WorldWideScience

Sample records for subcooled liquid water

  1. Effects of Parallel Channel Interactions, Steam Flow, Liquid Subcool ...

    African Journals Online (AJOL)

    Tests were performed to examine the effects of parallel channel interactions, steam flow, liquid subcool and channel heat addition on the delivery of liquid from the upper plenum into the channels and lower plenum of Boiling Water Nuclear Power Reactors during reflood transients. Early liquid delivery into the channels, ...

  2. Determination of the subcooled liquid solubilities of PAHs in partitioning batch experiments

    Directory of Open Access Journals (Sweden)

    Lihua Liu

    2013-01-01

    Full Text Available Subcooled liquid solubility is the water solubility for a hypothetical state of liquid. It is an important parameter for multicomponent nonaqueous phase liquids (NAPLs containing polycyclic aromatic hydrocarbons (PAHs, which can exist as liquids even though most of the solutes are solid in their pure form at ambient temperature. So far, subcooled liquid solubilities were estimated from the solid water solubility and fugacity ratio of the solid and (subcooled liquid phase, but rarely derived from experimental data. In our study, partitioning batch experiments were performed to determine the subcooled liquid solubility of PAHs in NAPL-water system. For selected PAH, a series of batch experiments were carried out at increased mole fractions of the target component in the NAPL and at a constant NAPL/water volume ratio. The equilibrium aqueous PAH concentrations were measured with HPLC and/or GC-MS. The subcooled liquid solubility was derived by extrapolation of the experimental equilibrium aqueous concentration to a mole fraction of unity. With the derived subcooled liquid solubility, the fugacity ratio and enthalpy of fusion of the solute were also estimated. Our results show a good agreement between the experimentally determined and published data.

  3. Interfacial instability of a condensing vapor bubble in a subcooled liquid

    Science.gov (United States)

    Ueno, I.; Ando, J.; Koiwa, Y.; Saiki, T.; Kaneko, T.

    2015-03-01

    A special attention is paid to the condensing and collapsing processes of vapor bubble injected into a subcooled pool. We try to extract the vapor-liquid interaction by employing a vapor generator that supplies vapor to the subcooled pool through an orifice instead of using a immersed heating surface to realize vapor bubbles by boiling phenomenon. This system enables ones to detect a spatio-temporal behavior of a single bubble of superheated vapor exposed to a subcooled liquid. In the present study, vapor of water is injected through an orifice at constant flow rate to the subcooled pool of water at the designated degree of subcooling under the atmospheric pressure. The degree of subcooling of the pool is ranged from 0 K to 70 K, and the vapor temperature is kept constant at 101 ∘C. The behaviors of the injected vapor are captured by high-speed camera at frame rate up to 0.3 million frame per second (fps) to track the temporal variation of the vapor bubble shape. It is found that the abrupt collapse of the vapor bubble exposed to the subcooled pool takes place under the condition that the degree of subcooling is greater than around 30 K, and that the abrupt collapse always takes place accompanying the fine disturbances or instability emerged on the free surface. We then evaluate a temporal variation of the apparent `volume' of the bubble V under the assumption of the axisymmetric shape of the vapor bubble. It is also found that the instability emerges slightly after the volume of the vapor bubble reaches the maximum value. It is evaluated that the second derivative of the corresponding `radius' R of the vapor bubble is negative when the instability appears on the bubble surface, where R = 3√ 3V/4π. We also illustrate that the wave number of the instability on the liquid-vapor interface increases as the degree of subcooling.

  4. Liquid Acquisition Device Testing with Sub-Cooled Liquid Oxygen

    Science.gov (United States)

    Jurns, John M.; McQuillen, John B.

    2008-01-01

    When transferring propellant in space, it is most efficient to transfer single phase liquid from a propellant tank to an engine. In earth s gravity field or under acceleration, propellant transfer is fairly simple. However, in low gravity, withdrawing single-phase fluid becomes a challenge. A variety of propellant management devices (PMD) are used to ensure single-phase flow. One type of PMD, a liquid acquisition device (LAD) takes advantage of capillary flow and surface tension to acquire liquid. Previous experimental test programs conducted at NASA have collected LAD data for a number of cryogenic fluids, including: liquid nitrogen (LN2), liquid oxygen (LOX), liquid hydrogen (LH2), and liquid methane (LCH4). The present work reports on additional testing with sub-cooled LOX as part of NASA s continuing cryogenic LAD development program. Test results extend the range of LOX fluid conditions examined, and provide insight into factors affecting predicting LAD bubble point pressures.

  5. Critical discharge of initially subcooled water through slits. [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)

    Amos, C N; Schrock, V E

    1983-09-01

    This report describes an experimental investigation into the critical flow of initially subcooled water through rectangular slits. The study of such flows is relevant to the prediction of leak flow rates from cracks in piping, or pressure vessels, which contain sufficient enthalpy that vaporization will occur if they are allowed to expand to the ambient pressure. Two new analytical models, which allow for the generation of a metastable liquid phase, are developed. Experimental results are compared with the predictions of both these new models and with a Fanno Homogeneous Equilibrium Model.

  6. On the influence of water subcooling and melt jet parameters on debris formation

    Energy Technology Data Exchange (ETDEWEB)

    Manickam, Louis, E-mail: louis@safety.sci.kth.se; Kudinov, Pavel; Ma, Weimin; Bechta, Sevostian; Grishchenko, Dmitry

    2016-12-01

    Highlights: • Melt and water configuration effects on debris formation is studied experimentally. • Melt superheat and water subcooling are most influential compared to jet size. • Melt-water configuration and material properties influence particle fracture rate. • Results are compared with large scale experiments to study effect of spatial scales. - Abstract: Breakup of melt jet and formation of a porous debris bed at the base-mat of a flooded reactor cavity is expected during the late stages of a severe accident in light water reactors. Debris bed coolability is determined by the bed properties including particle size, morphology, bed height and shape as well as decay heat. Therefore understanding of the debris formation phenomena is important for assessment of debris bed coolability. A series of experiments was conducted in MISTEE-Jet facility by discharging binary-oxide mixtures of WO{sub 3}–Bi{sub 2}O{sub 3} and WO{sub 3}–ZrO{sub 2} into water in order to investigate properties of resulting debris. The effect of water subcooling, nozzle diameter and melt superheat was addressed in the tests. Experimental results reveal significant influence of water subcooling and melt superheat on debris size and morphology. Significant differences in size and morphology of the debris at different melt release conditions is attributed to the competition between hydrodynamic fragmentation of liquid melt and thermal fracture of the solidifying melt droplets. The particle fracture rate increases with increased subcooling. Further the results are compared with the data from larger scale experiments to discern the effects of spatial scales. The present work provides data that can be useful for validation of the codes used for the prediction of debris formation phenomena.

  7. Condensation of vapor bubble in subcooled pool

    Science.gov (United States)

    Horiuchi, K.; Koiwa, Y.; Kaneko, T.; Ueno, I.

    2017-02-01

    We focus on condensation process of vapor bubble exposed to a pooled liquid of subcooled conditions. Two different geometries are employed in the present research; one is the evaporation on the heated surface, that is, subcooled pool boiling, and the other the injection of vapor into the subcooled pool. The test fluid is water, and all series of the experiments are conducted under the atmospheric pressure condition. The degree of subcooling is ranged from 10 to 40 K. Through the boiling experiment, unique phenomenon known as microbubble emission boiling (MEB) is introduced; this phenomenon realizes heat flux about 10 times higher than the critical heat flux. Condensation of the vapor bubble is the key phenomenon to supply ambient cold liquid to the heated surface. In order to understand the condensing process in the MEB, we prepare vapor in the vapor generator instead of the evaporation on the heated surface, and inject the vapor to expose the vapor bubble to the subcooled liquid. Special attention is paid to the dynamics of the vapor bubble detected by the high-speed video camera, and on the enhancement of the heat transfer due to the variation of interface area driven by the condensation.

  8. Aspects of subcooled boiling

    Energy Technology Data Exchange (ETDEWEB)

    Bankoff, S.G. [Northwestern Univ., Evanston, IL (United States)

    1997-12-31

    Subcooled boiling boiling refers to boiling from a solid surface where the bulk liquid temperature is below the saturation temperature (subcooled). Two classes are considered: (1) nucleate boiling, where, for large subcoolings, individual bubbles grow and collapse while remaining attached to the solid wall, and (2) film boiling, where a continuous vapor film separates the solid from the bulk liquid. One mechanism by which subcooled nucleate boiling results in very large surface heat transfer coefficient is thought to be latent heat transport within the bubble, resulting from simultaneous evaporation from a thin residual liquid layer at the bubble base, and condensation at the polar bubble cap. Another is the increased liquid microconvection around the oscillating bubble. Two related problems have been attacked. One is the rupture of a thin liquid film subject to attractive and repulsive dispersion forces, leading to the formation of mesoscopic drops, which then coalesce and evaporate. Another is the liquid motion in the vicinity of an oscillating contact line, where the bubble wall is idealized as a wedge of constant angle sliding on the solid wall. The subcooled film boiling problem has been attacked by deriving a general long-range nonlinear evolution equation for the local thickness of the vapor layer. Linear and weakly-nonlinear stability results have been obtained. A number of other related problems have been attacked.

  9. Evolution of steam-water flow structure under subcooled water boiling at smooth and structured heating surfaces

    Science.gov (United States)

    Vasiliev, N. V.; Zeigarnik, Yu A.; Khodakov, K. A.

    2017-11-01

    Experimentally studying of subcooled water boiling in rectangular channel electrically heated from one side was conducted. Flat surfaces, both smooth and coated by microarc oxidation technology, were used as heating surfaces. The tests were conducted at atmospheric pressure in the range of mass flow rate from 650 to 1300 kg/(m2 s) and water subcooling relative to saturation temperature from 23 to 75 °C. Using high-speed filming a change in the two-phase flow structure and its statistic characteristics (nucleation sites density, vapor bubble distribution by size, etc.) were studied. With an increase in the heat flux density (with the mass flow rate and subcooling being the same) and amount and size of the vapor bubbles increased also. At a relatively high heat flux density, non-spherical vapor agglomerates appeared at the heating surface as a result of coalescence of small bubbles. They originated in chaotic manner in arbitrary points of the heating surface and then after random evolution in form and size collapsed. The agglomerate size reached several millimeters and their duration of life was several milliseconds. After formation of large vapor agglomerates, with a further small increase in heat flux density a burnout of the heating surface occurred. In most cases the same effect took place if the large agglomerates were retained for several minutes.

  10. Prediction of forced convective heat transfer and critical heat flux for subcooled water flowing in miniature tubes

    Science.gov (United States)

    Shibahara, Makoto; Fukuda, Katsuya; Liu, Qiusheng; Hata, Koichi

    2018-02-01

    The heat transfer characteristics of forced convection for subcooled water in small tubes were clarified using the commercial computational fluid dynamic (CFD) code, PHENICS ver. 2013. The analytical model consists of a platinum tube (the heated section) and a stainless tube (the non-heated section). Since the platinum tube was heated by direct current in the authors' previous experiments, a uniform heat flux with the exponential function was given as a boundary condition in the numerical simulation. Two inner diameters of the tubes were considered: 1.0 and 2.0 mm. The upward flow velocities ranged from 2 to 16 m/s and the inlet temperature ranged from 298 to 343 K. The numerical results showed that the difference between the surface temperature and the bulk temperature was in good agreement with the experimental data at each heat flux. The numerical model was extended to the liquid sublayer analysis for the CHF prediction and was evaluated by comparing its results with the experimental data. It was postulated that the CHF occurs when the fluid temperature near the heated wall exceeds the saturated temperature, based on Celata et al.'s superheated layer vapor replenishment (SLVR) model. The suggested prediction method was in good agreement with the experimental data and with other CHF data in literature within ±25%.

  11. Water evaporation in vertical tubes: an analytical approach for the subcooled flow boiling region and development of a method for evaluation and sizing evaporators = Evaporación de agua en tubos verticales: análisis de la región de ebullición subenfriada y desarrollo de un método de evaluación y Dimensionado de evaporadores

    OpenAIRE

    Zambrana González, José

    2011-01-01

    The present thesis analyses in detail the process of water evaporation for convective upward flows in vertical tubes, used in industrial applications. Both, the heat transfer process and the pressure drop mechanism, are considered. However, special attention has been put on the heat transfer process in the transition from pure liquid to two-phase flow, known as subcooled flow boiling region. The empirical correlations for the heat transfer coefficient on the water side for subcooled flow boil...

  12. Characteristics of Subcooled Liquid Methane During Passage Through a Spray-Bar Joule-Thompson Thermodynamic Vent System

    Science.gov (United States)

    Hastings, L. J.; Bolshinskiy, L. G.; Hedayat, A.; Schnell, A.

    2011-01-01

    NASA s Marshall Space Flight Center (MSFC) conducted liquid methane (LCH4) testing in November 2006 using the multipurpose hydrogen test bed (MHTB) outfitted with a spray-bar thermodynamic vent system (TVS). The basic objective was to identify any unusual or unique thermodynamic characteristics associated with subcooled LCH4 that should be considered in the design of space-based TVSs. Thirteen days of testing were performed with total tank heat loads ranging from 720 W to 420 W at a fill level of approximately 90%. During an updated evaluation of the data, it was noted that as the fluid passed through the Joule Thompson expansion, thermodynamic conditions consistent with the pervasive presence of metastability were indicated. This paper describes the observed thermodynamic conditions that correspond with metastability and effects on TVS performance.

  13. Analysis of experimental routines of high enthalpy steam discharge in subcooled water

    Energy Technology Data Exchange (ETDEWEB)

    Pacheco, Rafael R., E-mail: Rafael.rade@ctmsp.mar.mil.br [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), SP (Brazil); Andrade, Delvonei A., E-mail: delvonei@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    The discharge of high enthalpy steam through safety release valves out from pressurizers in PWR's needs to be condensed in order to allow the treatment of possibly present radwaste within. The Direct Contact Condensation is used in a relief tank to achieve the condensation. Care must be taken to avoid the bypass of the steam through the subcooled water, what would increase the peak of pressure and the necessity of structural reinforcement of the relief tank. An experiment to determine the optimal set up of the relief tank components and their characteristics (type of sprinkler, level of water, volume of tank, discharge direction, pressure in the pressurizer among others) was executed in 2000, in the CTE 150 facility, in CTMSP. In a total, 144 routines varying its components and characteristics were made, although no comprehensive analysis of its results were yet made, since the mass of data was too big to be readily analyzed. In order to comprehensively analyze it, a VBA program is being made to compile and graphically represent the mass of data. The current state of this program allowed conclusions over the peak pressure, adiabatic assumption of the experiment, and the quality of the steam generated due to the discharge. (author)

  14. Numerical simulation in a subcooled water flow boiling for one-sided high heat flux in reactor divertor

    Energy Technology Data Exchange (ETDEWEB)

    Liu, P., E-mail: pinliu@aust.edu.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); University of Science and Technology of China, Hefei 230026 (China); School of Mechanical Engineering, Anhui University of Science and Technology, Huainan 232001 (China); Peng, X.B., E-mail: pengxb@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Song, Y.T. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); University of Science and Technology of China, Hefei 230026 (China); Fang, X.D. [Institute of Air Conditioning and Refrigeration, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Huang, S.H. [University of Science and Technology of China, Hefei 230026 (China); Mao, X. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2016-11-15

    Highlights: • The Eulerian multiphase models coupled with Non-equilibrium Boiling model can effectively simulate the subcooled water flow boiling. • ONB and FDB appear earlier and earlier with the increase of heat fluxes. • The void fraction increases gradually along the flow direction. • The inner CuCrZr tube deteriorates earlier than the outer tungsten layer and the middle OFHC copper layer. - Abstract: In order to remove high heat fluxes for plasma facing components in International Thermonuclear Experimental Reactor (ITER) divertor, a numerical simulation of subcooled water flow boiling heat transfer in a vertically upward smooth tube was conducted in this paper on the condition of one-sided high heat fluxes. The Eulerian multiphase model coupled with Non-equilibrium Boiling model was adopted in numerical simulation of the subcooled boiling two-phase flow. The heat transfer regions, thermodynamic vapor quality (x{sub th}), void fraction and temperatures of three components on the condition of the different heat fluxes were analyzed. Numerical results indicate that the onset of nucleate boiling (ONB) and fully developed boiling (FDB) appear earlier and earlier with increasing heat flux. With the increase of heat fluxes, the inner CuCrZr tube will deteriorate earlier than the outer tungsten layer and the middle oxygen-free high-conductivity (OFHC) copper layer. These results provide a valuable reference for the thermal-hydraulic design of a water-cooled W/Cu divertor.

  15. Subcooled boiling heat transfer in a short vertical SUS304-tube at liquid Reynolds number range 5.19 x 10{sup 4} to 7.43 x 10{sup 5}

    Energy Technology Data Exchange (ETDEWEB)

    Hata, Koichi, E-mail: hata@iae.kyoto-u.ac.j [Institute of Advanced Energy, Kyoto Univ., Gokasho, Uji, Kyoto 611-0011 (Japan); Masuzaki, Suguru, E-mail: masuzaki@LHD.nifs.ac.j [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki, Gifu 509-5292 (Japan)

    2009-12-15

    The subcooled boiling heat transfer and the steady-state critical heat fluxes (CHFs) in a short vertical SUS304-tube for the flow velocities (u = 17.28-40.20 m/s), the inlet liquid temperatures (T{sub in} = 293.30-362.49 K), the inlet pressures (P{sub in} = 842.90-1467.93 kPa) and the exponentially increasing heat input (Q = Q{sub 0} exp(t/tau), tau = 8.5 s) are systematically measured by the experimental water loop comprised of a multistage canned-type circulation pump with high pump head. The SUS304 test tubes of inner diameters (d = 3 and 6 mm), heated lengths (L = 33 and 59.5 mm), effective lengths (L{sub eff} = 23.3 and 49.1 mm), L/d (=11 and 9.92), L{sub eff}/d (=7.77 and 8.18), and wall thickness (delta = 0.5 mm) with average surface roughness (Ra = 3.18 mum) are used in this work. The inner surface temperature and the heat flux from non-boiling to CHF are clarified. The subcooled boiling heat transfer for SUS304 test tube is compared with our Platinum test tube data and the values calculated by other workers' correlations for the subcooled boiling heat transfer. The influence of flow velocity on the subcooled boiling heat transfer and the CHF is investigated into details and the widely and precisely predictable correlation of the subcooled boiling heat transfer for turbulent flow of water in a short vertical SUS304-tube is given based on the experimental data. The correlation can describe the subcooled boiling heat transfer obtained in this work within 15% difference. Nucleate boiling surface superheats for the SUS304 test tube become very high. Those at the high flow velocity are close to the lower limit of Heterogeneous Spontaneous Nucleation Temperature. The dominant mechanisms of the flow boiling CHF in a short vertical SUS304-tube are discussed.

  16. Experimental study on forced convective and subcooled flow boiling heat transfer coefficient of water-ethanol mixtures: an application in cooling of heat dissipative devices

    Science.gov (United States)

    Suhas, B. G.; Sathyabhama, A.

    2018-02-01

    The experimental study is carried out to determine forced convective and subcooled flow boiling heat transfer coefficient in conventional rectangular channels. The fluid is passed through rectangular channels of 0.01 m depth, 0.01 m width, and 0.15 m length. The parameters varied are heat flux, mass flux, inlet temperature and volume fraction of ethanol. Forced convective heat transfer coefficient increases with increase in heat flux and mass flux, but effect of mass flux is less significant. Subcooled flow boiling heat transfer increases with increase in heat flux and mass flux, but the effect of heat flux is dominant. During the subcooled flow boiling region, the effect of mass flux will not influence the heat transfer. The strong Marangoni effect will increase the heat transfer coeffient for mixture with 25% ethanol volume fraction. The results obtained for subcooled flow boiling heat transfer coefficient of water are compared with available literature correlations. It is found that Liu-Winterton equation predicts the experimental results better when compared with that of other literature correlations. An empirical correlation for subcooled flow boiling heat transfer coefficient as a function of mixture wall super heat, mass flux, volume fractions and inlet temperature is developed from the experimental results.

  17. Experimental study on forced convective and subcooled flow boiling heat transfer coefficient of water-ethanol mixtures: an application in cooling of heat dissipative devices

    Science.gov (United States)

    Suhas, B. G.; Sathyabhama, A.

    2017-08-01

    The experimental study is carried out to determine forced convective and subcooled flow boiling heat transfer coefficient in conventional rectangular channels. The fluid is passed through rectangular channels of 0.01 m depth, 0.01 m width, and 0.15 m length. The parameters varied are heat flux, mass flux, inlet temperature and volume fraction of ethanol. Forced convective heat transfer coefficient increases with increase in heat flux and mass flux, but effect of mass flux is less significant. Subcooled flow boiling heat transfer increases with increase in heat flux and mass flux, but the effect of heat flux is dominant. During the subcooled flow boiling region, the effect of mass flux will not influence the heat transfer. The strong Marangoni effect will increase the heat transfer coeffient for mixture with 25% ethanol volume fraction. The results obtained for subcooled flow boiling heat transfer coefficient of water are compared with available literature correlations. It is found that Liu-Winterton equation predicts the experimental results better when compared with that of other literature correlations. An empirical correlation for subcooled flow boiling heat transfer coefficient as a function of mixture wall super heat, mass flux, volume fractions and inlet temperature is developed from the experimental results.

  18. Solid state and sub-cooled liquid vapour pressures of substituted dicarboxylic acids using Knudsen Effusion Mass Spectrometry (KEMS and Differential Scanning Calorimetry

    Directory of Open Access Journals (Sweden)

    A. M. Booth

    2010-05-01

    Full Text Available Solid state vapour pressures of a selection of atmospherically important substituted dicarboxylic acids have been measured using Knudsen Effusion Mass Spectrometry (KEMS over a range of 20 K (298–318 K. Enthalpies of fusion and melting points obtained using Differential Scanning Calorimetry (DSC were used to obtain sub-cooled liquid vapour pressures. They have been compared to estimation methods used on the E-AIM website. These methods are shown to poorly represent – OH groups in combination with COOH groups. Partitioning calculations have been performed to illustrate the impact of the different estimation methods on organic aerosol mass compared to the use of experimental data.

  19. Changes of enthalpy slope in subcooled flow boiling

    Energy Technology Data Exchange (ETDEWEB)

    Collado, Francisco J.; Monne, Carlos [Universidad de Zaragoza-CPS, Departamento de Ingenieria Mecanica-Motores Termicos, Zaragoza (Spain); Pascau, Antonio [Universidad de Zaragoza-CPS, Departamento de Ciencia de los Materiales y Fluidos-Mecanica de Fluidos, Zaragoza (Spain)

    2006-03-01

    Void fraction data in subcooled flow boiling of water at low pressure measured by General Electric in the 1960s are analyzed following the classical model of Griffith et al. (in Proceedings of ASME-AIChE heat transfer conference, 58-HT-19, 1958). In addition, a new proposal for analyzing one-dimensional steady flow boiling is used. This is based on the physical fact that if the two phases have different velocities, they cannot cover the same distance - the control volume length - in the same time. So a slight modification of the heat balance is suggested, i.e., the explicit inclusion of the vapor-liquid velocity ratio or slip ratio as scaling time factor between the phases, which is successfully checked against the data. Finally, the prediction of void fraction using correlations of the net rate of change of vapor enthalpy in the fully developed regime of subcooled flow boiling is explored. (orig.)

  20. Propagation of Local Bubble Parameters of Subcooled Boiling Flow in a Pressurized Vertical Annulus Channel

    Energy Technology Data Exchange (ETDEWEB)

    Chu, In-Cheol; Lee, Seung Jun; Youn, Young Jung; Park, Jong Kuk; Choi, Hae Seob; Euh, Dong Jin [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    CMFD (Computation Multi-Fluid Dynamics) tools have been being developed to simulate two-phase flow safety problems in nuclear reactor, including the precise prediction of local bubble parameters in subcooled boiling flow. However, a lot of complicated phenomena are encountered in the subcooled boiling flow such as bubble nucleation and departure, interfacial drag of bubbles, lateral migration of bubbles, bubble coalescence and break-up, and condensation of bubbles, and the constitutive models for these phenomena are not yet complete. As a result, it is a difficult task to predict the radial profile of bubble parameters and its propagation along the flow direction. Several experiments were performed to measure the local bubble parameters for the validation of the CMFD code analysis and improvement of the constitutive models of the subcooled boiling flow, and to enhance the fundamental understanding on the subcooled boiling flow. The information on the propagation of the local flow parameters along the flow direction was not provided because the measurements were conducted at the fixed elevation. In SUBO experiments, the radial profiles of local bubble parameters, liquid velocity and temperature were obtained for steam-water subcooled boiling flow in a vertical annulus. The local flow parameters were measured at six elevations along the flow direction. The pressure was in the range of 0.15 to 0.2 MPa. We have launched an experimental program to investigate quantify the local subcooled boiling flow structure under elevated pressure condition in order to provide high precision experimental data for thorough validation of up-to-date CMFD codes. In the present study, the first set of experimental data on the propagation of the radial profile of the bubble parameters was obtained for the subcooled boiling flow of R-134a in a pressurized vertical annulus channel. An experimental program was launched for an in-depth investigation of a subcooled boiling flow in an elevated

  1. A CFD Analysis of the Characteristics of the Thermal Mixing Under the Transient of the Steam Discharge in a Subcooled Water Tank

    Energy Technology Data Exchange (ETDEWEB)

    Kang, H. S.; Kim, Y. S.; Jun, H. G.; Youn, Y. J.; Song, C. H

    2005-06-15

    A CFD benchmark calculation for the test results was performed for 30 seconds to develop the methodology of numerical analysis for the thermal mixing between the steam and the subcooled water and to apply it into the APR1400 IRWST. In the CFD analysis, the grid model simulating the test facility was developed by the axisymmetric condition and the steam condensation phenomena by the direct contact was modelled by the steam condensation region model. Thermal mixing phenomenon was treated as an incompressible flow, a free surface flow, a turbulent flow, and a buoyancy flow. The comparison of the CFD results with the test data showed a good agreement as a whole, but a small temperature difference was locally found at some locations. The CFD results at some locations showed a higher temperature value and the increasing speed than those of the test results. This difference may have arisen from the fact the temperature and velocity of the calculated condensed water were higher than the real values. However, this CFD analysis methodology can surely simulate the thermal mixing behavior in the subcooled water tank with the minor limit. We can anticipate that the numerical model for the thermal mixing taking place for a long time in the IRWST of APR1400 can be developed by this methodology.

  2. Development of a mechanistic model for forced convection subcooled boiling

    Science.gov (United States)

    Shaver, Dillon R.

    The focus of this work is on the formulation, implementation, and testing of a mechanistic model of subcooled boiling. Subcooled boiling is the process of vapor generation on a heated wall when the bulk liquid temperature is still below saturation. This is part of a larger effort by the US DoE's CASL project to apply advanced computational tools to the simulation of light water reactors. To support this effort, the formulation of the dispersed field model is described and a complete model of interfacial forces is formulated. The model has been implemented in the NPHASE-CMFD computer code with a K-epsilon model of turbulence. The interfacial force models are built on extensive work by other authors, and include novel formulations of the turbulent dispersion and lift forces. The complete model of interfacial forces is compared to experiments for adiabatic bubbly flows, including both steady-state and unsteady conditions. The same model is then applied to a transient gas/liquid flow in a complex geometry of fuel channels in a sodium fast reactor. Building on the foundation of the interfacial force model, a mechanistic model of forced-convection subcooled boiling is proposed. This model uses the heat flux partitioning concept and accounts for condensation of bubbles attached to the wall. This allows the model to capture the enhanced heat transfer associated with boiling before the point of net generation of vapor, a phenomenon consistent with existing experimental observations. The model is compared to four different experiments encompassing flows of light water, heavy water, and R12 at different pressures, in cylindrical channels, an internally heated annulus, and a rectangular channel. The experimental data includes axial and radial profiles of both liquid temperature and vapor volume fraction, and the agreement can be considered quite good. The complete model is then applied to simulations of subcooled boiling in nuclear reactor subchannels consistent with the

  3. Consideration of sub-cooled LN2 circulation system for HTS power machines

    Science.gov (United States)

    Yoshida, Shigeru; Hirai, Hirokazu; Nara, N.; Nagasaka, T.; Hirokawa, M.; Okamoto, H.; Hayashi, H.; Shiohara, Y.

    2012-06-01

    We consider a sub-cooled liquid nitrogen (LN) circulation system for HTS power equipment. The planned circulation system consists of a sub-cool heat exchanger (subcooler) and a circulation pump. The sub-cooler will be connected to a neon turbo- Brayton cycle refrigerator with a cooling power of 2 kW at 65 K. Sub-cooled LN will be delivered into the sub-cooler by the pump and cooled within it. Sub-cooled LN is adequate fluid for cooling HTS power equipment, because its dielectric strength is high and it supports a large critical current. However, a possibility of LN solidification in the sub-cooler is a considerable issue. The refrigerator will produce cold neon gas of about 60 K, which is lower than the nitrogen freezing temperature of 63 K. Therefore, we designed two-stage heat exchangers which are based on a plate-fin type and a tube-intube type. Process simulations of those heat exchangers indicate that sub-cooled LN is not frozen in either sub-cooler. The plate-fin type sub-cooler is consequently adopted for its reliability and compactness. Furthermore, we found that a cooling system with a Brayton refrigerator has the same total cooling efficiency as a cooling system with a Stirling refrigerator.

  4. Numerical study of saturation steam/water mixture flow and flashing initial sub-cooled water flow inside throttling devices

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    In this work, a Computational Fluid-Dynamics (CFD) approach to model this phenomenon inside throttling devices is proposed. To validate CFD results, different nozzle geometries are analyzed, comparing numerical results with experimental data. Two cases are studied: Case 1: saturation steam/water mixture flow inside 2D convergent-divergent nozzle (inlet, outlet and throat diameter of nozzle are 0.1213m, 0.0452m and 0.0191m respectively). In this benchmark, a range of total inle...

  5. Water: The Strangest Liquid

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Anders

    2009-02-24

    Water, H2O, is familiar to everyone - it shapes our bodies and our planet. But despite its abundance, water has remained a mystery, exhibiting many strange properties that are still not understood. Why does the liquid have an unusually large capacity to store heat? And why is it denser than ice? Now, using the intense X-ray beams from particle accelerators, investigations into water are leading to fundamental discoveries about the structure and arrangement of water molecules. This lecture will elucidate the many mysteries of water and discuss current studies that are revolutionizing the way we see and understand one of the most fundamental substances of life.

  6. Sliding bubbles on a hot horizontal wire in a subcooled bath

    Science.gov (United States)

    Duchesne, Alexis; Dubois, Charles; Caps, Hervé

    2015-11-01

    When a wire is heated up to the boiling point in a liquid bath some bubbles will nucleate on the wire surface. Traditional nucleate boiling theory predicts that bubbles generate from active nucleate site, grow up and depart from the heating surface due to buoyancy and inertia. However, an alternative scenario is presented in the literature for a subcooled bath: bubbles slide along the horizontal wire before departing. New experiments were performed by using a constantan wire and different liquids, varying the injected power. Silicone oil, water and even liquid nitrogen were tested in order to vary wetting conditions, liquid viscosities and surface tensions. We explored the influence of the wire diameter and of the subcooled bath temperature. We observed, of course, sliding motion, but also a wide range of behaviors from bubbles clustering to film boiling. We noticed that bubbles could change moving sense, especially when encountering with another bubble. The bubble speed is carefully measured and can reach more than 100 mm/s for a millimetric bubble. We investigated the dependence of the speed on the different parameters and found that this speed is, for a given configuration, quite independent of the injected power. We understand these phenomena in terms of Marangoni effects. This project has been financially supported by ARC SuperCool contract of the University of Liège.

  7. Dynamics of explosive boiling and third heat transfer crisis at subcooling on a vertical surface

    Science.gov (United States)

    Avksentyuk, B. P.; Ovchinnikov, V. V.

    2017-07-01

    Results of experimental studies on dynamics of explosive boiling and third heat transfer crisis under the conditions of liquid subcooling are presented for the vertical arrangement of the heat-transfer surface. Acetone was used in experiments at the pressure in the working volume from 20 to 46 kPa and subcooling from 0 to 20 K. The studied processes were recorded. Data on the velocity of evaporation front propagation at liquid subcooling were obtained. These data are compared with the results of calculations according to the models available in the literature. The effect of liquid subcooling on the regions of regime parameters corresponding to explosive boiling and third heat transfer crisis is studied.

  8. Interferometric and numerical study of the temperature field in the boundary layer and heat transfer in subcooled flow boiling

    Energy Technology Data Exchange (ETDEWEB)

    Lucic, Anita; Emans, Maximilian; Mayinger, Franz; Zenger, Christoph

    2004-04-01

    An interferometric study and a numerical simulation are presented of the combined process of the bulk turbulent convection and the dynamic of a vapor bubble which is formed in the superheated boundary layer of a subcooled flowing liquid, in order to determine the heat transfer to the flowing subcooled liquid. In this investigation focus has been given on a single vapor bubble at a defined cavity site to provide reproducible conditions. In the experimental study single bubbles were generated at a single artificial cavity by means of a CO{sub 2}-laser as a spot heater at a uniformly heated wall of a vertical rectangular channel with water as the test fluid. The experiments were performed at various degrees of subcooling and mass flow rates. The bubble growth and the temporal decrease of the bubble volume were captured by means of the high-speed cinematography. The thermal boundary layer and the temperature field at the phase-interface between fluid and bubble were visualized by means of the optical measurement method holographic interferometry with a high temporal and spatial resolution, and thus the local and temporal heat transfer could be quantified. The experimental results form a significant data basis for the description of the mean as well as the local heat transfer as a function of the flow conditions. According to the experimental configuration and the obtained data the numerical simulations were performed. A numerical method has been developed to simulate the influence of single bubbles on the surrounding fluid which is based on a Lagrangian approach to describe the motion of the bubbles. The method is coupled to a large-eddy simulations by the body force term which is locally evaluated based on the density field. The obtained experimental data correspond well with the numerical predictions, both of which demonstrate the thermo- and fluiddynamic characteristics of the interaction between the vapor bubble and the subcooled liquid.

  9. Downward transfer of a sub-cooled cryoliquid

    CERN Document Server

    Wertelaers, P

    2016-01-01

    An alternative is proposed to the traditional transfer of a cryo fluid in gaseous -- and warm -- form, a method of low productivity and high energy cost. In order to prevent the much-feared geysering, focus is on sub-cooling of the liquid, and the safe maintaining of such state all along the journey. A cryogenic transfer line of simplest construction is proposed, and the difficulties with such line extending over a transfer depth of the order of the kilometre, are discussed.

  10. SATURATED-SUBCOOLED STRATIFIED FLOW IN HORIZONTAL PIPES

    Energy Technology Data Exchange (ETDEWEB)

    Richard Schultz

    2010-08-01

    Advanced light water reactor systems are designed to use passive emergency core cooling systems with horizontal pipes that provide highly subcooled water from water storage tanks or passive heat exchangers to the reactor vessel core under accident conditions. Because passive systems are driven by density gradients, the horizontal pipes often do not flow full and thus have a free surface that is exposed to saturated steam and stratified flow is present.

  11. Effect of subcooling on the on-orbit pressurization rate of cryogenic propellant tankage

    Science.gov (United States)

    Hochstein, J. I.; Ji, H.-C.; Aydelott, J. C.

    1986-01-01

    The SOLA-ECLIPSE code is being developed to enable prediction of the behavior of cryogenic propellants in spacecraft tankage. A brief description of the formulations used for modeling heat transfer and for determining thermodynamic state is presented. Code performance is verified through comparison to experimental data for the self-pressurization of scale model liquid hydrogen tanks. SOLA-ECLIPSE is used to examine the effect of initial subcooling of the liquid phase on the self-pressurization rate of an on-orbit full scale liquid hydrogen tank typical for a chemical propulsion Orbital Transfer Vehicle. The computational predictions show that even small amounts of subcooling will significantly decrease the self-pressurization rate. Further, if the cooling is provided by a Thermodynamic Vent System, it is concluded that small levels of subcooling will maximize propellant conservation.

  12. Flow Boiling Heat Transfer to Lithium Bromide Aqueous Solution in Subcooled Region

    Science.gov (United States)

    Kaji, Masao; Furukawa, Masahiro; Nishizumi, Takeharu; Ozaki, Shinji; Sekoguchi, Kotohiko

    A theoretical prediction model of the boiling heat transfer coefficient in the subcooled region for water and lithium bromide aqueous solution flowing in a rectangular channel is proposed. In the present heat transfer model, a heat flux is assumed to consist of both the forced convective and the boiling effect components. The forced convective component is evaluated from the empirical correlation of convective heat transfer coefficient for single-phase flow considering the effect of increase of liquid velocity due to net vapor generation. Empirical correlations for determining the heat flux due to the boiling effect and the quality at the onset point of net vapor generation are obtained from the data presented in the first report1). Agreement between the present theoretical prediction and the experimental data is satisfactorily good both for water and lithium bromide aqueous solution.

  13. Study on vapor film collapse behavior on high temperature particle surface. 2nd Report. Effect of subcooling on micro-mechanism; Koon ryushi hyomenjo no jokimaku hokai ni kansuru kenkyu. 2. Bishiteki hokai kyodo ni oyobosu subcooling no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Y.; Tochio, D. [Yamagata University, Yamagata (Japan). Faculty of Engineering

    2000-02-25

    Thermal detonation model is proposed to describe vapor explosion. According to this model, vapor film on pre-mixed high temperature droplet surface should be collapsed for the trigger of the vapor explosion. It is pointed out that the vapor film collapse behavior is significantly affected by the subcooling of low temperature liquid. However, the effect of subcooling on micro-mechanism of vapor film collapse behavior is not experimentally well identified. The objective of the present research is to experimentally investigate the effect of subcooling on micro-mechanism of film boiling collapse behavior. As the results, it is experimentally clarified that the vapor film collapse behavior in low subcool condition is qualitatively different from the vapor film collapse behavior in high subcool condition. In high subcool condition, instability of the vapor film dominates the vapor film collapse on the particle surface. On the other hand, micro-mechanism at the interface between vapor and liquid such as micro-jet is dominant in low subcool condition in case of vapor film collapse by pressure pulse. (author)

  14. Study on vapor film collapse behavior on high temperature particle surface. 2. Effect of subcooling on micro-mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Yutaka [Yamagata University, Dept. of Mechanical Systems Engineering, Yonezawa, Yamagata (Japan); Tochio, Daisuke [Yamagata Univ. (Japan)

    2000-02-01

    Thermal detonation model is proposed to describe vapor explosion. According to this model, vapor film on pre-mixed high temperature droplet surface should be collapsed for the trigger of the vapor explosion. It is pointed out that the vapor film collapse behavior is significantly affected by the subcooling of low temperature liquid. However, the effect of subcooling on micro-mechanism of vapor film collapse behavior is not experimentally well identified. The objective of the present research is to experimentally investigate the effect of subcooling on micro-mechanism of film boiling collapse behavior. As the results, it is experimentally clarified that the vapor film collapse behavior in low subcool condition is qualitatively different from the vapor film collapse behavior in high subcool condition. In high subcool condition, instability of the vapor film dominates the vapor film collapse on the particle surface. On the other hand, micro-mechanism at the interface between vapor and liquid such as micro-jet is dominant in low subcool condition in case of vapor film collapse by pressure pulse. (author)

  15. Electrically excited liquid water

    NARCIS (Netherlands)

    Wexler, A.D.

    2016-01-01

    Water is essential to a healthy and secure world. Developing new technologies which can take full advantage of the unique attributes of water is important for meeting the ever increasing global demand while reducing the production footprint. Water exhibits unexpected departures in more than 70

  16. On the Application of Image Processing Methods for Bubble Recognition to the Study of Subcooled Flow Boiling of Water in Rectangular Channels

    Science.gov (United States)

    Paz, Concepción; Conde, Marcos; Porteiro, Jacobo; Concheiro, Miguel

    2017-01-01

    This work introduces the use of machine vision in the massive bubble recognition process, which supports the validation of boiling models involving bubble dynamics, as well as nucleation frequency, active site density and size of the bubbles. The two algorithms presented are meant to be run employing quite standard images of the bubbling process, recorded in general-purpose boiling facilities. The recognition routines are easily adaptable to other facilities if a minimum number of precautions are taken in the setup and in the treatment of the information. Both the side and front projections of subcooled flow-boiling phenomenon over a plain plate are covered. Once all of the intended bubbles have been located in space and time, the proper post-process of the recorded data become capable of tracking each of the recognized bubbles, sketching their trajectories and size evolution, locating the nucleation sites, computing their diameters, and so on. After validating the algorithm’s output against the human eye and data from other researchers, machine vision systems have been demonstrated to be a very valuable option to successfully perform the recognition process, even though the optical analysis of bubbles has not been set as the main goal of the experimental facility. PMID:28632158

  17. On the Application of Image Processing Methods for Bubble Recognition to the Study of Subcooled Flow Boiling of Water in Rectangular Channels.

    Science.gov (United States)

    Paz, Concepción; Conde, Marcos; Porteiro, Jacobo; Concheiro, Miguel

    2017-06-20

    This work introduces the use of machine vision in the massive bubble recognition process, which supports the validation of boiling models involving bubble dynamics, as well as nucleation frequency, active site density and size of the bubbles. The two algorithms presented are meant to be run employing quite standard images of the bubbling process, recorded in general-purpose boiling facilities. The recognition routines are easily adaptable to other facilities if a minimum number of precautions are taken in the setup and in the treatment of the information. Both the side and front projections of subcooled flow-boiling phenomenon over a plain plate are covered. Once all of the intended bubbles have been located in space and time, the proper post-process of the recorded data become capable of tracking each of the recognized bubbles, sketching their trajectories and size evolution, locating the nucleation sites, computing their diameters, and so on. After validating the algorithm's output against the human eye and data from other researchers, machine vision systems have been demonstrated to be a very valuable option to successfully perform the recognition process, even though the optical analysis of bubbles has not been set as the main goal of the experimental facility.

  18. On the Application of Image Processing Methods for Bubble Recognition to the Study of Subcooled Flow Boiling of Water in Rectangular Channels

    Directory of Open Access Journals (Sweden)

    Concepción Paz

    2017-06-01

    Full Text Available This work introduces the use of machine vision in the massive bubble recognition process, which supports the validation of boiling models involving bubble dynamics, as well as nucleation frequency, active site density and size of the bubbles. The two algorithms presented are meant to be run employing quite standard images of the bubbling process, recorded in general-purpose boiling facilities. The recognition routines are easily adaptable to other facilities if a minimum number of precautions are taken in the setup and in the treatment of the information. Both the side and front projections of subcooled flow-boiling phenomenon over a plain plate are covered. Once all of the intended bubbles have been located in space and time, the proper post-process of the recorded data become capable of tracking each of the recognized bubbles, sketching their trajectories and size evolution, locating the nucleation sites, computing their diameters, and so on. After validating the algorithm’s output against the human eye and data from other researchers, machine vision systems have been demonstrated to be a very valuable option to successfully perform the recognition process, even though the optical analysis of bubbles has not been set as the main goal of the experimental facility.

  19. IR-thermography-based investigation of critical heat flux in subcooled flow boiling of water at atmospheric and high pressure conditions

    Energy Technology Data Exchange (ETDEWEB)

    Bucci, Matteo [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Seong, Jee H. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Buongiorno, Jdacopo [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Richenderfer, Andrew [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Kossolapov, A. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2017-11-01

    Here we report on MIT’s THM work in Q4 2016 and Q1 2017. The goal of this project is to design, construct and execute tests of flow boiling critical heat flux (CHF) at high-pressure using high-resolution and high-speed video and infrared (IR) thermometry, to generate unique data to inform the development of and validate mechanistic boiling heat transfer and CHF models. In FY2016, a new test section was designed and fabricated. Data was collected at atmospheric conditions at 10, 25 and 50 K subcoolings, and three mass fluxes, i.e. 500, 750 and 1000 kg/m2/s. Starting in Q4 2016 and continuing forward, new post-processing techniques have been developed to analyze the data collected. These new algorithms analyze the time-dependent temperature and heat flux distributions to calculate nucleation site density, nucleation frequency, growth and wait time, dry area fraction, and the complete heat flux partitioning. In Q1 2017 a new flow boiling loop was designed and constructed to support flow boiling tests up 10 bar pressure and 180 °C. Initial shakedown and testing has been completed. The flow loop and test section are now ready to begin high-pressure flow boiling testing.

  20. High Speed Compressor for Subcooling Propellants Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The most promising propellant subcooling systems for LH2 require compression systems that involve development of significant head. The inlet pressure for these...

  1. In-situ Monitoring of Sub-cooled Nucleate Boiling on Fuel Cladding Surface in Water at 1 bar and 130 bars using Acoustic Emission Method

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Seung Heon; Wu, Kaige; Shim, Hee-Sang; Lee, Deok Hyun; Hur, Do Haeng [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Crud deposition increases through a sufficient corrosion product supply around the steam-liquid interface of a boiling bubble. Therefore, the understanding of this SNB phenomenon is important for effective and safe operation of nuclear plants. The experimental SNB studies have been performed in visible conditions at a low pressure using a high speed video camera. Meanwhile, an acoustic emission (AE) method is an on-line non-destructive evaluation method to sense transient elastic wave resulting from a rapid release of energy within a dynamic process. Some researchers have investigated boiling phenomena using the AE method. However, their works were performed at atmospheric pressure conditions. Therefore, the objective of this work is for the first time to detect and monitor SNB on fuel cladding surface in simulated PWR primary water at 325 .deg. C and 130 bars using an AE technique. We successfully observed the boiling AE signals in primary water at 1 bar and 130 bars using AE technique. Visualization test was performed effectively to identify a correlation between water boiling phenomenon and AE signals in a transparent glass cell at 1 bar, and the boiling AE signals were in good agreement with the boiling behavior. Based on the obtained correlations at 1 bar, the AE signals obtained at 130 bars were analyzed. The boiling density and size of the AE signals at 130 bars were decreased by the flow parameters. However, overall AE signals showed characteristics and a trend similar to the AE signals at 1 bar. This indicates that boiling AE signals are detected successfully at 130 bars, and the AE technique can be effectively implemented in non-visualized condition at high pressures.

  2. Liquid Nitrogen Subcooler Pressure Vessel Engineering Note

    Energy Technology Data Exchange (ETDEWEB)

    Rucinski, R.; /Fermilab

    1997-04-24

    The normal operating pressure of this dewar is expected to be less than 15 psig. This vessel is open to atmospheric pressure thru a non-isolatable vent line. The backpressure in the vent line was calculated to be less than 1.5 psig at maximum anticipated flow rates.

  3. The effects of geometric, flow, and boiling parameters on bubble growth and behavior in subcooled flow boiling

    Science.gov (United States)

    Samaroo, Randy

    Air bubble injection and subcooled flow boiling experiments have been performed to investigate the liquid flow field and bubble nucleation, growth, and departure, in part to contribute to the DOE Nuclear HUB project, Consortium for Advanced Simulation of Light Water Reactors (CASL). The main objective was to obtain quantitative data and compartmentalize the many different interconnected aspects of the boiling process -- from the channel geometry, to liquid and gas interactions, to underlying heat transfer mechanisms. The air bubble injection experiments were performed in annular and rectangular geometries and yielded data on bubble formation and departure from a small hole on the inner tube surface, subsequent motion and deformation of the detached bubbles, and interactions with laminar or turbulent water flow. Instantaneous and ensemble- average liquid velocity profiles have been obtained using a Particle Image Velocimetry technique and a high speed video camera. Reynolds numbers for these works ranged from 1,300 to 7,700. Boiling experiments have been performed with subcooled water at atmospheric pres- sure in the same annular channel geometry as the air injection experiments. A second flow loop with a slightly larger annular channel was constructed to perform further boiling experiments at elevated pressures up to 10 bar. High speed video and PIV measurements of turbulent velocity profiles in the presence of small vapor bubbles on the heated rod are presented. The liquid Reynolds number for this set of experiments ranged from 5,460 to 86,000. It was observed that as the vapor bubbles are very small compared to the injected air bubbles, further experiments were performed using a microscopic objective to obtain higher spatial resolution for velocity fields near the heated wall. Multiple correlations for the bubble liftoff diameter, liftoff time and bub- ble history number were evaluated against a number of experimental datasets from previous works, resulting in a

  4. Sensitivity Analysis of RCW Temperature on the Moderator Subcooling Margin for the LBLOCA of Wolsong NPP Unit 1

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Si Won; Kim, Jong Hyun; Choi, Sung Soo [Atomic Creative Technology Co., Daejeon (Korea, Republic of); Kim, Sung Min [Central Research Institute, Korea Hydro and Nuclear Power Co., Daejeon (Korea, Republic of)

    2016-05-15

    Moderator subcooling margin has been analyzed using the MODTURC{sub C}LAS code in the Large LOCA FSAR PARTs C and F. Performance of moderator heat exchangers depends on RCW (Raw reCirculated Water) temperature. And also the temperature is affected by sea water temperature. Unfortunately, sea water temperature is gradually increasing by global warming. So it will cause increase of RCW temperature inevitably. There is no assessment result of moderator subcooling with increasing RCW temperature even if it is important problem. Therefore, sensitivity analysis is performed to give information about the relation between RCW temperature and moderator subcooling in the present study. The moderator subcooling margin has to be ensured to establish the moderator heat removal when Large LOCA with LOECI and Loss of Class IV Power occurs. However, sea water temperature is increasing gradually due to global warming. So it is necessary that sensitivity analysis of RCW temperature on the moderator subcooling margin to estimate the availability of the moderator heat removal. In the present paper, the moderator subcooling analysis is performed using the same methodology and assumptions except for RCW temperature used in FSAR Large LOCA PART F.

  5. Electron affinity of liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Gaiduk, Alex P.; Pham, Tuan Anh; Govoni, Marco; Paesani, Francesco; Galli, Giulia

    2018-01-16

    Understanding redox and photochemical reactions in aqueous environments requires a precise knowledge of the ionization potential and electron affinity of liquid water. The former has been measured, but not the latter. We predict the electron affinity of liquid water and of its surface from first principles, coupling path-integral molecular dynamics with ab initio potentials, and many-body perturbation theory. Our results for the surface (0.8 eV) agree well with recent pump-probe spectroscopy measurements on amorphous ice. Those for the bulk (0.1–0.3 eV) differ from several estimates adopted in the literature, which we critically revisit. We show that the ionization potential of the bulk and surface are almost identical; instead their electron affinities differ substantially, with the conduction band edge of the surface much deeper in energy than that of the bulk. We also discuss the significant impact of nuclear quantum effects on the fundamental gap and band edges of the liquid.

  6. Complete Numerical Simulation of Subcooled Flow Boiling in the Presence of Thermal and Chemical Interactions

    Energy Technology Data Exchange (ETDEWEB)

    V.K. Dhir

    2003-04-28

    At present, guidelines for fuel cycle designs to prevent axial offset anomalies (AOA) in pressurized water reactor (PWR) cores are based on empirical data from several operating reactors. Although the guidelines provide an ad-hoc solution to the problem, a unified approach based on simultaneous modeling of thermal-hydraulics, chemical, and nuclear interactions with vapor generation at the fuel cladding surface does not exist. As a result, the fuel designs are overly constrained with a resulting economic penalty. The objective of present project is to develop a numerical simulation model supported by laboratory experiments that can be used for fuel cycle design with respect to thermal duty of the fuel to avoid economic penalty, as well as, AOA. At first, two-dimensional numerical simulation of the growth and departure of a bubble in pool boiling with chemical interaction is considered. A finite difference scheme is used to solve the equations governing conservation of mass, momentum, energy, and species concentration. The Level Set method is used to capture the evolving liquid-vapor interface. A dilute aqueous boron solution is considered in the simulation. From numerical simulations, the dynamic change in concentration distribution of boron during the bubble growth shows that the precipitation of boron can occur near the advancing and receding liquid-vapor interface when the ambient boron concentration level is 3,000 ppm by weight. Secondly, a complete three-dimensional numerical simulation of inception, growth and departure of a single bubble subjected to forced flow parallel to the heater surface was developed. Experiments on a flat plate heater with water and with boron dissolved in the water were carried out. The heater was made out of well-polished silicon wafer. Numbers of nucleation sites and their locations were well controlled. Bubble dynamics in great details on an isolated nucleation site were obtained while varying the wall superheat, liquid subcooling

  7. Numerical simulation of bubble behavior in subcooled flow boiling under velocity and temperature gradient

    Energy Technology Data Exchange (ETDEWEB)

    Bahreini, Mohammad, E-mail: m.bahreini1990@gmail.com; Ramiar, Abas, E-mail: aramiar@nit.ac.ir; Ranjbar, Ali Akbar, E-mail: ranjbar@nit.ac.ir

    2015-11-15

    Highlights: • Condensing bubble is numerically investigated using VOF model in OpenFOAM package. • Bubble mass reduces as it goes through condensation and achieves higher velocities. • At a certain time the slope of changing bubble diameter with time, varies suddenly. • Larger bubbles experience more lateral migration to higher velocity regions. • Bubbles migrate back to a lower velocity region for higher liquid subcooling rates. - Abstract: In this paper, numerical simulation of the bubble condensation in the subcooled boiling flow is performed. The interface between two-phase is tracked via the volume of fluid (VOF) method with continuous surface force (CSF) model, implemented in the open source OpenFOAM CFD package. In order to simulate the condensing bubble with the OpenFOAM code, the original energy equation and mass transfer model for phase change have been modified and a new solver is developed. The Newtonian flow is solved using the finite volume scheme based on the pressure implicit with splitting of operators (PISO) algorithm. Comparison of the simulation results with previous experimental data revealed that the model predicted well the behavior of the actual condensing bubble. The bubble lifetime is almost proportional to bubble initial size and is prolonged by increasing the system pressure. In addition, the initial bubble size, subcooling of liquid and velocity gradient play an important role in the bubble deformation behavior. Velocity gradient makes the bubble move to the higher velocity region and the subcooling rate makes it to move back to the lower velocity region.

  8. An improved mechanistic critical heat flux model for subcooled flow boiling

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Young Min [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1997-12-31

    Based on the bubble coalescence adjacent to the heated wall as a flow structure for CHF condition, Chang and Lee developed a mechanistic critical heat flux (CHF) model for subcooled flow boiling. In this paper, improvements of Chang-Lee model are implemented with more solid theoretical bases for subcooled and low-quality flow boiling in tubes. Nedderman-Shearer`s equations for the skin friction factor and universal velocity profile models are employed. Slip effect of movable bubbly layer is implemented to improve the predictability of low mass flow. Also, mechanistic subcooled flow boiling model is used to predict the flow quality and void fraction. The performance of the present model is verified using the KAIST CHF database of water in uniformly heated tubes. It is found that the present model can give a satisfactory agreement with experimental data within less than 9% RMS error. 9 refs., 5 figs. (Author)

  9. CFD SIMULATION OF UPWARD SUBCOOLED BOILING FLOW OF FREON R12

    Directory of Open Access Journals (Sweden)

    Tomas Romsy

    2016-12-01

    Full Text Available Subcooled flow boiling under forced convection occurs in many industrial applications of purpose to maximize heat removal from the heat source by the very large heat transfer coefficient. This work deals with CFD simulations of the subcooled flow boiling of refrigerant R12 solved by code ANSYS FLUENT r16. The main objective of this paper is verification of used numerical settings on relevant experiments performed on DEBORA test facility. Also comparisons with previously provided simulation on NRI Rez are presented. Data outputs from this work are basis to subsequent calculations of steam-water mixture cooling of Pb-Li eutectic.

  10. Theoretical prediction method of subcooled flow boiling CHF

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Young Min; Chang, Soon Heung [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    A theoretical critical heat flux (CHF ) model, based on lateral bubble coalescence on the heated wall, is proposed to predict the subcooled flow boiling CHF in a uniformly heated vertical tube. The model is based on the concept that a single layer of bubbles contacted to the heated wall prevents a bulk liquid from reaching the wall at near CHF condition. Comparisons between the model predictions and experimental data result in satisfactory agreement within less than 9.73% root-mean-square error by the appropriate choice of the critical void fraction in the bubbly layer. The present model shows comparable performance with the CHF look-up table of Groeneveld et al.. 28 refs., 11 figs., 1 tab. (Author)

  11. Maximum two-phase flow rates of subcooled nitrogen through a sharp-edged orifice

    Science.gov (United States)

    Simoneau, R. J.

    1975-01-01

    An experiment was conducted and data are presented in which subcooled liquid nitrogen was discharged through a sharp-edged orifice at flow rates near the maximum. The data covered a range of inlet stagnation pressure from slightly above saturation to twice the thermodynamic critical pressure. The data were taken along five separate inlet stagnation isotherms ranging from 0.75 to 1.035 times the thermodynamic critical temperature. The results indicate that: (1) subcooled liquids do not choke or approach maximum flow in an asymptotic manner even though the back pressure is well below saturation; (2) orifice flow coefficients are not constant as is frequently assumed. A metastable jet appears to exist which breaks down if the difference between back pressure and saturation pressure is large enough.

  12. Dipolar correlations in liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Cui [Department of Chemistry, Princeton University, Princeton, New Jersey 08544 (United States); Galli, Giulia, E-mail: gagalli@uchicago.edu [Institute for Molecular Engineering, The University of Chicago, Chicago, Illinois 60637 (United States)

    2014-08-28

    We present an analysis of the dipolar correlations in water as a function of temperature and density and in the presence of simple ionic solutes, carried out using molecular dynamics simulations and empirical potentials. We show that the dipole-dipole correlation function of the liquid exhibits sizable oscillations over nanodomains of about 1.5 nm radius, with several isosbestic points as a function of temperature; the size of the nanodomains is nearly independent on temperature and density, between 240 and 400 K and 0.9 and 1.3 g/cm{sup 3}, but it is substantially affected by the presence of solvated ions. In the same range of thermodynamic conditions, the decay time (τ) of the system dipole moment varies by a factor of about 30 and 1.5, as a function of temperature and density, respectively. At 300 K, we observed a maximum in τ as a function of density, and a corresponding shallow maximum in the tetrahedral order parameter, in a range where the diffusion coefficient, the pressure and the dielectric constant increase monotonically.

  13. Dipolar correlations in liquid water.

    Science.gov (United States)

    Zhang, Cui; Galli, Giulia

    2014-08-28

    We present an analysis of the dipolar correlations in water as a function of temperature and density and in the presence of simple ionic solutes, carried out using molecular dynamics simulations and empirical potentials. We show that the dipole-dipole correlation function of the liquid exhibits sizable oscillations over nanodomains of about 1.5 nm radius, with several isosbestic points as a function of temperature; the size of the nanodomains is nearly independent on temperature and density, between 240 and 400 K and 0.9 and 1.3 g/cm(3), but it is substantially affected by the presence of solvated ions. In the same range of thermodynamic conditions, the decay time (τ) of the system dipole moment varies by a factor of about 30 and 1.5, as a function of temperature and density, respectively. At 300 K, we observed a maximum in τ as a function of density, and a corresponding shallow maximum in the tetrahedral order parameter, in a range where the diffusion coefficient, the pressure and the dielectric constant increase monotonically.

  14. Shallow Water Tuned Liquid Dampers

    DEFF Research Database (Denmark)

    Krabbenhøft, Jørgen

    The use of sloshing liquid as a passive means of suppressing the rolling motion of ships was proposed already in the late 19th century. Some hundred years later the use of liquid sloshing devices, often termed Tuned Liquid Dampers (TLD), began to find use in the civil engineering community...... that for realistic roughness parameters the bottom friction has very limited effect on the liquid sloshing behavior and can be neglected. Herby the postulate is verified. Based on the mathematical model three dimensionless parameters are derived showing that the response of the damper depends solely on ratio...

  15. Electrokinetic Power Generation from Liquid Water Microjets

    Energy Technology Data Exchange (ETDEWEB)

    Duffin, Andrew M.; Saykally, Richard J.

    2008-02-15

    Although electrokinetic effects are not new, only recently have they been investigated for possible use in energy conversion devices. We have recently reported the electrokinetic generation of molecular hydrogen from rapidly flowing liquid water microjets [Duffin et al. JPCC 2007, 111, 12031]. Here, we describe the use of liquid water microjets for direct conversion of electrokinetic energy to electrical power. Previous studies of electrokinetic power production have reported low efficiencies ({approx}3%), limited by back conduction of ions at the surface and in the bulk liquid. Liquid microjets eliminate energy dissipation due to back conduction and, measuring only at the jet target, yield conversion efficiencies exceeding 10%.

  16. Subcooled boiling-induced vibration of a heater rod located between two metallic walls

    Energy Technology Data Exchange (ETDEWEB)

    Takano, Kenji, E-mail: kenji_takano@mhi.co.jp; Hashimoto, Yusuke; Kunugi, Tomoaki; Yokomine, Takehiko; Kawara, Zensaku

    2016-11-15

    Highlights: • A heating structure in water vibrates itself due to subcooled boiling (SBIV). • Experiments with a heater rod located between two metallic walls were conducted. • Large bubbles growing in 1 mm-gap distance with each wall influenced on the SBIV. • Frequency of large bubble generation corresponded to acceleration of the heater rod. • Acceleration of the heater rod in the direction towards each wall was encouraged. - Abstract: The phenomenon that a heating structure vibrates itself due to the behavior of vapor bubbles generated under subcooled boiling has been known as “Subcooled Boiling-induced Vibration (SBIV)”. As one of such a heating structure, fuel assemblies for Boiling Water Reactors (BWR) are utilized in subcooled boiling of water, and those for Pressurized Water Reactors (PWR) may face unexpected subcooled boiling conditions in case of sudden drop of the system pressure or loss of water flow, though they are utilized in single phase of water under normal operating conditions. As studies on SBIV, some researchers have conducted demonstrative experiments with a partial array of fuel rods simulating the actual BWR fuel assembly in a flow test loop, which showed no significant influences of the SBIV to degrade the integrity of the fuel rods. In addition, in order to investigate the fundamental phenomenon of the SBIV, pool boiling experiments of the SBIV on a single heater rod were performed in other studies with a simplified apparatus of a water tank in laboratory size under atmospheric pressure. In the experiments, behavior of bubbles generated under various degree of subcooling were observed, and the acceleration of the SBIV of the heater rod was measured. The present study, as a series of the above experiments for the fundamental phenomenon of the SBIV, the two thin walls made of stainless steel were installed in parallel to interleave the heater rod with the gap distance of 1 mm or 3 mm to each of the two walls, which was expected

  17. Prediction of subcooled flow boiling characteristics using two-fluid Eulerian CFD model

    Energy Technology Data Exchange (ETDEWEB)

    Braz Filho, Francisco A.; Ribeiro, Guilherme B., E-mail: gbribeiro@ieav.cta.br; Caldeira, Alexandre D.

    2016-11-15

    Highlights: • CFD multiphase model is used to predict subcooled flow boiling characteristics. • Better agreement is achieved for higher saturation pressures. • Onset of nucleate boiling and saturated boiling are well predicted. • CFD multiphase model tends to underestimate the void fraction. • Factors were adjusted in order to improve the void fraction results. - Abstract: The present study concerns a detailed analysis of flow boiling phenomena under high pressure systems using a two-fluid Eulerian approach provided by a Computational Fluid Dynamics (CFD) solver. For this purpose, a vertical heated pipe made of stainless steel with an internal diameter of 15.4 mm was considered as the modeled domain. Two different uniform heat fluxes and three saturation pressures were applied to the channel wall, whereas water mass flux of 900 kg/m{sup 2} s was considered for all simulation cases. The model was validated against a set of experimental data and results have indicated a promising use of the CFD technique for estimation of the wall temperature, the liquid bulk temperature and the location of the departure of nucleate boiling. Changes in factors applied in the modeling of the interfacial heat transfer coefficient and bubble departure frequency were suggested, allowing a better prediction of the void fraction along the heated channel. The commercial CFD solver FLUENT 14.5 was used for the model implementation.

  18. Global cloud liquid water path simulations

    Energy Technology Data Exchange (ETDEWEB)

    Lemus, L. [Southern Hemisphere Meteorology, Clayton, Victoria (Australia); Rikus, L. [Bureau of Meteorology Research Centre, Melbourne, Victoria (Australia); Martin, C.; Platt, R. [CSIRO, Aspendale, Victoria (Australia)

    1997-01-01

    A new parameterization of cloud liquid water and ice content has been included in the Bureau of Meteorology Global Assimilation and Prediction System. The cloud liquid water content is derived from the mean cloud temperatures in the model using an empirical relationship based on observations. The results from perpetual January and July simulations are presented and show that the total cloud water path steadily decreases toward high latitudes, with two relative maxima at midlatitudes and a peak at low latitudes. To validate the scheme, the simulated fields need to be processed to produce liquid water paths that can be directly compared with the corresponding field derived from Special Sensor Microwave/Imager (SSM/I) data. This requires the identification of cloud ice water content within the parameterization and a prescription to account for the treatment of strongly precipitating subgrid-scale cloud. The resultant cloud liquid water paths agree qualitatively with the SSM/I data but show some systematic errors that are attributed to corresponding errors in the model`s simulation of cloud amounts. Given that a more quantitative validation requires substantial improvement in the model`s diagnostic cloud scheme, the comparison with the SSM/I data indicates that the cloud water path, derived from the cloud liquid water content parameterization introduced in this paper, is consistent with the observations and can be usefully incorporated in the prediction system. 40 refs., 11 figs., 1 tab.

  19. Bubble and boundary layer behaviour in subcooled flow boiling

    Energy Technology Data Exchange (ETDEWEB)

    Maurus, Reinhold; Sattelmayer, Thomas [Lehrstuhl fuer Thermodynamik, Technische Universitaet Muenchen, 85747 Garching (Germany)

    2006-03-15

    Subcooled flow boiling is a commonly applied technique for achieving efficient heat transfer. In the study, an experimental investigation in the nucleate boiling regime was performed for water circulating in a closed loop at atmospheric pressure. The horizontal orientated test-section consists of a rectangular channel with a one side heated copper strip and good optical access. Various optical observation techniques were applied to study the bubble behaviour and the characteristics of the fluid phase. The bubble behaviour was recorded by the high-speed cinematography and by a digital high resolution camera. Automated image processing and analysis algorithms developed by the authors were applied for a wide range of mass flow rates and heat fluxes in order to extract characteristic length and time scales of the bubbly layer during the boiling process. Using this methodology, the bubbles were automatically analysed and the bubble size, bubble lifetime, waiting time between two cycles were evaluated. Due to the huge number of observed bubbles a statistical analysis was performed and distribution functions were derived. Using a two-dimensional cross-correlation algorithm, the averaged axial phase boundary velocity profile could be extracted. In addition, the fluid phase velocity profile was characterised by means of the particle image velocimetry (PIV) for the single phase flow as well as under subcooled flow boiling conditions. The results indicate that the bubbles increase the flow resistance. The impact on the flow exceeds by far the bubbly region and it depends on the magnitude of the boiling activity. Finally, the ratio of the averaged phase boundary velocity and of the averaged fluid velocity was evaluated for the bubbly region. (authors)

  20. Bubble detachment and lift-off diameters at a vertical heated wall for subcooled boiling flow

    Energy Technology Data Exchange (ETDEWEB)

    Montout, Michael; Haynes, Pierre-Antoine; Peturaud, Pierre [EDF, R and D Division, Fluid Dynamics, Power Generation and Environnement Department, 6 quai Watier, 78401 Chatou Cedex (France); Colin, Catherine [Institut de Mecanique des Fluides de Toulouse, Allee du Professeur Camille Soula, 31400 Toulouse (France)

    2008-07-01

    Full text of publication follows: In the framework of the NEPTUNE project jointly carried on by EDF, CEA, AREVA NP and IRSN (Guelfi et al. (2007)), the development of the NEPTUNE-CFD code aims at (among others) improving the prediction of the Departure from Nucleate Boiling (DNB) in Pressurized Water Reactors (PWRs). In this prospect, the modeling of boiling flows up to the DNB is of prime importance, and this presentation is devoted to one major related phenomenon, the wall-to-flow heat transfer in subcooled boiling flow. Computational Fluid Dynamics (CFD) modeling of subcooled nucleate boiling has to provide the net vapor generation rate at the heated wall, as well as its related geometrical characteristic - either bubble diameter or interfacial area concentration (its velocity might also be useful). For this purpose, mechanistic models are used. Previous models (such as the widely used Kurul and Podowski model (1990)) are based on the bubble lift-off diameter, diameter from which the bubble leaves the wall to be swept along the bulk liquid flow. However, for a few years, new models (Basu et al. (2005) or Yeoh et al. (2008)) account for a finer phenomenology (bubble sliding along the heated wall) and require the knowledge of the bubble detachment diameter, diameter from which the bubble leaves its nucleation site to slide along the heated wall. Modeling these diameters is still an issue. On the one hand, several (semi-) empirical correlations are available in the open literature making it possible to provide the liftoff diameter (Uenal (1976), for instance), but they are still questionable; on the other hand, there is a great lack of information with respect to the evaluation of the detachment diameter. Therefore to progress on these concerns, an analytical work has been carried out. In a first step, a methodology providing detachment and lift-off diameters is proposed and applied. This approach is based on the resolution of a force balance model acting on a

  1. Liquid Water may Stick on Hydrophobic Surfaces

    Indian Academy of Sciences (India)

    IAS Admin

    The behavior of fluid on a solid surface under static and dynamic conditions are usually clubbed together. • On a wetting surface (hydrophilic), liquid water is believed to adhere to the surface causing multilayer sticking. • On a non-wetting surface (hydrophobic), water is believed to glide across the surface leading to slip ...

  2. Water Contaminant Mitigation in Ionic Liquid Propellant

    Science.gov (United States)

    Conroy, David; Ziemer, John

    2009-01-01

    Appropriate system and operational requirements are needed in order to ensure mission success without unnecessary cost. Purity requirements applied to thruster propellants may flow down to materials and operations as well as the propellant preparation itself. Colloid electrospray thrusters function by applying a large potential to a room temperature liquid propellant (such as an ionic liquid), inducing formation of a Taylor cone. Ions and droplets are ejected from the Taylor cone and accelerated through a strong electric field. Electrospray thrusters are highly efficient, precise, scaleable, and demonstrate low thrust noise. Ionic liquid propellants have excellent properties for use as electrospray propellants, but can be hampered by impurities, owing to their solvent capabilities. Of foremost concern is the water content, which can result from exposure to atmosphere. Even hydrophobic ionic liquids have been shown to absorb water from the air. In order to mitigate the risks of bubble formation in feed systems caused by water content of the ionic liquid propellant, physical properties of the ionic liquid EMI-Im are analyzed. The effects of surface tension, material wetting, physisorption, and geometric details of the flow manifold and electrospray emitters are explored. Results are compared to laboratory test data.

  3. Liquid Water Restricts Habitability in Extreme Deserts.

    Science.gov (United States)

    Cockell, Charles S; Brown, Sarah; Landenmark, Hanna; Samuels, Toby; Siddall, Rebecca; Wadsworth, Jennifer

    2017-04-01

    Liquid water is a requirement for biochemistry, yet under some circumstances it is deleterious to life. Here, we show that liquid water reduces the upper temperature survival limit for two extremophilic photosynthetic microorganisms (Gloeocapsa and Chroococcidiopsis spp.) by greater than 40°C under hydrated conditions compared to desiccated conditions. Under hydrated conditions, thermal stress causes protein inactivation as shown by the fluorescein diacetate assay. The presence of water was also found to enhance the deleterious effects of freeze-thaw in Chroococcidiopsis sp. In the presence of water, short-wavelength UV radiation more effectively kills Gloeocapsa sp. colonies, which we hypothesize is caused by factors including the greater penetration of UV radiation into hydrated colonies compared to desiccated colonies. The data predict that deserts where maximum thermal stress or irradiation occurs in conjunction with the presence of liquid water may be less habitable to some organisms than more extreme arid deserts where organisms can dehydrate prior to being exposed to these extremes, thus minimizing thermal and radiation damage. Life in extreme deserts is poised between the deleterious effects of the presence and the lack of liquid water. Key Words: Deserts-Extremophiles-Stress-High temperatures-UV radiation-Desiccation. Astrobiology 17, 309-318.

  4. Water: A Tale of Two Liquids

    Science.gov (United States)

    2016-01-01

    Water is the most abundant liquid on earth and also the substance with the largest number of anomalies in its properties. It is a prerequisite for life and as such a most important subject of current research in chemical physics and physical chemistry. In spite of its simplicity as a liquid, it has an enormously rich phase diagram where different types of ices, amorphous phases, and anomalies disclose a path that points to unique thermodynamics of its supercooled liquid state that still hides many unraveled secrets. In this review we describe the behavior of water in the regime from ambient conditions to the deeply supercooled region. The review describes simulations and experiments on this anomalous liquid. Several scenarios have been proposed to explain the anomalous properties that become strongly enhanced in the supercooled region. Among those, the second critical-point scenario has been investigated extensively, and at present most experimental evidence point to this scenario. Starting from very low temperatures, a coexistence line between a high-density amorphous phase and a low-density amorphous phase would continue in a coexistence line between a high-density and a low-density liquid phase terminating in a liquid–liquid critical point, LLCP. On approaching this LLCP from the one-phase region, a crossover in thermodynamics and dynamics can be found. This is discussed based on a picture of a temperature-dependent balance between a high-density liquid and a low-density liquid favored by, respectively, entropy and enthalpy, leading to a consistent picture of the thermodynamics of bulk water. Ice nucleation is also discussed, since this is what severely impedes experimental investigation of the vicinity of the proposed LLCP. Experimental investigation of stretched water, i.e., water at negative pressure, gives access to a different regime of the complex water diagram. Different ways to inhibit crystallization through confinement and aqueous solutions are

  5. Cryostabilization of high-temperature superconducting magnets with subcooled flow in microchannels

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Y.S.; Hull, J.R.; Choi, U.S.

    1992-07-06

    Subcooled flow of liquid nitrogen in microchannels is proposed as a means to enhance the stability of a superconducting magnet. Analysis shows high current density or a low stabilizer fraction is obtainable in a cryostable magnet. Increase in stability (using the Stekley criterion) is directly related to coolant velocity and coolant channel aspect ratio, however, there is a corresponding increase in pressure drop of the system. Another constraint is the coolant temperature rise, which is found to be a function of coolant residence time and the coolant to conductor ratio.

  6. Strength analysis of CARR-CNS with crescent-shape moderator cell and helium sub-cooling jacket covering cell

    Science.gov (United States)

    Yu, Qingfeng; Feng, Quanke; Kawai, Takeshi; Shen, Feng; Yuan, Luzheng; Cheng, Liang

    2005-12-01

    The new type of the moderator cell was developed for the cold neutron source (CNS) of the China Advanced Research Reactor (CARR) which is now being constructed at the China Institute of Atomic Energy in Beijing. A crescent-shape moderator cell covered by the helium sub-cooling jacket is adopted. The structure of the moderator cell is optimized by the stress FEM analysis. A crescent-shape would help to increase the volume of the moderator cell for fitting it to the four cold neutron guide tubes, even if liquid hydrogen, not liquid deuterium, was used as a cold moderator. The helium sub-cooling jacket covering the moderator cell removes the nuclear heating of the outer shell wall of the cell. It contributes to reduce the void fraction of liquid hydrogen in the outer shell of the moderator cell. Such a type of a moderator cell is suitable for the CNS with higher nuclear heating. The cold helium gas flows down first into the helium sub-cooling jacket and then flows up to the condenser. The theory of the self-regulation suitable to the thermo-siphon type of the CNS is also applicable and validated.

  7. Automated high-speed video analysis of the bubble dynamics in subcooled flow boiling

    Energy Technology Data Exchange (ETDEWEB)

    Maurus, Reinhold; Ilchenko, Volodymyr; Sattelmayer, Thomas [Technische Univ. Muenchen, Lehrstuhl fuer Thermodynamik, Garching (Germany)

    2004-04-01

    Subcooled flow boiling is a commonly applied technique for achieving efficient heat transfer. In the study, an experimental investigation in the nucleate boiling regime was performed for water circulating in a closed loop at atmospheric pressure. The test-section consists of a rectangular channel with a one side heated copper strip and a very good optical access. For the optical observation of the bubble behaviour the high-speed cinematography is used. Automated image processing and analysis algorithms developed by the authors were applied for a wide range of mass flow rates and heat fluxes in order to extract characteristic length and time scales of the bubbly layer during the boiling process. Using this methodology, a huge number of bubble cycles could be analysed. The structure of the developed algorithms for the detection of the bubble diameter, the bubble lifetime, the lifetime after the detachment process and the waiting time between two bubble cycles is described. Subsequently, the results from using these automated procedures are presented. A remarkable novelty is the presentation of all results as distribution functions. This is of physical importance because the commonly applied spatial and temporal averaging leads to a loss of information and, moreover, to an unjustified deterministic view of the boiling process, which exhibits in reality a very wide spread of bubble sizes and characteristic times. The results show that the mass flux dominates the temporal bubble behaviour. An increase of the liquid mass flux reveals a strong decrease of the bubble life - and waiting time. In contrast, the variation of the heat flux has a much smaller impact. It is shown in addition that the investigation of the bubble history using automated algorithms delivers novel information with respect to the bubble lift-off probability. (Author)

  8. Combustion of liquid fuels floating on water

    Directory of Open Access Journals (Sweden)

    Garo Jean-Pierre

    2007-01-01

    Full Text Available The research presented consists of a study of the burning characteristics of a liquid fuel floating on water with emphasis in the phenomena known as boilover. The problem is of technical interest in the petro-chemical industry, particularly from the point of view of pollution and fires resulting from accidental liquid fuel spills in open water. Testing with multicomponent fuels gives information's about events that can occur in a practical situation, while testing with single component fuels permits obtaining fundamental information about the problem. It evidences the major effects caused by the transfer of heat from the fuel to the water underneath. One of these effects is the disruptive burning of the fuel known as boilover, that is caused by the water boiling and splashing, and results in a sharp increase in burning rate and often in the explosive burning of the fuel. It is shown that this event is caused by the onset of water boiling nucleation at the fuel/water interface and that it occurs at an approximate constant temperature that is above the saturation temperature of the water (water is superheated. These measurements conducted in two laboratories, address the major issues of the process by analyzing the effect of the variation of the parameters of the problem (initial fuel-layer thickness, pool diameter, and fuel type, on the burning rate, time to start of boilover, pre-boilover mass ratio, and boilover intensity. Finally, two types of modeling are proposed to describe the heat transfer in fuel and water phases: one simple for practical purposes, the other, more elaborated and transient, taking particularly into consideration the radiation in depth.

  9. Thermodynamics of ice nucleation in liquid water.

    Science.gov (United States)

    Wang, Xin; Wang, Shui; Xu, Qinzhi; Mi, Jianguo

    2015-01-29

    We present a density functional theory approach to investigate the thermodynamics of ice nucleation in supercooled water. Within the theoretical framework, the free-energy functional is constructed by the direct correlation function of oxygen-oxygen of the equilibrium water, and the function is derived from the reference interaction site model in consideration of the interactions of hydrogen-hydrogen, hydrogen-oxygen, and oxygen-oxygen. The equilibrium properties, including vapor-liquid and liquid-solid phase equilibria, local structure of hexagonal ice crystal, and interfacial structure and tension of water-ice are calculated in advance to examine the basis for the theory. The predicted phase equilibria and the water-ice surface tension are in good agreement with the experimental data. In particular, the critical nucleus radius and free-energy barrier during ice nucleation are predicted. The critical radius is similar to the simulation value, suggesting that the current theoretical approach is suitable in describing the thermodynamic properties of ice crystallization.

  10. Sub-cooled nitrogen cryostat for 66 kV/750 A superconducting fault current limiter magnet

    CERN Document Server

    Ohtani, Y; Inoue, K; Kuriyama, T; Nomura, S; Ohkuma, T; Takahashi, Y; Yazawa, T

    2004-01-01

    As a part of the Super-conductive AC Equipment (Super-ACE) project presently being performed, an AC magnet for a fault current limiter (FCL) is being developed. The goal of the project is the development of 66 kV/750 A high Tc superconducting (HTS) FCL magnet, which is composed of six HTS coils operating at around 65 K. This paper describes a design of a sub-cooled nitrogen cryostat for the FCL magnet. Three sets of Gifford-McMahon (GM) cryocooler were used for cooling liquid nitrogen in the cryostat. Experimental results of cooling down and temperature stability during current flowing tests of the magnet were reported in this paper. The sub-cooled nitrogen of 65 K was successfully obtained in the vessel with 2.6 m/sup 3/ in volume. And the temperature uniformity was observed in both of the cooling down process and the coil energizing process.

  11. Autodissociation of a water molecule in liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Geissler, Phillip L.; Dellago, Christoph; Chandler, David; Hutter, Jurg; Parrinello, Michele

    2000-04-01

    The dissociation of a water molecule in liquid water is the fundamental event in acid-base chemistry, determining the pH of water.Because the microscopic dynamics of this autodissociation are difficult to probe, both by experiment and by computer simulation, its mechanism has been unknown. Here we report several autodissociation trajectories generated by ab initio molecular dynamics [1]. These trajectories, which were harvested using transition path sampling [2-4], reveal the mechanism for the first time. Rare fluctuations in solvation energies destabilize an oxygen-hydrogen bond. Through the transfer of one or more protons along a hydrogen bond.

  12. (Liquid + liquid) equilibria of (water + ethanol + dimethyl glutarate) at several temperatures[(Liquid+liquid) equilibria; Ethanol; Dimethyl glutarate; UNIFAC method

    Energy Technology Data Exchange (ETDEWEB)

    Ince, Erol. E-mail: erolince@istanbul.edu.tr; Kirbaslar, S. Ismail. E-mail: krbaslar@istanbul.edu.tr

    2003-10-01

    (Liquid + liquid) equilibrium (LLE) data of (water + ethanol + dimethyl glutarate) have been determined experimentally at T=(298.15,308.15 and 318.15) K. The reliability of the experimental tie-line data was ascertained by using the Othmer and Tobias correlation. The LLE data of the ternary mixture were predicted by UNIFAC method. Distribution coefficients and separation factors were evaluated for the immiscibility region.

  13. Direct Numerical Simulation and Visualization of Subcooled Pool Boiling

    Directory of Open Access Journals (Sweden)

    Tomoaki Kunugi

    2014-01-01

    Full Text Available A direct numerical simulation of the boiling phenomena is one of the promising approaches in order to clarify their heat transfer characteristics and discuss the mechanism. During these decades, many DNS procedures have been developed according to the recent high performance computers and computational technologies. In this paper, the state of the art of direct numerical simulation of the pool boiling phenomena during mostly two decades is briefly summarized at first, and then the nonempirical boiling and condensation model proposed by the authors is introduced into the MARS (MultiInterface Advection and Reconstruction Solver developed by the authors. On the other hand, in order to clarify the boiling bubble behaviors under the subcooled conditions, the subcooled pool boiling experiments are also performed by using a high speed and high spatial resolution camera with a highly magnified telescope. Resulting from the numerical simulations of the subcooled pool boiling phenomena, the numerical results obtained by the MARS are validated by being compared to the experimental ones and the existing analytical solutions. The numerical results regarding the time evolution of the boiling bubble departure process under the subcooled conditions show a very good agreement with the experimental results. In conclusion, it can be said that the proposed nonempirical boiling and condensation model combined with the MARS has been validated.

  14. Polarized View of Supercooled Liquid Water Clouds

    Science.gov (United States)

    Alexandrov, Mikhail D.; Cairns, Brian; Van Diedenhoven, Bastiaan; Ackerman, Andrew S.; Wasilewski, Andrzej P.; McGill, Matthew J.; Yorks, John E.; Hlavka, Dennis L.; Platnick, Steven E.; Arnold, G. Thomas

    2016-01-01

    Supercooled liquid water (SLW) clouds, where liquid droplets exist at temperatures below 0 C present a well known aviation hazard through aircraft icing, in which SLW accretes on the airframe. SLW clouds are common over the Southern Ocean, and climate-induced changes in their occurrence is thought to constitute a strong cloud feedback on global climate. The two recent NASA field campaigns POlarimeter Definition EXperiment (PODEX, based in Palmdale, California, January-February 2013) and Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS, based in Houston, Texas in August- September 2013) provided a unique opportunity to observe SLW clouds from the high-altitude airborne platform of NASA's ER-2 aircraft. We present an analysis of measurements made by the Research Scanning Polarimeter (RSP) during these experiments accompanied by correlative retrievals from other sensors. The RSP measures both polarized and total reflectance in 9 spectral channels with wavelengths ranging from 410 to 2250 nm. It is a scanning sensor taking samples at 0.8deg intervals within 60deg from nadir in both forward and backward directions. This unique angular resolution allows for characterization of liquid water droplet size using the rainbow structure observed in the polarized reflectances in the scattering angle range between 135deg and 165deg. Simple parametric fitting algorithms applied to the polarized reflectance provide retrievals of the droplet effective radius and variance assuming a prescribed size distribution shape (gamma distribution). In addition to this, we use a non-parametric method, Rainbow Fourier Transform (RFT),which allows retrieval of the droplet size distribution without assuming a size distribution shape. We present an overview of the RSP campaign datasets available from the NASA GISS website, as well as two detailed examples of the retrievals. In these case studies we focus on cloud fields with spatial features

  15. Optical Fluorescence Detected from X-ray Irradiated Liquid Water.

    Science.gov (United States)

    Hans, Andreas; Ozga, Christian; Seidel, Robert; Schmidt, Philipp; Ueltzhöffer, Timo; Holzapfel, Xaver; Wenzel, Philip; Reiß, Philipp; Pohl, Marvin N; Unger, Isaak; Aziz, Emad F; Ehresmann, Arno; Slavíček, Petr; Winter, Bernd; Knie, André

    2017-03-16

    Despite its importance, the structure and dynamics of liquid water are still poorly understood in many apsects. Here, we report on the observation of optical fluorescence upon soft X-ray irradiation of liquid water. Detection of spectrally resolved fluorescence was achieved by a combination of the liquid microjet technique and fluorescence spectroscopy. We observe a genuine liquid-phase fluorescence manifested by a broad emission band in the 170-340 nm (4-7 eV) photon wavelength range. In addition, another narrower emission near 300 nm can be assigned to the fluorescence of OH (A state) in the gas phase, the emitting species being formed by Auger electrons escaping from liquid water. We argue that the newly observed broad-band emission of liquid water is relevant in search of extraterrestrial life, and we also envision the observed electron-ejection mechanism to find application for exploring solutes at liquid-vapor interfaces.

  16. Liquid-liquid equilibria of fuel oxygenate + water + hydrocarbon mixtures. 3: Effect of temperature

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, G. [Universitaet Karlsruhe (Germany). Institut fuer Thermische Verfahrenstechnik; Sandler, S.I. [Univ. of Delaware, Newark, DE (United States). Center for Molecular and Engineering Thermodynamics

    1995-09-01

    The authors have measured the ternary liquid-liquid equilibria of water + ethanol mixtures with, separately, 2,2,4-trimethylpentane and toluene at 5 and 40 C, water + tert-amyl alcohol (TAOH) mixtures with, separately, toluene and hexane at 5 and 40 C, and of water + TAOH + pentane mixtures at 5 C. The ethanol-containing systems exhibit type 1 liquid-liquid phase behavior, and the TAOH-containing systems exhibit type 2 behavior. These data, together with the data they have previously reported at 25 C, provide information on how the liquid-liquid equilibria of these systems change as a function of temperature. While the addition of ethanol is found to increase the solubility of hydrocarbons in the aqueous phase, the concentration of the hydrocarbon in the water-rich phase decreases with increasing temperature. With the exception of hydrocarbon in the water-rich phase, the experimental data could be correlated quite well with either the UNIQUAC or NRTL models. For most of the systems considered here the predictions of the phase behavior with the liquid-liquid UNIFAC group-contribution model are only qualitatively correct. However, the liquid-liquid UNIFAC model erroneously predicts type 2 phase behavior to occur for water + ethanol + 2,2,4-trimethylpentane system at 5 C.

  17. Interactions between water and 1-butyl-1-methylpyrrolidinium ionic liquids.

    Science.gov (United States)

    Fadeeva, Tatiana A; Husson, Pascale; DeVine, Jessalyn A; Costa Gomes, Margarida F; Greenbaum, Steven G; Castner, Edward W

    2015-08-14

    We report experimental results on the diffusivity of water in two ionic liquids obtained using the pulsed-gradient spin-echo NMR method. Both ionic liquids have the same cation, 1-butyl-1-methylpyrrolidinium, but different trifluoromethyl-containing anions. One has a strongly hydrophobic anion, bis(trifluoromethylsulfonyl)amide, while the second has a hydrophilic anion, trifluoromethylsulfonate. Transport of water in these ionic liquids is much faster than would be predicted from hydrodynamic laws, indicating that the neutral water molecules experience a very different friction than the anions and cations at the molecular level. Temperature-dependent viscosities, conductivities, and densities are reported as a function of water concentration to further analyze the properties of the ionic liquid-water mixtures. These results on the properties of water in ionic liquids should be of interest to researchers in diverse areas ranging from separations, solubilizing biomass and energy technologies.

  18. A sensitivity analysis of the mass balance equation terms in subcooled flow boiling

    Energy Technology Data Exchange (ETDEWEB)

    Braz Filho, Francisco A.; Caldeira, Alexandre D.; Borges, Eduardo M., E-mail: fbraz@ieav.cta.br, E-mail: alexdc@ieav.cta.br, E-mail: eduardo@ieav.cta.br [Instituto de Estudos Avancados (IEAv), Sao Jose dos Campos, SP (Brazil). Div. de Energia Nuclear

    2013-07-01

    In a heated vertical channel, the subcooled flow boiling occurs when the fluid temperature reaches the saturation point, actually a small overheating, near the channel wall while the bulk fluid temperature is below this point. In this case, vapor bubbles are generated along the channel resulting in a significant increase in the heat flux between the wall and the fluid. This study is particularly important to the thermal-hydraulics analysis of Pressurized Water Reactors (PWRs). The computational fluid dynamics software FLUENT uses the Eulerian multiphase model to analyze the subcooled flow boiling. In a previous paper, the comparison of the FLUENT results with experimental data for the void fraction presented a good agreement, both at the beginning of boiling as in nucleate boiling at the end of the channel. In the region between these two points the comparison with experimental data was not so good. Thus, a sensitivity analysis of the mass balance equation terms, steam production and condensation, was performed. Factors applied to the terms mentioned above can improve the agreement of the FLUENT results to the experimental data. Void fraction calculations show satisfactory results in relation to the experimental data in pressures values of 15, 30 and 45 bars. (author)

  19. A verification and validation of the new implementation of subcooled flow boiling in a CFD code

    Energy Technology Data Exchange (ETDEWEB)

    Braz Filho, Francisco A.; Ribeiro, Guilherme B.; Caldeira, Alexandre D., E-mail: fbraz@ieav.cta.br, E-mail: gbribeiro@ieav.cta.br, E-mail: alexdc@ieav.cta.br [Instituto de Estudos Avancados (IEAv), Sao Jose dos Campos, SP (Brazil). Divisao de Energia Nuclear

    2015-07-01

    Subcooled flow boiling in a heated channel occurs when the liquid bulk temperature is lower than the saturation temperature and the wall temperature is higher. FLUENT computational fluid dynamics code uses Eulerian Multiphase Model to analyze this phenomenon. In FLUENT previous versions, the heat transfer correlations and the source terms of the conservation equations were added to the model using User Defined Functions (UDFs). Currently, these models are among the options of the FLUENT without the need to use UDFs. The comparison of the FLUENT calculations with experimental data for the void fraction presented a wide range of variation in the results, with values from satisfactory to poor results. There was the same problem in the previous versions. The fit factors of the FLUENT that control condensation and boiling in the system can be used to improve the results. This study showed a strong need for verification and validation of these calculations, along with a sensitivity analysis of the main parameters. (author)

  20. Preliminary experimental study of liquid lithium water interaction

    Energy Technology Data Exchange (ETDEWEB)

    You, X.M.; Tong, L.L.; Cao, X.W., E-mail: caoxuewu@sjtu.edu.cn

    2015-10-15

    Highlights: • Explosive reaction occurs when lithium temperature is over 300 °C. • The violence of liquid lithium water interaction increases with the initial temperature of liquid lithium. • The interaction is suppressed when the initial water temperature is above 70 °C. • Steam explosion is not ignorable in the risk assessment of liquid lithium water interaction. • Explosion strength of liquid lithium water interaction is evaluated by explosive yield. - Abstract: Liquid lithium is the best candidate for a material with low Z and low activation, and is one of the important choices for plasma facing materials in magnetic fusion devices. However, liquid lithium reacts violently with water under the conditions of loss of coolant accidents. The release of large heats and hydrogen could result in the dramatic increase of temperature and pressure. The lithium–water explosion has large effect on the safety of fusion devices, which is an important content for the safety assessment of fusion devices. As a preliminary investigation of liquid lithium water interaction, the test facility has been built and experiments have been conducted under different conditions. The initial temperature of lithium droplet ranged from 200 °C to 600 °C and water temperature was varied between 20 °C and 90 °C. Lithium droplets were released into the test section with excess water. The shape of lithium droplet and steam generated around the lithium were observed by the high speed camera. At the same time, the pressure and temperature in the test section were recorded during the violent interactions. The preliminary experimental results indicate that the initial temperature of lithium and water has an effect on the violence of liquid lithium water interaction.

  1. High frequency, realtime measurements of stable isotopes in liquid water

    Science.gov (United States)

    Weiler, M.; Herbstritt, B.; Gralher, B.

    2012-04-01

    We developed a method to measure in-situ the isotopic composition of liquid water with minimal supervision and, most important, with a temporal resolution of less than a minute. For this purpose a off-the-shelf microporous hydrophobic membrane contactor for under 200€ was combined with an isotope laser spectrometer (Picarro). The contactor, originally designed for degassing liquids, was used with nitrogen as carrier gas in order to transform a small fraction of liquid water to water vapor. The generated water vapor was then analyzed continuously by the isotope laser spectrometer. To prove the membrane's applicability we determined the specific isotope fractionation factor for the phase change through the contactor's membrane for a common temperature range and with different waters of known isotopic compositions. This fractionation factor is then used to derive the liquid water isotope ratio from the measured water vapor isotope ratios and the measured temperature at the phase change. The system was compared for breakthrough curves of isotopically enriched water and the isotope values corresponded very well with those of liquid water samples taken simultaneously and analyzed with a conventional method (CRDS). The introduced method supersedes taking liquid samples and employs only relative cheap and readily available components. This makes it a relatively inexpensive, fast, user-friendly and easily reproducible method. It can be applied in both the field and laboratory wherever a water vapor isotope analyzer can be run and whenever real-time isotope data of liquid water are required at high temporal resolution with the same accuracy as collecting individual water samples.

  2. Time dependent heat transport in subcooled superfluid helium

    Science.gov (United States)

    Seyfert, P.; Lafferranderie, J.; Claudet, G.

    The authors present an extensive study on the behaviour of time dependent heat transport in subcooled He II under conditions which are closely related to the cooling problem of superconducting magnets. Experimental results on the delay for onset of burnout and on the transient recovery from burnout are discussed. A theoretical model is derived from the assumption that heat diffusion characterized by the Gorter-Mellink equation is the dominant mode of heat transport and that thermal waves play no direct role in this connection. The comparison of experimental and calculated results shows a very satisfactory agreement which fully validates the model.

  3. Isobaric vapor-liquid equilibria of water + ethanol + hexyl acetate

    Energy Technology Data Exchange (ETDEWEB)

    Arce, A.; Soto, A. [Univ. of Santiago de Compostela (Spain). Chemical Engineering Dept.; Orge, B.; Tojo, J. [Univ. of Vigo (Spain). Chemical Engineering Dept.

    1995-09-01

    The authors determined the isobaric vapor-liquid equilibrium data for the ternary system water + ethanol + hexyl acetate at 101.325 kPa using a distillation apparatus recycling both liquid and vapor phases. The results were compared with those predicted using group contribution methods. The UNIFAC method gave the best predictions.

  4. Liquid water in the domain of cubic crystalline ice Ic

    Science.gov (United States)

    Jenniskens, P.; Banham, S. F.; Blake, D. F.; McCoustra, M. R.

    1997-01-01

    Vapor-deposited amorphous water ice when warmed above the glass transition temperature (120-140 K), is a viscous liquid which exhibits a viscosity vs temperature relationship different from that of liquid water at room temperature. New studies of thin water ice films now demonstrate that viscous liquid water persists in the temperature range 140-210 K. where it coexists with cubic crystalline ice. The liquid character of amorphous water above the glass transition is demonstrated by (1) changes in the morphology of water ice films on a nonwetting surface observed in transmission electron microscopy (TEM) at around 175 K during slow warming, (2) changes in the binding energy of water molecules measured in temperature programmed desorption (TPD) studies, and (3) changes in the shape of the 3.07 micrometers absorption band observed in grazing angle reflection-absorption infrared spectroscopy (RAIRS) during annealing at high temperature. whereby the decreased roughness of the water surface is thought to cause changes in the selection rules for the excitation of O-H stretch vibrations. Because it is present over such a wide range of temperatures, we propose that this form of liquid water is a common material in nature. where it is expected to exist in the subsurface layers of comets and on the surfaces of some planets and satellites.

  5. Droplet-Sizing Liquid Water Content Sensor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Icing is one of the most significant hazards to aircraft. A sizing supercooled liquid water content (SSLWC) sonde is being developed to meet a directly related need...

  6. Excited state dynamics of liquid water near the surface

    Directory of Open Access Journals (Sweden)

    Schultz Thomas

    2013-03-01

    Full Text Available Time resolved photoelectron spectroscopy explores the excited state dynamics of liquid water in presence of cations close to the surface. A transient hydrated electroncation complex is observed.

  7. Continuous in situ measurements of stable isotopes in liquid water

    Science.gov (United States)

    Herbstritt, Barbara; Gralher, Benjamin; Weiler, Markus

    2012-03-01

    We developed a method to measure in situ the isotopic composition of liquid water with minimal supervision and, most important, with a temporal resolution of less than a minute. For this purpose a microporous hydrophobic membrane contactor (Membrana) was combined with an isotope laser spectrometer (Picarro). The contactor, originally designed for degassing liquids, was used with N2 as a carrier gas in order to transform a small fraction of liquid water to water vapor. The generated water vapor was then analyzed continuously by the Picarro analyzer. To prove the membrane's applicability, we determined the specific isotope fractionation factor for the phase change through the contactor's membrane across an extended temperature range (8°C-21°C) and with different waters of known isotopic compositions. This fractionation factor is needed to subsequently derive the liquid water isotope ratio from the measured water vapor isotope ratios. The system was tested with a soil column experiment, where the isotope values derived with the new method corresponded well (R2 = 0.998 for δ18O and R2 = 0.997 for δ2H) with those of liquid water samples taken simultaneously and analyzed with a conventional method (cavity ring-down spectroscopy). The new method supersedes taking liquid samples and employs only relatively cheap and readily available components. This makes it a relatively inexpensive, fast, user-friendly, and easily reproducible method. It can be applied in both the field and laboratory wherever a water vapor isotope analyzer can be run and whenever real-time isotope data of liquid water are required at high temporal resolution.

  8. Local Structure Analysis in $Ab$ $Initio$ Liquid Water

    OpenAIRE

    Santra, Biswajit; DiStasio Jr., Robert A.; Martelli, Fausto; Car, Roberto

    2015-01-01

    Within the framework of density functional theory, the inclusion of exact exchange and non-local van der Waals/dispersion (vdW) interactions is crucial for predicting a microscopic structure of ambient liquid water that quantitatively agrees with experiment. In this work, we have used the local structure index (LSI) order parameter to analyze the local structure in such highly accurate $ab$ $initio$ liquid water. At ambient conditions, the LSI probability distribution, P($I$), was unimodal wi...

  9. Solid-liquid critical behavior of water in nanopores.

    Science.gov (United States)

    Mochizuki, Kenji; Koga, Kenichiro

    2015-07-07

    Nanoconfined liquid water can transform into low-dimensional ices whose crystalline structures are dissimilar to any bulk ices and whose melting point may significantly rise with reducing the pore size, as revealed by computer simulation and confirmed by experiment. One of the intriguing, and as yet unresolved, questions concerns the observation that the liquid water may transform into a low-dimensional ice either via a first-order phase change or without any discontinuity in thermodynamic and dynamic properties, which suggests the existence of solid-liquid critical points in this class of nanoconfined systems. Here we explore the phase behavior of a model of water in carbon nanotubes in the temperature-pressure-diameter space by molecular dynamics simulation and provide unambiguous evidence to support solid-liquid critical phenomena of nanoconfined water. Solid-liquid first-order phase boundaries are determined by tracing spontaneous phase separation at various temperatures. All of the boundaries eventually cease to exist at the critical points and there appear loci of response function maxima, or the Widom lines, extending to the supercritical region. The finite-size scaling analysis of the density distribution supports the presence of both first-order and continuous phase changes between solid and liquid. At around the Widom line, there are microscopic domains of two phases, and continuous solid-liquid phase changes occur in such a way that the domains of one phase grow and those of the other evanesce as the thermodynamic state departs from the Widom line.

  10. Liquid Water in the Extremely Shallow Martian Subsurface

    Science.gov (United States)

    Pavlov, A.; Shivak, J. N.

    2012-01-01

    Availability of liquid water is one of the major constraints for the potential Martian biosphere. Although liquid water is unstable on the surface of Mars due to low atmospheric pressures, it has been suggested that liquid films of water could be present in the Martian soil. Here we explored a possibility of the liquid water formation in the extremely shallow (1-3 cm) subsurface layer under low atmospheric pressures (0.1-10 mbar) and low ("Martian") surface temperatures (approx.-50 C-0 C). We used a new Goddard Martian simulation chamber to demonstrate that even in the clean frozen soil with temperatures as low as -25C the amount of mobile water can reach several percents. We also showed that during brief periods of simulated daylight warming the shallow subsurface ice sublimates, the water vapor diffuses through porous surface layer of soil temporarily producing supersaturated conditions in the soil, which leads to the formation of additional liquid water. Our results suggest that despite cold temperatures and low atmospheric pressures, Martian soil just several cm below the surface can be habitable.

  11. Review: Drinking water for liquid-fed pigs.

    Science.gov (United States)

    Meunier-Salaün, M-C; Chiron, J; Etore, F; Fabre, A; Laval, A; Pol, F; Prunier, A; Ramonet, Y; Nielsen, B L

    2017-05-01

    Liquid feeding has the potential to provide pigs with sufficient water to remain hydrated and prevent prolonged thirst. However, lack of permanent access to fresh water prevents animals from drinking when they are thirsty. Moreover, individual differences between pigs in a pen may result in uneven distribution of the water provided by the liquid feed, leading to some pigs being unable to meet their water requirements. In this review, we look at the need for and provision of water for liquid-fed pigs in terms of their production performance, behaviour, health and welfare. We highlight factors which may lead to water ingestion above or below requirements. Increases in the need for water may be caused by numerous factors such as morbidity, ambient temperature or competition within the social group, emphasising the necessity of permanent access to water as also prescribed in EU legislation. The drinkers can be the target of redirected behaviour in response to feed restriction or in the absence of rooting materials, thereby generating water losses. The method of water provision and drinker design is critical to ensure easy access to water regardless of the pig's physiological state, and to limit the amount of water used, which does not benefit the pig.

  12. Anharmonic bend-stretch coupling in neat liquid water

    NARCIS (Netherlands)

    Lindner, Joerg; Cringus, Dan; Pshenichnikov, Maxim S.; Voehringer, Peter

    2007-01-01

    Femtosecond mid-IR spectroscopy is used to study the vibrational relaxation dynamics in neat liquid water. By exciting the bending vibration and probing the stretching mode, it is possible to reliably determine the bending and librational lifetimes of water. The anharmonic coupling between the

  13. Communication: Protein dynamical transition vs. liquid-liquid phase transition in protein hydration water

    Science.gov (United States)

    Schirò, Giorgio; Fomina, Margarita; Cupane, Antonio

    2013-09-01

    In this work, we compare experimental data on myoglobin hydrated powders from elastic neutron scattering, broadband dielectric spectroscopy, and differential scanning calorimetry. Our aim is to obtain new insights on the connection between the protein dynamical transition, a fundamental phenomenon observed in proteins whose physical origin is highly debated, and the liquid-liquid phase transition (LLPT) possibly occurring in protein hydration water and related to the existence of a low temperature critical point in supercooled water. Our results provide a consistent thermodynamic/dynamic description which gives experimental support to the LLPT hypothesis and further reveals how fundamental properties of water and proteins are tightly related.

  14. Experimental Evidence for a Liquid-Liquid Crossover in Deeply Cooled Confined Water

    Science.gov (United States)

    Cupane, Antonio; Fomina, Margarita; Piazza, Irina; Peters, Judith; Schirò, Giorgio

    2014-11-01

    In this work we investigate, by means of elastic neutron scattering, the pressure dependence of mean square displacements (MSD) of hydrogen atoms of deeply cooled water confined in the pores of a three-dimensional disordered SiO2 xerogel; experiments have been performed at 250 and 210 K from atmospheric pressure to 1200 bar. The "pressure anomaly" of supercooled water (i.e., a mean square displacement increase with increasing pressure) is observed in our sample at both temperatures; however, contrary to previous simulation results and to the experimental trend observed in bulk water, the pressure effect is smaller at lower (210 K) than at higher (250 K) temperature. Elastic neutron scattering results are complemented by differential scanning calorimetry data that put in evidence, besides the glass transition at about 170 K, a first-order-like endothermic transition occurring at about 230 K that, in view of the neutron scattering results, can be attributed to a liquid-liquid crossover. Our results give experimental evidence for the presence, in deeply cooled confined water, of a crossover occurring at about 230 K (at ambient pressure) from a liquid phase predominant at 210 K to another liquid phase predominant at 250 K; therefore, they are fully consistent with the liquid-liquid transition hypothesis.

  15. Bond orientational order in liquids: Towards a unified description of water-like anomalies, liquid-liquid transition, glass transition, and crystallization: Bond orientational order in liquids.

    Science.gov (United States)

    Tanaka, Hajime

    2012-10-01

    There are at least three fundamental states of matter, depending upon temperature and pressure: gas, liquid, and solid (crystal). These states are separated by first-order phase transitions between them. In both gas and liquid phases a complete translational and rotational symmetry exist, whereas in a solid phase both symmetries are broken. In intermediate phases between liquid and solid, which include liquid crystal and plastic crystal phases, only one of the two symmetries is preserved. Among the fundamental states of matter, the liquid state is the most poorly understood. We argue that it is crucial for a better understanding of liquids to recognize that a liquid generally has the tendency to have a local structural order and its presence is intrinsic and universal to any liquid. Such structural ordering is a consequence of many-body correlations, more specifically, bond angle correlations, which we believe are crucial for the description of the liquid state. We show that this physical picture may naturally explain difficult unsolved problems associated with the liquid state, such as anomalies of water-type liquids (water, Si, Ge, ...), liquid-liquid transition, liquid-glass transition, crystallization and quasicrystal formation, in a unified manner. In other words, we need a new order parameter representing a low local free-energy configuration, which is a bond orientational order parameter in many cases, in addition to a density order parameter for the physical description of these phenomena. Here we review our two-order-parameter model of liquid and consider how transient local structural ordering is linked to all of the above-mentioned phenomena. The relationship between these phenomena is also discussed.

  16. Surface potential of the water liquid-vapor interface

    Science.gov (United States)

    Wilson, Michael A.; Pohorille, Andrew; Pratt, Lawrence R.

    1988-01-01

    An analysis of an extended molecular dynamics calculation of the surface potential (SP) of the water liquid-vapor interface is presented. The SP predicted by the TIP4P model is -(130 + or - 50) mV. This value is of reasonable magnitude but of opposite sign to the expectations based on laboratory experiments. The electrostatic potential shows a nonmonotonic variation with depth into the liquid.

  17. Liquid marble and water droplet interactions and stability.

    Science.gov (United States)

    Ueno, Kazuyuki; Bournival, Ghislain; Wanless, Erica J; Nakayama, Saori; Giakoumatos, Emma C; Nakamura, Yoshinobu; Fujii, Syuji

    2015-10-21

    The interactions between two individual water droplets were investigated in air using a combination of coalescence rig and high speed video camera. This combination allows the visualization of droplet coalescence dynamics with millisecond resolution which provides information on droplet stability. Bare water droplets coalesced rapidly upon contact, while droplet stability was achieved by coating the droplets with polystyrene particles carrying pH-responsive poly[2-(diethylamino)ethyl methacrylate] hairs (PDEA-PS particles) to form liquid marbles. The asymmetric interaction of a water droplet (pH 3 or 10) armoured with the PDEA-PS particles (liquid marble) with a bare droplet at pH 3 exhibited intermediate stability with coalescence observed following an induction time. The induction time was longer for the pH 10 liquid marble, where the PDEA-PS particles have a hydrophobic surface, than in the case of a pH 3 liquid marble, where the PDEA-PS particles have a hydrophilic surface. Furthermore, film formation of PDEA-PS particles on the liquid marble surface with toluene vapour confirmed capsule formation which prevented coalescence with the neighbouring water droplet instead wetting the capsule upon contact within 3 milliseconds. This study illuminates the stability of individual particle-stabilized droplets and has potential impact on processes and formulations which involve their interaction.

  18. Water Phase Diagram Is Significantly Altered by Imidazolium Ionic Liquid

    DEFF Research Database (Denmark)

    Chaban, V. V.; Prezhdo, O. V.

    2014-01-01

    We report unusually large changes in the boiling temperature, saturated vapor pressure, and structure of the liquid-vapor interface for a range of 1-butyl-3-methyl tetrafluoroborate, [C4C1IM][BF4]-water mixtures. Even modest molar fractions of [C4C1IM][BF4] significantly affect the phase behavior...... of water, as represented, for instance, by strong negative deviations from Raoult's law, extending far beyond the standard descriptions. The investigation was carried out using classical molecular dynamics employing a specifically refined force field. The changes in the liquid-vapor interface and saturated...

  19. Structural Origin of Shear Viscosity of Liquid Water.

    Science.gov (United States)

    Yamaguchi, Tsuyoshi

    2018-01-25

    The relation between the microscopic structure and shear viscosity of liquid water was analyzed by calculating the cross-correlation between the shear stress and the two-body density using the molecular dynamics simulation. The slow viscoelastic relaxation that dominates the steady-state shear viscosity was ascribed to the destruction of the hydrogen-bonding network structure along the compression axis of the shear distortion, which resembles the structural change under isotropic hydrostatic compression. It means that the shear viscosity of liquid water reflects the anisotropic destruction-formation dynamics of the hydrogen-bonding network.

  20. Ternary liquid-liquid equilibria measurement for epoxidized soybean oil + acetic acid + water.

    Science.gov (United States)

    Cai, Shuang-Fei; Wang, Li-Sheng; Yan, Guo-Qing; Li, Yi; Feng, Yun-Xia; Linghu, Rong-Gang

    2012-01-01

    Liquid-liquid equilibria (LLE) data were measured for ternary system epoxidized soybean oil (ESO) + acetic acid + water at 313.15, 323.15 and 333.15 K, respectively. The consistency of the measured LLE data was tested, using Othmer-Tobias correlation and root-mean-square deviation (sigma) in mass fraction of water in the lower phase and average value of the absolute difference (AAD) between experimental mass fraction of epoxidized soybean oil in the upper phase and that calculated using Othmer-Tobias correlation.

  1. Solid−liquid critical behavior of water in nanopores

    Science.gov (United States)

    Mochizuki, Kenji; Koga, Kenichiro

    2015-01-01

    Nanoconfined liquid water can transform into low-dimensional ices whose crystalline structures are dissimilar to any bulk ices and whose melting point may significantly rise with reducing the pore size, as revealed by computer simulation and confirmed by experiment. One of the intriguing, and as yet unresolved, questions concerns the observation that the liquid water may transform into a low-dimensional ice either via a first-order phase change or without any discontinuity in thermodynamic and dynamic properties, which suggests the existence of solid−liquid critical points in this class of nanoconfined systems. Here we explore the phase behavior of a model of water in carbon nanotubes in the temperature−pressure−diameter space by molecular dynamics simulation and provide unambiguous evidence to support solid−liquid critical phenomena of nanoconfined water. Solid−liquid first-order phase boundaries are determined by tracing spontaneous phase separation at various temperatures. All of the boundaries eventually cease to exist at the critical points and there appear loci of response function maxima, or the Widom lines, extending to the supercritical region. The finite-size scaling analysis of the density distribution supports the presence of both first-order and continuous phase changes between solid and liquid. At around the Widom line, there are microscopic domains of two phases, and continuous solid−liquid phase changes occur in such a way that the domains of one phase grow and those of the other evanesce as the thermodynamic state departs from the Widom line. PMID:26100904

  2. Liquid-Liquid equilibria of the water-acetic acid-butyl acetate system

    Directory of Open Access Journals (Sweden)

    Ince E.

    2002-01-01

    Full Text Available Experimental liquid-liquid equilibria of the water-acetic acid-butyl acetate system were studied at temperatures of 298.15± 0.20, 303.15± 0.20 and 308.15± 0.20 K. Complete phase diagrams were obtained by determining solubility and tie-line data. The reliability of the experimental tie-line data was ascertained by using the Othmer and Tobias correlation. The UNIFAC group contribution method was used to predict the observed ternary liquid-liquid equilibrium (LLE data. It was found that UNIFAC group interaction parameters used for LLE did not provide a good prediction. Distribution coefficients and separation factors were evaluated for the immiscibility region.

  3. Chloride reduction from brackish water by hollow fiber supported liquid membranes (HFSLM) using ionic liquids as a carrier

    OpenAIRE

    Hofmeister, Markus; Slusarek, Tobias; Madaj, Rafal; Strömbäck, William

    2013-01-01

    The project “Chloride reduction from brackish water by hollow fiber supported liquid membranes (HFSLM) using ionic liquids as a carrier “ is about developing an alternative and cost effective solution for the Abrera drinking water treatment plant to desalinate water from Llobregat river while accomplishing drinking water standards. With a constant increase of the world's population, the demand for drinking water also increases. However, the supply of drinking water is limited, so desalination...

  4. Transition process leading to microbubble emission boiling on horizontal circular heated surface in subcooled pool

    Science.gov (United States)

    Ueno, Ichiro; Ando, Jun; Horiuchi, Kazuna; Saiki, Takahito; Kaneko, Toshihiro

    2016-11-01

    Microbubble emission boiling (MEB) produces a higher heat flux than critical heat flux (CHF) and therefore has been investigated in terms of its heat transfer characteristics as well as the conditions under which MEB occurs. Its physical mechanism, however, is not yet clearly understood. We carried out a series of experiments to examine boiling on horizontal circular heated surfaces of 5 mm and of 10 mm in diameter, in a subcooled pool, paying close attention to the transition process to MEB. High-speed observation results show that, in the MEB regime, the growth, condensation, and collapse of the vapor bubbles occur within a very short time. In addition, a number of fine bubbles are emitted from the collapse of the vapor bubbles. By tracking these tiny bubbles, we clearly visualize that the collapse of the vapor bubbles drives the liquid near the bubbles towards the heated surface, such that the convection field around the vapor bubbles under MEB significantly differs from that under nucleate boiling. Moreover, the axial temperature gradient in a heated block (quasi-heat flux) indicates a clear difference between nucleate boiling and MEB. A combination of quasi-heat flux and the measurement of the behavior of the vapor bubbles allows us to discuss the transition to MEB. This work was financially supported by the 45th Research Grant in Natural Sciences from The Mitsubishi Foundation (2014 - 2015), and by Research Grant for Boiler and Pressurized Vessels from The Japan Boiler Association (2016).

  5. Molecular reorientation of liquid water studied with femtosecond midinfrared spectroscopy

    NARCIS (Netherlands)

    Bakker, H.J.; Rezus, Y.L.A.; Timmer, R.L.A.

    2008-01-01

    The molecular reorientation of liquid water is key to the hydration and stabilization of molecules and ions in aqueous solution. A powerful technique to study this reorientation is to measure the time-dependent anisotropy of the excitation of the O-H/O-D stretch vibration of HDO dissolved in D2O/H2O

  6. The modelled liquid water balance of the Greenland Ice Sheet

    NARCIS (Netherlands)

    Steger, Christian R.; Reijmer, Carleen H.; van den Broeke, Michiel R.

    2017-01-01

    Recent studies indicate that the surface mass balance will dominate the Greenland Ice Sheet's (GrIS) contribution to 21st century sea level rise. Consequently, it is crucial to understand the liquid water balance (LWB) of the ice sheet and its response to increasing surface melt. We therefore

  7. Ultrafast Librational Relaxation of H2O in Liquid Water

    DEFF Research Database (Denmark)

    Petersen, Jakob; Møller, Klaus Braagaard; Rey, Rossend

    2013-01-01

    The ultrafast librational (hindered rotational) relaxation of a rotationally excited H2O molecule in pure liquid water is investigated by means of classical nonequilibrium molecular dynamics simulations and a power and work analysis. This analysis allows the mechanism of the energy transfer from...

  8. Modeling of liquid/liquid separation by pervaporation: Toluene from water

    NARCIS (Netherlands)

    Meuleman, E.E.B.; Meuleman, Erik E.B.; Bosch, Bert; Mulder, M.H.V.; Strathmann, H.

    1999-01-01

    The resistances-in-series model, the modified solution-diffusion model, the Flory-Rehner theory, and the film theory were used to calculate the diffusion coefficients of two components of a liquid-feed mixture that are separated by pervaporation. The toluene and water fluxes through EPDM membranes

  9. APPLICATION OF THE UNIFAC MODEL TO LIQUID-LIQUID EQUILIBRIA OF WATER-PROPIONIC ACID-SOLVENT TERNARIES*

    Directory of Open Access Journals (Sweden)

    Süheyla ÇEHRELİ

    2003-01-01

    Full Text Available The liquid-liquid equilibria of Water-Propionic Acid-Benzyl Alcohol, Water-Propionic Acid-Benzyl Acetate and Water-Propionic Acid-Dibenzyl Ether ternary systems were predicted by means of UNIFAC Model. For this purpose, multivariable Newton-Raphson convergence procedure was used. Experimental and model results were compared.

  10. Measurement of Radiation Damage of Water-based Liquid Scintillator and Liquid Scintillator

    CERN Document Server

    Bignell, Lindsey J; Hans, Sunej; Jaffe, David E; Rosero, Richard; Vigdor, Steven; Viren, Brett; Worcester, Elizabeth; Yeh, Minfang; Zhang, Chao

    2015-01-01

    Liquid scintillating phantoms have been proposed as a means to perform real-time 3D dosimetry for proton therapy treatment plan verification. We have studied what effect radiation damage to the scintillator will have upon this application. We have performed measurements of the degradation of the light yield and optical attenuation length of liquid scintillator and water-based liquid scintillator after irradiation by 201 MeV proton beams that deposited doses of approximately 52 Gy, 300 Gy, and 800 Gy in the scintillator. Liquid scintillator and water-based liquid scintillator (composed of $5\\%$ scintillating phase) exhibit light yield reductions of $1.74 \\pm 0.55 \\%$ and $1.31 \\pm 0.59 \\%$ after $\\approx$ 800 Gy of proton dose, respectively. Whilst some increased optical attenuation was observed in the irradiated samples, the measured reduction to the light yield is also due to damage to the scintillation light production. Based on our results and conservative estimates of the expected dose in a clinical conte...

  11. Numerical studies on the separation performance of liquid- liquid Hydrocyclone for higher water-cut wells

    Science.gov (United States)

    Osei, H.; Al-Kayiem, H. H.; Hashim, F. M.

    2015-12-01

    Liquid-liquid hydrocyclones have nowadays become very useful in the oil industry because of their numerous applications. They can be installed downhole in the case of a well that produces higher water-oil ratios. The design of a liquid-liquid hydrocyclone for such a task is critical and every geometric part of the hydrocyclone has a part to play as far as separation is concerned. This work, through validated numerical technique, investigated the liquid-liquid hydrocyclone performance for the cases of single-inlet and dual-inlets, with different upper cylindrical lengths, specifically, 30mm and 60mm.It was observed that the hydrocyclones with the 30mm upper cylindrical section perform better than the ones with 60 mm upper cylindrical section. It was again noted that, even though higher number of tangential inlets increases the swirl intensity, they have the tendency to break up the oil droplets within the hydrocyclone because of increasing shear and jet flow interaction.

  12. Measurement of liquid-liquid equilibria for condensate + glycol and condensate + glycol + water systems

    DEFF Research Database (Denmark)

    Riaz, Muhammad; Kontogeorgis, Georgios; Stenby, Erling Halfdan

    2011-01-01

    Today's oil and gas production requires the application of various chemicals in large amounts. To evaluate the effects of those chemicals on the environment, it is of crucial importance to know how much of the chemicals are discharged via produced water and how much is dissolved in the crude oil....... The ultimate objective of this work is to develop a predictive thermodynamic model for the mutual solubility of oil, water, and polar chemicals. But for the development and validation of the model, experimental data are required. This work presents new experimental liquid-liquid equilibrium (LLE) data for 1......,2-ethanediol (MEG) + condensate and MEG + water + condensate systems at temperatures from (275 to 323) K at atmospheric pressure. The condensate used in this work is a stabilized natural gas condensate from an offshore field in the North Sea. Compositional analysis of the natural gas condensate was carried out...

  13. Entropy of liquid water from ab initio molecular dynamics.

    Science.gov (United States)

    Zhang, Cui; Spanu, Leonardo; Galli, Giulia

    2011-12-08

    We have computed the entropy of liquid water using a two-phase thermodynamic model and trajectories generated by ab initio molecular dynamics simulations. We present the results obtained with semilocal, hybrid, and van der Waals density functionals. We show that in all cases, at the experimental equilibrium density and at temperatures in the vicinity of 300 K, the computed entropies are underestimated, with respect to experiment, and the liquid exhibits a degree of tetrahedral order higher than in experiments. The underestimate is more severe for the PBE and PBE0 functionals than for several van der Waals functionals. © 2011 American Chemical Society

  14. Liquid - liquid equilibria of the water + butyric acid + decanol ternary system

    Directory of Open Access Journals (Sweden)

    S.I. Kirbaslar

    2006-09-01

    Full Text Available Liquid-liquid equilibrium (LLE data for the water + butyric acid + decanol ternary system were determined experimentally at temperatures of 298.15, 308.15 and 318.15 K. Complete phase diagrams were obtained by determining the solubility curve and the tie lines. The reliability of the experimental tie line data was confirmed with the Othmer-Tobias correlation. The UNIFAC method was used to predict the phase equilibrium of the system using the interaction parameters for groups CH3, CH2, COOH, OH and H2O determined experimentally. Distribution coefficients and separation factors were evaluated for the immiscibility region.

  15. CFD analysis of bubble microlayer and growth in subcooled flow boiling

    Energy Technology Data Exchange (ETDEWEB)

    Owoeye, Eyitayo James, E-mail: msgenius10@ufl.edu; Schubring, DuWanye, E-mail: dlschubring@ufl.edu

    2016-08-01

    Highlights: • A new LES-microlayer model is introduced. • Analogous to the unresolved SGS in LES, analysis of bubble microlayer was performed. • The thickness of bubble microlayer was computed at both steady and transient states. • The macroscale two-phase behavior was captured with VOF coupled with AMR. • Numerical validations were performed for both the micro- and macro-region analyses. - Abstract: A numerical study of single bubble growth in turbulent subcooled flow boiling was carried out. The macro- and micro-regions of the bubble were analyzed by introducing a LES-microlayer model. Analogous to the unresolved sub-grid scale (SGS) in LES, a microlayer analysis was performed to capture the unresolved thermal scales for the micro-region heat transfer by deriving equations for the microlayer thickness at steady and transient states. The phase change at the macro-region was based on Volume-of-Fluid (VOF) interface tracking method coupled with adaptive mesh refinement (AMR). Large Eddy Simulation (LES) was used to model the turbulence characteristics. The numerical model was validated with multiple experimental data from the open literature. This study includes parametric variations that cover the operating conditions of boiling water reactor (BWR) and pressurized water reactor (PWR). The numerical model was used to study the microlayer thickness, growth rate, dynamics, and distortion of the bubble.

  16. Experimental high temperature coefficients of compressibility and expansivity of liquid sodium and other related properties

    Energy Technology Data Exchange (ETDEWEB)

    Das Gupta, S.

    1977-01-01

    The subcooled compressibility of liquid sodium was directly measured up to 200 atm between 900 K and 1867 K, utilizing a new multi-property apparatus which was previously tested with water. The experimental data were correlated by a 6-term equation with a standard deviation of 9.2 percent. The equation can be used to estimate the subcooled compressibilities and densities of liquid sodium up to 2300 K and 500 ata. The thermal expansion of liquid sodium was also measured along the isobars 1 ata, 28.9 ata and 69 ata. Densities within 1 percent of those obtained from the compressibilities were obtained. The above compressibility data were used to calculate the thermal pressure coefficient of saturated liquid sodium. Also, Bhise and Bonilla's correlations for the vapor pressure and the saturated liquid density of sodium were improved by including more data in the analysis. The critical temperature and density were thus reestimated as 2508.7 K and 0.2141 g/cc. Furthermore, a new correlation was developed to determine the heat of vaporization of sodium up to the critical point, which was then used to estimate the internal energy and the entropy of vaporization and the saturated vapor density of sodium up to the critical point.

  17. Multi-scale full-field measurements and near-wall modeling of turbulent subcooled boiling flow using innovative experimental techniques

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Yassin A., E-mail: y-hassan@tamu.edu

    2016-04-01

    Highlights: • Near wall full-field velocity components under subcooled boiling were measured. • Simultaneous shadowgraphy, infrared thermometry wall temperature and particle-tracking velocimetry techniques were combined. • Near wall velocity modifications under subcooling boiling were observed. - Abstract: Multi-phase flows are one of the challenges on which the CFD simulation community has been working extensively with a relatively low success. The phenomena associated behind the momentum and heat transfer mechanisms associated to multi-phase flows are highly complex requiring resolving simultaneously for multiple scales on time and space. Part of the reasons behind the low predictive capability of CFD when studying multi-phase flows, is the scarcity of CFD-grade experimental data for validation. The complexity of the phenomena and its sensitivity to small sources of perturbations makes its measurements a difficult task. Non-intrusive and innovative measuring techniques are required to accurately measure multi-phase flow parameters while at the same time satisfying the high resolution required to validate CFD simulations. In this context, this work explores the feasible implementation of innovative measuring techniques that can provide whole-field and multi-scale measurements of two-phase flow turbulence, heat transfer, and boiling parameters. To this end, three visualization techniques are simultaneously implemented to study subcooled boiling flow through a vertical rectangular channel with a single heated wall. These techniques are listed next and are used as follow: (1) High-speed infrared thermometry (IR-T) is used to study the impact of the boiling level on the heat transfer coefficients at the heated wall, (2) Particle Tracking Velocimetry (PTV) is used to analyze the influence that boiling parameters have on the liquid phase turbulence statistics, (3) High-speed shadowgraphy with LED illumination is used to obtain the gas phase dynamics. To account

  18. Effect of ionic liquids on (vapor + liquid) equilibrium behavior of (water + 2-methyl-2-propanol)

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Lianzhong; Qiao Bingbang; Ge Yun; Deng Dongshun [College of Chemical Engineering and Material Science, Zhejiang University of Technology, Hangzhou 310014 (China); Ji Jianbing [College of Chemical Engineering and Material Science, Zhejiang University of Technology, Hangzhou 310014 (China)], E-mail: jjb@zjut.edu.cn

    2009-01-15

    Isobaric T, x, y data were reported for ternary systems of {l_brace}water + 2-methyl-2-propanol (tert-butyl alcohol, TBA) + ionic liquid (IL){r_brace} at p = 100 kPa. When the mole fraction of TBA on IL-free basis was fixed at 0.95, measurements were performed at IL mass fractions from 0.6 down to 0.05, in a way of repeated synthesis. The vapor-phase compositions were obtained by analytical methods and the liquid-phase compositions were calculated with the aid of mass balances. Activity coefficients of water and TBA were obtained without the need of a thermodynamic model of the liquid-phase. Six ILs, composed of an anion chosen from [OAc]{sup -} or [Cl]{sup -}, and a cation from [emim]{sup +}, or [bmim]{sup +}, or [hmim]{sup +}, were studied. Relative volatility and activity coefficients were presented in relation with the IL mole fraction, showing the effect of the ILs on a molar basis. The effect of the ILs on relative volatility of TBA to water was depicted by the effect of anions and cations on, respectively, the activity coefficients of water and TBA. The results indicated that, among the six ILs studied, [emim][Cl] has the most significant effect on enhancement of the relative volatility, which reaches a value of 7.2 at an IL mass fraction of 0.58. Another IL, [emim][OAc], has also significant effect, with an appreciable value of 5.2 for the relative volatility when the IL mass fraction is 0.6. Considering the relatively low viscosity and melting point of [emim][OAc], it might be a favorable candidate as solvent for the separation of water and TBA by extractive distillation. Simultaneous correlation by the NRTL model was presented for both systems of (water + ethanol + IL) and (water + TBA + IL), using consistent binary parameters for water and IL.

  19. A quantitative account of quantum effects in liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Fanourgakis, Georgios S.; Schenter, Gregory K.; Xantheas, Sotiris S.

    2006-10-14

    We report quantum statistical mechanical simulations of liquid water with the TTM2.1-F flexible, polarizable interaction potential for water. The potential is the first representation of the molecular interaction that reproduces the converged Born-Oppenheimer potential energy surface obtained from systematically improvable electronic structure analysis of binding energies of water clusters. Proper quantum statistical simulation of properties allows for a quantitative account of the magnitude of quantum effects in liquid water. We report path integral quantum dynamical simulations of total length of 600 ps with a 0.05 fs time step for a periodic system of 256 molecules. The representation of the quantum effects was achieved using up to 32 replicas per atom. These allow for a quantitative description of the broadening of the radial distribution functions and the corresponding energy shifts in the heat of vaporization. Our best estimate for the enthalpy of the liquid from the results of the quantum simulations is in the range 10.4 ? 10.6 kcal/mol, in agreement with the experimental value of 10.51 kcal/mol. 1Battelle operates PNNL for the USDOE

  20. Looking for the rainbow on exoplanets covered by liquid and icy water clouds

    OpenAIRE

    Karalidi, T.; Stam, D.M.; Hovenier, J.W.

    2012-01-01

    Aims. Looking for the primary rainbow in starlight that is reflected by exoplanets appears to be a promising method to search for liquid water clouds in exoplanetary atmospheres. Ice water clouds, that consist of water crystals instead of water droplets, could potentially mask the rainbow feature in the planetary signal by covering liquid water clouds. Here, we investigate the strength of the rainbow feature for exoplanets that have liquid and icy water clouds in their atmosphere, and calcula...

  1. Binary, ternary and quaternary liquid-liquid equilibria in 1-butanol, oleic acid, water and n-heptane mixtures

    NARCIS (Netherlands)

    Winkelman, J. G. M.; Kraai, G. N.; Heeres, H. J.

    2009-01-01

    This work reports on liquid-liquid equilibria in the system 1-butanol, oleic acid, water and n-heptane used for biphasic, lipase catalysed esterifications. The literature was studied on the mutual solubility in binary systems of water and each of the organic components. Experimental results were

  2. Thermally driven electrokinetic energy conversion with liquid water microjets

    Science.gov (United States)

    Lam, Royce K.; Gamlieli, Zach; Harris, Stephen J.; Saykally, Richard J.

    2015-11-01

    A goal of current energy research is to design systems and devices that can efficiently exploit waste heat and utilize solar or geothermal heat energy for electrical power generation. We demonstrate a novel technique exploiting water's large coefficient of thermal expansion, wherein modest thermal gradients produce the requisite high pressure for driving fast-flowing liquid water microjets, which can effect the direct conversion of the kinetic energy into electricity and gaseous hydrogen. Waste heat in thermoelectric generating plants and combustion engines, as well as solar and geothermal energy could be used to drive these systems.

  3. Performance of Water-Based Liquid Scintillator: An Independent Analysis

    Directory of Open Access Journals (Sweden)

    D. Beznosko

    2014-01-01

    Full Text Available The water-based liquid scintillator (WbLS is a new material currently under development. It is based on the idea of dissolving the organic scintillator in water using special surfactants. This material strives to achieve the novel detection techniques by combining the Cerenkov rings and scintillation light, as well as the total cost reduction compared to pure liquid scintillator (LS. The independent light yield measurement analysis for the light yield measurements using three different proton beam energies (210 MeV, 475 MeV, and 2000 MeV for water, two different WbLS formulations (0.4% and 0.99%, and pure LS conducted at Brookhaven National Laboratory, USA, is presented. The results show that a goal of ~100 optical photons/MeV, indicated by the simulation to be an optimal light yield for observing both the Cerenkov ring and the scintillation light from the proton decay in a large water detector, has been achieved.

  4. Performance enhancement of a heat pump system with ice storage subcooler

    Energy Technology Data Exchange (ETDEWEB)

    Hsiao, Ming-Jer [Department of Electrical Engineering, Nan-Kai University of Technology, No.568 Chung Cheng Road, Tsao Tun, Nan Tou, Taiwan 54243 (China); Kuo, Yu-Fu; Cheng, Chiao-Hung; Chen, Sih-Li [Department of Mechanical Engineering, National Taiwan University, No.1, Sec.4 Roosevelt Road, Taipei, Taiwan 10617 (China); Shen, Chih-Chiu [Department of Mechanical Engineering, National Chung Hsing University, No.250, Kuo Kuang Road, Taichung, Taiwan 40227 (China)

    2010-03-15

    This article experimentally investigates the thermal performance of a heat pump system with an ice storage subcooler. The system supplies heating and cooling demands to two greenhouses with temperature ranging 308{proportional_to}323 K and 273{proportional_to}291 K respectively and utilizes an ice storage tank to subcool the condensed refrigerant, which can enhance the system coefficient of performance (COP). The ice storage tank charges for storing ice, when the cooling load is less than the nominal cooling capacity. While the cooling load is larger than the nominal cooling capacity, the ice storage tank discharges for subcooling. The results show that in the charge mode the heat pump COP of ice storage system is 12% higher than that without ice storage tank. Under the discharge mode, the ice storage system provides the refrigerator COP 15% higher than that without ice storage tank. (author)

  5. Void Measurements in the Regions of Sub-Cooled and Low-Quality Boiling. Part 1. Low Mass Velocities

    Energy Technology Data Exchange (ETDEWEB)

    Rouhani, S.Z.

    1966-07-15

    By the application of the ({gamma}, n) reaction to boiling heavy water, void volume fractions have been measured in a vertical annular channel with 25 mm O.D. and 12 mm I.D. at a heated length of 1090 mm. The experiments covered pressures from 10 to 50 bars, mass velocities from 50 to 1450 kg/m-sec, heat fluxes from 30 to 90 W/cm{sup 2}, sub coolings from 30 to 0 C, and steam qualities from 0 to 15 %. The results indicate noticeable effects of pressure, heat flux and even mass velocity upon the variations of void with subcooling and steam quality. A novel explanation of the mechanism of their effects has been found and proved by qualitative analysis.

  6. Generalization of experimental data on amplitude and frequency of oscillations induced by steam injection into a subcooled pool

    Energy Technology Data Exchange (ETDEWEB)

    Villanueva, Walter; Li, Hua [Division of Nuclear Power Safety, Royal Institute of Technology (KTH), Roslagstullsbacken 21, SE-10691 Stockholm (Sweden); Puustinen, Markku [Nuclear Engineering, LUT School of Energy Systems, Lappeenranta University of Technology (LUT), FIN-53851 Lappeenranta (Finland); Kudinov, Pavel, E-mail: pavel@safety.sci.kth.se [Division of Nuclear Power Safety, Royal Institute of Technology (KTH), Roslagstullsbacken 21, SE-10691 Stockholm (Sweden)

    2015-12-15

    Highlights: • Available data on steam injection into subcooled pool is generalized. • Scaling approach is proposed on amplitude and frequency of chugging oscillations. • The scaled amplitude has a maximum at Froude number Fr ≈ 2.8. • The scaled frequency has a minimum at Fr ≈ 6. • Both amplitude and frequency has a strong dependence on pool bulk temperature. - Abstract: Steam venting and condensation into a subcooled pool of water through a blowdown pipe can undergo a phenomenon called chugging, which is an oscillation of the steam–water interface inside the blowdown pipe. The momentum that is generated by the oscillations is directly proportional to the oscillations’ amplitude and frequency, according to the synthetic jet theory. Higher momentum can enhance pool mixing and positively affect the pool's pressure suppression capacity by reducing thermal stratification. In this paper, we present a generalization of available experimental data on the amplitude and frequency of oscillations during chugging. We use experimental data obtained in different facilities at different scales to suggest a scaling approach for non-dimensional amplitude and frequency of the oscillations. We demonstrate that the Froude number Fr (which relates the inertial forces to gravitational forces) can be used as a scaling criterion in this case. The amplitude has maximum at Fr ≈ 2.8. There is also a strong dependence of the amplitude on temperature; the lower the bulk temperature is the higher the scaled amplitude. A known analytical theory can only capture the decreasing trend in amplitude for Fr > 2.8 and fails to capture the increasing trend and the temperature dependence. Similarly, there is a minimum of the non-dimensional frequency at Fr ≈ 6. A strong dependence on temperature is also observed for Fr > 6; the lower the bulk temperature is the higher the scaled frequency. The known analytical theory is able to capture qualitatively the general trend in

  7. A "First Principles" Potential Energy Surface for Liquid Water from VRT Spectroscopy of Water Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Goldman, N; Leforestier, C; Saykally, R J

    2004-05-25

    We present results of gas phase cluster and liquid water simulations from the recently determined VRT(ASP-W)III water dimer potential energy surface. VRT(ASP-W)III is shown to not only be a model of high ''spectroscopic'' accuracy for the water dimer, but also makes accurate predictions of vibrational ground-state properties for clusters up through the hexamer. Results of ambient liquid water simulations from VRT(ASP-W)III are compared to those from ab initio Molecular Dynamics, other potentials of ''spectroscopic'' accuracy, and to experiment. The results herein represent the first time that a ''spectroscopic'' potential surface is able to correctly model condensed phase properties of water.

  8. Interfacial thermodynamics of water and six other liquid solvents.

    Science.gov (United States)

    Pascal, Tod A; Goddard, William A

    2014-06-05

    We examine the thermodynamics of the liquid-vapor interface by direct calculation of the surface entropy, enthalpy, and free energy from extensive molecular dynamics simulations using the two-phase thermodynamics (2PT) method. Results for water, acetonitrile, cyclohexane, dimethyl sulfoxide, hexanol, N-methyl acetamide, and toluene are presented. We validate our approach by predicting the interfacial surface tensions (IFT--excess surface free energy per unit area) in excellent agreement with the mechanical calculations using Kirkwood-Buff theory. Additionally, we evaluate the temperature dependence of the IFT of water as described by the TIP4P/2005, SPC/Ew, TIP3P, and mW classical water models. We find that the TIP4P/2005 and SPC/Ew water models do a reasonable job of describing the interfacial thermodynamics; however, the TIP3P and mW are quite poor. We find that the underprediction of the experimental IFT at 298 K by these water models results from understructured surface molecules whose binding energies are too weak. Finally, we performed depth profiles of the interfacial thermodynamics which revealed long tails that extend far into what would be considered bulk from standard Gibbs theory. In fact, we find a nonmonotonic interfacial free energy profile for water, a unique feature that could have important consequences for the absorption of ions and other small molecules.

  9. The boson peak of deeply cooled confined water reveals the existence of a low-temperature liquid-liquid crossover

    Science.gov (United States)

    Cupane, Antonio; Fomina, Margarita; Schirò, Giorgio

    2014-11-01

    The Boson peak of deeply cooled water confined in the pores of a silica xerogel is studied by inelastic neutron scattering at different hydration levels to separate the contributions from matrix, water on the pore surfaces and "internal" water. Our results reveal that at high hydration level, where the contribution from internal water is dominant, the temperature dependence of the Boson peak intensity shows an inflection point at about 225 K. The complementary use of differential scanning calorimetry to describe the thermodynamics of the system allows identifying the inflection point as the signature of a water liquid-liquid crossover.

  10. Liquid water and ices: understanding the structure and physical properties

    Energy Technology Data Exchange (ETDEWEB)

    Malenkov, George [AN Frumkin Institute of Physical Chemistry and Electrochemistry, Leninskii Prospect, 31 119991, Moscow (Russian Federation)], E-mail: egor38@mail.ru

    2009-07-15

    A review of the structure and some properties of condensed phases of water is given. Since the discovery of the polymorphism of crystalline ice (beginning of the twentieth century), 15 ice modifications have been found and their structures have been determined. If we do not take into consideration proton ordering or disordering, nine distinct crystalline ice modifications in which water molecules retain their individuality are known. In the tenth, ice X, there are no H{sub 2}O molecules. It contains ions (or atoms) of oxygen and hydrogen. The structure of all these modifications is described and information about their fields of stability and about the transition between them is given. It is emphasized that there are ice modifications which are metastable at any temperature and pressure (ices Ic, IV and XII), and many modifications can exist as metastable phases beyond their fields of stability. The ability of water to exist in metastable states is one of its remarkable properties. Several amorphous ice modifications (all of them are metastable) are known. Brief information about their properties and transitions between them is given. At the end of the 1960s the conception of the water structure as a three-dimensional hydrogen-bonded network was conclusively formed. Discovery of the polymorphism of amorphous ices awakened interest in the heterogeneity of the water network. Structural and dynamical heterogeneity of liquid water is discussed in detail. Computer simulation showed that the diffusion coefficient of water molecules in dense regions of the network is lower than in the loose regions, while an increase of density of the entire network gives rise to an increase of diffusion coefficient. This finding contradicts the conceptions associated with the primitive two-state models and can be explained from pressure dependences of melting temperature and of homogeneous nucleation temperature. A brief discussion of the picture of molecular motions in liquid water

  11. Simultaneous Design of Ionic Liquids and Azeotropic Separation for Systems Containing Water

    DEFF Research Database (Denmark)

    Roughton, Brock; Camarda, Kyle V.; Gani, Rafiqul

    interaction parameters were fitted for the newly defined ionic liquid groups. The ionic liquid UNIFAC model was used to predict vapor-liquid equilibria for several aqueous azeotropic systems. The ionic liquids were evaluated for use as an entrainer for water in binary azeotropic mixtures where the mole....... Since a large number of azeotropes encountered include water as one of the compounds, the use of ionic liquids in solvent-based separation of water in azeotropic systems has been investigated. Along with the design of the ionic liquid being used to entrain water, the extractive distillation process has...... to check for consistency. The ionic liquid UNIFAC model was developed for a selected set of ionic liquid cations and anions. Group volume and area parameters were calculated using a three step procedure. First, the rules of Bondi were used for any applicable molecular groups within the cation or anion...

  12. Thin Liquid Water Clouds: Their Importance and Our Challenge

    Energy Technology Data Exchange (ETDEWEB)

    Turner, David D.; Vogelmann, A. M.; Austin, Richard T.; Barnard, James C.; Cady-Pereira, Karen; Chiu, C.; Clough, Shepard A.; Flynn, Connor J.; Khaiyer, Mandana M.; Liljegren, James C.; Johnson, Karen L.; Lin, B.; Long, Charles N.; Marshak, A.; Matrosov, S. Y.; McFarlane, Sally A.; Miller, Mark A.; Min, Qilong; Minnis, Patrick; O' Hirok, William; Wang, Zhien; Wiscombe, Warren J.

    2007-02-19

    Many of the clouds important to the Earth’s energy balance, from the tropics to the Arctic, are optically thin and contain liquid water. Longwave and shortwave radiative fluxes are very sensitive to small perturbations of the cloud liquid water path (LWP) when the LWP is small (i.e., <100 gm-2) and, thus, the radiative properties of these clouds must be well understood to capture them correctly in climate models. Here we review the importance of these thin clouds to the Earth’s energy balance, and explain the difficulties in observing them. In particular, because these clouds are optically thin, potentially mixed-phase, and often broken (i.e., have large 3-D variability), it is challenging to retrieve their microphysical properties accurately. We describe a retrieval algorithm intercomparison that was conducted to evaluate the issues involved. Seventeen different algorithms participated and their retrieved LWP, optical depth, and effective radii are evaluated using data from several case studies. Surprisingly, evaluation of the simplest case, a single-layer overcast cloud, revealed that huge discrepancies exist among the various techniques, even among different algorithms that are in the same general classification. This suggests that, despite considerable advances that have occurred in the field, much more work must be done, and we discuss fruitful avenues for future research.

  13. Thermodynamic mechanism of density anomaly of liquid water

    Directory of Open Access Journals (Sweden)

    Makoto eYasutomi

    2015-03-01

    Full Text Available Although density anomaly of liquid water has long been studied by many different authors up to now, it is not still cleared what thermodynamic mechanism induces the anomaly. The thermodynamic properties of substances are determined by interparticle interactions. We analyze what characteristics of pair potential cause the density anomaly on the basis of statistical mechanics and thermodynamics using a thermodynamically self-consistent Ornstein-Zernike approximation (SCOZA. We consider a fluid of spherical particles with a pair potential given by a hard-core repulsion plus a soft-repulsion and an attraction. We show that the density anomaly occurs when the value of the soft-repulsive potential at hard-core contact is in some proper range, and the range depends on the attraction. Further, we show that the behavior of the excess internal energy plays an essential role in the density anomaly and the behavior is mainly determined by the values of the soft-repulsive potential, especially near the hard core contact. Our results show that most of ideas put forward up to now are not the direct causes of the density anomaly of liquid water.

  14. Distribution of binding energies of a water molecule in the water liquid-vapor interface

    Energy Technology Data Exchange (ETDEWEB)

    Chempath, Shaji [Los Alamos National Laboratory; Pratt, Lawrence R [TULANE UNIV

    2008-01-01

    Distributions of binding energies of a water molecule in the water liquid-vapor interface are obtained on the basis of molecular simulation with the SPC/E model of water. These binding energies together with the observed interfacial density profile are used to test a minimally conditioned Gaussian quasi-chemical statistical thermodynamic theory. Binding energy distributions for water molecules in that interfacial region clearly exhibit a composite structure. A minimally conditioned Gaussian quasi-chemical model that is accurate for the free energy of bulk liquid water breaks down for water molecules in the liquid-vapor interfacial region. This breakdown is associated with the fact that this minimally conditioned Gaussian model would be inaccurate for the statistical thermodynamics of a dilute gas. Aggressive conditioning greatly improves the performance of that Gaussian quasi-chemical model. The analogy between the Gaussian quasi-chemical model and dielectric models of hydration free energies suggests that naive dielectric models without the conditioning features of quasi-chemical theory will be unreliable for these interfacial problems. Multi-Gaussian models that address the composite nature of the binding energy distributions observed in the interfacial region might provide a mechanism for correcting dielectric models for practical applications.

  15. Detachment of Liquid-Water Droplets from Gas-Diffusion Layers

    OpenAIRE

    Das, Prodip K.

    2011-01-01

    A critical issue for optimal water management in proton-exchange-membrane fuel cells at lower temperatures is the removal of liquid water from the cell. This pathway is intimately linked with the phenomena of liquid-water droplet removal from surface of the gas-diffusion layer and into the flow channel. Thus, a good understanding of liquid-water transport and droplet growth and detachment from the gas-diffusion layer is critical. In this study, liquid-water droplet growth and detachment on th...

  16. Influence of sub-cooling on the energy performance of two ...

    African Journals Online (AJOL)

    Influence of sub-cooling on the energy performance of two ecofriendly R22 alternative refrigerants. ... Journal of Science and Technology (Ghana) ... They also exhibited lower power per ton of refrigeration (PPTR) than that of R22, but R433A emerged as the most energy efficient refrigerant among all the investigated ...

  17. Liquid water content variation with altitude in clouds over Europe

    Science.gov (United States)

    Andreea, Boscornea; Sabina, Stefan

    2013-04-01

    Cloud water content is one of the most fundamental measurements in cloud physics. Knowledge of the vertical variability of cloud microphysical characteristics is important for a variety of reasons. The profile of liquid water content (LWC) partially governs the radiative transfer for cloudy atmospheres, LWC profiles improves our understanding of processes acting to form and maintain cloud systems and may lead to improvements in the representation of clouds in numerical models. Presently, in situ airborne measurements provide the most accurate information about cloud microphysical characteristics. This information can be used for verification of both numerical models and cloud remote sensing techniques. The aim of this paper was to analyze the liquid water content (LWC) measurements in clouds, in time of the aircraft flights. The aircraft and its platform ATMOSLAB - Airborne Laboratory for Environmental Atmospheric Research is property of the National Institute for Aerospace Research "Elie Carafoli" (INCAS), Bucharest, Romania. The airborne laboratory equipped for special research missions is based on a Hawker Beechcraft - King Air C90 GTx aircraft and is equipped with a sensors system CAPS - Cloud, Aerosol and Precipitation Spectrometer (30 bins, 0.51-50 m). The processed and analyzed measurements are acquired during 4 flights from Romania (Bucharest, 44°25'57″N 26°06'14″E) to Germany (Berlin 52°30'2″N 13°23'56″E) above the same region of Europe. The flight path was starting from Bucharest to the western part of Romania above Hungary, Austria at a cruse altitude between 6000-8500 m, and after 5 hours reaching Berlin. In total we acquired data during approximately 20 flight hours and we presented the vertical and horizontal LWC variations for different cloud types. The LWC values are similar for each type of cloud to values from literature. The vertical LWC profiles in the atmosphere measured during takeoff and landing of the aircraft have shown their

  18. Direct simulation of liquid water dynamics in the gas channel of a polymer electrolyte fuel cell

    NARCIS (Netherlands)

    Qin, C.; Rensink, D.; Hassanizadeh, S.M.; Fell, S.

    2012-01-01

    For better water management in gas channels (GCs) of polymer electrolyte fuel cells (PEFCs), a profound understanding of the liquid water dynamics is needed. In this study, we propose a novel geometrical setup to conduct a series of direct simulations of the liquid water dynamics in a GC. The

  19. The Relationship Between Dynamics and Structure in the Far Infrared Absorption Spectrum of Liquid Water

    Energy Technology Data Exchange (ETDEWEB)

    Woods, K.

    2005-01-14

    Using an intense source of far-infrared radiation, the absorption spectrum of liquid water is measured at a temperature ranging from 269 to 323 K. In the infrared spectrum we observe modes that are related to the local structure of liquid water. Here we present a FIR measured spectrum that is sensitive to the low frequency (< 100cm{sup -1}) microscopic details that exist in liquid water.

  20. Determination of insecticides in water using in situ halide exchange reaction-assisted ionic liquid dispersive liquid-liquid microextraction followed by high-performance liquid chromatography.

    Science.gov (United States)

    Li, Songqing; Gao, Haixiang; Zhang, Jiaheng; Li, Yubo; Peng, Bing; Zhou, Zhiqiang

    2011-11-01

    A dispersive liquid-liquid microextraction (DLLME) method using in situ halide exchange reaction to form ionic liquid (IL) extraction phase was developed to determine four insecticides (i.e. methoxyfenozide, tetrachlorvinphos, thiamethoxam, and diafenthiuron) in water samples. The preconcentration procedure, followed by high-performance liquid chromatography and variable wavelength detectors (VWD), enabled the formation of the immiscible IL extraction phase; the insecticides were transferred into the IL phase simultaneously, which enhanced the efficiency and sufficiency, greatly shortening the operation time. The experimental parameters affecting the extraction efficiency including volume of extraction IL, extraction and centrifugation times, volume of the sample solution and exchanging reagent, and addition of organic solvent and salt were investigated and optimized. Under optimized conditions, the extractions yielded recoveries of the target analytes from 82 to 102%. The calibration curves were linear, and the correlation coefficient ranged from 0.9990 to 0.9999 under the concentration levels of 5-200 μg/L. The relative standard deviation (n=6) was 2.9-4.6%. The limits of detection (LODs) for the four insecticides were between 0.98 and 2.54 μg/L. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. The modelled liquid water balance of the Greenland Ice Sheet

    Directory of Open Access Journals (Sweden)

    C. R. Steger

    2017-11-01

    Full Text Available Recent studies indicate that the surface mass balance will dominate the Greenland Ice Sheet's (GrIS contribution to 21st century sea level rise. Consequently, it is crucial to understand the liquid water balance (LWB of the ice sheet and its response to increasing surface melt. We therefore analyse a firn simulation conducted with the SNOWPACK model for the GrIS and over the period 1960–2014 with a special focus on the LWB and refreezing. Evaluations of the simulated refreezing climate with GRACE and firn temperature observations indicate a good model–observation agreement. Results of the LWB analysis reveal a spatially uniform increase in surface melt (0.16 m w.e. a−1 during 1990–2014. As a response, refreezing and run-off also indicate positive changes during this period (0.05 and 0.11 m w.e. a−1, respectively, where refreezing increases at only half the rate of run-off, implying that the majority of the additional liquid input runs off the ice sheet. This pattern of refreeze and run-off is spatially variable. For instance, in the south-eastern part of the GrIS, most of the additional liquid input is buffered in the firn layer due to relatively high snowfall rates. Modelled increase in refreezing leads to a decrease in firn air content and to a substantial increase in near-surface firn temperature. On the western side of the ice sheet, modelled firn temperature increases are highest in the lower accumulation zone and are primarily caused by the exceptional melt season of 2012. On the eastern side, simulated firn temperature increases are more gradual and are associated with the migration of firn aquifers to higher elevations.

  2. The modelled liquid water balance of the Greenland Ice Sheet

    Science.gov (United States)

    Steger, Christian R.; Reijmer, Carleen H.; van den Broeke, Michiel R.

    2017-11-01

    Recent studies indicate that the surface mass balance will dominate the Greenland Ice Sheet's (GrIS) contribution to 21st century sea level rise. Consequently, it is crucial to understand the liquid water balance (LWB) of the ice sheet and its response to increasing surface melt. We therefore analyse a firn simulation conducted with the SNOWPACK model for the GrIS and over the period 1960-2014 with a special focus on the LWB and refreezing. Evaluations of the simulated refreezing climate with GRACE and firn temperature observations indicate a good model-observation agreement. Results of the LWB analysis reveal a spatially uniform increase in surface melt (0.16 m w.e. a-1) during 1990-2014. As a response, refreezing and run-off also indicate positive changes during this period (0.05 and 0.11 m w.e. a-1, respectively), where refreezing increases at only half the rate of run-off, implying that the majority of the additional liquid input runs off the ice sheet. This pattern of refreeze and run-off is spatially variable. For instance, in the south-eastern part of the GrIS, most of the additional liquid input is buffered in the firn layer due to relatively high snowfall rates. Modelled increase in refreezing leads to a decrease in firn air content and to a substantial increase in near-surface firn temperature. On the western side of the ice sheet, modelled firn temperature increases are highest in the lower accumulation zone and are primarily caused by the exceptional melt season of 2012. On the eastern side, simulated firn temperature increases are more gradual and are associated with the migration of firn aquifers to higher elevations.

  3. Thermodynamic constraint on the cloud liquid water feedback in climate models

    Science.gov (United States)

    Betts, Alan K.; HARSHVARDHAN

    1987-01-01

    The cloud liquid water feedback in climate models consists of the increase (decrease) in optical depth of clouds resulting from higher (lower) liquid water contents that might accompany tropospheric warming (cooling). The change in cloud liquid water with temperature is shown to depend on the rate of change of the slope of the moist adiabat with respect to temperature, and it is a strong function of temperature. The value of this rate of change in the tropics is about half that in mid and high latitudes and is much less than the value obtained by assuming that liquid water scales with the saturation mixing ratio.

  4. Explaining ionic liquid water solubility in terms of cation and anion hydrophobicity

    National Research Council Canada - National Science Library

    Ranke, Johannes; Othman, Alaa; Fan, Ping; Müller, Anja

    2009-01-01

    .... In this contribution, the activity coefficients of ionic liquids in water are split into cation and anion contributions by regression against cation hydrophobicity parameters that are experimentally...

  5. Energy loss measurement of protons in liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Siiskonen, T; Peraejaervi, K; Turunen, J [STUK - Radiation and Nuclear Safety Authority, PO Box 14, FI-00881 Helsinki (Finland); Kettunen, H; Javanainen, A; Rossi, M; Trzaska, W H; Virtanen, A, E-mail: teemu.siiskonen@stuk.fi [Department of Physics, University of Jyvaeskylae, PO Box 35, FI-40014, Jyvaeskylae (Finland)

    2011-04-21

    The proton stopping power of liquid water was, for the first time, measured in the energy range 4.7-15.2 MeV. The proton energies were determined by the time-of-flight transmission technique with the microchannel plate detectors, which were especially developed for timing applications. The results are compared to the literature values (from ICRU Report 49 (1993) and Janni's tabulation (1982 At. Data Nucl. Data Tables 27 147-339)) which are based on Bethe's formula and an agreement is found within the experimental uncertainty of 4.6%. Thus, earlier reported discrepancy between the experimental and literature stopping power values at lower energies was not observed at the energies considered in this experiment.

  6. Electrokinetic Hydrogen Generation from Liquid WaterMicrojets

    Energy Technology Data Exchange (ETDEWEB)

    Duffin, Andrew M.; Saykally, Richard J.

    2007-05-31

    We describe a method for generating molecular hydrogen directly from the charge separation effected via rapid flow of liquid water through a metal orifice, wherein the input energy is the hydrostatic pressure times the volume flow rate. Both electrokinetic currents and hydrogen production rates are shown to follow simple equations derived from the overlap of the fluid velocity gradient and the anisotropic charge distribution resulting from selective adsorption of hydroxide ions to the nozzle surface. Pressure-driven fluid flow shears away the charge balancing hydronium ions from the diffuse double layer and carries them out of the aperture. Downstream neutralization of the excess protons at a grounded target electrode produces gaseous hydrogen molecules. The hydrogen production efficiency is currently very low (ca. 10-6) for a single cylindrical jet, but can be improved with design changes.

  7. Cloud Liquid Water, Mean Droplet Radius and Number Density Measurements Using a Raman Lidar

    Science.gov (United States)

    Whiteman, David N.; Melfi, S. Harvey

    1999-01-01

    A new technique for measuring cloud liquid water, mean droplet radius and droplet number density is outlined. The technique is based on simultaneously measuring Raman and Mie scattering from cloud liquid droplets using a Raman lidar. Laboratory experiments on liquid micro-spheres have shown that the intensity of Raman scattering is proportional to the amount of liquid present in the spheres. This fact is used as a constraint on calculated Mie intensity assuming a gamma function particle size distribution. The resulting retrieval technique is shown to give stable solutions with no false minima. It is tested using Raman lidar data where the liquid water signal was seen as an enhancement to the water vapor signal. The general relationship of retrieved average radius and number density is consistent with traditional cloud physics models. Sensitivity to the assumed maximum cloud liquid water amount and the water vapor mixing ratio calibration are tested. Improvements to the technique are suggested.

  8. In situ separation of root hydraulic redistribution of soil water from liquid and vapor transport

    Science.gov (United States)

    Jeffrey M. Warren; J. Renée Brooks; Maria I. Dragila; Frederick C. Meinzer

    2011-01-01

    Nocturnal increases in water potential and water content in the upper soil profile are often attributed to root water efflux, a process termed hydraulic redistribution (HR). However, unsaturated liquid or vapor flux of water between soil layers independent of roots also contributes to the daily recovery in water content, confounding efforts to determine the actual...

  9. Thermophysical properties of pure and water-saturated tetradecyltrihexylphosphonium-based ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Neves, Catarina M.S.S.; Carvalho, Pedro J.; Freire, Mara G. [Departamento de Quimica, CICECO, Universidade de Aveiro, 3810-193 Aveiro (Portugal); Coutinho, Joao A.P., E-mail: jcoutinho@ua.p [Departamento de Quimica, CICECO, Universidade de Aveiro, 3810-193 Aveiro (Portugal)

    2011-06-15

    Research highlights: {yields} Density and viscosity data of seven pure phosphonium ionic liquids are reported. {yields} Water content of saturated phosphonium ionic liquids is presented. {yields} Density and viscosity data of water-saturated ionic liquids are reported. {yields} Density data is only marginally affected by the presence of water. {yields} The presence of water has a large impact in viscosities. - Abstract: In this work, the solubility of water in several tetradecyltrihexylphosphonium-based ionic liquids at 298.15 K, and densities and viscosities of both pure and water-saturated ionic liquids in a broad temperature range were measured. The selected ionic liquids comprise the common tetradecyltrihexylphosphonium cation combined with the following anions: bromide, chloride, bis(trifluoromethylsulfonyl)imide, decanoate, methanesulfonate, dicyanamide and bis(2,4,4-trimethylpentyl)phosphinate. The isobaric thermal expansion coefficients for pure and water-saturated ionic liquids were determined based on the density dependence with temperature. Taking into account that the excess molar volumes of the current hydrophobic water-saturated ionic liquids are negligible, the solubility of water was additionally estimated from the gathered density data and compared with the experimental solubilities obtained. Moreover, the experimental densities were compared with those predicted by the Gardas and Coutinho model while viscosity data were correlated using the Vogel-Tammann-Fulcher method.

  10. Investigation of the Extinguishing Features for Liquid Fuels and Organic Flammable Liquids Atomized by a Water Flow

    Directory of Open Access Journals (Sweden)

    Voytkov Ivan V.

    2016-01-01

    Full Text Available The processes of heat and mass transfer were investigated experimentally while moving and evaporating the atomized water flow in high-temperature combustion products of typical liquid fuels and organic flammable liquids: gasoline, kerosene, acetone, crude oil, industrial alcohol. We determined typical periods of liquid extinguishing by an atomized water flow of various dispersability. Data of the discharge of extinguishing medium corresponding to various parameters of atomization and duration of using the atomization devices was presented. It is shown that Um≈3.5 m/s is a minimal outflow velocity of droplets during moving while passing the distance of 1m in the high-temperature gas medium to stop the combustion of organic liquids.

  11. Learning Science Through Guided Discovery: Liquid Water and Molecular Networks

    Science.gov (United States)

    Essmann, U.; Glotzer, S.; Gyure, M.; Ostrovsky, B.; Poole, P. H.; Sastry, S.; Schwarzer, S.; Selinger, R.; Shann, M. H.; Shore, L. S.; Stanley, H. E.; Taylor, E. F.; Trunfio, P.

    In every drop of water, down at the scale of atoms and molecules, there is a world that can fascinate anyone—ranging from a non-verbal young science student to an ardent science-phobe. The objective of Learning Science through Guided Discovery: Liquid Water and Molecular Networks is to use advanced technology to provide a window into this submicroscopic world, and thereby allow students to discover by themselves a new world. We have developed a coordinated two-fold approach in which a cycle of hands-on activities, games, and experimentation is followed by a cycle of advanced computer simulations employing the full power of computer animation to "ZOOM" into the depths of his or her newly-discovered world, an interactive experience surpassing that of an OMNIMAX theater. Pairing of laboratory experiments with corresponding simulations challenges students to understand multiple representations of concepts. Answers to student questions, resolution of student misconceptions, and eventual personalized student discoveries are all guided by a clear set of "cues" which we build into the computer display. We thereby provide students with the opportunity to work in a fashion analogous to that in which practicing scientists work—e.g., by using advanced technology to "build up" to general principles from specific experiences. Moreover, the ability to visualize "real-time" dynamic motions allows for student-controlled animated graphic simulations on the molecular scale and interactive guided lessons superior to those afforded by even the most artful of existing texts.

  12. Influence of gravity on the collective molecular dynamics of liquid water: the case of the floating water bridge

    CERN Document Server

    Del Giudice, Emilio

    2010-01-01

    Quantum electrodynamics (QED) produces a picture of liquid water as a mixture of a low density coherent phase and an high density non-coherent phase. Consequently, the Archimedes principle prescribes that, within a gravitational field, liquid water should be made up, at surface, mainly of the coherent fraction, which becomes a cage where the gas-like non-coherent fraction is trapped, acquiring a non-vanishing pressure (vapor tension). Therefore, it is possible to probe the QED picture by observing the behavior of liquid water under reduced gravity conditions. The floating water bridge could be a useful test model.

  13. Orientational dynamics of room temperature ionic liquid/water mixtures: water-induced structure.

    Science.gov (United States)

    Sturlaugson, Adam L; Fruchey, Kendall S; Fayer, Michael D

    2012-02-16

    Optical heterodyne detected optical Kerr effect (OHD-OKE) measurements on a series of 1-alkyl-3-methylimidazolium tetrafluoroborate room-temperature ionic liquids (RTILs) as a function of chain length and water concentration are presented. The pure RTIL reorientational dynamics are identical in form to those of other molecular liquids studied previously by OHD-OKE (two power laws followed by a single exponential decay at long times), but are much slower at room temperature. In contrast, the addition of water to the longer alkyl chain RTILs causes the emergence of a long time biexponential orientational anisotropy decay. Such distinctly biexponential decays have not been seen previously in OHD-OKE experiments on any type of liquid and are analyzed here using a wobbling-in-a-cone model. The slow component for the longer chain RTILs does not obey the Debye-Stokes-Einstein (DSE) equation across the range of solutions, and thus we attribute it to slow cation reorientational diffusion caused by a stiffening of cation alkyl tail-tail associations. The fast component of the decay is assigned to the motions (wobbling) of the tethered imidazolium head groups. The wobbling-in-a-cone analysis provides estimates of the range of angles sampled by the imidazolium head group prior to the long time scale complete orientational randomization. The heterogeneous dynamics and non-DSE behavior observed here should have a significant effect on reaction rates in RTIL/water cosolvent mixtures.

  14. Ultrapreconcentration and determination of organophosphorus pesticides in water by solid-phase extraction combined with dispersive liquid-liquid microextraction and high-performance liquid chromatography.

    Science.gov (United States)

    Chen, Junhua; Zhou, Guangming; Deng, Yongli; Cheng, Hongmei; Shen, Jie; Gao, Yi; Peng, Guilong

    2016-01-01

    Solid-phase extraction coupled with dispersive liquid-liquid microextraction was developed as an ultra-preconcentration method for the determination of four organophosphorus pesticides (isocarbophos, parathion-methyl, triazophos and fenitrothion) in water samples. The analytes considered in this study were rapidly extracted and concentrated from large volumes of aqueous solutions (100 mL) by solid-phase extraction coupled with dispersive liquid-liquid microextraction and then analyzed using high performance liquid chromatography. Experimental variables including type and volume of elution solvent, volume and flow rate of sample solution, salt concentration, type and volume of extraction solvent and sample solution pH were investigated for the solid-phase extraction coupled with dispersive liquid-liquid microextraction with these analytes, and the best results were obtained using methanol as eluent and ethylene chloride as extraction solvent. Under the optimal conditions, an exhaustive extraction for four analytes (recoveries >86.9%) and high enrichment factors were attained. The limits of detection were between 0.021 and 0.15 μg/L. The relative standard deviations for 0.5 μg/L of the pesticides in water were in the range of 1.9-6.8% (n = 5). The proposed strategy offered the advantages of simple operation, high enrichment factor and sensitivity and was successfully applied to the determination of four organophosphorus pesticides in water samples. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. GreenChill Store Certification Protocol for Sub-Cooling Contained on Racks Separate from Refrigeration Equipment

    Science.gov (United States)

    Document describes the protocol used to determine the total load and refrigerant charge of stores that have placed all sub-cooling on a rack separate from all other commercial refrigeration equipment.

  16. Effectiveness of Liquid-Liquid Extraction, Solid Phase Extraction, and Headspace Technique for Determination of Some Volatile Water-Soluble Compounds of Rose Aromatic Water

    Science.gov (United States)

    2017-01-01

    Steam distillation is used to isolate scent of rose flowers. Rose aromatic water is commonly used in European cuisine and aromatherapy besides its use in cosmetic industry for its lovely scent. In this study, three different sampling techniques, liquid-liquid extraction (LLE), headspace technique (HS), and solid phase extraction (SPE), were compared for the analysis of volatile water-soluble compounds in commercial rose aromatic water. Some volatile water-soluble compounds of rose aromatic water were also analyzed by gas chromatography mass spectrometry (GCMS). In any case, it was concluded that one of the solid phase extraction methods led to higher recoveries for 2-phenylethyl alcohol (PEA) in the rose aromatic water than the liquid-liquid extraction and headspace technique. Liquid-liquid extraction method provided higher recovery ratios for citronellol, nerol, and geraniol than others. Ideal linear correlation coefficient values were observed by GCMS for quantitative analysis of volatile compounds (r2 ≥ 0.999). Optimized methods showed acceptable repeatability (RSDs 95%). For compounds such as α-pinene, linalool, β-caryophyllene, α-humulene, methyl eugenol, and eugenol, the best recovery values were obtained with LLE and SPE. PMID:28791049

  17. Ionic Liquid Dispersive Liquid-Liquid Microextraction Method for the Determination of Irinotecan, an Anticancer Drug, in Water and Urine Samples Using UV-Vis Spectrophotometry.

    Science.gov (United States)

    Uysal, Deniz; Karadaş, Cennet; Kara, Derya

    2017-05-01

    A new, simple, efficient, and environmentally friendly ionic liquid dispersive liquid-liquid microextraction method was developed for the determination of irinotecan, an anticancer drug, in water and urine samples using UV-Vis spectrophotometry. The ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate was used as the extraction solvent, and ethanol was used as the disperser solvent. The main parameters affecting the extraction efficiency, including sample pH, volume of the ionic liquid, choice of the dispersive solvent and its volume, concentration of NaCl, and extraction and centrifugation times, were investigated and optimized. The effect of interfering species on the recovery of irinotecan was also examined. Under optimal conditions, the LOD (3σ) was 48.7 μg/L without any preconcentration. Because the urine sample was diluted 10-fold, the LOD for urine would be 487 μg/L. However, this could be improved 16-fold if preconcentration using a 40 mL aliquot of the sample is used. The proposed method was successfully applied to the determination of irinotecan in tap water, river water, and urine samples spiked with 10.20 mg/L for the water samples and 8.32 mg/L for the urine sample. The average recovery values of irinotecan determined were 99.1% for tap water, 109.4% for river water, and 96.1% for urine.

  18. Isobaric vapor-liquid equilibria for methanol + ethanol + water and the three constituent binary systems

    Energy Technology Data Exchange (ETDEWEB)

    Kurihara, Kiyofumi; Nakamichi, Mikiyoshi; Kojima, Kazuo (Nihon Univ., Tokyo (Japan). Dept. of Industrial Chemistry)

    1993-07-01

    Vapor-liquid equilibrium data for methanol + ethanol + water and its three constituent binary systems methanol + ethanol, ethanol + water, and methanol + water were measured at 101.3 kPa using a liquid-vapor ebullition-type equilibrium still. The experimental binary data were correlated by the NRTL equation. The ternary system methanol + ethanol + water was predicted by means of the binary NRTL parameters with good accuracy.

  19. Structure dynamics of the proton in liquid water probed with terahertz time-domain spectroscopy

    NARCIS (Netherlands)

    Tielrooij, K.J.; Timmer, R.L.A.; Bakker, H.J.; Bonn, M.

    2009-01-01

    We study the hydration of protons in liquid water using terahertz time-domain spectroscopy and polarization-resolved femtosecond midinfrared pump-probe spectroscopy. We observe that the addition of protons leads to a very strong decrease of the dielectric response of liquid water that corresponds to

  20. Vapor-Liquid Equilibria of Imidazolium Ionic Liquids with Cyano Containing Anions with Water and Ethanol.

    Science.gov (United States)

    Khan, Imran; Batista, Marta L S; Carvalho, Pedro J; Santos, Luís M N B F; Gomes, José R B; Coutinho, João A P

    2015-08-13

    Isobaric vapor-liquid equilibria of 1-butyl-3-methylimidazolium thiocyanate ([C4C1im][SCN]), 1-butyl-3-methylimidazolium dicyanamide ([C4C1im][N(CN)2]), 1-butyl-3-methylimidazolium tricyanomethanide ([C4C1im][C(CN)3]), and 1-ethyl-3-methylimidazolium tetracyanoborate ([C2C1im][B(CN)4]), with water and ethanol were measured over the whole concentration range at 0.1, 0.07, and 0.05 MPa. Activity coefficients were estimated from the boiling temperatures of the binary systems, and the data were used to evaluate the ability of COSMO-RS for describing these molecular systems. Aiming at further understanding the molecular interactions on these systems, molecular dynamics (MD) simulations were performed. On the basis of the interpretation of the radial and spatial distribution functions along with coordination numbers obtained through MD simulations, the effect of the increase of CN-groups in the IL anion in its capability to establish hydrogen bonds with water and ethanol was evaluated. The results obtained suggest that, for both water and ethanol systems, the anion [N(CN)2](-) presents the higher ability to establish favorable interactions due to its charge, and that the ability of the anions to interact with the solvent, decreases with further increasing of the number of cyano groups in the anion. The ordering of the partial charges in the nitrogen atoms from the CN-groups in the anions agrees with the ordering obtained for VLE and activity coefficient data.

  1. Hydrophobic zeolites for biofuel upgrading reactions at the liquid-liquid interface in water/oil emulsions.

    Science.gov (United States)

    Zapata, Paula A; Faria, Jimmy; Ruiz, M Pilar; Jentoft, Rolf E; Resasco, Daniel E

    2012-05-23

    HY zeolites hydrophobized by functionalization with organosilanes are much more stable in hot liquid water than the corresponding untreated zeolites. Silylation of the zeolite increases hydrophobicity without significantly reducing the density of acid sites. This hydrophobization with organosilanes makes the zeolites able to stabilize water/oil emulsions and catalyze reactions of importance in biofuel upgrading, i.e., alcohol dehydration and alkylation of m-cresol and 2-propanol in the liquid phase, at high temperatures. While at 200 °C the crystalline structure of an untreated HY zeolite collapses in a few hours in contact with a liquid medium, the functionalized hydrophobic zeolites keep their structure practically unaltered. Detailed XRD, SEM, HRTEM, and BET analyses indicate that even after reaction under severe conditions, the hydrophobic zeolites retain their crystallinity, surface area, microporosity, and acid density. It is proposed that by preferentially anchoring hydrophobic functionalities on the external surface, the direct contact of bulk liquid water and the zeolite is hindered, thus preventing the collapse of the framework during the reaction in liquid hot water.

  2. Effect of local phenomena on subcooled boiling oscillations in natural circulation boiling loop

    Energy Technology Data Exchange (ETDEWEB)

    Karmakar, Arnab [Birla Institute of Technology, Mesra, Jharkhand 835215 (India); Dey, Runa [Indian School of Mines, Dhanbad, Jharkhand 826004 (India); Paruya, Swapan, E-mail: swapanparuya@gmail.com [National Institute of Technology, Durgapur, West Bengal 713209 (India)

    2016-12-15

    Highlights: • The estimations of bubble frequency and oscillation of local void fraction α in a natural circulation boiling loop. • The effect of inlet subcooling on the bubble frequency and the oscillations of local α and local pressure. • Effect of local dynamic phenomena on the system oscillations in terms of loop flow rate. • The α-oscillations due to the presence of large bubbles trigger the high-amplitude system-oscillations with a time delay. - Abstract: In this paper, the authors report the estimations of bubble frequency and oscillation of local void fraction and their role in subcooled boiling oscillations in a low-pressure natural circulation boiling loop. The estimations primarily rely on the measurements of impedance using inductance L–capacitance C–resistance R (LCR) meter. The bubble frequencies determined from the impedance signals and the images are comparable. The effect of inlet subcooling on the bubble frequency and the oscillation of local void fraction has been studied and found to be remarkable. Based on the comparison of the oscillations of local void fraction, local pressure and loop flow rate, the effect of local dynamic phenomena on the system oscillations clearly demonstrates that the oscillations of void fraction trigger high-amplitude flow oscillations with a delay between the oscillations of void fraction and loop flow rate.

  3. Dissociative ionization of liquid water induced by vibrational overtone excitation

    Energy Technology Data Exchange (ETDEWEB)

    Natzle, W.C.

    1983-03-01

    Photochemistry of vibrationally activated ground electronic state liquid water to produce H/sup +/ and OH/sup -/ ions has been initiated by pulsed, single-photon excitation of overtone and combination transitions. Transient conductivity measurements were used to determine quantum yields as a function of photon energy, isotopic composition, and temperature. The equilibrium relaxation rate following perturbation by the vibrationally activated reaction was also measured as a function of temperature reaction and isotopic composition. In H/sub 2/O, the quantum yield at 283 +- 1 K varies from 2 x 10/sup -9/ to 4 x 10/sup -5/ for wave numbers between 7605 and 18140 cm/sup -1/. In D/sub 2/O, the dependence of quantum yield on wavelength has the same qualitative shape as for H/sub 2/O, but is shifted to lower quantum yields. The position of a minimum in the quantum yield versus hydrogen mole fraction curve is consistent with a lower quantum yield for excitation of HOD in D/sub 2/O than for excitation of D/sub 2/O. The ionic recombination distance of 5.8 +- 0.5 A is constant within experimental error with temperature in H/sub 2/O and with isotopic composition at 25 +- 1/sup 0/C.

  4. Looking for the rainbow on exoplanets covered by liquid and icy water clouds

    NARCIS (Netherlands)

    Karalidi, T.; Stam, D.M.; Hovenier, J.W.

    2012-01-01

    Aims. Looking for the primary rainbow in starlight that is reflected by exoplanets appears to be a promising method to search for liquid water clouds in exoplanetary atmospheres. Ice water clouds, that consist of water crystals instead of water droplets, could potentially mask the rainbow feature in

  5. Ionic Liquid Dispersive LiquidLiquid Microextraction Method for the Determination of Irinotecan, an Anticancer Drug, in Water and Urine Samples Using UV-Vis Spectrophotometry.

    Science.gov (United States)

    Uysal, Deniz; Karadaş, Cennet; Kara, Derya

    2016-12-16

    A new, simple, efficient, and environmentally friendly ionic liquid dispersive liquid–liquid microextractionmethod was developed for the determination of irinotecan, an anticancer drug, in water and urine samples using UV-Vis spectrophotometry. The ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate was used as the extraction solvent, and ethanol was used as the disperser solvent. The main parameters affecting the extraction efficiency, including sample pH, volume of the ionic liquid, choice of the dispersive solvent and its volume, concentration of NaCl, and extraction and centrifugation times, were investigated and optimized. The effect of interfering species on the recovery of irinotecan was also examined. Under optimal conditions, the LOD (3σ) was 48.7 μg/L without any preconcentration. Because the urine sample was diluted 10-fold, the LOD for urine would be 487 μg/L. However, this could be improved 16-fold if preconcentration using a 40 mL aliquot of the sample is used. The proposed method was successfully applied to the determination of irinotecan in tap water, river water, and urine samples spiked with 10.20 mg/L for the water samples and 8.32 mg/L for the urine sample. The average recovery values of irinotecan determined were 99.1% for tap water, 109.4% for river water, and 96.1% for urine.

  6. Water content distribution in a polymer electrolyte membrane for advanced fuel cell system with liquid water supply.

    Science.gov (United States)

    Tsushima, Shohji; Teranishi, Kazuhiro; Nishida, Kousuke; Hirai, Shuichiro

    2005-02-01

    To better understand the operation of a new fuel cell design, we used magnetic resonance imaging (MRI) to measure the water content distribution in a polymer electrolyte membrane under fuel cell operation with and without a supply of liquid water. The supply of liquid water to the membrane improved the cell performance by increasing the water content in the membrane and thus reducing the electrical resistance of the membrane. The study also showed that MRI is a promising method to investigate the distribution of water in the membrane of a fuel cell under operating conditions.

  7. Determination of water in room temperature ionic liquids by cathodic stripping voltammetry at a gold electrode.

    Science.gov (United States)

    Zhao, Chuan; Bond, Alan M; Lu, Xunyu

    2012-03-20

    An electrochemical method based on cathodic stripping voltammetry at a gold electrode has been developed for the determination of water in ionic liquids. The technique has been applied to two aprotic ionic liquids, (1-butyl-3-ethylimidazolium tetrafluoroborate and 1-butyl-3-methylimidazolium hexafluorophosphate), and two protic ionic liquids, (bis(2-hydroxyethyl)ammonium acetate and triethylammonium acetate). When water is present in an ionic liquid, electrooxidation of a gold electrode forms gold oxides. Thus, application of an anodic potential scan or holding the potential of the electrode at a very positive value leads to accumulation of an oxide film. On applying a cathodic potential scan, a sensitive stripping peak is produced as a result of the reduction of gold oxide back to gold. The magnitude of the peak current generated from the stripping process is a function of the water concentration in an ionic liquid. The method requires no addition of reagents and can be used for the sensitive and in situ determination of water present in small volumes of ionic liquids. Importantly, the method allows the determination of water in the carboxylic acid-based ionic liquids, such as acetate-based protic ionic liquids, where the widely used Karl Fischer titration method suffering from an esterification side reaction which generates water as a side product.

  8. Experimental study of thermo-hydraulic characteristics of natural circulation loop at water and FC-72 boiling under atmospheric pressure

    Science.gov (United States)

    Kaban’kov, O. N.; Sukomel, L. A.; Zubov, N. O.; Yagov, V. V.

    2017-10-01

    The results of experimental study of thermo and hydraulic characteristics of flow boiling of water and FC-72 in natural circulation loop under atmospheric pressure are presented. The experimental data have been obtained in the range of wall heat flux densities (6 – 70) kW/m2 for water and (4.6 – 30) kW/m2 for FC-72. These two liquids differ substantially in thermophysical properties so it makes it possible to extend the range of reduced pressures almost for an order of magnitude without changing the technical parameters of experimental setup. An additional information for the analysis of flow pattern influence on onset of instability and unstable circulation mechanism have been obtained as the result. The flow up tube of the loop had inner diameter 9.1 mm and consisted of two section – heated one 98 diameters length (that is 65 % of total tube length) and upper adiabatic section with length 48 diameters. Different circulation regimes were realized in experiments: mixed regimes with single phase and boiling zones in the heated part of the tube and boiling regimes along the full length of the heated section. The experimental data on circulation velocity (flow rate) and wall temperature distributions (including pulsating components of temperature and velocity) are presented in dependence on wall heat flux density and liquid subcooling at the inlet to the heated zone. At water experiments autooscillating regimes of boiling flows were observed within the whole range of inlet liquid subcoolings up to saturation temperature and at all wall heat flux densities from lowest one (10 kW/m2) to somewhat upper limiting value of 64 kW/m2. At higher heat fluxes the two-phase boiling flow was stable not only in saturation inlet liquid temperature but also at low subcoolings. In FC-72 experiments the flow was stable at all realized heat flux densities within the range of inlet liquid subcoolings (2 – 20) °C.

  9. Water-saving liquid-gas conditioning system

    Science.gov (United States)

    Martin, Christopher; Zhuang, Ye

    2014-01-14

    A method for treating a process gas with a liquid comprises contacting a process gas with a hygroscopic working fluid in order to remove a constituent from the process gas. A system for treating a process gas with a liquid comprises a hygroscopic working fluid comprising a component adapted to absorb or react with a constituent of a process gas, and a liquid-gas contactor for contacting the working fluid and the process gas, wherein the constituent is removed from the process gas within the liquid-gas contactor.

  10. Explaining Ionic Liquid Water Solubility in Terms of Cation and Anion Hydrophobicity

    OpenAIRE

    Johannes Ranke; Alaa Othman; Ping Fan; Anja Müller

    2009-01-01

    The water solubility of salts is ordinarily dictated by lattice energy and ion solvation. However, in the case of low melting salts also known as ionic liquids, lattice energy is immaterial and differences in hydrophobicity largely account for differences in their water solubility. In this contribution, the activity coefficients of ionic liquids in water are split into cation and anion contributions by regression against cation hydrophobicity parameters that are experimentally determined by r...

  11. Modeling the liquid-liquid equilibria of water plus fluorocarbons with the cubic-plus-association equation of state

    DEFF Research Database (Denmark)

    Oliveira, Mariana B.; Freire, Mara G.; Marrucho, Isabel M.

    2007-01-01

    dioxide, making them interesting for several biomedical applications. In most of these applications, water or aqueous systems are present for which the knowledge of the mutual solubilities between the fluorocarbons and the aqueous phases is important. In this work, the application of the cubic......-plus-association equation of state (CPA EoS) has been extended to binary mixtures of water with several linear, cyclic, aromatic, and substituted fluorocarbons. The CPA EoS was successfully used to model the liquid-liquid equilibria of aqueous mixtures that contain FCs, while also being able to describe the cross......-association phenomena between substituted and aromatic FCs and water. It is shown that, for aliphatic perfluorocarbons, CPA can be used without any mixture binary parameter to predict the water solubility....

  12. Use of Dispersive Liquid-Liquid Microextraction and UV-Vis Spectrophotometry for the Determination of Cadmium in Water Samples

    Directory of Open Access Journals (Sweden)

    J. Pérez-Outeiral

    2014-01-01

    Full Text Available A simple and inexpensive method for cadmium determination in water using dispersive liquid-liquid microextraction and ultraviolet-visible spectrophotometry was developed. In order to obtain the best experimental conditions, experimental design was applied. Calibration was made in the range of 10–100 μg/L, obtaining good linearity (R2 = 0.9947. The obtained limit of detection based on calibration curve was 8.5 μg/L. Intra- and interday repeatability were checked at two levels, obtaining relative standard deviation values from 9.0 to 13.3%. The enrichment factor had a value of 73. Metal interferences were also checked and tolerable limits were evaluated. Finally, the method was applied to cadmium determination in real spiked water samples. Therefore, the method showed potential applicability for cadmium determination in highly contaminated liquid samples.

  13. Another glimpse over the salting-out assisted liquid-liquid extraction in acetonitrile/water mixtures.

    Science.gov (United States)

    Valente, Inês Maria; Gonçalves, Luís Moreira; Rodrigues, José António

    2013-09-20

    The use of the salting-out effect in analytical chemistry is very diverse and can be applied to increase the volatility of the analytes in headspace extractions, to cause the precipitation of proteins in biological samples or to improve the recoveries in liquid-liquid extractions. In the latter, the salting-out process can be used to create a phase separation between water-miscible organic solvents and water. Salting-out assisted liquid-liquid extraction (SALLE) is an advantageous sample preparation technique aiming HPLC-UV analysis when developing analytical methodologies. In fact, some new extraction methodologies like QuEChERS include the SALLE concept. This manuscript discusses another point of view over SALLE with particular emphasis over acetonitrile-water mixtures for HPLC-UV analysis; the influence of the salting-out agents, their concentration and the water-acetonitrile volume ratios were the studied parameters. α-dicarbonyl compounds and beer were used as test analytes and test samples, respectively. The influence of the studied parameters was characterized by the obtained phase separation volume ratio and the fraction of α-dicarbonyls extracted to the acetonitrile phase. Results allowed the distribution of salts within three groups according to the phase separation and their extractability: (1) chlorides and acetates, (2) carbonates and sulfates and (3) magnesium sulfate; of all tested salts, sodium chloride had the highest influence on the α-dicarbonyls fraction extracted. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Thermodynamic modeling of ternary and quaternary (liquid + liquid) systems containing water, FeCl3, HCl and diisopropyl ether

    NARCIS (Netherlands)

    Milosevic, M.; Hendriks, I.; Smits, R.E.R.; Schuur, Boelo; de Haan, A.B.

    2013-01-01

    Liquid–liquid extraction using ethers as solvents is a potentially energy saving alternative for the concentration of aqueous ferric chloride solutions. Adequate thermodynamic models that describe the behavior of the resulting quaternary systems (FeCl3, ether, acid and water) are not available in

  15. Revisiting a many-body model for water based on a single polarizable site: from gas phase clusters to liquid and air/liquid water systems.

    Science.gov (United States)

    Réal, Florent; Vallet, Valérie; Flament, Jean-Pierre; Masella, Michel

    2013-09-21

    We present a revised version of the water many-body model TCPE [M. Masella and J.-P. Flament, J. Chem. Phys. 107, 9105 (1997)], which is based on a static three charge sites and a single polarizable site to model the molecular electrostatic properties of water, and on an anisotropic short range many-body energy term specially designed to accurately model hydrogen bonding in water. The parameters of the revised model, denoted TCPE/2013, are here developed to reproduce the ab initio energetic and geometrical properties of small water clusters (up to hexamers) and the repulsive water interactions occurring in cation first hydration shells. The model parameters have also been refined to reproduce two liquid water properties at ambient conditions, the density and the vaporization enthalpy. Thanks to its computational efficiency, the new model range of applicability was validated by performing simulations of liquid water over a wide range of temperatures and pressures, as well as by investigating water liquid/vapor interfaces over a large range of temperatures. It is shown to reproduce several important water properties at an accurate enough level of precision, such as the existence liquid water density maxima up to a pressure of 1000 atm, the water boiling temperature, the properties of the water critical point (temperature, pressure, and density), and the existence of a "singularity" temperature at about 225 K in the supercooled regime. This model appears thus to be particularly well-suited for characterizing ion hydration properties under different temperature and pressure conditions, as well as in different phases and interfaces.

  16. Iinvestigation by electrocontact method of interaction of water with hot surface in film and transition boiling regimes

    Science.gov (United States)

    Ivochkin, Y. P.; Kubrikov, K. G.; Sinkevich, O. A.; Zeigarnik, Y. A.

    2017-11-01

    Using the conductometric technique, the process of contact of subcooled distilled water with a hot surface was studied. The results of measurements of the parameters of the contact made in the range of the temperature change of the heated surface 170 ± 620 ° C are given. An experimental fact has been revealed, which indicates that a transition from film to bubble boiling is preceded by a short (several millisecond) hydrodynamic process that is characterized by intense interaction of waves at the vapour - liquid interface with the heated surface. With the help of wavelet analysis, the amplitude-frequency characteristics of this process are investigated and a qualitative physical model of its flow

  17. Chloride reduction from brackish water by supported liquid membranes using ionic liquids as carriers

    OpenAIRE

    Benito, Sergi; Fortuny Sanromá, Agustín; Coll Ausió, Mª Teresa; Sastre Requena, Ana María

    2012-01-01

    The desalinization of the continental waters is one of the actual challenges on supplying water requirements. Water with high contents in salts is inadequate for drinking water and irrigation uses. In the industry this water involves additional conditioning steps. Salinity in water can determine the aquatic ecosystem and the life of the pants. High concentration of chloride in continental water is a great problem for the exploitation of these natural resources. In general, Cl- in water can be...

  18. Explaining Ionic Liquid Water Solubility in Terms of Cation and Anion Hydrophobicity

    Science.gov (United States)

    Ranke, Johannes; Othman, Alaa; Fan, Ping; Müller, Anja

    2009-01-01

    The water solubility of salts is ordinarily dictated by lattice energy and ion solvation. However, in the case of low melting salts also known as ionic liquids, lattice energy is immaterial and differences in hydrophobicity largely account for differences in their water solubility. In this contribution, the activity coefficients of ionic liquids in water are split into cation and anion contributions by regression against cation hydrophobicity parameters that are experimentally determined by reversed phase liquid chromatography. In this way, anion hydrophobicity parameters are derived, as well as an equation to estimate water solubilities for cation-anion combinations for which the water solubility has not been measured. Thus, a new pathway to the quantification of aqueous ion solvation is shown, making use of the relative weakness of interactions between ionic liquid ions as compared to their hydrophobicities. PMID:19399248

  19. Explaining ionic liquid water solubility in terms of cation and anion hydrophobicity.

    Science.gov (United States)

    Ranke, Johannes; Othman, Alaa; Fan, Ping; Müller, Anja

    2009-03-01

    The water solubility of salts is ordinarily dictated by lattice energy and ion solvation. However, in the case of low melting salts also known as ionic liquids, lattice energy is immaterial and differences in hydrophobicity largely account for differences in their water solubility. In this contribution, the activity coefficients of ionic liquids in water are split into cation and anion contributions by regression against cation hydrophobicity parameters that are experimentally determined by reversed phase liquid chromatography. In this way, anion hydrophobicity parameters are derived, as well as an equation to estimate water solubilities for cation-anion combinations for which the water solubility has not been measured. Thus, a new pathway to the quantification of aqueous ion solvation is shown, making use of the relative weakness of interactions between ionic liquid ions as compared to their hydrophobicities.

  20. Explaining Ionic Liquid Water Solubility in Terms of Cation and Anion Hydrophobicity

    Directory of Open Access Journals (Sweden)

    Johannes Ranke

    2009-03-01

    Full Text Available The water solubility of salts is ordinarily dictated by lattice energy and ion solvation. However, in the case of low melting salts also known as ionic liquids, lattice energy is immaterial and differences in hydrophobicity largely account for differences in their water solubility. In this contribution, the activity coefficients of ionic liquids in water are split into cation and anion contributions by regression against cation hydrophobicity parameters that are experimentally determined by reversed phase liquid chromatography. In this way, anion hydrophobicity parameters are derived, as well as an equation to estimate water solubilities for cation-anion combinations for which the water solubility has not been measured. Thus, a new pathway to the quantification of aqueous ion solvation is shown, making use of the relative weakness of interactions between ionic liquid ions as compared to their hydrophobicities.

  1. New method for vitrifying water and other liquids by rapid cooling of their aerosols

    Science.gov (United States)

    Mayer, Erwin

    1985-07-01

    A method for the vitrification of pure liquid water and dilute aqueous solutions is described which is the only one without a liquid cryomedium for heat transfer: rapid cooling of aqueous aerosol droplets on a solid cryoplate. This method is not limited to water and aqueous solutions, but can be used for the vitrification of any liquid aerosol, the only impurity being some codeposited vapor. The method can be applied in diverse fields such as cryobiology, cryomicroscopy, and low-temperature spectroscopy of water and dilute aqueous solutions to avoid the formation of crystalline ice.

  2. The structure of graphene oxide membranes in liquid water, ethanol and water-ethanol mixtures.

    Science.gov (United States)

    Talyzin, Alexandr V; Hausmaninger, Tomas; You, Shujie; Szabó, Tamás

    2014-01-07

    The structure of graphene oxide (GO) membranes was studied in situ in liquid solvents using synchrotron radiation X-ray diffraction in a broad temperature interval. GO membranes are hydrated by water similarly to precursor graphite oxide powders but intercalation of alcohols is strongly hindered, which explains why the GO membranes are permeated by water and not by ethanol. Insertion of ethanol into the membrane structure is limited to only one monolayer in the whole studied temperature range, in contrast to precursor graphite oxide powders, which are intercalated with up to two ethanol monolayers (Brodie) and four ethanol monolayers (Hummers). As a result, GO membranes demonstrate the absence of "negative thermal expansion" and phase transitions connected to insertion/de-insertion of alcohols upon temperature variations reported earlier for graphite oxide powders. Therefore, GO membranes are a distinct type of material with unique solvation properties compared to parent graphite oxides even if they are composed of the same graphene oxide flakes.

  3. On the collective network of ionic liquid/water mixtures. IV. Kinetic and rotational depolarization.

    Science.gov (United States)

    Schröder, Christian; Sega, Marcello; Schmollngruber, Michael; Gailberger, Elias; Braun, Daniel; Steinhauser, Othmar

    2014-05-28

    Dielectric spectroscopy is a measure of the collective Coulomb interaction in liquid systems. Adding ionic liquids to an aqueous solution results in a decrease of the static value of the generalized dielectric constant which cannot be attributed to kinetic depolarization models characterized by the static conductivity and rotational relaxation constant. However, a dipolar Poisson-Boltzmann model computing the water depolarization in the proximity of ions is not only successful for simple electrolytes but also in case of molecular ionic liquids. Moreover, our simple geometric hydration model is also capable to explain the dielectric depolarization. Both models compute the dielectric constant of water and obtain the overall dielectric constant by averaging the values of its components, water and the ionic liquid, weighted by their volume occupancies. In this sense, aqueous ionic liquid mixtures seem to behave like polar mixtures.

  4. Liquid-Liquid Equilibrium data for mono ethylene glycol extraction from water with the new ionic liquid tetraoctyl ammonium 2-methyl-1-naphtoate as solvent

    NARCIS (Netherlands)

    Garcia Chavez, L.Y.; Schuur, Boelo; de Haan, A.B.

    2012-01-01

    Thermal recovery of mono ethylene glycol (MEG) from aqueous streams is one of the most energy demanding operations in industry, because of the large amount of water that needs to be evaporated. The use of alternative technologies such as liquid–liquid extraction could save energy. A new tailor made

  5. Supercooled and glassy water: Metastable liquid(s), amorphous solid(s), and a no-man's land

    Science.gov (United States)

    Handle, Philip H.; Loerting, Thomas; Sciortino, Francesco

    2017-12-01

    We review the recent research on supercooled and glassy water, focusing on the possible origins of its complex behavior. We stress the central role played by the strong directionality of the water–water interaction and by the competition between local energy, local entropy, and local density. In this context we discuss the phenomenon of polyamorphism (i.e., the existence of more than one disordered solid state), emphasizing both the role of the preparation protocols and the transformation between the different disordered ices. Finally, we present the ongoing debate on the possibility of linking polyamorphism with a liquid–liquid transition that could take place in the no-man's land, the temperature–pressure window in which homogeneous nucleation prevents the investigation of water in its metastable liquid form.

  6. Primitive Liquid Water of the Solar System in an Aqueous Altered Carbonaceous Chondrite

    Science.gov (United States)

    Tsuchiyama, A.; Miyake, A.; Kitayama, A.; Matsuno, J.; Takeuchi, A.; Uesugi, K.; Suzuki, Y.; Nakano, T.; Zolensky, M. E.

    2016-01-01

    Non-destructive 3D observations of the aqueous altered CM chondrite Sutter's Mill using scanning imaging x-ray microscopy (SIXM) showed that some of calcite and enstatite grains contain two-phase inclusion, which is most probably composed of liquid water and bubbles. This water should be primitive water responsible for aqueous alteration in an asteroid in the early solar system.

  7. Design of a process for supercritical water desalination with zero liquid discharge

    NARCIS (Netherlands)

    Odu, Samuel Obarinu; van der Ham, Aloysius G.J.; Metz, S.; Kersten, Sascha R.A.

    2015-01-01

    Conventional desalination methods have a major drawback; the production of a liquid waste stream which must be disposed. The treatment of this waste stream has always presented technical, economic, and environmental challenges. The supercritical water desalination (SCWD) process meets these

  8. Evidence of the Existence of the Low-Density Liquid Phase in Supercooled, Confined Water

    National Research Council Canada - National Science Library

    Francesco Mallamace; Matteo Broccio; Carmelo Corsaro; Antonio Faraone; Domenico Majolino; Valentina Venuti; Li Liu; Chung-Yuan Mou; Sow-Hsin Chen

    2007-01-01

    By confining water in a nanoporous structure so narrow that the liquid could not freeze, it is possible to study properties of this previously undescribed system well below its homogeneous nucleation temperature $T_{H}=231$ K...

  9. Scanning Multichannel Microwave Radiometer (SMMR) Monthly Mean Atmospheric Liquid Water (ALW) By Prabhakara

    Data.gov (United States)

    National Aeronautics and Space Administration — SMMR_ALW_PRABHAKARA data are Special Multichannel Microwave Radiometer (SMMR) Monthly Mean Atmospheric Liquid Water (ALW) data by Prabhakara.The Prabhakara Scanning...

  10. On the implications of aerosol liquid water and phase separation for organic aerosol mass

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset contains data presented in the figures of the paper "On the implications of aerosol liquid water and phase separation for organic aerosol mass"...

  11. Isobaric first-principles molecular dynamics of liquid water with nonlocal van der Waals interactions

    CERN Document Server

    Miceli, Giacomo; Pasquarello, Alfredo

    2016-01-01

    We investigate the structural properties of liquid water at near ambient conditions using first-principles molecular dynamics simulations based on a semilocal density functional augmented with nonlocal van der Waals interactions. The adopted scheme offers the advantage of simulating liquid water at essentially the same computational cost of standard semilocal functionals. Applied to the water dimer and to ice Ih, we find that the hydrogen-bond energy is only slightly enhanced compared to a standard semilocal functional. We simulate liquid water through molecular dynamics in the NpH statistical ensemble allowing for fluctuations of the system density. The structure of the liquid departs from that found with a semilocal functional leading to more compact structural arrangements. This indicates that the directionality of the hydrogen-bond interaction has a diminished role as compared to the overall attractions, as expected when dispersion interactions are accounted for. This is substantiated through a detailed a...

  12. Thermal Conductivity of Liquid Water from Reverse Nonequilibrium Ab Initio Molecular Dynamics

    Science.gov (United States)

    Tsuchida, Eiji

    2018-02-01

    We report on a theoretical framework for calculating the thermal conductivity of liquid water from first principles with the aid of the linear scaling method. We also discuss the possibility of obtaining equilibrium properties from a nonequilibrium trajectory.

  13. Ab initio calculation of the electronic absorption spectrum of liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Martiniano, Hugo F. M. C.; Galamba, Nuno [Grupo de Física Matemática da Universidade de Lisboa, Av. Professor Gama Pinto 2, 1649-003 Lisboa (Portugal); Cabral, Benedito J. Costa, E-mail: ben@cii.fc.ul.pt [Grupo de Física Matemática da Universidade de Lisboa, Av. Professor Gama Pinto 2, 1649-003 Lisboa (Portugal); Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa (Portugal); Instituto de Física da Universidade de São Paulo, CP 66318, 05314-970 São Paulo, SP (Brazil)

    2014-04-28

    The electronic absorption spectrum of liquid water was investigated by coupling a one-body energy decomposition scheme to configurations generated by classical and Born-Oppenheimer Molecular Dynamics (BOMD). A Frenkel exciton Hamiltonian formalism was adopted and the excitation energies in the liquid phase were calculated with the equation of motion coupled cluster with single and double excitations method. Molecular dynamics configurations were generated by different approaches. Classical MD were carried out with the TIP4P-Ew and AMOEBA force fields. The BLYP and BLYP-D3 exchange-correlation functionals were used in BOMD. Theoretical and experimental results for the electronic absorption spectrum of liquid water are in good agreement. Emphasis is placed on the relationship between the structure of liquid water predicted by the different models and the electronic absorption spectrum. The theoretical gas to liquid phase blue-shift of the peak positions of the electronic absorption spectrum is in good agreement with experiment. The overall shift is determined by a competition between the O–H stretching of the water monomer in liquid water that leads to a red-shift and polarization effects that induce a blue-shift. The results illustrate the importance of coupling many-body energy decomposition schemes to molecular dynamics configurations to carry out ab initio calculations of the electronic properties in liquid phase.

  14. Liquid water infiltration into a layered snowpack: evaluation of a 3-D water transport model with laboratory experiments

    Science.gov (United States)

    Hirashima, Hiroyuki; Avanzi, Francesco; Yamaguchi, Satoru

    2017-11-01

    The heterogeneous movement of liquid water through the snowpack during precipitation and snowmelt leads to complex liquid water distributions that are important for avalanche and runoff forecasting. We reproduced the formation of capillary barriers and the development of preferential flow through snow using a three-dimensional water transport model, which was then validated using laboratory experiments of liquid water infiltration into layered, initially dry snow. Three-dimensional simulations assumed the same column shape and size, grain size, snow density, and water input rate as the laboratory experiments. Model evaluation focused on the timing of water movement, thickness of the upper layer affected by ponding, water content profiles and wet snow fraction. Simulation results showed that the model reconstructs relevant features of capillary barriers, including ponding in the upper layer, preferential infiltration far from the interface, and the timing of liquid water arrival at the snow base. In contrast, the area of preferential flow paths was usually underestimated and consequently the averaged water content in areas characterized by preferential flow paths was also underestimated. Improving the representation of preferential infiltration into initially dry snow is necessary to reproduce the transition from a dry-snow-dominant condition to a wet-snow-dominant one, especially in long-period simulations.

  15. Compact Raman Lidar Measurement of Liquid and Vapor Phase Water Under the Influence of Ionizing Radiation

    Directory of Open Access Journals (Sweden)

    Shiina Tatsuo

    2016-01-01

    Full Text Available A compact Raman lidar has been developed for studying phase changes of water in the atmosphere under the influence of ionization radiation. The Raman lidar is operated at the wavelength of 349 nm and backscattered Raman signals of liquid and vapor phase water are detected at 396 and 400 nm, respectively. Alpha particles emitted from 241Am of 9 MBq ionize air molecules in a scattering chamber, and the resulting ions lead to the formation of liquid water droplets. From the analysis of Raman signal intensities, it has been found that the increase in the liquid water Raman channel is approximately 3 times as much as the decrease in the vapor phase water Raman channel, which is consistent with the theoretical prediction based on the Raman cross-sections. In addition, the radius of the water droplet is estimated to be 0.2 μm.

  16. Ultrafast, Unimpeded Liquid Water Transport Through Graphene-Based Nanochannels Measured by Isotope Labelling

    CERN Document Server

    Sun, Pengzhan; Wang, Kunlin; Zhong, Minlin; Wu, Dehai; Zhu, Hongwei

    2014-01-01

    Graphene-based laminates, with ultralong and tortuous nanocapillaries formed by simply stacking graphene flakes together, have great promises in filtration and separation. However, the information on liquid water trans-membrane permeation is lacking, which is the most fundamental problem and of crucial importance in solution-based mass transport. Here, based on isotope labelling, we investigate the liquid water transportation through graphene-based nanocapillaries under no external hydrostatic pressures. Liquid water can afford an unimpeded permeation through graphene-based nanochannels with a diffusion coefficient 4~5 orders of magnitude larger than through sub-micrometer-sized polymeric channels. When dissolving ions in sources, the diffusion coefficient of ions through graphene channels lies in the same order of magnitude as water, while the ion diffusion is faster than water, indicating that the ions are mainly transported by fast water flows and the delicate interactions between ions and nanocapillary wa...

  17. Water-in-water emulsions stabilized by non-amphiphilic interactions: polymer-dispersed lyotropic liquid crystals.

    Science.gov (United States)

    Simon, Karen A; Sejwal, Preeti; Gerecht, Ryan B; Luk, Yan-Yeung

    2007-01-30

    Emulsion systems involving surfactants are mainly driven by the separation of the hydrophobic interactions of the aliphatic chains from the hydrophilic interactions of amphiphilic molecules in water. In this study, we report an emulsion system that does not include amphiphilic molecules but molecules with functional groups that are completely solvated in water. These functional groups give rise to molecular interactions including hydrogen bonding, pi stacking, and salt bridging and are segregated into a dispersion of droplets forming a water-in-water emulsion. This water-in-water emulsion consists of dispersing droplets of a water-solvated biocompatible liquid crystal--disodium cromoglycate (DSCG)--in a continuous aqueous solution containing specific classes of water-soluble polymers. Whereas aqueous solutions of polyols support the formation of emulsions of spherical droplets consisting of lyotropic liquid crystal DSCG with long-term stability (for at least 30 days), aqueous solutions of polyamides afford droplets of DSCG in the shape of prolate ellipsoids that are stable for only 2 days. The DSCG liquid crystal in spherical droplets assumes a radial configuration in which the optical axis of the liquid crystal aligns perpendicular to the surface of the droplets but assumes a tangential configuration in prolate ellipsoids in which the optical axis of the liquid crystal aligns parallel to the surface of the droplet. Other classes of water-soluble polymers including polyethers, polycations, and polyanions do not afford a stable emulsion of DSCG droplets. Both the occurrence and the stability of this unique emulsion system can be rationalized on the basis of the functional groups of the polymer. The different configurations of the liquid crystal (DSCG) droplets were also found to correlate with the strength of the hydrogen bonding that can be formed by the functional groups on the polymer.

  18. Hydrothermal decomposition of liquid crystal in subcritical water

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, Xuning [State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, No. 1239 Siping Road, Shanghai 200092 (China); Shanghai Cooperative Centre for WEEE Recycling, Shanghai Second Polytechnic University, No. 2360 Jinhai Road, Shanghai 201209 (China); He, Wenzhi, E-mail: hithwz@163.com [State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, No. 1239 Siping Road, Shanghai 200092 (China); Li, Guangming; Huang, Juwen; Lu, Shangming; Hou, Lianjiao [State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, No. 1239 Siping Road, Shanghai 200092 (China)

    2014-04-01

    Highlights: • Hydrothermal technology can effectively decompose the liquid crystal of 4-octoxy-4'-cyanobiphenyl. • The decomposition rate reached 97.6% under the optimized condition. • Octoxy-4'-cyanobiphenyl was mainly decomposed into simple and innocuous products. • The mechanism analysis reveals the decomposition reaction process. - Abstract: Treatment of liquid crystal has important significance for the environment protection and human health. This study proposed a hydrothermal process to decompose the liquid crystal of 4-octoxy-4′-cyanobiphenyl. Experiments were conducted with a 5.7 mL stainless tube reactor and heated by a salt-bath. Factors affecting the decomposition rate of 4-octoxy-4′-cyanobiphenyl were evaluated with HPLC. The decomposed liquid products were characterized by GC-MS. Under optimized conditions i.e., 0.2 mL H{sub 2}O{sub 2} supply, pH value 6, temperature 275 °C and reaction time 5 min, 97.6% of 4-octoxy-4′-cyanobiphenyl was decomposed into simple and environment-friendly products. Based on the mechanism analysis and products characterization, a possible hydrothermal decomposition pathway was proposed. The results indicate that hydrothermal technology is a promising choice for liquid crystal treatment.

  19. In Situ Characterization of Boehmite Particles in Water Using Liquid SEM.

    Science.gov (United States)

    Yao, Juan; Arey, Bruce W; Yang, Li; Zhang, Fei; Komorek, Rachel; Chun, Jaehun; Yu, Xiao-Ying

    2017-09-27

    In situ imaging and elemental analysis of boehmite (AlOOH) particles in water is realized using the System for Analysis at the Liquid Vacuum Interface (SALVI) and Scanning Electron Microscopy (SEM). This paper describes the method and key steps in integrating the vacuum compatible SAVLI to SEM and obtaining secondary electron (SE) images of particles in liquid in high vacuum. Energy dispersive x-ray spectroscopy (EDX) is used to obtain elemental analysis of particles in liquid and control samples including deionized (DI) water only and an empty channel as well. Synthesized boehmite (AlOOH) particles suspended in liquid are used as a model in the liquid SEM illustration. The results demonstrate that the particles can be imaged in the SE mode with good resolution (i.e., 400 nm). The AlOOH EDX spectrum shows significant signal from the aluminum (Al) when compared with the DI water and the empty channel control. In situ liquid SEM is a powerful technique to study particles in liquid with many exciting applications. This procedure aims to provide technical know-how in order to conduct liquid SEM imaging and EDX analysis using SALVI and to reduce potential pitfalls when using this approach.

  20. Analysis and Measurement of Bubble Dynamics and Associated Flow Field in Subcooled Nucleate Boiling Flows

    Energy Technology Data Exchange (ETDEWEB)

    Barclay G. Jones

    2008-10-01

    In recent years, subooled nucleate boiling (SNB) has attrcted expanding research interest owing to the emergence of axial offset anomaly (AOA) or crud-induced power shigt (CIPS) in many operating US PWRs, which is an unexpected deviation in the core axial power distribution from the predicted power curves. Research indicates that the formation of the crud, which directly leads to AOA phenomena, results from the presence of the subcooled nucleate boiling, and is especially realted to bubble motion occurring in the core region.

  1. Predictions of the marviken subcooled critical mass flux using the critical flow scaling parameters

    Energy Technology Data Exchange (ETDEWEB)

    Park, Choon Kyung; Chun, Se Young; Cho, Seok; Yang, Sun Ku; Chung, Moon Ki [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-12-31

    A total of 386 critical flow data points from 19 runs of 27 runs in the Marviken Test were selected and compared with the predictions by the correlations based on the critical flow scaling parameters. The results show that the critical mass flux in the very large diameter pipe can be also characterized by two scaling parameters such as discharge coefficient and dimensionless subcooling (C{sub d,ref} and {Delta}{Tau}{sup *} {sub sub}). The agreement between the measured data and the predictions are excellent. 8 refs., 8 figs. 1 tab. (Author)

  2. Salt effect on (liquid + liquid) equilibrium of (water + tert-butanol + 1-butanol) system: Experimental data and correlation

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Milton A.P. [School of Chemical Engineering, State University of Campinas, P.O. Box 6066, Campinas-SP 13081-970 (Brazil); Aznar, Martin [School of Chemical Engineering, State University of Campinas, P.O. Box 6066, Campinas-SP 13081-970 (Brazil)]. E-mail: maznar@feq.unicamp.br

    2006-01-15

    (Liquid + liquid) equilibrium data for the quaternary systems (water + tert-butanol + 1-butanol + KBr) and (water + tert-butanol + 1-butanol + MgCl{sub 2}) were experimentally determined at T = 293.15 K and T = 313.15 K. For mixtures with KBr, the overall salt concentrations were 5 and 10 mass percent; for mixtures with MgCl{sub 2}, the overall salt concentrations were 2 and 5 mass percent. The experimental results were used to estimate molecular interaction parameters for the NRTL activity coefficient model, using the Simplex minimization method and a concentration-based objective function. The correlation results are extremely satisfactory, with deviations in phase compositions below 1.7%.

  3. Liquid-liquid equilibrium measurement of ternary system containing β-caryophyllene in the water and 2-propanol mixture

    Science.gov (United States)

    Tetrisyanda, Rizky; Kuswandi, Wibawa, Gede

    2017-01-01

    To obtain a high purity of clove oil, it is needed to separate β-caryophyllene from the oil mixtures.The separation of this component could be obtained by solvent extraction. In this work, liquid-liquid equilibrium (LLE) data were measured for the ternary system of water β-caryophyllene (1) + 2-propanol (2) + water (3) at temperature 303.15 K, 313.15 K and 323.15K under atmospheric pressure. The experimental LLE data were correlated with the NRTL and UNIQUAC models. The reliability of these models is tested by comparison with experimental results. The varied temperatures studied in this work have significant influence to the two-phase area and the solubility of 2-propanol and β-caryophyllene in the aqueous phase.

  4. Selective extraction of copper, mercury, silver and palladium ionsfrom water using hydrophobic ionic liquids.

    Energy Technology Data Exchange (ETDEWEB)

    Papaiconomou, Nicolas; Lee, Jong-Min; Salminen, Justin; VonStosch, Moritz; Prausnitz, John M.

    2007-06-25

    Extraction of dilute metal ions from water was performed near room temperature with a variety of ionic liquids. Distribution coefficients are reported for fourteen metal ions extracted with ionic liquids containing cations 1-octyl-4-methylpyridinium [4MOPYR]{sup +}, 1-methyl-1-octylpyrrolidinium [MOPYRRO]{sup +} or 1-methyl-1-octylpiperidinium [MOPIP]{sup +}, and anions tetrafluoroborate [BF{sub 4}]{sup +}, trifluoromethyl sulfonate [TfO]{sup +} or nonafluorobutyl sulfonate [NfO]{sup +}. Ionic liquids containing octylpyridinium cations are very good for extracting mercury ions. However, other metal ions were not significantly extracted by any of these ionic liquids. Extractions were also performed with four new task-specific ionic liquids. Such liquids containing a disulfide functional group are efficient and selective for mercury and copper, whereas those containing a nitrile functional group are efficient and selective for silver and palladium.

  5. Studies of Water V. Five Phonons in Protonic Semiconductor Lattice Model of Pure Liquid Water

    Science.gov (United States)

    Jie, Binbin; Sah, Chihtang

    2017-07-01

    We report physics based confirmation (~1% RMS deviation), by existing experimental data, of proton-prohol (proton-hole) ion product (pH) and mobilities in pure liquid water (0-100{}{{o}}C, 1-atm pressure) anticipated from our melted-ice Hexagonal-Close-Packed (H{}2O){}4 Lattice Model. Five phonons are identified. (1) A propagating protonic phonon (520.9 meV from lone-pair-blue-shifted stretching mode of isolated water molecule) absorbed to generate a proton-prohol pair or detrap a tightly-bound proton. (2) Two (173.4 and 196.6 meV) bending-breathing protonic-proholic or protonic phonons absorbed during de-trapping-limited proton or proton-prohol mobilities. (3) Two propagating oxygenic-wateric Debye-Dispersive phonons (30.3 and 27.5 meV) absorbed during scattering-limited proton or proton-prohol mobilities. Summer School in Theoretical Physics funded by the National Natural Science Foundation of China, on Soft Materials Physics, hosted by the Physics Department of Xiamen University, China, during August 1 to 14, 2016. This was also just presented at the 2017 March Meeting (March 14 to 16) of the American Physical Society in New Orleans, USA.

  6. Granular flows at recurring slope lineae on Mars indicate a limited role for liquid water

    Science.gov (United States)

    Dundas, Colin M.; McEwen, Alfred S.; Chojnacki, Matthew; Milazzo, Moses P.; Byrne, Shane; McElwaine, Jim N.; Urso, Anna

    2017-12-01

    Recent liquid water flow on Mars has been proposed based on geomorphological features, such as gullies. Recurring slope lineae — seasonal flows that are darker than their surroundings — are candidate locations for seeping liquid water on Mars today, but their formation mechanism remains unclear. Topographical analysis shows that the terminal slopes of recurring slope lineae match the stopping angle for granular flows of cohesionless sand in active Martian aeolian dunes. In Eos Chasma, linea lengths vary widely and are longer where there are more extensive angle-of-repose slopes, inconsistent with models for water sources. These observations suggest that recurring slope lineae are granular flows. The preference for warm seasons and the detection of hydrated salts are consistent with some role for water in their initiation. However, liquid water volumes may be small or zero, alleviating planetary protection concerns about habitable environments.

  7. Use of magnetic effervescent tablet-assisted ionic liquid dispersive liquid-liquid microextraction to extract fungicides from environmental waters with the aid of experimental design methodology.

    Science.gov (United States)

    Yang, Miyi; Wu, Xiaoling; Jia, Yuhan; Xi, Xuefei; Yang, Xiaoling; Lu, Runhua; Zhang, Sanbing; Gao, Haixiang; Zhou, Wenfeng

    2016-02-04

    In this work, a novel effervescence-assisted microextraction technique was proposed for the detection of four fungicides. This method combines ionic liquid-based dispersive liquid-liquid microextraction with the magnetic retrieval of the extractant. A magnetic effervescent tablet composed of Fe3O4 magnetic nanoparticles, sodium carbonate, sodium dihydrogen phosphate and 1-hexyl-3-methylimidazolium bis(trifluoromethanesulfonimide) was used for extractant dispersion and retrieval. The main factors affecting the extraction efficiency were screened by a Plackett-Burman design and optimized by a central composite design. Under the optimum conditions, good linearity was obtained for all analytes in pure water model and real water samples. Just for the pure water, the recoveries were between 84.6% and 112.8%, the limits of detection were between 0.02 and 0.10 μg L(-1) and the intra-day precision and inter-day precision both are lower than 4.9%. This optimized method was successfully applied in the analysis of four fungicides (azoxystrobin, triazolone, cyprodinil, trifloxystrobin) in environmental water samples and the recoveries ranged between 70.7% and 105%. The procedure promising to be a time-saving, environmentally friendly, and efficient field sampling technique. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Ionic liquid-based ultrasound-assisted dispersive liquid-liquid microextraction combined with electrothermal atomic absorption spectrometry for a sensitive determination of cadmium in water samples

    Science.gov (United States)

    Li, Shengqing; Cai, Shun; Hu, Wei; Chen, Hao; Liu, Hanlan

    2009-07-01

    A new method was developed for the determination of cadmium in water samples using ionic liquid-based ultrasound-assisted dispersive liquid-liquid microextraction (IL-based USA-DLLME) followed by electrothermal atomic absorption spectrometry (ETAAS). The IL-based USA-DLLME procedure is free of volatile organic solvents, and there is no need for a dispersive solvent, in contrast to conventional DLLME. The ionic liquid, 1-hexyl-3-methylimidazolium hexafluorophosphate (HMIMPF 6), was quickly disrupted by an ultrasonic probe for 1 min and dispersed in water samples like a cloud. At this stage, a hydrophobic cadmium-DDTC complex was formed and extracted into the fine droplets of HMIMPF 6. After centrifugation, the concentration of the enriched cadmium in the sedimented phase was determined by ETAAS. Some effective parameters of the complex formation and microextraction, such as the concentration of the chelating agent, the pH, the volume of the extraction solvent, the extraction time, and the salt effect, have been optimized. Under optimal conditions, a high extraction efficiency and selectivity were reached for the extraction of 1.0 ng of cadmium in 10.0 mL of water solution employing 73 µL of HMIMPF 6 as the extraction solvent. The enrichment factor of the method is 67. The detection limit was 7.4 ng L - 1 , and the characteristic mass ( m0, 0.0044 absorbance) of the proposed method was 0.02 pg for cadmium (Cd). The relative standard deviation (RSD) for 11 replicates of 50 ng L - 1 Cd was 3.3%. The method was applied to the analysis of tap, well, river, and lake water samples and the Environmental Water Reference Material GSBZ 50009-88 (200921). The recoveries of spiked samples were in the range of 87.2-106%.

  9. Apparent First-Order Liquid-Liquid Transition with Pre-transition Density Anomaly, in Water-Rich Ideal Solutions.

    Science.gov (United States)

    Zhao, Zuofeng; Angell, C Austen

    2016-02-12

    The striking increases in response functions observed during supercooling of pure water have been the source of much interest and controversy. Imminent divergences of compressibility etc. unfortunately cannot be confirmed due to pre-emption by ice crystallization. Crystallization can be repressed by addition of second components, but these usually destroy the anomalies of interest. Here we study systems in which protic ionic liquid second components dissolve ideally in water, and ice formation is avoided without destroying the anomalies. We observe a major heat capacity spike during cooling, which is reversed during heating, and is apparently of first order. It occurs just before the glassy state is reached and is preceded by water-like density anomalies. We propose that it is the much-discussed liquid-liquid transition previously hidden by crystallization. Fast cooling should allow the important fluctuations/structures to be preserved in the glassy state for leisurely investigation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Ionic liquid for high temperature headspace liquid-phase microextraction of chlorinated anilines in environmental water samples.

    Science.gov (United States)

    Peng, Jin-feng; Liu, Jing-fu; Jiang, Gui-bin; Tai, Chao; Huang, Min-jia

    2005-04-22

    Based on the non-volatility of room temperature ionic liquids (IL), 1-butyl-3-methylimidazolium hexafluorophosphate ([C4MIM][PF6]) IL was employed as an advantageous extraction solvent for high temperature headspace liquid-phase microextraction (LPME) of chloroanilines in environmental water samples. At high temperature of 90 degrees C, 4-chloroaniline, 2-chloroaniline, 3,4-dichloroaniline, and 2,4-dichloroaniline were extracted into a 10 microl drop of [C4MIM][PF6] suspended on the needle of a high-performance liquid chromatography (HPLC) microsyringe held at the headspace of the samples. Then, the IL was injected directly into the HPLC system for determination. Parameters related to LPME were optimized, and high selectivity and low detection limits of the four chlorinated anilines were obtained because the extraction was performed at high temperature in headspace mode and the very high affinity between IL and chlorinated anilines. The proposed procedure was applied for the analysis of the real samples including tap water, river water and wastewater samples from a petrochemical plant and a printworks, and only 3,4-dichloroaniline was detected in the printworks wastewater at 88.2 microg l(-1) level. The recoveries for the four chlorinated anilines in the four samples were all in the range of 81.9-99.6% at 25 microg l(-1) spiked level.

  11. Drilling to Extract Liquid Water on Mars: Feasible and Worth the Investment

    Science.gov (United States)

    Stoker, C.

    2004-01-01

    A critical application for the success of the Exploration Mission is developing cost effective means to extract resources from the Moon and Mars needed to support human exploration. Water is the most important resource in this regard, providing a critical life support consumable, the starting product of energy rich propellants, energy storage media (e.g. fuel cells), and a reagent used in virtually all manufacturing processes. Water is adsorbed and chemically bound in Mars soils, ice is present near the Martian surface at high latitudes, and water vapor is a minor atmospheric constituent, but extracting meaningful quantities requires large complex mechanical systems, massive feedstock handling, and large energy inputs. Liquid water aquifers are almost certain to be found at a depth of several kilometers on Mars based on our understanding of the average subsurface thermal gradient, and geological evidence from recent Mars missions suggests liquid water may be present much closer to the surface at some locations. The discovery of hundreds of recent water-carved gullies on Mars indicates liquid water can be found at depths of 200-500 meters in many locations. Drilling to obtain liquid water via pumping is therefore feasible and could lower the cost and improve the return of Mars exploration more than any other ISRU technology on the horizon. On the Moon, water ice may be found in quantity in permanently shadowed regions near the poles.

  12. The Heat and Mass Transfer Processes at the Cooling of Strong Heated Sphere in a Cold Liquid

    Science.gov (United States)

    Puzina, Yu Yu

    2017-10-01

    Some new experimental results of continuum mechanics problems in two-phase systems are described. The processes of heat and mass transfer during cooling of strong heated sphere in the subcooled liquid are studied. Due to high level of heater temperature the stable vapor film is formed on the sphere surface. Calculation of steady-state transport processes at vapor – water interface is carried out using methods of molecular-kinetic theory. Heat transfer in vapor by thermal conductivity and natural convection in liquid are considered. Pressure balance is provided by hydrostatic pressure and non-equilibrium boundary condition. The results of the calculations are analyzed by comparison with previous data and experimental results.

  13. Are nanometric films of liquid undercooled interfacial water bio-relevant?

    Science.gov (United States)

    Möhlmann, Diedrich T F

    2009-06-01

    It is known that life processes below the melting point temperature can actively evolve and establish in micrometer-sized (and larger) veins and structures in ice and permafrost soil, filled with unfrozen water. Thermodynamic arguments and experimental results indicate the existence of much smaller nanometer sized thin films of undercooled liquid interfacial (ULI) water on surfaces of micrometer sized and larger mineral particles and microbes in icy environments far below the melting point temperature. This liquid interfacial water can be described in terms of a freezing point depression, which is due to the interfacial pressure of van der Waals forces. The physics behind the possibly also life supporting capability of nanometric films of undercooled liquid interfacial water, which also can "mantle" the surfaces of the much larger and micrometer-sized microbes, is discussed. As described, biological processes do not necessarily have to proceed in the "bulk" of the thin interfacial water, as in "vinical" water and in the micrometer sized veins e.g., but they can be supported or are even made possible already by covering thin mantles of liquid interfacial water. These can provide liquid water for metabolic processes and act as carrier for the necessary transport of nutrients and waste. ULI water supports two different and possibly biologically relevant transport processes: 2D molecular diffusion in the interfacial film, and flow-like due to regelation. ULI-water, which is "lost" by transport into microbes, e.g., will be refilled from the neighbouring ice. In this way, the nanometric liquid environment of microbes in ULI-water is comparable to that of microbes in bulk water. Another probably also biologically relevant property of ULI is, depending on the hydrophobic or hydrophilic character of the surfaces, that it is of lower density (LDL) or higher density (HDL) than bulk water. Furthermore, capillary effects and ions in ULI-water solutions can support, enhance, and

  14. Experimental study of an upward sub-cooled forced convection in a rectangular channel

    Science.gov (United States)

    Kouidri, A.; Madani, B.; Roubi, B.; Hamadouche, A.

    2016-07-01

    The upward sub-cooled forced convection in a rectangular channel is investigated experimentally. The aim of the present work is the studying of the local heat transfer phenomena. Concerning the experimentation: the n-pentane is used as a working fluid, the independent variables are: the velocity in the range from 0.04 to 0.086 m/s and heat flux density with values between 1.8 and 7.36 W/cm2. The results show that the local Nusselt number distribution is not uniform along the channel; however, uniformity is observed in the mean Nusselt number for Reynolds under 1600. On the other hand, a new correlation to predict the local fluid temperature is established as a function of local wall temperature. The wall's heat is dissipated under the common effect of the sub-cooled regime; therefore, the local heat transfer coefficient is increased. The study of the thermal equilibrium showed that for Reynolds less than 1500; almost all of the heat flux generated by the heater cartridges is absorbed by the fluid.

  15. Efficiency and mechanism of demulsification of oil-in-water emulsions using ionic liquid

    NARCIS (Netherlands)

    Li, X.; Kersten, Sascha R.A.; Schuur, Boelo

    2016-01-01

    In this work, 13 ionic liquids (ILs), including 9 halogenide ILs and 4 non-halogenide ILs, were evaluated as demulsifiers for a model oil-in-water emulsion prepared with heptane and water, where sodium dodecylbenzenesulfonate (SDBS) was used as a surfactant. The separating efficiency (the fraction

  16. Study of Solid-Liquid Ratio of Fly Ash Geopolymer as Water Absorbent Material

    OpenAIRE

    Angga Prasetya Fandi; Candra Sukmana Ndaru; Anggarini Ufafa

    2017-01-01

    Geopolymer has been synthesized from fly ash to be applicated as water absorbent material. This research conducted to determine the ability of geopolymer to abrsop water by variation of solid – liquid ratio at optimum molarity of NaOH; 3 M. In this research, the synthesis of geopolymer was conducted at the variation of solid-liquid ratio; 60:40, 65:35, 70:30, and 75:25. Result of the treatment were characterized by XRD and SEM to compare the geopolymer structure. Water absorption capacity was...

  17. Automated dispersive liquid-liquid microextraction coupled to high performance liquid chromatography - cold vapour atomic fluorescence spectroscopy for the determination of mercury species in natural water samples.

    Science.gov (United States)

    Liu, Yao-Min; Zhang, Feng-Ping; Jiao, Bao-Yu; Rao, Jin-Yu; Leng, Geng

    2017-04-14

    An automated, home-constructed, and low cost dispersive liquid-liquid microextraction (DLLME) device that directly coupled to a high performance liquid chromatography (HPLC) - cold vapour atomic fluorescence spectroscopy (CVAFS) system was designed and developed for the determination of trace concentrations of methylmercury (MeHg(+)), ethylmercury (EtHg(+)) and inorganic mercury (Hg(2+)) in natural waters. With a simple, miniaturized and efficient automated DLLME system, nanogram amounts of these mercury species were extracted from natural water samples and injected into a hyphenated HPLC-CVAFS for quantification. The complete analytical procedure, including chelation, extraction, phase separation, collection and injection of the extracts, as well as HPLC-CVAFS quantification, was automated. Key parameters, such as the type and volume of the chelation, extraction and dispersive solvent, aspiration speed, sample pH, salt effect and matrix effect, were thoroughly investigated. Under the optimum conditions, linear range was 10-1200ngL(-1) for EtHg(+) and 5-450ngL(-1) for MeHg(+) and Hg(2+). Limits of detection were 3.0ngL(-1) for EtHg(+) and 1.5ngL(-1) for MeHg(+) and Hg(2+). Reproducibility and recoveries were assessed by spiking three natural water samples with different Hg concentrations, giving recoveries from 88.4-96.1%, and relative standard deviations <5.1%. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Formation of Martian Gullies by the Flow of Simultaneously Freezing and Boiling Liquid Water

    Science.gov (United States)

    Heldmann, Jennifer L.; Mellon, Michael T.; Toon, Owen B.; Pollard, Wayne H.; Mellon, Michael T.; Pitlick, John; McKay, Christopher P.; Andersen, Dale T.

    2004-01-01

    Geomorphic evidence suggests that recent gullies on Mars were formed by fluvial activity. The Martian gully features are significant because their existence implies the presence of liquid water near the surface on Mars in geologically recent times. Irrespective of the ultimate source of the fluid carving the gullies, we seek to understand the behavior of this fluid after it reaches the Martian surface. We find that, contrary to popular belief, the fluvially-carved Martian gullies require formation conditions such as now occur on Mars, outside of the temperature-pressure stability regime of liquid water. Mars Global Surveyor observations of gully length and our modeling of water stability are consistent with gully formation from the action of pure liquid water that is simultaneously boiling and freezing.

  19. Mesoscopic modeling of liquid water transport in polymer electrolyte fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, Partha P [Los Alamos National Laboratory; Wang, Chao Yang [PENNSTATE UNIV.

    2008-01-01

    A key performance limitation in polymer electrolyte fuel cells (PEFC), manifested in terms of mass transport loss, originates from liquid water transport and resulting flooding phenomena in the constituent components. Liquid water leads to the coverage of the electrochemically active sites in the catalyst layer (CL) rendering reduced catalytic activity and blockage of the available pore space in the porous CL and fibrous gas diffusion layer (GDL) resulting in hindered oxygen transport to the active reaction sites. The cathode CL and the GDL therefore playa major role in the mass transport loss and hence in the water management of a PEFC. In this article, we present the development of a mesoscopic modeling formalism coupled with realistic microstructural delineation to study the profound influence of the pore structure and surface wettability on liquid water transport and interfacial dynamics in the PEFC catalyst layer and gas diffusion layer.

  20. Supported liquid membrane-liquid chromatography-mass spectrometry analysis of cyanobacterial toxins in fresh water systems

    Science.gov (United States)

    Mbukwa, Elbert A.; Msagati, Titus A. M.; Mamba, Bhekie B.

    Harmful algal blooms (HABs) are increasingly becoming of great concern to water resources worldwide due to indiscriminate waste disposal habits resulting in water pollution and eutrophication. When cyanobacterial cells lyse (burst) they release toxins called microcystins (MCs) that are well known for their hepatotoxicity (causing liver damage) and have been found in eutrophic lakes, rivers, wastewater ponds and other water reservoirs. Prolonged exposure to low concentrated MCs are equally of health importance as they are known to be bioaccumulative and even at such low concentration do exhibit toxic effects to aquatic animals, wildlife and human liver cells. The application of common treatment processes for drinking water sourced from HABs infested reservoirs have the potential to cause algal cell lyses releasing low to higher amounts of MCs in finished water. Trace microcystins in water/tissue can be analyzed and quantified using Liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS) following solid-phase extraction (SPE) sample clean-up procedures. However, extracting MCs from algal samples which are rich in chlorophyll pigments and other organic matrices the SPE method suffers a number of drawbacks, including cartridge clogging, long procedural steps and use of larger volumes of extraction solvents. We applied a supported liquid membrane (SLM) based technique as an alternative sample clean-up method for LC-ESI-MS analysis of MCs from both water and algal cells. Four (4) MC variants (MC-RR, -YR, -LR and -WR) from lyophilized cells of Microcystis aeruginosa and water collected from a wastewater pond were identified) and quantified using LC-ESI-MS following a SLM extraction and liquid partitioning step, however, MC-WR was not detected from water extracts. Within 45 min of SLM extraction all studied MCs were extracted and pre-concentrated in approximately 15 μL of an acceptor phase at an optimal pH 2.02 of the donor phase (sample). The highest

  1. Liquid-liquid equilibria for binary and ternary systems containing glycols, aromatic hydrocarbons, and water: Experimental measurements and modeling with the CPA EoS

    DEFF Research Database (Denmark)

    Folas, Georgios; Kontogeorgis, Georgios; Michelsen, Michael Locht

    2006-01-01

    Liquid-liquid equilibrium data of four binary glycol + aromatic hydrocarbon systems and three ternary systems containing water have been measured at atmospheric pressure. The measured systems are monoethylene glycol (MEG) + benzene or toluene, triethylene glycol (TEG) + benzene or toluene, MEG...... + water + benzene, MEG + water + toluene, and TEG + water + toluene. The binary systems are correlated with the Cubic-Plus-Association (CPA) equation of state while the ternary systems are predicted from interaction parameters obtained from the binary systems. Very satisfactory liquid-liquid equilibrium...... correlations are obtained for the binary systems using temperature-independent interaction parameters, while adequate predictions are achieved for multicomponent water + glycol + aromatic hydrocarbons systems when accounting for the solvation between the aromatic hydrocarbons and glycols or water....

  2. Determination of trace levels of dinitrophenolic compounds by microporous membrane liquid-liquid extraction in environmental water samples.

    Science.gov (United States)

    Bartolomé, Luis; Lezamiz, Jon; Etxebarria, Néstor; Zuloaga, Olatz; Jönsson, Jan Ake

    2007-08-01

    A fast and simple hollow fibre-based microporous membrane liquid-liquid extraction (MMLLE) method is proposed for the determination of trace levels of dinitrophenolic compounds in water samples. The optimization step was performed using a three-variables Doehlert matrix design, involving the fibre length, the quantity of trioctylphosphine oxide (TOPO) in the acceptor phase and the extraction time. Using the established experimental conditions, some other parameters such as stirring speed, salt content, humic acids and different organic solvents as the acceptor phase were studied. Validation of the method included calibration experiments, linearity studies and determination of method LOD (MLD). The RSD was around 11% in all the experiments on different days at different concentrations. Separation and detection of four dinitrophenols were performed in 10 min with an RP-LC and a C(8 )column ACN-citric buffer gradient elution and diode array detection.

  3. Correlation of vapor - liquid equilibrium data for acetic acid - isopropanol - water - isopropyl acetate mixtures

    Directory of Open Access Journals (Sweden)

    B. A. Mandagarán

    2006-03-01

    Full Text Available A correlation procedure for the prediction of vapor - liquid equilibrium of acetic acid - isopropanol - water - isopropyl acetate mixtures has been developed. It is based on the NRTL model for predicting liquid activity coefficients, and on the Hayden-O'Connell second virial coefficients for predicting the vapor phase of systems containing association components. When compared with experimental data the correlation shows a good agreement for binary and ternary data. The correlation also shows good prediction for reactive quaternary data.

  4. Stripping of acetone from water with microfabricated and membrane gas-liquid contactors.

    Science.gov (United States)

    Constantinou, Achilleas; Ghiotto, Francesco; Lam, Koon Fung; Gavriilidis, Asterios

    2014-01-07

    Stripping of acetone from water utilizing nitrogen as a sweeping gas in co-current flow was conducted in a microfabricated glass/silicon gas-liquid contactor. The chip consisted of a microchannel divided into a gas and a liquid chamber by 10 μm diameter micropillars located next to one of the channel walls. The channel length was 35 mm, the channel width was 220 μm and the microchannel depth 100 μm. The micropillars were wetted by the water/acetone solution and formed a 15 μm liquid film between them and the nearest channel wall, leaving a 195 μm gap for gas flow. In addition, acetone stripping was performed in a microchannel membrane contactor, utilizing a hydrophobic PTFE membrane placed between two microstructured acrylic plates. Microchannels for gas and liquid flows were machined in the plates and had a depth of 850 μm and 200 μm respectively. In both contactors the gas/liquid interface was stabilized: in the glass/silicon contactor by the hydrophilic micropillars, while in the PTFE/acrylic one by the hydrophobic membrane. For both contactors separation efficiency was found to increase by increasing the gas/liquid flow rate ratio, but was not affected when increasing the inlet acetone concentration. Separation was more efficient in the microfabricated contactor due to the very thin liquid layer employed.

  5. Nanosecond Discharge in Bubbled Liquid n-Heptane: Effects of Gas Composition and Water Addition

    KAUST Repository

    Hamdan, Ahmad

    2016-08-30

    Recently, an aqueous discharge reactor was developed to facilitate reformation of liquid fuels by in-liquid plasma. To gain a microscopic understanding of the physical elements behind this aqueous reactor, we investigate nanosecond discharges in liquid n-heptane with single and double gaseous bubbles in the gap between electrodes. We introduce discharge probability (DP) to characterize the stochastic nature of the discharges, and we investigate the dependence of DP on the gap distance, applied voltage, gaseous bubble composition, and the water content in n-heptane/distilled-water emulsified mixtures. Propagation of a streamer through the bubbles indicates no discharges in the liquids. DP is controlled by the properties of the gaseous bubble rather than by the composition of the liquid mixture in the gap with a single bubble; meanwhile, DP is determined by the dielectric permittivity of the liquid mixture in the gap with double bubbles, results that are supported by static electric field simulations. We found that a physical mechanism of increasing DP is caused by an interaction between bubbles and an importance of the dielectric permittivity of a liquid mixture on the local enhancement of field intensity. We also discuss detailed physical characteristics, such as plasma lifetime and electron density within the discharge channel, by estimating from measured emissions with a gated-intensified charge-coupled device and by using spectroscopic images, respectively. © 1973-2012 IEEE.

  6. In Situ Characterization of Boehmite Particles in Water Using Liquid SEM

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Juan; Arey, Bruce W.; Yang, Li; Zhang, Fei; Komorek, Rachel E.; Chun, Jaehun; Yu, Xiao-Ying

    2017-09-27

    In situ imaging and elemental analysis of boehmite (AlOOH) particles in water is realized using the System for Analysis at the Liquid Vacuum Interface (SALVI) and Scanning Electron Microscopy (SEM). This paper describes the method and key steps in integrating the vacuum compatible SAVLI to SEM and obtaining secondary electron (SE) images of particles in liquid in high vacuum. Energy dispersive x-ray spectroscopy (EDX) is used to obtain elemental analysis of particles in liquid. A synthesized AlOOH particle is used as a model in the liquid SEM illustration. Our results demonstrate that particles can be imaged in the SE mode with good resolution. The AlOOH EDX spectrum shows significant signal from the Al compared with deionized water and the empty channel control. In situ liquid SEM is a powerful technique to study particles in liquid with many exciting applications. This procedure aims to provide technical details in how to conduct liquid SEM imaging and EDX analysis using SALVI and reduce potential pitfalls using this approach for other researchers.

  7. Gas-liquid-liquid equilibria in mixtures of water, light gases, and hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Chao, K.C.

    1990-01-01

    Phase equilibrium in mixtures of water + light gases and water + heavy hydrocarbons has been investigated with the development of new local composition theory, new equations of state, and new experimental data. The preferential segregation and orientation of molecules due to different energies of molecular interaction has been simulated with square well molecules. Extensive simulation has been made for pure square well fluids and mixtures to find the local composition at wide ranges of states. A theory of local composition has been developed and an equation of state has been obtained for square well fluids. The new local composition theory has been embedded in several equations of state. The pressure of water is decoupled into a polar pressure and non-polar pressure according to the molecular model of water of Jorgensen et al. The polar pressure of water is combined with the BACK equation for the general description of polar fluids and their mixtures. Being derived from the steam table, the Augmented BACK equation is particularly suited for mixtures of water + non-polar substances such as the hydrocarbons. The hydrophobic character of the hydrocarbons had made their mixtures with water a special challenge. A new group contribution equation of state is developed to describe phase equilibrium and volumetric behavior of fluids while requiring only to know the molecular structure of the components. 15 refs., 1 fig.

  8. Quantum cluster equilibrium theory treatment of hydrogen-bonded liquids: water, methanol and ethanol

    Science.gov (United States)

    Borowski, Piotr; Jaroniec, Justyna; Janowski, Tomasz; Woliński, Krzysztof

    2003-01-01

    The quantum cluster equilibrium (QCE) theory was used in order to predict the composition of the hydrogen bonded liquids: water, methanol and ethanol. The calculations were based on high accuracy theoretical data obtained at the DFT/B3LYP/6-311G(d,p) level of theory. All investigated liquids are predicted to be composed of big clusters: hexamers in the case of water, tetramers, pentamers, hexamers and heptamers in the case of methanol and pentamers in the case of ethanol. The content of big clusters in a liquid phase as predicted by QCE is overestimated. We have found two confirmations of this. First of all, the behaviour of the liquid water isobar clearly demonstrates that there should be a substantial amount of small clusters in order to obtain the correct temperature dependence of the molar volume. Indeed, the theoretical molar volume close to the boiling point is by about 0.6 cm3 lower than the experimental one. The molar volume is too low due to the overestimated population of big clusters resulting in too high a liquid density. Second, the temperature dependence of the chemical shift of the hydroxyl protons in liquid methanol and ethanol, obtained as the population weighted average of the chemical shift of individual clusters, is shifted down field as compared to experiment by as much as 2 ppm. This is because big clusters with strongly deshielded hydroxyl protons contribute too much to the weighted average. Possible shortcomings of the QCE approach are discussed.

  9. Determination of estrogenic mycotoxins in environmental water samples by low-toxicity dispersive liquid-liquid microextraction and liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Emídio, Elissandro Soares; da Silva, Claudia Pereira; de Marchi, Mary Rosa Rodrigues

    2015-04-24

    A novel, simple, rapid and eco-friendly method based on dispersive liquid-liquid microextraction using a bromosolvent was developed to determine six estrogenic mycotoxins (zearalenone, zearalanone, α-zearalanol, β-zearalanol, α-zearalenol and β-zearalenol) in water samples by liquid chromatography-electrospray ionization tandem mass spectrometry in the negative mode (LC-ESI-MS/MS). The optimal conditions for this method include the use of 100 μL bromocyclohexane as an extraction solvent (using a non-dispersion solvent), 10 mL of aqueous sample (adjusted to pH 4), a vortex extraction time of 2 min, centrifugation for 10 min at 3500 rpm and no ionic strength adjustment. The calibration function was linear and was verified by applying the Mandel fitting test with a 95% confidence level. No matrix effect was observed. According to the relative standard deviations (RSDs), the precision was better than 13% for the repeatability and intermediate precision. The average recoveries of the spiked compounds ranged from 81 to 118%. The method limits of detection (LOD) and quantification (LOQ) considering a 125-fold pre-concentration step were 4-20 and 8-40 ng L(-1), respectively. Next, the method was applied to the analysis of the environmental aqueous samples, demonstrating the presence of β-zearalanol and zearalanone in the river water samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Determination of thiobencarb in water samples by gas chromatography using a homogeneous liquid-liquid microextraction via flotation assistance procedure

    Directory of Open Access Journals (Sweden)

    H.A. Mashayekhi

    2013-09-01

    Full Text Available Homogeneous liquid-liquid microextraction via flotation assistance (HLLME-FA coupled with gas chromatography-flame ionization detection (GC-FID was applied for the extraction and determination of thiobencarb in water samples. In this study, a special extraction cell was designed to facilitate collection of the low-density solvent extraction. No centrifugation was required in this procedure. The water sample solution was added into the extraction cell which contained an appropriate mixture of toluene (as an extraction solvent and acetone (as a homogeneous solvent. By using air flotation, the organic solvent was collected at the conical part of the designed cell. The effect of the different parameters on the efficiency of extraction such as type and volume of extraction and homogeneous solvents, ionic strength and extraction time were studied and optimized. Under the optimal conditions, linearity of the method was in the range of 1.0-200 µg L-1. The relative standard deviations in the real samples varied from 7.8-11.7 % (n = 3. The proposed method was successfully applied to analysis of thiobencarb in the water samples and satisfactory results were obtained.DOI: http://dx.doi.org/10.4314/bcse.v27i3.4

  11. Comparison of the structure of harmonic aqueous glasses and liquid water

    Science.gov (United States)

    Pohorille, Andrew; Wilson, Michael A.; Pratt, Lawrence R.; Laviolette, Randall A.; Macelroy, Robert D.

    1987-01-01

    Glassy structures of water were generated by rapidly quenching configurations of 64 and 343 molecules of liquid water; and the potential energy was then expanded through quadratic order around local minima generated in this way, and the properties of the resulting harmonic system were calculated. The results obtained were used to test the degree to which the structure of liquid water is similar to that of a harmonic aqueous glass. The radial distribution functions for the glass were found to be remarkably similar to those of the liquid. Translational modes were found to be almost entirely responsible for the broadening of the oxygen-oxygen radial distribution function of the quenched configuration, and also primarily responsible for the broadening of other radial distribution functions.

  12. Structure and Dynamics of Low-Density and High-Density Liquid Water at High Pressure.

    Science.gov (United States)

    Fanetti, Samuele; Lapini, Andrea; Pagliai, Marco; Citroni, Margherita; Di Donato, Mariangela; Scandolo, Sandro; Righini, Roberto; Bini, Roberto

    2014-01-02

    Liquid water has a primary role in ruling life on Earth in a wide temperature and pressure range as well as a plethora of chemical, physical, geological, and environmental processes. Nevertheless, a full understanding of its dynamical and structural properties is still lacking. Water molecules are associated through hydrogen bonds, with the resulting extended network characterized by a local tetrahedral arrangement. Two different local structures of the liquid, called low-density (LDW) and high-density (HDW) water, have been identified to potentially affect many different chemical, biological, and physical processes. By combining diamond anvil cell technology, ultrafast pump-probe infrared spectroscopy, and classical molecular dynamics simulations, we show that the liquid structure and orientational dynamics are intimately connected, identifying the P-T range of the LDW and HDW regimes. The latter are defined in terms of the speeding up of the orientational dynamics, caused by the increasing probability of breaking and reforming the hydrogen bonds.

  13. X-ray absorption of liquid water by advanced ab initio methods

    Science.gov (United States)

    Sun, Zhaoru; Chen, Mohan; Zheng, Lixin; Wang, Jianping; Santra, Biswajit; Shen, Huaze; Xu, Limei; Kang, Wei; Klein, Michael L.; Wu, Xifan

    2017-09-01

    Oxygen K -edge x-ray absorption spectra of liquid water are computed based on configurations from advanced ab initio molecular dynamics simulations, as well as an electron excitation theory from the GW method. One the one hand, the molecular structures of liquid water are accurately predicted by including both van der Waals interactions and a hybrid functional (PBE0). On the other hand, the dynamic screening effects on electron excitation are approximately described by the recently developed enhanced static Coulomb-hole and screened-exchange approximation of W. Kang and M. S. Hybertsen [Phys. Rev. B 82, 195108 (2010), 10.1103/PhysRevB.82.195108]. The resulting spectra of liquid water are in better quantitative agreement with the experimental spectra due to the softened hydrogen bonds and the slightly broadened spectra originating from the better screening model.

  14. An analysis of molecular packing and chemical association in liquid water using quasichemical theory.

    Science.gov (United States)

    Paliwal, A; Asthagiri, D; Pratt, L R; Ashbaugh, H S; Paulaitis, M E

    2006-06-14

    We calculate the hydration free energy of liquid TIP3P water at 298 K and 1 bar using a quasi-chemical theory framework in which interactions between a distinguished water molecule and the surrounding water molecules are partitioned into chemical associations with proximal (inner-shell) waters and classical electrostatic-dispersion interactions with the remaining (outer-shell) waters. The calculated free energy is found to be independent of this partitioning, as expected, and in excellent agreement with values derived from the literature. An analysis of the spatial distribution of inner-shell water molecules as a function of the inner-shell volume reveals that water molecules are preferentially excluded from the interior of large volumes as the occupancy number decreases. The driving force for water exclusion is formulated in terms of a free energy for rearranging inner-shell water molecules under the influence of the field exerted by outer-shell waters in order to accommodate one water molecule at the center. The results indicate a balance between chemical association and molecular packing in liquid water that becomes increasingly important as the inner-shell volume grows in size.

  15. The effect of cloud liquid water on temperature retrievals from microwave measurements

    Science.gov (United States)

    Bernet, Leonie; Navas-Guzmán, Francisco; Kämpfer, Niklaus

    2017-04-01

    Ground-based microwave radiometry provides atmospheric profiles for both clear sky and cloudy weather conditions. The effect of clouds on measurements from microwave radiometers is low compared to other remote sensing techniques but cannot be neglected at certain frequencies. In this study, clouds have been characterized and included in microwave retrievals in order to investigate their effect on tropospheric temperature profiles measured by the TEMPERA microwave radiometer. TEMPERA retrieves atmospheric temperature profiles by measuring emitted radiation of molecular oxygen at around 60 GHz. Because cloud liquid water also absorbs and emits radiation at the used frequency range, it is important to analyse the influence of liquid water on the microwave retrieval. In order to characterize the clouds, data from various instruments have been used, all located at the aerological station of MeteoSwiss at Payerne (Switzerland). Cloud base altitudes were detected using ceilometer measurements while the integrated liquid water (ILW) was measured by a HATPRO radiometer. Additional cloud information was obtained from a co-located sky camera and using an automatic partial cloud amount detection algorithm (APCADA). All this information has been used to characterize the clouds by means of a Liquid Water Content (LWC) profile. Different LWC profiles (shapes and values) have been tested to find the best cloud characterization depending on cloud type, altitude and ILW. Temperature profiles have been obtained incorporating this liquid water profile in the inversion algorithm and they have been evaluated against retrievals without considering clouds, in order to assess the liquid water effect on microwave measurements. The results have been compared with the temperature profiles from radiosondes which are regularly launched twice a day at the aerological station. Two years of data have been analyzed and almost 300 non-precipitating cloud cases were studied. The statistical analysis

  16. Density and Compressibility of Liquid Water and Ice from First-Principles Simulations with Hybrid Functionals.

    Science.gov (United States)

    Gaiduk, Alex P; Gygi, François; Galli, Giulia

    2015-08-06

    We determined the equilibrium density and compressibility of water and ice from first-principles molecular dynamics simulations using gradient-corrected (PBE) and hybrid (PBE0) functionals. Both functionals predicted the density of ice to be larger than that of water, by 15 (PBE) and 35% (PBE0). The PBE0 functional yielded a lower density of both ice and water with respect to PBE, leading to better agreement with experiment for ice but not for liquid water. Approximate inclusion of dispersion interactions on computed molecular-dynamics trajectories led to a substantial improvement of the PBE0 results for the density of liquid water, which, however, resulted to be slightly lower than that of ice.

  17. Seeing real-space dynamics of liquid water through inelastic x-ray scattering.

    Science.gov (United States)

    Iwashita, Takuya; Wu, Bin; Chen, Wei-Ren; Tsutsui, Satoshi; Baron, Alfred Q R; Egami, Takeshi

    2017-12-01

    Water is ubiquitous on earth, but we know little about the real-space motion of molecules in liquid water. We demonstrate that high-resolution inelastic x-ray scattering measurement over a wide range of momentum and energy transfer makes it possible to probe real-space, real-time dynamics of water molecules through the so-called Van Hove function. Water molecules are found to be strongly correlated in space and time with coupling between the first and second nearest-neighbor molecules. The local dynamic correlation of molecules observed here is crucial to a fundamental understanding of the origin of the physical properties of water, including viscosity. The results also suggest that the quantum-mechanical nature of hydrogen bonds could influence its dynamics. The approach used here offers a powerful experimental method for investigating real-space dynamics of liquids.

  18. Note: Assessment of the SCAN+rVV10 functional for the structure of liquid water.

    Science.gov (United States)

    Wiktor, Julia; Ambrosio, Francesco; Pasquarello, Alfredo

    2017-12-07

    The performance of the SCAN+rVV10 functional in modeling the structural properties of liquid water is studied through constant-volume ab initio molecular dynamics simulations with both classical and quantum nuclei. The radial distribution functions are found to be slightly overstructured with respect to experiment, but overall similar to those achieved with the bare SCAN and the rVV10 functionals. From the pressures calculated during the dynamics, it is inferred that the SCAN+rVV10 functional leads to a noticeable overestimation of the density of liquid water.

  19. Vapor-Liquid Equilibrium Measurements and Modeling of the Propyl Mercaptan plus Methane plus Water System

    DEFF Research Database (Denmark)

    Awan, Javeed; Thomsen, Kaj; Coquelet, Christophe

    2010-01-01

    In this work, vapor−liquid equilibrium (VLE) measurements of propyl mercaptan (PM) in pure water were performed at three different temperatures, (303, 323, and 365) K, with a pressure variation from (1 to 8) MPa. The total system pressure was maintained by CH4. The inlet mole fraction of propyl...... mercaptan in all experiments was the same, around 4.5·10−4 in the liquid phase. The objective was to provide experimental VLE data points of the propyl mercaptan + methane + water system for modeling since there is a lack of available data. These data will allow the industrial modeling of sulfur emission...

  20. Optimization and validation of liquid-liquid extraction with low temperature partitioning for determination of carbamates in water

    Energy Technology Data Exchange (ETDEWEB)

    Machado Goulart, Simone; Domingos Alves, Renata; Neves, Antonio Augusto; Queiroz, Jose Humberto de; Conde de Assis, Tamires [Departamento de Quimica, Universidade Federal de Vicosa, Vila Gianetti, Casa 24, 36 570-000 Vicosa, MG (Brazil); Queiroz, Maria Eliana L.R. de, E-mail: meliana@ufv.br [Departamento de Quimica, Universidade Federal de Vicosa, Vila Gianetti, Casa 24, 36 570-000 Vicosa, MG (Brazil)

    2010-06-25

    Using a 2{sup 3} experimental design, liquid-liquid extraction with low temperature partitioning (LLE-LTP) was optimized and validated for analysis of three carbamates (aldicarb, carbofuran and carbaryl) in water samples. In this method, 2.0 mL of sample is placed in contact with 4.0 mL of acetonitrile. After agitation, the sample is placed in a freezer for 3 h for phase separation. The organic extract is analyzed by high performance liquid chromatography with ultraviolet detection (HPLC-UV). For validation of the technique, the following figures of merit were evaluated: accuracy, precision, detection and quantification limits, linearity, sensibility and selectivity. Extraction recovery percentages of the carbamates aldicarb, carbofuran and carbaryl were 90%, 95% and 96%, respectively. Even though extremely low volumes of sample and solvent were used, the extraction method was selective and the detection and quantification limits were between 5.0 and 10.0 {mu}g L{sup -1}, and 17.0 and 33.0 {mu}g L{sup -1}, respectively.

  1. Determination of organochlorine pesticides in snow water samples by low density solvent based dispersive liquid-liquid microextraction.

    Science.gov (United States)

    Zhao, Wenting; Li, Jindong; Wu, Tong; Wang, Peng; Zhou, Zhiqiang

    2014-09-01

    A simple, rapid, efficient, and environmentally friendly pretreatment based on a low-density solvent based dispersive liquid-liquid microextraction was developed for determining trace levels of 17 organochlorine pesticides in snow. The parameters affecting the extraction efficiency, such as the type and volume of the extraction and dispersive solvents, extraction time, and salt content, were optimized. The optimized conditions yielded a good performance, with enrichment factors ranging from 271 to 474 and recoveries ranging from 71.4 to 114.5% and relative standard deviations between 1.6 and 14.8%. The detection limits, calculated as three times the signal-to-noise ratio, ranged from 0.02 to 0.11 μg/L. The validated method was used to successfully analyze 17 analytes in snow water samples, overcoming the drawbacks of some existing low-density solvent liquid microextraction methods, which require special devices, large volumes of organic solvents, or complicated operation procedures. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Optimization and validation of liquid-liquid extraction with low temperature partitioning for determination of carbamates in water.

    Science.gov (United States)

    Goulart, Simone Machado; Alves, Renata Domingos; Neves, Antônio Augusto; de Queiroz, José Humberto; de Assis, Tamires Condé; de Queiroz, Maria Eliana L R

    2010-06-25

    Using a 2(3) experimental design, liquid-liquid extraction with low temperature partitioning (LLE-LTP) was optimized and validated for analysis of three carbamates (aldicarb, carbofuran and carbaryl) in water samples. In this method, 2.0 mL of sample is placed in contact with 4.0 mL of acetonitrile. After agitation, the sample is placed in a freezer for 3 h for phase separation. The organic extract is analyzed by high performance liquid chromatography with ultraviolet detection (HPLC-UV). For validation of the technique, the following figures of merit were evaluated: accuracy, precision, detection and quantification limits, linearity, sensibility and selectivity. Extraction recovery percentages of the carbamates aldicarb, carbofuran and carbaryl were 90%, 95% and 96%, respectively. Even though extremely low volumes of sample and solvent were used, the extraction method was selective and the detection and quantification limits were between 5.0 and 10.0 microg L(-1), and 17.0 and 33.0 microg L(-1), respectively. Copyright 2010 Elsevier B.V. All rights reserved.

  3. Experimental determination of cavitation thresholds in liquid water and mercury

    Energy Technology Data Exchange (ETDEWEB)

    Taleyarkhan, R.P.; West, C.D. [Oak Ridge National Lab., TN (United States); Moraga, F. [Rensselaer Polytechnic Inst., Troy, NY (United States)

    1998-11-01

    An overview is provided on cavitation threshold measurement experiments for water and mercury. Various aspects to be considered that affect onset determination are discussed along with design specifications developed for construction of appropriate apparatus types. Both static and transient-cavitation effects were studied using radically different apparatus designs. Preliminary data are presented for cavitation thresholds for water and mercury over a range of temperatures in static and high-frequency environments. Implications and issues related to spallation neutron source target designs and operation are discussed.

  4. Short-range precipitation forecasts using assimilation of simulated satellite water vapor profiles and column cloud liquid water amounts

    Science.gov (United States)

    Wu, Xiaohua; Diak, George R.; Hayden, Cristopher M.; Young, John A.

    1995-01-01

    These observing system simulation experiments investigate the assimilation of satellite-observed water vapor and cloud liquid water data in the initialization of a limited-area primitive equations model with the goal of improving short-range precipitation forecasts. The assimilation procedure presented includes two aspects: specification of an initial cloud liquid water vertical distribution and diabatic initialization. The satellite data is simulated for the next generation of polar-orbiting satellite instruments, the Advanced Microwave Sounding Unit (AMSU) and the High-Resolution Infrared Sounder (HIRS), which are scheduled to be launched on the NOAA-K satellite in the mid-1990s. Based on cloud-top height and total column cloud liquid water amounts simulated for satellite data a diagnostic method is used to specify an initial cloud water vertical distribution and to modify the initial moisture distribution in cloudy areas. Using a diabatic initialization procedure, the associated latent heating profiles are directly assimilated into the numerical model. The initial heating is estimated by time averaging the latent heat release from convective and large-scale condensation during the early forecast stage after insertion of satellite-observed temperature, water vapor, and cloud water formation. The assimilation of satellite-observed moisture and cloud water, together withy three-mode diabatic initialization, significantly alleviates the model precipitation spinup problem, especially in the first 3 h of the forecast. Experimental forecasts indicate that the impact of satellite-observed temperature and water vapor profiles and cloud water alone in the initialization procedure shortens the spinup time for precipitation rates by 1-2 h and for regeneration of the areal coverage by 3 h. The diabatic initialization further reduces the precipitation spinup time (compared to adiabatic initialization) by 1 h.

  5. Performance Assessment of 239 Series Sub-cooling Heat Exchangers for the Large Hadron Collider

    CERN Document Server

    Riddone, G; Roussel, P; Moracchioli, R; Tavian, L

    2006-01-01

    Helium sub-cooling heat exchangers of the counter-flow type are used to minimize the vapor fraction produced in the final expansion of the 1.9 K distributed cooling loops used for cooling the superconducting magnets of the Large Hadron Collider (LHC). These components are of compact design, featuring low-pressure drop and handling very low pressure vapor at low temperature. Following a qualification phase of prototypes, a contract has been placed in European industry for the supply of 239 heat exchanger units. Different levels of extracted heat load require three different variants of heat exchangers. This paper will describe the manufacturing phase with emphasis on the main difficulties encountered to keep the production quality after a brief recall of the prototype phase. Finally, the acceptance tests performed at room temperature and at the nominal cryogenic condition at the factory and at CEA-Grenoble will be presented.

  6. Towards Zero Liquid Discharge in drinking water production

    NARCIS (Netherlands)

    Salvador Cob, S.

    2014-01-01

    Nanofiltration (NF) and reverse osmosis (RO) membranes are used to produce clean water, but also produce a concentrate stream which contains most of the contaminants. Discharging concentrate streams to the environment is hindered by regulations, which are becoming more strict, and by the desire of

  7. On the existence and stability of liquid water on the surface of mars today.

    Science.gov (United States)

    Kuznetz, L H; Gan, D C

    2002-01-01

    The recent discovery of high concentrations of hydrogen just below the surface of Mars' polar regions by Mars Odyssey has enlivened the debate about past or present life on Mars. The prevailing assumption prior to the discovery was that the liquid water essential for its existence is absent. That assumption was based largely on the calculation of heat and mass transfer coefficients or theoretical climate models. This research uses an experimental approach to determine the feasibility of liquid water under martian conditions, setting the stage for a more empirical approach to the question of life on Mars. Experiments were conducted in three parts: Liquid water's existence was confirmed by droplets observed under martian conditions in part 1; the evolution of frost melting on the surface of various rocks under martian conditions was observed in part 2; and the evaporation rate of water in Petri dishes under Mars-like conditions was determined and compared with the theoretical predictions of various investigators in part 3. The results led to the conclusion that liquid water can be stable for extended periods of time on the martian surface under present-day conditions.

  8. On the existence and stability of liquid water on the surface of mars today

    Science.gov (United States)

    Kuznetz, L. H.; Gan, D. C.

    2002-01-01

    The recent discovery of high concentrations of hydrogen just below the surface of Mars' polar regions by Mars Odyssey has enlivened the debate about past or present life on Mars. The prevailing assumption prior to the discovery was that the liquid water essential for its existence is absent. That assumption was based largely on the calculation of heat and mass transfer coefficients or theoretical climate models. This research uses an experimental approach to determine the feasibility of liquid water under martian conditions, setting the stage for a more empirical approach to the question of life on Mars. Experiments were conducted in three parts: Liquid water's existence was confirmed by droplets observed under martian conditions in part 1; the evolution of frost melting on the surface of various rocks under martian conditions was observed in part 2; and the evaporation rate of water in Petri dishes under Mars-like conditions was determined and compared with the theoretical predictions of various investigators in part 3. The results led to the conclusion that liquid water can be stable for extended periods of time on the martian surface under present-day conditions.

  9. (Liquid + liquid) equilibrium data for the system (propylene glycol + water + tetraoctyl ammonium 2-methyl-1-naphthoate)

    NARCIS (Netherlands)

    Garcia Chavez, L.Y.; Shazad, M.; Schuur, Boelo; de Haan, A.B.

    2012-01-01

    Propylene glycol (PG) is an important low toxic glycol, widely used in the food, cosmetics, pharmaceutical and the chemical industries. The recovery of PG from aqueous streams using conventional unit operations such as evaporation is highly energy demanding because of the large amounts of water that

  10. A Combined Experimental and Molecular Dynamics Study of Iodide-Based Ionic Liquid and Water Mixtures.

    Science.gov (United States)

    Nickerson, Stella D; Nofen, Elizabeth M; Chen, Haobo; Ngan, Miranda; Shindel, Benjamin; Yu, Hongyu; Dai, Lenore L

    2015-07-16

    Iodide-based ionic liquids have been widely employed as iodide sources in electrolytes for applications utilizing the triiodide/iodide redox couple. While adding a low-viscosity solvent such as water to ionic liquids can greatly enhance their usefulness, mixtures of highly viscous iodide-containing ILs with water have never been studied. This paper investigates, for the first time, mixtures of water and the ionic liquid 1-butyl-3-methylimidazolium iodide ([BMIM][I]) through a combined experimental and molecular dynamics study. The density, melting point, viscosity, and conductivity of these mixtures were measured by experiment. The composition region below 50% water by mole was found to differ dramatically from the region above 50% water, with trends in density and melting point differing before and after that point. Water was found to have a profound effect on viscosity and conductivity of the IL, and the effect of hydrogen bonding was discussed. Molecular dynamics simulations representing the same mixture compositions were performed. Molecular ordering was observed, as were changes in this ordering corresponding to water content. Molecular ordering was related to the experimentally measured mixture properties, providing a possible explanation for the two distinct composition regions identified by experiment.

  11. Phase equilibria of didecyldimethylammonium nitrate ionic liquid with water and organic solvents

    Energy Technology Data Exchange (ETDEWEB)

    Domanska, Urszula [Physical Chemistry Division, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw (Poland)]. E-mail: ula@ch.pw.edu.pl; Lugowska, Katarzyna [Physical Chemistry Division, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw (Poland); Pernak, Juliusz [Faculty of Chemical Technology, Poznan University of Technology, Poznan (Poland)

    2007-05-15

    The phase diagrams for binary mixtures of an ammonium ionic liquid, didecyldimethylammonium nitrate, [DDA][NO{sub 3}], with: alcohols (propan-1-ol, butan-1-ol, octan-1-ol, and decan-1-ol): hydrocarbons (toluene, propylbenzene, hexane, and hexadecane) and with water were determined in our laboratory. The phase equilibria were measured by a dynamic method from T 220 K to either the melting point of the ionic liquid, or to the boiling point of the solvent. A simple liquidus curve in a eutectic system was observed for [DDA][NO{sub 3}] with: alcohols (propan-1-ol, butan-1-ol, and octan-1-ol); aromatic hydrocarbons (toluene and propylbenzene) and with water. (Solid + liquid) equilibria with immiscibility in the liquid phase were detected with the aliphatic hydrocarbons heptane and hexadecane and with decan-1-ol. (Liquid + liquid) equilibria for the system [DDA][NO{sub 3}] with hexadecane was observed for the whole mole fraction range of the ionic liquid. The observation of the upper critical solution temperature in binary mixtures of ([DDA][NO{sub 3}] + decan-1-ol, heptane, or hexadecane) was limited by the boiling temperature of the solvent. Characterisation and purity of the compounds were determined by elemental analysis, water content (Fisher method) and differential scanning microcalorimetry (d.s.c.) analysis. The d.s.c. method of analysis was used to determine melting temperatures and enthalpies of fusion. The thermal stability of the ionic liquid was resolved by the thermogravimetric technique-differential thermal analysis (TG-DTA) technique over a wide temperature range from (200 to 780) K. The thermal decomposition temperature of 50% of the sample was greater than 500 K. The (solid + liquid) phase equilibria, curves were correlated by means of different G {sup Ex} models utilizing parameters derived from the (solid + liquid) equilibrium. The root-mean-square deviations of the solubility temperatures for all calculated data are dependent upon the particular

  12. Visual observation of gas hydrates nucleation and growth at a water - organic liquid interface

    Science.gov (United States)

    Stoporev, Andrey S.; Semenov, Anton P.; Medvedev, Vladimir I.; Sizikov, Artem A.; Gushchin, Pavel A.; Vinokurov, Vladimir A.; Manakov, Andrey Yu.

    2018-03-01

    Visual observation of nucleation sites of methane and methane-ethane-propane hydrates and their further growth in water - organic liquid - gas systems with/without surfactants was carried out. Sapphire Rocking Cell RCS6 with transparent sapphire cells was used. The experiments were conducted at the supercooling ΔTsub = 20.2 °C. Decane, toluene and crude oils were used as organics. Gas hydrate nucleation occurred on water - metal - gas and water - sapphire - organic liquid three-phase contact lines. At the initial stage of growth hydrate crystals rapidly covered the water - gas or water - organics interfaces (depending on the nucleation site). Further hydrate phase accrete on cell walls (sapphire surface) and into the organics volume. At this stage, growth was accompanied by water «drawing out» from under initial hydrate film formed at water - organic interface. Apparently, it takes place due to water capillary inflow in the reaction zone. It was shown that the hydrate crystal morphology depends on the organic phase composition. In the case of water-in-decane emulsion relay hydrate crystallization was observed in the whole sample, originating most likely due to the hydrate crystal intergrowth through decane. Contacts of such crystals with adjacent water droplets result in rapid hydrate crystallization on this droplet.

  13. Comment on ``Structure and dynamics of liquid water on rutile TiO2(110)''

    Science.gov (United States)

    Wesolowski, David J.; Sofo, Jorge O.; Bandura, Andrei V.; Zhang, Zhan; Mamontov, Eugene; Předota, Milan; Kumar, Nitin; Kubicki, James D.; Kent, Paul R. C.; Vlcek, Lukas; Machesky, Michael L.; Fenter, Paul A.; Cummings, Peter T.; Anovitz, Lawrence M.; Skelton, Adam A.; Rosenqvist, Jörgen

    2012-04-01

    Liu and co-workers [Phys. Rev. B1098-012110.1103/PhysRevB.82.161415 82, 161415 (2010)] discussed the long-standing debate regarding whether H2O molecules on the defect-free (110) surface of rutile (α-TiO2) sorb associatively, or there is dissociation of some or all first-layer water to produce hydroxyl surface sites. They conducted static density functional theory (DFT) and DFT molecular dynamics (DFT-MD) investigations using a range of cell configurations and functionals. We have reproduced their static DFT calculations of the influence of crystal slab thickness on water sorption energies. However, we disagree with several assertions made by these authors: (a) that second-layer water structuring and hydrogen bonding to surface oxygens and adsorbed water molecules are ‘‘weak’’; (b) that translational diffusion of water molecules in direct contact with the surface approaches that of bulk liquid water; and (c) that there is no dissociation of adsorbed water at this surface in contact with liquid water. These assertions directly contradict our published work, which compared synchrotron x-ray crystal truncation rod, second harmonic generation, quasielastic neutron scattering, surface charge titration, and classical MD simulations of rutile (110) single-crystal surfaces and (110)-dominated powders in contact with bulk water, and (110)-dominated rutile nanoparticles with several monolayers of adsorbed water.

  14. Comment on "Structure and dynamics of liquid water on rutile TiO2(110)

    Energy Technology Data Exchange (ETDEWEB)

    Wesolowski, David J [ORNL; Sofo, Jorge O. [Pennsylvania State University; Bandura, Andrei V. [St. Petersburg State University, St. Petersburg, Russia; Zhang, Zhan [Argonne National Laboratory (ANL); Mamontov, Eugene [ORNL; Predota, M. [University of South Bohemia, Czech Republic; Kumar, Nitin [ORNL; Kubicki, James D. [Pennsylvania State University; Kent, Paul R [ORNL; Vlcek, Lukas [ORNL; Machesky, Michael L. [Illinois State Water Survey, Champaign, IL; Fenter, Paul [Argonne National Laboratory (ANL); Cummings, Peter T [ORNL; Anovitz, Lawrence {Larry} M [ORNL; Skelton, A A [Vanderbilt University; Rosenqvist, Jorgen K [ORNL

    2012-01-01

    Liu and co-workers [Phys. Rev. B 82, 161415 (2010)] discussed the long-standing debate regarding whether H2O molecules on the defect-free (110) surface of rutile ( -TiO2) sorb associatively, or there is dissociation of some or all first-layer water to produce hydroxyl surface sites. They conducted static density functional theory (DFT) and DFT molecular dynamics (DFT-MD) investigations using a range of cell configurations and functionals. We have reproduced their static DFT calculations of the influence of crystal slab thickness on water sorption energies. However, we disagree with several assertions made by these authors: (a) that second-layer water structuring and hydrogen bonding to surface oxygens and adsorbed water molecules are weak ; (b) that translational diffusion of water molecules in direct contact with the surface approaches that of bulk liquid water; and (c) that there is no dissociation of adsorbed water at this surface in contact with liquid water. These assertions directly contradict our publishedwork, which compared synchrotron x-ray crystal truncation rod, second harmonic generation, quasielastic neutron scattering, surface charge titration, and classical MD simulations of rutile (110) single-crystal surfaces and (110)-dominated powders in contact with bulk water, and (110)-dominated rutile nanoparticles with several monolayers of adsorbed water.

  15. Ion Transfer Voltammetry Associated with Two Polarizable Interfaces Within Water and Moderately Hydrophobic Ionic Liquid Systems

    DEFF Research Database (Denmark)

    Gan, Shiyu; Zhou, Min; Zhang, Jingdong

    2013-01-01

    An electrochemical system composed of two polarizable interfaces (the metallic electrode|water and water|ionic liquid interfaces), namely two‐polarized‐interface (TPI) technique, has been proposed to explore the ion transfer processes between water and moderately hydrophobic ionic liquids (W......|mIL), typically 1‐octyl‐3‐methylimidazolium bis(trifluoromethylsulfonyl)imide (C8mimC1C1N) and 1‐hexyl‐3‐methylimidazolium bis(trifluoromethylsulfonyl)imide (C6mimC1C1N). Within the classic four‐electrode system, it is not likely that the ion transfer information at the W|mIL interface can be obtained due...... to an extremely narrow polarized potential window (ppw) caused by these moderately hydrophobic ionic components. In this article, we show that TPI technique has virtually eliminated the ppw limitation based on a controlling step of concentration polarization at the electrode|water interface. With the aid...

  16. Mars Gully: No Mineral Trace of Liquid Water

    Science.gov (United States)

    2007-01-01

    This image of the Centauri-Hellas Montes region was taken by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) at 2107 UTC (4:07 p.m. EST) on Jan. 9, 2007, near 38.41 degrees south latitude, 96.81 degrees east longitude. CRISM's image was taken in 544 colors covering 0.36-3.92 micrometers, and shows features as small as 20 meters (66 feet) across. The region covered is slightly wider than 10 kilometers (6.2 miles) at its narrowest point. Narrow gullies found on hills and crater walls in many mid-latitude regions of Mars have been interpreted previously as cut by geologically 'recent' running water, meaning water that flowed on Mars long after impact cratering, tectonic forces, volcanism or other processes created the underlying landforms. Some gullies even eroded into sand dunes, which would date their formation at thousands to millions of years ago, or less. In fact, Mars Orbiter Camera (MOC) images showed two of the gullies have bright deposits near their downslope ends - but those deposits were absent in images taken just a few years earlier. The bright deposits must have formed within the period 1999-2004. Has there been running water on Mars so recently? To address that question, CRISM and MRO's other instruments observed the bright gully deposits. CRISM's objective was to determine if the bright deposits contained salts left behind from water evaporating into Mars' thin air. The high-resolution imager's (HiRISE's) objective was to determine if the small-scale morphology was consistent with formation by running water. This CRISM image of a bright gully deposit was constructed by showing 2.53, 1.50, and 1.08 micrometer light in the red, green, and blue image planes. CRISM can just resolve the deposits (highlighted by arrows in the inset), which are only a few tens of meters (about 150 feet) across. The spectrum of the deposits barely differs from that of the surrounding material, and is just a little brighter. This difference could simply be

  17. Vortex-assisted low density solvent based demulsified dispersive liquid-liquid microextraction and high-performance liquid chromatography for the determination of organophosphorus pesticides in water samples.

    Science.gov (United States)

    Seebunrueng, Ketsarin; Santaladchaiyakit, Yanawath; Srijaranai, Supalax

    2014-05-01

    A simple, rapid, effective and eco-friendly preconcentration method, vortex-assisted low density solvent based solvent demulsified dispersive liquid-liquid microextraction (VLDS-SD-DLLME), followed by high performance liquid chromatography-diode array detector (HPLC-DAD) analysis, has been developed for the first time for the determination of four organophosphorus pesticides (OPPs) (e.g., azinphos-methyl, parathion-methyl, fenitrothion and diazinon) in environmental water samples. In this preconcentration procedure, an emulsion was obtained after the mixture of extraction solvent (1-dodecanol) and dispersive solvent (acetonitrile, ACN) was injected rapidly into 10 mL of the sample solution. The vortex agitator aided the dispersion of the extraction solvent into the sample solution. After the formation of an emulsion, the demulsifier (ACN) was added, resulting in the rapid separation of the mixture into two phases without centrifugation. Under optimal conditions, the proposed method provided high extraction efficiency (90-99%), good linearity range (0.5-500 ng mL(-1)), low limits of detection (0.25-1 ng mL(-1)) and good repeatability and recoveries were obtained. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Interaction of a sodium ion with the water liquid-vapor interface

    Science.gov (United States)

    Wilson, M. A.; Pohorille, A.; Pratt, L. R.; MacElroy, R. D. (Principal Investigator)

    1989-01-01

    Molecular dynamics results are presented for the density profile of a sodium ion near the water liquid-vapor interface at 320 K. These results are compared with the predictions of a simple dielectric model for the interaction of a monovalent ion with this interface. The interfacial region described by the model profile is too narrow and the profile decreases too abruptly near the solution interface. Thus, the simple model does not provide a satisfactory description of the molecular dynamics results for ion positions within two molecular diameters from the solution interface where appreciable ion concentrations are observed. These results suggest that surfaces associated with dielectric models of ionic processes at aqueous solution interfaces should be located at least two molecular diameters inside the liquid phase. A free energy expense of about 2 kcal/mol is required to move the ion within two molecular layers of the free water liquid-vapor interface.

  19. Excess enthalpy, density, and heat capacity for binary systems of alkylimidazolium-based ionic liquids + water

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Miaja, Gonzalo; Troncoso, Jacobo [Departamento de Fisica Aplicada, Universidad de Vigo, Facultad de Ciencias, Campus As Lagoas, 32004 Ourense (Spain); Romani, Luis [Departamento de Fisica Aplicada, Universidad de Vigo, Facultad de Ciencias, Campus As Lagoas, 32004 Ourense (Spain)], E-mail: romani@uvigo.es

    2009-02-15

    Experimental measurements of excess molar enthalpy, density, and isobaric molar heat capacity are presented for a set of binary systems ionic liquid + water as a function of temperature at atmospheric pressure. The studied ionic liquids are 1-butyl-3-methylpyridinium tetrafluoroborate, 1-ethyl-3-methylimidazolium ethylsulfate, 1-butyl-3-methylimidazolium methylsulfate, 1-butyl-3-methylimidazolium trifluoromethanesulfonate, and 1-ethyl-3-methylimidazolium trifluoromethanesulfonate. Excess molar enthalpy was measured at 303.15 K whereas density and heat capacity were determined within the temperature range (293.15 to 318.15) K. From experimental data, excess molar volume and excess molar isobaric heat capacity were calculated. The analysis of the excess properties reveals important differences between the studied ionic liquids which can be ascribed to their capability to form hydrogen bonds with water molecules.

  20. INFLUENCE OF SEA WATER ON THE MECHANICAL PROPERTIES OF POROUS ASPHALT CONTAINING LIQUID ASBUTON

    OpenAIRE

    N, Ali; L, Samang; Tjaronge, M.W.; A.Rahman, Djamaluddin

    2011-01-01

    The Buton Asphalt or Asbuton is natural rock asphalt that deposited on South Buton Island in southeast Sulawesi Island, Indonesia. The refining process reduces the mineral content to produce the liquid Asbuton. Porous asphalt is an asphalt pavement that has enough voids within to allow water to pass freely through it. This paper reports on experimental investigation conducted to determine the influence of sea water on the mechanical properties of porous asphalt containing liqui...

  1. Structural and dipolar fluctuations in liquid water: a Car–Parrinello molecular dynamics study

    OpenAIRE

    Skarmoutsos, Ioannis; Masia, Marco; Guàrdia Manuel, Elvira

    2016-01-01

    A Car–Parrinello molecular dynamics simulation was performed to investigate the local tetrahedral order, molecular dipole fluctuations and their interrelation with hydrogen bonding in liquid water. Water molecules were classified in three types, exhibiting low, intermediate and high tetrahedral order. Transitions from low to high tetrahedrally ordered structures take place only through transitions to the intermediate state. The molecular dipole moments depend strongly on the tetrahedral order...

  2. Determination of 226Ra and 224Ra in drinking waters by liquid scintillation counting.

    Science.gov (United States)

    Manjón, G; Vioque, I; Moreno, H; García-Tenorio, R; García-León, M

    1997-04-01

    A method for the determination of Ra-isotopes in water samples has been developed. Ra is coprecipitated with Ba as sulphate. The precipitate is then dissolved with EDTA and counted with a liquid scintillation system after mixing with a scintillation cocktail. The study of the temporal evolution of the separated activity gives the isotopic composition of the sample, i.e. the 224Ra and 226Ra contribution to the total activity. The method has been applied to some Spanish drinking waters.

  3. New Mexico cloud super cooled liquid water survey final report 2009.

    Energy Technology Data Exchange (ETDEWEB)

    Beavis, Nick; Roskovensky, John K.; Ivey, Mark D.

    2010-02-01

    Los Alamos and Sandia National Laboratories are partners in an effort to survey the super-cooled liquid water in clouds over the state of New Mexico in a project sponsored by the New Mexico Small Business Assistance Program. This report summarizes the scientific work performed at Sandia National Laboratories during the 2009. In this second year of the project a practical methodology for estimating cloud super-cooled liquid water was created. This was accomplished through the analysis of certain MODIS sensor satellite derived cloud products and vetted parameterizations techniques. A software code was developed to analyze multiple cases automatically. The eighty-one storm events identified in the previous year effort from 2006-2007 were again the focus. Six derived MODIS products were obtained first through careful MODIS image evaluation. Both cloud and clear-sky properties from this dataset were determined over New Mexico. Sensitivity studies were performed that identified the parameters which most influenced the estimation of cloud super-cooled liquid water. Limited validation was undertaken to ensure the soundness of the cloud super-cooled estimates. Finally, a path forward was formulized to insure the successful completion of the initial scientific goals which include analyzing different of annual datasets, validation of the developed algorithm, and the creation of a user-friendly and interactive tool for estimating cloud super-cooled liquid water.

  4. Observed and simulated temperature dependence of the liquid water path of low clouds

    Energy Technology Data Exchange (ETDEWEB)

    Del Genio, A.D.; Wolf, A.B. [NASA Goddard Institute for Space Studies, New York, NY (United States)

    1996-04-01

    Data being acquired at the Atmospheric Radiation Measurement (ARM) Southern great Plains (SGP) Cloud and Radiation Testbed (CART) site can be used to examine the factors determining the temperature dependence of cloud optical thickness. We focus on cloud liquid water and physical thickness variations which can be derived from existing ARM measurements.

  5. On the nature of wintertime supercooled liquid water over the Snowy Mountains

    OpenAIRE

    Osburn, Luke

    2017-01-01

    The overall goals of this thesis are to quantify the occurrence of supercooled liquid water (SLW) over the Snowy Mountains over a 3 year period and to determine influences of specific types of synoptic scale systems. The identification of generation and termination mechanisms of SLW during storm passages was also a goal.

  6. Retrieval of liquid water cloud properties from ground-based remote sensing observations

    NARCIS (Netherlands)

    Knist, C.L.

    2014-01-01

    Accurate ground-based remotely sensed microphysical and optical properties of liquid water clouds are essential references to validate satellite-observed cloud properties and to improve cloud parameterizations in weather and climate models. This requires the evaluation of algorithms for retrieval of

  7. Liquid-liquid equilibrium of water + PEG 8000 + magnesium sulfate or sodium sulfate aqueous two-phase systems at 35°C: experimental determination and thermodynamic modeling

    Directory of Open Access Journals (Sweden)

    B. D. Castro

    2005-09-01

    Full Text Available Liquid-liquid extraction using aqueous two-phase systems is a highly efficient technique for separation and purification of biomolecules due to the mild properties of both liquid phases. Reliable data on the phase behavior of these systems are essential for the design and operation of new separation processes; several authors reported phase diagrams for polymer-polymer systems, but data on polymer-salt systems are still relatively scarce. In this work, experimental liquid-liquid equilibrium data on water + polyethylene glycol 8000 + magnesium sulfate and water + polyethylene glycol 8000 + sodium sulfate aqueous two-phase systems were obtained at 35°C. Both equilibrium phases were analyzed by lyophilization and ashing. Experimental results were correlated with a mass-fraction-based NRTL activity coefficient model. New interaction parameters were estimated with the Simplex method. The mean deviations between the experimental and calculated compositions in both equilibrium phases is about 2%.

  8. Biodegradability of immidazolium, pyridinium, piperidinium and pyrrolidinium based ionic liquid in different water source

    Science.gov (United States)

    Krishnan, S.; Quraishi, K. S.; Aminuddin, N. F.; Mazlan, F. A.; Leveque, J.-M.

    2016-11-01

    Ionic Liquid (IL), combination of an organic cation with an organic or inorganic cation, possess some remarkable physical chemical properties such as no virtual vapor pressure (allowing recyclability and reusability), wide liquid range, high thermal and chemical stability, ease to choose hydrophobic/hydrophilic character and wide electrochemical window. Owing to that, they have become increasingly popular as green solvents/additives/catalysts for organic synthetic chemistry, extraction, electrochemistry, catalysis, biomass conversion, biotechnologies and pharmaceutical applications. This is acknowledged by the exponential number of yearly published articles related to them. However, even if these are very widely studied in the international scientific community, they are not or very little used on an industrial scale, particularly because of the lack of data on their toxicity and biodegradability. Notably hydrophobic ILs seems to display higher toxicity towards microorganisms and lower biodegradability compared to their hydrophilic analogues since they are not readily disassociated in water. This present work aims to explore the biodegradability of 8 different insoluble ILs in different sources of water bearing varied amount of microorganisms to study the impact of the used water on the biodegradability assessment. The water sources used are Type III Water, Pond water and filtered Sewage Water. Based on the results obtained, it can be concluded that the type of water has a very minor influence on the biodegradability effect of insoluble ILs. However, there is still some degree of influence on the type of water with the biodegradability.

  9. Ion-water wires in imidazolium-based ionic liquid/water solutions induce unique trends in density.

    Science.gov (United States)

    Ghoshdastidar, Debostuti; Senapati, Sanjib

    2016-03-28

    Ionic liquid/water binary mixtures are rapidly gaining popularity as solvents for dissolution of cellulose, nucleobases, and other poorly water-soluble biomolecules. Hence, several studies have focused on measuring the thermophysical properties of these versatile mixtures. Among these, 1-ethyl-3-methylimidazolium ([emim]) cation-based ILs containing different anions exhibit unique density behaviours upon addition of water. While [emim][acetate]/water binary mixtures display an unusual rise in density with the addition of low-to-moderate amounts of water, those containing the [trifluoroacetate] ([Tfa]) anion display a sluggish decrease in density. The density of [emim][tetrafluoroborate] ([emim][BF4])/water mixtures, on the other hand, declines rapidly in close accordance with the experimental reports. Here, we unravel the structural basis underlying this unique density behavior of [emim]-based IL/water mixtures using all-atom molecular dynamics (MD) simulations. The results revealed that the distinct nature of anion-water hydrogen bonded networks in the three systems was a key in modulating the observed unique density behaviour. Vast expanses of uninterrupted anion-water-anion H-bonded stretches, denoted here as anion-water wires, induced significant structuring in [emim][Ac]/water mixtures that resulted in the density rise. Conversely, the presence of intermittent large water clusters disintegrated the anion-water wires in [emim][Tfa]/water and [emim][BF4]/water mixtures to cause a monotonic density decrease. The differential nanostructuring affected the dynamics of the solutions proportionately, with the H-bond making and breaking dynamics found to be greatly retarded in [emim][Ac]/water mixtures, while it exhibited a faster relaxation in the other two binary solutions.

  10. (Liquid + liquid) equilibrium of (water + 2-propanol + 1-butanol + salt) systems at T = 313.15 K and T = 353.15 K: Experimental data and correlation

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Milton A.P. [School of Chemical Engineering, State University of Campinas, P.O. Box 6066, 13081-970 Campinas-SP (Brazil); Aznar, Martin [School of Chemical Engineering, State University of Campinas, P.O. Box 6066, 13081-970 Campinas-SP (Brazil)]. E-mail: maznar@feq.unicamp.br

    2006-06-15

    (Liquid + liquid) equilibrium data for the quaternary systems (water + 2-propanol + 1-butanol + potassium bromide) and (water + 2-propanol + 1-butanol + magnesium chloride) were measured at T = 313.15 K and T = 353.15 K. The overall salt concentrations were 5 and 10 mass percent. Ternary (liquid + liquid) equilibrium data for the salt-free system (water + 2-propanol + 1-butanol) were also determined and found to be in good agreement with data from the literature. The NRTL model for the activity coefficient was used to correlate the data. New interaction parameters were estimated, using the Simplex minimization method and a concentration-based objective function. The results are very satisfactory, with root mean square deviations between experimental and calculated compositions of both phases being less than 0.5%.

  11. Numerical Investigation of a Liquid-Gas Ejector Used for Shipping Ballast Water Treatment

    Directory of Open Access Journals (Sweden)

    Xueguan Song

    2014-01-01

    Full Text Available Shipping ballast water can have significant ecological and economic impacts on aquatic ecosystems. Currently, water ejectors are widely used in marine applications for ballast water treatment owing to their high suction capability and reliability. In this communication, an improved ballast treatment system employing a liquid-gas ejector is introduced to clear the ballast water to reduce environmental risks. Commonly, the liquid-gas ejector uses ballast water as the primary fluid and chemical ozone as the secondary fluid. In this study, high-pressure water and air, instead of ballast water and ozone, are considered through extensive numerical and experimental research. The ejector is particularly studied by a steady three-dimensional multiphase computational fluid dynamics (CFD analysis with commercial software ANSYS-CFX 14.5. Different turbulence models (including standard k-ε, RNG k-ε, SST, and k-ω with different grid size and bubble size are compared extensively and the experiments are carried out to validate the numerical design and optimization. This study concludes that the RNG k-ε turbulence model is the most efficient and effective for the ballast water treatment system under consideration and simple change of nozzle shape can greatly improve the ejector performance under high back pressure conditions.

  12. Preferential adsorption from liquid water-ethanol mixtures in alumina pores.

    Science.gov (United States)

    Phan, Anh; Cole, David R; Striolo, Alberto

    2014-07-15

    The sorptivity, structure, and dynamics of liquid water-ethanol mixtures confined in alumina pores were studied by molecular dynamics simulations. Due to an effective stronger attraction between water and the alumina surface, our simulations show that water is preferentially adsorbed in alumina nanopores from bulk solutions of varying composition. These results are in good qualitative agreement with experimental data reported by Rao and Sircar (Adsorpt. Sci. Technol. 1993, 10, 93). Analysis of the simulated trajectories allows us to predict that water diffuses through the narrow pores more easily than ethanol, in part because of its smaller size. Our results suggest that ethanol has an antiplasticization effect on water within the narrow pores considered here, whereas it has a plasticization effect on water in the bulk. Rao and Sircar suggested that alumina could be used in concentration swing and/or concentration-thermal swing adsorption processes to separate water from ethanol. In addition, our results suggest the possibility of using alumina for manufacturing permselective membranes to produce anhydrous ethanol from liquid water-ethanol solutions.

  13. Liquid water transport characteristics of porous diffusion media in polymer electrolyte membrane fuel cells: A review

    Science.gov (United States)

    Liu, Xunliang; Peng, Fangyuan; Lou, Guofeng; Wen, Zhi

    2015-12-01

    Fundamental understanding of liquid water transport in gas diffusion media (GDM) is important to improve the material and structure design of polymer electrolyte membrane (PEM) fuel cells. Continuum methods of two-phase flow modeling facilitate to give more details of relevant information. The proper empirical correlations of liquid water transport properties, such as capillary characteristics, water relative permeability and effective contact angle, are crucial to two phase flow modeling and cell performance prediction. In this work, researches on these properties in the last decade are reviewed. Various efforts have been devoted to determine the water transport properties for GDMs. However, most of the experimental studies are ex-situ measurements. In-situ measurements for GDMs and extending techniques available to study the catalyst layer and the microporous layer will be further challenges. Using the Leverett-Udell correlation is not recommended for quantitative modeling. The reliable Leverett-type correlation for GDMs, with the inclusion of the cosine of effective contact angle, is desirable but hard to be established for modeling two-phase flow in GDMs. A comprehensive data set of liquid water transport properties is needed for various GDM materials under different PEM fuel cell operating conditions.

  14. Citral stability in oil-in-water emulsions with solid or liquid octadecane.

    Science.gov (United States)

    Mei, Longyuan; Choi, Seung Jun; Alamed, Jean; Henson, Lulu; Popplewell, Michael; McClements, D Julian; Decker, Eric A

    2010-01-13

    Citral stability in oil-in-water emulsions at pH 3.0 with solid or liquid octadecane was determined. Citral degradation was faster in anionic sodium dodecyl sulfate (SDS)-stabilized emulsions than non-ionic polyoxyethylene (23) lauryl ether (Brij)-stabilized emulsions. Crystallization of octadecane in both Brij- and SDS-stabilized emulsion droplets resulted in faster degradation of citral. Crystallization of octadecane in emulsion droplets increased citral partitioning into the aqueous phase, with 41-53% of the total citral in the aqueous phase when octadecane was solid compared to 18-25% when octadecane was liquid. This research suggests that factors that increase partitioning of citral out of the droplets of oil-in-water emulsions increase citral degradation rates. These results suggest that the stability of citral could be increased in oil-in-water emulsions by technologies that decrease its partitioning and exposure to acidic aqueous phases.

  15. Ultrafast vibrational and structural dynamics of the proton in liquid water.

    Science.gov (United States)

    Woutersen, Sander; Bakker, Huib J

    2006-04-07

    The dynamical behavior of excess protons in liquid water is investigated using femtosecond vibrational pump-probe spectroscopy. By resonantly exciting the O-H+-stretching mode of the H9O4(+) (Eigen) hydration structure of the proton and probing the subsequent absorption change over a broad frequency range, the dynamics of the proton is observed in real time. The lifetime of the protonic stretching mode is found to be approximately 120 fs, shorter than for any other vibration in liquid water. We also observe the interconversion between the H9O4(+) (Eigen) and H5O2(+) (Zundel) hydration structures of the proton. This interconversion, which constitutes an essential step of proton transport in water, is found to occur on an extremely fast (< 100 fs) time scale.

  16. Liquid Water Cloud Properties During the Polarimeter Definition Experiment (PODEX)

    Science.gov (United States)

    Alexandrov, Mikhail D.; Cairns, Brian; Wasilewski, Andrzei P.; Ackerman, Andrew S.; McGill, Matthew J.; Yorks, John E.; Hlavka, Dennis L.; Platnick, Steven; Arnold, George; Van Diedenhoven, Bastiaan; hide

    2015-01-01

    We present retrievals of water cloud properties from the measurements made by the Research Scanning Polarimeter (RSP) during the Polarimeter Definition Experiment (PODEX) held between January 14 and February 6, 2013. The RSP was onboard the high-altitude NASA ER-2 aircraft based at NASA Dryden Aircraft Operation Facility in Palmdale, California. The retrieved cloud characteristics include cloud optical thickness, effective radius and variance of cloud droplet size distribution derived using a parameter-fitting technique, as well as the complete droplet size distribution function obtained by means of Rainbow Fourier Transform. Multi-modal size distributions are decomposed into several modes and the respective effective radii and variances are computed. The methodology used to produce the retrieval dataset is illustrated on the examples of a marine stratocumulus deck off California coast and stratus/fog over California's Central Valley. In the latter case the observed bimodal droplet size distributions were attributed to two-layer cloud structure. All retrieval data are available online from NASA GISS website.

  17. Polypropylene Nonwoven Fabric@Poly(ionic liquid)s for Switchable Oil/Water Separation, Dye Absorption, and Antibacterial Applications.

    Science.gov (United States)

    Ren, Yongyuan; Guo, Jiangna; Lu, Qian; Xu, Dan; Qin, Jing; Yan, Feng

    2018-01-15

    Pollutants in wastewater include oils, dyes, and bacteria, making wastewater cleanup difficult. Multifunctional wastewater treatment media consisting of poly(ionic liquid)-grafted polypropylene (PP) nonwoven fabrics (PP@PIL) are prepared by a simple and scalable surface-grafting process. The fabricated PP@PIL fabrics exhibit impressive switchable oil/water separation (η>99 %) and dye absorption performance (q=410 mg g -1 ), as well as high antibacterial properties. The oil/water separation can be easily switched by anion exchanging of the PIL segments. Moreover, the multiple functions (oil/water separation, dye absorption, and antibacterial properties) occurred at the same time, and did not interfere with each other. The multifunctional fibrous filter can be easily regenerated by washing with an acid solution, and the absorption capacity is maintained after many recycling tests. These promising features make PIL-grafted PP nonwoven fabric a potential one-step treatment for multicomponent wastewater. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. PREFACE: Dynamic crossover phenomena in water and other glass-forming liquids Dynamic crossover phenomena in water and other glass-forming liquids

    Science.gov (United States)

    Chen, Sow-Hsin; Baglioni, Piero

    2012-02-01

    This special section has been inspired by the workshop on Dynamic Crossover Phenomena in Water and Other Glass-Forming Liquids, held during November 11-13, 2010 at Pensione Bencistà, Fiesole, Italy, a well-preserved 14th century Italian villa tucked high in the hills overlooking Florence. The meeting, an assembly of world renowned scientists, was organized as a special occasion to celebrate the 75th birthday of Professor Sow-Hsin Chen of MIT, a pioneer in several aspects of complex fluids and soft matter physics. The workshop covered a large variety of experimental and theoretical research topics of current interest related to dynamic crossover phenomena in water and, more generally, in other glass-forming liquids. The 30 invited speakers/lecturers and approximately 60 participants were a select group of prominent physicists and chemists from the USA, Europe, Asia and Mexico, who are actively working in the field. Some highlights of this special issue include the following works. Professor Yamaguchi's group and their collaborators present a neutron spin echo study of the coherent intermediate scattering function of heavy water confined in cylindrical pores of MCM-41-C10 silica material in the temperature range 190-298 K. They clearly show that a fragile-to-strong (FTS) dynamic crossover occurs at about 225 K. They attribute the FTS dynamic crossover to the formation of a tetrahedral-like structure, which is preserved in the bulk-like water confined to the central part of the cylindrical pores. Mamontov and Kolesnikov et al study the collective excitations in an aqueous solution of lithium chloride over a temperature range of 205-270 K using neutron and x-ray Rayleigh-Brillouin (coherent) scattering. They detect both the low-frequency and the high-frequency sounds known to exist in pure bulk water above the melting temperature. They also perform neutron (incoherent) and x-ray (coherent) elastic intensity scan measurements. Clear evidence of the crossover in the

  19. Kapitza Resistance between Few-Layer Graphene and Water: Liquid Layering Effects

    DEFF Research Database (Denmark)

    Alexeev, Dmitry; Chen, Jie; Walther, Jens Honore

    2015-01-01

    The Kapitza resistance (RK) between few-layer graphene (FLG) and water was studied using molecular dynamics simulations. The RK was found to depend on the number of the layers in the FLG though, surprisingly, not on the water blockthickness. This distinct size dependence is attributed to the large...... difference in the phonon mean free path between the FLG and water. Remarkably, RK is strongly dependent on the layering of water adjacent to the FLG, exhibiting an inverse proportionality relationship to the peak density of the first water layer, which is consistent with better acoustic phonon matching...... between FLG and water. These findings suggest novel ways to engineer the thermal transport properties of solid−liquidinterfaces by controlling and regulating the liquid layering at the interface....

  20. Ultrafast conversions between hydrogen bonded structures in liquid water observed by femtosecond x-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Haidan; Huse, Nils; Schoenlein, Robert W.; Lindenberg, Aaron M.

    2010-05-01

    We present the first femtosecond soft x-ray spectroscopy in liquids, enabling the observation of changes in hydrogen bond structures in water via core-hole excitation. The oxygen K-edge of vibrationally excited water is probed with femtosecond soft x-ray pulses, exploiting the relation between different water structures and distinct x-ray spectral features. After excitation of the intramolecular OH stretching vibration, characteristic x-ray absorption changes monitor the conversion of strongly hydrogen-bonded water structures to more disordered structures with weaker hydrogen-bonding described by a single subpicosecond time constant. The latter describes the thermalization time of vibrational excitations and defines the characteristic maximum rate with which nonequilibrium populations of more strongly hydrogen-bonded water structures convert to less-bonded ones. On short time scales, the relaxation of vibrational excitations leads to a transient high-pressure state and a transient absorption spectrum different from that of statically heated water.

  1. Interfacial tension in cooled heterogeneous liquid acetonitrile-ethyl acetate-isopropanol-water-phenol systems

    Science.gov (United States)

    Rudakov, O. B.; Khorokhordina, E. A.; Preobrazhenskii, M. A.

    2017-04-01

    It is found that the tension at the interfacial boundary of liquid phases formed by mixtures of acetonitrile-ethyl acetate-isopropanol (85 : 15 : 0 and 80 : 15 : 5 vol/vol/vol %) and water at 263 K falls exponentially as the concentration of phenols grows within 0-1 mg/mL. It is shown that the relatively low values of interfacial tension (11-32 mN/m) observed in cooled heterogeneous systems promote the redistribution of phenols between two liquid phases.

  2. Calculation of Liquid Water-Hydrate-Methane Vapor Phase Equilibria from Molecular Simulations

    DEFF Research Database (Denmark)

    Jensen, Lars; Thomsen, Kaj; von Solms, Nicolas

    2010-01-01

    Monte Carlo simulation methods for determining fluid- and crystal-phase chemical potentials are used for the first time to calculate liquid water-methane hydrate-methane vapor phase equilibria from knowledge of atomistic interaction potentials alone. The water and methane molecules are modeled...... potential of the zero-occupancy hydrate system using thermodynamic integration from an Einstein crystal reference state, and (iii) thermodynamic integration to obtain the water and guest molecules' chemical potentials as a function of the hydrate occupancy. The three-phase equilibrium curve is calculated...... value at corresponding conditions. While computationally intensive, simulations such as these are essential to map the thermodynamically stable conditions for hydrate systems....

  3. Structural and dipolar fluctuations in liquid water: A Car-Parrinello molecular dynamics study

    Science.gov (United States)

    Skarmoutsos, Ioannis; Masia, Marco; Guardia, Elvira

    2016-03-01

    A Car-Parrinello molecular dynamics simulation was performed to investigate the local tetrahedral order, molecular dipole fluctuations and their interrelation with hydrogen bonding in liquid water. Water molecules were classified in three types, exhibiting low, intermediate and high tetrahedral order. Transitions from low to high tetrahedrally ordered structures take place only through transitions to the intermediate state. The molecular dipole moments depend strongly on the tetrahedral order and hydrogen bonding. The average dipole moment of water molecules with a strong tetrahedral order around them comes in excellent agreement with previous estimations of the dipole moment of ice Ih molecules.

  4. The initial responses of hot liquid water released under low atmospheric pressures: Experimental insights

    Science.gov (United States)

    Bargery, Alistair Simon; Lane, Stephen J.; Barrett, Alexander; Wilson, Lionel; Gilbert, Jennie S.

    2010-11-01

    Experiments have been performed to simulate the shallow ascent and surface release of water and brines under low atmospheric pressure. Atmospheric pressure was treated as an independent variable and water temperature and vapor pressure were examined as a function of total pressure variation down to low pressures. The physical and thermal responses of water to reducing pressure were monitored with pressure transducers, temperature sensors and visible imaging. Data were obtained for pure water and for solutions with dissolved NaCl or CO 2. The experiments showed the pressure conditions under which the water remained liquid, underwent a rapid phase change to the gas state by boiling, and then solidified because of removal of latent heat. Liquid water is removed from phase equilibrium by decompression. Solid, liquid and gaseous water are present simultaneously, and not at the 611 Pa triple point, because dynamic interactions between the phases maintain unstable temperature gradients. After phase changes stop, the system reverts to equilibrium with its surroundings. Surface and shallow subsurface pressure conditions were simulated for Mars and the icy satellites of the outer Solar System. Freezing by evaporation in the absence of wind on Mars is shown to be unlikely for pure water at pressures greater than c. 670 Pa, and for saline solutions at pressures greater than c. 610 Pa. The physical nature of ice that forms depends on the salt content. Ice formed from saline water at pressures less than c. 610 Pa could be similar to terrestrial sea ice. Ice formed from pure water at pressures less than c. 100 Pa develops a low thermal conductivity and a 'honeycomb' structure created by sublimation. This ice could have a density as low as c. 450 kg m -3 and a thermal conductivity as low as 1.6 W m -1 K -1, and is highly reflective, more akin to snow than the clear ice from which it grew. The physical properties of ice formed from either pure or saline water at low pressures will

  5. A Liquid Desiccant Cycle for Dehumidification and Fresh Water Supply in Controlled Environment Agriculture

    KAUST Repository

    Lefers, Ryan

    2017-12-01

    Controlled environment agriculture allows the production of fresh food indoors from global locations and contexts where it would not otherwise be possible. Growers in extreme climates and urban areas produce food locally indoors, saving thousands of food import miles and capitalizing upon the demand for fresh, tasty, and nutritious food. However, the growing of food, both indoors and outdoors, consumes huge quantities of water - as much as 70-80% of global fresh water supplies. The utilization of liquid desiccants in a closed indoor agriculture cycle provides the possibility of capturing plant-transpired water vapor. The regeneration/desalination of these liquid desiccants offers the potential to recover fresh water for irrigation and also to re-concentrate the desiccants for continued dehumidification. Through the utilization of solar thermal energy, the process can be completed with a very small to zero grid-energy footprint. The primary research in this dissertation focused on two areas: the dehumidification of indoor environments utilizing liquid desiccants inside membrane contactors and the regeneration of these desiccants using membrane distillation. Triple-bore PVDF hollow fiber membranes yielded dehumidification permeance rates around 0.25-0.31 g m-2 h-1 Pa-1 in lab-scale trials. A vacuum membrane distillation unit utilizing PVDF fibers yielded a flux of 2.8-7.0 kg m-2 hr-1. When the membrane contactor dehumidification system was applied in a bench scale controlled environment agriculture setup, the relative humidity levels responded dynamically to both plant transpiration and dehumidification rates, reaching dynamic equilibrium levels during day and night cycles. In addition, recovered fresh water from distillation was successfully applied for irrigation of crops and concentrated desiccants were successfully reused for dehumidification. If applied in practice, the liquid desiccant system for controlled environment agriculture offers the potential to reduce

  6. Water liquid-vapor interface subjected to various electric fields: A molecular dynamics study

    Science.gov (United States)

    Nikzad, Mohammadreza; Azimian, Ahmad Reza; Rezaei, Majid; Nikzad, Safoora

    2017-11-01

    Investigation of the effects of E-fields on the liquid-vapor interface is essential for the study of floating water bridge and wetting phenomena. The present study employs the molecular dynamics method to investigate the effects of parallel and perpendicular E-fields on the water liquid-vapor interface. For this purpose, density distribution, number of hydrogen bonds, molecular orientation, and surface tension are examined to gain a better understanding of the interface structure. Results indicate enhancements in parallel E-field decrease the interface width and number of hydrogen bonds, while the opposite holds true in the case of perpendicular E-fields. Moreover, perpendicular fields disturb the water structure at the interface. Given that water molecules tend to be parallel to the interface plane, it is observed that perpendicular E-fields fail to realign water molecules in the field direction while the parallel ones easily do so. It is also shown that surface tension rises with increasing strength of parallel E-fields, while it reduces in the case of perpendicular E-fields. Enhancement of surface tension in the parallel field direction demonstrates how the floating water bridge forms between the beakers. Finally, it is found that application of external E-fields to the liquid-vapor interface does not lead to uniform changes in surface tension and that the liquid-vapor interfacial tension term in Young's equation should be calculated near the triple-line of the droplet. This is attributed to the multi-directional nature of the droplet surface, indicating that no constant value can be assigned to a droplet's surface tension in the presence of large electric fields.

  7. Application of an immobilized ionic liquid for the passive sampling of perfluorinated substances in water.

    Science.gov (United States)

    Wang, Lei; Gong, Xinying; Wang, Ruonan; Gan, Zhiwei; Lu, Yuan; Sun, Hongwen

    2017-09-15

    Ionic liquids have been used to efficiently extract a wide range of polar and nonpolar organic contaminants from water. In this study, imidazole ionic liquids immobilized on silica gel were synthesized through a chemical bonding method, and the immobilized dodecylimidazolium ionic liquid was selected as the receiving phase material in a POCIS (polar organic chemical integrative sampler) like passive sampler to monitor five perfluoroalkyl substances (PFASs) in water. Twenty-one days of integrative accumulation was conducted in laboratory scale experiments, and the accumulated PFASs in the samplers were eluted and analyzed by high performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS). The partitioning coefficients of most PFASs between sampler sorbents and water in the immobilized ionic liquid (IIL)-sampler were higher than those in the HLB-sampler, especially for compounds with shorter alkyl chains. The effects of flow velocity, temperature, dissolved organic matter (DOM) and pH on the uptake of these analytes were also evaluated. Under the experimental conditions, the uptake of PFASs in the IIL-sampler slightly increased with the flow velocity and temperature, while different influences of DOM and pH on the uptake of PFAS homologues with short or long chains were observed. The designed IIL-samplers were applied in the influent and effluent of a wastewater treatment plant. All five PFASs could be accumulated in the samplers, with concentrations ranging from 6.5×10(-3)-3.6×10(-1)nmol/L in the influent and from 1.3×10(-2)-2.2×10(-1)nmol/L in the effluent. The calculated time-weighted average concentrations of most PFASs fit well with the detected concentrations of the active sampling, indicating the applicability of the IIL-sampler in monitoring these compounds in water. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Speciation analysis of mercury in water samples by dispersive liquid-liquid microextraction coupled to capillary electrophoresis.

    Science.gov (United States)

    Yang, Fangfang; Li, Jinhua; Lu, Wenhui; Wen, Yingying; Cai, Xiaoqiang; You, Jinmao; Ma, Jiping; Ding, Yangjun; Chen, Lingxin

    2014-02-01

    In this study, a method of pretreatment and speciation analysis of mercury by dispersive liquid-liquid microextraction along with CE was developed. The method was based on the fact that mercury species including methylmercury (MeHg), ethylmercury (EtHg), phenylmercury (PhHg), and Hg(II) were complexed with 1-(2-pyridylazo)-2-naphthol to form hydrophobic chelates and l-cysteine could displace 1-(2-pyridylazo)-2-naphthol to form hydrophilic chelates with the four mercury species. Factors affecting complex formation and extraction efficiency, such as pH value, type, and volume of extractive solvent and disperser solvent, concentration of the chelating agent, ultrasonic time, and buffer solution were investigated. Under the optimal conditions, the enrichment factors were 102, 118, 547, and 46, and the LODs were 1.79, 1.62, 0.23, and 1.50 μg/L for MeHg, EtHg, PhHg, and Hg(II), respectively. Method precisions (RSD, n = 5) were in the range of 0.29-0.54% for migration time, and 3.08-7.80% for peak area. Satisfactory recoveries ranging from 82.38 to 98.76% were obtained with seawater, lake, and tap water samples spiked at three concentration levels, respectively, with RSD (n = 5) of 1.98-7.18%. This method was demonstrated to be simple, convenient, rapid, cost-effective, and environmentally benign, and could be used as an ideal alternative to existing methods for analyzing trace residues of mercury species in water samples. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. CO2 with Mechanical Subcooling vs. CO2 Cascade Cycles for Medium Temperature Commercial Refrigeration Applications Thermodynamic Analysis

    Directory of Open Access Journals (Sweden)

    Laura Nebot-Andrés

    2017-09-01

    Full Text Available A recent trend to spread the use of CO2 refrigeration cycles in warm regions of the world is to combine a CO2 cycle with another one using a high performance refrigerant. Two alternatives are being considered: cascade and mechanical subcooling systems. Both respond to a similar configuration of the refrigeration cycle, they being based on the use of two compressors and same number of heat exchangers. However, the compressor, heat exchanger sizes and energy performance differ a lot between them. This work, using experimental relations for CO2 and R1234yf semi-hermetic compressors analyzes in depth both alternatives under the warm climate of Spain. In general, it was concluded that the CO2 refrigeration solution with mechanical subcooling would cover all the conditions with high overall energy efficiency, thus it being recommended for further extension of the CO2 refrigeration applications.

  10. Constraining the Surficial Liquid Water and Resulting Atmospheric Water Vapor Abundance at Recurring Slope Lineae (RSL) Locations on Mars

    Science.gov (United States)

    Berdis, Jodi; Murphy, Jim; Wilson, Robert John

    2017-10-01

    Possible signatures of atmospheric water vapor arising from Martian Recurring Slope Lineae (RSLs) are investigated in this study. RSLs appear during local spring and summer on downward, equator-facing slopes at southern mid-latitudes (~31-52°S Stillman et al. 2014), and have been linked to liquid water which leaves behind streaks of briny material (McEwen et al. 2011, McEwen et al. 2014). Viking Orbiter Mars Atmospheric Water Detector (VO MAWD) and Mars Global Surveyor Thermal Emission Spectrometer (MGS TES) derived atmospheric water vapor abundance values are interrogated to determine whether four RSL locations at southern mid-latitudes (Palikir Crater, Hale Crater, Horowitz Crater, Coprates Chasma) exhibit episodic, enhanced local atmospheric water vapor abundance during southern spring and summer (Ls = 180-360°) when RSLs are observed to develop (Stillman et al. 2014, Ojha et al. 2015). Significant water vapor signals at these locations might reveal RSLs as the source of the enhanced water vapor. Detected atmospheric water vapor signals would expand upon current knowledge of RSLs, whereas non-detection could provide upper limits on RSL water source content. In order to assess how much surficial RSL water would be required to produce a detectable signal, we utilize the high spatial resolution Geophysical Fluid Dynamics Laboratory Mars Climate General Circulation Model to simulate the evaporation of RSL-producing surface water and quantify the magnitude and temporal duration of water vapor content that might be anticipated in response to inferred RSL surface water release. Finally, we will assess the ability of past and future orbiter-based instruments to detect such water vapor quantities.

  11. Determination of bromate in drinking water by ultraperformance liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Alsohaimi, Ibrahim Hotan; Alothman, Zeid Abdullah; Khan, Mohammad Rizwan; Abdalla, Mohammad Abulhassan; Busquets, Rosa; Alomary, Ahmad Khodran

    2012-10-01

    Bromate is a byproduct formed as a result of disinfection of bromide-containing source water with ozone or hypochlorite. The International Agency for Research on Cancer has recognized bromate as a possible human carcinogen, thus it is essential to determine in drinking water. Present work highlights a development of sensitive and fast analytical method for bromate determination in drinking water by using ultraperformance liquid chromatography-tandem mass spectrometry. The quality parameters of the developed method were established, obtaining very low limit of detection (0.01 ng/mL), repeatability and reproducibility have been found to be less than 3% in terms of relative standard deviation when analyzing a bromate standard at 0.05 μg/mL with 0.4 min analysis time. Developed method was applied for the analysis of metropolitan and bottled water from Saudi Arabia; 22 samples have been analyzed. Bromate was detected in the metropolitan water samples (from desalinization source) at concentrations ranging between 3.43 and 75.04 ng/mL and in the bottled water samples at concentrations ranging between 2.07 and 21.90 ng/mL. Moreover, in comparison to established analytical methods such as liquid chromatography-tandem mass spectrometry, the proposed method was found to be very sensitive, selective and rapid for the routine analysis of bromate at low level in drinking water. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. (Liquid + liquid) equilibrium of {l_brace}water + phenol + (1-butanol, or 2-butanol, or tert-butanol){r_brace} systems

    Energy Technology Data Exchange (ETDEWEB)

    Hadlich de Oliveira, Leonardo [School of Chemical Engineering, State University of Campinas, UNICAMP, P.O. Box 6066, 13083-970 Campinas-SP (Brazil); Aznar, Martin, E-mail: maznar@feq.unicamp.b [School of Chemical Engineering, State University of Campinas, UNICAMP, P.O. Box 6066, 13083-970 Campinas-SP (Brazil)

    2010-11-15

    (Liquid + liquid) equilibrium (LLE) and binodal curve data were determined for the systems (water + phenol + tert-butanol) at T = 298.15 K, (water + phenol + 2-butanol) and (water + phenol + 1-butanol) at T = 298.15 K and T = 313.15 K by the combined techniques of densimetry and refractometry. Type I curve (for tert-butanol) and Type II curves (for 1- and 2-butanol) were found. The data were correlated with the NRTL model and the parameters estimated present root mean square deviations below 2% for the system with tert-butanol and lower than 0.8% for the other systems.

  13. Determination of thiophanate-methyl and its metabolites at trace level in spiked natural water using the supported liquid membrane extraction and the microporous membrane liquid-liquid extraction techniques combined on-line with high-performance liquid chromatography.

    Science.gov (United States)

    Sandahl, M; Mathiasson, L; Jönsson, J A

    2000-09-29

    On-line supported liquid membrane (SLM) extraction and microporous membrane liquid-liquid extraction (MMLLE) techniques for sample preparation of natural water samples have been developed for the determination of thiophanate-methyl (TM), carbendazim (MBC) and 2-aminobenzimidazole (2-AB) using reversed-phase HPLC. The combination of SLM extraction and MMLLE offers extraction conditions that makes it possible to determine a wide variety of compounds, i.e., permanently charged, ionisable and non-polar at sub ppb level. The detection limits obtained after extraction are about 0.1 microg/l for MBC and 2-AB using SLM, and 0.5 x Lg/l for TM using MMLLE and the precision is better than 5% for both systems. Typical enrichment rates are 0.6 and 2.7 times/min using SLM and MMLLE, respectively.

  14. Ionic liquid-based dispersive liquid-liquid microextraction combined with functionalized magnetic nanoparticle solid-phase extraction for determination of industrial dyes in water.

    Science.gov (United States)

    Liang, Ning; Hou, Xiaohong; Huang, Peiting; Jiang, Chao; Chen, Lijuan; Zhao, Longshan

    2017-10-23

    N-butyl pyridinium bis((trifluoromethyl)sulfonyl)imide ([Hpy]NTf2) functionalized core/shell magnetic nanoparticles (MNPs, Fe3O4@SiO2@[Hpy]NTf2)) were prepared and applied as an adsorbent for magnetic solid phase extraction (MSPE) of three commonly used industrial dyes including malachite green, crystal violet and methylene blue. Extraction solution was mixed with 100 mg extraction material of Fe3O4@SiO2@[Hpy]NTf2, and 1 mL of acetonitrile was used to elute target analytes for further extraction and purification. [Hpy]NTf2 was used as extraction solution, and 500 μL methanol was selected as dispersive solvent in ionic liquid (IL) dispersive liquid-liquid microextraction (DLLME) method. After sonication for 5 min and centrifugation at 447 g for 10 min, 20 μL of sedimented phase was injected into HPLC-UV system. The limit of detection (LOD) and limit of quantification (LOQ) of current method were 0.03 and 0.16 μg·L(-1), respectively, which indicated the sensitivity was comparable or even superior to other reported methods. The relative recoveries of the target analytes ranged from 86.1% to 100.3% with relative standard deviations between 0.3% and 4.5%. The developed method has been successfully applied to determine the level of three industrial dyes in different water samples.

  15. In situ liquid water visualization in polymer electrolyte membrane fuel cells with high resolution synchrotron x-ray radiography

    Energy Technology Data Exchange (ETDEWEB)

    Chevalier, S.; Banerjee, R.; Lee, J.; Ge, N.; Lee, C.; Bazylak, A., E-mail: abazylak@mie.utoronto.ca [Dept. of Mechanical & Industrial Engineering, Faculty of Applied Science & Engineering, University of Toronto, Toronto, Ontario (Canada); Wysokinski, T. W.; Belev, G.; Webb, A.; Miller, D.; Zhu, N. [Canadian Light Source, Saskatoon, Saskatchewan (Canada); Tabuchi, Y.; Kotaka, T. [EV System Laboratory, Research Division 2, Nissan Motor Co., Ltd., Yokosuka, Kanagawa (Japan)

    2016-07-27

    In this work, we investigated the dominating properties of the porous materials that impact water dynamics in a polymer electrolyte membrane fuel cell (PEMFC). Visualizations of liquid water in an operating PEMFC were performed at the Canadian Light Source. A miniature fuel cell was specifically designed for X-ray imaging investigations, and an in-house image processing algorithm based on the Beer-Lambert law was developed to extract quantities of liquid water thicknesses (cm) from raw X-ray radiographs. The X-ray attenuation coefficient of water at 24 keV was measured with a calibration device to ensure accurate measurements of the liquid water thicknesses. From this experiment, the through plane distribution of the liquid water in the fuel cell was obtained.

  16. Formation of radical and active chemical species in electrical discharge plasma in the presence of liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Locke, B.R.; Shih, K.Y.; Burlica, R. [Florida State Univ., Tallahassee, FL (United States). Dept. of Chemical and Biomedical Engineering

    2010-07-01

    This study investigated the interactions of plasma with liquid water using a combination of emission spectroscopy of radical and atomic species and direct measurements of more stable chemical compounds. The study focused on electrical discharge plasma formed directly in liquid water and on discharges formed in the gas phase above liquid water, in bubbles in liquid water, and in the gas phase with water droplet spray that result in a variety of active chemical species that can be used for pollution control as well as other applications in biomedical and materials engineering. The purpose was to improve the design and operation of plasma reactors for a variety of applications. This presentation also reviewed the mechanisms for the formation of active chemical species such as hydroxyl and other radicals, hydrogen peroxide and molecular hydrogen, in electrical discharge plasma formed in the presence of water.

  17. Reduction of water consumption in bioethanol production from triticale by recycling the stillage liquid phase.

    Science.gov (United States)

    Gumienna, Małgorzata; Lasik, Małgorzata; Szambelan, Katarzyna; Czarnecki, Zbigniew

    2011-01-01

    The distillery stillage is a major and arduous byproduct generated during ethanol production in distilleries. The aim of this study was to evaluate the possibility of the stillage recirculation in the mashing process of triticale for non-byproducts production and reducing the fresh water consumption. The number of recirculation cycles which can be applied without disturbances in the ethanol fermentation process was investigated. Winter triticale BOGO and "Ethanol Red" Saccharomyces cerevisiae yeast were used in the experiments. The method of non-pressure cooking was used for gelatinizingthe triticale, commercial α-amylase SPEZYME ETHYL and glucoamylase FERMENZYME L-400 were applied for starch liquefaction and saccharification. The process was conducted at 30°C for 72 h, next after distillation the stillage was centrifuged and the liquid fraction was used instead of 75% of process water. Ethanol yield from triticale fermentations during 40 cycles ranged between 82% and 95% of theoretical yield preserving yeast vitality and quantity on the same level. The obtained distillates were characterized with enhanced volatile compounds (fusel oil, esters, aldehydes, methanol) as well as protein and potassium concentrations. The liquid part of stillage was proved that can be reused instead of water in bioethanol production from triticale, without disturbing the fermentation process. This investigated solution of distillery byproducts utilization (liquid phase of stillage) constitutes the way which could significantly decrease the bioethanol production costs by reducing the water consumption, as well as wastewater production.

  18. The Microscopic Physical Cause for the Density Maximum of Liquid Water.

    Science.gov (United States)

    Tröster, Philipp; Tavan, Paul

    2014-01-02

    The existence of a density maximum at 277 K is probably the most prominent anomaly among the many very special thermodynamic properties of liquid water. While usually attributed to so-called hydrogen bonding, the microscopic physical cause of this prominent anomaly is still elusive. Here we show that the density anomaly is caused by those short-range electrostatic forces, which are generated by the quadrupole and higher moments of the charge distributions present in liquid-phase water molecules. This conclusion derives from 20 ns replica exchange molecular-dynamics simulations with closely related polarizable four-, five-, and six-point water models. As soon as the model complexity suffices to represent the higher electrostatic moments with sufficient accuracy, the density temperature profile n(T) calculated for T ∈ [250,320] K at the standard pressure 1 bar locks in to the experimental observation. The corresponding six-point model is, therefore, the most simple available cartoon for liquid-phase water molecules.

  19. Transient Liquid Water as a Mechanism for Induration of Soil Crusts on Mars

    Science.gov (United States)

    Landis, G. A.; Blaney, D.; Cabrol, N.; Clark, B. C.; Farmer, J.; Grotzinger, J.; Greeley, R.; McLennan, S. M.; Richter, L.; Yen, A.

    2004-01-01

    The Viking and the Mars Exploration Rover missions observed that the surface of Mars is encrusted by a thinly cemented layer tagged as "duricrust". A hypothesis to explain the formation of duricrust on Mars should address not only the potential mechanisms by which these materials become cemented, but also the textural and compositional components of cemented Martian soils. Elemental analyzes at five sites on Mars show that these soils have sulfur content of up to 4%, and chlorine content of up to 1%. This is consistent with the presence of sulfates and halides as mineral cements. . For comparison, the rock "Adirondack" at the MER site, after the exterior layer was removed, had nearly five times lower sulfur and chlorine content , and the Martian meteorites have ten times lower sulfur and chlorine content, showing that the soil is highly enriched in the saltforming elements compared with rock.Here we propose two alternative models to account for the origin of these crusts, each requiring the action of transient liquid water films to mediate adhesion and cementation of grains. Two alternative versions of the transient water hypothesis are offered, a top down hypothesis that emphasizes the surface deposition of frost, melting and downward migration of liquid water and a bottom up alternative that proposes the presence of interstitial ice/brine, with the upward capillary migration of liquid water.

  20. Improved solvent collection system for a dispersive liquid-liquid microextraction of organochlorine pesticides from water using low-density organic solvent.

    Science.gov (United States)

    Chang, Chu-Chi; Wei, Shuo-Yang; Huang, Shang-Da

    2011-04-01

    In this study, the organochlorine pesticides (OCPs) levels in lake and tap water samples were determined by a dispersive liquid-liquid microextraction method using a low-density organic solvent and an improved solvent collection system (DLLME-ISCS). This method used a very small volume of a solvent of low toxicity (11  μL of 1-nonanol and 400  μL of methanol) to extract OCPs from 10  mL water samples prior to the analysis by GC. After centrifugation in the dispersive liquid-liquid microextraction, there was a liquid organic drop floating between the water surface and the glass wall of the centrifuge tube. The liquid organic drop (with some water phase) was transferred into a microtube (3  mm×15  mm) with a syringe. The organic and aqueous phases were separated in the microtube immediately. Then, 1  μL of the organic solvent (which was in the upper portion of liquid in the microtube) was easily collected by a syringe and injected into the GC-ECD system for the analysis. Under optimum conditions, the linear range of this method was 5-5000  ng/L for most of the analytes. The correlation coefficient was higher than 0.997. Enrichment factors ranged from 1309 to 3629. The relative recoveries ranged from 73 to 119% for lake water samples. The LODs of the method ranged from 0.7 to 9.4  ng/L. The precision of the method ranged from 1.0 to 10.8% for lake water. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Experimental investigation of quench and re-wetting temperatures of hot horizontal tubes well above the limiting temperature for solid–liquid contact

    Energy Technology Data Exchange (ETDEWEB)

    Takrouri, Kifah, E-mail: takroukj@mcmaster.ca [Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7 (Canada); Luxat, John, E-mail: luxatj@mcmaster.ca [Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7 (Canada); Hamed, Mohamed [Thermal Processing Laboratory (TPL), Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7 (Canada)

    2017-01-15

    . The effects of initial surface temperature, water subcooling (in the range 15–80 °C) and jet velocity (in the range 0.15–1.60 m/s) on the quench process were investigated. The quench and the re-wetting temperature (the temperature at which the liquid establishes wet contact with the solid) were found to greatly depend on water subcooling. One of the main findings in this study is the existence of a critical water subcooling range within which any small change in water subcooling has a considerable effect on both the quench and the re-wetting temperatures. Empirical correlations have been developed and provided good fit of the experimental data and agreed well with correlations developed by other researchers for curved surfaces. The quench temperature was found to decrease by increasing surface curvature and solid thermal conductivity. However, the re-wetting temperature is a weak function of both variables. Effect of spatial location on the surface of the tube was also studied. The stagnation point showed higher quench and re-wetting temperatures compared to other locations on the tube surface.

  2. Evidence of low-density and high-density liquid phases and isochore end point for water confined to carbon nanotube

    National Research Council Canada - National Science Library

    Nomura, Kentaro; Kaneko, Toshihiro; Bai, Jaeil; Francisco, Joseph S; Yasuoka, Kenji; Zeng, Xiao Cheng

    2017-01-01

    Possible transition between two phases of supercooled liquid water, namely the low- and high-density liquid water, has been only predicted to occur below 230 K from molecular dynamics (MD) simulation...

  3. A focused liquid jet formed by a water hammer in a test tube

    CERN Document Server

    Kiyama, Akihito; Ando, Keita; Kameda, Masaharu

    2015-01-01

    We investigate motion of a gas-liquid interface in a test tube induced by a large acceleration via impulsive force. We conduct simple experiments in which the tube partially filled with a liquid falls under gravity and impacts a rigid floor. A curved gas-liquid interface inside the tube reverses and eventually forms an elongated jet (i.e. the so-called a focused jet). In our experiments, there arises either vibration of the interface or increment in the velocity of a liquid jet accompanied by the onset of cavitation in the liquid column. These phenomena cannot be explained by considering pressure impulse in a classical potential flow analysis, which does not account for finite speeds of sound as well as phase change. Here we model such water-hammer events as a result of one-dimensional pressure wave propagation and its interaction with boundaries through acoustic impedance mismatching. The method of characteristics is applied to describe pressure wave interactions and the subsequent cavitation. The proposed m...

  4. Decomposition behavior of hemicellulose and lignin in the step-change flow rate liquid hot water.

    Science.gov (United States)

    Zhuang, Xinshu; Yu, Qiang; Wang, Wen; Qi, Wei; Wang, Qiong; Tan, Xuesong; Yuan, Zhenhong

    2012-09-01

    Hemicellulose and lignin are the main factors limiting accessibility of hydrolytic enzymes besides the crystallinity of cellulose. The decomposition behavior of hemicellulose and lignin in the step-change flow rate hot water system was investigated. Xylan removal increased from 64.53% for batch system (solid concentration 4.25% w/v, 18 min, 184°C) to 83.78% at high flow rates of 30 ml/min for 8 min, and then 10 ml/min for 10 min. Most of them (80-90%) were recovered as oligosaccharide. It was hypothesized that the flowing water could enhance the mass transfer to improve the sugars recovery. In addition, the solubilization mechanism of lignin in the liquid hot water was proposed according to the results of Fourier transform-infrared spectroscopy and scanning electron microscopy of the water-insoluble fraction and gas chromatography-mass spectrometry of the water-soluble fraction. It was proposed that lignin in the liquid hot water first migrated out of the cell wall in the form of molten bodies, and then flushed out of the reactor. A small quantity of them was further degraded into monomeric products such as vanillin, syringe aldehyde, coniferyl aldehyde, ferulic acid, and p-hydroxy-cinnamic acid. All of these observations would provide important information for the downstream processing, such as purification and concentration of sugars and the enzymatic digestion of residual solid.

  5. Use of textile waste water along with liquid NPK fertilizer for production of wheat on saline sodic soils.

    Science.gov (United States)

    Yaseen, Muhammad; Aziz, Muhammad Zahir; Jafar, Abdul Aleem; Naveed, Muhammad; Saleem, Muhammad

    2016-01-01

    A field experiment in collaboration with a private textile industry (Noor Fatima Fabrics Private (Ltd.), Faisalabad) was conducted to evaluate the effect of disposed water from bleaching unit, printing unit and end drain for improving growth and yield of wheat under saline sodic soil. Textile waste water along with canal water (control) was applied with and without liquid NPK fertilizer. The application of liquid NPK fertilizer with end drain waste water increased plant height, spike length, flag leaf length, root length, number of tillers (m(-2)), number of fertile tillers (m(-2)), 1000 grain weight, grain yield, straw yield and biological yield up to 21, 20, 20, 44, 17, 20, 14, 44, 40 and 41%, respectively compared to canal water (control). Similarly, the NPK uptake in grain was increased up to 15, 30 and 28%, respectively by liquid fertilizer treated end drain water as compare to canal water with liquid fertilizer. Moreover, concentration of different heavy metals particularly Cu, Cr, Pb and Cd was decreased in grains by application of waste water along with liquid NPK. The result may imply that waste water application along with liquid-NPK could be a novel approach for improving growth and yield of wheat in saline sodic soils.

  6. Colloidal lattices of environmentally responsive microgel particles at ionic liquid-water interfaces.

    Science.gov (United States)

    Chen, Haobo; Nofen, Elizabeth M; Rykaczewski, Konrad; Dai, Lenore L

    2017-10-15

    This work reports new evidence of the versatility of soft and environmentally responsive micron-sized colloidal gel particles as stabilizers at ionic liquid-water droplet interfaces. These particles display a duality with properties ascribed typically to both polymeric and colloidal systems. The utilization of fluorescently labeled composite microgel particles allows in-situ and facile visualization without the necessity of invasive sample preparation. When the prepared particles form monolayers equilibrated at the ionic liquid-water interface on fully covered droplets, the colloidal lattice re-orders itself depending on the surface charge of these particles. Finally, we demonstrate that the spontaneously formed and densely packed layer of microgel particles can be employed for extraction applications, as the interface remains permeable to small active species. Copyright © 2017. Published by Elsevier Inc.

  7. Influence of dispersion degree of water drops on efficiency of extinguishing of flammable liquids

    Directory of Open Access Journals (Sweden)

    Korolchenko Dmitriy

    2016-01-01

    Full Text Available Depending on the size of water drops, process of fire extinguishing is focused either in a zone of combustion or on a burning liquid surface. This article considers two alternate solutions of a heat balance equation. The first solution allows us to trace decrease of temperature of a flammable liquid (FL surface to a temperature lower than fuel flash point at which combustion is stopped. And the second solution allows us to analyze decrease of burnout rate to a negligible value at which steam-air mixture becomes nonflammable. As a result of solve of a heat balance equation it was made the following conclusion: water drops which size is equal to 100 μm will completely evaporate in a zone of combustion with extent of 1 m if the flying speed of drops is even 16 mps (acc. to Stokes v = 3 mps; whereas drops of larger size will evaporate only partially.

  8. Covalency of hydrogen bonds in liquid water can be probed by proton nuclear magnetic resonance experiments.

    Science.gov (United States)

    Elgabarty, Hossam; Khaliullin, Rustam Z; Kühne, Thomas D

    2015-09-15

    The concept of covalency is widely used to describe the nature of intermolecular bonds, to explain their spectroscopic features and to rationalize their chemical behaviour. Unfortunately, the degree of covalency of an intermolecular bond cannot be directly measured in an experiment. Here we established a simple quantitative relationship between the calculated covalency of hydrogen bonds in liquid water and the anisotropy of the proton magnetic shielding tensor that can be measured experimentally. This relationship enabled us to quantify the degree of covalency of hydrogen bonds in liquid water using the experimentally measured anisotropy. We estimated that the amount of electron density transferred between molecules is on the order of 10  m while the stabilization energy due to this charge transfer is ∼15 kJ mol(-1). The physical insight into the fundamental nature of hydrogen bonding provided in this work will facilitate new studies of intermolecular bonding in a variety of molecular systems.

  9. Aggregation behavior and total miscibility of fluorinated ionic liquids in water.

    Science.gov (United States)

    Pereiro, Ana B; Araújo, João M M; Teixeira, Fabiana S; Marrucho, Isabel M; Piñeiro, Manuel M; Rebelo, Luis Paulo N

    2015-02-03

    In this work, novel and nontoxic fluorinated ionic liquids (FILs) that are totally miscible in water and could be used in biological applications, where fluorocarbon compounds present a handicap because their aqueous solubility (water and biological fluids) is in most cases too low, have been investigated. The self-aggregation behavior of perfluorosulfonate-functionalized ionic liquids in aqueous solutions has been characterized using conductometric titration, isothermal titration calorimetry (ITC), surface tension measurements, dynamic light scattering (DLS), viscosity and density measurements, and transmission electron microscopy (TEM). Aggregation and interfacial parameters have been computed by conductimetry, calorimetry, and surface tension measurements in order to study various thermodynamic and surface properties that demonstrate that the aggregation process is entropy-driven and that the aggregation process is less spontaneous than the adsorption process. The novel perfluorosulfonate-functionalized ILs studied in this work show improved surface activity and aggregation behavior, forming distinct self-assembled structures.

  10. Ab initio molecular dynamics simulation of liquid water by quantum Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Zen, Andrea, E-mail: a.zen@ucl.ac.uk [Dipartimento di Fisica, “La Sapienza” - Università di Roma, piazzale Aldo Moro 5, 00185 Rome (Italy); London Centre for Nanotechnology, University College London, London WC1E 6BT (United Kingdom); Luo, Ye, E-mail: xw111luoye@gmail.com; Mazzola, Guglielmo, E-mail: gmazzola@phys.ethz.ch; Sorella, Sandro, E-mail: sorella@sissa.it [SISSA–International School for Advanced Studies, Via Bonomea 26, 34136 Trieste (Italy); Democritos Simulation Center CNR–IOM Istituto Officina dei Materiali, 34151 Trieste (Italy); Guidoni, Leonardo, E-mail: leonardo.guidoni@univaq.it [Dipartimento di Fisica, “La Sapienza” - Università di Roma, piazzale Aldo Moro 5, 00185 Rome (Italy); Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell’ Aquila, via Vetoio, 67100 L’ Aquila (Italy)

    2015-04-14

    Although liquid water is ubiquitous in chemical reactions at roots of life and climate on the earth, the prediction of its properties by high-level ab initio molecular dynamics simulations still represents a formidable task for quantum chemistry. In this article, we present a room temperature simulation of liquid water based on the potential energy surface obtained by a many-body wave function through quantum Monte Carlo (QMC) methods. The simulated properties are in good agreement with recent neutron scattering and X-ray experiments, particularly concerning the position of the oxygen-oxygen peak in the radial distribution function, at variance of previous density functional theory attempts. Given the excellent performances of QMC on large scale supercomputers, this work opens new perspectives for predictive and reliable ab initio simulations of complex chemical systems.

  11. Vapor-liquid phase equilibria of water modelled by a Kim-Gordon potential

    Energy Technology Data Exchange (ETDEWEB)

    Maerzke, K A; McGrath, M J; Kuo, I W; Tabacchi, G; Siepmann, J I; Mundy, C J

    2009-03-16

    Gibbs ensemble Monte Carlo simulations were carried out to investigate the properties of a frozen-electron-density (or Kim-Gordon, KG) model of water along the vapor-liquid coexistence curve. Because of its theoretical basis, such a KG model provides for seamless coupling to Kohn-Sham density functional theory for use in mixed quantum mechanics/molecular mechanics (QM/MM) implementations. The Gibbs ensemble simulations indicate rather limited transferability of such a simple KG model to other state points. Specifically, a KG model that was parameterized by Barker and Sprik to the properties of liquid water at 300 K, yields saturated vapor pressures and a critical temperature that are significantly under- and over-estimated, respectively.

  12. Plasma Discharges in Gas Bubbles in Liquid Water: Breakdown Mechanisms and Resultant Chemistry

    Science.gov (United States)

    Gucker, Sarah M. N.

    The use of atmospheric pressure plasmas in gases and liquids for purification of liquids has been investigated by numerous researchers, and is highly attractive due to their strong potential as a disinfectant and sterilizer. However, the fundamental understanding of plasma production in liquid water is still limited. Despite the decades of study dedicated to electrical discharges in liquids, many physical aspects of liquids, such as the high inhomogeneity of liquids, complicate analyses. For example, the complex nonlinearities of the fluid have intricate effects on the electric field of the propagating streamer. Additionally, the liquid material itself can vaporize, leading to discontinuous liquid-vapor boundaries. Both can and do often lead to notable hydrodynamic effects. The chemistry of these high voltage discharges on liquid media can have circular effects, with the produced species having influence on future discharges. Two notable examples include an increase in liquid conductivity via charged species production, which affects the discharge. A second, more complicated scenario seen in some liquids (such as water) is the doubling or tripling of molecular density for a few molecule layers around a high voltage electrode. These complexities require technological advancements in optical diagnostics that have only recently come into being. This dissertation investigates several aspects of electrical discharges in gas bubbles in liquids. Two primary experimental configurations are investigated: the first allows for single bubble analysis through the use of an acoustic trap. Electrodes may be brought in around the bubble to allow for plasma formation without physically touching the bubble. The second experiment investigates the resulting liquid phase chemistry that is driven by the discharge. This is done through a dielectric barrier discharge with a central high voltage surrounded by a quartz discharge tube with a coil ground electrode on the outside. The plasma

  13. Determination of Trichloroethylene in Water by Liquid–Liquid Microextraction Assisted Solid Phase Microextraction

    OpenAIRE

    Mengliang Zhang; Harrington, Peter de B

    2015-01-01

    A method for the determination of trichloroethylene (TCE) in water using portable gas chromatography/mass spectrometry (GC/MS) was developed. A novel sample preparation method, liquid–liquid microextraction assisted solid phase microextraction (LLME–SPME), is introduced. In this method, 20 µL of hexane was added to 10 mL of TCE contaminated aqueous samples to assist headspace SPME. The extraction efficiency of SPME was significantly improved with the addition of minute amounts of organic solv...

  14. Standard Test Method for Preparing Aircraft Cleaning Compounds, Liquid Type, Water Base, for Storage Stability Testing

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2002-01-01

    1.1 This test method covers the determination of the stability in storage, of liquid, water-base chemical cleaning compounds, used to clean the exterior surfaces of aircraft. 1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  15. Analysis of Screen Channel LAD Bubble Point Tests in Liquid Methane at Elevated Temperature

    Science.gov (United States)

    Hartwig, Jason; McQuillen, John

    2012-01-01

    This paper examines the effect of varying the liquid temperature and pressure on the bubble point pressure for screen channel Liquid Acquisition Devices in cryogenic liquid methane using gaseous helium across a wide range of elevated pressures and temperatures. Testing of a 325 x 2300 Dutch Twill screen sample was conducted in the Cryogenic Components Lab 7 facility at the NASA Glenn Research Center in Cleveland, Ohio. Test conditions ranged from 105 to 160K and 0.0965 - 1.78 MPa. Bubble point is shown to be a strong function of the liquid temperature and a weak function of the amount of subcooling at the LAD screen. The model predicts well for saturated liquid but under predicts the subcooled data.

  16. On the Electronic Nature of the Surface Potential at the Vapor-Liquid Interface of Water

    Energy Technology Data Exchange (ETDEWEB)

    Kathmann, S M; Kuo, I; Mundy, C J

    2008-02-05

    The surface potential at the vapor-liquid interface of water is relevant to many areas of chemical physics. Measurement of the surface potential has been experimentally attempted many times, yet there has been little agreement as to its magnitude and sign (-1.1 to +0.5 mV). We present the first computation of the surface potential of water using ab initio molecular dynamics. We find that the surface potential {chi} = -18 mV with a maximum interfacial electric field = 8.9 x 10{sup 7} V/m. A comparison is made between our quantum mechanical results and those from previous molecular simulations. We find that explicit treatment of the electronic density makes a dramatic contribution to the electric properties of the vapor-liquid interface of water. The E-field can alter interfacial reactivity and transport while the surface potential can be used to determine the 'chemical' contribution to the real and electrochemical potentials for ionic transport through the vapor-liquid interface.

  17. Molecular density functional theory for water with liquid-gas coexistence and correct pressure.

    Science.gov (United States)

    Jeanmairet, Guillaume; Levesque, Maximilien; Sergiievskyi, Volodymyr; Borgis, Daniel

    2015-04-21

    The solvation of hydrophobic solutes in water is special because liquid and gas are almost at coexistence. In the common hypernetted chain approximation to integral equations, or equivalently in the homogenous reference fluid of molecular density functional theory, coexistence is not taken into account. Hydration structures and energies of nanometer-scale hydrophobic solutes are thus incorrect. In this article, we propose a bridge functional that corrects this thermodynamic inconsistency by introducing a metastable gas phase for the homogeneous solvent. We show how this can be done by a third order expansion of the functional around the bulk liquid density that imposes the right pressure and the correct second order derivatives. Although this theory is not limited to water, we apply it to study hydrophobic solvation in water at room temperature and pressure and compare the results to all-atom simulations. The solvation free energy of small molecular solutes like n-alkanes and hard sphere solutes whose radii range from angstroms to nanometers is now in quantitative agreement with reference all atom simulations. The macroscopic liquid-gas surface tension predicted by the theory is comparable to experiments. This theory gives an alternative to the empirical hard sphere bridge correction used so far by several authors.

  18. A surprisingly simple correlation between the classical and quantum structural networks in liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Hamm, Peter; Fanourgakis, George S.; Xantheas, Sotiris S.

    2017-08-14

    Nuclear quantum effects in liquid water have profound implications for several of its macroscopic properties related to structure, dynamics, spectroscopy and transport. Although several of water’s macroscopic properties can be reproduced by classical descriptions of the nuclei using potentials effectively parameterized for a narrow range of its phase diagram, a proper account of the nuclear quantum effects is required in order to ensure that the underlying molecular interactions are transferable across a wide temperature range covering different regions of that diagram. When performing an analysis of the hydrogen bonded structural networks in liquid water resulting from the classical (class.) and quantum (q.m.) descriptions of the nuclei with the transferable, flexible, polarizable TTM3-F interaction potential, we found that the two results can be superimposed over the temperature range of T=270-350 K using a surprisingly simple, linear scaling of the two temperatures according to T(q.m.)=aT(class)- T , where a=1.2 and T=51 K. The linear scaling and constant shift of the temperature scale can be considered as a generalization of the previously reported temperature shifts (corresponding to structural changes and the melting T) induced by quantum effects in liquid water.

  19. Lysozyme Solubility and Conformation in Neat Ionic Liquids and Their Mixtures with Water.

    Science.gov (United States)

    Strassburg, Stephen; Bermudez, Harry; Hoagland, David

    2016-06-13

    The room temperature solubility of a number of model proteins is assessed for a diverse set of neat ionic liquids (ILs). For two soluble protein-IL pairs, lysozyme in [C2MIM][EtSO4] (1-ethyl-3-methylimidazolium ethylsulfate) and in [C2,4,4,4P][Et2PO4] (tributyl(ethyl)phosphonium diethylphosphate), protein solubility and structure at various temperatures are probed by dynamic light scattering (assessing dissolved molecular size), turbidimetry (reflecting degree of solubility), and Fourier transform infrared spectroscopy (uncovering helical secondary structure). As compared to aqueous environments, [C2,4,4,4P][Et2PO4] thermally stabilizes protein size and secondary structure while [C2MIM][EtSO4] does the opposite. Lysozyme denatured in [C2MIM][EtSO4] does not aggregate, presumably due to an absence of hydrophobic interactions, and the denaturation appears thermally reversible. Both ILs at room temperature are miscible with water in all proportions, but to create the corresponding ternary mixtures with protein, the order of mixing is important. Mixed to avoid additions of water to IL-dissolved protein, stable solutions are obtained with [C2MIM][EtSO4] at all solvent compositions. When water is added to IL-rich solutions, liquid-liquid demixing is noted.

  20. Ternary (liquid + liquid) equilibria of (diethyl carbonate + ethanol or 1-propanol + water) systems at 303.15 K under atmospheric pressure

    Science.gov (United States)

    Ginting, Rizqy Romadhona; Mustain, Asalil; Gunardi, Ignatius; Wibawa, Gede

    2017-01-01

    Ternary (liquid + liquid) equilibria data of diethyl carbonate (DEC) + ethanol or 1-propanol + water systems were accurately determined at 303.15 K using jacketed equilibrium cell under atmospheric pressure. The reliability of experimental tie-line data were checked by using Bachman-Brown correlation giving an r-squared value of 0.9933 and 0.9996, respectively. Both systems studied in this work exhibit Treybal's Type I ternary phase behavior. The experimental tie-line data were correlated well using the Non-Random Two Liquid (NRTL) and Universal Quasi-Chemical (UNIQUAC) activity coefficient models giving root-mean-square deviation (RMSD) of 0.95 and 1.18% for DEC + ethanol + water system.,While DEC + 1-propanol + water system gives RMSD value of 0.30 and 0.37%, respectively. The effect of carbon chain length of alcohol to the phase boundary of both systems was observed and discussed in detail.

  1. Vapor-Liquid Equilibrium of Methane with Water and Methanol. Measurements and Modeling

    DEFF Research Database (Denmark)

    Frost, Michael Grynnerup; Karakatsani, Eirini; von Solms, Nicolas

    2014-01-01

    There is a need for high-quality experimental phase equilibrium data in the petroleum and chemical industries, for example, mixtures of oil and gas with gas hydrate inhibitors (methanol, glycols) and organic acids. This includes a wide range of different systems, which all deal with processes...... that rely on phase equilibrium data for optimization. The objective of this work is to provide experimental data for hydrocarbon systems with polar chemicals such as alcohols, glycols, and water. New vapor-liquid equilibrium data are reported for methane + water, methane + methanol, and methane + methanol...

  2. Impact of water dilution and cation tail length on ionic liquid characteristics: Interplay between polar and non-polar interactions

    Science.gov (United States)

    Hegde, Govind A.; Bharadwaj, Vivek S.; Kinsinger, Corey L.; Schutt, Timothy C.; Pisierra, Nichole R.; Maupin, C. Mark

    2016-08-01

    The recalcitrance of lignocellulosic biomass poses a major challenge that hinders the economical utilization of biomass for the production of biofuel, plastics, and chemicals. Ionic liquids have become a promising solvent that addresses many issues in both the pretreatment process and the hydrolysis of the glycosidic bond for the deconstruction of cellulosic materials. However, to make the use of ionic liquids economically viable, either the cost of ionic liquids must be reduced, or a less expensive solvent (e.g., water) may be added to reduce the overall amount of ionic liquid used in addition to reducing the viscosity of the binary liquid mixture. In this work, we employ atomistic molecular dynamics simulations to investigate the impact of water dilution on the overall liquid structure and properties of three imidazolium based ionic liquids. It is found that ionic liquid-water mixtures exhibit characteristics that can be grouped into two distinct regions, which are a function of the ionic liquid concentration. The trends observed in each region are found to correlate with the ordering in the local structure of the ionic liquid that arises from the dynamic interactions between the ion pairs. Simulation results suggest that there is a high level of local ordering in the molecular structure at high concentrations of ionic liquids that is driven by the aggregation of the cationic tails and the anion-water interactions. It is found that as the concentration of ionic liquids in the binary mixture is decreased, there is a point at which the competing self and cross interaction energies between the ionic liquid and water shifts away from a cation-anion dominated regime, which results in a significant change in the mixture properties. This break point, which occurs around 75% w/w ionic liquids, corresponds to the point at which water molecules percolate into the ionic liquid network disrupting the ionic liquids' nanostructure. It is observed that as the cationic alkyl

  3. Investigating the solid-liquid phase transition of water nanofilms using the generalized replica exchange method

    Science.gov (United States)

    Lu, Qing; Kim, Jaegil; Farrell, James D.; Wales, David J.; Straub, John E.

    2014-11-01

    The generalized Replica Exchange Method (gREM) was applied to study a solid-liquid phase transition in a nanoconfined bilayer water system using the monatomic water (mW) model. Exploiting optimally designed non-Boltzmann sampling weights with replica exchanges, gREM enables an effective sampling of configurations that are metastable or unstable in the canonical ensemble via successive unimodal energy distributions across phase transition regions, often characterized by S-loop or backbending in the statistical temperature. Extensive gREM simulations combined with Statistical Temperature Weighted Histogram Analysis Method (ST-WHAM) for nanoconfined mW water at various densities provide a comprehensive characterization of diverse thermodynamic and structural properties intrinsic to phase transitions. Graph representation of minimized structures of bilayer water systems determined by the basin-hopping global optimization revealed heterogeneous ice structures composed of pentagons, hexagons, and heptagons, consistent with an increasingly ordered solid phase with decreasing density. Apparent crossover from a first-order solid-liquid transition to a continuous one in nanoconfined mW water with increasing density of the system was observed in terms of a diminishing S-loop in the statistical temperature, smooth variation of internal energies and heat capacities, and a characteristic variation of lateral radial distribution functions, and transverse density profiles across transition regions.

  4. High-accuracy measurement of low-water-content in liquid using NIR spectral absorption method

    Science.gov (United States)

    Peng, Bao-Jin; Wan, Xu; Jin, Hong-Zhen; Zhao, Yong; Mao, He-Fa

    2005-01-01

    Water content measurement technologies are very important for quality inspection of food, medicine products, chemical products and many other industry fields. In recent years, requests for accurate low-water-content measurement in liquid are more and more exigent, and great interests have been shown from the research and experimental work. With the development and advancement of modern production and control technologies, more accurate water content technology is needed. In this paper, a novel experimental setup based on near-infrared (NIR) spectral technology and fiber-optic sensor (OFS) is presented. It has a good measurement accuracy about -/+ 0.01%, which is better, to our knowledge, than most other methods published until now. It has a high measurement resolution of 0.001% in the measurement range from zero to 0.05% for water-in-alcohol measurement, and the water-in-oil measurement is carried out as well. In addition, the advantages of this method also include pollution-free to the measured liquid, fast measurement and so on.

  5. Requirements of first-principles calculations of X-ray absorption spectra of liquid water.

    Science.gov (United States)

    Fransson, Thomas; Zhovtobriukh, Iurii; Coriani, Sonia; Wikfeldt, Kjartan T; Norman, Patrick; Pettersson, Lars G M

    2016-01-07

    A computational benchmark study on X-ray absorption spectra of water has been performed by means of transition-potential density functional theory (TP-DFT), damped time-dependent density functional theory (TDDFT), and damped coupled cluster (CC) linear response theory. For liquid water, using TDDFT with a tailored CAM-B3LYP functional and a polarizable embedding, we find that an embedding with over 2000 water molecules is required to fully converge spectral features for individual molecules, but a substantially smaller embedding can be used within averaging schemes. TP-DFT and TDDFT calculations on 100 MD structures demonstrate that TDDFT produces a spectrum with spectral features in good agreement with experiment, while it is more difficult to fully resolve the spectral features in the TP-DFT spectrum. Similar trends were also observed for calculations of bulk ice. In order to further establish the performance of these methods, small water clusters have been considered also at the CC2 and CCSD levels of theory. Issues regarding the basis set requirements for spectrum simulations of liquid water and the determination of gas-phase ionization potentials are also discussed.

  6. Reduced Near-Resonant Vibrational Coupling at the Surfaces of Liquid Water and Ice.

    Science.gov (United States)

    Smit, Wilbert J; Versluis, Jan; Backus, Ellen H G; Bonn, Mischa; Bakker, Huib J

    2018-02-26

    We study the resonant interaction of the OH stretch vibrations of water molecules at the surfaces of liquid water and ice using heterodyne-detected sum-frequency generation (HD-SFG) spectroscopy. By studying different isotopic mixtures of H 2 O and D 2 O, we vary the strength of the interaction, and we monitor the resulting effect on the HD-SFG spectrum of the OH stretch vibrations. We observe that the near-resonant coupling effects are weaker at the surface than in the bulk, both for water and ice, indicating that for both phases of water the OH vibrations are less strongly delocalized at the surface than in the bulk.

  7. Analysis of bromate in drinking water using liquid chromatography-tandem mass spectrometry without sample pretreatment.

    Science.gov (United States)

    Kosaka, Koji; Asami, Mari; Takei, Kanako; Akiba, Michihiro

    2011-01-01

    An analytical method for determining bromate in drinking water was developed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The (18)O-enriched bromate was used as an internal standard. The limit of quantification (LOQ) of bromate was 0.2 µg/L. The peak of bromate was separated from those of coexisting ions (i.e., chloride, nitrate and sulfate). The relative and absolute recoveries of bromate in two drinking water samples and in a synthesized ion solution (100 mg/L chloride, 10 mg N/L nitrate, and 100 mg/L sulfate) were 99-105 and 94-105%, respectively. Bromate concentrations in 11 drinking water samples determined by LC-MS/MS were water without sample pretreatment.

  8. LIQUID-LIQUID EQUILIBRIA OF THE TERNARY SYSTEMS PROPIONIC ACID - WATER - SOLVENT (n-AMYL ALCOHOL AND n-AMYL ACETATE

    Directory of Open Access Journals (Sweden)

    Dilek ÖZMEN

    2005-02-01

    Full Text Available The experimental liquid-liquid equilibrium (LLE data have been obtained at 25 oC for ternary systems propionic acid-water-n-amyl alcohol and propionic acid-water-n-amyl acetate. The reliability of the experimental tie line data are checked using the methods of Othmer-Tobias and Hand. The distribution coefficients and separation factors were obtained from experimental results and are also reported. The predicted tie line data obtained by UNIFAC method are compared with experimental data. It is concluded that n-amyl alcohol and n-amyl acetate are suitable separating agents for dilute aqueous propionic acid solutions.

  9. LIQUID-LIQUID EQUILIBRIA OF THE TERNARY SYSTEMS PROPIONIC ACID - WATER - SOLVENT (n-AMYL ALCOHOL AND n-AMYL ACETATE)

    OpenAIRE

    Dilek ÖZMEN

    2005-01-01

    The experimental liquid-liquid equilibrium (LLE) data have been obtained at 25 oC for ternary systems propionic acid-water-n-amyl alcohol and propionic acid-water-n-amyl acetate. The reliability of the experimental tie line data are checked using the methods of Othmer-Tobias and Hand. The distribution coefficients and separation factors were obtained from experimental results and are also reported. The predicted tie line data obtained by UNIFAC method are compared with experimental data. It i...

  10. Rupture of a Locally Heated Liquid Film Driven by the Shear Stress of Gas and Gravity

    Science.gov (United States)

    Zaitsev, D. V.; Kabob, O. A.

    2010-03-01

    The paper focuses on the recent progress that has been achieved by the authors through conducting experiments with locally heated shear-driven and falling liquid films. Rupture of the liquid film was investigated and it was found that scenario of film rupture differs widely for different flow regimes. The critical heat flux is about 10 times higher for a shear driven film than that for a falling liquid film, and reaches 250 W/cm2 in experiments with water at atmospheric pressure. Rupture of a subcooled falling liquid film heated from the substrate is preceded by the formation of steady state film surface deformations. The film spontaneously ruptures at the moment when the film thickness in the thinned region reaches a certain critical minimum independent of both the Reynolds number and the plate inclination angle (gravity force). By means of high speed imaging it is found that the process of rupture involves two stages: 1) abrupt film thinning down to a thin residual film; 2) rupture and dryout of the residual film. As the plate inclination angle is reduced the threshold heat flux required for film rupture weakly decreases, however when the angle becomes negative the threshold heat flux begins to rise dramatically, which is associated with an increase of the stabilizing hydrostatic effect due to the growth of the film thickness.

  11. Investigating the Relationship Between Liquid Water and Leaf Area in Clonal Populus

    Science.gov (United States)

    Roberts, Dar; Brown, K.; Green, R.; Ustin, S.; Hinckley, T.

    1998-01-01

    Leaf Area Index (LAI) is one of the most commonly employed biophysical parameters used to characterize vegetation canopies and scale leaf physiological processes to larger scales. For example, LAI is a critical parameter used in regional scale estimates of evapotranspiration, photosynthesis, primary productivity, and carbon cycling (Running et al., 1989; Dorman and Sellers, 1989; Potter et al., 1993). LAI is typically estimated using ratio-based techniques, such as the Normalized Difference Vegetation Index (NDVI: e.g. Tucker 1979; Asrar et al., 1989; Sellers 1985, 1987). The physical basis behind this relationship depends on the high spectral contrast between scattered near-infrared (NIR) and absorbed red radiation in canopies. As the number of leaves present in a canopy increases over a unit area, NIR reflectance increases, while red reflectance decreases, resulting in an increase in the ratio. Through time series and image compositing, NDVI provides an additional temporal measure of how these parameters change, providing a means to monitor fluxes and productivity (Tucker et al., 1983). NDVI, while highly successful for agriculture and grassland ecosystems has been found to be less successful in evergreen chaparral and forested ecosystems (Badhwar et al., 1986; Gamon et al., 1993; Hall et al., 1995). Typically, the relationship between NDVI and LAI becomes progressively more asymptotic at LAI values above three (Sellers, 1985), although linear relationships have been observed in conifers at LAis as high as 13 (Spanner et al., 1990). In this paper, we explore an alternative approach for estimating LAI for remotely sensed data from AVIRIS based on estimates of canopy liquid water. Our primary objective is to test the hypothesis that the depth of the liquid water bands expressed in canopy reflectance spectra at 960, 1200, 1400 and 1900 nm increases with increasing LAI in canopies. This study builds from work by Roberts et al. (1997), in which liquid water was shown

  12. Mechanisms of hydrogen bond formation between ionic liquids and cellulose and the influence of water content.

    Science.gov (United States)

    Rabideau, Brooks D; Ismail, Ahmed E

    2015-02-28

    We study the dynamics of the formation of multiple hydrogen bonds between ionic liquid anions and cellulose using molecular dynamics simulations. We examine fifteen different ionic liquids composed of 1-alkyl-3-methylimidazolium cations ([Cnmim], n = 1, 2, 3, 4, 5) paired with either chloride, acetate or dimethylphosphate. We map the transitions of anions hydrogen bonded to cellulose into different bonding states. We find that increased tail length in the ionic liquids has only a very minor effect on these transitions, tending to slow the dynamics of the transitions and increasing the hydrogen bond lifetimes. Each anion can form up to four hydrogen bonds with cellulose. We find that this hydrogen bond "redundancy" leads to multiply bonded anions having lifetimes three to four times that of singly bound anions. Such redundant hydrogen bonds account for roughly half of all anion-cellulose hydrogen bonds. Additional simulations for [C2mim]Cl, [C2mim]Ac and [C2mim]DMP were performed at different water concentrations between 70 mol% and 90 mol%. It was found that water crowds the hydrogen bond-accepting sites of the anions, preventing interactions with cellulose. The more water that is present in the system, the more crowded these sites become. Thus, if a hydrogen bond between an anion and cellulose breaks, the likelihood that it will be replaced by a nearby water molecule increases as well. We show that the formation of these "redundant" hydrogen bonding states is greatly affected by the presence of water, leading to steep drops in hydrogen bonding between the anions and cellulose.

  13. Water-clustering in hygroscopic ionic liquids-an implicit solvent analysis.

    Science.gov (United States)

    Maiti, Amitesh; Kumar, Arvind; Rogers, Robin D

    2012-04-21

    Most ionic liquids are known to be hygroscopic to varying degrees, and that can be detrimental or useful depending upon the application in question. Water can accumulate slowly over hours or days to saturation levels corresponding to the humidity level. When designing or deploying a new ionic liquid it is important to be able to estimate its maximum moisture absorbing ability at the temperature and pressure of its operation. With this goal in mind we have carried out computational studies on three ionic liquid systems based on [BF(4)](-), [PF(6)](-), and [Tf(2)N](-) anions and 1-alkyl-3-methyl-imidazolium ([C(n)mim](+)) cations within an implicit solvent formalism. For highly hygroscopic systems like [C(n)mim][BF(4)] we find that non-iterative calculations with single water molecules can lead to significant underestimation of the maximum moisture content, while iterative calculations can result in miscibility behavior qualitatively different from experimental observations. On the other hand, the inclusion of small hydrogen-bonded water-clusters up to an appropriately chosen size is shown to yield better quantitative agreements with experimentally observed water uptake. Additionally, such calculations appear consistent with a number of thermodynamically interesting phase behaviors, including limited-solubility to full-miscibility transitions as a function of temperature and as a function of the alkyl chain length of the imidazolium cation. For hydrophobic systems like [C(n)mim][PF(6)] and [C(n)mim][Tf(2)N] the computed solubility (for each n) is found to have a smooth convergence behavior as a function of the largest cluster-size considered with the results for the larger clusters being close to that obtained by iterative calculations with single water molecules. This journal is © the Owner Societies 2012

  14. How well can polarization models of pairwise nonadditive forces describe liquid water?

    Science.gov (United States)

    Akin-Ojo, Omololu; Szalewicz, Krzysztof

    2013-01-14

    Properties of liquid water have been computed using a near-exact rigid-monomer two-body (pairwise-additive) force field and the same field supplemented by a simple, non-empirical polarization model of pairwise nonadditive many-body forces. The inclusion of nonadditive polarization forces leads to a dramatic decrease, sometimes by an order of magnitude, of the deviations of water properties computed using classical molecular dynamics from experiment results. The remaining deviations are typically of the order of 10%. The model correctly predicts the temperature dependence of the properties except for the density of supercooled water. This good performance is achieved despite the known failure of the polarization model in reproducing trimer nonadditive interaction energies, confirmed here by showing that for a random set of trimers with all O-O separations smaller than 3.4 Å, selected from simulation snapshots, the average error of the model relative to accurate ab initio values is 71%. However, the errors gradually decrease for larger trimers, more abundant in liquid, and one can estimate that the polarization model should reproduce the exact liquid interaction energy to within about 6%. Although this accuracy is consistent with the observed performance of the polarization model, it does not explain the dramatic improvements over the two-body model. These improvements are due to the restructuring of liquid into tetrahedral arrangements instigated by the nonadditive polarization forces. The deviations of our predictions from experiments are generally also consistent with the estimated contributions from leading neglected effects other than the exchange nonadditive forces: the monomer flexibility and quantum nuclear motion effects.

  15. Theoretical investigation of the ultrafast dissociation of core-ionized water and uracil molecules immersed in liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Stia, C.R.; Fojon, O.A. [Instituto de Fisica Rosario - CONICET-Universidad Nacional de Rosario, Rosario (Argentina); Gaigeot, M.P. [Laboratoire Analyse et Modelisation pour la Biologie et l' Environnement, LAMBE, UMR-CNRS 8587, Universite d' Evry-Val-d' Essonne, 91 - Evry (France); Institut Universitaire de France, 75 - Paris (France); Vuilleumier, R. [Departement de chimie, Ecole Normale Superieure, 75 - Paris (France); Herve du Penhoat, M.A.; Politis, M.F. [Institut de Mineralogie et de Physique des Milieux Condenses, IMPMC, UMR-CNRS 7590, Universite Pierre et Marie Curie, 75 - Paris (France)

    2010-10-15

    We present a series of ab initio density functional based calculations of the fragmentation dynamics of core-ionized biomolecules. The computations are performed for pure liquid water, aqueous and isolated Uracil. Core ionization is described by replacing the 1s{sup 2} pseudopotential of one atom of the target molecule (C, N or O) with a pseudopotential for a 1s{sup 1} core-hole state. Our results predict that the dissociation of core-ionized water molecules may be reached during the lifetime of inner-shell vacancy (less than 10 fs), leading to OH bond breakage as a primary outcome. We also observe a second fragmentation channel in which total Coulomb explosion of the ionized water molecule occurs. Fragmentation pathways are found similar for pure water or when the water molecule is in the primary hydration shell of the uracil molecule. In the latter case, the proton may be transferred towards the uracil oxygen atoms. When the core hole is located on the uracil molecule, ultrafast dissociation is only observed in the aqueous environment and for nitrogen-K vacancies, resulting in proton transfers towards the hydrogen-bonded water molecule. (authors)

  16. The dynamic behavior of a liquid ethanol-water mixture: a perspective from quantum chemical topology.

    Science.gov (United States)

    Mejía, Sol M; Mills, Matthew J L; Shaik, Majeed S; Mondragon, Fanor; Popelier, Paul L A

    2011-05-07

    Quantum Chemical Topology (QCT) is used to reveal the dynamics of atom-atom interactions in a liquid. A molecular dynamics simulation was carried out on an ethanol-water liquid mixture at its azeotropic concentration (X(ethanol)=0.899), using high-rank multipolar electrostatics. A thousand (ethanol)(9)-water heterodecamers, respecting the water-ethanol ratio of the azeotropic mixture, were extracted from the simulation. Ab initio electron densities were computed at the B3LYP/6-31+G(d) level for these molecular clusters. A video shows the dynamical behavior of a pattern of bond critical points and atomic interaction lines, fluctuating over 1 ns. A bond critical point distribution revealed the fluctuating behavior of water and ethanol molecules in terms of O-H···O, C-H···O and H···H interactions. Interestingly, the water molecule formed one to six C-H···O and one to four O-H···O interactions as a proton acceptor. We found that the more localized a dynamical bond critical point distribution, the higher the average electron density at its bond critical points. The formation of multiple C-H···O interactions affected the shape of the oxygen basin of the water molecule, which is shown in three dimensions. The hydrogen atoms of water strongly preferred to form H···H interactions with ethanol's alkyl hydrogen atoms over its hydroxyl hydrogen. This journal is © the Owner Societies 2011

  17. Structural, Dynamical, and Electronic Properties of Liquid Water: A Hybrid Functional Study.

    Science.gov (United States)

    Ambrosio, Francesco; Miceli, Giacomo; Pasquarello, Alfredo

    2016-08-04

    We study structural, dynamical, and electronic properties of liquid water through ab initio molecular dynamics (MD) simulations based on a hybrid functional which includes nonlocal van der Waals (vdW) interactions. The water dimer, the water hexamer, and two phases of ice are studied as benchmark cases. The hydrogen-bond energy depends on the balance between Fock exchange and vdW interactions. Moreover, the energetic competition between extended and compact structural motifs is found to be well described by theory provided vdW interactions are accounted for. Applied to the hydrogen-bond network of liquid water, the dispersion interactions favor more compact structural motifs, bring the density closer to the experimental value, and improve the agreement with experimental observables such as radial distribution functions. The description of the self-diffusion coefficient is also found to improve upon the combined consideration of Fock exchange and vdW interactions. The band gap and the band edges are found to agree with experiment within 0.1 eV.

  18. Experimental evidence for the formation of liquid saline water on Mars.

    Science.gov (United States)

    Fischer, Erik; Martínez, Germán M; Elliott, Harvey M; Rennó, Nilton O

    2014-07-16

    Evidence for deliquescence of perchlorate salts has been discovered in the Martian polar region while possible brine flows have been observed in the equatorial region. This appears to contradict the idea that bulk deliquescence is too slow to occur during the short periods of the Martian diurnal cycle during which conditions are favorable for it. We conduct laboratory experiments to study the formation of liquid brines at Mars environmental conditions. We find that when water vapor is the only source of water, bulk deliquescence of perchlorates is not rapid enough to occur during the short periods of the day during which the temperature is above the salts' eutectic value, and the humidity is above the salts' deliquescence value. However, when the salts are in contact with water ice, liquid brine forms in minutes, indicating that aqueous solutions could form temporarily where salts and ice coexist on the Martian surface and in the shallow subsurface. The formation of brines at Martian conditions was studied experimentallyBulk deliquescence from water vapor is too slow to occur diurnally on MarsBrines form in minutes when salts are placed in direct contact with ice.

  19. Water injection into vapor- and liquid-dominated reservoirs: Modeling of heat transfer and mass transport

    Energy Technology Data Exchange (ETDEWEB)

    Pruess, K.; Oldenburg, C.; Moridis, G.; Finsterle, S. [Lawrence Berkeley National Lab., CA (United States)

    1997-12-31

    This paper summarizes recent advances in methods for simulating water and tracer injection, and presents illustrative applications to liquid- and vapor-dominated geothermal reservoirs. High-resolution simulations of water injection into heterogeneous, vertical fractures in superheated vapor zones were performed. Injected water was found to move in dendritic patterns, and to experience stronger lateral flow effects than predicted from homogeneous medium models. Higher-order differencing methods were applied to modeling water and tracer injection into liquid-dominated systems. Conventional upstream weighting techniques were shown to be adequate for predicting the migration of thermal fronts, while higher-order methods give far better accuracy for tracer transport. A new fluid property module for the TOUGH2 simulator is described which allows a more accurate description of geofluids, and includes mineral dissolution and precipitation effects with associated porosity and permeability change. Comparisons between numerical simulation predictions and data for laboratory and field injection experiments are summarized. Enhanced simulation capabilities include a new linear solver package for TOUGH2, and inverse modeling techniques for automatic history matching and optimization.

  20. Polymer Electrolyte Fuel Cells Membrane Hydration by Direct Liquid Water Contact

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, M.S.; Zawodzinski, C.; Gottesfeld, S.

    1998-11-01

    An effective means of providing direct liquid hydration of the membrane tends to improve performance particularly of cells with thicker membranes or at elevated temperatures. Supplying the water to the membrane from the anode flow-field through the anode backing via wicks would appear to have advantages over delivering the water through the thickness of the membrane with regards to the uniformity and stability of the supply and the use of off-the-shelf membranes or MEAs. In addition to improving cell performance, an important contribution of direct liquid hydration approaches may be that the overall fuel cell system becomes simpler and more effective. The next steps in the evolution of this approach are a demonstration of the effectiveness of this technique with larger active area cells as well as the implementation of an internal flow-field water reservoir (to eliminate the injection method). Scale-up to larger cell sizes and the use of separate water channels within the anode flow-field is described.

  1. Vortex-assisted magnetic β-cyclodextrin/attapulgite-linked ionic liquid dispersive liquid-liquid microextraction coupled with high-performance liquid chromatography for the fast determination of four fungicides in water samples.

    Science.gov (United States)

    Yang, Miyi; Xi, Xuefei; Wu, Xiaoling; Lu, Runhua; Zhou, Wenfeng; Zhang, Sanbing; Gao, Haixiang

    2015-02-13

    A novel microextraction technique combining magnetic solid-phase microextraction (MSPME) with ionic liquid dispersive liquid-liquid microextraction (IL-DLLME) to determine four fungicides is presented in this work for the first time. The main factors affecting the extraction efficiency were optimized by the one-factor-at-a-time approach and the impacts of these factors were studied by an orthogonal design. Without tedious clean-up procedure, analytes were extracted from the sample to the adsorbent and organic solvent and then desorbed in acetonitrile prior to chromatographic analysis. Under the optimum conditions, good linearity and high enrichment factors were obtained for all analytes, with correlation coefficients ranging from 0.9998 to 1.0000 and enrichment factors ranging 135 and 159 folds. The recoveries for proposed approach were between 98% and 115%, the limits of detection were between 0.02 and 0.04 μg L(-1) and the RSDs changed from 2.96 to 4.16. The method was successfully applied in the analysis of four fungicides (azoxystrobin, chlorothalonil, cyprodinil and trifloxystrobin) in environmental water samples. The recoveries for the real water samples ranged between 81% and 109%. The procedure proved to be a time-saving, environmentally friendly, and efficient analytical technique. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Method and apparatus for electrokinetic co-generation of hydrogen and electric power from liquid water microjets

    Science.gov (United States)

    Saykally, Richard J; Duffin, Andrew M; Wilson, Kevin R; Rude, Bruce S

    2013-02-12

    A method and apparatus for producing both a gas and electrical power from a flowing liquid, the method comprising: a) providing a source liquid containing ions that when neutralized form a gas; b) providing a velocity to the source liquid relative to a solid material to form a charged liquid microjet, which subsequently breaks up into a droplet spay, the solid material forming a liquid-solid interface; and c) supplying electrons to the charged liquid by contacting a spray stream of the charged liquid with an electron source. In one embodiment, where the liquid is water, hydrogen gas is formed and a streaming current is generated. The apparatus comprises a source of pressurized liquid, a microjet nozzle, a conduit for delivering said liquid to said microjet nozzle, and a conductive metal target sufficiently spaced from said nozzle such that the jet stream produced by said microjet is discontinuous at said target. In one arrangement, with the metal nozzle and target electrically connected to ground, both hydrogen gas and a streaming current are generated at the target as it is impinged by the streaming, liquid spray microjet.

  3. Liquid-liquid equilibrium constant for acetic acid in an olive oil-epoxidized olive oil-acetic acid-hydrogen peroxide-water system

    Directory of Open Access Journals (Sweden)

    Janković Milovan R.

    2016-01-01

    Full Text Available The liquid-liquid equilibrium constant for acetic acid in a quinary system olive oil-epoxidized olive oil-acetic acid-hydrogen peroxide-water was experimentally determined for temperatures and component ratios relevant for in situ epoxidation of plant oils. The values has the constant range from 1.52 to 2.73. To predict the equilibrium constant for acetic acid, the experimental data were correlated with UNIQUAC (universal quasi chemical and NRTL (non-random two liquid activity coefficient models. For simplified calculation of the phase equilibrium the insolubility of olive oil and epoxidized olive oil in the water, as well as insolubility of water and hydrogen peroxide in the olive oil and epoxidized olive oil, was assumed. The root mean square deviation (RMSD of the experimental and calculated values of the liquid-liquid equilibrium constant for acetic acid is 0.1910 for the UNIQUAC model and 0.1815 for the NRTL model. For rigorous flash calculation, when the partitioning of all components between the phases was assumed, the RMSD for the NRTL model is 0.1749. [Projekat Ministarstva nauke Republike Srbije, br. 45022

  4. A thermomechanical model for the fragmentation of a liquid metal droplet cooled by water

    Science.gov (United States)

    Ivochkin, Yu P.; Monastyrskiy, V. P.

    2017-11-01

    A thermo mechanical aspect of the fragmentation of a liquid metal droplet, solidified as it falls into cold water, is considered in the presented model. The formation of a solid phase in the form of continuous, fluid-tight and relatively rigid casting skin results in a pressure decrease inside the droplet due to the difference between liquid and solid metal density. Because of the high compression modulus of the melt, the pressure in the droplet becomes negative when the thickness of the solid skin achieves several microns. The tensile stress in the melt results in the deformation of the casting skin or the melt’s continuity violation in the form of a shrinkage pore. The rupture of the deformed solid crust results in the penetration of steam jets into the liquid part of the drop. Due to the difference in pressure in the surrounding steam and in the droplet, the casting skin is crushed and the melt is blown out. Both scenarios contribute to the hydrodynamic destruction of the droplet. The suggested thermo mechanical model gives a qualitative explanation for experimental data. In the experimental part of the work, droplets of molten Sn were solidified in water. The solidified pieces of the droplets usually include deformed, thin-walled shells and dispersed particles. On a qualitative level the composition and shape of the solid fragments can be explained within the bounds of the suggested thermo mechanical model.

  5. Comparisons of Calculations with PARTRAC and NOREC: Transport of Electrons in Liquid Water

    Science.gov (United States)

    Dingfelder, M.; Ritchie, R. H.; Turner, J. E.; Friedland, W.; Paretzke, H. G.; Hamm, R. N.

    2013-01-01

    Monte Carlo computer models that simulate the detailed, event-by-event transport of electrons in liquid water are valuable for the interpretation and understanding of findings in radiation chemistry and radiation biology. Because of the paucity of experimental data, such efforts must rely on theoretical principles and considerable judgment in their development. Experimental verification of numerical input is possible to only a limited extent. Indirect support for model validity can be gained from a comparison of details between two independently developed computer codes as well as the observable results calculated with them. In this study, we compare the transport properties of electrons in liquid water using two such models, PARTRAC and NOREC. Both use interaction cross sections based on plane-wave Born approximations and a numerical parameterization of the complex dielectric response function for the liquid. The models are described and compared, and their similarities and differences are highlighted. Recent developments in the field are discussed and taken into account. The calculated stopping powers, W values, and slab penetration characteristics are in good agreement with one another and with other independent sources. PMID:18439039

  6. Liquid and Frozen Storage of Agouti (Dasyprocta leporina) Semen Extended with UHT Milk, Unpasteurized Coconut Water, and Pasteurized Coconut Water.

    Science.gov (United States)

    Mollineau, W M; Adogwa, A O; Garcia, G W

    2010-09-14

    This study evaluated the effects of semen extension and storage on forward progressive motility % (FPM%) in agouti semen. Three extenders were used; sterilized whole cow's milk (UHT Milk), unpasteurized (CW) and pasteurized coconut water (PCW), and diluted to 50, 100, 150, and 200 × 10(6) spermatozoa/ml. Experiment 1: 200 ejaculates were extended for liquid storage at 5(∘)C and evaluated every day for 5 days to determine FPM% and its rate of deterioration. Experiment 2: 150 ejaculates were extended for storage as frozen pellets in liquid nitrogen at -195(∘)C, thawed at 30(∘) to 70(∘)C for 20 to 50 seconds after 5 days and evaluated for FPM% and its rate of deterioration. Samples treated with UHT milk and storage at concentrations of 100 × 10(6) spermatozoa/ml produced the highest means for FPM% and the slowest rates of deterioration during Experiment 1. During Experiment 2 samples thawed at 30(∘)C for 20 seconds exhibited the highest means for FPM% (12.18 ± 1.33%), 85% rate of deterioration. However, samples were incompletely thawed. This was attributed to the diameter of the frozen pellets which was 1 cm. It was concluded that the liquid storage method was better for short term storage.

  7. Solvent effects by ionic liquid-water mixtures on the heterogeneous hydrolysis of lignocellulosic biomass with solid catalysts

    Science.gov (United States)

    Prosser, Jacob H.

    Ionic liquids are novel solvents proposed as alternatives for the liquid phase catalysis of lignocellulosic biomass because these can molecularly dissolve lignocellulose to high concentrations. However, solvent effects caused by ionic liquids for this application, such as how they shift the kinetics and equilibrium of lignocellulose conversion relative to other solvents, as well as if these change the nature of catalysts used and inhibit catalytic activity or unfavorably alter catalytic selectivity have not been rigorously considered. Additionally, many issues associated with the use of ionic liquids as solvents in lignocellulose conversion arise. Firstly, most ionic liquids readily undergo liquid phase thermal degradation at moderately low temperatures relevant for catalysis. Secondly, solvothermal degradation of solid catalytic materials by ILs can occur and is something not widely evaluated. Furthermore, the catalytic nature of many commonly used catalysts is altered through ion exchange between ionizable surface groups and ionic liquid ions. To understand how hydrophilic imidazolium-based ionic liquids influence the hydrolysis of lignocellulose, I examine with the aid of spectroscopic ellipsometry, UV-Vis spectrophotometry, high performance liquid chromatography, reflectance-small angle x-ray scattering, and powder x-ray diffraction the: (1) thermal degradation of a 1,2,3-trialkylimidzaolium ionic liquid; (2) solvothermal stability of mesoporous silica and gamma-alumina catalytsts; (3) behavior of the hydrolysis reaction of a lignin model compound in 1,2,3-trialkylimidzaolium ionic liquid-water mixtures; and (4) this same reaction catalyzed by gamma-alumina. From my investigations, I discover that: (1) water is able to diminish the thermal degradation of imidazolium ionic liquids when its composition is above about 35 mol% in these mixtures, an effect I propose is from two different mechanisms; (2) mesoporous silica and gamma-alumina are solvothermally stable

  8. Ternary liquid-liquid equilibrium for eugenol + tert-butanol + water system at 303.15 and 323.15K and atmospheric pressure

    Science.gov (United States)

    Sucipto, Retno Kumala Hesti; Kuswandi, Wibawa, Gede

    2017-05-01

    The objective of this study was to determine ternary liquid-liquid equilibrium for eugenol + tert-butanol + water system at 303.15 and 323.15K and atmospheric pressure. Using 25 mL equilibrium cell equipped jacketted water connected to water bath to maintain equilibrium temperature constant. The procedure of this experiment was conducted by inserting mixture of eugenol + tert-butanol + water system at certain composition into equilibrium cell. The solution was stirred for 4 hours and then was allowed for 20 hours in order to separate aqueous and organic phases completely. The temperature equilibrium cell of and the atmosphere pressure were recorded as equilibrium temperature and pressure for each measurenment. The equilibrium compositions of each phase were analyzed using Gas Chromatography. The experimental data obtained in this work were correlated with NRTL and UNIQUAC models with root mean square deviation between esperimental and calculated equilibrium compositions of 0.03% and 0.04% respectively.

  9. The mechanism of lipids extraction from wet microalgae Scenedesmus sp. by ionic liquid assisted subcritical water

    Science.gov (United States)

    Yu, Zhuanni; Chen, Xiaolin; Xia, Shuwei

    2016-06-01

    In this paper, the total sugar concentration, protein concentration, lipid yield and morphology characteristics of the algae residue were determined to explain the mechanism of lipids extraction from wet microalgae Scenedesmus sp. by ionic liquid assisted subcritical water. The results showed similar variation for the sugar, protein and lipid. However, the total sugar was more similar to lipids yield, so the results showed that the reaction between ionic liquid and cellulose and hemicellulose in cell wall was the most important step which determined the lipids extration directly. And the total sugar variation may be representing the lipids yield. For later lipids extraction, we can determine the total sugar concentration to predict the extraction end product.

  10. Mass density fluctuations in quantum and classical descriptions of liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Galib, Mirza [Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA; Duignan, Timothy T. [Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA; Misteli, Yannick [Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA; Baer, Marcel D. [Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA; Schenter, Gregory K. [Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA; Hutter, Jürg [Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA; Mundy, Christopher J. [Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, USA

    2017-06-26

    First principles molecular dynamics simulation protocol is established using revised functional of Perdew-Burke-Ernzerhof (revPBE) in conjunction with Grimme's third generation of dispersion (D3) correction to describe properties of water at ambient conditions. This study also demonstrates the consistency of the structure of water across both isobaric (NpT) and isothermal (NVT) ensembles. Going beyond the standard structural benchmarks for liquid water, we compute properties that are connected to both local structure and mass density fluctuations that are related to concepts of solvation and hydrophobicity. We directly compare our revPBE results to the Becke-Lee-Yang-Parr (BLYP) plus Grimme dispersion corrections (D2) and both the empirical fixed charged model (SPC/E) and many body interaction potential model (MB-pol) to further our understanding of how the computed properties herein depend on the form of the interaction potential.

  11. Mass density fluctuations in quantum and classical descriptions of liquid water

    Science.gov (United States)

    Galib, Mirza; Duignan, Timothy T.; Misteli, Yannick; Baer, Marcel D.; Schenter, Gregory K.; Hutter, Jürg; Mundy, Christopher J.

    2017-06-01

    First principles molecular dynamics simulation protocol is established using revised functional of Perdew-Burke-Ernzerhof (revPBE) in conjunction with Grimme's third generation of dispersion (D3) correction to describe the properties of water at ambient conditions. This study also demonstrates the consistency of the structure of water across both isobaric (NpT) and isothermal (NVT) ensembles. Going beyond the standard structural benchmarks for liquid water, we compute properties that are connected to both local structure and mass density fluctuations that are related to concepts of solvation and hydrophobicity. We directly compare our revPBE results to the Becke-Lee-Yang-Parr (BLYP) plus Grimme dispersion corrections (D2) and both the empirical fixed charged model (SPC/E) and many body interaction potential model (MB-pol) to further our understanding of how the computed properties herein depend on the form of the interaction potential.

  12. Internal flow and deformation of a liquid CO2 drop rising through water

    Science.gov (United States)

    Steytler, Louis L.; Pearlstein, Arne J.

    2012-11-01

    We report computations of the steady axisymmetric flow in and around a deformable liquid drop of CO2 ascending through a water column under the action of buoyancy, a problem relevant to risk assessment for sub-seabed carbon sequestration and storage. In these initial computations, we consider several drop densities, corresponding to different depths in the ocean, and neglect dissolution of CO2 into the surrounding water and formation of a hydrate film at the drop/water interface. The results, which extend our previous work (Bozzi et al., J. Fluid Mech. 336, 1-32, 1997) to the case in which the dynamic viscosities of the dispersed and continuous phases are unequal, show that the degree of deformation and internal circulation depend strongly on drop size. Supported by the International Institute for Carbon-Neutral Energy Research, sponsored by the Japanese Ministry of Education, Culture, Sports, Science and Technology.

  13. Research on Liquid Management Technology in Water Tank and Reactor for Propulsion System with Hydrogen Production System Utilizing Aluminum and Water Reaction

    Science.gov (United States)

    Imai, Ryoji; Imamura, Takuya; Sugioka, Masatoshi; Higashino, Kazuyuki

    2017-12-01

    High pressure hydrogen produced by aluminum and water reaction is considered to be applied to space propulsion system. Water tank and hydrogen production reactor in this propulsion system require gas and liquid separation function under microgravity condition. We consider to install vane type liquid acquisition device (LAD) utilizing surface tension in the water tank, and install gas-liquid separation mechanism by centrifugal force which swirling flow creates in the hydrogen reactor. In water tank, hydrophilic coating was covered on both tank wall and vane surface to improve wettability. Function of LAD in water tank and gas-liquid separation in reaction vessel were evaluated by short duration microgravity experiments using drop tower facility. In the water tank, it was confirmed that liquid was driven and acquired on the outlet due to capillary force created by vanes. In addition of this, it was found that gas-liquid separation worked well by swirling flow in hydrogen production reactor. However, collection of hydrogen gas bubble was sometimes suppressed by aluminum alloy particles, which is open problem to be solved.

  14. Research on Liquid Management Technology in Water Tank and Reactor for Propulsion System with Hydrogen Production System Utilizing Aluminum and Water Reaction

    Science.gov (United States)

    Imai, Ryoji; Imamura, Takuya; Sugioka, Masatoshi; Higashino, Kazuyuki

    2017-11-01

    High pressure hydrogen produced by aluminum and water reaction is considered to be applied to space propulsion system. Water tank and hydrogen production reactor in this propulsion system require gas and liquid separation function under microgravity condition. We consider to install vane type liquid acquisition device (LAD) utilizing surface tension in the water tank, and install gas-liquid separation mechanism by centrifugal force which swirling flow creates in the hydrogen reactor. In water tank, hydrophilic coating was covered on both tank wall and vane surface to improve wettability. Function of LAD in water tank and gas-liquid separation in reaction vessel were evaluated by short duration microgravity experiments using drop tower facility. In the water tank, it was confirmed that liquid was driven and acquired on the outlet due to capillary force created by vanes. In addition of this, it was found that gas-liquid separation worked well by swirling flow in hydrogen production reactor. However, collection of hydrogen gas bubble was sometimes suppressed by aluminum alloy particles, which is open problem to be solved.

  15. Selection of ionic liquids as entrainers for separation of (water + ethanol)

    Energy Technology Data Exchange (ETDEWEB)

    Ge Yun [College of Chemical Engineering and Material Science, Zhejiang University of Technology, Hangzhou 310014 (China); Zhang Lianzhong [College of Chemical Engineering and Material Science, Zhejiang University of Technology, Hangzhou 310014 (China)], E-mail: zhanglz@zjut.edu.cn; Yuan Xingcai; Geng Wei; Ji Jianbing [College of Chemical Engineering and Material Science, Zhejiang University of Technology, Hangzhou 310014 (China)

    2008-08-15

    For selection of ionic liquids (ILs) which can be potentially used as entrainers for separation of the azeotropic mixture of (water + ethanol) by extractive distillation, (vapor + liquid) equilibrium was measured for the ternary systems of (water + ethanol + an IL) using a previously proposed ebulliometer. The experimental measurement was performed at p = 100 kPa and in a way of continuous synthesis, in which analysis of liquid phase composition was avoided. While the mole fraction of ethanol calculated on IL-free basis, x{sub 2}{sup '}, was kept almost unchanged at 0.95, isobaric T, x, y data were measured at different IL mass fractions. Activity coefficients, as well as relative volatilities, of the volatile components were obtained from the experimental data without the need of a thermodynamic model of the liquid phase. There were eight ILs in our investigation: 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF{sub 4}]), 1-ethyl-3-methylimidazolium tetrafluoroborate ([emim][BF{sub 4}]), 1-butyl-3-methylimidazolium dicyanamide ([bmim][N(CN){sub 2}]), 1-ethyl-3-methylimidazolium dicyanamide ([emim][N(CN){sub 2}]), 1-butyl-3-methylimidazolium chloride ([bmim][Cl]), 1-ethyl-3-methylimidazolium chloride ([emim][Cl]), 1-butyl-3-methylimidazolium acetate ([bmim][OAc]), and 1-ethyl-3-methylimidazolium acetate ([emim][OAc]). The effect of the ILs on the relative volatility of the volatile components was depicted separately by their effect on the activity coefficients. The results indicated that, among the eight ILs studied, [emim][Cl] has the largest effect on enhancement of the relative volatility. Another IL, [emim][OAc], has also significant effect. Considering the relatively low viscosity and melting point of [emim][OAc], this IL might be favorable candidate as entrainer for potential industrial application.

  16. CHEMICAL DEMULSIFICATION OF MODEL WATER-IN-OIL EMULSIONS WITH LOW WATER CONTENT BY MEANS OF IONIC LIQUIDS

    Directory of Open Access Journals (Sweden)

    M. Balsamo

    Full Text Available Abstract The demulsification of model water-in-oil (w/o emulsions containing 1% wt. water by [Omim][PF6] and Aliquat® 336 ionic liquids (IL as demulsifiers was investigated in batch mode at different temperatures (30, 45 and 60 °C and demulsifier concentrations (2.5×10‒3, 1.2×10‒2 and 2.9×10‒2 mol L‒1. The model oil is a mixture n-heptane/toluene (70/30% wt. with 1% wt. of Span® 83 as a surfactant. Experimental results showed that the main differences in demulsification dynamics between systems containing IL and blank (i.e., in the absence of demulsifier are detected at 30 °C and for short demulsification times (t≤4 h. In particular, the demulsification efficiency is 8, 21 and 74% for the blank sample, [Omim][PF6] and Aliquat® 336 tested under the more concentrated IL condition, respectively. The superior demulsification performances of Aliquat® 336 with respect to [Omim][PF6] were related to the greater molecular weight and more hydrophobic character of its cation, likely able to induce a faster desorption of the surfactant at the w/o interface and consequently promoting water droplet coalescence. Moreover, the kinetic demulsification data were successfully interpreted by an empirical pseudo-first order model. In general, the obtained outcomes encourage future research efforts in the use of ionic liquids for the removal of low water fractions from w/o emulsions.

  17. {sup 222}Rn determination in water and brine samples using liquid scintillation spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Thiago C.; Oliveira, Arno H., E-mail: oliveiratco2010@gmail.com [Universidade Federal de Minas Gerais (DEN/UFMG), Belo Horizonte (Brazil). Departamento de Engenharia Nuclear; Monteiro, Roberto P.G.; Moreira, Rubens M., E-mail: rpgm@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN-CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    Liquid scintillation spectrometry (LSC) is the most common technique used for {sup 222}Rn determination in environmental aqueous sample. In this study, the performance of water-miscible (Ultima Gold AB) and immiscible (Optiscint) liquid scintillation cocktails has been compared for different matrices. {sup 241}Am, {sup 90}Sr and {sup 226}Ra standard solutions were used for LSC calibration. {sup 214}Po region was defined as better for both cocktails. Counting efficiency of 76 % and optimum PSA level of 95 for Ultima Gold AB cocktail, and counting efficiency of 82 % and optimum PSA level of 85 for Optiscint cocktail were obtained. Both cocktails showed similar results when applied for {sup 222}Rn activity determination in water and brine samples. However the Optiscint is recommended due to its quenching resistance. Limit of detection of 0.08 and 0.06 Bq l{sup -1} were obtained for water samples using a sample:cocktail ratio of 10:12 mL for Ultima Gold AB and Optiscint cocktails, respectively. Limit of detection of 0.08 and 0.04 Bq l{sup -1} were obtained for brine samples using a sample:cocktail ratio of 8:12 mL for Ultima Gold AB and Optiscint cocktails, respectively. (author)

  18. Classical molecular dynamics simulation of microwave heating of liquids: The case of water.

    Science.gov (United States)

    Afify, N D; Sweatman, M B

    2018-01-14

    We perform a complete classical molecular dynamics study of the dielectric heating of water in the microwave (MW) region. MW frequencies ranging from 1.0 to 15.0 GHz are used together with a series of well-known empirical force fields. We show that the ability of an empirical force field to correctly predict the dielectric response of liquids to MW radiation should be evaluated on the basis of a joint comparison of the predicted and experimental static dielectric constant, frequency-dependent dielectric spectra, and heating profiles. We argue that this is essential when multicomponent liquids are studied. We find that both the three-site OPC3 and four-site TIP4P-ϵ empirical force fields of water are equally superior for reproducing dielectric properties at a range of MW frequencies. Despite its poor prediction of the static dielectric constant, the well-known SPCE force field can be used to accurately describe dielectric heating of water at low MW frequencies.

  19. Spatial correlations of density and structural fluctuations in liquid water: a comparative simulation study.

    Science.gov (United States)

    Sedlmeier, Felix; Horinek, Dominik; Netz, Roland R

    2011-02-09

    We use large-scale classical simulations employing different force fields to study spatial correlations between local density and structural order for water in the liquid temperature range. All force fields investigated reproduce the main features of the experimental SAXS structure factor S(q), including the minimum at small q, and the recent TIP4P/2005 parametrization yields almost quantitative agreement. As local structural order parameters we consider the tetrahedrality and the number of hydrogen bonds and calculate all pure and mixed spatial two-point correlation functions. Except for the density-density correlation function, there are only weak features present in all other correlation functions, showing that the tendency to form structural clusters is much weaker than the well-known tendency of water to form density clusters (i.e., spatially correlated regions where the density deviates from the mean). In particular, there are only small spatial correlations between local density and structural fluctuations, suggesting that features in density-density correlations (such as measured by the structure factor) are not straightforwardly related to spatial correlations of structure in liquid water.

  20. Measuring snow liquid water content with low-cost GPS receivers.

    Science.gov (United States)

    Koch, Franziska; Prasch, Monika; Schmid, Lino; Schweizer, Jürg; Mauser, Wolfram

    2014-11-06

    The amount of liquid water in snow characterizes the wetness of a snowpack. Its temporal evolution plays an important role for wet-snow avalanche prediction, as well as the onset of meltwater release and water availability estimations within a river basin. However, it is still a challenge and a not yet satisfyingly solved issue to measure the liquid water content (LWC) in snow with conventional in situ and remote sensing techniques. We propose a new approach based on the attenuation of microwave radiation in the L-band emitted by the satellites of the Global Positioning System (GPS). For this purpose, we performed a continuous low-cost GPS measurement experiment at the Weissfluhjoch test site in Switzerland, during the snow melt period in 2013. As a measure of signal strength, we analyzed the carrier-to-noise power density ratio (C/N0) and developed a procedure to normalize these data. The bulk volumetric LWC was determined based on assumptions for attenuation, reflection and refraction of radiation in wet snow. The onset of melt, as well as daily melt-freeze cycles were clearly detected. The temporal evolution of the LWC was closely related to the meteorological and snow-hydrological data. Due to its non-destructive setup, its cost-efficiency and global availability, this approach has the potential to be implemented in distributed sensor networks for avalanche prediction or basin-wide melt onset measurements.

  1. Graphene sheets synthesized by ionic-liquid-assisted electrolysis for application in water purification

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chia-Feng [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Truong, Quang Duc, E-mail: tqduc@mail.tagen.tohoku.ac.jp [Department of Chemistry, Vietnam National University, Hanoi (Viet Nam); Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577 (Japan); Chen, Jiann-Ruey [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China)

    2013-01-01

    Highlights: Black-Right-Pointing-Pointer Graphene sheets have been successfully synthesized by ionic-liquid-assisted electrolysis. Black-Right-Pointing-Pointer Graphene sheets are superior adsorbents for heavy metal removal. Black-Right-Pointing-Pointer Graphene sheets are highly efficient for water purification for the developing economies. - Abstract: A facile and green synthesis of graphene sheets by ionic-liquid-assisted electrolysis was investigated in this work. The synthesized graphene sheets have been studied using transmission electron microscopy (TEM), atomic force microscopy (AFM), X-ray powder diffraction (XRD), Raman spectroscopy (Raman) and Fourier transform infrared (FTIR) analysis. The obtained graphene was used for the adsorption of Fe{sup 2+} whose presence in the drinking water in wide areas of South Asia has been widely known. The result shows that the graphene could absorb Fe{sup 2+} with a capacity of 299.3 mg/g which is 6 times higher than that of graphite oxide. The adsorption properties of metal ions on graphene and the effects of various factors on the adsorption capacity were also investigated in detail. The research results suggest a novel material for developing highly efficient water purification materials for the developing economies.

  2. Electronic absorption line shapes at the water liquid/vapor interface.

    Science.gov (United States)

    Nelson, Katherine V; Benjamin, Ilan

    2012-04-12

    In order to investigate the factors that contribute to the electronic absorption line shape of a chromophore adsorbed at the water liquid/vapor interface, molecular dynamics simulations of a series of dipolar solutes undergoing various electronic transitions at various locations along the interface normal are studied. For electronic transitions that involve a change in the permanent dipole moment of the solute, the transition from the bulk water to the liquid/vapor interface involves a spectral shift consistent with the lower polarity of the interface. The change in the spectral width relative to that in the bulk is determined by several factors, which, depending on the nature of the transition and the dipole moment of the initial state, can result in a narrowing or broadening of the spectrum. These factors include the location of the interface region (which directly correlates with local polarity), the heterogeneity of the local solvation shell, and the width of the surface region. The contribution of the heterogeneity of the local solvation shell can be determined by comparing surface water with bulk methanol, whose polarity is comparable to one of the surface regions.

  3. An ionic liquid as a solvent for headspace single drop microextraction of chlorobenzenes from water samples.

    Science.gov (United States)

    Vidal, Lorena; Psillakis, Elefteria; Domini, Claudia E; Grané, Nuria; Marken, Frank; Canals, Antonio

    2007-02-12

    A headspace single-drop microextraction (HS-SDME) procedure using room temperature ionic liquid and coupled to high-performance liquid chromatography capable of quantifying trace amounts of chlorobenzenes in environmental water samples is proposed. A Plackett-Burman design for screening was carried out in order to determine the significant experimental conditions affecting the HS-SDME process (namely drop volume, aqueous sample volume, stirring speed, ionic strength, extraction time and temperature), and then a central composite design was used to optimize the significant conditions. The optimum experimental conditions found from this statistical evaluation were: a 5 microL microdrop of 1-butyl-3-methylimidazolium hexafluorophosphate, exposed for 37 min to the headspace of a 10 mL aqueous sample placed in a 15 mL vial, stirred at 1580 rpm at room temperature and containing 30% (w/v) NaCl. The calculated calibration curves gave a high level of linearity for all target analytes with correlation coefficients ranging between 0.9981 and 0.9997. The repeatability of the proposed method, expressed as relative standard deviation, varied between 1.6 and 5.1% (n=5). The limits of detection ranged between 0.102 and 0.203 microg L(-1). Matrix effects upon extraction were evaluated by analysing spiked tap and river water as well as effluent water samples originating from a municipal wastewater treatment plant.

  4. X-ray emission spectroscopy of bulk liquid water in "no-man's land".

    Science.gov (United States)

    Sellberg, Jonas A; McQueen, Trevor A; Laksmono, Hartawan; Schreck, Simon; Beye, Martin; DePonte, Daniel P; Kennedy, Brian; Nordlund, Dennis; Sierra, Raymond G; Schlesinger, Daniel; Tokushima, Takashi; Zhovtobriukh, Iurii; Eckert, Sebastian; Segtnan, Vegard H; Ogasawara, Hirohito; Kubicek, Katharina; Techert, Simone; Bergmann, Uwe; Dakovski, Georgi L; Schlotter, William F; Harada, Yoshihisa; Bogan, Michael J; Wernet, Philippe; Föhlisch, Alexander; Pettersson, Lars G M; Nilsson, Anders

    2015-01-28

    The structure of bulk liquid water was recently probed by x-ray scattering below the temperature limit of homogeneous nucleation (TH) of ∼232 K [J. A. Sellberg et al., Nature 510, 381-384 (2014)]. Here, we utilize a similar approach to study the structure of bulk liquid water below TH using oxygen K-edge x-ray emission spectroscopy (XES). Based on previous XES experiments [T. Tokushima et al., Chem. Phys. Lett. 460, 387-400 (2008)] at higher temperatures, we expected the ratio of the 1b1' and 1b1″ peaks associated with the lone-pair orbital in water to change strongly upon deep supercooling as the coordination of the hydrogen (H-) bonds becomes tetrahedral. In contrast, we observed only minor changes in the lone-pair spectral region, challenging an interpretation in terms of two interconverting species. A number of alternative hypotheses to explain the results are put forward and discussed. Although the spectra can be explained by various contributions from these hypotheses, we here emphasize the interpretation that the line shape of each component changes dramatically when approaching lower temperatures, where, in particular, the peak assigned to the proposed disordered component would become more symmetrical as vibrational interference becomes more important.

  5. Measuring Snow Liquid Water Content with Low-Cost GPS Receivers

    Directory of Open Access Journals (Sweden)

    Franziska Koch

    2014-11-01

    Full Text Available The amount of liquid water in snow characterizes the wetness of a snowpack. Its temporal evolution plays an important role for wet-snow avalanche prediction, as well as the onset of meltwater release and water availability estimations within a river basin. However, it is still a challenge and a not yet satisfyingly solved issue to measure the liquid water content (LWC in snow with conventional in situ and remote sensing techniques. We propose a new approach based on the attenuation of microwave radiation in the L-band emitted by the satellites of the Global Positioning System (GPS. For this purpose, we performed a continuous low-cost GPS measurement experiment at the Weissfluhjoch test site in Switzerland, during the snow melt period in 2013. As a measure of signal strength, we analyzed the carrier-to-noise power density ratio (C/N0 and developed a procedure to normalize these data. The bulk volumetric LWC was determined based on assumptions for attenuation, reflection and refraction of radiation in wet snow. The onset of melt, as well as daily melt-freeze cycles were clearly detected. The temporal evolution of the LWC was closely related to the meteorological and snow-hydrological data. Due to its non-destructive setup, its cost-efficiency and global availability, this approach has the potential to be implemented in distributed sensor networks for avalanche prediction or basin-wide melt onset measurements.

  6. An easy method for Ra-226 determination in river waters by liquid-scintillation counting

    Science.gov (United States)

    Moreno, H. P.; Vioque, I.; Manjón, G.; García-Tenorio, R.

    1999-01-01

    226Ra activity concentration in river water was determined using a low background liquid scintillation counter. Radium was extracted from the samples as Ra-BaSO4 precipitate which, afterwards, was dissolved with EDTA in ammonia medium. Solution was transferred into a low potassium glass vial and then mixed with a scintillation cocktail. Two different scintillation cocktails were selected for comparison. Efficiency, recovery yield and α/β separation were studied with both liquid scintillation cocktails. One single measurement, made one month after radium separation, allows to calculate the226Ra concentration as well as to assess the presence of alpha contamination of the sample. In the case of negligible interferences,224Ra concentrations can be subsequently evaluated in the same sample by the measurement made just after chemical separation of radium. This method has been applied for the determination of226Ra and224Ra activity concentrations in river water collected from different locations along the Odiel river estuary area (South-west of Spain). The presence of chemical industry, the wastes of which are released into the river, could be connected with radium activity concentration enhancements in the water.

  7. Liquid water on Mars - An energy balance climate model for CO2/H2O atmospheres

    Science.gov (United States)

    Hoffert, M. I.; Callegari, A. J.; Hsieh, C. T.; Ziegler, W.

    1981-01-01

    A simple climatic model is developed for a Mars atmosphere containing CO2 and sufficient liquid water to account for the observed hydrologic surface features by the existence of a CO2/H2O greenhouse effect. A latitude-resolved climate model originally devised for terrestrial climate studies is applied to Martian conditions, with the difference between absorbed solar flux and emitted long-wave flux to space per unit area attributed to the divergence of the meridional heat flux and the poleward heat flux assumed to equal the atmospheric eddy heat flux. The global mean energy balance is calculated as a function of atmospheric pressure to assess the CO2/H2O greenhouse liquid water hypothesis, and some latitude-resolved cases are examined in detail in order to clarify the role of atmospheric transport and temperature-albedo feedback. It is shown that the combined CO2/H2O greenhouse at plausible early surface pressures may account for climates hot enough to support a hydrological cycle and running water at present-day insolation and visible albedo levels.

  8. Effect of water on the structure of a prototype ionic liquid

    Energy Technology Data Exchange (ETDEWEB)

    Borodin, Oleg; Price, David L.; Aoun, Bachir; González, Miguel A.; Hooper, Justin B.; Kofu, Maiko; Kohara, Shinji; Yamamuro, Osamu; Saboungi, Marie-Louise

    2016-05-26

    The influence of water on the structure of a prototype ionic liquid (IL) 1-octyl-3-methyimidazolium tetrafluoroborate (C8mimBF4) is examined in the IL-rich regime using high-energy x-ray diffraction (HEXRD) and molecular dynamics (MD) simulations. A many-body polarizable force field APPLE&P was developed for C8mimBF4 water mixture. It predicts structure factors of pure IL and IL-water mixture in excellent agreement with the HEXRD experiments. The MD results provide detailed insights into the structural changes from the partial structure factors, 2-D projections of the simulation box and 3-D distribution functions. Water partitioning with IL and its competition with BF4- for complexing the imidazolium rings was examined. The added water molecules occupy a diffuse coordination shell around the imidazolium ring but are not present around the alkyl tail. The strong coordination of the fluorine atoms of the BF4- anions to the imidazolium ring is not significantly changed by the addition of water. These results are consistent with the very small differences in the average structure between the pure IL and the mixture.

  9. [Detecting Thallium in Water Samples using Dispersive Liquid Phase Microextraction-Graphite Furnace Atomic Absorption Spectroscopy].

    Science.gov (United States)

    Zhu, Jing; Li, Yan; Zheng, Bo; Tang, Wei; Chen, Xiao; Zou, Xiao-li

    2015-11-01

    To develope a method of solvent demulsification dispersive liquid phase microextraction (SD-DLPME) based on ion association reaction coupled with graphite furnace atomic absorption spectroscopy (GFAAS) for detecting thallium in water samples. Methods Thallium ion in water samples was oxidized to Tl(III) with bromine water, which reacted with Cl- to form TlCl4-. The ionic associated compound with trioctylamine was obtained and extracted. DLPME was completed with ethanol as dispersive solvent. The separation of aqueous and organic phase was achieved by injecting into demulsification solvent without centrifugation. The extractant was collected and injected into GFAAS for analysis. With palladium colloid as matrix modifier, a two step drying and ashing temperature programming process was applied for high precision and sensitivity. The linear range was 0.05-2.0 microg/L, with a detection limit of 0.011 microg/L. The relative standard derivation (RSD) for detecting Tl in spiked water sample was 9.9%. The spiked recoveries of water samples ranged from 94.0% to 103.0%. The method is simple, sensitive and suitable for batch analysis of Tl in water samples.

  10. The excess proton at the air-water interface: The role of instantaneous liquid interfaces

    Science.gov (United States)

    Giberti, Federico; Hassanali, Ali A.

    2017-06-01

    The magnitude of the pH of the surface of water continues to be a contentious topic in the physical chemistry of aqueous interfaces. Recent theoretical studies have shown little or no preference for the proton to be at the surface compared to the bulk. Using ab initio molecular dynamics simulations, we revisit the propensity of the excess proton for the air-water interface with a particular focus on the role of instantaneous liquid interfaces. We find a more pronounced presence for the proton to be at the air-water interface. The enhanced water structuring around the proton results in the presence of proton wires that run parallel to the surface as well as a hydrophobic environment made up of under-coordinated topological defect water molecules, both of which create favorable conditions for proton confinement at the surface. The Grotthuss mechanism within the structured water layer involves a mixture of both concerted and closely spaced stepwise proton hops. The proton makes excursions within the first solvation layer either in proximity to or along the instantaneous interface.

  11. The Importance of Correct Modeling of Bubble Size and Condensation in Prediction of Sub-Cooled Boiling Flows

    Directory of Open Access Journals (Sweden)

    S. Lo

    2012-09-01

    Full Text Available This paper describes the updating of the sub-cooled boiling model used in CFD codes with the more recent and better sub-models. The improved sub-models include: Hibiki and Ishii [1] correlation for nucleation site density, Kocamustafaogullari [2] correlation for bubble departure diameter and the S-gamma model of Lo and Rao [3] for bubble size distribution in the flow. The new model has been tested against measured data from Debora [4] and Bartolomei [5]. The results show that improvement in the bubble size prediction has the most significant impact on the accuracy of the model.

  12. Extraction of triazole fungicides in environmental waters utilizing poly (ionic liquid)-functionalized magnetic adsorbent.

    Science.gov (United States)

    Liu, Cheng; Liao, Yingmin; Huang, Xiaojia

    2017-11-17

    This work prepared a new poly (ionic liquid)-functionalized magnetic adsorbent (PFMA) for the extraction of triazole fungicides (TFs) in environmental waters prior to determination by high performance liquid chromatography/diode array detection (HPLC-DAD). A polymerizable ionic liquid, 1-methyl-3-allylimidazolium bis(trifluoromethylsulfonyl)imide was employed to copolymerize with divinylbenzene on the surface of modified magnetite to fabricate the PFMA. The morphology, spectroscopic and magnetic properties of the new adsorbent were investigated by different techniques. A series of key parameters that influence the extraction performance including the amount of PFMA, desorption solvent, adsorption and desorption time, sample pH value and ionic strength were optimized in detail. Under the optimum conditions, the prepared PFMA could extract targeted TFs effectively and quickly under the format of magnetic solid-phase extraction (MSPE). Satisfactory linearities were achieved in the range of 0.1-200.0μg/L for triadimenol and 0.05-200.0μg/L for other TFs with good coefficients of determination above 0.99 for all analytes. The limits of detection (S/N=3) and limits of quantification (S/N=10) for TFs were in the range of 0.0050-0.0078μg/L and 0.017-0.026μg/L, respectively. Environmental waters including lake, river and well waters were used to demonstrate the applicability of developed MSPE-HPLC-DAD method, and satisfactory recoveries and repeatability were obtained. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. The effect of cloud liquid water on tropospheric temperature retrievals from microwave measurements

    Science.gov (United States)

    Bernet, Leonie; Navas-Guzmán, Francisco; Kämpfer, Niklaus

    2017-11-01

    Microwave radiometry is a suitable technique to measure atmospheric temperature profiles with high temporal resolution during clear sky and cloudy conditions. In this study, we included cloud models in the inversion algorithm of the microwave radiometer TEMPERA (TEMPErature RAdiometer) to determine the effect of cloud liquid water on the temperature retrievals. The cloud models were built based on measurements of cloud base altitude and integrated liquid water (ILW), all performed at the aerological station (MeteoSwiss) in Payerne (Switzerland). Cloud base altitudes were detected using ceilometer measurements while the ILW was measured by a HATPRO (Humidity And Temperature PROfiler) radiometer. To assess the quality of the TEMPERA retrieval when clouds were considered, the resulting temperature profiles were compared to 2 years of radiosonde measurements. The TEMPERA instrument measures radiation at 12 channels in the frequency range from 51 to 57 GHz, corresponding to the left wing of the oxygen emission line complex. When the full spectral information with all the 12 frequency channels was used, we found a marked improvement in the temperature retrievals after including a cloud model. The chosen cloud model influenced the resulting temperature profile, especially for high clouds and clouds with a large amount of liquid water. Using all 12 channels, however, presented large deviations between different cases, suggesting that additional uncertainties exist in the lower, more transparent channels. Using less spectral information with the higher, more opaque channels only also improved the temperature profiles when clouds where included, but the influence of the chosen cloud model was less important. We conclude that tropospheric temperature profiles can be optimized by considering clouds in the microwave retrieval, and that the choice of the cloud model has a direct impact on the resulting temperature profile.

  14. Permeability of Rubbery and Glassy Membranes of Ionic Liquid Filled Polymersome Nanoreactors in Water.

    Science.gov (United States)

    So, Soonyong; Yao, Letitia J; Lodge, Timothy P

    2015-12-03

    Nanoemulsion-like polymer vesicles (polymersomes) having ionic liquid interiors dispersed in water are attractive for nanoreactor applications. In a previous study, we demonstrated that small molecules could pass through rubbery polybutadiene membranes on a time scale of seconds, which is practical for chemical transformations. It is of interest to determine how sensitive the rate of transport is to temperature, particularly for membranes in the vicinity of the glass transition (Tg). In this work, the molecular exchange rate of 1-butylimidazole through glassy polystyrene (PS) bilayer membranes is investigated via pulsed field gradient nuclear magnetic resonance (PFG-NMR) over the temperature range from 25 to 70 °C. The vesicles were prepared by the cosolvent method in the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide ([EMIM][TFSI]), and four different polystyrene-b-poly(ethylene oxide) (PS-PEO) diblock polymers with varying PS molecular weights were examined. The vesicles were transferred from the ionic liquid to water at room temperature to form nanoemulsion solutions of polymer vesicles in water. The exchange rate of 1-butylimidazole added to the aqueous solutions was observed under equilibrium conditions at each temperature. The exchange rate decreased as the membrane thickness increased, and the exchange rate through the glassy membranes was three to four times slower than through the rubbery polybutadiene membranes under the same experimental conditions. These results demonstrate that the permeability through nanosized membranes depends on both the dimension and chemistry of membrane-forming blocks. Furthermore, the exchange rate was investigated as a function of temperature in the vicinity of the Tg of PS-PEO membranes. The exchange rate, however, is not a strong function of the temperature in the vicinity of the membrane Tg, due to a combination of the nanoscopic dimension of the membrane, and some degree of solvent

  15. Inelastic cross sections for low-energy electrons in liquid water: exchange and correlation effects.

    Science.gov (United States)

    Emfietzoglou, Dimitris; Kyriakou, Ioanna; Garcia-Molina, Rafael; Abril, Isabel; Nikjoo, Hooshang

    2013-11-01

    Low-energy electrons play a prominent role in radiation therapy and biology as they are the largest contributor to the absorbed dose. However, no tractable theory exists to describe the interaction of low-energy electrons with condensed media. This article presents a new approach to include exchange and correlation (XC) effects in inelastic electron scattering at low energies (below ∼10 keV) in the context of the dielectric theory. Specifically, an optical-data model of the dielectric response function of liquid water is developed that goes beyond the random phase approximation (RPA) by accounting for XC effects using the concept of the many-body local-field correction (LFC). It is shown that the experimental energy-loss-function of liquid water can be reproduced by including into the RPA dispersion relations XC effects (up to second order) calculated in the time-dependent local-density approximation with the addition of phonon-induced broadening in N. D. Mermin's relaxation-time approximation. Additional XC effects related to the incident and/or struck electrons are included by means of the vertex correction calculated by a modified Hubbard formula for the exchange-only LFC. Within the first Born approximation, the present XC corrections cause a significantly larger reduction (∼10-50%) to the inelastic cross section compared to the commonly used Mott and Ochkur approximations, while also yielding much better agreement with the recent experimental data for amorphous ice. The current work offers a manageable, yet rigorous, approach for including non-Born effects in the calculation of inelastic cross sections for low-energy electrons in liquid water, which due to its generality, can be easily extended to other condensed media.

  16. Exploration of the phase diagram of liquid water in the low-temperature metastable region using synthetic fluid inclusions

    DEFF Research Database (Denmark)

    Qiu, Chen; Krüger, Yves; Wilke, Max

    2016-01-01

    water with a density of 0.921 kg/m3 remains in a homogeneous state during cooling down to the temperaure of −30.5 °C, where it is transformed into ice whose density corresponds to zero pressure. iii) ice melting. Ice melting temperatures of up to 6.8 °C were measured in absence of the vapour bubble, i......We present new experimental data of the low-temperature metastable region of liquid water derived from high-density synthetic fluid inclusions (996−916 kg/m3) in quartz. Microthermometric measurements include: i) Prograde (upon heating) and retrograde (upon cooling) liquid-vapour homogenisation. We...... used single ultrashort laser pulses to stimulate vapour bubble nucleation in initially monophase liquid inclusions. Water densities were calculated based on prograde homogenisation temperatures using the IAPWS-95 formulation. We found retrograde liquid-vapour homogenisation temperatures in excellent...

  17. Method for reprocessing and recycling of aqueous rinsing liquids from car painting with water-based paints in automobile industry

    Science.gov (United States)

    Baumann, Walter; Dinglreiter, Udo

    2011-08-01

    In the paint processes of modern car plants the paint to be applied on the car bodies change after every few numbers. In order to avoid intermixtures of different lacquers the application systems has to be cleaned before every change by means of a rinsing liquid. Water based lacquers require water based cleaning agents. For these rinsing waters a new recycling process based on an evaporation process, a fractionated condensation and an after treatment of the condensates is described. The compatibility of the recycled system for lacquers is investigated. After a test with ten recycling loops no accumulation of harmful substances occurs. In comparison to original agents the recycled rinsing liquids show comparable or better cleaning abilities. The comparison of the energy consumption and the disposal of CO2 and of volatile organic compounds between the application of fresh rinsing liquid with disposal after usage and recycled rinsing liquid show major advantages of the recycling process.

  18. Numerical Study on Bubble Behaviour and Heat Transfer Characteristics of Subcooled Pool Boiling Based on Non-Empirical Boiling and Condensation Model

    Directory of Open Access Journals (Sweden)

    Y. Ose

    2014-12-01

    Full Text Available In this study, the transient three-dimensional numerical simulations based on the MARS (Multi-interface Advection and Reconstruction Solver with the non-empirical boiling and condensation model have been conducted for isolated boiling bubble behaviour in a subcooled pool. The effects of the wettability on the heating surface for the subcooled bubble departure behaviour were investigated. The numerical results showed in very good agreement with the experimental results. Furthermore, resulting from the wall heat flux evaluation, it was found that the wall heat flux near the contact line at the bottom of the bubble just before the bubble departing from the heating surface increases with increases of the degree of subcooling.

  19. Room temperature compressibility and diffusivity of liquid water from first principles.

    Science.gov (United States)

    Corsetti, Fabiano; Artacho, Emilio; Soler, José M; Alexandre, S S; Fernández-Serra, M-V

    2013-11-21

    The isothermal compressibility of water is essential to understand its anomalous properties. We compute it by ab initio molecular dynamics simulations of 200 molecules at five densities, using two different van der Waals density functionals. While both functionals predict compressibilities within ~30% of experiment, only one of them accurately reproduces, within the uncertainty of the simulation, the density dependence of the self-diffusion coefficient in the anomalous region. The discrepancies between the two functionals are explained in terms of the low- and high-density structures of the liquid.

  20. Geant4-DNA simulation of electron slowing-down spectra in liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Incerti, S., E-mail: sebastien.incerti@tdt.edu.vn [Division of Nuclear Physics, Ton Duc Thang University, Tan Phong Ward, District 7, Ho Chi Minh City (Viet Nam); Faculty of Applied Sciences, Ton Duc Thang University, Tan Phong Ward, District 7, Ho Chi Minh City (Viet Nam); Univ. Bordeaux, CENBG, UMR 5797, F-33170, Gradignan (France); CNRS, IN2P3, CENBG, UMR 5797, F-33170 Gradignan (France); Kyriakou, I. [Medical Physics Laboratory, University of Ioannina Medical School, 45110 Ioannina (Greece); Tran, H.N. [Division of Nuclear Physics, Ton Duc Thang University, Tan Phong Ward, District 7, Ho Chi Minh City (Viet Nam); Faculty of Applied Sciences, Ton Duc Thang University, Tan Phong Ward, District 7, Ho Chi Minh City (Viet Nam)

    2017-04-15

    This work presents the simulation of monoenergetic electron slowing-down spectra in liquid water by the Geant4-DNA extension of the Geant4 Monte Carlo toolkit (release 10.2p01). These spectra are simulated for several incident energies using the most recent Geant4-DNA physics models, and they are compared to literature data. The influence of Auger electron production is discussed. For the first time, a dedicated Geant4-DNA example allowing such simulations is described and is provided to Geant4 users, allowing further verification of Geant4-DNA track structure simulation capabilities.

  1. Sub-Microsecond Temperature Measurement in Liquid Water Using Laser Induced Thermal Acoustics

    Science.gov (United States)

    Alderfer, David W.; Herring, G. C.; Danehy, Paul M.; Mizukaki, Toshiharu; Takayama, Kazuyoshi

    2005-01-01

    Using laser-induced thermal acoustics, we demonstrate non-intrusive and remote sound speed and temperature measurements over the range 10 - 45 C in liquid water. Averaged accuracy of sound speed and temperature measurements (10 s) are 0.64 m/s and 0.45 C respectively. Single-shot precisions based on one standard deviation of 100 or greater samples range from 1 m/s to 16.5 m/s and 0.3 C to 9.5 C for sound speed and temperature measurements respectively. The time resolution of each single-shot measurement was 300 nsec.

  2. High temperature vapour-liquid equilibria of water-polyalcohol mixtures

    OpenAIRE

    Cristino,Ana Filipa Russo de Albuquerque

    2014-01-01

    Tese de doutoramento, Química (Química Tecnológica), Universidade de Lisboa, Faculdade de Ciências, 2014 It is known that the presence of strong hydrogen bonds in the liquid state creates azeotropes, which disappear with the increase of temperature. This behavior suggests that the distillation at high temperatures could provide a good strategy to separate components of binary mixtures such as alcohol-water systems, very relevant in the chemical industry. Biodegradable fuels start to play ...

  3. Topological hydrogen-bond definition to characterize the structure and dynamics of liquid water.

    Science.gov (United States)

    Henchman, Richard H; Irudayam, Sheeba Jem

    2010-12-23

    A definition that equates a hydrogen bond topologically with a local energy well in the potential energy surface is used to study the structure and dynamics of liquid water. We demonstrate the robustness of this hydrogen-bond definition versus the many other definitions which use fixed, arbitrary parameters, do not account for variable molecular environments, and cannot effectively resolve transition states. Our topology definition unambiguously shows that most water molecules are double acceptors but sizable proportions are single or triple acceptors. Almost all hydrogens are found to take part in hydrogen bonds. Broken hydrogen bonds only form when two molecules try to form two hydrogen bonds between them. The double acceptors have tetrahedral geometry, lower potential energy, entropy, and density, and slower dynamics. The single and triple acceptors have trigonal and trigonal bipyramidal geometry and when considered together have higher density, potential energy, and entropy, faster dynamics, and a tendency to cluster. These calculations use an extended theory for the entropy of liquid water that takes into account the variable number of hydrogen bonds. Hydrogen-bond switching is shown to depend explicitly on the variable number of hydrogen bonds accepted and the presence of interstitial water molecules. Transition state theory indicates that the switching of hydrogen bonds is a mildly activated process, requiring only a moderate distortion of hydrogen bonds. Three main types of switching events are observed depending on whether the donor and acceptor are already sharing a hydrogen bond. The switch may proceed with no intermediate or via a bifurcated-oxygen or cyclic dimer, both of which have a broken hydrogen bond and symmetric and asymmetric forms. Switching is found to be strongly coupled to whole-molecule vibration, particularly for the more mobile single and triple acceptors. Our analysis suggests that even though water is heterogeneous in terms of the

  4. Study of correlations from Ab-Initio Simulations of Liquid Water

    Science.gov (United States)

    Soto, Adrian; Fernandez-Serra, Marivi; Lu, Deyu; Yoo, Shinjae

    An accurate understanding of the dynamics and the structure of H2O molecules in the liquid phase is of extreme importance both from a fundamental and from a practical standpoint. Despite the successes of Molecular Dynamics (MD) with Density Functional Theory (DFT), liquid water remains an extremely difficult material to simulate accurately and efficiently because of fine balance between the covalent O-H bond, the hydrogen bond and the attractive the van der Waals forces. Small errors in those produce dramatic changes in the macroscopic properties of the liquid or in its structural properties. Different density functionals produce answers that differ by as much as 35% in ambient conditions, with none producing quantitative results in agreement with experiment at different mass densities. In order to understand these differences we perform an exhaustive scanning of the geometrical coordinates of MD simulations and study their statistical correlations with the simulation output quantities using advanced correlation analyses and machine learning techniques. This work was partially supported by DOE Award No. DE-FG02-09ER16052, by DOE Early Career Award No. DE-SC0003871, by BNL LDRD 16-039 project and BNL Contract No. DE-SC0012704.

  5. Determination of chlorobenzenes in textiles by pressurized hot water extraction followed by vortex-assisted liquid-liquid microextraction and gas chromatography-mass spectrometry.

    Science.gov (United States)

    Lu, Yang; Zhu, Yan

    2013-12-06

    A method for quantitative determination of chlorobenzenes in textiles is developed, using pressurized hot water extraction (PHWE), vortex-assisted liquid-liquid microextraction (VALLME) and gas chromatography-mass spectrometry (GC-MS). VALLME serves as a trapping step after PHWE. The extraction conditions are investigated, as well as the quantitative features such as linearity, limits of detection (LODs), limits of quantification (LOQs), repeatabilities and reproducibilities between days. LOQs of 0.018-0.032mg/kg were achieved. The present method provides good repeatabilities (RSDtextiles. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Surface Tension of Ab Initio Liquid Water at the Water-Air Interface

    CERN Document Server

    Nagata, Yuki; Bonn, Mischa; Kühne, Thomas D

    2016-01-01

    We report calculations of the surface tension of the water-air interface using ab initio molecular dynamics (AIMD) simulations. We investigate the simulation cell size dependence of the surface tension of water from force field molecular dynamics (MD) simulations, which show that the calculated surface tension increases with increasing simulation cell size, thereby illustrating that a correction for finite size effects is required for the small system used in the AIMD simulation. The AIMD simulations reveal that the double-{\\xi} basis set overestimates the experimentally measured surface tension due to the Pulay stress, while the triple and quadruple-{\\xi} basis sets give similar results. We further demonstrate that the van der Waals corrections critically affect the surface tension. AIMD simulations without the van der Waals correction substantially underestimate the surface tension, while van der Waals correction with the Grimme's D2 technique results in the value for the surface tension that is too high. T...

  7. Phase equilibrium study of the binary systems (N-hexyl-3-methylpyridinium tosylate ionic liquid + water, or organic solvent)

    Energy Technology Data Exchange (ETDEWEB)

    Domanska, Urszula, E-mail: ula@ch.pw.edu.pl [Department of Physical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw (Poland); Thermodynamic Research Unit, School of Chemical Engineering, University of KwaZulu-Natal, Howard College Campus, King George V Avenue, Durban 4001 (South Africa); Krolikowski, Marek [Department of Physical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw (Poland)

    2011-10-15

    Highlights: > Synthesis, DSC, and measurements of phase equilibrium of N-hexyl-3-methylpyridinium tosylate. > Solvents used: water, alcohols, benzene, alkylbenzenes, and aliphatic hydrocarbons. > Correlation with UNIQUAC, Wilson and NRTL models. > Comparison with different tosylate-based ILs. - Abstract: The (solid + liquid) phase equilibrium (SLE) and (liquid + liquid) phase equilibrium (LLE) for the binary systems ionic liquid (IL) N-hexyl-3-methylpyridinium tosylate (p-toluenesulfonate), {l_brace}([HM{sup 3}Py][TOS] + water, or an alcohol (1-butanol, or 1-hexanol, or 1-octanol, or 1-decanol), or an aromatic hydrocarbon (benzene, toluene, or ethylbenzene, or propylbenzene), or an alkane (n-hexane, n-heptane, n-octane){r_brace} have been determined at ambient pressure using a dynamic method. Simple eutectic systems with complete miscibility in the liquid phase were observed for the systems involving water and alcohols. The phase equilibrium diagrams of IL and aromatic or aliphatic hydrocarbons exhibit eutectic systems with immiscibility in the liquid phase with an upper critical solution temperature as for most of the ILs. The correlation of the experimental data has been carried out using the UNIQUAC, Wilson and the non-random two liquid (NRTL) correlation equations. The results reported here have been compared with analogous phase diagrams reported by our group previously for systems containing the tosylate-based ILs.

  8. Liquid based formulations of bacteriophages for the management of waterborne bacterial pathogens in water microcosms.

    Science.gov (United States)

    Ahiwale, Sangeeta; Tagunde, Sujata; Khopkar, Sushama; Karni, Mrudula; Gajbhiye, Milind; Kapadnis, Balasaheb

    2013-11-01

    Water resources are contaminated by life-threatening multidrug resistant pathogenic bacteria. Unfortunately, these pathogenic bacteria do not respond to the traditional water purification methods. Therefore, there is a need of environmentally friendly strategies to overcome the problems associated with the antimicrobial resistant bacterial pathogens. In the present study, highly potent lytic phages against multidrug-resistant Salmonella enterica serovar Paratyphi B, Pseudomonas aeruginosa and Klebsiella pneumoniae were isolated from the Pavana river water. They belonged to the Podoviridae and Siphoviridae families. These phages were purified and enriched in the laboratory. Monovalent formulations of phiSPB, BVPaP-3 and KPP phages were prepared in three different liquids viz., phage broth, saline and distilled water. The phages were stable for almost 8-10 months in the phage broth at 4 degrees C. The stability of the phages in saline and distilled water was 5-6 months at 4 degrees C. All of the phages were stable only for 4-6 months in the phage broth at 30 degrees C. The monovalent phage formulation of psiSPB was applied at MOI < 1, as disinfectant against an exponential and stationary phase cells of Salmonella enterica serovar Paratyphi B in various water microcosms. The results indicated that there was almost 80 % reduction in the log phase cells of Salmonella serovar Paratyphi B in 24 h. In stationary phase cells, the reduction was comparatively less within same period. At the same time, there was concomitant increase in the phage population by 80% in all the microcosms indicating that psiSPB phage is highly potent in killing pathogen in water. Results strongly support that the formulation of psiSPB in the phage broth in monovalent form could be used as an effective biological disinfectant for preventing transmission of water-borne bacterial pathogens, including antimicrobial resistant ones.

  9. [Determination of aniline in water and fish by liquid chromatography-tandem mass spectrometry].

    Science.gov (United States)

    He, Dechun; Zhao, Bo; Tang, Caiming; Xu, Zhencheng; Zhang, Sukun; Han, Jinglei

    2014-09-01

    A fast analytical method for the determination of aniline in water and fish meat by liquid chromatography-tandem mass spectrometry (LC-MS/MS) has been developed. The water sample was mixed with acetonitrile by 4:1 (v/v) and the fish sample was extracted by 2.00 mL acetonitrile for each gram of sample, and then the extracts of water and fish samples were centrifuged at 5,000 r/min for 5 min. The separation was performed on a reversed-phase C18 column using mobile phases of acetonitrile-0.5% (v/v) formic acid aqueous solution (85:15, v/v). Aniline was separated within 3 min. The calibration curve was linear in the range of 0.5-500 pg/L with R2 > 0.999. The limits of detection (LODs) were 0.50 μg/L and 1.00 μg/kg and the limits of quantification (LOQs) were 1.00 μg/L and 2.00 μg/kg for aniline in water and fish meat, respectively. The average recoveries of aniline in water were 93.7% at the spiked level of 40 ng and 86.7% at the spiked level of 400 ng (n = 5). The average recoveries of aniline in fish were 96.8%, 92.6% and 81.8% at the spiked levels of 5, 50 and 500 ng respectively (n = 5). The relative standard deviations were 1.5%-9.2%. Thirteen water samples and twelve fish samples were collected from a reservoir polluted by aniline and the maximum contents found were 1,943. 6 μg/L in water and 60.8 μg/kg in fish. The method is suitable for the determination of aniline residues in water and fish with the characteristics of easy operation, high accuracy and precision.

  10. Thermocapillary convection around gas bubbles: an important natural effect for the enhancement of heat transfer in liquids under microgravity.

    Science.gov (United States)

    Betz, J; Straub, J

    2002-10-01

    In the presence of a temperature gradient at a liquid-gas or liquid-liquid interface, thermocapillary or Marangoni convection develops. This convection is a special type of natural convection that was not paid much attention in heat transfer for a long time, although it is strong enough to drive liquids against the direction of buoyancy on Earth. In a microgravity environment, however, it is the remaining mode of natural convection and supports heat and mass transfer. During boiling in microgravity it was observed at subcooled liquid conditions. Therefore, the question arises about its contribution to heat transfer without phase change. Thermocapillary convection was quantitatively studied at single gas bubbles in various liquids, both experimentally and numerically. A two-dimensional mathematical model described in this article was developed. The coupled mechanism of heat transfer and fluid flow in pure liquids around a single gas bubble was simulated with a control-volume FE-method. The simulation was accompanied and compared with experiments on Earth. The numerical results are in good accordance with the experiments performed on Earth at various Marangoni numbers using various alcohols of varying chain length and Prandtl numbers. As well as calculations on Earth, the numerical method also allows simulations at stationary spherical gas bubbles in a microgravity environment. The results demonstrate that thermocapillary convection is a natural heat transfer mechanism that can partially replace the buoyancy in a microgravity environment, if extreme precautions are taken concerning the purity of the liquids, because impurities accumulate predominantly at the interface. Under Earth conditions, an enhancement of the heat transfer in a liquid volume is even found in the case where thermocapillary flow is counteracted by buoyancy. In particular, the obstructing influence of surface active substances could be observed during the experiments on Earth in water and also in

  11. Using density functional theory to solve complex problems: from liquid water to dark matter

    Science.gov (United States)

    Fernandez Serra, Marivi

    In this talk I will review our current efforts on on understanding the physics of liquid water and the interaction of water with functional semiconductor surfaces using ab initio molecular dynamics methods. I will present the state of the art of current simulations and the challenges we face, focusing on two specific problems: the description of electron-electron interactions using semilocal density functionals and the role of nuclear quantum effects. I will finish the talk introducing our work in the field of dark matter detection, showing how electronic structure theory is a tool that can easily be used by high energy theorists to evaluate their predictions about the interactions of dark matter particles with electrons in solids, opening a bridge between two otherwise very distant communities.

  12. The interplay between dynamic heterogeneities and structure of bulk liquid water: A molecular dynamics simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Demontis, Pierfranco; Suffritti, Giuseppe B. [Dipartimento di Chimica e Farmacia, Università degli studi di Sassari, Sassari (Italy); Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Unità di ricerca di Sassari, Via Vienna, 2, I-07100 Sassari (Italy); Gulín-González, Jorge [Grupo de Matemática y Física Computacionales, Universidad de las Ciencias Informáticas (UCI), Carretera a San Antonio de los Baños, Km 21/2, La Lisa, La Habana (Cuba); Masia, Marco [Dipartimento di Chimica e Farmacia, Università degli studi di Sassari, Sassari (Italy); Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Unità di ricerca di Sassari, Via Vienna, 2, I-07100 Sassari (Italy); Istituto Officina dei Materiali del CNR, UOS SLACS, Via Vienna 2, 07100 Sassari (Italy); Sant, Marco [Dipartimento di Chimica e Farmacia, Università degli studi di Sassari, Sassari (Italy)

    2015-06-28

    In order to study the interplay between dynamical heterogeneities and structural properties of bulk liquid water in the temperature range 130–350 K, thus including the supercooled regime, we use the explicit trend of the distribution functions of some molecular properties, namely, the rotational relaxation constants, the atomic mean-square displacements, the relaxation of the cross correlation functions between the linear and squared displacements of H and O atoms of each molecule, the tetrahedral order parameter q and, finally, the number of nearest neighbors (NNs) and of hydrogen bonds (HBs) per molecule. Two different potentials are considered: TIP4P-Ew and a model developed in this laboratory for the study of nanoconfined water. The results are similar for the dynamical properties, but are markedly different for the structural characteristics. In particular, for temperatures higher than that of the dynamic crossover between “fragile” (at higher temperatures) and “strong” (at lower temperatures) liquid behaviors detected around 207 K, the rotational relaxation of supercooled water appears to be remarkably homogeneous. However, the structural parameters (number of NNs and of HBs, as well as q) do not show homogeneous distributions, and these distributions are different for the two water models. Another dynamic crossover between “fragile” (at lower temperatures) and “strong” (at higher temperatures) liquid behaviors, corresponding to the one found experimentally at T{sup ∗} ∼ 315 ± 5 K, was spotted at T{sup ∗} ∼ 283 K and T{sup ∗} ∼ 276 K for the TIP4P-Ew and the model developed in this laboratory, respectively. It was detected from the trend of Arrhenius plots of dynamic quantities and from the onset of a further heterogeneity in the rotational relaxation. To our best knowledge, it is the first time that this dynamical crossover is detected in computer simulations of bulk water. On the basis of the simulation results, the possible

  13. Investigation of one inverse problem in case of modeling water areas with "liquid" boundaries

    Science.gov (United States)

    Sheloput, Tatiana; Agoshkov, Valery

    2015-04-01

    In hydrodynamics often appears the problem of modeling water areas (oceans, seas, rivers, etc.) with "liquid" boundaries. "Liquid" boundary means set of those parts of boundary where impermeability condition is broken (for example, straits, bays borders, estuaries, interfaces of oceans). Frequently such effects are ignored: for "liquid" boundaries the same conditions are used as for "solid" ones, "material boundary" approximation is applied [1]. Sometimes it is possible to interpolate the results received from models of bigger areas. Moreover, approximate estimates for boundary conditions are often used. However, those approximations are not always valid. Sometimes errors in boundary condition determination could lead to a significant decrease in the accuracy of the simulation results. In this work one way of considering the problem mentioned above is described. According to this way one inverse problem on reconstruction of boundary function in convection-reaction-diffusion equations which describe transfer of heat and salinity is solved. The work is based on theory of adjoint equations [2] and optimal control, as well as on common methodology of investigation inverse problems [3]. The work contains theoretical investigation and the results of computer simulation applied for the Baltic Sea. Moreover, conditions and restrictions that should be satisfied for solvability of the problem are entered and justified in the work. Submitted work could be applied for the solution of more complicated inverse problems and data assimilation problems in the areas with "liquid" boundaries; also it is a step for developing algorithms on computing level, speed, temperature and salinity that could be applied for real objects. References 1. A. E. Gill. Atmosphere-ocean dynamics. // London: Academic Press, 1982. 2. G. I. Marchuk. Adjoint equations. // Moscow: INM RAS, 2000, 175 p. (in Russian). 3. V.I. Agoshkov. The methods of optimal control and adjoint equations in problems of

  14. ETHANOL, ACETIC ACID, AND WATER ADSORPTION FROM BINARY AND TERNARY LIQUID MIXTURES ON HIGH-SILICA ZEOLITES

    Science.gov (United States)

    Adsorption isotherms were measured for ethanol, acetic acid, and water adsorbed on high-silica ZSM-5 zeolite powder from binary and ternary liquid mixtures at room temperature. Ethanol and water adsorption on two high-silica ZSM-5 zeolites with different aluminum contents and a h...

  15. Water Flow Performance of a Superscale Model of the Fastrac Liquid Oxygen Pump

    Science.gov (United States)

    Skelley, Stephen; Zoladz, Thomas

    2001-01-01

    As part of the National Aeronautics and Space Administration's ongoing effort to lower the cost of access to space, the Marshall Space Flight Center has developed a rocket engine with 60,000 pounds of thrust for use on the Reusable Launch Vehicle technology demonstrator slated for launch in 2000. This gas generator cycle engine, known as the Fastrac engine, uses liquid oxygen and RP-1 for propellants and includes single stage liquid oxygen and RP-1 pumps and a single stage supersonic turbine on a common shaft. The turbopump design effort included the first use and application of new suction capability prediction codes and three-dimensional blade generation codes in an attempt to reduce the turbomachinery design and certification costs typically associated with rocket engine development. To verify the pump's predicted cavitation performance, a water flow test of a superscale model of the Fastrac liquid oxygen pump was conducted to experimentally evaluate the liquid oxygen pump's performance at and around the design point. The water flow test article replicated the flow path of the Fastrac liquid oxygen pump in a 1.582x scale model, including scaled seal clearances for correct leakage flow at a model operating speed of 5000 revolutions per minute. Flow entered the 3-blade axial-flow inducer, transitioned to a shrouded, 6- blade radial impeller, and discharged into a vaneless radial diffuser and collection volute. The test article included approximately 50 total and static pressure measurement locations as well as flush-mounted, high frequency pressure transducers for complete mapping of the pressure environment. The primary objectives of the water flow test were to measure the steady-state and dynamic pressure environment of the liquid oxygen pump versus flow coefficient, suction specific speed, and back face leakage flow rate. Initial results showed acceptable correlation between the predicted and experimentally measured pump head rise at low suction specific speeds

  16. The processes of vaporization in the porous structures working with the excess of liquid

    Directory of Open Access Journals (Sweden)

    Genbach Alexander A.

    2017-01-01

    Full Text Available The processes of vaporization in porous structures, working with the excess of liquid are investigated. With regard to the thermal power plants new porous cooling system is proposed and investigated, in which the supply of coolant is conducted by the combined action of gravity and capillary forces. The cooling surface is made of stainless steel, brass, copper, bronze, nickel, alundum and glass, with wall thickness of (0.05-2•10-3 m. Visualizations of the processes of vaporization were carried out using holographic interferometry with the laser system and high speed camera. The operating conditions of the experiments were: water pressures (0.01-10 MPa, the temperature difference of sub-cooling (0-20°C, an excess of liquid (1-14 of the steam flow, the heat load (1-60•104 W/m2, the temperature difference (1-60°C and orientation of the system (± 0 - ± 90 degrees. Studies have revealed three areas of liquid vaporization process (transitional, developed and crisis. The impact of operating and design parameters on the integrated and thermal hydraulic characteristics was defined. The optimum (minimum flow rate of cooling fluid and the most effective type of mesh porous structure were also defined.

  17. Probing Properties of Glassy Water and Other Liquids with Site Selective Spectroscopies

    Energy Technology Data Exchange (ETDEWEB)

    Dang, Nhan Chuong [Iowa State Univ., Ames, IA (United States)

    2005-01-01

    The standard non-photochemical hole burning (NPHB) mechanism, which involves phonon-assisted tunneling in the electronically excited state, was originally proposed to explain the light-induced frequency change of chemically stable molecules in glassy solids at liquid helium temperatures by this research group more than two decades ago. The NPHB mechanism was then further elucidated and the concept of intrinsic to glass configurational relaxation processes as pre-mediating step to the hole burning process was introduced. The latter provided the theoretical basis for NPHB to evolve into a powerful tool probing the dynamics and nature of amorphous media, which aside from ''simple'' inorganic glasses may include also ''complex'' biological systems such as living cells and cancerous/normal tissues. Presented in this dissertation are the experimental and theoretical results of hole burning properties of aluminum phthalocyanine tetrasulphonate (APT) in several different matrices: (1) hyperquenched glassy water (HGW); (2) cubic ice (Ic); and (3) water confined into poly(2-hydroxyethylmethacrylate) (poly-HEMA). In addition, results of photochemical hole burning (PHB) studies obtained for phthalocyanine tetrasulphonate (PcT) in HGW and free base phthalocyanine (Pc) in ortho-dichlorobenzene (DCB) glass are reported. The goal of this dissertation was to provide further evidence supporting the NPHB mechanism and to provide more insight that leads to a better understanding of the kinetic events (dynamics) in glasses, and various dynamical processes of different fluorescent chromorphores in various amorphous solids and the liquid that exist above the glass transition temperature (Tg). The following issues are addressed in detail: (1) time evolution of hole being burned under different conditions and in different hole burning systems; (2) temperature dependent hole profile; and (3) the structure

  18. Validation and Calibration of Nuclear Thermal Hydraulics Multiscale Multiphysics Models - Subcooled Flow Boiling Study

    Energy Technology Data Exchange (ETDEWEB)

    Anh Bui; Nam Dinh; Brian Williams

    2013-09-01

    In addition to validation data plan, development of advanced techniques for calibration and validation of complex multiscale, multiphysics nuclear reactor simulation codes are a main objective of the CASL VUQ plan. Advanced modeling of LWR systems normally involves a range of physico-chemical models describing multiple interacting phenomena, such as thermal hydraulics, reactor physics, coolant chemistry, etc., which occur over a wide range of spatial and temporal scales. To a large extent, the accuracy of (and uncertainty in) overall model predictions is determined by the correctness of various sub-models, which are not conservation-laws based, but empirically derived from measurement data. Such sub-models normally require extensive calibration before the models can be applied to analysis of real reactor problems. This work demonstrates a case study of calibration of a common model of subcooled flow boiling, which is an important multiscale, multiphysics phenomenon in LWR thermal hydraulics. The calibration process is based on a new strategy of model-data integration, in which, all sub-models are simultaneously analyzed and calibrated using multiple sets of data of different types. Specifically, both data on large-scale distributions of void fraction and fluid temperature and data on small-scale physics of wall evaporation were simultaneously used in this work’s calibration. In a departure from traditional (or common-sense) practice of tuning/calibrating complex models, a modern calibration technique based on statistical modeling and Bayesian inference was employed, which allowed simultaneous calibration of multiple sub-models (and related parameters) using different datasets. Quality of data (relevancy, scalability, and uncertainty) could be taken into consideration in the calibration process. This work presents a step forward in the development and realization of the “CIPS Validation Data Plan” at the Consortium for Advanced Simulation of LWRs to enable

  19. Changes in liquid water alter nutrient bioavailability and gas diffusion in frozen antarctic soils contaminated with petroleum hydrocarbons.

    Science.gov (United States)

    Harvey, Alexis Nadine; Snape, Ian; Siciliano, Steven Douglas

    2012-02-01

    Bioremediation has been used to remediate petroleum hydrocarbon (PHC)-contaminated sites in polar regions; however, limited knowledge exists in understanding how frozen conditions influence factors that regulate microbial activity. We hypothesized that increased liquid water (θ(liquid) ) would affect nutrient supply rates (NSR) and gas diffusion under frozen conditions. If true, management practices that increase θ(liquid) should also increase bioremediation in polar soils by reducing nutrient and oxygen limitations. Influence of θ(liquid) on NSR was determined using diesel-contaminated soil (0-8,000 mg kg(-1)) from Casey Station, Antarctica. The θ(liquid) was altered between 0.007 and 0.035 cm(3) cm(-3) by packing soil cores at different bulk densities. The nutrient supply rate of NH 4+ and NO 3-, as well as gas diffusion coefficient, D(s), were measured at two temperatures, 21°C and -5°C, to correct for bulk density effects. Freezing decreased NSR of both NH 4+ and NO 3-, with θ(liquid) linked to nitrate and ammonia NSR in frozen soil. Similarly for D(s), decreases due to freezing were much more pronounced in soils with low θ(liquid) compared to soils with higher θ(liquid) contents. Additional studies are needed to determine the relationship between degradation rates and θ(liquid) under frozen conditions. Copyright © 2011 SETAC.

  20. Isotopic mass-dependence of metal cation diffusion coefficients in liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Bourg, I.C.; Richter, F.M.; Christensen, J.N.; Sposito, G.

    2009-01-11

    Isotope distributions in natural systems can be highly sensitive to the mass (m) dependence of solute diffusion coefficients (D) in liquid water. Isotope geochemistry studies routinely have assumed that this mass dependence either is negligible (as predicted by hydrodynamic theories) or follows a kinetic-theory-like inverse square root relationship (D {proportional_to} m{sup -0.5}). However, our recent experimental results and molecular dynamics (MD) simulations showed that the mass dependence of D is intermediate between hydrodynamic and kinetic theory predictions (D {proportional_to} m{sup -{beta}} with 0 {<=} {beta} < 0.2 for Li{sup +}, Cl{sup -}, Mg{sup 2+}, and the noble gases). In this paper, we present new MD simulations and experimental results for Na{sup +}, K{sup +}, Cs{sup +}, and Ca{sup 2+} that confirm the generality of the inverse power-law relation D {proportional_to} m{sup -{beta}}. Our new findings allow us to develop a general description of the influence of solute valence and radius on the mass dependence of D for monatomic solutes in liquid water. This mass dependence decreases with solute radius and with the magnitude of solute valence. Molecular-scale analysis of our MD simulation results reveals that these trends derive from the exponent {beta} being smallest for those solutes whose motions are most strongly coupled to solvent hydrodynamic modes.

  1. [Effect of ensilage on bioconversion of switchgrass to ethanol based on liquid hot water pretreatment].

    Science.gov (United States)

    Wu, Wentao; Ju, Meiting; Liu, Jinpeng; Liu, Boqun

    2016-04-25

    Ensilage is a traditional way of preserving fresh biomass. However, in order to apply ensilage to the ethanol biorefinery, two parameters need to be evaluated: quantity and quality changes of the biomass; and its effects on bioconversion process. To study these two aspects, switchgrass harvested on three different time points (Early, mid and late fall) were used as feedstock. The early fall harvested biomass was ensiled at 5 moisture levels ranging from 30% to 70%. Silage of 40% moisture and 3 other raw switchgrass were pretreated with liquid hot water, followed by enzymatic hydrolysis as well as simultaneous saccharification and fermentation. After 21 days storage pH values of all silages decreased below 4.0 and the dry matter losses were less than 2.0%, and structural sugars contents did not change dramatically. Liquid hot water caused more hemicellulose dissolution in the silage than in unensiled switchgrass. However, ensilage also increased the risk of releasing more sugar degradation products; After enzymatic hydrolysis, silage obtained higher total glucose, xylose and galactose yields than raw materials; After simultaneous saccharification and fermentation, ethanol concentration in silage was 12.1 g/L, higher than the unensiled switchgrass (10.3 g/L, 9.7 g/L and 10.6 g/L for early, mid and late fall respectively). Our results suggest that ensilage helps increase pretreatment efficiency and sugar yield, which increases final ethanol production.

  2. Studying of drug solubility in water and alcohols using drug-ammonium ionic liquid-compounds.

    Science.gov (United States)

    Halayqa, Mohammad; Pobudkowska, Aneta; Domańska, Urszula; Zawadzki, Maciej

    2017-10-03

    Synthesis of three mefenamic acid (MEF) derivatives - ionic liquid compounds composed of MEF in an anionic form and ammonium cation (choline, MEF1), or {di(2-hydroxyethyl)dimethyl ammonium (MEF2)}, or {tri(2-hydroxyethyl)methyl ammonium compound (MEF3)} is presented. The basic thermal properties of pure compounds i.e. fusion temperatures, and the enthalpy of fusion of these compounds have been measured with differential scanning microcalorimetry technique (DSC). Molar volumes have been calculated with the Barton group contribution method. The solubilities of MEF1, MEF2 and MEF3 using the dynamic method were measured at constant pH in a range of temperature from (290 to 370) K in three solvents: water, ethanol and 1-octanol. The experimental solubility data have been correlated by means of three commonly known G(E) equations: the Wilson, NRTL and UNIQUAC with the assumption that the systems studied here present simple eutectic behaviour. The activity coefficients of pharmaceuticals at saturated solutions in each binary mixture were calculated from the experimental data. The formation of MEF-ionic liquid compounds greatly increases the solubility in water in comparison with pure MEF or complexes with 2-hydroxypropyl-β-cyclodextrin. The development of these compounds formulations will assist in medication taking into account oral solid or gel medicines. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Hauled liquid waste as a pollutant of soils and waters in Poland

    Directory of Open Access Journals (Sweden)

    Karczmarczyk Agnieszka

    2016-06-01

    Full Text Available Hauled liquid waste as a pollutant of soils and waters in Poland. Improperly maintained holding tanks are often underestimated source of contamination of soil, groundwater and surface water. As a rule, wastewater stored in holding tanks, should be transported and treated in municipal wastewater treatment plants (WWTPs. There are 2,257,000 holding tanks in Poland, located mainly in rural areas. The article presents the results of analysis of wastewater management in 20 rural and urban-rural communes, which were chosen at random from the total number of 2,174 communes in Poland. The only criterion of commune selection was total or partial lack of sewerage system. Analysis of the collected data showed that on average only 27% of liquid waste from holding tanks ended at the WWTPs. The median is even lower and amounts to 17.5%. More than 4,000 Mg of P and 26,000 Mg of N is dispersed in the environment in uncontrolled manner. Those diffuse point sources of pollution may be one of the reasons in the difficulty of achieving of good ecological status of rivers and affect the quality of the Baltic Sea.

  4. Hematite(001)-liquid water interface from hybrid density functional-based molecular dynamics.

    Science.gov (United States)

    von Rudorff, Guido Falk; Jakobsen, Rasmus; Rosso, Kevin M; Blumberger, Jochen

    2016-10-05

    The atom-scale characterisation of interfaces between transition metal oxides and liquid water is fundamental to our mechanistic understanding of diverse phenomena ranging from crystal growth to biogeochemical transformations to solar fuel production. Here we report on the results of large-scale hybrid density functional theory-based molecular dynamics simulations for the hematite(001)-liquid water interface. A specific focus is placed on understanding how different terminations of the same surface influence surface solvation. We find that the two dominant terminations for the hematite(001) surface exhibit strong differences both in terms of the active species formed on the surface and the strength of surface solvation. According to present simulations, we find that charged oxyanions (-O(-)) and doubly protonated oxygens (-OH[Formula: see text]) can be formed on the iron terminated layer via autoionization of neutral -OH groups. No such charged species are found for the oxygen terminated surface. In addition, the missing iron sublayer in the iron terminated surface strongly influences the solvation structure, which becomes less well ordered in the vicinity of the interface. These pronounced differences are likely to affect the reactivity of the two surface terminations, and in particular the energetics of excess charge carriers at the surface.

  5. Influence of water on the interfacial behavior of gallium liquid metal alloys.

    Science.gov (United States)

    Khan, Mohammad R; Trlica, Chris; So, Ju-Hee; Valeri, Michael; Dickey, Michael D

    2014-12-24

    Eutectic gallium indium (EGaIn) is a promising liquid metal for a variety of electrical and optical applications that take advantage of its soft and fluid properties. The presence of a rapidly forming oxide skin on the surface of the metal causes it to stick to many surfaces, which limits the ability to easily reconfigure its shape on demand. This paper shows that water can provide an interfacial slip layer between EGaIn and other surfaces, which allows the metal to flow smoothly through capillaries and across surfaces without sticking. Rheological and surface characterization shows that the presence of water also changes the chemical composition of the oxide skin and weakens its mechanical strength, although not enough to allow the metal to flow freely in microchannels without the slip layer. The slip layer provides new opportunities to control and actuate liquid metal plugs in microchannels-including the use of continuous electrowetting-enabling new possibilities for shape reconfigurable electronics, sensors, actuators, and antennas.

  6. Enzymatic Saccharification and Ethanol Fermentation of Reed Pretreated with Liquid Hot Water

    Directory of Open Access Journals (Sweden)

    Jie Lu

    2012-01-01

    Full Text Available Reed is a widespread-growing, inexpensive, and readily available lignocellulosic material source in northeast China. The objective of this study is to evaluate the liquid hot water (LHW pretreatment efficiency of reed based on the enzymatic digestibility and ethanol fermentability of water-insoluble solids (WISs from reed after the LHW pretreatment. Several variables in the LHW pretreatment and enzymatic hydrolysis process were optimized. The conversion of glucan to glucose and glucose concentrations are considered as response variables in different conditions. The optimum conditions for the LHW pretreatment of reed area temperature of 180°C for 20min and a solid-to-liquid ratio of 1 : 10. These optimum conditions for the LHW pretreatment of reed resulted in a cellulose conversion rate of 82.59% in the subsequent enzymatic hydrolysis at 50°C for 72 h with a cellulase loading of 30 filter paper unit per gram of oven-dried WIS. Increasing the pretreatment temperature resulted in a higher enzymatic digestibility of the WIS from reed. Separate hydrolysis and fermentation of WIS showed that the conversion of glucan to ethanol reached 99.5% of the theoretical yield. The LHW pretreatment of reed is a suitable method to acquire a high recovery of fermentable sugars and high ethanol conversion yield.

  7. On the dissociative electron attachment as a potential source of molecular hydrogen in irradiated liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Cobut, V.; Jay-Gerin, J.-P.; Frongillo, Y. [Sherbrooke Univ., PQ (Canada). Faculte de Medecine; Patau, J.P. [Toulouse-3 Univ., 31 (France)

    1996-02-01

    In the radiolysis of liquid water, different mechanisms for the formation of molecular hydrogen (H{sub 2}) are involved at different times after the initial energy disposition. It has been suggested that the contributions of the e{sub aq}{sup -} + e{sub aq}{sup -}, H + e{sub aq}{sup -} and H + H reactions between hydrated electrons (e{sub aq}{sup -}) and hydrogen atoms in the spurs are not sufficient to account for all of the observed H{sub 2} yield (0.45 molecules/100 eV) on the microsecond time scale. Addressing the question of the origin of an unscavengeable H{sub 2} yield of 0.15 molecules/100 eV produced before spur expansion, we suggest that the dissociative capture of the so-called vibrationally-relaxing electrons by H{sub 2}O molecules is a possible pathway for the formation of part of the initial H{sub 2} yield. Comparison of recent dissociative-electron-attachment H{sup -}-anion yield-distribution measurements from amorphous H{sub 2}O films with the energy spectrum of vibrationally-relaxing electrons in irradiated liquid water, calculated by Monte Carlo simulations, plays in favor of this hypothesis. (author).

  8. RESEARCH ON TRANSFER OF LIQUID WATER ABSORPTION OF KNITTED STRUCTURES FOR SOCKS DESTINATION

    Directory of Open Access Journals (Sweden)

    VLAD Dorin

    2016-05-01

    Full Text Available For to adjust the heat, body removes heat. Depending on physical effort, it gives more or less moisture. Moisture removed from the body should be taken from the skin and directed outwards through clothing. This can be due to moisture absorption ability, and because of the capillary effect. This study is a part of a very extensive work on the influence of characteristics and raw materials, knitted structure and density on comfort properties of socks. If a high level of perspiration, moisture liquid, it is important that it be removed as quickly from skin and clothing led outside. From here can evaporate into the environment. This is achieved through the capillary effect of fabrics that may effectively transport moisture. Storage capacity and moisture transfer of a textile depends on the composition and structure. In laboratory conditions, methods for assessing the behavior of textiles against moisture is applied differentially depending on the state humidity: vapor or liquid. With this method of determining the capacity of absorbing water by capillary action, samples have dimensions of 200/200 mm and at one end is immersed in water. The samples knit were made in two versions of the fineness machine.

  9. Dosimetric study of thermoluminescent detectors in clinical photon beams using liquid water and PMMA phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Matsushima, Luciana C., E-mail: lmatsushima@ipen.br [Gerencia de Metrologia das Radiacoes (GMR) - Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Av. Prof. Lineu Prestes, 2242, Cidade Universitaria, CEP: 05508-000, Sao Paulo, SP (Brazil); Veneziani, Glauco R. [Gerencia de Metrologia das Radiacoes (GMR) - Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Av. Prof. Lineu Prestes, 2242, Cidade Universitaria, CEP: 05508-000, Sao Paulo, SP (Brazil); Sakuraba, Roberto K. [Gerencia de Metrologia das Radiacoes (GMR) - Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Av. Prof. Lineu Prestes, 2242, Cidade Universitaria, CEP: 05508-000, Sao Paulo, SP (Brazil); Sociedade Beneficente Israelita Brasileira - Hospital Albert Einstein (HAE), Avenida Albert Einstein, 665, Morumbi, CEP: 05652-000, Sao Paulo, SP (Brazil); Cruz, Jose C. da [Sociedade Beneficente Israelita Brasileira - Hospital Albert Einstein (HAE), Avenida Albert Einstein, 665, Morumbi, CEP: 05652-000, Sao Paulo, SP (Brazil)

    2012-07-15

    The purpose of this study was the dosimetric evaluation of thermoluminescent detectors of calcium sulphate doped with dysprosium (CaSO{sub 4}:Dy) produced by IPEN compared to the TL response of lithium fluoride doped with magnesium and titanium (LiF:Mg,Ti) dosimeters and microdosimeters produced by Harshaw Chemical Company to clinical photon beams dosimetry (6 and 15 MV) using liquid water and PMMA phantoms. - Highlights: Black-Right-Pointing-Pointer Dosimetric study of thermoluminescent detectors of CaSO{sub 4}:Dy, LiF:Mg,Ti and {mu}LiF:Mg,Ti. Black-Right-Pointing-Pointer Clinical (6 and 15 MV) photon beams dosimetry using liquid water and PMMA phantom. Black-Right-Pointing-Pointer Linear behavior to the dose range (0.1 to 5 Gy). Black-Right-Pointing-Pointer TL response reproducibility better than {+-}4.34%. Black-Right-Pointing-Pointer CaSO{sub 4}:Dy represent a cheaper alternative to the TLD-100.

  10. Cloud optical thickness and liquid water path – does the k coefficient vary with droplet concentration?

    Directory of Open Access Journals (Sweden)

    O. Geoffroy

    2011-09-01

    Full Text Available Cloud radiative transfer calculations in general circulation models involve a link between cloud microphysical and optical properties. Indeed, the liquid water content expresses as a function of the mean volume droplet radius, while the light extinction is a function of their mean surface radius. There is a small difference between these two parameters because of the droplet spectrum width. This issue has been addressed by introducing an empirical multiplying correction factor to the droplet concentration. Analysis of in situ sampled data, however, revealed that the correction factor decreases when the concentration increases, hence partially mitigating the aerosol indirect effect. Five field experiments are reanalyzed here, in which standard and upgraded versions of the droplet spectrometer were used to document shallow cumulus and stratocumulus topped boundary layers. They suggest that the standard probe noticeably underestimates the correction factor compared to the upgraded versions. The analysis is further refined to demonstrate that the value of the correction factor derived by averaging values calculated locally along the flight path overestimates the value derived from liquid water path and optical thickness of a cloudy column, and that there is no detectable relationship between the correction factor and the droplet concentration. It is also shown that the droplet concentration dilution by entrainment-mixing after CCN activation is significantly stronger in shallow cumuli than in stratocumulus layers. These various effects are finally combined to produce the today best estimate of the correction factor to use in general circulation models.

  11. Ternary liquid-liquid equilibria of dimethyl carbonate + 2-propanol + water system at 303.15 and 313.15 K

    Science.gov (United States)

    Ginting, Rizqy Romadhona; Mustain, Asalil; Tetrisyanda, Rizki; Gunardi, Ignatius; Wibawa, Gede

    2015-12-01

    In this work, liquid-liquid equilibria data of dimethyl carbonate (DMC) + 2-propanol + water system were accurately determined at 303.15 and 313.15 K using stirred and jacketed equilibrium cell under atmospheric pressure. The reliabilities of the experimental data were confirmed using Bachman-Brown correlation giving r-squared value of 0.9993 and 0.9983 at 303.15 and 313.15 K, respectively. Experimental data obtained in this work exhibit Treybal's Type I ternary phase behavior. The selectivity and distribution coefficient of DMC increases with addition of DMC concentration in the organic phase. On the other hand, the effect of temperature to phase boundary was found to be not significant. The data were correlated well using the Non-Random Two Liquid (NRTL) and Universal Quasi-Chemical (UNIQUAC) activity coefficient models with root-mean-square deviation of 1.5% and 1.3%, respectively.

  12. Surface tension of ab initio liquid water at the water-air interface.

    Science.gov (United States)

    Nagata, Yuki; Ohto, Tatsuhiko; Bonn, Mischa; Kühne, Thomas D

    2016-05-28

    We report calculations on the surface tension of the water-air interface using ab initio molecular dynamics (AIMD) simulations. We investigate the influence of the cell size on surface tension of water from force field molecular dynamics simulations. We find that the calculated surface tension increases with increasing simulation cell size, thereby illustrating that a correction for finite size effects is essential for small systems that are customary in AIMD simulations. Moreover, AIMD simulations reveal that the use of a double-ζ basis set overestimates the experimentally measured surface tension due to the Pulay stress while more accurate triple and quadruple-ζ basis sets give converged results. We further demonstrate that van der Waals corrections critically affect the surface tension. AIMD simulations without the van der Waals correction substantially underestimate the surface tension while the van der Waals correction with the Grimme's D2 technique results in a value for the surface tension that is too high. The Grimme's D3 van der Waals correction provides a surface tension close to the experimental value. Whereas the specific choices for the van der Waals correction and basis sets critically affect the calculated surface tension, the surface tension is remarkably insensitive to the details of the exchange and correlation functionals, which highlights the impact of long-range interactions on the surface tension. Our simulated values provide important benchmarks, both for improving van der Waals corrections and AIMD simulations of aqueous interfaces.

  13. Characterization of a dielectric barrier discharge in contact with liquid and producing a plasma activated water

    Science.gov (United States)

    Neretti, G.; Taglioli, M.; Colonna, G.; Borghi, C. A.

    2017-01-01

    In this work a low-temperature plasma source for the generation of plasma activated water (PAW) is developed and characterized. The plasma reactor was operated by means of an atmospheric-pressure air dielectric barrier discharge (DBD). The plasma generated is in contact with the water surface and is able to chemically activate the liquid medium. Electrodes were supplied by both sinusoidal and nanosecond-pulsed voltage waveforms. Treatment times were varied from 2 to 12 min to increase the energy dose released to the water by the DBD plasma. The physics of the discharge was studied by means of electrical, spectroscopic and imaging diagnostics. The interaction between the plasma and the liquid was investigated as well. Temperature and composition of the treated water were detected. Images of the discharges showed a filamentary behaviour in the sinusoidal case and a more homogeneous behaviour in the nanosecond-pulsed one. The images and the electrical measurements allowed to evaluate an average electron number density of about 4  ×  1019 and 6  ×  1017 m-3 for the sinusoidal and nanosecond-pulsed discharges respectively. Electron temperatures in the range of 2.1÷2.6 eV were measured by using spectroscopic diagnostics. Rotational temperatures in the range of 318-475 K were estimated by fitting synthetic spectra with the measured ones. Water temperature and pH level did not change significantly after the exposure to the DBD plasma. The production of ozone and hydrogen peroxide within the water was enhanced by increasing the plasma treatment time and the energy dose. Numerical simulations of the nanosecond-pulsed discharge were performed by using a self-consistent coupling of state-to-state kinetics of the air mixture with the Boltzmann equation of free electron kinetics. Temporal evolution of the electron energy distribution function shows departure from the Maxwellian distribution especially during the afterglow phase of the discharge. When

  14. A corresponding-states analysis of the liquid-vapor equilibrium properties of common water models

    Science.gov (United States)

    Fugel, Malte; Weiss, Volker C.

    2017-02-01

    Many atomistic potential models have been proposed to reproduce the properties of real water and to capture as many of its anomalies as possible. The large number of different models indicates that this task is by no means an easy one. Some models are reasonably successful for various properties, while others are designed to account for only a very few specific features of water accurately. Among the most popular models are SPC/E, TIP4P, TIP4P/2005, TIP4P/Ice, and TIP5P-E. Here, we report the equilibrium properties of the liquid-vapor coexistence, such as the densities of the liquid phase and the vapor phase, the interfacial tension between them, and the vapor pressure at saturation. From these data, the critical parameters are determined and subsequently used to cast the liquid-vapor coexistence properties into a corresponding-states form following Guggenheim's suggestions. Doing so reveals that the three TIP4P-based models display the same corresponding-states behavior and that the SPC/E model behaves quite similarly. Only the TIP5P-E model shows clear deviations from the corresponding-states properties of the other models. A comparison with data for real water shows that the reduced surface tension is well described, while the reduced coexistence curve is too wide. The models underestimate the critical compressibility factor and overestimate Guggenheim's ratio as well as the reduced boiling temperature (Guldberg's ratio). As demonstrated by the collapse of the data for the TIP4P-based models, these deviations are inherent to the specific model and cannot be corrected by a simple reparametrization. For comparison, the results for two recent polarizable models, HBP and BK3, are shown, and both models are seen to perform well in terms of absolute numbers and in a corresponding-states framework. The kind of analysis applied here can therefore be used as a guideline in the design of more accurate and yet simple multi-purpose models of water.

  15. A corresponding-states analysis of the liquid-vapor equilibrium properties of common water models.

    Science.gov (United States)

    Fugel, Malte; Weiss, Volker C

    2017-02-14

    Many atomistic potential models have been proposed to reproduce the properties of real water and to capture as many of its anomalies as possible. The large number of different models indicates that this task is by no means an easy one. Some models are reasonably successful for various properties, while others are designed to account for only a very few specific features of water accurately. Among the most popular models are SPC/E, TIP4P, TIP4P/2005, TIP4P/Ice, and TIP5P-E. Here, we report the equilibrium properties of the liquid-vapor coexistence, such as the densities of the liquid phase and the vapor phase, the interfacial tension between them, and the vapor pressure at saturation. From these data, the critical parameters are determined and subsequently used to cast the liquid-vapor coexistence properties into a corresponding-states form following Guggenheim's suggestions. Doing so reveals that the three TIP4P-based models display the same corresponding-states behavior and that the SPC/E model behaves quite similarly. Only the TIP5P-E model shows clear deviations from the corresponding-states properties of the other models. A comparison with data for real water shows that the reduced surface tension is well described, while the reduced coexistence curve is too wide. The models underestimate the critical compressibility factor and overestimate Guggenheim's ratio as well as the reduced boiling temperature (Guldberg's ratio). As demonstrated by the collapse of the data for the TIP4P-based models, these deviations are inherent to the specific model and cannot be corrected by a simple reparametrization. For comparison, the results for two recent polarizable models, HBP and BK3, are shown, and both models are seen to perform well in terms of absolute numbers and in a corresponding-states framework. The kind of analysis applied here can therefore be used as a guideline in the design of more accurate and yet simple multi-purpose models of water.

  16. Operation of a breadboard liquid-sorbent/membrane-contactor system for removing carbon dioxide and water vapor from air

    Science.gov (United States)

    Mccray, Scott B.; Ray, Rod; Newbold, David D.; Millard, Douglas L.; Friesen, Dwayne T.; Foerg, Sandra

    1992-01-01

    Processes to remove and recover carbon dioxide (CO2) and water vapor from air are essential for successful long-duration space missions. This paper presents results of a developmental program focused on the use of a liquid-sorbent/membrane-contactor (LSMC) system for removal of CO2 and water vapor from air. In this system, air from the spacecraft cabin atmosphere is circulated through one side of a hollow-fiber membrane contactor. On the other side of the membrane contactor is flowed a liquid sorbent, which absorbs the CO2 and water vapor from the feed air. The liquid sorbent is then heated to desorb the CO2 and water vapor. The CO2 is subsequently removed from the system as a concentrated gas stream, whereas the water vapor is condensed, producing a water stream. A breadboard system based on this technology was designed and constructed. Tests showed that the LSMC breadboard system can produce a CO2 stream and a liquid-water stream. Details are presented on the operation of the system, as well as the effects on performance of variations in feed conditions.

  17. Combustion water purification techniques influence on OBT analysing using liquid scintillation counting method

    Energy Technology Data Exchange (ETDEWEB)

    Varlam, C.; Vagner, I.; Faurescu, I.; Faurescu, D. [National Institute for Cryogenics and Isotopic Technologies, Valcea (Romania)

    2015-03-15

    In order to determine organically bound tritium (OBT) from environmental samples, these must be converted into water, measurable by liquid scintillation counting (LSC). For this purpose we conducted some experiments to determine OBT level of a grass sample collected from an uncontaminated area. The studied grass sample was combusted in a Parr bomb. However usual interfering phenomena were identified: color or chemical quench, chemiluminescence, overlap over tritium spectrum because of other radionuclides presence as impurities ({sup 14}C from organically compounds, {sup 36}Cl as chloride and free chlorine, {sup 40}K as potassium cations) and emulsion separation. So the purification of the combustion water before scintillation counting appeared to be essential. 5 purification methods were tested: distillation with chemical treatment (Na{sub 2}O{sub 2} and KMnO{sub 4}), lyophilization, chemical treatment (Na{sub 2}O{sub 2} and KMnO{sub 4}) followed by lyophilization, azeotropic distillation with toluene and treatment with a volcanic tuff followed by lyophilization. After the purification step each sample was measured and the OBT measured concentration, together with physico-chemical analysis of the water analyzed, revealed that the most efficient method applied for purification of the combustion water was the method using chemical treatment followed by lyophilization.

  18. Water Pipeline Monitoring and Leak Detection using Flow Liquid Meter Sensor

    Science.gov (United States)

    Rahmat, R. F.; Satria, I. S.; Siregar, B.; Budiarto, R.

    2017-04-01

    Water distribution is generally installed through underground pipes. Monitoring the underground water pipelines is more difficult than monitoring the water pipelines located on the ground in open space. This situation will cause a permanent loss if there is a disturbance in the pipeline such as leakage. Leaks in pipes can be caused by several factors, such as the pipe’s age, improper installation, and natural disasters. Therefore, a solution is required to detect and to determine the location of the damage when there is a leak. The detection of the leak location will use fluid mechanics and kinematics physics based on harness water flow rate data obtained using flow liquid meter sensor and Arduino UNO as a microcontroller. The results show that the proposed method is able to work stably to determine the location of the leak which has a maximum distance of 2 metres, and it’s able to determine the leak location as close as possible with flow rate about 10 litters per minute.

  19. Modeling the Liquid Water Transport in the Gas Diffusion Layer for Polymer Electrolyte Membrane Fuel Cells Using a Water Path Network

    Directory of Open Access Journals (Sweden)

    Dietmar Gerteisen

    2013-09-01

    Full Text Available In order to model the liquid water transport in the porous materials used in polymer electrolyte membrane (PEM fuel cells, the pore network models are often applied. The presented model is a novel approach to further develop these models towards a percolation model that is based on the fiber structure rather than the pore structure. The developed algorithm determines the stable liquid water paths in the gas diffusion layer (GDL structure and the transitions from the paths to the subsequent paths. The obtained water path network represents the basis for the calculation of the percolation process with low calculation efforts. A good agreement with experimental capillary pressure-saturation curves and synchrotron liquid water visualization data from other literature sources is found. The oxygen diffusivity for the GDL with liquid water saturation at breakthrough reveals that the porosity is not a crucial factor for the limiting current density. An algorithm for condensation is included into the model, which shows that condensing water is redirecting the water path in the GDL, leading to an improved oxygen diffusion by a decreased breakthrough pressure and changed saturation distribution at breakthrough.

  20. Trace determination of volatile polycyclic aromatic hydrocarbons in natural waters by magnetic ionic liquid-based stir bar dispersive liquid microextraction.

    Science.gov (United States)

    Benedé, Juan L; Anderson, Jared L; Chisvert, Alberto

    2018-01-01

    In this work, a novel hybrid approach called stir bar dispersive liquid microextraction (SBDLME) that combines the advantages of stir bar sorptive extraction (SBSE) and dispersive liquid-liquid microextraction (DLLME) has been employed for the accurate and sensitive determination of ten polycyclic aromatic hydrocarbons (PAHs) in natural water samples. The extraction is carried out using a neodymium stir bar magnetically coated with a magnetic ionic liquid (MIL) as extraction device, in such a way that the MIL is dispersed into the solution at high stirring rates. Once the stirring is ceased, the MIL is magnetically retrieved onto the stir bar, and subsequently subjected to thermal desorption (TD) coupled to a gas chromatography-mass spectrometry (GC-MS) system. The main parameters involved in TD, as well as in the extraction step affecting the extraction efficiency (i.e., MIL amount, extraction time and ionic strength) were evaluated. Under the optimized conditions, the method was successfully validated showing good linearity, limits of detection and quantification in the low ng L(-1) level, good intra- and inter-day repeatability (RSD < 13%) and good enrichment factors (18 - 717). This sensitive analytical method was applied to the determination of trace amounts of PAHs in three natural water samples (river, tap and rainwater) with satisfactory relative recovery values (84-115%), highlighting that the matrices under consideration do not affect the extraction process. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Development of an on-line mixed-mode gel liquid chromatography×reversed phase liquid chromatography method for separation of water extract from Flos Carthami.

    Science.gov (United States)

    Wang, Yu-Qing; Tang, Xu; Li, Jia-Fu; Wu, Yun-Long; Sun, Yu-Ying; Fang, Mei-Juan; Wu, Zhen; Wang, Xiu-Min; Qiu, Ying-Kun

    2017-10-13

    A novel on-line comprehensive two-dimensional liquid chromatography (2D-LC) method by coupling mixed-mode gel liquid chromatography (MMG-LC) with reversed phase liquid chromatography (RPLC) was developed. A mixture of 17 reference compounds was used to study the separation mechanism. A crude water extract of Flos Carthami was applied to evaluate the performance of the novel 2D-LC system. In the first dimension, the extract was eluted with a gradient of water/methanol over a cross-linked dextran gel Sephadex LH-20 column. Meanwhile, the advantages of size exclusion, reversed phase partition and adsorption separation mechanism were exploited before further on-line reversed phase purification on the second dimension. This novel on-line mixed-mode Sephadex LH-20×RPLC method provided higher peak resolution, sample processing ability (2.5mg) and better orthogonality (72.9%) versus RPLC×RPLC and hydrophilic interaction liquid chromatography (HILIC)×RPLC. To the best of our knowledge, this is the first report of a mixed-mode Sephadex LH-20×RPLC separation method with successful applications in on-line mode, which might be beneficial for harvesting targets from complicated medicinal plants. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Solubility limit of methyl red and methylene blue in microemulsions and liquid crystals of water, sds and pentanol systems

    OpenAIRE

    Beri, D.; Pratami, A.; Gobah, P. L.; Dwimala, P.; Amran, A.

    2017-01-01

    Solubility of dyes in amphiphilic association structures of water, SDS and penthanol system (i.e. in the phases of microemulsions and liquid crystals) was attracted much interest due to its wide industrial and technological applications. This research was focused on understanding the solubility limitation of methyl red and methylene blue in microemulsion and liquid crystal phases. Experimental results showed that the highest solubility of methyl red was in LLC, followed by w/o microemulsion a...

  3. Spectral contaminant identifier for off-axis integrated cavity output spectroscopy measurements of liquid water isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Brian Leen, J.; Berman, Elena S. F.; Gupta, Manish [Los Gatos Research, 67 East Evelyn Avenue, Suite 3, Mountain View, California 94041-1518 (United States); Liebson, Lindsay [Department of Mechanical Engineering, Stanford University, Stanford, California 94305 (United States)

    2012-04-15

    Developments in cavity-enhanced absorption spectrometry have made it possible to measure water isotopes using faster, more cost-effective field-deployable instrumentation. Several groups have attempted to extend this technology to measure water extracted from plants and found that other extracted organics absorb light at frequencies similar to that absorbed by the water isotopomers, leading to {delta}{sup 2}H and {delta}{sup 18}O measurement errors ({Delta}{delta}{sup 2}H and {Delta}{delta}{sup 18}O). In this note, the off-axis integrated cavity output spectroscopy (ICOS) spectra of stable isotopes in liquid water is analyzed to determine the presence of interfering absorbers that lead to erroneous isotope measurements. The baseline offset of the spectra is used to calculate a broadband spectral metric, m{sub BB}, and the mean subtracted fit residuals in two regions of interest are used to determine a narrowband metric, m{sub NB}. These metrics are used to correct for {Delta}{delta}{sup 2}H and {Delta}{delta}{sup 18}O. The method was tested on 14 instruments and {Delta}{delta}{sup 18}O was found to scale linearly with contaminant concentration for both narrowband (e.g., methanol) and broadband (e.g., ethanol) absorbers, while {Delta}{delta}{sup 2}H scaled linearly with narrowband and as a polynomial with broadband absorbers. Additionally, the isotope errors scaled logarithmically with m{sub NB}. Using the isotope error versus m{sub NB} and m{sub BB} curves, {Delta}{delta}{sup 2}H and {Delta}{delta}{sup 18}O resulting from methanol contamination were corrected to a maximum mean absolute error of 0.93 per mille and 0.25 per mille respectively, while {Delta}{delta}{sup 2}H and {Delta}{delta}{sup 18}O from ethanol contamination were corrected to a maximum mean absolute error of 1.22 per mille and 0.22 per mille . Large variation between instruments indicates that the sensitivities must be calibrated for each individual isotope analyzer. These results suggest that the

  4. Activity coefficients at infinite dilution measurements for organic solutes and water in the ionic liquid 1-ethyl-3-methylimidazolium trifluoroacetate.

    Science.gov (United States)

    Domańska, Urszula; Marciniak, Andrzej

    2007-10-18

    The activity coefficients at infinite dilution, gamma13(infinity) for 29 solutes, alkanes, alkenes, alkynes, cycloalkanes, aromatic hydrocarbons, alcohols and water in the ionic liquid 1-ethyl-3-methylimidazolium trifluoroacetate ([EMIM][TFA]), were determined by gas-liquid chromatography at temperatures from 298.15-368.15 K. The partial molar excess enthalpies at infinite dilution DeltaH1(E,infinity) values were calculated from the experimental gamma13(infinity) values obtained over the temperature range. The selectivities for the hexane/benzene and cyclohexane/benzene separation were calculated from gamma13(infinity) and compared to the literature values for other ionic liquids, NMP and sulfolane.

  5. The origin of the Debye relaxation in liquid water and fitting the high frequency excess response.

    Science.gov (United States)

    Elton, Daniel C

    2017-07-19

    We critically review the literature on the Debye absorption peak of liquid water and the excess response found on the high frequency side of the Debye peak. We find a lack of agreement on the microscopic phenomena underlying both of these features. To better understand the molecular origin of Debye peak we ran large scale molecular dynamics simulations and performed several different distance-dependent decompositions of the low frequency dielectric spectra, finding that it involves processes that take place on scales of 1.5-2.0 nm. We also calculated the k-dependence of the Debye relaxation, finding it to be highly dispersive. These findings are inconsistent with models that relate Debye relaxation to local processes such as the rotation/translation of molecules after H-bond breaking. We introduce the spectrumfitter Python package for fitting dielectric spectra and analyze different ways of fitting the high frequency excess, such as including one or two additional Debye peaks. We propose using the generalized Lydanne-Sachs-Teller (gLST) equation as a way of testing the physicality of model dielectric functions. Our attempts at fitting the experimental spectrum using the gLST relation as a constraint indicate that the traditional way of fitting the excess response with secondary and tertiary Debye relaxations is problematic. All of our work is consistent with the recent theory of Popov et al. (2016) that Debye relaxation is due to the migration of Bjerrum-like defects in the hydrogen bond network. Under this theory, the mechanism of Debye relaxation in liquid water is similar to the mechanism in ice, but the heterogeneity and power-law dynamics of the H-bond network in water results in excess response on the high frequency side of the peak.

  6. In-situ ionic liquid dispersive liquid-liquid microextraction using a new anion-exchange reagent combined Fe3O4 magnetic nanoparticles for determination of pyrethroid pesticides in water samples.

    Science.gov (United States)

    Fan, Chen; Liang, You; Dong, Hongqiang; Ding, Guanglong; Zhang, Wenbing; Tang, Gang; Yang, Jiale; Kong, Dandan; Wang, Deng; Cao, Yongsong

    2017-07-04

    In this work, in-situ ionic liquid dispersive liquid-liquid microextraction combined ultrasmall Fe3O4 magnetic nanoparticles was developed as a kind of pretreatment method to detect pyrethroid pesticides in water samples. New anion-exchange reagents including Na[DDTC] and Na[N(CN)2] were optimized for in-situ extraction pyrethroids, which showed enhanced microextraction performance. Pyrethroids were enriched by hydrophilic ionic liquid [P4448][Br] (aqueous solution, 200 μL, 0.2 mmol mL-1) reaction in-situ with anion-exchange reagent Na[N(CN)2] (aqueous solution, 300 μL, 0.2 mmol mL-1) forming hydrophobic ionic liquid as extraction agent in water sample (10 mL). Ultrasmall superparamagnetic iron oxide nanoparticles (30 mg) were used to collect the mixture of ionic liquid and pyrethroids followed by elution with acetonitrile. The extraction of ionic liquid strategies was unique and efficiently fulfilled with high enrichment factors (176-213) and good recoveries (80.20-117.31%). The method was successively applied to the determination of pyrethroid pesticides in different kinds of water samples with the limits of detection ranged from 0.16 to 0.21 μg L-1. The proposed method is actually nanometer-level microextraction (average size 80 nm) with the advantages of simplicity, rapidity, and sensitivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Structure and dynamics of POPC bilayers in water solutions of room temperature ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Benedetto, Antonio [School of Physics, University College Dublin, Dublin 4 (Ireland); Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institut, 5232 Villigen (Switzerland); Bingham, Richard J. [York Centre for Complex Systems Analysis, University of York, York YO10 5GE (United Kingdom); Ballone, Pietro [Center for Life Nano Science @Sapienza, Istituto Italiano di Tecnologia (IIT), 00185 Roma (Italy); Department of Physics, Università di Roma “La Sapienza,” 00185 Roma (Italy)

    2015-03-28

    Molecular dynamics simulations in the NPT ensemble have been carried out to investigate the effect of two room temperature ionic liquids (RTILs), on stacks of phospholipid bilayers in water. We consider RTIL compounds consisting of chloride ([bmim][Cl]) and hexafluorophosphate ([bmim][PF{sub 6}]) salts of the 1-buthyl-3-methylimidazolium ([bmim]{sup +}) cation, while the phospholipid bilayer is made of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). Our investigations focus on structural and dynamical properties of phospholipid and water molecules that could be probed by inelastic and quasi-elastic neutron scattering measurements. The results confirm the fast incorporation of [bmim]{sup +} into the lipid phase already observed in previous simulations, driven by the Coulomb attraction of the cation for the most electronegative oxygens in the POPC head group and by sizeable dispersion forces binding the neutral hydrocarbon tails of [bmim]{sup +} and of POPC. The [bmim]{sup +} absorption into the bilayer favours the penetration of water into POPC, causes a slight but systematic thinning of the bilayer, and further stabilises hydrogen bonds at the lipid/water interface that already in pure samples (no RTIL) display a lifetime much longer than in bulk water. On the other hand, the effect of RTILs on the diffusion constant of POPC (D{sub POPC}) does not reveal a clearly identifiable trend, since D{sub POPC} increases upon addition of [bmim][Cl] and decreases in the [bmim][PF{sub 6}] case. Moreover, because of screening, the electrostatic signature of each bilayer is only moderately affected by the addition of RTIL ions in solution. The analysis of long wavelength fluctuations of the bilayers shows that RTIL sorption causes a general decrease of the lipid/water interfacial tension and bending rigidity, pointing to the destabilizing effect of RTILs on lipid bilayers.

  8. Microwave measurements of temperature profiles, integrated water vapour, and liquid water path at Thule Air Base, Greenland.

    Science.gov (United States)

    Pace, Giandomenico; Di Iorio, Tatiana; di Sarra, Alcide; Iaccarino, Antonio; Meloni, Daniela; Mevi, Gabriele; Muscari, Giovanni; Cacciani, Marco

    2017-04-01

    A RPG Humidity And Temperature PROfiler (HATPRO-G2 ) radiometer was installed at Thule Air Base (76.5° N, 68.8° W), Greenland, in June 2016 in the framework of the Study of the water VApour in the polar AtmosPhere (SVAAP) project. The Danish Meteorological Institute started measurements of atmospheric properties at Thule Air Base in early '90s. The Thule High Arctic Atmospheric Observatory (THAAO) has grown in size and observing capabilities during the last three decades through the international effort of United States (NCAR and University of Alaska Fairbanks) and Italian (ENEA, INGV, University of Roma and Firenze) institutions (http://www.thuleatmos-it.it). Within this context, the intensive field campaign of the SVAAP project was aimed at the investigation of the surface radiation budget and took place from 5 to 28 July, 2016. After the summer campaign the HATPRO has continued to operate in order to monitor the annual variability of the temperature profile and integrated water vapour as well as the presence and characteristics of liquid clouds in the Artic environment. The combined use of the HATPRO together with other automatic instruments, such as a new microwave spectrometer (the water Vapour Emission Spectrometer for Polar Atmosphere VESPA-22), upward- and downward-looking pyranometers and pyrgeometers, a zenith-looking pyrometer operating in the 9.6-11.5 µm spectral range, an all sky camera, and a meteorological station, allows to investigate the clouds' physical and optical properties, as well as their impact on the surface radiation budget. This study will present and discuss the first few months of HATPRO observations; the effectiveness of the statistical retrieval used to derive the physical parameters from the HATPRO brightness temperatures will also be investigated through the comparison of the temperature and humidity profiles, and integrated water vapour, with data from radiosondes launched during the summer campaign and in winter time.

  9. Satellite retrieval of the liquid water fraction in tropical clouds between −20 and −38 °C

    Directory of Open Access Journals (Sweden)

    D. L. Mitchell

    2012-07-01

    Full Text Available This study describes a satellite remote sensing method for directly retrieving the liquid water fraction in mixed phase clouds, and appears unique in this respect. The method uses MODIS split-window channels for retrieving the liquid fraction from cold clouds where the liquid water fraction is less than 50% of the total condensate. This makes use of the observation that clouds only containing ice exhibit effective 12-to-11 μm absorption optical thickness ratios (βeff that are quasi-constant with retrieved cloud temperature T. This observation was made possible by using two CO2 channels to retrieve T and then using the 12 and 11 μm channels to retrieve emissivities and βeff. Thus for T < −40 °C, βeff is constant, but for T > −40 °C, βeff slowly increases due to the presence of liquid water, revealing mean liquid fractions of ~ 10% around −22 °C from tropical clouds identified as cirrus by the cloud mask. However, the uncertainties for these retrievals are large, and extensive in situ measurements are needed to refine and validate these retrievals. Such liquid levels are shown to reduce the cloud effective diameter De such that cloud optical thickness will increase by more than 50% for a given water path, relative to De corresponding to pure ice clouds. Such retrieval information is needed for validation of the cloud microphysics in climate models. Since low levels of liquid water can dominate cloud optical properties, tropical clouds between −25 and −20 °C may be susceptible to the first aerosol indirect effect.

  10. Resonant x-ray emission spectroscopy of liquid water: novel instrumentation, high resolution, and the"map" approach

    Energy Technology Data Exchange (ETDEWEB)

    Weinhardt, L.; Fuchs, O.; Blum, M.; B& #228; r, M.; Weigand, M.; Denlinger, J.D.; Zubavichus, Y.; Zharnikov, M.; Grunze, M.; Heske, C.; Umbach, E.

    2008-06-17

    Techniques to study the electronic structure of liquids are rare. Most recently, resonant x-ray emission spectroscopy (XES) has been shown to be an extremely versatile spectroscopy to study both occupied and unoccupied electronic states for liquids in thermodynamic equilibrium. However, XES requires high-brilliance soft x-ray synchrotron radiation and poses significant technical challenges to maintain a liquid sample in an ultra-high vacuum environment. Our group has therefore developed and constructed a novel experimental setup for the study of liquids, with the long-term goal of investigating the electronic structure of biological systems in aqueous environments. We have developed a flow-through liquid cell in which the liquid is separated from vacuum by a thin Si3N4 or SiC window and which allows a precise control of temperature. This approach has significant advantages compared to static liquids cells used in the past. Furthermore, we have designed a dedicated high-transmission, high-resolution soft x-ray spectrometer. The high transmission makes it possible to measure complete resonant XES"maps" in less than an hour, giving unprecedented detailed insight into the electronic structure of the investigated sample. Using this new equipment we have investigated the electronic structure of liquid water. Furthermore, our XES spectra and maps give information about ultra-fast dissociation on the timescale of the O 1s core hole lifetime, which is strongly affected by the initial state hydrogen bonding configuration.

  11. Liquid Water through Density-Functional Molecular Dynamics: Plane-Wave vs Atomic-Orbital Basis Sets

    CERN Document Server

    Miceli, Giacomo; Pasquarello, Alfredo

    2016-01-01

    We determine and compare structural, dynamical, and electronic properties of liquid water at near ambient conditions through density-functional molecular dynamics simulations, when using either plane-wave or atomic-orbital basis sets. In both frameworks, the electronic structure and the atomic forces are self-consistently determined within the same theoretical scheme based on a nonlocal density functional accounting for van der Waals interactions. The overall properties of liquid water achieved within the two frameworks are in excellent agreement with each other. Thus, our study supports that implementations with plane-wave or atomic-orbital basis sets yield equivalent results and can be used indiscriminately in study of liquid water or aqueous solutions.

  12. Liquid Water through Density-Functional Molecular Dynamics: Plane-Wave vs Atomic-Orbital Basis Sets.

    Science.gov (United States)

    Miceli, Giacomo; Hutter, Jürg; Pasquarello, Alfredo

    2016-08-09

    We determine and compare structural, dynamical, and electronic properties of liquid water at near ambient conditions through density-functional molecular dynamics simulations, when using either plane-wave or atomic-orbital basis sets. In both frameworks, the electronic structure and the atomic forces are self-consistently determined within the same theoretical scheme based on a nonlocal density functional accounting for van der Waals interactions. The overall properties of liquid water achieved within the two frameworks are in excellent agreement with each other. Thus, our study supports that implementations with plane-wave or atomic-orbital basis sets yield equivalent results and can be used indiscriminately in study of liquid water or aqueous solutions.

  13. Formulation and study some inverse problems in modeling of hydrophysical fields in water areas with "liquid" boundaries

    Science.gov (United States)

    Agoshkov, Valery

    2017-04-01

    There are different approaches for modeling boundary conditions describing hydrophysical fields in water areas with "liquid" boundaries. Variational data assimilation may also be considered as one of such approaches. Development of computer equipment, together with an increase in the quantity and quality of data from the satellites and other monitoring tools proves that the development of this particular approach is perspective. The range of connected the problems is wide - different recording forms of boundary conditions, observational data assimilation procedures and used models of hydrodynamics are possible. In this work some inverse problems and corresponding variational data assimilation ones, connected with mathematical modeling of hydrophysical fields in water areas (seas and oceans) with "liquid" ("open") boundaries, are formulated and studied. Note that the surface of water area (which can also be considered as a "liquid" boundary) is not included in the set of "liquid" boundaries, in this case "liquid" boundaries are borders between the areas "water-water". In the work, mathematical model of hydrothermodynamics in the water areas with "liquid" ("open") part of the boundary, a generalized statement of the problem and the splitting method for time approximation are formulated. Also the problem of variational data assimilation and iterative algorithm for solving inverse problems mentioned above are formulated. The work is based on [1]. The work was partly supported by the Russian Science Foundation (project 14-11-00609, the general formulation of the inverse problems) and by the Russian Foundation for Basic Research (project 16-01-00548, the formulation of the problem and its study). [1] V.I. Agoshkov, Methods for solving inverse problems and variational data assimilation problems of observations in the problems of the large-scale dynamics of the oceans and seas, Institute of Numerical Mathematics, RAS, Moscow, 2016 (in Russian).

  14. The individual and collective effects of exact exchange and dispersion interactions on the ab initio structure of liquid water.

    Science.gov (United States)

    DiStasio, Robert A; Santra, Biswajit; Li, Zhaofeng; Wu, Xifan; Car, Roberto

    2014-08-28

    In this work, we report the results of a series of density functional theory (DFT) based ab initio molecular dynamics (AIMD) simulations of ambient liquid water using a hierarchy of exchange-correlation (XC) functionals to investigate the individual and collective effects of exact exchange (Exx), via the PBE0 hybrid functional, non-local van der Waals/dispersion (vdW) interactions, via a fully self-consistent density-dependent dispersion correction, and an approximate treatment of nuclear quantum effects, via a 30 K increase in the simulation temperature, on the microscopic structure of liquid water. Based on these AIMD simulations, we found that the collective inclusion of Exx and vdW as resulting from a large-scale AIMD simulation of (H2O)128 significantly softens the structure of ambient liquid water and yields an oxygen-oxygen structure factor, SOO(Q), and corresponding oxygen-oxygen radial distribution function, gOO(r), that are now in quantitative agreement with the best available experimental data. This level of agreement between simulation and experiment demonstrated herein originates from an increase in the relative population of water molecules in the interstitial region between the first and second coordination shells, a collective reorganization in the liquid phase which is facilitated by a weakening of the hydrogen bond strength by the use of a hybrid XC functional, coupled with a relative stabilization of the resultant disordered liquid water configurations by the inclusion of non-local vdW/dispersion interactions. This increasingly more accurate description of the underlying hydrogen bond network in liquid water also yields higher-order correlation functions, such as the oxygen-oxygen-oxygen triplet angular distribution, POOO(θ), and therefore the degree of local tetrahedrality, as well as electrostatic properties, such as the effective molecular dipole moment, that are in much better agreement with experiment.

  15. Monitoring trihalomethanes in chlorinated waters using a dispersive liquid-liquid microextraction method with a non-chlorinated organic solvent and gas chromatography-mass spectrometry.

    Science.gov (United States)

    Pacheco-Fernández, Idaira; Herrera-Fuentes, Ariadna; Delgado, Bárbara; Pino, Verónica; Ayala, Juan H; Afonso, Ana M

    2017-03-01

    The environmental monitoring of trihalomethanes (THMs) has been performed by setting up a dispersive liquid-liquid microextraction method in combination with gas chromatography (GC)-mass spectrometry (MS). The optimized method only requires ∼26 µL of decanol as extractant solvent, dissolved in ∼1 mL of acetone (dispersive solvent) for 5 mL of the environmental water containing THMs. The mixture is then subjected to vortex for 1 min and then centrifuged for 2 min at 3500 rpm. The microdroplet containing the extracted THMs is then sampled with a micro-syringe, and injected (1 µL) in the GC-MS. The method is characterized for being fast (3 min for the entire sample preparation step) and environmentally friendly (low amounts of solvents required, being all non-chlorinated), and also for getting average relative recoveries of 90.2-106% in tap waters; relative standard deviation values always lower than 11%; average enrichment factors of 48-49; and detection limits down to 0.7 µg·L-1. Several waters: tap waters, pool waters, and wastewaters were successfully analyzed with the method proposed. Furthermore, the method was used to monitor the formation of THMs in wastewaters when different chlorination parameters, namely temperature and pH, were varied.

  16. Characterization of an Am-Be PGNAA set-up developed for in situ liquid analysis: Application to domestic waste water and industrial liquid effluents analysis

    Energy Technology Data Exchange (ETDEWEB)

    Idiri, Z., E-mail: zmidiri@yahoo.f [Centre de Recherche Nucleaire d' Alger, 02 Bd Frantz Fanon, B.P399, Alger-Gare (Algeria); Mazrou, H. [Centre de Recherche Nucleaire d' Alger, 02 Bd Frantz Fanon, B.P399, Alger-Gare (Algeria); Amokrane, A. [Universite des Sciences et de la Technologie Houari Boumediene, Alger (Algeria); Bedek, S. [Centre de Recherche Nucleaire d' Alger, 02 Bd Frantz Fanon, B.P399, Alger-Gare (Algeria)

    2010-01-15

    A prompt gamma neutron activation analysis (PGNAA) set-up with an Am-Be source developed for in situ analysis of liquid samples is described. The linearity of its response was tested for chlorine and cadmium dissolved in water. Prompt gamma efficiency of the system has been determined experimentally using prompt gamma of chlorine dissolved in water and detection limits for different elements have been derived for domestic waste water. A methodology to analyze any kind of liquid is then proposed. This methodology consists mainly on using standards with water as bulk or in the case of absolute method, to use gamma efficiency determined with prompt gammas emitted by chlorine dissolved in water. To take into account the thermal neutron flux variations inside the samples, flux monitoring was carried out using a He-3 neutron detector placed at the external sample container surface. Finally, to correct for the differences in gamma attenuation, average gamma attenuations factors were calculated using MCNP5 code. This method was then checked successfully by determining cadmium in industrial phosphoric acid and our result was in good agreement with that obtained with inductively coupled plasma (ICP) method.

  17. Microalgae pretreatment with liquid hot water to enhance enzymatic hydrolysis efficiency.

    Science.gov (United States)

    Yuan, Tao; Li, Xiekun; Xiao, Shiyuan; Guo, Ying; Zhou, Weizheng; Xu, Jingliang; Yuan, Zhenhong

    2016-11-01

    Nowadays, microalgae are being considered as promising raw material for bioethanol production. In this work, three process variables during liquid hot water (LHW) pretreatment prior to enzymatic hydrolysis by response surface methodology on Scenedesmus sp. WZKMT were investigated to enhance glucose recovery. Results indicated that the order of significance for three parameters was temperature>solid-to-liquid ratio>time. The optimal condition was 1:13 (w/v), 147°C and 40min. The concentration and recovery of glucose under this condition were 14.223g·L(-1) and 89.32%, respectively, which were up to 5-fold higher than the samples without LHW pretreatment. In addition, the surface morphologies of microalgae cells before and after LHW pretreatment were also verified using scanning electron microscopy (SEM). LHW pretreatment can greatly enhance the enzymatic efficiency, and can be regarded as an ideal pretreatment method for glucose recovery from microalgae. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Kinetic study of hydrolysis of xylan and agricultural wastes with hot liquid water.

    Science.gov (United States)

    Zhuang, Xinshu; Yuan, Zhenhong; Ma, Longlong; Wu, Chuangzhi; Xu, Mingzhong; Xu, Jingliang; Zhu, Shunni; Qi, Wei

    2009-01-01

    We investigated the kinetics of hot liquid water (HLW) hydrolysis over a 60-min period using a self-designed setup. The reaction was performed within the range 160-220 degrees C, under reaction conditions of 4.0 MPa, a 1:20 solid:liquid ratio (g/mL), at 500 rpm stirring speed. Xylan was chosen as a model compound for hemicelluloses, and two kinds of agricultural wastes-rice straw and palm shell-were used as typical feedstocks representative of herbaceous and woody biomasses, respectively. The hydrolysis reactions for the three kinds of materials followed a first-order sequential kinetic model, and the hydrolysis activation energies were 65.58 kJ/mol for xylan, 68.76 kJ/mol for rice straw, and 95.19 kJ/mol for palm shell. The activation energies of sugar degradation were 147.21 kJ/mol for xylan, 47.08 kJ/mol for rice straw and 79.74 kJ/mol for palm shell. These differences may be due to differences in the composition and construction of the three kinds of materials. In order to reduce the decomposition of sugars, the hydrolysis time of biomasses such as rice straw and palm shell should be strictly controlled.

  19. Micellization and interfacial behavior of imidazolium-based ionic liquids in organic solvent-water mixtures.

    Science.gov (United States)

    Pino, Verónica; Yao, Cong; Anderson, Jared L

    2009-05-15

    The surface and micellar properties of aqueous solutions of two imidazolium-based ionic liquids (ILs), 1-hexadecyl-3-butylimidazolium bromide (HDBIm-Br) and 1,3-didodecylimidazolium bromide (DDDDIm-Br), are examined in the presence of several organic solvents by surface tensiometry. The organic solvents studied include methanol, 1-propanol, 1-butanol, 1-pentanol, and acetonitrile. Increases in the critical micelle concentration (cmc) values were obtained for both ILs when increasing the organic solvent content with a more significant increase observed for the DDDDIm-Br IL. For both ILs, decreases in the maximum surface excess concentration (Gamma(max)), increases in the minimum surface area per surfactant molecule (A(min)), decreases in the adsorption efficiency (pC(20)), and decreases in the effectiveness of surface tension reduction (Pi(cmc)) were obtained when increasing the organic solvent content. However, the studied organic solvents affect the surface tension at the cmc (gamma(cmc)) differently; generating increases for DDDDIm-Br and decreases for HDBIm-Br. These changes can be linked to the different water-air interface orientation of both ILs in aqueous solutions free of organic solvents. Linear correlations between the extent of the change in these parameters when increasing the alkyl-chain of the alcohol modifier were also observed. A preliminary study of the utilization of HDBIm-Br in micellar-liquid chromatography (MLC) is also presented, demonstrating the applicability of the IL-aggregates in this analytical technique.

  20. Experiments on FTU with an actively water cooled liquid lithium limiter

    Energy Technology Data Exchange (ETDEWEB)

    Mazzitelli, G., E-mail: giuseppe.mazzitelli@enea.it [Associazione EURATOM-ENEA sulla Fusione, C.R. Frascati, C.P. 65-00044 Frascati, Rome (Italy); Apicella, M.L.; Apruzzese, G.; Crescenzi, F.; Iannone, F.; Maddaluno, G. [Associazione EURATOM-ENEA sulla Fusione, C.R. Frascati, C.P. 65-00044 Frascati, Rome (Italy); Pericoli-Ridolfini, V. [Associazione EURATOM-ENEA sulla Fusione, CREATE, Università di Napoli Federico II, 80125 Napoli (Italy); Roccella, S.; Reale, M.; Viola, B. [Associazione EURATOM-ENEA sulla Fusione, C.R. Frascati, C.P. 65-00044 Frascati, Rome (Italy); Lyublinski, I.; Vertkov, A. [JSC “RED STAR”, Moscow (Russian Federation)

    2015-08-15

    In order to prevent the overheating of the liquid Li surface and the consequent Li evaporation for T > 500 °C, an advanced version of the liquid lithium limiter has been realized and installed on FTU. This new system, named Cooled Lithium Limiter (CLL), has been optimized to demonstrate the lithium limiter capability to sustain thermal loads as high as 10 MW/m{sup 2} with up to 5 s of plasma pulse duration. The CLL operates with an actively cooled system with water circulation at the temperature of about 200 °C, for heating lithium up to the melting point and for the heat removal during the plasma discharges. To characterize CLL during discharges, a fast infrared camera and the spectroscopic signals from Li and D atom emission have been used. The experiments analyzed so far and simulated by ANSYS code, point out that heat loads as high as 2 MW/m{sup 2} for 1.5 s have been withstood without problems.

  1. Water Flow Testing and Unsteady Pressure Analysis of a Two-Bladed Liquid Oxidizer Pump Inducer

    Science.gov (United States)

    Schwarz, Jordan B.; Mulder, Andrew; Zoladz, Thomas

    2011-01-01

    The unsteady fluid dynamic performance of a cavitating two-bladed oxidizer turbopump inducer was characterized through sub-scale water flow testing. While testing a novel inlet duct design that included a cavitation suppression groove, unusual high-frequency pressure oscillations were observed. With potential implications for inducer blade loads, these high-frequency components were analyzed extensively in order to understand their origins and impacts to blade loading. Water flow testing provides a technique to determine pump performance without the costs and hazards associated with handling cryogenic propellants. Water has a similar density and Reynolds number to liquid oxygen. In a 70%-scale water flow test, the inducer-only pump performance was evaluated. Over a range of flow rates, the pump inlet pressure was gradually reduced, causing the flow to cavitate near the pump inducer. A nominal, smooth inducer inlet was tested, followed by an inlet duct with a circumferential groove designed to suppress cavitation. A subsequent 52%-scale water flow test in another facility evaluated the combined inducer-impeller pump performance. With the nominal inlet design, the inducer showed traditional cavitation and surge characteristics. Significant bearing loads were created by large side loads on the inducer during synchronous cavitation. The grooved inlet successfully mitigated these loads by greatly reducing synchronous cavitation, however high-frequency pressure oscillations were observed over a range of frequencies. Analytical signal processing techniques showed these oscillations to be created by a rotating, multi-celled train of pressure pulses, and subsequent CFD analysis suggested that such pulses could be created by the interaction of rotating inducer blades with fluid trapped in a cavitation suppression groove. Despite their relatively low amplitude, these high-frequency pressure oscillations posed a design concern due to their sensitivity to flow conditions and

  2. [Determination of three isothiazolinone biocides in water-borne adhesives by high performance liquid chromatography].

    Science.gov (United States)

    Zhou, Xiao; Li, Xiaolan; Chen, Zhiyan; Ye, Changwen; Zhou, Yun; Meng, Dongling

    2015-01-01

    A rapid high performance liquid chromatography (HPLC) method was developed for the quantitative analysis of three isothiazolinone biocides (2-methyl-4-isothiazolin-3-one (MI), 5-chloro-2-methyl-4-isothiazolin-3-one (CMI) and 1, 2-benzylisothiazolin-3-one (BIT)) in water-borne adhesives. The sample was extracted with methanol-water (1:1, v/v), and purified by centrifugation and filtration. The isothiazolones were separated on a C18 column with methanol-water as mobile phases under gradient elution and detected with a diode array detector (DAD). The pretreatment factors such as extraction solvent, extraction method, dilution ratio, extraction time were optimized. Under the optimized conditions, the targets had good linearities (r2H > or = 0.9992) in the range of 0.25-10.0 mg/L. The recoveries were between 92% and 103% with the relative standard deviations not more than 4%. The limits of detection (LODs) were between 0.43 mg/kg and 1.14 mg/kg. The limits of quantification (LOQs) were between 1.44 mg/kg and 3.81 mg/kg. The results showed that the method can achieve the purpose of quantitative detection. The analyses of real samples verified the reliability of this method.

  3. Determination of Trichloroethylene in Water by Liquid–Liquid Microextraction Assisted Solid Phase Microextraction

    Directory of Open Access Journals (Sweden)

    Mengliang Zhang

    2015-02-01

    Full Text Available A method for the determination of trichloroethylene (TCE in water using portable gas chromatography/mass spectrometry (GC/MS was developed. A novel sample preparation method, liquid–liquid microextraction assisted solid phase microextraction (LLME–SPME, is introduced. In this method, 20 µL of hexane was added to 10 mL of TCE contaminated aqueous samples to assist headspace SPME. The extraction efficiency of SPME was significantly improved with the addition of minute amounts of organic solvents (i.e., 20 µL hexane. The absolute recoveries of TCE at different concentrations were increased from 11%–17% for the samples extracted by SPME to 29%–41% for the samples extracted by LLME–SPME. The method was demonstrated to be linear from 10 to 1000 ng mL−1 for TCE in water. The improvements on extraction efficiencies were also observed for toluene and 1, 2, 4-trichlorobenzene in water by using LLME–SPME method. The LLME–SPME method was optimized by using response surface modeling (RSM.

  4. Assessment of three turbulence model performances in predicting water jet flow plunging into a liquid pool

    Directory of Open Access Journals (Sweden)

    Zidouni Kendil Faiza

    2010-01-01

    Full Text Available The main purpose of the current study is to numerically investigate, through computational fluid dynamics modeling, a water jet injected vertically downward through a straight circular pipe into a water bath. The study also aims to obtain a better understanding of jet behavior, air entrainment and the dispersion of bubbles in the developing flow region. For these purposes, three dimensional air and water flows were modeled using the volume of fluid technique. The equations in question were formulated using the density and viscosity of a 'gas-liquid mixture', described in terms of the phase volume fraction. Three turbulence models with a high Reynolds number have been considered i. e. the standard k-e model, realizable k-e model, and Reynolds stress model. The predicted flow patterns for the realizable k-e model match well with experimental measurements found in available literature. Nevertheless, some discrepancies regarding velocity relaxation and turbulent momentum distribution in the pool are still observed for both the standard k-e and the Reynolds stress model.

  5. Adsorption and solvation of ethanol at the water liquid-vapor interface: a molecular dynamics study

    Science.gov (United States)

    Wilson, M. A.; Pohorille, A.

    1997-01-01

    The free energy profiles of methanol and ethanol at the water liquid-vapor interface at 310K were calculated using molecular dynamics computer simulations. Both alcohols exhibit a pronounced free energy minimum at the interface and, therefore, have positive adsorption at this interface. The surface excess was computed from the Gibbs adsorption isotherm and was found to be in good agreement with experimental results. Neither compound exhibits a free energy barrier between the bulk and the surface adsorbed state. Scattering calculations of ethanol molecules from a gas phase thermal distribution indicate that the mass accommodation coefficient is 0.98, and the molecules become thermalized within 10 ps of striking the interface. It was determined that the formation of the solvation structure around the ethanol molecule at the interface is not the rate-determining step in its uptake into water droplets. The motion of an ethanol molecule in a water lamella was followed for 30 ns. The time evolution of the probability distribution of finding an ethanol molecule that was initially located at the interface is very well described by the diffusion equation on the free energy surface.

  6. Robust prototypical anti-icing coatings with a self-lubricating liquid water layer between ice and substrate.

    Science.gov (United States)

    Chen, Jing; Dou, Renmei; Cui, Dapeng; Zhang, Qiaolan; Zhang, Yifan; Xu, Fujian; Zhou, Xin; Wang, Jianjun; Song, Yanlin; Jiang, Lei

    2013-05-22

    A robust prototypical anti-icing coating with a self-lubricating liquid water layer (SLWL) is fabricated via grafting cross-linked hygroscopic polymers inside the micropores of silicon wafer surfaces. The ice adhesion on the surface with SLWL is 1 order of magnitude lower than that on the superhydrophobic surfaces and the ice formed atop of it can be blown off by an action of strong breeze. The surface with self-lubricating liquid water layer exhibits excellent capability of self-healing and abrasion resistance. The SLWL surface should also find applications in antifogging and self-cleaning by rainfall, in addition to anti-icing and antifrosting.

  7. Experimental Investigation of Gas Hydrate Production at Injection of Liquid Nitrogen into Water with Bubbles of Freon 134A

    Directory of Open Access Journals (Sweden)

    Meleshkin Anton V.

    2016-01-01

    Full Text Available The hydrodynamic processes during the injection of the cryogenic liquid into the volume of water with bubbles of gas freon 134a are studding experimentally. A processes during the explosive boiling of liquid nitrogen in the volume of water are registered. Video recording of identified gas hydrate flakes formed during this process is carried out by high speed camera. These results may be useful for the study of the new method of producing gas hydrates, based on the shock-wave method.

  8. Modeling of cloud liquid water structure and the associated radiation field

    Energy Technology Data Exchange (ETDEWEB)

    Wiscombe, W. [Goddard Space Flight Center, NASA, Greenbelt, MD (United States)

    1995-09-01

    A 0.5{degrees}C global warming should result from every 1% decrease in global albedo. It is therefore necessary to accurately quantify the cloud radiation interaction. Most radiation calculations are one-dimensional and attempt to deal with horizontal variability using a horizontally-averaged optical depth. This study presents detailed scale-by-scale statistical analysis of the cloud liquid water content (LWC) field. The aim is to use this information to provide radiation calculations with more adequate information about inhomogeneity in cloud fields. The radiation community needs to carefully specify the minimum requirements which GCMs must include in order to treat cloud-radiation interaction correctly. This may involve GCMs predicting not only mean cloud quantities but also cloud variability. 3 figs.

  9. The Melting Temperature of Liquid Water with the Effective Fragment Potential.

    Science.gov (United States)

    Brorsen, Kurt R; Willow, Soohaeng Yoo; Xantheas, Sotiris S; Gordon, Mark S

    2015-09-17

    The direct simulation of the solid-liquid water interface with the effective fragment potential (EFP) via the constant enthalpy and pressure (NPH) ensemble was used to estimate the melting temperature (T(m)) of ice-I(h). Initial configurations and velocities, taken from equilibrated constant pressure and temperature (NPT) simulations at P = 1 atm and T = 305 K, 325 K and 399 K, respectively, yielded corresponding T(m) values of 378 ± 16 K, 382 ± 14 K and 384 ± 15 K. These estimates are consistently higher than experiment, albeit to the same degree as previously reported estimates using density functional theory (DFT)-based Born-Oppenheimer simulations with the Becke-Lee-Yang-Parr functional plus dispersion corrections (BLYP-D).

  10. Vibrating-Wire, Supercooled Liquid Water Content Sensor Calibration and Characterization Progress

    Science.gov (United States)

    King, Michael C.; Bognar, John A.; Guest, Daniel; Bunt, Fred

    2016-01-01

    NASA conducted a winter 2015 field campaign using weather balloons at the NASA Glenn Research Center to generate a validation database for the NASA Icing Remote Sensing System. The weather balloons carried a specialized, disposable, vibrating-wire sensor to determine supercooled liquid water content aloft. Significant progress has been made to calibrate and characterize these sensors. Calibration testing of the vibrating-wire sensors was carried out in a specially developed, low-speed, icing wind tunnel, and the results were analyzed. The sensor ice accretion behavior was also documented and analyzed. Finally, post-campaign evaluation of the balloon soundings revealed a gradual drift in the sensor data with increasing altitude. This behavior was analyzed and a method to correct for the drift in the data was developed.

  11. A Monte Carlo calculation of subexcitation and vibrationally-relaxing electron spectra in irradiated liquid water

    Energy Technology Data Exchange (ETDEWEB)

    Cobut, V.; Frongillo, Y.; Jay-Gerin, J.-P. (Sherbrooke Univ., PQ (Canada). Faculte de Medecine); Patau, J.-P. (Toulouse-3 Univ., 31 (France))

    1992-12-01

    An energy spectrum of ''subexcitation electrons'' produced in liquid water by electrons with initial energies of a few keV is obtained by using a Monte Carlo transport simulation calculation. It is found that the introduction of vibrational-excitation cross sections leads to the appearance of a sharp peak in the probability density function near the electronic-excitation threshold. Electrons contributing to this peak are shown to be more naturally described if a novel energy spectrum, that we propose to name ''vibrationally-relaxing electron'' spectrum, is introduced. The corresponding distribution function is presented, and an empirical expression of it is given. (author).

  12. Possibilities of practical usage of dispersed aluminim oxidation by liquid water

    Science.gov (United States)

    Larichev, M. N.; Laricheva, O. O.; Shaitura, N. S.; Shkolnikov, E. I.

    2012-12-01

    The goal of this work is to show the possibility of practical usage of the environmentally pure oxidation process of preliminarily dispersed aluminum (aluminum powders of the ASD or PAD grade according to TU (Technical Specifications) 48-5-226-87, which are serially produced in industry) with liquid water in order to obtain gaseous hydrogen in volumes sufficient to provide the operation of energizers based on airhydrogen fuel cells (AHFC) for portable and stationary devices (up to 3 kW). It is shown that the synthesis of aluminum oxides-hydroxides with the specified phase and chemical compositions as well as the particle shape and size can be provided simultaneously with producing commercial hydrogen. The practical usage of hydrogen, which is formed in the oxidation reaction of metallic aluminum with liquid water at pressures close to atmospheric (particularly, to service AHFCs), requires reaction intensification to increase the oxidation rate of aluminum. In this work, we considered the aspects of practical implementation of thermal, ultrasonic, and chemical activation as well as their combinations for this purpose. As the chemical activator of oxidation, we used the additives of calcium oxide (<5% of the mass of oxidized aluminum). Application of each activation method affects the phase and chemical compositions as well as the structure of formed aluminum hydroxides, which provides the possibility of their reproducible production. Thus, simultaneously with the production of commercial hydrogen, solid oxidation products satisfying the needs of industry in aluminum oxides and having the specified composition, purity, and particle shape and size can be synthesized. The acquired experimental results and elements of the design of specially developed industrial apparatuses, which were used when performing this work, can be applied when designing the model of the hydrogen generator—the prototype of the hydrogen generator for portable and stationary devices or devices

  13. Heterogeneous uptake of 8-2 fluorotelomer alcohol on liquid water and 1-octanol droplets.

    Science.gov (United States)

    Li, Yongquan; Demerjian, Kenneth L; Williams, Leah R; Worsnop, Douglas R; Kolb, Charles E; Davidovits, Paul

    2006-06-01

    The heterogeneous uptake of the 8-2 fluorotelomer alcohol, F(CF2)8CH2CH2OH, on liquid water surfaces over the temperature range 256-273 K and on 1-octanol surfaces over the temperature range 264-295 K has been investigated with a droplet train flow reactor. The uptake coefficient on water droplets is zero within the error of the measurement (+/-0.01) and is independent of droplet temperature. In contrast, significant uptake onto 1-octanol is observed. Measured uptake coefficients for 1-octanol showed a negative temperature dependence, varying from 0.034 +/- 0.005 (1sigma) at 295 K to 0.103 +/- 0.009 at 264 K. The measured uptake coefficients on 1-octanol were independent of gas-liquid contact time, for typical contact times varying between 3 and 15 ms, and independent of the 8-2 fluorotelomer alcohol gas-phase concentration, indicating that the uptake coefficients are equivalent to mass accommodation coefficients. The uptake coefficients on 1-octanol were also independent of relative humidity. These results show that the uptake of FTOHs on or into the aqueous component of cloud/fog droplets or aqueous aerosol particles is not likely to be an important atmospheric sink for these compounds. In these experiments, 1-octanol was used as a model compound for organic-containing atmospheric particles. The larger uptake coefficient measured for 1-octanol surfaces indicates that FTOH partitioning to organic-containing cloud/fog droplets and aerosol particles may be an atmospheric loss mechanism.

  14. Application of artificial neural network for vapor liquid equilibrium calculation of ternary system including ionic liquid: Water, ethanol and 1-butyl-3-methylimidazolium acetate

    Energy Technology Data Exchange (ETDEWEB)

    Fazlali, Alireza; Koranian, Parvaneh [Arak University, Arak (Iran, Islamic Republic of); Beigzadeh, Reza [Islamic Azad University, Kermanshah (Iran, Islamic Republic of); Rahimi, Masoud [Razi University, Kermanshah (Iran, Islamic Republic of)

    2013-09-15

    A feed forward three-layer artificial neural network (ANN) model was developed for VLE prediction of ternary systems including ionic liquid (IL) (water+ethanol+1-butyl-3- methyl-imidazolium acetate), in a relatively wide range of IL mass fractions up to 0.8, with the mole fractions of ethanol on IL-free basis fixed separately at 0.1, 0.2, 0.4, 0.6, 0.8, and 0.98. The output results of the ANN were the mole fraction of ethanol in vapor phase and the equilibrium temperature. The validity of the model was evaluated through a test data set, which were not employed in the training case of the network. The performance of the ANN model for estimating the mole fraction and temperature in the ternary system including IL was compared with the non-random-two-liquid (NRTL) and electrolyte non-random-two- liquid (eNRTL) models. The results of this comparison show that the ANN model has a superior performance in predicting the VLE of ternary systems including ionic liquid.

  15. Determination of trace amounts of ethylene glycol and its analogs in water matrixes by liquid chromatography/tandem mass spectrometry.

    Science.gov (United States)

    Tran, Buu N; Okoniewski, Richard; Bucciferro, Anthony; Jansing, Robert; Aldous, Kenneth M

    2014-01-01

    Contamination of drinking water by ethylene glycol (EG) is a public health concern. EG causes adverse health effects in humans and animals, including cardiopulmonary and acute renal failure. EG and other glycols, such as propylene glycol (PG) are major components in antifreeze liquids, which may be the main source of contamination of ground water. A sensitive LC/electrospray ionization (ESI)-MS/MS method was developed to measure trace amounts of EG, diethylene glycol, and 1,2- and 1,3-PG in several water sources, including municipal tap, lake, river, and salinated water. In this method, glycols in water samples were derivatized with benzoyl chloride by the Schotten-Baumann reaction, followed by liquid-liquid extraction using pentane as the organic solvent prior to the LC/ESI-MS/MS determination. QC included analysis of a method blank and samples fortified at low and high levels. Analytical data showed excellent linear calibration for all observed glycols, with good precision and accuracy. The method detection limits for the studied glycols ranged from 1.9 to 6.1 ng/mL across the water matrixes tested. This method is suitable to help assess water quality in areas that may be prone to glycol contamination.

  16. Towards a unified description of the hydrogen bond network of liquid water: a dynamics based approach.

    Science.gov (United States)

    Ozkanlar, Abdullah; Zhou, Tiecheng; Clark, Aurora E

    2014-12-07

    The definition of a hydrogen bond (H-bond) is intimately related to the topological and dynamic properties of the hydrogen bond network within liquid water. The development of a universal H-bond definition for water is an active area of research as it would remove many ambiguities in the network properties that derive from the fixed definition employed to assign whether a water dimer is hydrogen bonded. This work investigates the impact that an electronic-structure based definition, an energetic, and a geometric definition of the H-bond has upon both topological and dynamic network behavior of simulated water. In each definition, the use of a cutoff (either geometric or energetic) to assign the presence of a H-bond leads to the formation of transiently bonded or broken dimers, which have been quantified within the simulation data. The relative concentration of transient species, and their duration, results in two of the three definitions sharing similarities in either topological or dynamic features (H-bond distribution, H-bond lifetime, etc.), however no two definitions exhibit similar behavior for both classes of network properties. In fact, two networks with similar local network topology (as indicated by similar average H-bonds) can have dramatically different global network topology (as indicated by the defect state distributions) and altered H-bond lifetimes. A dynamics based correction scheme is then used to remove artificially transient H-bonds and to repair artificially broken bonds within the network such that the corrected network exhibits the same structural and dynamic properties for two H-bond definitions (the properties of the third definition being significantly improved). The algorithm described represents a significant step forward in the development of a unified hydrogen bond network whose properties are independent of the original hydrogen bond definition that is employed.

  17. Application of hollow fiber liquid phase microextraction for the determination of insecticides in water.

    Science.gov (United States)

    Lambropoulou, Dimitra A; Albanis, Triantafyllos A

    2005-04-22

    In the present work, a novel sample pre-treatment technique for the determination of trace concentrations of some insecticide compounds in aqueous samples has been developed and applied to the determination of the selected analytes in environmental water samples. The extraction procedure is based on coupling polypropylene hollow fiber liquid phase microextraction (HF-LPME) with gas chromatography by flame thermionic detection (GC-FTD). For the development of the method, seven organophosphorous insecticides (dichlorvos, mevinphos-cis, ethoprophos, chlorpyrifos methyl, phenthoate, methidathion and carbofenothion) and one carbamate (carbofuran) were considered as target analytes. Several factors that influence the efficiency of HF-LPME were investigated and optimized including agitation, organic solvent, sample volume, exposure time, salt additives and pH. The optimized methodology exhibited good linearity with correlation coefficient = 0.990. The analytical precision for the target analytes ranged from 4.3 to 11.1 for within-day variation and 4.6 to 12.0% for between-day variation. The detection limits for all analytes were found in the range from 0.001 to 0.072 microg/L, well below the limits established by the EC Drinking Water Directive (EEC 80/778). Relative recoveries obtained by the proposed method from drinking and river water samples ranged from 80 to 104% with coefficient of variations ranging from 4.5 to 10.7%. The present methodology is easy, rapid, sensitive and requires small sample volumes to screen environmental water samples for insecticide residues.

  18. Void Measurements in the Regions of Sub-Cooled and Low-Quality Boiling. Part 2. Higher Mass Velocities

    Energy Technology Data Exchange (ETDEWEB)

    Rouhani, S.Z.

    1966-07-15

    This report consists mostly of tables of experimental data obtained in void measurements. It is a continuation and the completing part of a previous report with the same title. The data are from the measurements in a vertical annular channel with 25 mm O.D. and 12 mm I.D. at a heated length of 1090 mm. These experiments covered pressures from 10 to 50 bars, mass velocities from 650 to 1450 kg/m -sec., heat fluxes from 60 to 120 W/cm{sup 2}, sub-coolings from 30 to 0 C, and steam qualities from 0 to 12 %. The tables include the inlet temperatures and measured wall super-heat.

  19. Effect of ionic liquid pretreatment on the composition, structure and biogas production of water hyacinth (Eichhornia crassipes).

    Science.gov (United States)

    Gao, Jing; Chen, Li; Yan, Zongcheng; Wang, Lin

    2013-03-01

    The effect of the pretreatment of water hyacinth with ionic liquid and co-solvent on the lignocellulosic composition, structural change and biogas production was evaluated in this study. The results from regenerated water hyacinth indicate that, the content of the lignocellulosic composition was changed, the crystallinity of the structure was decreased, and the surface became more porous. After the pretreatment with 1-N-butyl-3-methyimidazolium chloride ([Bmim]Cl)/dimethyl sulfoxide (DMSO) under 120°C for 120min, the cellulose content of regenerated water hyacinth was increased by 27.9%, 49.2% of the lignin was removed, and the biogas yield was increased by 97.6% as compared with unpretreated water hyacinth. The ionic liquids and co-solvents were successfully recovered by forming aqueous biphasic systems with K3PO4. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Wall Area of Influence and Growing Wall Heat Transfer due to Sliding Bubbles in Subcooled Boiling Flow

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Junsoo; Estrada-Perez, Carlos E.; Hassan, Yassin A.

    2016-04-01

    A variety of dynamical features of sliding bubbles and their impact on wall heat transfer were observed at subcooled flow boiling conditions in a vertical square test channel. Among the wide range of parameters observed, we particularly focus in this paper on (i) the sliding bubbles’ effect on wall heat transfer (supplemantry discussion to the authors’ previous work in Yoo et al. (2016a,b)) and (ii) the wall area influenced by sliding bubbles in subcooled boiling flow. At first, this study reveals that the degree of wall heat transfer improvement due to sliding bubbles depended less on the wall superheat condition as the mass flux increased. Also, the sliding bubble trajectory was found to be one of the critical factors in order to properly describe the wall heat transfer associated with sliding bubbles. In particular, the wall area influenced by sliding bubbles depended strongly on both sliding bubble trajectory and sliding bubble size; the sliding bubble trajectory was also observed to be closely related to the sliding bubble size. Importantly, these results indicate the limitation of current approach in CFD analyses especially for the wall area of bubble influence. In addition, the analyses on the temporal fraction of bubbles’ residence (FR) along the heated wall show that the sliding bubbles typically travel through narrow path with high frequency while the opposite was observed downstream. That is, both FR and sliding bubble trajectory depended substantially on the distance from nucleation site, which is expected to be similar for the quenching heat transfer mode induced by sliding bubbles.

  1. Oviposition of Tanytarsus dissimilis (Diptera:Chironomidae) in avoidance trails with coal liquid water-soluble components

    Energy Technology Data Exchange (ETDEWEB)

    Dauble, D.D.; Skalski, J.R.

    1983-12-01

    Oviposition site preference (OSP) of the chironomid Tanytarsus dissimilis (Johannsen) was evaluated in avoidance trials with acutely toxic concentrations of a coal liquid water-soluble fraction (WSF). Tests conducted with groups and with single organisms indicated that ovipositing adults had no significant preference (..cap alpha.. = 0.05) for either river water (control) or a coal liquid WSF. Egg strand size was reduced in the coal liquid WSF, suggesting that toxicant detection occurred despite lack of avoidance. The OSP trials conducted with single organisms were advantageous because of lack of independence in group tests and because greater sample size could be obtained with less effort. This type of behavioral study may have an application to hazard evaluation of other toxic substances.

  2. Prediction of electron concentration reductions in re-entry flow fields due to electrophilic liquid and water injection.

    Science.gov (United States)

    Pergament, H. S.; Mikatarian, R. R.; Kurzius, S. C.

    1972-01-01

    Discussion of an analytical model which leads to predictions of reductions in electron concentrations in reentry flow fields due to the injection of electrophilic liquids and water. The processes incorporated into the model are: penetration and breakup of the liquid jet, droplet acceleration and vaporization, expansion of the liquid spray due to droplet vaporization, electrophilic vapor diffusion, heterogeneous and homogeneous charged species recombination kinetics and homogeneous electron attachment kinetics. Spray boundary calculations are shown to be in good agreement with photographic observations of water and Freon E-3 sprays in wind tunnel tests of a scale model RAM C-III flight vehicle. Fixed-bias electrostatic probe data taken during the RAM C-III flight are interpreted in terms of effective jet penetration distances - which are shown to be consistent with calculations using the present model.

  3. Mass Transfer From Nonaqueous Phase Organic Liquids in Water-Saturated Porous Media

    Science.gov (United States)

    Geller, J. T.; Hunt, J. R.

    2010-01-01

    Results of dissolution experiments with trapped nonaqueous phase liquids (NAPLs) are modeled by a mass transfer analysis. The model represents the NAPL as isolated spheres that shrink with dissolution and uses a mass transfer coefficient correlation reported in the literature for dissolving spherical solids. The model accounts for the reduced permeability of a region of residual NAPL relative to the permeability of the surrounding clean media that causes the flowing water to partially bypass the residual NAPL. The dissolution experiments with toluene alone and a benzene-toluene mixture were conducted in a water-saturated column of homogeneous glass beads over a range of Darcy velocities from 0.5 to 10 m d−1. The model could represent the observed effluent concentrations as the NAPL underwent complete dissolution. The changing pressure drop across the column was predicted following an initial period of NAPL reconfiguration. The fitted NAPL sphere diameters of 0.15 to 0.40 cm are consistent with the size of NAPL ganglia observed by others and are the smallest at the largest flow velocity. PMID:20336189

  4. Modeling proton and alpha elastic scattering in liquid water in Geant4-DNA

    Energy Technology Data Exchange (ETDEWEB)

    Tran, H.N., E-mail: tranngochoang@tdt.edu.vn [Division of Nuclear Physics, Ton Duc Thang University, Tan Phong Ward, District 7, Ho Chi Minh City (Viet Nam); Faculty of Applied Sciences, Ton Duc Thang University, Tan Phong Ward, District 7, Ho Chi Minh City (Viet Nam); El Bitar, Z. [Institut Pluridisciplinaire Hubert Curien/IN2P3/CNRS, Strasbourg (France); Champion, C. [Univ. Bordeaux, CENBG, UMR 5797, F-33170 Gradignan (France); CNRS, IN2P3, CENBG, UMR 5797, F-33170 Gradignan (France); Karamitros, M. [Univ. Bordeaux, CENBG, UMR 5797, F-33170 Gradignan (France); CNRS, IN2P3, CENBG, UMR 5797, F-33170 Gradignan (France); CNRS, INCIA, UMR 5287, F-33400 Talence (France); Bernal, M.A. [Instituto de FísicaGleb Wataghin, Universida de Estadual de Campinas, SP (Brazil); Francis, Z. [Université Saint Joseph, Faculty of Science, Department of Physics, Beirut (Lebanon); The Open University, Faculty of Science, Department of Physical Sciences, Walton Hall, MK7 6AA Milton Keynes (United Kingdom); Ivantchenko, V. [Ecoanalytica, 119899 Moscow (Russian Federation); Lee, S.B.; Shin, J.I. [Proton Therapy Center, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do 410-769 (Korea, Republic of); Incerti, S. [Univ. Bordeaux, CENBG, UMR 5797, F-33170 Gradignan (France); CNRS, IN2P3, CENBG, UMR 5797, F-33170 Gradignan (France)

    2015-01-15

    Elastic scattering of protons and alpha (α) particles by water molecules cannot be neglected at low incident energies. However, this physical process is currently not available in the “Geant4-DNA” extension of the Geant4 Monte Carlo simulation toolkit. In this work, we report on theoretical differential and integral cross sections of the elastic scattering process for 100 eV–1 MeV incident protons and for 100 eV–10 MeV incident α particles in liquid water. The calculations are performed within the classical framework described by Everhart et al., Ziegler et al. and by the ICRU 49 Report. Then, we propose an implementation of the corresponding classes into the Geant4-DNA toolkit for modeling the elastic scattering of protons and α particles. Stopping powers as well as ranges are also reported. Then, it clearly appears that the account of the elastic scattering process in the slowing-down of the charged particle improves the agreement with the existing data in particular with the ICRU recommendations.

  5. Laboratory study of non-aqueous phase liquid and water co-boiling during thermal treatment.

    Science.gov (United States)

    Zhao, C; Mumford, K G; Kueper, B H

    2014-08-01

    In situ thermal treatment technologies, such as electrical resistance heating and thermal conductive heating, use subsurface temperature measurements in addition to the analysis of soil and groundwater samples to monitor remediation performance. One potential indication of non-aqueous phase liquid (NAPL) removal is an increase in temperature following observations of a co-boiling plateau, during which subsurface temperatures remain constant as NAPL and water co-boil. However, observed co-boiling temperatures can be affected by the composition of the NAPL and the proximity of the NAPL to the temperature measurement location. Results of laboratory heating experiments using single-component and multi-component NAPLs showed that local-scale temperature measurements can be mistakenly interpreted as an indication of the end of NAPL-water co-boiling, and that significant NAPL saturations (1% to 9%) remain despite observed increases in temperature. Furthermore, co-boiling of multi-component NAPL results in gradually increasing temperature, rather than a co-boiling plateau. Measurements of gas production can serve as a complementary metric for assessing NAPL removal by providing a larger-scale measurement integrated over multiple smaller-scale NAPL locations. Measurements of the composition of the NAPL condensate can provide ISTT operators with information regarding the progress of NAPL removal for multi-component sources. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Hollow fiber-mediated liquid-phase microextraction of chemical warfare agents from water.

    Science.gov (United States)

    Dubey, D K; Pardasani, Deepak; Gupta, A K; Palit, Meehir; Kanaujia, Pankaj K; Tak, Vijay

    2006-02-24

    Unambiguous detection and identification of chemical warfare agents (CWAs) and related compounds are of paramount importance from verification point of view of Chemical Weapons Convention (CWC). It requires development of fast, reliable, simple and reproducible sample preparation of CWAs from water which is likely to be contaminated during deliberate or inadvertent spread of CWAs. This work describes development of hollow fiber liquid-phase microextraction (HF-LPME) method for efficient extraction of CWAs (such as sarin, sulfur mustard and their analogues) from water followed by gas chromatography-mass spectrometric analysis. Extraction parameters, such as organic solvent, agitation, extraction time, and salt concentration were optimized. Best recoveries of target analytes were achieved using 1 microL trichloroethylene as extracting solvent, 1000 rpm stirring rate, 15 min extraction time, and 30% NaCl. Excellent precision was observed with less than 7.6% RSD. The limit of detection by HF-LPME was achieved up to 0.1 microg/L at 30% salt concentration.

  7. Simultaneous detection of water-soluble vitamins using the High Performance Liquid Chromatography (HPLC - a review

    Directory of Open Access Journals (Sweden)

    Rosemond Godbless Dadzie

    2014-01-01

    Full Text Available The water-soluble vitamins (WSV: ascorbic acid (vitamin C, thiamine (B1, riboflavin (B2, niacin (B3, panthothenic acid (B5, pyridoxine, and pyridoxal (B6, folic acid (B9, biotin(B8 , and B12 are very essential in the diet of humankind. As a result of ever increasing pressures from both consumers and legal enforcers, to specify accurately nutritive compositions of WSV that are present in food materials, many researchers have attempted to fill this niche through the provision of highly sensitive and rapid high performance liquid chromatography (HPLC procedures. In view of the health benefits of WSV, a replete of HPLC methods have been developed for simultaneous determination of their contents in nature and fortified food samples, nutritional supplements, as well as blood plasmas. The rate of losses of these vitamins during food processing and analysis, in addition to their transient dynamics, presents complexities in developing a highly sensitive HPLC procedure for their simultaneous separations and assays. This review critically assesses the different HPLC procedures developed by researchers and available in the open literature for simultaneous determination of water-soluble vitamins (WSV in dried tropical fruits materials. The study revealed that not a single chromatographic run developed by researchers can simultaneously elute all the WSV at a time. However, the HPLC procedures that are capable of determining all the WSV were coupled with electrospray ionization mass spectroscopy (ESI-MS, thus making the set-up expensive.

  8. Experimental testing of a liquid bipropellant rocket engine using nitrous oxide and ethanol diluted with water

    Science.gov (United States)

    Phillip, Jeff; Morales, Rudy; Youngblood, Stewart; Saul, W. Venner; Grubelich, Mark; Hargather, Michael

    2016-11-01

    A research scale liquid bipropellant rocket engine testing facility was constructed at New Mexico Tech to perform research with various propellants. The facility uses a modular engine design that allows for variation of nozzle geometry and injector configurations. Initial testing focused on pure nitrous oxide and ethanol propellants, operating in the range of 5.5-6.9 MPa (800-1000 psi) chamber pressure with approximately 667 N (150 lbf) thrust. The system is instrumented with sensors for temperature, pressure, and thrust. Experimentally found values for specific impulse are in the range of 250-260 s which match computational predictions. Exhaust flow visualization is performed using high speed schlieren imaging. The engine startup and steady state exhaust flow features are studied through these videos. Computational and experimental data are presented for a study of dilution of the ethanol-nitrous oxide propellants with water. The study has shown a significant drop in chamber temperature compared to a small drop in specific impulse with increasing water dilution.

  9. The removal of chlorophenoxy herbicides from drinking water by activated carbon adsorption and liquid core microcapsule perstraction

    OpenAIRE

    Engels, Nora

    2012-01-01

    Drinking water quality reports have highlighted a persistent trend in pesticide detection in the Republic of Ireland. One of the main concerns of the drinking water industry is that consistent pesticide removal rates do not occur despite the existence of activated carbon (AC) treatment regimes in most plants. The present work examines the removal of three chlorophenoxy herbicides (MCPA, 2,4-D and dichlorprop) from aqueous solutions by AC adsorption and a novel liquid-core microcapsule perstra...

  10. Application of response surface method for optimization of dispersive liquid-liquid microextraction of water-soluble components of Rosa damascena Mill. essential oil.

    Science.gov (United States)

    Sereshti, Hassan; Karimi, Maryam; Samadi, Soheila

    2009-01-09

    Dispersive liquid-liquid microextraction (DLLME) coupled with gas chromatography-mass spectrometry (GC-MS) was applied for the determination of Rose water constituents. The effective parameters such as volume of extraction and disperser solvents, temperature, and salt effect were inspected by a full factorial design to identify important parameters and their interactions. It showed that salt addition had no effect on the efficiency. Next, a central composite design was applied to obtain optimum point of the important parameters. The optimal condition was obtained as 37.0 microL for extractor, 0.42 mL for disperser and temperature for 48 degrees C. The main components that were extracted at the optimum point were benzeneethanol (24.87%), geraniol (23.07%), beta-citronellol (22.38%), nerol (8.48%), eugenol (5.98%) and linalool (5.62%).

  11. Analysis of the plant growth regulator chlormequat in soil and water by means of liquid chromatography-tandem mass spectrometry, pressurised liquid extraction, and solid-phase extraction.

    Science.gov (United States)

    Henriksen, Trine; Juhler, René K; Brandt, Gyrite; Kjaer, Jeanne

    2009-03-20

    We present a new, precise and accurate method for quantitative analysis of chlormequat in soil and aqueous matrices. The method, which is based on LC-MS/MS, pressurised liquid extraction and solid-phase extraction, is eminently suitable for studying the fate of chlormequat in the soil environment. The limit of detection is 0.003-0.008 microg/L for rainwater, surface water and groundwater and 0.07-0.4 microg/kg for soil. In water samples amended to 0.04 microg/L, precision is better than 10%. The residual content of chlormequat in three agricultural topsoils analysed 4 months after its application was 23-55 microg/kg (12-23% of the amount applied). No trace of chlormequat was detected in groundwater from 66 water supply wells located in rural areas treated with chlormequat.

  12. Phase equilibria study of the binary systems (N-hexylisoquinolinium thiocyanate ionic liquid + organic solvent or water).

    Science.gov (United States)

    Królikowska, Marta; Karpińska, Monika; Zawadzki, Maciej

    2012-04-12

    Liquid-liquid phase equilibria (LLE) of binary mixtures containing a room-temperature ionic liquid N-hexylisoquinolinium thiocyanate, [HiQuin][SCN] with an aliphatic hydrocarbon (n-hexane, n-heptane), aromatic hydrocarbon (benzene, toluene, ethylbenzene, n-propylbenzene), cyclohexane, thiophene, water, and 1-alcohol (1-ethanol, 1-butanol, 1-hexanol, 1-octanol, 1-decanol) have been determined using a dynamic method from room temperature to the boiling-point of the solvent at ambient pressure. N-hexylisoquinolinium thiocyanate, [HiQuin][SCN] has been synthesized from N-hexyl-isoquinolinium bromide as a substrate. Specific basic characterization of the new compound including NMR spectra, elementary analysis, and water content have been done. The density and viscosity of pure ionic liquid were determined over a wide temperature range from 298.15 to 348.15 K. The mutual immiscibility with an upper critical solution temperature (UCST) for the binary systems {IL + aliphatic hydrocarbon, cyclohexane, or water} was detected. In the systems of {IL + aromatic hydrocarbon or thiophene} an immiscibility gap with a lower critical solution temperature (LCST) was observed. Complete miscibility in the liquid phase, over a whole range of ionic liquid mole fraction, was observed for the binary mixtures containing IL and an 1-alcohol. For the tested binary systems with immiscibility gap {IL + aliphatic hydrocarbon, aromatic hydrocarbon, cyclohexane, thiophene, or water}, the parameters of the LLE correlation have been derived using the NRTL equation. The basic thermal properties of the pure IL, that is, the glass-transition temperature as well as the heat capacity at the glass-transition temperature, have been measured using a differential scanning microcalorimetry technique (DSC). Decomposition of the IL was detected by simultaneous thermogravimetric/differential thermal analysis (TG/DTA) experiments.

  13. Liquid-vapor equilibrium in systems which include paraffins, naphthenes, olefins, benzene, N-methylpyrrolidone, and water

    Energy Technology Data Exchange (ETDEWEB)

    Miroshnichenko, A.A.

    1983-07-20

    The selection of efficient separating agents for the extractive fractionation of aliphatic-aromatic hydrocarbon systems has fundamental importance in technology of preparing pure aromatic hydrocarbons. It has been shown previously that N-methylpyrrolidone (NMP) can be used as an efficient separating agent for paraffin-aromatic hydrocarbon, naphthene-aromatic hydrocarbon, or olefin-aromatic hydrocarbon systems. It was previously shown that the presence of water in the NMP increases its selectivity in the heptane-benzene system. However, the limited number of systems studied which contain heptane does not allow one to make a judgment about the relative volatility of paraffins, naphthenes, olefins, and benzene in mixtures with NMP containing water. Moreover, the complexity of the indicated systems causes definite difficulties in the experimental study of the isobaric liquid-vapor equilbrium for determining the relative volatility ..cap alpha../sub i-j/ of nonaromatic hydrocarbons, i, and benzene, j, as a function of the concentration of an extractant containing water, X/sub r/. The author has previously made studies of methods of calculating liquid-vapor equilibrium in the analogous systems with anhydrous NMP from a limited amount of information about liquid-vapor equilibrium. Therefore the objective of this work was to perform analytical calculations and an experimental check of liquid-vapor equilibrium in systems which included paraffins, naphthenes, olefins, benzene, NMP, and water.

  14. Basalt weathering rates on Earth and the duration of liquid water on the plains of Gusev Crater, Mars

    Energy Technology Data Exchange (ETDEWEB)

    Steefel, Carl; Hausrath, E.M.; Navarre-Sitchler, A.K.; Sak, P.B.; Steefel, C.; Brantley, S.L.

    2008-03-15

    Where Martian rocks have been exposed to liquid water, chemistry versus depth profiles could elucidate both Martian climate history and potential for life. The persistence of primary minerals in weathered profiles constrains the exposure time to liquid water: on Earth, mineral persistence times range from {approx}10 ka (olivine) to {approx}250 ka (glass) to {approx}1Ma (pyroxene) to {approx}5Ma (plagioclase). Such persistence times suggest mineral persistence minima on Mars. However, Martian solutions may have been more acidic than on Earth. Relative mineral weathering rates observed for basalt in Svalbard (Norway) and Costa Rica demonstrate that laboratory pH trends can be used to estimate exposure to liquid water both qualitatively (mineral absence or presence) and quantitatively (using reactive transport models). Qualitatively, if the Martian solution pH > {approx}2, glass should persist longer than olivine; therefore, persistence of glass may be a pH-indicator. With evidence for the pH of weathering, the reactive transport code CrunchFlow can quantitatively calculate the minimum duration of exposure to liquid water consistent with a chemical profile. For the profile measured on the surface of Humphrey in Gusev Crater, the minimum exposure time is 22 ka. If correct, this estimate is consistent with short-term, episodic alteration accompanied by ongoing surface erosion. More of these depth profiles should be measured to illuminate the weathering history of Mars.

  15. Numerical simulation and experimental validation of liquid water behaviors in a proton exchange membrane fuel cell cathode with serpentine channels

    Science.gov (United States)

    Le, Anh Dinh; Zhou, Biao; Shiu, Huan-Ruei; Lee, Chun-I.; Chang, Wen-Chen

    The volume-of-fluid (VOF) approach is one of the most promising methods of investigating water transport and water management in proton exchange membrane fuel cells (PEMFCs). A general PEMFC model combined with the VOF method has been developed by our group to simulate the mechanisms of fluid flows, mass and heat transport, and electrochemical reactions in a PEMFC, and it is necessary to validate the numerical model through experiments. In this paper, both the numerical model and an experimental visualization that can simulate the motion and transport behavior of liquid water in a cathode flow channel of a PEMFC are presented. Direct optical visualization is used in this work to capture the droplets' motions with high spatial and temporal resolutions. The numerical model and experimental setup have similar geometric dimensions and operating conditions, and the results of the experiment are in good agreement with numerical simulations. Moreover, the physics of droplet and liquid water behavior based on certain material and liquid properties and the operating conditions in the fuel cell channel are also addressed. This analysis also offers some basic understanding of the mechanism of liquid droplet dynamics in numerical and experimental studies of micro-fluidics.

  16. Rapid analysis of organic microcontaminants in environmental water samples by trace enrichment and liquid chromatography on a single short column.

    NARCIS (Netherlands)

    Hogenboom, A.C.; Malmqvist, U.K.; Nolkrantz, K.; Vreuls, J.J.; Brinkman, U.A.T.

    1997-01-01

    On-column trace enrichment and liquid chromatography using a single short (20 mm length) high-pressure packed column was optimized for the rapid simultaneous identification and quantification of a wide range of organic microcontaminants in environmental water samples. The quality of different C,,

  17. Liquid chromatographic method for determination of water in soils and the optimization of anion separations by capillary zone electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Benz, Nancy [Iowa State Univ., Ames, IA (United States)

    1994-01-01

    A liquid chromatographic method for the determination of water in soil or clay samples is presented. In a separate study, the optimization of electrophoretic separation of alkylated phenolate ions was optimized by varying the pH and acetonitrile concentration of the buffer solutions.

  18. Effects of relative humidity and ionic liquids on the water content and glass transition of plasticized starch.

    Science.gov (United States)

    Bendaoud, Amine; Chalamet, Yvan

    2013-09-12

    The purpose of the present work was to investigate the relationship between the glass transition temperature of the materials produced by the melting method and the water content, as well as the nature and concentration of the plasticizer used. Native starch was successfully treated with ionic liquid to obtain thermoplastic starch (TPS). Ionic liquids have shown a better plasticization, and low absorption of water compared to glycerol, which means a better interaction of starch with ionic liquids. The water binding properties of TPS were studied by commenting the water absorption for the plasticized starch at different % RH and with different ratios of plasticizers. An amount of 22.5 wt% AMIMCl is the maximum that can act as a plasticizer. Above this composition, an increase in the wt% water and wt% AMIMCl induces a phase separation. This value corresponds to a chemical interpretation, which corresponds to a ratio of 1:3 AMIMCl/anhydro-glucose. A schematic representation of the different binding between starch, plasticizer and water has been proposed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Solid-phase extraction in combination with dispersive liquid-liquid microextraction and ultra-high performance liquid chromatography-tandem mass spectrometry analysis: the ultra-trace determination of 10 antibiotics in water samples.

    Science.gov (United States)

    Liang, Ning; Huang, Peiting; Hou, Xiaohong; Li, Zhen; Tao, Lei; Zhao, Longshan

    2016-02-01

    A novel method, solid-phase extraction combined with dispersive liquid-liquid microextraction (SPE-DLLME), was developed for ultra-preconcentration of 10 antibiotics in different environmental water samples prior to ultra-high performance liquid chromatography-tandem mass spectrometry detection. The optimized results were obtained as follows: after being adjusted to pH 4.0, the water sample was firstly passed through PEP-2 column at 10 mL min(-1), and then methanol was used to elute the target analytes for the following steps. Dichloromethane was selected as extraction solvent, and methanol/acetonitrile (1:1, v/v) as dispersive solvent. Under optimal conditions, the calibration curves were linear in the range of 1-1000 ng mL(-1) (sulfamethoxazole, cefuroxime axetil), 5-1000 ng mL(-1) (tinidazole), 10-1000 ng mL(-1) (chloramphenicol), 2-1000 ng mL(-1) (levofloxacin oxytetracycline, doxycycline, tetracycline, and ciprofloxacin) and 1-400 ng mL(-1) (sulfadiazine) with a good precision. The LOD and LOQ of the method were at very low levels, below 1.67 and 5.57 ng mL(-1), respectively. The relative recoveries of the target analytes were in the range from 64.16% to 99.80% with relative standard deviations between 0.7 and 8.4%. The matrix effect of this method showed a great decrease compared with solid-phase extraction and a significant value of enrichment factor (EF) compared with dispersive liquid-liquid microextraction. The developed method was successfully applied to the extraction and analysis of antibiotics in different water samples with satisfactory results.

  20. Liquid Steel at Low Pressure: Experimental Investigation of a Downward Water Air Flow

    Science.gov (United States)

    Thumfart, Maria

    2016-07-01

    In the continuous casting of steel controlling the steel flow rate to the mould is critical because a well-defined flow field at the mould level is essential for a good quality of the cast product. The stopper rod is a commonly used device to control this flow rate. Agglomeration of solid material near the stopper rod can lead to a reduced cross section and thus to a decreased casting speed or even total blockage (“clogging”). The mechanisms causing clogging are still not fully understood. Single phase considerations of the flow in the region of the stopper rod result in a low or even negative pressure at the smallest cross section. This can cause degassing of dissolved gases from the melt, evaporation of alloys and entrainment of air through the porous refractory material. It can be shown that the degassing process in liquid steel is taking place mainly at the stopper rod tip and its surrounding. The steel flow around the stopper rod tip is highly turbulent. In addition refractory material has a low wettability to liquid steel. So the first step to understand the flow situation and transport phenomena which occur near the stopper is to understand the behaviour of this two phase (steel, gas) flow. To simulate the flow situation near the stopper rod tip, water experiments are conducted using a convergent divergent nozzle with three different wall materials and three different contact angles respectively. These experiments show the high impact of the wettability of the wall material on the actual flow structure at a constant gas flow rate.

  1. Electric field measurements in nanosecond pulse discharges in air over liquid water surface

    Science.gov (United States)

    Simeni Simeni, Marien; Baratte, Edmond; Zhang, Cheng; Frederickson, Kraig; Adamovich, Igor V.

    2018-01-01

    Electric field in nanosecond pulse discharges in ambient air is measured by picosecond four-wave mixing, with absolute calibration by a known electrostatic field. The measurements are done in two geometries, (a) the discharge between two parallel cylinder electrodes placed inside quartz tubes, and (b) the discharge between a razor edge electrode and distilled water surface. In the first case, breakdown field exceeds DC breakdown threshold by approximately a factor of four, 140 ± 10 kV cm‑1. In the second case, electric field is measured for both positive and negative pulse polarities, with pulse durations of ∼10 ns and ∼100 ns, respectively. In the short duration, positive polarity pulse, breakdown occurs at 85 kV cm‑1, after which the electric field decreases over several ns due to charge separation in the plasma, with no field reversal detected when the applied voltage is reduced. In a long duration, negative polarity pulse, breakdown occurs at a lower electric field, 30 kV cm‑1, after which the field decays over several tens of ns and reverses direction when the applied voltage is reduced at the end of the pulse. For both pulse polarities, electric field after the pulse decays on a microsecond time scale, due to residual surface charge neutralization by transport of opposite polarity charges from the plasma. Measurements 1 mm away from the discharge center plane, ∼100 μm from the water surface, show that during the voltage rise, horizontal field component (Ex ) lags in time behind the vertical component (Ey ). After breakdown, Ey is reduced to near zero and reverses direction. Further away from the water surface (≈0.9 mm), Ex is much higher compared to Ey during the entire voltage pulse. The results provide insight into air plasma kinetics and charge transport processes near plasma-liquid interface, over a wide range of time scales.

  2. [Simultaneous determination of 23 ester compounds in cigarette water-borne adhesives by liquid-liquid extraction and gas chromatography-mass spectrometry].

    Science.gov (United States)

    Gong, Shuguo; Kong, Bo; Tuo, Suxing; Dai, Yunhui; Wu, Mingjian; Tan, Liquan; Liu, Wei

    2013-10-01

    A method of gas chromatography-mass spectrometry (GC-MS) with liquid-liquid extraction has been developed for the simultaneous determination of 23 ester compounds including acetate esters, acrylic esters, metacrylic acid esters and phthalate acid esters in cigarette water-borne adhesives. After dispersed in water, the sample was extracted by n-hexane solution containing phenyl ethyl propionate as internal standard substance. Then, the solution was centrifuged and filtrated through a 0.45 microm organic membrane filter. Finally, the solution was separated on a DB-WAXETR column (60 m x 0.25 mm x 0.25 microm), and detected with MS in selected ion monitoring mode, and quantified by internal standard method. The results showed a good linear correlation in the range of 0.4-50.0 mg/L. The recoveries of the ester compounds spiked in the sample were 81.8%-109.1%, and the relative standard deviations (RSDs, n = 5) were less than 4%. The limits of detection (LODs) and limits of quantification (LOQs were in the ranges of 0.02-0.76 mg/kg and 0.04-2.52 mg/kg, respectively. The method is simple, time-saving, and has high sensitivity and good reproducibility. It can be applied to the determination of the 23 ester compounds in cigarette water-borne adhesives.

  3. Evaluation of transfer rates of multiple pesticides from green tea into infusion using water as pressurized liquid extraction solvent and ultra-performance liquid chromatography tandem mass spectrometry.

    Science.gov (United States)

    Chen, Hongping; Pan, Meiling; Liu, Xin; Lu, Chengyin

    2017-02-01

    Pesticide residues could be transferred from tea into its infusion and by-products, and subsequently consumed by humans. Extra extraction conditions may induce more pesticide leaching into the infusion and by-products of tea and cause greater damage to humans. The aim of this study is to evaluate the infusion of multiple pesticides from green tea into hot water via pressurized liquid extraction. The results showed that pesticides in spiked samples generally have higher leaching (0.8-45.0%) than those in the positive samples. There was a marked rise of transfer rates when water solubility increased from 20mgL(-1) to 450mgL(-1) and LogKow decreased from 6 to 4. All pesticides had more leaching into hot water using pressurized liquid extraction than traditional tea brewing. This study helps in risk assessment of pesticide residues and in the formulation of maximum residue levels (MRLs) in tea and its by-products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Molecular level properties of the free water surface and different organic liquid/water interfaces, as seen from ITIM analysis of computer simulation results.

    Science.gov (United States)

    Hantal, György; Darvas, Mária; Pártay, Lívia B; Horvai, George; Jedlovszky, Pál

    2010-07-21

    Molecular dynamics simulations of the interface of water with four different apolar phases, namely water vapour, liquid carbon tetrachloride, liquid dichloromethane (DCM) and liquid dichloroethane (DCE) are performed on the canonical ensemble at 298 K. The resulting configurations are analysed using the novel method of identification of the truly interfacial molecules (ITIM). Properties of the first three molecular layers of the liquid phases (e.g. width, spacing, roughness, extent of the in-layer hydrogen bonding network) as well as of the molecules constituting these layers (e.g., dynamics, orientation) are investigated in detail. In the analyses, particular attention is paid to the effect of the polarity of the non-aqueous phase and to the length scale of the effect of the vicinity of the interface on the various properties of the molecules. The obtained results show that increasing polarity of the non-aqueous phase leads to the narrowing of the interface, in spite of the fact that, at the same time, the truly interfacial layer of water gets somewhat broader. The influence of the nearby interface is found to extend only to the first molecular layer in many respects. This result is attributed to the larger space available for the truly interfacial than for the non-interfacial molecules (as the shapes of the two liquid surfaces are largely independent of each other, resulting in the presence of voids between the two phases), and to the fact that the hydrogen bonding interaction of the truly interfacial water molecules with other waters is hindered in the direction of the interface.

  5. Ephemeral Liquid Water at the Surface of Martian North Polar Cap

    Science.gov (United States)

    Losiak, Anna; Czechowski, Leszek; Velbel, Michael A.

    2015-04-01

    Formation of large, young gypsum deposits within the Olympia Planum region has been an unsolved riddle since its discovery [1]. It was proposed that gypsum was formed by precipitation of water emanating from polar layered deposits [2]. However, it is improbable that a large amount of bulk water could exist under current Martian low atmospheric pressure sufficiently long to form the observed deposits [3]. One of the proposed solutions to this problem is that gypsum is formed due to weathering in the ice [3, 4, 5, 6]. However none of the previous papers have described this process in detail, tested whether it is possible under current Martian conditions, and defined the environmental properties required for this process to occur. The aim of this paper is to determine if solar irradiation available currently at the North Polar Cap (NPC) is sufficient to heat a basaltic dust grain enough to melt a thin layer of glacial ice located directly beneath it. The numerical model used here is based on a one dimensional, time-dependent equation of heat transfer [8]. The model is applicable for grains exposed on the south-facing side of the NPC spiral troughs, during the warmest days of the year (with average or low amount of dust in the atmosphere), when surface temperature reaches 215 K and solar radiation delivers >260 W m^-2 (on the inclined surface). Our calculations show that during the warmest days of summer, pure water-ice located below a dark dust particle lying on the equatorial-facing slopes of the Martian NPC can be melted. Melting occurs over a wide range of used parameters which shows that this phenomenon is relatively common (albeit localized). Our research shows that on the Martian NPC there can be a sufficient amount of transient, metastable liquid water for evaporites such as gypsum to form, as was hypothesized by [3, 4, 5, 6]. Additionally, bulk water surrounding dust grains near the surface and precipitating evaporitic minerals makes the NPC one of the most

  6. Characterisation of bicontinuous cubic liquid crystalline systems of phytantriol and water using cryo field emission scanning electron microscopy (cryo FESEM).

    Science.gov (United States)

    Rizwan, S B; Dong, Y-D; Boyd, B J; Rades, T; Hook, S

    2007-01-01

    Cubosomes are a novel lipid particulate delivery system currently being investigated for drug delivery purposes. The present study investigates bicontinuous cubic liquid crystalline systems (bulk phase and cubosomes) formed by phytantriol and water using cryo field emission scanning electron microscopy (cryo FESEM). Previously cubosomes have been characterized by cryo transmission electron microscopy (cryo TEM) with small angle X-ray diffraction (SAXS) confirming the bicontinuous liquid crystalline type. Bulk cubic phase and cubosomes were prepared from phytantriol and Pluronic F127 and analysed using cryo FESEM and SAXS. The micrographs showed the cubic phase had a tortuous, bicontinuous nature with a non-intersecting network of water channels. The cubosomes also show the same underlying tortuous structure entirely consistent with that of the bulk cubic phase and closely resemble the mathematical description of cubosomes described using nodal surface representation. The structure of both systems was confirmed using SAXS as a bicontinuous cubic liquid crystalline phase with Pn3m geometry. Cryo FESEM provides valuable insights into the morphological features of bicontinuous cubic liquid crystalline systems. The unique details shown provide strength to support the nodal surface representation of bicontinuous cubic liquid crystalline systems. Cryo FESEM provides a new technique to complement cryo TEM and SAXS for investigating their structure and function.

  7. Separation of americium by liquid-liquid extraction using diglycol-amides water-soluble complexing agents

    Energy Technology Data Exchange (ETDEWEB)

    Chapron, S.; Marie, C.; Pacary, V.; Duchesne, M.T.; Miguirditchian, M. [CEA, Centre de Marcoule, Nuclear Energy Division, RadioChemistry and Processses Departement, 30207 Bagnols-sur-Ceze (France); Arrachart, G.; Pellet-Rostaing, S. [Institut de Chimie Separative de Marcoule, LTSM, Bat 426, F-30207 Bagnols-sur- Ceze (France)

    2016-07-01

    Recycling americium (Am) alone from spent nuclear fuels is an important option studied for the future nuclear cycle (Generation IV systems) since Am belongs to the main contributors of the long-term radiotoxicity and heat power of final waste. Since 2008, a liquid-liquid extraction process called EXAm has been developed by the CEA to allow the recovery of Am alone from a PUREX raffinate (a dissolution solution already cleared from U, Np and Pu). A mixture of DMDOHEMA (N,N'-dimethyl-N,N'-dioctyl-2-(2-(hexyloxy)ethyl)-malonamide) and HDEHP (di-2-ethylhexylphosphoric acid) in TPH is used as the solvent and the Am/Cm selectivity is improved using TEDGA (N,N,N',N'-tetraethyl-diglycolamide) as a selective complexing agent to maintain Cm and heavier lanthanides in the acidic aqueous phase (5 M HNO{sub 3}). Americium is then stripped selectively from light lanthanides at low acidity (pH=3) with a poly-aminocarboxylic acid. The feasibility of sole Am recovery was already demonstrated during hot tests in ATALANTE facility and the EXAm process was adapted to a concentrated raffinate to optimize the process compactness. The speciation of TEDGA complexes formed in the aqueous phase with Am, Cm and lanthanides was studied to better understand and model the behavior of TEDGA in the process. Some Ln-TEDGA species are extracted into the organic phase and this specific chemistry might play a role in the Am/Cm selectivity improvement. Hence the hydrophilicity-lipophilicity balance of the complexing agent is an important parameter. In this comprehensive study, new analogues of TEDGA were synthesized and tested in the EXAm process conditions to understand the relationship between their structure and selectivity. New derivatives of TEDGA with different N-alkyl chain lengths and ramifications were synthesized. The impact of lipophilicity on ligand partitioning and Am/Cm selectivity was investigated. (authors)

  8. Preconcentration and trace determination of cadmium in spinach and various water samples by temperature-controlled ionic liquid dispersive liquid phase microextraction.

    Science.gov (United States)

    Rahnama, Reyhaneh; Mansoursamaei, Nazanin; Jamali, Mohammad Reza