from the Automated Anatomic Labeling atlas). Graph theory-based analyses were performed to analyse topological properties of the brain network. The analysis of variance showed significant group effects on several topological properties, including network strength, global efficiency and local efficiency. A progressive decrease trend for these metrics was found from non-prior-OHE to prior-OHE, compared with HC. Among the three groups, the regions with altered nodal efficiency were mainly distributed in the frontal and occipital cortices, paralimbic system and subcortical regions. The topological metrics, such as network strength and global efficiency, were correlated with PHES among cirrhotic patients. The cirrhotic patients developed structural brain connectome alterations; this is aggravated by prior OHE episode. Disrupted topological organization of the brain structural network may account for cognitive impairments related to prior OHE. (orig.)

  9. Disrupted topological organization of brain structural network associated with prior overt hepatic encephalopathy in cirrhotic patients

    International Nuclear Information System (INIS)

    Chen, Hua-Jun; Shi, Hai-Bin; Jiang, Long-Feng; Li, Lan; Chen, Rong

    2018-01-01

    To investigate structural brain connectome alterations in cirrhotic patients with prior overt hepatic encephalopathy (OHE). Seventeen cirrhotic patients with prior OHE (prior-OHE), 18 cirrhotic patients without prior OHE (non-prior-OHE) and 18 healthy controls (HC) underwent diffusion tensor imaging. Neurocognitive functioning was assessed with Psychometric Hepatic Encephalopathy Score (PHES). Using a probabilistic fibre tracking approach, we depicted the whole-brain structural network as a connectivity matrix of 90 regions (derived from the Automated Anatomic Labeling atlas). Graph theory-based analyses were performed to analyse topological properties of the brain network. The analysis of variance showed significant group effects on several topological properties, including network strength, global efficiency and local efficiency. A progressive decrease trend for these metrics was found from non-prior-OHE to prior-OHE, compared with HC. Among the three groups, the regions with altered nodal efficiency were mainly distributed in the frontal and occipital cortices, paralimbic system and subcortical regions. The topological metrics, such as network strength and global efficiency, were correlated with PHES among cirrhotic patients. The cirrhotic patients developed structural brain connectome alterations; this is aggravated by prior OHE episode. Disrupted topological organization of the brain structural network may account for cognitive impairments related to prior OHE. (orig.)

  10. Immersive bilingualism reshapes the core of the brain.

    Science.gov (United States)

    Pliatsikas, Christos; DeLuca, Vincent; Moschopoulou, Elisavet; Saddy, James Douglas

    2017-05-01

    Bilingualism has been shown to affect the structure of the brain, including cortical regions related to language. Less is known about subcortical structures, such as the basal ganglia, which underlie speech monitoring and language selection, processes that are crucial for bilinguals, as well as other linguistic functions, such as grammatical and phonological acquisition and processing. Simultaneous bilinguals have demonstrated significant reshaping of the basal ganglia and the thalamus compared to monolinguals. However, it is not clear whether these effects are due to learning of the second language (L2) at a very young age or simply due to continuous usage of two languages. Here, we show that bilingualism-induced subcortical effects are directly related to the amount of continuous L2 usage, or L2 immersion. We found significant subcortical reshaping in non-simultaneous (or sequential) bilinguals with extensive immersion in a bilingual environment, closely mirroring the recent findings in simultaneous bilinguals. Importantly, some of these effects were positively correlated to the amount of L2 immersion. Conversely, sequential bilinguals with comparable proficiency and age of acquisition (AoA) but limited immersion did not show similar effects. Our results provide structural evidence to suggestions that L2 acquisition continuously occurs in an immersive environment, and is expressed as dynamic reshaping of the core of the brain. These findings propose that second language learning in the brain is a dynamic procedure which depends on active and continuous L2 usage.

  11. Super-resolution imaging of subcortical white matter using stochastic optical reconstruction microscopy (STORM) and super-resolution optical fluctuation imaging (SOFI)

    Science.gov (United States)

    Hainsworth, A. H.; Lee, S.; Patel, A.; Poon, W. W.; Knight, A. E.

    2018-01-01

    Aims The spatial resolution of light microscopy is limited by the wavelength of visible light (the ‘diffraction limit’, approximately 250 nm). Resolution of sub-cellular structures, smaller than this limit, is possible with super resolution methods such as stochastic optical reconstruction microscopy (STORM) and super-resolution optical fluctuation imaging (SOFI). We aimed to resolve subcellular structures (axons, myelin sheaths and astrocytic processes) within intact white matter, using STORM and SOFI. Methods Standard cryostat-cut sections of subcortical white matter from donated human brain tissue and from adult rat and mouse brain were labelled, using standard immunohistochemical markers (neurofilament-H, myelin-associated glycoprotein, glial fibrillary acidic protein, GFAP). Image sequences were processed for STORM (effective pixel size 8–32 nm) and for SOFI (effective pixel size 80 nm). Results In human, rat and mouse, subcortical white matter high-quality images for axonal neurofilaments, myelin sheaths and filamentous astrocytic processes were obtained. In quantitative measurements, STORM consistently underestimated width of axons and astrocyte processes (compared with electron microscopy measurements). SOFI provided more accurate width measurements, though with somewhat lower spatial resolution than STORM. Conclusions Super resolution imaging of intact cryo-cut human brain tissue is feasible. For quantitation, STORM can under-estimate diameters of thin fluorescent objects. SOFI is more robust. The greatest limitation for super-resolution imaging in brain sections is imposed by sample preparation. We anticipate that improved strategies to reduce autofluorescence and to enhance fluorophore performance will enable rapid expansion of this approach. PMID:28696566

  12. Super-resolution imaging of subcortical white matter using stochastic optical reconstruction microscopy (STORM) and super-resolution optical fluctuation imaging (SOFI).

    Science.gov (United States)

    Hainsworth, A H; Lee, S; Foot, P; Patel, A; Poon, W W; Knight, A E

    2017-07-11

    The spatial resolution of light microscopy is limited by the wavelength of visible light (the 'diffraction limit', approximately 250 nm). Resolution of sub-cellular structures, smaller than this limit, is possible with super resolution methods such as stochastic optical reconstruction microscopy (STORM) and super-resolution optical fluctuation imaging (SOFI). We aimed to resolve subcellular structures (axons, myelin sheaths and astrocytic processes) within intact white matter, using STORM and SOFI. Standard cryostat-cut sections of subcortical white matter from donated human brain tissue and from adult rat and mouse brain were labelled, using standard immunohistochemical markers (neurofilament-H, myelin-associated glycoprotein, glial fibrillary acidic protein, GFAP). Image sequences were processed for STORM (effective pixel size 8-32 nm) and for SOFI (effective pixel size 80 nm). In human, rat and mouse, subcortical white matter high-quality images for axonal neurofilaments, myelin sheaths and filamentous astrocytic processes were obtained. In quantitative measurements, STORM consistently underestimated width of axons and astrocyte processes (compared with electron microscopy measurements). SOFI provided more accurate width measurements, though with somewhat lower spatial resolution than STORM. Super resolution imaging of intact cryo-cut human brain tissue is feasible. For quantitation, STORM can under-estimate diameters of thin fluorescent objects. SOFI is more robust. The greatest limitation for super-resolution imaging in brain sections is imposed by sample preparation. We anticipate that improved strategies to reduce autofluorescence and to enhance fluorophore performance will enable rapid expansion of this approach. © 2017 British Neuropathological Society.

  13. White matter pathology and disconnection in the frontal lobe in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL).

    Science.gov (United States)

    Craggs, Lucinda J L; Yamamoto, Yumi; Ihara, Masafumi; Fenwick, Richard; Burke, Matthew; Oakley, Arthur E; Roeber, Sigrun; Duering, Marco; Kretzschmar, Hans; Kalaria, Raj N

    2014-08-01

    Magnetic resonance imaging indicates diffuse white matter (WM) changes are associated with cognitive impairment in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). We examined whether the distribution of axonal abnormalities is related to microvascular pathology in the underlying WM. We used post-mortem brains from CADASIL subjects and similar age cognitively normal controls to examine WM axonal changes, microvascular pathology, and glial reaction in up to 16 different regions extending rostro-caudally through the cerebrum. Using unbiased stereological methods, we estimated length densities of affected axons immunostained with neurofilament antibody SMI32. Standard immunohistochemistry was used to assess amyloid precursor protein immunoreactivity per WM area. To relate WM changes to microvascular pathology, we also determined the sclerotic index (SI) in WM arterioles. The degree of WM pathology consistently scored higher across all brain regions in CADASIL subjects (Pneurones connecting to targets in the subcortical structures. © 2013 The Authors. Neuropathology and Applied Neurobiology published by John Wiley & Sons Ltd on behalf of British Neuropathological Society.

  14. Analysis of the Metabolic and Structural Brain Changes in Patients With Torture-Related Post-Traumatic Stress Disorder (TR-PTSD) Using 18F-FDG PET and MRI

    Science.gov (United States)

    Zandieh, Shahin; Bernt, Reinhard; Knoll, Peter; Wenzel, Thomas; Hittmair, Karl; Haller, Joerg; Hergan, Klaus; Mirzaei, Siroos

    2016-01-01

    Abstract Many people exposed to torture later suffer from torture-related post-traumatic stress disorder (TR-PTSD). The aim of this study was to analyze the morphologic and functional brain changes in patients with TR-PTSD using magnetic resonance imaging (MRI) and positron emission tomography (PET). This study evaluated 19 subjects. Thirteen subcortical brain structures were evaluated using FSL software. On the T1-weighted images, normalized brain volumes were measured using SIENAX software. The study compared the volume of the brain and 13 subcortical structures in 9 patients suffering from TR-PTSD after torture and 10 healthy volunteers (HV). Diffusion-weighted imaging (DWI) was performed in the transverse plane. In addition, the 18F-FDG PET data were evaluated to identify the activity of the elected regions. The mean left hippocampal volume for the TR-PTSD group was significantly lower than in the HV group (post hoc test (Bonferroni) P PTSD and the HV group (post hoc test (Bonferroni) P PTSD group showed low significant expansion of the ventricles in contrast to the HV group (post hoc test (Bonferroni) P PTSD and HV group (post hoc test (Bonferroni) P PTSD, in the temporal lobe in 1 of the 9 patients, and in the caudate nucleus in 5 of the 9 patients. In 2 cases, additional hypometabolism was observed in the posterior cingulate cortex and in the parietal and frontal lobes. The findings from this study show that TR-PTSD might have a deleterious influence on a set of specific brain structures. This study also demonstrated that PET combined with MRI is sensitive in detecting possible metabolic and structural brain changes in TR-PTSD. PMID:27082610

  15. Relations between prospective memory, cognitive abilities, and brain structure in adolescents who vary in prenatal drug exposure

    Science.gov (United States)

    Robey, Alison; Buckingham-Howes, Stacy; Salmeron, Betty Jo; Black, Maureen M.; Riggins, Tracy

    2014-01-01

    This investigation examined how prospective memory (PM) relates to cognitive abilities (i.e., executive function, attention, working memory, and retrospective memory), and brain structure in adolescents who vary in prenatal drug exposure (PDE). The sample included 105 (55 female, 50 male) urban, primarily African American adolescents (mean age 15.5 years) from low socioeconomic status (SES) families; 56% (n=59) were prenatally exposed to drugs (heroin and/or cocaine) and 44% (n=46) were not prenatally exposed, but similar in age, gender, race, and SES. Executive functioning, attentional control, working memory, retrospective memory, and overall cognitive ability were assessed by validated performance measures. Executive functioning was also measured by caregiver report. A subset of 52 adolescents completed MRI scans, which provided measures of subcortical gray matter volumes and thickness of prefrontal, parietal and temporal cortices. Results revealed no differences in PM performance by PDE status, even after adjusting for age and IQ. Executive function, retrospective memory, cortical thickness in frontal and parietal regions, and volume of subcortical regions (i.e., putamen and hippocampus) were related to PM performance in the sample overall, even after adjusting for age, IQ, and total gray matter volume. Findings suggest that variations in PM ability during adolescence are robustly related to individual differences in cognitive abilities, in particular executive function and retrospective memory, and brain structure, but do not vary by PDE status. PMID:24630759

  16. Structural brain aging and speech production: a surface-based brain morphometry study.

    Science.gov (United States)

    Tremblay, Pascale; Deschamps, Isabelle

    2016-07-01

    While there has been a growing number of studies examining the neurofunctional correlates of speech production over the past decade, the neurostructural correlates of this immensely important human behaviour remain less well understood, despite the fact that previous studies have established links between brain structure and behaviour, including speech and language. In the present study, we thus examined, for the first time, the relationship between surface-based cortical thickness (CT) and three different behavioural indexes of sublexical speech production: response duration, reaction times and articulatory accuracy, in healthy young and older adults during the production of simple and complex meaningless sequences of syllables (e.g., /pa-pa-pa/ vs. /pa-ta-ka/). The results show that each behavioural speech measure was sensitive to the complexity of the sequences, as indicated by slower reaction times, longer response durations and decreased articulatory accuracy in both groups for the complex sequences. Older adults produced longer speech responses, particularly during the production of complex sequence. Unique age-independent and age-dependent relationships between brain structure and each of these behavioural measures were found in several cortical and subcortical regions known for their involvement in speech production, including the bilateral anterior insula, the left primary motor area, the rostral supramarginal gyrus, the right inferior frontal sulcus, the bilateral putamen and caudate, and in some region less typically associated with speech production, such as the posterior cingulate cortex.

  17. Modulation of Cortical-subcortical Networks in Parkinson’s Disease by Applied Field Effects

    Directory of Open Access Journals (Sweden)

    Christopher William Hess

    2013-09-01

    Full Text Available Studies suggest that endogenous field effects may play a role in neuronal oscillations and communication. Non-invasive transcranial electrical stimulation with low-intensity currents can also have direct effects on the underlying cortex as well as distant network effects. While Parkinson's disease (PD is amenable to invasive neuromodulation in the basal ganglia by deep brain stimulation, techniques of non-invasive neuromodulation like transcranial direct current stimulation (tDCS and transcranial alternating current stimulation (tACS are being investigated as possible therapies. tDCS and tACS have the potential to influence the abnormal cortical-subcortical network activity that occurs in PD through sub-threshold changes in cortical excitability or through entrainment or disruption of ongoing rhythmic cortical activity. This may allow for the targeting of specific features of the disease involving abnormal oscillatory activity, as well as the enhancement of potential cortical compensation for basal ganglia dysfunction and modulation of cortical plasticity in neurorehabilitation. However, little is currently known about how cortical stimulation will affect subcortical structures, the size of any effect, and the factors of stimulation that will influence these effects.

  18. Analysis of the Metabolic and Structural Brain Changes in Patients With Torture-Related Post-Traumatic Stress Disorder (TR-PTSD) Using ¹⁸F-FDG PET and MRI.

    Science.gov (United States)

    Zandieh, Shahin; Bernt, Reinhard; Knoll, Peter; Wenzel, Thomas; Hittmair, Karl; Haller, Joerg; Hergan, Klaus; Mirzaei, Siroos

    2016-04-01

    Many people exposed to torture later suffer from torture-related post-traumatic stress disorder (TR-PTSD). The aim of this study was to analyze the morphologic and functional brain changes in patients with TR-PTSD using magnetic resonance imaging (MRI) and positron emission tomography (PET). This study evaluated 19 subjects. Thirteen subcortical brain structures were evaluated using FSL software. On the T1-weighted images, normalized brain volumes were measured using SIENAX software. The study compared the volume of the brain and 13 subcortical structures in 9 patients suffering from TR-PTSD after torture and 10 healthy volunteers (HV). Diffusion-weighted imaging (DWI) was performed in the transverse plane. In addition, the 18F-FDG PET data were evaluated to identify the activity of the elected regions. The mean left hippocampal volume for the TR-PTSD group was significantly lower than in the HV group (post hoc test (Bonferroni) P PTSD and the HV group (post hoc test (Bonferroni) P PTSD group showed low significant expansion of the ventricles in contrast to the HV group (post hoc test (Bonferroni) P PTSD and HV group (post hoc test (Bonferroni) P PTSD, in the temporal lobe in 1 of the 9 patients, and in the caudate nucleus in 5 of the 9 patients. In 2 cases, additional hypometabolism was observed in the posterior cingulate cortex and in the parietal and frontal lobes. The findings from this study show that TR-PTSD might have a deleterious influence on a set of specific brain structures. This study also demonstrated that PET combined with MRI is sensitive in detecting possible metabolic and structural brain changes in TR-PTSD.

  19. The effect of duration of illness and antipsychotics on subcortical volumes in schizophrenia: Analysis of 778 subjects

    Directory of Open Access Journals (Sweden)

    Naoki Hashimoto

    2018-01-01

    Discussion: A large sample size, uniform data collection methodology and robust statistical analysis are strengths of the current study. This result suggests that we need special attention to discuss about relationship between subcortical regional brain volumes and pathophysiology of schizophrenia because regional brain volumes may be affected by antipsychotic medication.

  20. Human midsagittal brain shape variation: patterns, allometry and integration

    Science.gov (United States)

    Bruner, Emiliano; Martin-Loeches, Manuel; Colom, Roberto

    2010-01-01

    Midsagittal cerebral morphology provides a homologous geometrical reference for brain shape and cortical vs. subcortical spatial relationships. In this study, midsagittal brain shape variation is investigated in a sample of 102 humans, in order to describe and quantify the major patterns of correlation between morphological features, the effect of size and sex on general anatomy, and the degree of integration between different cortical and subcortical areas. The only evident pattern of covariation was associated with fronto-parietal cortical bulging. The allometric component was weak for the cortical profile, but more robust for the posterior subcortical areas. Apparent sex differences were evidenced in size but not in brain shape. Cortical and subcortical elements displayed scarcely integrated changes, suggesting a modular separation between these two areas. However, a certain correlation was found between posterior subcortical and parietal cortical variations. These results should be directly integrated with information ranging from functional craniology to wiring organization, and with hypotheses linking brain shape and the mechanical properties of neurons during morphogenesis. PMID:20345859

  1. Structural Brain Imaging of Long-Term Anabolic-Androgenic Steroid Users and Nonusing Weightlifters.

    Science.gov (United States)

    Bjørnebekk, Astrid; Walhovd, Kristine B; Jørstad, Marie L; Due-Tønnessen, Paulina; Hullstein, Ingunn R; Fjell, Anders M

    2017-08-15

    Prolonged high-dose anabolic-androgenic steroid (AAS) use has been associated with psychiatric symptoms and cognitive deficits, yet we have almost no knowledge of the long-term consequences of AAS use on the brain. The purpose of this study is to investigate the association between long-term AAS exposure and brain morphometry, including subcortical neuroanatomical volumes and regional cortical thickness. Male AAS users and weightlifters with no experience with AASs or any other equivalent doping substances underwent structural magnetic resonance imaging scans of the brain. The current paper is based upon high-resolution structural T1-weighted images from 82 current or past AAS users exceeding 1 year of cumulative AAS use and 68 non-AAS-using weightlifters. Images were processed with the FreeSurfer software to compare neuroanatomical volumes and cerebral cortical thickness between the groups. Compared to non-AAS-using weightlifters, the AAS group had thinner cortex in widespread regions and significantly smaller neuroanatomical volumes, including total gray matter, cerebral cortex, and putamen. Both volumetric and thickness effects remained relatively stable across different AAS subsamples comprising various degrees of exposure to AASs and also when excluding participants with previous and current non-AAS drug abuse. The effects could not be explained by differences in verbal IQ, intracranial volume, anxiety/depression, or attention or behavioral problems. This large-scale systematic investigation of AAS use on brain structure shows negative correlations between AAS use and brain volume and cortical thickness. Although the findings are correlational, they may serve to raise concern about the long-term consequences of AAS use on structural features of the brain. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  2. Stimulation of the bilateral anterior nuclei of the thalamus in the treatment of refractory epilepsy: two cases of subcortical band heterotopia.

    Science.gov (United States)

    Franco, Ana; Pimentel, José; Campos, Alexandre Rainha; Morgado, Carlos; Pinelo, Sara; Ferreira, António Gonçalves; Bentes, Carla

    2016-12-01

    Subcortical band heterotopia is a neuronal migration disorder that may cause refractory epilepsy. In these patients, resective surgery has yielded inadequate results. Deep brain stimulation of the anterior nuclei of the thalamus has been used for the treatment of refractory epilepsy with good results. We describe the first two patients with subcortical band heterotopia who were submitted to deep brain stimulation of the anterior nuclei of the thalamus, with evaluation of seizure outcome after 12 and 18 months of follow-up. At these times, both showed a >50% decrease in seizure frequency and an increase in seizure freedom. Both patients had a depressive syndrome after surgery that responded fully to anti-depressive medication in one patient and partly in the other. In both, deep brain stimulation of the anterior nuclei of the thalamus was associated with good seizure outcome. This procedure can therefore be considered in the treatment of patients with subcortical band heterotopia and refractory epilepsy. Depression may be a transient adverse event of the surgery or stimulation, however, its aetiology is probably multifactorial.

  3. Changes of brain structure in Parkinson's disease patients with mild cognitive impairment analyzed via VBM technology.

    Science.gov (United States)

    Gao, Yuyuan; Nie, Kun; Huang, Biao; Mei, Mingjin; Guo, Manli; Xie, Sifen; Huang, Zhiheng; Wang, Limin; Zhao, Jiehao; Zhang, Yuhu; Wang, Lijuan

    2017-09-29

    To analyze changes in cerebral grey matter volume and white matter density in non-dementia Parkinson's disease patients using voxel-based morphometry (VBM) technology; to investigate features of brain structure changes in Parkinson's disease patients with mild cognitive impairment (PD-MCI), and reveal their intrinsic pathological changes. Based on the diagnostic criteria of PD-MCI, 23 PD-MCI patients, 23 Parkinson's disease patients with normal cognition (PD-NC), and 21 age- and gender-matched healthy people were recruited for the study. Scans were performed on all subjects on a 3.0T MR scanner to obtain brain structural magnetic resonance images. Images were preprocessed using the VBM8 tool from SPM8 software package on the Matlab R2008a platform, and data were then analyzed using the SPM statistical software package to compare the differences of grey matter volume and white matter density between groups, and to evaluate the brain structural changes corresponding to the overall cognitive function. Compared to the control group, the PD-NC group suffered from grey matter atrophy, mainly found in the prefrontal lobe, limbic lobe and left temporal gyrus. The PD-MCI group suffered from grey matter atrophy found in the frontal lobe, limbic lobe, basal ganglia and cerebellum. Compared to the PD-NC group, the PD-MCI group suffered from grey matter atrophy found in the left-side middle temporal gyrus, inferior temporal gyrus and frontal lobe. The grey matter regions correlated with MMSE score (mainly memory related) including the right cingulate gyrus and the limbic lobe. The grey matter regions correlated with MoCA score (mainly non-memory related) including the frontal lobe, basal ganglia, parahippocampal gyrus, occipital lobe and the cerebellum. Additionally, overall cognitive function in non-dementia PD was mainly located in the frontal and limbic system, and was dominated by subcortical atrophy. Structural changes in PD-MCI patients are associated with overall

  4. [A Case of Amusia Following Right Temporal Subcortical Hemorrhage].

    Science.gov (United States)

    Nagayoshi, Narumi; Arai, Takao; Tanno, Maiko; Watanabe, Motoi; Suzuki, Tadashi; Akasaki, Yasuharu; Murayama, Yuichi

    2017-07-01

    A woman in her 60s presented with amusia due to a localized subcortical hemorrhage of the right temporal lobe. No other symptoms of higher brain dysfunction or body paralysis were observed. One characteristic symptom in this case was rhythm impairment. Few cases of this impairment have been previously reported, and the responsible lesion and underlying mechanisms are still a matter of speculation. However, in this case, a relationship with the right temporal lobe was indicated.

  5. Clinical impact of anatomo-functional evaluation of brain function during brain tumor surgery

    International Nuclear Information System (INIS)

    Mikuni, Nobuhiro; Kikuchi, Takayuki; Matsumoto, Atsushi; Yokoyama, Yohei; Takahashi, Jun; Hashimoto, Nobuo

    2009-01-01

    To attempt to improve surgical outcome of brain surgery, clinical significance of anatomo-functional evaluation of brain function during resection of brain tumors was assessed. Seventy four patients with glioma located near eloquent areas underwent surgery while awake. Intraoperative tractography-integrated functional neuronavigation and cortical/subcortical electrical stimulation were correlated with clinical symptoms during and after resection of tumors. Cortical functional areas were safely removed with negative electric stimulation and eloquent cortices could be removed in some circumstances. Subcortical functional mapping was difficult except for motor function. Studying cortical functional compensation allows more extensive removal of brain tumors located in the eloquent areas. (author)

  6. Frontal-subcortical volumetric deficits in single episode, medication-naïve depressed patients and the effects of 8 weeks fluoxetine treatment: a VBM-DARTEL study.

    Directory of Open Access Journals (Sweden)

    Lingtao Kong

    Full Text Available BACKGROUND: Convergent studies suggest that morphological abnormalities of frontal-subcortical circuits which involved with emotional and cognitive processing may contribute to the pathophysiology of major depressive disorder (MDD. Antidepressant treatment which has been reported to reverse the functional abnormalities of frontal-subcortical circuits in MDD may have treating effects to related brain morphological abnormalities. In this study, we used voxel-based morphometry method to investigate whole brain structural abnormalities in single episode, medication-naïve MDD patients. Furthermore, we investigated the effects of an 8 weeks pharmacotherapy with fluoxetine. METHODS: 28 single episode, medication-naïve MDD participants and 28 healthy controls (HC acquired the baseline high-resolution structural magnetic resonance imaging (sMRI scan. 24 MDD participants acquired a follow-up sMRI scan after 8 weeks antidepressant treatment. Gray matter volumetric (GMV difference between groups was examined. RESULTS: Medication-naïve MDD had significantly decreased GMV in the right dorsolateral prefrontal cortex and left middle frontal gyrus as well as increased GMV in the left thalamus and right insula compared to HC (P<0.05, corrected. Moreover, treated MDD had significantly increased GMV in the left middle frontal gyrus and right orbitofrontal cortex compared to HC (P<0.05, corrected. No difference on GMV was detected between medication-naïve MDD group and treated MDD group. CONCLUSIONS: This study of single episode, medication-naïve MDD subjects demonstrated structural abnormalities of frontal-subcortical circuitsin the early stage of MDD and the effects of 8 weeks successful antidepressant treatment, suggesting these abnormalities may play an important role in the neuropathophysiology of MDD at its onset.

  7. Advanced structural multimodal imaging of a patient with subcortical band heterotopia.

    Science.gov (United States)

    Kini, Lohith G; Nasrallah, Ilya M; Coto, Carlos; Ferraro, Lindsay C; Davis, Kathryn A

    2016-12-01

    Subcortical band heterotopia (SBH) is a disorder of neuronal migration most commonly due to mutations of the Doublecortin (DCX) gene. A range of phenotypes is seen, with most patients having some degree of epilepsy and intellectual disability. Advanced diffusion and structural magnetic resonance imaging (MRI) sequences may be useful in identifying heterotopias and dysplasias of different sizes in drug-resistant epilepsy. We describe a patient with SBH and drug-resistant epilepsy and investigate neurite density, neurite dispersion, and diffusion parameters as compared to a healthy control through the use of multiple advanced MRI modalities. Neurite density and dispersion in heterotopia was found to be more similar to white matter than gray matter. Neurite density and dispersion maps obtained using diffusion imaging may be able to better characterize different subtypes of heterotopia.

  8. Spontaneous Slow Fluctuation of EEG Alpha Rhythm Reflects Activity in Deep-Brain Structures: A Simultaneous EEG-fMRI Study.

    Directory of Open Access Journals (Sweden)

    Kei Omata

    Full Text Available The emergence of the occipital alpha rhythm on brain electroencephalogram (EEG is associated with brain activity in the cerebral neocortex and deep brain structures. To further understand the mechanisms of alpha rhythm power fluctuation, we performed simultaneous EEGs and functional magnetic resonance imaging recordings in human subjects during a resting state and explored the dynamic relationship between alpha power fluctuation and blood oxygenation level-dependent (BOLD signals of the brain. Based on the frequency characteristics of the alpha power time series (APTS during 20-minute EEG recordings, we divided the APTS into two components: fast fluctuation (0.04-0.167 Hz and slow fluctuation (0-0.04 Hz. Analysis of the correlation between the MRI signal and each component revealed that the slow fluctuation component of alpha power was positively correlated with BOLD signal changes in the brain stem and the medial part of the thalamus and anterior cingulate cortex, while the fast fluctuation component was correlated with the lateral part of the thalamus and the anterior cingulate cortex, but not the brain stem. In summary, these data suggest that different subcortical structures contribute to slow and fast modulations of alpha spectra on brain EEG.

  9. Enhanced prefrontal functional–structural networks to support postural control deficits after traumatic brain injury in a pediatric population

    Directory of Open Access Journals (Sweden)

    Ibai Diez

    2017-06-01

    Full Text Available Traumatic brain injury (TBI affects structural connectivity, triggering the reorganization of structural–functional circuits in a manner that remains poorly understood. We focus here on brain network reorganization in relation to postural control deficits after TBI. We enrolled young participants who had suffered moderate to severe TBI, comparing them to young, typically developing control participants. TBI patients (but not controls recruited prefrontal regions to interact with two separated networks: (1 a subcortical network, including parts of the motor network, basal ganglia, cerebellum, hippocampus, amygdala, posterior cingulate gyrus, and precuneus; and (2 a task-positive network, involving regions of the dorsal attention system, together with dorsolateral and ventrolateral prefrontal regions. We also found that the increased prefrontal connectivity in TBI patients was correlated with some postural control indices, such as the amount of body sway, whereby patients with worse balance increased their connectivity in frontal regions more strongly. The increased prefrontal connectivity found in TBI patients may provide the structural scaffolding for stronger cognitive control of certain behavioral functions, consistent with the observations that various motor tasks are performed less automatically following TBI and that more cognitive control is associated with such actions. Using a new hierarchical atlas whose modules are relevant for both structure and function, we found increased structural and functional connectivity in prefrontal regions in TBI patients as compared to controls, in addition to a general pattern of overall decreased connectivity across the TBI brain. Although this increased prefrontal connectivity reflected interactions between brain areas when participants were at rest, the enhanced connectivity was found to be negatively correlated with active behavior such as postural control performance. Thus our findings, obtained

  10. Relationship between extent of brain hypoperfused area and functional outcome in patients with a small subcortical infarction

    International Nuclear Information System (INIS)

    Isaka, Yoshinari; Imaizumi, Masatoshi; Ashida, Keiichi; Nakayama, Hirofumi; Iiji, Osamu; Itoi, Yoshihito; Furukawa, Toshiyuki

    1992-01-01

    We performed 123 I-IMP single photon emission computed tomography (SPECT) in 43 patients who had a small infarction ( 2 =29.3; p 123 I-IMP SPECT in patients with a small infarction may discriminate lacunar infarction from embolic or hemodynamic infarction, which was caused by vascular lesions of major cerebral arteries, in subcortical area. Our study suggests that functional outcome is better in lacunar infarction than embolic or hemodynamic infarction in subcortical area. (author)

  11. Use of Anisotropy, 3D Segmented Atlas, and Computational Analysis to Identify Gray Matter Subcortical Lesions Common to Concussive Injury from Different Sites on the Cortex.

    Directory of Open Access Journals (Sweden)

    Praveen Kulkarni

    Full Text Available Traumatic brain injury (TBI can occur anywhere along the cortical mantel. While the cortical contusions may be random and disparate in their locations, the clinical outcomes are often similar and difficult to explain. Thus a question that arises is, do concussions at different sites on the cortex affect similar subcortical brain regions? To address this question we used a fluid percussion model to concuss the right caudal or rostral cortices in rats. Five days later, diffusion tensor MRI data were acquired for indices of anisotropy (IA for use in a novel method of analysis to detect changes in gray matter microarchitecture. IA values from over 20,000 voxels were registered into a 3D segmented, annotated rat atlas covering 150 brain areas. Comparisons between left and right hemispheres revealed a small population of subcortical sites with altered IA values. Rostral and caudal concussions were of striking similarity in the impacted subcortical locations, particularly the central nucleus of the amygdala, laterodorsal thalamus, and hippocampal complex. Subsequent immunohistochemical analysis of these sites showed significant neuroinflammation. This study presents three significant findings that advance our understanding and evaluation of TBI: 1 the introduction of a new method to identify highly localized disturbances in discrete gray matter, subcortical brain nuclei without postmortem histology, 2 the use of this method to demonstrate that separate injuries to the rostral and caudal cortex produce the same subcortical, disturbances, and 3 the central nucleus of the amygdala, critical in the regulation of emotion, is vulnerable to concussion.

  12. Relations among prospective memory, cognitive abilities, and brain structure in adolescents who vary in prenatal drug exposure.

    Science.gov (United States)

    Robey, Alison; Buckingham-Howes, Stacy; Salmeron, Betty Jo; Black, Maureen M; Riggins, Tracy

    2014-11-01

    This investigation examined how prospective memory (PM) relates to cognitive abilities (i.e., executive function, attention, working memory, and retrospective memory) and brain structure in adolescents who vary in prenatal drug exposure (PDE). The sample consisted of 105 (55 female and 50 male) urban, primarily African American adolescents (mean age=15.5 years) from low socioeconomic status (SES) families. Approximately 56% (n=59) were prenatally exposed to drugs (heroin and/or cocaine) and 44% (n=46) were not prenatally exposed, but the adolescents were similar in age, gender, race, and SES. Executive functioning, attentional control, working memory, retrospective memory, and overall cognitive ability were assessed by validated performance measures. Executive functioning was also measured by caregiver report. A subset of 52 adolescents completed MRI (magnetic resonance imaging) scans, which provided measures of subcortical gray matter volumes and thickness of prefrontal, parietal, and temporal cortices. Results revealed no differences in PM performance by PDE status, even after adjusting for age and IQ. Executive function, retrospective memory, cortical thickness in frontal and parietal regions, and volume of subcortical regions (i.e., putamen and hippocampus) were related to PM performance in the sample overall, even after adjusting for age, IQ, and total gray matter volume. Findings suggest that variations in PM ability during adolescence are robustly related to individual differences in cognitive abilities, in particular executive function and retrospective memory, and brain structure, but do not vary by PDE status. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Automated delineation of brain structures in patients undergoing radiotherapy for primary brain tumors: From atlas to dose–volume histograms

    International Nuclear Information System (INIS)

    Conson, Manuel; Cella, Laura; Pacelli, Roberto; Comerci, Marco; Liuzzi, Raffaele; Salvatore, Marco; Quarantelli, Mario

    2014-01-01

    Purpose: To implement and evaluate a magnetic resonance imaging atlas-based automated segmentation (MRI-ABAS) procedure for cortical and sub-cortical grey matter areas definition, suitable for dose-distribution analyses in brain tumor patients undergoing radiotherapy (RT). Patients and methods: 3T-MRI scans performed before RT in ten brain tumor patients were used. The MRI-ABAS procedure consists of grey matter classification and atlas-based regions of interest definition. The Simultaneous Truth and Performance Level Estimation (STAPLE) algorithm was applied to structures manually delineated by four experts to generate the standard reference. Performance was assessed comparing multiple geometrical metrics (including Dice Similarity Coefficient – DSC). Dosimetric parameters from dose–volume-histograms were also generated and compared. Results: Compared with manual delineation, MRI-ABAS showed excellent reproducibility [median DSC ABAS = 1 (95% CI, 0.97–1.0) vs. DSC MANUAL = 0.90 (0.73–0.98)], acceptable accuracy [DSC ABAS = 0.81 (0.68–0.94) vs. DSC MANUAL = 0.90 (0.76–0.98)], and an overall 90% reduction in delineation time. Dosimetric parameters obtained using MRI-ABAS were comparable with those obtained by manual contouring. Conclusions: The speed, reproducibility, and robustness of the process make MRI-ABAS a valuable tool for investigating radiation dose–volume effects in non-target brain structures providing additional standardized data without additional time-consuming procedures

  14. Early changes in brain structure correlate with language outcomes in children with neonatal encephalopathy.

    Science.gov (United States)

    Shapiro, Kevin A; Kim, Hosung; Mandelli, Maria Luisa; Rogers, Elizabeth E; Gano, Dawn; Ferriero, Donna M; Barkovich, A James; Gorno-Tempini, Maria Luisa; Glass, Hannah C; Xu, Duan

    2017-01-01

    Global patterns of brain injury correlate with motor, cognitive, and language outcomes in survivors of neonatal encephalopathy (NE). However, it is still unclear whether local changes in brain structure predict specific deficits. We therefore examined whether differences in brain structure at 6 months of age are associated with neurodevelopmental outcomes in this population. We enrolled 32 children with NE, performed structural brain MR imaging at 6 months, and assessed neurodevelopmental outcomes at 30 months. All subjects underwent T1-weighted imaging at 3 T using a 3D IR-SPGR sequence. Images were normalized in intensity and nonlinearly registered to a template constructed specifically for this population, creating a deformation field map. We then used deformation based morphometry (DBM) to correlate variation in the local volume of gray and white matter with composite scores on the Bayley Scales of Infant and Toddler Development (Bayley-III) at 30 months. Our general linear model included gestational age, sex, birth weight, and treatment with hypothermia as covariates. Regional brain volume was significantly associated with language scores, particularly in perisylvian cortical regions including the left supramarginal gyrus, posterior superior and middle temporal gyri, and right insula, as well as inferior frontoparietal subcortical white matter. We did not find significant correlations between regional brain volume and motor or cognitive scale scores. We conclude that, in children with a history of NE, local changes in the volume of perisylvian gray and white matter at 6 months are correlated with language outcome at 30 months. Quantitative measures of brain volume on early MRI may help identify infants at risk for poor language outcomes.

  15. Early changes in brain structure correlate with language outcomes in children with neonatal encephalopathy

    Directory of Open Access Journals (Sweden)

    Kevin A. Shapiro

    2017-01-01

    Full Text Available Global patterns of brain injury correlate with motor, cognitive, and language outcomes in survivors of neonatal encephalopathy (NE. However, it is still unclear whether local changes in brain structure predict specific deficits. We therefore examined whether differences in brain structure at 6 months of age are associated with neurodevelopmental outcomes in this population. We enrolled 32 children with NE, performed structural brain MR imaging at 6 months, and assessed neurodevelopmental outcomes at 30 months. All subjects underwent T1-weighted imaging at 3 T using a 3D IR-SPGR sequence. Images were normalized in intensity and nonlinearly registered to a template constructed specifically for this population, creating a deformation field map. We then used deformation based morphometry (DBM to correlate variation in the local volume of gray and white matter with composite scores on the Bayley Scales of Infant and Toddler Development (Bayley-III at 30 months. Our general linear model included gestational age, sex, birth weight, and treatment with hypothermia as covariates. Regional brain volume was significantly associated with language scores, particularly in perisylvian cortical regions including the left supramarginal gyrus, posterior superior and middle temporal gyri, and right insula, as well as inferior frontoparietal subcortical white matter. We did not find significant correlations between regional brain volume and motor or cognitive scale scores. We conclude that, in children with a history of NE, local changes in the volume of perisylvian gray and white matter at 6 months are correlated with language outcome at 30 months. Quantitative measures of brain volume on early MRI may help identify infants at risk for poor language outcomes.

  16. Assessing cortical and subcortical changes in a western diet mouse model using spectral/Fourier domain OCT (Conference Presentation)

    Science.gov (United States)

    Bernucci, Marcel T.; Norman, Jennifer E.; Merkle, Conrad W.; Aung, Hnin H.; Rutkowsky, Jennifer; Rutledge, John C.; Srinivasan, Vivek J.

    2017-02-01

    The Western diet, causative in the development of atherosclerotic cardiovascular disease, has recently been associated with the development of diffuse white matter disease (WMD) and other subcortical changes. Yet, little is known about the pathophysiological mechanisms by which a high-fat diet can cause WMD. Mechanistic studies of deep brain regions in mice have been challenging due to a lack of non-invasive, high-resolution, and deep imaging technologies. Here we used Optical Coherence Tomography to study mouse cortical/subcortical structures noninvasively and in vivo. To better understand the role of Western Diet in the development of WMD, intensity and Doppler flow OCT images, obtained using a 1300 nm spectral / Fourier domain OCT system, were used to observe the structural and functional alterations in the cortex and corpus callosum of Western Diet and control diet mouse models. Specifically, we applied segmentation to the OCT images to identify the boundaries of the cortex/corpus callosum, and further quantify the layer thicknesses across animals between the two diet groups. Furthermore, microvasculature alterations such as changes in spatiotemporal flow profiles within diving arterioles, arteriole diameter, and collateral tortuosity were analyzed. In the current study, while the arteriole vessel diameters between the two diet groups was comparable, we show that collateral tortuosity was significantly higher in the Western diet group, compared to control diet group, possibly indicating remodeling of brain vasculature due to dietary changes. Moreover, there is evidence showing that the corpus callosum is thinner in Western diet mice, indicative of tissue atrophy.

  17. Measurements of brain microstructure and connectivity with diffusion MRI

    Directory of Open Access Journals (Sweden)

    Ching-Po Lin

    2011-12-01

    Full Text Available By probing direction-dependent diffusivity of water molecules, diffusion MRI has shown its capability to reflect the microstructural tissue status and to estimate the neural orientation and pathways in the living brain. This approach has supplied novel insights into in-vivo human brain connections. By detecting the connection patterns, anatomical architecture and structural integrity between cortical regions or subcortical nuclei in the living human brain can be easily identified. It thus opens a new window on brain connectivity studies and disease processes. During the past years, there is a growing interest in exploring the connectivity patterns of the human brain. Specifically, the utilities of noninvasive neuroimaging data and graph theoretical analysis have provided important insights into the anatomical connections and topological pattern of human brain structural networks in vivo. Here, we review the progress of this important technique and the recent methodological and application studies utilizing graph theoretical approaches on brain structural networks with structural MRI and diffusion MRI.

  18. [Successive subcortical hemorrhages in the superior parietal lobule and postcentral gyrus in a 23-year-old female].

    Science.gov (United States)

    Sato, K; Yoshikawa, H; Komai, K; Takamori, M

    1998-04-01

    We report a non-hypertensive 23-year-old female with successive hemorrhages in parietal subcortical regions. She had first experienced a transient pain in the left upper extremity one month before admission. She noticed dysesthesia in the same limb and weakness on her left hand, and, five days after, visited our hospital because of suddenly developed convulsion in the limb and loss of consciousness for a few minutes. Neurological examination revealed distal dominant flaccid paresis, positive pathological reflex and touch and position sense disturbances in the affected limb. Brain CT detected two high-density areas in the parietal lobe. Brain MRI demonstrated an acute phase subcortical hematoma in the left postcentral gyrus and a subacute phase one in the left superior parietal lobule. SPECT indicated hypoperfusion in the left frontal and parietal cortex. Cerebral angiography showed no abnormal findings. Her symptoms gradually improved, but left ulnar-type pseudoradicular sensory impairment remained on discharge. We considered the hemorrhage in this patient have arisen from rupture of cavernous hemangioma, because she was relatively young, the hematomas were oval in shape and successively developed in the left parietal lobe. Our patient suggests that a subcortical hemorrhage in the post-central gyrus causes flaccid paresis and pyramidal tract involvement.

  19. Subcortical arteriosclerotic encephalopathy (Binswanger disease)

    International Nuclear Information System (INIS)

    Settanni, F.; Dumont, P.; Casella, C.L.; Pascuzzi, L.; Cecilio, S.; Caldas, J.G.

    1992-01-01

    Four patients with variable clinical and tomographic features were diagnosed as having subcortical arteriosclerotic encephalopathy (Binswanger disease). This diagnosis was done based on the presence of subacute progression of focal cerebral deficits, presence of hypertension, systemic vascular disease and dementia. The pathogenesis of subcortical arteriosclerotic encephalopathy is unknown; possible mechanism include diffuse ischemia and fluid transudation with subsequent gliosis related to subacute hypertensive encephalopathy. (author)

  20. 3D fully convolutional networks for subcortical segmentation in MRI: A large-scale study.

    Science.gov (United States)

    Dolz, Jose; Desrosiers, Christian; Ben Ayed, Ismail

    2018-04-15

    This study investigates a 3D and fully convolutional neural network (CNN) for subcortical brain structure segmentation in MRI. 3D CNN architectures have been generally avoided due to their computational and memory requirements during inference. We address the problem via small kernels, allowing deeper architectures. We further model both local and global context by embedding intermediate-layer outputs in the final prediction, which encourages consistency between features extracted at different scales and embeds fine-grained information directly in the segmentation process. Our model is efficiently trained end-to-end on a graphics processing unit (GPU), in a single stage, exploiting the dense inference capabilities of fully CNNs. We performed comprehensive experiments over two publicly available datasets. First, we demonstrate a state-of-the-art performance on the ISBR dataset. Then, we report a large-scale multi-site evaluation over 1112 unregistered subject datasets acquired from 17 different sites (ABIDE dataset), with ages ranging from 7 to 64 years, showing that our method is robust to various acquisition protocols, demographics and clinical factors. Our method yielded segmentations that are highly consistent with a standard atlas-based approach, while running in a fraction of the time needed by atlas-based methods and avoiding registration/normalization steps. This makes it convenient for massive multi-site neuroanatomical imaging studies. To the best of our knowledge, our work is the first to study subcortical structure segmentation on such large-scale and heterogeneous data. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Genetic influences on schizophrenia and subcortical brain volumes: large-scale proof of concept

    NARCIS (Netherlands)

    Franke, Barbara; Stein, Jason L.; Ripke, Stephan; Anttila, Verneri; Hibar, Derrek P.; van Hulzen, Kimm J. E.; Arias-Vasquez, Alejandro; Smoller, Jordan W.; Nichols, Thomas E.; Neale, Michael C.; McIntosh, Andrew M.; Lee, Phil; McMahon, Francis J.; Meyer-Lindenberg, Andreas; Mattheisen, Manuel; Andreassen, Ole A.; Gruber, Oliver; Sachdev, Perminder S.; Roiz-Santiañez, Roberto; Saykin, Andrew J.; Ehrlich, Stefan; Mather, Karen A.; Turner, Jessica A.; Schwarz, Emanuel; Thalamuthu, Anbupalam; Yao, Yin; Ho, Yvonne Y. W.; Martin, Nicholas G.; Wright, Margaret J.; O'Donovan, Michael C.; Thompson, Paul M.; Neale, Benjamin M.; Medland, Sarah E.; Sullivan, Patrick F.; Corvin, Aiden; Walters, James T. R.; Farh, Kai-How; Holmans, Peter A.; Bulik-Sullivan, Brendan; Collier, David A.; Huang, Hailiang; Pers, Tune H.; Agartz, Ingrid; Agerbo, Esben; Albus, Margot; Alexander, Madeline; Amin, Farooq; Bacanu, Silviu A.; Begemann, Martin; Belliveau, Richard A.; Bene, Judit; Bergen, Sarah E.; Bevilacqua, Elizabeth; Bigdeli, Tim B.; Black, Donald W.; Bruggeman, Richard; Buccola, Nancy G.; Buckner, Randy L.; Byerley, William F.; Cahn, Wiepke; Cai, Guiqing; Cairns, Murray J.; Campion, Dominique; Cantor, Rita M.; Carr, Vaughan J.; Carrera, Noa; Catts, Stanley V.; Chambert, Kimberley D.; Chan, Raymond C. K.; Chen, Eric Y. H.; Chen, Ronald Y. L.; Cheng, Wei; Cheung, Eric F. C.; Chong, Siow Ann; Cloninger, C. Robert; Cohen, David; Cohen, Nadine; Cormican, Paul; Craddock, Nick; Crespo-Facorro, Benedicto; Crowley, James J.; Curtis, David; Davidson, Michael; Davis, Kenneth L.; Degenhardt, Franziska; del Favero, Jurgen; DeLisi, Lynn E.; Demontis, Ditte; Dikeos, Dimitris; Dinan, Timothy; Djurovic, Srdjan; Donohoe, Gary; Drapeau, Elodie; Duan, Jubao; Dudbridge, Frank; Eichhammer, Peter; Eriksson, Johan; Escott-Price, Valentina; Essioux, Laurent; Fanous, Ayman H.; Farrell, Martilias S.; Frank, Josef; Franke, Lude; Freedman, Robert; Freimer, Nelson B.; Friedman, Joseph I.; Fromer, Menachem; Genovese, Giulio; Georgieva, Lyudmila; Gershon, Elliot S.; Giegling, Ina; Giusti-Rodríguez, Paola; Godard, Stephanie; Goldstein, Jacqueline I.; Gopal, Srihari; Gratten, Jacob; de Haan, Lieuwe; Hammer, Christian; Hamshere, Marian L.; Hansen, Mark; Hansen, Thomas; Haroutunian, Vahram; Hartmann, Annette M.; Henskens, Frans A.; Herms, Stefan L.; Hirschhorn, Joel N.; Hoffmann, Per; Hofman, Andrea; Hollegaard, Mads V.; Hougaard, David M.; Ikeda, Masashi; Joa, Inge; Julià, Antonio; Kähler, Anna K.; Kahn, René S.; Kalaydjieva, Luba; Karachanak-Yankova, Sena; Karjalainen, Juha; Kavanagh, David; Keller, Matthew C.; Kelly, Brian J.; Kennedy, James L.; Khrunin, Andrey; Kim, Yunjung; Klovins, Janis; Knowles, James A.; Konte, Bettina; Kucinskas, Vaidutis; Kucinskiene, Zita Ausrele; Kuzelova-Ptackova, Hana; Laurent, Claudine; Lee, S. Hong; Keong, Jimmy Lee Chee; Legge, Sophie E.; Lerer, Bernard; Li, Miaoxin; Li, Tao; Liang, Kung-Yee; Lieberman, Jeffrey; Limborska, Svetlana; Lönnqvist, Jouko; Loughland, Carmel M.; Lubinski, Jan; Macek, Milan; Magnusson, Patrik K. E.; Maher, Brion S.; Maier, Wolfgang; Mallet, Jacques; Marsal, Sara; Mattingsdal, Morten; McCarley, Robert W.; McDonald, Colm; Meier, Sandra; Meijer, Carin J.; Melegh, Bela; Melle, Ingrid; Mesholam-Gately, Raquelle I.; Metspalu, Andres; Michie, Patricia T.; Milani, Lili; Milanova, Vihra; Mokrab, Younes; Morris, Derek W.; Mors, Ole; Müller-Myhsok, Bertram; Murphy, Kieran C.; Murray, Robin M.; Myin-Germeys, Inez; Nelis, Mari; Nenadic, Igor; Nertney, Deborah A.; Nestadt, Gerald; Nicodemus, Kristin K.; Nikitina-Zake, Liene; Nisenbaum, Laura; Nordin, Annelie; O'Callaghan, Eadbhard; O'Dushlaine, Colm; O'Neill, F. Anthony; Oh, Sang-Yun; Olincy, Ann; Olsen, Line; van Os, Jim; Pantelis, Christos; Papadimitriou, George N.; Papiol, Sergi; Parkhomenko, Elena; Pato, Michele T.; Paunio, Tiina; Perkins, Diana O.; Pietiläinen, Olli; Pimm, Jonathan; Pocklington, Andrew J.; Powell, John; Price, Alkes; Pulver, Ann E.; Purcell, Shaun M.; Quested, Digby; Rasmussen, Henrik B.; Reichenberg, Abraham; Reimers, Mark A.; Richards, Alexander L.; Roffman, Joshua L.; Roussos, Panos; Ruderfer, Douglas M.; Salomaa, Veikko; Sanders, Alan R.; Schall, Ulrich; Schubert, Christian R.; Schulze, Thomas G.; Schwab, Sibylle G.; Scolnick, Edward M.; Scott, Rodney J.; Seidman, Larry J.; Shi, Jianxin; Silverman, Jeremy M.; Sim, Kang; Slominsky, Petr; So, Hon-Cheong; Söderman, Erik; Spencer, Chris C. A.; Stahl, Eli A.; Stogmann, Elisabeth; Straub, Richard E.; Strengman, Eric; Strohmaier, Jana; Stroup, T. Scott; Subramaniam, Mythily; Suvisaari, Jaana; Svrakic, Dragan M.; Szatkiewicz, Jin P.; Thirumalai, Srinivas; Toncheva, Draga; Tooney, Paul A.; Veijola, Juha; Waddington, John; Walsh, Dermot; Wang, Dai; Wang, Qiang; Webb, Bradley T.; Weiser, Mark; Wildenauer, Dieter B.; Williams, Nigel M.; Williams, Stephanie; Witt, Stephanie H.; Wolen, Aaron R.; Wong, Emily H. M.; Wormley, Brandon K.; Wu, Jing Qin; Xi, Hualin Simon; Zai, Clement C.; Zheng, Xuebin; Zimprich, Fritz; Wray, Naomi R.; Visscher, Peter M.; Adolfsson, Rolf; Blackwood, Douglas H. R.; Børglum, Anders D.; Bramon, Elvira; Buxbaum, Joseph D.; Cichon, Sven; Darvasi, Ariel; Domenici, Enrico; Ehrenreich, Hannelore; Esko, Tõnu; Gejman, Pablo V.; Gill, Michael; Gurling, Hugh; Hultman, Christina M.; Iwata, Nakao; Jablensky, Assen V.; Jönsson, Erik G.; Kendler, Kenneth S.; Kirov, George; Knight, Jo; Lencz, Todd; Levinson, Douglas F.; Li, Qingqin S.; Liu, Jianjun; Malhotra, Anil K.; McCarroll, Steven A.; McQuillin, Andrew; Moran, Jennifer L.; Mortensen, Preben B.; Mowry, Bryan J.; Nöthen, Markus M.; Ophoff, Roel A.; Owen, Michael J.; Palotie, Aarno; Pato, Carlos N.; Petryshen, Tracey L.; Posthuma, Danielle; Rietschel, Marcella; Riley, Brien P.; Rujescu, Dan; Sham, Pak C.; Sklar, Pamela; Clair, David St; Weinberger, Daniel R.; Wendland, Jens R.; Werge, Thomas; Daly, Mark J.; Renteria, Miguel E.; Desrivières, Sylvane; Jahanshad, Neda; Toro, Roberto; Wittfeld, Katharina; Abramovic, Lucija; Andersson, Micael; Aribisala, Benjamin S.; Armstrong, Nicola J.; Bernard, Manon; Bohlken, Marc M.; Boks, Marco P.; Bralten, Janita; Brown, Andrew A.; Chakravarty, M. Mallar; Chen, Qiang; Ching, Christopher R. K.; Cuellar-Partida, Gabriel; den Braber, Anouk; Giddaluru, Sudheer; Goldman, Aaron L.; Grimm, Oliver; Guadalupe, Tulio; Hass, Johanna; Woldehawariat, Girma; Holmes, Avram J.; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Loohuis, Loes M. Olde; Luciano, Michelle; Macare, Christine; Milaneschi, Yuri; Nho, Kwangsik; Papmeyer, Martina; Ramasamy, Adaikalavan; Risacher, Shannon L.; Rose, Emma J.; Salami, Alireza; Sämann, Philipp G.; Schmaal, Lianne; Schork, Andrew J.; Shin, Jean; Strike, Lachlan T.; Teumer, Alexander; van Donkelaar, Marjolein M. J.; van Eijk, Kristel R.; Walters, Raymond K.; Westlye, Lars T.; Whelan, Christopher D.; Winkler, Anderson M.; Zwiers, Marcel P.; Alhusaini, Saud; Athanasiu, Lavinia; Hakobjan, Marina M. H.; Hartberg, Cecilie B.; Haukvik, Unn; Heister, Angelien J. G. A. M.; Höhn, David; Kasperaviciute, Dalia; Liewald, David C. M.; Lopez, Lorna M.; Makkinje, Remco R. R.; Matarin, Mar; Naber, Marlies A. M.; McKay, David R.; Needham, Margaret; Nugent, Allison C.; Pütz, Benno; Royle, Natalie A.; Shen, Li; Sprooten, Emma; Trabzuni, Daniah; van der Marel, Saskia S. L.; Walton, Esther; Wolf, Christiane; Almasy, Laura; Ames, David; Arepalli, Sampath; Assareh, Amelia A.; Bastin, Mark E.; Brodaty, Henry; Bulayeva, Kazima B.; Carless, Melanie A.; Curran, Joanne E.; Czisch, Michael; de Zubicaray, Greig I.; Dillman, Allissa; Duggirala, Ravi; Dyer, Thomas D.; Erk, Susanne; Fedko, Iryna O.; Ferrucci, Luigi; Foroud, Tatiana M.; Fox, Peter T.; Fukunaga, Masaki; Gibbs, Raphael; Göring, Harald H. H.; Green, Robert C.; Guelfi, Sebastian; Hansell, Narelle K.; Hartman, Catharina A.; Hegenscheid, Katrin; Heinz, Andreas; Hernandez, Dena G.; Heslenfeld, Dirk J.; Hoekstra, Pieter J.; Holsboer, Florian; Homuth, Georg; Hottenga, Jouke-Jan; Jack, Clifford R.; Jenkinson, Mark; Johnson, Robert; Kanai, Ryota; Keil, Maria; Kent, Jack W.; Kochunov, Peter; Kwok, John B.; Lawrie, Stephen M.; Liu, Xinmin; Longo, Dan L.; McMahon, Katie L.; Meisenzahl, Eva; Mohnke, Sebastian; Montgomery, Grant W.; Mostert, Jeanette C.; Mühleisen, Thomas W.; Nalls, Michael A.; Nilsson, Lars G.; Ohi, Kazutaka; Olvera, Rene L.; Perez-Iglesias, Rocio; Pike, G. Bruce; Potkin, Steven G.; Reinvang, Ivar; Reppermund, Simone; Romanczuk-Seiferth, Nina; Rosen, Glenn D.; Schnell, Knut; Schofield, Peter R.; Smith, Colin; Steen, Vidar M.; Sussmann, Jessika E.; Toga, Arthur W.; Traynor, Bryan; Troncoso, Juan; Hernández, Maria C. Valdés; van 't Ent, Dennis; van der Brug, Marcel; van der Wee, Nic J. A.; van Tol, Marie-Jose; Veltman, Dick J.; Wassink, Thomas H.; Westman, Eric; Zielke, Ronald H.; Zonderman, Alan; Ashbrook, David G.; Hager, Reinmar; Lu, Lu; Williams, Robert W.; Brunner, Han G.; Buitelaar, Jan K.; Calhoun, Vince D.; Cavalleri, Gianpiero L.; Dale, Anders M.; Davies, Gareth E.; Delanty, Norman; Depondt, Chantal; Drevets, Wayne C.; Espeseth, Thomas; Gollub, Randy L.; Ho, Beng-Choon; Hoffmann, Wolfgang; Hosten, Norbert; LeHellard, Stephanie; Nauck, Matthias; Nyberg, Lars; Pandolfo, Massimo; Penninx, Brenda W. J. H.; Sisodiya, Sanjay M.; van Bokhoven, Hans; van Haren, Neeltje E. M.; Völzke, Henry; Walter, Henrik; Weiner, Michael W.; Wen, Wei; White, Tonya; Blangero, John; Boomsma, Dorret I.; Brouwer, Rachel M.; Cannon, Dara M.; Cookson, Mark R.; de Geus, Eco J. C.; Deary, Ian J.; Fernández, Guillén; Fisher, Simon E.; Francks, Clyde; Glahn, David C.; Grabe, Hans J.; Hardy, John; Hashimoto, Ryota; Hulshoff Pol, Hilleke E.; Kloszewska, Iwona; Lovestone, Simon; Mattay, Venkata S.; Mecocci, Patrizia; Paus, Tomas; Pausova, Zdenka; Ryten, Mina; Simmons, Andy; Singleton, Andrew; Soininen, Hilkka; Wardlaw, Joanna M.; Weale, Michael E.; Adams, Hieab H. H.; Launer, Lenore J.; Seiler, Stephan; Schmidt, Reinhold; Chauhan, Ganesh; Satizabal, Claudia L.; Becker, James T.; Yanek, Lisa; van der Lee, Sven J.; Ebling, Maritza; Fischl, Bruce; Longstreth, W. T.; Greve, Douglas; Schmidt, Helena; Nyquist, Paul; Vinke, Louis N.; van Duijn, Cornelia M.; Luting, Xue; Mazoyer, Bernard; Bis, Joshua C.; Gudnason, Vilmundur; Seshadri, Sudha; Ikram, M. Arfan; Schumann, Gunter

    2016-01-01

    Schizophrenia is a devastating psychiatric illness with high heritability. Brain structure and function differ, on average, between people with schizophrenia and healthy individuals. As common genetic associations are emerging for both schizophrenia and brain imaging phenotypes, we can now use

  2. Developmental Changes in Brain Network Hub Connectivity in Late Adolescence.

    Science.gov (United States)

    Baker, Simon T E; Lubman, Dan I; Yücel, Murat; Allen, Nicholas B; Whittle, Sarah; Fulcher, Ben D; Zalesky, Andrew; Fornito, Alex

    2015-06-17

    The human brain undergoes substantial development throughout adolescence and into early adulthood. This maturational process is thought to include the refinement of connectivity between putative connectivity hub regions of the brain, which collectively form a dense core that enhances the functional integration of anatomically distributed, and functionally specialized, neural systems. Here, we used longitudinal diffusion magnetic resonance imaging to characterize changes in connectivity between 80 cortical and subcortical anatomical regions over a 2 year period in 31 adolescents between the ages of 15 and 19 years. Connectome-wide analysis indicated that only a small subset of connections showed evidence of statistically significant developmental change over the study period, with 8% and 6% of connections demonstrating decreased and increased structural connectivity, respectively. Nonetheless, these connections linked 93% and 90% of the 80 regions, respectively, pointing to a selective, yet anatomically distributed pattern of developmental changes that involves most of the brain. Hub regions showed a distinct tendency to be highly connected to each other, indicating robust "rich-club" organization. Moreover, connectivity between hubs was disproportionately influenced by development, such that connectivity between subcortical hubs decreased over time, whereas frontal-subcortical and frontal-parietal hub-hub connectivity increased over time. These findings suggest that late adolescence is characterized by selective, yet significant remodeling of hub-hub connectivity, with the topological organization of hubs shifting emphasis from subcortical hubs in favor of an increasingly prominent role for frontal hub regions. Copyright © 2015 the authors 0270-6474/15/359078-10$15.00/0.

  3. Gray matter volume changes in chronic subcortical stroke: A cross-sectional study

    Directory of Open Access Journals (Sweden)

    Qingqing Diao

    2017-01-01

    Full Text Available This study aimed to investigate the effects of lesion side and degree of motor recovery on gray matter volume (GMV difference relative to healthy controls in right-handed subcortical stroke. Structural MRI data were collected in 97 patients with chronic subcortical ischemic stroke and 79 healthy controls. Voxel-wise GMV analysis was used to investigate the effects of lesion side and degree of motor recovery on GMV difference in right-handed chronic subcortical stroke patients. Compared with healthy controls, right-lesion patients demonstrated GMV increase (P < 0.05, voxel-wise false discovery rate correction in the bilateral paracentral lobule (PCL and supplementary motor area (SMA and the right middle occipital gyrus (MOG; while left-lesion patients did not exhibit GMV difference under the same threshold. Patients with complete and partial motor recovery showed similar degree of GMV increase in right-lesion patients. However, the motor recovery was correlated with the GMV increase in the bilateral SMA in right-lesion patients. These findings suggest that there exists a lesion-side effect on GMV difference relative to healthy controls in right-handed patients with chronic subcortical stroke. The GMV increase in the SMA may facilitate motor recovery in subcortical stroke patients.

  4. Subcortical grey matter changes in untreated, early stage Parkinson's disease without dementia.

    Science.gov (United States)

    Lee, Hye Mi; Kwon, Kyum-Yil; Kim, Min-Jik; Jang, Ji-Wan; Suh, Sang-Il; Koh, Seong-Beom; Kim, Ji Hyun

    2014-06-01

    Previous MRI studies have investigated cortical or subcortical grey matter changes in patients with Parkinson's disease (PD), yielding inconsistent findings between the studies. We therefore sought to determine whether focal cortical or subcortical grey matter changes may be present from the early disease stage. We recruited 49 untreated, early stage PD patients without dementia and 53 control subjects. Voxel-based morphometry was used to evaluate cortical grey matter changes, and automated volumetry and shape analysis were used to assess volume changes and shape deformation of the subcortical grey matter structures, respectively. Voxel-based morphometry showed neither reductions nor increases in grey matter volume in patients compared to controls. Compared to controls, PD patients had significant reductions in adjusted volumes of putamen, nucleus accumbens, and hippocampus (corrected p grey matter and clinical variables representing disease duration and severity. Our results suggest that untreated, early stage PD without dementia is associated with volume reduction and shape deformation of subcortical grey matter, but not with cortical grey matter reduction. Our findings of structural changes in the posterolateral putamen and ventromedial putamen/nucleus accumbens could provide neuroanatomical basis for the involvement of motor and limbic striatum, further implicating motor and non-motor symptoms in PD, respectively. Early hippocampal involvement might be related to the risk for developing dementia in PD patients. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Subcortical volume and cortical surface architecture in women with acute and remitted anorexia nervosa: An exploratory neuroimaging study.

    Science.gov (United States)

    Miles, Amy E; Voineskos, Aristotle N; French, Leon; Kaplan, Allan S

    2018-04-13

    Anorexia nervosa (AN) is a highly heritable psychiatric disorder characterized by starvation and emaciation and associated with changes in brain structure. The precise nature of these changes remains unclear, as does their developmental time course and capacity for reversal with weight-restoration. In this comprehensive neuroimaging study, we sought to characterize these changes by measuring subcortical volume and cortical surface architecture in women with acute and remitted AN. Structural magnetic resonance imaging data was acquired from underweight women with a current diagnosis of AN (acAN: n = 23), weight-recovered women with a past diagnosis of AN (recAN: n = 24), and female controls (HC: n = 24). Subcortical segmentation and cortical surface reconstruction were performed with FreeSurfer 6.0.0, and group differences in regional volume and vertex-wise, cortex-wide thickness, surface area, and local gyrification index (LGI), a measure of folding, were tested with separate univariate analyses of covariance. Mean hippocampal and thalamic volumes were significantly reduced in acAN participants, as was mean cortical thickness in four frontal and temporal clusters. Mean LGI was significantly reduced in acAN and recAN participants in five frontal and parietal clusters. No significant group differences in cortical surface area were detected. Reductions in subcortical volume, cortical thickness, and right postcentral LGI were unique to women with acute AN, indicating state-dependence and pointing towards cellular remodeling and sulcal widening as consequences of disease manifestation. Reductions in bilateral frontal LGI were observed in women with acute and remitted AN, suggesting a role of atypical neurodevelopment in disease vulnerability. Copyright © 2018. Published by Elsevier Ltd.

  6. An unusual case of cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy with occipital lobe involvement.

    Science.gov (United States)

    Trikamji, Bhavesh; Thomas, Mariam; Hathout, Gasser; Mishra, Shrikant

    2016-01-01

    Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is an autosomal dominant angiopathy caused by a mutation in the notch 3 gene on chromosome 19. Clinically, patients may be asymptomatic or can present with recurrent ischemic episodes and strokes leading to dementia, depression, pseudobulbar palsy, and hemi- or quadraplegia. Additional manifestations that have been described include migraine (mostly with aura), psychiatric disturbances, and epileptic seizures. Neuroimaging is essential to the diagnosis of CADASIL. On imaging CADASIL is characterized by symmetric involvement by confluent lesions located subcortically in the frontal and temporal lobes as well as in the insula, periventricularly, in the centrum semiovale, in the internal and external capsule, basal ganglia, and brain stem; with relative sparing of the fronto-orbital and the occipital subcortical regions. We describe a 49 year old male with CADASIL with absence of temporal lobe findings on MRI but predominant lesions within the periventricular white matter, occipital lobes with extension into the subcortical frontal lobes, corpus callosum and cerebellar white matter. Although CADASIL characteristically presents with anterior temporal lobe involvement, these findings may be absent and our case addresses the atypical imaging findings in CADASIL.

  7. An unusual case of cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy with occipital lobe involvement

    Directory of Open Access Journals (Sweden)

    Bhavesh Trikamji

    2016-01-01

    Full Text Available Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL is an autosomal dominant angiopathy caused by a mutation in the notch 3 gene on chromosome 19. Clinically, patients may be asymptomatic or can present with recurrent ischemic episodes and strokes leading to dementia, depression, pseudobulbar palsy, and hemi- or quadraplegia. Additional manifestations that have been described include migraine (mostly with aura, psychiatric disturbances, and epileptic seizures. Neuroimaging is essential to the diagnosis of CADASIL. On imaging CADASIL is characterized by symmetric involvement by confluent lesions located subcortically in the frontal and temporal lobes as well as in the insula, periventricularly, in the centrum semiovale, in the internal and external capsule, basal ganglia, and brain stem; with relative sparing of the fronto-orbital and the occipital subcortical regions. We describe a 49 year old male with CADASIL with absence of temporal lobe findings on MRI but predominant lesions within the periventricular white matter, occipital lobes with extension into the subcortical frontal lobes, corpus callosum and cerebellar white matter. Although CADASIL characteristically presents with anterior temporal lobe involvement, these findings may be absent and our case addresses the atypical imaging findings in CADASIL.

  8. Radiological diagnosis of periventricular and subcortical leukomalacia

    Energy Technology Data Exchange (ETDEWEB)

    Taboada, D.; Alonso, A.; Olague, R.; Mulas, F.; Andres, V.

    1980-08-01

    Nine newborn infants with histories of perinatal asphyxia are presented. The pneumoencephalographic findings which led to the diagnosis are typical and constant. They include marked subcortical atrophy with rounded, dilated, and undisplaced lateral ventricles. Cystography with 3 cc of air demonstrated multiple subcortical and paraventricular cavities, without communication with the ventricular system, but with the typical honeycomb appearance of paraventricular and subcortical leukomalacia described in postmortem findings. The CT findings are typical, and provide the location of the cavities as well as their density.

  9. Delayed convergence between brain network structure and function in rolandic epilepsy

    Directory of Open Access Journals (Sweden)

    Rene MH Besseling

    2014-09-01

    Full Text Available Introduction Rolandic epilepsy (RE manifests during a critical phase of brain development, and has been associated with language impairments. Concordant abnormalities in structural and functional connectivity (SC and FC have been described before. As SC and FC are under mutual influence, the current study investigates abnormalities in the SC-FC synergy in RE. Methods Twenty-two children with RE (age, mean±SD: 11.3±2.0 y and 22 healthy controls (age 10.5±1.6 y underwent structural, diffusion weighted, and functional MRI at 3T. The probabilistic anatomical landmarks atlas was used to parcellate the (subcortical gray matter. Constrained spherical deconvolution tractography and correlation of time series were used to assess SC and FC, respectively. The SC-FC correlation was assessed as a function of age for the non-zero structural connections over a range of sparsity values (0.01-0.75. A modularity analysis was performed on the mean SC network of the controls to localize potential global effects to subnetworks. SC and FC were also assessed separately using graph analysis.Results The SC-FC correlation was significantly reduced in children with RE compared to healthy controls, especially for the youngest participants. This effect was most pronounced in a left and a right centro-temporal network, as well as in a medial parietal network. Graph analysis revealed no prominent abnormalities in SC or FC network organization.Conclusion Since SC and FC converge during normal maturation, our finding of reduced SC-FC correlation illustrates impaired synergy between brain structure and function. More specifically, since this effect was most pronounced in the youngest participants, RE may represent a developmental disorder of delayed brain network maturation. The observed effects seem especially attributable to medial parietal connections, which forms an intermediate between bilateral centro-temporal modules of epileptiform activity, and bear relevance for

  10. 3D atlas of brain connections and functional circuits

    Science.gov (United States)

    Pan, Jinghong; Nowinski, Wieslaw L.; Fock, Loe K.; Dow, Douglas E.; Chuan, Teh H.

    1997-05-01

    This work aims at the construction of an extendable brain atlas system which contains: (i) 3D models of cortical and subcortical structures along with their connections; (ii) visualization and exploration tools; and (iii) structures and connections editors. A 3D version of the Talairach- Tournoux brain atlas along with 3D Brodmann's areas are developed, co-registered, and placed in the Talairach stereotactic space. The initial built-in connections are thalamocortical ones. The structures and connections editors are provided to allow the user to add and modify cerebral structures and connections. Visualization and explorations tools are developed with four ways of exploring the brain connections model: composition, interrogation, navigation and diagnostic queries. The atlas is designed as an open system which can be extended independently in other centers according to their needs and discoveries.

  11. Identification of the pyramidal tract by neuronavigation based on intraoperative magnetic resonance tractography: correlation with subcortical stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Bozzao, Alessandro; Romano, Andrea; Calabria, Luigi Fausto; Coppola, Valeria; Fantozzi, Luigi Maria [University of Rome Sapienza, Department of Neuroradiology, Rome (Italy); Angelini, Albina; D' Andrea, Giancarlo; Mastronardi, Luciano; Ferrante, Luigi [University of Rome Sapienza, Department of Neurosurgery, Rome (Italy)

    2010-10-15

    To demonstrate the accuracy of magnetic resonance tractography (MRT) in localizing the cortical spinal tract (CST) close to brain tumours by using intraoperative electric subcortical stimulation. Nine patients with intra-axial brain tumours underwent neurosurgery. Planning was based on analysis of the course of streamlines compatible with the CST. After tumour removal, intraoperative MRT was reacquired. Sites at various distance from the CST were repeatedly stimulated to assess whether registered motor evoked potential (MEP) could be elicited. All patients were assessed clinically both pre- and postoperatively. The motor function was preserved in all patients. In all patients intraoperative MRT demonstrated shift of the bundle position caused by the surgical procedure. The distance between the estimated intraoperative CST and the point of elicited MEP was 1 cm or less in all nine patients. At distances greater than 2 cm, no patient reported positive MEP. Intraoperative MRT is a reliable technique for localization of CST. In all patients MEP were elicited by direct subcortical electrical stimulation at a distance below 1 cm from the CST as represented by MRT. Brain shifting might impact this evaluation since CST position may change during surgery in the range of 8 mm. (orig.)

  12. Identification of the pyramidal tract by neuronavigation based on intraoperative magnetic resonance tractography: correlation with subcortical stimulation

    International Nuclear Information System (INIS)

    Bozzao, Alessandro; Romano, Andrea; Calabria, Luigi Fausto; Coppola, Valeria; Fantozzi, Luigi Maria; Angelini, Albina; D'Andrea, Giancarlo; Mastronardi, Luciano; Ferrante, Luigi

    2010-01-01

    To demonstrate the accuracy of magnetic resonance tractography (MRT) in localizing the cortical spinal tract (CST) close to brain tumours by using intraoperative electric subcortical stimulation. Nine patients with intra-axial brain tumours underwent neurosurgery. Planning was based on analysis of the course of streamlines compatible with the CST. After tumour removal, intraoperative MRT was reacquired. Sites at various distance from the CST were repeatedly stimulated to assess whether registered motor evoked potential (MEP) could be elicited. All patients were assessed clinically both pre- and postoperatively. The motor function was preserved in all patients. In all patients intraoperative MRT demonstrated shift of the bundle position caused by the surgical procedure. The distance between the estimated intraoperative CST and the point of elicited MEP was 1 cm or less in all nine patients. At distances greater than 2 cm, no patient reported positive MEP. Intraoperative MRT is a reliable technique for localization of CST. In all patients MEP were elicited by direct subcortical electrical stimulation at a distance below 1 cm from the CST as represented by MRT. Brain shifting might impact this evaluation since CST position may change during surgery in the range of 8 mm. (orig.)

  13. Cognition and brain development in children with benign epilepsy with centrotemporal spikes.

    Science.gov (United States)

    Garcia-Ramos, Camille; Jackson, Daren C; Lin, Jack J; Dabbs, Kevin; Jones, Jana E; Hsu, David A; Stafstrom, Carl E; Zawadzki, Lucy; Seidenberg, Michael; Prabhakaran, Vivek; Hermann, Bruce P

    2015-10-01

    Benign epilepsy with centrotemporal spikes (BECTS), the most common focal childhood epilepsy, is associated with subtle abnormalities in cognition and possible developmental alterations in brain structure when compared to healthy participants, as indicated by previous cross-sectional studies. To examine the natural history of BECTS, we investigated cognition, cortical thickness, and subcortical volumes in children with new/recent onset BECTS and healthy controls (HC). Participants were 8-15 years of age, including 24 children with new-onset BECTS and 41 age- and gender-matched HC. At baseline and 2 years later, all participants completed a cognitive assessment, and a subset (13 BECTS, 24 HC) underwent T1 volumetric magnetic resonance imaging (MRI) scans focusing on cortical thickness and subcortical volumes. Baseline cognitive abnormalities associated with BECTS (object naming, verbal learning, arithmetic computation, and psychomotor speed/dexterity) persisted over 2 years, with the rate of cognitive development paralleling that of HC. Baseline neuroimaging revealed thinner cortex in BECTS compared to controls in frontal, temporal, and occipital regions. Longitudinally, HC showed widespread cortical thinning in both hemispheres, whereas BECTS participants showed sparse regions of both cortical thinning and thickening. Analyses of subcortical volumes showed larger left and right putamens persisting over 2 years in BECTS compared to HC. Cognitive and structural brain abnormalities associated with BECTS are present at onset and persist (cognition) and/or evolve (brain structure) over time. Atypical maturation of cortical thickness antecedent to BECTS onset results in early identified abnormalities that continue to develop abnormally over time. However, compared to anatomic development, cognition appears more resistant to further change over time. Wiley Periodicals, Inc. © 2015 International League Against Epilepsy.

  14. Dysfunctional Brain Networking among Autonomic Regulatory Structures in Temporal Lobe Epilepsy Patients at High Risk of Sudden Unexpected Death in Epilepsy

    Directory of Open Access Journals (Sweden)

    Luke A. Allen

    2017-10-01

    Full Text Available BackgroundSudden unexpected death in epilepsy (SUDEP is common among young people with epilepsy. Individuals who are at high risk of SUDEP exhibit regional brain structural and functional connectivity (FC alterations compared with low-risk patients. However, less is known about network-based FC differences among critical cortical and subcortical autonomic regulatory brain structures in temporal lobe epilepsy (TLE patients at high risk of SUDEP.Methods32 TLE patients were risk-stratified according to the following clinical criteria: age of epilepsy onset, duration of epilepsy, frequency of generalized tonic–clonic seizures, and presence of nocturnal seizures, resulting in 14 high-risk and 18 low-risk cases. Resting-state functional magnetic resonance imaging (rs-fMRI signal time courses were extracted from 11 bilateral cortical and subcortical brain regions involved in autonomic and other regulatory processes. After computing all pairwise correlations, FC matrices were analyzed using the network-based statistic. FC strength among the 11 brain regions was compared between the high- and low-risk patients. Increases and decreases in FC were sought, using high-risk > low-risk and low-risk > high-risk contrasts (with covariates age, gender, lateralization of epilepsy, and presence of hippocampal sclerosis.ResultsHigh-risk TLE patients showed a subnetwork with significantly reduced FC (t = 2.5, p = 0.029 involving the thalamus, brain stem, anterior cingulate, putamen and amygdala, and a second subnetwork with significantly elevated FC (t = 2.1, p = 0.031, which extended to medial/orbital frontal cortex, insula, hippocampus, amygdala, subcallosal cortex, brain stem, thalamus, caudate, and putamen.ConclusionTLE patients at high risk of SUDEP showed widespread FC differences between key autonomic regulatory brain regions compared to those at low risk. The altered FC revealed here may help to shed light on the functional

  15. Dysfunctional Brain Networking among Autonomic Regulatory Structures in Temporal Lobe Epilepsy Patients at High Risk of Sudden Unexpected Death in Epilepsy.

    Science.gov (United States)

    Allen, Luke A; Harper, Ronald M; Kumar, Rajesh; Guye, Maxime; Ogren, Jennifer A; Lhatoo, Samden D; Lemieux, Louis; Scott, Catherine A; Vos, Sjoerd B; Rani, Sandhya; Diehl, Beate

    2017-01-01

    Sudden unexpected death in epilepsy (SUDEP) is common among young people with epilepsy. Individuals who are at high risk of SUDEP exhibit regional brain structural and functional connectivity (FC) alterations compared with low-risk patients. However, less is known about network-based FC differences among critical cortical and subcortical autonomic regulatory brain structures in temporal lobe epilepsy (TLE) patients at high risk of SUDEP. 32 TLE patients were risk-stratified according to the following clinical criteria: age of epilepsy onset, duration of epilepsy, frequency of generalized tonic-clonic seizures, and presence of nocturnal seizures, resulting in 14 high-risk and 18 low-risk cases. Resting-state functional magnetic resonance imaging (rs-fMRI) signal time courses were extracted from 11 bilateral cortical and subcortical brain regions involved in autonomic and other regulatory processes. After computing all pairwise correlations, FC matrices were analyzed using the network-based statistic. FC strength among the 11 brain regions was compared between the high- and low-risk patients. Increases and decreases in FC were sought, using high-risk > low-risk and low-risk > high-risk contrasts (with covariates age, gender, lateralization of epilepsy, and presence of hippocampal sclerosis). High-risk TLE patients showed a subnetwork with significantly reduced FC ( t  = 2.5, p  = 0.029) involving the thalamus, brain stem, anterior cingulate, putamen and amygdala, and a second subnetwork with significantly elevated FC ( t  = 2.1, p  = 0.031), which extended to medial/orbital frontal cortex, insula, hippocampus, amygdala, subcallosal cortex, brain stem, thalamus, caudate, and putamen. TLE patients at high risk of SUDEP showed widespread FC differences between key autonomic regulatory brain regions compared to those at low risk. The altered FC revealed here may help to shed light on the functional correlates of autonomic disturbances in epilepsy

  16. Subcortical hyperintensity volumetrics in Alzheimer’s disease and normal elderly in the Sunnybrook Dementia Study: correlations with atrophy, executive function, mental processing speed, and verbal memory

    OpenAIRE

    Ramirez, Joel; McNeely, Alicia A; Scott, Christopher JM; Stuss, Donald T; Black, Sandra E

    2014-01-01

    Introduction Subcortical hyperintensities (SHs) are radiological entities commonly observed on magnetic resonance imaging (MRI) of patients with Alzheimer’s disease (AD) and normal elderly controls. Although the presence of SH is believed to indicate some form of subcortical vasculopathy, pathological heterogeneity, methodological differences, and the contribution of brain atrophy associated with AD pathology have yielded inconsistent results in the literature. Methods Using the Lesion Explor...

  17. Formulaic language in cortical and subcortical disease: Evidence of the dual process model.

    Directory of Open Access Journals (Sweden)

    Kelly Bridges

    2014-04-01

    of formulaic language is at least partially modulated by the intact subcortical region, supporting the dual process model. Subcortical disease: Parkinson’s disease and recited speech Evidence of the involvement of subcortical structures in the production of formulaic language also comes from studies of subcortical injury. An examination of the spontaneous speech of people with basal ganglia stroke found fewer formulaic expressions than healthy adults or people with left hemisphere lesions (Sidtis et al., 2009; Illes et al., 1988. Similarly, a case study of a man post-subcortical stroke described deficits in the ability to recite prayers, a longer form of formulaic language (Speedie et al., 1993. A study of individuals with Parkinson’s disease (PD, a progressive disease causing dysfunction of the basal ganglia circuitry, sought to extend Speedie et al.’s (1993 findings with group data (Bridges et al., 2013b. Two groups of people with PD (M age = 60.9, 6 with deep brain stimulation of the subthalamic nucleus (STN-DBS, and 7 without STN-DBS, and another 7 healthy participants (HC were asked to recite familiar poems, prayers and rhymes (Humpty Dumpty, Twinkle Twinkle Little Star, Mary Had a Little Lamb, Jack and Jill, Roses are Red, Sticks and Stones, The Lord’s Prayer, and The Pledge of Allegiance. Groups were compared for the percent of error words produced (out of all non-target words produced during the task. The STN-DBS group in the OFF condition (a more severe state of subcortical dysfunction produced significantly more error words (37.13% than HCs (17.44%. The STN-DBS group in the ON condition (33.34% and the PD group without STN-DBS (21.53% fell between the STN-DBS OFF condition and HCs. These results provide further support for the dual process model of language production, as individuals with the most severe state of subcortical dysfunction perform poorly on recited speech tasks when compared to healthy adults, indicating the importance of intact

  18. The processing of lexical ambiguity in healthy ageing and Parkinson׳s disease: role of cortico-subcortical networks.

    Science.gov (United States)

    Ketteler, Simon; Ketteler, Daniel; Vohn, René; Kastrau, Frank; Schulz, Jörg B; Reetz, Kathrin; Huber, Walter

    2014-09-18

    Previous neuroimaging studies showed that correct resolution of lexical ambiguity relies on the integrity of prefrontal and inferior parietal cortices. Whereas prefrontal brain areas were associated with executive control over semantic selection, inferior parietal areas were linked with access to modality-independent representations of semantic memory. Yet insufficiently understood is the contribution of subcortical structures in ambiguity processing. Patients with disturbed basal ganglia function such as Parkinson׳s disease (PD) showed development of discourse comprehension deficits evoked by lexical ambiguity. To further investigate the engagement of cortico-subcortical networks functional Magnetic Resonance Imaging (fMRI) was monitored during ambiguity resolution in eight early PD patients without dementia and 14 age- and education-matched controls. Participants were required to relate meanings to a lexically ambiguous target (homonym). Each stimulus consisted of two words arranged on top of a screen, which had to be attributed to a homonym at the bottom. Brain activity was found in bilateral inferior parietal (BA 39), right middle temporal (BA 21/22), left middle frontal (BA 10) and bilateral inferior frontal areas (BA 45/46). Extent and amplitude of activity in the angular gyrus changed depending on semantic association strength that varied between conditions. Less activity in the left caudate was associated with semantic integration deficits in PD. The results of the present study suggest a relationship between subtle language deficits and early stages of basal ganglia dysfunction. Uncovering impairments in ambiguity resolution may be of future use in the neuropsychological assessment of non-motor deficits in PD. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Psychopathic traits are associated with cortical and subcortical volume alterations in healthy individuals.

    Science.gov (United States)

    Vieira, Joana B; Ferreira-Santos, Fernando; Almeida, Pedro R; Barbosa, Fernando; Marques-Teixeira, João; Marsh, Abigail A

    2015-12-01

    Research suggests psychopathy is associated with structural brain alterations that may contribute to the affective and interpersonal deficits frequently observed in individuals with high psychopathic traits. However, the regional alterations related to different components of psychopathy are still unclear. We used voxel-based morphometry to characterize the structural correlates of psychopathy in a sample of 35 healthy adults assessed with the Triarchic Psychopathy Measure. Furthermore, we examined the regional grey matter alterations associated with the components described by the triarchic model. Our results showed that, after accounting for variation in total intracranial volume, age and IQ, overall psychopathy was negatively associated with grey matter volume in the left putamen and amygdala. Additional regression analysis with anatomical regions of interests revealed total triPM score was also associated with increased lateral orbitofrontal cortex (OFC) and caudate volume. Boldness was positively associated with volume in the right insula. Meanness was positively associated with lateral OFC and striatum volume, and negatively associated with amygdala volume. Finally, disinhibition was negatively associated with amygdala volume. Results highlight the contribution of both subcortical and cortical brain alterations for subclinical psychopathy and are discussed in light of prior research and theoretical accounts about the neurobiological bases of psychopathic traits. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  20. Can T1 w/T2 w ratio be used as a myelin-specific measure in subcortical structures? Comparisons between FSE-based T1 w/T2 w ratios, GRASE-based T1 w/T2 w ratios and multi-echo GRASE-based myelin water fractions.

    Science.gov (United States)

    Uddin, Md Nasir; Figley, Teresa D; Marrie, Ruth Ann; Figley, Chase R

    2018-03-01

    Given the growing popularity of T 1 -weighted/T 2 -weighted (T 1 w/T 2 w) ratio measurements, the objective of the current study was to evaluate the concordance between T 1 w/T 2 w ratios obtained using conventional fast spin echo (FSE) versus combined gradient and spin echo (GRASE) sequences for T 2 w image acquisition, and to compare the resulting T 1 w/T 2 w ratios with histologically validated myelin water fraction (MWF) measurements in several subcortical brain structures. In order to compare these measurements across a relatively wide range of myelin concentrations, whole-brain T 1 w magnetization prepared rapid acquisition gradient echo (MPRAGE), T 2 w FSE and three-dimensional multi-echo GRASE data were acquired from 10 participants with multiple sclerosis at 3 T. Then, after high-dimensional, non-linear warping, region of interest (ROI) analyses were performed to compare T 1 w/T 2 w ratios and MWF estimates (across participants and brain regions) in 11 bilateral white matter (WM) and four bilateral subcortical grey matter (SGM) structures extracted from the JHU_MNI_SS 'Eve' atlas. Although the GRASE sequence systematically underestimated T 1 w/T 2 w values compared to the FSE sequence (revealed by Bland-Altman and mountain plots), linear regressions across participants and ROIs revealed consistently high correlations between the two methods (r 2 = 0.62 for all ROIs, r 2 = 0.62 for WM structures and r 2 = 0.73 for SGM structures). However, correlations between either FSE-based or GRASE-based T 1 w/T 2 w ratios and MWFs were extremely low in WM structures (FSE-based, r 2 = 0.000020; GRASE-based, r 2 = 0.0014), low across all ROIs (FSE-based, r 2 = 0.053; GRASE-based, r 2 = 0.029) and moderate in SGM structures (FSE-based, r 2 = 0.20; GRASE-based, r 2 = 0.17). Overall, our findings indicated a high degree of correlation (but not equivalence) between FSE-based and GRASE-based T 1 w/T 2 w ratios, and low correlations between T 1 w/T 2 w ratios and MWFs. This

  1. Acute phencyclidine administration induces c-Fos-immunoreactivity in interneurons in cortical and subcortical regions

    DEFF Research Database (Denmark)

    Hervig, Mona E; Thomsen, Morten S; Kalló, Imre

    2016-01-01

    and thalamus of rats. A single dose of PCP (10mg/kg, s.c.) significantly increased total number of c-Fos-IR in: (1) the prelimbic, infralimbic, anterior cingulate, ventrolateral orbital, motor, somatosensory and retrosplenial cortices as well as the nucleus accumbens (NAc), field CA1 of the hippocampus (CA1......) field of hippocampus and mediodorsal thalamus (MD); (2) PV-IR cells in the ventrolateral orbitofrontal and retrosplenial cortices and CA1 field of hippocampus; and (3) CB-IR cells in the motor cortex. Overall, our data indicate that PCP activates a wide range of cortical and subcortical brain regions...... and subcortical areas, but whether such induction occurs in specific populations of GABAergic interneuron subtypes still remains to be established. We performed an immunohistochemical analysis of the PCP-induced c-Fos-immunoreactivity (IR) in parvalbumin (PV) and calbindin (CB) interneuron subtypes in the cortex...

  2. [Intensity of pentose phosphate metabolism of carbohydrates in various brain areas in normal and starved animals].

    Science.gov (United States)

    Kerimov, B F

    2002-01-01

    The activities of key enzymes of pentose phosphate pathway, glucose-6-phosphate dehydrogenase (G-6 PD) and 6-phosphogluconate dehydrogenase (6-PGD), were studied in cytoplasmatic fractions of brain cortical (limbic, orbital, sensorimotor cortex) and subcortical (myelencefalon, mesencefalon, hypothalamus) structures of rats subjected to starvation for 1, 2, 3, 5 and 7 days. Short-term starvation (1-3 days) caused activation of 6-GPD and 6-PGD both in cortical and subcortical structures. Long-term starvation for 5-7 days caused a decrease of activities of the pentose phosphate pathway enzymes in all studied structures. It is suggested that enzymes of pentose phosphate pathway in nervous tissues are functionally and metabolically related to glutathione system and during starvation they indirectly participate in the regulation lipid peroxidation processes.

  3. Dysphagia Post Subcortical and Supratentorial Stroke.

    Science.gov (United States)

    Wan, Ping; Chen, Xuhui; Zhu, Lequn; Xu, Shuangjin; Huang, Li; Li, Xiangcui; Ye, Qing; Ding, Ruiying

    2016-01-01

    Studies have recognized that the damage in the subcortical and supratentorial regions may affect voluntary and involuntary aspects of the swallowing function. The current study attempted to explore the dysphagia characteristics in patients with subcortical and supratentorial stroke. Twelve post first or second subcortical and supratentorial stroke patients were included in the study. The location of the stroke was ascertained by computed tomography and magnetic resonance imaging. The characteristics of swallowing disorder were assessed by video fluoroscopic swallowing assessment/fiberoptic endoscopic evaluation of swallowing. The following main parameters were analyzed: oral transit time, pharyngeal delay time, presence of cricopharyngeal muscle achalasia (CMA), distance of laryngeal elevation, the amounts of vallecular residue and pyriform sinus residue (PSR), and the extent of pharyngeal contraction. Eighty-three percent of the 12 patients were found suffering from pharyngeal dysphagia, with 50% having 50%-100% PSRs, 50% having pharyngeal delay, and 41.6% cases demonstrating CMA. Simple regression analysis showed PSRs were most strongly associated with CMA. Pharyngeal delay in the study can be caused by infarcts of basal ganglia/thalamus, infarcts of sensory tract, infarcts of swallowing motor pathways in the centrum semiovale, or a combination of the three. Subcortical and supratentorial stroke may result in pharyngeal dysphagia such as PSR and pharyngeal delay. PSR was mainly caused by CMA. Copyright © 2015 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  4. Structural consequences of diffuse traumatic brain injury: A large deformation tensor-based morphometry study

    Science.gov (United States)

    Kim, Junghoon; Avants, Brian; Patel, Sunil; Whyte, John; Coslett, H. Branch; Pluta, John; Detre, John A.; Gee, James C.

    2008-01-01

    Traumatic brain injury (TBI) is one of the most common causes of long-term disability. Despite the importance of identifying neuropathology in individuals with chronic TBI, methodological challenges posed at the stage of inter-subject image registration have hampered previous voxel-based MRI studies from providing a clear pattern of structural atrophy after TBI. We used a novel symmetric diffeomorphic image normalization method to conduct a tensor-based morphometry (TBM) study of TBI. The key advantage of this method is that it simultaneously estimates an optimal template brain and topology preserving deformations between this template and individual subject brains. Detailed patterns of atrophies are then revealed by statistically contrasting control and subject deformations to the template space. Participants were 29 survivors of TBI and 20 control subjects who were matched in terms of age, gender, education, and ethnicity. Localized volume losses were found most prominently in white matter regions and the subcortical nuclei including the thalamus, the midbrain, the corpus callosum, the mid- and posterior cingulate cortices, and the caudate. Significant voxel-wise volume loss clusters were also detected in the cerebellum and the frontal/temporal neocortices. Volume enlargements were identified largely in ventricular regions. A similar pattern of results was observed in a subgroup analysis where we restricted our analysis to the 17 TBI participants who had no macroscopic focal lesions (total lesion volume> 1.5 cm 3). The current study confirms, extends, and partly challenges previous structural MRI studies in chronic TBI. By demonstrating that a large deformation image registration technique can be successfully combined with TBM to identify TBI-induced diffuse structural changes with greater precision, our approach is expected to increase the sensitivity of future studies examining brain-behavior relationships in the TBI population. PMID:17999940

  5. Neural Correlates of Indicators of Sound Change in Cantonese: Evidence from Cortical and Subcortical Processes.

    Science.gov (United States)

    Maggu, Akshay R; Liu, Fang; Antoniou, Mark; Wong, Patrick C M

    2016-01-01

    Across time, languages undergo changes in phonetic, syntactic, and semantic dimensions. Social, cognitive, and cultural factors contribute to sound change, a phenomenon in which the phonetics of a language undergo changes over time. Individuals who misperceive and produce speech in a slightly divergent manner (called innovators ) contribute to variability in the society, eventually leading to sound change. However, the cause of variability in these individuals is still unknown. In this study, we examined whether such misperceptions are represented in neural processes of the auditory system. We investigated behavioral, subcortical (via FFR), and cortical (via P300) manifestations of sound change processing in Cantonese, a Chinese language in which several lexical tones are merging. Across the merging categories, we observed a similar gradation of speech perception abilities in both behavior and the brain (subcortical and cortical processes). Further, we also found that behavioral evidence of tone merging correlated with subjects' encoding at the subcortical and cortical levels. These findings indicate that tone-merger categories, that are indicators of sound change in Cantonese, are represented neurophysiologically with high fidelity. Using our results, we speculate that innovators encode speech in a slightly deviant neurophysiological manner, and thus produce speech divergently that eventually spreads across the community and contributes to sound change.

  6. Multiple sclerosis, cannabis, and cognition: A structural MRI study

    Directory of Open Access Journals (Sweden)

    Kristoffer Romero

    2015-01-01

    Interpretation: These results suggest that cannabis use in MS results in more widespread cognitive deficits, which correlate with tissue volume in subcortical, medial temporal, and prefrontal regions. These are the first findings demonstrating an association between cannabis use, cognitive impairment and structural brain changes in MS patients.

  7. Subcortical hyperintensity volumetrics in Alzheimer's disease and normal elderly in the Sunnybrook Dementia Study: correlations with atrophy, executive function, mental processing speed, and verbal memory.

    Science.gov (United States)

    Ramirez, Joel; McNeely, Alicia A; Scott, Christopher Jm; Stuss, Donald T; Black, Sandra E

    2014-01-01

    Subcortical hyperintensities (SHs) are radiological entities commonly observed on magnetic resonance imaging (MRI) of patients with Alzheimer's disease (AD) and normal elderly controls. Although the presence of SH is believed to indicate some form of subcortical vasculopathy, pathological heterogeneity, methodological differences, and the contribution of brain atrophy associated with AD pathology have yielded inconsistent results in the literature. Using the Lesion Explorer (LE) MRI processing pipeline for SH quantification and brain atrophy, this study examined SH volumes of interest and cognitive function in a sample of patients with AD (n = 265) and normal elderly controls (n = 100) from the Sunnybrook Dementia Study. Compared with healthy controls, patients with AD were found to have less gray matter, less white matter, and more sulcal and ventricular cerebrospinal fluid (all significant, P deep white SH (dwSH) (P processing speed (P memory (P <0.01) in patients with AD. These brain-behavior relationships and correlations with brain atrophy suggest that subtle, yet measurable, signs of small vessel disease may have potential clinical relevance as targets for treatment in Alzheimer's dementia.

  8. Altered Associations between Pain Symptoms and Brain Morphometry in the Pain Matrix of HIV-Seropositive Individuals.

    Science.gov (United States)

    Castillo, Deborrah; Ernst, Thomas; Cunningham, Eric; Chang, Linda

    2018-03-01

    Pain remains highly prevalent in HIV-seropositive (HIV+) patients despite their well-suppressed viremia with combined antiretroviral therapy. Investigating brain abnormalities within the pain matrix, and in relation to pain symptoms, in HIV+ participants may provide objective biomarkers and insights regarding their pain symptoms. We used Patient-Reported Outcome Measurement Information System (PROMIS®) pain questionnaire to evaluate pain symptoms (pain intensity, pain interference and pain behavior), and structural MRI to assess brain morphometry using FreeSurfer (cortical area, cortical thickness and subcortical volumes were evaluated in 12 regions within the pain matrix). Compared to seronegative (SN) controls, HIV+ participants had smaller surface areas in prefrontal pars triangularis (right: p = 0.04, left: p = 0.007) and right anterior cingulate cortex (p = 0.03) and smaller subcortical regions (thalamus: p ≤ 0.003 bilaterally; right putamen: p = 0.01), as well as higher pain scores (pain intensity-p = 0.005; pain interference-p = 0.008; pain-behavior-p = 0.04). Furthermore, higher pain scores were associated with larger cortical areas, thinner cortices and larger subcortical volumes in HIV+ participants; but smaller cortical areas, thicker cortices and smaller subcortical volumes in SN controls (interaction-p = 0.009 to p = 0.04). These group differences in the pain-associated brain abnormalities suggest that HIV+ individuals have abnormal pain responses. Since these abnormal pain-associated brain regions belong to the affective component of the pain matrix, affective symptoms may influence pain perception in HIV+ patients and should be treated along with their physical pain symptoms. Lastly, associations of lower pain scores with better physical or mental health scores, regardless of HIV-serostatus (p < 0.001), suggest adequate pain treatment would lead to better quality of life in all participants.

  9. Contribution of subcortical structures to cognition assessed with invasive electrophysiology in humans

    Directory of Open Access Journals (Sweden)

    Thomas F Münte

    2008-07-01

    Full Text Available Implantation of deep brain stimulation (DBS electrodes via stereotactic neurosurgery has become a standard procedure for the treatment of Parkinson’s disease. More recently, the range of neuropsychiatric conditions and the possible target structures suitable for DBS have greatly increased. The former include obsessive compulsive disease, depression, obesity, tremor, dystonia, Tourette’s syndrome and cluster-headache. In this article we argue that several of the target structures for DBS (nucleus accumbens, posterior inferior hypothalamus, nucleus subthalamicus, nuclei in the thalamus, globus pallidus internus, nucleus pedunculopontinus are located at strategic positions with brain circuits related to motivational behaviors, learning, and motor regulation. Recording from DBS electrodes either during the operation or post-operatively from externalized leads while the patient is performing cognitive tasks tapping the functions of the respective circuits provides a new window on the brain mechanisms underlying these functions. This is exemplified by a study of a patient suffering from obsessive-compulsive disease from whom we recorded in a flanker task designed to tap action monitoring processes while he received a DBS electrode in the right nucleus accumbens. Clear error-related modulations were obtained from the target structure, demonstrating a role of the nucleus accumbens in action monitoring. Based on recent conceptualizations of several different functional loops and on neuroimaging results we suggest further lines of research using this new window on brain functions.

  10. Frontal and subcortical grey matter reductions in PTSD.

    Science.gov (United States)

    O'Doherty, Daniel C M; Tickell, Ashleigh; Ryder, Will; Chan, Charles; Hermens, Daniel F; Bennett, Maxwell R; Lagopoulos, Jim

    2017-08-30

    Post-traumatic stress disorder (PTSD) is characterised by a range of debilitating psychological, physical and cognitive symptoms. PTSD has been associated with grey matter atrophy in limbic and frontal cortical brain regions. However, previous studies have reported heterogeneous findings, with grey matter changes observed beyond limbic/frontal areas. Seventy-five adults were recruited from the community, 25 diagnosed with PTSD along with 25 healthy and 25 trauma exposed age and gender matched controls. Participants underwent clinical assessment and magnetic resonance imaging. The data-analyses method Voxel Based Morphometry (VBM) was used to estimate cortical grey matter volumes. When compared to both healthy and trauma exposed controls, PTSD subjects demonstrated decreased grey matter volumes within subcortical brain regions-including the hippocampus and amygdala-along with reductions in the anterior cingulate cortex, frontal medial cortex, middle frontal gyrus, superior frontal gyrus, paracingulate gyrus, and precuneus cortex. Significant negative correlations were found between total CAPS lifetime clinical scores/sub-scores and GM volume of both the PTSD and TC groups. GM volumes of the left rACC and right amygdala showed a significant negative correlation within PTSD diagnosed subjects. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  11. Modeling Structural Brain Connectivity

    DEFF Research Database (Denmark)

    Ambrosen, Karen Marie Sandø

    The human brain consists of a gigantic complex network of interconnected neurons. Together all these connections determine who we are, how we react and how we interpret the world. Knowledge about how the brain is connected can further our understanding of the brain’s structural organization, help...... improve diagnosis, and potentially allow better treatment of a wide range of neurological disorders. Tractography based on diffusion magnetic resonance imaging is a unique tool to estimate this “structural connectivity” of the brain non-invasively and in vivo. During the last decade, brain connectivity...... has increasingly been analyzed using graph theoretic measures adopted from network science and this characterization of the brain’s structural connectivity has been shown to be useful for the classification of populations, such as healthy and diseased subjects. The structural connectivity of the brain...

  12. Brain abnormalities in murderers indicated by positron emission tomography.

    Science.gov (United States)

    Raine, A; Buchsbaum, M; LaCasse, L

    1997-09-15

    Murderers pleading not guilty by reason of insanity (NGRI) are thought to have brain dysfunction, but there have been no previous studies reporting direct measures of both cortical and subcortical brain functioning in this specific group. Positron emission tomography brain imaging using a continuous performance challenge task was conducted on 41 murderers pleading not guilty by reason of insanity and 41 age- and sex-matched controls. Murderers were characterized by reduced glucose metabolism in the prefrontal cortex, superior parietal gyrus, left angular gyrus, and the corpus callosum, while abnormal asymmetries of activity (left hemisphere lower than right) were also found in the amygdala, thalamus, and medial temporal lobe. These preliminary findings provide initial indications of a network of abnormal cortical and subcortical brain processes that may predispose to violence in murderers pleading NGRI.

  13. Altered intrahemispheric structural connectivity in Gilles de la Tourette syndrome

    Directory of Open Access Journals (Sweden)

    Bastian Cheng

    2014-01-01

    Full Text Available Gilles de la Tourette syndrome (GTS is a common developmental neuropsychiatric disorder characterized by tics and frequent psychiatric comorbidities, often causing significant disability. Tic generation has been linked to disturbed networks of brain areas involved in planning, controlling and execution of actions, particularly structural and functional disorders in the striatum and cortico–striato–thalamo–cortical loops. We therefore applied structural diffusion tensor imaging (DTI to characterize changes in intrahemispheric white matter connectivity in cortico-subcortical circuits engaged in motor control in 15 GTS patients without psychiatric comorbidities. White matter connectivity was analyzed by probabilistic fiber tractography between 12 predefined cortical and subcortical regions of interest. Connectivity values were combined with measures of clinical severity rated by the Yale Global Tic Severity Scale (YGTSS. GTS patients showed widespread structural connectivity deficits. Lower connectivity values were found specifically in tracts connecting the supplementary motor areas (SMA with basal ganglia (pre-SMA–putamen, SMA–putamen and in frontal cortico-cortical circuits. There was an overall trend towards negative correlations between structural connectivity in these tracts and YGTSS scores. Structural connectivity of frontal brain networks involved in planning, controlling and executing actions is reduced in adult GTS patients which is associated with tic severity. These findings are in line with the concept of GTS as a neurodevelopmental disorder of brain immaturity.

  14. A Bayesian Model of Category-Specific Emotional Brain Responses

    Science.gov (United States)

    Wager, Tor D.; Kang, Jian; Johnson, Timothy D.; Nichols, Thomas E.; Satpute, Ajay B.; Barrett, Lisa Feldman

    2015-01-01

    Understanding emotion is critical for a science of healthy and disordered brain function, but the neurophysiological basis of emotional experience is still poorly understood. We analyzed human brain activity patterns from 148 studies of emotion categories (2159 total participants) using a novel hierarchical Bayesian model. The model allowed us to classify which of five categories—fear, anger, disgust, sadness, or happiness—is engaged by a study with 66% accuracy (43-86% across categories). Analyses of the activity patterns encoded in the model revealed that each emotion category is associated with unique, prototypical patterns of activity across multiple brain systems including the cortex, thalamus, amygdala, and other structures. The results indicate that emotion categories are not contained within any one region or system, but are represented as configurations across multiple brain networks. The model provides a precise summary of the prototypical patterns for each emotion category, and demonstrates that a sufficient characterization of emotion categories relies on (a) differential patterns of involvement in neocortical systems that differ between humans and other species, and (b) distinctive patterns of cortical-subcortical interactions. Thus, these findings are incompatible with several contemporary theories of emotion, including those that emphasize emotion-dedicated brain systems and those that propose emotion is localized primarily in subcortical activity. They are consistent with componential and constructionist views, which propose that emotions are differentiated by a combination of perceptual, mnemonic, prospective, and motivational elements. Such brain-based models of emotion provide a foundation for new translational and clinical approaches. PMID:25853490

  15. Structural brain alterations in patients with lumbar disc herniation: a preliminary study.

    Directory of Open Access Journals (Sweden)

    Michael Luchtmann

    Full Text Available Chronic pain is one of the most common health complaints in industrial nations. For example, chronic low back pain (cLBP disables millions of people across the world and generates a tremendous economic burden. While previous studies provided evidence of widespread functional as well as structural brain alterations in chronic pain, little is known about cortical changes in patients suffering from lumbar disc herniation. We investigated morphometric alterations of the gray and white matter of the brain in patients suffering from LDH. The volumes of the gray and white matter of 12 LDH patients were determined in a prospective study and compared to the volumes of healthy controls to distinguish local differences. High-resolution MRI brain images of all participants were performed using a 3 Tesla MRI scanner. Voxel-based morphometry was used to investigate local differences in gray and white matter volume between patients suffering from LDH and healthy controls. LDH patients showed significantly reduced gray matter volume in the right anterolateral prefrontal cortex, the right temporal lobe, the left premotor cortex, the right caudate nucleus, and the right cerebellum as compared to healthy controls. Increased gray matter volume, however, was found in the right dorsal anterior cingulate cortex, the left precuneal cortex, the left fusiform gyrus, and the right brainstem. Additionally, small subcortical decreases of the white matter were found adjacent to the left prefrontal cortex, the right premotor cortex and in the anterior limb of the left internal capsule. We conclude that the lumbar disk herniation can lead to specific local alterations of the gray and white matter in the human brain. The investigation of LDH-induced brain alterations could provide further insight into the underlying nature of the chronification processes and could possibly identify prognostic factors that may improve the conservative as well as the operative treatment of the

  16. Subcortical processing of speech regularities underlies reading and music aptitude in children

    Science.gov (United States)

    2011-01-01

    Background Neural sensitivity to acoustic regularities supports fundamental human behaviors such as hearing in noise and reading. Although the failure to encode acoustic regularities in ongoing speech has been associated with language and literacy deficits, how auditory expertise, such as the expertise that is associated with musical skill, relates to the brainstem processing of speech regularities is unknown. An association between musical skill and neural sensitivity to acoustic regularities would not be surprising given the importance of repetition and regularity in music. Here, we aimed to define relationships between the subcortical processing of speech regularities, music aptitude, and reading abilities in children with and without reading impairment. We hypothesized that, in combination with auditory cognitive abilities, neural sensitivity to regularities in ongoing speech provides a common biological mechanism underlying the development of music and reading abilities. Methods We assessed auditory working memory and attention, music aptitude, reading ability, and neural sensitivity to acoustic regularities in 42 school-aged children with a wide range of reading ability. Neural sensitivity to acoustic regularities was assessed by recording brainstem responses to the same speech sound presented in predictable and variable speech streams. Results Through correlation analyses and structural equation modeling, we reveal that music aptitude and literacy both relate to the extent of subcortical adaptation to regularities in ongoing speech as well as with auditory working memory and attention. Relationships between music and speech processing are specifically driven by performance on a musical rhythm task, underscoring the importance of rhythmic regularity for both language and music. Conclusions These data indicate common brain mechanisms underlying reading and music abilities that relate to how the nervous system responds to regularities in auditory input

  17. Subcortical processing of speech regularities underlies reading and music aptitude in children.

    Science.gov (United States)

    Strait, Dana L; Hornickel, Jane; Kraus, Nina

    2011-10-17

    Neural sensitivity to acoustic regularities supports fundamental human behaviors such as hearing in noise and reading. Although the failure to encode acoustic regularities in ongoing speech has been associated with language and literacy deficits, how auditory expertise, such as the expertise that is associated with musical skill, relates to the brainstem processing of speech regularities is unknown. An association between musical skill and neural sensitivity to acoustic regularities would not be surprising given the importance of repetition and regularity in music. Here, we aimed to define relationships between the subcortical processing of speech regularities, music aptitude, and reading abilities in children with and without reading impairment. We hypothesized that, in combination with auditory cognitive abilities, neural sensitivity to regularities in ongoing speech provides a common biological mechanism underlying the development of music and reading abilities. We assessed auditory working memory and attention, music aptitude, reading ability, and neural sensitivity to acoustic regularities in 42 school-aged children with a wide range of reading ability. Neural sensitivity to acoustic regularities was assessed by recording brainstem responses to the same speech sound presented in predictable and variable speech streams. Through correlation analyses and structural equation modeling, we reveal that music aptitude and literacy both relate to the extent of subcortical adaptation to regularities in ongoing speech as well as with auditory working memory and attention. Relationships between music and speech processing are specifically driven by performance on a musical rhythm task, underscoring the importance of rhythmic regularity for both language and music. These data indicate common brain mechanisms underlying reading and music abilities that relate to how the nervous system responds to regularities in auditory input. Definition of common biological underpinnings

  18. Subcortical processing of speech regularities underlies reading and music aptitude in children

    Directory of Open Access Journals (Sweden)

    Strait Dana L

    2011-10-01

    Full Text Available Abstract Background Neural sensitivity to acoustic regularities supports fundamental human behaviors such as hearing in noise and reading. Although the failure to encode acoustic regularities in ongoing speech has been associated with language and literacy deficits, how auditory expertise, such as the expertise that is associated with musical skill, relates to the brainstem processing of speech regularities is unknown. An association between musical skill and neural sensitivity to acoustic regularities would not be surprising given the importance of repetition and regularity in music. Here, we aimed to define relationships between the subcortical processing of speech regularities, music aptitude, and reading abilities in children with and without reading impairment. We hypothesized that, in combination with auditory cognitive abilities, neural sensitivity to regularities in ongoing speech provides a common biological mechanism underlying the development of music and reading abilities. Methods We assessed auditory working memory and attention, music aptitude, reading ability, and neural sensitivity to acoustic regularities in 42 school-aged children with a wide range of reading ability. Neural sensitivity to acoustic regularities was assessed by recording brainstem responses to the same speech sound presented in predictable and variable speech streams. Results Through correlation analyses and structural equation modeling, we reveal that music aptitude and literacy both relate to the extent of subcortical adaptation to regularities in ongoing speech as well as with auditory working memory and attention. Relationships between music and speech processing are specifically driven by performance on a musical rhythm task, underscoring the importance of rhythmic regularity for both language and music. Conclusions These data indicate common brain mechanisms underlying reading and music abilities that relate to how the nervous system responds to

  19. Handedness- and brain size-related efficiency differences in small-world brain networks: a resting-state functional magnetic resonance imaging study.

    Science.gov (United States)

    Li, Meiling; Wang, Junping; Liu, Feng; Chen, Heng; Lu, Fengmei; Wu, Guorong; Yu, Chunshui; Chen, Huafu

    2015-05-01

    The human brain has been described as a complex network, which integrates information with high efficiency. However, the relationships between the efficiency of human brain functional networks and handedness and brain size remain unclear. Twenty-one left-handed and 32 right-handed healthy subjects underwent a resting-state functional magnetic resonance imaging scan. The whole brain functional networks were constructed by thresholding Pearson correlation matrices of 90 cortical and subcortical regions. Graph theory-based methods were employed to further analyze their topological properties. As expected, all participants demonstrated small-world topology, suggesting a highly efficient topological structure. Furthermore, we found that smaller brains showed higher local efficiency, whereas larger brains showed higher global efficiency, reflecting a suitable efficiency balance between local specialization and global integration of brain functional activity. Compared with right-handers, significant alterations in nodal efficiency were revealed in left-handers, involving the anterior and median cingulate gyrus, middle temporal gyrus, angular gyrus, and amygdala. Our findings indicated that the functional network organization in the human brain was associated with handedness and brain size.

  20. Imaging Effects of Neurotrophic Factor Genes on Brain Plasticity and Repair in Multiple Sclerosis

    Science.gov (United States)

    2012-07-01

    sensitive to focal and diffuse changes in brain tissue (including cortical thickness and subcortical volume measures, lesion volumetry , and voxel-based...sensitive to both focal and diffuse effects in gray and white matter, including cortical thickness and subcortical volume measures, lesion volumetry , and

  1. The teen brain: insights from neuroimaging.

    Science.gov (United States)

    Giedd, Jay N

    2008-04-01

    Few parents of a teenager are surprised to hear that the brain of a 16-year-old is different from the brain of an 8-year-old. Yet to pin down these differences in a rigorous scientific way has been elusive. Magnetic resonance imaging, with the capacity to provide exquisitely accurate quantifications of brain anatomy and physiology without the use of ionizing radiation, has launched a new era of adolescent neuroscience. Longitudinal studies of subjects from ages 3-30 years demonstrate a general pattern of childhood peaks of gray matter followed by adolescent declines, functional and structural increases in connectivity and integrative processing, and a changing balance between limbic/subcortical and frontal lobe functions, extending well into young adulthood. Although overinterpretation and premature application of neuroimaging findings for diagnostic purposes remains a risk, converging data from multiple imaging modalities is beginning to elucidate the implications of these brain changes on cognition, emotion, and behavior.

  2. Brain expansion in patients with type II diabetes following insulin therapy: a preliminary study with longitudinal voxel-based morphometry.

    Science.gov (United States)

    Chen, Zhiye; Li, Jinfeng; Sun, Jie; Ma, Lin

    2014-01-01

    We performed a longitudinal analysis based on magnetic resonance (MR) imaging to investigate the brain structural and perfusion changes caused by insulin therapy in patients with type II diabetes. High resolution three-dimensional T1-weighted fast spoiled gradient recalled echo images and flow-sensitive alternating inversion recovery (FAIR) images were obtained from 11 patients with type II diabetes before and 1 year after initiation of insulin therapy and 11 normal controls. Brain volume changes were investigated by a longitudinal voxel-based morphometry (VBM), and perfusion changes were evaluated by FAIR imaging between baseline and follow-up data. Significant regional gray matter (GM) expansion located in bilateral frontal, parietal, and left occipital lobes, and regional white matter (WM) expansion was shown in left precentral subcortical WM and right angular subcortical WM after insulin therapy (P Brain hyperperfusion was detected in bilateral frontal cortex, left occipital cortex, and right temporal cortex after insulin therapy (P brain expansion and hyperperfusion were demonstrated 1 year after initiation of insulin therapy, and insulin therapy could contribute to the brain volume gainment in the patients with type II diabetes. Copyright © 2013 by the American Society of Neuroimaging.

  3. Decreased Cerebellar-Orbitofrontal Connectivity Correlates with Stuttering Severity: Whole-Brain Functional and Structural Connectivity Associations with Persistent Developmental Stuttering.

    Science.gov (United States)

    Sitek, Kevin R; Cai, Shanqing; Beal, Deryk S; Perkell, Joseph S; Guenther, Frank H; Ghosh, Satrajit S

    2016-01-01

    Persistent developmental stuttering is characterized by speech production disfluency and affects 1% of adults. The degree of impairment varies widely across individuals and the neural mechanisms underlying the disorder and this variability remain poorly understood. Here we elucidate compensatory mechanisms related to this variability in impairment using whole-brain functional and white matter connectivity analyses in persistent developmental stuttering. We found that people who stutter had stronger functional connectivity between cerebellum and thalamus than people with fluent speech, while stutterers with the least severe symptoms had greater functional connectivity between left cerebellum and left orbitofrontal cortex (OFC). Additionally, people who stutter had decreased functional and white matter connectivity among the perisylvian auditory, motor, and speech planning regions compared to typical speakers, but greater functional connectivity between the right basal ganglia and bilateral temporal auditory regions. Structurally, disfluency ratings were negatively correlated with white matter connections to left perisylvian regions and to the brain stem. Overall, we found increased connectivity among subcortical and reward network structures in people who stutter compared to controls. These connections were negatively correlated with stuttering severity, suggesting the involvement of cerebellum and OFC may underlie successful compensatory mechanisms by more fluent stutterers.

  4. Decreased Cerebellar-Orbitofrontal Connectivity Correlates with Stuttering Severity: Whole-Brain Functional and Structural Connectivity Associations with Persistent Developmental Stuttering

    Science.gov (United States)

    Sitek, Kevin R.; Cai, Shanqing; Beal, Deryk S.; Perkell, Joseph S.; Guenther, Frank H.; Ghosh, Satrajit S.

    2016-01-01

    Persistent developmental stuttering is characterized by speech production disfluency and affects 1% of adults. The degree of impairment varies widely across individuals and the neural mechanisms underlying the disorder and this variability remain poorly understood. Here we elucidate compensatory mechanisms related to this variability in impairment using whole-brain functional and white matter connectivity analyses in persistent developmental stuttering. We found that people who stutter had stronger functional connectivity between cerebellum and thalamus than people with fluent speech, while stutterers with the least severe symptoms had greater functional connectivity between left cerebellum and left orbitofrontal cortex (OFC). Additionally, people who stutter had decreased functional and white matter connectivity among the perisylvian auditory, motor, and speech planning regions compared to typical speakers, but greater functional connectivity between the right basal ganglia and bilateral temporal auditory regions. Structurally, disfluency ratings were negatively correlated with white matter connections to left perisylvian regions and to the brain stem. Overall, we found increased connectivity among subcortical and reward network structures in people who stutter compared to controls. These connections were negatively correlated with stuttering severity, suggesting the involvement of cerebellum and OFC may underlie successful compensatory mechanisms by more fluent stutterers. PMID:27199712

  5. Decreased cerebellar-orbitofrontal connectivity correlates with stuttering severity: Whole-brain functional and structural connectivity associations with persistent developmental stuttering

    Directory of Open Access Journals (Sweden)

    Kevin Richard Sitek

    2016-05-01

    Full Text Available Persistent developmental stuttering is characterized by speech production disfluency and affects 1% of adults. The degree of impairment varies widely across individuals and the neural mechanisms underlying the disorder and this variability remain poorly understood. Here, we elucidate compensatory mechanisms related to this variability in impairment using whole-brain functional and white matter connectivity analyses in persistent developmental stuttering. We found that people who stutter had stronger functional connectivity between cerebellum and thalamus than people with fluent speech, while stutterers with the least severe symptoms had greater functional connectivity between left cerebellum and left orbitofrontal cortex. Additionally, people who stutter had decreased functional and white matter connectivity among the perisylvian auditory, motor, and speech planning regions compared to typical speakers, but greater functional connectivity between the right basal ganglia and bilateral temporal auditory regions. Structurally, disfluency ratings were negatively correlated with white matter connections to left perisylvian regions and to the brain stem. Overall, we found increased connectivity among subcortical and reward network structures in people who stutter compared to controls. These connections were negatively correlated with stuttering severity, suggesting the involvement of cerebellum and orbitofrontal cortex may underlie successful compensatory mechanisms by more fluent stutterers.

  6. Structural growth trajectories and rates of change in the first 3 months of infant brain development.

    Science.gov (United States)

    Holland, Dominic; Chang, Linda; Ernst, Thomas M; Curran, Megan; Buchthal, Steven D; Alicata, Daniel; Skranes, Jon; Johansen, Heather; Hernandez, Antonette; Yamakawa, Robyn; Kuperman, Joshua M; Dale, Anders M

    2014-10-01

    The very early postnatal period witnesses extraordinary rates of growth, but structural brain development in this period has largely not been explored longitudinally. Such assessment may be key in detecting and treating the earliest signs of neurodevelopmental disorders. To assess structural growth trajectories and rates of change in the whole brain and regions of interest in infants during the first 3 months after birth. Serial structural T1-weighted and/or T2-weighted magnetic resonance images were obtained for 211 time points from 87 healthy term-born or term-equivalent preterm-born infants, aged 2 to 90 days, between October 5, 2007, and June 12, 2013. We segmented whole-brain and multiple subcortical regions of interest using a novel application of Bayesian-based methods. We modeled growth and rate of growth trajectories nonparametrically and assessed left-right asymmetries and sexual dimorphisms. Whole-brain volume at birth was approximately one-third of healthy elderly brain volume, and did not differ significantly between male and female infants (347 388 mm3 and 335 509 mm3, respectively, P = .12). The growth rate was approximately 1%/d, slowing to 0.4%/d by the end of the first 3 months, when the brain reached just more than half of elderly adult brain volume. Overall growth in the first 90 days was 64%. There was a significant age-by-sex effect leading to widening separation in brain sizes with age between male and female infants (with male infants growing faster than females by 200.4 mm3/d, SE = 67.2, P = .003). Longer gestation was associated with larger brain size (2215 mm3/d, SE = 284, P = 4×10-13). The expected brain size of an infant born one week earlier than average was 5% smaller than average; at 90 days it will not have caught up, being 2% smaller than average. The cerebellum grew at the highest rate, more than doubling in 90 days, and the hippocampus grew at the slowest rate, increasing by 47% in 90 days. There was left

  7. [Left lateral gaze paresis due to subcortical hematoma in the right precentral gyrus].

    Science.gov (United States)

    Sato, K; Takamori, M

    1998-03-01

    We report a case of transient left lateral gaze paresis due to a hemorrhagic lesion restricted in the right precentral gyrus. A 74-year-old female experienced a sudden clumsiness of the left upper extremity. A neurological examination revealed a left central facial paresis, distal dominant muscle weakness in the left upper limb and left lateral gaze paresis. There were no other focal neurological signs. Laboratory data were all normal. Brain CTs and MRIs demonstrated a subcortical hematoma in the right precentral gyrus. The neurological symptoms and signs disappeared over seven days. A recent physiological study suggested that the human frontal eye field (FEF) is located in the posterior part of the middle frontal gyrus (Brodmann's area 8) and the precentral gyrus around the precentral sulcus. More recent studies stressed the role of the precentral sulcus and the precentral gyrus. Our case supports those physiological findings. The hematoma affected both the FEF and its underlying white matter in our case. We assume the lateral gaze paresis is attributable to the disruption of the fibers from the FEF. It is likely that fibers for motor control of the face, upper extremity, and lateral gaze lie adjacently in the subcortical area.

  8. Joint assessment of white matter integrity, cortical and subcortical atrophy to distinguish AD from behavioral variant FTD: A two-center study

    Directory of Open Access Journals (Sweden)

    Christiane Möller

    2015-01-01

    Full Text Available We investigated the ability of cortical and subcortical gray matter (GM atrophy in combination with white matter (WM integrity to distinguish behavioral variant frontotemporal dementia (bvFTD from Alzheimer's disease (AD and from controls using voxel-based morphometry, subcortical structure segmentation, and tract-based spatial statistics. To determine which combination of MR markers differentiated the three groups with the highest accuracy, we conducted discriminant function analyses. Adjusted for age, sex and center, both types of dementia had more GM atrophy, lower fractional anisotropy (FA and higher mean (MD, axial (L1 and radial diffusivity (L23 values than controls. BvFTD patients had more GM atrophy in orbitofrontal and inferior frontal areas than AD patients. In addition, caudate nucleus and nucleus accumbens were smaller in bvFTD than in AD. FA values were lower; MD, L1 and L23 values were higher, especially in frontal areas of the brain for bvFTD compared to AD patients. The combination of cortical GM, hippocampal volume and WM integrity measurements, classified 97–100% of controls, 81–100% of AD and 67–75% of bvFTD patients correctly. Our results suggest that WM integrity measures add complementary information to measures of GM atrophy, thereby improving the classification between AD and bvFTD.

  9. Implicit sequence-specific motor learning after sub-cortical stroke is associated with increased prefrontal brain activations: An fMRI study

    Science.gov (United States)

    Meehan, Sean K.; Randhawa, Bubblepreet; Wessel, Brenda; Boyd, Lara A.

    2010-01-01

    Implicit motor learning is preserved after stroke, but how the brain compensates for damage to facilitate learning is unclear. We used a random effects analysis to determine how stroke alters patterns of brain activity during implicit sequence-specific motor learning as compared to general improvements in motor control. Nine healthy participants and 9 individuals with chronic, right focal sub-cortical stroke performed a continuous joystick-based tracking task during an initial fMRI session, over 5 days of practice, and a retention test during a separate fMRI session. Sequence-specific implicit motor learning was differentiated from general improvements in motor control by comparing tracking performance on a novel, repeated tracking sequences during early practice and again at the retention test. Both groups demonstrated implicit sequence-specific motor learning at the retention test, yet substantial differences were apparent. At retention, healthy control participants demonstrated increased BOLD response in left dorsal premotor cortex (BA 6) but decreased BOLD response left dorsolateral prefrontal cortex (DLPFC; BA 9) during repeated sequence tracking. In contrast, at retention individuals with stroke did not show this reduction in DLPFC during repeated tracking. Instead implicit sequence-specific motor learning and general improvements in motor control were associated with increased BOLD response in the left middle frontal gyrus BA 8, regardless of sequence type after stroke. These data emphasize the potential importance of a prefrontal-based attentional network for implicit motor learning after stroke. The present study is the first to highlight the importance of the prefrontal cortex for implicit sequence-specific motor learning after stroke. PMID:20725908

  10. Community structure in networks of functional connectivity: resolving functional organization in the rat brain with pharmacological MRI.

    Science.gov (United States)

    Schwarz, Adam J; Gozzi, Alessandro; Bifone, Angelo

    2009-08-01

    In the study of functional connectivity, fMRI data can be represented mathematically as a network of nodes and links, where image voxels represent the nodes and the connections between them reflect a degree of correlation or similarity in their response. Here we show that, within this framework, functional imaging data can be partitioned into 'communities' of tightly interconnected voxels corresponding to maximum modularity within the overall network. We evaluated this approach systematically in application to networks constructed from pharmacological MRI (phMRI) of the rat brain in response to acute challenge with three different compounds with distinct mechanisms of action (d-amphetamine, fluoxetine, and nicotine) as well as vehicle (physiological saline). This approach resulted in bilaterally symmetric sub-networks corresponding to meaningful anatomical and functional connectivity pathways consistent with the purported mechanism of action of each drug. Interestingly, common features across all three networks revealed two groups of tightly coupled brain structures that responded as functional units independent of the specific neurotransmitter systems stimulated by the drug challenge, including a network involving the prefrontal cortex and sub-cortical regions extending from the striatum to the amygdala. This finding suggests that each of these networks includes general underlying features of the functional organization of the rat brain.

  11. Handedness- and Brain Size-Related Efficiency Differences in Small-World Brain Networks: A Resting-State Functional Magnetic Resonance Imaging Study

    OpenAIRE

    Li, Meiling; Wang, Junping; Liu, Feng; Chen, Heng; Lu, Fengmei; Wu, Guorong; Yu, Chunshui; Chen, Huafu

    2015-01-01

    The human brain has been described as a complex network, which integrates information with high efficiency. However, the relationships between the efficiency of human brain functional networks and handedness and brain size remain unclear. Twenty-one left-handed and 32 right-handed healthy subjects underwent a resting-state functional magnetic resonance imaging scan. The whole brain functional networks were constructed by thresholding Pearson correlation matrices of 90 cortical and subcortical...

  12. The impact of ADHD persistence, recent cannabis use, and age of regular cannabis use onset on subcortical volume and cortical thickness in young adults.

    Science.gov (United States)

    Lisdahl, Krista M; Tamm, Leanne; Epstein, Jeffery N; Jernigan, Terry; Molina, Brooke S G; Hinshaw, Stephen P; Swanson, James M; Newman, Erik; Kelly, Clare; Bjork, James M

    2016-04-01

    Both Attention Deficit Hyperactivity Disorder (ADHD) and chronic cannabis (CAN) use have been associated with brain structural abnormalities, although little is known about the effects of both in young adults. Participants included: those with a childhood diagnosis of ADHD who were CAN users (ADHD_CAN; n=37) and non-users (NU) (ADHD_NU; n=44) and a local normative comparison group (LNCG) who did (LNCG_CAN; n=18) and did not (LNCG_NU; n=21) use CAN regularly. Multiple regressions and MANCOVAs were used to examine the independent and interactive effects of a childhood ADHD diagnosis and CAN group status and age of onset (CUO) on subcortical volumes and cortical thickness. After controlling for age, gender, total brain volume, nicotine use, and past-year binge drinking, childhood ADHD diagnosis did not predict brain structure; however, persistence of ADHD was associated with smaller left precentral/postcentral cortical thickness. Compared to all non-users, CAN users had decreased cortical thickness in right hemisphere superior frontal sulcus, anterior cingulate, and isthmus of cingulate gyrus regions and left hemisphere superior frontal sulcus and precentral gyrus regions. Early cannabis use age of onset (CUO) in those with ADHD predicted greater right hemisphere superior frontal and postcentral cortical thickness. Young adults with persistent ADHD demonstrated brain structure abnormalities in regions underlying motor control, working memory and inhibitory control. Further, CAN use was linked with abnormal brain structure in regions with high concentrations of cannabinoid receptors. Additional large-scale longitudinal studies are needed to clarify how substance use impacts neurodevelopment in youth with and without ADHD. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Evaluating the effect of multiple sclerosis lesions on automatic brain structure segmentation

    Directory of Open Access Journals (Sweden)

    Sandra González-Villà

    2017-01-01

    Full Text Available In recent years, many automatic brain structure segmentation methods have been proposed. However, these methods are commonly tested with non-lesioned brains and the effect of lesions on their performance has not been evaluated. Here, we analyze the effect of multiple sclerosis (MS lesions on three well-known automatic brain structure segmentation methods, namely, FreeSurfer, FIRST and multi-atlas fused by majority voting, which use learning-based, deformable and atlas-based strategies, respectively. To perform a quantitative analysis, 100 synthetic images of MS patients with a total of 2174 lesions are simulated on two public databases with available brain structure ground truth information (IBSR18 and MICCAI’12. The Dice similarity coefficient (DSC differences and the volume differences between the healthy and the simulated images are calculated for the subcortical structures and the brainstem. We observe that the three strategies are affected when lesions are present. However, the effects of the lesions do not follow the same pattern; the lesions either make the segmentation method underperform or surprisingly augment the segmentation accuracy. The obtained results show that FreeSurfer is the method most affected by the presence of lesions, with DSC differences (generated − healthy ranging from −0.11 ± 0.54 to 9.65 ± 9.87, whereas FIRST tends to be the most robust method when lesions are present (−2.40 ± 5.54 to 0.44 ± 0.94. Lesion location is not important for global strategies such as FreeSurfer or majority voting, where structure segmentation is affected wherever the lesions exist. On the other hand, FIRST is more affected when the lesions are overlaid or close to the structure of analysis. The most affected structure by the presence of lesions is the nucleus accumbens (from −1.12 ± 2.53 to 1.32 ± 4.00 for the left hemisphere and from −2.40 ± 5.54 to 9.65 ± 9.87 for the right hemisphere, whereas the

  14. Arterial stiffness, pressure and flow pulsatility and brain structure and function: the Age, Gene/Environment Susceptibility--Reykjavik study.

    Science.gov (United States)

    Mitchell, Gary F; van Buchem, Mark A; Sigurdsson, Sigurdur; Gotal, John D; Jonsdottir, Maria K; Kjartansson, Ólafur; Garcia, Melissa; Aspelund, Thor; Harris, Tamara B; Gudnason, Vilmundur; Launer, Lenore J

    2011-11-01

    Aortic stiffness increases with age and vascular risk factor exposure and is associated with increased risk for structural and functional abnormalities in the brain. High ambient flow and low impedance are thought to sensitize the cerebral microcirculation to harmful effects of excessive pressure and flow pulsatility. However, haemodynamic mechanisms contributing to structural brain lesions and cognitive impairment in the presence of high aortic stiffness remain unclear. We hypothesized that disproportionate stiffening of the proximal aorta as compared with the carotid arteries reduces wave reflection at this important interface and thereby facilitates transmission of excessive pulsatile energy into the cerebral microcirculation, leading to microvascular damage and impaired function. To assess this hypothesis, we evaluated carotid pressure and flow, carotid-femoral pulse wave velocity, brain magnetic resonance images and cognitive scores in participants in the community-based Age, Gene/Environment Susceptibility--Reykjavik study who had no history of stroke, transient ischaemic attack or dementia (n = 668, 378 females, 69-93 years of age). Aortic characteristic impedance was assessed in a random subset (n = 422) and the reflection coefficient at the aorta-carotid interface was computed. Carotid flow pulsatility index was negatively related to the aorta-carotid reflection coefficient (R = -0.66, Pwave velocity were each associated with increased risk for silent subcortical infarcts (hazard ratios of 1.62-1.71 per standard deviation, Pwave velocity was associated with higher white matter hyperintensity volume (0.108 ± 0.045 SD/SD, P = 0.018). Pulsatility index was associated with lower whole brain (-0.127 ± 0.037 SD/SD, Pwave velocity (-0.095 ± 0.043 SD/SD, P = 0.028) and carotid pulse pressure (-0.114 ± 0.045 SD/SD, P = 0.013) were associated with lower memory scores. Pulsatility index was associated with lower memory scores (-0.165 ± 0.039 SD/SD, Pwave

  15. Cortical and Subcortical Coordination of Visual Spatial Attention Revealed by Simultaneous EEG-fMRI Recording.

    Science.gov (United States)

    Green, Jessica J; Boehler, Carsten N; Roberts, Kenneth C; Chen, Ling-Chia; Krebs, Ruth M; Song, Allen W; Woldorff, Marty G

    2017-08-16

    Visual spatial attention has been studied in humans with both electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) individually. However, due to the intrinsic limitations of each of these methods used alone, our understanding of the systems-level mechanisms underlying attentional control remains limited. Here, we examined trial-to-trial covariations of concurrently recorded EEG and fMRI in a cued visual spatial attention task in humans, which allowed delineation of both the generators and modulators of the cue-triggered event-related oscillatory brain activity underlying attentional control function. The fMRI activity in visual cortical regions contralateral to the cued direction of attention covaried positively with occipital gamma-band EEG, consistent with activation of cortical regions representing attended locations in space. In contrast, fMRI activity in ipsilateral visual cortical regions covaried inversely with occipital alpha-band oscillations, consistent with attention-related suppression of the irrelevant hemispace. Moreover, the pulvinar nucleus of the thalamus covaried with both of these spatially specific, attention-related, oscillatory EEG modulations. Because the pulvinar's neuroanatomical geometry makes it unlikely to be a direct generator of the scalp-recorded EEG, these covariational patterns appear to reflect the pulvinar's role as a regulatory control structure, sending spatially specific signals to modulate visual cortex excitability proactively. Together, these combined EEG/fMRI results illuminate the dynamically interacting cortical and subcortical processes underlying spatial attention, providing important insight not realizable using either method alone. SIGNIFICANCE STATEMENT Noninvasive recordings of changes in the brain's blood flow using functional magnetic resonance imaging and electrical activity using electroencephalography in humans have individually shown that shifting attention to a location in space

  16. Impairment of visuospatial/visuoconstructional skills in multiple sclerosis patients: the correlation with regional lesion load and subcortical atrophy.

    Science.gov (United States)

    Marasescu, R; Cerezo Garcia, M; Aladro Benito, Y

    2016-04-01

    About 20% to 26% of patients with multiple sclerosis (MS) show alterations in visuospatial/visuoconstructive (VS-VC) skills even though temporo-parieto-occipital impairment is a frequent finding in magnetic resonance imaging. No studies have specifically analysed the relationship between these functions and lesion volume (LV) in these specific brain areas. To evaluate the relationship between VS-VC impairment and magnetic resonance imaging temporo-parieto-occipital LV with subcortical atrophy in patients with MS. Of 100 MS patients undergoing a routine neuropsychological evaluation, 21 were selected because they displayed VS-VC impairments in the following tests: Incomplete picture, Block design (WAIS-III), and Rey-Osterrieth complex figure test. We also selected 13 MS patients without cognitive impairment (control group). Regional LV was measured in FLAIR and T1-weighted images using a semiautomated method; subcortical atrophy was measured by bicaudate ratio and third ventricle width. Partial correlations (controlling for age and years of school) and linear regression analysis were employed to analyse correlations between magnetic resonance imaging parameters and cognitive performance. All measures of LV and brain atrophy were significantly higher in patients with cognitive impairment. Regional LV, bicaudate ratio, and third ventricle width are significantly and inversely correlated with cognitive performance; the strongest correlation was between third ventricle width and VC performance (Block design: P=.001; Rey-Osterrieth complex figure: P<.000). In the multivariate analysis, third ventricle width only had a significant effect on performance of VC tasks (Block design: P=.000; Rey-Osterrieth complex figure: P=.000), and regional FLAIR VL was linked to the VS task (Incomplete picture; P=.002). Measures of subcortical atrophy explain the variations in performance on visuocostructive tasks, and regional FLAIR VL measures are linked to VS tasks. Copyright © 2015

  17. Similar cortical but not subcortical gray matter abnormalities in women with posttraumatic stress disorder with versus without dissociative identity disorder.

    Science.gov (United States)

    Chalavi, Sima; Vissia, Eline M; Giesen, Mechteld E; Nijenhuis, Ellert R S; Draijer, Nel; Barker, Gareth J; Veltman, Dick J; Reinders, Antje A T S

    2015-03-30

    Neuroanatomical evidence on the relationship between posttraumatic stress disorder (PTSD) and dissociative disorders is still lacking. We acquired brain structural magnetic resonance imaging (MRI) scans from 17 patients with dissociative identity disorder (DID) and co-morbid PTSD (DID-PTSD) and 16 patients with PTSD but without DID (PTSD-only), and 32 healthy controls (HC), and compared their whole-brain cortical and subcortical gray matter (GM) morphological measurements. Associations between GM measurements and severity of dissociative and depersonalization/derealization symptoms or lifetime traumatizing events were evaluated in the patient groups. DID-PTSD and PTSD-only patients, compared with HC, had similarly smaller cortical GM volumes of the whole brain and of frontal, temporal and insular cortices. DID-PTSD patients additionally showed smaller hippocampal and larger pallidum volumes relative to HC, and larger putamen and pallidum volumes relative to PTSD-only. Severity of lifetime traumatizing events and volume of the hippocampus were negatively correlated. Severity of dissociative and depersonalization/derealization symptoms correlated positively with volume of the putamen and pallidum, and negatively with volume of the inferior parietal cortex. Shared abnormal brain structures in DID-PTSD and PTSD-only, small hippocampal volume in DID-PTSD, more severe lifetime traumatizing events in DID-PTSD compared with PTSD-only, and negative correlations between lifetime traumatizing events and hippocampal volume suggest a trauma-related etiology for DID. Our results provide neurobiological evidence for the side-by-side nosological classification of PTSD and DID in the DSM-5. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. Structural brain abnormalities in a single gene disorder associated with epilepsy, language impairment and intellectual disability

    Directory of Open Access Journals (Sweden)

    Joe Bathelt

    2016-01-01

    Full Text Available Childhood speech and language deficits are highly prevalent and are a common feature of neurodevelopmental disorders. However, it is difficult to investigate the underlying causal pathways because many diagnostic groups have a heterogeneous aetiology. Studying disorders with a shared genetic cause and shared cognitive deficits can provide crucial insight into the cellular mechanisms and neural systems that give rise to those impairments. The current study investigated structural brain differences of individuals with mutations in ZDHHC9, which is associated with a specific neurodevelopmental phenotype including prominent speech and language impairments and intellectual disability. We used multiple structural neuroimaging methods to characterise neuroanatomy in this group, and observed bilateral reductions in cortical thickness in areas surrounding the temporo-parietal junction, parietal lobule, and inferior frontal lobe, and decreased microstructural integrity of cortical, subcortical-cortical, and interhemispheric white matter projections. These findings are compared to reports for other genetic groups and genetically heterogeneous disorders with a similar presentation. Overlap in the neuroanatomical phenotype suggests a common pathway that particularly affects the development of temporo-parietal and inferior frontal areas, and their connections.

  19. Use of intraoperative local field potential spectral analysis to differentiate basal ganglia structures in Parkinson's disease patients.

    Science.gov (United States)

    Kolb, Rachel; Abosch, Aviva; Felsen, Gidon; Thompson, John A

    2017-06-01

    Identification of brain structures traversed during implantation of deep brain-stimulating (DBS) electrodes into the subthalamic nucleus (STN-DBS) for the treatment of Parkinson's disease (PD) frequently relies on subjective correspondence between kinesthetic response and multiunit activity. However, recent work suggests that local field potentials (LFP) could be used as a more robust signal to objectively differentiate subcortical structures. The goal of this study was to analyze the spectral properties of LFP collected during STN-DBS in order to objectively identify commonly traversed brain regions and improve our understanding of aberrant oscillations in the PD-related pathophysiological cortico-basal ganglia network. In 21 PD patients, LFP were collected and analyzed during STN-DBS implantation surgery. Spectral power for delta-, theta-, alpha-, low-beta-, and high-beta-frequency bands was assessed at multiple depths throughout the subcortical structures traversed on the trajectory to the ventral border of STN. Similar to previous findings, beta-band oscillations had an increased magnitude within the borders of the motor-related area of STN, however, across several subjects, we also observed increased high-beta magnitude within the borders of thalamus. Comparing across all patients using relative power, we observed a gradual increase in the magnitude of both low- and high-beta-frequency bands as the electrode descended from striatum to STN. These results were also compared with frequency bands below beta, and similar trends were observed. Our results suggest that LFP signals recorded during the implantation of a DBS electrode evince distinct oscillatory signatures that distinguish subcortical structures. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  20. Habit learning and brain-machine interfaces (BMI): a tribute to Valentino Braitenberg's "Vehicles".

    Science.gov (United States)

    Birbaumer, Niels; Hummel, Friedhelm C

    2014-10-01

    Brain-Machine Interfaces (BMI) allow manipulation of external devices and computers directly with brain activity without involvement of overt motor actions. The neurophysiological principles of such robotic brain devices and BMIs follow Hebbian learning rules as described and realized by Valentino Braitenberg in his book "Vehicles," in the concept of a "thought pump" residing in subcortical basal ganglia structures. We describe here the application of BMIs for brain communication in totally locked-in patients and argue that the thought pump may extinguish-at least partially-in those people because of extinction of instrumentally learned cognitive responses and brain responses. We show that Pavlovian semantic conditioning may allow brain communication even in the completely paralyzed who does not show response-effect contingencies. Principles of skill learning and habit acquisition as formulated by Braitenberg are the building blocks of BMIs and neuroprostheses.

  1. Smaller Hippocampal Volume in Posttraumatic Stress Disorder: A Multisite ENIGMA-PGC Study: Subcortical Volumetry Results From Posttraumatic Stress Disorder Consortia.

    Science.gov (United States)

    Logue, Mark W; van Rooij, Sanne J H; Dennis, Emily L; Davis, Sarah L; Hayes, Jasmeet P; Stevens, Jennifer S; Densmore, Maria; Haswell, Courtney C; Ipser, Jonathan; Koch, Saskia B J; Korgaonkar, Mayuresh; Lebois, Lauren A M; Peverill, Matthew; Baker, Justin T; Boedhoe, Premika S W; Frijling, Jessie L; Gruber, Staci A; Harpaz-Rotem, Ilan; Jahanshad, Neda; Koopowitz, Sheri; Levy, Ifat; Nawijn, Laura; O'Connor, Lauren; Olff, Miranda; Salat, David H; Sheridan, Margaret A; Spielberg, Jeffrey M; van Zuiden, Mirjam; Winternitz, Sherry R; Wolff, Jonathan D; Wolf, Erika J; Wang, Xin; Wrocklage, Kristen; Abdallah, Chadi G; Bryant, Richard A; Geuze, Elbert; Jovanovic, Tanja; Kaufman, Milissa L; King, Anthony P; Krystal, John H; Lagopoulos, Jim; Bennett, Maxwell; Lanius, Ruth; Liberzon, Israel; McGlinchey, Regina E; McLaughlin, Katie A; Milberg, William P; Miller, Mark W; Ressler, Kerry J; Veltman, Dick J; Stein, Dan J; Thomaes, Kathleen; Thompson, Paul M; Morey, Rajendra A

    2018-02-01

    Many studies report smaller hippocampal and amygdala volumes in posttraumatic stress disorder (PTSD), but findings have not always been consistent. Here, we present the results of a large-scale neuroimaging consortium study on PTSD conducted by the Psychiatric Genomics Consortium (PGC)-Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) PTSD Working Group. We analyzed neuroimaging and clinical data from 1868 subjects (794 PTSD patients) contributed by 16 cohorts, representing the largest neuroimaging study of PTSD to date. We assessed the volumes of eight subcortical structures (nucleus accumbens, amygdala, caudate, hippocampus, pallidum, putamen, thalamus, and lateral ventricle). We used a standardized image-analysis and quality-control pipeline established by the ENIGMA consortium. In a meta-analysis of all samples, we found significantly smaller hippocampi in subjects with current PTSD compared with trauma-exposed control subjects (Cohen's d = -0.17, p = .00054), and smaller amygdalae (d = -0.11, p = .025), although the amygdala finding did not survive a significance level that was Bonferroni corrected for multiple subcortical region comparisons (p < .0063). Our study is not subject to the biases of meta-analyses of published data, and it represents an important milestone in an ongoing collaborative effort to examine the neurobiological underpinnings of PTSD and the brain's response to trauma. Published by Elsevier Inc.

  2. Comparison of Brain Activity Correlating with Self-Report versus Narrative Attachment Measures during Conscious Appraisal of an Attachment Figure

    Science.gov (United States)

    Yaseen, Zimri S.; Zhang, Xian; Muran, J. Christopher; Winston, Arnold; Galynker, Igor I.

    2016-01-01

    Objectives: The Adult Attachment Interview (AAI) has been the gold standard of attachment assessment, but requires special training. The Relationship Scales Questionnaire (RSQ) is a widely used self-report measure. We investigate how each correlates with brain activity during appraisal of subjects’ mothers. Methods: Twenty-eight women were scored on the AAI, RSQ, and mood measures. During functional magnetic resonance imaging, subjects viewed their mothers in neutral-, valence-, and salience-rating conditions. We identified regions where contrasts in brain activity between appraisal and neutral viewing conditions correlated with each measure of attachment after covarying for mood. AAI and RSQ measures were then compared in terms of the extent to which regions of correlating brain activity overlapped with “default mode network” (DMN) vs. executive frontal network (EFN) masks and cortical vs. subcortical masks. Additionally, interactions with mood were examined. Results: Salience and valence processing associated with increased thalamo-striatal, posterior cingulate, and visual cortex activity. Salience processing decreased PFC activity, whereas valence processing increased left insula activity. Activity correlating with AAI vs. RSQ measures demonstrated significantly more DMN and subcortical involvement. Interactions with mood were observed in the middle temporal gyrus and precuneus for both measures. Conclusion: The AAI appears to disproportionately correlate with conscious appraisal associated activity in DMN and subcortical structures, while the RSQ appears to tap EFN structures more extensively. Thus, the AAI may assess more interoceptive, ‘core-self’-related processes, while the RSQ captures higher-order cognitions involved in attachment. Shared interaction effects between mood and AAI and RSQ-measures may suggest that processes tapped by each belong to a common system. PMID:27014022

  3. In Vivo MRI Mapping of Brain Iron Deposition across the Adult Lifespan.

    Science.gov (United States)

    Acosta-Cabronero, Julio; Betts, Matthew J; Cardenas-Blanco, Arturo; Yang, Shan; Nestor, Peter J

    2016-01-13

    Disruption of iron homeostasis as a consequence of aging is thought to cause iron levels to increase, potentially promoting oxidative cellular damage. Therefore, understanding how this process evolves through the lifespan could offer insights into both the aging process and the development of aging-related neurodegenerative brain diseases. This work aimed to map, in vivo for the first time with an unbiased whole-brain approach, age-related iron changes using quantitative susceptibility mapping (QSM)--a new postprocessed MRI contrast mechanism. To this end, a full QSM standardization routine was devised and a cohort of N = 116 healthy adults (20-79 years of age) was studied. The whole-brain and ROI analyses confirmed that the propensity of brain cells to accumulate excessive iron as a function of aging largely depends on their exact anatomical location. Whereas only patchy signs of iron scavenging were observed in white matter, strong, bilateral, and confluent QSM-age associations were identified in several deep-brain nuclei--chiefly the striatum and midbrain-and across motor, premotor, posterior insular, superior prefrontal, and cerebellar cortices. The validity of QSM as a suitable in vivo imaging technique with which to monitor iron dysregulation in the human brain was demonstrated by confirming age-related increases in several subcortical nuclei that are known to accumulate iron with age. The study indicated that, in addition to these structures, there is a predilection for iron accumulation in the frontal lobes, which when combined with the subcortical findings, suggests that iron accumulation with age predominantly affects brain regions concerned with motor/output functions. This study used a whole--brain imaging approach known as quantitative susceptibility mapping (QSM) to provide a novel insight into iron accumulation in the brain across the adult lifespan. Validity of the method was demonstrated by showing concordance with ROI analysis and prior knowledge

  4. 21 CFR 882.5840 - Implanted intracerebral/subcortical stimulator for pain relief.

    Science.gov (United States)

    2010-04-01

    ... pain relief. 882.5840 Section 882.5840 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... Devices § 882.5840 Implanted intracerebral/subcortical stimulator for pain relief. (a) Identification. An implanted intracerebral/subcortical stimulator for pain relief is a device that applies electrical current...

  5. Two hands, one brain, and aging.

    Science.gov (United States)

    Maes, Celine; Gooijers, Jolien; Orban de Xivry, Jean-Jacques; Swinnen, Stephan P; Boisgontier, Matthieu P

    2017-04-01

    Many activities of daily living require moving both hands in an organized manner in space and time. Therefore, understanding the impact of aging on bimanual coordination is essential for prolonging functional independence and well-being in older adults. Here we investigated the behavioral and neural determinants of bimanual coordination in aging. The studies surveyed in this review reveal that aging is associated with cortical hyper-activity (but also subcortical hypo-activity) during performance of bimanual tasks. In addition to changes in activation in local areas, the interaction between distributed brain areas also exhibits age-related effects, i.e., functional connectivity is increased in the resting brain as well as during task performance. The mechanisms and triggers underlying these functional activation and connectivity changes remain to be investigated. This requires further research investment into the detailed study of interactions between brain structure, function and connectivity. This will also provide the foundation for interventional research programs towards preservation of brain health and behavioral performance by maximizing neuroplasticity potential in older adults. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Potential gray matter unpruned in adolescents and young adults dependent on dextromethorphan-containing cough syrups: evidence from cortical and subcortical study.

    Science.gov (United States)

    Qiu, Ying-Wei; Lv, Xiao-Fei; Jiang, Gui-Hua; Su, Huan-Huan; Ma, Xiao-Fen; Tian, Jun-Zhang; Zhuo, Fu-Zhen

    2017-10-01

    Adolescence is a unique period in neurodevelopment. Dextromethorphan (DXM)-containing cough syrups are new addictive drugs used by adolescents and young adults. The effects of chronic DXM abuse on neurodevelopment in adolescents and young adults are still unknown. The aim of this study was to investigate the differences in cortical thickness and subcortical gray matter volumes between DXM-dependent adolescents and young adults and healthy controls, and to explore relationships between alternations in cortical thickness/subcortical volume and DXM duration, initial age of DXM use, as well as impulsive behavior in DXM-dependent adolescents and young adults. Thirty-eight DXM-dependent adolescents and young adults and 18 healthy controls underwent magnetic resonance imaging scanning, and cortical thickness across the continuous cortical surface was compared between the groups. Subcortical volumes were compared on a structure-by-structure basis. DXM-dependent adolescents and young adults exhibited significantly increased cortical thickness in the bilateral precuneus (PreC), left dorsal lateral prefrontal cortex (DLPFC. L), left inferior parietal lobe (IPL. L), right precentral gyrus (PreCG. R), right lateral occipital cortex (LOC. R), right inferior temporal cortex (ITC. R), right lateral orbitofrontal cortex (lOFC. R) and right transverse temporal gyrus (TTG. R) (all p < 0.05, multiple comparison corrected) and increased subcortical volumes of the right thalamus and right pallidum. There was a significant correlation between initial age of DXM use and cortical thickness of the DLPFC. L and PreCG. R. A significant correlation was also found between cortical thickness of the DLPFC. L and impulsive behavior in patients. This was the first study to explore relationships between cortical thickness/subcortical volume and impulsive behavior in adolescents dependent on DXM. These structural changes might explain the neurobiological mechanism of impulsive behavior in

  7. How does the human brain deal with a spinal cord injury?

    NARCIS (Netherlands)

    Bruehlmeier, M; Dietz, [No Value; Leenders, KL; Roelcke, U; Missimer, J; Curt, A

    1998-01-01

    The primary sensorimotor cortex of the adult brain is capable of significant reorganization of topographic maps after deafferentation and de-efferentation. Here we show that patients with spinal cord injury exhibit extensive changes in the activation of cortical and subcortical brain areas during

  8. Exploring patterns of alteration in Alzheimer’s disease brain networks: a combined structural and functional connectomics analysis

    Directory of Open Access Journals (Sweden)

    Fulvia Palesi

    2016-09-01

    Full Text Available Alzheimer’s disease (AD is a neurodegenerative disorder characterized by a severe derangement of cognitive functions, primarily memory, in elderly subjects. As far as the functional impairment is concerned, growing evidence supports the disconnection syndrome hypothesis. Recent investigations using fMRI have revealed a generalized alteration of resting state networks in patients affected by AD and mild cognitive impairment (MCI. However, it was unclear whether the changes in functional connectivity were accompanied by corresponding structural network changes. In this work, we have developed a novel structural/functional connectomic approach: resting state fMRI was used to identify the functional cortical network nodes and diffusion MRI to reconstruct the fiber tracts to give a weight to internodal subcortical connections. Then, local and global efficiency were determined for different networks, exploring specific alterations of integration and segregation patterns in AD and MCI patients compared to healthy controls (HC. In the default mode network (DMN, that was the most affected, axonal loss and reduced axonal integrity appeared to compromise both local and global efficiency along posterior-anterior connections. In the basal ganglia network (BGN, disruption of white matter integrity implied that main alterations occurred in local microstructure. In the anterior insular network (AIN, neuronal loss probably subtended a compromised communication with the insular cortex. Cognitive performance, evaluated by neuropsychological examinations, revealed a dependency on integration and segregation of brain networks. These findings are indicative of the fact that cognitive deficits in AD could be associated not only with cortical alterations (revealed by fMRI but also with subcortical alterations (revealed by diffusion MRI that extend beyond the areas primarily damaged by neurodegeneration, towards the support of an emerging concept of AD as a

  9. Hemispheric Asymmetry of Human Brain Anatomical Network Revealed by Diffusion Tensor Tractography

    Directory of Open Access Journals (Sweden)

    Ni Shu

    2015-01-01

    Full Text Available The topological architecture of the cerebral anatomical network reflects the structural organization of the human brain. Recently, topological measures based on graph theory have provided new approaches for quantifying large-scale anatomical networks. However, few studies have investigated the hemispheric asymmetries of the human brain from the perspective of the network model, and little is known about the asymmetries of the connection patterns of brain regions, which may reflect the functional integration and interaction between different regions. Here, we utilized diffusion tensor imaging to construct binary anatomical networks for 72 right-handed healthy adult subjects. We established the existence of structural connections between any pair of the 90 cortical and subcortical regions using deterministic tractography. To investigate the hemispheric asymmetries of the brain, statistical analyses were performed to reveal the brain regions with significant differences between bilateral topological properties, such as degree of connectivity, characteristic path length, and betweenness centrality. Furthermore, local structural connections were also investigated to examine the local asymmetries of some specific white matter tracts. From the perspective of both the global and local connection patterns, we identified the brain regions with hemispheric asymmetries. Combined with the previous studies, we suggested that the topological asymmetries in the anatomical network may reflect the functional lateralization of the human brain.

  10. Brain Regions Related to Impulsivity Mediate the Effects of Early Adversity on Antisocial Behavior.

    Science.gov (United States)

    Mackey, Scott; Chaarani, Bader; Kan, Kees-Jan; Spechler, Philip A; Orr, Catherine; Banaschewski, Tobias; Barker, Gareth; Bokde, Arun L W; Bromberg, Uli; Büchel, Christian; Cattrell, Anna; Conrod, Patricia J; Desrivières, Sylvane; Flor, Herta; Frouin, Vincent; Gallinat, Jürgen; Gowland, Penny; Heinz, Andreas; Ittermann, Bernd; Paillère Martinot, Marie-Laure; Artiges, Eric; Nees, Frauke; Papadopoulos-Orfanos, Dimitri; Poustka, Luise; Smolka, Michael N; Jurk, Sarah; Walter, Henrik; Whelan, Robert; Schumann, Gunter; Althoff, Robert R; Garavan, Hugh

    2017-08-15

    Individual differences in impulsivity and early adversity are known to be strong predictors of adolescent antisocial behavior. However, the neurobiological bases of impulsivity and their relation to antisocial behavior and adversity are poorly understood. Impulsivity was estimated with a temporal discounting task. Voxel-based morphometry was used to determine the brain structural correlates of temporal discounting in a large cohort (n = 1830) of 14- to 15-year-old children. Mediation analysis was then used to determine whether the volumes of brain regions associated with temporal discounting mediate the relation between adverse life events (e.g., family conflict, serious accidents) and antisocial behaviors (e.g., precocious sexual activity, bullying, illicit substance use). Greater temporal discounting (more impulsivity) was associated with 1) lower volume in frontomedial cortex and bilateral insula and 2) greater volume in a subcortical region encompassing the ventral striatum, hypothalamus and anterior thalamus. The volume ratio between these cortical and subcortical regions was found to partially mediate the relation between adverse life events and antisocial behavior. Temporal discounting is related to regions of the brain involved in reward processing and interoception. The results support a developmental imbalance model of impulsivity and are consistent with the idea that negative environmental factors can alter the developing brain in ways that promote antisocial behavior. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  11. In vivo characterization of chronic traumatic encephalopathy using [F-18]FDDNP PET brain imaging.

    Science.gov (United States)

    Barrio, Jorge R; Small, Gary W; Wong, Koon-Pong; Huang, Sung-Cheng; Liu, Jie; Merrill, David A; Giza, Christopher C; Fitzsimmons, Robert P; Omalu, Bennet; Bailes, Julian; Kepe, Vladimir

    2015-04-21

    Chronic traumatic encephalopathy (CTE) is an acquired primary tauopathy with a variety of cognitive, behavioral, and motor symptoms linked to cumulative brain damage sustained from single, episodic, or repetitive traumatic brain injury (TBI). No definitive clinical diagnosis for this condition exists. In this work, we used [F-18]FDDNP PET to detect brain patterns of neuropathology distribution in retired professional American football players with suspected CTE (n = 14) and compared results with those of cognitively intact controls (n = 28) and patients with Alzheimer's dementia (AD) (n = 24), a disease that has been cognitively associated with CTE. [F-18]FDDNP PET imaging results in the retired players suggested the presence of neuropathological patterns consistent with models of concussion wherein brainstem white matter tracts undergo early axonal damage and cumulative axonal injuries along subcortical, limbic, and cortical brain circuitries supporting mood, emotions, and behavior. This deposition pattern is distinctively different from the progressive pattern of neuropathology [paired helical filament (PHF)-tau and amyloid-β] in AD, which typically begins in the medial temporal lobe progressing along the cortical default mode network, with no or minimal involvement of subcortical structures. This particular [F-18]FDDNP PET imaging pattern in cases of suspected CTE also is primarily consistent with PHF-tau distribution observed at autopsy in subjects with a history of mild TBI and autopsy-confirmed diagnosis of CTE.

  12. Abnormal Gray Matter Shape, Thickness, and Volume in the Motor Cortico-Subcortical Loop in Idiopathic Rapid Eye Movement Sleep Behavior Disorder: Association with Clinical and Motor Features.

    Science.gov (United States)

    Rahayel, Shady; Postuma, Ronald B; Montplaisir, Jacques; Bedetti, Christophe; Brambati, Simona; Carrier, Julie; Monchi, Oury; Bourgouin, Pierre-Alexandre; Gaubert, Malo; Gagnon, Jean-François

    2018-02-01

    Idiopathic rapid eye movement sleep behavior disorder (iRBD) is a major risk factor for Parkinson's disease and dementia with Lewy bodies. Anatomical gray matter abnormalities in the motor cortico-subcortical loop areas remain under studied in iRBD patients. We acquired T1-weighted images and administrated quantitative motor tasks in 41 patients with polysomnography-confirmed iRBD and 41 healthy subjects. Cortical thickness and voxel-based morphometry (VBM) analyses were performed to investigate local cortical thickness and gray matter volume changes, vertex-based shape analysis to investigate shape of subcortical structures, and structure-based volumetric analyses to investigate volumes of subcortical and brainstem structures. Cortical thickness analysis revealed thinning in iRBD patients in bilateral medial superior frontal, orbitofrontal, anterior cingulate cortices, and the right dorsolateral primary motor cortex. VBM results showed lower gray matter volume in iRBD patients in the frontal lobes, anterior cingulate gyri, and caudate nucleus. Shape analysis revealed extensive surface contraction in the external and internal segments of the left pallidum. Clinical and motor impaired features in iRBD were associated with anomalies of the motor cortico-subcortical loop. In summary, iRBD patients showed numerous gray matter structural abnormalities in the motor cortico-subcortical loop, which are associated with lower motor performance and clinical manifestations of iRBD. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. Clinical application of synthesized brain surface imaging for preoperative simulation of brain biopsy under local anesthesia

    International Nuclear Information System (INIS)

    Ogura, Yuko; Katada, Kazuhiro; Imai, Fumihiro; Fujisawa, Kazuhisa; Takeshita, Gen; Kanno, Tetsuo; Koga, Sukehiko

    1994-01-01

    Surface anatomy scanning (SAS) is the technique which permits the direct visualization of brain surface structures, including cortical sulci, guri, subcortical lesions as well as skin markings for craniotomy. A synthesized brain surface image is a technique that combines MR angiography (MRA) with SAS, and it proposed by us for detecting cerebral superficial veins with these surface structures on the same image. The purpose of this report is to present the result of applying the synthesized brain surface image to the preoperative simulation of biopsy under local anesthesia in 2 cases of multiple metastatic brain tumors. The parameters for SAS were TR/TE=50/40 msec, flip angle=60deg by the fast T 2 technique using refocused FID in steady-state (STERF technique). SAS images were processed by gray scale reversal. The MRA data were acquired with two-dimensional time of flight (TOF) sequence after intravenous administration of Gd-DTPA. Before imaging, the water-filled plastic tubes were placed on the patients scalp as markings for craniotomy. Their positions were planned by the neurosurgeons. On SAS, the markings for burr-hole appeared located above the tumors. However on the synthesized brain surface images, the positions of burr-hole were considered to be inadequate, since superficial cerebral vein and sinus were also visualized in the area of the markings. From these results, the positions of burr-hole were reset to avoid the venous structures, and so as to include the lesions in operations. The biopsies were performed successfully and safely because the venous structure could be excluded from the operative field. By this technique it was easy to confirm the relationships among lesions, skin markings and venous structures. The technique described appears to be a useful method for preoperative simulation of biopsies for multiple metastatic brain tumors under local anesthesia. (author)

  14. Mapping of the brain hemodynamic responses to sensorimotor stimulation in a rodent model: A BOLD fMRI study.

    Directory of Open Access Journals (Sweden)

    Salem Boussida

    Full Text Available Blood Oxygenation Level Dependent functional MRI (BOLD fMRI during electrical paw stimulation has been widely used in studies aimed at the understanding of the somatosensory network in rats. However, despite the well-established anatomical connections between cortical and subcortical structures of the sensorimotor system, most of these functional studies have been concentrated on the cortical effects of sensory electrical stimulation. BOLD fMRI study of the integration of a sensorimotor input across the sensorimotor network requires an appropriate methodology to elicit functional activation in cortical and subcortical areas owing to the regional differences in both neuronal and vascular architectures between these brain regions. Here, using a combination of low level anesthesia, long pulse duration of the electrical stimulation along with improved spatial and temporal signal to noise ratios, we provide a functional description of the main cortical and subcortical structures of the sensorimotor rat brain. With this calibrated fMRI protocol, unilateral non-noxious sensorimotor electrical hindpaw stimulation resulted in robust positive activations in the contralateral sensorimotor cortex and bilaterally in the sensorimotor thalamus nuclei, whereas negative activations were observed bilaterally in the dorsolateral caudate-putamen. These results demonstrate that, once the experimental setup allowing necessary spatial and temporal signal to noise ratios is reached, hemodynamic changes related to neuronal activity, as preserved by the combination of a soft anesthesia with a soft muscle relaxation, can be measured within the sensorimotor network. Moreover, the observed responses suggest that increasing pulse duration of the electrical stimulus adds a proprioceptive component to the sensory input that activates sensorimotor network in the brain, and that these activation patterns are similar to those induced by digits paw's movements. These findings may

  15. Association between exercise habits and subcortical gray matter volumes in healthy elderly people: A population-based study in Japan.

    Science.gov (United States)

    Yamamoto, Mikie; Wada-Isoe, Kenji; Yamashita, Fumio; Nakashita, Satoko; Kishi, Masafumi; Tanaka, Kenichiro; Yamawaki, Mika; Nakashima, Kenji

    2017-06-01

    The relationship between exercise and subcortical gray matter volume is not well understood in the elderly population, although reports indicate that exercise may prevent cortical gray matter atrophy. To elucidate this association in the elderly, we measured subcortical gray matter volume and correlated this with volumes to exercise habits in a community-based cohort study in Japan. Subjects without mild cognitive impairment or dementia (n = 280, 35% male, mean age 73.1 ± 5.9 years) were evaluated using the Mini-Mental State Examination (MMSE), an exercise habit questionnaire, and brain magnetic resonance imaging. Subcortical gray matter volume was compared between groups based on the presence/absence of exercise habits. The MMSE was re-administered 3 years after the baseline examination. Ninety-one subjects (32.5%) reported exercise habits (exercise group), and 189 subjects (67.5%) reported no exercise habits (non-exercise group). Volumetric analysis revealed that the volumes in the exercise group were greater in the left hippocampus (p = 0.042) and bilateral nucleus accumbens (left, p = 0.047; right, p = 0.007) compared to those of the non-exercise group. Among the 195 subjects who received a follow-up MMSE examination, the normalized intra-cranial volumes of the left nucleus accumbens (p = 0.004) and right amygdala (p = 0.014)showed significant association with a decline in the follow-up MMSE score. Subjects with exercise habits show larger subcortical gray matter volumes than subjects without exercise habits in community-dwelling elderly subjects in Japan. Specifically, the volume of the nucleus accumbens correlates with both exercise habits and cognitive preservation.

  16. Brain metabolism in patients with freezing of gait after hypoxic-ischemic brain injury: A pilot study.

    Science.gov (United States)

    Yoon, Seo Yeon; Lee, Sang Chul; Kim, Na Young; An, Young-Sil; Kim, Yong Wook

    2017-11-01

    Movement disorders are 1 of the long-term neurological complications that can occur after hypoxic-ischemic brain injury (HIBI). However, freezing of gait (FOG) after HIBI is rare. The aim of this study was to examine the brain metabolism of patients with FOG after HIBI using F-18 fluoro-2-deoxy-D-glucose positron emission tomography (F-18 FDG PET).We consecutively enrolled 11 patients with FOG after HIBI. The patients' overall brain metabolism was measured by F-18 FDG PET, and we compared their regional brain metabolic activity with that from 15 healthy controls using a voxel-by-voxel-based statistical mapping analysis. Additionally, we correlated each patient's FOG severity with the brain metabolism using a covariance analysis.Patients with FOG had significantly decreased brain glucose metabolism in the midbrain, bilateral thalamus, bilateral cingulate gyri, right supramarginal gyrus, right angular gyrus, right paracentral lobule, and left precentral gyrus (PFDR-corrected brain metabolism were noted in patients with FOG. The covariance analysis identified significant correlations between the FOG severity and the brain metabolism in the right lingual gyrus, left fusiform gyrus, and bilateral cerebellar crus I (Puncorrected brain regions in the gait-related neural network, including the cerebral cortex, subcortical structures, brainstem, and cerebellum, may significantly contribute to the development of FOG in HIBI. Moreover, the FOG severity may be associated with the visual cortex and cerebellar regions.

  17. Double Cortex Syndrome (Subcortical Band Heterotopia): A Case Report.

    Science.gov (United States)

    Momen, Ali Akbar; Momen, Mehdi

    2015-01-01

    Objective Approximately 5-10% of preschool age children are considered developmentally disabled. Brain Magnetic Resonance Imaging (MRI) plays a key role in the diagnostic evaluation in these children. Many congenital or acquired brain anomalies are revealed with MRIs. Although the majority of these abnormalities are sporadic but patients with subcortical band heterotopia or double cortex syndrome have sex-linked inheritance. We are going to present the first case in Iran from Ahvaz city, which was presented with status epilepticus associated with developmental delay and finally diagnosed as double cortex syndrome, because band heterotopia cases especially for continuous or generalized form is rare. A 4.5-year-old developmentally delayed girl was admitted for generalized tonic clonic seizure attack of 1 hr, upward gaze, locked mouth, and urinary incontinence (status epilepticus) in the child neurology ward. She had a history of recurrent seizures that started as febrile seizures since she was 12 months of age and had frequent admissions for having recurrent seizure attacks. She was the only child of consanguineous parents with negative family history of any neurologic problems. She was a product of uneventful term pregnancy, vaginal delivery with a low Apgar score at birth who was admitted for six days in the neonatal ward for hypotonia and cyanosis. At 4.5 years of age, she had HC: 45cm (spike-wave discharges. A brain MRI showed corpus callosal dysplasia, generalized band heterotopia, and polymicrogyria. She was discharged home with oral valproate and regular outpatient follow-ups. In the diagnostic evaluation of developmentally delayed and epileptic children, a brain MRI is strongly recommended for accurate diagnosis of anomalies such as neuronal migration disorders (band heterotopia) and others, because appropriate therapeutic management, prognosis, prevention, and genetic counseling for prenatal diagnosis are dependent on definite diagnosis of the proband case.

  18. The overlapping community structure of structural brain network in young healthy individuals.

    Directory of Open Access Journals (Sweden)

    Kai Wu

    2011-05-01

    Full Text Available Community structure is a universal and significant feature of many complex networks in biology, society, and economics. Community structure has also been revealed in human brain structural and functional networks in previous studies. However, communities overlap and share many edges and nodes. Uncovering the overlapping community structure of complex networks remains largely unknown in human brain networks. Here, using regional gray matter volume, we investigated the structural brain network among 90 brain regions (according to a predefined anatomical atlas in 462 young, healthy individuals. Overlapped nodes between communities were defined by assuming that nodes (brain regions can belong to more than one community. We demonstrated that 90 brain regions were organized into 5 overlapping communities associated with several well-known brain systems, such as the auditory/language, visuospatial, emotion, decision-making, social, control of action, memory/learning, and visual systems. The overlapped nodes were mostly involved in an inferior-posterior pattern and were primarily related to auditory and visual perception. The overlapped nodes were mainly attributed to brain regions with higher node degrees and nodal efficiency and played a pivotal role in the flow of information through the structural brain network. Our results revealed fuzzy boundaries between communities by identifying overlapped nodes and provided new insights into the understanding of the relationship between the structure and function of the human brain. This study provides the first report of the overlapping community structure of the structural network of the human brain.

  19. Three Types of Cortical L5 Neurons that Differ in Brain-Wide Connectivity and Function

    Science.gov (United States)

    Kim, Euiseok J.; Juavinett, Ashley L.; Kyubwa, Espoir M.; Jacobs, Matthew W.; Callaway, Edward M.

    2015-01-01

    SUMMARY Cortical layer 5 (L5) pyramidal neurons integrate inputs from many sources and distribute outputs to cortical and subcortical structures. Previous studies demonstrate two L5 pyramid types: cortico-cortical (CC) and cortico-subcortical (CS). We characterize connectivity and function of these cell types in mouse primary visual cortex and reveal a new subtype. Unlike previously described L5 CC and CS neurons, this new subtype does not project to striatum [cortico-cortical, non-striatal (CC-NS)] and has distinct morphology, physiology and visual responses. Monosynaptic rabies tracing reveals that CC neurons preferentially receive input from higher visual areas, while CS neurons receive more input from structures implicated in top-down modulation of brain states. CS neurons are also more direction-selective and prefer faster stimuli than CC neurons. These differences suggest distinct roles as specialized output channels, with CS neurons integrating information and generating responses more relevant to movement control and CC neurons being more important in visual perception. PMID:26671462

  20. Does ECT alter brain structure?

    Science.gov (United States)

    Devanand, D P; Dwork, A J; Hutchinson, E R; Bolwig, T G; Sackeim, H A

    1994-07-01

    The purpose of this study was to evaluate whether ECT causes structural brain damage. The literature review covered the following areas: cognitive side effects, structural brain imaging, autopsies of patients who had received ECT, post-mortem studies of epileptic subjects, animal studies of electroconvulsive shock (ECS) and epilepsy, and the neuropathological effects of the passage of electricity, heat generation, and blood-brain barrier disruption. ECT-induced cognitive deficits are transient, although spotty memory loss may persist for events immediately surrounding the ECT course. Prospective computerized tomography and magnetic resonance imaging studies show no evidence of ECT-induced structural changes. Some early human autopsy case reports from the unmodified ECT era reported cerebrovascular lesions that were due to agonal changes or undiagnosed disease. In animal ECS studies that used a stimulus intensity and frequency comparable to human ECT, no neuronal loss was seen when appropriate control animals, blind ratings, and perfusion fixation techniques were employed. Controlled studies using quantitative cell counts have failed to show neuronal loss even after prolonged courses of ECS. Several well-controlled studies have demonstrated that neuronal loss occurs only after 1.5 to 2 hours of continuous seizure activity in primates, and adequate muscle paralysis and oxygenation further delay these changes. These conditions are not approached during ECT. Other findings indicate that the passage of electricity, thermal effects, and the transient disruption of the blood-brain barrier during ECS do not result in structural brain damage. There is no credible evidence that ECT causes structural brain damage.

  1. Cellular complexity in subcortical white matter: a distributed control circuit?

    Science.gov (United States)

    Colombo, Jorge A

    2018-03-01

    The subcortical white matter (SWM) has been traditionally considered as a site for passive-neutral-information transfer through cerebral cortex association and projection fibers. Yet, the presence of subcortical neuronal and glial "interstitial" cells expressing immunolabelled neurotransmitters/neuromodulators and synaptic vesicular proteins, and recent immunohistochemical and electrophysiological observations on the rat visual cortex as well as interactive regulation of myelinating processes support the possibility that SWM nests subcortical, regionally variable, distributed neuronal-glial circuits, that could influence information transfer. Their hypothetical involvement in regulating the timing and signal transfer probability at the SWM axonal components ought to be considered and experimentally analysed. Thus, the "interstitial" neuronal cells-associated with local glial cells-traditionally considered to be vestigial and functionally inert under normal conditions, they may well turn to be critical in regulating information transfer at the SWM.

  2. Brain structural plasticity with spaceflight

    OpenAIRE

    Koppelmans, Vincent; Bloomberg, Jacob J; Mulavara, Ajitkumar P; Seidler, Rachael D

    2016-01-01

    Humans undergo extensive sensorimotor adaptation during spaceflight due to altered vestibular inputs and body unloading. No studies have yet evaluated the effects of spaceflight on human brain structure despite the fact that recently reported optic nerve structural changes are hypothesized to occur due to increased intracranial pressure occurring with microgravity. This is the first report on human brain structural changes with spaceflight. We evaluated retrospective longitudinal T2-weighted ...

  3. Patterns of differences in brain morphology in humans as compared to extant apes.

    Science.gov (United States)

    Aldridge, Kristina

    2011-01-01

    Although human evolution is characterized by a vast increase in brain size, it is not clear whether or not certain regions of the brain are enlarged disproportionately in humans, or how this enlargement relates to differences in overall neural morphology. The aim of this study is to determine whether or not there are specific suites of features that distinguish the morphology of the human brain from that of apes. The study sample consists of whole brain, in vivo magnetic resonance images (MRIs) of anatomically modern humans (Homo sapiens sapiens) and five ape species (gibbons, orangutans, gorillas, chimpanzees, bonobos). Twenty-nine 3D landmarks, including surface and internal features of the brain were located on 3D MRI reconstructions of each individual using MEASURE software. Landmark coordinate data were scaled for differences in size and analyzed using Euclidean Distance Matrix Analysis (EDMA) to statistically compare the brains of each non-human ape species to the human sample. Results of analyses show both a pattern of brain morphology that is consistently different between all apes and humans, as well as patterns that differ among species. Further, both the consistent and species-specific patterns include cortical and subcortical features. The pattern that remains consistent across species indicates a morphological reorganization of 1) relationships between cortical and subcortical frontal structures, 2) expansion of the temporal lobe and location of the amygdala, and 3) expansion of the anterior parietal region. Additionally, results demonstrate that, although there is a pattern of morphology that uniquely defines the human brain, there are also patterns that uniquely differentiate human morphology from the morphology of each non-human ape species, indicating that reorganization of neural morphology occurred at the evolutionary divergence of each of these groups. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Insights into Brain Glycogen Metabolism: THE STRUCTURE OF HUMAN BRAIN GLYCOGEN PHOSPHORYLASE.

    Science.gov (United States)

    Mathieu, Cécile; Li de la Sierra-Gallay, Ines; Duval, Romain; Xu, Ximing; Cocaign, Angélique; Léger, Thibaut; Woffendin, Gary; Camadro, Jean-Michel; Etchebest, Catherine; Haouz, Ahmed; Dupret, Jean-Marie; Rodrigues-Lima, Fernando

    2016-08-26

    Brain glycogen metabolism plays a critical role in major brain functions such as learning or memory consolidation. However, alteration of glycogen metabolism and glycogen accumulation in the brain contributes to neurodegeneration as observed in Lafora disease. Glycogen phosphorylase (GP), a key enzyme in glycogen metabolism, catalyzes the rate-limiting step of glycogen mobilization. Moreover, the allosteric regulation of the three GP isozymes (muscle, liver, and brain) by metabolites and phosphorylation, in response to hormonal signaling, fine-tunes glycogenolysis to fulfill energetic and metabolic requirements. Whereas the structures of muscle and liver GPs have been known for decades, the structure of brain GP (bGP) has remained elusive despite its critical role in brain glycogen metabolism. Here, we report the crystal structure of human bGP in complex with PEG 400 (2.5 Å) and in complex with its allosteric activator AMP (3.4 Å). These structures demonstrate that bGP has a closer structural relationship with muscle GP, which is also activated by AMP, contrary to liver GP, which is not. Importantly, despite the structural similarities between human bGP and the two other mammalian isozymes, the bGP structures reveal molecular features unique to the brain isozyme that provide a deeper understanding of the differences in the activation properties of these allosteric enzymes by the allosteric effector AMP. Overall, our study further supports that the distinct structural and regulatory properties of GP isozymes contribute to the different functions of muscle, liver, and brain glycogen. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Transcranial magnetic stimulation: Improved coil design for deep brain investigation

    Science.gov (United States)

    Crowther, L. J.; Marketos, P.; Williams, P. I.; Melikhov, Y.; Jiles, D. C.; Starzewski, J. H.

    2011-04-01

    This paper reports on a design for a coil for transcranial magnetic stimulation. The design shows potential for improving the penetration depth of the magnetic field, allowing stimulation of subcortical structures within the brain. The magnetic and induced electric fields in the human head have been calculated with finite element electromagnetic modeling software and compared with empirical measurements. Results show that the coil design used gives improved penetration depth, but also indicates the likelihood of stimulation of additional tissue resulting from the spatial distribution of the magnetic field.

  6. Localizing Age-Related Changes in Brain Structure Using Voxel-Based Morphometry

    Directory of Open Access Journals (Sweden)

    Shu Hua Mu

    2017-01-01

    Full Text Available Aim. We report the dynamic anatomical sequence of human cortical gray matter development from late childhood to young adults using VBM and ROI-based methods. Method. The structural MRI of 91 normal individuals ranging in age from 6 to 26 years was obtained and the GMV for each region was measured. Results. Our results showed that the earliest loss of GMV occurred in left olfactory, right precuneus, caudate, left putamen, pallidum, and left middle temporal gyrus. In addition, the trajectory of maturational and aging showed a linear decline in GMV on both cortical lobes and subcortical regions. The most loss of gray matter was observed in the parietal lobe and basal ganglia, whereas the less loss occurred in the temporal lobe and hippocampus, especially in the left middle temporal pole, which showed no decline until 26 years old. Moreover, the volumes of GM, WM, and CSF were also assessed for linear age effects, showing a significant linear decline in GM with age and a significant linear increase in both WM and CSF with age. Interpretation. Overall, our findings lend support to previous findings of the normal brain development of regional cortex, and they may help in understanding of neurodevelopmental disorders.

  7. Marginal space learning for medical image analysis efficient detection and segmentation of anatomical structures

    CERN Document Server

    Zheng, Yefeng

    2014-01-01

    Presents an award winning image analysis technology (Thomas Edison Patent Award, MICCAI Young Investigator Award) that achieves object detection and segmentation with state-of-the-art accuracy and efficiency Flexible, machine learning-based framework, applicable across multiple anatomical structures and imaging modalities Thirty five clinical applications on detecting and segmenting anatomical structures such as heart chambers and valves, blood vessels, liver, kidney, prostate, lymph nodes, and sub-cortical brain structures, in CT, MRI, X-Ray and Ultrasound.

  8. Altered modulation of prefrontal and subcortical brain activity in newly diagnosed schizophrenia and schizophreniform disorder. A regional cerebral blood flow study

    DEFF Research Database (Denmark)

    Rubin, P; Holm, S; Friberg, L

    1991-01-01

    To measure prefrontal and subcortical activity during a cognitive task, we examined 19 newly diagnosed schizophrenics and patients with schizophreniform psychosis. Seven healthy volunteers served as controls. The patients were drug naive or had received neuroleptics for a few days only. Cerebral ...

  9. Brain connectivity study of brain tumor patients using MR-PET data: preliminary results

    International Nuclear Information System (INIS)

    Mendes, Ana Carina; Ribeiro, Andre Santos; Oros-Peusquens, Ana Maria; Langen, Karl Josef; Shah, Jon; Ferreira, Hugo Alexandre

    2015-01-01

    Brain activity results from anatomical and functional connections that can be disrupted or altered due to trauma or lesion. This work presents a first approach on the study of whole-brain connectivity of brain tumor patients using the Multimodal Imaging Brain Connectivity (MIBCA) toolbox. Two patients with glioblastoma lesions located in the left hemisphere (one in the motor cortex and the other in the temporal lobe) underwent simultaneous MRI and dynamic PET scans using a 3T MRI scanner with a BrainPET insert. The following data was acquired: T1-w MPRAGE (1x1x1mm 3 ), DTI (dir=30, b=0,800s/mm2, 2x2x2mm 3 ), and dynamic 18F-FET PET. The MIBCA toolbox was used to automatically pre-process MRI-PET data and to derive imaging and connectivity metrics from the multimodal data. Computed metrics included: cortical thickness from T1-w data; mean diffusivity (MD), fractional anisotropy (FA), node degree, clustering coefficient and pairwise ROI fibre tracking (structural connectivity) from DTI data; and standardized uptake value (SUV) from PET data. For all the metrics, the differences between left and right hemispherical structures were obtained, followed by a 25% threshold (except for SUV thresholded at 15%). Data was visualized in a connectogram, and both structural connectivity and metrics were studied in regions surrounding lesions. Preliminary results showed increased SUV values in regions surrounding the tumor for both patients. Patients also showed changes in structural connectivity involving these regions and also other more spatially distant regions such as the putamen and the pallidum, including decreased number of fibers between the subcortical structures themselves and with frontal regions. These findings suggest that the presence of a tumor may alter both local and more distant structural connections. Presently, a larger patient sample is being studied along with the inclusion of a control group to test the consistency of the findings.

  10. Brain connectivity study of brain tumor patients using MR-PET data: preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, Ana Carina [Institute of Biophysics and Biomedical Engineering, Faculty of Sciences of the University of Lisbon (Portugal); Ribeiro, Andre Santos [Institute of Biophysics and Biomedical Engineering, Faculty of Sciences of the University of Lisbon (Portugal); Centre for Neuropsychopharmacology, Division of Brain Sciences, Department of Medicine, Imperial College London, London (United Kingdom); Oros-Peusquens, Ana Maria; Langen, Karl Josef; Shah, Jon [Institute of Neuroscience and Medicine - 4, Forschungszentrum Juelich (Germany); Ferreira, Hugo Alexandre [Institute of Biophysics and Biomedical Engineering, Faculty of Sciences of the University of Lisbon (Portugal)

    2015-05-18

    Brain activity results from anatomical and functional connections that can be disrupted or altered due to trauma or lesion. This work presents a first approach on the study of whole-brain connectivity of brain tumor patients using the Multimodal Imaging Brain Connectivity (MIBCA) toolbox. Two patients with glioblastoma lesions located in the left hemisphere (one in the motor cortex and the other in the temporal lobe) underwent simultaneous MRI and dynamic PET scans using a 3T MRI scanner with a BrainPET insert. The following data was acquired: T1-w MPRAGE (1x1x1mm{sup 3}), DTI (dir=30, b=0,800s/mm2, 2x2x2mm{sup 3}), and dynamic 18F-FET PET. The MIBCA toolbox was used to automatically pre-process MRI-PET data and to derive imaging and connectivity metrics from the multimodal data. Computed metrics included: cortical thickness from T1-w data; mean diffusivity (MD), fractional anisotropy (FA), node degree, clustering coefficient and pairwise ROI fibre tracking (structural connectivity) from DTI data; and standardized uptake value (SUV) from PET data. For all the metrics, the differences between left and right hemispherical structures were obtained, followed by a 25% threshold (except for SUV thresholded at 15%). Data was visualized in a connectogram, and both structural connectivity and metrics were studied in regions surrounding lesions. Preliminary results showed increased SUV values in regions surrounding the tumor for both patients. Patients also showed changes in structural connectivity involving these regions and also other more spatially distant regions such as the putamen and the pallidum, including decreased number of fibers between the subcortical structures themselves and with frontal regions. These findings suggest that the presence of a tumor may alter both local and more distant structural connections. Presently, a larger patient sample is being studied along with the inclusion of a control group to test the consistency of the findings.

  11. Subcortical brain alterations in major depressive disorder : findings from the ENIGMA Major Depressive Disorder working group

    NARCIS (Netherlands)

    Schmaal, L.; Veltman, D. J.; van Erp, T. G. M.; Saemann, P. G.; Frodl, T.; Jahanshad, N.; Loehrer, E.; Tiemeier, H.; Hofman, A.; Niessen, W. J.; Vernooij, M. W.; Ikram, M. A.; Wittfeld, K.; Grabe, H. J.; Block, A.; Hegenscheid, K.; Voelzke, H.; Hoehn, D.; Czisch, M.; Lagopoulos, J.; Hatton, S. N.; Hickie, I. B.; Goya-Maldonado, R.; Kraemer, B.; Gruber, O.; Couvy-Duchesne, B.; Renteria, M. E.; Strike, L. T.; Mills, N. T.; de Zubicaray, G. I.; McMahon, K. L.; Medland, S. E.; Martin, N. G.; Gillespie, N. A.; Wright, M. J.; Hall, G.B.; MacQueen, G. M.; Frey, E. M.; Carballedo, A.; van Velzen, L. S.; van Tol, M. J.; van der Wee, N. J.; Veer, I. M.; Walter, H.; Schnell, K.; Schramm, E.; Normann, C.; Schoepf, D.; Konrad, C.; Penninx, B. W. J. H.

    The pattern of structural brain alterations associated with major depressive disorder (MDD) remains unresolved. This is in part due to small sample sizes of neuroimaging studies resulting in limited statistical power, disease heterogeneity and the complex interactions between clinical

  12. Examining the subcortical infarcts in the era of acute multimodality CT imaging

    Directory of Open Access Journals (Sweden)

    Mindy Tan

    2016-12-01

    Full Text Available Background: Lacunar infarcts have been characterized as small subcortical infarcts, resulting from in situ microatheroma or lipohyalinosis in small vessels. Based on this hypothesis, such infarcts should not be associated with large areas of perfusion deficits extending beyond subcortical regions to involve cortical regions. By contrast, selected small subcortical infarcts, as defined by MR imaging in the subacute or chronic stage, may initially have large perfusion deficits or related large vessel occlusions. These infarcts with ‘lacunar’ phenotype may also be caused by disease in the parent vessel and may have very different stroke mechanisms from small vessel disease. Our aim was to describe differences in imaging characteristics between patients with small subcortical infarction with ‘lacunar phenotype’ from those with lacunar mechanism. Methods: Patients undergoing acute CT Perfusion/angiography (CTP/CTA within 6 hours of symptom onset and follow-up magnetic resonance imaging (MRI for ischaemic stroke were included (2009-2013. A lacunar infarct was defined as a single subcortical infarct (SSI ≤20 mm on follow-up MRI. Presence of perfusion deficits, vessel occlusion and infarct dimensions were compared between lacunar infarcts and other topographical infarct types. Results: Overall, 182 patients (mean age 66.4±15.3 years, 66% male were included. SSI occurred in 31 (17% patients. Of these, 12 (39% patients had a perfusion deficit compared with those with any cortical infarction (120/142, 67%, and the smallest SSI with a perfusion deficit had a diameter of <5mm. The majority of patients with SSI (8/12, 66.7% had a relevant vessel occlusion. A quarter of SSIs had a large-artery stroke mechanism evident on acute CTP/CTA. Lacunar mechanism was present in 3/8 patients with corona radiata, 5/10 lentiform nucleus, 5/6 posterior limb of internal capsule PLIC, 3/5 thalamic infarcts and 1/2 miscellaneous locations. There was a trend toward

  13. Executive function assessment in patients with subcortical cerebral infarction using the Trail Making Test and Wisconsin Card Sorting Test

    International Nuclear Information System (INIS)

    Niiyama, Kazuhide; Hasegawa, Akira; Kato, Haruhisa; Umesato, Naoyuki; Utsumi, Hiroya

    2008-01-01

    To assess executive function in patients with subcortical cerebral infarctions, we implemented a Trail Making Test (TMT) and Wisconsin Card Sorting Test (WCST). We recruited 19 patients who had subcortical cerebral infarction on magnetic resonance images (MRI). The patients were classified into two categories depending on the degree of deep white matter hyperintensity (DWMH) on MRI. On comparing MRI and pathological findings, the punctate DWMH was not associated with infarction, but large confluent DWMH suggests subcortical ischemia. On this basis, the low grade DWMH group consisted of 12 patients with punctate foci, and seven patients with large confluent areas were classified in the high grade DWMH group. All patients were right-handed and without symptomatic hemiparesis. To exclude demented patients, cognitive function was examined. The vascular lesions were confirmed by brain magnetic resonance angiography and ultrasonography of the carotid arteries, and we excluded patients with severe stenotic or occlusive vascular lesions in cerebral or carotid arteries. On TMT, we analyzed the time required for Part A and Part B, and the difference in time required (required time difference). We also subtracted the time required for Part A form that required for Part B. To exclude the influence of potential hemiparesis, we also calculated the time required ratio expressed as follows; time required for Part B/time required for Part A. There was no significant increase in the time required for Part A, but we found significant increase in the time required for Part B, the required time difference and the required time ratio in the high grade DWMH group. There was no significant difference on WCST. On pathological examination in normal elderly subjects, punctate foci can be found, but not large confluent DWMH. In this study, we found that patients with severe DWMH may have impaired executive functions. These results might be induced by the pathological features of subcortical

  14. Effects of Sex Steroids in the Human Brain.

    Science.gov (United States)

    Nguyen, Tuong-Vi; Ducharme, Simon; Karama, Sherif

    2017-11-01

    Sex steroids are thought to play a critical developmental role in shaping both cortical and subcortical structures in the human brain. Periods of profound changes in sex steroids invariably coincide with the onset of sex differences in mental health vulnerability, highlighting the importance of sex steroids in determining sexual differentiation of the brain. Yet, most of the evidence for the central effects of sex steroids relies on non-human studies, as several challenges have limited our understanding of these effects in humans: the lack of systematic assessment of the human sex steroid metabolome, the different developmental trajectories of specific sex steroids, the impact of genetic variation and epigenetic changes, and the plethora of interactions between sex steroids, sex chromosomes, neurotransmitters, and other hormonal systems. Here we review how multimodal strategies may be employed to bridge the gap between the basic and clinical understanding of sex steroid-related changes in the human brain.

  15. Correlating subcortical interhemispheric connectivity and cortical hemispheric dominance in brain tumor patients: A repetitive navigated transcranial magnetic stimulation study.

    Science.gov (United States)

    Sollmann, Nico; Ille, Sebastian; Tussis, Lorena; Maurer, Stefanie; Hauck, Theresa; Negwer, Chiara; Bauer, Jan S; Ringel, Florian; Meyer, Bernhard; Krieg, Sandro M

    2016-02-01

    The present study aims to investigate the relationship between transcallosal interhemispheric connectivity (IC) and hemispheric language lateralization by using a novel approach including repetitive navigated transcranial magnetic stimulation (rTMS), hemispheric dominance ratio (HDR) calculation, and rTMS-based diffusion tensor imaging fiber tracking (DTI FT). 31 patients with left-sided perisylvian brain lesions underwent diffusion tensor imaging (DTI) and rTMS language mapping. Cortical language-positive rTMS spots were used to calculate HDRs (HDR: quotient of the left-sided divided by right-sided naming error rates for corresponding left- and right-sided cortical regions) and to create regions of interest (ROIs) for DTI FT. Then, fibers connecting the rTMS-based ROIs of both hemispheres were tracked, and the correlation of IC to HDRs was calculated via Spearman's rank correlation coefficient (rs). Fibers connecting rTMS-based ROIs of both hemispheres were detected in 12 patients (38.7%). Within the patients in which IC was detected, the mean number of subcortical IC fibers ± standard deviation (SD) was 138.0 ± 346.5 (median: 7.5; range: 1-1,217 fibers). Regarding rs for the correlation of HDRs and fiber numbers of patients that showed IC, only moderate correlation was revealed. Our approach might be beneficial and technically feasible for further investigation of the relationship between IC and language lateralization. However, only moderate correlation was revealed in the present study. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. CT findings of brain atrophy after chemotherapy in acute leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Jun; Park, Seog Hee; Kim, Choon Yul; Bahk, Yong Whee [Catholic University Medicine College, Seoul (Korea, Republic of)

    1988-10-15

    A study was performed to evaluate the atrophic changes of the central nerve system after chemotherapy in the patients with acute leukemia. The computed tomographic findings and medical records of 20 proven acute leukemia patients under 35 years-old who developed various CNS symptoms and signs during and/or after 2 courses of chemotherapy were reviewed. The results were as follows: 1. Age distribution was from 14 to 5 years (mean was 26 years). Male was 15. 2. Presenting clinical symptoms and signs were headache (16/20), nausea and vomiting (11/20) and loss of consciousness (5/20). 3. Brain atrophy was noted in 16 patients including cortical and subcortical atrophy 15 cases and subcortical atrophy 1 case. 4. Two cases of hemorrhage, one each of intracranial hematoma and chronic subdural hematoma were found in addition to brain atrophy. This showed that chemotherapeutic agents cause brain atrophy in a considerable number of the patients with symptomatic acute leukemia.

  17. Molecular and Functional Properties of Regional Astrocytes in the Adult Brain.

    Science.gov (United States)

    Morel, Lydie; Chiang, Ming Sum R; Higashimori, Haruki; Shoneye, Temitope; Iyer, Lakshmanan K; Yelick, Julia; Tai, Albert; Yang, Yongjie

    2017-09-06

    The molecular signature and functional properties of astroglial subtypes in the adult CNS remain largely undefined. By using translational ribosome affinity purification followed by RNA-Seq, we profiled astroglial ribosome-associated (presumably translating) mRNAs in major cortical and subcortical brain regions (cortex, hippocampus, caudate-putamen, nucleus accumbens, thalamus, and hypothalamus) of BAC aldh1l1 -translational ribosome affinity purification (TRAP) mice (both sexes). We found that the expression of astroglial translating mRNAs closely follows the dorsoventral axis, especially from cortex/hippocampus to thalamus/hypothalamus posteriorly. This region-specific expression pattern of genes, such as synaptogenic modulator sparc and transcriptional factors ( emx2 , lhx2 , and hopx ), was validated by qRT-PCR and immunostaining in brain sections. Interestingly, cortical or subcortical astrocytes selectively promote neurite growth and synaptic activity of neurons only from the same region in mismatched cocultures, exhibiting region-matched astrocyte to neuron communication. Overall, these results generated new molecular signature of astrocyte types in the adult CNS, providing insights into their origin and functional diversity. SIGNIFICANCE STATEMENT We investigated the in vivo molecular and functional heterogeneity of astrocytes inter-regionally from adult brain. Our results showed that the expression pattern of ribosome-associated mRNA profiles in astrocytes closely follows the dorsoventral axis, especially posteriorly from cortex/hippocampus to thalamus/hypothalamus. In line with this, our functional results further demonstrated region-selective roles of cortical and subcortical astrocytes in regulating cortical or subcortical neuronal synaptogenesis and maturation. These in vivo studies provide a previously uncharacterized and important molecular atlas for exploring region-specific astroglial functions. Copyright © 2017 the authors 0270-6474/17/378706-12$15.00/0.

  18. Understanding emotion with brain networks.

    Science.gov (United States)

    Pessoa, Luiz

    2018-02-01

    Emotional processing appears to be interlocked with perception, cognition, motivation, and action. These interactions are supported by the brain's large-scale non-modular anatomical and functional architectures. An important component of this organization involves characterizing the brain in terms of networks. Two aspects of brain networks are discussed: brain networks should be considered as inherently overlapping (not disjoint) and dynamic (not static). Recent work on multivariate pattern analysis shows that affective dimensions can be detected in the activity of distributed neural systems that span cortical and subcortical regions. More broadly, the paper considers how we should think of causation in complex systems like the brain, so as to inform the relationship between emotion and other mental aspects, such as cognition.

  19. Perinatal Hypoxic-Ischemic brain injury; MR findings

    International Nuclear Information System (INIS)

    Park, Dong Woo; Seo, Chang Hye

    1994-01-01

    To characterize the MR findings of hypoxic-ischemic brain injury and to assess the value of the MR imaging. SE T1-, T2-weighted, and IR brain MR images of 44 infants and children with the past history of perinatal hypoxic insults were reviewed. Abnormal brain MR findings of 8 patients with birth history of prematurity and 36 patients with birth history of full-term/posterm including 7 with severe anoxic insult history, were compared in regard to the location and the character of the lesions. MRI demonstrated the followings; (1)abnormal signal intensity lesions of subcortical and/or deep cerebral white matter, cortex, and deep gray matter, (2)atrophy of the cerebral white matter, cortex and corpus callosum, with/without ventriculomegaly, and (3)delay in myelination. Periventricular and deep white matter lesions were demonstrated in the prematurity, the deep white matter lesions and/ or subcortical white matter lesions in the term/post-term, and deep gray matter lesions in the 7 patients with severe anoxic insults history. MR imaging was useful in the diagnosis of the hypoxic-ischemic brain injury, and the white and gray matter lesions were correlated with the time of the injury and the severity of hypoxic insult

  20. Subcortical vascular cognitive impairment, no dementia : EEG global power independently predicts vascular impairment and brain symmetry index reflects severity of cognitive decline

    NARCIS (Netherlands)

    Sheorajpanday, Rishi V.A.; Mariën, Peter; Nagels, Guy; Weeren, Arie J.T.M.; Saerens, Jos; Van Putten, Michel J.A.M.; de Deyn, Peter P.

    2014-01-01

    Background and Purpose: Vascular cognitive impairment, no dementia (vCIND) is a prevalent and potentially preventable disorder. Clinical presentation of the small-vessel subcortical subtype may be insidious, and differential difficulties can arise with mild cognitive impairment. We investigated EEG

  1. Subcortical Vascular Cognitive Impairment, No Dementia : EEG Global Power Independently Predicts Vascular Impairment and Brain Symmetry Index Reflects Severity of Cognitive Decline

    NARCIS (Netherlands)

    Sheorajpanday, Rishi V. A.; Marien, Peter; Nagels, Guy; Weeren, Arie J. T. M.; Saerens, Jos; van Putten, Michel J. A. M.; De Deyn, Peter P.

    2014-01-01

    Background and Purpose:Vascular cognitive impairment, no dementia (vCIND) is a prevalent and potentially preventable disorder. Clinical presentation of the small-vessel subcortical subtype may be insidious, and differential difficulties can arise with mild cognitive impairment. We investigated EEG

  2. Complex Trajectories of Brain Development in the Healthy Human Fetus.

    Science.gov (United States)

    Andescavage, Nickie N; du Plessis, Adre; McCarter, Robert; Serag, Ahmed; Evangelou, Iordanis; Vezina, Gilbert; Robertson, Richard; Limperopoulos, Catherine

    2017-11-01

    This study characterizes global and hemispheric brain growth in healthy human fetuses during the second half of pregnancy using three-dimensional MRI techniques. We studied 166 healthy fetuses that underwent MRI between 18 and 39 completed weeks gestation. We created three-dimensional high-resolution reconstructions of the brain and calculated volumes for left and right cortical gray matter (CGM), fetal white matter (FWM), deep subcortical structures (DSS), and the cerebellum. We calculated the rate of growth for each tissue class according to gestational age and described patterns of hemispheric growth. Each brain region demonstrated major increases in volume during the second half of gestation, the most pronounced being the cerebellum (34-fold), followed by FWM (22-fold), CGM (21-fold), and DSS (10-fold). The left cerebellar hemisphere, CGM, and DSS had larger volumes early in gestation, but these equalized by term. It has been increasingly recognized that brain asymmetry evolves throughout the human life span. Advanced quantitative MRI provides noninvasive measurements of early structural asymmetry between the left and right fetal brain that may inform functional and behavioral laterality differences seen in children and young adulthood. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. The impact of large structural brain changes in chronic stroke patients on the electric field caused by transcranial brain stimulation.

    Science.gov (United States)

    Minjoli, Sena; Saturnino, Guilherme B; Blicher, Jakob Udby; Stagg, Charlotte J; Siebner, Hartwig R; Antunes, André; Thielscher, Axel

    2017-01-01

    Transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (TDCS) are two types of non-invasive transcranial brain stimulation (TBS). They are useful tools for stroke research and may be potential adjunct therapies for functional recovery. However, stroke often causes large cerebral lesions, which are commonly accompanied by a secondary enlargement of the ventricles and atrophy. These structural alterations substantially change the conductivity distribution inside the head, which may have potentially important consequences for both brain stimulation methods. We therefore aimed to characterize the impact of these changes on the spatial distribution of the electric field generated by both TBS methods. In addition to confirming the safety of TBS in the presence of large stroke-related structural changes, our aim was to clarify whether targeted stimulation is still possible. Realistic head models containing large cortical and subcortical stroke lesions in the right parietal cortex were created using MR images of two patients. For TMS, the electric field of a double coil was simulated using the finite-element method. Systematic variations of the coil position relative to the lesion were tested. For TDCS, the finite-element method was used to simulate a standard approach with two electrode pads, and the position of one electrode was systematically varied. For both TMS and TDCS, the lesion caused electric field "hot spots" in the cortex. However, these maxima were not substantially stronger than those seen in a healthy control. The electric field pattern induced by TMS was not substantially changed by the lesions. However, the average field strength generated by TDCS was substantially decreased. This effect occurred for both head models and even when both electrodes were distant to the lesion, caused by increased current shunting through the lesion and enlarged ventricles. Judging from the similar peak field strengths compared to the healthy

  4. Brain structural plasticity with spaceflight.

    Science.gov (United States)

    Koppelmans, Vincent; Bloomberg, Jacob J; Mulavara, Ajitkumar P; Seidler, Rachael D

    2016-01-01

    Humans undergo extensive sensorimotor adaptation during spaceflight due to altered vestibular inputs and body unloading. No studies have yet evaluated the effects of spaceflight on human brain structure despite the fact that recently reported optic nerve structural changes are hypothesized to occur due to increased intracranial pressure occurring with microgravity. This is the first report on human brain structural changes with spaceflight. We evaluated retrospective longitudinal T2-weighted MRI scans and balance data from 27 astronauts (thirteen ~2-week shuttle crew members and fourteen ~6-month International Space Station crew members) to determine spaceflight effects on brain structure, and whether any pre to postflight brain changes are associated with balance changes. Data were obtained from the NASA Lifetime Surveillance of Astronaut Health. Brain scans were segmented into gray matter maps and normalized into MNI space using a stepwise approach through subject specific templates. Non-parametric permutation testing was used to analyze pre to postflight volumetric gray matter changes. We found extensive volumetric gray matter decreases, including large areas covering the temporal and frontal poles and around the orbits. This effect was larger in International Space Station versus shuttle crew members in some regions. There were bilateral focal gray matter increases within the medial primary somatosensory and motor cortex; i.e., the cerebral areas where the lower limbs are represented. These intriguing findings are observed in a retrospective data set; future prospective studies should probe the underlying mechanisms and behavioral consequences.

  5. Development of large-scale functional brain networks in children.

    Directory of Open Access Journals (Sweden)

    Kaustubh Supekar

    2009-07-01

    Full Text Available The ontogeny of large-scale functional organization of the human brain is not well understood. Here we use network analysis of intrinsic functional connectivity to characterize the organization of brain networks in 23 children (ages 7-9 y and 22 young-adults (ages 19-22 y. Comparison of network properties, including path-length, clustering-coefficient, hierarchy, and regional connectivity, revealed that although children and young-adults' brains have similar "small-world" organization at the global level, they differ significantly in hierarchical organization and interregional connectivity. We found that subcortical areas were more strongly connected with primary sensory, association, and paralimbic areas in children, whereas young-adults showed stronger cortico-cortical connectivity between paralimbic, limbic, and association areas. Further, combined analysis of functional connectivity with wiring distance measures derived from white-matter fiber tracking revealed that the development of large-scale brain networks is characterized by weakening of short-range functional connectivity and strengthening of long-range functional connectivity. Importantly, our findings show that the dynamic process of over-connectivity followed by pruning, which rewires connectivity at the neuronal level, also operates at the systems level, helping to reconfigure and rebalance subcortical and paralimbic connectivity in the developing brain. Our study demonstrates the usefulness of network analysis of brain connectivity to elucidate key principles underlying functional brain maturation, paving the way for novel studies of disrupted brain connectivity in neurodevelopmental disorders such as autism.

  6. Development of large-scale functional brain networks in children.

    Science.gov (United States)

    Supekar, Kaustubh; Musen, Mark; Menon, Vinod

    2009-07-01

    The ontogeny of large-scale functional organization of the human brain is not well understood. Here we use network analysis of intrinsic functional connectivity to characterize the organization of brain networks in 23 children (ages 7-9 y) and 22 young-adults (ages 19-22 y). Comparison of network properties, including path-length, clustering-coefficient, hierarchy, and regional connectivity, revealed that although children and young-adults' brains have similar "small-world" organization at the global level, they differ significantly in hierarchical organization and interregional connectivity. We found that subcortical areas were more strongly connected with primary sensory, association, and paralimbic areas in children, whereas young-adults showed stronger cortico-cortical connectivity between paralimbic, limbic, and association areas. Further, combined analysis of functional connectivity with wiring distance measures derived from white-matter fiber tracking revealed that the development of large-scale brain networks is characterized by weakening of short-range functional connectivity and strengthening of long-range functional connectivity. Importantly, our findings show that the dynamic process of over-connectivity followed by pruning, which rewires connectivity at the neuronal level, also operates at the systems level, helping to reconfigure and rebalance subcortical and paralimbic connectivity in the developing brain. Our study demonstrates the usefulness of network analysis of brain connectivity to elucidate key principles underlying functional brain maturation, paving the way for novel studies of disrupted brain connectivity in neurodevelopmental disorders such as autism.

  7. [Subcortical laminar heterotopia 'double cortex syndrome'].

    Science.gov (United States)

    Teplyshova, A M; Gaskin, V V; Kustov, G V; Gudkova, A A; Luzin, R V; Trifonov, I S; Lebedeva, A V

    2017-01-01

    This article presents a clinical case of a 29-year-old patient with 'Double cortex syndrome' with epilepsy, intellectual and mental disorders. Subcortical band heterotopia is a rare disorder of neuronal migration. Such patients typically present with epilepsy and variable degrees of mental retardation and behavioral and intellectual disturbances. The main diagnostic method is magnetic resonance imaging (MRI).

  8. Dopamine precursor depletion impairs structure and efficiency of resting state brain functional networks.

    Science.gov (United States)

    Carbonell, Felix; Nagano-Saito, Atsuko; Leyton, Marco; Cisek, Paul; Benkelfat, Chawki; He, Yong; Dagher, Alain

    2014-09-01

    Spatial patterns of functional connectivity derived from resting brain activity may be used to elucidate the topological properties of brain networks. Such networks are amenable to study using graph theory, which shows that they possess small world properties and can be used to differentiate healthy subjects and patient populations. Of particular interest is the possibility that some of these differences are related to alterations in the dopamine system. To investigate the role of dopamine in the topological organization of brain networks at rest, we tested the effects of reducing dopamine synthesis in 13 healthy subjects undergoing functional magnetic resonance imaging. All subjects were scanned twice, in a resting state, following ingestion of one of two amino acid drinks in a randomized, double-blind manner. One drink was a nutritionally balanced amino acid mixture, and the other was tyrosine and phenylalanine deficient. Functional connectivity between 90 cortical and subcortical regions was estimated for each individual subject under each dopaminergic condition. The lowered dopamine state caused the following network changes: reduced global and local efficiency of the whole brain network, reduced regional efficiency in limbic areas, reduced modularity of brain networks, and greater connection between the normally anti-correlated task-positive and default-mode networks. We conclude that dopamine plays a role in maintaining the efficient small-world properties and high modularity of functional brain networks, and in segregating the task-positive and default-mode networks. This article is part of the Special Issue Section entitled 'Neuroimaging in Neuropharmacology'. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Correlation of volumetric and fractal measurements of brain atrophy with neuropsychological tests in patients with dementive disorders

    International Nuclear Information System (INIS)

    Czarnecka, A.; Sasiadek, M.; Filarski, J.

    2008-01-01

    Brain atrophy is one of the features of the dementive diseases, but also of other neurodegenerative disorders as well as physiological brain aging. The aim of the study was to define the relationship between the brain atrophy measurements and the degree of the severity of dementive process based on the neuropsychological tests (MMSE and Clock Drawing Test). In 68 patients with diagnosed impairment of cognitive functions due to dementia, neuropsychological tests (MMSE and Clock Drawing Test) and CT studies were performed. On the basis of CT images we evaluated cortical and subcortical atrophy with 3 methods; visual, semiautomatic (volumetric) and automatic method based on fractal geometry calculations; the latter was characterized by very short time of measurements. The correlation between neuropsychological tests and brain atrophy measurements has been assessed using Pearson's correlation test. No statistical correlation was found between the results of neuropsychological tests and measurements of the brain atrophy (both cortical and subcortical) using all three methods mentioned above. Single measurement of the generalized cortical and subcortical atrophy is not correlated with the results of neuropsychological tests. In our opinion, these measurements might be valuable in follow-up of the dementive process to compare progression of the atrophic changes with the changes of the neuropsychological tests results, especially using very quick automatic method, supplemented by local atrophy measurements. (authors)

  10. Hippocampal volume and auditory attention on a verbal memory task with adult survivors of pediatric brain tumor.

    Science.gov (United States)

    Jayakar, Reema; King, Tricia Z; Morris, Robin; Na, Sabrina

    2015-03-01

    We examined the nature of verbal memory deficits and the possible hippocampal underpinnings in long-term adult survivors of childhood brain tumor. 35 survivors (M = 24.10 ± 4.93 years at testing; 54% female), on average 15 years post-diagnosis, and 59 typically developing adults (M = 22.40 ± 4.35 years, 54% female) participated. Automated FMRIB Software Library (FSL) tools were used to measure hippocampal, putamen, and whole brain volumes. The California Verbal Learning Test-Second Edition (CVLT-II) was used to assess verbal memory. Hippocampal, F(1, 91) = 4.06, ηp² = .04; putamen, F(1, 91) = 11.18, ηp² = .11; and whole brain, F(1, 92) = 18.51, ηp² = .17, volumes were significantly lower for survivors than controls (p memory indices of auditory attention list span (Trial 1: F(1, 92) = 12.70, η² = .12) and final list learning (Trial 5: F(1, 92) = 6.01, η² = .06) were significantly lower for survivors (p attention, but none of the other CVLT-II indices. Secondary analyses for the effect of treatment factors are presented. Volumetric differences between survivors and controls exist for the whole brain and for subcortical structures on average 15 years post-diagnosis. Treatment factors seem to have a unique effect on subcortical structures. Memory differences between survivors and controls are largely contingent upon auditory attention list span. Only hippocampal volume is associated with the auditory attention list span component of verbal memory. These findings are particularly robust for survivors treated with radiation. PsycINFO Database Record (c) 2015 APA, all rights reserved.

  11. Spatial Navigation Impairment Is Associated with Alterations in Subcortical Intrinsic Activity in Mild Cognitive Impairment: A Resting-State fMRI Study

    Directory of Open Access Journals (Sweden)

    Zhao Qing

    2017-01-01

    Full Text Available Impairment of spatial navigation (SN skills is one of the features of the Alzheimer’s disease (AD already at the stage of mild cognitive impairment (MCI. We used a computer-based battery of spatial navigation tests to measure the SN performance in 22 MCI patients as well as 21 normal controls (NC. In order to evaluate intrinsic activity in the subcortical regions that may play a role in SN, we measured ALFF, fALFF, and ReHo derived within 14 subcortical regions. We observed reductions of intrinsic activity in MCI patients. We also demonstrated that the MCI versus NC group difference can modulate activity-behavior relationship, that is, the correlation slopes between ReHo and allocentric SN task total errors were significantly different between NC and MCI groups in the right hippocampus (interaction F=4.44, p=0.05, pallidum (F=8.97, p=0.005, and thalamus (F=5.95, p=0.02, which were negative in NC (right hippocampus, r=−0.49; right pallidum, r=−0.50; right thalamus, r=−0.45; all p0.2. These findings may provide a novel insight of the brain mechanism associated with SN impairment in MCI and indicated a stage specificity of brain-behavior correlation in dementia. This trial is registered with ChiCTR-BRC-17011316.

  12. Three Types of Cortical Layer 5 Neurons That Differ in Brain-wide Connectivity and Function.

    Science.gov (United States)

    Kim, Euiseok J; Juavinett, Ashley L; Kyubwa, Espoir M; Jacobs, Matthew W; Callaway, Edward M

    2015-12-16

    Cortical layer 5 (L5) pyramidal neurons integrate inputs from many sources and distribute outputs to cortical and subcortical structures. Previous studies demonstrate two L5 pyramid types: cortico-cortical (CC) and cortico-subcortical (CS). We characterize connectivity and function of these cell types in mouse primary visual cortex and reveal a new subtype. Unlike previously described L5 CC and CS neurons, this new subtype does not project to striatum [cortico-cortical, non-striatal (CC-NS)] and has distinct morphology, physiology, and visual responses. Monosynaptic rabies tracing reveals that CC neurons preferentially receive input from higher visual areas, while CS neurons receive more input from structures implicated in top-down modulation of brain states. CS neurons are also more direction-selective and prefer faster stimuli than CC neurons. These differences suggest distinct roles as specialized output channels, with CS neurons integrating information and generating responses more relevant to movement control and CC neurons being more important in visual perception. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Intraoperative Subcortical Electrical Mapping of the Optic Tract in Awake Surgery Using a Virtual Reality Headset.

    Science.gov (United States)

    Mazerand, Edouard; Le Renard, Marc; Hue, Sophie; Lemée, Jean-Michel; Klinger, Evelyne; Menei, Philippe

    2017-01-01

    Brain mapping during awake craniotomy is a well-known technique to preserve neurological functions, especially the language. It is still challenging to map the optic radiations due to the difficulty to test the visual field intraoperatively. To assess the visual field during awake craniotomy, we developed the Functions' Explorer based on a virtual reality headset (FEX-VRH). The impaired visual field of 10 patients was tested with automated perimetry (the gold standard examination) and the FEX-VRH. The proof-of-concept test was done during the surgery performed on a patient who was blind in his right eye and presenting with a left parietotemporal glioblastoma. The FEX-VRH was used intraoperatively, simultaneously with direct subcortical electrostimulation, allowing identification and preservation of the optic radiations. The FEX-VRH detected 9 of the 10 visual field defects found by automated perimetry. The patient who underwent an awake craniotomy with intraoperative mapping of the optic tract using the FEX-VRH had no permanent postoperative visual field defect. Intraoperative visual field assessment with the FEX-VRH during direct subcortical electrostimulation is a promising approach to mapping the optical radiations and preventing a permanent visual field defect during awake surgery for epilepsy or tumor. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Glutamate concentration in the medial prefrontal cortex predicts resting-state cortical-subcortical functional connectivity in humans.

    Directory of Open Access Journals (Sweden)

    Niall W Duncan

    Full Text Available Communication between cortical and subcortical regions is integral to a wide range of psychological processes and has been implicated in a number of psychiatric conditions. Studies in animals have provided insight into the biochemical and connectivity processes underlying such communication. However, to date no experiments that link these factors in humans in vivo have been carried out. To investigate the role of glutamate in individual differences in communication between the cortex--specifically the medial prefrontal cortex (mPFC--and subcortical regions in humans, a combination of resting-state fMRI, DTI and MRS was performed. The subcortical target regions were the nucleus accumbens (NAc, dorsomedial thalamus (DMT, and periaqueductal grey (PAG. It was found that functional connectivity between the mPFC and each of the NAc and DMT was positively correlated with mPFC glutamate concentrations, whilst functional connectivity between the mPFC and PAG was negatively correlated with glutamate concentration. The correlations involving mPFC glutamate and FC between the mPFC and each of the DMT and PAG were mirrored by correlations with structural connectivity, providing evidence that the glutamatergic relationship may, in part, be due to direct connectivity. These results are in agreement with existing results from animal studies and may have relevance for MDD and schizophrenia.

  15. Structural connectivity asymmetry in the neonatal brain.

    Science.gov (United States)

    Ratnarajah, Nagulan; Rifkin-Graboi, Anne; Fortier, Marielle V; Chong, Yap Seng; Kwek, Kenneth; Saw, Seang-Mei; Godfrey, Keith M; Gluckman, Peter D; Meaney, Michael J; Qiu, Anqi

    2013-07-15

    Asymmetry of the neonatal brain is not yet understood at the level of structural connectivity. We utilized DTI deterministic tractography and structural network analysis based on graph theory to determine the pattern of structural connectivity asymmetry in 124 normal neonates. We tracted white matter axonal pathways characterizing interregional connections among brain regions and inferred asymmetry in left and right anatomical network properties. Our findings revealed that in neonates, small-world characteristics were exhibited, but did not differ between the two hemispheres, suggesting that neighboring brain regions connect tightly with each other, and that one region is only a few paths away from any other region within each hemisphere. Moreover, the neonatal brain showed greater structural efficiency in the left hemisphere than that in the right. In neonates, brain regions involved in motor, language, and memory functions play crucial roles in efficient communication in the left hemisphere, while brain regions involved in emotional processes play crucial roles in efficient communication in the right hemisphere. These findings suggest that even at birth, the topology of each cerebral hemisphere is organized in an efficient and compact manner that maps onto asymmetric functional specializations seen in adults, implying lateralized brain functions in infancy. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Evaluation of brain tissue applying equivalent cross-relaxation rate using MRI

    International Nuclear Information System (INIS)

    Obata, Hideaki; Inaba, Tadashi; Tokuda, Masataka; Matsushima, Shigeru; Kinosada, Yasutomi

    2003-01-01

    The equivalent cross-relaxation rate (ECR) is a measurement method that can evaluate a change in organization structure quantitatively utilizing MRI. The goal of this study is to discover a parameter that we can use to evaluate aging of the human brain using ECR. Fourteen patients diagnosed with diseases other than those located in the cranium were imaged using a SIGNA model of GE Medical Systems equipped with a 1.5 T clinical scanner. The ECR values were defined as the percentage of signal loss between unsaturated and saturated images. It was found that the ECR value of gray matter was lower than subcortical white matter. At ages under 70 years old, the mean of ECR values of subcortical white matter showed stable values with insignificant variance. Furthermore, there was no correlation between age and ECR value of every region calculated. On the other hand, it was found that there was a negative correlation for the ECR values of subcortical white matter and gray matter at ages slightly over 70 years old. It is possible that the reduction in ECR value shows demyelination by aging in the senium. When the offset frequency is near the water resonance frequency, the ECR values mean information about neurocytes. Accordingly, the ECR (320)/ECR (1200) value probably shows that information is related to the amount or activity of neurons. (author)

  17. A Rapid Subcortical Amygdala Route for Faces Irrespective of Spatial Frequency and Emotion.

    Science.gov (United States)

    McFadyen, Jessica; Mermillod, Martial; Mattingley, Jason B; Halász, Veronika; Garrido, Marta I

    2017-04-05

    There is significant controversy over the existence and function of a direct subcortical visual pathway to the amygdala. It is thought that this pathway rapidly transmits low spatial frequency information to the amygdala independently of the cortex, and yet the directionality of this function has never been determined. We used magnetoencephalography to measure neural activity while human participants discriminated the gender of neutral and fearful faces filtered for low or high spatial frequencies. We applied dynamic causal modeling to demonstrate that the most likely underlying neural network consisted of a pulvinar-amygdala connection that was uninfluenced by spatial frequency or emotion, and a cortical-amygdala connection that conveyed high spatial frequencies. Crucially, data-driven neural simulations revealed a clear temporal advantage of the subcortical connection over the cortical connection in influencing amygdala activity. Thus, our findings support the existence of a rapid subcortical pathway that is nonselective in terms of the spatial frequency or emotional content of faces. We propose that that the "coarseness" of the subcortical route may be better reframed as "generalized." SIGNIFICANCE STATEMENT The human amygdala coordinates how we respond to biologically relevant stimuli, such as threat or reward. It has been postulated that the amygdala first receives visual input via a rapid subcortical route that conveys "coarse" information, namely, low spatial frequencies. For the first time, the present paper provides direction-specific evidence from computational modeling that the subcortical route plays a generalized role in visual processing by rapidly transmitting raw, unfiltered information directly to the amygdala. This calls into question a widely held assumption across human and animal research that fear responses are produced faster by low spatial frequencies. Our proposed mechanism suggests organisms quickly generate fear responses to a wide range

  18. Shared rhythmic subcortical GABAergic input to the entorhinal cortex and presubiculum.

    Science.gov (United States)

    Viney, Tim James; Salib, Minas; Joshi, Abhilasha; Unal, Gunes; Berry, Naomi; Somogyi, Peter

    2018-04-05

    Rhythmic theta frequency (~5-12 Hz) oscillations coordinate neuronal synchrony and higher frequency oscillations across the cortex. Spatial navigation and context-dependent episodic memories are represented in several interconnected regions including the hippocampal and entorhinal cortices, but the cellular mechanisms for their dynamic coupling remain to be defined. Using monosynaptically-restricted retrograde viral tracing in mice, we identified a subcortical GABAergic input from the medial septum that terminated in the entorhinal cortex, with collaterals innervating the dorsal presubiculum. Extracellularly recording and labeling GABAergic entorhinal-projecting neurons in awake behaving mice show that these subcortical neurons, named orchid cells, fire in long rhythmic bursts during immobility and locomotion. Orchid cells discharge near the peak of hippocampal and entorhinal theta oscillations, couple to entorhinal gamma oscillations, and target subpopulations of extra-hippocampal GABAergic interneurons. Thus, orchid cells are a specialized source of rhythmic subcortical GABAergic modulation of 'upstream' and 'downstream' cortico-cortical circuits involved in mnemonic functions. © 2018, Viney et al.

  19. Widespread structural brain changes in OCD: a systematic review of voxel-based morphometry studies.

    Science.gov (United States)

    Piras, Federica; Piras, Fabrizio; Chiapponi, Chiara; Girardi, Paolo; Caltagirone, Carlo; Spalletta, Gianfranco

    2015-01-01

    The most widely accepted model of obsessive-compulsive disorder (OCD) assumes brain abnormalities in the "affective circuit", mainly consisting of volume reduction in the medial orbitofrontal, anterior cingulate and temporolimbic cortices, and tissue expansion in the striatum and thalamus. The advent of whole-brain, voxel-based morphometry (VBM) has provided increasing evidence that regions outside the "affective" orbitofronto-striatal circuit are involved in OCD. Nevertheless, potential confounds from the different image analysis methods, as well as other factors, such as patients' medication and comorbidity status, may limit generalization of results. In the present paper, we systematically reviewed the whole-brain VBM literature on OCD by focussing specifically on degree of consistency between studies, extent to which findings have been replicated and interrelation between clinical variables and OCD anatomy, a potentially crucial factor that has been systematically examined only in a limited number of studies. The PubMed database was searched through February 2012. A total of 156 studies were identified; 18 of them fulfilled the inclusion/exclusion criteria and included 511 patients and 504 controls. Results support the notion that the brain alterations responsible for OCD are represented at the network level, and that widespread structural abnormalities may contribute to neurobiological vulnerability to OCD. Apart from defects in regions within the classic "affective" circuit, volume reduction of the cortical source of the dorsolateral (DL) prefronto-striatal "executive" circuit (dorsomedial, DL, ventrolateral and frontopolar prefrontal cortices), and of reciprocally connected regions (temporo-parieto-occipital associative areas) is consistently described in OCD patients. Moreover, increased volume of the internal capsule and reduced frontal and parietal white matter volumes may account for altered anatomical connectivity in fronto-subcortical circuitry

  20. Social re-orientation and brain development: An expanded and updated view

    Directory of Open Access Journals (Sweden)

    Eric E. Nelson

    2016-02-01

    Full Text Available Social development has been the focus of a great deal of neuroscience based research over the past decade. In this review, we focus on providing a framework for understanding how changes in facets of social development may correspond with changes in brain function. We argue that (1 distinct phases of social behavior emerge based on whether the organizing social force is the mother, peer play, peer integration, or romantic intimacy; (2 each phase is marked by a high degree of affect-driven motivation that elicits a distinct response in subcortical structures; (3 activity generated by these structures interacts with circuits in prefrontal cortex that guide executive functions, and occipital and temporal lobe circuits, which generate specific sensory and perceptual social representations. We propose that the direction, magnitude and duration of interaction among these affective, executive, and perceptual systems may relate to distinct sensitive periods across development that contribute to establishing long-term patterns of brain function and behavior.

  1. Social re-orientation and brain development: An expanded and updated view.

    Science.gov (United States)

    Nelson, Eric E; Jarcho, Johanna M; Guyer, Amanda E

    2016-02-01

    Social development has been the focus of a great deal of neuroscience based research over the past decade. In this review, we focus on providing a framework for understanding how changes in facets of social development may correspond with changes in brain function. We argue that (1) distinct phases of social behavior emerge based on whether the organizing social force is the mother, peer play, peer integration, or romantic intimacy; (2) each phase is marked by a high degree of affect-driven motivation that elicits a distinct response in subcortical structures; (3) activity generated by these structures interacts with circuits in prefrontal cortex that guide executive functions, and occipital and temporal lobe circuits, which generate specific sensory and perceptual social representations. We propose that the direction, magnitude and duration of interaction among these affective, executive, and perceptual systems may relate to distinct sensitive periods across development that contribute to establishing long-term patterns of brain function and behavior. Published by Elsevier Ltd.

  2. Detection of hypoxic-ischemic brain injury with 3D-enhanced T2* weighted angiography (ESWAN) imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gang, QiangQiang, E-mail: rousikang@163.com; Zhang, Jianing, E-mail: 1325916060@qq.com; Hao, Peng, E-mail: 1043600590@qq.com; Xu, Yikai, E-mail: yikaivip@163.com

    2013-11-01

    Objective: To demonstrate the use of 3D-enhanced T2* weighted angiography (ESWAN) imaging for the observation and quantification of the evolution of brain injury induced by a recently developed model of hypoxic-ischemic brain injury (HI/R) in neonatal piglets. Methods: For these experiments, newborn piglets were subjected to HI/R injury, during which ESWAN scanning was performed, followed by H and E staining and immunohistochemistry of AQP-4 expression. Results: In the striatum, values from T2* weighted magnetic resonance imaging (MRI) increased and reached their highest level at 3 days post injury, whereas T2* values increased and peaked at 24 h in the subcortical region. The change in T2* values was concordant with brain edema. Phase values in the subcortical border region were not dependent on time post-injury. Magnitude values were significantly different from the control group, and increased gradually over time in the subcortical border region. Susceptibility-weighted images (SWI) indicated small petechial hemorrhages in the striatum and thalamus, as well as dilated intramedullary veins. Conclusion: SWI images can be used to detect white and gray matter microhemorrhages and dilated intramedullary veins. The T2*, phase, and magnitude map can also reflect the development of brain injury. Our data illustrate that ESWAN imaging can increase the diagnostic sensitivity and specificity of MRI in neonatal hypoxic-ischemic encephalopathy.

  3. Detection of hypoxic-ischemic brain injury with 3D-enhanced T2* weighted angiography (ESWAN) imaging

    International Nuclear Information System (INIS)

    Gang, QiangQiang; Zhang, Jianing; Hao, Peng; Xu, Yikai

    2013-01-01

    Objective: To demonstrate the use of 3D-enhanced T2* weighted angiography (ESWAN) imaging for the observation and quantification of the evolution of brain injury induced by a recently developed model of hypoxic-ischemic brain injury (HI/R) in neonatal piglets. Methods: For these experiments, newborn piglets were subjected to HI/R injury, during which ESWAN scanning was performed, followed by H and E staining and immunohistochemistry of AQP-4 expression. Results: In the striatum, values from T2* weighted magnetic resonance imaging (MRI) increased and reached their highest level at 3 days post injury, whereas T2* values increased and peaked at 24 h in the subcortical region. The change in T2* values was concordant with brain edema. Phase values in the subcortical border region were not dependent on time post-injury. Magnitude values were significantly different from the control group, and increased gradually over time in the subcortical border region. Susceptibility-weighted images (SWI) indicated small petechial hemorrhages in the striatum and thalamus, as well as dilated intramedullary veins. Conclusion: SWI images can be used to detect white and gray matter microhemorrhages and dilated intramedullary veins. The T2*, phase, and magnitude map can also reflect the development of brain injury. Our data illustrate that ESWAN imaging can increase the diagnostic sensitivity and specificity of MRI in neonatal hypoxic-ischemic encephalopathy

  4. FLAIR images of brain diseases

    International Nuclear Information System (INIS)

    Segawa, Fuminori; Kinoshita, Masao; Kishibayashi, Jun; Kamada, Kazuhiko; Sunohara, Nobuhiko.

    1994-01-01

    The present study was designed to assess the usefulness of fluid-attenuated inversion recovery (FLAIR) images in diagnosing brain diseases. The subjects were 20 patients with multiple cerebral infarction, multiple sclerosis, temporal epilepsy, or brain trauma, and 20 other healthy adults. FLAIR images, with a long repetitive time of 6000 msec and a long inversion time of 1400-1600 msec, showed low signal intensity in the cerebrospinal fluid in the lateral ventricles and the cerebral sulci, and high signal intensity in brain tissues. Signal intensity on FLAIR images correlated well with T2 relaxation times under 100 msec. For multiple sclerosis and cerebral infarction, cystic lesions, which were shown on T2-weighted images with long relaxation times over 100 msec, appeared as low-signal areas; and the lesions surrounding the cystic lesions appeared as high-signal areas. For temporal lobe epilepsy, the hippocampus was visualized as a high-signal area. Hippocampal lesions were demonstrated better with FLAIR images than with conventional T2-weighted and proton-density images. In a patient with cerebral trauma, FLAIR images revealed the lobulated structure with the residual cortex shown as a high signal area. The lesions surrounding the cystic change were imaged as high signal areas. These structural changes were demonstrated better with FLAIR images than with conventional T2-weighted sequences. FLAIR images were useful in detecting white matter lesions surrounding the lateral ventricles and cortical and subcortical lesions near the brain surface, which were unclear on conventional T2-weighted and proton-density images. (N.K.)

  5. Adolescent drinking and brain morphometry: A co-twin control analysis

    Directory of Open Access Journals (Sweden)

    Sylia Wilson

    2015-12-01

    Full Text Available Developmental changes in structure and functioning are thought to make the adolescent brain particularly sensitive to the negative effects of alcohol. Although alcohol use disorders are relatively rare in adolescence, the initiation of alcohol use, including problematic use, becomes increasingly prevalent during this period. The present study examined associations between normative drinking (alcohol initiation, binge drinking, intoxication and brain morphometry in a sample of 96 adolescent monozygotic twins. A priori regions of interest included 11 subcortical and 20 cortical structures implicated in the existing empirical literature as associated with normative alcohol use in adolescence. In addition, co-twin control analyses were used to disentangle risk for alcohol use from consequences of alcohol exposure on the developing brain. Results indicated significant associations reflecting preexisting vulnerability toward problematic alcohol use, including reduced volume of the amygdala, increased volume of the cerebellum, and reduced cortical volume and thickness in several frontal and temporal regions, including the superior and middle frontal gyri, pars triangularis, and middle and inferior temporal gyri. Results also indicated some associations consistent with a neurotoxic effect of alcohol exposure, including reduced volume of the ventral diencephalon and the middle temporal gyrus.

  6. β-Amyloid accumulation in the human brain after one night of sleep deprivation.

    Science.gov (United States)

    Shokri-Kojori, Ehsan; Wang, Gene-Jack; Wiers, Corinde E; Demiral, Sukru B; Guo, Min; Kim, Sung Won; Lindgren, Elsa; Ramirez, Veronica; Zehra, Amna; Freeman, Clara; Miller, Gregg; Manza, Peter; Srivastava, Tansha; De Santi, Susan; Tomasi, Dardo; Benveniste, Helene; Volkow, Nora D

    2018-04-24

    The effects of acute sleep deprivation on β-amyloid (Aβ) clearance in the human brain have not been documented. Here we used PET and 18 F-florbetaben to measure brain Aβ burden (ABB) in 20 healthy controls tested after a night of rested sleep (baseline) and after a night of sleep deprivation. We show that one night of sleep deprivation, relative to baseline, resulted in a significant increase in Aβ burden in the right hippocampus and thalamus. These increases were associated with mood worsening following sleep deprivation, but were not related to the genetic risk (APOE genotype) for Alzheimer's disease. Additionally, baseline ABB in a range of subcortical regions and the precuneus was inversely associated with reported night sleep hours. APOE genotyping was also linked to subcortical ABB, suggesting that different Alzheimer's disease risk factors might independently affect ABB in nearby brain regions. In summary, our findings show adverse effects of one-night sleep deprivation on brain ABB and expand on prior findings of higher Aβ accumulation with chronic less sleep. Copyright © 2018 the Author(s). Published by PNAS.

  7. Awake Craniotomy in Arteriovenous Malformation Surgery: The Usefulness of Cortical and Subcortical Mapping of Language Function in Selected Patients.

    Science.gov (United States)

    Gamble, Alexander J; Schaffer, Sarah G; Nardi, Dominic J; Chalif, David J; Katz, Jeffery; Dehdashti, Amir R

    2015-11-01

    Awake craniotomy for removal of intra-axial lesions is a well-established procedure. Few studies, however, have investigated the usefulness of this approach for resection of arteriovenous malformations adjacent to eloquent language areas. We demonstrate our experience by using cortical stimulation mapping and report for the first time on the usefulness of subcortical stimulation with interrogation of language function during resection of arteriovenous malformations (AVMs) located near language zones. Patients undergoing awake craniotomy for AVMs located in language zones and at least 5 mm away from the closest functional magnetic resonance imaging activation were analyzed. During surgery, cortical bipolar stimulation at 50 Hz, with an intensity of 2 mA, increased to a maximum of 10 mA was performed in the region around the AVM before claiming it negative for language function. In positive language site, the area was restimulated 3 times to confirm the functional deficit. The AVM resection was started based on cortical mapping findings. Further subcortical stimulation performed in concert with speech interrogation by the neuropsychologist continued at key points throughout the resection as feasible. The usefulness of cortical and subcortical stimulation in addition to patient outcomes was analyzed. Between March 2009 and September 2014, 42 brain AVM resections were performed. Four patients with left-sided language zone AVMs underwent awake craniotomy. The AVM locations were fronto-opercular in 2 patients and posterior temporal in 2. The AVM Spetzler-Martin grades were II (2 patients) and III (2 patients). In 1 patient, complete speech arrest was noticed during mapping of the peri-malformation zone, which was not breached during resection. In a second patient who initially demonstrated negative cortical mapping, a speech deficit was noticed during resection and subcortical stimulation. This guided the approach to protect and avoid the sensitive zone. This patient

  8. Genetic influences on individual differences in longitudinal changes in global and subcortical brain volumes : Results of the ENIGMA plasticity working group

    NARCIS (Netherlands)

    Brouwer, Rachel M; Panizzon, Matthew S; Glahn, David C; Hibar, Derrek P; Hua, Xue; Jahanshad, Neda; Abramovic, Lucija; De Zubicaray, Greig I; Franz, Carol E; Hansell, Narelle K; Hickie, Ian B; Koenis, Marinka M G; Martin, Nicholas G; Mather, Karen A; McMahon, Katie L; Schnack, Hugo G; Strike, Lachlan T; Swagerman, Suzanne C; Thalamuthu, Anbupalam; Wen, Wei; Gilmore, John H; Gogtay, Nitin; Kahn, René S; Sachdev, Perminder S; Wright, Margaret J; Boomsma, Dorret I; Kremen, William S; Thompson, Paul M; Hulshoff Pol, Hilleke E

    2017-01-01

    Structural brain changes that occur during development and ageing are related to mental health and general cognitive functioning. Individuals differ in the extent to which their brain volumes change over time, but whether these differences can be attributed to differences in their genotypes has not

  9. The impact of large structural brain changes in chronic stroke patients on the electric field caused by transcranial brain stimulation

    DEFF Research Database (Denmark)

    Minjoli, Sena; Saturnino, Guilherme B.; Blicher, Jakob Udby

    2017-01-01

    . Realistic head models containing large cortical and subcortical stroke lesions in the right parietal cortex were created using MR images of two patients. For TMS, the electric field of a double coil was simulated using the finite-element method. Systematic variations of the coil position relative...... to the lesion were tested. For TDCS, the finite-element method was used to simulate a standard approach with two electrode pads, and the position of one electrode was systematically varied. For both TMS and TDCS, the lesion caused electric field " hot spots" in the cortex. However, these maxima were......Transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (TDCS) are two types of non-invasive transcranial brain stimulation (TBS). They are useful tools for stroke research and may be potential adjunct therapies for functional recovery. However, stroke often causes large...

  10. Structural Graphical Lasso for Learning Mouse Brain Connectivity

    KAUST Repository

    Yang, Sen

    2015-08-07

    Investigations into brain connectivity aim to recover networks of brain regions connected by anatomical tracts or by functional associations. The inference of brain networks has recently attracted much interest due to the increasing availability of high-resolution brain imaging data. Sparse inverse covariance estimation with lasso and group lasso penalty has been demonstrated to be a powerful approach to discover brain networks. Motivated by the hierarchical structure of the brain networks, we consider the problem of estimating a graphical model with tree-structural regularization in this paper. The regularization encourages the graphical model to exhibit a brain-like structure. Specifically, in this hierarchical structure, hundreds of thousands of voxels serve as the leaf nodes of the tree. A node in the intermediate layer represents a region formed by voxels in the subtree rooted at that node. The whole brain is considered as the root of the tree. We propose to apply the tree-structural regularized graphical model to estimate the mouse brain network. However, the dimensionality of whole-brain data, usually on the order of hundreds of thousands, poses significant computational challenges. Efficient algorithms that are capable of estimating networks from high-dimensional data are highly desired. To address the computational challenge, we develop a screening rule which can quickly identify many zero blocks in the estimated graphical model, thereby dramatically reducing the computational cost of solving the proposed model. It is based on a novel insight on the relationship between screening and the so-called proximal operator that we first establish in this paper. We perform experiments on both synthetic data and real data from the Allen Developing Mouse Brain Atlas; results demonstrate the effectiveness and efficiency of the proposed approach.

  11. Brain imaging and memory systems in humans: the contribution of PET methods

    International Nuclear Information System (INIS)

    Perani, D.

    1998-01-01

    The development of neuroimaging methods such as PET, has provided a new impulse to the study of the neural basis of cognitive functions, and has extended the field of inquiry from the analysis of the consequences of brain lesions to the functional investigations of brain activity, either in patients with selective neuropsychological deficits or in normal subjects engaged in cognitive tasks. Specific patterns of hypo-metabolism in neurological patients are associated with different profiles of memory deficits.[ 18 F]FDG PET studies have confirmed the association of episodic memory with the structures of Papez's circuit and have shown correlations between short-term and semantic memory and the language areas. The identification of anatomical-functional networks involved in specific components of memory function in normal subjects is the aim of several PET activation studies. The results are in agreement with 'neural network' models of the neural basis of memory, as complex functions subserved by multiple interconnected cortical and subcortical structures. (author)

  12. Subcortical aphasia and cerebral blood flow using SPECT

    International Nuclear Information System (INIS)

    Celsis, P.; Puel, M.; Demonet, J.P.; Bonafe, A.; Cardebat, D.; Viallard, G.; Pujol, T.; Marc-Vergnes, J.P.; Rascol, A.

    1985-01-01

    Possible cerebral blood flow (CBF) alteration in subcortical aphasia was investigated by single-photon emission tomography (SPECT). The results confirm the capsulo-striatal lesions and also point to the high rate of ipsilateral thalamic and cortical dysfunction. (author). 8 refs.; 1 fig.; 1 tab

  13. The beta1 subunit of the Na,K-ATPase pump interacts with megalencephalic leucoencephalopathy with subcortical cysts protein 1 (MLC1) in brain astrocytes: new insights into MLC pathogenesis.

    Science.gov (United States)

    Brignone, Maria S; Lanciotti, Angela; Macioce, Pompeo; Macchia, Gianfranco; Gaetani, Matteo; Aloisi, Francesca; Petrucci, Tamara C; Ambrosini, Elena

    2011-01-01

    Megalencephalic leucoencephalopathy with subcortical cysts (MLC) is a rare congenital leucodystrophy caused by mutations in MLC1, a membrane protein of unknown function. MLC1 expression in astrocyte end-feet contacting blood vessels and meninges, along with brain swelling, fluid cysts and myelin vacuolation observed in MLC patients, suggests a possible role for MLC1 in the regulation of fluid and ion homeostasis and cellular volume changes. To identify MLC1 direct interactors and dissect the molecular pathways in which MLC1 is involved, we used NH2-MLC1 domain as a bait to screen a human brain library in a yeast two-hybrid assay. We identified the β1 subunit of the Na,K-ATPase pump as one of the interacting clones and confirmed it by pull-downs, co-fractionation assays and immunofluorescence stainings in human and rat astrocytes in vitro and in brain tissue. By performing ouabain-affinity chromatography on astrocyte and brain extracts, we isolated MLC1 and the whole Na,K-ATPase enzyme in a multiprotein complex that included Kir4.1, syntrophin and dystrobrevin. Because Na,K-ATPase is involved in intracellular osmotic control and volume regulation, we investigated the effect of hypo-osmotic stress on MLC1/Na,K-ATPase relationship in astrocytes. We found that hypo-osmotic conditions increased MLC1 membrane expression and favoured MLC1/Na,K-ATPase-β1 association. Moreover, hypo-osmosis induced astrocyte swelling and the reversible formation of endosome-derived vacuoles, where the two proteins co-localized. These data suggest that through its interaction with Na,K-ATPase, MLC1 is involved in the control of intracellular osmotic conditions and volume regulation in astrocytes, opening new perspectives for understanding the pathological mechanisms of MLC disease.

  14. The impact of large structural brain changes in chronic stroke patients on the electric field caused by transcranial brain stimulation

    Directory of Open Access Journals (Sweden)

    Sena Minjoli

    2017-01-01

    Full Text Available Transcranial magnetic stimulation (TMS and transcranial direct current stimulation (TDCS are two types of non-invasive transcranial brain stimulation (TBS. They are useful tools for stroke research and may be potential adjunct therapies for functional recovery. However, stroke often causes large cerebral lesions, which are commonly accompanied by a secondary enlargement of the ventricles and atrophy. These structural alterations substantially change the conductivity distribution inside the head, which may have potentially important consequences for both brain stimulation methods. We therefore aimed to characterize the impact of these changes on the spatial distribution of the electric field generated by both TBS methods. In addition to confirming the safety of TBS in the presence of large stroke-related structural changes, our aim was to clarify whether targeted stimulation is still possible. Realistic head models containing large cortical and subcortical stroke lesions in the right parietal cortex were created using MR images of two patients. For TMS, the electric field of a double coil was simulated using the finite-element method. Systematic variations of the coil position relative to the lesion were tested. For TDCS, the finite-element method was used to simulate a standard approach with two electrode pads, and the position of one electrode was systematically varied. For both TMS and TDCS, the lesion caused electric field “hot spots” in the cortex. However, these maxima were not substantially stronger than those seen in a healthy control. The electric field pattern induced by TMS was not substantially changed by the lesions. However, the average field strength generated by TDCS was substantially decreased. This effect occurred for both head models and even when both electrodes were distant to the lesion, caused by increased current shunting through the lesion and enlarged ventricles. Judging from the similar peak field strengths compared

  15. Neuropsychological Profile of Children with Subcortical Band Heterotopia

    Science.gov (United States)

    Spencer-Smith, Megan; Leventer, Richard; Jacobs, Rani; De Luca, Cinzia; Anderson, Vicki

    2009-01-01

    Aim: Subcortical band heterotopia (SBH) or "double cortex" is a malformation of cortical development resulting from impaired neuronal migration. So far, research has focused on the neurological, neuroimaging, and genetic correlates of SBH. More recently, clinical reports and small sample studies have documented neuropsychological dysfunction in…

  16. The Effects of Modified Constraint-Induced Movement Therapy in Acute Subcortical Cerebral Infarction

    OpenAIRE

    Yu, Changshen; Wang, Wanjun; Zhang, Yue; Wang, Yizhao; Hou, Weijia; Liu, Shoufeng; Gao, Chunlin; Wang, Chen; Mo, Lidong; Wu, Jialing

    2017-01-01

    Background: Constraint-induced movement therapy (CIMT) promotes upper extremity recovery post stroke, however, it is difficult to implement clinically due to its high resource demand and safety of the restraint. Therefore, we propose that modified CIMT (mCIMT) be used to treat individuals with acute subcortical infarction. Objective: To evaluate the therapeutic effects of mCIMT in patients with acute subcortical infarction, and investigate the possible mechanisms underlying the effect. ...

  17. On the etiology of incident brain lacunes: longitudinal observations from the LADIS study

    DEFF Research Database (Denmark)

    Gouw, A.A.; Flier, W.M. van der; Pantoni, L.

    2008-01-01

    BACKGROUND AND PURPOSE: We investigated regional differences in MRI characteristics and risk factor profiles of incident lacunes over a 3-year period. METHODS: Baseline and 3-year follow-up MRI were collected within the LADIS study (n=358). Incident lacunes were characterized with respect to brain...... region, their appearance within pre-existent white matter hyperintensities (WMH), surrounding WMH size, and risk factors. RESULTS: 106 incident lacunes were observed in 62 patients (58 subcortical white matter [WM], 35 basal ganglia, and 13 infratentorial). Incident subcortical WM lacunes occurred more...

  18. Structural Connectivity Asymmetry in the Neonatal Brain

    OpenAIRE

    Ratnarajah, Nagulan; Rifkin-Graboi, Anne; Fortier, Marielle V.; Chong, Yap Seng; Kwek, Kenneth; Saw, Seang-Mei; Godfrey, Keith M; Gluckman, Peter D.; Meaney, Michael J.; Qiu, Anqi

    2013-01-01

    Asymmetry of the neonatal brain is not yet understood at the level of structural connectivity. We utilized DTI deterministic tractography and structural network analysis based on graph theory to determine the pattern of structural connectivity asymmetry in 124 normal neonates. We tracted white matter axonal pathways characterizing interregional connections among brain regions and inferred asymmetry in left and right anatomical network properties. Our findings revealed that in neonates, small-...

  19. Regional changes in brain 2-14C-deoxyglucose uptake induced by convulsant and non-convulsant doses of lindane

    International Nuclear Information System (INIS)

    Sanfeliu, C.; Sola, C.; Camon, L.; Martinez, E.; Rodriguez-Farre, E.

    1990-01-01

    Lindane-induced dose- and time-related changes in regional 2-14C-deoxyglucose (2-DG) uptake were examined in 59 discrete rat brain structures using the 2-DG autoradiographic technique. At different times (0.5-144 hr) after administration of a seizure-inducing single dose of lindane (60 mg/kg), 2-DG uptake was significantly increased in 18 cortical and subcortical regions mainly related to the limbic system (e.g., Ammon's horn, dentate gyrus, septal nuclei, nucleus accumbens, olfactory cortex) and extrapyramidal and sensory-motor areas (e.g., cerebellar cortex, red nucleus, medial vestibular nucleus). There was also a significant increase in superior colliculus layer II. In addition, significant decreases occurred in a group of 6 regions (e.g., auditory and motor cortices). Non-convulsing animals treated with the same dose of lindane showed a regional pattern of 2-DG uptake less modified than the convulsant group. A non-convulsant single dose of lindane (30 mg/kg) also modified significantly the 2-DG uptake (0.5-24 hr) in some brain areas. Although the various single doses of lindane tested produced different altered patterns of brain 2-DG uptake, some structures showed a similar trend in their modification (e.g., superior colliculi and accumbens, raphe and red nuclei). Repeated non-convulsant doses of lindane produced defined and long-lasting significant elevations of 2-DG uptake in some subcortical structures. Considering the treated groups all together, 2-DG uptake increased significantly in 26 of the 59 regions examined but only decreased significantly in 9 of them during the course of lindane effects. This fact can be related to the stimulant action described for this neurotoxic agent. The observed pattern provides a descriptive approach to the functional alterations occurring in vivo during the course of lindane intoxication

  20. Aging brain from a network science perspective: something to be positive about?

    Directory of Open Access Journals (Sweden)

    Michelle W Voss

    Full Text Available To better understand age differences in brain function and behavior, the current study applied network science to model functional interactions between brain regions. We observed a shift in network topology whereby for older adults subcortical and cerebellar structures overlapping with the Salience network had more connectivity to the rest of the brain, coupled with fragmentation of large-scale cortical networks such as the Default and Fronto-Parietal networks. Additionally, greater integration of the dorsal medial thalamus and red nucleus in the Salience network was associated with greater satisfaction with life for older adults, which is consistent with theoretical predictions of age-related increases in emotion regulation that are thought to help maintain well-being and life satisfaction in late adulthood. In regard to cognitive abilities, greater ventral medial prefrontal cortex coherence with its topological neighbors in the Default Network was associated with faster processing speed. Results suggest that large-scale organizing properties of the brain differ with normal aging, and this perspective may offer novel insight into understanding age-related differences in cognitive function and well-being.

  1. Assessments of executive function in patients with subcortical cerebral infarction using the Behavioural Assessment of the Dysexecutive Syndrome

    International Nuclear Information System (INIS)

    Matsumoto, Tetsuo; Kato, Haruhisa; Hasegawa, Akira; Utsumi, Hiroya

    2008-01-01

    To assess executive functions in patients with subcortical cerebral infarctions, we performed neuropsychological tests including the Behavioural Assessment of the Dysexecutive Syndrome (BADS). BADS is an executive function test constructing of 6 subtests. We recruited 24 patients who had subcortical ischemia on magnetic resonance image (MRI). The BADS Japanese version, Trail Making Test (TMT) and Wisconsin Card Sorting Test (WCST) were employed. TMT and WCST are recognized executive function tests. We classified the participants into two categories in relation to the degree of deep white matter hyperintensity (DWMH) according to the classification of Fazekas. The low grade DWMH group consisted of 11 patients with punctate foci on MRI. The 13 patients showing the beginning of confluence of foci on MRI were categorized as the high grade DWMH group. All patients were right handed, and had no right hand disability impeding the test. We excluded patients with severe stenotic or occlusive lesions in cerebral arteries on brain magnetic resonance angiography. The Mini-mental State Examination (MMSE) was employed to exclude demented participants. To assess the mood of participant, we introduced the Japan Stroke Scale of Depression Scale (JSS-D). Statistical analysis was performed by Student's t-test. There was no significant difference in length of education, TMT, MMSE and JSS-D scores. The high grade DWMH group was significantly older. The WCST score were significantly impaired in the high grade DWMH group. Scores of BADS subtests showed no significant difference, but the age-matched standardized score was significantly low in the high grade DWMH group. Pathological findings showed that the greater the spread of DWMH, the more ischemia on cerebral whitematter progressed. In this study, we found that patients with severe subcortical ischemia may have impaired executive functions. These results might be conducted by the pathological features of DWMH. (author)

  2. Structural covariance of brain region volumes is associated with both structural connectivity and transcriptomic similarity.

    Science.gov (United States)

    Yee, Yohan; Fernandes, Darren J; French, Leon; Ellegood, Jacob; Cahill, Lindsay S; Vousden, Dulcie A; Spencer Noakes, Leigh; Scholz, Jan; van Eede, Matthijs C; Nieman, Brian J; Sled, John G; Lerch, Jason P

    2018-05-18

    An organizational pattern seen in the brain, termed structural covariance, is the statistical association of pairs of brain regions in their anatomical properties. These associations, measured across a population as covariances or correlations usually in cortical thickness or volume, are thought to reflect genetic and environmental underpinnings. Here, we examine the biological basis of structural volume covariance in the mouse brain. We first examined large scale associations between brain region volumes using an atlas-based approach that parcellated the entire mouse brain into 318 regions over which correlations in volume were assessed, for volumes obtained from 153 mouse brain images via high-resolution MRI. We then used a seed-based approach and determined, for 108 different seed regions across the brain and using mouse gene expression and connectivity data from the Allen Institute for Brain Science, the variation in structural covariance data that could be explained by distance to seed, transcriptomic similarity to seed, and connectivity to seed. We found that overall, correlations in structure volumes hierarchically clustered into distinct anatomical systems, similar to findings from other studies and similar to other types of networks in the brain, including structural connectivity and transcriptomic similarity networks. Across seeds, this structural covariance was significantly explained by distance (17% of the variation, up to a maximum of 49% for structural covariance to the visceral area of the cortex), transcriptomic similarity (13% of the variation, up to maximum of 28% for structural covariance to the primary visual area) and connectivity (15% of the variation, up to a maximum of 36% for structural covariance to the intermediate reticular nucleus in the medulla) of covarying structures. Together, distance, connectivity, and transcriptomic similarity explained 37% of structural covariance, up to a maximum of 63% for structural covariance to the

  3. Complex modular structure of large-scale brain networks

    Science.gov (United States)

    Valencia, M.; Pastor, M. A.; Fernández-Seara, M. A.; Artieda, J.; Martinerie, J.; Chavez, M.

    2009-06-01

    Modular structure is ubiquitous among real-world networks from related proteins to social groups. Here we analyze the modular organization of brain networks at a large scale (voxel level) extracted from functional magnetic resonance imaging signals. By using a random-walk-based method, we unveil the modularity of brain webs and show modules with a spatial distribution that matches anatomical structures with functional significance. The functional role of each node in the network is studied by analyzing its patterns of inter- and intramodular connections. Results suggest that the modular architecture constitutes the structural basis for the coexistence of functional integration of distant and specialized brain areas during normal brain activities at rest.

  4. The effects of physical activity on brain structure

    Directory of Open Access Journals (Sweden)

    Adam eThomas

    2012-03-01

    Full Text Available Aerobic activity is a powerful stimulus for improving mental health and for generating structural changes in the brain. We review the literature documenting these structural changes and explore exactly where in the brain these changes occur as well as the underlying substrates of the changes including neural, glial, and vasculature components. Aerobic activity has been shown to produce different types of changes in the brain. The presence of novel experiences or learning is an especially important component in how these changes are manifest. We also discuss the distinct time courses of structural brain changes with both aerobic activity and learning as well as how these effects might differ in diseased and elderly groups.

  5. Detecting brain dynamics during resting state: a tensor based evolutionary clustering approach

    Science.gov (United States)

    Al-sharoa, Esraa; Al-khassaweneh, Mahmood; Aviyente, Selin

    2017-08-01

    Human brain is a complex network with connections across different regions. Understanding the functional connectivity (FC) of the brain is important both during resting state and task; as disruptions in connectivity patterns are indicators of different psychopathological and neurological diseases. In this work, we study the resting state functional connectivity networks (FCNs) of the brain from fMRI BOLD signals. Recent studies have shown that FCNs are dynamic even during resting state and understanding the temporal dynamics of FCNs is important for differentiating between different conditions. Therefore, it is important to develop algorithms to track the dynamic formation and dissociation of FCNs of the brain during resting state. In this paper, we propose a two step tensor based community detection algorithm to identify and track the brain network community structure across time. First, we introduce an information-theoretic function to reduce the dynamic FCN and identify the time points that are similar topologically to combine them into a tensor. These time points will be used to identify the different FC states. Second, a tensor based spectral clustering approach is developed to identify the community structure of the constructed tensors. The proposed algorithm applies Tucker decomposition to the constructed tensors and extract the orthogonal factor matrices along the connectivity mode to determine the common subspace within each FC state. The detected community structure is summarized and described as FC states. The results illustrate the dynamic structure of resting state networks (RSNs), including the default mode network, somatomotor network, subcortical network and visual network.

  6. Altered intrinsic functional brain architecture in female patients with bulimia nervosa.

    Science.gov (United States)

    Wang, Li; Kong, Qing-Mei; Li, Ke; Li, Xue-Ni; Zeng, Ya-Wei; Chen, Chao; Qian, Ying; Feng, Shi-Jie; Li, Ji-Tao; Su, Yun'Ai; Correll, Christoph U; Mitchell, Philip B; Yan, Chao-Gan; Zhang, Da-Rong; Si, Tian-Mei

    2017-11-01

    Bulimia nervosa is a severe psychiatric syndrome with uncertain pathogenesis. Neural systems involved in sensorimotor and visual processing, reward and impulsive control may contribute to the binge eating and purging behaviours characterizing bulimia nervosa. However, little is known about the alterations of functional organization of whole brain networks in individuals with this disorder. We used resting-state functional MRI and graph theory to characterize functional brain networks of unmedicated women with bulimia nervosa and healthy women. We included 44 unmedicated women with bulimia nervosa and 44 healthy women in our analyses. Women with bulimia nervosa showed increased clustering coefficient and path length compared with control women. The nodal strength in patients with the disorder was higher in the sensorimotor and visual regions as well as the precuneus, but lower in several subcortical regions, such as the hippocampus, parahippocampal gyrus and orbitofrontal cortex. Patients also showed hyperconnectivity primarily involving sensorimotor and unimodal visual association regions, but hypoconnectivity involving subcortical (striatum, thalamus), limbic (amygdala, hippocampus) and paralimbic (orbitofrontal cortex, parahippocampal gyrus) regions. The topological aberrations correlated significantly with scores of bulimia and drive for thinness and with body mass index. We reruited patients with only acute bulimia nervosa, so it is unclear whether the topological abnormalities comprise vulnerability markers for the disorder developing or the changes associated with illness state. Our findings show altered intrinsic functional brain architecture, specifically abnormal global and local efficiency, as well as nodal- and network-level connectivity across sensorimotor, visual, subcortical and limbic systems in women with bulimia nervosa, suggesting that it is a disorder of dysfunctional integration among large-scale distributed brain regions. These abnormalities

  7. Childhood maltreatment and combat posttraumatic stress differentially predict fear-related fronto-subcortical connectivity.

    Science.gov (United States)

    Birn, Rasmus M; Patriat, Rémi; Phillips, Mary L; Germain, Anne; Herringa, Ryan J

    2014-10-01

    Adult posttraumatic stress disorder (PTSD) has been characterized by altered fear-network connectivity. Childhood trauma is a major risk factor for adult PTSD, yet its contribution to fear-network connectivity in PTSD remains unexplored. We examined, within a single model, the contribution of childhood maltreatment, combat exposure, and combat-related posttraumatic stress symptoms (PTSS) to resting-state connectivity (rs-FC) of the amygdala and hippocampus in military veterans. Medication-free male veterans (n = 27, average 26.6 years) with a range of PTSS completed resting-state fMRI. Measures including the Clinician-Administered PTSD Scale (CAPS), Childhood Trauma Questionnaire (CTQ), and Combat Exposure Scale (CES) were used to predict rs-FC using multilinear regression. Fear-network seeds included the amygdala and hippocampus. Amygdala: CTQ predicted lower connectivity to ventromedial prefrontal cortex (vmPFC), but greater anticorrelation with dorsal/lateral PFC. CAPS positively predicted connectivity to insula, and loss of anticorrelation with dorsomedial/dorsolateral (dm/dl)PFC. Hippocampus: CTQ predicted lower connectivity to vmPFC, but greater anticorrelation with dm/dlPFC. CES predicted greater anticorrelation, whereas CAPS predicted less anticorrelation with dmPFC. Childhood trauma, combat exposure, and PTSS differentially predict fear-network rs-FC. Childhood maltreatment may weaken ventral prefrontal-subcortical circuitry important in automatic fear regulation, but, in a compensatory manner, may also strengthen dorsal prefrontal-subcortical pathways involved in more effortful emotion regulation. PTSD symptoms, in turn, appear to emerge with the loss of connectivity in the latter pathway. These findings suggest potential mechanisms by which developmental trauma exposure leads to adult PTSD, and which brain mechanisms are associated with the emergence of PTSD symptoms. © 2014 Wiley Periodicals, Inc.

  8. Adaptation of brain functional and structural networks in aging.

    Directory of Open Access Journals (Sweden)

    Annie Lee

    Full Text Available The human brain, especially the prefrontal cortex (PFC, is functionally and anatomically reorganized in order to adapt to neuronal challenges in aging. This study employed structural MRI, resting-state fMRI (rs-fMRI, and high angular resolution diffusion imaging (HARDI, and examined the functional and structural reorganization of the PFC in aging using a Chinese sample of 173 subjects aged from 21 years and above. We found age-related increases in the structural connectivity between the PFC and posterior brain regions. Such findings were partially mediated by age-related increases in the structural connectivity of the occipital lobe within the posterior brain. Based on our findings, it is thought that the PFC reorganization in aging could be partly due to the adaptation to age-related changes in the structural reorganization of the posterior brain. This thus supports the idea derived from task-based fMRI that the PFC reorganization in aging may be adapted to the need of compensation for resolving less distinctive stimulus information from the posterior brain regions. In addition, we found that the structural connectivity of the PFC with the temporal lobe was fully mediated by the temporal cortical thickness, suggesting that the brain morphology plays an important role in the functional and structural reorganization with aging.

  9. Adaptation of brain functional and structural networks in aging.

    Science.gov (United States)

    Lee, Annie; Ratnarajah, Nagulan; Tuan, Ta Anh; Chen, Shen-Hsing Annabel; Qiu, Anqi

    2015-01-01

    The human brain, especially the prefrontal cortex (PFC), is functionally and anatomically reorganized in order to adapt to neuronal challenges in aging. This study employed structural MRI, resting-state fMRI (rs-fMRI), and high angular resolution diffusion imaging (HARDI), and examined the functional and structural reorganization of the PFC in aging using a Chinese sample of 173 subjects aged from 21 years and above. We found age-related increases in the structural connectivity between the PFC and posterior brain regions. Such findings were partially mediated by age-related increases in the structural connectivity of the occipital lobe within the posterior brain. Based on our findings, it is thought that the PFC reorganization in aging could be partly due to the adaptation to age-related changes in the structural reorganization of the posterior brain. This thus supports the idea derived from task-based fMRI that the PFC reorganization in aging may be adapted to the need of compensation for resolving less distinctive stimulus information from the posterior brain regions. In addition, we found that the structural connectivity of the PFC with the temporal lobe was fully mediated by the temporal cortical thickness, suggesting that the brain morphology plays an important role in the functional and structural reorganization with aging.

  10. Behavioral and subcortical signatures of musical expertise in Mandarin Chinese speakers.

    Directory of Open Access Journals (Sweden)

    Caitlin Dawson

    Full Text Available Both musical training and native language have been shown to have experience-based plastic effects on auditory processing. However, the combined effects within individuals are unclear. Recent research suggests that musical training and tone language speaking are not clearly additive in their effects on processing of auditory features and that there may be a disconnect between perceptual and neural signatures of auditory feature processing. The literature has only recently begun to investigate the effects of musical expertise on basic auditory processing for different linguistic groups. This work provides a profile of primary auditory feature discrimination for Mandarin speaking musicians and nonmusicians. The musicians showed enhanced perceptual discrimination for both frequency and duration as well as enhanced duration discrimination in a multifeature discrimination task, compared to nonmusicians. However, there were no differences between the groups in duration processing of nonspeech sounds at a subcortical level or in subcortical frequency representation of a nonnative tone contour, for fo or for the first or second formant region. The results indicate that musical expertise provides a cognitive, but not subcortical, advantage in a population of Mandarin speakers.

  11. Differences between child and adult large-scale functional brain networks for reading tasks.

    Science.gov (United States)

    Liu, Xin; Gao, Yue; Di, Qiqi; Hu, Jiali; Lu, Chunming; Nan, Yun; Booth, James R; Liu, Li

    2018-02-01

    Reading is an important high-level cognitive function of the human brain, requiring interaction among multiple brain regions. Revealing differences between children's large-scale functional brain networks for reading tasks and those of adults helps us to understand how the functional network changes over reading development. Here we used functional magnetic resonance imaging data of 17 adults (19-28 years old) and 16 children (11-13 years old), and graph theoretical analyses to investigate age-related changes in large-scale functional networks during rhyming and meaning judgment tasks on pairs of visually presented Chinese characters. We found that: (1) adults had stronger inter-regional connectivity and nodal degree in occipital regions, while children had stronger inter-regional connectivity in temporal regions, suggesting that adults rely more on visual orthographic processing whereas children rely more on auditory phonological processing during reading. (2) Only adults showed between-task differences in inter-regional connectivity and nodal degree, whereas children showed no task differences, suggesting the topological organization of adults' reading network is more specialized. (3) Children showed greater inter-regional connectivity and nodal degree than adults in multiple subcortical regions; the hubs in children were more distributed in subcortical regions while the hubs in adults were more distributed in cortical regions. These findings suggest that reading development is manifested by a shift from reliance on subcortical to cortical regions. Taken together, our study suggests that Chinese reading development is supported by developmental changes in brain connectivity properties, and some of these changes may be domain-general while others may be specific to the reading domain. © 2017 Wiley Periodicals, Inc.

  12. MRI findings of brain damage due to neonatal hypoglycemia

    International Nuclear Information System (INIS)

    Wang Lu; Fan Guoguang; Ji Xu; Sun Baohai; Guo Qiyong

    2009-01-01

    Objective: To report the MRI findings of brain damage observed in neonatal patients who suffered from isolated hypoglycemia and to explore the value of diffusion-weighted imaging(DWI) in early detection of neonatal hypoglycemic brain injury. Methods: Twelve neonates with isolated hypoglycemia (10 of the 12 were diagnosed to suffer from hypoglycemic encephalopathy) were enrolled in this study. They were first scanned at age from 3 days to 10 days with T 1 WI, T 2 WI and DWI(b is 0 s/mm 2 , 1000 s/mm 2 ), and 4 of them were then scanned from 7 days to 10 days following the initial scan. All acquired MR images were retrospectively analysed. Results: First series of DWI images showed distinct hyperintense signal in 11 cases in several areas including bilateral occipital cortex (2 cases), right occipital cortex (1 case), left occipital cortex and subcortical white matter(1 case), bilateral occipital cortex and subcortical white matter (2 cases), bilateral parieto-occipital cortex (2 cases), bilateral parieto-occipital cortex and subcortical white matter(2 cases), the splenium of corpus callosum (4 cases), bilateral corona radiata( 2 cases), left caudate nucleus and globus pallidus (1 case), bilateral thalamus (1 case), bilaterally posterior limb of internal capsule (1 case). In the initial T 1 WI and T 2 WI images, there were subtle hypointensity in the damaged cortical areas (3 cases), hyperintensity in the bilaterally affected occipital cortex( 1 case) on T 1 weighted images, and hyperintensity in the affected cortex and subcortical white matter with poor differentiation on T 2 weighted images. The followed-up MRI of 4 cases showed regional encephalomalacia in the affected occipital lobes(4 cases), slightly hyperintensity on T 2 weighted images in the damaged occipital cortex (2 cases), extensive demyelination (1 case), disappearance of hyperintensity of the splenium of corpus callosum (1 case), and persistent hyperintensity in the splenium of corpus callosum (1 case

  13. A voxel-based analysis of cerebral perfusion with 99mTc-ECD brain SPECT in obsessive-compulsive disorder

    International Nuclear Information System (INIS)

    Jeon, Tae Joo; Lee, Jong Doo; Kim, Hee Joung; Chang, Jin Woo; Kim, Chan Hyung; Lee, Hong Shick; Min, Sung Kil; Chung, Sang Sup

    2000-01-01

    Many neuroimaging studies, especially metabolic imaging with PET, showed a specific frontal-subcortical brain circuit connecting the orbitofrontal cortex (OFC), anterior cingulate gyrus, elements of basal ganglia and thalamus is involved in obsessive-compulsive disorder (OCD). Despite consistent metabolic alteration on PET, blood flow studies with SPECT were inconsistent and various cortical and subcortical structures showed abnormal perfusion patterns. In this study, brain SPECT images of seven patients with OCD were evaluated with a sophisticated method of statistical parametric mapping (SPM). Seven patients with severe, primary OCD (6 males and 1 female) with mean age of 25.4 4.7 yrs (20-32 yrs) were studied. The SPECT data of the patients were compared with those of healthy subjects and patients with drug nave schizophrenia using SPM. The SPM parameters were p value of 0.001 with Z value of 3.09 (higher threshold ) or p value of 0.005 with Z value 2.58 (lower threshold). On a higher threshold (p<0.01),five of the seven patients showed hyperperfusion within the anterior cingulate cortex, however, hyperperfusion within OFC or caudate nucleus was seen in only one patient. On a lower threshold (p<0.005), hyperperfusion within the anterior cingulate cortex was seen in all patients, and followed by thalamus (n=5), lentiform nucleus (n=4), caudate nucleus (n=3), and OFC (n=3). Perfusion within the anterior cingulate cortex was also increased in OCD compared with drug nave schizophrenia. Anterior cingulate cortex appears to be an important anatomical structure in the pathogenesis of OCD symptoms. Brain SPECT using a sophisticated analysis method of SPM is useful for the diagnosis of OCD and differentiation from schizophrenia

  14. Subcortical laminar heterotopia and lissencephaly in two families: a single X linked dominant gene.

    Science.gov (United States)

    Pinard, J M; Motte, J; Chiron, C; Brian, R; Andermann, E; Dulac, O

    1994-01-01

    Neuronal migration disorders can now be recognised by MRI. This paper reports two families in which the mothers had subcortical laminar heterotopia and four of their children had either similar heterotopia (two girls) or severe pachygyria or lissencephaly (two boys). Laminar heterotopia was more evident on MRI T2 weighted images. The patients had mild to severe epilepsy and mental retardation depending on the extent of cortical abnormalities. In these families, subcortical laminar heterotopia, pachygyria, and lissencephaly seem to share the same X linked or autosomal dominant gene. No chromosomal abnormalities, especially of chromosome 17, could be identified. For appropriate genetic counselling of the family of a child with lissencephaly or subcortical laminar heterotopia, MRI should be performed in parents or siblings with mental retardation or epilepsy. Images PMID:8057113

  15. Interhemispheric Functional and Structural Disconnection in Alzheimer's Disease: A Combined Resting-State fMRI and DTI Study.

    Directory of Open Access Journals (Sweden)

    Zhiqun Wang

    Full Text Available Neuroimaging studies have demonstrated that patients with Alzheimer's disease presented disconnection syndrome. However, little is known about the alterations of interhemispheric functional interactions and underlying structural connectivity in the AD patients. In this study, we combined resting-state functional MRI and diffusion tensor imaging (DTI to investigate interhemispheric functional and structural connectivity in 16 AD, 16 mild cognitive impairment (MCI, as well as 16 cognitive normal healthy subjects (CN. The pattern of the resting state interhemispheric functional connectivity was measured with a voxel-mirrored homotopic connectivity (VMHC method. Decreased VMHC was observed in AD and MCI subjects in anterior brain regions including the prefrontal cortices and subcortical regions with a pattern of ADbrain regions with patterns of AD/CN < MCI (sensorimotor cortex and AD < CN/MCI (occipital gyrus. DTI analysis showed the most significant difference among the three cohorts was the fractional anisotropy in the genu of corpus callosum, which was positively associated with the VMHC of prefrontal and subcortical regions. Across all the three cohorts, the diffusion parameters in the genu of corpus callosum and VMHC in the above brain regions had significant correlation with the cognitive performance. These results demonstrate that there are specific patterns of interhemispheric functional connectivity changes in the AD and MCI, which can be significantly correlated with the integrity changes in the midline white matter structures. These results suggest that VMHC can be used as a biomarker for the degeneration of the interhemispheric connectivity in AD.

  16. The Role of Anterior Nuclei of the Thalamus: A Subcortical Gate in Memory Processing: An Intracerebral Recording Study.

    Directory of Open Access Journals (Sweden)

    Klára Štillová

    Full Text Available To study the involvement of the anterior nuclei of the thalamus (ANT as compared to the involvement of the hippocampus in the processes of encoding and recognition during visual and verbal memory tasks.We studied intracerebral recordings in patients with pharmacoresistent epilepsy who underwent deep brain stimulation (DBS of the ANT with depth electrodes implanted bilaterally in the ANT and compared the results with epilepsy surgery candidates with depth electrodes implanted bilaterally in the hippocampus. We recorded the event-related potentials (ERPs elicited by the visual and verbal memory encoding and recognition tasks.P300-like potentials were recorded in the hippocampus by visual and verbal memory encoding and recognition tasks and in the ANT by the visual encoding and visual and verbal recognition tasks. No significant ERPs were recorded during the verbal encoding task in the ANT. In the visual and verbal recognition tasks, the P300-like potentials in the ANT preceded the P300-like potentials in the hippocampus.The ANT is a structure in the memory pathway that processes memory information before the hippocampus. We suggest that the ANT has a specific role in memory processes, especially memory recognition, and that memory disturbance should be considered in patients with ANT-DBS and in patients with ANT lesions. ANT is well positioned to serve as a subcortical gate for memory processing in cortical structures.

  17. The Role of Anterior Nuclei of the Thalamus: A Subcortical Gate in Memory Processing: An Intracerebral Recording Study.

    Science.gov (United States)

    Štillová, Klára; Jurák, Pavel; Chládek, Jan; Chrastina, Jan; Halámek, Josef; Bočková, Martina; Goldemundová, Sabina; Říha, Ivo; Rektor, Ivan

    2015-01-01

    To study the involvement of the anterior nuclei of the thalamus (ANT) as compared to the involvement of the hippocampus in the processes of encoding and recognition during visual and verbal memory tasks. We studied intracerebral recordings in patients with pharmacoresistent epilepsy who underwent deep brain stimulation (DBS) of the ANT with depth electrodes implanted bilaterally in the ANT and compared the results with epilepsy surgery candidates with depth electrodes implanted bilaterally in the hippocampus. We recorded the event-related potentials (ERPs) elicited by the visual and verbal memory encoding and recognition tasks. P300-like potentials were recorded in the hippocampus by visual and verbal memory encoding and recognition tasks and in the ANT by the visual encoding and visual and verbal recognition tasks. No significant ERPs were recorded during the verbal encoding task in the ANT. In the visual and verbal recognition tasks, the P300-like potentials in the ANT preceded the P300-like potentials in the hippocampus. The ANT is a structure in the memory pathway that processes memory information before the hippocampus. We suggest that the ANT has a specific role in memory processes, especially memory recognition, and that memory disturbance should be considered in patients with ANT-DBS and in patients with ANT lesions. ANT is well positioned to serve as a subcortical gate for memory processing in cortical structures.

  18. Structural similarities between brain and linguistic data provide evidence of semantic relations in the brain.

    Directory of Open Access Journals (Sweden)

    Colleen E Crangle

    Full Text Available This paper presents a new method of analysis by which structural similarities between brain data and linguistic data can be assessed at the semantic level. It shows how to measure the strength of these structural similarities and so determine the relatively better fit of the brain data with one semantic model over another. The first model is derived from WordNet, a lexical database of English compiled by language experts. The second is given by the corpus-based statistical technique of latent semantic analysis (LSA, which detects relations between words that are latent or hidden in text. The brain data are drawn from experiments in which statements about the geography of Europe were presented auditorily to participants who were asked to determine their truth or falsity while electroencephalographic (EEG recordings were made. The theoretical framework for the analysis of the brain and semantic data derives from axiomatizations of theories such as the theory of differences in utility preference. Using brain-data samples from individual trials time-locked to the presentation of each word, ordinal relations of similarity differences are computed for the brain data and for the linguistic data. In each case those relations that are invariant with respect to the brain and linguistic data, and are correlated with sufficient statistical strength, amount to structural similarities between the brain and linguistic data. Results show that many more statistically significant structural similarities can be found between the brain data and the WordNet-derived data than the LSA-derived data. The work reported here is placed within the context of other recent studies of semantics and the brain. The main contribution of this paper is the new method it presents for the study of semantics and the brain and the focus it permits on networks of relations detected in brain data and represented by a semantic model.

  19. Computation of an MRI brain atlas from a population of Parkinson’s disease patients

    Science.gov (United States)

    Angelidakis, L.; Papageorgiou, I. E.; Damianou, C.; Psychogios, M. N.; Lingor, P.; von Eckardstein, K.; Hadjidemetriou, S.

    2017-11-01

    Parkinson’s Disease (PD) is a degenerative disorder of the brain. This study presents an MRI-based brain atlas of PD to characterize associated alterations for diagnostic and interventional purposes. The atlas standardizes primarily the implicated subcortical regions such as the globus pallidus (GP), substantia nigra (SN), subthalamic nucleus (STN), caudate nucleus (CN), thalamus (TH), putamen (PUT), and red nucleus (RN). The data were 3.0 T MRI brain images from 16 PD patients and 10 matched controls. The images used were T1-weighted (T 1 w), T2-weighted (T 2 w) images, and Susceptibility Weighted Images (SWI). The T1w images were the reference for the inter-subject non-rigid registration available from 3DSlicer. Anatomic labeling was achieved with BrainSuite and regions were refined with the level sets segmentation of ITK-Snap. The subcortical centers were analyzed for their volume and signal intensity. Comparison with an age-matched control group unravels a significant PD-related T1w signal loss in the striatum (CN and PUT) centers, but approximately a constant volume. The results in this study improve MRI based PD localization and can lead to the development of novel biomarkers.

  20. Hearing it again and again: on-line subcortical plasticity in humans.

    Science.gov (United States)

    Skoe, Erika; Kraus, Nina

    2010-10-26

    Human brainstem activity is sensitive to local sound statistics, as reflected in an enhanced response in repetitive compared to pseudo-random stimulus conditions [1]. Here we probed the short-term time course of this enhancement using a paradigm that assessed how the local sound statistics (i.e., repetition within a five-note melody) interact with more global statistics (i.e., repetition of the melody). To test the hypothesis that subcortical repetition enhancement builds over time, we recorded auditory brainstem responses in young adults to a five-note melody containing a repeated note, and monitored how the response changed over the course of 1.5 hrs. By comparing response amplitudes over time, we found a robust time-dependent enhancement to the locally repeating note that was superimposed on a weaker enhancement of the globally repeating pattern. We provide the first demonstration of on-line subcortical plasticity in humans. This complements previous findings that experience-dependent subcortical plasticity can occur on a number of time scales, including life-long experiences with music and language, and short-term auditory training. Our results suggest that the incoming stimulus stream is constantly being monitored, even when the stimulus is physically invariant and attention is directed elsewhere, to augment the neural response to the most statistically salient features of the ongoing stimulus stream. These real-time transformations, which may subserve humans' strong disposition for grouping auditory objects, likely reflect a mix of local processes and corticofugal modulation arising from statistical regularities and the influences of expectation. Our results contribute to our understanding of the biological basis of statistical learning and initiate a new investigational approach relating to the time-course of subcortical plasticity. Although the reported time-dependent enhancements are believed to reflect universal neurophysiological processes, future

  1. Hearing it again and again: on-line subcortical plasticity in humans.

    Directory of Open Access Journals (Sweden)

    Erika Skoe

    2010-10-01

    Full Text Available Human brainstem activity is sensitive to local sound statistics, as reflected in an enhanced response in repetitive compared to pseudo-random stimulus conditions [1]. Here we probed the short-term time course of this enhancement using a paradigm that assessed how the local sound statistics (i.e., repetition within a five-note melody interact with more global statistics (i.e., repetition of the melody.To test the hypothesis that subcortical repetition enhancement builds over time, we recorded auditory brainstem responses in young adults to a five-note melody containing a repeated note, and monitored how the response changed over the course of 1.5 hrs. By comparing response amplitudes over time, we found a robust time-dependent enhancement to the locally repeating note that was superimposed on a weaker enhancement of the globally repeating pattern.We provide the first demonstration of on-line subcortical plasticity in humans. This complements previous findings that experience-dependent subcortical plasticity can occur on a number of time scales, including life-long experiences with music and language, and short-term auditory training. Our results suggest that the incoming stimulus stream is constantly being monitored, even when the stimulus is physically invariant and attention is directed elsewhere, to augment the neural response to the most statistically salient features of the ongoing stimulus stream. These real-time transformations, which may subserve humans' strong disposition for grouping auditory objects, likely reflect a mix of local processes and corticofugal modulation arising from statistical regularities and the influences of expectation. Our results contribute to our understanding of the biological basis of statistical learning and initiate a new investigational approach relating to the time-course of subcortical plasticity. Although the reported time-dependent enhancements are believed to reflect universal neurophysiological

  2. A voxel-based analysis of cerebral perfusion with {sup 99m}Tc-ECD brain SPECT in obsessive-compulsive disorder

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Tae Joo; Lee, Jong Doo; Kim, Hee Joung; Chang, Jin Woo; Kim, Chan Hyung; Lee, Hong Shick; Min, Sung Kil; Chung, Sang Sup [College of Medicine, Yonsei Univ., Seoul (Korea, Republic of)

    2000-07-01

    Many neuroimaging studies, especially metabolic imaging with PET, showed a specific frontal-subcortical brain circuit connecting the orbitofrontal cortex (OFC), anterior cingulate gyrus, elements of basal ganglia and thalamus is involved in obsessive-compulsive disorder (OCD). Despite consistent metabolic alteration on PET, blood flow studies with SPECT were inconsistent and various cortical and subcortical structures showed abnormal perfusion patterns. In this study, brain SPECT images of seven patients with OCD were evaluated with a sophisticated method of statistical parametric mapping (SPM). Seven patients with severe, primary OCD (6 males and 1 female) with mean age of 25.4 4.7 yrs (20-32 yrs) were studied. The SPECT data of the patients were compared with those of healthy subjects and patients with drug nave schizophrenia using SPM. The SPM parameters were p value of 0.001 with Z value of 3.09 (higher threshold ) or p value of 0.005 with Z value 2.58 (lower threshold). On a higher threshold (p<0.01),five of the seven patients showed hyperperfusion within the anterior cingulate cortex, however, hyperperfusion within OFC or caudate nucleus was seen in only one patient. On a lower threshold (p<0.005), hyperperfusion within the anterior cingulate cortex was seen in all patients, and followed by thalamus (n=5), lentiform nucleus (n=4), caudate nucleus (n=3), and OFC (n=3). Perfusion within the anterior cingulate cortex was also increased in OCD compared with drug nave schizophrenia. Anterior cingulate cortex appears to be an important anatomical structure in the pathogenesis of OCD symptoms. Brain SPECT using a sophisticated analysis method of SPM is useful for the diagnosis of OCD and differentiation from schizophrenia.

  3. Subcortical brain volume differences in participants with attention deficit hyperactivity disorder in children and adults

    DEFF Research Database (Denmark)

    Hoogman, Martine; Bralten, Janita; Hibar, Derrek P

    2017-01-01

    BACKGROUND: Neuroimaging studies have shown structural alterations in several brain regions in children and adults with attention deficit hyperactivity disorder (ADHD). Through the formation of the international ENIGMA ADHD Working Group, we aimed to address weaknesses of previous imaging studies...... and adults for the pallidum (p=0·79) or thalamus (p=0·89). Case-control differences in adults were non-significant (all p>0·03). Psychostimulant medication use (all p>0·15) or symptom scores (all p>0·02) did not influence results, nor did the presence of comorbid psychiatric disorders (all p>0...

  4. Structural changes induced by daily music listening in the recovering brain after middle cerebral artery stroke: a voxel-based morphometry study.

    Science.gov (United States)

    Särkämö, Teppo; Ripollés, Pablo; Vepsäläinen, Henna; Autti, Taina; Silvennoinen, Heli M; Salli, Eero; Laitinen, Sari; Forsblom, Anita; Soinila, Seppo; Rodríguez-Fornells, Antoni

    2014-01-01

    Music is a highly complex and versatile stimulus for the brain that engages many temporal, frontal, parietal, cerebellar, and subcortical areas involved in auditory, cognitive, emotional, and motor processing. Regular musical activities have been shown to effectively enhance the structure and function of many brain areas, making music a potential tool also in neurological rehabilitation. In our previous randomized controlled study, we found that listening to music on a daily basis can improve cognitive recovery and improve mood after an acute middle cerebral artery stroke. Extending this study, a voxel-based morphometry (VBM) analysis utilizing cost function masking was performed on the acute and 6-month post-stroke stage structural magnetic resonance imaging data of the patients (n = 49) who either listened to their favorite music [music group (MG), n = 16] or verbal material [audio book group (ABG), n = 18] or did not receive any listening material [control group (CG), n = 15] during the 6-month recovery period. Although all groups showed significant gray matter volume (GMV) increases from the acute to the 6-month stage, there was a specific network of frontal areas [left and right superior frontal gyrus (SFG), right medial SFG] and limbic areas [left ventral/subgenual anterior cingulate cortex (SACC) and right ventral striatum (VS)] in patients with left hemisphere damage in which the GMV increases were larger in the MG than in the ABG and in the CG. Moreover, the GM reorganization in the frontal areas correlated with enhanced recovery of verbal memory, focused attention, and language skills, whereas the GM reorganization in the SACC correlated with reduced negative mood. This study adds on previous results, showing that music listening after stroke not only enhances behavioral recovery, but also induces fine-grained neuroanatomical changes in the recovering brain.

  5. Structural changes induced by daily music listening in the recovering brain after middle cerebral artery stroke: a voxel-based morphometry study

    Directory of Open Access Journals (Sweden)

    Teppo eSärkämö

    2014-04-01

    Full Text Available Music is a highly complex and versatile stimulus for the brain that engages many temporal, frontal, parietal, cerebellar, and subcortical areas involved in auditory, cognitive, emotional, and motor processing. Regular musical activities have been shown to effectively enhance the structure and function of many brain areas, making music a potential tool also in neurological rehabilitation. In our previous randomized controlled study, we found that listening to music on a daily basis can improve cognitive recovery and improve mood after an acute middle cerebral artery (MCA stroke. Extending this study, a voxel-based morphometry (VBM analysis utilizing cost-function masking was performed on the acute and 6-month post-stroke stage structural MRI data of the patients (n = 49 who either listened to their favourite music (music group, n = 16 or verbal material (audio book group, n = 18 or did not receive any listening material (control group, n = 15 during the 6-month recovery period. Although all groups showed significant grey matter volume (GMV increases from the acute to the 6-month stage, there was a specific network of frontal areas [left and right superior frontal gyrus (SFG, right medial SFG] and limbic areas [left ventral / subgenual anterior cingulate cortex (SACC and right ventral striatum (VS] in patients with left hemisphere damage in which the GMV increases were larger in the music group than in the audio book and control groups. Moreover, the GM reorganization in the frontal areas correlated with enhanced recovery of verbal memory, focused attention, and language skills, whereas the GM reorganization in the SACC correlated with reduced negative mood. This study adds on previous results, showing that music listening after stroke not only enhances behavioural recovery, but also induces fine-grained neuroanatomical changes in the recovering brain.

  6. Structural Changes Induced by Daily Music Listening in the Recovering Brain after Middle Cerebral Artery Stroke: A Voxel-Based Morphometry Study

    Science.gov (United States)

    Särkämö, Teppo; Ripollés, Pablo; Vepsäläinen, Henna; Autti, Taina; Silvennoinen, Heli M.; Salli, Eero; Laitinen, Sari; Forsblom, Anita; Soinila, Seppo; Rodríguez-Fornells, Antoni

    2014-01-01

    Music is a highly complex and versatile stimulus for the brain that engages many temporal, frontal, parietal, cerebellar, and subcortical areas involved in auditory, cognitive, emotional, and motor processing. Regular musical activities have been shown to effectively enhance the structure and function of many brain areas, making music a potential tool also in neurological rehabilitation. In our previous randomized controlled study, we found that listening to music on a daily basis can improve cognitive recovery and improve mood after an acute middle cerebral artery stroke. Extending this study, a voxel-based morphometry (VBM) analysis utilizing cost function masking was performed on the acute and 6-month post-stroke stage structural magnetic resonance imaging data of the patients (n = 49) who either listened to their favorite music [music group (MG), n = 16] or verbal material [audio book group (ABG), n = 18] or did not receive any listening material [control group (CG), n = 15] during the 6-month recovery period. Although all groups showed significant gray matter volume (GMV) increases from the acute to the 6-month stage, there was a specific network of frontal areas [left and right superior frontal gyrus (SFG), right medial SFG] and limbic areas [left ventral/subgenual anterior cingulate cortex (SACC) and right ventral striatum (VS)] in patients with left hemisphere damage in which the GMV increases were larger in the MG than in the ABG and in the CG. Moreover, the GM reorganization in the frontal areas correlated with enhanced recovery of verbal memory, focused attention, and language skills, whereas the GM reorganization in the SACC correlated with reduced negative mood. This study adds on previous results, showing that music listening after stroke not only enhances behavioral recovery, but also induces fine-grained neuroanatomical changes in the recovering brain. PMID:24860466

  7. Segmentation and Visualisation of Human Brain Structures

    Energy Technology Data Exchange (ETDEWEB)

    Hult, Roger

    2003-10-01

    In this thesis the focus is mainly on the development of segmentation techniques for human brain structures and of the visualisation of such structures. The images of the brain are both anatomical images (magnet resonance imaging (MRI) and autoradiography) and functional images that show blood flow (functional magnetic imaging (fMRI), positron emission tomography (PET), and single photon emission tomography (SPECT)). When working with anatomical images, the structures segmented are visible as different parts of the brain, e.g. the brain cortex, the hippocampus, or the amygdala. In functional images, the activity or the blood flow that be seen. Grey-level morphology methods are used in the segmentations to make tissue types in the images more homogenous and minimise difficulties with connections to outside tissue. A method for automatic histogram thresholding is also used. Furthermore, there are binary operations such as logic operation between masks and binary morphology operations. The visualisation of the segmented structures uses either surface rendering or volume rendering. For the visualisation of thin structures, surface rendering is the better choice since otherwise some voxels might be missed. It is possible to display activation from a functional image on the surface of a segmented cortex. A new method for autoradiographic images has been developed, which integrates registration, background compensation, and automatic thresholding to get faster and more reliable results than the standard techniques give.

  8. Segmentation and Visualisation of Human Brain Structures

    International Nuclear Information System (INIS)

    Hult, Roger

    2003-01-01

    In this thesis the focus is mainly on the development of segmentation techniques for human brain structures and of the visualisation of such structures. The images of the brain are both anatomical images (magnet resonance imaging (MRI) and autoradiography) and functional images that show blood flow (functional magnetic imaging (fMRI), positron emission tomography (PET), and single photon emission tomography (SPECT)). When working with anatomical images, the structures segmented are visible as different parts of the brain, e.g. the brain cortex, the hippocampus, or the amygdala. In functional images, the activity or the blood flow that be seen. Grey-level morphology methods are used in the segmentations to make tissue types in the images more homogenous and minimise difficulties with connections to outside tissue. A method for automatic histogram thresholding is also used. Furthermore, there are binary operations such as logic operation between masks and binary morphology operations. The visualisation of the segmented structures uses either surface rendering or volume rendering. For the visualisation of thin structures, surface rendering is the better choice since otherwise some voxels might be missed. It is possible to display activation from a functional image on the surface of a segmented cortex. A new method for autoradiographic images has been developed, which integrates registration, background compensation, and automatic thresholding to get faster and more reliable results than the standard techniques give

  9. as-PSOCT: Volumetric microscopic imaging of human brain architecture and connectivity.

    Science.gov (United States)

    Wang, Hui; Magnain, Caroline; Wang, Ruopeng; Dubb, Jay; Varjabedian, Ani; Tirrell, Lee S; Stevens, Allison; Augustinack, Jean C; Konukoglu, Ender; Aganj, Iman; Frosch, Matthew P; Schmahmann, Jeremy D; Fischl, Bruce; Boas, David A

    2018-01-15

    Polarization sensitive optical coherence tomography (PSOCT) with serial sectioning has enabled the investigation of 3D structures in mouse and human brain tissue samples. By using intrinsic optical properties of back-scattering and birefringence, PSOCT reliably images cytoarchitecture, myeloarchitecture and fiber orientations. In this study, we developed a fully automatic serial sectioning polarization sensitive optical coherence tomography (as-PSOCT) system to enable volumetric reconstruction of human brain samples with unprecedented sample size and resolution. The 3.5 μm in-plane resolution and 50 μm through-plane voxel size allow inspection of cortical layers that are a single-cell in width, as well as small crossing fibers. We show the abilities of as-PSOCT in quantifying layer thicknesses of the cerebellar cortex and creating microscopic tractography of intricate fiber networks in the subcortical nuclei and internal capsule regions, all based on volumetric reconstructions. as-PSOCT provides a viable tool for studying quantitative cytoarchitecture and myeloarchitecture and mapping connectivity with microscopic resolution in the human brain. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Mapping 22q11.2 Gene Dosage Effects on Brain Morphometry.

    Science.gov (United States)

    Lin, Amy; Ching, Christopher R K; Vajdi, Ariana; Sun, Daqiang; Jonas, Rachel K; Jalbrzikowski, Maria; Kushan-Wells, Leila; Pacheco Hansen, Laura; Krikorian, Emma; Gutman, Boris; Dokoru, Deepika; Helleman, Gerhard; Thompson, Paul M; Bearden, Carrie E

    2017-06-28

    Reciprocal chromosomal rearrangements at the 22q11.2 locus are associated with elevated risk of neurodevelopmental disorders. The 22q11.2 deletion confers the highest known genetic risk for schizophrenia, but a duplication in the same region is strongly associated with autism and is less common in schizophrenia cases than in the general population. Here we conducted the first study of 22q11.2 gene dosage effects on brain structure in a sample of 143 human subjects: 66 with 22q11.2 deletions (22q-del; 32 males), 21 with 22q11.2 duplications (22q-dup; 14 males), and 56 age- and sex-matched controls (31 males). 22q11.2 gene dosage varied positively with intracranial volume, gray and white matter volume, and cortical surface area (deletion control > duplication). Widespread differences were observed for cortical surface area with more localized effects on cortical thickness. These diametric patterns extended into subcortical regions: 22q-dup carriers had a significantly larger right hippocampus, on average, but lower right caudate and corpus callosum volume, relative to 22q-del carriers. Novel subcortical shape analysis revealed greater radial distance (thickness) of the right amygdala and left thalamus, and localized increases and decreases in subregions of the caudate, putamen, and hippocampus in 22q-dup relative to 22q-del carriers. This study provides the first evidence that 22q11.2 is a genomic region associated with gene-dose-dependent brain phenotypes. Pervasive effects on cortical surface area imply that this copy number variant affects brain structure early in the course of development. SIGNIFICANCE STATEMENT Probing naturally occurring reciprocal copy number variation in the genome may help us understand mechanisms underlying deviations from typical brain and cognitive development. The 22q11.2 genomic region is particularly susceptible to chromosomal rearrangements and contains many genes crucial for neuronal development and migration. Not surprisingly

  11. Cortical and Subcortical Grey and White Matter Atrophy in Myotonic Dystrophies Type 1 and 2 Is Associated with Cognitive Impairment, Depression and Daytime Sleepiness.

    Directory of Open Access Journals (Sweden)

    Christiane Schneider-Gold

    Full Text Available Central nervous system involvement is one important clinical aspect of myotonic dystrophy type 1 and 2 (DM1 and DM2. We assessed CNS involvement DM1 and DM2 by 3T MRI and correlated clinical and neuocognitive symptoms with brain volumetry and voxel-based morphometry (VBM.12 patients with juvenile or classical DM1 and 16 adult DM2 patients underwent 3T MRI, a thorough neurological and neuropsychological examination and scoring of depression and daytime sleepiness. Volumes of brain, ventricles, cerebellum, brainstem, cervical cord, lesion load and VBM results of the patient groups were compared to 33 matched healthy subjects.Clinical symptoms were depression (more pronounced in DM2, excessive daytime sleepiness (more pronounced in DM1, reduced attention and flexibility of thinking, and deficits of short-term memory and visuo-spatial abilities in both patient groups. Both groups showed ventricular enlargement and supratentorial GM and WM atrophy, with prevalence for more GM atrophy and involvement of the motor system in DM1 and more WM reduction and affection of limbic structures in DM2. White matter was reduced in DM1 in the splenium of the corpus callosum and in left-hemispheric WM adjacent to the pre- and post-central gyrus. In DM2, the bilateral cingulate gyrus and subgyral medio-frontal and primary somato-sensory WM was affected. Significant structural-functional correlations of morphological MRI findings (global volumetry and VBM with clinical findings were found for reduced flexibility of thinking and atrophy of the left secondary visual cortex in DM1 and of distinct subcortical brain structures in DM2. In DM2, depression was associated with brainstem atrophy, Daytime sleepiness correlated with volume decrease in the middle cerebellar peduncles, pons/midbrain and the right medio-frontal cortex.GM and WM atrophy was significant in DM1 and DM2. Specific functional-structural associations related morphological changes to cognitive impairment

  12. Differential impact of thalamic versus subthalamic deep brain stimulation on lexical processing.

    Science.gov (United States)

    Krugel, Lea K; Ehlen, Felicitas; Tiedt, Hannes O; Kühn, Andrea A; Klostermann, Fabian

    2014-10-01

    Roles of subcortical structures in language processing are vague, but, interestingly, basal ganglia and thalamic Deep Brain Stimulation can go along with reduced lexical capacities. To deepen the understanding of this impact, we assessed word processing as a function of thalamic versus subthalamic Deep Brain Stimulation. Ten essential tremor patients treated with thalamic and 14 Parkinson׳s disease patients with subthalamic Deep Brain Stimulation performed an acoustic Lexical Decision Task ON and OFF stimulation. Combined analysis of task performance and event-related potentials allowed the determination of processing speed, priming effects, and N400 as neurophysiological correlate of lexical stimulus processing. 12 age-matched healthy participants acted as control subjects. Thalamic Deep Brain Stimulation prolonged word decisions and reduced N400 potentials. No comparable ON-OFF effects were present in patients with subthalamic Deep Brain Stimulation. In the latter group of patients with Parkinson' disease, N400 amplitudes were, however, abnormally low, whether under active or inactive Deep Brain Stimulation. In conclusion, performance speed and N400 appear to be influenced by state functions, modulated by thalamic, but not subthalamic Deep Brain Stimulation, compatible with concepts of thalamo-cortical engagement in word processing. Clinically, these findings specify cognitive sequels of Deep Brain Stimulation in a target-specific way. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Larger Subcortical Gray Matter Structures and Smaller Corpora Callosa at Age 5 Years in HIV Infected Children on Early ART

    Directory of Open Access Journals (Sweden)

    Steven R. Randall

    2017-11-01

    Full Text Available Sub-Saharan Africa is home to 90% of HIV infected (HIV+ children. Since the advent of antiretroviral therapy (ART, HIV/AIDS has transitioned to a chronic condition where central nervous system (CNS damage may be ongoing. Although, most guidelines recommend early ART to reduce CNS viral reservoirs, the brain may be more vulnerable to potential neurotoxic effects of ART during the rapid development phase in the first years of life. Here we investigate differences in subcortical volumes between 5-year-old HIV+ children who received early ART (before age 18 months and uninfected children using manual tracing of Magnetic Resonance Images. Participants included 61 Xhosa children (43 HIV+/18 uninfected, mean age = 5.4 ± 0.3 years, 25 male from the children with HIV early antiretroviral (CHER trial; 27 children initiated ART before 12 weeks of age (ART-Before12Wks and 16 after 12 weeks (ART-After12Wks. Structural images were acquired on a 3T Allegra MRI in Cape Town and manually traced using MultiTracer. Volumetric group differences (HIV+ vs. uninfected; ART-Before12Wks vs. ART-After12Wks were examined for the caudate, nucleus accumbens (NA, putamen (Pu, globus pallidus (GP, and corpus callosum (CC, as well as associations within infected children of structure volumes with age at ART initiation and CD4/CD8 as a proxy for immune health. HIV+ children had significantly larger NA and Pu volumes bilaterally and left GP volumes than controls, whilst CC was smaller. Bilateral Pu was larger in both treatment groups compared to controls, while left GP and bilateral NA were enlarged only in ART-After12Wks children. CC was smaller in both treatment groups compared to controls, and smaller in ART-After12Wks compared to ART-Before12Wks. Within infected children, delayed ART initiation was associated with larger Pu volumes, effects that remained significant when controlling for sex and duration of treatment interruption (left β = 0.447, p = 0.005; right β = 0

  14. Gender dimorphism of brain reward system volumes in alcoholism.

    Science.gov (United States)

    Sawyer, Kayle S; Oscar-Berman, Marlene; Barthelemy, Olivier J; Papadimitriou, George M; Harris, Gordon J; Makris, Nikos

    2017-05-30

    The brain's reward network has been reported to be smaller in alcoholic men compared to nonalcoholic men, but little is known about the volumes of reward regions in alcoholic women. Morphometric analyses were performed on magnetic resonance brain scans of 60 long-term chronic alcoholics (ALC; 30 men) and 60 nonalcoholic controls (NC; 29 men). We derived volumes of total brain, and cortical and subcortical reward-related structures including the dorsolateral prefrontal (DLPFC), orbitofrontal, and cingulate cortices, and the temporal pole, insula, amygdala, hippocampus, nucleus accumbens septi (NAc), and ventral diencephalon (VDC). We examined the relationships of the volumetric findings to drinking history. Analyses revealed a significant gender interaction for the association between alcoholism and total reward network volumes, with ALC men having smaller reward volumes than NC men and ALC women having larger reward volumes than NC women. Analyses of a priori subregions revealed a similar pattern of reward volume differences with significant gender interactions for DLPFC and VDC. Overall, the volume of the cerebral ventricles in ALC participants was negatively associated with duration of abstinence, suggesting decline in atrophy with greater length of sobriety. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  15. Thalamic and parietal brain morphology predicts auditory category learning.

    Science.gov (United States)

    Scharinger, Mathias; Henry, Molly J; Erb, Julia; Meyer, Lars; Obleser, Jonas

    2014-01-01

    Auditory categorization is a vital skill involving the attribution of meaning to acoustic events, engaging domain-specific (i.e., auditory) as well as domain-general (e.g., executive) brain networks. A listener's ability to categorize novel acoustic stimuli should therefore depend on both, with the domain-general network being particularly relevant for adaptively changing listening strategies and directing attention to relevant acoustic cues. Here we assessed adaptive listening behavior, using complex acoustic stimuli with an initially salient (but later degraded) spectral cue and a secondary, duration cue that remained nondegraded. We employed voxel-based morphometry (VBM) to identify cortical and subcortical brain structures whose individual neuroanatomy predicted task performance and the ability to optimally switch to making use of temporal cues after spectral degradation. Behavioral listening strategies were assessed by logistic regression and revealed mainly strategy switches in the expected direction, with considerable individual differences. Gray-matter probability in the left inferior parietal lobule (BA 40) and left precentral gyrus was predictive of "optimal" strategy switch, while gray-matter probability in thalamic areas, comprising the medial geniculate body, co-varied with overall performance. Taken together, our findings suggest that successful auditory categorization relies on domain-specific neural circuits in the ascending auditory pathway, while adaptive listening behavior depends more on brain structure in parietal cortex, enabling the (re)direction of attention to salient stimulus properties. © 2013 Published by Elsevier Ltd.

  16. Mind, brain, structure and function

    Energy Technology Data Exchange (ETDEWEB)

    Aleksander, I

    1982-01-01

    The author discusses the type of problem one encounters when trying to formalise the nature of a state structure associated with the brain and the origins of this state structure. The paper first defines in broad terms the nature of the structure function problem, and then goes on to separate out those parts of a structure that lead to the variational and adaptive nature of the state structure. It is argued that the relationship between the structure that leads to adaptation and its embedding in an external environment are crucial areas for further study. 4 references.

  17. The subcortical role of language processing. High level linguistic features such as ambiguity-resolution and the human brain; an fMRI study.

    Science.gov (United States)

    Ketteler, Daniel; Kastrau, Frank; Vohn, Rene; Huber, Walter

    2008-02-15

    In the present study, we were interested in the neurofunctional representations of ambiguity processing by using functional magnetic resonance imaging (fMRI). Twelve right-handed, healthy adults aged between 21 and 29 years (6 male, 6 female) underwent an ambiguity resolution task with 4 different conditions (dominant vs. non-dominant; dominant vs. distractor; non-dominant vs. distractor; distractor vs. distractor). After subtraction of the corresponding control task (distractor vs. distractor) we found significant activation especially in the thalamus and some parts of the basal ganglia (caudate nucleus, putamen). Our findings implicate a participation of the thalamus and other basal ganglia circuits in high level linguistic functions and match with theoretical considerations on this highly controversial topic. Subcortical neural circuits probably become activated when the language processing system cannot rely entirely on automatic mechanisms but has to recruit controlled processes as well. Furthermore, we found broad activation in the inferior parietal lobule, the prefrontal gyrus, pre-SMA and SMA and the cingulate cortex. This might reflect a strategic semantic search mechanism which probably can be illustrated with connectionist models of language processing. According to this, we hypothesize a neuroregulatory role for the thalamus and basal ganglia in regulating and monitoring the release of preformulated language segments for motor programming and semantic verification. According to our findings there is strong evidence, that especially the thalamus, the caudate nucleus, the cingulate cortex, the inferior parietal lobule and the prefrontal cortex are responsible for an accurate ambiguity resolution in the human brain.

  18. Tractographical model of the cortico-basal ganglia and corticothalamic connections: Improving Our Understanding of Deep Brain Stimulation.

    Science.gov (United States)

    Avecillas-Chasin, Josué M; Rascón-Ramírez, Fernando; Barcia, Juan A

    2016-05-01

    The cortico-basal ganglia and corticothalamic projections have been extensively studied in the context of neurological and psychiatric disorders. Deep brain stimulation (DBS) is known to modulate many of these pathways to produce the desired clinical effect. The aim of this work is to describe the anatomy of the main circuits of the basal ganglia using tractography in a surgical planning station. We used imaging studies of 20 patients who underwent DBS for movement and psychiatric disorders. We segmented the putamen, caudate nucleus (CN), thalamus, and subthalamic nucleus (STN), and we also segmented the cortical areas connected with these subcortical areas. We used tractography to define the subdivisions of the basal ganglia and thalamus through the generation of fibers from the cortical areas to the subcortical structures. We were able to generate the corticostriatal and corticothalamic connections involved in the motor, associative and limbic circuits. Furthermore, we were able to reconstruct the hyperdirect pathway through the corticosubthalamic connections and we found subregions in the STN. Finally, we reconstructed the cortico-subcortical connections of the ventral intermediate nucleus, the nucleus accumbens and the CN. We identified a feasible delineation of the basal ganglia and thalamus connections using tractography. These results could be potentially useful in DBS if the parcellations are used as targets during surgery. © 2016 Wiley Periodicals, Inc.

  19. Driving and driven architectures of directed small-world human brain functional networks.

    Directory of Open Access Journals (Sweden)

    Chaogan Yan

    Full Text Available Recently, increasing attention has been focused on the investigation of the human brain connectome that describes the patterns of structural and functional connectivity networks of the human brain. Many studies of the human connectome have demonstrated that the brain network follows a small-world topology with an intrinsically cohesive modular structure and includes several network hubs in the medial parietal regions. However, most of these studies have only focused on undirected connections between regions in which the directions of information flow are not taken into account. How the brain regions causally influence each other and how the directed network of human brain is topologically organized remain largely unknown. Here, we applied linear multivariate Granger causality analysis (GCA and graph theoretical approaches to a resting-state functional MRI dataset with a large cohort of young healthy participants (n = 86 to explore connectivity patterns of the population-based whole-brain functional directed network. This directed brain network exhibited prominent small-world properties, which obviously improved previous results of functional MRI studies showing weak small-world properties in the directed brain networks in terms of a kernel-based GCA and individual analysis. This brain network also showed significant modular structures associated with 5 well known subsystems: fronto-parietal, visual, paralimbic/limbic, subcortical and primary systems. Importantly, we identified several driving hubs predominantly located in the components of the attentional network (e.g., the inferior frontal gyrus, supplementary motor area, insula and fusiform gyrus and several driven hubs predominantly located in the components of the default mode network (e.g., the precuneus, posterior cingulate gyrus, medial prefrontal cortex and inferior parietal lobule. Further split-half analyses indicated that our results were highly reproducible between two

  20. Delineating Neural Structures of Developmental Human Brains with Diffusion Tensor Imaging

    Directory of Open Access Journals (Sweden)

    Hao Huang

    2010-01-01

    Full Text Available The human brain anatomy is characterized by dramatic structural changes during fetal development. It is extraordinarily complex and yet its origin is a simple tubular structure. Revealing detailed anatomy at different stages of brain development not only aids in understanding this highly ordered process, but also provides clues to detect abnormalities caused by genetic or environmental factors. However, anatomical studies of human brain development during the fetal period are surprisingly scarce and histology-based atlases have become available only recently. Diffusion tensor imaging (DTI measures water diffusion to delineate the underlying neural structures. The high contrasts derived from DTI can be used to establish the brain atlas. With DTI tractography, coherent neural structures, such as white matter tracts, can be three-dimensionally reconstructed. The primary eigenvector of the diffusion tensor can be further explored to characterize microstructures in the cerebral wall of the developmental brains. In this mini-review, the application of DTI in order to reveal the structures of developmental fetal brains has been reviewed in the above-mentioned aspects. The fetal brain DTI provides a unique insight for delineating the neural structures in both macroscopic and microscopic levels. The resultant DTI database will provide structural guidance for the developmental study of human fetal brains in basic neuroscience, and reference standards for diagnostic radiology of premature newborns.

  1. Continuous physical examination during subcortical resection in awake craniotomy patients: Its usefulness and surgical outcome.

    Science.gov (United States)

    Bunyaratavej, Krishnapundha; Sangtongjaraskul, Sunisa; Lerdsirisopon, Surunchana; Tuchinda, Lawan

    2016-08-01

    To evaluate the value of physical examination as a monitoring tool during subcortical resection in awake craniotomy patients and surgical outcomes. Authors reviewed medical records of patients underwent awake craniotomy with continuous physical examination for pathology adjacent to the eloquent area. Between January 2006 and August 2015, there were 37 patients underwent awake craniotomy with continuous physical examination. Pathology was located in the left cerebral hemisphere in 28 patients (75.7%). Thirty patients (81.1%) had neuroepithelial tumors. Degree of resections were defined as total, subtotal, and partial in 16 (43.2%), 11 (29.7%) and 10 (27.0%) patients, respectively. Median follow up duration was 14 months. The reasons for termination of subcortical resection were divided into 3 groups as follows: 1) by anatomical landmark with the aid of neuronavigation in 20 patients (54%), 2) by reaching subcortical stimulation threshold in 8 patients (21.6%), and 3) by abnormal physical examination in 9 patients (24.3%). Among these 3 groups, there were statistically significant differences in the intraoperative (p=0.002) and early postoperative neurological deficit (p=0.005) with the lowest deficit in neuronavigation group. However, there were no differences in neurological outcome at later follow up (3-months p=0.103; 6-months p=0.285). There were no differences in the degree of resection among the groups. Continuous physical examination has shown to be of value as an additional layer of monitoring of subcortical white matter during resection and combining several methods may help increase the efficacy of mapping and monitoring of subcortical functions. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Relative activity of cerebral subcortical gray matter in varying states of attention and awareness in normal subjects and patient studies

    International Nuclear Information System (INIS)

    Cooper, M.; Chen, C.T.; Levy, J.; Wagner, N.; Spire, J.P.; Jacobsen, J.; Meltzer, H.; Metz, J.; Beck, R.N.

    1985-01-01

    An important aspect of the study of brain function involves measurement of the relationships; between activities in the subcortical gray matter of the caudate and of the thalamus; and between these structures and functional cortical areas. The authors have studied these relationships in 22 subjects under different conditions of activation, sleep and sensory deprivation using a PET VI system and F-18-2DG to determine regional cerebral metabolism. Subject activating conditions were maintained throughout the period of equilibration of F-18-2DG and E.E.G.'s were monitored. Multiple tomographic slices of 1-2 million counts were obtained simultaneously with slice separation of 14mm and each plane parallel to the cantho-meatal line. In activated and non-activated awake conditions for normal subjects, left and right thalmus-to-caudate ratios were similar and greater than unity. This relationship was maintained in non-REM sleep, but was reversed and divergent in REM sleep and sensory deprivation; this was also evident in 3/4 narcoleptics awake and asleep in non-REM and REM and 2/3 schizophrenics and affective disorder, subjects. This approach appears to have potential for characterizating normal and disordered regional cerebral function

  3. Connectomic disturbances in attention-deficit/hyperactivity disorder: a whole-brain tractography analysis.

    Science.gov (United States)

    Hong, Soon-Beom; Zalesky, Andrew; Fornito, Alex; Park, Subin; Yang, Young-Hui; Park, Min-Hyeon; Song, In-Chan; Sohn, Chul-Ho; Shin, Min-Sup; Kim, Bung-Nyun; Cho, Soo-Churl; Han, Doug Hyun; Cheong, Jae Hoon; Kim, Jae-Won

    2014-10-15

    Few studies have sought to identify, in a regionally unbiased way, the precise cortical and subcortical regions that are affected by white matter abnormalities in attention-deficit/hyperactivity disorder (ADHD). This study aimed to derive a comprehensive, whole-brain characterization of connectomic disturbances in ADHD. Using diffusion tensor imaging, whole-brain tractography, and an imaging connectomics approach, we characterized altered white matter connectivity in 71 children and adolescents with ADHD compared with 26 healthy control subjects. White matter differences were further delineated between patients with (n = 40) and without (n = 26) the predominantly hyperactive/impulsive subtype of ADHD. A significant network comprising 25 distinct fiber bundles linking 23 different brain regions spanning frontal, striatal, and cerebellar brain regions showed altered white matter structure in ADHD patients (p attentional disturbances. Attention-deficit/hyperactivity disorder subtypes were differentiated by a right-lateralized network (p attentional performance underscore the functional importance of these connectomic disturbances for the clinical phenotype of ADHD. A distributed pattern of white matter microstructural integrity separately involving frontal, striatal, and cerebellar brain regions, rather than direct frontostriatal connectivity, appears to be disrupted in children and adolescents with ADHD. Copyright © 2014 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  4. Subcortical brain volume differences in participants with attention deficit hyperactivity disorder in children and adults : A cross-sectional mega-analysis

    NARCIS (Netherlands)

    Hoogman, Martine; Bralten, Janita; Hibar, Derrek P.; Mennes, Maarten; Zwiers, Marcel P.; Schweren, Lizanne S. J.; van Hulzen, Kimm J. E.; Medland, Sarah E.; Shumskaya, Elena; Jahanshad, Neda; de Zeeuw, Patrick; Szekely, Eszter; Sudre, Gustavo; Wolfers, Thomas; Onnink, Alberdingk M. H.; Dammers, Janneke T.; Mostert, Jeanette C.; Vives-Gilabert, Yolanda; Kohls, Gregor; Oberwelland, Eileen; Seitz, Jochen; Schulte-Ruether, Martin; Ambrosino, Sara; Doyle, Alysa E.; Hovik, Marie F.; Dramsdahl, Margaretha; Tamm, Leanne; van Erp, Theo G. M.; Dale, Anders; Schork, Andrew; Conzelmann, Annette; Zierhut, Kathrin; Baur, Ramona; McCarthy, Hazel; Yoncheva, Yuliya N.; Cubillo, Ana; Chantiluke, Kaylita; Mehta, Mitul A.; Paloyelis, Yannis; Hohmann, Sarah; Baumeister, Sarah; Bramati, Ivanei; Mattos, Paulo; Tovar-Moll, Fernanda; Douglas, Pamela; Banaschewski, Tobias; Brandeis, Daniel; Kuntsi, Jonna; Asherson, Philip; Rubia, Katya; Kelly, Clare; Di Martino, Adriana; Milham, Michael P.; Castellanos, Francisco X.; Frodl, Thomas; Zentis, Mariam; Lesch, Klaus-Peter; Reif, Andreas; Pauli, Paul; Jernigan, Terry L.; Haavik, Jan; Plessen, Kerstin J.; Lundervold, Astri J.; Hugdahl, Kenneth; Seidman, Larry J.; Biederman, Joseph; Rommelse, Nanda; Heslenfeld, Dirk J.; Hartman, Catharina A.; Hoekstra, Pieter J.; Oosterlaan, Jaap; von Polier, Georg; Konrad, Kerstin; Vilarroya, Oscar; Antoni Ramos-Quiroga, Josep; Carles Soliva, Joan; Durston, Sarah; Buitelaar, Jan K.; Faraone, Stephen V.; Shaw, Philip; Thompson, Paul M.; Franke, Barbara

    Background Neuroimaging studies have shown structural alterations in several brain regions in children and adults with attention deficit hyperactivity disorder (ADHD). Through the formation of the international ENIGMA ADHD Working Group, we aimed to address weaknesses of previous imaging studies and

  5. Connectivity and functional profiling of abnormal brain structures in pedophilia.

    Science.gov (United States)

    Poeppl, Timm B; Eickhoff, Simon B; Fox, Peter T; Laird, Angela R; Rupprecht, Rainer; Langguth, Berthold; Bzdok, Danilo

    2015-06-01

    Despite its 0.5-1% lifetime prevalence in men and its general societal relevance, neuroimaging investigations in pedophilia are scarce. Preliminary findings indicate abnormal brain structure and function. However, no study has yet linked structural alterations in pedophiles to both connectional and functional properties of the aberrant hotspots. The relationship between morphological alterations and brain function in pedophilia as well as their contribution to its psychopathology thus remain unclear. First, we assessed bimodal connectivity of structurally altered candidate regions using meta-analytic connectivity modeling (MACM) and resting-state correlations employing openly accessible data. We compared the ensuing connectivity maps to the activation likelihood estimation (ALE) maps of a recent quantitative meta-analysis of brain activity during processing of sexual stimuli. Second, we functionally characterized the structurally altered regions employing meta-data of a large-scale neuroimaging database. Candidate regions were functionally connected to key areas for processing of sexual stimuli. Moreover, we found that the functional role of structurally altered brain regions in pedophilia relates to nonsexual emotional as well as neurocognitive and executive functions, previously reported to be impaired in pedophiles. Our results suggest that structural brain alterations affect neural networks for sexual processing by way of disrupted functional connectivity, which may entail abnormal sexual arousal patterns. The findings moreover indicate that structural alterations account for common affective and neurocognitive impairments in pedophilia. The present multimodal integration of brain structure and function analyses links sexual and nonsexual psychopathology in pedophilia. © 2015 Wiley Periodicals, Inc.

  6. The value of brain CT findings in acute methanol toxicity

    International Nuclear Information System (INIS)

    Taheri, Morteza Sanei; Moghaddam, Hossein Hassanian; Moharamzad, Yashar; Dadgari, Shahrzad; Nahvi, Vahideh

    2010-01-01

    Objective: Due to depressant effects of methanol on the central nervous system, brain computed tomography (CT) scan has been introduced as a diagnostic device in methanol intoxication. The authors aimed to present brain CT findings in patients with acute methanol intoxication and to determine signs associated with death. Materials and methods: This cohort study involved 42 consecutive patients with acute methanol intoxication. Inclusion criteria were consisted of characteristic clinical presentation of methanol poisoning, and metabolic acidosis with increased anion and osmolar gaps. Brain CT scans without contrast medium were obtained. To determine the association between the CT findings and death, the chi-square test or the Fisher's exact test, odds ratio (OR) and its 95% confidence interval (95% CI) were calculated. Results: Twenty-eight patients (66.6%) had a total of 55 abnormal findings on brain CT, in which bilateral putaminal hypodense lesions was the most common manifestation (27 cases, 96.4%). Putaminal hemorrhage with varying degrees was observed in 7 patients (25%). Six patients (21.4%) had low attenuation lesions in the subcortical white matter of the insula. A significant association was observed between putaminal hemorrhage (OR = 8, 95% CI = 1.187-53.93, P = 0.018) and subcortical necrosis of the insula (OR = 11, 95% CI = 1.504-80.426, P = 0.007) with death. Conclusion: In addition to clinical and laboratory findings, presence of putaminal hemorrhage and insular subcortex white matter necrosis are associated with a poor clinical outcome in patients with methanol poisoning.

  7. Cerebral blood flow and brain atrophy correlated by xenon contrast CT scanning

    International Nuclear Information System (INIS)

    Kitagawa, Y.; Meyer, J.S.; Tanahashi, N.; Rogers, R.L.; Tachibana, H.; Kandula, P.; Dowell, R.E.; Mortel, K.F.

    1985-01-01

    Correlations between cerebral blood flow (CBF) measured during stable xenon contrast CT scanning and standard CT indices of brain atrophy were investigated in the patients with senile dementia of Alzheimer type, multi-infarct dementia and idiopathic Parkinson's disease. Compared to age-matched normal volunteers, significant correlations were found in patients with idiopathic Parkinson's disease between cortical and subcortical gray matter blood flow and brain atrophy estimated by the ventricular body ratio, and mild to moderate brain atrophy were correlated with stepwise CBF reductions. However, in patients with senile dementia of Alzheimer type and multi-infarct dementia, brain atrophy was not associated with stepwise CBF reductions. Overall correlations between brain atrophy and reduced CBF were weak. Mild degrees of brain atrophy are not always associated with reduced CBF

  8. Brain MRI findings of neuropsychiatric lupus

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jang-Wook; Kwon, Bae Ju; Lee, Seung-Ro; Hahm, Chang-Kok; Moon, Won Jin; Jeon, Eui Yong; Bae, Sang-Chul [Hanyang Univ. School of Medicine, Seoul (Korea, Republic of)

    2000-12-01

    To evaluate the brain MRI findings in patients with neuropsychiatric lupus. In 26 patients (M:F = 2:24 ; aged 9-48 years) in whom the presence of systemic lupus erythematosus was clinically or pathologically proven and in whom neuropsychiatric lupus was also clinically diagnosed, the findings of brain MRI were retrospectively evaluated. MR images were analyzed with regard to the distribution, location, size and number of lesions due to cerebral ischemia or infarction, the presence of cerebral atrophy, and the extent and degree of brain parenchymal and intravascular enhancement. The most common MRI findings were lesions due to cerebral ischemia or infarction occurring in 18 patients (69%), and located within deep periventricular white matter (n=10), subcortical white matter (n=8), the cerebral cortex (n=7), basal ganglia (n=7), or brain stem or cerebellum (n=2). The lesions were single (n=3) or multiple (n=15), and in 17 patients were less than 1cm in diameter in regions other than the cerebral cortex. In six of these patients, lesions of 1-4cm in diameter in this region were combined, and one occurred in the cerebral cortex only. Cerebral atrophy was seen in 16 patients (62%), in ten of whom there was no past history of treatment with steroids for more than six months. In 15 patients (58%), contrast-enhanced MR image revealed diffuse enhancement of the basal ganglia or intravascular enhancement. In no case were MRI findings normal. The primary mainfestations of neuropsychiatric lupus are multifocal ischemia or infarctions in the cerebral cortex, and subcortical and deep white matter, and the cerebral atrophy. Contrast-enhanced MR images also demonstrated diffuse enhancement of the basal ganglia and intravascular enhancement, both thought to be related to the congestion due to the stagnation of cerebral blood flow.

  9. Brain MRI findings of neuropsychiatric lupus

    International Nuclear Information System (INIS)

    Kim, Jang-Wook; Kwon, Bae Ju; Lee, Seung-Ro; Hahm, Chang-Kok; Moon, Won Jin; Jeon, Eui Yong; Bae, Sang-Chul

    2000-01-01

    To evaluate the brain MRI findings in patients with neuropsychiatric lupus. In 26 patients (M:F = 2:24 ; aged 9-48 years) in whom the presence of systemic lupus erythematosus was clinically or pathologically proven and in whom neuropsychiatric lupus was also clinically diagnosed, the findings of brain MRI were retrospectively evaluated. MR images were analyzed with regard to the distribution, location, size and number of lesions due to cerebral ischemia or infarction, the presence of cerebral atrophy, and the extent and degree of brain parenchymal and intravascular enhancement. The most common MRI findings were lesions due to cerebral ischemia or infarction occurring in 18 patients (69%), and located within deep periventricular white matter (n=10), subcortical white matter (n=8), the cerebral cortex (n=7), basal ganglia (n=7), or brain stem or cerebellum (n=2). The lesions were single (n=3) or multiple (n=15), and in 17 patients were less than 1cm in diameter in regions other than the cerebral cortex. In six of these patients, lesions of 1-4cm in diameter in this region were combined, and one occurred in the cerebral cortex only. Cerebral atrophy was seen in 16 patients (62%), in ten of whom there was no past history of treatment with steroids for more than six months. In 15 patients (58%), contrast-enhanced MR image revealed diffuse enhancement of the basal ganglia or intravascular enhancement. In no case were MRI findings normal. The primary mainfestations of neuropsychiatric lupus are multifocal ischemia or infarctions in the cerebral cortex, and subcortical and deep white matter, and the cerebral atrophy. Contrast-enhanced MR images also demonstrated diffuse enhancement of the basal ganglia and intravascular enhancement, both thought to be related to the congestion due to the stagnation of cerebral blood flow

  10. Causal mapping of emotion networks in the human brain: Framework and initial findings.

    Science.gov (United States)

    Dubois, Julien; Oya, Hiroyuki; Tyszka, J Michael; Howard, Matthew; Eberhardt, Frederick; Adolphs, Ralph

    2017-11-13

    Emotions involve many cortical and subcortical regions, prominently including the amygdala. It remains unknown how these multiple network components interact, and it remains unknown how they cause the behavioral, autonomic, and experiential effects of emotions. Here we describe a framework for combining a novel technique, concurrent electrical stimulation with fMRI (es-fMRI), together with a novel analysis, inferring causal structure from fMRI data (causal discovery). We outline a research program for investigating human emotion with these new tools, and provide initial findings from two large resting-state datasets as well as case studies in neurosurgical patients with electrical stimulation of the amygdala. The overarching goal is to use causal discovery methods on fMRI data to infer causal graphical models of how brain regions interact, and then to further constrain these models with direct stimulation of specific brain regions and concurrent fMRI. We conclude by discussing limitations and future extensions. The approach could yield anatomical hypotheses about brain connectivity, motivate rational strategies for treating mood disorders with deep brain stimulation, and could be extended to animal studies that use combined optogenetic fMRI. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Low- and high-frequency subcortical SEP amplitude reduction during pure passive movement.

    Science.gov (United States)

    Insola, Angelo; Padua, Luca; Mazzone, Paolo; Valeriani, Massimiliano

    2015-12-01

    To investigate the effect of pure passive movement on both cortical and subcortical somatosensory evoked potentials (SEPs). Median nerve SEPs were recorded in 8 patients suffering from Parkinson's disease (PD) and two patients with essential tremor. PD patients underwent electrode implantation in the subthalamic (STN) nucleus (3 patients) and pedunculopontine (PPTg) nucleus (5 patients), while 2 patients with essential tremor were implanted in the ventral intermediate nucleus (VIM) of the thalamus. In anesthetized patients, SEPs were recorded at rest and during a passive movement of the thumb of the stimulated wrist from the intracranial electrode contacts and from the scalp. Also the high-frequency oscillations (HFOs) were analyzed. Amplitudes of both deep and scalp components were decreased during passive movement, but the reduction was higher at cortical than subcortical level. Also the HFOs were reduced by movement. The different amount of the movement-related decrease suggests that the cortical SEP gating is not only the result of a subcortical somatosensory volley attenuation, but a further mechanism acting at cortical level should be considered. Our results are important for understanding the physiological mechanism of the sensory-motor interaction during passive movement. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  12. Acute Psychosis Associated with Subcortical Stroke: Comparison between Basal Ganglia and Mid-Brain Lesions

    Directory of Open Access Journals (Sweden)

    Aaron McMurtray

    2014-01-01

    Full Text Available Acute onset of psychosis in an older or elderly individual without history of previous psychiatric disorders should prompt a thorough workup for neurologic causes of psychiatric symptoms. This report compares and contrasts clinical features of new onset of psychotic symptoms between two patients, one with an acute basal ganglia hemorrhagic stroke and another with an acute mid-brain ischemic stroke. Delusions and hallucinations due to basal ganglia lesions are theorized to develop as a result of frontal lobe dysfunction causing impairment of reality checking pathways in the brain, while visual hallucinations due to mid-brain lesions are theorized to develop due to dysregulation of inhibitory control of the ponto-geniculate-occipital system. Psychotic symptoms occurring due to stroke demonstrate varied clinical characteristics that depend on the location of the stroke within the brain. Treatment with antipsychotic medications may provide symptomatic relief.

  13. Association between structural brain network efficiency and intelligence increases during adolescence

    NARCIS (Netherlands)

    Koenis, Marinka M G; Brouwer, Rachel M; Swagerman, Suzanne C; van Soelen, Inge L C; Boomsma, Dorret I; Hulshoff Pol, Hilleke E

    2018-01-01

    Adolescence represents an important period during which considerable changes in the brain take place, including increases in integrity of white matter bundles, and increasing efficiency of the structural brain network. A more efficient structural brain network has been associated with higher

  14. Migraine and structural abnormalities in the brain

    DEFF Research Database (Denmark)

    Hougaard, Anders; Amin, Faisal Mohammad; Ashina, Messoud

    2014-01-01

    PURPOSE OF REVIEW: The aim is to provide an overview of recent studies of structural brain abnormalities in migraine and to discuss the potential clinical significance of their findings. RECENT FINDINGS: Brain structure continues to be a topic of extensive research in migraine. Despite advances...... in neuroimaging techniques, it is not yet clear if migraine is associated with grey matter changes. Recent large population-based studies sustain the notion of increased prevalence of white matter abnormalities in migraine, and possibly of silent infarct-like lesions. The clinical relevance of this association...

  15. Air pollution and brain damage.

    Science.gov (United States)

    Calderón-Garcidueñas, Lilian; Azzarelli, Biagio; Acuna, Hilda; Garcia, Raquel; Gambling, Todd M; Osnaya, Norma; Monroy, Sylvia; DEL Tizapantzi, Maria Rosario; Carson, Johnny L; Villarreal-Calderon, Anna; Rewcastle, Barry

    2002-01-01

    Exposure to complex mixtures of air pollutants produces inflammation in the upper and lower respiratory tract. Because the nasal cavity is a common portal of entry, respiratory and olfactory epithelia are vulnerable targets for toxicological damage. This study has evaluated, by light and electron microscopy and immunohistochemical expression of nuclear factor-kappa beta (NF-kappaB) and inducible nitric oxide synthase (iNOS), the olfactory and respiratory nasal mucosae, olfactory bulb, and cortical and subcortical structures from 32 healthy mongrel canine residents in Southwest Metropolitan Mexico City (SWMMC), a highly polluted urban region. Findings were compared to those in 8 dogs from Tlaxcala, a less polluted, control city. In SWMMC dogs, expression of nuclear neuronal NF-kappaB and iNOS in cortical endothelial cells occurred at ages 2 and 4 weeks; subsequent damage included alterations of the blood-brain barrier (BBB), degenerating cortical neurons, apoptotic glial white matter cells, deposition of apolipoprotein E (apoE)-positive lipid droplets in smooth muscle cells and pericytes, nonneuritic plaques, and neurofibrillary tangles. Persistent pulmonary inflammation and deteriorating olfactory and respiratory barriers may play a role in the neuropathology observed in the brains of these highly exposed canines. Neurodegenerative disorders such as Alzheimer's may begin early in life with air pollutants playing a crucial role.

  16. Common late-onset subcortical cerebral hemorrhage following excessive alcohol consumption: a case report

    International Nuclear Information System (INIS)

    Incedayi, M.; Sivrioglu, A.; Velioglu, M.; Aribal, S.; Sonmez, G.; Basekim, C.

    2012-01-01

    Full text: 50 year old male patient who was suffering from cooperation disorder and bilaterally blindness was admitted to our emergency service. He was addicted to alcohol and had excessive alcohol consumption the day before. Cranial nonenhanced CT was normal. T2 weighed MR imaging performed at 1,5 T unit showed high signal intensity in bilateral putaminal foci. In this localization diffusion-weighed images (DWI) were hyperintense due to restricted diffusion and low ADC values. After two weeks, drowsiness and confusion were appeared suddenly. Cranial nonenhanced CT was showed extensive subcortical white matter and basal ganglia abnormalities consistent with edema and hemorrhagic changes. The patient was transferred to intensive care unit and died after one day. In methanol intoxication, cerebral and intraventricular hemorrhage, cerebellar necrosis, diffuse cerebral edema, bilateral subcortical white matter necrosis and edema were defined It should also be known that 2 or 3 weeks after ingestion of methyl alcohol, the deterioration of the patient's general situation is responsible for cerebral subcortical hemorrhage. We have also thought that patients' mortality and morbidity can be reduced with radiological imaging due to early diagnosis

  17. Training conquers multitasking costs by dividing task representations in the frontoparietal-subcortical system.

    Science.gov (United States)

    Garner, K G; Dux, Paul E

    2015-11-17

    Negotiating the information-rich sensory world often requires the concurrent management of multiple tasks. Despite this requirement, humans are thought to be poor at multitasking because of the processing limitations of frontoparietal and subcortical (FP-SC) brain regions. Although training is known to improve multitasking performance, it is unknown how the FP-SC system functionally changes to support improved multitasking. To address this question, we characterized the FP-SC changes that predict training outcomes using an individual differences approach. Participants (n = 100) performed single and multiple tasks in pre- and posttraining magnetic resonance imaging (fMRI) sessions interspersed by either a multitasking or an active-control training regimen. Multivoxel pattern analyses (MVPA) revealed that training induced multitasking improvements were predicted by divergence in the FP-SC blood oxygen level-dependent (BOLD) response patterns to the trained tasks. Importantly, this finding was only observed for participants who completed training on the component (single) tasks and their combination (multitask) and not for the control group. Therefore, the FP-SC system supports multitasking behavior by segregating constituent task representations.

  18. Brain network of semantic integration in sentence reading: insights from independent component analysis and graph theoretical analysis.

    Science.gov (United States)

    Ye, Zheng; Doñamayor, Nuria; Münte, Thomas F

    2014-02-01

    A set of cortical and sub-cortical brain structures has been linked with sentence-level semantic processes. However, it remains unclear how these brain regions are organized to support the semantic integration of a word into sentential context. To look into this issue, we conducted a functional magnetic resonance imaging (fMRI) study that required participants to silently read sentences with semantically congruent or incongruent endings and analyzed the network properties of the brain with two approaches, independent component analysis (ICA) and graph theoretical analysis (GTA). The GTA suggested that the whole-brain network is topologically stable across conditions. The ICA revealed a network comprising the supplementary motor area (SMA), left inferior frontal gyrus, left middle temporal gyrus, left caudate nucleus, and left angular gyrus, which was modulated by the incongruity of sentence ending. Furthermore, the GTA specified that the connections between the left SMA and left caudate nucleus as well as that between the left caudate nucleus and right thalamus were stronger in response to incongruent vs. congruent endings. Copyright © 2012 Wiley Periodicals, Inc.

  19. Mapping the sequence of brain events in response to disgusting food.

    Science.gov (United States)

    Pujol, Jesus; Blanco-Hinojo, Laura; Coronas, Ramón; Esteba-Castillo, Susanna; Rigla, Mercedes; Martínez-Vilavella, Gerard; Deus, Joan; Novell, Ramón; Caixàs, Assumpta

    2018-01-01

    Warning signals indicating that a food is potentially dangerous may evoke a response that is not limited to the feeling of disgust. We investigated the sequence of brain events in response to visual representations of disgusting food using a dynamic image analysis. Functional MRI was acquired in 30 healthy subjects while they were watching a movie showing disgusting food scenes interspersed with the scenes of appetizing food. Imaging analysis included the identification of the global brain response and the generation of frame-by-frame activation maps at the temporal resolution of 2 s. Robust activations were identified in brain structures conventionally associated with the experience of disgust, but our analysis also captured a variety of other brain elements showing distinct temporal evolutions. The earliest events included transient changes in the orbitofrontal cortex and visual areas, followed by a more durable engagement of the periaqueductal gray, a pivotal element in the mediation of responses to threat. A subsequent core phase was characterized by the activation of subcortical and cortical structures directly concerned not only with the emotional dimension of disgust (e.g., amygdala-hippocampus, insula), but also with the regulation of food intake (e.g., hypothalamus). In a later phase, neural excitement extended to broad cortical areas, the thalamus and cerebellum, and finally to the default mode network that signaled the progressive termination of the evoked response. The response to disgusting food representations is not limited to the emotional domain of disgust, and may sequentially involve a variety of broadly distributed brain networks. Hum Brain Mapp 39:369-380, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  20. Do brain image databanks support understanding of normal ageing brain structure? A systematic review

    International Nuclear Information System (INIS)

    Dickie, David Alexander; Job, Dominic E.; Wardlaw, Joanna M.; Poole, Ian; Ahearn, Trevor S.; Staff, Roger T.; Murray, Alison D.

    2012-01-01

    To document accessible magnetic resonance (MR) brain images, metadata and statistical results from normal older subjects that may be used to improve diagnoses of dementia. We systematically reviewed published brain image databanks (print literature and Internet) concerned with normal ageing brain structure. From nine eligible databanks, there appeared to be 944 normal subjects aged ≥60 years. However, many subjects were in more than one databank and not all were fully representative of normal ageing clinical characteristics. Therefore, there were approximately 343 subjects aged ≥60 years with metadata representative of normal ageing, but only 98 subjects were openly accessible. No databank had the range of MR image sequences, e.g. T2*, fluid-attenuated inversion recovery (FLAIR), required to effectively characterise the features of brain ageing. No databank supported random subject retrieval; therefore, manual selection bias and errors may occur in studies that use these subjects as controls. Finally, no databank stored results from statistical analyses of its brain image and metadata that may be validated with analyses of further data. Brain image databanks require open access, more subjects, metadata, MR image sequences, searchability and statistical results to improve understanding of normal ageing brain structure and diagnoses of dementia. (orig.)

  1. Subcortical frontal lesions on MRI in patients with motor neurone disease

    International Nuclear Information System (INIS)

    Andreadou, E.; Sgouropoulos, P.; Varelas, P.; Papageorgiou, C.; Gouliamos, A.

    1998-01-01

    MRI was performed in 32 patients with motor neurone disease (26 men and 6 women, aged 40-77 years) and in a control group of 21 subjects. Of the patients studied, 19 had definite and 11 probable amyotrophic lateral sclerosis (ALS) and two had progressive bulbar palsy. In 10 patients there were asymmetrical bilateral foci of increased signal intensity on proton-density and T 2 -weighted images, confined to the white matter. Two patients had only cortical frontal atrophy and slightly increased ventricular size, whereas 20 had normal MRI. The focal lesions were not confined to corticospinal tracts, but were also observed in subcortical frontal areas. While the lesions along the corticospinal tracts correspond to pyramidal tract degeneration, the subcortical foci correlate with degeneration of the frontal bundles and indicate generalised involvement of the central nervous system. (orig.)

  2. Phonemic Characteristics of Apraxia of Speech Resulting from Subcortical Hemorrhage

    Science.gov (United States)

    Peach, Richard K.; Tonkovich, John D.

    2004-01-01

    Reports describing subcortical apraxia of speech (AOS) have received little consideration in the development of recent speech processing models because the speech characteristics of patients with this diagnosis have not been described precisely. We describe a case of AOS with aphasia secondary to basal ganglia hemorrhage. Speech-language symptoms…

  3. Brain morphometry shows effects of long-term musical practice in middle-aged keyboard players

    Directory of Open Access Journals (Sweden)

    Hanna eGärtner

    2013-09-01

    Full Text Available To what extent does musical practice change the structure of the brain? In order to understand how long-lasting musical training changes brain structure, 20 male right-handed, middle-aged professional musicians and 19 matched controls were investigated. Among the musicians, 13 were pianists or organists with intensive practice regimes. The others were either music teachers at schools or string instrumentalists, who had studied the piano at least as a subsidiary subject, and practiced less intensively. The study was based on T1-weighted MR images, which were analyzed using Deformation Field Morphometry. Cytoarchitectonic probabilistic maps of cortical areas and subcortical nuclei as well as myeloarchitectonic maps of fiber tracts were used as regions of interest to compare volume differences in the brains of musicians and controls. In addition, maps of voxel-wise volume differences were computed and analyzed.Musicians showed a significantly better symmetric motor performance as well as a greater capability of controlling hand independence than controls. Structural MRI-data revealed significant volumetric differences between the brains of keyboard players, who practiced intensively and controls in right sensorimotor areas and the corticospinal tract as well as in the entorhinal cortex and the left superior parietal lobule. Moreover, they showed also larger volumes in a comparable set of regions than the less intensively practicing musicians. The structural changes in the sensory and motor systems correspond well to the behavioral results, and can be interpreted in terms of plasticity as a result of intensive motor training. Areas of the superior parietal lobule and the entorhinal cortex might be enlarged in musicians due to their special skills in sight-playing and memorizing of scores. In conclusion, intensive and specific musical training seems to have an impact on brain structure, not only during the sensitive period of childhood but throughout

  4. The effects of musical training on structural brain development: a longitudinal study.

    Science.gov (United States)

    Hyde, Krista L; Lerch, Jason; Norton, Andrea; Forgeard, Marie; Winner, Ellen; Evans, Alan C; Schlaug, Gottfried

    2009-07-01

    Long-term instrumental music training is an intense, multisensory and motor experience that offers an ideal opportunity to study structural brain plasticity in the developing brain in correlation with behavioral changes induced by training. Here, for the first time, we demonstrate structural brain changes after only 15 months of musical training in early childhood, which were correlated with improvements in musically relevant motor and auditory skills. These findings shed light on brain plasticity, and suggest that structural brain differences in adult experts (whether musicians or experts in other areas) are likely due to training-induced brain plasticity.

  5. The role of testosterone and estradiol in brain volume changes across adolescence: a longitudinal structural MRI study.

    Science.gov (United States)

    Herting, Megan M; Gautam, Prapti; Spielberg, Jeffrey M; Kan, Eric; Dahl, Ronald E; Sowell, Elizabeth R

    2014-11-01

    It has been postulated that pubertal hormones may drive some neuroanatomical changes during adolescence, and may do so differently in girls and boys. Here, we use growth curve modeling to directly assess how sex hormones [testosterone (T) and estradiol (E₂)] relate to changes in subcortical brain volumes utilizing a longitudinal design. 126 adolescents (63 girls), ages 10 to 14, were imaged and restudied ∼2 years later. We show, for the first time, that best-fit growth models are distinctly different when using hormones as compared to a physical proxy of pubertal maturation (Tanner Stage) or age, to predict brain development. Like Tanner Stage, T and E₂ predicted white matter and right amygdala growth across adolescence in both sexes, independent of age. Tanner Stage also explained decreases in both gray matter and caudate volumes, whereas E₂ explained only gray matter decreases and T explained only caudate volume decreases. No pubertal measures were related to hippocampus development. Although specificity was seen, sex hormones had strikingly similar relationships with white matter, gray matter, right amygdala, and bilateral caudate volumes, with larger changes in brain volume seen at early pubertal maturation (as indexed by lower hormone levels), followed by less robust, or even reversals in growth, by late puberty. These novel longitudinal findings on the relationship between hormones and brain volume change represent crucial first steps toward understanding which aspects of puberty influence neurodevelopment. Copyright © 2014 Wiley Periodicals, Inc.

  6. Structural imaging measures of brain aging.

    Science.gov (United States)

    Lockhart, Samuel N; DeCarli, Charles

    2014-09-01

    During the course of normal aging, biological changes occur in the brain that are associated with changes in cognitive ability. This review presents data from neuroimaging studies of primarily "normal" or healthy brain aging. As such, we focus on research in unimpaired or nondemented older adults, but also include findings from lifespan studies that include younger and middle aged individuals as well as from populations with prodromal or clinically symptomatic disease such as cerebrovascular or Alzheimer's disease. This review predominantly addresses structural MRI biomarkers, such as volumetric or thickness measures from anatomical images, and measures of white matter injury and integrity respectively from FLAIR or DTI, and includes complementary data from PET and cognitive or clinical testing as appropriate. The findings reveal highly consistent age-related differences in brain structure, particularly frontal lobe and medial temporal regions that are also accompanied by age-related differences in frontal and medial temporal lobe mediated cognitive abilities. Newer findings also suggest that degeneration of specific white matter tracts such as those passing through the genu and splenium of the corpus callosum may also be related to age-related differences in cognitive performance. Interpretation of these findings, however, must be tempered by the fact that comorbid diseases such as cerebrovascular and Alzheimer's disease also increase in prevalence with advancing age. As such, this review discusses challenges related to interpretation of current theories of cognitive aging in light of the common occurrence of these later-life diseases. Understanding the differences between "Normal" and "Healthy" brain aging and identifying potential modifiable risk factors for brain aging is critical to inform potential treatments to stall or reverse the effects of brain aging and possibly extend cognitive health for our aging society.

  7. Developmental synchrony of thalamocortical circuits in the neonatal brain.

    Science.gov (United States)

    Poh, Joann S; Li, Yue; Ratnarajah, Nagulan; Fortier, Marielle V; Chong, Yap-Seng; Kwek, Kenneth; Saw, Seang-Mei; Gluckman, Peter D; Meaney, Michael J; Qiu, Anqi

    2015-08-01

    The thalamus is a deep gray matter structure and consists of axonal fibers projecting to the entire cortex, which provide the anatomical support for its sensorimotor and higher-level cognitive functions. There is limited in vivo evidence on the normal thalamocortical development, especially in early life. In this study, we aimed to investigate the developmental patterns of the cerebral cortex, the thalamic substructures, and their connectivity with the cortex in the first few weeks of the postnatal brain. We hypothesized that there is developmental synchrony of the thalamus, its cortical projections, and corresponding target cortical structures. We employed diffusion tensor imaging (DTI) and divided the thalamus into five substructures respectively connecting to the frontal, precentral, postcentral, temporal, and parietal and occipital cortex. T2-weighted magnetic resonance imaging (MRI) was used to measure cortical thickness. We found age-related increases in cortical thickness of bilateral frontal cortex and left temporal cortex in the early postnatal brain. We also found that the development of the thalamic substructures was synchronized with that of their respective thalamocortical connectivity in the first few weeks of the postnatal life. In particular, the right thalamo-frontal substructure had the fastest growth in the early postnatal brain. Our study suggests that the distinct growth patterns of the thalamic substructures are in synchrony with those of the cortex in early life, which may be critical for the development of the cortical and subcortical functional specialization. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Hemispheric lateralization of topological organization in structural brain networks.

    Science.gov (United States)

    Caeyenberghs, Karen; Leemans, Alexander

    2014-09-01

    The study on structural brain asymmetries in healthy individuals plays an important role in our understanding of the factors that modulate cognitive specialization in the brain. Here, we used fiber tractography to reconstruct the left and right hemispheric networks of a large cohort of 346 healthy participants (20-86 years) and performed a graph theoretical analysis to investigate this brain laterality from a network perspective. Findings revealed that the left hemisphere is significantly more "efficient" than the right hemisphere, whereas the right hemisphere showed higher values of "betweenness centrality" and "small-worldness." In particular, left-hemispheric networks displayed increased nodal efficiency in brain regions related to language and motor actions, whereas the right hemisphere showed an increase in nodal efficiency in brain regions involved in memory and visuospatial attention. In addition, we found that hemispheric networks decrease in efficiency with age. Finally, we observed significant gender differences in measures of global connectivity. By analyzing the structural hemispheric brain networks, we have provided new insights into understanding the neuroanatomical basis of lateralized brain functions. Copyright © 2014 Wiley Periodicals, Inc.

  9. Visual Restoration after Cataract Surgery Promotes Functional and Structural Brain Recovery

    Directory of Open Access Journals (Sweden)

    Haotian Lin

    2018-04-01

    Full Text Available Background: Visual function and brain function decline concurrently with aging. Notably, cataract patients often present with accelerated age-related decreases in brain function, but the underlying mechanisms are still unclear. Optical structures of the anterior segment of the eyes, such as the lens and cornea, can be readily reconstructed to improve refraction and vision quality. However, the effects of visual restoration on human brain function and structure remain largely unexplored. Methods: A prospective, controlled clinical trial was conducted. Twenty-six patients with bilateral age-related cataracts (ARCs who underwent phacoemulsification and intraocular lens implantation and 26 healthy controls without ARC, matched for age, sex, and education, were recruited. Visual functions (including visual acuity, visual evoke potential, and contrast sensitivity, the Mini-Mental State Examination and functional magnetic resonance imaging (including the fractional amplitude of low-frequency fluctuations and grey matter volume variation were assessed for all the participants and reexamined for ARC patients after cataract surgery. This trial was registered with ClinicalTrials.gov (NCT02644720. Findings: Compared with the healthy controls, the ARC patients presented decreased brain functionality as well as structural alterations in visual and cognitive-related brain areas preoperatively. Three months postoperatively, significant functional improvements were observed in the visual and cognitive-related brain areas of the patients. Six months postoperatively, the patients' grey matter volumes in these areas were significantly increased. Notably, both the function and structure in the visual and cognitive-related brain areas of the patients improved significantly and became comparable to those of the healthy controls 6 months postoperatively. Interpretation: We demonstrated that ocular reconstruction can functionally and structurally reverse cataract

  10. A Novel Missense Mutation of Doublecortin: Mutation Analysis of Korean Patients with Subcortical Band Heterotopia

    Science.gov (United States)

    Kim, Myeong-Kyu; Park, Man-Seok; Kim, Byeong-Chae; Cho, Ki-Hyun; Kim, Young-Seon; Kim, Jin-Hee; Heo, Tag; Kim, Eun-Young

    2005-01-01

    The neuronal migration disorders, X-linked lissencephaly syndrome (XLIS) and subcortical band heterotopia (SBH), also called "double cortex", have been linked to missense, nonsense, aberrant splicing, deletion, and insertion mutations in doublecortin (DCX) in families and sporadic cases. Most DCX mutations identified to date are located in two evolutionarily conserved domains. We performed mutation analysis of DCX in two Korean patients with SBH. The SBH patients had mild to moderate developmental delays, drug-resistant generalized seizures, and diffuse thick SBH upon brain MRI. Sequence analysis of the DCX coding region in Patient 1 revealed a c.386 C>T change in exon 3. The sequence variation results in a serine to leucine amino acid change at position 129 (S129L), which has not been found in other family members of Patient 1 or in a large panel of 120 control X-chromosomes. We report here a novel c.386 C>T mutation of DCX that is responsible for SBH. PMID:16100463

  11. Remodeling of Sensorimotor Brain Connectivity in Gpr88-Deficient Mice.

    Science.gov (United States)

    Arefin, Tanzil Mahmud; Mechling, Anna E; Meirsman, Aura Carole; Bienert, Thomas; Hübner, Neele Saskia; Lee, Hsu-Lei; Ben Hamida, Sami; Ehrlich, Aliza; Roquet, Dan; Hennig, Jürgen; von Elverfeldt, Dominik; Kieffer, Brigitte Lina; Harsan, Laura-Adela

    2017-10-01

    Recent studies have demonstrated that orchestrated gene activity and expression support synchronous activity of brain networks. However, there is a paucity of information on the consequences of single gene function on overall brain functional organization and connectivity and how this translates at the behavioral level. In this study, we combined mouse mutagenesis with functional and structural magnetic resonance imaging (MRI) to determine whether targeted inactivation of a single gene would modify whole-brain connectivity in live animals. The targeted gene encodes GPR88 (G protein-coupled receptor 88), an orphan G protein-coupled receptor enriched in the striatum and previously linked to behavioral traits relevant to neuropsychiatric disorders. Connectivity analysis of Gpr88-deficient mice revealed extensive remodeling of intracortical and cortico-subcortical networks. Most prominent modifications were observed at the level of retrosplenial cortex connectivity, central to the default mode network (DMN) whose alteration is considered a hallmark of many psychiatric conditions. Next, somatosensory and motor cortical networks were most affected. These modifications directly relate to sensorimotor gating deficiency reported in mutant animals and also likely underlie their hyperactivity phenotype. Finally, we identified alterations within hippocampal and dorsal striatum functional connectivity, most relevant to a specific learning deficit that we previously reported in Gpr88 -/- animals. In addition, amygdala connectivity with cortex and striatum was weakened, perhaps underlying the risk-taking behavior of these animals. This is the first evidence demonstrating that GPR88 activity shapes the mouse brain functional and structural connectome. The concordance between connectivity alterations and behavior deficits observed in Gpr88-deficient mice suggests a role for GPR88 in brain communication.

  12. Comparing Two Processing Pipelines to Measure Subcortical and Cortical Volumes in Patients with and without Mild Traumatic Brain Injury.

    Science.gov (United States)

    Reid, Matthew W; Hannemann, Nathan P; York, Gerald E; Ritter, John L; Kini, Jonathan A; Lewis, Jeffrey D; Sherman, Paul M; Velez, Carmen S; Drennon, Ann Marie; Bolzenius, Jacob D; Tate, David F

    2017-07-01

    To compare volumetric results from NeuroQuant® and FreeSurfer in a service member setting. Since the advent of medical imaging, quantification of brain anatomy has been a major research and clinical effort. Rapid advancement of methods to automate quantification and to deploy this information into clinical practice has surfaced in recent years. NeuroQuant® is one such tool that has recently been used in clinical settings. Accurate volumetric data are useful in many clinical indications; therefore, it is important to assess the intermethod reliability and concurrent validity of similar volume quantifying tools. Volumetric data from 148 U.S. service members across three different experimental groups participating in a study of mild traumatic brain injury (mTBI) were examined. Groups included mTBI (n = 71), posttraumatic stress disorder (n = 22), or a noncranial orthopedic injury (n = 55). Correlation coefficients and nonparametric group mean comparisons were used to assess reliability and concurrent validity, respectively. Comparison of these methods across our entire sample demonstrates generally fair to excellent reliability as evidenced by large intraclass correlation coefficients (ICC = .4 to .99), but little concurrent validity as evidenced by significantly different Mann-Whitney U comparisons for 26 of 30 brain structures measured. While reliability between the two segmenting tools is fair to excellent, volumetric outcomes are statistically different between the two methods. As suggested by both developers, structure segmentation should be visually verified prior to clinical use and rigor should be used when interpreting results generated by either method. Copyright © 2017 by the American Society of Neuroimaging.

  13. Comparison of brain volume abnormalities between ADHD and conduct disorder in adolescence

    Science.gov (United States)

    Stevens, Michael C.; Haney-Caron, Emily

    2012-01-01

    Background Previous studies of brain structure abnormalities in conduct disorder and attention-deficit/hyperactivity disorder (ADHD) samples have been limited owing to cross-comorbidity, preventing clear understanding of which structural brain abnormalities might be specific to or shared by each disorder. To our knowledge, this study was the first direct comparison of grey and white matter volumes in diagnostically “pure” (i.e., no comorbidities) conduct disorder and ADHD samples. Methods Groups of adolescents with noncormobid conduct disorder and with noncomorbid, combined-subtype ADHD were compared with age- and sex-matched controls using DARTEL voxel-based analysis of T1-weighted brain structure images. Analysis of variance with post hoc analyses compared whole brain grey and white matter volumes among the groups. Results We included 24 adolescents in each study group. There was an overall 13% reduction in grey matter volume in adolescents with conduct disorder, reflecting numerous frontal, temporal, parietal and subcortical deficits. The same grey matter regions typically were not abnormal in those with ADHD. Deficits in frontal lobe regions previously identified in studies of patients with ADHD either were not detected, or group differences from controls were not as strong as those between the conduct disorder and control groups. White matter volume measurements did not differentiate conduct disorder and ADHD. Limitations Our modest sample sizes prevented meaningful examination of individual features of ADHD or conduct disorder, such as aggression, callousness, or hyperactive versus inattentive symptom subtypes. Conclusion The evidence supports theories of frontotemporal abnormalities in adolescents with conduct disorder, but raises questions about the prominence of frontal lobe and striatal structural abnormalities in those with noncomorbid, combined-subtype ADHD. The latter point is clinically important, given the widely held belief that ADHD is

  14. Whole brain diffeomorphic metric mapping via integration of sulcal and gyral curves, cortical surfaces, and images

    Science.gov (United States)

    Du, Jia; Younes, Laurent; Qiu, Anqi

    2011-01-01

    This paper introduces a novel large deformation diffeomorphic metric mapping algorithm for whole brain registration where sulcal and gyral curves, cortical surfaces, and intensity images are simultaneously carried from one subject to another through a flow of diffeomorphisms. To the best of our knowledge, this is the first time that the diffeomorphic metric from one brain to another is derived in a shape space of intensity images and point sets (such as curves and surfaces) in a unified manner. We describe the Euler–Lagrange equation associated with this algorithm with respect to momentum, a linear transformation of the velocity vector field of the diffeomorphic flow. The numerical implementation for solving this variational problem, which involves large-scale kernel convolution in an irregular grid, is made feasible by introducing a class of computationally friendly kernels. We apply this algorithm to align magnetic resonance brain data. Our whole brain mapping results show that our algorithm outperforms the image-based LDDMM algorithm in terms of the mapping accuracy of gyral/sulcal curves, sulcal regions, and cortical and subcortical segmentation. Moreover, our algorithm provides better whole brain alignment than combined volumetric and surface registration (Postelnicu et al., 2009) and hierarchical attribute matching mechanism for elastic registration (HAMMER) (Shen and Davatzikos, 2002) in terms of cortical and subcortical volume segmentation. PMID:21281722

  15. The Effects of Modified Constraint-Induced Movement Therapy in Acute Subcortical Cerebral Infarction.

    Science.gov (United States)

    Yu, Changshen; Wang, Wanjun; Zhang, Yue; Wang, Yizhao; Hou, Weijia; Liu, Shoufeng; Gao, Chunlin; Wang, Chen; Mo, Lidong; Wu, Jialing

    2017-01-01

    Background : Constraint-induced movement therapy (CIMT) promotes upper extremity recovery post stroke, however, it is difficult to implement clinically due to its high resource demand and safety of the restraint. Therefore, we propose that modified CIMT (mCIMT) be used to treat individuals with acute subcortical infarction. Objective : To evaluate the therapeutic effects of mCIMT in patients with acute subcortical infarction, and investigate the possible mechanisms underlying the effect. Methods : The role of mCIMT was investigated in 26 individuals experiencing subcortical infarction in the preceding 14 days. Patients were randomly assigned to either mCIMT or standard therapy. mCIMT group was treated daily for 3 h over 10 consecutive working days, using a mitt on the unaffected arm for up to 30% of waking hours. The control group was treated with an equal dose of occupational therapy and physical therapy. During the 3-month follow-up, the motor functions of the affected limb were assessed by the Wolf Motor Function Test (WMFT) and Motor Activity Log (MAL). Altered cortical excitability was assessed via transcranial magnetic stimulation (TMS). Results : Treatment significantly improved the movement in the mCIMT group compared with the control group. The mean WMF score was significantly higher in the mCIMT group compared with the control group. Further, the appearance of motor-evoked potentials (MEPs) were significantly higher in the mCIMT group compared with the baseline data. A significant change in ipsilesional silent period (SP) occurred in the mCIMT group compared with the control group. However, we found no difference between two groups in motor function or electrophysiological parameters after 3 months of follow-up. Conclusions : mCIMT resulted in significant functional changes in timed movement immediately following treatment in patients with acute subcortical infarction. Further, early mCIMT improved ipsilesional cortical excitability. However, no long

  16. The Effects of Modified Constraint-Induced Movement Therapy in Acute Subcortical Cerebral Infarction

    Directory of Open Access Journals (Sweden)

    Changshen Yu

    2017-05-01

    Full Text Available Background: Constraint-induced movement therapy (CIMT promotes upper extremity recovery post stroke, however, it is difficult to implement clinically due to its high resource demand and safety of the restraint. Therefore, we propose that modified CIMT (mCIMT be used to treat individuals with acute subcortical infarction.Objective: To evaluate the therapeutic effects of mCIMT in patients with acute subcortical infarction, and investigate the possible mechanisms underlying the effect.Methods: The role of mCIMT was investigated in 26 individuals experiencing subcortical infarction in the preceding 14 days. Patients were randomly assigned to either mCIMT or standard therapy. mCIMT group was treated daily for 3 h over 10 consecutive working days, using a mitt on the unaffected arm for up to 30% of waking hours. The control group was treated with an equal dose of occupational therapy and physical therapy. During the 3-month follow-up, the motor functions of the affected limb were assessed by the Wolf Motor Function Test (WMFT and Motor Activity Log (MAL. Altered cortical excitability was assessed via transcranial magnetic stimulation (TMS.Results: Treatment significantly improved the movement in the mCIMT group compared with the control group. The mean WMF score was significantly higher in the mCIMT group compared with the control group. Further, the appearance of motor-evoked potentials (MEPs were significantly higher in the mCIMT group compared with the baseline data. A significant change in ipsilesional silent period (SP occurred in the mCIMT group compared with the control group. However, we found no difference between two groups in motor function or electrophysiological parameters after 3 months of follow-up.Conclusions: mCIMT resulted in significant functional changes in timed movement immediately following treatment in patients with acute subcortical infarction. Further, early mCIMT improved ipsilesional cortical excitability. However, no long

  17. Gap junctions mediate large-scale Turing structures in a mean-field cortex driven by subcortical noise

    Science.gov (United States)

    Steyn-Ross, Moira L.; Steyn-Ross, D. A.; Wilson, M. T.; Sleigh, J. W.

    2007-07-01

    One of the grand puzzles in neuroscience is establishing the link between cognition and the disparate patterns of spontaneous and task-induced brain activity that can be measured clinically using a wide range of detection modalities such as scalp electrodes and imaging tomography. High-level brain function is not a single-neuron property, yet emerges as a cooperative phenomenon of multiply-interacting populations of neurons. Therefore a fruitful modeling approach is to picture the cerebral cortex as a continuum characterized by parameters that have been averaged over a small volume of cortical tissue. Such mean-field cortical models have been used to investigate gross patterns of brain behavior such as anesthesia, the cycles of natural sleep, memory and erasure in slow-wave sleep, and epilepsy. There is persuasive and accumulating evidence that direct gap-junction connections between inhibitory neurons promote synchronous oscillatory behavior both locally and across distances of some centimeters, but, to date, continuum models have ignored gap-junction connectivity. In this paper we employ simple mean-field arguments to derive an expression for D2 , the diffusive coupling strength arising from gap-junction connections between inhibitory neurons. Using recent neurophysiological measurements reported by Fukuda [J. Neurosci. 26, 3434 (2006)], we estimate an upper limit of D2≈0.6cm2 . We apply a linear stability analysis to a standard mean-field cortical model, augmented with gap-junction diffusion, and find this value for the diffusive coupling strength to be close to the critical value required to destabilize the homogeneous steady state. Computer simulations demonstrate that larger values of D2 cause the noise-driven model cortex to spontaneously crystalize into random mazelike Turing structures: centimeter-scale spatial patterns in which regions of high-firing activity are intermixed with regions of low-firing activity. These structures are consistent with the

  18. Development of Human Brain Structural Networks Through Infancy and Childhood

    Science.gov (United States)

    Huang, Hao; Shu, Ni; Mishra, Virendra; Jeon, Tina; Chalak, Lina; Wang, Zhiyue J.; Rollins, Nancy; Gong, Gaolang; Cheng, Hua; Peng, Yun; Dong, Qi; He, Yong

    2015-01-01

    During human brain development through infancy and childhood, microstructural and macrostructural changes take place to reshape the brain's structural networks and better adapt them to sophisticated functional and cognitive requirements. However, structural topological configuration of the human brain during this specific development period is not well understood. In this study, diffusion magnetic resonance image (dMRI) of 25 neonates, 13 toddlers, and 25 preadolescents were acquired to characterize network dynamics at these 3 landmark cross-sectional ages during early childhood. dMRI tractography was used to construct human brain structural networks, and the underlying topological properties were quantified by graph-theory approaches. Modular organization and small-world attributes are evident at birth with several important topological metrics increasing monotonically during development. Most significant increases of regional nodes occur in the posterior cingulate cortex, which plays a pivotal role in the functional default mode network. Positive correlations exist between nodal efficiencies and fractional anisotropy of the white matter traced from these nodes, while correlation slopes vary among the brain regions. These results reveal substantial topological reorganization of human brain structural networks through infancy and childhood, which is likely to be the outcome of both heterogeneous strengthening of the major white matter tracts and pruning of other axonal fibers. PMID:24335033

  19. Computed tomography brain changes in Parkinsonian dementia

    International Nuclear Information System (INIS)

    Inzelberg, R.; Teeves, T.; Reider, I.; Gerlenter, I.; Korczyn, A.D.; Tel Aviv Univ.

    1987-01-01

    In order to evaluate the relationship between brain atrophy and the motor and cognitive function in Parkinson's disease, we have evaluated CT changes in 132 consecutive patients and compared them to measures of physical and mental decline, using intercorrelations and variance analysis. The result demonstrated age as a most important factor relating to brain atrophy. After correction for this determinant, it became clear that the motor and cognitive parameters were interdependent but they affected similar CT parameters. The effect of motor decline was the stronger of the two and it was the only one which correlated with cortical atrophy. The results support the notion of subcortical changes underlying the dementia of Parkinson's disease. (orig.)

  20. Computed tomography brain changes in Parkinsonian dementia

    Energy Technology Data Exchange (ETDEWEB)

    Inzelberg, R; Teeves, T; Reider, I; Gerlenter, I; Korczyn, A D

    1987-11-01

    In order to evaluate the relationship between brain atrophy and the motor and cognitive function in Parkinson's disease, we have evaluated CT changes in 132 consecutive patients and compared them to measures of physical and mental decline, using intercorrelations and variance analysis. The result demonstrated age as a most important factor relating to brain atrophy. After correction for this determinant, it became clear that the motor and cognitive parameters were interdependent but they affected similar CT parameters. The effect of motor decline was the stronger of the two and it was the only one which correlated with cortical atrophy. The results support the notion of subcortical changes underlying the dementia of Parkinson's disease.

  1. Subcortical frontal lesions on MRI in patients with motor neurone disease

    Energy Technology Data Exchange (ETDEWEB)

    Andreadou, E.; Sgouropoulos, P.; Varelas, P.; Papageorgiou, C. [Eginition Hospital, Athens (Greece); Gouliamos, A. [Department of Radiology, CT/MRI Unit, Areteion Hospital, University of Athens (Greece)

    1998-05-01

    MRI was performed in 32 patients with motor neurone disease (26 men and 6 women, aged 40-77 years) and in a control group of 21 subjects. Of the patients studied, 19 had definite and 11 probable amyotrophic lateral sclerosis (ALS) and two had progressive bulbar palsy. In 10 patients there were asymmetrical bilateral foci of increased signal intensity on proton-density and T{sub 2}-weighted images, confined to the white matter. Two patients had only cortical frontal atrophy and slightly increased ventricular size, whereas 20 had normal MRI. The focal lesions were not confined to corticospinal tracts, but were also observed in subcortical frontal areas. While the lesions along the corticospinal tracts correspond to pyramidal tract degeneration, the subcortical foci correlate with degeneration of the frontal bundles and indicate generalised involvement of the central nervous system. (orig.) With 3 figs., 2 tabs., 25 refs.

  2. Developmental changes in organization of structural brain networks.

    Science.gov (United States)

    Khundrakpam, Budhachandra S; Reid, Andrew; Brauer, Jens; Carbonell, Felix; Lewis, John; Ameis, Stephanie; Karama, Sherif; Lee, Junki; Chen, Zhang; Das, Samir; Evans, Alan C

    2013-09-01

    Recent findings from developmental neuroimaging studies suggest that the enhancement of cognitive processes during development may be the result of a fine-tuning of the structural and functional organization of brain with maturation. However, the details regarding the developmental trajectory of large-scale structural brain networks are not yet understood. Here, we used graph theory to examine developmental changes in the organization of structural brain networks in 203 normally growing children and adolescents. Structural brain networks were constructed using interregional correlations in cortical thickness for 4 age groups (early childhood: 4.8-8.4 year; late childhood: 8.5-11.3 year; early adolescence: 11.4-14.7 year; late adolescence: 14.8-18.3 year). Late childhood showed prominent changes in topological properties, specifically a significant reduction in local efficiency, modularity, and increased global efficiency, suggesting a shift of topological organization toward a more random configuration. An increase in number and span of distribution of connector hubs was found in this age group. Finally, inter-regional connectivity analysis and graph-theoretic measures indicated early maturation of primary sensorimotor regions and protracted development of higher order association and paralimbic regions. Our finding reveals a time window of plasticity occurring during late childhood which may accommodate crucial changes during puberty and the new developmental tasks that an adolescent faces.

  3. Occipital seizures and subcortical T2 hypointensity in the setting of hyperglycemia

    Directory of Open Access Journals (Sweden)

    Swapna L. Putta

    2014-01-01

    Conclusion: Hyperglycemia should be considered in the etiology of differential diagnosis of patients with visual abnormalities suspicious for seizures, especially when the MRI shows focal subcortical T2 hypointensity with or without leptomeningeal enhancement.

  4. HTLV-I carrier with unusual brain MR imaging findings

    Energy Technology Data Exchange (ETDEWEB)

    Yata, Shinsaku; Ogawa, Toshihide; Sugihara, Shuji; Matsusue, Eiji; Fujii, Shinya; Kinoshita, Toshibumi [Tottori University, Department of Pathophysiological and Therapeutic Science, Yonago (Japan); Faculty of Medicine, Tottori University, Yonago (Japan)

    2004-09-01

    We describe unusual brain MR imaging findings in a patient who is an HTLV-I carrier without myelopathy. T2-weighted MR images showed hyperintense signal abnormalities in the pyramidal tract, superior and middle cerebellar peduncles, and decussation of the superior cerebellar peduncles, in addition to subcortical white matter involvement. Diffusion-weighted images also showed hyperintense signal abnormalities in the same regions by T2 shine-through effect. (orig.)

  5. Protective Effect of Human Leukocyte Antigen (HLA Allele DRB1*13:02 on Age-Related Brain Gray Matter Volume Reduction in Healthy Women

    Directory of Open Access Journals (Sweden)

    Lisa M. James

    2018-03-01

    Full Text Available Background: Reduction of brain volume (brain atrophy during healthy brain aging is well documented and dependent on genetic, lifestyle and environmental factors. Here we investigated the possible dependence of brain gray matter volume reduction in the absence of the Human Leukocyte Antigen (HLA allele DRB1*13:02 which prevents brain atrophy in Gulf War Illness (James et al., 2017. Methods: Seventy-one cognitively healthy women (32–69 years old underwent a structural Magnetic Resonance Imaging (sMRI scan to measure the volumes of total gray matter, cerebrocortical gray matter, and subcortical gray matter. Participants were assigned to two groups, depending on whether they lacked the DRB1*13:02 allele (No DRB1*13:02 group, N = 60 or carried the DRB1*13:02 allele (N = 11. We assessed the change of brain gray matter volume with age in each group by performing a linear regression where the brain volume (adjusted for total intracranial volume was the dependent variable and age was the independent variable. Findings: In the No DRB1*13:02 group, the volumes of total gray matter, cerebrocortical gray matter, and subcortical gray matter were reduced highly significantly. In contrast, none of these volumes showed a statistically significant reduction with age in the DRB1*13:02 group. Interpretation: These findings document the protective effect of DRB1*13:02 on age-dependent reduction of brain gray matter in healthy individuals. Since the role of this allele is to connect to matching epitopes of external antigens for the subsequent production of antibodies and elimination of the offending antigen, we hypothesize that its protective effect may be due to the successful elimination of such antigens to which we are exposed during the lifespan, antigens that otherwise would persist causing gradual brain atrophy. In addition, we consider a possible beneficial role of DRB1*13:02 attributed to its binding to cathepsin S, a known harmful substance in brain

  6. Stress and the psyche-brain-immune network in psychiatric diseases based on psychoneuroendocrineimmunology: a concise review.

    Science.gov (United States)

    Bottaccioli, Anna Giulia; Bottaccioli, Francesco; Minelli, Andrea

    2018-05-15

    In the last decades, psychoneuroendocrineimmunology research has made relevant contributions to the fields of neuroscience, psychobiology, epigenetics, molecular biology, and clinical research by studying the effect of stress on human health and highlighting the close interrelations between psyche, brain, and bodily systems. It is now well recognized that chronic stress can alter the physiological cross-talk between brain and biological systems, leading to long-lasting maladaptive effects (allostatic overload) on the nervous, immune, endocrine, and metabolic systems, which compromises stress resiliency and health. Stressful conditions in early life have been associated with profound alterations in cortical and subcortical brain regions involved in emotion regulation and the salience network, showing relevant overlap with different psychiatric conditions. This paper provides a summary of the available literature concerning the notable effects of stress on the brain and immune system. We highlight the role of epigenetics as a mechanistic pathway mediating the influences of the social and physical environment on brain structure and connectivity, the immune system, and psycho-physical health in psychiatric diseases. We also summarize the evidence regarding the effects of stress management techniques (mainly psychotherapy and meditation practice) on clinical outcomes, brain neurocircuitry, and immune-inflammatory network in major psychiatric diseases. © 2018 New York Academy of Sciences.

  7. Early developmental gene enhancers affect subcortical volumes in the adult human brain

    NARCIS (Netherlands)

    Becker, M.; Guadalupe, T.M.; Franke, B.; Hibar, D.P.; Renteria, M.E.; Stein, J.L.; Thompson, P.M.; Francks, C.; Vernes, S.C; Fisher, S.E.

    2016-01-01

    Genome-wide association screens aim to identify common genetic variants contributing to the phenotypic variability of complex traits, such as human height or brain morphology. The identified genetic variants are mostly within noncoding genomic regions and the biology of the genotype-phenotype

  8. Getting the beat: entrainment of brain activity by musical rhythm and pleasantness.

    Science.gov (United States)

    Trost, Wiebke; Frühholz, Sascha; Schön, Daniele; Labbé, Carolina; Pichon, Swann; Grandjean, Didier; Vuilleumier, Patrik

    2014-12-01

    Rhythmic entrainment is an important component of emotion induction by music, but brain circuits recruited during spontaneous entrainment of attention by music and the influence of the subjective emotional feelings evoked by music remain still largely unresolved. In this study we used fMRI to test whether the metric structure of music entrains brain activity and how music pleasantness influences such entrainment. Participants listened to piano music while performing a speeded visuomotor detection task in which targets appeared time-locked to either strong or weak beats. Each musical piece was presented in both a consonant/pleasant and dissonant/unpleasant version. Consonant music facilitated target detection and targets presented synchronously with strong beats were detected faster. FMRI showed increased activation of bilateral caudate nucleus when responding on strong beats, whereas consonance enhanced activity in attentional networks. Meter and consonance selectively interacted in the caudate nucleus, with greater meter effects during dissonant than consonant music. These results reveal that the basal ganglia, involved both in emotion and rhythm processing, critically contribute to rhythmic entrainment of subcortical brain circuits by music. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Structured brain computing and its learning

    International Nuclear Information System (INIS)

    Ae, Tadashi; Araki, Hiroyuki; Sakai, Keiichi

    1999-01-01

    We have proposed a two-level architecture for brain computing, where two levels are introduced for processing of meta-symbol. At level 1 a conventional pattern recognition is performed, where neural computation is included, and its output gives the meta-symbol which is a symbol enlarged from a symbol to a kind of pattern. At Level 2 an algorithm acquisition is made by using a machine for abstract states. We are also developing the VLSI chips at each level for SBC (Structured Brain Computer) Ver.1.0

  10. Role of prophylactic brain irradiation in limited stage small cell lung cancer: clinical, neuropsychologic, and CT sequelae

    International Nuclear Information System (INIS)

    Laukkanen, E.; Klonoff, H.; Allan, B.; Graeb, D.; Murray, N.

    1988-01-01

    Ninety-four patients with limited stage small cell lung cancer treated between 1981 and 1985 with a regimen including prophylactic brain irradiation (PBI) after combination chemotherapy were assessed for compliance with PBI, brain relapse, and neurologic morbidity. Seventy-seven percent of patients had PBI and of these, 22% developed brain metastases after a median time of 11 months post treatment. The brain was the apparent unique initial site of relapse in 10% of PBI cases but more commonly brain relapse was preceded or accompanied by failure at other sites, especially the chest. Brain metastases were the greatest cause of morbidity in 50% of PBI failures. Twelve of 14 PBI patients alive 2 years after treatment had oncologic, neurologic, and neuropsychological evaluation, and brain CT. All long-term survivors were capable of self care and none fulfilled diagnostic criteria for dementia, with three borderline cases. One third had pretreatment neurologic dysfunction and two thirds post treatment neurologic symptoms, most commonly recent memory loss. Fifty percent had subtle motor findings. Intellectual functioning was at the 38th percentile with most patients having an unskilled occupational history. Neuropsychologic impairment ratings were borderline in three cases and definitely impaired in seven cases. CT scans showed brain atrophy in all cases with mild progression in those having a pre-treatment baseline. Periventricular and subcortical low density lesions identical to the CT appearance of subcortical arteriosclerotic encephalopathy were seen in 82% of posttreatment CT studies, and lacunar infarcts in 54%. Neuropsychologic impairment scores and the extent of CT periventricular low density lesions were strongly associated

  11. Grey matter volume loss is associated with specific clinical motor signs in Huntington's disease.

    Science.gov (United States)

    Coppen, Emma M; Jacobs, Milou; van den Berg-Huysmans, Annette A; van der Grond, Jeroen; Roos, Raymund A C

    2018-01-01

    Motor disturbances are clinical hallmarks of Huntington's disease (HD) and involve chorea, dystonia, hypokinesia and visuomotor dysfunction. Investigating the association between specific motor signs and different regional volumes is important to understand the heterogeneity of HD. To investigate the motor phenotype of HD and associations with subcortical and cortical grey matter volume loss. Structural T1-weighted MRI scans of 79 HD patients and 30 healthy controls were used to calculate volumes of seven subcortical structures including the nucleus accumbens, hippocampus, thalamus, caudate nucleus, putamen, pallidum and amygdala. Multiple linear regression analyses, corrected for age, gender, CAG, MRI scan protocol and normalized brain volume, were performed to assess the relationship between subcortical volumes and different motor subdomains (i.e. eye movements, chorea, dystonia, hypokinesia/rigidity and gait/balance). Voxel-based morphometry analysis was used to investigate the relationship between cortical volume changes and motor signs. Subcortical volume loss of the accumbens nucleus, caudate nucleus, putamen, and pallidum were associated with higher chorea scores. No other subcortical region was significantly associated with motor symptoms after correction for multiple comparisons. Voxel-based cortical grey matter volume reductions in occipital regions were related with an increase in eye movement scores. In HD, chorea is mainly associated with subcortical volume loss, while eye movements are more related to cortical volume loss. Both subcortical and cortical degeneration has an impact on motor impairment in HD. This implies that there is a widespread contribution of different brain regions resulting in the clinical motor presentation seen in HD patients. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Multimodal Imaging Brain Connectivity Analysis (MIBCA toolbox

    Directory of Open Access Journals (Sweden)

    Andre Santos Ribeiro

    2015-07-01

    -hemispheric symmetry and an intra-hemispheric modularity associated with structural data, whilst functional data presented lower inter-hemispheric symmetry and a high inter-hemispheric modularity. Furthermore, when testing for differences between two subgroups (40 years old adults we observed a significant reduction in the volume and thickness, and an increase in the mean diffusivity of most of the subcortical/cortical regions.Conclusion. While bridging the gap between the high numbers of packages and tools widely available for the neuroimaging community in one toolbox, MIBCA also offers different possibilities for combining, analysing and visualising data in novel ways, enabling a better understanding of the human brain.

  13. Altered caudate connectivity is associated with executive dysfunction after traumatic brain injury

    Science.gov (United States)

    De Simoni, Sara; Jenkins, Peter O; Bourke, Niall J; Fleminger, Jessica J; Jolly, Amy E; Patel, Maneesh C; Leech, Robert; Sharp, David J

    2018-01-01

    Abstract Traumatic brain injury often produces executive dysfunction. This characteristic cognitive impairment often causes long-term problems with behaviour and personality. Frontal lobe injuries are associated with executive dysfunction, but it is unclear how these injuries relate to corticostriatal interactions that are known to play an important role in behavioural control. We hypothesized that executive dysfunction after traumatic brain injury would be associated with abnormal corticostriatal interactions, a question that has not previously been investigated. We used structural and functional MRI measures of connectivity to investigate this. Corticostriatal functional connectivity in healthy individuals was initially defined using a data-driven approach. A constrained independent component analysis approach was applied in 100 healthy adult dataset from the Human Connectome Project. Diffusion tractography was also performed to generate white matter tracts. The output of this analysis was used to compare corticostriatal functional connectivity and structural integrity between groups of 42 patients with traumatic brain injury and 21 age-matched controls. Subdivisions of the caudate and putamen had distinct patterns of functional connectivity. Traumatic brain injury patients showed disruption to functional connectivity between the caudate and a distributed set of cortical regions, including the anterior cingulate cortex. Cognitive impairments in the patients were mainly seen in processing speed and executive function, as well as increased levels of apathy and fatigue. Abnormalities of caudate functional connectivity correlated with these cognitive impairments, with reductions in right caudate connectivity associated with increased executive dysfunction, information processing speed and memory impairment. Structural connectivity, measured using diffusion tensor imaging between the caudate and anterior cingulate cortex was impaired and this also correlated with

  14. Pitch Syntax Violations Are Linked to Greater Skin Conductance Changes, Relative to Timbral Violations - The Predictive Role of the Reward System in Perspective of Cortico-subcortical Loops.

    Science.gov (United States)

    Gorzelańczyk, Edward J; Podlipniak, Piotr; Walecki, Piotr; Karpiński, Maciej; Tarnowska, Emilia

    2017-01-01

    According to contemporary opinion emotional reactions to syntactic violations are due to surprise as a result of the general mechanism of prediction. The classic view is that, the processing of musical syntax can be explained by activity of the cerebral cortex. However, some recent studies have indicated that subcortical brain structures, including those related to the processing of emotions, are also important during the processing of syntax. In order to check whether emotional reactions play a role in the processing of pitch syntax or are only the result of the general mechanism of prediction, the comparison of skin conductance levels reacting to three types of melodies were recorded. In this study, 28 subjects listened to three types of short melodies prepared in Musical Instrument Digital Interface Standard files (MIDI) - tonally correct, tonally violated (with one out-of-key - i.e., of high information content), and tonally correct but with one note played in a different timbre. The BioSemi ActiveTwo with two passive Nihon Kohden electrodes was used. Skin conductance levels were positively correlated with the presented stimuli (timbral changes and tonal violations). Although changes in skin conductance levels were also observed in response to the change in timbre, the reactions to tonal violations were significantly stronger. Therefore, despite the fact that timbral change is at least as equally unexpected as an out-of-key note, the processing of pitch syntax mainly generates increased activation of the sympathetic part of the autonomic nervous system. These results suggest that the cortico-subcortical loops (especially the anterior cingulate - limbic loop) may play an important role in the processing of musical syntax.

  15. Development of human brain structural networks through infancy and childhood.

    Science.gov (United States)

    Huang, Hao; Shu, Ni; Mishra, Virendra; Jeon, Tina; Chalak, Lina; Wang, Zhiyue J; Rollins, Nancy; Gong, Gaolang; Cheng, Hua; Peng, Yun; Dong, Qi; He, Yong

    2015-05-01

    During human brain development through infancy and childhood, microstructural and macrostructural changes take place to reshape the brain's structural networks and better adapt them to sophisticated functional and cognitive requirements. However, structural topological configuration of the human brain during this specific development period is not well understood. In this study, diffusion magnetic resonance image (dMRI) of 25 neonates, 13 toddlers, and 25 preadolescents were acquired to characterize network dynamics at these 3 landmark cross-sectional ages during early childhood. dMRI tractography was used to construct human brain structural networks, and the underlying topological properties were quantified by graph-theory approaches. Modular organization and small-world attributes are evident at birth with several important topological metrics increasing monotonically during development. Most significant increases of regional nodes occur in the posterior cingulate cortex, which plays a pivotal role in the functional default mode network. Positive correlations exist between nodal efficiencies and fractional anisotropy of the white matter traced from these nodes, while correlation slopes vary among the brain regions. These results reveal substantial topological reorganization of human brain structural networks through infancy and childhood, which is likely to be the outcome of both heterogeneous strengthening of the major white matter tracts and pruning of other axonal fibers. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. Deafferentation in thalamic and pontine areas in severe traumatic brain injury.

    Science.gov (United States)

    Laouchedi, M; Galanaud, D; Delmaire, C; Fernandez-Vidal, S; Messé, A; Mesmoudi, S; Oulebsir Boumghar, F; Pélégrini-Issac, M; Puybasset, L; Benali, H; Perlbarg, V

    2015-07-01

    Severe traumatic brain injury (TBI) is characterized mainly by diffuse axonal injuries (DAI). The cortico-subcortical disconnections induced by such fiber disruption play a central role in consciousness recovery. We hypothesized that these cortico-subcortical deafferentations inferred from diffusion MRI data could differentiate between TBI patients with favorable or unfavorable (death, vegetative state, or minimally conscious state) outcome one year after injury. Cortico-subcortical fiber density maps were derived by using probabilistic tractography from diffusion tensor imaging data acquired in 24 severe TBI patients and 9 healthy controls. These maps were compared between patients and controls as well as between patients with favorable (FO) and unfavorable (UFO) 1-year outcome to identify the thalamo-cortical and ponto-thalamo-cortical pathways involved in the maintenance of consciousness. Thalamo-cortical and ponto-thalamo-cortical fiber density was significantly lower in TBI patients than in healthy controls. Comparing FO and UFO TBI patients showed thalamo-cortical deafferentation associated with unfavorable outcome for projections from ventral posterior and intermediate thalamic nuclei to the associative frontal, sensorimotor and associative temporal cortices. Specific ponto-thalamic deafferentation in projections from the upper dorsal pons (including the reticular formation) was also associated with unfavorable outcome. Fiber density of cortico-subcortical pathways as measured from diffusion MRI tractography is a relevant candidate biomarker for early prediction of one-year favorable outcome in severe TBI. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  17. Neuropsychological correlates of brain atrophy in Huntington's disease: a magnetic resonance imaging study

    International Nuclear Information System (INIS)

    Starkstein, S.E.; Brandt, J.; Bylsma, F.; Peyser, C.; Folstein, M.; Folstein, S.E.

    1992-01-01

    Magnetic resonance imaging and a comprehensive cognitive evaluation were carried out in a series of 29 patients with mild to moderate Huntington's disease (HD). A factor analysis of the neuropsychological test scores provided three factors: A memory/speed-of-processing factor, a 'frontal' factor, and a response inhibition factor. The memory/speed factor correlated significantly with measures of caudate atrophy, frontal atrophy, and atrophy of the left (but not the right) sylvian cistern. There were no significant correlations between the 'frontal' or response inhibition factors and measures of cortical or subcortical brain atrophy. Our findings confirm that subcortical atrophy is significantly correlated with specific cognitive deficits in HD, and demonstrate that cortical atrophy also has important association with the cognitive deficits of patients with HD. (orig.)

  18. Incidence of Brain Infarcts, Cognitive Change, and Risk of Dementia in the General Population: The AGES-Reykjavik Study (Age Gene/Environment Susceptibility-Reykjavik Study).

    Science.gov (United States)

    Sigurdsson, Sigurdur; Aspelund, Thor; Kjartansson, Olafur; Gudmundsson, Elias F; Jonsdottir, Maria K; Eiriksdottir, Gudny; Jonsson, Palmi V; van Buchem, Mark A; Gudnason, Vilmundur; Launer, Lenore J

    2017-09-01

    The differentiation of brain infarcts by region is important because their cause and clinical implications may differ. Information on the incidence of these lesions and association with cognition and dementia from longitudinal population studies is scarce. We investigated the incidence of infarcts in cortical, subcortical, cerebellar, and overall brain regions and how prevalent and incident infarcts associate with cognitive change and incident dementia. Participants (n=2612, 41% men, mean age 74.6±4.8) underwent brain magnetic resonance imaging for the assessment of infarcts and cognitive testing at baseline and on average 5.2 years later. Incident dementia was assessed according to the international guidelines. Twenty-one percent of the study participants developed new infarcts. The risk of incident infarcts in men was higher than the risk in women (1.8; 95% confidence interval, 1.5-2.3). Persons with both incident and prevalent infarcts showed steeper cognitive decline and had almost double relative risk of incident dementia (1.7; 95% confidence interval, 1.3-2.2) compared with those without infarcts. Persons with new subcortical infarcts had the highest risk of incident dementia compared with those without infarcts (2.6; 95% confidence interval, 1.9-3.4). Men are at greater risk of developing incident brain infarcts than women. Persons with incident brain infarcts decline faster in cognition and have an increased risk of dementia compared with those free of infarcts. Incident subcortical infarcts contribute more than cortical and cerebellar infarcts to incident dementia which may indicate that infarcts of small vessel disease origin contribute more to the development of dementia than infarcts of embolic origin in larger vessels. © 2017 American Heart Association, Inc.

  19. Development of a brain MRI-based hidden Markov model for dementia recognition.

    Science.gov (United States)

    Chen, Ying; Pham, Tuan D

    2013-01-01

    Dementia is an age-related cognitive decline which is indicated by an early degeneration of cortical and sub-cortical structures. Characterizing those morphological changes can help to understand the disease development and contribute to disease early prediction and prevention. But modeling that can best capture brain structural variability and can be valid in both disease classification and interpretation is extremely challenging. The current study aimed to establish a computational approach for modeling the magnetic resonance imaging (MRI)-based structural complexity of the brain using the framework of hidden Markov models (HMMs) for dementia recognition. Regularity dimension and semi-variogram were used to extract structural features of the brains, and vector quantization method was applied to convert extracted feature vectors to prototype vectors. The output VQ indices were then utilized to estimate parameters for HMMs. To validate its accuracy and robustness, experiments were carried out on individuals who were characterized as non-demented and mild Alzheimer's diseased. Four HMMs were constructed based on the cohort of non-demented young, middle-aged, elder and demented elder subjects separately. Classification was carried out using a data set including both non-demented and demented individuals with a wide age range. The proposed HMMs have succeeded in recognition of individual who has mild Alzheimer's disease and achieved a better classification accuracy compared to other related works using different classifiers. Results have shown the ability of the proposed modeling for recognition of early dementia. The findings from this research will allow individual classification to support the early diagnosis and prediction of dementia. By using the brain MRI-based HMMs developed in our proposed research, it will be more efficient, robust and can be easily used by clinicians as a computer-aid tool for validating imaging bio-markers for early prediction of dementia.

  20. Fetal functional imaging portrays heterogeneous development of emerging human brain networks

    Directory of Open Access Journals (Sweden)

    Andras eJakab

    2014-10-01

    Full Text Available The functional connectivity architecture of the adult human brain enables complex cognitive processes, and exhibits a remarkably complex structure shared across individuals. We are only beginning to understand its heterogeneous structure, ranging from a strongly hierarchical organization in sensorimotor areas to widely distributed networks in areas such as the parieto-frontal cortex. Our study relied on the functional magnetic resonance imaging data of 32 fetuses with no detectable morphological abnormalities. After adapting functional magnetic resonance acquisition, motion correction and nuisance signal reduction procedures of resting-state functional data analysis to fetuses, we extracted neural activity information for major cortical and subcortical structures. Resting fMRI networks were observed for increasing regional functional connectivity from 21st – 38th gestational weeks (GW with a network-based statistical inference approach. The overall connectivity network, short range and interhemispheric connections showed sigmoid expansion curve peaking at the 26-29. GW. In contrast, long-range connections exhibited linear increase with no periods of peaking development. Region-specific increase of functional signal synchrony followed a sequence of occipital (peak: 24.8 GW, temporal (peak: 26 GW, frontal (peak: 26.4 GW and parietal expansion (peak: 27.5 GW. We successfully adapted functional neuroimaging and image post-processing approaches to correlate macroscopical scale activations in the fetal brain with gestational age. This in vivo study reflects the fact that the mid-fetal period hosts events that cause the architecture of the brain circuitry to mature, which presumably manifests in increasing strength of intra- and interhemispheric functional macroconnectivity.

  1. Fetal functional imaging portrays heterogeneous development of emerging human brain networks.

    Science.gov (United States)

    Jakab, András; Schwartz, Ernst; Kasprian, Gregor; Gruber, Gerlinde M; Prayer, Daniela; Schöpf, Veronika; Langs, Georg

    2014-01-01

    The functional connectivity architecture of the adult human brain enables complex cognitive processes, and exhibits a remarkably complex structure shared across individuals. We are only beginning to understand its heterogeneous structure, ranging from a strongly hierarchical organization in sensorimotor areas to widely distributed networks in areas such as the parieto-frontal cortex. Our study relied on the functional magnetic resonance imaging (fMRI) data of 32 fetuses with no detectable morphological abnormalities. After adapting functional magnetic resonance acquisition, motion correction, and nuisance signal reduction procedures of resting-state functional data analysis to fetuses, we extracted neural activity information for major cortical and subcortical structures. Resting fMRI networks were observed for increasing regional functional connectivity from 21st to 38th gestational weeks (GWs) with a network-based statistical inference approach. The overall connectivity network, short range, and interhemispheric connections showed sigmoid expansion curve peaking at the 26-29 GW. In contrast, long-range connections exhibited linear increase with no periods of peaking development. Region-specific increase of functional signal synchrony followed a sequence of occipital (peak: 24.8 GW), temporal (peak: 26 GW), frontal (peak: 26.4 GW), and parietal expansion (peak: 27.5 GW). We successfully adapted functional neuroimaging and image post-processing approaches to correlate macroscopical scale activations in the fetal brain with gestational age. This in vivo study reflects the fact that the mid-fetal period hosts events that cause the architecture of the brain circuitry to mature, which presumably manifests in increasing strength of intra- and interhemispheric functional macro connectivity.

  2. Do brain lesions in stroke affect basic emotions and attachment?

    Science.gov (United States)

    Farinelli, Marina; Panksepp, Jaak; Gestieri, Laura; Maffei, Monica; Agati, Raffaele; Cevolani, Daniela; Pedone, Vincenzo; Northoff, Georg

    2015-01-01

    The aim of the current study was to investigate basic emotions and attachment in a sample of 86 stroke patients. We included a control group of 115 orthopedic patients (matched for age and cognitive status) without brain lesions to control for unspecific general illness effects of a traumatic recent event on basic emotions and attachment. In order to measure basic emotions and attachment style we applied the Affective Neuroscience Personality Scale (ANPS) and the Attachment Style Questionnaire (ASQ). The stroke patients showed significantly different scores in the SEEKING, SADNESS, and ANGER subscales of the ANPS as well as in the Relationship as Secondary Attachment dimension of the ASQ when compared to the control group. These differences show a pattern influenced by lesion location mainly as concerns basic emotions. Anterior, medial, left, and subcortical patients provide scores significantly lower in ANPS-SEEKING than the control group; ANPS-SADNESS scores in anterior, right, medial, and subcortical patients were significantly higher than those of the control group. ANPS-ANGER scores in posterior, right, and lateral patients were significantly higher than those in the control group; finally, the ANPS-FEAR showed slightly lower scores in posterior patients than in the control group. Minor effects on brain lesions were also individuated in the attachment style. Anterior lesion patients showed a significantly higher average score in the ASQ-Need for Approval subscale than the control group. ASQ-Confidence subscale scores differed significantly in stroke patients with lesions in medial brain regions when compared to control subjects. Scores at ANPS and ASQ subscales appear significantly more correlated in stroke patients than in the control group. Such finding of abnormalities, especially concerning basic emotions in stroke brain-lesioned patients, indicates that the effect of brain lesions may enhance the interrelation between basic emotions and attachment with

  3. Brain networks, structural realism, and local approaches to the scientific realism debate.

    Science.gov (United States)

    Yan, Karen; Hricko, Jonathon

    2017-08-01

    We examine recent work in cognitive neuroscience that investigates brain networks. Brain networks are characterized by the ways in which brain regions are functionally and anatomically connected to one another. Cognitive neuroscientists use various noninvasive techniques (e.g., fMRI) to investigate these networks. They represent them formally as graphs. And they use various graph theoretic techniques to analyze them further. We distinguish between knowledge of the graph theoretic structure of such networks (structural knowledge) and knowledge of what instantiates that structure (nonstructural knowledge). And we argue that this work provides structural knowledge of brain networks. We explore the significance of this conclusion for the scientific realism debate. We argue that our conclusion should not be understood as an instance of a global structural realist claim regarding the structure of the unobservable part of the world, but instead, as a local structural realist attitude towards brain networks in particular. And we argue that various local approaches to the realism debate, i.e., approaches that restrict realist commitments to particular theories and/or entities, are problematic insofar as they don't allow for the possibility of such a local structural realist attitude. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Neuropsychological functioning and brain structure in schizophrenia.

    Science.gov (United States)

    Crespo-Facorro, Benedicto; Barbadillo, Laura; Pelayo-Terán, José Maria; Rodríguez-Sánchez, José Manuel

    2007-08-01

    Cognitive deficits are core features of schizophrenia that are already evident at early phases of the illness. The study of specific relationships between cognition and brain structure might provide valuable clues about neural basis of schizophrenia and its phenomenology. The aim of this article was to review the most consistent findings of the studies exploring the relationships between cognitive deficits and brain anomalies in schizophrenia. Besides several important methodological shortcomings to bear in mind before drawing any consistent conclusion from the revised literature, we have attempted to systematically summarize these findings. Thus, this review has revealed that whole brain volume tends to positively correlate with a range of cognitive domains in healthy volunteers and female patients. An association between prefrontal morphological characteristics and general inability to control behaviour seems to be present in schizophrenia patients. Parahippocampal volume is related to semantic cognitive functions. Thalamic anomalies have been associated with executive deficits specifically in patients. Available evidence on the relationship between cognitive functions and cerebellar structure is still contradictory. Nonetheless, a larger cerebellum appears to be associated with higher IQ in controls and in female patients. Enlarged ventricles, including lateral and third ventricles, are associated with deficits in attention, executive and premorbid cognitive functioning in patients. Several of these reported findings seem to be counterintuitive according to neural basis of cognitive functioning drawn from animal, lesion, and functional imaging investigations. Therefore, there is still a great need for more methodologically stringent investigations that would help in the advance of our understanding of the cognition/brain structure relationships in schizophrenia.

  5. Formulaic Language in Parkinson's Disease and Alzheimer's Disease: Complementary Effects of Subcortical and Cortical Dysfunction

    Science.gov (United States)

    Van Lancker Sidtis, Diana; Choi, JiHee; Alken, Amy

    2015-01-01

    Purpose The production of formulaic expressions (conversational speech formulas, pause fillers, idioms, and other fixed expressions) is excessive in the left hemisphere and deficient in the right hemisphere and in subcortical stroke. Speakers with Alzheimer's disease (AD), having functional basal ganglia, reveal abnormally high proportions of formulaic language. Persons with Parkinson's disease (PD), having dysfunctional basal ganglia, were predicted to show impoverished formulaic expressions in contrast to speakers with AD. This study compared participants with PD, participants with AD, and healthy control (HC) participants on protocols probing production and comprehension of formulaic expressions. Method Spontaneous speech samples were recorded from 16 individuals with PD, 12 individuals with AD, and 18 HC speakers. Structured tests were then administered as probes of comprehension. Results The PD group had lower proportions of formulaic expressions compared with the AD and HC groups. Comprehension testing yielded opposite contrasts: participants with PD showed significantly higher performance compared with participants with AD and did not differ from HC participants. Conclusions The finding that PD produced lower proportions of formulaic expressions compared with AD and HC supports the view that subcortical nuclei modulate the production of formulaic expressions. Contrasting results on formal testing of comprehension, whereby participants with AD performed significantly worse than participants with PD and HC participants, indicate differential effects on procedural and declarative knowledge associated with these neurological conditions. PMID:26183940

  6. Adult plasticity in the subcortical auditory pathway of the maternal mouse.

    Directory of Open Access Journals (Sweden)

    Jason A Miranda

    Full Text Available Subcortical auditory nuclei were traditionally viewed as non-plastic in adulthood so that acoustic information could be stably conveyed to higher auditory areas. Studies in a variety of species, including humans, now suggest that prolonged acoustic training can drive long-lasting brainstem plasticity. The neurobiological mechanisms for such changes are not well understood in natural behavioral contexts due to a relative dearth of in vivo animal models in which to study this. Here, we demonstrate in a mouse model that a natural life experience with increased demands on the auditory system - motherhood - is associated with improved temporal processing in the subcortical auditory pathway. We measured the auditory brainstem response to test whether mothers and pup-naïve virgin mice differed in temporal responses to both broadband and tone stimuli, including ultrasonic frequencies found in mouse pup vocalizations. Mothers had shorter latencies for early ABR peaks, indicating plasticity in the auditory nerve and the cochlear nucleus. Shorter interpeak latency between waves IV and V also suggest plasticity in the inferior colliculus. Hormone manipulations revealed that these cannot be explained solely by estrogen levels experienced during pregnancy and parturition in mothers. In contrast, we found that pup-care experience, independent of pregnancy and parturition, contributes to shortening auditory brainstem response latencies. These results suggest that acoustic experience in the maternal context imparts plasticity on early auditory processing that lasts beyond pup weaning. In addition to establishing an animal model for exploring adult auditory brainstem plasticity in a neuroethological context, our results have broader implications for models of perceptual, behavioral and neural changes that arise during maternity, where subcortical sensorineural plasticity has not previously been considered.

  7. Adult plasticity in the subcortical auditory pathway of the maternal mouse.

    Science.gov (United States)

    Miranda, Jason A; Shepard, Kathryn N; McClintock, Shannon K; Liu, Robert C

    2014-01-01

    Subcortical auditory nuclei were traditionally viewed as non-plastic in adulthood so that acoustic information could be stably conveyed to higher auditory areas. Studies in a variety of species, including humans, now suggest that prolonged acoustic training can drive long-lasting brainstem plasticity. The neurobiological mechanisms for such changes are not well understood in natural behavioral contexts due to a relative dearth of in vivo animal models in which to study this. Here, we demonstrate in a mouse model that a natural life experience with increased demands on the auditory system - motherhood - is associated with improved temporal processing in the subcortical auditory pathway. We measured the auditory brainstem response to test whether mothers and pup-naïve virgin mice differed in temporal responses to both broadband and tone stimuli, including ultrasonic frequencies found in mouse pup vocalizations. Mothers had shorter latencies for early ABR peaks, indicating plasticity in the auditory nerve and the cochlear nucleus. Shorter interpeak latency between waves IV and V also suggest plasticity in the inferior colliculus. Hormone manipulations revealed that these cannot be explained solely by estrogen levels experienced during pregnancy and parturition in mothers. In contrast, we found that pup-care experience, independent of pregnancy and parturition, contributes to shortening auditory brainstem response latencies. These results suggest that acoustic experience in the maternal context imparts plasticity on early auditory processing that lasts beyond pup weaning. In addition to establishing an animal model for exploring adult auditory brainstem plasticity in a neuroethological context, our results have broader implications for models of perceptual, behavioral and neural changes that arise during maternity, where subcortical sensorineural plasticity has not previously been considered.

  8. Primary Dystonia: Conceptualizing the Disorder through a Structural Brain Imaging Lens

    Directory of Open Access Journals (Sweden)

    Kristina Simonyan

    2013-06-01

    Full Text Available Background: Dystonia is a hyperkinetic movement disorder of involuntary, twisting repetitive movements. The anatomical structures and pathways implicated in its pathogenesis as well as their relationship to the neurophysiological paradigm of abnormal surround inhibition, maladaptive plasticity and impaired sensorimotor integration remain not well delineated. Objective: We review the use of high-resolution structural brain imaging using voxel-based morphometry (VBM and diffusion tensor imaging (DTI techniques for evaluation of brain changes in primary torsion dystonia and their relationships to the pathophysiology of this disorder. Methods: A search in PubMed was conducted to identify the relevant literature. Discussion: Structural imaging has enhanced our understanding of the pathophysiological mechanisms of dystonia. In particular, VBM and DTI data have revealed microstructural disturbances in the basal ganglia, sensorimotor cortices and cerebellum along with aberrations in the cortico-striato-pallido-thalamic and cerebello-thalamo-cortical pathways.  When combined with functional brain imaging and neurophysiological modalities, a structure-function relationship can be established in the dystonia brain network at the sensorimotor, plasticity, cortical disinhibition and cerebellar outflow connectivity levels. Structural imaging highlighted new anatomical substrates and, with a combined structural-functional approach, has offered new opportunities for investigation of the neurodevelopmental, environmental and/or genetic interplay in the brain networks of dystonia patients. 

  9. Subcortical pathways: Towards a better understanding of auditory disorders.

    Science.gov (United States)

    Felix, Richard A; Gourévitch, Boris; Portfors, Christine V

    2018-05-01

    Hearing loss is a significant problem that affects at least 15% of the population. This percentage, however, is likely significantly higher because of a variety of auditory disorders that are not identifiable through traditional tests of peripheral hearing ability. In these disorders, individuals have difficulty understanding speech, particularly in noisy environments, even though the sounds are loud enough to hear. The underlying mechanisms leading to such deficits are not well understood. To enable the development of suitable treatments to alleviate or prevent such disorders, the affected processing pathways must be identified. Historically, mechanisms underlying speech processing have been thought to be a property of the auditory cortex and thus the study of auditory disorders has largely focused on cortical impairments and/or cognitive processes. As we review here, however, there is strong evidence to suggest that, in fact, deficits in subcortical pathways play a significant role in auditory disorders. In this review, we highlight the role of the auditory brainstem and midbrain in processing complex sounds and discuss how deficits in these regions may contribute to auditory dysfunction. We discuss current research with animal models of human hearing and then consider human studies that implicate impairments in subcortical processing that may contribute to auditory disorders. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. THE TIME COURSE OF ABNORMALITIES IN THE BRAIN SUBCORTICAL VISUAL CENTRE FOLLOWING EARLY IMPAIRMENT OF BINOCULAR EXPERIENCE

    Directory of Open Access Journals (Sweden)

    S. V. Alekseenko

    2016-01-01

    Full Text Available Background: Amblyopia related to congenital strabismus belongs to neurological disorders since it is caused by structural and functional remodeling of the visual parts of the brain without any baseline retinal pathology. Although a large number of animal studies on experimentally induced strabismus, as well as clinical cases have been published, the mechanisms and time course of the processes within the brain structures are not fully understood. Aim: To study the time course of abnormalities in the dorsal lateral geniculate nucleus (LGNd in animals with surgically induced convergent strabismus. LGNd is the structure through which the information from the retina goes to the visual cortex separately for each eye. Materials and methods: 14 strabismic and 17 intact kittens of four age groups were studied. Histochemical method was used to identify cytochrome oxidase which is a  mitochondrial respiratory chain enzyme whose activity correlates with neuronal functional activity. Optical density in eye-specific layers  A  and A1 was measured on the images of stained LGNd sections, with calculation of the contrast difference between them. Results: In strabismic kittens, there were changes in activity of A and A1 layers in the projection of the central part of visual field in LGNd of both hemispheres. At early stages of their formation, a relative decrease in activity was found in both hemispheres in the LGNd layers innervated through non-crossed pathways from both retinae. Thereafter, the time course of abnormalities in LGNd of both hemispheres was different. In the hemisphere ipsilateral to the squinting eye, the difference in layer activity was highest at the age from 3 to 5 months. However, in the opposite hemisphere the same difference indicating a decreased activity in the layer of the squinting eye were observed only at the age of 5 months. Conclusion: The process of amblyopia development during congenital convergent strabismus is

  11. A longitudinal study of structural brain network changes with normal aging

    Directory of Open Access Journals (Sweden)

    Kai eWu

    2013-04-01

    Full Text Available The aim of this study was to investigate age-related changes in the topological organization of structural brain networks by applying a longitudinal design over 6 years. Structural brain networks were derived from measurements of regional gray matter volume and were constructed in age-specific groups from baseline and follow-up scans. The structural brain networks showed economical small-world properties, providing high global and local efficiency for parallel information processing at low connection costs. In the analysis of the global network properties, the local and global efficiency of the baseline scan were significantly lower compared to the follow-up scan. Moreover, the annual rate of changes in local and global efficiency showed a positive and negative quadratic correlation with the baseline age, respectively; both curvilinear correlations peaked at approximately the age of 50. In the analysis of the regional nodal properties, significant negative correlations between the annual rate of changes in nodal strength and the baseline age were found in the brain regions primarily involved in the visual and motor/ control systems, whereas significant positive quadratic correlations were found in the brain regions predominately associated with the default-mode, attention, and memory systems. The results of the longitudinal study are consistent with the findings of our previous cross-sectional study: the structural brain networks develop into a fast distribution from young to middle age (approximately 50 years old and eventually became a fast localization in the old age. Our findings elucidate the network topology of structural brain networks and its longitudinal changes, thus enhancing the understanding of the underlying physiology of normal aging in the human brain.

  12. Texture analysis of ultrahigh field T2*-weighted MR images of the brain: application to Huntington's disease.

    Science.gov (United States)

    Doan, Nhat Trung; van den Bogaard, Simon J A; Dumas, Eve M; Webb, Andrew G; van Buchem, Mark A; Roos, Raymund A C; van der Grond, Jeroen; Reiber, Johan H C; Milles, Julien

    2014-03-01

    To develop a framework for quantitative detection of between-group textural differences in ultrahigh field T2*-weighted MR images of the brain. MR images were acquired using a three-dimensional (3D) T2*-weighted gradient echo sequence on a 7 Tesla MRI system. The phase images were high-pass filtered to remove phase wraps. Thirteen textural features were computed for both the magnitude and phase images of a region of interest based on 3D Gray-Level Co-occurrence Matrix, and subsequently evaluated to detect between-group differences using a Mann-Whitney U-test. We applied the framework to study textural differences in subcortical structures between premanifest Huntington's disease (HD), manifest HD patients, and controls. In premanifest HD, four phase-based features showed a difference in the caudate nucleus. In manifest HD, 7 magnitude-based features showed a difference in the pallidum, 6 phase-based features in the caudate nucleus, and 10 phase-based features in the putamen. After multiple comparison correction, significant differences were shown in the putamen in manifest HD by two phase-based features (both adjusted P values=0.04). This study provides the first evidence of textural heterogeneity of subcortical structures in HD. Texture analysis of ultrahigh field T2*-weighted MR images can be useful for noninvasive monitoring of neurodegenerative diseases. Copyright © 2013 Wiley Periodicals, Inc.

  13. Association of structural global brain network properties with intelligence in normal aging.

    Directory of Open Access Journals (Sweden)

    Florian U Fischer

    Full Text Available Higher general intelligence attenuates age-associated cognitive decline and the risk of dementia. Thus, intelligence has been associated with cognitive reserve or resilience in normal aging. Neurophysiologically, intelligence is considered as a complex capacity that is dependent on a global cognitive network rather than isolated brain areas. An association of structural as well as functional brain network characteristics with intelligence has already been reported in young adults. We investigated the relationship between global structural brain network properties, general intelligence and age in a group of 43 cognitively healthy elderly, age 60-85 years. Individuals were assessed cross-sectionally using Wechsler Adult Intelligence Scale-Revised (WAIS-R and diffusion-tensor imaging. Structural brain networks were reconstructed individually using deterministic tractography, global network properties (global efficiency, mean shortest path length, and clustering coefficient were determined by graph theory and correlated to intelligence scores within both age groups. Network properties were significantly correlated to age, whereas no significant correlation to WAIS-R was observed. However, in a subgroup of 15 individuals aged 75 and above, the network properties were significantly correlated to WAIS-R. Our findings suggest that general intelligence and global properties of structural brain networks may not be generally associated in cognitively healthy elderly. However, we provide first evidence of an association between global structural brain network properties and general intelligence in advanced elderly. Intelligence might be affected by age-associated network deterioration only if a certain threshold of structural degeneration is exceeded. Thus, age-associated brain structural changes seem to be partially compensated by the network and the range of this compensation might be a surrogate of cognitive reserve or brain resilience.

  14. Association of Structural Global Brain Network Properties with Intelligence in Normal Aging

    Science.gov (United States)

    Fischer, Florian U.; Wolf, Dominik; Scheurich, Armin; Fellgiebel, Andreas

    2014-01-01

    Higher general intelligence attenuates age-associated cognitive decline and the risk of dementia. Thus, intelligence has been associated with cognitive reserve or resilience in normal aging. Neurophysiologically, intelligence is considered as a complex capacity that is dependent on a global cognitive network rather than isolated brain areas. An association of structural as well as functional brain network characteristics with intelligence has already been reported in young adults. We investigated the relationship between global structural brain network properties, general intelligence and age in a group of 43 cognitively healthy elderly, age 60–85 years. Individuals were assessed cross-sectionally using Wechsler Adult Intelligence Scale-Revised (WAIS-R) and diffusion-tensor imaging. Structural brain networks were reconstructed individually using deterministic tractography, global network properties (global efficiency, mean shortest path length, and clustering coefficient) were determined by graph theory and correlated to intelligence scores within both age groups. Network properties were significantly correlated to age, whereas no significant correlation to WAIS-R was observed. However, in a subgroup of 15 individuals aged 75 and above, the network properties were significantly correlated to WAIS-R. Our findings suggest that general intelligence and global properties of structural brain networks may not be generally associated in cognitively healthy elderly. However, we provide first evidence of an association between global structural brain network properties and general intelligence in advanced elderly. Intelligence might be affected by age-associated network deterioration only if a certain threshold of structural degeneration is exceeded. Thus, age-associated brain structural changes seem to be partially compensated by the network and the range of this compensation might be a surrogate of cognitive reserve or brain resilience. PMID:24465994

  15. Effects of Soccer Heading on Brain Structure and Function

    Science.gov (United States)

    Rodrigues, Ana Carolina; Lasmar, Rodrigo Pace; Caramelli, Paulo

    2016-01-01

    Soccer is the most popular sport in the world, with more than 265 million players worldwide, including professional and amateur ones. Soccer is unique in comparison to other sports, as it is the only sport in which participants purposely use their head to hit the ball. Heading is considered as an offensive or defensive move whereby the player’s unprotected head is used to deliberately impact the ball and direct it during play. A soccer player can be subjected to an average of 6–12 incidents of heading the ball per competitive game, where the ball reaches high velocities. Moreover, in practice sessions, heading training, which involves heading the ball repeatedly at low velocities, is common. Although the scientific community, as well as the media, has focused on the effects of concussions in contact sports, the role of subconcussive impacts, as it can occur during heading, has recently gained attention, considering that it may represent an additional mechanism of cumulative brain injury. The purpose of this study is to review the existing literature regarding the effects of soccer heading on brain structure and function. Only in the last years, some investigations have addressed the impact of heading on brain structure, by using neuroimaging techniques. Similarly, there have been some recent studies investigating biochemical markers of brain injury in soccer players. There is evidence of association between heading and abnormal brain structure, but the data are still preliminary. Also, some studies have suggested that subconcussive head impacts, as heading, could cause cognitive impairment, whereas others have not corroborated this finding. Questions persist as to whether or not heading is deleterious to cognitive functioning. Further studies, especially with longitudinal designs, are needed to clarify the clinical significance of heading as a cause of brain injury and to identify risk factors. Such investigations might contribute to the establishment of safety

  16. Effects of soccer heading on brain structure and function

    Directory of Open Access Journals (Sweden)

    Ana Carolina Oliveira Rodrigues

    2016-03-01

    Full Text Available Soccer is the most popular sport in the world, with more than 265 million players worldwide, including professional and amateur ones. Soccer is unique in comparison to other sports, as it is the only sport in which participants purposely use their head to hit the ball. Heading is considered an offensive or defensive move whereby the player’s unprotected head is used to deliberately impact the ball and direct it during play. A soccer player can be subjected to an average of six to twelve incidents of heading the ball per competitive game, where the ball reaches high velocities. Moreover, in practice sessions, heading training, which involves heading the ball repeatedly at low velocities, is common. Although the scientific community, as well as the media, has focused on the effects of concussions in contact sports, the role of subconcussive impacts, as it can occur during heading, has recently gained attention, considering that it may represent an additional mechanism of cumulative brain injury. The purpose of this study is to review the existing literature regarding the effects of soccer heading on brain structure and function. Only in the last years some investigations have addressed the impact of heading on brain structure, by using neuroimaging techniques. Similarly, there have been some recent studies investigating biochemical markers of brain injury in soccer players. There is evidence of association between heading and abnormal brain structure, but the data are still preliminary. Also, some studies have suggested that subconcussive head impacts, as heading, could cause cognitive impairment, whereas others have not corroborated this finding. Questions persist as to whether or not heading is deleterious to cognitive functioning. Further studies, especially with longitudinal designs, are needed to clarify the clinical significance of heading as a cause of brain injury and to identify risk factors. Such investigations might contribute to the

  17. Psychopathology of Time in Brain Disease and Schizophrenia

    Directory of Open Access Journals (Sweden)

    John Cutting

    1990-01-01

    Full Text Available The literature on disturbance of time-sense in brain disease and schizophrenia is reviewed and the subjective experience of altered time-sense reported by 45 out of 350 personally interviewed schizophrenics is analyzed. A review of the literature on the effect of brain damage revealed that some phenomena (déjà vu, reduplication of time, altered tempo to events were linked with right hemisphere dysfunction, one phenomenon (incorrect sequencing of events was linked with left anterior brain damage, and others (disrupted “biological clock”, disturbed serise of rate of flow of current or past events could arise from subcortical as well as focal cortical damage. The sparse literature on disturbed time-sense in schizophrenia suggested that there was a shared psychopathology in this respect with right hemisphere dysfunction. The phenomena encountered in the 45 schizophrenics are described and classified.

  18. Sex differences and structural brain maturation from childhood to early adulthood

    NARCIS (Netherlands)

    Koolschijn, P.C.M.P.; Crone, E.A.

    2013-01-01

    Recent advances in structural brain imaging have demonstrated that brain development continues through childhood and adolescence. In the present cross-sectional study, structural MRI data from 442 typically developing individuals (range 8–30) were analyzed to examine and replicate the relationship

  19. Comparing Structural Brain Connectivity by the Infinite Relational Model

    DEFF Research Database (Denmark)

    Ambrosen, Karen Marie Sandø; Herlau, Tue; Dyrby, Tim

    2013-01-01

    The growing focus in neuroimaging on analyzing brain connectivity calls for powerful and reliable statistical modeling tools. We examine the Infinite Relational Model (IRM) as a tool to identify and compare structure in brain connectivity graphs by contrasting its performance on graphs from...

  20. Imaging of perivascular spaces of the brain. MR-clinical correlation

    International Nuclear Information System (INIS)

    Okudera, Toshio; Tamura, Hajime; Uemura, Kazuo

    2000-01-01

    We evaluated the perivascular spaces (PVS) of the intraparenchymal arteries of the brain obtained from MRI, and compared them with the microangiograms of the injected autopsied brains of normal adults. The three dimensional microangiograms revealed 3 types of intraparenchymal arteries: intracortical, subcortical (including arteries of arcuate fibers) and medullary arteries. PVS of those arteries had punctated or small linear-shaped appearances according to the dimension and level of MR slices. Basic MR findings of normal PVS showed smooth and well-defined round or elliptical configurations up to 3 mm in diameter without a halo in the surrounding tissue, located along the intraparenchymal arteries, and isointense with cerebro-spinal fluid. PVS around the medullary arteries was dilated with age. Definite PVS was found in the lower portion of the basal ganglia in almost all healthy children and relatively young adults, however, it was less frequent in the subcortical white matter of frontal and parietal lobes. In adults over 60 years of age, dilatation of PVS along the medullary arteries was quite common and progressed into the frontal and parietal lobes. Dilatation of PVS around the medullary arteries was prominent and increased with the number of lacunar infarcts. The sclerotic change of medullary arteries was more accelerated in subjects with hypertension. (author)

  1. Obesity and Aging: Consequences for Cognition, Brain Structure, and Brain Function.

    Science.gov (United States)

    Bischof, Gérard N; Park, Denise C

    2015-01-01

    This review focuses on the relationship between obesity and aging and how these interact to affect cognitive function. The topics covered are guided by the Scaffolding Theory of Aging and Cognition (STAC [Park and Reuter-Lorenz. Annu Rev Psychol 2009;60:173-96]-a conceptual model designed to relate brain structure and function to one's level of cognitive ability. The initial literature search was focused on normal aging and was guided by the key words, "aging, cognition, and obesity" in PubMed. In a second search, we added key words related to neuropathology including words "Alzheimer's disease," "vascular dementia," and "mild cognitive impairment." The data suggest that being overweight or obese in midlife may be more detrimental to subsequent age-related cognitive decline than being overweight or obese at later stages of the life span. These effects are likely mediated by the accelerated effects obesity has on the integrity of neural structures, including both gray and white matter. Further epidemiological studies have provided evidence that obesity in midlife is linked to an increased risk for Alzheimer's disease and vascular dementia, most likely via an increased accumulation of Alzheimer's disease pathology. Although it is clear that obesity negatively affects cognition, more work is needed to better understand how aging plays a role and how brain structure and brain function might mediate the relationship of obesity and age on cognition. Guided by the STAC and the STAC-R models, we provide a roadmap for future investigations of the role of obesity on cognition across the life span.

  2. Whole-brain functional connectivity during emotional word classification in medication-free Major Depressive Disorder: Abnormal salience circuitry and relations to positive emotionality

    NARCIS (Netherlands)

    van Tol, Marie-José; Veer, Ilya M.; van der Wee, Nic J. A.; Aleman, André; van Buchem, Mark A.; Rombouts, Serge A. R. B.; Zitman, Frans G.; Veltman, Dick J.; Johnstone, Tom

    2013-01-01

    Major Depressive Disorder (MDD) has been associated with biased processing and abnormal regulation of negative and positive information, which may result from compromised coordinated activity of prefrontal and subcortical brain regions involved in evaluating emotional information. We tested whether

  3. Whole-brain functional connectivity during emotional word classification in medication-free Major Depressive Disorder : Abnormal salience circuitry and relations to positive emotionality

    NARCIS (Netherlands)

    van Tol, Marie-Jose; Veer, Ilya M.; van der Wee, Nic J. A.; Aleman, Andre; van Buchem, Mark A.; Rombouts, Serge A. R. B.; Zitman, Frans G.; Veltman, Dick J.; Johnstone, Tom

    2013-01-01

    Major Depressive Disorder (MDD) has been associated with biased processing and abnormal regulation of negative and positive information, which may result from compromised coordinated activity of prefrontal and subcortical brain regions involved in evaluating emotional information. We tested whether

  4. Whole-brain functional connectivity predicted by indirect structural connections

    DEFF Research Database (Denmark)

    Røge, Rasmus; Ambrosen, Karen Marie Sandø; Albers, Kristoffer Jon

    2017-01-01

    Modern functional and diffusion magnetic resonance imaging (fMRI and dMRI) provide data from which macro-scale networks of functional and structural whole brain connectivity can be estimated. Although networks derived from these two modalities describe different properties of the human brain, the...

  5. Freesurfer-initialized large deformation diffeomorphic metric mapping with application to Parkinson's disease

    Science.gov (United States)

    Chen, Jingyun; Palmer, Samantha J.; Khan, Ali R.; Mckeown, Martin J.; Beg, Mirza Faial

    2009-02-01

    We apply a recently developed automated brain segmentation method, FS+LDDMM, to brain MRI scans from Parkinson's Disease (PD) subjects, and normal age-matched controls and compare the results to manual segmentation done by trained neuroscientists. The data set consisted of 14 PD subjects and 12 age-matched control subjects without neurologic disease and comparison was done on six subcortical brain structures (left and right caudate, putamen and thalamus). Comparison between automatic and manual segmentation was based on Dice Similarity Coefficient (Overlap Percentage), L1 Error, Symmetrized Hausdorff Distance and Symmetrized Mean Surface Distance. Results suggest that FS+LDDMM is well-suited for subcortical structure segmentation and further shape analysis in Parkinson's Disease. The asymmetry of the Dice Similarity Coefficient over shape change is also discussed based on the observation and measurement of FS+LDDMM segmentation results.

  6. Assessment of cortical and sub-cortical function in neonates by electrophysiological monitoring

    NARCIS (Netherlands)

    Jennekens, W.

    2012-01-01

    The aim of this thesis was the assessment of cortical and sub-cortical function in neonates by electrophysiological monitoring, i.e. to evaluate the function of the neonatal cortex and brainstem through quantitative analysis of signals readily available in the NICU. These signals include

  7. MRI assessment of whole-brain structural changes in aging.

    Science.gov (United States)

    Guo, Hui; Siu, William; D'Arcy, Ryan Cn; Black, Sandra E; Grajauskas, Lukas A; Singh, Sonia; Zhang, Yunting; Rockwood, Kenneth; Song, Xiaowei

    2017-01-01

    One of the central features of brain aging is the accumulation of multiple age-related structural changes, which occur heterogeneously in individuals and can have immediate or potential clinical consequences. Each of these deficits can coexist and interact, producing both independent and additive impacts on brain health. Many of the changes can be visualized using MRI. To collectively assess whole-brain structural changes, the MRI-based Brain Atrophy and Lesion Index (BALI) has been developed. In this study, we validate this whole-brain health assessment approach using several clinical MRI examinations. Data came from three independent studies: the Alzheimer's Disease Neuroimaging Initiative Phase II (n=950; women =47.9%; age =72.7±7.4 years); the National Alzheimer's Coordinating Center (n=722; women =55.1%; age =72.7±9.9 years); and the Tianjin Medical University General Hospital Research database on older adults (n=170; women =60.0%; age =62.9±9.3 years). The 3.0-Tesla MRI scans were evaluated using the BALI rating scheme on the basis of T1-weighted (T1WI), T2-weighted (T2WI), T2-weighted fluid-attenuated inversion recovery (T2-FLAIR), and T2*-weighted gradient-recalled echo (T2*GRE) images. Atrophy and lesion changes were commonly seen in each MRI test. The BALI scores based on different sequences were highly correlated (Spearman r 2 >0.69; P age ( r 2 >0.29; P 26.48, P aging and dementia-related decline of structural brain health. Inclusion of additional MRI tests increased lesion differentiation. Further research is to integrate MRI tests for a clinical tool to aid the diagnosis and intervention of brain aging.

  8. Air pollution, cognitive deficits and brain abnormalities: a pilot study with children and dogs.

    Science.gov (United States)

    Calderón-Garcidueñas, Lilian; Mora-Tiscareño, Antonieta; Ontiveros, Esperanza; Gómez-Garza, Gilberto; Barragán-Mejía, Gerardo; Broadway, James; Chapman, Susan; Valencia-Salazar, Gildardo; Jewells, Valerie; Maronpot, Robert R; Henríquez-Roldán, Carlos; Pérez-Guillé, Beatriz; Torres-Jardón, Ricardo; Herrit, Lou; Brooks, Diane; Osnaya-Brizuela, Norma; Monroy, Maria E; González-Maciel, Angelica; Reynoso-Robles, Rafael; Villarreal-Calderon, Rafael; Solt, Anna C; Engle, Randall W

    2008-11-01

    Exposure to air pollution is associated with neuroinflammation in healthy children and dogs in Mexico City. Comparative studies were carried out in healthy children and young dogs similarly exposed to ambient pollution in Mexico City. Children from Mexico City (n: 55) and a low polluted city (n:18) underwent psychometric testing and brain magnetic resonance imaging MRI. Seven healthy young dogs with similar exposure to Mexico City air pollution had brain MRI, measurement of mRNA abundance of two inflammatory genes cyclooxygenase-2, and interleukin 1 beta in target brain areas, and histopathological evaluation of brain tissue. Children with no known risk factors for neurological or cognitive disorders residing in a polluted urban environment exhibited significant deficits in a combination of fluid and crystallized cognition tasks. Fifty-six percent of Mexico City children tested showed prefrontal white matter hyperintense lesions and similar lesions were observed in dogs (57%). Exposed dogs had frontal lesions with vascular subcortical pathology associated with neuroinflammation, enlarged Virchow-Robin spaces, gliosis, and ultrafine particulate matter deposition. Based on the MRI findings, the prefrontal cortex was a target anatomical region in Mexico City children and its damage could have contributed to their cognitive dysfunction. The present work presents a groundbreaking, interdisciplinary methodology for addressing relationships between environmental pollution, structural brain alterations by MRI, and cognitive deficits/delays in healthy children.

  9. Brain structure across the lifespan: the influence of stress and mood

    Directory of Open Access Journals (Sweden)

    Jose Miguel Soares

    2014-11-01

    Full Text Available Normal brain aging is an inevitable and heterogeneous process characterized by a selective pattern of structural changes. Such heterogeneity arises as a consequence of cumulative effects over the lifespan, including stress and mood effects, which drive different micro- and macro-structural alterations in the brain. Investigating these differences in healthy age-related changes is a major challenge for the comprehension of the cognitive status. Herein we addressed the impact of normal aging, stress, mood and their interplay in the brain gray and white matter structure. We showed the critical impact of age in the white matter volume and how stress and mood influence brain volumetry across the lifespan. Moreover, we found a more profound effect of the interaction of aging/stress/mood on structures located in the left hemisphere. These findings help to clarify some divergent results associated with the aging decline and to enlighten the association between abnormal volumetric alterations and several states that may lead to psychiatric disorders.

  10. Altered caudate connectivity is associated with executive dysfunction after traumatic brain injury.

    Science.gov (United States)

    De Simoni, Sara; Jenkins, Peter O; Bourke, Niall J; Fleminger, Jessica J; Hellyer, Peter J; Jolly, Amy E; Patel, Maneesh C; Cole, James H; Leech, Robert; Sharp, David J

    2018-01-01

    Traumatic brain injury often produces executive dysfunction. This characteristic cognitive impairment often causes long-term problems with behaviour and personality. Frontal lobe injuries are associated with executive dysfunction, but it is unclear how these injuries relate to corticostriatal interactions that are known to play an important role in behavioural control. We hypothesized that executive dysfunction after traumatic brain injury would be associated with abnormal corticostriatal interactions, a question that has not previously been investigated. We used structural and functional MRI measures of connectivity to investigate this. Corticostriatal functional connectivity in healthy individuals was initially defined using a data-driven approach. A constrained independent component analysis approach was applied in 100 healthy adult dataset from the Human Connectome Project. Diffusion tractography was also performed to generate white matter tracts. The output of this analysis was used to compare corticostriatal functional connectivity and structural integrity between groups of 42 patients with traumatic brain injury and 21 age-matched controls. Subdivisions of the caudate and putamen had distinct patterns of functional connectivity. Traumatic brain injury patients showed disruption to functional connectivity between the caudate and a distributed set of cortical regions, including the anterior cingulate cortex. Cognitive impairments in the patients were mainly seen in processing speed and executive function, as well as increased levels of apathy and fatigue. Abnormalities of caudate functional connectivity correlated with these cognitive impairments, with reductions in right caudate connectivity associated with increased executive dysfunction, information processing speed and memory impairment. Structural connectivity, measured using diffusion tensor imaging between the caudate and anterior cingulate cortex was impaired and this also correlated with measures of

  11. Chronic intermittent fasting improves cognitive functions and brain structures in mice.

    Directory of Open Access Journals (Sweden)

    Liaoliao Li

    Full Text Available Obesity is a major health issue. Obesity started from teenagers has become a major health concern in recent years. Intermittent fasting increases the life span. However, it is not known whether obesity and intermittent fasting affect brain functions and structures before brain aging. Here, we subjected 7-week old CD-1 wild type male mice to intermittent (alternate-day fasting or high fat diet (45% caloric supplied by fat for 11 months. Mice on intermittent fasting had better learning and memory assessed by the Barnes maze and fear conditioning, thicker CA1 pyramidal cell layer, higher expression of drebrin, a dendritic protein, and lower oxidative stress than mice that had free access to regular diet (control mice. Mice fed with high fat diet was obese and with hyperlipidemia. They also had poorer exercise tolerance. However, these obese mice did not present significant learning and memory impairment or changes in brain structures or oxidative stress compared with control mice. These results suggest that intermittent fasting improves brain functions and structures and that high fat diet feeding started early in life does not cause significant changes in brain functions and structures in obese middle-aged animals.

  12. Chronic intermittent fasting improves cognitive functions and brain structures in mice.

    Science.gov (United States)

    Li, Liaoliao; Wang, Zhi; Zuo, Zhiyi

    2013-01-01

    Obesity is a major health issue. Obesity started from teenagers has become a major health concern in recent years. Intermittent fasting increases the life span. However, it is not known whether obesity and intermittent fasting affect brain functions and structures before brain aging. Here, we subjected 7-week old CD-1 wild type male mice to intermittent (alternate-day) fasting or high fat diet (45% caloric supplied by fat) for 11 months. Mice on intermittent fasting had better learning and memory assessed by the Barnes maze and fear conditioning, thicker CA1 pyramidal cell layer, higher expression of drebrin, a dendritic protein, and lower oxidative stress than mice that had free access to regular diet (control mice). Mice fed with high fat diet was obese and with hyperlipidemia. They also had poorer exercise tolerance. However, these obese mice did not present significant learning and memory impairment or changes in brain structures or oxidative stress compared with control mice. These results suggest that intermittent fasting improves brain functions and structures and that high fat diet feeding started early in life does not cause significant changes in brain functions and structures in obese middle-aged animals.

  13. [Intracerebral EEG functioning as a reflexion of the systemic brain organization in norm and pathology].

    Science.gov (United States)

    Boldyreva, G N; Zhavoronkova, L A; Sharova, E V; Dobronravova, I S

    2003-01-01

    The authors summarized the EEG findings and defined the nature of intercentral EEG relationships in different functional states of healthy subjects and patients with organic cerebral pathology based on coherence analysis. The EEG features typical of healthy subjects were identified: an anterior-posterior gradient of the mean coherence and the character of cortical-subcortical relationships in the anterior cerebral structures. Right- and lefthanded subjects showed the frequency and regional differences in EEG coherence, which reflected, mainly, specific intracortical relationships. Development and regression of pathologic signs in right- and lefthanded patients with organic brain lesions are thought to be determined by these differences. As distinct from cortical pathology, lesions of regulatory structures (diencephalic, brainstem, and limbic) were shown to produce more diffuse changes in intercentral relationships with a tendency to reciprocity. Intercentral relations, including their interhemispheric differences, varied with changes in the functional state of healthy subjects (increase and decrease in the level of functioning). A certain time course of changes in intercentral relationships was also revealed in patients with organic brain lesions during recovery of their consciousness and mental activity. Changes in the dominance of activity of individual regulatory structures are considered to be one of the most important factors that determine the dynamic character of EEG coherence.

  14. Correlation between brain injury and dysphagia in adult patients with stroke

    Directory of Open Access Journals (Sweden)

    Nunes, Maria Cristina de Alencar

    2012-01-01

    Full Text Available Introduction: In the literature, the incidence of oropharyngeal dysphagia in patients with cerebrovascular accident (AVE ranges 20-90%. Some studies correlate the location of a stroke with dysphagia, while others do not. Objective: To correlate brain injury with dysphagia in patients with stroke in relation to the type and location of stroke. Method: A prospective study conducted at the Hospital de Clinicas with 30 stroke patients: 18 women and 12 men. All patients underwent clinical evaluation and swallowing nasolaryngofibroscopy (FEES®, and were divided based on the location of the injury: cerebral cortex, cerebellar cortex, subcortical areas, and type: hemorrhagic or transient ischemic. Results: Of the 30 patients, 18 had ischemic stroke, 10 had hemorrhagic stroke, and 2 had transient stroke. Regarding the location, 10 lesions were in the cerebral cortex, 3 were in the cerebral and cerebellar cortices, 3 were in the cerebral cortex and subcortical areas, and 3 were in the cerebral and cerebellar cortices and subcortical areas. Cerebral cortex and subcortical area ischemic strokes predominated in the clinical evaluation of dysphagia. In FEES®, decreased laryngeal sensitivity persisted following cerebral cortex and ischemic strokes. Waste in the pharyngeal recesses associated with epiglottic valleculae predominated in the piriform cortex in all lesion areas and in ischemic stroke. A patient with damage to the cerebral and cerebellar cortices from an ischemic stroke exhibited laryngeal penetration and tracheal aspiration of liquid and honey. Conclusion: Dysphagia was prevalent when a lesion was located in the cerebral cortex and was of the ischemic type.

  15. Protein phosphorylation systems in postmortem human brain

    International Nuclear Information System (INIS)

    Walaas, S.I.; Perdahl-Wallace, E.; Winblad, B.; Greengard, P.

    1989-01-01

    Protein phosphorylation systems regulated by cyclic adenosine 3',5'-monophosphate (cyclic AMP), or calcium in conjunction with calmodulin or phospholipid/diacylglycerol, have been studied by phosphorylation in vitro of particulate and soluble fractions from human postmortem brain samples. One-dimensional or two-dimensional gel electrophoretic protein separations were used for analysis. Protein phosphorylation catalyzed by cyclic AMP-dependent protein kinase was found to be highly active in both particulate and soluble preparations throughout the human CNS, with groups of both widely distributed and region-specific substrates being observed in different brain nuclei. Dopamine-innervated parts of the basal ganglia and cerebral cortex contained the phosphoproteins previously observed in rodent basal ganglia. In contrast, calcium/phospholipid-dependent and calcium/calmodulin-dependent protein phosphorylation systems were less prominent in human postmortem brain than in rodent brain, and only a few widely distributed substrates for these protein kinases were found. Protein staining indicated that postmortem proteolysis, particularly of high-molecular-mass proteins, was prominent in deeply located, subcortical regions in the human brain. Our results indicate that it is feasible to use human postmortem brain samples, when obtained under carefully controlled conditions, for qualitative studies on brain protein phosphorylation. Such studies should be of value in studies on human neurological and/or psychiatric disorders

  16. Brain structural connectivity and context-dependent extinction memory.

    Science.gov (United States)

    Hermann, Andrea; Stark, Rudolf; Blecker, Carlo R; Milad, Mohammed R; Merz, Christian J

    2017-08-01

    Extinction of conditioned fear represents an important mechanism in the treatment of anxiety disorders. Return of fear after successful extinction or exposure therapy in patients with anxiety disorders might be linked to poor temporal or contextual generalization of extinction due to individual differences in brain structural connectivity. The goal of this magnetic resonance imaging study was therefore to investigate the association of context-dependent extinction recall with brain structural connectivity. Diffusion-tensor imaging was used to determine the fractional anisotropy as a measure of white matter structural integrity of fiber tracts connecting central brain regions of the fear and extinction circuit (uncinate fasciculus, cingulum). Forty-five healthy men participated in a two-day fear conditioning experiment with fear acquisition in context A and extinction learning in context B on the first day. Extinction recall in the extinction context as well as renewal in the acquisition context and a novel context C took place one day later. Renewal of conditioned fear (skin conductance responses) in the acquisition context was associated with higher structural integrity of the hippocampal part of the cingulum. Enhanced structural integrity of the cingulum might be related to stronger hippocampal modulation of the dorsal anterior cingulate cortex, a region important for modulating conditioned fear output by excitatory projections to the amygdala. This finding underpins the crucial role of individual differences in the structural integrity of relevant fiber tracts for context-dependent extinction recall and return of fear after exposure therapy in anxiety disorders. © 2017 Wiley Periodicals, Inc.

  17. Penetration of the brain by nonionic water soluble tri- and hexaiodinated contrast media

    International Nuclear Information System (INIS)

    Castel, J.C.; Corcier, F.; Caille, J.M.

    1987-01-01

    After suboccipital injection of Iotrol and Iopamidol labelled with iodine 125 in rabbits, we measured residual radioactivity in the whole brain and measured optical density on autoradiographs of brain sections obtained 2, 8 and 24 h after injection. Residual radioactivity is higher with Iotrol than with Iopamidol after 8 h and 24 h. At densitometry, while the penetration of the cortex is the same with both media at 2 h (although subcortical passage of Iotrol is greater) by 8 h the concentration of Iopamidol is twice that of Iotrol, and at 24 h it is three times as high. A similar pattern was seen in the subcortical region. These densitometric findings are in agreement with previous electrophysiological studies, in which changes were less severe and more transient with Iotrol than with Iohexol. There is nevertheless an apparent lack of agreement between the studies of radioactivity studies and the electrical findings. The lower neurotoxicity of Iotrol may be explained by: 1. a longer half-life in the subarachnoid space; 2. its larger molecules, which inhibit diffusion in the extracellular fluid, and 3. its more hydrophilic nature, which reduces intracellular penetration. (orig.)

  18. Sensitivity analysis of human brain structural network construction

    Directory of Open Access Journals (Sweden)

    Kuang Wei

    2017-12-01

    Full Text Available Network neuroscience leverages diffusion-weighted magnetic resonance imaging and tractography to quantify structural connectivity of the human brain. However, scientists and practitioners lack a clear understanding of the effects of varying tractography parameters on the constructed structural networks. With diffusion images from the Human Connectome Project (HCP, we characterize how structural networks are impacted by the spatial resolution of brain atlases, total number of tractography streamlines, and grey matter dilation with various graph metrics. We demonstrate how injudicious combinations of highly refined brain parcellations and low numbers of streamlines may inadvertently lead to disconnected network models with isolated nodes. Furthermore, we provide solutions to significantly reduce the likelihood of generating disconnected networks. In addition, for different tractography parameters, we investigate the distributions of values taken by various graph metrics across the population of HCP subjects. Analyzing the ranks of individual subjects within the graph metric distributions, we find that the ranks of individuals are affected differently by atlas scale changes. Our work serves as a guideline for researchers to optimize the selection of tractography parameters and illustrates how biological characteristics of the brain derived in network neuroscience studies can be affected by the choice of atlas parcellation schemes. Diffusion tractography has been proven to be a promising noninvasive technique to study the network properties of the human brain. However, how various tractography and network construction parameters affect network properties has not been studied using a large cohort of high-quality data. We utilize data provided by the Human Connectome Project to characterize the changes to network properties induced by varying the brain parcellation atlas scales, the number of reconstructed tractography tracks, and the degree of grey

  19. Structural Image Analysis of the Brain in Neuropsychology Using Magnetic Resonance Imaging (MRI) Techniques.

    Science.gov (United States)

    Bigler, Erin D

    2015-09-01

    Magnetic resonance imaging (MRI) of the brain provides exceptional image quality for visualization and neuroanatomical classification of brain structure. A variety of image analysis techniques provide both qualitative as well as quantitative methods to relate brain structure with neuropsychological outcome and are reviewed herein. Of particular importance are more automated methods that permit analysis of a broad spectrum of anatomical measures including volume, thickness and shape. The challenge for neuropsychology is which metric to use, for which disorder and the timing of when image analysis methods are applied to assess brain structure and pathology. A basic overview is provided as to the anatomical and pathoanatomical relations of different MRI sequences in assessing normal and abnormal findings. Some interpretive guidelines are offered including factors related to similarity and symmetry of typical brain development along with size-normalcy features of brain anatomy related to function. The review concludes with a detailed example of various quantitative techniques applied to analyzing brain structure for neuropsychological outcome studies in traumatic brain injury.

  20. Diffusion Tensor Tractography Reveals Disrupted Structural Connectivity during Brain Aging

    Science.gov (United States)

    Lin, Lan; Tian, Miao; Wang, Qi; Wu, Shuicai

    2017-10-01

    Brain aging is one of the most crucial biological processes that entail many physical, biological, chemical, and psychological changes, and also a major risk factor for most common neurodegenerative diseases. To improve the quality of life for the elderly, it is important to understand how the brain is changed during the normal aging process. We compared diffusion tensor imaging (DTI)-based brain networks in a cohort of 75 healthy old subjects by using graph theory metrics to describe the anatomical networks and connectivity patterns, and network-based statistic (NBS) analysis was used to identify pairs of regions with altered structural connectivity. The NBS analysis revealed a significant network comprising nine distinct fiber bundles linking 10 different brain regions showed altered white matter structures in young-old group compare with middle-aged group (p < .05, family-wise error-corrected). Our results might guide future studies and help to gain a better understanding of brain aging.

  1. Brain Structural Changes in Obstructive Sleep Apnea

    Science.gov (United States)

    Macey, Paul M.; Kumar, Rajesh; Woo, Mary A.; Valladares, Edwin M.; Yan-Go, Frisca L.; Harper, Ronald M.

    2008-01-01

    Study Objectives: Determine whether obstructive sleep apnea (OSA) subjects show indications of axonal injury. Design: We assessed fiber integrity in OSA and control subjects with diffusion tensor imaging (DTI). We acquired four whole-brain DTI series from each subject. The four series were realigned, and the diffusion tensor calculated at each voxel. Fractional anisotropy (FA), a measure of fiber integrity, was derived from the diffusion tensor, resulting in a whole brain FA “map.” The FA maps were spatially normalized, smoothed, and compared using voxel-based statistics to determine differences between OSA and control groups, with age as a covariate (P Valladares EM; Yan-Go FL; Harper RM. Brain structural changes in obstructive sleep apnea. SLEEP 2008;31(7):967-977. PMID:18652092

  2. Male and female brain evolution is subject to contrasting selection pressures in primates

    Directory of Open Access Journals (Sweden)

    Dunbar Robin IM

    2007-05-01

    Full Text Available Abstract The claim that differences in brain size across primate species has mainly been driven by the demands of sociality (the "social brain" hypothesis is now widely accepted. Some of the evidence to support this comes from the fact that species that live in large social groups have larger brains, and in particular larger neocortices. Lindenfors and colleagues (BMC Biology 5:20 add significantly to our appreciation of this process by showing that there are striking differences between the two sexes in the social mechanisms and brain units involved. Female sociality (which is more affiliative is related most closely to neocortex volume, but male sociality (which is more competitive and combative is more closely related to subcortical units (notably those associated with emotional responses. Thus different brain units have responded to different selection pressures.

  3. Photothermal effect of infrared lasers on ex vivo lamb brain tissues

    Science.gov (United States)

    Özgürün, Baturay; Gülsoy, Murat

    2018-02-01

    Here, the most suitable infrared laser for a neurosurgery operation is suggested, among 1940-nm thulium fiber, 1470-nm diode, 1070-nm ytterbium fiber and 980-nm diode lasers. Cortical and subcortical ex-vivo lamb brain tissues are exposed to the laser light with the combinations of some laser parameters such as output power, energy density, operation mode (continuous and pulsed-modulated) and operation time. In this way, the greatest ablation efficiency associated with the best neurosurgical laser type can be defined. The research can be divided into two parts; pre-dosimetry and dosimetry studies. The former is used to determine safe operation zones for the dosimetry study by defining coagulation and carbonization onset times for each of the brain tissues. The latter is the main part of this research, and both tissues are exposed to laser irradiation with various energy density levels associated with the output power and operation time. In addition, photo-thermal effects are compared for two laser operation modes, and then coagulation and ablation diameters to calculate the ablation efficiency are measured under a light microscope. Consequently, results are compared graphically and statistically, and it is found that thulium and 1470-nm diode lasers can be utilized as subcortical and cortical tissue ablator devices, respectively.

  4. Brain alterations and clinical symptoms of dementia in diabetes: Abeta/tau-dependent and independent mechanisms

    Directory of Open Access Journals (Sweden)

    Naoyuki eSato

    2014-09-01

    Full Text Available Emerging evidence suggests that diabetes affects cognitive function and increases the incidence of dementia. However, the mechanisms by which diabetes modifies cognitive function still remains unclear. Morphologically, diabetes is associated with neuronal loss in the frontal and temporal lobes including the hippocampus, and aberrant functional connectivity of the posterior cingulate cortex and medial frontal/temporal gyrus. Clinically, diabetic patients show decreased executive function, information processing, planning, visuospatial construction, and visual memory. Therefore, in comparison with the characteristics of AD brain structure and cognition, diabetes seems to affect cognitive function through not only simple AD pathological feature-dependent mechanisms, but also independent mechanisms. As an Abeta/tau-independent mechanism, diabetes compromises cerebrovascular function, increases subcortical infarction and might alter the blood brain barrier (BBB. Diabetes also affects glucose metabolism, insulin signaling and mitochondrial function in the brain. Diabetes also modifies metabolism of Abeta and tau and causes Abeta/tau-dependent pathological changes. Moreover, there is evidence that suggests an interaction between Abeta/tau-dependent and independent mechanisms. Therefore, diabetes modifies cognitive function through Abeta/tau-dependent and independent mechanisms. Interaction between these two mechanisms forms a vicious cycle.

  5. Functional brain imaging across development.

    Science.gov (United States)

    Rubia, Katya

    2013-12-01

    The developmental cognitive neuroscience literature has grown exponentially over the last decade. This paper reviews the functional magnetic resonance imaging (fMRI) literature on brain function development of typically late developing functions of cognitive and motivation control, timing and attention as well as of resting state neural networks. Evidence shows that between childhood and adulthood, concomitant with cognitive maturation, there is progressively increased functional activation in task-relevant lateral and medial frontal, striatal and parieto-temporal brain regions that mediate these higher level control functions. This is accompanied by progressively stronger functional inter-regional connectivity within task-relevant fronto-striatal and fronto-parieto-temporal networks. Negative age associations are observed in earlier developing posterior and limbic regions, suggesting a shift with age from the recruitment of "bottom-up" processing regions towards "top-down" fronto-cortical and fronto-subcortical connections, leading to a more mature, supervised cognition. The resting state fMRI literature further complements this evidence by showing progressively stronger deactivation with age in anti-correlated task-negative resting state networks, which is associated with better task performance. Furthermore, connectivity analyses during the resting state show that with development increasingly stronger long-range connections are being formed, for example, between fronto-parietal and fronto-cerebellar connections, in both task-positive networks and in task-negative default mode networks, together with progressively lesser short-range connections, suggesting progressive functional integration and segregation with age. Overall, evidence suggests that throughout development between childhood and adulthood, there is progressive refinement and integration of both task-positive fronto-cortical and fronto-subcortical activation and task-negative deactivation, leading to

  6. Brain volume reductions in adolescent heavy drinkers.

    Science.gov (United States)

    Squeglia, Lindsay M; Rinker, Daniel A; Bartsch, Hauke; Castro, Norma; Chung, Yoonho; Dale, Anders M; Jernigan, Terry L; Tapert, Susan F

    2014-07-01

    Brain abnormalities in adolescent heavy drinkers may result from alcohol exposure, or stem from pre-existing neural features. This longitudinal morphometric study investigated 40 healthy adolescents, ages 12-17 at study entry, half of whom (n=20) initiated heavy drinking over the 3-year follow-up. Both assessments included high-resolution magnetic resonance imaging. FreeSurfer was used to segment brain volumes, which were measured longitudinally using the newly developed quantitative anatomic regional change analysis (QUARC) tool. At baseline, participants who later transitioned into heavy drinking showed smaller left cingulate, pars triangularis, and rostral anterior cingulate volume, and less right cerebellar white matter volumes (pteens. Over time, participants who initiated heavy drinking showed significantly greater volume reduction in the left ventral diencephalon, left inferior and middle temporal gyrus, and left caudate and brain stem, compared to substance-naïve youth (pbrain regions in future drinkers and greater brain volume reduction in subcortical and temporal regions after alcohol use was initiated. This is consistent with literature showing pre-existing cognitive deficits on tasks recruited by frontal regions, as well as post-drinking consequences on brain regions involved in language and spatial tasks. Published by Elsevier Ltd.

  7. Regulation of the fear network by mediators of stress: Norepinephrine alters the balance between Cortical and Subcortical afferent excitation of the Lateral Amygdala

    Directory of Open Access Journals (Sweden)

    Luke R Johnson

    2011-05-01

    Full Text Available Pavlovian auditory fear conditioning crucially involves the integration of information about and acoustic conditioned stimulus (CS and an aversive unconditioned stimulus (US in the lateral nucleus of the amygdala (LA. The auditory CS reaches the LA subcortically via a direct connection from the auditory thalamus and also from the auditory association cortex itself. How neural modulators, especially those activated during stress, such as norepinephrine (NE, regulate synaptic transmission and plasticity in this network is poorly understood. Here we show that NE inhibits synaptic transmission in both the subcortical and cortical input pathway but that sensory processing is biased towards the subcortical pathway. In addition binding of NE to β-adrenergic receptors further dissociates sensory processing in the LA. These findings suggest a network mechanism that shifts sensory balance towards the faster but more primitive subcortical input.

  8. Structural and Functional Plasticity in the Maternal Brain Circuitry

    Science.gov (United States)

    Pereira, Mariana

    2016-01-01

    Parenting recruits a distributed network of brain structures (and neuromodulators) that coordinates caregiving responses attuned to the young's affect, needs, and developmental stage. Many of these structures and connections undergo significant structural and functional plasticity, mediated by the interplay between maternal hormones and social…

  9. The sequential structure of brain activation predicts skill.

    Science.gov (United States)

    Anderson, John R; Bothell, Daniel; Fincham, Jon M; Moon, Jungaa

    2016-01-29

    In an fMRI study, participants were trained to play a complex video game. They were scanned early and then again after substantial practice. While better players showed greater activation in one region (right dorsal striatum) their relative skill was better diagnosed by considering the sequential structure of whole brain activation. Using a cognitive model that played this game, we extracted a characterization of the mental states that are involved in playing a game and the statistical structure of the transitions among these states. There was a strong correspondence between this measure of sequential structure and the skill of different players. Using multi-voxel pattern analysis, it was possible to recognize, with relatively high accuracy, the cognitive states participants were in during particular scans. We used the sequential structure of these activation-recognized states to predict the skill of individual players. These findings indicate that important features about information-processing strategies can be identified from a model-based analysis of the sequential structure of brain activation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Artefactual subcortical hyperperfusion in PET studies normalized to global mean: lessons from Parkinson's disease

    DEFF Research Database (Denmark)

    Borghammer, Per; Cumming, Paul; Aanerud, Joel

    2008-01-01

    not be detected with present instrumentation and typically-used sample sizes. CONCLUSION: Imposing focal decreases on cortical CBF in conjunction with global mean normalization gives rise to spurious relative CBF increases in all of the regions reported to be hyperactive in PD. Since no PET study has reported......AIM: Recent studies of Parkinson's disease (PD) report subcortical increases of cerebral blood flow (CBF) or cerebral metabolic rate of glucose (CMRglc), after conventional normalization to the global mean. However, if the global mean CBF or CMRglc is decreased in the PD group, this normalization...... necessarily generates artificial relative increases in regions unaffected by the disease. This potential bias may explain the reported subcortical increases in PD. To test this hypothesis, we performed simulations with manipulation and subsequently analysis of sets of quantitative CBF maps by voxel...

  11. Mapping human whole-brain structural networks with diffusion MRI.

    Directory of Open Access Journals (Sweden)

    Patric Hagmann

    Full Text Available Understanding the large-scale structural network formed by neurons is a major challenge in system neuroscience. A detailed connectivity map covering the entire brain would therefore be of great value. Based on diffusion MRI, we propose an efficient methodology to generate large, comprehensive and individual white matter connectional datasets of the living or dead, human or animal brain. This non-invasive tool enables us to study the basic and potentially complex network properties of the entire brain. For two human subjects we find that their individual brain networks have an exponential node degree distribution and that their global organization is in the form of a small world.

  12. A review of structural and functional brain networks: small world and atlas.

    Science.gov (United States)

    Yao, Zhijun; Hu, Bin; Xie, Yuanwei; Moore, Philip; Zheng, Jiaxiang

    2015-03-01

    Brain networks can be divided into two categories: structural and functional networks. Many studies of neuroscience have reported that the complex brain networks are characterized by small-world or scale-free properties. The identification of nodes is the key factor in studying the properties of networks on the macro-, micro- or mesoscale in both structural and functional networks. In the study of brain networks, nodes are always determined by atlases. Therefore, the selection of atlases is critical, and appropriate atlases are helpful to combine the analyses of structural and functional networks. Currently, some problems still exist in the establishment or usage of atlases, which are often caused by the segmentation or the parcellation of the brain. We suggest that quantification of brain networks might be affected by the selection of atlases to a large extent. In the process of building atlases, the influences of single subjects and groups should be balanced. In this article, we focused on the effects of atlases on the analysis of brain networks and the improved divisions based on the tractography or connectivity in the parcellation of atlases.

  13. Developmentally Stable Whole-Brain Volume Reductions and Developmentally Sensitive Caudate and Putamen Volume Alterations in Those With Attention-Deficit/Hyperactivity Disorder and Their Unaffected Siblings

    NARCIS (Netherlands)

    Greven, Corina U.; Bralten, Janita; Mennes, Maarten; O'Dwyer, Laurence; van Hulzen, Kimm J. E.; Rommelse, Nanda; Schweren, Lizanne J. S.; Hoekstra, Pieter J.; Hartman, Catharina A.; Heslenfeld, Dirk; Oosterlaan, Jaap; Faraone, Stephen V.; Franke, Barbara; Zwiers, Marcel P.; Arias-Vasquez, Alejandro; Buitelaar, Jan K.

    IMPORTANCE Attention-deficit/hyperactivity disorder (ADHD) is a heritable neurodevelopmental disorder. It has been linked to reductions in total brain volume and subcortical abnormalities. However, owing to heterogeneity within and between studies and limited sample sizes, findings on the

  14. A Comparative Study of Theoretical Graph Models for Characterizing Structural Networks of Human Brain

    Directory of Open Access Journals (Sweden)

    Xiaojin Li

    2013-01-01

    Full Text Available Previous studies have investigated both structural and functional brain networks via graph-theoretical methods. However, there is an important issue that has not been adequately discussed before: what is the optimal theoretical graph model for describing the structural networks of human brain? In this paper, we perform a comparative study to address this problem. Firstly, large-scale cortical regions of interest (ROIs are localized by recently developed and validated brain reference system named Dense Individualized Common Connectivity-based Cortical Landmarks (DICCCOL to address the limitations in the identification of the brain network ROIs in previous studies. Then, we construct structural brain networks based on diffusion tensor imaging (DTI data. Afterwards, the global and local graph properties of the constructed structural brain networks are measured using the state-of-the-art graph analysis algorithms and tools and are further compared with seven popular theoretical graph models. In addition, we compare the topological properties between two graph models, namely, stickiness-index-based model (STICKY and scale-free gene duplication model (SF-GD, that have higher similarity with the real structural brain networks in terms of global and local graph properties. Our experimental results suggest that among the seven theoretical graph models compared in this study, STICKY and SF-GD models have better performances in characterizing the structural human brain network.

  15. Brain CT and MRI findings of a long-term case of subacute sclerosing panencephalitis

    Energy Technology Data Exchange (ETDEWEB)

    Aoshiba, Kazunori; Ota, Kohei; Komatsuzaki, Satoshi; Kobayashi, Itsuro; Maruyama, Shoichi

    1987-11-01

    Our study involved a long-term case (ten years) of subacute sclerosing panencephalitis. The case began with a 23 year-old experiencing visual deterioration. During the course of his illness, amnesia, autism and abnormal behavior were observed without any myoclonus. On the electroencephalogram, periodic synclonous discharge was shown in the early stage of his illness and subsequently disappeared. The brain CT and the MRI disclosed diffuse lesions in both cortical and subcortical areas of the cerebral hemispheres. The location and spread of lesions were more clearly revealed by the MRI than the brain CT. These findings suggest that the MRI is more useful than the brain CT in the diagnosis of subacute sclerosing panencephalitis.

  16. Brain CT and MRI findings of a long-term case of subacute sclerosing panencephalitis

    International Nuclear Information System (INIS)

    Aoshiba, Kazunori; Ota, Kohei; Komatsuzaki, Satoshi; Kobayashi, Itsuro; Maruyama, Shoichi

    1987-01-01

    Our study involved a long-term case (ten years) of subacute sclerosing panencephalitis. The case began with a 23 year-old experiencing visual deterioration. During the course of his illness, amnesia, autism and abnormal behavior were observed without any myoclonus. On the electroencephalogram, periodic synclonous discharge was shown in the early stage of his illness and subsequently disappeared. The brain CT and the MRI disclosed diffuse lesions in both cortical and subcortical areas of the cerebral hemispheres. The location and spread of lesions were more clearly revealed by the MRI than the brain CT. These findings suggest that the MRI is more useful than the brain CT in the diagnosis of subacute sclerosing panencephalitis. (author)

  17. Mapping the human brain during a specific Vojta's tactile input: the ipsilateral putamen's role.

    Science.gov (United States)

    Sanz-Esteban, Ismael; Calvo-Lobo, Cesar; Ríos-Lago, Marcos; Álvarez-Linera, Juan; Muñoz-García, Daniel; Rodríguez-Sanz, David

    2018-03-01

    A century of research in human brain parcellation has demonstrated that different brain areas are associated with functional tasks. New neuroscientist perspectives to achieve the parcellation of the human brain have been developed to know the brain areas activation and its relationship with different stimuli. This descriptive study aimed to compare brain regions activation by specific tactile input (STI) stimuli according to the Vojta protocol (STI-group) to a non-STI stimulation (non-STI-group). An exploratory functional magnetic resonance imaging (fMRI) study was performed. The 2 groups of participants were passively stimulated by an expert physical therapist using the same paradigm structure, although differing in the place of stimulation. The stimulation was presented to participants using a block design in all cases. A sample of 16 healthy participants, 5 men and 11 women, with mean age 31.31 ± 8.13 years was recruited. Indeed, 12 participants were allocated in the STI-group and 4 participants in the non-STI-group. fMRI was used to map the human brain in vivo while these tactile stimuli were being applied. Data were analyzed using a general linear model in SPM12 implemented in MATLAB. Differences between groups showed a greater activation in the right cortical areas (temporal and frontal lobes), subcortical regions (thalamus, brainstem, and basal nuclei), and in the cerebellum (anterior lobe). STI-group had specific difference brain activation areas, such as the ipsilateral putamen. Future studies should study clinical implications in neurorehabilitation patients.

  18. Evolving knowledge of sex differences in brain structure, function, and chemistry.

    Science.gov (United States)

    Cosgrove, Kelly P; Mazure, Carolyn M; Staley, Julie K

    2007-10-15

    Clinical and epidemiologic evidence demonstrates sex differences in the prevalence and course of various psychiatric disorders. Understanding sex-specific brain differences in healthy individuals is a critical first step toward understanding sex-specific expression of psychiatric disorders. Here, we evaluate evidence on sex differences in brain structure, chemistry, and function using imaging methodologies, including functional magnetic resonance imaging (fMRI), positron emission tomography (PET), single photon emission computed tomography (SPECT), and structural magnetic resonance imaging (MRI) in mentally healthy individuals. MEDLINE searches of English-language literature (1980-November 2006) using the terms sex, gender, PET, SPECT, MRI, fMRI, morphometry, neurochemistry, and neurotransmission were performed to extract relevant sources. The literature suggests that while there are many similarities in brain structure, function, and neurotransmission in healthy men and women, there are important differences that distinguish the male from the female brain. Overall, brain volume is greater in men than women; yet, when controlling for total volume, women have a higher percentage of gray matter and men a higher percentage of white matter. Regional volume differences are less consistent. Global cerebral blood flow is higher in women than in men. Sex-specific differences in dopaminergic, serotonergic, and gamma-aminobutyric acid (GABA)ergic markers indicate that male and female brains are neurochemically distinct. Insight into the etiology of sex differences in the normal living human brain provides an important foundation to delineate the pathophysiological mechanisms underlying sex differences in neuropsychiatric disorders and to guide the development of sex-specific treatments for these devastating brain disorders.

  19. Analysis of structure-function network decoupling in the brain systems of spastic diplegic cerebral palsy.

    Science.gov (United States)

    Lee, Dongha; Pae, Chongwon; Lee, Jong Doo; Park, Eun Sook; Cho, Sung-Rae; Um, Min-Hee; Lee, Seung-Koo; Oh, Maeng-Keun; Park, Hae-Jeong

    2017-10-01

    Manifestation of the functionalities from the structural brain network is becoming increasingly important to understand a brain disease. With the aim of investigating the differential structure-function couplings according to network systems, we investigated the structural and functional brain networks of patients with spastic diplegic cerebral palsy with periventricular leukomalacia compared to healthy controls. The structural and functional networks of the whole brain and motor system, constructed using deterministic and probabilistic tractography of diffusion tensor magnetic resonance images and Pearson and partial correlation analyses of resting-state functional magnetic resonance images, showed differential embedding of functional networks in the structural networks in patients. In the whole-brain network of patients, significantly reduced global network efficiency compared to healthy controls were found in the structural networks but not in the functional networks, resulting in reduced structural-functional coupling. On the contrary, the motor network of patients had a significantly lower functional network efficiency over the intact structural network and a lower structure-function coupling than the control group. This reduced coupling but reverse directionality in the whole-brain and motor networks of patients was prominent particularly between the probabilistic structural and partial correlation-based functional networks. Intact (or less deficient) functional network over impaired structural networks of the whole brain and highly impaired functional network topology over the intact structural motor network might subserve relatively preserved cognitions and impaired motor functions in cerebral palsy. This study suggests that the structure-function relationship, evaluated specifically using sparse functional connectivity, may reveal important clues to functional reorganization in cerebral palsy. Hum Brain Mapp 38:5292-5306, 2017. © 2017 Wiley Periodicals

  20. Migraine and structural changes in the brain

    DEFF Research Database (Denmark)

    Bashir, Asma; Lipton, Richard B; Ashina, Sait

    2013-01-01

    To evaluate the association between migraine without aura (MO) and migraine with aura (MA) and 3 types of structural brain abnormalities detected by MRI: white matter abnormalities (WMAs), infarct-like lesions (ILLs), and volumetric changes in gray and white matter (GM, WM) regions....

  1. Switching Language Modes: Complementary Brain Patterns for Formulaic and Propositional Language.

    Science.gov (United States)

    Sidtis, John J; Van Lancker Sidtis, Diana; Dhawan, Vijay; Eidelberg, David

    2018-04-01

    Language has been modeled as a rule governed behavior for generating an unlimited number of novel utterances using phonological, syntactic, and lexical processes. This view of language as essentially propositional is expanding as a contributory role of formulaic expressions (e.g., you know, have a nice day, how are you?) is increasingly recognized. The basic features of the functional anatomy of this language system have been described by studies of brain damage: left lateralization for propositional language and greater right lateralization and basal ganglia involvement for formulaic expressions. Positron emission tomography (PET) studies of cerebral blood flow (CBF) have established a cortical-subcortical pattern of brain activity predictive of syllable rate during phonological/lexical repetition. The same analytic approach was applied to analyzing brain images obtained during spontaneous monologues. Sixteen normal, right-handed, native English speakers underwent PET scanning during several language tasks. Speech rate for the repetition of phonological/lexical items was predicted by increased CBF in the left inferior frontal region and decreased CBF in the head of the right caudate nucleus, replicating previous results. A complementary cortical-subcortical pattern (CBF increased in the right inferior frontal region and decreased in the left caudate) was predictive of the use of speech formulas during monologue speech. The use of propositional language during the monologues was associated with strong left lateralization (increased CBF at the left inferior frontal region and decreased CBF at the right inferior frontal region). Normal communication involves the integration of two language modes, formulaic and novel, that have different neural substrates.

  2. Linear and curvilinear correlations of brain gray matter volume and density with age using voxel-based morphometry with the Akaike information criterion in 291 healthy children.

    Science.gov (United States)

    Taki, Yasuyuki; Hashizume, Hiroshi; Thyreau, Benjamin; Sassa, Yuko; Takeuchi, Hikaru; Wu, Kai; Kotozaki, Yuka; Nouchi, Rui; Asano, Michiko; Asano, Kohei; Fukuda, Hiroshi; Kawashima, Ryuta

    2013-08-01

    We examined linear and curvilinear correlations of gray matter volume and density in cortical and subcortical gray matter with age using magnetic resonance images (MRI) in a large number of healthy children. We applied voxel-based morphometry (VBM) and region-of-interest (ROI) analyses with the Akaike information criterion (AIC), which was used to determine the best-fit model by selecting which predictor terms should be included. We collected data on brain structural MRI in 291 healthy children aged 5-18 years. Structural MRI data were segmented and normalized using a custom template by applying the diffeomorphic anatomical registration using exponentiated lie algebra (DARTEL) procedure. Next, we analyzed the correlations of gray matter volume and density with age in VBM with AIC by estimating linear, quadratic, and cubic polynomial functions. Several regions such as the prefrontal cortex, the precentral gyrus, and cerebellum showed significant linear or curvilinear correlations between gray matter volume and age on an increasing trajectory, and between gray matter density and age on a decreasing trajectory in VBM and ROI analyses with AIC. Because the trajectory of gray matter volume and density with age suggests the progress of brain maturation, our results may contribute to clarifying brain maturation in healthy children from the viewpoint of brain structure. Copyright © 2012 Wiley Periodicals, Inc.

  3. Alternations of White Matter Structural Networks in First Episode Untreated Major Depressive Disorder with Short Duration

    Directory of Open Access Journals (Sweden)

    Yi Lu

    2017-10-01

    Full Text Available It is crucial to explore the pathogenesis of major depressive disorder (MDD at the early stage for the better diagnostic and treatment strategies. It was suggested that MDD might be involving in functional or structural alternations at the brain network level. However, at the onset of MDD, whether the whole brain white matter (WM alterations at network level are already evident still remains unclear. In the present study, diffusion MRI scanning was adopt to depict the unique WM structural network topology across the entire brain at the early stage of MDD. Twenty-one first episode, short duration (<1 year and drug-naïve depression patients, and 25 healthy control (HC subjects were recruited. To construct the WM structural network, atlas-based brain regions were used for nodes, and the value of multiplying fiber number by the mean fractional anisotropy along the fiber bundles connected a pair of brain regions were used for edges. The structural network was analyzed by graph theoretic and network-based statistic methods. Pearson partial correlation analysis was also performed to evaluate their correlation with the clinical variables. Compared with HCs, the MDD patients had a significant decrease in the small-worldness (σ. Meanwhile, the MDD patients presented a significantly decreased subnetwork, which mainly involved in the frontal–subcortical and limbic regions. Our results suggested that the abnormal structural network of the orbitofrontal cortex and thalamus, involving the imbalance with the limbic system, might be a key pathology in early stage drug-naive depression. And the structural network analysis might be potential in early detection and diagnosis of MDD.

  4. Executive dysfunction, brain aging, and political leadership.

    Science.gov (United States)

    Fisher, Mark; Franklin, David L; Post, Jerrold M

    2014-01-01

    Decision-making is an essential component of executive function, and a critical skill of political leadership. Neuroanatomic localization studies have established the prefrontal cortex as the critical brain site for executive function. In addition to the prefrontal cortex, white matter tracts as well as subcortical brain structures are crucial for optimal executive function. Executive function shows a significant decline beginning at age 60, and this is associated with age-related atrophy of prefrontal cortex, cerebral white matter disease, and cerebral microbleeds. Notably, age-related decline in executive function appears to be a relatively selective cognitive deterioration, generally sparing language and memory function. While an individual may appear to be functioning normally with regard to relatively obvious cognitive functions such as language and memory, that same individual may lack the capacity to integrate these cognitive functions to achieve normal decision-making. From a historical perspective, global decline in cognitive function of political leaders has been alternatively described as a catastrophic event, a slowly progressive deterioration, or a relatively episodic phenomenon. Selective loss of executive function in political leaders is less appreciated, but increased utilization of highly sensitive brain imaging techniques will likely bring greater appreciation to this phenomenon. Former Israeli Prime Minister Ariel Sharon was an example of a political leader with a well-described neurodegenerative condition (cerebral amyloid angiopathy) that creates a neuropathological substrate for executive dysfunction. Based on the known neuroanatomical and neuropathological changes that occur with aging, we should probably assume that a significant proportion of political leaders over the age of 65 have impairment of executive function.

  5. Drawing on the right side of the brain: a voxel-based morphometry analysis of observational drawing.

    Science.gov (United States)

    Chamberlain, Rebecca; McManus, I Chris; Brunswick, Nicola; Rankin, Qona; Riley, Howard; Kanai, Ryota

    2014-08-01

    Structural brain differences in relation to expertise have been demonstrated in a number of domains including visual perception, spatial navigation, complex motor skills and musical ability. However no studies have assessed the structural differences associated with representational skills in visual art. As training artists are inclined to be a heterogeneous group in terms of their subject matter and chosen media, it was of interest to investigate whether there would be any consistent changes in neural structure in response to increasing representational drawing skill. In the current study a cohort of 44 graduate and post-graduate art students and non-art students completed drawing tasks. Scores on these tasks were then correlated with the regional grey and white matter volume in cortical and subcortical structures. An increase in grey matter density in the left anterior cerebellum and the right medial frontal gyrus was observed in relation to observational drawing ability, whereas artistic training (art students vs. non-art students) was correlated with increased grey matter density in the right precuneus. This suggests that observational drawing ability relates to changes in structures pertaining to fine motor control and procedural memory, and that artistic training in addition is associated with enhancement of structures pertaining to visual imagery. The findings corroborate the findings of small-scale fMRI studies and provide insights into the properties of the developing artistic brain. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. The human brain. Prenatal development and structure

    International Nuclear Information System (INIS)

    Marin-Padilla, Miguel

    2011-01-01

    This book is unique among the current literature in that it systematically documents the prenatal structural development of the human brain. It is based on lifelong study using essentially a single staining procedure, the classic rapid Golgi procedure, which ensures an unusual and desirable uniformity in the observations. The book is amply illustrated with 81 large, high-quality color photomicrographs never previously reproduced. These photomicrographs, obtained at 6, 7, 11, 15, 18, 20, 25, 30, 35, and 40 weeks of gestation, offer a fascinating insight into the sequential prenatal development of neurons, blood vessels, and glia in the human brain. (orig.)

  7. The human brain. Prenatal development and structure

    Energy Technology Data Exchange (ETDEWEB)

    Marin-Padilla, Miguel

    2011-07-01

    This book is unique among the current literature in that it systematically documents the prenatal structural development of the human brain. It is based on lifelong study using essentially a single staining procedure, the classic rapid Golgi procedure, which ensures an unusual and desirable uniformity in the observations. The book is amply illustrated with 81 large, high-quality color photomicrographs never previously reproduced. These photomicrographs, obtained at 6, 7, 11, 15, 18, 20, 25, 30, 35, and 40 weeks of gestation, offer a fascinating insight into the sequential prenatal development of neurons, blood vessels, and glia in the human brain. (orig.)

  8. Gait and Equilibrium in Subcortical Vascular Dementia

    Directory of Open Access Journals (Sweden)

    Rita Moretti

    2011-01-01

    Full Text Available Subcortical vascular dementia is a clinical entity, widespread, even challenging to diagnose and correctly treat. Patients with this diagnosis are old, frail, often with concomitant pathologies, and therefore, with many drugs in therapy. We tried to diagnose and follow up for three years more than 600 patients. Study subjects were men and women, not bedridden, aged 68–94 years, outpatients, recruited from June, 1st 2007 to June, 1st 2010. We examined them clinically, neurologically, with specific consideration on drug therapies. Our aim has been to define gait and imbalance problem, if eventually coexistent with the pathology of white matter and/or with the worsening of the deterioration. Drug intake interference has been detected and considered.

  9. Brain structures in the sciences and humanities.

    Science.gov (United States)

    Takeuchi, Hikaru; Taki, Yasuyuki; Sekiguchi, Atsushi; Nouchi, Rui; Kotozaki, Yuka; Nakagawa, Seishu; Miyauchi, Carlos Makoto; Iizuka, Kunio; Yokoyama, Ryoichi; Shinada, Takamitsu; Yamamoto, Yuki; Hanawa, Sugiko; Araki, Tsuyoshi; Hashizume, Hiroshi; Sassa, Yuko; Kawashima, Ryuta

    2015-11-01

    The areas of academic interest (sciences or humanities) and area of study have been known to be associated with a number of factors associated with autistic traits. However, despite the vast amount of literature on the psychological and physiological characteristics associated with faculty membership, brain structural characteristics associated with faculty membership have never been investigated directly. In this study, we used voxel-based morphometry to investigate differences in regional gray matter volume (rGMV)/regional white matter volume (rWMV) between science and humanities students to test our hypotheses that brain structures previously robustly shown to be altered in autistic subjects are related to differences in faculty membership. We examined 312 science students (225 males and 87 females) and 179 humanities students (105 males and 74 females). Whole-brain analyses of covariance revealed that after controlling for age, sex, and total intracranial volume, the science students had significantly larger rGMV in an anatomical cluster around the medial prefrontal cortex and the frontopolar area, whereas the humanities students had significantly larger rWMV in an anatomical cluster mainly concentrated around the right hippocampus. These anatomical structures have been linked to autism in previous studies and may mediate cognitive functions that characterize differences in faculty membership. The present results may support the ideas that autistic traits and characteristics of the science students compared with the humanities students share certain characteristics from neuroimaging perspectives. This study improves our understanding of differences in faculty membership which is the link among cognition, biological factors, disorders, and education (academia).

  10. Mapping causal functional contributions derived from the clinical assessment of brain damage after stroke

    Directory of Open Access Journals (Sweden)

    Melissa Zavaglia

    2015-01-01

    Full Text Available Lesion analysis reveals causal contributions of brain regions to mental functions, aiding the understanding of normal brain function as well as rehabilitation of brain-damaged patients. We applied a novel lesion inference technique based on game theory, Multi-perturbation Shapley value Analysis (MSA, to a large clinical lesion dataset. We used MSA to analyze the lesion patterns of 148 acute stroke patients together with their neurological deficits, as assessed by the National Institutes of Health Stroke Scale (NIHSS. The results revealed regional functional contributions to essential behavioral and cognitive functions as reflected in the NIHSS, particularly by subcortical structures. There were also side specific differences of functional contributions between the right and left hemispheric brain regions which may reflect the dominance of the left hemispheric syndrome aphasia in the NIHSS. Comparison of MSA to established lesion inference methods demonstrated the feasibility of the approach for analyzing clinical data and indicated its capability for objectively inferring functional contributions from multiple injured, potentially interacting sites, at the cost of having to predict the outcome of unknown lesion configurations. The analysis of regional functional contributions to neurological symptoms measured by the NIHSS contributes to the interpretation of this widely used standardized stroke scale in clinical practice as well as clinical trials and provides a first approximation of a ‘map of stroke’.

  11. Mapping causal functional contributions derived from the clinical assessment of brain damage after stroke.

    Science.gov (United States)

    Zavaglia, Melissa; Forkert, Nils D; Cheng, Bastian; Gerloff, Christian; Thomalla, Götz; Hilgetag, Claus C

    2015-01-01

    Lesion analysis reveals causal contributions of brain regions to mental functions, aiding the understanding of normal brain function as well as rehabilitation of brain-damaged patients. We applied a novel lesion inference technique based on game theory, Multi-perturbation Shapley value Analysis (MSA), to a large clinical lesion dataset. We used MSA to analyze the lesion patterns of 148 acute stroke patients together with their neurological deficits, as assessed by the National Institutes of Health Stroke Scale (NIHSS). The results revealed regional functional contributions to essential behavioral and cognitive functions as reflected in the NIHSS, particularly by subcortical structures. There were also side specific differences of functional contributions between the right and left hemispheric brain regions which may reflect the dominance of the left hemispheric syndrome aphasia in the NIHSS. Comparison of MSA to established lesion inference methods demonstrated the feasibility of the approach for analyzing clinical data and indicated its capability for objectively inferring functional contributions from multiple injured, potentially interacting sites, at the cost of having to predict the outcome of unknown lesion configurations. The analysis of regional functional contributions to neurological symptoms measured by the NIHSS contributes to the interpretation of this widely used standardized stroke scale in clinical practice as well as clinical trials and provides a first approximation of a 'map of stroke'.

  12. Mapping causal functional contributions derived from the clinical assessment of brain damage after stroke

    Science.gov (United States)

    Zavaglia, Melissa; Forkert, Nils D.; Cheng, Bastian; Gerloff, Christian; Thomalla, Götz; Hilgetag, Claus C.

    2015-01-01

    Lesion analysis reveals causal contributions of brain regions to mental functions, aiding the understanding of normal brain function as well as rehabilitation of brain-damaged patients. We applied a novel lesion inference technique based on game theory, Multi-perturbation Shapley value Analysis (MSA), to a large clinical lesion dataset. We used MSA to analyze the lesion patterns of 148 acute stroke patients together with their neurological deficits, as assessed by the National Institutes of Health Stroke Scale (NIHSS). The results revealed regional functional contributions to essential behavioral and cognitive functions as reflected in the NIHSS, particularly by subcortical structures. There were also side specific differences of functional contributions between the right and left hemispheric brain regions which may reflect the dominance of the left hemispheric syndrome aphasia in the NIHSS. Comparison of MSA to established lesion inference methods demonstrated the feasibility of the approach for analyzing clinical data and indicated its capability for objectively inferring functional contributions from multiple injured, potentially interacting sites, at the cost of having to predict the outcome of unknown lesion configurations. The analysis of regional functional contributions to neurological symptoms measured by the NIHSS contributes to the interpretation of this widely used standardized stroke scale in clinical practice as well as clinical trials and provides a first approximation of a ‘map of stroke’. PMID:26448908

  13. In Vivo Tumour Mapping Using Electrocorticography Alterations During Awake Brain Surgery: A Pilot Study.

    Science.gov (United States)

    Boussen, Salah; Velly, Lionel; Benar, Christian; Metellus, Philippe; Bruder, Nicolas; Trébuchon, Agnès

    2016-09-01

    During awake brain surgery for tumour resection, in situ EEG recording (ECoG) is used to identify eloquent areas surrounding the tumour. We used the ECoG setup to record the electrical activity of cortical and subcortical tumours and then performed frequency and connectivity analyses in order to identify ECoG impairments and map tumours. We selected 16 patients with cortical (8) and subcortical (8) tumours undergoing awake brain surgery. For each patient, we computed the spectral content of tumoural and healthy areas in each frequency band. We computed connectivity of each electrode using connectivity markers (linear and non-linear correlations, phase-locking and coherence). We performed comparisons between healthy and tumour electrodes. The ECoG alterations were used to implement automated classification of the electrodes using clustering or neural network algorithms. ECoG alterations were used to image cortical tumours.Cortical tumours were found to profoundly alter all frequency contents (normalized and absolute power), with an increase in the δ activity and a decreases for the other bands (P < 0.05). Cortical tumour electrodes showed high level of connectivity compared to surrounding electrodes (all markers, P < 0.05). For subcortical tumours, a relative decrease in the γ1 band and in the alpha band in absolute amplitude (P < 0.05) were the only abnormalities. The neural network algorithm classification had a good performance: 93.6 % of the electrodes were classified adequately on a test subject. We found significant spectral and connectivity ECoG changes for cortical tumours, which allowed tumour recognition. Artificial neural algorithm pattern recognition seems promising for electrode classification in awake tumour surgery.

  14. Computer tomography investigation of epilepsy the brain atrophy

    International Nuclear Information System (INIS)

    Taneva, N.

    1997-01-01

    The problem of brain atrophy in patients with epilepsy is often discussed in literature. The aim of the study is to present the results of computer tomography measurements of ventricular size and sulci of brain of 90 patients with various electro-clinical forms of epilepsy, including males and females at the age of 15 to 70 years. Computer tomography measurements were performed having in mind 6 parameters (frontal horn index, FHI; Huckman's number, HZ; cella media index,CMI; width of the third and the fourth ventricles; sulci). The results were compared to the CT measurements of a control group of 40 healthy males and females in the same age range.The obtained data indicate high percentage of subcortical atrophy among patients with epilepsy. Ventricular dilatation was found to be in light extent occurring most early in the frontal brain regions (frontal horns and lateral ventricles)., furthermore observed in the young age. (author)

  15. The Developmental Course of Sleep Disturbances Across Childhood Relates to Brain Morphology at Age 7: The Generation R Study.

    Science.gov (United States)

    Kocevska, Desana; Muetzel, Ryan L; Luik, Annemarie I; Luijk, Maartje P C M; Jaddoe, Vincent W; Verhulst, Frank C; White, Tonya; Tiemeier, Henning

    2017-01-01

    Little is known about the impact of sleep disturbances on the structural properties of the developing brain. This study explored associations between childhood sleep disturbances and brain morphology at 7 years. Mothers from the Generation R cohort reported sleep disturbances in 720 children at ages 2 months, 1.5, 2, 3, and 6 years. T1-weighted Magnetic Resonance Imaging (MRI) images were used to assess brain structure at 7 years. Associations of sleep disturbances at each age and of sleep disturbance trajectories with brain volumes (total brain volume, cortical and subcortical grey matter, white matter) were tested with linear regressions. To assess regional differences, sleep disturbance trajectories were tested as determinants for cortical thickness in whole-brain analyses. Sleep disturbances followed a declining trend from toddlerhood onwards. Infant sleep was not associated with brain morphology at age 7. Per SD sleep disturbances (one frequent symptom or two less frequent symptoms) at 2 and 3 years of age, children had -6.3 (-11.7 to -0.8) cm3 and -6.4 (-11.7 to -1.7) cm3 smaller grey matter volumes, respectively. Sleep disturbances at age 6 years were associated with global brain morphology (grey matter: -7.3 (-12.1 to -2.6), p value = .01). Consistently, trajectory analyses showed that more adverse developmental course of childhood sleep disturbances are associated with smaller grey matter volumes and thinner dorsolateral prefrontal cortex. Sleep disturbances from age 2 years onwards are associated with smaller grey matter volumes. Thinner prefrontal cortex in children with adverse sleep disturbance trajectories may reflect effects of sleep disturbances on brain maturation. © Sleep Research Society 2016. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  16. Subcortical plasticity following perceptual learning in a pitch discrimination task

    OpenAIRE

    Carcagno, Samuele; Plack, Christopher J.

    2011-01-01

    Practice can lead to dramatic improvements in the discrimination of auditory stimuli. In this study, we investigated changes of the frequency-following response (FFR), a subcortical component of the auditory evoked potentials, after a period of pitch discrimination training. Twenty-seven adult listeners were trained for 10 h on a pitch discrimination task using one of three different complex tone stimuli. One had a static pitch contour, one had a rising pitch contour, and one had a falling pi...

  17. GABAergic and cortical and subcortical glutamatergic axon terminals contain CB1 cannabinoid receptors in the ventromedial nucleus of the hypothalamus.

    Directory of Open Access Journals (Sweden)

    Leire Reguero

    Full Text Available BACKGROUND: Type-1 cannabinoid receptors (CB(1R are enriched in the hypothalamus, particularly in the ventromedial hypothalamic nucleus (VMH that participates in homeostatic and behavioral functions including food intake. Although CB(1R activation modulates excitatory and inhibitory synaptic transmission in the brain, CB(1R contribution to the molecular architecture of the excitatory and inhibitory synaptic terminals in the VMH is not known. Therefore, the aim of this study was to investigate the precise subcellular distribution of CB(1R in the VMH to better understand the modulation exerted by the endocannabinoid system on the complex brain circuitries converging into this nucleus. METHODOLOGY/PRINCIPAL FINDINGS: Light and electron microscopy techniques were used to analyze CB(1R distribution in the VMH of CB(1R-WT, CB(1R-KO and conditional mutant mice bearing a selective deletion of CB(1R in cortical glutamatergic (Glu-CB(1R-KO or GABAergic neurons (GABA-CB(1R-KO. At light microscopy, CB(1R immunolabeling was observed in the VMH of CB(1R-WT and Glu-CB(1R-KO animals, being remarkably reduced in GABA-CB(1R-KO mice. In the electron microscope, CB(1R appeared in membranes of both glutamatergic and GABAergic terminals/preterminals. There was no significant difference in the percentage of CB(1R immunopositive profiles and CB(1R density in terminals making asymmetric or symmetric synapses in CB(1R-WT mice. Furthermore, the proportion of CB(1R immunopositive terminals/preterminals in CB(1R-WT and Glu-CB(1R-KO mice was reduced in GABA-CB(1R-KO mutants. CB(1R density was similar in all animal conditions. Finally, the percentage of CB(1R labeled boutons making asymmetric synapses slightly decreased in Glu-CB(1R-KO mutants relative to CB(1R-WT mice, indicating that CB(1R was distributed in cortical and subcortical excitatory synaptic terminals. CONCLUSIONS/SIGNIFICANCE: Our anatomical results support the idea that the VMH is a relevant hub candidate in

  18. Study of diffusion tensor imaging in subcortical ischemic vascular cognitive impairment

    Directory of Open Access Journals (Sweden)

    Hui-ying GUO

    2014-04-01

    Full Text Available Objective Using diffusion tensor imaging (DTI to explore the microstructure changes of white matter in subcortical ischemic vascular cognitive impairment (SIVCI and its correlation with cognitive function.  Methods Forty-nine patients with subcortical ischemic cerebrovascular diseases were collected. By using Clinical Dementia Rating Scale (CDR, they were classified into 10 cases of vascular dementia (VaD group, 20 cases of vascular cognitive impairment-no dementia (VCIND group and 19 cases of normal cognitive function (control group. Conventional MRI and DTI were performed in all cases. Based on the DTI data, voxel-based analysis was used to assess the whole brain region. Correlation analysis was applied to illustrate the relationship between DTI parameters and cognitive scale in VaD patients.  Results Compared with the control group, fractional anisotropy (FA values of patients in VaD group decreased in medial prefrontal cortex, anterior cingulate cortex, corpus callosum stem, bilateral parietal lobes, right temporal lobe and bilateral orbitofrontal lobes (P = 0.000, for all, and FA values of patients in VCIND group decreased in right inferior frontal gyrus, right hippocampus and bilateral precuneus (P = 0.000, for all. Compared with VCIND group, FA values of patients in VaD group decreased in medial prefrontal cortex, anterior cingulate, corpus callosum, bilateral parietal lobes and right temporal lobe (P = 0.000, for all. Compared with the control group, mean diffusivity (MD values in VaD group increased in medial prefrontal cortex, corpus callosum, bilateral parietal lobes, bilateral temporal lobes and anterior cingulate (P = 0.000, for all, while in VCIND group increased in bilateral precuneus and right hippocampus (P = 0.000, for all. Compared with VCIND group, MD values in VaD group increased in right medial prefrontal cortex, anterior cingulate cortex, corpus callosum stem, bilateral parietal lobes and bilateral temporal lobes (P = 0

  19. Developing a Korean standard brain atlas on the basis of statistical and probabilistic approach and visualization tool for functional image analysis

    Energy Technology Data Exchange (ETDEWEB)

    Koo, B. B.; Lee, J. M.; Kim, J. S.; Kim, I. Y.; Kim, S. I. [Hanyang University, Seoul (Korea, Republic of); Lee, J. S.; Lee, D. S.; Kwon, J. S. [Seoul National University College of Medicine, Seoul (Korea, Republic of); Kim, J. J. [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2003-06-01

    The probabilistic anatomical maps are used to localize the functional neuro-images and morphological variability. The quantitative indicator is very important to inquire the anatomical position of an activated region because functional image data has the low-resolution nature and no inherent anatomical information. Although previously developed MNI probabilistic anatomical map was enough to localize the data, it was not suitable for the Korean brains because of the morphological difference between Occidental and Oriental. In this study, we develop a probabilistic anatomical map for Korean normal brain. Normal 75 brains of T1-weighted spoiled gradient echo magnetic resonance images were acquired on a 1.5-T GESIGNA scanner. Then, a standard brain is selected in the group through a clinician searches a brain of the average property in the Talairach coordinate system. With the standard brain, an anatomist delineates 89 regions of interest (ROI) parcellating cortical and subcortical areas. The parcellated ROIs of the standard are warped and overlapped into each brain by maximizing intensity similarity. And every brain is automatically labeled with the registered ROIs. Each of the same-labeled region is linearly normalize to the standard brain, and the occurrence of each region is counted. Finally, 89 probabilistic ROI volumes are generated. This paper presents a probabilistic anatomical map for localizing the functional and structural analysis of Korean normal brain. In the future, we'll develop the group specific probabilistic anatomical maps of OCD and schizophrenia disease.

  20. Developing a Korean standard brain atlas on the basis of statistical and probabilistic approach and visualization tool for functional image analysis

    International Nuclear Information System (INIS)

    Koo, B. B.; Lee, J. M.; Kim, J. S.; Kim, I. Y.; Kim, S. I.; Lee, J. S.; Lee, D. S.; Kwon, J. S.; Kim, J. J.

    2003-01-01

    The probabilistic anatomical maps are used to localize the functional neuro-images and morphological variability. The quantitative indicator is very important to inquire the anatomical position of an activated region because functional image data has the low-resolution nature and no inherent anatomical information. Although previously developed MNI probabilistic anatomical map was enough to localize the data, it was not suitable for the Korean brains because of the morphological difference between Occidental and Oriental. In this study, we develop a probabilistic anatomical map for Korean normal brain. Normal 75 brains of T1-weighted spoiled gradient echo magnetic resonance images were acquired on a 1.5-T GESIGNA scanner. Then, a standard brain is selected in the group through a clinician searches a brain of the average property in the Talairach coordinate system. With the standard brain, an anatomist delineates 89 regions of interest (ROI) parcellating cortical and subcortical areas. The parcellated ROIs of the standard are warped and overlapped into each brain by maximizing intensity similarity. And every brain is automatically labeled with the registered ROIs. Each of the same-labeled region is linearly normalize to the standard brain, and the occurrence of each region is counted. Finally, 89 probabilistic ROI volumes are generated. This paper presents a probabilistic anatomical map for localizing the functional and structural analysis of Korean normal brain. In the future, we'll develop the group specific probabilistic anatomical maps of OCD and schizophrenia disease

  1. Changes in brain glucose metabolism in subthalamic nucleus deep brain stimulation for advanced Parkinson's disease.

    Science.gov (United States)

    Volonté, M A; Garibotto, V; Spagnolo, F; Panzacchi, A; Picozzi, P; Franzin, A; Giovannini, E; Leocani, L; Cursi, M; Comi, G; Perani, D

    2012-07-01

    Despite its large clinical application, our understanding about the mechanisms of action of deep brain stimulation of the subthalamic nucleus is still limited. Aim of the present study was to explore cortical and subcortical metabolic modulations measured by Positron Emission Tomography associated with improved motor manifestations after deep brain stimulation in Parkinson disease, comparing the ON and OFF conditions. Investigations were performed in the stimulator off- and on-conditions in 14 parkinsonian patients and results were compared with a group of matched healthy controls. The results were also used to correlate metabolic changes with the clinical effectiveness of the procedure. The comparisons using Statistical parametric mapping revealed a brain metabolic pattern typical of advanced Parkinson disease. The direct comparison in ON vs OFF condition showed mainly an increased metabolism in subthalamic regions, corresponding to the deep brain stimulation site. A positive correlation exists between neurostimulation clinical effectiveness and metabolic differences in ON and OFF state, including the primary sensorimotor, premotor and parietal cortices, anterior cingulate cortex. Deep brain stimulation seems to operate modulating the neuronal network rather than merely exciting or inhibiting basal ganglia nuclei. Correlations with Parkinson Disease cardinal features suggest that the improvement of specific motor signs associated with deep brain stimulation might be explained by the functional modulation, not only in the target region, but also in surrounding and remote connecting areas, resulting in clinically beneficial effects. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Corticonic models of brain mechanisms underlying cognition and intelligence

    Science.gov (United States)

    Farhat, Nabil H.

    The concern of this review is brain theory or more specifically, in its first part, a model of the cerebral cortex and the way it: (a) interacts with subcortical regions like the thalamus and the hippocampus to provide higher-level-brain functions that underlie cognition and intelligence, (b) handles and represents dynamical sensory patterns imposed by a constantly changing environment, (c) copes with the enormous number of such patterns encountered in a lifetime by means of dynamic memory that offers an immense number of stimulus-specific attractors for input patterns (stimuli) to select from, (d) selects an attractor through a process of “conjugation” of the input pattern with the dynamics of the thalamo-cortical loop, (e) distinguishes between redundant (structured) and non-redundant (random) inputs that are void of information, (f) can do categorical perception when there is access to vast associative memory laid out in the association cortex with the help of the hippocampus, and (g) makes use of “computation” at the edge of chaos and information driven annealing to achieve all this. Other features and implications of the concepts presented for the design of computational algorithms and machines with brain-like intelligence are also discussed. The material and results presented suggest, that a Parametrically Coupled Logistic Map network (PCLMN) is a minimal model of the thalamo-cortical complex and that marrying such a network to a suitable associative memory with re-entry or feedback forms a useful, albeit, abstract model of a cortical module of the brain that could facilitate building a simple artificial brain. In the second part of the review, the results of numerical simulations and drawn conclusions in the first part are linked to the most directly relevant works and views of other workers. What emerges is a picture of brain dynamics on the mesoscopic and macroscopic scales that gives a glimpse of the nature of the long sought after brain code

  3. Structures and Interactions of Proteins in the Brain

    DEFF Research Database (Denmark)

    Nielsen, Lau Dalby

    The protein low density lipoprotein receptor related protein 1 (LRP1) plays multiple roles in the biology of amyloid β peptide (Aβ) and Alzheimer’s disease. LRP1 is very important for clearance of Aβ both in the brain and by facilitating Aβ export over the blood brain barrier. In spite of the app......The protein low density lipoprotein receptor related protein 1 (LRP1) plays multiple roles in the biology of amyloid β peptide (Aβ) and Alzheimer’s disease. LRP1 is very important for clearance of Aβ both in the brain and by facilitating Aβ export over the blood brain barrier. In spite...... coding for Arc protein has been domesticated from the same branch of genes that has given rise to retroviruses. We show that even despite the large evolutional distance between Arc and retroviruses. Despite large evolutionary distance Arc still self-assemble into higher order structures that resembles...

  4. Brain imaging and memory systems in humans: the contribution of PET methods; Imagerie cerebrale et systeme de memoire chez l'homme: contribution de l'analyse par TEP

    Energy Technology Data Exchange (ETDEWEB)

    Perani, D. [Institute of Neuroscience and Bioimaging CNR, Milan (Italy)

    1998-03-01

    The development of neuroimaging methods such as PET, has provided a new impulse to the study of the neural basis of cognitive functions, and has extended the field of inquiry from the analysis of the consequences of brain lesions to the functional investigations of brain activity, either in patients with selective neuropsychological deficits or in normal subjects engaged in cognitive tasks. Specific patterns of hypo-metabolism in neurological patients are associated with different profiles of memory deficits.[{sup 18}F]FDG PET studies have confirmed the association of episodic memory with the structures of Papez's circuit and have shown correlations between short-term and semantic memory and the language areas. The identification of anatomical-functional networks involved in specific components of memory function in normal subjects is the aim of several PET activation studies. The results are in agreement with 'neural network' models of the neural basis of memory, as complex functions subserved by multiple interconnected cortical and subcortical structures. (author)

  5. The Spanish version of the Addenbrooke's Cognitive Examination - Revised (ACE-R) in subcortical ischemic vascular dementia.

    Science.gov (United States)

    Raimondi, Catalina; Gleichgerrcht, Ezequiel; Richly, Pablo; Torralva, Teresa; Roca, María; Camino, Julieta; Manes, Facundo

    2012-11-15

    Vascular dementia (VaD) is one of the most prevalent causes of dementia, and it is frequently misdiagnosed and undertreated in clinical practice. Because neuropsychological outcome depends, among other factors, on the size and location of the vascular brain injury, characterizing the cognitive profile of VaD has been especially challenging. Yet, there has been sufficient evidence to show a marked impairment of attention and executive functions, in particular in relation to Alzheimer disease. Being able to detect these deficits at bedside is crucial for everyday clinical practice, and yet, brief cognitive screening toots such as the Mini-Mental Sate Examination (MMSE) may overlook at cognitive deficits typical of patients with VaD. The Addenbrooke's Cognitive Examination Revised (ACE-R) is also a brief cognitive screening tool designed to incorporate the items of the MMSE and further extend the test to assess orientation, attention, verbal fluency, memory, language, and visuospatial abilities. In this study, we investigated the ability of the Spanish version of the ACE-R to detect the cognitive impairment showed in patients with subcortical ischemic vascular dementia, and we compared its usefulness to that of the MMSE in this population. Scores on these tests were compared to those of patients with Alzheimer disease and matched healthy controls. The 88-point cut-off proposed for the ACE-R was associated with a sensitivity of 100% and a specificity of 100% for the detection of cognitive impairment, demonstrating a stronger capacity than the MMSE (sensitivity of 42% with its 23-point cut-off score). We also found that the verbal fluency subtest of the ACE-R may be potentially useful in discriminating patients with subcortical ischemic vascular dementia from patients with AD. We discuss the utility of these findings in the context of everyday clinical practice and we propose that future studies should evaluate the potential usefulness of combining the ACE-R with a

  6. Imaging functional and structural brain connectomics in attention-deficit/hyperactivity disorder.

    Science.gov (United States)

    Cao, Miao; Shu, Ni; Cao, Qingjiu; Wang, Yufeng; He, Yong

    2014-12-01

    Attention-deficit/hyperactivity disorder (ADHD) is one of the most common neurodevelopment disorders in childhood. Clinically, the core symptoms of this disorder include inattention, hyperactivity, and impulsivity. Previous studies have documented that these behavior deficits in ADHD children are associated with not only regional brain abnormalities but also changes in functional and structural connectivity among regions. In the past several years, our understanding of how ADHD affects the brain's connectivity has been greatly advanced by mapping topological alterations of large-scale brain networks (i.e., connectomes) using noninvasive neurophysiological and neuroimaging techniques (e.g., electroencephalograph, functional MRI, and diffusion MRI) in combination with graph theoretical approaches. In this review, we summarize the recent progresses of functional and structural brain connectomics in ADHD, focusing on graphic analysis of large-scale brain systems. Convergent evidence suggests that children with ADHD had abnormal small-world properties in both functional and structural brain networks characterized by higher local clustering and lower global integrity, suggesting a disorder-related shift of network topology toward regular configurations. Moreover, ADHD children showed the redistribution of regional nodes and connectivity involving the default-mode, attention, and sensorimotor systems. Importantly, these ADHD-associated alterations significantly correlated with behavior disturbances (e.g., inattention and hyperactivity/impulsivity symptoms) and exhibited differential patterns between clinical subtypes. Together, these connectome-based studies highlight brain network dysfunction in ADHD, thus opening up a new window into our understanding of the pathophysiological mechanisms of this disorder. These works might also have important implications on the development of imaging-based biomarkers for clinical diagnosis and treatment evaluation in ADHD.

  7. Normal variation in early parental sensitivity predicts child structural brain development.

    Science.gov (United States)

    Kok, Rianne; Thijssen, Sandra; Bakermans-Kranenburg, Marian J; Jaddoe, Vincent W V; Verhulst, Frank C; White, Tonya; van IJzendoorn, Marinus H; Tiemeier, Henning

    2015-10-01

    Early caregiving can have an impact on brain structure and function in children. The influence of extreme caregiving experiences has been demonstrated, but studies on the influence of normal variation in parenting quality are scarce. Moreover, no studies to date have included the role of both maternal and paternal sensitivity in child brain maturation. This study examined the prospective relation between mothers' and fathers' sensitive caregiving in early childhood and brain structure later in childhood. Participants were enrolled in a population-based prenatal cohort. For 191 families, maternal and paternal sensitivity was repeatedly observed when the child was between 1 year and 4 years of age. Head circumference was assessed at 6 weeks, and brain structure was assessed using magnetic resonance imaging (MRI) measurements at 8 years of age. Higher levels of parental sensitivity in early childhood were associated with larger total brain volume (adjusted β = 0.15, p = .01) and gray matter volume (adjusted β = 0.16, p = .01) at 8 years, controlling for infant head size. Higher levels of maternal sensitivity in early childhood were associated with a larger gray matter volume (adjusted β = 0.13, p = .04) at 8 years, independent of infant head circumference. Associations with maternal versus paternal sensitivity were not significantly different. Normal variation in caregiving quality is related to markers of more optimal brain development in children. The results illustrate the important role of both mothers and fathers in child brain development. Copyright © 2015 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.

  8. Progressive subcortical calcifications secondary to venous hypertension in an intracranial dural arteriovenous fistula.

    Science.gov (United States)

    Pascoe, Heather M; Lui, Elaine H; Mitchell, Peter; Gaillard, Frank

    2017-05-01

    Intracranial dural arteriovenous fistulas (dAVF) are acquired lesions, with the most commonly reported findings on CT haemorrhage or focal oedema. We describe a case of progressive subcortical calcification on CT secondary to venous hypertension from a high grade dAVF. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Glycogen distribution in the microwave-fixed mouse brain reveals heterogeneous astrocytic patterns.

    Science.gov (United States)

    Oe, Yuki; Baba, Otto; Ashida, Hitoshi; Nakamura, Kouichi C; Hirase, Hajime

    2016-09-01

    In the brain, glycogen metabolism has been implied in synaptic plasticity and learning, yet the distribution of this molecule has not been fully described. We investigated cerebral glycogen of the mouse by immunohistochemistry (IHC) using two monoclonal antibodies that have different affinities depending on the glycogen size. The use of focused microwave irradiation yielded well-defined glycogen immunoreactive signals compared with the conventional periodic acid-Schiff method. The IHC signals displayed a punctate distribution localized predominantly in astrocytic processes. Glycogen immunoreactivity (IR) was high in the hippocampus, striatum, cortex, and cerebellar molecular layer, whereas it was low in the white matter and most of the subcortical structures. Additionally, glycogen distribution in the hippocampal CA3-CA1 and striatum had a 'patchy' appearance with glycogen-rich and glycogen-poor astrocytes appearing in alternation. The glycogen patches were more evident with large-molecule glycogen in young adult mice but they were hardly observable in aged mice (1-2 years old). Our results reveal brain region-dependent glycogen accumulation and possibly metabolic heterogeneity of astrocytes. GLIA 2016;64:1532-1545. © 2016 The Authors. Glia Published by Wiley Periodicals, Inc.

  10. Glycogen distribution in the microwave‐fixed mouse brain reveals heterogeneous astrocytic patterns

    Science.gov (United States)

    Baba, Otto; Ashida, Hitoshi; Nakamura, Kouichi C.

    2016-01-01

    In the brain, glycogen metabolism has been implied in synaptic plasticity and learning, yet the distribution of this molecule has not been fully described. We investigated cerebral glycogen of the mouse by immunohistochemistry (IHC) using two monoclonal antibodies that have different affinities depending on the glycogen size. The use of focused microwave irradiation yielded well‐defined glycogen immunoreactive signals compared with the conventional periodic acid‐Schiff method. The IHC signals displayed a punctate distribution localized predominantly in astrocytic processes. Glycogen immunoreactivity (IR) was high in the hippocampus, striatum, cortex, and cerebellar molecular layer, whereas it was low in the white matter and most of the subcortical structures. Additionally, glycogen distribution in the hippocampal CA3‐CA1 and striatum had a ‘patchy’ appearance with glycogen‐rich and glycogen‐poor astrocytes appearing in alternation. The glycogen patches were more evident with large‐molecule glycogen in young adult mice but they were hardly observable in aged mice (1–2 years old). Our results reveal brain region‐dependent glycogen accumulation and possibly metabolic heterogeneity of astrocytes. GLIA 2016;64:1532–1545 PMID:27353480

  11. Functional and clinical neuroanatomy of morality.

    Science.gov (United States)

    Fumagalli, Manuela; Priori, Alberto

    2012-07-01

    Morality is among the most sophisticated features of human judgement, behaviour and, ultimately, mind. An individual who behaves immorally may violate ethical rules and civil rights, and may threaten others' individual liberty, sometimes becoming violent and aggressive. In recent years, neuroscience has shown a growing interest in human morality, and has advanced our understanding of the cognitive and emotional processes involved in moral decisions, their anatomical substrates and the neurology of abnormal moral behaviour. In this article, we review research findings that have provided a key insight into the functional and clinical neuroanatomy of the brain areas involved in normal and abnormal moral behaviour. The 'moral brain' consists of a large functional network including both cortical and subcortical anatomical structures. Because morality is a complex process, some of these brain structures share their neural circuits with those controlling other behavioural processes, such as emotions and theory of mind. Among the anatomical structures implicated in morality are the frontal, temporal and cingulate cortices. The prefrontal cortex regulates activity in subcortical emotional centres, planning and supervising moral decisions, and when its functionality is altered may lead to impulsive aggression. The temporal lobe is involved in theory of mind and its dysfunction is often implicated in violent psychopathy. The cingulate cortex mediates the conflict between the emotional and the rational components of moral reasoning. Other important structures contributing to moral behaviour include the subcortical nuclei such as the amygdala, hippocampus and basal ganglia. Brain areas participating in moral processing can be influenced also by genetic, endocrine and environmental factors. Hormones can modulate moral behaviour through their effects on the brain. Finally, genetic polymorphisms can predispose to aggressivity and violence, arguing for a genetic

  12. Beyond sex differences: new approaches for thinking about variation in brain structure and function.

    Science.gov (United States)

    Joel, Daphna; Fausto-Sterling, Anne

    2016-02-19

    In the study of variation in brain structure and function that might relate to sex and gender, language matters because it frames our research questions and methods. In this article, we offer an approach to thinking about variation in brain structure and function that pulls us outside the sex differences formulation. We argue that the existence of differences between the brains of males and females does not unravel the relations between sex and the brain nor is it sufficient to characterize a population of brains. Such characterization is necessary for studying sex effects on the brain as well as for studying brain structure and function in general. Animal studies show that sex interacts with environmental, developmental and genetic factors to affect the brain. Studies of humans further suggest that human brains are better described as belonging to a single heterogeneous population rather than two distinct populations. We discuss the implications of these observations for studies of brain and behaviour in humans and in laboratory animals. We believe that studying sex effects in context and developing or adopting analytical methods that take into account the heterogeneity of the brain are crucial for the advancement of human health and well-being. © 2016 The Author(s).

  13. Children with New-Onset Epilepsy: Neuropsychological Status and Brain Structure

    Science.gov (United States)

    Hermann, Bruce; Jones, Jana; Sheth, Raj; Dow, Christian; Koehn, Monica; Seidenberg, Michael

    2006-01-01

    Abnormalities in cognition, academic performance and brain volumetrics have been reported in children with chronic epilepsy. The nature and degree to which these problems may be present at epilepsy onset or may instead become more evident over time remains to be determined. This study characterizes neuropsychological status, brain structure and…

  14. Individual differences in personality traits reflect structural variance in specific brain regions.

    Science.gov (United States)

    Gardini, Simona; Cloninger, C Robert; Venneri, Annalena

    2009-06-30

    Personality dimensions such as novelty seeking (NS), harm avoidance (HA), reward dependence (RD) and persistence (PER) are said to be heritable, stable across time and dependent on genetic and neurobiological factors. Recently a better understanding of the relationship between personality traits and brain structures/systems has become possible due to advances in neuroimaging techniques. This Magnetic Resonance Imaging (MRI) study investigated if individual differences in these personality traits reflected structural variance in specific brain regions. A large sample of eighty five young adult participants completed the Three-dimensional Personality Questionnaire (TPQ) and had their brain imaged with MRI. A voxel-based correlation analysis was carried out between individuals' personality trait scores and grey matter volume values extracted from 3D brain scans. NS correlated positively with grey matter volume in frontal and posterior cingulate regions. HA showed a negative correlation with grey matter volume in orbito-frontal, occipital and parietal structures. RD was negatively correlated with grey matter volume in the caudate nucleus and in the rectal frontal gyrus. PER showed a positive correlation with grey matter volume in the precuneus, paracentral lobule and parahippocampal gyrus. These results indicate that individual differences in the main personality dimensions of NS, HA, RD and PER, may reflect structural variance in specific brain areas.

  15. Breastfeeding and Childhood IQ: The Mediating Role of Gray Matter Volume

    Science.gov (United States)

    Luby, Joan L.; Belden, Andy C.; Whalen, Diana; Harms, Michael P.; Barch, Deanna M.

    2016-01-01

    Objective A substantial body of literature has established the positive effect of breastfeeding on child developmental outcomes. There is increasing consensus that breastfed children have higher IQs after accounting for key variables, including maternal education, IQ, and socioeconomic status. Cross-sectional investigations of the effects of breastfeeding on structural brain development suggest that breastfed infants have larger whole brain, cortical, and white matter volumes. To date, few studies have related these measures of brain structure to IQ in breastfed versus nonbreastfed children in a longitudinal sample. Method Data were derived from the Preschool Depression Study (PDS), a prospective longitudinal study in which children and caregivers were assessed annually for 8 waves over 11 years. A subset completed neuroimaging between the ages of 9.5 and 14.11 years. A total of 148 individuals had breastfeeding data at baseline and complete data on all variables of interest, including IQ and structural neuroimaging. General linear models and process mediation models were used. Results Breastfed children had significantly higher IQ scores and larger whole brain, total gray matter, total cortical gray matter, and subcortical gray matter volumes compared with the nonbreastfed group in models that covaried for key variables. Subcortical gray matter volume significantly mediated the association between breast-feeding and children's IQ scores. Conclusion The study findings suggest that the effects of breastfeeding on child IQ are mediated through subcortical gray volume. This effect and putative mechanism is of public health significance and further supports the importance of breastfeeding in mental health promotion. PMID:27126850

  16. Structurally-constrained relationships between cognitive states in the human brain.

    Directory of Open Access Journals (Sweden)

    Ann M Hermundstad

    2014-05-01

    Full Text Available The anatomical connectivity of the human brain supports diverse patterns of correlated neural activity that are thought to underlie cognitive function. In a manner sensitive to underlying structural brain architecture, we examine the extent to which such patterns of correlated activity systematically vary across cognitive states. Anatomical white matter connectivity is compared with functional correlations in neural activity measured via blood oxygen level dependent (BOLD signals. Functional connectivity is separately measured at rest, during an attention task, and during a memory task. We assess these structural and functional measures within previously-identified resting-state functional networks, denoted task-positive and task-negative networks, that have been independently shown to be strongly anticorrelated at rest but also involve regions of the brain that routinely increase and decrease in activity during task-driven processes. We find that the density of anatomical connections within and between task-positive and task-negative networks is differentially related to strong, task-dependent correlations in neural activity. The space mapped out by the observed structure-function relationships is used to define a quantitative measure of separation between resting, attention, and memory states. We find that the degree of separation between states is related to both general measures of behavioral performance and relative differences in task-specific measures of attention versus memory performance. These findings suggest that the observed separation between cognitive states reflects underlying organizational principles of human brain structure and function.

  17. High frequency of silent brain infarcts associated with cognitive deficits in an economically disadvantaged population.

    Science.gov (United States)

    Squarzoni, Paula; Tamashiro-Duran, Jaqueline H; Duran, Fabio L S; Leite, Claudia C; Wajngarten, Mauricio; Scazufca, Marcia; Menezes, Paulo R; Lotufo, Paulo A; Alves, Tania C T F; Busatto, Geraldo F

    2017-08-01

    Using magnetic resonance imaging, we aimed to assess the presence of silent brain vascular lesions in a sample of apparently healthy elderly individuals who were recruited from an economically disadvantaged urban region (São Paulo, Brazil). We also wished to investigate whether the findings were associated with worse cognitive performance. A sample of 250 elderly subjects (66-75 years) without dementia or neuropsychiatric disorders were recruited from predefined census sectors of an economically disadvantaged area of Sao Paulo and received structural magnetic resonance imaging scans and cognitive testing. A high proportion of individuals had very low levels of education (4 years or less, n=185; 21 with no formal education). The prevalence of at least one silent vascular-related cortical or subcortical lesion was 22.8% (95% confidence interval, 17.7-28.5), and the basal ganglia was the most frequently affected site (63.14% of cases). The subgroup with brain infarcts presented significantly lower levels of education than the subgroup with no brain lesions as well as significantly worse current performance in cognitive test domains, including memory and attention (pcognitive deficits, and in the absence of magnetic resonance imaging data, this cognitive impairment may be considered simply related to ageing. Emphatic attention should be paid to potentially deleterious effects of vascular brain lesions in poorly educated elderly individuals from economically disadvantaged environments.

  18. Altered resting brain function and structure in professional badminton players.

    Science.gov (United States)

    Di, Xin; Zhu, Senhua; Jin, Hua; Wang, Pin; Ye, Zhuoer; Zhou, Ke; Zhuo, Yan; Rao, Hengyi

    2012-01-01

    Neuroimaging studies of professional athletic or musical training have demonstrated considerable practice-dependent plasticity in various brain structures, which may reflect distinct training demands. In the present study, structural and functional brain alterations were examined in professional badminton players and compared with healthy controls using magnetic resonance imaging (MRI) and resting-state functional MRI. Gray matter concentration (GMC) was assessed using voxel-based morphometry (VBM), and resting-brain functions were measured by amplitude of low-frequency fluctuation (ALFF) and seed-based functional connectivity. Results showed that the athlete group had greater GMC and ALFF in the right and medial cerebellar regions, respectively. The athlete group also demonstrated smaller ALFF in the left superior parietal lobule and altered functional connectivity between the left superior parietal and frontal regions. These findings indicate that badminton expertise is associated with not only plastic structural changes in terms of enlarged gray matter density in the cerebellum, but also functional alterations in fronto-parietal connectivity. Such structural and functional alterations may reflect specific experiences of badminton training and practice, including high-capacity visuo-spatial processing and hand-eye coordination in addition to refined motor skills.

  19. Occipital lobe seizures and subcortical T2 and T2* hypointensity associated with nonketotic hyperglycemia: a case report.

    Science.gov (United States)

    Sasaki, Fuyuko; Kawajiri, Sumihiro; Nakajima, Sho; Yamaguchi, Ai; Tomizawa, Yuji; Noda, Kazuyuki; Hattori, Nobutaka; Okuma, Yasuyuki

    2016-08-12

    Nonketotic hyperglycemia often causes seizures. Recently, seizures associated with nonketotic hyperglycemia have been found to be associated with subcortical T2 hypointensity on magnetic resonance imaging, especially in the occipital lobes. However, the mechanism remains unclear, although iron accumulation is suggested. We present a case of occipital lobe seizures associated with nonketotic hyperglycemia supporting the hypothesis that the mechanism of subcortical T2 hypointensity is iron accumulation using gradient-echo T2*-weighted magnetic resonance imaging. A 65-year-old Japanese man complained of intermittent pastel-colored flashing lights. On neurological examination, he also had lower right-side quadrant hemianopia. No other abnormal neurological findings were found. On laboratory analysis, his blood glucose level was 370 mg/dL, HbA1c was 11.4 %, and serum osmolarity was 326 mOsm/L. No ketones were detected in urine. A magnetic resonance imaging scan of his head showed subcortical T2 and T2* hypointensity in his left occipital lobe. Single-photon emission computed tomography with I123-N-isopropyl-iodoamphetamine revealed hyperperfusion in the left dominant occipital lobe. These magnetic resonance imaging abnormalities resolved during clinical recovery and treatment to control his blood sugar level. Therefore, a diagnosis of occipital lobe seizures associated with nonketotic hyperglycemia was made. To the best of our knowledge, this is the first case of occipital lobe seizures associated with nonketotic hyperglycemia supporting the role of iron accumulation as a mechanism for subcortical T2 hypointensity using T2*-magnetic resonance imaging.

  20. Brain Structure Linking Delay Discounting and Academic Performance.

    Science.gov (United States)

    Wang, Song; Kong, Feng; Zhou, Ming; Chen, Taolin; Yang, Xun; Chen, Guangxiang; Gong, Qiyong

    2017-08-01

    As a component of self-discipline, delay discounting refers to the ability to wait longer for preferred rewards and plays a pivotal role in shaping students' academic performance. However, the neural basis of the association between delay discounting and academic performance remains largely unknown. Here, we examined the neuroanatomical substrates underlying delay discounting and academic performance in 214 adolescents via voxel-based morphometry (VBM) by performing structural magnetic resonance imaging (S-MRI). Behaviorally, we confirmed the significant correlation between delay discounting and academic performance. Neurally, whole-brain regression analyses indicated that regional gray matter volume (rGMV) of the left dorsolateral prefrontal cortex (DLPFC) was associated with both delay discounting and academic performance. Furthermore, delay discounting partly accounted for the association between academic performance and brain structure. Differences in the rGMV of the left DLPFC related to academic performance explained over one-third of the impact of delay discounting on academic performance. Overall, these results provide the first evidence for the common neural basis linking delay discounting and academic performance. Hum Brain Mapp 38:3917-3926, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. Reduced Gyrification Is Related to Reduced Interhemispheric Connectivity in Autism Spectrum Disorders

    NARCIS (Netherlands)

    Bos, Dienke J.; Merchán-Naranjo, Jessica; Martínez, Kenia; Pina-Camacho, Laura; Balsa, Ivan; Boada, Leticia; Schnack, Hugo; Oranje, Bob; Desco, Manuel; Arango, Celso; Parellada, Mara; Durston, Sarah; Janssen, Joost

    2015-01-01

    Objective Autism spectrum disorders (ASD) have been associated with atypical cortical gray and subcortical white matter development. Neurodevelopmental theories postulate that a relation between cortical maturation and structural brain connectivity may exist. We therefore investigated the

  2. The impact of large structural brain changes in chronic stroke patients on the electric field caused by transcranial brain stimulation

    DEFF Research Database (Denmark)

    Minjoli, Sena; Saturnino, Guilherme B.; Blicher, Jakob Udby

    2017-01-01

    aimed to characterize the impact of these changes on the spatial distribution of the electric field generated by both TBS methods. In addition to confirming the safety of TBS in the presence of large stroke-related structural changes, our aim was to clarify whether targeted stimulation is still possible....... Realistic head models containing large cortical and subcortical stroke lesions in the right parietal cortex were created using MR images of two patients. For TMS, the electric field of a double coil was simulated using the finite-element method. Systematic variations of the coil position relative...... to the lesion were tested. For TDCS, the finite-element method was used to simulate a standard approach with two electrode pads, and the position of one electrode was systematically varied. For both TMS and TDCS, the lesion caused electric field " hot spots" in the cortex. However, these maxima were...

  3. ADVANCED OPTICAL TECHNIQUES TO EXPLORE BRAIN STRUCTURE AND FUNCTION

    OpenAIRE

    Silvestri, L.; Mascaro, A. L. Allegra; Lotti, J.; Sacconi, L.; Pavone, F. S.

    2013-01-01

    Understanding brain structure and function, and the complex relationships between them, is one of the grand challenges of contemporary sciences. Thanks to their flexibility, optical techniques could be the key to explore this complex network. In this manuscript, we briefly review recent advancements in optical methods applied to three main issues: anatomy, plasticity and functionality. We describe novel implementations of light-sheet microscopy to resolve neuronal anatomy in whole fixed brain...

  4. Dynamic functional brain networks involved in simple visual discrimination learning.

    Science.gov (United States)

    Fidalgo, Camino; Conejo, Nélida María; González-Pardo, Héctor; Arias, Jorge Luis

    2014-10-01

    Visual discrimination tasks have been widely used to evaluate many types of learning and memory processes. However, little is known about the brain regions involved at different stages of visual discrimination learning. We used cytochrome c oxidase histochemistry to evaluate changes in regional brain oxidative metabolism during visual discrimination learning in a water-T maze at different time points during training. As compared with control groups, the results of the present study reveal the gradual activation of cortical (prefrontal and temporal cortices) and subcortical brain regions (including the striatum and the hippocampus) associated to the mastery of a simple visual discrimination task. On the other hand, the brain regions involved and their functional interactions changed progressively over days of training. Regions associated with novelty, emotion, visuo-spatial orientation and motor aspects of the behavioral task seem to be relevant during the earlier phase of training, whereas a brain network comprising the prefrontal cortex was found along the whole learning process. This study highlights the relevance of functional interactions among brain regions to investigate learning and memory processes. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Volume of Structures in the Fetal Brain Measured with a New Semiautomated Method.

    Science.gov (United States)

    Ber, R; Hoffman, D; Hoffman, C; Polat, A; Derazne, E; Mayer, A; Katorza, E

    2017-11-01

    Measuring the volume of fetal brain structures is challenging due to fetal motion, low resolution, and artifacts caused by maternal tissue. Our aim was to introduce a new, simple, Matlab-based semiautomated method to measure the volume of structures in the fetal brain and present normal volumetric curves of the structures measured. The volume of the supratentorial brain, left and right hemispheres, cerebellum, and left and right eyeballs was measured retrospectively by the new semiautomated method in MR imaging examinations of 94 healthy fetuses. Four volume ratios were calculated. Interobserver agreement was calculated with the intraclass correlation coefficient, and a Bland-Altman plot was drawn for comparison of manual and semiautomated method measurements of the supratentorial brain. We present normal volumetric curves and normal percentile values of the structures measured according to gestational age and of the ratios between the cerebellum and the supratentorial brain volume and the total eyeball and the supratentorial brain volume. Interobserver agreement was good or excellent for all structures measured. The Bland-Altman plot between manual and semiautomated measurements showed a maximal relative difference of 7.84%. We present a technologically simple, reproducible method that can be applied prospectively and retrospectively on any MR imaging protocol, and we present normal volumetric curves measured. The method shows results like manual measurements while being less time-consuming and user-dependent. By applying this method on different cranial and extracranial structures, anatomic and pathologic, we believe that fetal volumetry can turn from a research tool into a practical clinical one. © 2017 by American Journal of Neuroradiology.

  6. Do manual and voxel-based morphometry measure the same? – A proof of concept study

    Directory of Open Access Journals (Sweden)

    Niels K. Focke

    2014-04-01

    Full Text Available Voxel-based morphometry (VBM is a commonly used method to study volumetric variations on a whole brain basis. However it is often criticised for potential confounds, mainly based on imperfect spatial registration. We therefore aimed to evaluate if VBM and gold-standard manual volumetry are measuring the same effects with respect to subcortical grey matter volumes. Manual regions-of-interest (ROIs were drawn in the hippocampus, amygdala, nucleus accumbens, thalamus, putamen, pallidum and caudate nucleus bilaterally. Resulting volumes were used for a whole brain VBM correlation analysis with SPM8. The hippocampus, amygdala, putamen and caudate nucleus were correctly identified by SPM using the contemporary high-dimensional normalization (DARTEL toolbox. This strongly suggests that VBM and manual volumetry both are indeed measuring the same effects with regard to subcortical brain structures.

  7. Fundamental Dynamical Modes Underlying Human Brain Synchronization

    Directory of Open Access Journals (Sweden)

    Catalina Alvarado-Rojas

    2012-01-01

    Full Text Available Little is known about the long-term dynamics of widely interacting cortical and subcortical networks during the wake-sleep cycle. Using large-scale intracranial recordings of epileptic patients during seizure-free periods, we investigated local- and long-range synchronization between multiple brain regions over several days. For such high-dimensional data, summary information is required for understanding and modelling the underlying dynamics. Here, we suggest that a compact yet useful representation is given by a state space based on the first principal components. Using this representation, we report, with a remarkable similarity across the patients with different locations of electrode placement, that the seemingly complex patterns of brain synchrony during the wake-sleep cycle can be represented by a small number of characteristic dynamic modes. In this space, transitions between behavioral states occur through specific trajectories from one mode to another. These findings suggest that, at a coarse level of temporal resolution, the different brain states are correlated with several dominant synchrony patterns which are successively activated across wake-sleep states.

  8. Diffusion and ADC-map images detect ongoing demyelination on subcortical white matter in an adult metachromatic leukodystrophy patient with autoimmune Hashimoto thyroiditis

    Science.gov (United States)

    Miura, Akiko; Kumabe, Yuri; Kimura, En; Yamashita, Satoshi; Ueda, Akihiko; Hirano, Teruyuki; Uchino, Makoto

    2010-01-01

    Adult-onset metachromatic leukodystrophy (MLD) often shows schizophrenia- or encephalopathy-like symptoms at an early stage, such as behavioural abnormalities, cognitive impairment, mood disorders and hallucinations. The authors report the case of an adult woman with MLD who had been given antipsychotic medication for schizophrenia. In the differential diagnosis, screening of auto-antibodies was important for ruling out other encephalopathies as she had a euthyroid Hashimoto thyroiditis. Diagnosis was based the results of MRI, nerve conduction velocity, sensory evoked potential, motor evoked potential, lysosomal enzyme activity and gene analysis studies. Brain MRI showed diffuse demyelination spreading from the deep white matter to subcortical area as high signals at the edges of these lesions in diffusion and apparent diffusion coefficient-map images with the U-fibres conserved. The authors diagnosed adult-onset MLD coexisting with euthyroid autoimmune Hashimoto thyroiditis. PMID:22798296

  9. The influence of sex steroids on structural brain maturation in adolescence

    NARCIS (Netherlands)

    Koolschijn, P.C.M.P.; Peper, J.S.; Crone, E.A.

    2014-01-01

    Puberty reflects a period of hormonal changes, physical maturation and structural brain reorganization. However, little attention has been paid to what extent sex steroids and pituitary hormones are associated with the refinement of brain maturation across adolescent development. Here we used

  10. Motor network structure and function are associated with motor performance in Huntington's disease.

    Science.gov (United States)

    Müller, Hans-Peter; Gorges, Martin; Grön, Georg; Kassubek, Jan; Landwehrmeyer, G Bernhard; Süßmuth, Sigurd D; Wolf, Robert Christian; Orth, Michael

    2016-03-01

    In Huntington's disease, the relationship of brain structure, brain function and clinical measures remains incompletely understood. We asked how sensory-motor network brain structure and neural activity relate to each other and to motor performance. Thirty-four early stage HD and 32 age- and sex-matched healthy control participants underwent structural magnetic resonance imaging (MRI), diffusion tensor, and intrinsic functional connectivity MRI. Diffusivity patterns were assessed in the cortico-spinal tract and the thalamus-somatosensory cortex tract. For the motor network connectivity analyses the dominant M1 motor cortex region and for the basal ganglia-thalamic network the thalamus were used as seeds. Region to region structural and functional connectivity was examined between thalamus and somatosensory cortex. Fractional anisotropy (FA) was higher in HD than controls in the basal ganglia, and lower in the external and internal capsule, in the thalamus, and in subcortical white matter. Between-group axial and radial diffusivity differences were more prominent than differences in FA, and correlated with motor performance. Within the motor network, the insula was less connected in HD than in controls, with the degree of connection correlating with motor scores. The basal ganglia-thalamic network's connectivity differed in the insula and basal ganglia. Tract specific white matter diffusivity and functional connectivity were not correlated. In HD sensory-motor white matter organization and functional connectivity in a motor network were independently associated with motor performance. The lack of tract-specific association of structure and function suggests that functional adaptation to structural loss differs between participants.

  11. Cognitive Impairment and Brain Imaging Characteristics of Patients with Congenital Cataracts, Facial Dysmorphism, Neuropathy Syndrome

    Directory of Open Access Journals (Sweden)

    Teodora Chamova

    2015-01-01

    Full Text Available Congenital cataracts, facial dysmorphism, neuropathy (CCFDN syndrome is a complex autosomal recessive multisystem disorder. The aim of the current study is to evaluate the degree of cognitive impairment in a cohort of 22 CCFDN patients and its correlation with patients’ age, motor disability, ataxia, and neuroimaging changes. Twenty-two patients with genetically confirmed diagnosis of CCFDN underwent a detailed neurological examination. Verbal and nonverbal intelligence, memory, executive functions, and verbal fluency wеre assessed in all the patients aged 4 to 47 years. Brain magnetic resonance imaging was performed in 20 affected patients. Eighteen affected were classified as having mild intellectual deficit, whereas 4 had borderline intelligence. In all psychometric tests, evaluating different cognitive domains, CCFDN patients had statistically significant lower scores when compared to the healthy control group. All cognitive domains seemed equally affected. The main abnormalities on brain MRI found in 19/20 patients included diffuse cerebral atrophy, enlargement of the lateral ventricles, and focal lesions in the subcortical white matter, different in number and size, consistent with demyelination more pronounced in the older CCFDN patients. The correlation analysis of the structural brain changes and the cognitive impairment found a statistically significant correlation only between the impairment of short-term verbal memory and the MRI changes.

  12. Subcortical and cortical correlates of pitch discrimination: Evidence for two levels of neuroplasticity in musicians

    DEFF Research Database (Denmark)

    Bianchi, Federica; Hjortkjær, Jens; Santurette, Sébastien

    2017-01-01

    superior temporal gyrus, Heschl's gyrus, insular cortex, inferior frontal gyrus, and in the inferior colliculus. Both subcortical and cortical neural responses predicted the individual pitch-discrimination performance. However, functional activity in the inferior colliculus correlated with differences...

  13. Quantifying structural alterations in Alzheimer's disease brains using quantitative phase imaging (Conference Presentation)

    Science.gov (United States)

    Lee, Moosung; Lee, Eeksung; Jung, JaeHwang; Yu, Hyeonseung; Kim, Kyoohyun; Yoon, Jonghee; Lee, Shinhwa; Jeong, Yong; Park, YongKeun

    2017-02-01

    Imaging brain tissues is an essential part of neuroscience because understanding brain structure provides relevant information about brain functions and alterations associated with diseases. Magnetic resonance imaging and positron emission tomography exemplify conventional brain imaging tools, but these techniques suffer from low spatial resolution around 100 μm. As a complementary method, histopathology has been utilized with the development of optical microscopy. The traditional method provides the structural information about biological tissues to cellular scales, but relies on labor-intensive staining procedures. With the advances of illumination sources, label-free imaging techniques based on nonlinear interactions, such as multiphoton excitations and Raman scattering, have been applied to molecule-specific histopathology. Nevertheless, these techniques provide limited qualitative information and require a pulsed laser, which is difficult to use for pathologists with no laser training. Here, we present a label-free optical imaging of mouse brain tissues for addressing structural alteration in Alzheimer's disease. To achieve the mesoscopic, unlabeled tissue images with high contrast and sub-micrometer lateral resolution, we employed holographic microscopy and an automated scanning platform. From the acquired hologram of the brain tissues, we could retrieve scattering coefficients and anisotropies according to the modified scattering-phase theorem. This label-free imaging technique enabled direct access to structural information throughout the tissues with a sub-micrometer lateral resolution and presented a unique means to investigate the structural changes in the optical properties of biological tissues.

  14. Language Development and Brain Magnetic Resonance Imaging Characteristics in Preschool Children With Cerebral Palsy.

    Science.gov (United States)

    Choi, Ja Young; Choi, Yoon Seong; Park, Eun Sook

    2017-05-24

    The purpose of this study was to investigate characteristics of language development in relation to brain magnetic resonance imaging (MRI) characteristics and the other contributing factors to language development in children with cerebral palsy (CP). The study included 172 children with CP who underwent brain MRI and language assessments between 3 and 7 years of age. The MRI characteristics were categorized as normal, malformation, periventricular white matter lesion (PVWL), deep gray matter lesion, focal infarct, cortical/subcortical lesion, and others. Neurodevelopmental outcomes such as ambulatory status, manual ability, cognitive function, and accompanying impairments were assessed. Both receptive and expressive language development quotients (DQs) were significantly related to PVWL or deep gray matter lesion severity. In multivariable analysis, only cognitive function was significantly related to receptive language development, whereas ambulatory status and cognitive function were significantly associated with expressive language development. More than one third of the children had a language developmental discrepancy between receptive and expressive DQs. Children with cortical/subcortical lesions were at high risk for this discrepancy. Cognitive function is a key factor for both receptive and expressive language development. In children with PVWL or deep gray matter lesion, lesion severity seems to be useful to predict language development.

  15. Uncovering intrinsic modular organization of spontaneous brain activity in humans.

    Directory of Open Access Journals (Sweden)

    Yong He

    Full Text Available The characterization of topological architecture of complex brain networks is one of the most challenging issues in neuroscience. Slow (<0.1 Hz, spontaneous fluctuations of the blood oxygen level dependent (BOLD signal in functional magnetic resonance imaging are thought to be potentially important for the reflection of spontaneous neuronal activity. Many studies have shown that these fluctuations are highly coherent within anatomically or functionally linked areas of the brain. However, the underlying topological mechanisms responsible for these coherent intrinsic or spontaneous fluctuations are still poorly understood. Here, we apply modern network analysis techniques to investigate how spontaneous neuronal activities in the human brain derived from the resting-state BOLD signals are topologically organized at both the temporal and spatial scales. We first show that the spontaneous brain functional networks have an intrinsically cohesive modular structure in which the connections between regions are much denser within modules than between them. These identified modules are found to be closely associated with several well known functionally interconnected subsystems such as the somatosensory/motor, auditory, attention, visual, subcortical, and the "default" system. Specifically, we demonstrate that the module-specific topological features can not be captured by means of computing the corresponding global network parameters, suggesting a unique organization within each module. Finally, we identify several pivotal network connectors and paths (predominantly associated with the association and limbic/paralimbic cortex regions that are vital for the global coordination of information flow over the whole network, and we find that their lesions (deletions critically affect the stability and robustness of the brain functional system. Together, our results demonstrate the highly organized modular architecture and associated topological properties in

  16. The Association Between Specific Substances of Abuse and Subcortical Intracerebral Hemorrhage versus Ischemic Lacunar Infarction

    Directory of Open Access Journals (Sweden)

    Emma H Kaplan

    2014-09-01

    Full Text Available Background: Hypertension damages small vessels, resulting in both lacunar infarction and subcortical intracerebral hemorrhage (ICH. Substance abuse has also been linked to small vessel pathology. This study explores whether the use of specific substances (eg., cocaine, tobacco is associated with subcortical ICH over ischemia in hypertensive individuals.Methods: Patients with hypertension, admitted with lacunar infarcts (measuring 1 drink per day (women, >2 drinks per day (men. Logistic regression was performed with ICH as the dependent variable comparing those presenting with ICH to those presenting with ischemia.Results: Of the 580 patients included in analysis, 217 (37% presented with ICH. The average age was similar between the two groups (64.7 versus 66.3 years. Illicit/controlled drug use was associated with a significantly increased risk of ICH over stroke in unadjusted models (25% versus 15%, p=0.02, with the largest effect seen in users ≥65 years old (not statistically significant. Smoking was associated with ischemia over ICH in a dose-dependent manner: any history of smoking OR 1.84, CI 1.19-2.84; current use OR 2.23, CI 1.37-3.62; heavy use OR 2.48, CI 1.50-4.13. Alcohol use was not preferentially associated with either outcome (p=0.29.Conclusions: In hypertensive patients, tobacco use is associated with an increased risk of subcortical ischemia compared to ICH; while use of illicit/controlled substances appears to be predictive of hemorrhage.

  17. The Association between Specific Substances of Abuse and Subcortical Intracerebral Hemorrhage Versus Ischemic Lacunar Infarction.

    Science.gov (United States)

    Kaplan, Emma H; Gottesman, Rebecca F; Llinas, Rafael H; Marsh, Elisabeth B

    2014-01-01

    Hypertension damages small vessels, resulting in both lacunar infarction and subcortical intracerebral hemorrhage (ICH). Substance abuse has also been linked to small vessel pathology. This study explores whether the use of specific substances (e.g., cocaine, tobacco) is associated with subcortical ICH over ischemia in hypertensive individuals. Patients with hypertension, admitted with lacunar infarcts (measuring 1 drink per day (women), >2 drinks per day (men). Logistic regression was performed with ICH as the dependent variable comparing those presenting with ICH to those presenting with ischemia. Of the 580 patients included in analysis, 217 (37%) presented with ICH. The average age was similar between the two groups (64.7 versus 66.3 years). Illicit/controlled drug use was associated with a significantly increased risk of ICH over stroke in unadjusted models (25 versus 15%, p = 0.02), with the largest effect seen in users ≥65 years old (not statistically significant). Smoking was associated with ischemia over ICH in a dose-dependent manner: any history of smoking OR 1.84, CI 1.19-2.84; current use OR 2.23, CI 1.37-3.62; heavy use OR 2.48, CI 1.50-4.13. Alcohol use was not preferentially associated with either outcome (p = 0.29). In hypertensive patients, tobacco use is associated with an increased risk of subcortical ischemia compared to ICH, while use of illicit/controlled substances appears to be predictive of hemorrhage.

  18. Brain structural changes associated with chronicity and antipsychotic treatment in schizophrenia.

    Science.gov (United States)

    Tomelleri, Luisa; Jogia, Jigar; Perlini, Cinzia; Bellani, Marcella; Ferro, Adele; Rambaldelli, Gianluca; Tansella, Michele; Frangou, Sophia; Brambilla, Paolo

    2009-12-01

    Accumulating evidence suggest a life-long impact of disease related mechanisms on brain structure in schizophrenia which may be modified by antipsychotic treatment. The aim of the present study was to investigate in a large sample of patients with schizophrenia the effect of illness duration and antipsychotic treatment on brain structure. Seventy-one schizophrenic patients and 79 age and gender matched healthy participants underwent brain magnetic resonance imaging (MRI). All images were processed with voxel based morphometry, using SPM5. Compared to healthy participants, patients showed decrements in gray matter volume in the left medial and left inferior frontal gyrus. In addition, duration of illness was negatively associated with gray matter volume in prefrontal regions bilaterally, in the temporal pole on the left and the caudal superior temporal gyrus on the right. Cumulative exposure to antipsychotics correlated positively with gray matter volumes in the cingulate gyrus for typical agents and in the thalamus for atypical drugs. These findings (a) indicate that structural abnormalities in prefrontal and temporal cortices in schizophrenia are progressive and, (b) suggest that antipsychotic medication has a significant impact on brain morphology.

  19. Subcortical laminar heterotopia in two sisters and their mother : MRI, clinical findings and pathogenesis

    NARCIS (Netherlands)

    van der Valk, PHM; Snoeck, [No Value; Meiners, LC; des Portes, [No Value; Chelly, J; Pinard, JM; Ippel, PF; van Nieuwenhuizen, O

    MR imaging, clinical data and underlying pathogenesis of subcortical laminar heterotopia (SCLH), also known as band heterotopia, in two sisters and their mother are presented. On MR imaging a different degree of SCLH was found in all three affected family-members. The inversion recovery sequence was

  20. Early MR detection of cortical and subcortical hypoxic-ischemic encephalopathy in full-term-infants

    International Nuclear Information System (INIS)

    Christophe, C.; Clercx, A.; Blum, D.; Hasaerts, D.; Segebarth, C.; Perlmutter, N.

    1994-01-01

    Four observations illustrate the potential of MR imaging in the early depiction of multiple types of neuropathologic lesions which may coexist in the full-term newborn, upon severe hypoxic-ischemic encephalopathy (HIE). In particular, diffuse, postnatal involvement of cerebral cortex and subcortical white matter (WM) is demonstrated. Cortical hyperintensity on both proton-density- and T1-weighted images is probably related to cellular necrosis which is distributed diffusely or parasigattally. Hyperintense, frontal, subcortical WM edging on proton-density-weighted images results from the increase of water concentration, induced either by infract or by edema. Diffuse WM areas of low intensity on T1-weighted images and of high intensity on T2-weighted images are presumably related to cytotoxic and/or vasogenic edema, proportional to the underlying damaged tissues. On follow-up MR examinations, several months later, the importance of cortical atrophy and of the myelination delay appeared related to the importance of the lesions detected during the post-natal period. (orig.)