WorldWideScience

Sample records for subchondral bone loss

  1. [Subchondral bone in osteoarthritis: a review].

    Science.gov (United States)

    Pang, Jian; Cao, Yue-long; Shi, Yin-yu

    2011-08-01

    Osteoarthritis (OA) is the most prevalent of joint diseases,and its pathology is characterized by the degeneration of cartilage, sclerosis of subchondral bone, and osteophyte formation. Localization of the early lesions of OA has not been clarified, but many researchers have focused on cartilage and have considered that changes in subchondral bone occur subsequently to the degeneration of cartilage. However, a low bone mineral density, particularly in the knee joint with OA, high bone turnover, and efficacy of bone resorption inhibitors for OA have recently been reported, suggesting that subchondral bone plays an important role in the pathogenesis of OA. This review aims to make a conclusion about advancement in research of subchondral bone in osteoarthritis.

  2. Alterations to the subchondral bone architecture during osteoarthritis : bone adaptation versus endochondral bone formation

    NARCIS (Netherlands)

    Cox, L.G.E.; Donkelaar, van C.C.; Rietbergen, van B.; Emans, P.J.; Ito, K.

    2013-01-01

    Objective Osteoarthritis (OA) is characterized by loss of cartilage and alterations in subchondral bone architecture. Changes in cartilage and bone tissue occur simultaneously and are spatially correlated, indicating that they are probably related. We investigated two hypotheses regarding this

  3. Subchondral bone failure in overload arthrosis: a scanning electron microscopic study in horses.

    Science.gov (United States)

    Norrdin, R W; Stover, S M

    2006-01-01

    Mechanical overload leads to a common arthrosis in the metacarpal condyle of the fetlock joint of racehorses. This is usually asymptomatic but severe forms can cause lameness. Subchondral bone failure is often present and the predictability of the site provided an opportunity to study of the progression of bone failure from microcracks to actual collapse of subchondral bone. Twenty-five fetlock condyles from racehorses with various stages of disease were selected. Stages ranged from mild through severe subchondral bone sclerosis, to the collapse of bone and indentation or loss of cartilage known as 'traumatic osteochondrosis'. Parasagittal slices were radiographed and examined with scanning electron microscopy. Fine matrix cracks were seen in the subchondral bone layer above the calcified cartilage and suggested loss of water or other non-collagenous components. The earliest microcracks appeared to develop in the sclerotic bone within 1-3 mm of the calcified cartilage layer and extend parallel to it in irregular branching lines. Longer cracks or microfractures appeared to develop gaps as fragmentation occurred along the margins. Occasional osteoclastic resorption sites along the fracture lines indicated activated remodeling may have caused previous weakening. In one sample, smoothly ground fragments were found in a fracture gap. Bone collapse occurred when there was compaction of the fragmented matrix along the microfracture. Bone collapse and fracture lines through the calcified cartilage were associated with indentation of articular cartilage at the site.

  4. Subchondral bone in osteoarthritis: insight into risk factors and microstructural changes.

    Science.gov (United States)

    Li, Guangyi; Yin, Jimin; Gao, Junjie; Cheng, Tak S; Pavlos, Nathan J; Zhang, Changqing; Zheng, Ming H

    2013-01-01

    Osteoarthritis (OA) is a major cause of disability in the adult population. As a progressive degenerative joint disorder, OA is characterized by cartilage damage, changes in the subchondral bone, osteophyte formation, muscle weakness, and inflammation of the synovium tissue and tendon. Although OA has long been viewed as a primary disorder of articular cartilage, subchondral bone is attracting increasing attention. It is commonly reported to play a vital role in the pathogenesis of OA. Subchondral bone sclerosis, together with progressive cartilage degradation, is widely considered as a hallmark of OA. Despite the increase in bone volume fraction, subchondral bone is hypomineralized, due to abnormal bone remodeling. Some histopathological changes in the subchondral bone have also been detected, including microdamage, bone marrow edema-like lesions and bone cysts. This review summarizes basic features of the osteochondral junction, which comprises subchondral bone and articular cartilage. Importantly, we discuss risk factors influencing subchondral bone integrity. We also focus on the microarchitectural and histopathological changes of subchondral bone in OA, and provide an overview of their potential contribution to the progression of OA. A hypothetical model for the pathogenesis of OA is proposed.

  5. Characterization of articular cartilage and subchondral bone changes in the rat anterior cruciate ligament transection and meniscectomized models of osteoarthritis.

    Science.gov (United States)

    Hayami, Tadashi; Pickarski, Maureen; Zhuo, Ya; Wesolowski, Gregg A; Rodan, Gideon A; Duong, Le T

    2006-02-01

    Osteoarthritis (OA) is a chronic joint disease characterized by cartilage destruction, subchondral bone sclerosis, and osteophyte formation. Subchondral bone stiffness has been proposed to initiate and/or contribute to cartilage deterioration in OA. The purpose of this study was to characterize subchondral bone remodeling, cartilage damage, and osteophytosis during the disease progression in two models of surgically induced OA. Rat knee joints were subjected either to anterior cruciate ligament transection (ACLT) alone or in combination with resection of medial menisci (ACLT + MMx). Histopathological changes in the surgical joints were compared with sham at 1, 2, 4, 6, and 10 weeks post-surgery. Using a modified Mankin scoring system, we demonstrate that articular cartilage damage occurs within 2 weeks post-surgery in both surgical models. Detectable cartilage surface damage and proteoglycan loss were observed as early as 1 week post-surgery. These were followed by the increases in vascular invasion into cartilage, in loss of chondrocyte number and in cell clustering. Histomorphometric analysis revealed subchondral bone loss in both models within 2 weeks post-surgery followed by significant increases in subchondral bone volume relative to sham up to 10 weeks post-surgery. Incidence of osteophyte formation was optimally observed in ACLT joints at 10 weeks and in ACLT + MMx joints at 6 weeks post-surgery. In summary, the two surgically induced rat OA models share many characteristics seen in human and other animal models of OA, including progressive articular cartilage degradation, subchondral bone sclerosis, and osteophyte formation. Moreover, increased subchondral bone resorption is associated with early development of cartilage lesions, which precedes significant cartilage thinning and subchondral bone sclerosis. Together, these findings support a role for bone remodeling in OA pathogenesis and suggest that these rat models are suitable for evaluating bone

  6. Early Subchondral Bone Loss at Arthritis Onset Predicted Late Arthritis Severity in a Rat Arthritis Model.

    Science.gov (United States)

    Courbon, Guillaume; Cleret, Damien; Linossier, Marie-Thérèse; Vico, Laurence; Marotte, Hubert

    2017-06-01

    Synovitis is usually observed before loss of articular function in rheumatoid arthritis (RA). In addition to the synovium and according to the "Inside-Outside" theory, bone compartment is also involved in RA pathogenesis. Then, we investigated time dependent articular bone loss and prediction of early bone loss to late arthritis severity on the rat adjuvant-induced arthritis (AIA) model. Lewis female rats were longitudinally monitored from arthritis induction (day 0), with early (day 10) and late (day 17) steps. Trabecular and cortical microarchitecture parameters of four ankle bones were assessed by microcomputed tomography. Gene expression was determined at sacrifice. Arthritis occurred at day 10 in AIA rats. At this time, bone erosions were detected on four ankle bones, with cortical porosity increase (+67%) and trabecular alterations including bone volume fraction (BV/TV: -13%), and trabecular thickness decrease. Navicular bone assessment was the most reproducible and sensitive. Furthermore, strong correlations were observed between bone alterations at day 10 and arthritis severity or bone loss at day 17, including predictability of day 10 BV/TV to day 17 articular index (R 2  = 0.76). Finally, gene expression at day 17 confirmed massive osteoclast activation and interestingly provided insights on strong activation of bone formation inhibitor markers at the joint level. In rat AIA, bone loss was already observed at synovitis onset and was predicted late arthritis severity. Our results reinforced the key role of subchondral bone in arthritis pathogenesis, in favour to the "Inside-Outside" theory. Mechanisms of bone loss in rat AIA involved resorption activation and formation inhibition changes. J. Cell. Physiol. 232: 1318-1325, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. [Mechanical behavior of the subchondral bone in the experimentally induced osteoarthritis].

    Science.gov (United States)

    Miyanaga, Y

    1979-06-01

    In order to evaluate the role of the subchondral bone (cancellous bone) in the development and progression of the joint degeneration, osteoarthritis of the knee joint was produced experimentally in the rabbits and viscoelasticity and strength of the subchondral bone from the femoral medial condyle have been investigated along with the pathological, histological study of the joint. The viscoelastic spectrometer and the Instron type testing machine were used. As the first change after operation, osteophyte formation around the joint margin has been observed before the initiation of the degeneration of articular cartilage and there is a possibility that mechanical properties of subchondral bone such as high deformability and low elasticity to the mechanism of osteophyte formation. Subchondral bone softening with marked increase of ultimate strain and phase lag, marked decrease of compressive elastic modulus and ultimate stress precedes or occurs concurrently with the degeneration of the articular cartilage. These facts indicate the relationship between the mechanical properties of the subchondral bone and joint degeneration. Once the joint degeneration starts, degeneration continues progressively while the subchondral bone tends to become brittle. These changes may be considered as a kind of functional adaptation to the damage or denudation of articular cartilage. It is postulated that some architectural changes of the subchondral bone may provide alterations of the mechanical properties. Biomechanical roles of the subchondral bone is suggested as one of the factors in the joint degeneration.

  8. Bioactive Scaffolds for Regeneration of Cartilage and Subchondral Bone Interface

    Science.gov (United States)

    Deng, Cuijun; Zhu, Huiying; Li, Jiayi; Feng, Chun; Yao, Qingqiang; Wang, Liming; Chang, Jiang; Wu, Chengtie

    2018-01-01

    The cartilage lesion resulting from osteoarthritis (OA) always extends into subchondral bone. It is of great importance for simultaneous regeneration of two tissues of cartilage and subchondral bone. 3D-printed Sr5(PO4)2SiO4 (SPS) bioactive ceramic scaffolds may achieve the aim of regenerating both of cartilage and subchondral bone. We hypothesized that strontium (Sr) and silicon (Si) ions released from SPS scaffolds play a crucial role in osteochondral defect reconstruction. Methods: SPS bioactive ceramic scaffolds were fabricated by a 3D-printing method. The SEM and ICPAES were used to investigate the physicochemical properties of SPS scaffolds. The proliferation and maturation of rabbit chondrocytes stimulated by SPS bioactive ceramics were measured in vitro. The stimulatory effect of SPS scaffolds for cartilage and subchondral bone regeneration was investigated in vivo. Results: SPS scaffolds significantly stimulated chondrocyte proliferation, and SPS extracts distinctly enhanced the maturation of chondrocytes and preserved chondrocytes from OA. SPS scaffolds markedly promoted the regeneration of osteochondral defects. The complex interface microstructure between cartilage and subchondral bone was obviously reconstructed. The underlying mechanism may be related to Sr and Si ions stimulating cartilage regeneration by activating HIF pathway and promoting subchondral bone reconstruction through activating Wnt pathway, as well as preserving chondrocytes from OA via inducing autophagy and inhibiting hedgehog pathway. Conclusion: Our findings suggest that SPS scaffolds can help osteochondral defect reconstruction and well reconstruct the complex interface between cartilage and subchondral bone, which represents a promising strategy for osteochondral defect regeneration. PMID:29556366

  9. What drives osteoarthritis?-synovial versus subchondral bone pathology.

    Science.gov (United States)

    Hügle, Thomas; Geurts, Jeroen

    2017-09-01

    Subchondral bone and the synovium play an important role in the initiation and progression of OA. MRI often permits an early detection of synovial hypertrophy and bone marrow lesions, both of which can precede cartilage damage. Newer imaging modalities including CT osteoabsorptiometry and hybrid SPECT-CT have underlined the importance of bone in OA pathogenesis. The subchondral bone in OA undergoes an uncoupled remodelling process, which is notably characterized by macrophage infiltration and osteoclast formation. Concomitant increased osteoblast activity leads to spatial remineralization and osteosclerosis in end-stage disease. A plethora of metabolic and mechanical factors can lead to synovitis in OA. Synovial tissue is highly vascularized and thus exposed to systemic influences such as hypercholesterolaemia or low grade inflammation. This review aims to describe the current understanding of synovitis and subchondral bone pathology and their connection in OA. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Rheumatology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Microarchitectural adaptations in aging and osteoarthrotic subchondral bone tissues

    DEFF Research Database (Denmark)

    Ding, Ming

    2010-01-01

    . These diseases are among the major health care problems in terms of socio-economic costs. The overall goals of the current series of studies were to investigate the age-related and osteoarthrosis (OA) related changes in the 3-D microarchitectural properties, mechanical properties, collagen and mineral quality......-related development of guinea pig OA; secondly, the potential effects of hyaluronan on OA subchondral bone tissues; and thirdly, the effects on OA progression of an increase in subchondral bone density by inhibition of bone remodeling with a bisphosphonate. These investigations aimed to obtain more insight...... into the age-related and OA-related subchondral bone adaptations.   Microarchitectural adaptation in human aging cancellous bone The precision of micro-CT measurement is excellent. Accurate 3-D micro-CT image datasets can be generated by applying an appropriate segmentation threshold. A fixed threshold may...

  11. Subchondral Bone and the Osteochondral Unit: Basic Science and Clinical Implications in Sports Medicine.

    Science.gov (United States)

    Saltzman, Bryan M; Riboh, Jonathan C

    2018-06-01

    Articular cartilage injuries and early osteoarthritis are among the most common conditions seen by sports medicine physicians. Nonetheless, treatment options for articular degeneration are limited once the osteoarthritic cascade has started. Intense research is focused on the use of biologics, cartilage regeneration, and transplantation to help maintain and improve cartilage health. An underappreciated component of joint health is the subchondral bone. A comprehensive, nonsystematic review of the published literature was completed via a PubMed/MEDLINE search of the keywords "subchondral" AND "bone" from database inception through December 1, 2016. Clinical review. Level 4. Articles collected via the database search were assessed for the association of bone marrow lesions and osteoarthritis, cartilage regeneration, and ligamentous and meniscal injury; the clinical disorder known as painful bone marrow edema syndrome; and the subchondral bone as a target for medical and surgical intervention. A complex interplay exists between the articular cartilage of the knee and its underlying subchondral bone. The role of subchondral bone in the knee is intimately related to the outcomes from cartilage restoration procedures, ligamentous injury, meniscal pathology, and osteoarthritis. However, subchondral bone is often neglected when it should be viewed as a critical element of the osteochondral unit and a key player in joint health. Continued explorations into the intricacies of subchondral bone marrow abnormalities and implications for the advent of procedures such as subchondroplasty will inform further research efforts on how interventions aimed at the subchondral bone may provide durable options for knee joint preservation.

  12. In Vivo Quantitative Ultrasound Image Analysis of Femoral Subchondral Bone in Knee Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Jana Podlipská

    2013-01-01

    Full Text Available A potential of quantitative noninvasive knee ultrasonography (US for detecting changes in femoral subchondral bone related to knee osteoarthritis (OA was investigated. Thirty-nine patients referred to a knee arthroscopy underwent dynamic noninvasive US examination of the knee joint. The subchondral bone was semiautomatically segmented from representative US images of femoral medial and lateral condyles and intercondylar notch area. Subsequently, the normalized mean gray-level intensity profile, starting from the cartilage-bone interface and extending to the subchondral bone depth of ~1.7 mm, was calculated. The obtained profile was divided into 5 depth levels and the mean of each level, as well as the slope of the profile within the first two levels, was calculated. The US quantitative data were compared with the arthroscopic Noyes’ grading and radiographic Kellgren-Lawrence (K-L grading. Qualitatively, an increase in relative subchondral bone US gray-level values was observed as OA progressed. Statistically significant correlations were observed between normalized US mean intensity or intensity slope especially in subchondral bone depth level 2 and K-L grading (r=0.600, P<0.001; r=0.486, P=0.006, resp. or femoral arthroscopic scoring (r=0.332, P=0.039; r=0.335, P=0.037, resp.. This novel quantitative noninvasive US analysis technique is promising for detection of femoral subchondral bone changes in knee OA.

  13. Bone mineral measurements of subchondral and trabecular bone in healthy and osteoporotic rabbits

    International Nuclear Information System (INIS)

    Castaneda, S; Largo, R.; Marcos, M.E.; Herrero-Beaumont, G.; Calvo, E.; Rodriguez-Salvanes, F.; Diaz-Curiel, M.

    2006-01-01

    Experimental models of osteoporosis in rabbits are useful to investigate anabolic agents because this animal has a fast bone turnover with predominant remodelling over the modelling processes. For that purpose, it is necessary to characterize the densitometric values of each type of bony tissue. To determine areal bone mass measurement in the spine and in trabecular, cortical and subchondral bone of the knee in healthy and osteoporotic rabbits. Bone mineral content and bone mineral density were measured in lumbar spine, global knee, and subchondral and cortical bone of the knee with dual energy X-ray absorptiometry using a Hologic QDR-1000/W densitometer in 29 skeletally mature female healthy New Zealand rabbits. Ten rabbits underwent triplicate scans for evaluation of the effect of repositioning. Osteoporosis was experimentally induced in 15 rabbits by bilateral ovariectomy and postoperative corticosteroid treatment for 4 weeks. Identical dual energy X-ray absorptiometry (DXA) studies were performed thereafter. Mean values of bone mineral content at the lumbar spine, global knee, subchondral bone and cortical tibial metaphysis were: 1934±217 mg, 878±83 mg, 149±14 mg and 29±7.0 mg, respectively. The mean values of bone mineral density at the same regions were: 298±24 mg/cm 2 , 455±32 mg/cm 2 , 617±60 mg/cm 2 and 678±163 mg/cm 2 , respectively. (orig.)

  14. Alterations of the subchondral bone in osteochondral repair – translational data and clinical evidence

    Directory of Open Access Journals (Sweden)

    P Orth

    2013-06-01

    Full Text Available Alterations of the subchondral bone are pathological features associated with spontaneous osteochondral repair following an acute injury and with articular cartilage repair procedures. The aim of this review is to discuss their incidence, extent and relevance, focusing on recent knowledge gained from both translational models and clinical studies of articular cartilage repair. Efforts to unravel the complexity of subchondral bone alterations have identified (1 the upward migration of the subchondral bone plate, (2 the formation of intralesional osteophytes, (3 the appearance of subchondral bone cysts, and (4 the impairment of the osseous microarchitecture as potential problems. Their incidence and extent varies among the different small and large animal models of cartilage repair, operative principles, and over time. When placed in the context of recent clinical investigations, these deteriorations of the subchondral bone likely are an additional, previously underestimated, factor that influences the long-term outcome of cartilage repair strategies. Understanding the role of the subchondral bone in both experimental and clinical articular cartilage repair thus holds great promise of being translated into further improved cell- or biomaterial-based techniques to preserve and restore the entire osteochondral unit.

  15. A novel algorithm for a precise analysis of subchondral bone alterations

    Science.gov (United States)

    Gao, Liang; Orth, Patrick; Goebel, Lars K. H.; Cucchiarini, Magali; Madry, Henning

    2016-01-01

    Subchondral bone alterations are emerging as considerable clinical problems associated with articular cartilage repair. Their analysis exposes a pattern of variable changes, including intra-lesional osteophytes, residual microfracture holes, peri-hole bone resorption, and subchondral bone cysts. A precise distinction between them is becoming increasingly important. Here, we present a tailored algorithm based on continuous data to analyse subchondral bone changes using micro-CT images, allowing for a clear definition of each entity. We evaluated this algorithm using data sets originating from two large animal models of osteochondral repair. Intra-lesional osteophytes were detected in 3 of 10 defects in the minipig and in 4 of 5 defects in the sheep model. Peri-hole bone resorption was found in 22 of 30 microfracture holes in the minipig and in 17 of 30 microfracture holes in the sheep model. Subchondral bone cysts appeared in 1 microfracture hole in the minipig and in 5 microfracture holes in the sheep model (n = 30 holes each). Calculation of inter-rater agreement (90% agreement) and Cohen’s kappa (kappa = 0.874) revealed that the novel algorithm is highly reliable, reproducible, and valid. Comparison analysis with the best existing semi-quantitative evaluation method was also performed, supporting the enhanced precision of this algorithm. PMID:27596562

  16. Inhibition of SDF-1α/CXCR4 Signalling in Subchondral Bone Attenuates Post-Traumatic Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Yonghui Dong

    2016-06-01

    Full Text Available Previous studies showed that SDF-1α is a catabolic factor that can infiltrate cartilage, decrease proteoglycan content, and increase MMP-13 activity. Inhibiting the SDF-1α/CXCR4 signalling pathway can attenuate the pathogenesis of osteoarthritis (OA. Recent studies have also shown that SDF-1α enhances chondrocyte proliferation and maturation. These results appear to be contradictory. In the current study, we used a destabilisation OA animal model to investigate the effects of SDF-1α/CXCR4 signalling in the tibial subchondral bone and the OA pathological process. Post-traumatic osteoarthritis (PTOA mice models were prepared by transecting the anterior cruciate ligament (ACLT, or a sham surgery was performed, in a total of 30 mice. Mice were treated with phosphate buffer saline (PBS or AMD3100 (an inhibitor of CXCR4 and sacrificed at 30 days post ACLT or sham surgery. Tibial subchondral bone status was quantified by micro-computed tomography (μCT. Knee-joint histology was analysed to examine the articular cartilage and joint degeneration. The levels of SDF-1α and collagen type I c-telopeptidefragments (CTX-I were quantified by ELISA. Bone marrow mononuclear cells (BMMCs were used to clarify the effects of SDF-1α on osteoclast formation and activity in vivo. μCT analysis revealed significant loss of trabecular bone from tibial subchondral bone post-ACLT, which was effectively prevented by AMD3100. AMD3100 could partially prevent bone loss and articular cartilage degeneration. Serum biomarkers revealed an increase in SDF-1α and bone resorption, which were also reduced by AMD3100. SDF-1α can promote osteoclast formation and the expression oftartrate resistant acid phosphatase (TRAP, cathepsin K (CK, and matrix metalloproteinase (MMP-9 in osteoclasts by activating the MAPK pathway, including ERK and p38, but not JNK. In conclusion, inhibition of SDF-1α/CXCR4signalling was able to prevent trabecular bone loss and attenuated cartilage

  17. Interleukin-6 from subchondral bone mesenchymal stem cells contributes to the pathological phenotypes of experimental osteoarthritis

    Science.gov (United States)

    Wu, Xiaofeng; Cao, Lei; Li, Fan; Ma, Chao; Liu, Guangwang; Wang, Qiugen

    2018-01-01

    As a main cause of morbidity in the aged population, osteoarthritis (OA) is characterized by cartilage destruction, synovium inflammation, osteophytes, and subchondral bone sclerosis. To date its etiology remains elusive. Recent data highlight an important role of subchondral bone in the onset and progression of OA. Therefore, elucidating the mechanisms underlying abnormal subchondral bone could be of importance in the treatment of OA. Interleukin-6 is a proinflammatory cytokine involved in many physiological and pathological processes. Although in vitro and in vivo studies have indicated that IL-6 is an important cytokine in the physiopathogenesis of OA, its effects on subchondral bone have not been studied in OA animal models. In this study, we aimed to i) investigate the role of IL-6 in the pathological phenotypes of OA subchondral bone MSCs including increase in cell numbers, mineralization disorder and abnormal type I collagen production; ii) explore whether the systemic blockade of IL-6 signaling could alleviate the pathological phenotypes of experimental OA. We found that IL-6 was over-secreted by OA subchondral bone MSCs compared with normal MSCs and IL-6/STAT3 signaling was over-activated in subchondral bone MSCs, which contributed to the pathological phenotypes of OA subchondral bone MSCs. More importantly, systemic inhibition of IL-6/STAT3 signaling with IL-6 antibody or STAT3 inhibitor AG490 decreased the severity of pathological phenotypes of OA subchondral bone MSCs and cartilage lesions in OA. Our findings provide strong evidence for a pivotal role for IL-6 signaling in OA and open up new therapeutic perspectives. PMID:29736207

  18. Effects of a phosphocitrate analogue on osteophyte, subchondral bone advance, and bone marrow lesions in Hartley guinea pigs

    Science.gov (United States)

    Kiraly, A. J.; Sun, A. R.; Cox, M.; Mauerhan, D. R.; Hanley, E. N.

    2018-01-01

    Objectives The objectives of this study were: 1) to examine osteophyte formation, subchondral bone advance, and bone marrow lesions (BMLs) in osteoarthritis (OA)-prone Hartley guinea pigs; and 2) to assess the disease-modifying activity of an orally administered phosphocitrate ‘analogue’, Carolinas Molecule-01 (CM-01). Methods Young Hartley guinea pigs were divided into two groups. The first group (n = 12) had drinking water and the second group (n = 9) had drinking water containing CM-01. Three guinea pigs in each group were euthanized at age six, 12, and 18 months, respectively. Three guinea pigs in the first group were euthanized aged three months as baseline control. Radiological, histological, and immunochemical examinations were performed to assess cartilage degeneration, osteophyte formation, subchondral bone advance, BMLs, and the levels of matrix metalloproteinse-13 (MMP13) protein expression in the knee joints of hind limbs. Results In addition to cartilage degeneration, osteophytes, subchondral bone advance, and BMLs increased with age. Subchondral bone advance was observed as early as six months, whereas BMLs and osteophytes were both observed mainly at 12 and 18 months. Fibrotic BMLs were found mostly underneath the degenerated cartilage on the medial side. In contrast, necrotic BMLs were found almost exclusively in the interspinous region. Orally administered CM-01 decreased all of these pathological changes and reduced the levels of MMP13 expression. Conclusion Subchondral bone may play a role in cartilage degeneration. Subchondral bone changes are early events; formation of osteophytes and BMLs are later events in the OA disease process. Carolinas Molecule-01 is a promising small molecule candidate to be tested as an oral disease-modifying drug for human OA therapy. Cite this article: Y. Sun, A. J. Kiraly, A. R. Sun, M. Cox, D. R. Mauerhan, E. N. Hanley Jr. Effects of a phosphocitrate analogue on osteophyte, subchondral bone advance, and

  19. Effects of a phosphocitrate analogue on osteophyte, subchondral bone advance, and bone marrow lesions in Hartley guinea pigs.

    Science.gov (United States)

    Sun, Y; Kiraly, A J; Sun, A R; Cox, M; Mauerhan, D R; Hanley, E N

    2018-02-01

    The objectives of this study were: 1) to examine osteophyte formation, subchondral bone advance, and bone marrow lesions (BMLs) in osteoarthritis (OA)-prone Hartley guinea pigs; and 2) to assess the disease-modifying activity of an orally administered phosphocitrate 'analogue', Carolinas Molecule-01 (CM-01). Young Hartley guinea pigs were divided into two groups. The first group (n = 12) had drinking water and the second group (n = 9) had drinking water containing CM-01. Three guinea pigs in each group were euthanized at age six, 12, and 18 months, respectively. Three guinea pigs in the first group were euthanized aged three months as baseline control. Radiological, histological, and immunochemical examinations were performed to assess cartilage degeneration, osteophyte formation, subchondral bone advance, BMLs, and the levels of matrix metalloproteinse-13 (MMP13) protein expression in the knee joints of hind limbs. In addition to cartilage degeneration, osteophytes, subchondral bone advance, and BMLs increased with age. Subchondral bone advance was observed as early as six months, whereas BMLs and osteophytes were both observed mainly at 12 and 18 months. Fibrotic BMLs were found mostly underneath the degenerated cartilage on the medial side. In contrast, necrotic BMLs were found almost exclusively in the interspinous region. Orally administered CM-01 decreased all of these pathological changes and reduced the levels of MMP13 expression. Subchondral bone may play a role in cartilage degeneration. Subchondral bone changes are early events; formation of osteophytes and BMLs are later events in the OA disease process. Carolinas Molecule-01 is a promising small molecule candidate to be tested as an oral disease-modifying drug for human OA therapy. Cite this article : Y. Sun, A. J. Kiraly, A. R. Sun, M. Cox, D. R. Mauerhan, E. N. Hanley Jr. Effects of a phosphocitrate analogue on osteophyte, subchondral bone advance, and bone marrow lesions in Hartley guinea

  20. Adaptation of subchondral bone in osteoarthritis

    DEFF Research Database (Denmark)

    Ding, Ming

    2004-01-01

    Osteoarthritis is a chronic joint disease with pathological changes in the articulating cartilage and all other tissues that occupy the joint. Radin and coworkers have suggested the involvement of subchondral bone in the disease process. However, evidence for an essential role in the etiology has...

  1. Contribution of Circulatory Disturbances in Subchondral Bone to the Pathophysiology of Osteoarthritis.

    Science.gov (United States)

    Aaron, Roy K; Racine, Jennifer; Dyke, Jonathan P

    2017-08-01

    This review describes the contributions of abnormal bone circulation to the pathophysiology of osteoarthritis. Combining dynamic imaging with MRI and PET with previous observations reveals that venous stasis and a venous outlet syndrome is most likely the key circulatory pathology associated with the initiation or progression of osteoarthritis. MRI and PET have revealed that venous outflow obstruction results in physicochemical changes in subchondral bone to which osteoblasts are responsive. The osteoblasts express an altered pattern of cytokines, many of which can serve as structural or signaling molecules contributing to both bone remodeling and cartilage degeneration. The patterns of circulatory changes are associated with alterations in the physicochemical environment of subchondral bone, including hypoxia. Osteoblast cytokines can transit the subchondral bone plate and calcified cartilage and communicate with chondrocytes.

  2. Ultrasound arthroscopy of human knee cartilage and subchondral bone in vivo.

    Science.gov (United States)

    Liukkonen, Jukka; Lehenkari, Petri; Hirvasniemi, Jukka; Joukainen, Antti; Virén, Tuomas; Saarakkala, Simo; Nieminen, Miika T; Jurvelin, Jukka S; Töyräs, Juha

    2014-09-01

    Arthroscopic ultrasound imaging enables quantitative evaluation of articular cartilage. However, the potential of this technique for evaluation of subchondral bone has not been investigated in vivo. In this study, we address this issue in clinical arthroscopy of the human knee (n = 11) by determining quantitative ultrasound (9 MHz) reflection and backscattering parameters for cartilage and subchondral bone. Furthermore, in each knee, seven anatomical sites were graded using the International Cartilage Repair Society (ICRS) system based on (i) conventional arthroscopy and (ii) ultrasound images acquired in arthroscopy with a miniature transducer. Ultrasound enabled visualization of articular cartilage and subchondral bone. ICRS grades based on ultrasound images were higher (p ultrasound-based ICRS grades were expected as ultrasound reveals additional information on, for example, the relative depth of the lesion. In line with previous literature, ultrasound reflection and scattering in cartilage varied significantly (p ultrasound parameters and structure or density of subchondral bone could be demonstrated. To conclude, arthroscopic ultrasound imaging had a significant effect on clinical grading of cartilage, and it was found to provide quantitative information on cartilage. The lack of correlation between the ultrasound parameters and bone properties may be related to lesser bone change or excessive attenuation in overlying cartilage and insufficient power of the applied miniature transducer. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  3. Is there crosstalk between subchondral bone, cartilage, and meniscus in the pathogenesis of osteoarthritis?

    Science.gov (United States)

    Atik, O Şahap; Erdoğan, Deniz; Seymen, Cemile Merve; Bozkurt, Hasan Hüseyin; Kaplanoğlu, Gülnur Take

    2016-08-01

    This study aims to investigate if there is any crosstalk between subchondral bone, cartilage, and meniscus in the pathogenesis of osteoarthritis. Twelve female patients (mean age 64 years; range 59 to 71 years) with osteoarthritis in medial compartment were included in the study. The samples of subchondral bone, cartilage and meniscus were obtained during total knee arthroplasty. Degenerated tissue samples obtained from medial compartment were used as the experimental group (12 samples of subchondral bone and cartilage, 1x1 cm each; and 12 samples of meniscus, 1x1 cm each). Healthy tissue samples obtained from lateral compartment were used as the control group (12 samples of subchondral bone and cartilage; 1x1 cm each; and 12 samples of meniscus, 1x1 cm each). After decalcification, tissue samples were evaluated with light and transmission electron microscopy. In the experimental group, light microscopic evaluation of subchondral bone samples demonstrated that the cartilage-to-bone transition region had an irregular structure. Degenerated cartilage cells were observed in the transition region and bone cells were significantly corrupted. In the experimental group, light microscopic evaluation of the meniscus samples demonstrated that the intercellular tissue was partly corrupted. Separation and concentration of the collagen fibers were evident. All findings were supported with ultra structural evaluations. Our findings indicate that degeneration of subchondral bone, cartilage, and meniscus probably plays a role in the pathogenesis of osteoarthritis with crosstalk.

  4. Dual-energy X-ray absorptiometry applied to the assessment of tibial subchondral bone mineral density in osteoarthritis of the knee

    International Nuclear Information System (INIS)

    Clarke, S.; Duddy, J.; Nickols, G.; Kirwan, J.R.; Wakeley, C.; Watt, I.; Ellingham, K.; Sharif, M.; Elson, C.J.

    2004-01-01

    Plain X-ray is an imprecise tool for monitoring the subchondral bony changes associated with the development of knee osteoarthritis (OA). Our objective was to develop and validate a technique for assessing tibial subchondral bone density (BMD) in knee OA using dual energy X-ray absorptiometry (DXA). Patients with OA of at least one knee underwent DXA scanning of both knees. Regions of interest (ROI) were placed in the lateral and medial compartments of tibial subchondral bone. Weight-bearing plain X-rays and Te 99m scintiscans of both knees were obtained and scored. One hundred and twelve patients (223 knees) underwent DXA and radiography. Intra-observer CV% was 2.4% and 1.0% for the medial and lateral ROI respectively. Definite OA (Kellgren and Lawrence Grade 2, 3 or 4) was correlated with age-related preservation of subchondral BMD compared to radiographically normal knees. Raised BMD was also associated with subchondral sclerosis, and positive scintigraphy. DXA may provide a safe, rapid and reliable means of assessing knee OA. Cross-sectional age-related subchondral tibial BMD loss is attenuated by knee OA. (orig.)

  5. Subchondral bone in osteoarthritis: insight into risk factors and microstructural changes

    OpenAIRE

    Li, Guangyi; Yin, Jimin; Gao, Junjie; Cheng, Tak S; Pavlos, Nathan J; Zhang, Changqing; Zheng, Ming H

    2013-01-01

    Osteoarthritis (OA) is a major cause of disability in the adult population. As a progressive degenerative joint disorder, OA is characterized by cartilage damage, changes in the subchondral bone, osteophyte formation, muscle weakness, and inflammation of the synovium tissue and tendon. Although OA has long been viewed as a primary disorder of articular cartilage, subchondral bone is attracting increasing attention. It is commonly reported to play a vital role in the pathogenesis of OA. Subcho...

  6. The basic science of the subchondral bone

    NARCIS (Netherlands)

    Madry, Henning; van Dijk, C. Niek; Mueller-Gerbl, Magdalena

    2010-01-01

    In the past decades, considerable efforts have been made to propose experimental and clinical treatments for articular cartilage defects. Yet, the problem of cartilage defects extending deep in the underlying subchondral bone has not received adequate attention. A profound understanding of the basic

  7. Vasoactive substances in subchondral bone of the dog knee

    DEFF Research Database (Denmark)

    Holm, I E; Ewald, Henrik Lykke; Bülow, J

    1990-01-01

    The purpose of the present study was to investigate regulatory mechanisms for subchondral bone blood flow. A model including elevation of joint cavity pressure in the immature dog knee was applied. The role of prostaglandins in bone blood flow regulation was indirectly examined by indomethacin...

  8. Hardness of the subchondral bone of the patella in the normal state, in chondromalacia, and in osteoarthrosis.

    Science.gov (United States)

    Björkström, S; Goldie, I F

    1982-06-01

    The hardness of bone is its property of withstanding the impact of a penetrating agent. It has been found that articular degenerative changes in, for example, the tibia (knee) are combined with a decrease in the hardness of the subchondral bone. In this investigation the hardness of subchondral bone in chondromalacia and osteoarthrosis of the patella has been analysed and compared with normal subchondral bone. Using an indentation method originally described by Brinell the hardness of the subchondral bone was evaluated in 7 normal patellae, in 20 with chondromalacia and in 33 with osteoarthrosis. A microscopic and microradiographic study of the subchondral bone was carried out simultaneously. Hardness was lowest in the normal material. The mean hardness value beneath the degenerated cartilage differed only slightly from that of the normal material, but the variation of values was increased. The hardness in bone in the chondromalacia area was lower than the hardness in bone covered by surrounding normal cartilage. The mean hardness value in bone beneath normal parts of cartilage in specimens with chondromalacia was higher than the mean hardness value of the normal material. In the microscopic and microradiographic examination it became evident that there was a relationship between trabecular structure and subchondral bone hardness; high values: coarse and solid structure; low values: slender and less regular structure.

  9. Variable Bone Density of Scaphoid: Importance of Subchondral Screw Placement.

    Science.gov (United States)

    Swanstrom, Morgan M; Morse, Kyle W; Lipman, Joseph D; Hearns, Krystle A; Carlson, Michelle G

    2018-02-01

    Background  Ideal internal fixation of the scaphoid relies on adequate bone stock for screw purchase; so, knowledge of regional bone density of the scaphoid is crucial. Questions/Purpose  The purpose of this study was to evaluate regional variations in scaphoid bone density. Materials and Methods  Three-dimensional CT models of fractured scaphoids were created and sectioned into proximal/distal segments and then into quadrants (volar/dorsal/radial/ulnar). Concentric shells in the proximal and distal pole were constructed in 2-mm increments moving from exterior to interior. Bone density was measured in Hounsfield units (HU). Results  Bone density of the distal scaphoid (453.2 ± 70.8 HU) was less than the proximal scaphoid (619.8 ± 124.2 HU). There was no difference in bone density between the four quadrants in either pole. In both the poles, the first subchondral shell was the densest. In both the proximal and distal poles, bone density decreased significantly in all three deeper shells. Conclusion  The proximal scaphoid had a greater density than the distal scaphoid. Within the poles, there was no difference in bone density between the quadrants. The subchondral 2-mm shell had the greatest density. Bone density dropped off significantly between the first and second shell in both the proximal and distal scaphoids. Clinical Relevance  In scaphoid fracture ORIF, optimal screw placement engages the subchondral 2-mm shell, especially in the distal pole, which has an overall lower bone density, and the second shell has only two-third the density of the first shell.

  10. Does subchondral bone of the equine proximal phalanx adapt to race training?

    Science.gov (United States)

    Noble, Phillipa; Singer, Ellen R; Jeffery, Nathan S

    2016-07-01

    Sagittal fractures of the first phalanx are a common, potentially catastrophic injury in racehorses. These fractures are often linked to an acute, one time, biomechanical event; however, recent evidence implies that chronic exposure to stress can lead to the accumulation of bony changes that affect the structural integrity of the bone and increase the likelihood of fracture. The aim of the study was to compare variations of two common metrics of bone adaptation - subchondral bone density and thickness across the proximal articular surface of the first phalanx in Thoroughbred horses that (1) raced but never experienced a first phalanx fracture (Raced Control); (2) raced and had experienced fracture of the contralateral first phalanx (Contralateral to Fracture); (3) had never raced or experienced a first phalanx fracture (Unraced Control). A total of 22 first phalangeal bones were sampled post-mortem and imaged using micro-computed tomography calibrated for mineral density measures. Measurements of volumetric subchondral bone mineral density and thickness were taken from images at five sites from medial to lateral, in three coronal planes (25, 50 and 75% dorsal-palmar). At each of the 15 sites, measurements were repeated and averaged across 10 adjacent micro-computed tomography slices of bone, spanning 0.75 mm. The magnitude and variance of these measurements were compared between sites and between cohorts with non-parametric statistical tests. Across the proximal osteochondral surface of the first phalanx, the pattern of subchondral bone volumetric bone mineral density and thickness varied with each coronal section studied. The subchondral bone thickness was greater for the central and dorsal coronal sections, compared with the palmar section. For the race-fit groups (Raced Control and Contralateral to Fracture), the highest volumetric bone mineral density was in the central sagittal groove. The volumetric bone mineral density was significantly greater in the

  11. Prevalence of subchondral bone pathological changes in the distal metacarpi/metatarsi of racing Thoroughbred horses.

    Science.gov (United States)

    Bani Hassan, E; Mirams, M; Mackie, E J; Whitton, R C

    2017-10-01

    To investigate the prevalence of microscopic subchondral bone injury in the distal metacarpi/tarsi of Thoroughbred racehorses and associations with recent and cumulative training history. Metacarpi/metatarsi were obtained from postmortem examination of Thoroughbred racehorses. The severity of palmar/plantar osteochondral disease (POD) was graded in forelimbs from 38 horses and in hindlimbs from a separate cohort of 45 horses. Forelimb samples were embedded in methyl methacrylate and examined using backscattered scanning electron microscopy. Microfracture density in the condylar subchondral bone was determined. Horizontal subchondral bone fractures were identified in hindlimb samples using sections of demineralised tissue. Empty osteocyte lacunae were quantified in hindlimb samples using sections of demineralised tissue. The prevalence of gross POD was 65.8% (95% confidence interval (CI) 48.7-80.4%) in the forelimb and 57.8% (95% CI 42.2-72.3%) in the hindlimb cohort of horses. Microfractures occurred in the forelimbs of 97.4% (95% CI 86.2-99.9%) of horses. Microfracture density in forelimbs increased with age (r s  = 0.50, P = 0.001), the number of race starts (r s  = 0.47, P = 0.003) and was greater in the medial condyles of horses in training than in those not in training (n = 21, median: 3.1/mm; range: 0.8-10.0 vs n = 17, 1.4/mm; 0-4.5, P = 0.008). Empty osteocyte lacunae were observed in the subchondral bone of hindlimbs in 97.7% (95% CI 88.0-99.9%) of 44 horses. Subchondral bone pathology occurs with a high prevalence in Thoroughbred racehorses presented for postmortem examination. The accumulation of subchondral bone damage with longer career duration is consistent with bone fatigue. © 2017 Australian Veterinary Association.

  12. Infrared spectroscopy reveals both qualitative and quantitative differences in equine subchondral bone during maturation

    Science.gov (United States)

    Kobrina, Yevgeniya; Isaksson, Hanna; Sinisaari, Miikka; Rieppo, Lassi; Brama, Pieter A.; van Weeren, René; Helminen, Heikki J.; Jurvelin, Jukka S.; Saarakkala, Simo

    2010-11-01

    The collagen phase in bone is known to undergo major changes during growth and maturation. The objective of this study is to clarify whether Fourier transform infrared (FTIR) microspectroscopy, coupled with cluster analysis, can detect quantitative and qualitative changes in the collagen matrix of subchondral bone in horses during maturation and growth. Equine subchondral bone samples (n = 29) from the proximal joint surface of the first phalanx are prepared from two sites subjected to different loading conditions. Three age groups are studied: newborn (0 days old), immature (5 to 11 months old), and adult (6 to 10 years old) horses. Spatial collagen content and collagen cross-link ratio are quantified from the spectra. Additionally, normalized second derivative spectra of samples are clustered using the k-means clustering algorithm. In quantitative analysis, collagen content in the subchondral bone increases rapidly between the newborn and immature horses. The collagen cross-link ratio increases significantly with age. In qualitative analysis, clustering is able to separate newborn and adult samples into two different groups. The immature samples display some nonhomogeneity. In conclusion, this is the first study showing that FTIR spectral imaging combined with clustering techniques can detect quantitative and qualitative changes in the collagen matrix of subchondral bone during growth and maturation.

  13. Abnormal subchondral bone microstructure following steroid administration is involved in the early pathogenesis of steroid-induced osteonecrosis.

    Science.gov (United States)

    Wang, L; Zhang, L; Pan, H; Peng, S; Zhao, X; Lu, W W

    2016-01-01

    Loss of bone microstructure integrity is thought to be related to osteonecrosis. But the relationship between the time when bone microstructure integrity loss appears and the onset of osteonecrosis has not yet been determined. Our study demonstrated abnormal changes of subchondral bone microstructure involved in the early pathogenesis of osteonecrosis. Using a rabbit model, we investigated the changes of subchondral bone microstructure following steroid administration to identify the onset of abnormal bone microstructure development in steroid-induced osteonecrosis. Fifty-five adult female Japanese White rabbits (mean body weight 3.5 kg; mean age 24 months) were used and randomly divided among three time points (3, 7, and 14 days) consisting of 15 rabbits each, received a single intramuscular injection of methylprednisolone acetate (MP; Pfizer Manufacturing Belgium NV) at a dose of 4 mg/kg, and a control group consisting of 10 rabbits was fed and housed under identical conditions but were not given steroid injections. A micro-CT scanner was applied to detect changes in the trabecular region of subchondral bone of excised femoral head samples. Parameters including bone volume fraction (BV/TV), bone surface (BS), trabecular bone pattern factor (Tb.Pf), trabecular thickness/number/separation (Tb.Th, Tb.N, and Tb.Sp), and structure model index (SMI) were evaluated using the software CTAn (SkyScan). After micro-CT scans, bilateral femoral heads were cut in the coronal plane at a thickness of 4 μm. The sections were then stained with haematoxylin-eosin and used for the diagnosis of osteonecrosis and the rate of development of osteonecrosis. The BV/TV, BS, Tb.Th and Tb.N demonstrated a time-dependent decline from 3, 7, and 14 days compared with the control group, while the Tb.Pf, Tb.Sp and SMI demonstrated an increase at 3, 7, and 14 days compared with the control group. For the histopathology portion, osteonecrosis was not seen 3 days after steroid treatment, but was

  14. The effects of orally administered diacerein on cartilage and subchondral bone in an ovine model of osteoarthritis.

    Science.gov (United States)

    Hwa, S Y; Burkhardt, D; Little, C; Ghosh, P

    2001-04-01

    An ovine model of osteoarthritis (OA) induced by bilateral lateral meniscectomy (BLM) was used to evaluate in vivo effects of the slow acting antiarthritic drug diacerein (DIA) on degenerative changes in cartilage and subchondral bone of the operated joints. Twenty of 30 adult age matched Merino wethers were subjected to BLM in the knee joints and the remainder served as non-operated controls (NOC). Half of the BLM group (n = 10) were given DIA (25 mg/kg orally) daily for 3 mo, then 50 mg/kg daily for a further 6 mo. The remainder of the meniscectomized (MEN) group served as OA controls. Five DIA, 5 MEN, and 5 NOC animals were sacrificed at 3 mo and the remainder at 9 mo postsurgery. One knee joint of each animal was used for bone mineral density (BMD) studies. Osteochondral slabs from the lateral femoral condyle and lateral tibial plateau were cut from the contralateral joint and were processed for histological and histomorphometric examination to assess the cartilage and subchondral bone changes. No significant difference was observed in the modified Mankin scores for cartilage from the DIA and MEN groups at 3 or 9 mo. However, in animals treated with DIA, the thickness of cartilage (p = 0.05) and subchondral bone (p = 0.05) in the lesion (middle) zone of the lateral tibial plateau were decreased relative to the corresponding zone of the MEN group at 3 mo (p = 0.05). At 9 mo subchondral bone thickness in this zone remained the same as NOC but BMD, which included both subchondral and trabecular bone, was significantly increased relative to the NOC group (p = 0.01). In contrast, the subchondral bone thickness of the outer zone of lateral tibial plateau and lateral femoral condyle of both MEN and DIA groups increased after 9 mo, while BMD remained the same as in the NOC. DIA treatment of meniscectomized animals mediated selective responses of cartilage and subchondral bone to the altered mechanical stresses induced across the joints by this procedure. While

  15. Role of subchondral bone properties and changes in development of load-induced osteoarthritis in mice.

    Science.gov (United States)

    Adebayo, O O; Ko, F C; Wan, P T; Goldring, S R; Goldring, M B; Wright, T M; van der Meulen, M C H

    2017-12-01

    Animal models recapitulating post-traumatic osteoarthritis (OA) suggest that subchondral bone (SCB) properties and remodeling may play major roles in disease initiation and progression. Thus, we investigated the role of SCB properties and its effects on load-induced OA progression by applying a tibial loading model on two distinct mouse strains treated with alendronate (ALN). Cyclic compression was applied to the left tibia of 26-week-old male C57Bl/6 (B6, low bone mass) and FVB (high bone mass) mice. Mice were treated with ALN (26 μg/kg/day) or vehicle (VEH) for loading durations of 1, 2, or 6 weeks. Changes in articular cartilage and subchondral and epiphyseal cancellous bone were analyzed using histology and microcomputed tomography. FVB mice exhibited thicker cartilage, a thicker SCB plate, and higher epiphyseal cancellous bone mass and tissue mineral density than B6 mice. Loading induced cartilage pathology, osteophyte formation, and SCB changes; however, lower initial SCB mass and stiffness in B6 mice did not attenuate load-induced OA severity compared to FVB mice. By contrast, FVB mice exhibited less cartilage damage, and slower-growing and less mature osteophytes. In B6 mice, inhibiting bone remodeling via ALN treatment exacerbated cartilage pathology after 6 weeks of loading, while in FVB mice, inhibiting bone remodeling protected limbs from load-induced cartilage loss. Intrinsically lower SCB properties were not associated with attenuated load-induced cartilage loss. However, inhibiting bone remodeling produced differential patterns of OA pathology in animals with low compared to high SCB properties, indicating that these factors do influence load-induced OA progression. Copyright © 2017 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  16. EFFECTS OF HYALURONAN ON THREE-DIMENSIONAL MICROARCHITECTURE OF SUBCHONDRAL BONE TISSUES IN GUINEA PIG PRIMARY OSTEOARTHROSIS

    DEFF Research Database (Denmark)

    Ding, Ming

    Introduction: It is not known whether hyaluronan (HA) has any effect on the underlying subchondral bone tissues. This study was to investigate the effects of high molecular weight HA (1.5x106 Daltons) intra-articular injection on subchondral bone tissues. Methods: Fifty-six male guinea pigs (6...

  17. Application of in vivo micro-computed tomography in the temporal characterisation of subchondral bone architecture in a rat model of low-dose monosodium iodoacetate-induced osteoarthritis

    Science.gov (United States)

    2011-01-01

    Introduction Osteoarthritis (OA) is a complex, multifactorial joint disease affecting both the cartilage and the subchondral bone. Animal models of OA aid in the understanding of the pathogenesis of OA and testing suitable drugs for OA treatment. In this study we characterized the temporal changes in the tibial subchondral bone architecture in a rat model of low-dose monosodium iodoacetate (MIA)-induced OA using in vivo micro-computed tomography (CT). Methods Male Wistar rats received a single intra-articular injection of low-dose MIA (0.2 mg) in the right knee joint and sterile saline in the left knee joint. The animals were scanned in vivo by micro-CT at two, six, and ten weeks post-injection, analogous to early, intermediate, and advanced stages of OA, to assess architectural changes in the tibial subchondral bone. The articular cartilage changes in the tibiae were assessed macroscopically and histologically at ten weeks post-injection. Results Interestingly, tibiae of the MIA-injected knees showed significant bone loss at two weeks, followed by increased trabecular thickness and separation at six and ten weeks. The trabecular number was decreased at all time points compared to control tibiae. The tibial subchondral plate thickness of the MIA-injected knee was increased at two and six weeks and the plate porosity was increased at all time points compared to control. At ten weeks, histology revealed loss of proteoglycans, chondrocyte necrosis, chondrocyte clusters, cartilage fibrillation, and delamination in the MIA-injected tibiae, whereas the control tibiae showed no changes. Micro-CT images and histology showed the presence of subchondral bone sclerosis, cysts, and osteophytes. Conclusions These findings demonstrate that the low-dose MIA rat model closely mimics the pathological features of progressive human OA. The low-dose MIA rat model is therefore suitable to study the effect of therapeutic drugs on cartilage and bone in a non-trauma model of OA. In vivo

  18. Pulsed CO2 laser for intra-articular cartilage vaporization and subchondral bone perforation in horses

    Science.gov (United States)

    Nixon, Alan J.; Roth, Jerry E.; Krook, Lennart P.

    1991-05-01

    A pulsed carbon dioxide laser was used to vaporize articular cartilage in four horses, and perforate the cartilage and subchondral bone in four horses. Both intercarpal joints were examined arthroscopically and either a 1 cm cartilage crater or a series of holes was created in the third carpal bone of one joint. The contralateral carpus served as a control. The horses were evaluated clinically for 8 weeks, euthanatized and the joints examined radiographically, grossly, and histologically. Pulsed carbon dioxide laser vaporized cartilage readily but penetrated bone poorly. Cartilage vaporization resulted in no greater swelling, heat, pain on flexion, lameness, or synovial fluid reaction than the sham procedure. Laser drilling resulted in a shallow, charred hole with a tenacious carbon residue, and in combination with the thermal damage to deeper bone, resulted in increased swelling, mild lameness and a low-grade, but persistent synovitis. Cartilage removal by laser vaporization resulted in rapid regrowth with fibrous and fibrovascular tissue and occasional regions of fibrocartilage at week 8. The subchondral bone, synovial membrane, and draining lymph nodes appeared essentially unaffected by the laser cartilage vaporization procedure. Conversely, carbon dioxide laser drilling of subchondral bone resulted in poor penetration, extensive areas of thermal necrosis of bone, and significant secondary damage to the apposing articular surface of the radial carpal bone. The carbon dioxide laser is a useful intraarticular instrument for removal of cartilage and has potential application in inaccessible regions of diarthrodial joints. It does not penetrate bone sufficiently to have application in subchondral drilling.

  19. Bone cysts after osteochondral allograft repair of cartilage defects in goats suggest abnormal interaction between subchondral bone and overlying synovial joint tissues.

    Science.gov (United States)

    Pallante-Kichura, Andrea L; Cory, Esther; Bugbee, William D; Sah, Robert L

    2013-11-01

    The efficacy of osteochondral allografts (OCAs) may be affected by osseous support of the articular cartilage, and thus affected by bone healing and remodeling in the OCA and surrounding host. Bone cysts, and their communication pathways, may be present in various locations after OCA insertion and reflect distinct pathogenic mechanisms. Previously, we analyzed the effect of OCA storage (FRESH, 4°C/14d, 4°C/28d, FROZEN) on cartilage quality in fifteen adult goats after 12months in vivo. The objectives of this study were to further analyze OCAs and contralateral non-operated (Non-Op) CONTROLS from the medial femoral condyle to (1) determine the effect of OCA storage on local subchondral bone (ScB) and trabecular bone (TB) structure, (2) characterize the location and structure of bone cysts and channels, and (3) assess the relationship between cartilage and bone properties. (1) Overall bone structure after OCAs was altered compared to Non-Op, with OCA samples displaying bone cysts, ScB channels, and ScB roughening. ScB BV/TV in FROZEN OCAs was lower than Non-Op and other OCAs. TB BV/TV in FRESH, 4°C/14d, and 4°C/28d OCAs did not vary compared to Non-Op, but BS/TV was lower. (2) OCAs contained "basal" cysts, localized to deeper regions, some "subchondral" cysts, localized near the bone-cartilage interface, and some ScB channels. TB surrounding basal cysts exhibited higher BV/TV than Non-Op. (3) Basal cysts occurred (a) in isolation, (b) with subchondral cysts and ScB channels, (c) with ScB channels, or (d) with subchondral cysts, ScB channels, and ScB erosion. Deterioration of cartilage gross morphology was strongly associated with abnormal μCT bone structure. Evidence of cartilage-bone communication following OCA repair may favor fluid intrusion as a mechanism for subchondral cyst formation, while bone resorption at the graft-host interface without affecting overall bone and cartilage structure may favor bony contusion mechanism for basal cyst formation. These

  20. Early Changes of Articular Cartilage and Subchondral Bone in The DMM Mouse Model of Osteoarthritis

    OpenAIRE

    Fang, Hang; Huang, Lisi; Welch, Ian; Norley, Chris; Holdsworth, David W.; Beier, Frank; Cai, Daozhang

    2018-01-01

    To examine the early changes of articular cartilage and subchondral bone in the DMM mouse model of osteoarthritis, mice were subjected to DMM or SHAM surgery and sacrificed at 2-, 5- and 10-week post-surgery. Catwalk gait analyses, Micro-Computed Tomography, Toluidine Blue, Picrosirius Red and Tartrate-Resistant Acid Phosphatase (TRAP) staining were used to investigate gait patterns, joint morphology, subchondral bone, cartilage, collagen organization and osteoclasts activity, respectively. R...

  1. Spatial and temporal changes of subchondral bone proceed to articular cartilage degeneration in rats subjected to knee immobilization.

    Science.gov (United States)

    Xu, Lei; Li, Zhe; Lei, Lei; Zhou, Yue-Zhu; Deng, Song-Yun; He, Yong-Bin; Ni, Guo-Xin

    2016-03-01

    This study was aimed to investigate the spatial and temporal changes of subchondral bone and its overlying articular cartilage in rats following knee immobilization. A total of 36 male Wistar rats (11-13 months old) were assigned randomly and evenly into 3 groups. For each group, knee joints in 6 rats were immobilized unilaterally for 1, 4, or 8 weeks, respectively, while the remaining rats were allowed free activity and served as external control groups. For each animal, femurs at both sides were dissected after sacrificed. The distal part of femur was examined by micro-CT. Subsequently, femoral condyles were collected for further histological observation and analysis. For articular cartilage, significant changes were observed only at 4 and 8 weeks of immobilization. The thickness of articular cartilage and chondrocytes numbers decreased with time. However, significant changes in subchondral bone were defined by micro-CT following immobilization in a time-dependent manner. Immobilization led to a thinner and more porous subchondral bone plate, as well as a reduction in trabecular thickness and separation with a more rod-like architecture. Changes in subchondral bone occurred earlier than in articular cartilage. More importantly, immobilization-induced changes in subchondral bone may contribute, at least partially, to changes in its overlying articular cartilage. © 2016 Wiley Periodicals, Inc.

  2. Prevalence of computed tomographic subchondral bone lesions in the scapulohumeral joint of 32 immature dogs with thoracic limb lameness.

    Science.gov (United States)

    Lande, Rachel; Reese, Shona L; Cuddy, Laura C; Berry, Clifford R; Pozzi, Antonio

    2014-01-01

    Osteochondrosis is a common developmental abnormality affecting the subchondral bone of immature, large breed dogs. The purpose of this retrospective study was to describe CT lesions detected in scapulohumeral joints of 32 immature dogs undergoing CT for thoracic limb lameness. Eight dogs (14 scapulohumeral joints) had arthroscopy following imaging. Thirteen dogs (19 scapulohumeral joints) were found to have CT lesions, including 10 dogs (16 scapulohumeral joints) with subchondral bone lesions and 3 dogs with enthesopathy of the supraspinatus tendon. In one dog, subchondral bone lesions appeared as large oval defects within the mid-aspect of the glenoid cavities, bilaterally. These lesions resembled osseous cyst-like lesions commonly identified in the horse. This is the first report of such a presentation of a subchondral bone lesion in the glenoid cavity of a dog. In all dogs, small, focal, round or linear lucent defects were visible within the cortical bone at the junction of the greater tubercle and intertubercular groove. These structures were thought to represent vascular channels. Findings from this study support the use of CT as an adjunct modality for the identification and characterization of scapulohumeral subchondral bone lesions in immature dogs with thoracic limb lameness. © 2013 American College of Veterinary Radiology.

  3. Perfusion of subchondral bone marrow in knee osteoarthritis: A dynamic contrast-enhanced magnetic resonance imaging preliminary study

    Energy Technology Data Exchange (ETDEWEB)

    Budzik, Jean-François, E-mail: Budzik.jean-francois@ghicl.net [Lille Catholic Hospitals, Imaging Department, Lille Catholic University, Lille (France); PMOI Physiopathology of Inflammatory Bone Diseases, EA 4490, Lille (France); Ding, Juliette, E-mail: Ding.juliette@gmail.com [Lille Catholic Hospitals, Imaging Department, Lille Catholic University, Lille (France); Norberciak, Laurène, E-mail: Norberciak.Laurene@ghicl.net [Lille Catholic Hospitals, Biostatistics Department, Lille Catholic University, Lille (France); Pascart, Tristan, E-mail: Pascart.tristan@ghicl.net [Lille Catholic Hospitals, Rheumatology Department, Lille Catholic University, Lille (France); Toumi, Hechmi, E-mail: hechmi.toumi@univ-orleans.fr [EA4708 I3MTO, Orleans Regional Hospital, University of Orleans, Orleans (France); Verclytte, Sébastien, E-mail: Verclytte.Sebastien@ghicl.net [Lille Catholic Hospitals, Imaging Department, Lille Catholic University, Lille (France); Coursier, Raphaël, E-mail: Coursier.Raphael@ghicl.net [Lille Catholic Hospitals, Orthopaedic Surgery Department, Lille Catholic University, Lille (France)

    2017-03-15

    The role of inflammation in the pathogenesis of osteoarthritis is being given major interest, and inflammation is closely linked with vascularization. It was recently demonstrated that dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) could identify the subchondral bone marrow vascularization changes occurring in osteoarthritis in animals. These changes appeared before cartilage lesions were visible and were correlated with osteoarthritis severity. Thus the opportunity to obtain an objective assessment of bone vascularization in non-invasive conditions in humans might help better understanding osteoarthritis pathophysiology and finding new biomarkers. We hypothesized that, as in animals, DCE-MRI has the ability to identify subchondral bone marrow vascularization changes in human osteoarthritis. We performed knee MRI in 19 patients with advanced knee osteoarthritis. We assessed subchondral bone marrow vascularization in medial and lateral femorotibial compartments with DCE-MRI and graded osteoarthritis lesions on MR images. Statistical analysis assessed intra- and inter-observer agreement, compared DCE-MRI values between the different subchondral zones, and sought for an influence of age, sex, body mass index, and osteoarthritis garde on these values. The intra- and inter-observer agreement for DCE-MRI values were excellent. These values were significantly higher in the femorotibial compartment the most affected by osteoarthritis, both in femur and tibia (p < 0.0001) and were significantly and positively correlated with cartilage lesions (p = 0.02) and bone marrow oedema grade (p < 0.0001) after adjustment. We concluded that, as in animals, subchondral bone marrow vascularization changes assessed with DCE-MRI were correlated with osteoarthritis severity in humans.

  4. Perfusion of subchondral bone marrow in knee osteoarthritis: A dynamic contrast-enhanced magnetic resonance imaging preliminary study

    International Nuclear Information System (INIS)

    Budzik, Jean-François; Ding, Juliette; Norberciak, Laurène; Pascart, Tristan; Toumi, Hechmi; Verclytte, Sébastien; Coursier, Raphaël

    2017-01-01

    The role of inflammation in the pathogenesis of osteoarthritis is being given major interest, and inflammation is closely linked with vascularization. It was recently demonstrated that dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) could identify the subchondral bone marrow vascularization changes occurring in osteoarthritis in animals. These changes appeared before cartilage lesions were visible and were correlated with osteoarthritis severity. Thus the opportunity to obtain an objective assessment of bone vascularization in non-invasive conditions in humans might help better understanding osteoarthritis pathophysiology and finding new biomarkers. We hypothesized that, as in animals, DCE-MRI has the ability to identify subchondral bone marrow vascularization changes in human osteoarthritis. We performed knee MRI in 19 patients with advanced knee osteoarthritis. We assessed subchondral bone marrow vascularization in medial and lateral femorotibial compartments with DCE-MRI and graded osteoarthritis lesions on MR images. Statistical analysis assessed intra- and inter-observer agreement, compared DCE-MRI values between the different subchondral zones, and sought for an influence of age, sex, body mass index, and osteoarthritis garde on these values. The intra- and inter-observer agreement for DCE-MRI values were excellent. These values were significantly higher in the femorotibial compartment the most affected by osteoarthritis, both in femur and tibia (p < 0.0001) and were significantly and positively correlated with cartilage lesions (p = 0.02) and bone marrow oedema grade (p < 0.0001) after adjustment. We concluded that, as in animals, subchondral bone marrow vascularization changes assessed with DCE-MRI were correlated with osteoarthritis severity in humans.

  5. Influence of meniscus on cartilage and subchondral bone features of knees from older individuals: A cadaver study.

    Science.gov (United States)

    Touraine, Sébastien; Bouhadoun, Hamid; Engelke, Klaus; Laredo, Jean Denis; Chappard, Christine

    2017-01-01

    Cartilage and subchondral bone form a functional unit. Here, we aimed to examine the effect of meniscus coverage on the characteristics of this unit in knees of older individuals. We assessed the hyaline cartilage, subchondral cortical plate (SCP), and subchondral trabecular bone in areas covered or uncovered by the meniscus from normal cadaver knees (without degeneration). Bone cores harvested from the medial tibial plateau at locations uncovered (central), partially covered (posterior), and completely covered (peripheral) by the meniscus were imaged by micro-CT. The following were measured on images: cartilage volume (Cart.Vol, mm3) and thickness (Cart.Th, mm); SCP thickness (SCP.Th, μm) and porosity (SCP.Por, %); bone volume to total volume fraction (BV/TV, %); trabecular thickness (Tb.Th, μm), spacing (Tb.Sp, μm), and number (Tb.N, 1/mm); structure model index (SMI); trabecular pattern factor (Tb.Pf); and degree of anisotropy (DA). Among the 28 specimens studied (18 females) from individuals with mean age 82.8±10.2 years, cartilage and SCP were thicker at the central site uncovered by the meniscus than the posterior and peripheral sites, and Cart.Vol was greater. SCP.Por was highest in posterior samples. In the upper 1-5 mm of subchondral bone, central samples were characterized by higher values for BV/TV, Tb.N, Tb.Th, and connectivity (Tb.Pf), a more plate-like trabecular structure and lower anisotropy than with other samples. Deeper down, at 6-10 mm, the differences were slightly higher for Tb.Th centrally, DA peripherally and SMI posteriorly. The coverage or not by meniscus in the knee of older individuals is significantly associated with Cart.Th, SCP.Th, SCP.Por and trabecular microarchitectural parameters in the most superficial 5 mm and to a lesser extent the deepest area of subchondral trabecular bone. These results suggest an effect of differences in local loading conditions. In subchondral bone uncovered by the meniscus, the trabecular architecture

  6. Influence of meniscus on cartilage and subchondral bone features of knees from older individuals: A cadaver study.

    Directory of Open Access Journals (Sweden)

    Sébastien Touraine

    Full Text Available Cartilage and subchondral bone form a functional unit. Here, we aimed to examine the effect of meniscus coverage on the characteristics of this unit in knees of older individuals.We assessed the hyaline cartilage, subchondral cortical plate (SCP, and subchondral trabecular bone in areas covered or uncovered by the meniscus from normal cadaver knees (without degeneration. Bone cores harvested from the medial tibial plateau at locations uncovered (central, partially covered (posterior, and completely covered (peripheral by the meniscus were imaged by micro-CT. The following were measured on images: cartilage volume (Cart.Vol, mm3 and thickness (Cart.Th, mm; SCP thickness (SCP.Th, μm and porosity (SCP.Por, %; bone volume to total volume fraction (BV/TV, %; trabecular thickness (Tb.Th, μm, spacing (Tb.Sp, μm, and number (Tb.N, 1/mm; structure model index (SMI; trabecular pattern factor (Tb.Pf; and degree of anisotropy (DA.Among the 28 specimens studied (18 females from individuals with mean age 82.8±10.2 years, cartilage and SCP were thicker at the central site uncovered by the meniscus than the posterior and peripheral sites, and Cart.Vol was greater. SCP.Por was highest in posterior samples. In the upper 1-5 mm of subchondral bone, central samples were characterized by higher values for BV/TV, Tb.N, Tb.Th, and connectivity (Tb.Pf, a more plate-like trabecular structure and lower anisotropy than with other samples. Deeper down, at 6-10 mm, the differences were slightly higher for Tb.Th centrally, DA peripherally and SMI posteriorly.The coverage or not by meniscus in the knee of older individuals is significantly associated with Cart.Th, SCP.Th, SCP.Por and trabecular microarchitectural parameters in the most superficial 5 mm and to a lesser extent the deepest area of subchondral trabecular bone. These results suggest an effect of differences in local loading conditions. In subchondral bone uncovered by the meniscus, the trabecular architecture

  7. Subchondral bone density distribution of the talus in clinically normal Labrador Retrievers.

    Science.gov (United States)

    Dingemanse, W; Müller-Gerbl, M; Jonkers, I; Vander Sloten, J; van Bree, H; Gielen, I

    2016-03-15

    Bones continually adapt their morphology to their load bearing function. At the level of the subchondral bone, the density distribution is highly correlated with the loading distribution of the joint. Therefore, subchondral bone density distribution can be used to study joint biomechanics non-invasively. In addition physiological and pathological joint loading is an important aspect of orthopaedic disease, and research focusing on joint biomechanics will benefit veterinary orthopaedics. This study was conducted to evaluate density distribution in the subchondral bone of the canine talus, as a parameter reflecting the long-term joint loading in the tarsocrural joint. Two main density maxima were found, one proximally on the medial trochlear ridge and one distally on the lateral trochlear ridge. All joints showed very similar density distribution patterns and no significant differences were found in the localisation of the density maxima between left and right limbs and between dogs. Based on the density distribution the lateral trochlear ridge is most likely subjected to highest loads within the tarsocrural joint. The joint loading distribution is very similar between dogs of the same breed. In addition, the joint loading distribution supports previous suggestions of the important role of biomechanics in the development of OC lesions in the tarsus. Important benefits of computed tomographic osteoabsorptiometry (CTOAM), i.e. the possibility of in vivo imaging and temporal evaluation, make this technique a valuable addition to the field of veterinary orthopaedic research.

  8. Bone Cysts After Osteochondral Allograft Repair of Cartilage Defects in Goats Suggest Abnormal Interaction Between Subchondral Bone and Overlying Synovial Joint Tissues

    Science.gov (United States)

    Pallante-Kichura, Andrea L.; Cory, Esther; Bugbee, William D.; Sah, Robert L.

    2013-01-01

    The efficacy of osteochondral allografts (OCA) may be affected by osseous support of the articular cartilage, and thus affected by bone healing and remodeling in the OCA and surrounding host. Bone cysts, and their communication pathways, may be present in various locations after OCA insertion and reflect distinct pathogenic mechanisms. Previously, we analyzed the effect of OCA storage (FRESH, 4°C/14d, 4°C/28d, FROZEN) on cartilage quality in fifteen adult goats after 12 months in vivo. The objectives of this study were to further analyze OCA and contralateral non-operated (Non-Op) CONTROLS from the medial femoral condyle to (1) determine the effect of OCA storage on local subchondral (ScB) and trabecular (TB) bone structure, (2) characterize the location and structure of bone cysts and channels, and (3) assess the relationship between cartilage and bone properties. (1) Overall bone structure after OCA was altered compared to Non-Op, with OCA samples displaying bone cysts, ScB channels, and ScB roughening. ScB BV/TV in FROZEN OCA was lower than Non-Op and other OCA. TB BV/TV in FRESH, 4°C/14d, and 4°C/28d OCA did not vary compared to Non-Op, but BS/TV was lower. (2) OCA contained “basal” cysts, localized to deeper regions, some “subchondral” cysts, localized near the bone-cartilage interface, and some ScB channels. TB surrounding basal cysts exhibited higher BV/TV than Non-Op. (3) Basal cysts occurred (a) in isolation, (b) with subchondral cysts and ScB channels, (c) with ScB channels, or (d) with subchondral cysts, ScB channels, and ScB erosion. Deterioration of cartilage gross morphology was strongly associated with abnormal μCT bone structure. Evidence of cartilage-bone communication following OCA repair may favor fluid intrusion as a mechanism for subchondral cyst formation, while bone resorption at the graft-host interface without affecting overall bone and cartilage structure may favor bony contusion mechanism for basal cyst formation. These

  9. Multi-scale physico-chemical phenomena in articular cartilage and subchondral bone

    NARCIS (Netherlands)

    Pouran, Behdad

    2017-01-01

    Articular cartilage and its connecting subchondral bone plate are main compartments that play an important role in proper mechanical functioning of diarthrodial joints. However, in ageing and osteoarthritis structural changes propagate in these tissues, which impairs them for proper functioning. One

  10. Co-expression of DKK-1 and Sclerostin in Subchondral Bone of the Proximal Femoral Heads from Osteoarthritic Hips.

    Science.gov (United States)

    Zarei, Allahdad; Hulley, Philippa A; Sabokbar, Afsie; Javaid, M Kassim

    2017-06-01

    Osteoarthritis (OA) is a progressively degenerative joint disease influenced by structural and metabolic factors. There is growing evidence that subchondral bone is involved in both symptomatic and structural progression in OA. The Wnt pathway has been implicated in the progression of OA but the expression and function of the Wnt inhibitors, Dikkopf (DKK-1) and sclerostin (SOST), are unclear. We examined the regional distribution of DKK-1 and SOST in subchondral bone of the femoral head using resection specimens following arthroplasty in patients presenting with end-stage OA. Cylindrical cores for immunohistochemistry were taken through midpoint of full thickness cartilage defect, partial cartilage defect, through base of osteophyte and through macroscopically normal cartilage. Subchondral bone was thickest in cores taken from regions with full cartilage defect and thinnest in cores taken from osteophyte regions. In subchondral bone, expression of both DKK-1 and SOST was observed exclusively in osteocytes. Expression was highest in subchondral bone in cores taken from regions with partial but not full thickness cartilage defects. DKK-1 but not SOST was expressed by chondrocytes in cores with macroscopically normal cartilage. The current study describes the regional cellular distribution of SOST and DKK-1 in hip OA. Expression was highest in the osteocytes in bone underlying partial thickness cartilage defects. It is however not clear if this is a cause or a consequence of alterations in the overlying cartilage. However, it is suggestive of an active remodeling process which might be targeted by disease-modifying agents.

  11. Comparative Analysis of Bone Structural Parameters Reveals Subchondral Cortical Plate Resorption and Increased Trabecular Bone Remodeling in Human Facet Joint Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Cordula Netzer

    2018-03-01

    Full Text Available Facet joint osteoarthritis is a prominent feature of degenerative spine disorders, highly prevalent in ageing populations, and considered a major cause for chronic lower back pain. Since there is no targeted pharmacological therapy, clinical management of disease includes analgesic or surgical treatment. The specific cellular, molecular, and structural changes underpinning facet joint osteoarthritis remain largely elusive. The aim of this study was to determine osteoarthritis-related structural alterations in cortical and trabecular subchondral bone compartments. To this end, we conducted comparative micro computed tomography analysis in healthy (n = 15 and osteoarthritic (n = 22 lumbar facet joints. In osteoarthritic joints, subchondral cortical plate thickness and porosity were significantly reduced. The trabecular compartment displayed a 42 percent increase in bone volume fraction due to an increase in trabecular number, but not trabecular thickness. Bone structural alterations were associated with radiological osteoarthritis severity, mildly age-dependent but not gender-dependent. There was a lack of association between structural parameters of cortical and trabecular compartments in healthy and osteoarthritic specimens. The specific structural alterations suggest elevated subchondral bone resorption and turnover as a potential treatment target in facet joint osteoarthritis.

  12. Small subchondral drill holes improve marrow stimulation of articular cartilage defects.

    Science.gov (United States)

    Eldracher, Mona; Orth, Patrick; Cucchiarini, Magali; Pape, Dietrich; Madry, Henning

    2014-11-01

    Subchondral drilling is an established marrow stimulation technique. Osteochondral repair is improved when the subchondral bone is perforated with small drill holes, reflecting the physiological subchondral trabecular distance. Controlled laboratory study. A rectangular full-thickness chondral defect was created in the trochlea of adult sheep (n = 13) and treated with 6 subchondral drillings of either 1.0 mm (reflective of the trabecular distance) or 1.8 mm in diameter. Osteochondral repair was assessed after 6 months in vivo by macroscopic, histological, and immunohistochemical analyses and by micro-computed tomography. The application of 1.0-mm subchondral drill holes led to significantly improved histological matrix staining, cellular morphological characteristics, subchondral bone reconstitution, and average total histological score as well as significantly higher immunoreactivity to type II collagen and reduced immunoreactivity to type I collagen in the repair tissue compared with 1.8-mm drill holes. Analysis of osteoarthritic changes in the cartilage adjacent to the defects revealed no significant differences between treatment groups. Restoration of the microstructure of the subchondral bone plate below the chondral defects was significantly improved after 1.0-mm compared to 1.8-mm drilling, as shown by higher bone volume and reduced thickening of the subchondral bone plate. Likewise, the microarchitecture of the drilled subarticular spongiosa was better restored after 1.0-mm drilling, indicated by significantly higher bone volume and more and thinner trabeculae. Moreover, the bone mineral density of the subchondral bone in 1.0-mm drill holes was similar to the adjacent subchondral bone, whereas it was significantly reduced in 1.8-mm drill holes. No significant correlations existed between cartilage and subchondral bone repair. Small subchondral drill holes that reflect the physiological trabecular distance improve osteochondral repair in a translational

  13. Total glucosides of paeony prevents juxta-articular bone loss in experimental arthritis.

    Science.gov (United States)

    Wei, Chen Chao; You, Fan Tian; Mei, Li Yu; Jian, Sun; Qiang, Chen Yong

    2013-07-21

    Total glucosides of paeony (TGP) is a biologically active compound extracted from Paeony root. TGP has been used in rheumatoid arthritis therapy for many years. However, the mechanism by which TGP prevents bone loss has been less explored. TGP was orally administered for 3 months to New Zealand rabbits with antigen-induced arthritis (AIA). Digital x-ray knee images and bone mineral density (BMD) measurements of the subchondral knee bone were performed before sacrifice. Chondrocytes were observed using transmission electron microscopy (TEM). Histological analysis and mRNA expression of receptor activator of nuclear factor-B ligand (RANKL) and osteoprotegerin (OPG) were evaluated in joint tissues. The BMD value in TGP rabbits was significantly higher compared with that seen in the AIA model rabbits. In addition, the subchondral bone plate was almost completely preserved by TGP treatment, while there was a decrease in bone plate integrity in AIA rabbits. There was less damage to the chondrocytes of the TGP treated group. Immunohistochemical examination of the TGP group showed that a higher percentage of TGP treated chondrocytes expressed OPG as compared to the chondrocytes isolated from AIA treated animals. In contrast, RANKL expression was significantly decreased in the TGP treated group compared to the AIA group. In support of the immunohistochemistry data, the expression of RANKL mRNA was decreased and OPG mRNA expression was enhanced in the TGP group when compared to that of the AIA model group. These results reveal that TGP suppresses juxta-articular osteoporosis and prevents subchondral bone loss. The decreased RANKL and increased OPG expression seen in TGP treated animals could explain how administration of TGP maintains higher BMD.

  14. ALPHA-CTX is associated with subchondral bone turnover and predicts progression of joint space narrowing and osteophytes in osteoarthritis

    Science.gov (United States)

    Huebner, Janet L; Bay-Jensen, Anne C; Huffman, Kim M; He, Yi; Leeming, Diana J; McDaniel, Gary E; Karsdal, Morten A; Kraus, Virginia B

    2014-01-01

    Objective To evaluate joint tissue remodeling, with urinary collagen biomarkers, uALPHA CTX and uCTXII, and their association with osteoarthritis (OA) severity, progression, and localized knee bone turnover. Methods Participants (N=149) with symptomatic and radiographic knee OA underwent fixed flexion knee radiography at baseline and 3 years, and late-phase bone scintigraphy of both knees at baseline, scored semi-quantitatively for osteophyte (OST) and joint space narrowing (JSN) severity and uptake intensity with scores summed across knees. Urinary concentrations of ALPHA CTX and CTXII were determined by ELISA. Immunohistochemistry of human OA knees was performed to localize the joint tissue origin of the biomarker epitopes. Results uALPHA CTX correlated strongly with intensity of bone scintigraphic uptake, and JSN and OST progression (risk ratio=13.2 and 3, respectively). uCTXII was strongly associated with intensity of bone scintigraphic uptake, with JSN and OST severity, and OA progression based on OST. uALPHA CTX localized primarily to high bone turnover areas in subchondral bone; CTXII localized to the bone-cartilage interface, the tidemark, and damaged articular cartilage. Conclusion Baseline uALPHA CTX, localized to high turnover areas of subchondral bone, was associated with dynamic bone turnover of knees signified by scintigraphy, and progression of both OST and JSN. uCTXII correlated with JSN and OST severity, and progression of OST. To our knowledge, this represents the first report of serological markers reflecting subchondral bone turnover. These collagen markers may be useful for non-invasive detection and quantification of active subchondral bone turnover and joint remodeling in knee OA. PMID:24909851

  15. Changes of articular cartilage and subchondral bone after extracorporeal shockwave therapy in osteoarthritis of the knee.

    Science.gov (United States)

    Wang, Ching-Jen; Cheng, Jai-Hong; Chou, Wen-Yi; Hsu, Shan-Ling; Chen, Jen-Hung; Huang, Chien-Yiu

    2017-01-01

    We assessed the pathological changes of articular cartilage and subchondral bone on different locations of the knee after extracorporeal shockwave therapy (ESWT) in early osteoarthritis (OA). Rat knees under OA model by anterior cruciate ligament transaction (ACLT) and medial meniscectomy (MM) to induce OA changes. Among ESWT groups, ESWT were applied to medial (M) femur (F) and tibia (T) condyles was better than medial tibia condyle, medial femur condyle as well as medial and lateral (L) tibia condyles in gross osteoarthritic areas (posteophyte formation and subchondral sclerotic bone (psubchondral bone repair in all ESWT groups compared to OA group (p T(M+L) > F(M) in OA rat knees.

  16. A systematic review of the relationship between subchondral bone features, pain and structural pathology in peripheral joint osteoarthritis.

    Science.gov (United States)

    Barr, Andrew J; Campbell, T Mark; Hopkinson, Devan; Kingsbury, Sarah R; Bowes, Mike A; Conaghan, Philip G

    2015-08-25

    Bone is an integral part of the osteoarthritis (OA) process. We conducted a systematic literature review in order to understand the relationship between non-conventional radiographic imaging of subchondral bone, pain, structural pathology and joint replacement in peripheral joint OA. A search of the Medline, EMBASE and Cochrane library databases was performed for original articles reporting association between non-conventional radiographic imaging-assessed subchondral bone pathologies and joint replacement, pain or structural progression in knee, hip, hand, ankle and foot OA. Each association was qualitatively characterised by a synthesis of the data from each analysis based upon study design, adequacy of covariate adjustment and quality scoring. In total 2456 abstracts were screened and 139 papers were included (70 cross-sectional, 71 longitudinal analyses; 116 knee, 15 hip, six hand, two ankle and involved 113 MRI, eight DXA, four CT, eight scintigraphic and eight 2D shape analyses). BMLs, osteophytes and bone shape were independently associated with structural progression or joint replacement. BMLs and bone shape were independently associated with longitudinal change in pain and incident frequent knee pain respectively. Subchondral bone features have independent associations with structural progression, pain and joint replacement in peripheral OA in the hip and hand but especially in the knee. For peripheral OA sites other than the knee, there are fewer associations and independent associations of bone pathologies with these important OA outcomes which may reflect fewer studies; for example the foot and ankle were poorly studied. Subchondral OA bone appears to be a relevant therapeutic target. PROSPERO registration number: CRD 42013005009.

  17. Subchondral insufficiency fractures of the femoral head

    Energy Technology Data Exchange (ETDEWEB)

    Davies, M.; Cassar-Pullicino, V.N. [Department of Radiology, Robert Jones and Agnes Hunt Orthopaedic and District Hospital, Oswestry, SY10 7AG, Shropshire (United Kingdom); Darby, A.J. [Department of Pathology, Robert Jones and Agnes Hunt Orthopaedic and District Hospital, Oswestry, SY10 7AG, Shropshire (United Kingdom)

    2004-02-01

    The aim of this study was to increase awareness of, and to show the variable clinical and radiological features of, subchondral insufficiency fractures of the femoral head. The clinical and radiological findings in 7 patients with subchondral insufficiency fractures of the femoral head were reviewed retrospectively. The diagnosis was confirmed histologically in 4 patients. Radiographs were performed in all patients, MRI in 5 and scintigraphy in 4 patients. Radiographs showed varying degrees of femoral head collapse in 4 patients. In the remaining 3 patients radiographs showed a normal femoral head, regional osteoporosis and focal sclerosis, respectively. Magnetic resonance imaging showed a low-signal band on T1- and T2-weighted images in the subchondral bone adjacent or parallel to the articular surface associated with bone marrow oedema. Scintigraphy showed increased uptake in the femoral head. Insufficiency fractures of the femoral head are easily overlooked or confused with avascular necrosis and, when there is significant joint destruction, osteoarthritis. Unsuspected insufficiency fracture of the femoral head can lead to significant and rapid loss of bone stock in osteoporotic patients waiting for arthroplasty for osteoarthritis. Increased awareness of this condition will hopefully lead to earlier diagnosis and a successful outcome of conservative treatment. (orig.)

  18. Quantitative evaluation of subchondral bone injury of the plantaro-lateral condyles of the third metatarsal bone in Thoroughbred horses identified using nuclear scintigraphy: 48 cases.

    Science.gov (United States)

    Parker, R A; Bladon, B M; Parkin, T D H; Fraser, B S L

    2010-09-01

    Increased radio-isotope uptake (IRU) in the subchondral bone of the plantaro-lateral condyle of the third metatarsus (MTIII) is a commonly reported scintigraphic finding and potential cause of lameness in UK Thoroughbred racehorses in training and has not been fully documented. To characterise lameness attributable to IRU of the subchondral bone of MTIII, compare the scintigraphic findings of these horses with a normal population and evaluate the use of scintigraphy as an indicator of prognosis. IRU will be in significantly higher in horses with subchondral bone injury and will be related to prognosis and future racing performance. Data were analysed from 48 horses in which subchondral bone injury of the plantaro-lateral condyle of MTIII had been diagnosed using nuclear scintigraphy and that met the inclusion criteria. Data recorded included age, sex, trainer, racing discipline, lameness assessment, treatment regimes, radiographic and scintigraphic findings, response to diagnostic analgesia where performed and racing performance pre- and post diagnosis. Region of interest (ROI) counts were obtained for the plantar condyle and the mid diaphysis from the latero-medial view, the ratio calculated and then compared with a control group of clinically unaffected horses. The mean condyle mid-diaphysis ROI ratio was significantly (PThoroughbred racehorses. Nuclear scintigraphy is a useful diagnostic imaging modality in the detection of affected horses but is a poor indicator of prognosis for the condition. Better understanding of the clinical manifestations, diagnosis of and prognosis for subchondral bone injury will benefit the Thoroughbred industry in the UK.

  19. In vivo cyclic compression causes cartilage degeneration and subchondral bone changes in mouse tibiae

    Science.gov (United States)

    Ko, Frank C.; Dragomir, Cecilia; Plumb, Darren A.; Goldring, Steven R.; Wright, Timothy M.; Goldring, Mary B.; van der Meulen, Marjolein C.H.

    2013-01-01

    Objectives Alterations in the mechanical loading environment in joints may have both beneficial and detrimental effects on articular cartilage and subchondral bone and subsequently influence the development of osteoarthritis (OA). We used an in vivo tibial loading model to investigate the adaptive responses of cartilage and bone to mechanical loading and to assess the influence of load level and duration. Methods We applied cyclic compression of 4.5 and 9.0N peak loads to the left tibia via the knee joint of adult (26-week-old) C57Bl/6 male mice for 1, 2, and 6 weeks. Only 9.0N loading was utilized in young (10-week-old) mice. The changes in articular cartilage and subchondral bone were analyzed by histology and microcomputed tomography. Results Loading promoted cartilage damage in both age groups, with increased damage severity dependent upon the duration of loading. Metaphyseal bone mass increased in the young mice, but not in the adult mice, whereas epiphyseal cancellous bone mass decreased with loading in both young and adult mice. Articular cartilage thickness decreased, and subchondral cortical bone thickness increased in the posterior tibial plateau in both age groups. Both age groups developed periarticular osteophytes at the tibial plateau in response to the 9.0N load, but no osteophyte formation occurred in adult mice subjected to 4.5N peak loading. Conclusion This non-invasive loading model permits dissection of temporal and topographical changes in cartilage and bone and will enable investigation of the efficacy of treatment interventions targeting joint biomechanics or biological events that promote OA onset and progression. PMID:23436303

  20. Subchondral Bone Plate Thickening Precedes Chondrocyte Apoptosis and Cartilage Degradation in Spontaneous Animal Models of Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Zaitunnatakhin Zamli

    2014-01-01

    Full Text Available Osteoarthritis (OA is the most common joint disorder characterised by bone remodelling and cartilage degradation and associated with chondrocyte apoptosis. These processes were investigated at 10, 16, 24, and 30 weeks in Dunkin Hartley (DH and Bristol Strain 2 (BS2 guinea pigs that develop OA spontaneously. Both strains had a more pronounced chondrocyte apoptosis, cartilage degradation, and subchondral bone changes in the medial than the lateral side of the tibia, and between strains, the changes were always greater and faster in DH than BS2. In the medial side, a significant increase of chondrocyte apoptosis and cartilage degradation was observed in DH between 24 and 30 weeks of age preceded by a progressive thickening and stiffening of subchondral bone plate (Sbp. The Sbp thickness consistently increased over the 30-week study period but the bone mineral density (BMD of the Sbp gradually decreased after 16 weeks. The absence of these changes in the medial side of BS2 may indicate that the Sbp of DH was undergoing remodelling. Chondrocyte apoptosis was largely confined to the deep zone of articular cartilage and correlated with thickness of the subchondral bone plate suggesting that cartilage degradation and chondrocyte apoptosis may be a consequence of continuous bone remodelling during the development of OA in these animal models of OA.

  1. Identifying compositional and structural changes in spongy and subchondral bone from the hip joints of patients with osteoarthritis using Raman spectroscopy

    Science.gov (United States)

    Buchwald, Tomasz; Niciejewski, Krzysztof; Kozielski, Marek; Szybowicz, Mirosław; Siatkowski, Marcin; Krauss, Hanna

    2012-01-01

    Raman microspectroscopy was used to examine the biochemical composition and molecular structure of extracellular matrix in spongy and subchondral bone collected from patients with clinical and radiological evidence of idiopathic osteoarthritis of the hip and from patients who underwent a femoral neck fracture, as a result of trauma, without previous clinical and radiological evidence of osteoarthritis. The objectives of the study were to determine the levels of mineralization, carbonate accumulation and collagen quality in bone tissue. The subchondral bone from osteoarthritis patients in comparison with control subject is less mineralized due to a decrease in the hydroxyapatite concentration. However, the extent of carbonate accumulation in the apatite crystal lattice increases, most likely due to deficient mineralization. The alpha helix to random coil band area ratio reveals that collagen matrix in subchondral bone is more ordered in osteoarthritis disease. The hydroxyapatite to collagen, carbonate apatite to hydroxyapatite and alpha helix to random coil band area ratios are not significantly changed in the differently loaded sites of femoral head. The significant differences also are not visible in mineral and organic constituents' content in spongy bone beneath the subchondral bone in osteoarthritis disease.

  2. In vivo cyclic compression causes cartilage degeneration and subchondral bone changes in mouse tibiae.

    Science.gov (United States)

    Ko, Frank C; Dragomir, Cecilia; Plumb, Darren A; Goldring, Steven R; Wright, Timothy M; Goldring, Mary B; van der Meulen, Marjolein C H

    2013-06-01

    Alterations in the mechanical loading environment in joints may have both beneficial and detrimental effects on articular cartilage and subchondral bone, and may subsequently influence the development of osteoarthritis (OA). Using an in vivo tibial loading model, the aim of this study was to investigate the adaptive responses of cartilage and bone to mechanical loading and to assess the influence of load level and duration. Cyclic compression at peak loads of 4.5N and 9.0N was applied to the left tibial knee joint of adult (26-week-old) C57BL/6 male mice for 1, 2, and 6 weeks. Only 9.0N loading was utilized in young (10-week-old) mice. Changes in articular cartilage and subchondral bone were analyzed by histology and micro-computed tomography. Mechanical loading promoted cartilage damage in both age groups of mice, and the severity of joint damage increased with longer duration of loading. Metaphyseal bone mass increased with loading in young mice, but not in adult mice, whereas epiphyseal cancellous bone mass decreased with loading in both young and adult mice. In both age groups, articular cartilage thickness decreased, and subchondral cortical bone thickness increased in the posterior tibial plateau. Mice in both age groups developed periarticular osteophytes at the tibial plateau in response to the 9.0N load, but no osteophyte formation occurred in adult mice subjected to 4.5N peak loading. This noninvasive loading model permits dissection of temporal and topographic changes in cartilage and bone and will enable investigation of the efficacy of treatment interventions targeting joint biomechanics or biologic events that promote OA onset and progression. Copyright © 2013 by the American College of Rheumatology.

  3. Total glucosides of paeony prevents juxta-articular bone loss in experimental arthritis

    OpenAIRE

    Wei, Chen Chao; You, Fan Tian; Mei, Li Yu; Jian, Sun; Qiang, Chen Yong

    2013-01-01

    Background Total glucosides of paeony (TGP) is a biologically active compound extracted from Paeony root. TGP has been used in rheumatoid arthritis therapy for many years. However, the mechanism by which TGP prevents bone loss has been less explored. Methods TGP was orally administered for 3?months to New Zealand rabbits with antigen-induced arthritis (AIA). Digital x-ray knee images and bone mineral density (BMD) measurements of the subchondral knee bone were performed before sacrifice. Chon...

  4. Subchondral bone density distribution in the human femoral head

    Energy Technology Data Exchange (ETDEWEB)

    Wright, David A.; Meguid, Michael; Lubovsky, Omri; Whyne, Cari M. [Sunnybrook Research Institute, Orthopaedic Biomechanics Laboratory, Toronto, Ontario (Canada)

    2012-06-15

    This study aims to quantitatively characterize the distribution of subchondral bone density across the human femoral head using a computed tomography derived measurement of bone density and a common reference coordinate system. Femoral head surfaces were created bilaterally for 30 patients (14 males, 16 females, mean age 67.2 years) through semi-automatic segmentation of reconstructed CT data and used to map bone density, by shrinking them into the subchondral bone and averaging the greyscale values (linearly related to bone density) within 5 mm of the articular surface. Density maps were then oriented with the center of the head at the origin, the femoral mechanical axis (FMA) aligned with the vertical, and the posterior condylar axis (PCA) aligned with the horizontal. Twelve regions were created by dividing the density maps into three concentric rings at increments of 30 from the horizontal, then splitting into four quadrants along the anterior-posterior and medial-lateral axes. Mean values for each region were compared using repeated measures ANOVA and a Bonferroni post hoc test, and side-to-side correlations were analyzed using a Pearson's correlation. The regions representing the medial side of the femoral head's superior portion were found to have significantly higher densities compared to other regions (p < 0.05). Significant side-to-side correlations were found for all regions (r {sup 2} = 0.81 to r {sup 2} = 0.16), with strong correlations for the highest density regions. Side-to-side differences in measured bone density were seen for two regions in the anterio-lateral portion of the femoral head (p < 0.05). The high correlation found between the left and right sides indicates that this tool may be useful for understanding 'normal' density patterns in hips affected by unilateral pathologies such as avascular necrosis, fracture, developmental dysplasia of the hip, Perthes disease, and slipped capital femoral head epiphysis. (orig.)

  5. Age-dependent Changes in the Articular Cartilage and Subchondral Bone of C57BL/6 Mice after Surgical Destabilization of Medial Meniscus.

    Science.gov (United States)

    Huang, Henry; Skelly, Jordan D; Ayers, David C; Song, Jie

    2017-02-09

    Age is the primary risk factor for osteoarthritis (OA), yet surgical OA mouse models such as destabilization of the medial meniscus (DMM) used for evaluating disease-modifying OA targets are frequently performed on young adult mice only. This study investigates how age affects cartilage and subchondral bone changes in mouse joints following DMM. DMM was performed on male C57BL/6 mice at 4 months (4 M), 12 months (12 M) and 19+ months (19 M+) and on females at 12 M and 18 M+. Two months after surgery, operated and unoperated contralateral knees were harvested and evaluated using cartilage histology scores and μCT quantification of subchondral bone plate thickness and osteophyte formation. The 12 M and 19 M+ male mice developed more cartilage erosions and thicker subchondral bone plates after DMM than 4 M males. The size of osteophytes trended up with age, while the bone volume fraction was significantly higher in the 19 M+ group. Furthermore, 12 M females developed milder OA than males as indicated by less cartilage degradation, less subchondral bone plate sclerosis and smaller osteophytes. Our results reveal distinct age/gender-dependent structural changes in joint cartilage and subchondral bone post-DMM, facilitating more thoughtful selection of murine age/gender when using this surgical technique for translational OA research.

  6. Age-dependent Changes in the Articular Cartilage and Subchondral Bone of C57BL/6 Mice after Surgical Destabilization of Medial Meniscus

    Science.gov (United States)

    Huang, Henry; Skelly, Jordan D.; Ayers, David C.; Song, Jie

    2017-01-01

    Age is the primary risk factor for osteoarthritis (OA), yet surgical OA mouse models such as destabilization of the medial meniscus (DMM) used for evaluating disease-modifying OA targets are frequently performed on young adult mice only. This study investigates how age affects cartilage and subchondral bone changes in mouse joints following DMM. DMM was performed on male C57BL/6 mice at 4 months (4 M), 12 months (12 M) and 19+ months (19 M+) and on females at 12 M and 18 M+. Two months after surgery, operated and unoperated contralateral knees were harvested and evaluated using cartilage histology scores and μCT quantification of subchondral bone plate thickness and osteophyte formation. The 12 M and 19 M+ male mice developed more cartilage erosions and thicker subchondral bone plates after DMM than 4 M males. The size of osteophytes trended up with age, while the bone volume fraction was significantly higher in the 19 M+ group. Furthermore, 12 M females developed milder OA than males as indicated by less cartilage degradation, less subchondral bone plate sclerosis and smaller osteophytes. Our results reveal distinct age/gender-dependent structural changes in joint cartilage and subchondral bone post-DMM, facilitating more thoughtful selection of murine age/gender when using this surgical technique for translational OA research. PMID:28181577

  7. Co-expression of DKK-1 and Sclerostin in Subchondral Bone of the Proximal Femoral Heads from Osteoarthritic Hips

    OpenAIRE

    Zarei, Allahdad; Hulley, Philippa A.; Sabokbar, Afsie; Javaid, M. Kassim

    2017-01-01

    Background Osteoarthritis (OA) is a progressively degenerative joint disease influenced by structural and metabolic factors. There is growing evidence that subchondral bone is involved in both symptomatic and structural progression in OA. The Wnt pathway has been implicated in the progression of OA but the expression and function of the Wnt inhibitors, Dikkopf (DKK-1) and sclerostin (SOST), are unclear. Methods We examined the regional distribution of DKK-1 and SOST in subchondral bone of the...

  8. Molecular changes in articular cartilage and subchondral bone in the rat anterior cruciate ligament transection and meniscectomized models of osteoarthritis.

    Science.gov (United States)

    Pickarski, Maureen; Hayami, Tadashi; Zhuo, Ya; Duong, Le T

    2011-08-24

    Osteoarthritis (OA) is a debilitating, progressive joint disease. Similar to the disease progression in humans, sequential events of early cartilage degradation, subchondral osteopenia followed by sclerosis, and late osteophyte formation were demonstrated in the anterior cruciate ligament transection (ACLT) or ACLT with partial medial meniscectomy (ACLT + MMx) rat OA models. We describe a reliable and consistent method to examine the time dependent changes in the gene expression profiles in articular cartilage and subchondral bone. Local regulation of matrix degradation markers was demonstrated by a significant increase in mRNA levels of aggrecanase-1 and MMP-13 as early as the first week post-surgery, and expression remained elevated throughout the 10 week study. Immunohistochemistry confirmed MMP-13 expression in differentiated chondrocytes and synovial fibroblasts at week-2 and cells within osteophytes at week-10 in the surgically-modified-joints. Concomitant increases in chondrocyte differentiation markers, Col IIA and Sox 9, and vascular invasion markers, VEGF and CD31, peaked around week-2 to -4, and returned to Sham levels at later time points in both models. Indeed, VEGF-positive cells were found in the deep articular chondrocytes adjacent to subchondral bone. Osteoclastic bone resorption markers, cathepsin K and TRAP, were also elevated at week-2. Confirming bone resorption is an early local event in OA progression, cathepsin K positive osteoclasts were found invading the articular cartilage from the subchondral region at week 2. This was followed by late disease events, including subchondral sclerosis and osteophyte formation, as demonstrated by the upregulation of the osteoanabolic markers runx2 and osterix, toward week-4 to 6 post-surgery. In summary, this study demonstrated the temporal and cohesive gene expression changes in articular cartilage and subchondral bone using known markers of OA progression. The findings here support genome-wide profiling

  9. Early Changes of Articular Cartilage and Subchondral Bone in The DMM Mouse Model of Osteoarthritis.

    Science.gov (United States)

    Fang, Hang; Huang, Lisi; Welch, Ian; Norley, Chris; Holdsworth, David W; Beier, Frank; Cai, Daozhang

    2018-02-12

    To examine the early changes of articular cartilage and subchondral bone in the DMM mouse model of osteoarthritis, mice were subjected to DMM or SHAM surgery and sacrificed at 2-, 5- and 10-week post-surgery. Catwalk gait analyses, Micro-Computed Tomography, Toluidine Blue, Picrosirius Red and Tartrate-Resistant Acid Phosphatase (TRAP) staining were used to investigate gait patterns, joint morphology, subchondral bone, cartilage, collagen organization and osteoclasts activity, respectively. Results showed OA progressed over 10-week time-course. Gait disparity occurred only at 10-week post-surgery. Osteophyte formed at 2-week post-surgery. BMDs of DMM showed no statistical differences comparing to SHAM at 2 weeks, but BV/TV is much higher in DMM mice. Increased BMD was clearly found at 5- and 10-week post-surgery in DMM mice. TRAP staining showed increased osteoclast activity at the site of osteophyte formation of DMM joints at 5- and 10-week time points. These results showed that subchondral bone turnover might occurred earlier than 2 weeks in this mouse DMM model. Gait disparity only occurred at later stage of OA in DMM mice. Notably, patella dislocation could occur in some of the DMM mice and cause a different pattern of OA in affected knee.

  10. A role for subchondral bone changes in the process of osteoarthritis; a micro-CT study of two canine models.

    Science.gov (United States)

    Sniekers, Yvonne H; Intema, Femke; Lafeber, Floris P J G; van Osch, Gerjo J V M; van Leeuwen, Johannes P T M; Weinans, Harrie; Mastbergen, Simon C

    2008-02-12

    This study evaluates changes in peri-articular bone in two canine models for osteoarthritis: the groove model and the anterior cruciate ligament transection (ACLT) model. Evaluation was performed at 10 and 20 weeks post-surgery and in addition a 3-weeks time point was studied for the groove model. Cartilage was analysed, and architecture of the subchondral plate and trabecular bone of epiphyses was quantified using micro-CT. At 10 and 20 weeks cartilage histology and biochemistry demonstrated characteristic features of osteoarthritis in both models (very mild changes at 3 weeks). The groove model presented osteophytes only at 20 weeks, whereas the ACLT model showed osteophytes already at 10 weeks. Trabecular bone changes in the groove model were small and not consistent. This contrasts the ACLT model in which bone volume fraction was clearly reduced at 10 and 20 weeks (15-20%). However, changes in metaphyseal bone indicate unloading in the ACLT model, not in the groove model. For both models the subchondral plate thickness was strongly reduced (25-40%) and plate porosity was strongly increased (25-85%) at all time points studied. These findings show differential regulation of subchondral trabecular bone in the groove and ACLT model, with mild changes in the groove model and more severe changes in the ACLT model. In the ACLT model, part of these changes may be explained by unloading of the treated leg. In contrast, subchondral plate thinning and increased porosity were very consistent in both models, independent of loading conditions, indicating that this thinning is an early response in the osteoarthritis process.

  11. Differences in tibial subchondral bone structure evaluated using plain radiographs between knees with and without cartilage damage or bone marrow lesions. The Oulu knee osteoarthritis study

    International Nuclear Information System (INIS)

    Hirvasniemi, Jukka; Thevenot, Jerome; Podlipska, Jana; Guermazi, Ali; Roemer, Frank W.; Nieminen, Miika T.; Saarakkala, Simo

    2017-01-01

    To investigate whether subchondral bone structure from plain radiographs is different between subjects with and without articular cartilage damage or bone marrow lesions (BMLs). Radiography-based bone structure was assessed from 80 subjects with different stages of knee osteoarthritis using entropy of Laplacian-based image (E Lap ) and local binary patterns (E LBP ), homogeneity index of local angles (HI Angles,mean ), and horizontal (FD Hor ) and vertical fractal dimensions (FD Ver ). Medial tibial articular cartilage damage and BMLs were scored using the magnetic resonance imaging osteoarthritis knee score. Level of statistical significance was set to p < 0.05. Subjects with medial tibial cartilage damage had significantly higher FD Ver and E LBP as well as lower E Lap and HI Angles,mean in the medial tibial subchondral bone region than subjects without damage. FD Hor , FD Ver , and E LBP were significantly higher, whereas E Lap and HI Angles,mean were lower in the medial trabecular bone region. Subjects with medial tibial BMLs had significantly higher FD Ver and E LBP as well as lower E Lap and HI Angles,mean in medial tibial subchondral bone. FD Hor , FD Ver , and E LBP were higher, whereas E Lap and HI Angles,mean were lower in medial trabecular bone. Our results support the use of bone structural analysis from radiographs when examining subjects with osteoarthritis or at risk of having it. (orig.)

  12. Molecular changes in articular cartilage and subchondral bone in the rat anterior cruciate ligament transection and meniscectomized models of osteoarthritis

    Directory of Open Access Journals (Sweden)

    Zhuo Ya

    2011-08-01

    Full Text Available Abstract Background Osteoarthritis (OA is a debilitating, progressive joint disease. Methods Similar to the disease progression in humans, sequential events of early cartilage degradation, subchondral osteopenia followed by sclerosis, and late osteophyte formation were demonstrated in the anterior cruciate ligament transection (ACLT or ACLT with partial medial meniscectomy (ACLT + MMx rat OA models. We describe a reliable and consistent method to examine the time dependent changes in the gene expression profiles in articular cartilage and subchondral bone. Results Local regulation of matrix degradation markers was demonstrated by a significant increase in mRNA levels of aggrecanase-1 and MMP-13 as early as the first week post-surgery, and expression remained elevated throughout the 10 week study. Immunohistochemistry confirmed MMP-13 expression in differentiated chondrocytes and synovial fibroblasts at week-2 and cells within osteophytes at week-10 in the surgically-modified-joints. Concomitant increases in chondrocyte differentiation markers, Col IIA and Sox 9, and vascular invasion markers, VEGF and CD31, peaked around week-2 to -4, and returned to Sham levels at later time points in both models. Indeed, VEGF-positive cells were found in the deep articular chondrocytes adjacent to subchondral bone. Osteoclastic bone resorption markers, cathepsin K and TRAP, were also elevated at week-2. Confirming bone resorption is an early local event in OA progression, cathepsin K positive osteoclasts were found invading the articular cartilage from the subchondral region at week 2. This was followed by late disease events, including subchondral sclerosis and osteophyte formation, as demonstrated by the upregulation of the osteoanabolic markers runx2 and osterix, toward week-4 to 6 post-surgery. Conclusions In summary, this study demonstrated the temporal and cohesive gene expression changes in articular cartilage and subchondral bone using known markers of

  13. Linear signal hyperintensity adjacent to the subchondral bone plate at the knee on T2-weighted fat-saturated sequences: imaging aspects and association with structural lesions

    Energy Technology Data Exchange (ETDEWEB)

    Gondim Teixeira, Pedro Augusto; Balaj, Clemence [CHU Hopital Central, Service D' Imagerie Guilloz, Nancy (France); Universite de Lorraine, IADI, UMR S 947, Nancy (France); Marie, Beatrice [CHU Hopital Central, Service d' Anatomo-Pathologie, Nancy (France); Lecocq, Sophie; Louis, Matthias; Blum, Alain [CHU Hopital Central, Service D' Imagerie Guilloz, Nancy (France); Braun, Marc [CHU Hopital Central, Service de Neuroradiologie, Nancy (France)

    2014-11-15

    To describe the association between linear T2 signal abnormalities in the subchondral bone and structural knee lesions. MR studies of patients referred for the evaluation of knee pain were retrospectively evaluated and 133 of these patients presented bone marrow edema pattern (BMEP) (study group) and while 61 did not (control group). The presence of linear anomalies of the subchondral bone on T2-weighted fat-saturated sequences was evaluated. The findings were correlated to the presence of structural knee lesions and to the duration of the patient's symptoms. Histologic analysis of a cadaveric specimen was used for anatomic correlation. Linear T2 hyperintensities at the subchondral bone were present in 41 % of patients with BMEP. None of the patients in the control group presented this sign. When a subchondral linear hyperintensity was present, the prevalence of radial or root tears was high and that of horizontal tears was low (71.4 and 4.8 %, respectively). Sixty-nine percent of the patients with a subchondral insufficiency fracture presented a subchondral linear hyperintensity. It was significantly more prevalent in patients with acute or sub-acute symptoms (p < 0.0001). The studied linear T2 hyperintensity is located at the subchondral spongiosa and can be secondary to local or distant joint injuries. Its presence should evoke acute and sub-acute knee injuries. This sign is closely related to subchondral insufficiency fractures and meniscal tears with a compromise in meniscal function. (orig.)

  14. Technical Report: Correlation Between the Repair of Cartilage and Subchondral Bone in an Osteochondral Defect Using Bilayered, Biodegradable Hydrogel Composites.

    Science.gov (United States)

    Lu, Steven; Lam, Johnny; Trachtenberg, Jordan E; Lee, Esther J; Seyednejad, Hajar; van den Beucken, Jeroen J J P; Tabata, Yasuhiko; Kasper, F Kurtis; Scott, David W; Wong, Mark E; Jansen, John A; Mikos, Antonios G

    2015-12-01

    The present work investigated correlations between cartilage and subchondral bone repair, facilitated by a growth factor-delivering scaffold, in a rabbit osteochondral defect model. Histological scoring indices and microcomputed tomography morphological parameters were used to evaluate cartilage and bone repair, respectively, at 6 and 12 weeks. Correlation analysis revealed significant associations between specific cartilage indices and subchondral bone parameters that varied with location in the defect (cortical vs. trabecular region), time point (6 vs. 12 weeks), and experimental group (insulin-like growth factor-1 only, bone morphogenetic protein-2 only, or both growth factors). In particular, significant correlations consistently existed between cartilage surface regularity and bone quantity parameters. Overall, correlation analysis between cartilage and bone repair provided a fuller understanding of osteochondral repair and can help drive informed studies for future osteochondral regeneration strategies.

  15. Chitosan-glycerol phosphate/blood implants elicit hyaline cartilage repair integrated with porous subchondral bone in microdrilled rabbit defects.

    Science.gov (United States)

    Hoemann, C D; Sun, J; McKee, M D; Chevrier, A; Rossomacha, E; Rivard, G-E; Hurtig, M; Buschmann, M D

    2007-01-01

    We have previously shown that microfractured ovine defects are repaired with more hyaline cartilage when the defect is treated with in situ-solidified implants of chitosan-glycerol phosphate (chitosan-GP) mixed with autologous whole blood. The objectives of this study were (1) to characterize chitosan-GP/blood clots in vitro, and (2) to develop a rabbit marrow stimulation model in order to determine the effects of the chitosan-GP/blood implant and of debridement on the formation of incipient cartilage repair tissue. Blood clots were characterized by histology and in vitro clot retraction tests. Bilateral 3.5 x 4 mm trochlear defects debrided into the calcified layer were pierced with four microdrill holes and filled with a chitosan-GP/blood implant or allowed to bleed freely as a control. At 1 day post-surgery, initial defects were characterized by histomorphometry (n=3). After 8 weeks of repair, osteochondral repair tissues between or through the drill holes were evaluated by histology, histomorphometry, collagen type II expression, and stereology (n=16). Chitosan-GP solutions structurally stabilized the blood clots by inhibiting clot retraction. Treatment of drilled defects with chitosan-GP/blood clots led to the formation of a more integrated and hyaline repair tissue above a more porous and vascularized subchondral bone plate compared to drilling alone. Correlation analysis of repair tissue between the drill holes revealed that the absence of calcified cartilage and the presence of a porous subchondral bone plate were predictors of greater repair tissue integration with subchondral bone (Phyaline and integrated repair tissue associated with a porous subchondral bone replete with blood vessels. Concomitant regeneration of a vascularized bone plate during cartilage repair could provide progenitors, anabolic factors and nutrients that aid in the formation of hyaline cartilage.

  16. Subchondral insufficiency fracture of the knee: a non-traumatic injury with prolonged recovery time

    OpenAIRE

    Gourlay, Margaret L; Renner, Jordan B; Spang, Jeffrey T; Rubin, Janet E

    2015-01-01

    Subchondral insufficiency fractures are non-traumatic fractures that occur immediately below the cartilage of a joint. Although low bone density may be present concurrently, it is not the underlying cause of subchondral insufficiency fractures in the majority of patients. Patients with subchondral insufficiency fracture characteristically have unremarkable plain radiographs, while MRI examination may reveal extensive bone marrow oedema and subchondral bone collapse. This article presents a 51...

  17. MRI of subchondral fractures: a review

    Energy Technology Data Exchange (ETDEWEB)

    Lopes Viana, Sergio [Hospital Ortopedico e Medicina Especializada (HOME) and Hospital da Crianca de Brasilia Jose Alencar, Brasilia, DF (Brazil); Beber Machado, Bruno [Clinica Radiologica Med Imagem, Unimed Sul Capixaba and Santa Casa de Misericordia de Cachoeiro de Itapemirim, Cachoeiro de Itapemirim (Brazil); Mendlovitz, Paulo Sergio [Hospital Universitario de Brasilia (Universidade de Brasilia) and Radiologia Anchieta, Brasilia (Brazil)

    2014-11-15

    Several authors have recently emphasized the role of magnetic resonance imaging (MRI) in the diagnosis of subchondral fractures. There is increasing interest about this type of fractures, mostly because they have been implicated in the genesis of some well-known destructive articular conditions whose cause was previously undetermined, such as distal clavicular osteolysis, rapidly progressive osteoarthritis of the hip, spontaneous osteonecrosis of the knee and adult-type Freiberg's infraction. Subchondral fractures may ultimately lead to bone collapse, secondary osteonecrosis and severe articular damage, and there may be rapid progression of joint destruction over a period of weeks to months. It has been suggested that timely diagnosis might potentially improve the outcome and avoid the onset of destructive joint disease, making MRI even more important in this setting. The fracture line usually appears as a band of low signal intensity in the subchondral bone plate, adjacent to the articular surface, most often surrounded by bone marrow edema. In this article the authors review the most relevant imaging features of subchondral fractures in several joints, stressing the importance of early recognition for a better outcome. (orig.)

  18. The role of subchondral bone remodeling in osteoarthritis: reduction of cartilage degeneration and prevention of osteophyte formation by alendronate in the rat anterior cruciate ligament transection model.

    Science.gov (United States)

    Hayami, Tadashi; Pickarski, Maureen; Wesolowski, Gregg A; McLane, Julia; Bone, Ashleigh; Destefano, James; Rodan, Gideon A; Duong, Le T

    2004-04-01

    It has been suggested that subchondral bone remodeling plays a role in the progression of osteoarthritis (OA). To test this hypothesis, we characterized the changes in the rat anterior cruciate ligament transection (ACLT) model of OA and evaluated the effects of alendronate (ALN), a potent inhibitor of bone resorption, on cartilage degradation and on osteophyte formation. Male Sprague-Dawley rats underwent ACLT or sham operation of the right knee. Animals were then treated with ALN (0.03 and 0.24 microg/kg/week subcutaneously) and necropsied at 2 or 10 weeks postsurgery. OA changes were evaluated. Subchondral bone volume and osteophyte area were measured by histomorphometric analysis. Coimmunostaining for transforming growth factor beta (TGF beta), matrix metalloproteinase 9 (MMP-9), and MMP-13 was performed to investigate the effect of ALN on local activation of TGF beta. ALN was chondroprotective at both dosages, as determined by histologic criteria and collagen degradation markers. ALN suppressed subchondral bone resorption, which was markedly increased 2 weeks postsurgery, and prevented the subsequent increase in bone formation 10 weeks postsurgery, in the untreated tibial plateau of ACLT joints. Furthermore, ALN reduced the incidence and area of osteophytes in a dose-dependent manner. ALN also inhibited vascular invasion into the calcified cartilage in rats with OA and blocked osteoclast recruitment to subchondral bone and osteophytes. ALN treatment reduced the local release of active TGF beta, possibly via inhibition of MMP-13 expression in articular cartilage and MMP-9 expression in subchondral bone. Subchondral bone remodeling plays an important role in the pathogenesis of OA. ALN or other inhibitors of bone resorption could potentially be used as disease-modifying agents in the treatment of OA.

  19. High-grade MRI bone oedema is common within the surgical field in rheumatoid arthritis patients undergoing joint replacement and is associated with osteitis in subchondral bone

    DEFF Research Database (Denmark)

    McQueen, F M; Gao, A; Ostergaard, M

    2007-01-01

    OBJECTIVES: MRI bone oedema has been observed in early and advanced RA and may represent a cellular infiltrate (osteitis) in subchondral bone. We studied MRI scans from RA patients undergoing surgery, seeking to identify regions of bone oedema and examine its histopathological equivalent in resec...

  20. Differences in tibial subchondral bone structure evaluated using plain radiographs between knees with and without cartilage damage or bone marrow lesions. The Oulu knee osteoarthritis study

    Energy Technology Data Exchange (ETDEWEB)

    Hirvasniemi, Jukka [University of Oulu, Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, Oulu (Finland); Oulu University Hospital and University of Oulu, Medical Research Center Oulu, Oulu (Finland); Thevenot, Jerome; Podlipska, Jana [University of Oulu, Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, Oulu (Finland); University of Oulu, Infotech Oulu, Oulu (Finland); Guermazi, Ali [Boston University School of Medicine, Quantitative Imaging Center, Department of Radiology, Boston, MA (United States); Roemer, Frank W. [Boston University School of Medicine, Quantitative Imaging Center, Department of Radiology, Boston, MA (United States); University of Erlangen-Nuremberg, Department of Radiology, Erlangen (Germany); Nieminen, Miika T.; Saarakkala, Simo [University of Oulu, Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, Oulu (Finland); Oulu University Hospital and University of Oulu, Medical Research Center Oulu, Oulu (Finland); University of Oulu, Infotech Oulu, Oulu (Finland); Oulu University Hospital, Department of Diagnostic Radiology, Oulu (Finland)

    2017-11-15

    To investigate whether subchondral bone structure from plain radiographs is different between subjects with and without articular cartilage damage or bone marrow lesions (BMLs). Radiography-based bone structure was assessed from 80 subjects with different stages of knee osteoarthritis using entropy of Laplacian-based image (E{sub Lap}) and local binary patterns (E{sub LBP}), homogeneity index of local angles (HI{sub Angles,mean}), and horizontal (FD{sub Hor}) and vertical fractal dimensions (FD{sub Ver}). Medial tibial articular cartilage damage and BMLs were scored using the magnetic resonance imaging osteoarthritis knee score. Level of statistical significance was set to p < 0.05. Subjects with medial tibial cartilage damage had significantly higher FD{sub Ver} and E{sub LBP} as well as lower E{sub Lap} and HI{sub Angles,mean} in the medial tibial subchondral bone region than subjects without damage. FD{sub Hor}, FD{sub Ver}, and E{sub LBP} were significantly higher, whereas E{sub Lap} and HI{sub Angles,mean} were lower in the medial trabecular bone region. Subjects with medial tibial BMLs had significantly higher FD{sub Ver} and E{sub LBP} as well as lower E{sub Lap} and HI{sub Angles,mean} in medial tibial subchondral bone. FD{sub Hor}, FD{sub Ver}, and E{sub LBP} were higher, whereas E{sub Lap} and HI{sub Angles,mean} were lower in medial trabecular bone. Our results support the use of bone structural analysis from radiographs when examining subjects with osteoarthritis or at risk of having it. (orig.)

  1. Contrast-enhanced MRI of subchondral cysts in patients with or at risk for knee osteoarthritis: The MOST study

    International Nuclear Information System (INIS)

    Crema, M.D.; Roemer, F.W.; Marra, M.D.; Niu, J.; Lynch, J.A.; Felson, D.T.; Guermazi, A.

    2010-01-01

    Objective: The aim of the study was (1) to evaluate contrast enhancement patterns of subchondral cysts on magnetic resonance imaging and (2) to discuss possible radiological explanations of cyst enhancement based on existing theories of subchondral cyst formation in osteoarthritis. Materials and methods: The Multicenter Osteoarthritis Study (MOST) is a NIH-funded longitudinal observational study for individuals who have or are at high risk for knee osteoarthritis. All subjects with available non-enhanced and contrast-enhanced MRI were included. The tibiofemoral and patellofemoral joints were divided in 14 subregions. The presence and size of subchondral cysts and bone marrow edema-like lesions (BMLs) were scored semiquantitatively in each subregion on non-contrast-enhanced MRI from 0 to 3. Enhancement of subchondral cysts was evaluated on contrast-enhanced MRI as grade 0 (absent), grade 1 (partial enhancement), or grade 2 (full enhancement). The adjacent articular cartilage was scored in each subregion on non-enhanced MRI as grade 0 (intact), grade 1 (partial thickness loss), or grade 2 (full thickness loss). Results: Four hundred knees were included (1 knee per person, 5600 subregions). Subchondral cysts were detected in 260 subregions (4.6%). After intravenous contrast administration, 245 cysts (94.2%) showed full enhancement, 12 (4.6%) showed partial enhancement and 3 (1.2%) showed no enhancement. Enhancing BMLs were found in 237 (91.2%) subregions containing cysts, which were located adjacent or in the middle of BMLs. In 121 subregions (46.5%) having cysts, no adjacent full thickness cartilage loss was detected. Conclusion: Most subchondral cysts demonstrated full or partial contrast enhancement, and were located adjacent or in the midst of enhancing BMLs. As pure cystic lesions are not expected to enhance on MRI, the term 'subchondral cyst-like bone marrow lesion' might be appropriate to describe these lesions.

  2. Contrast-enhanced MRI of subchondral cysts in patients with or at risk for knee osteoarthritis: The MOST study

    Energy Technology Data Exchange (ETDEWEB)

    Crema, M.D., E-mail: michelcrema@gmail.co [Department of Radiology, Boston University School of Medicine, 820 Harrison Ave, FGH Building, 3rd Floor, Boston, MA 02118 (United States); Roemer, F.W., E-mail: frank.roemer@klinikum-augsburg.d [Department of Radiology, Boston University School of Medicine, 820 Harrison Ave, FGH Building, 3rd Floor, Boston, MA 02118 (United States); Department of Radiology, Klinikum Augsburg, Stenglinstrasse 2, Augsburg 86156 (Germany); Marra, M.D., E-mail: monicadiasmarra@gmail.co [Department of Radiology, Boston University School of Medicine, 820 Harrison Ave, FGH Building, 3rd Floor, Boston, MA 02118 (United States); Niu, J., E-mail: niujp@bu.ed [Clinical Epidemiology Research and Training Unit, Boston University School of Medicine, 650 Albany Street, X Building, Suite 200, Boston, MA 02118 (United States); Lynch, J.A., E-mail: jlynch@psg.ucsf.ed [Department of Epidemiology and Biostatistics, University of California at San Francisco, 185 Berry Street, Lobby 5, Suite 5700, San Francisco, CA 94107 (United States); Felson, D.T., E-mail: dfelson@bu.ed [Clinical Epidemiology Research and Training Unit, Boston University School of Medicine, 650 Albany Street, X Building, Suite 200, Boston, MA 02118 (United States); Guermazi, A., E-mail: ali.guermazi@bmc.or [Department of Radiology, Boston University School of Medicine, 820 Harrison Ave, FGH Building, 3rd Floor, Boston, MA 02118 (United States)

    2010-07-15

    Objective: The aim of the study was (1) to evaluate contrast enhancement patterns of subchondral cysts on magnetic resonance imaging and (2) to discuss possible radiological explanations of cyst enhancement based on existing theories of subchondral cyst formation in osteoarthritis. Materials and methods: The Multicenter Osteoarthritis Study (MOST) is a NIH-funded longitudinal observational study for individuals who have or are at high risk for knee osteoarthritis. All subjects with available non-enhanced and contrast-enhanced MRI were included. The tibiofemoral and patellofemoral joints were divided in 14 subregions. The presence and size of subchondral cysts and bone marrow edema-like lesions (BMLs) were scored semiquantitatively in each subregion on non-contrast-enhanced MRI from 0 to 3. Enhancement of subchondral cysts was evaluated on contrast-enhanced MRI as grade 0 (absent), grade 1 (partial enhancement), or grade 2 (full enhancement). The adjacent articular cartilage was scored in each subregion on non-enhanced MRI as grade 0 (intact), grade 1 (partial thickness loss), or grade 2 (full thickness loss). Results: Four hundred knees were included (1 knee per person, 5600 subregions). Subchondral cysts were detected in 260 subregions (4.6%). After intravenous contrast administration, 245 cysts (94.2%) showed full enhancement, 12 (4.6%) showed partial enhancement and 3 (1.2%) showed no enhancement. Enhancing BMLs were found in 237 (91.2%) subregions containing cysts, which were located adjacent or in the middle of BMLs. In 121 subregions (46.5%) having cysts, no adjacent full thickness cartilage loss was detected. Conclusion: Most subchondral cysts demonstrated full or partial contrast enhancement, and were located adjacent or in the midst of enhancing BMLs. As pure cystic lesions are not expected to enhance on MRI, the term 'subchondral cyst-like bone marrow lesion' might be appropriate to describe these lesions.

  3. The Effects of Bone Remodeling Inhibition by Alendronate on Three-Dimensional Microarchitecture of Subchondral Bone Tissues in Guinea Pig Primary Osteoarthrosis

    DEFF Research Database (Denmark)

    Ding, Ming

    2008-01-01

    We assessed whether increase of subchondral bone density enhances cartilage stress during impact loading, leading to progressive cartilage degeneration and accelerated osteoarthrosis (OA) progression. Sixty-six male guinea pigs were randomly divided into six groups. During a 9-week treatment period...

  4. Hyaluronan protects against cartilage damage by decreasing stiffness and changing3-D microarchitecture of subchondral bone in guinea pig primary osteoarthrosis

    DEFF Research Database (Denmark)

    Ding, Ming

    Daltons) intra-articular injection on subchondral bone tissues.   Methods: Fifty-six male guinea pigs (6.5 months of age) were randomly divided into 5 groups studied in a short-term and a long-term experimental period (Fig. 1). In the short-term study: HA-I group received intra-articular injection of HA 0.......4 mg/kg/week for 5 weeks in both knee joints; the control group received vehicle. In the long-term study: HA-II received 0.4mg/kg/week intra-articular injection for additional 5 weeks; HA-III received no more injection; and the control group received vehicle. After the injection periods the guinea pigs...... of HA on cartilage and subchondral bone were maintained when HA treatment was discontinued (Table 1).   Discussion: The current study has investigated the effects of HA on the properties of subchondral bone tissues in a primary guinea pig OA model. Significant positive effects of high molecular weight...

  5. Imaging of acute injuries of the articular surfaces (chondral, osteochondral and subchondral fractures)

    Energy Technology Data Exchange (ETDEWEB)

    Bohndorf, K. [Department of Radiology, Zentralklinikum Augsburg (Germany)

    1999-10-01

    Fractures involving the articulating surfaces of bone are a common cause of chronic disability after joint injury. Acute fractures of the articular surface typically run parallel to the surface and are confined to the cartilage and/or the immediate subchondral cancellous bone. They should be distinguished from vertical or oblique bone fractures with intra-articular extension. This article reviews the mechanism of acute articular surface injuries, as well as their incidence, clinical presentation, radiologic appearance and treatment. A classification is presented based on direct inspection (arthroscopy) and imaging (especially MRI), emphasizing the distinction between lesions with intact (subchondral impaction and subchondral bone bruises) and disrupted (chondral, osteochondral lesions) cartilage. Hyaline cartilage, subchondral bone plate and subchondral cancellous bone are to be considered an anatomic unit. Subchondral articular surface lesions, osteochondral fractures and solely chondral fractures are different manifestations of impaction injuries that affect the articulating surface. Of the noninvasive imaging modalities, conventional radiography and MRI provide the most relevant information. The appropriate use of short tau inversion recovery, T1-weighted and T2-weighted (turbo) spin-echo as well as gradient-echo sequences, enables MRI to classify the various acute articular surface lesions with great accuracy and provides therapeutic guidance. (orig.)

  6. Imaging of acute injuries of the articular surfaces (chondral, osteochondral and subchondral fractures)

    International Nuclear Information System (INIS)

    Bohndorf, K.

    1999-01-01

    Fractures involving the articulating surfaces of bone are a common cause of chronic disability after joint injury. Acute fractures of the articular surface typically run parallel to the surface and are confined to the cartilage and/or the immediate subchondral cancellous bone. They should be distinguished from vertical or oblique bone fractures with intra-articular extension. This article reviews the mechanism of acute articular surface injuries, as well as their incidence, clinical presentation, radiologic appearance and treatment. A classification is presented based on direct inspection (arthroscopy) and imaging (especially MRI), emphasizing the distinction between lesions with intact (subchondral impaction and subchondral bone bruises) and disrupted (chondral, osteochondral lesions) cartilage. Hyaline cartilage, subchondral bone plate and subchondral cancellous bone are to be considered an anatomic unit. Subchondral articular surface lesions, osteochondral fractures and solely chondral fractures are different manifestations of impaction injuries that affect the articulating surface. Of the noninvasive imaging modalities, conventional radiography and MRI provide the most relevant information. The appropriate use of short tau inversion recovery, T1-weighted and T2-weighted (turbo) spin-echo as well as gradient-echo sequences, enables MRI to classify the various acute articular surface lesions with great accuracy and provides therapeutic guidance. (orig.)

  7. Changes in bone marrow lesions in response to weight-loss in obese knee osteoarthritis patients

    DEFF Research Database (Denmark)

    Gudbergsen, Henrik; Boesen, Mikael; Christensen, Robin

    2013-01-01

    Patients are susceptible for knee osteoarthritis (KOA) with increasing age and obesity and KOA is expected to become a major disabling disease in the future. An important feature of KOA on magnetic resonance imaging (MRI) is changes in the subchondral bone, bone marrow lesions (BMLs), which...... are related to the future degeneration of the knee joint as well as prevalent clinical symptoms. The aim of this study was to investigate the changes in BMLs after a 16-week weight-loss period in obese subjects with KOA and relate changes in BMLs to the effects of weight-loss on clinical symptoms....

  8. Alpha C-telopeptide of type I collagen is associated with subchondral bone turnover and predicts progression of joint space narrowing and osteophytes in osteoarthritis.

    Science.gov (United States)

    Huebner, Janet L; Bay-Jensen, Anne C; Huffman, Kim M; He, Yi; Leeming, Diana J; McDaniel, Gary E; Karsdal, Morten A; Kraus, Virginia B

    2014-09-01

    To evaluate joint tissue remodeling using the urinary collagen biomarkers urinary α-C-telopeptide of type I collagen (α-CTX) and urinary C-telopeptide of type II collagen (CTX-II) and to determine the association of these biomarkers with osteoarthritis (OA) severity, progression, and localized knee bone turnover. Participants (n = 149) with symptomatic and radiographic knee OA underwent fixed-flexion knee radiography at baseline and 3 years, and late-phase bone scintigraphy of both knees at baseline, which were scored semiquantitatively for osteophyte and joint space narrowing (JSN) severity and uptake intensity, with scores summed across knees. Urinary concentrations of α-CTX and CTX-II were determined by enzyme-linked immunosorbent assay. Immunohistochemical analysis of human OA knees was performed to localize the joint tissue origin of the biomarker epitopes. Urinary α-CTX concentrations correlated strongly with the intensity of bone scintigraphic uptake and with JSN progression (risk ratio 13.2) and osteophyte progression (risk ratio 3). Urinary CTX-II concentrations were strongly associated with intensity of bone scintigraphic uptake, with JSN and osteophyte severity, and with OA progression based on osteophyte score. Urinary α-CTX localized primarily to high bone turnover areas in subchondral bone. CTX-II localized to the bone-cartilage interface, the tidemark, and damaged articular cartilage. Baseline urinary α-CTX, which was localized to high turnover areas of subchondral bone, was associated with dynamic bone turnover of knees, as signified by scintigraphy, and progression of both osteophytes and JSN. Urinary CTX-II correlated with JSN and osteophyte severity and progression of osteophytes. To our knowledge, this represents the first report of serologic markers reflecting subchondral bone turnover. These collagen markers may be useful for noninvasive detection and quantification of active subchondral bone turnover and joint remodeling in knee OA

  9. Reviewing subchondral cartilage surgery: considerations for standardised and outcome predictable cartilage remodelling: a technical note.

    Science.gov (United States)

    Benthien, Jan P; Behrens, Peter

    2013-11-01

    The potential of subchondral mesenchymal stem cell stimulation (MSS) for cartilage repair has led to the widespread use of microfracture as a first line treatment for full thickness articular cartilage defects. Recent focus on the effects of subchondral bone during cartilage injury and repair has expanded the understanding of the strengths and limitations in MSS and opened new pathways for potential improvement. Comparative studies have shown that bone marrow access has positive implications for pluripotential cell recruitment, repair quality and quantity, i.e. deeper channels elicited better cartilage fill, more hyaline cartilage character with higher type II collagen content and lower type I collagen content compared to shallow marrow access. A subchondral needling procedure using standardised and thin subchondral perforations deep into the subarticular bone marrow making the MSS more consistent with the latest developments in subchondral cartilage remodelling is proposed. As this is a novel method clinical studies have been initiated to evaluate the procedure especially compared to microfracturing. However, the first case studies and follow-ups indicate that specific drills facilitate reaching the subchondral bone marrow while the needle size makes perforation of the subchondral bone easier and more predictable. Clinical results of the first group of patients seem to compare well to microfracturing. The authors suggest a new method for a standardised procedure using a new perforating device. Advances in MSS by subchondral bone marrow perforation are discussed. It remains to be determined by clinical studies how this method compares to microfracturing. The subchondral needling offers the surgeon and the investigator a method that facilitates comparison studies because of its defined depth of subchondral penetration and needle size.

  10. Sequential change in T2* values of cartilage, meniscus, and subchondral bone marrow in a rat model of knee osteoarthritis.

    Directory of Open Access Journals (Sweden)

    Ping-Huei Tsai

    Full Text Available BACKGROUND: There is an emerging interest in using magnetic resonance imaging (MRI T2* measurement for the evaluation of degenerative cartilage in osteoarthritis (OA. However, relatively few studies have addressed OA-related changes in adjacent knee structures. This study used MRI T2* measurement to investigate sequential changes in knee cartilage, meniscus, and subchondral bone marrow in a rat OA model induced by anterior cruciate ligament transection (ACLX. MATERIALS AND METHODS: Eighteen male Sprague Dawley rats were randomly separated into three groups (n = 6 each group. Group 1 was the normal control group. Groups 2 and 3 received ACLX and sham-ACLX, respectively, of the right knee. T2* values were measured in the knee cartilage, the meniscus, and femoral subchondral bone marrow of all rats at 0, 4, 13, and 18 weeks after surgery. RESULTS: Cartilage T2* values were significantly higher at 4, 13, and 18 weeks postoperatively in rats of the ACLX group than in rats of the control and sham groups (p<0.001. In the ACLX group (compared to the sham and control groups, T2* values increased significantly first in the posterior horn of the medial meniscus at 4 weeks (p = 0.001, then in the anterior horn of the medial meniscus at 13 weeks (p<0.001, and began to increase significantly in the femoral subchondral bone marrow at 13 weeks (p = 0.043. CONCLUSION: Quantitative MR T2* measurements of OA-related tissues are feasible. Sequential change in T2* over time in cartilage, meniscus, and subchondral bone marrow were documented. This information could be potentially useful for in vivo monitoring of disease progression.

  11. Effect of open wedge high tibial osteotomy on the lateral tibiofemoral compartment in sheep. Part III: analysis of the microstructure of the subchondral bone and correlations with the articular cartilage and meniscus.

    Science.gov (United States)

    Ziegler, Raphaela; Goebel, Lars; Seidel, Roland; Cucchiarini, Magali; Pape, Dietrich; Madry, Henning

    2015-09-01

    First, to evaluate whether medial open wedge high tibial osteotomy (HTO) induces alterations of the microstructure of the lateral tibial subchondral bone plate of sheep. Second, to test the hypothesis that specific correlations exist between topographical structural alterations of the subchondral bone, the cartilage and the lateral meniscus. Three experimental groups received biplanar osteotomies of the right proximal tibiae: (a) closing wedge HTO (4.5° of tibial varus), (b) opening wedge HTO (4.5° tibial valgus; standard correction) and (c) opening wedge HTO (9.5° of valgus; overcorrection), each of which was compared to the non-osteotomised contralateral proximal tibiae. After 6 months, subchondral bone structure indices were measured by computed tomography. Correlations between the subchondral bone, the articular cartilage and the lateral meniscus were determined. Increased loading by valgus overcorrection led to an enlarged specific bone surface (BS/BV) in the subarticular spongiosa compared with unloading by varisation. The subchondral bone plate was 3.9-fold thicker in the central region of the lateral tibial plateau than in the submeniscal periphery. Its thickness in the central region significantly correlated with the thickness of the articular cartilage. In the submeniscal region, such correlation did not exist. In general, a higher degree of osteoarthritis (OA) correlated with alterations of the subchondral bone plate microstructure. OA of the submeniscal articular cartilage also correlated with worse matrix staining of the lateral meniscus. Osteoarthritis changes are associated with alterations of the subchondral bone plate microstructure. Specific topographical relationships exist in the central region between the articular cartilage and subchondral bone plate thickness, and in the submeniscal periphery between and the articular cartilage and lateral meniscus. From a clinical perspective, the combined follow-up data from this and the previous two

  12. Subchondral Bone Plate Thickening Precedes Chondrocyte Apoptosis and Cartilage Degradation in Spontaneous Animal Models of Osteoarthritis

    OpenAIRE

    Zamli, Zaitunnatakhin; Robson Brown, Kate; Tarlton, John F.; Adams, Mike A.; Torlot, Georgina E.; Cartwright, Charlie; Cook, William A.; Vassilevskaja, Kristiina; Sharif, Mohammed

    2014-01-01

    Osteoarthritis (OA) is the most common joint disorder characterised by bone remodelling and cartilage degradation and associated with chondrocyte apoptosis. These processes were investigated at 10, 16, 24, and 30 weeks in Dunkin Hartley (DH) and Bristol Strain 2 (BS2) guinea pigs that develop OA spontaneously. Both strains had a more pronounced chondrocyte apoptosis, cartilage degradation, and subchondral bone changes in the medial than the lateral side of the tibia, and between strains, the ...

  13. Osteoarthritis alters the patellar bones subchondral trabecular architecture.

    Science.gov (United States)

    Hoechel, Sebastian; Deyhle, Hans; Toranelli, Mireille; Müller-Gerbl, Magdalena

    2017-09-01

    Following the principles of "morphology reveals biomechanics," the cartilage-osseous interface and the trabecular network show defined adaptation in response to physiological loading. In the case of a compromised relationship, the ability to support the load diminishes and the onset of osteoarthritis (OA) may arise. To describe and quantify the changes within the subchondral bone plate (SBP) and trabecular architecture, 10 human OA patellae were investigated by CT and micro-CT. The results are presented in comparison to a previously published dataset of 10 non-OA patellae which were evaluated in the same manner. The analyzed OA samples showed no distinctive mineralization pattern in regards to the physiological biomechanics, but a highly irregular disseminated distribution. In addition, no regularity in bone distribution and architecture across the trabecular network was found. We observed a decrease of material as the bone volume and trabecular thickness/number were significantly reduced. In comparison to non-OA samples, greatest differences for all parameters were found within the first mm of trabecular bone. The differences decreased toward the fifth mm in a logarithmic manner. The interpretation of the logarithmic relation leads to the conclusion that the main impact of OA on bony structures is located beneath the SBP and lessens with depth. In addition to the clear difference in material with approximately 12% less bone volume in the first mm in OA patellae, the architectural arrangement is more rod-like and isotropic, accounting for an architectural decrease in stability and support. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1982-1989, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  14. The effects of bone remodeling inhibition by alendronate on 3-D microarchitecture of subchondral bone tissues in guinea pig primary osteoarthrosis

    DEFF Research Database (Denmark)

    Ding, Ming; Danielsen, Carl Christian; Hvid, Ivan

    2008-01-01

    We assess whether increase of subchondral bone density enhances cartilage stress during impact loading leading to progressive cartilage degeneration and accelerated osteoarthrosis (OA) progression.               Sixty-six male guinea pigs were randomly divided into 6 groups. During a 9-week...

  15. Morphological studies at subchondral bone structures in human early arthrosis. Final report

    International Nuclear Information System (INIS)

    1992-01-01

    Quantitative histomorphometric studies using an image analysis system were performed simultaneously on hyaline cartilage, calcified cartilage and subchondral cancellous bone of human tibial heads for detailed information about the pathogenesis of arthrosis. Joint structures need to be fully detected in three dimensions since measurement values are more affected by topographical aspects than by either age, or sex, or arthrosin stage. Mechanical factors were found to affect essentially the initiation and progression of arthrosis. Results are demonstrated in detail. (orig.) [de

  16. Computed tomographic imaging of subchondral fatigue cracks in the distal end of the third metacarpal bone in the thoroughbred racehorse can predict crack micromotion in an ex-vivo model.

    Science.gov (United States)

    Dubois, Marie-Soleil; Morello, Samantha; Rayment, Kelsey; Markel, Mark D; Vanderby, Ray; Kalscheur, Vicki L; Hao, Zhengling; McCabe, Ronald P; Marquis, Patricia; Muir, Peter

    2014-01-01

    Articular stress fracture arising from the distal end of the third metacarpal bone (MC3) is a common serious injury in Thoroughbred racehorses. Currently, there is no method for predicting fracture risk clinically. We describe an ex-vivo biomechanical model in which we measured subchondral crack micromotion under compressive loading that modeled high speed running. Using this model, we determined the relationship between subchondral crack dimensions measured using computed tomography (CT) and crack micromotion. Thoracic limbs from 40 Thoroughbred racehorses that had sustained a catastrophic injury were studied. Limbs were radiographed and examined using CT. Parasagittal subchondral fatigue crack dimensions were measured on CT images using image analysis software. MC3 bones with fatigue cracks were tested using five cycles of compressive loading at -7,500N (38 condyles, 18 horses). Crack motion was recorded using an extensometer. Mechanical testing was validated using bones with 3 mm and 5 mm deep parasagittal subchondral slots that modeled naturally occurring fatigue cracks. After testing, subchondral crack density was determined histologically. Creation of parasagittal subchondral slots induced significant micromotion during loading (pBones with parasagittal crack area measurements above 30 mm2 may have a high risk of crack propagation and condylar fracture in vivo because of crack micromotion. In conclusion, our results suggest that CT could be used to quantify subchondral fatigue crack dimensions in racing Thoroughbred horses in-vivo to assess risk of condylar fracture. Horses with parasagittal crack arrays that exceed 30 mm2 may have a high risk for development of condylar fracture.

  17. Subchondral insufficiency fracture of the knee: a non-traumatic injury with prolonged recovery time.

    Science.gov (United States)

    Gourlay, Margaret L; Renner, Jordan B; Spang, Jeffrey T; Rubin, Janet E

    2015-06-08

    Subchondral insufficiency fractures are non-traumatic fractures that occur immediately below the cartilage of a joint. Although low bone density may be present concurrently, it is not the underlying cause of subchondral insufficiency fractures in the majority of patients. Patients with subchondral insufficiency fracture characteristically have unremarkable plain radiographs, while MRI examination may reveal extensive bone marrow oedema and subchondral bone collapse. This article presents a 51-year-old postmenopausal woman, a physician, who had subchondral insufficiency fractures of the knee associated with prolonged standing during clinical work. She was treated with partial weight bearing on crutches until 14 months after the injury, viscosupplementation at 4 months to treat osteoarthritis and teriparatide treatment to improve bone healing at 7 months. By 26 months after the injury, she tolerated independent walking with a fabric knee support but still experienced mild posterolateral knee pain and numbness on prolonged standing. 2015 BMJ Publishing Group Ltd.

  18. The role of inhibition by phosphocitrate and its analogue in chondrocyte differentiation and subchondral bone advance in Hartley guinea pigs.

    Science.gov (United States)

    Sun, Yubo; Kiraly, Alex J; Cox, Michael; Mauerhan, David R; Hanley, Edward N

    2018-04-01

    Phosphocitrate (PC) and its analogue, PC-β ethyl ester, inhibit articular cartilage degeneration in Hartley guinea pigs. However, the underlying molecular mechanisms remain unclear. The present study aimed to investigate the hypothesis that PC exerted its disease-modifying effect on osteoarthritis (OA), in part, by inhibiting a molecular program similar to that in the endochondral pathway of ossification. The results demonstrated that severe proteoglycan loss occurred in the superficial and middle zones, as well as in the calcified zone of articular cartilage in the Hartley guinea pigs. Subchondral bone advance was greater in the control Hartley guinea pigs compared with PC- or PC analogue-treated guinea pigs. Resorption of cartilage bars or islands and vascular invasion in the growth plate were also greater in the control guinea pigs compared with the PC- or PC analogue-treated guinea pigs. The levels of matrix metalloproteinase-13 and type X collagen within the articular cartilage and growth plate were significantly increased in the control guinea pigs compared with PC-treated guinea pigs (Pguinea pigs exhibited a hypertrophic phenotype and recapitulated a developmental molecular program similar to the endochondral pathway of ossification. Activation of this molecular program resulted in resorption of calcified articular cartilage and subchondral bone advance. This suggests that PC and PC analogues exerted their OA disease-modifying activity, in part, by inhibiting this molecular program.

  19. Computed Tomographic Imaging of Subchondral Fatigue Cracks in the Distal End of the Third Metacarpal Bone in the Thoroughbred Racehorse Can Predict Crack Micromotion in an Ex-Vivo Model

    Science.gov (United States)

    Dubois, Marie-Soleil; Morello, Samantha; Rayment, Kelsey; Markel, Mark D.; Vanderby, Ray; Kalscheur, Vicki L.; Hao, Zhengling; McCabe, Ronald P.; Marquis, Patricia; Muir, Peter

    2014-01-01

    Articular stress fracture arising from the distal end of the third metacarpal bone (MC3) is a common serious injury in Thoroughbred racehorses. Currently, there is no method for predicting fracture risk clinically. We describe an ex-vivo biomechanical model in which we measured subchondral crack micromotion under compressive loading that modeled high speed running. Using this model, we determined the relationship between subchondral crack dimensions measured using computed tomography (CT) and crack micromotion. Thoracic limbs from 40 Thoroughbred racehorses that had sustained a catastrophic injury were studied. Limbs were radiographed and examined using CT. Parasagittal subchondral fatigue crack dimensions were measured on CT images using image analysis software. MC3 bones with fatigue cracks were tested using five cycles of compressive loading at -7,500N (38 condyles, 18 horses). Crack motion was recorded using an extensometer. Mechanical testing was validated using bones with 3 mm and 5 mm deep parasagittal subchondral slots that modeled naturally occurring fatigue cracks. After testing, subchondral crack density was determined histologically. Creation of parasagittal subchondral slots induced significant micromotion during loading (pThoroughbred horses in-vivo to assess risk of condylar fracture. Horses with parasagittal crack arrays that exceed 30 mm2 may have a high risk for development of condylar fracture. PMID:25077477

  20. Subchondral drilling for articular cartilage repair: a systematic review of translational research.

    Science.gov (United States)

    Gao, Liang; Goebel, Lars K H; Orth, Patrick; Cucchiarini, Magali; Madry, Henning

    2018-05-03

    Articular cartilage defects may initiate osteoarthritis. Subchondral drilling, a widely applied clinical technique to treat small cartilage defects, does not yield cartilage regeneration. Various translational studies aiming to improve the outcome of drilling have been performed, however, a robust systematic analysis of its translational evidence has been still lacking. Here, we performed a systematic review of the outcome of subchondral drilling for knee cartilage repair in translational animal models. A total of 12 relevant publications studying 198 animals were identified, detailed study characteristics were extracted, and methodological quality and risk of bias were analyzed. Subchondral drilling was superior to defects untreated or treated with abrasion arthroplasty for cartilage repair in multiple translational models. Considerable subchondral bone changes were observed, including subchondral bone cysts and intralesional osteophytes. Furthermore, extensive alterations of the subchondral bone microarchitecture appeared in a temporal pattern in small and large animal models, together with specific topographic aspects of repair. Moreover, variable technical aspects directly affected the outcomes of osteochondral repair. The data from this systematic review indicate that subchondral drilling yields improved short-term structural articular cartilage repair compared with spontaneous repair in multiple small and large animal models. These results have important implications for future investigations aimed at an enhanced translation into clinical settings for the treatment of cartilage defects, highlighting the importance of considering specific aspects of modifiable variables such as improvements in the design and reporting of preclinical studies, together with the need to better understand the underlying mechanisms of cartilage repair following subchondral drilling. © 2018. Published by The Company of Biologists Ltd.

  1. Third metacarpal condylar fatigue fractures in equine athletes occur within previously modelled subchondral bone.

    Science.gov (United States)

    Whitton, R Christopher; Trope, Gareth D; Ghasem-Zadeh, Ali; Anderson, Garry A; Parkin, Timothy D H; Mackie, Eleanor J; Seeman, Ego

    2010-10-01

    Bone modelling and remodelling reduce the risk of fatigue fractures; the former by adapting bone to its loading circumstances, the latter by replacing fatigued bone. Remodelling transiently increases porosity because of the normal delay in onset of the formation phase of the remodelling sequence. Protracted intense loading suppresses remodelling leaving modelling as the only means of maintaining bone strength. We therefore hypothesized that race horses with fatigue fractures of the distal third metacarpal bone (MC3) will have reduced porosity associated with suppressed remodelling while continued adaptive modelling will result in higher volume fraction (BV/TV) at this site. Using high resolution peripheral quantitative computed tomography (HR-pQCT), we measured the distal aspect of the MC3 obtained at postmortem from 13 thoroughbred race horses with condylar fractures of the MC3 (cases), 8 horses without fractures (training controls), 14 horses with a fracture at another site (fractured controls) and 9 horses resting from training (resting controls). Porosity of the subchondral bone of MC3 was lower in cases than resting controls (12±1.4% vs. 18±1.6%, P=0.017) although areas of focal porosity were observed adjacent to fractures in 6/13 horses. BV/TV of the distal metacarpal epiphysis tended to be higher in horses with condylar fractures (0.79±0.015) than training controls (0.74±0.019, P=0.070), but also higher in controls with a fracture elsewhere (0.79±0.014) than the training controls (0.74±0.019, P=0.040). BV/TV was higher in horses over three years of age than those aged two or three years (0.79±0.01 vs. 0.74±0.01, P=0.016). All metacarpal condylar fractures occurred within focal areas of high BV/TV. We infer that intense training in equine athletes suppresses remodelling of third metacarpal subchondral bone limiting damage repair while modelling increases regional bone volume in an attempt to minimise local stresses but may fail to offset bone

  2. MRI signal-based quantification of subchondral bone at the tibial plateau: a population study

    Energy Technology Data Exchange (ETDEWEB)

    MacKay, James W. [Norfolk and Norwich University Hospital, Department of Radiology, Norwich (United Kingdom); Norfolk and Norwich University Hospital, Radiology Academy, Cotman Centre, Norwich (United Kingdom); Godley, Keith C.; Toms, Andoni P. [Norfolk and Norwich University Hospital, Department of Radiology, Norwich (United Kingdom)

    2014-11-15

    To determine whether differences in subchondral sclerosis at the tibial plateau could be detected with magnetic resonance (MR) imaging in two different age groups. This was a retrospective hypothesis-testing study. Thirty-two knees in group A (25-30 year olds) and 32 knees in group B (45-50 years old) were included. Participants had no MR features of osteoarthritis (OA). On coronal images, tibial articular cartilage thickness was measured, and regions of interest were created in the medial and lateral tibial plateau subchondral bone and in the tibial metaphysis. The measure of heterogeneity at the tibial plateaux was the ratio of the standard deviation of the signal in the medial/lateral compartment to the standard deviation of the signal in the metaphysis (ratio of standard deviations - RSS{sub medial}/RSS{sub lateral}). Differences between groups were assessed using unpaired Student's t-tests. Mean RSS{sub medial} was 2.61 (standard deviation, SD = 0.77) in group A and 2.97 (SD = 0.59) in group B. Mean RSS{sub lateral} in group A was 1.86 (SD = 0.63) and 1.89 (SD = 0.43) in group B. Mean total cartilage thickness (in mm) in group A was 3.38 (SD = 0.90) for the medial and 3.90 (SD = 1.09) for the lateral compartment and 3.44 (SD = 0.74) for the medial and 3.96 (SD = 0.96) for the lateral compartment in group B. The only parameter to show a statistically significant difference between groups was RSS{sub medial} (p = 0.04). A difference in medial subchondral bone sclerosis between two age groups was demonstrated in the absence of MR features of OA. This may represent the earliest OA change detectable on MR imaging. (orig.)

  3. The inhibition of subchondral bone lesions significantly reversed the weight-bearing deficit and the overexpression of CGRP in DRG neurons, GFAP and Iba-1 in the spinal dorsal horn in the monosodium iodoacetate induced model of osteoarthritis pain.

    Directory of Open Access Journals (Sweden)

    Degang Yu

    Full Text Available Chronic pain is the most prominent and disabling symptom of osteoarthritis (OA. Clinical data suggest that subchondral bone lesions contribute to the occurrence of joint pain. The present study investigated the effect of the inhibition of subchondral bone lesions on joint pain.Osteoarthritic pain was induced by an injection of monosodium iodoacetate (MIA into the rat knee joint. Zoledronic acid (ZOL, a third generation of bisphosphonate, was used to inhibit subchondral bone lesions. Joint histomorphology was evaluated using X-ray micro computed tomography scanning and hematoxylin-eosin staining. The activity of osteoclast in subchondral bone was evaluated using tartrate-resistant acid phosphatase staining. Joint pain was evaluated using weight-bearing asymmetry, the expression of calcitonin gene-related peptide (CGRP in the dorsal root ganglion (DRG, and spinal glial activation status using glial fibrillary acidic protein (GFAP and ionized calcium binding adaptor molecule-1 (Iba-1 immunofluorescence. Afferent neurons in the DRGs that innervated the joints were identified using retrograde fluorogold labeling.MIA injections induced significant histomorphological alterations and joint pain. The inhibition of subchondral bone lesions by ZOL significantly reduced the MIA-induced weight-bearing deficit and overexpression of CGRP in DRG neurons, GFAP and Iba-1 in the spinal dorsal horn at 3 and 6 weeks after MIA injection; however, joint swelling and synovial reaction were unaffected.The inhibition of subchondral bone lesions alleviated joint pain. Subchondral bone lesions should be a key target in the management of osteoarthritic joint pain.

  4. The role of calcified cartilage and subchondral bone in the initiation and progression of ochronotic arthropathy in alkaptonuria.

    Science.gov (United States)

    Taylor, A M; Boyde, A; Wilson, P J M; Jarvis, J C; Davidson, J S; Hunt, J A; Ranganath, L R; Gallagher, J A

    2011-12-01

    Alkaptonuria is a genetic disorder of tyrosine metabolism, resulting in elevated circulating concentrations of homogentisic acid. Homogentisic acid is deposited as a polymer, termed ochronotic pigment, in collagenous tissues, especially cartilages of weight-bearing joints, leading to a severe osteoarthropathy. We undertook this study to investigate the initiation and progression of ochronosis from the earliest detection of pigment through complete joint failure. Nine joint samples with varying severities of ochronosis were obtained from alkaptonuria patients undergoing surgery and compared to joint samples obtained from osteoarthritis (OA) patients. Samples were analyzed by light and fluorescence microscopy, 3-dimensional scanning electron microscopy (SEM), and the quantitative backscattered electron mode of SEM. Cartilage samples were mechanically tested by compression to determine Young's modulus of pigmented, nonpigmented, and OA cartilage samples. In alkaptonuria samples with the least advanced ochronosis, pigment was observed intracellularly and in the territorial matrix of individual chondrocytes at the boundary of the subchondral bone and calcified cartilage. In more advanced ochronosis, pigmentation was widespread throughout the hyaline cartilage in either granular composition or as blanket pigmentation in which there is complete and homogenous pigmentation of cartilage matrix. Once hyaline cartilage was extensively pigmented, there was aggressive osteoclastic resorption of the subchondral plate. Pigmented cartilage became impacted on less highly mineralized trabeculae and embedded in the marrow space. Pigmented cartilage samples were much stiffer than nonpigmented or OA cartilage as revealed by a significant difference in Young's modulus. Using alkaptonuria cartilage specimens with a wide spectrum of pigmentation, we have characterized the progression of ochronosis. Intact cartilage appears to be resistant to pigmentation but becomes susceptible following

  5. Can high-resolution peripheral quantitative computed tomography imaging of subchondral and cortical bone predict condylar fracture in Thoroughbred racehorses?

    Science.gov (United States)

    Trope, G D; Ghasem-Zadeh, A; Anderson, G A; Mackie, E J; Whitton, R C

    2015-07-01

    High-resolution 3D imaging may improve the prediction and/or early identification of condylar fractures of the distal metacarpus/tarsus and reduce the frequency of breakdown injury in racehorses. To test the hypotheses that horses suffering condylar fractures have higher bone volume fraction (BV/TV) of the distal metacarpal epiphysis, greater subchondral bone thickness at the fracture site and higher second moment of inertia in the metacarpal midshaft as identified with high-resolution 3D imaging. Cross-sectional study using cadaver material. Thoroughbreds that died on racetracks were grouped as: 1) horses with third metacarpal (McIII) fractures with a condylar component (cases, n = 13); 2) horses with no limb fracture (controls, n = 8); 3) horses with fractures in other bones or suspensory apparatus disruption (other fatal injuries, n = 16). The palmar condyles of McIII and the midshaft were examined with high resolution peripheral quantitative computed tomography (HR-pQCT). Statistical analysis included logistic regression and Spearman's correlation. There were no significant differences in BV/TV of distal McIII and second moment of inertia of the midshaft between cases and controls. Epiphyseal bone BV/TV was greater in injured limbs of horses with any fatal limb injury (Groups 1 and 3 combined) compared with controls (odds ratio = 1.20, 95% confidence interval 1.01-1.42, P = 0.034). An epiphyseal BV/TV>0.742 resulted in a sensitivity of 82.8% and specificity of 62.5% in identifying horses with fatal limb injury. In horses without condylar fracture, increased subchondral bone thickness was associated with palmar osteochondral disease lesions in the adjacent condyle (rs = 0.65, Phorses at risk of any fatal breakdown injury but not metacarpal condylar fractures. Measurement of parasagittal groove subchondral bone thickness is complicated by adjacent palmar osteochondral disease lesions. Thus, high-resolution imaging of the distal metacarpus appears to have limited

  6. Asporin and transforming growth factor-beta gene expression in osteoblasts from subchondral bone and osteophytes in osteoarthritis.

    Science.gov (United States)

    Sakao, Kei; Takahashi, Kenji A; Arai, Yuji; Saito, Masazumi; Honjyo, Kuniaki; Hiraoka, Nobuyuki; Kishida, Tsunao; Mazda, Osam; Imanishi, Jiro; Kubo, Toshikazu

    2009-11-01

    To clarify the significance of subchondral bone and osteophytes in the pathology of osteoarthritis (OA), we investigated the expression of asporin (ASPN), transforming growth factor-beta1 (TGF-beta1), TGF-beta2, TGF-beta3, and runt-related transcription factor-2 (Runx2) genes involved in bone metabolism. Osteoblasts were isolated from 19 patients diagnosed with knee OA and from 4 patients diagnosed with femoral neck fracture. Osteoblast expression of mRNA encoding ASPN, TGF-beta1, TGF-beta2, TGF-beta3, and Runx2 was analyzed using real-time RT-PCR. Expression of ASPN, TGF-beta1, and TGF-beta3 mRNA in the subchondral bone and osteophytes of OA patients increased compared with that of non-OA patients. The ratio of ASPN to TGF-beta1 mRNA in patients with severe cartilage damage was higher than that in patients with mild cartilage damage. The increased ratio of ASPN mRNA to TGF-beta1 mRNA in patients with severe relative to mild cartilage damage indicates that increased ASPN mRNA expression was significantly associated with the severity of cartilage degeneration. This finding suggests that ASPN may regulate TGF-beta1-mediated factors in the development of OA, which may provide clues as to the underlying pathology of OA.

  7. A comparison of conventional maximum intensity projection with a new depth-specific topographic mapping technique in the CT analysis of proximal tibial subchondral bone density

    International Nuclear Information System (INIS)

    Johnston, James D.; Kontulainen, Saija A.; Masri, Bassam A.; Wilson, David R.

    2010-01-01

    The objective was to identify subchondral bone density differences between normal and osteoarthritic (OA) proximal tibiae using computed tomography osteoabsorptiometry (CT-OAM) and computed tomography topographic mapping of subchondral density (CT-TOMASD). Sixteen intact cadaver knees from ten donors (8 male:2 female; mean age:77.8, SD:7.4 years) were categorized as normal (n = 10) or OA (n = 6) based upon CT reconstructions. CT-OAM assessed maximum subchondral bone mineral density (BMD). CT-TOMASD assessed average subchondral BMD across three layers (0-2.5, 2.5-5 and 5-10 mm) measured in relation to depth from the subchondral surface. Regional analyses of CT-OAM and CT-TOMASD included: medial BMD, lateral BMD, and average BMD of a 10-mm diameter area that searched each medial and lateral plateau for the highest ''focal'' density present within each knee. Compared with normal knees, both CT-OAM and CT-TOMASD demonstrated an average of 17% greater whole medial compartment density in OA knees (p 0.05). CT-TOMASD focal region analyses revealed an average of 24% greater density in the 0- to 2.5-mm layer (p = 0.003) and 36% greater density in the 2.5- to 5-mm layer (p = 0.034) in OA knees. Both CT-OAM and TOMASD identified higher medial compartment density in OA tibiae compared with normal tibiae. In addition, CT-TOMASD indicated greater focal density differences between normal and OA knees with increased depth from the subchondral surface. Depth-specific density analyses may help identify and quantify small changes in subchondral BMD associated with OA disease onset and progression. (orig.)

  8. Technical Report: Correlation Between the Repair of Cartilage and Subchondral Bone in an Osteochondral Defect Using Bilayered, Biodegradable Hydrogel Composites

    NARCIS (Netherlands)

    Lu, S.; Lam, J.; Trachtenberg, J.E.; Lee, E.J.; Seyednejad, H.; Beucken, J.J.J.P van den; Tabata, Y.; Kasper, F.K.; Scott, D.W.; Wong, M.E.; Jansen, J.A.; Mikos, A.G.

    2015-01-01

    The present work investigated correlations between cartilage and subchondral bone repair, facilitated by a growth factor-delivering scaffold, in a rabbit osteochondral defect model. Histological scoring indices and microcomputed tomography morphological parameters were used to evaluate cartilage and

  9. Changes in subchondral bone mineral density and collagen matrix organization in growing horses.

    Science.gov (United States)

    Holopainen, Jaakko T; Brama, Pieter A J; Halmesmäki, Esa; Harjula, Terhi; Tuukkanen, Juha; van Weeren, P René; Helminen, Heikki J; Hyttinen, Mika M

    2008-12-01

    The effects of growth and maturation on the mineral deposition and the collagen framework of equine subchondral bone (SCB) were studied. Osteochondral specimens (diameter 6 mm) from the left metacarpophalangeal joint of 5-(n=8), 11-(n=8) and 18-month-old (n=6) horses were investigated at two differently loaded sites (Site 1 (S1): intermittent peak loading; Site 2 (S2): habitual loading). The SCB mineral density (BMD) was measured with peripheral quantitative computer tomography (pQCT), and the data were adjusted against the volume fraction (Vv) of the bone extracellular matrix (ECM). Polarised light microscopy (PLM) was used to analyze the Vv, the collagen fibril parallelism index and the orientation angle distribution in two fractions (1 mm/fraction) beneath the osteochondral junction of the SCB. PLM analysis was made along two randomly selected perpendicularly oriented vertical sections to measure the tissue anisotropy in the x-, y-, and z-directions. The BMD of SCB at S1 and S2 increased significantly during maturation. At the same time, the Vv of the ECM increased even more. This meant that the Vv-adjusted BMD decreased. There were no significant differences between sites. The basic collagen fibril framework of SCB seems to be established already at the age of 5 months. During maturation, the extracellular matrix underwent a decrease in collagen fibril parallelism but no changes in collagen orientation. The variation was negligible in the collagen network estimates in the two section planes. Growth and maturation induce significant changes in the equine SCB. The BMD increase in SCB is primarily due to the growth of bone volume and not to any increase in mineral deposition. An increase in weight-bearing appears to greatly affect the BMD and the volume of the extracellular matrix. Growth and maturation induce a striking change in collagen fibril parallelism but not in fibril orientation. The structural anisotropy of the subchondral bone is significant along the

  10. Computed tomography of subchondral bone and osteophytes in hip osteoarthritis: the shape of things to come?

    Science.gov (United States)

    Turmezei, Tom D; Poole, Ken E S

    2011-01-01

    Bone is a fundamental component of the disordered joint homeostasis seen in osteoarthritis, a disease that has been primarily characterized by the breakdown of articular cartilage accompanied by local bone changes and a limited degree of joint inflammation. In this review we consider the role of computed tomography imaging and computational analysis in osteoarthritis research, focusing on subchondral bone and osteophytes in the hip. We relate what is already known in this area to what could be explored through this approach in the future in relation to both clinical research trials and the underlying cellular and molecular science of osteoarthritis. We also consider how this area of research could impact on our understanding of the genetics of osteoarthritis.

  11. Computed tomographic imaging of subchondral fatigue cracks in the distal end of the third metacarpal bone in the thoroughbred racehorse can predict crack micromotion in an ex-vivo model.

    Directory of Open Access Journals (Sweden)

    Marie-Soleil Dubois

    Full Text Available Articular stress fracture arising from the distal end of the third metacarpal bone (MC3 is a common serious injury in Thoroughbred racehorses. Currently, there is no method for predicting fracture risk clinically. We describe an ex-vivo biomechanical model in which we measured subchondral crack micromotion under compressive loading that modeled high speed running. Using this model, we determined the relationship between subchondral crack dimensions measured using computed tomography (CT and crack micromotion. Thoracic limbs from 40 Thoroughbred racehorses that had sustained a catastrophic injury were studied. Limbs were radiographed and examined using CT. Parasagittal subchondral fatigue crack dimensions were measured on CT images using image analysis software. MC3 bones with fatigue cracks were tested using five cycles of compressive loading at -7,500N (38 condyles, 18 horses. Crack motion was recorded using an extensometer. Mechanical testing was validated using bones with 3 mm and 5 mm deep parasagittal subchondral slots that modeled naturally occurring fatigue cracks. After testing, subchondral crack density was determined histologically. Creation of parasagittal subchondral slots induced significant micromotion during loading (p<0.001. In our biomechanical model, we found a significant positive correlation between extensometer micromotion and parasagittal crack area derived from reconstructed CT images (SR = 0.32, p<0.05. Correlations with transverse and frontal plane crack lengths were not significant. Histologic fatigue damage was not significantly correlated with crack dimensions determined by CT or extensometer micromotion. Bones with parasagittal crack area measurements above 30 mm2 may have a high risk of crack propagation and condylar fracture in vivo because of crack micromotion. In conclusion, our results suggest that CT could be used to quantify subchondral fatigue crack dimensions in racing Thoroughbred horses in-vivo to

  12. Treadmill Running Ameliorates Destruction of Articular Cartilage and Subchondral Bone, Not Only Synovitis, in a Rheumatoid Arthritis Rat Model

    Directory of Open Access Journals (Sweden)

    Seiji Shimomura

    2018-06-01

    Full Text Available We analyzed the influence of treadmill running on rheumatoid arthritis (RA joints using a collagen-induced arthritis (CIA rat model. Eight-week-old male Dark Agouti rats were randomly divided into four groups: The control group, treadmill group (30 min/day for 4 weeks from 10-weeks-old, CIA group (induced CIA at 8-weeks-old, and CIA + treadmill group. Destruction of the ankle joint was evaluated by histological analyses. Morphological changes of subchondral bone were analyzed by μ-CT. CIA treatment-induced synovial membrane invasion, articular cartilage destruction, and bone erosion. Treadmill running improved these changes. The synovial membrane in CIA rats produced a large amount of tumor necrosis factor-α and Connexin 43; production was significantly suppressed by treadmill running. On μ-CT of the talus, bone volume fraction (BV/TV was significantly decreased in the CIA group. Marrow star volume (MSV, an index of bone loss, was significantly increased. These changes were significantly improved by treadmill running. Bone destruction in the talus was significantly increased with CIA and was suppressed by treadmill running. On tartrate-resistant acid phosphate and alkaline phosphatase (TRAP/ALP staining, the number of osteoclasts around the pannus was decreased by treadmill running. These findings indicate that treadmill running in CIA rats inhibited synovial hyperplasia and joint destruction.

  13. Computed tomography of subchondral bone and osteophytes in hip osteoarthritis: the shape of things to come?

    Directory of Open Access Journals (Sweden)

    Tom D Turmezei

    2011-12-01

    Full Text Available Bone is a fundamental component of the disordered joint homeostasis seen in osteoarthritis, a disease that has been primarily characterised by the breakdown of articular cartilage accompanied by local bone changes and a limited degree of joint inflammation. In this review we consider the role of computed tomography imaging and computational analysis in osteoarthritis research, focusing on subchondral bone and osteophytes in the hip. We relate what is already known in this area to what could be explored through this approach in the future in relation to both clinical research trials and the underlying cellular and molecular science of osteoarthritis. We also consider how this area of research could impact on our understanding of the genetics of osteoarthritis.

  14. The study of subchondral lesions in osteoarthritis of the knee using magnetic resonance imaging

    International Nuclear Information System (INIS)

    Takagishi, Hiroshi

    2001-01-01

    In order to examine the significance of the signal abnormalities of subchondral bone in osteoarthritic knee with 0.5 T magnetic resonance imaging (MRI), especially in T2-low signal lesions which show a low signal intensity on both the T1- and T2-weighted images and T2-high signal lesions which show a low signal intensity on the T1-weighted image and a high signal intensity on the T2-weighted image, we examined 54 patients (representing 58 knees) with osteoarthritis (OA) of the knee on MRI as compared with the arthroscopic findings or operative findings and histologically evaluated them. In addition, in order to elucidate what becomes of those signal abnormalities in the subchondral bone after biomechanical treatment utilizing a high tibial osteotomy (HTO) which reduces the maldistributed load, we examined 30 patients (representing 34 knees) under HTO on MRI and compared these findings with the arthroscopic findings. The incidence of the presence of those signal abnormalities of subchondral bone on MRI tended to correlate with the severity of the articular cartilage damage, and also reflected the degree of damage to the articular cartilage well. In a histologically investigation, T2-high signal lesions showed granulation tissue with high vascularity, which seemed to be an active phase in OA. T2-low signal lesions of OA in a late stage showed subchondral sclerosis histologically. In addition, the signal changes of the subchondral bone on MRI seemed correlate with the changes in the load distribution in the knee joint because T2-high signal lesions before HTO were observed to either diminish or disappear after undergoing a successful osteotomy. The signal abnormalities of the subchondral bone on MRI on OA thus helped in determining the appropriate phase, therapeutic effects and prognosis of OA. (author)

  15. Quantitative ultrasound imaging detects degenerative changes in articular cartilage surface and subchondral bone

    International Nuclear Information System (INIS)

    Saarakkala, Simo; Laasanen, Mikko S; Jurvelin, Jukka S; Toeyraes, Juha

    2006-01-01

    Previous studies have suggested that quantitative ultrasound imaging could sensitively diagnose degeneration of the articular surface and changes in the subchondral bone during the development of osteoarthrosis (OA). We have recently introduced a new parameter, ultrasound roughness index (URI), for the quantification of cartilage surface roughness, and successfully tested it with normal and experimentally degraded articular surfaces. In this in vitro study, the applicability of URI was tested in bovine cartilage samples with spontaneously developed tissue degeneration. Simultaneously, we studied the sensitivity of quantitative ultrasound imaging to detect degenerative changes in the cartilage-bone interface. For reference, histological degenerative grade of the cartilage samples was determined. Mechanical reference measurements were also conducted. Cartilage surface roughness (URI) was significantly (p < 0.05) higher in histologically degenerated samples with inferior mechanical properties. Ultrasound reflection at the cartilage-bone interface was also significantly (p < 0.05) increased in degenerated samples. Furthermore, it was quantitatively confirmed that ultrasound attenuation in the overlying cartilage significantly affects the measured ultrasound reflection values from the cartilage-bone interface. To conclude, the combined ultrasound measurement of the cartilage surface roughness and ultrasound reflection at the cartilage-bone interface complement each other, and may together enable more sensitive and quantitative diagnosis of early OA or follow up after surgical cartilage repair

  16. Can we use subchondral bone thickness on high-field magnetic resonance images to identify Thoroughbred racehorses at risk of catastrophic lateral condylar fracture?

    Science.gov (United States)

    Tranquille, C A; Murray, R C; Parkin, T D H

    2017-03-01

    Fractures of the lateral condyle of the third metacarpus (MC3) are a significant welfare concern in horseracing worldwide. The primary aim of this work was to identify magnetic resonance (MR) image-detectable prefracture markers that have the potential for use as a screening tool to identify horses at significant risk of catastrophic fracture. Case-control study of bone-level risk factors for fracture in racehorses. A total of 191 MC3s from horses, with and without lateral condylar fracture of MC3, were subjected to MR imaging. The depth of dense subchondral/trabecular bone was measured at several sites around the distal end of the bone and regression analyses were conducted to identify differences in this depth between horses with and without lateral condylar fracture. Greater depth of dense subchondral/trabecular bone in the palmar half of the lateral parasagittal groove of distal MC3 was associated with an increased likelihood of being from a horse that had sustained a fracture. Receiver operator characteristic analysis was used to identify the optimal cut-off in the depth of dense subchondral/trabecular bone at this site to best discriminate fracture status. Positive and negative predictive values were calculated using the prevalence of fracture within the current study and also a prevalence estimate for the wider racehorse population. There is a requirement to identify suitable prescreening test(s) to eliminate many true negative horses and increase the prevalence of prefracture pathology in the sub population that would be screened using MR imaging, in turn maximising the positive predictive value of this test. © 2016 EVJ Ltd.

  17. Presence, location, type and size of denuded areas of subchondral bone in the knee as a function of radiographic stage of OA - data from the OA initiative.

    Science.gov (United States)

    Frobell, R B; Wirth, W; Nevitt, M; Wyman, B T; Benichou, O; Dreher, D; Davies, R Y; Lee, J H; Baribaud, F; Gimona, A; Hudelmaier, M; Cotofana, S; Eckstein, F

    2010-05-01

    To assess the presence, location, type and size of denuded areas of subchondral bone (dAB) in the femorotibial joint, measured quantitatively with 3T MRI, in a large subset of OAI participants. One knee of 633 subjects (250 men, 383 women, aged 61.7+/-9.6 y) were studied, spanning all radiographic osteoarthritis (OA) stages. dABs were determined quantitatively using segmentations of coronal FLASHwe images, representing areas where the subchondral bone was not covered by cartilage. Post hoc visual examination of segmented images determined whether dABs represented full thickness cartilage loss or internal osteophyte. 7% Of the knees were Kellgren & Lawrence (KL) grade 0, 6% grade 1, 41% grade 2, 41% grade 3, and 5% grade 4. 39% Of the participants (48% of the men and 33% of the women) displayed dABs; 61% of the dABs represented internal osteophytes. 1/47 Participants with KL grade 0 displayed 'any' dAB whereas 29/32 of the KL grade 4 knees were affected. Even as early as KL grade 1, 29% of the participants showed dABs. There were significant relationships of dAB with increasing KL grades (Posteophytes were more frequent laterally (mainly posterior tibia and internal femur) whereas full thickness cartilage loss was more frequent medially (mainly external tibia and femur). dABs occur already at earliest stages of radiographic OA (KL grades 1 and 2) and become more common (and larger) with increasing disease severity. Almost all KL grade 4 knees exhibited dABs, with cartilage loss being more frequent than internal osteophytes. Copyright 2010 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  18. Cartilage Degeneration, Subchondral Mineral and Meniscal Mineral Densities in Hartley and Strain 13 Guinea Pigs

    Science.gov (United States)

    Sun, Yubo; Scannell, Brian P; Honeycutt, Patrick R; Mauerhan, David R; H, James Norton; Hanley Jr, Edward N

    2015-01-01

    Osteoarthritis is a joint disease involved in articular cartilage, subchondral bone, meniscus and synovial membrane. This study sought to examine cartilage degeneration, subchondral bone mineral density (BMD) and meniscal mineral density (MD) in male Hartley, female Hartley and female strain 13 guinea pigs to determine the association of cartilage degeneration with subchondral BMD and meniscal MD. Cartilage degeneration, subchondral BMD and meniscal MD in 12 months old guinea pigs were examined with histochemistry, X-ray densitometry and calcium analysis. We found that male Hartley guinea pigs had more severe cartilage degeneration, subchondral BMD and meniscal MD than female Hartley guinea pigs, but not female strain 13 guinea pigs. Female strain 13 guinea pigs had more severe cartilage degeneration and higher subchondral BMD, but not meniscal MD, than female Hartley guinea pigs. These findings indicate that higher subchondral BMD, not meniscal MD, is associated with more severe cartilage degeneration in the guinea pigs and suggest that abnormal subchondral BMD may be a therapeutic target for OA treatment. These findings also indicate that the pathogenesis of OA in the male guinea pigs and female guinea pigs are different. Female strain 13 guinea pig may be used to study female gender-specific pathogenesis of OA. PMID:26401159

  19. Subchondral chitosan/blood implant-guided bone plate resorption and woven bone repair is coupled to hyaline cartilage regeneration from microdrill holes in aged rabbit knees.

    Science.gov (United States)

    Guzmán-Morales, J; Lafantaisie-Favreau, C-H; Chen, G; Hoemann, C D

    2014-02-01

    Little is known of how to routinely elicit hyaline cartilage repair tissue in middle-aged patients. We tested the hypothesis that in skeletally aged rabbit knees, microdrill holes can be stimulated to remodel the bone plate and induce a more integrated, voluminous and hyaline cartilage repair tissue when treated by subchondral chitosan/blood implants. New Zealand White rabbits (13 or 32 months old, N = 7) received two 1.5 mm diameter, 2 mm depth drill holes in each knee, either left to bleed as surgical controls or press-fit with a 10 kDa (distal hole: 10K) or 40 kDa (proximal hole: 40K) chitosan/blood implant with fluorescent chitosan tracer. Post-operative knee effusion was documented. Repair tissues at day 0 (N = 1) and day 70 post-surgery (N = 6) were analyzed by micro-computed tomography, and by histological scoring and histomorphometry (SafO, Col-2, and Col-1) at day 70. All chitosan implants were completely cleared after 70 days, without increasing transient post-operative knee effusion compared to controls. Proximal control holes had worse osteochondral repair than distal holes. Both implant formulations induced bone remodeling and improved lateral integration of the bone plate at the hole edge. The 40K implant inhibited further bone repair inside 50% of the proximal holes, while the 10K implant specifically induced a "wound bloom" reaction, characterized by decreased bone plate density in a limited zone beyond the initial hole edge, and increased woven bone (WB) plate repair inside the initial hole (P = 0.016), which was accompanied by a more voluminous and hyaline cartilage repair (P holes with a biodegradable subchondral implant that elicits bone plate resorption followed by anabolic WB repair within a 70-day repair period. Copyright © 2013 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  20. The normal human chondro-osseous junctional region: evidence for contact of uncalcified cartilage with subchondral bone and marrow spaces

    Directory of Open Access Journals (Sweden)

    Stoddart Robert W

    2006-06-01

    Full Text Available Abstract Background The chondro-osseous junctional region of diarthrodial joints is peculiarly complex and may be considered to consist of the deepest layer of non-calcified cartilage, the tidemark, the layer of calcified cartilage, a thin cement line (between the calcified cartilage and the subchondral bone and the subchondral bone. A detailed knowledge of the structure, function and pathophysiology of the normal chondro-osseous junction is essential for an understanding of the pathogenesis of osteoarthrosis. Methods Full thickness samples from human knee joints were processed and embedded in paraffin wax. One hundred serial sections (10 μm thick were taken from the chondro-osseous junctional region of a block from the medial tibial plateau of a normal joint. They were stained with haematoxylin and eosin and photographed. For a simple physical reconstruction images of each 10th sequential tissue section were printed and the areas of the photomicrographs containing the chondro-osseous junctional region were cut out and then overlaid so as to create a three-dimensional (3D model of this region. A 3D reconstruction was also made using computer modelling. Results Histochemical staining revealed some instances where prolongations of uncalcified cartilage, delineated by the tidemark, dipped into the calcified cartilage and, in places, abutted onto subchondral bone and marrow spaces. Small areas of uncalcified cartilage containing chondrocytes (virtual islands were seen, in two-dimensional (2D sections, to be apparently entombed in calcified matrix. The simple physical 3D reconstruction confirmed that these prolongations of uncalcified cartilage were continuous with the cartilage of zone IV and demonstrated that the virtual islands of uncalcified cartilage were cross-sections of these prolongations. The computer-generated 3D reconstructions clearly demonstrated that the uncalcified prolongations ran through the calcified cartilage to touch bone and

  1. Distribution of vitamin K2 in subchondral bone in osteoarthritic knee joints.

    Science.gov (United States)

    Ishii, Yoshinori; Noguchi, Hideo; Takeda, Mitsuhiro; Sato, Junko; Yamamoto, Noriaki; Wakabayashi, Hiroyuki; Kanda, Junkichi; Toyabe, Shin-ichi

    2013-08-01

    Vitamin K may have multiple effects on articular cartilage and subchondral bone that could modulate the pathogenesis of osteoarthritis (OA). The purpose of this study was to evaluate the distribution of vitamin K2 in harvested bones obtained during total knee arthroplasty in knee OA patients. High-performance liquid chromatography was used to measure vitamin K2 in harvested bones obtained during 58 TKA procedures. Vitamin K2 levels were analysed in the medial (FM) and lateral (FL) femoral condyles and in the medial (TM) and lateral (TL) tibial condyles. There was significantly more vitamin K2 in the lateral femoral and tibial condyles than in the corresponding medial condyles (FL vs. FM, p K2 in the FL than in the TL (p = 0.003), and in the FM, vitamin K2 levels were higher than those of the TM, although this was not significant (n.s.). There were no significant differences in vitamin K2 levels in men versus women nor was there a significant correlation with age. This study suggested that vitamin K2 might affect bone turnover since medial condyles showing advanced OA had lower vitamin K2 levels, while lateral condyles showing less advanced OA contained more vitamin K2. Gender and age were not correlated with vitamin K2 localization. All cases had Grade IV OA, and this study suggested that OA grade might be important in controlling the vitamin K2 levels in human bones.

  2. Presence of subchondral bone marrow edema at the time of treatment represents a negative prognostic factor for early outcome after autologous chondrocyte implantation

    DEFF Research Database (Denmark)

    Niemeyer, Philipp; Salzmann, Gian; Steinwachs, Matthias

    2010-01-01

    INTRODUCTION: Since introduction of autologous chondrocyte implantation (ACI), various factors have been described that influence the clinical outcome. The present paper investigates the influence of bone marrow edema at time of treatment on clinical function before and in the early clinical course...... after ACI. METHODS: 67 patients treated with ACI for cartilage defects of the knee joint were included. Presence of subchondral bone marrow edema was graded as absent (1), mild (2), moderate (3) or severe (4) using magnetic resonance (MR) imaging before surgery. All patients were assessed in terms...... of clinical function before surgery and 6 as well as 12 months after ACI using IKDC and Lysholm scores. Presence of subchondral edema was correlated with functional outcome. RESULTS: In 18 patients edema on initial MRI was graded as "absent", while 17 patients had grade 2 edema, 19 patients had grade 3 edema...

  3. Effect of a Rapidly Degrading Presolidified 10 kDa Chitosan/Blood Implant and Subchondral Marrow Stimulation Surgical Approach on Cartilage Resurfacing in a Sheep Model

    Science.gov (United States)

    Bell, Angela D.; Hurtig, Mark B.; Quenneville, Eric; Rivard, Georges-Étienne; Hoemann, Caroline D.

    2016-01-01

    Objective This study tested the hypothesis that presolidified chitosan-blood implants are retained in subchondral bone channels perforated in critical-size sheep cartilage defects, and promote bone repair and hyaline-like cartilage resurfacing versus blood implant. Design Cartilage defects (10 × 10 mm) with 3 bone channels (1 drill, 2 Jamshidi biopsy, 2 mm diameter), and 6 small microfracture holes were created bilaterally in n = 11 sheep knee medial condyles. In one knee, 10 kDa chitosan–NaCl/blood implant (presolidified using recombinant factor VIIa or tissue factor), was inserted into each drill and Jamshidi hole. Contralateral knee defects received presolidified whole blood clot. Repair tissues were assessed histologically, biochemically, biomechanically, and by micro–computed tomography after 1 day (n = 1) and 6 months (n = 10). Results Day 1 defects showed a 60% loss of subchondral bone plate volume fraction along with extensive subchondral hematoma. Chitosan implant was resident at day 1, but had no effect on any subsequent repair parameter compared with blood implant controls. At 6 months, bone defects exhibited remodeling and hypomineralized bone repair and were partly resurfaced with tissues containing collagen type II and scant collagen type I, 2-fold lower glycosaminoglycan and fibril modulus, and 4.5-fold higher permeability compared with intact cartilage. Microdrill holes elicited higher histological ICRS-II overall assessment scores than Jamshidi holes (50% vs. 30%, P = 0.041). Jamshidi biopsy holes provoked sporadic osteonecrosis in n = 3 debrided condyles. Conclusions Ten kilodalton chitosan was insufficient to improve repair. Microdrilling is a feasible subchondral marrow stimulation surgical approach with the potential to elicit poroelastic tissues with at least half the compressive modulus as intact articular cartilage. PMID:28934884

  4. Effect of a Rapidly Degrading Presolidified 10 kDa Chitosan/Blood Implant and Subchondral Marrow Stimulation Surgical Approach on Cartilage Resurfacing in a Sheep Model.

    Science.gov (United States)

    Bell, Angela D; Hurtig, Mark B; Quenneville, Eric; Rivard, Georges-Étienne; Hoemann, Caroline D

    2017-10-01

    Objective This study tested the hypothesis that presolidified chitosan-blood implants are retained in subchondral bone channels perforated in critical-size sheep cartilage defects, and promote bone repair and hyaline-like cartilage resurfacing versus blood implant. Design Cartilage defects (10 × 10 mm) with 3 bone channels (1 drill, 2 Jamshidi biopsy, 2 mm diameter), and 6 small microfracture holes were created bilaterally in n = 11 sheep knee medial condyles. In one knee, 10 kDa chitosan-NaCl/blood implant (presolidified using recombinant factor VIIa or tissue factor), was inserted into each drill and Jamshidi hole. Contralateral knee defects received presolidified whole blood clot. Repair tissues were assessed histologically, biochemically, biomechanically, and by micro-computed tomography after 1 day ( n = 1) and 6 months ( n = 10). Results Day 1 defects showed a 60% loss of subchondral bone plate volume fraction along with extensive subchondral hematoma. Chitosan implant was resident at day 1, but had no effect on any subsequent repair parameter compared with blood implant controls. At 6 months, bone defects exhibited remodeling and hypomineralized bone repair and were partly resurfaced with tissues containing collagen type II and scant collagen type I, 2-fold lower glycosaminoglycan and fibril modulus, and 4.5-fold higher permeability compared with intact cartilage. Microdrill holes elicited higher histological ICRS-II overall assessment scores than Jamshidi holes (50% vs. 30%, P = 0.041). Jamshidi biopsy holes provoked sporadic osteonecrosis in n = 3 debrided condyles. Conclusions Ten kilodalton chitosan was insufficient to improve repair. Microdrilling is a feasible subchondral marrow stimulation surgical approach with the potential to elicit poroelastic tissues with at least half the compressive modulus as intact articular cartilage.

  5. Cartilage damage involving extrusion of mineralisable matrix from the articular calcified cartilage and subchondral bone

    Directory of Open Access Journals (Sweden)

    A Boyde

    2011-05-01

    Full Text Available Arthropathy of the distal articular surfaces of the third metacarpal (Mc3 and metatarsal (Mt3 bones in the Thoroughbred racehorse (Tb is a natural model of repetitive overload arthrosis. We describe a novel pathology that affects the articular calcified cartilage (ACC and subchondral bone (SCB and which is associated with hyaline articular cartilage degeneration. Parasagittal slices cut from the palmar quadrant of the distal condyles of the left Mc3/Mt3 of 39 trained Tbs euthanased for welfare reasons were imaged by point projection microradiography, and backscattered electron (BSE scanning electron microscopy (SEM, light microscopy, and confocal scanning light microscopy. Mechanical properties were studied by nanoindentation. Data on the horses' training and racing career were also collected. Highly mineralised projections were observed extending from cracks in the ACC mineralising front into the hyaline articular cartilage (HAC up to two-thirds the thickness of the HAC, and were associated with focal HAC surface fibrillation directly overlying their site. Nanoindentation identified this extruded matrix to be stiffer than any other mineralised phase in the specimen by a factor of two. The presence of projections was associated with a higher cartilage Mankin histology score (P < 0.02 and increased amounts of gross cartilage loss pathologically on the condyle (P < 0.02. Presence of projections was not significantly associated with: total number of racing seasons, age of horse, amount of earnings, number of days in training, total distance galloped in career, or presence of wear lines.

  6. Functional CT imaging: load-dependent visualization of the subchondral mineralization by means of CT osteoabsorptionmetry (CT-OAM)

    International Nuclear Information System (INIS)

    Linsenmaier, U.; Schlichtenhorst, K.; Pfeifer, K.J.; Reiser, M.; Kersting, S.; Putz, R.; Mueller-Gerbl, M.

    2003-01-01

    Purpose: Functional computed tomography for visualization and quantification of subchondral bone mineralization using CT osteoabsorptiometry (CT-OAM). Materials and Methods: Tarsometatarsal (TMT) and metatarsophalangeal (MTP) joints of 46 human hallux valgus (HV) specimens were examined (sagittal 1/1/1 mm) on a single slice CT scanner SCT (Somatom Plus 4, Siemens AG). Subchondral bone pixels were segmented and assigned to 10 density value groups (triangle 100 HU, range 200 - 1200 HU) the pixels using volume rendering technique (VRT). The data analysis considered the severity of HV as determined by the radiographically measured HV-angle (a.p. projection). Results: CT-OAM could generate reproducible densitograms of the distribution pattern of the subchondral bone density for all four joint surfaces (TMT and MTP joints). The bone density localization enables the assignment to different groups, showing a characteristic HV-angle-dependent distribution of the maximum bone mineralization of the load-dependent densitogram (p [de

  7. Thoroughbred horses in race training have lower levels of subchondral bone remodelling in highly loaded regions of the distal metacarpus compared to horses resting from training.

    Science.gov (United States)

    Holmes, J M; Mirams, M; Mackie, E J; Whitton, R C

    2014-12-01

    Bone is repaired by remodelling, a process influenced by its loading environment. The aim of this study was to investigate the effect of a change in loading environment on bone remodelling by quantifying bone resorption and formation activity in the metacarpal subchondral bone in Thoroughbred racehorses. Sections of the palmar metacarpal condyles of horses in race training (n = 24) or resting from training (n = 24) were examined with light microscopy and back scattered scanning electron microscopy (BSEM). Bone area fraction, osteoid perimeter and eroded bone surface were measured within two regions of interest: (1) the lateral parasagittal groove (PS); (2) the lateral condylar subchondral bone (LC). BSEM variables were analysed for the effect of group, region and interaction with time since change in work status. The means ± SE are reported. For both regions of interest in the training compared to the resting group, eroded bone surface was lower (PS: 0.39 ± 0.06 vs. 0.65 ± 0.07 per mm, P = 0.010; LC: 0.24 ± 0.04 vs. 0.85 ± 0.10 per mm, P Thoroughbred racehorses. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Case report: multifocal subchondral stress fractures of the femoral heads and tibial condyles in a young military recruit.

    Science.gov (United States)

    Yoon, Pil Whan; Yoo, Jeong Joon; Yoon, Kang Sup; Kim, Hee Joong

    2012-03-01

    Subchondral stress fractures of the femoral head may be either of the insufficiency-type with poor quality bone or the fatigue-type with normal quality bone but subject to high repetitive stresses. Unlike osteonecrosis, multiple site involvement rarely has been reported for subchondral stress fractures. We describe a case of multifocal subchondral stress fractures involving femoral heads and medial tibial condyles bilaterally within 2 weeks. A 27-year-old military recruit began having left knee pain after 2 weeks of basic training, without any injury. Subsequently, right knee, right hip, and left hip pain developed sequentially within 2 weeks. The diagnosis of multifocal subchondral stress fracture was confirmed by plain radiographs and MR images. Nonoperative treatment of the subchondral stress fractures of both medial tibial condyles and the left uncollapsed femoral head resulted in resolution of symptoms. The collapsed right femoral head was treated with a fibular strut allograft to restore congruity and healed without further collapse. There has been one case report in which an insufficiency-type subchondral stress fracture of the femoral head and medial femoral condyle occurred within a 2-year interval. Because the incidence of bilateral subchondral stress fractures of the femoral head is low and multifocal involvement has not been reported, multifocal subchondral stress fractures can be confused with multifocal osteonecrosis. Our case shows that subchondral stress fractures can occur in multiple sites almost simultaneously.

  9. Cartilage Protective and Chondrogenic Capacity of WIN-34B, a New Herbal Agent, in the Collagenase-Induced Osteoarthritis Rabbit Model and in Progenitor Cells from Subchondral Bone

    Directory of Open Access Journals (Sweden)

    Jeong-Eun Huh

    2013-01-01

    Full Text Available We sought to determine the cartilage repair capacity of WIN-34B in the collagenase-induced osteoarthritis rabbit model and in progenitor cells from subchondral bone. The cartilage protective effect of WIN-34B was measured by clinical and histological scores, cartilage area, and proteoglycan and collagen contents in the collagenase-induced osteoarthritis rabbit model. The efficacy of chondrogenic differentiation of WIN-34B was assessed by expression of CD105, CD73, type II collagen, and aggrecan in vivo and was analyzed by the surface markers of progenitor cells, the mRNA levels of chondrogenic marker genes, and the level of proteoglycan, GAG, and type II collagen in vitro. Oral administration of WIN-34B significantly increased cartilage area, and this was associated with the recovery of proteoglycan and collagen content. Moreover, WIN-34B at 200 mg/kg significantly increased the expression of CD105, CD73, type II collagen, and aggrecan compared to the vehicle group. WIN-34B markedly enhanced the chondrogenic differentiation of CD105 and type II collagen in the progenitor cells from subchondral bone. Also, we confirmed that treatment with WIN-34B strongly increased the number of SH-2(CD105 cells and expression type II collagen in subchondral progenitor cells. Moreover, WIN-34B significantly increased proteoglycan, as measured by alcian blue staining; the mRNA level of type II α1 collagen, cartilage link protein, and aggrecan; and the inhibition of cartilage matrix molecules, such as GAG and type II collagen, in IL-1β-treated progenitor cells. These findings suggest that WIN-34B could be a potential candidate for effective anti-osteoarthritic therapy with cartilage repair as well as cartilage protection via enhancement of chondrogenic differentiation in the collagenase-induced osteoarthritis rabbit model and progenitor cells from subchondral bone.

  10. Magnetic resonance perfusion and diffusion imaging characteristics of transient bone marrow edema, avascular necrosis and subchondral insufficiency fractures of the proximal femur

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Dirk, E-mail: d.mueller@uk-koeln.de [Department of Radiology, University of Cologne (Germany); Department of Radiology, Technische Universität München (Germany); Schaeffeler, Christoph, E-mail: schaeffeler@me.com [Department of Radiology, Cantonal Hospital Graubuenden, Chur (Switzerland); Department of Radiology, Cantonal Hospital Graubuenden, Chur (Switzerland); Baum, Thomas, E-mail: thomas-baum@gmx.de [Department of Radiology, Technische Universität München (Germany); Walter, Flavia, E-mail: flavia_walter2000@yahoo.de [Department of Radiology, Technische Universität München (Germany); Rechl, Hans, E-mail: rechl@tum.de [Department of Orthopaedics, Technische Universität München (Germany); Rummeny, Ernst J., E-mail: rummeny@tum.de [Department of Radiology, Technische Universität München (Germany); Woertler, Klaus, E-mail: klaus.woertler@tum.de [Department of Radiology, Technische Universität München (Germany)

    2014-10-15

    Highlights: • DCE-MRI may add information to the pathophysiology of bone marrow edema (BME) of the proximal femur. • Patients with transient bone marrow edema (TBME) or subchondral insufficiency fractures (SIF) and avascular osteonecrosis (AVN) showed different MR perfusion patterns. • Perfusion characteristics suggest different pathophysiology for AVN compared with TBME or SIF. • Diffusion weighted imaging (DWI) was not able to discriminate necrotic from edematous bone marrow. • DWI is of limited value to evaluate BME of the proximal femur. - Abstract: Purpose: To evaluate magnetic resonance (MR) perfusion and diffusion imaging characteristics in patients with transient bone marrow edema (TBME), avascular necrosis (AVN), or subchondral insufficiency fractures (SIF) of the proximal femur. Materials and methods: 29 patients with painful hip and bone marrow edema pattern of the proximal femur on non-contrast MR imaging were examined using diffusion-weighted and dynamic gadolinium-enhanced sequences. Apparent diffusion coefficients (ADCs) and perfusion parameters were calculated for different regions of the proximal femur. Regional distribution and differences in ADC values and perfusion parameters were evaluated. Results: Seven patients presented with TBME, 15 with AVN and seven with SIF of the proximal femur. Perfusion imaging showed significant differences for maximum enhancement values (E{sub max}), slope (E{sub slope}) and time to peak (TTP) between the three patient groups (p < 0.05). In contrast, no significant differences for ADC values were calculated when comparing TBME, AVN, and SIF patients. Conclusion: Diffusion weighted imaging of bone marrow of the proximal femur did not show significant differences between patients with TBME, AVN or SIF. In contrast, MR perfusion imaging demonstrated significant differences for the different patient groups and may as a complementary imaging technique add information to the understanding of the pathophysiology

  11. Magnetic resonance perfusion and diffusion imaging characteristics of transient bone marrow edema, avascular necrosis and subchondral insufficiency fractures of the proximal femur

    International Nuclear Information System (INIS)

    Mueller, Dirk; Schaeffeler, Christoph; Baum, Thomas; Walter, Flavia; Rechl, Hans; Rummeny, Ernst J.; Woertler, Klaus

    2014-01-01

    Highlights: • DCE-MRI may add information to the pathophysiology of bone marrow edema (BME) of the proximal femur. • Patients with transient bone marrow edema (TBME) or subchondral insufficiency fractures (SIF) and avascular osteonecrosis (AVN) showed different MR perfusion patterns. • Perfusion characteristics suggest different pathophysiology for AVN compared with TBME or SIF. • Diffusion weighted imaging (DWI) was not able to discriminate necrotic from edematous bone marrow. • DWI is of limited value to evaluate BME of the proximal femur. - Abstract: Purpose: To evaluate magnetic resonance (MR) perfusion and diffusion imaging characteristics in patients with transient bone marrow edema (TBME), avascular necrosis (AVN), or subchondral insufficiency fractures (SIF) of the proximal femur. Materials and methods: 29 patients with painful hip and bone marrow edema pattern of the proximal femur on non-contrast MR imaging were examined using diffusion-weighted and dynamic gadolinium-enhanced sequences. Apparent diffusion coefficients (ADCs) and perfusion parameters were calculated for different regions of the proximal femur. Regional distribution and differences in ADC values and perfusion parameters were evaluated. Results: Seven patients presented with TBME, 15 with AVN and seven with SIF of the proximal femur. Perfusion imaging showed significant differences for maximum enhancement values (E max ), slope (E slope ) and time to peak (TTP) between the three patient groups (p < 0.05). In contrast, no significant differences for ADC values were calculated when comparing TBME, AVN, and SIF patients. Conclusion: Diffusion weighted imaging of bone marrow of the proximal femur did not show significant differences between patients with TBME, AVN or SIF. In contrast, MR perfusion imaging demonstrated significant differences for the different patient groups and may as a complementary imaging technique add information to the understanding of the pathophysiology of

  12. Fat-suppressed T2-weighted MRI appearance of subchondral insufficiency fracture of the femoral head

    Energy Technology Data Exchange (ETDEWEB)

    Sonoda, Kazuhiko; Yamamoto, Takuaki; Motomura, Goro; Karasuyama, Kazuyuki; Kubo, Yusuke; Iwamoto, Yukihide [Kyushu University, Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Higashi-ku, Fukuoka (Japan)

    2016-11-15

    Our aims were to investigate the imaging appearance of subchondral insufficiency fracture (SIF) of the femoral head based on fat-suppressed T2-weighted MRI, and evaluate its correlation with the clinical outcomes following conservative treatment. We retrospectively evaluated 40 hips in 37 patients with SIF of the femoral head (12 males and 25 females; mean age 55.8 years, range 22-78 years). MRI examinations were performed within 3 months after the onset of hip pain. Using fat-suppressed T2-weighted imaging, we evaluated the hips for the intensity of the subchondral bone (corresponding to the area superior to the low intensity band on T1-weighted images) as well as bone marrow edema, joint effusion, and presence of the band lesion. We then correlated the intensity of the subchondral bone with clinical outcomes. The hips were classified into three types based on subchondral intensity on fat-suppressed T2-weighted images: type 1 (21 hips) showed high intensity, type 2 (eight hips) showed heterogeneous intensity, and type 3 (11 hips) showed low intensity. The mean period between pain onset and MRI examination was significantly longer for type 2 hips than for type 1. Healing rates were 86 % for type 1, 75 % for type 2, and 18 % for type 3. SIF cases were classified into three types based on subchondral intensity on fat-suppressed T2-weighted imaging performed within 3 months after pain onset. Type 3 SIF tended to be intractable to conservative treatment compared to type 1 and type 2. (orig.)

  13. Bone structural changes in osteoarthritis as a result of mechanoregulated bone adaptation: a modeling approach

    NARCIS (Netherlands)

    Cox, L.G.E.; Rietbergen, van B.; Donkelaar, van C.C.; Ito, K.

    2011-01-01

    Objective There are strong indications that subchondral bone may play an important role in osteoarthritis (OA), making it an interesting target for medical therapies. The subchondral bone structure changes markedly during OA, and it has long been assumed that this occurs secondary to cartilage

  14. Menopause and Bone Loss

    Science.gov (United States)

    Fact Sheet & Menopause Bone Loss How are bone loss and menopause related? Throughout life your body keeps a balance between the ... lose bone faster than it can be replaced. Menopause—the time when menstrual periods end, which usually ...

  15. Relationship between knee pain and the presence, location, size and phenotype of femorotibial denuded areas of subchondral bone as visualized by MRI.

    Science.gov (United States)

    Cotofana, S; Wyman, B T; Benichou, O; Dreher, D; Nevitt, M; Gardiner, J; Wirth, W; Hitzl, W; Kwoh, C K; Eckstein, F; Frobell, R B

    2013-09-01

    Conflicting associations between imaging biomarkers and pain in knee osteoarthritis (OA) have been reported. A relation between pain and denuded areas of subchondral bone (dABs) has been suggested and this study explores this relationship further by relating the presence, phenotype, location and size of dABs to different measures of knee pain. 633 right knees from the Osteoarthritis Initiative (OAI) (250 men, age 61.7 ± 9.6 yrs, BMI 29.4 ± 4.7 kg/m(2)) were included. Manual segmentation of the femorotibial cartilage plates was performed on 3 T coronal fast low angle shot with water excitation (FLASHwe) images. dABs were defined as areas where the subchondral bone was uncovered by cartilage. The following measures of pain were used: weightbearing-, non-weightbearing-, moderate-to-severe-, infrequent- and frequent knee pain. Using pain measures from subjects without dABs as a reference, those with at least one dAB had a 1.64-fold higher prevalence ratio [PR, 95% confidence interval (CI) 1.24-2.18] to have frequent and 1.45-fold higher for moderate-to-severe knee pain (95% CI 1.13-1.85). Subjects with dABs in central subregions had a 1.53-fold increased prevalence of having weightbearing pain (95% CI 1.20-1.97), especially when the central subregion was moderately (>10%) denuded (PR 1.81, 95% CI 1.35-2.42). Individuals with cartilage-loss-type dABs had a slightly higher prevalence (PR 1.13, 95% CI 1.00-1.27) of having frequent knee pain compared to individuals with intra-chondral-osteophyte-type dABs. This study supports a positive relation between femorotibial dABs and knee pain, especially when the dABs are located centrally (i.e., in weightbearing regions) or when the respective central subregion is moderately denuded. Copyright © 2013 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  16. Redefining "Critical" Bone Loss in Shoulder Instability: Functional Outcomes Worsen With "Subcritical" Bone Loss.

    Science.gov (United States)

    Shaha, James S; Cook, Jay B; Song, Daniel J; Rowles, Douglas J; Bottoni, Craig R; Shaha, Steven H; Tokish, John M

    2015-07-01

    Glenoid bone loss is a common finding in association with anterior shoulder instability. This loss has been identified as a predictor of failure after operative stabilization procedures. Historically, 20% to 25% has been accepted as the "critical" cutoff where glenoid bone loss should be addressed in a primary procedure. Few data are available, however, on lesser, "subcritical" amounts of bone loss (below the 20%-25% range) on functional outcomes and failure rates after primary arthroscopic stabilization for shoulder instability. To evaluate the effect of glenoid bone loss, especially in subcritical bone loss (below the 20%-25% range), on outcomes assessments and redislocation rates after an isolated arthroscopic Bankart repair for anterior shoulder instability. Cohort study; Level of evidence, 3. Subjects were 72 consecutive anterior instability patients (73 shoulders) who underwent isolated anterior arthroscopic labral repair at a single military institution by 1 of 3 sports medicine fellowship-trained orthopaedic surgeons. Data were collected on demographics, the Western Ontario Shoulder Instability (WOSI) score, Single Assessment Numeric Evaluation (SANE) score, and failure rates. Failure was defined as recurrent dislocation. Glenoid bone loss was calculated via a standardized technique on preoperative imaging. The average bone loss across the group was calculated, and patients were divided into quartiles based on the percentage of glenoid bone loss. Outcomes were analyzed for the entire cohort, between the quartiles, and within each quartile. Outcomes were then further stratified between those sustaining a recurrence versus those who remained stable. The mean age at surgery was 26.3 years (range, 20-42 years), and the mean follow-up was 48.3 months (range, 23-58 months). The cohort was divided into quartiles based on bone loss. Quartile 1 (n = 18) had a mean bone loss of 2.8% (range, 0%-7.1%), quartile 2 (n = 19) had 10.4% (range, 7.3%-13.5%), quartile 3 (n

  17. Annulus Fibrosus Can Strip Hyaline Cartilage End Plate from Subchondral Bone: A Study of the Intervertebral Disk in Tension.

    Science.gov (United States)

    Balkovec, Christian; Adams, Michael A; Dolan, Patricia; McGill, Stuart M

    2015-10-01

    Study Design Biomechanical study on cadaveric spines. Objective Spinal bending causes the annulus to pull vertically (axially) on the end plate, but failure mechanisms in response to this type of loading are poorly understood. Therefore, the objective of this study was to identify the weak point of the intervertebral disk in tension. Methods Cadaveric motion segments (aged 79 to 88 years) were dissected to create midsagittal blocks of tissue, with ∼10 mm of bone superior and inferior to the disk. From these blocks, 14 bone-disk-bone slices (average 4.8 mm thick) were cut in the frontal plane. Each slice was gripped by its bony ends and stretched to failure at 1 mm/s. Mode of failure was recorded using a digital camera. Results Of the 14 slices, 10 failed by the hyaline cartilage being peeled off the subchondral bone, with the failure starting opposite the lateral annulus and proceeding medially. Two slices failed by rupturing of the trabecular bone, and a further two failed in the annulus. Conclusions The hyaline cartilage-bone junction is the disk's weak link in tension. These findings provide a plausible mechanism for the appearance of bone and cartilage fragments in herniated material. Stripping cartilage from the bony end plate would result in the herniated mass containing relatively stiff cartilage that does not easily resorb.

  18. Weight loss and bone mineral density.

    Science.gov (United States)

    Hunter, Gary R; Plaisance, Eric P; Fisher, Gordon

    2014-10-01

    Despite evidence that energy deficit produces multiple physiological and metabolic benefits, clinicians are often reluctant to prescribe weight loss in older individuals or those with low bone mineral density (BMD), fearing BMD will be decreased. Confusion exists concerning the effects that weight loss has on bone health. Bone density is more closely associated with lean mass than total body mass and fat mass. Although rapid or large weight loss is often associated with loss of bone density, slower or smaller weight loss is much less apt to adversely affect BMD, especially when it is accompanied with high intensity resistance and/or impact loading training. Maintenance of calcium and vitamin D intake seems to positively affect BMD during weight loss. Although dual energy X-ray absorptiometry is normally used to evaluate bone density, it may overestimate BMD loss following massive weight loss. Volumetric quantitative computed tomography may be more accurate for tracking bone density changes following large weight loss. Moderate weight loss does not necessarily compromise bone health, especially when exercise training is involved. Training strategies that include heavy resistance training and high impact loading that occur with jump training may be especially productive in maintaining, or even increasing bone density with weight loss.

  19. Subchondral mesenchymal stem cells from osteoarthritic knees display high osteogenic differentiation capacity through microRNA-29a regulation of HDAC4.

    Science.gov (United States)

    Lian, Wei-Shiung; Wu, Ren-Wen; Lee, Mel S; Chen, Yu-Shan; Sun, Yi-Chih; Wu, Shing-Long; Ke, Huei-Jing; Ko, Jih-Yang; Wang, Feng-Sheng

    2017-12-01

    Subchondral bone deterioration and osteophyte formation attributable to excessive mineralization are prominent features of end-stage knee osteoarthritis (OA). The cellular events underlying subchondral integrity diminishment remained elusive. This study was undertaken to characterize subchondral mesenchymal stem cells (SMSCs) isolated from patients with end-stage knee OA who required total knee arthroplasty. The SMSCs expressed surface antigens CD29, CD44, CD73, CD90, CD105, and CD166 and lacked CD31, CD45, and MHCII expression. The cell cultures exhibited higher proliferation and greater osteogenesis and chondrogenesis potencies, whereas their population-doubling time and adipogenic lineage commitment were lower than those of bone marrow MSCs (BMMSCs). They also displayed higher expressions of embryonic stem cell marker OCT3/4 and osteogenic factors Wnt3a, β-catenin, and microRNA-29a (miR-29a), concomitant with lower expressions of joint-deleterious factors HDAC4, TGF-β1, IL-1β, TNF-α, and MMP3, in comparison with those of BMMSCs. Knockdown of miR-29a lowered Wnt3a expression and osteogenic differentiation of the SMSCs through elevating HDAC4 translation, which directly regulated the 3'-untranslated region of HDAC4. Likewise, transgenic mice that overexpressed miR-29a in osteoblasts exhibited a high bone mass in the subchondral region. SMSCs in the transgenic mice showed a higher osteogenic differentiation and lower HDAC4 signaling than those in wild-type mice. Taken together, high osteogenesis potency existed in the SMSCs in the osteoarthritic knee. The miR-29a modulation of HDAC4 and Wnt3a signaling was attributable to the increase in osteogenesis. This study shed an emerging light on the characteristics of SMSCs and highlighted the contribution of SMSCs in the exacerbation of subchondral integrity in end-stage knee OA. Subchondral MSCs (SMSCs) from OA knee expressed embryonic stem cell marker Oct3/4. The SMSCs showed high proliferation and osteogenic and

  20. Clinical outcomes in relation to locations of bone marrow edema lesions in patients with a subchondral insufficiency fracture of the hip: a review of fifteen cases.

    Science.gov (United States)

    Ikemura, Satoshi; Mawatari, Taro; Matsui, Gen; Iguchi, Takahiro; Mitsuyasu, Hiroaki

    2016-10-01

    The prognosis of patients with a subchondral insufficiency fracture remains unclear. The purpose of this study was to investigate the correlation between locations of bone marrow edema (BME) lesions and clinical outcome in patients with a subchondral insufficiency fracture of the hip. We retrospectively reviewed 15 consecutive hips in 14 patients who were diagnosed with subchondral insufficiency fracture of the hip at our institution between April 2013 and September 2014. This study included five males (six hips) and nine females (nine hips), ranging from 36 to 83 years of age (mean age: 66 years). The mean duration from the onset of hip pain to MRI examination was 1.8 months (range 0.5-5 months). Both clinical and imaging findings were investigated. Based on the findings of MR images, BME lesion in the femoral head alone was observed in six patients (six hips), BME lesion in the acetabulum alone was observed in one patient (two hips) and BME lesions in both the femoral head and acetabulum were observed in seven patients (seven hips). 3 of 15 hips resulted in rapidly destructive arthrosis and their BME lesions were observed in both the femoral head and acetabulum. 8 of 15 hips successfully healed by conservative treatment and BME lesions in 7 of these 8 hips were observed in only the femoral head or acetabulum. The results of this study indicate that the locations of BME lesions (femoral side alone, acetabular side alone or both) may be related to the clinical outcome in patients with a subchondral insufficiency fracture of the hip. Patients with subchondral insufficiency fracture of the hip in whom BME lesions were observed in both the femoral head and acetabulum may have a higher risk to need to undergo total hip arthroplasty.

  1. Photoshop-based image analysis of canine articular cartilage after subchondral damage.

    Science.gov (United States)

    Lahm, A; Uhl, M; Lehr, H A; Ihling, C; Kreuz, P C; Haberstroh, J

    2004-09-01

    The validity of histopathological grading is a major problem in the assessment of articular cartilage. Calculating the cumulative strength of signal intensity of different stains gives information regarding the amount of proteoglycan, glycoproteins, etc. Using this system, we examined the medium-term effect of subchondral lesions on initially healthy articular cartilage. After cadaver studies, an animal model was created to produce pure subchondral damage without affecting the articular cartilage in 12 beagle dogs under MRI control. Quantification of the different stains was provided using a Photoshop-based image analysis (pixel analysis) with the histogram command 6 months after subchondral trauma. FLASH 3D sequences revealed intact cartilage after impact in all cases. The best detection of subchondral fractures was achieved with fat-suppressed TIRM sequences. Semiquantitative image analysis showed changes in proteoglycan and glycoprotein quantities in 9 of 12 samples that had not shown any evidence of damage during the initial examination. Correlation analysis showed a loss of the physiological distribution of proteoglycans and glycoproteins in the different zones of articular cartilage. Currently available software programs can be applied for comparative analysis of histologic stains of hyaline cartilage. After subchondral fractures, significant changes in the cartilage itself occur after 6 months.

  2. Magnetic resonance imaging of osteophytic, chondral, and subchondral structures in a surgically-induced osteoarthritis rabbit model.

    Directory of Open Access Journals (Sweden)

    Lang Jia

    Full Text Available OBJECTIVE: This study aimed to assess changes in osteophytic, chondral, and subchondral structures in a surgically-induced osteoarthritis (OA rabbit model in order to correlate MRI findings with the macroscopic progress of OA and to define the timepoint for disease status in this OA model. METHODS: The OA model was constructed by surgery in thirty rabbits with ten normal rabbits serving as controls (baseline. High-resolution three-dimensional MRI using a 1.5-T coil was performed at baseline, two, four, and eight weeks post-surgery. MRIs of cartilage lesions, subchondral bone lesions, and osteophyte formations were independently assessed by two blinded radiologists. Ten rabbits were sacrificed at baseline, two, four, and eight weeks post-surgery, and macroscopic evaluation was independently performed by two blinded orthopedic surgeons. RESULTS: The signal intensities and morphologies of chondral and subchondral structures by MRI accurately reflected the degree of OA. Cartilage defects progressed from a grade of 0.05-0.15 to 1.15-1.30 to 1.90-1.97 to 3.00-3.35 at each successive time point, respectively (p<0.05. Subchondral bone lesions progressed from a grade of 0.00 to 0.78-0.90 to 1.27-1.58 to 1.95-2.23 at each successive time point, respectively (p = 0.000. Osteophytes progressed from a size (mm of 0.00 to 0.87-1.06 to 1.24-1.87 to 2.21-3.21 at each successive time point, respectively (p = 0.000. CONCLUSIONS: Serial observations revealed that MRI can accurately detect the progression of cartilage lesions and subchondral bone edema over an eight-week period but may not be accurate in detecting osteophyte sizes. Week four post-surgery was considered the timepoint between OA-negative and OA-positive status in this OA model. The combination of this OA model with MRI evaluation should provide a promising tool for the pre-clinical evaluation of new disease-modifying osteoarthritis drugs.

  3. Magnetic resonance imaging of osteophytic, chondral, and subchondral structures in a surgically-induced osteoarthritis rabbit model.

    Science.gov (United States)

    Jia, Lang; Chen, Jinyun; Wang, Yan; Liu, Yingjiang; Zhang, Yu; Chen, Wenzhi

    2014-01-01

    This study aimed to assess changes in osteophytic, chondral, and subchondral structures in a surgically-induced osteoarthritis (OA) rabbit model in order to correlate MRI findings with the macroscopic progress of OA and to define the timepoint for disease status in this OA model. The OA model was constructed by surgery in thirty rabbits with ten normal rabbits serving as controls (baseline). High-resolution three-dimensional MRI using a 1.5-T coil was performed at baseline, two, four, and eight weeks post-surgery. MRIs of cartilage lesions, subchondral bone lesions, and osteophyte formations were independently assessed by two blinded radiologists. Ten rabbits were sacrificed at baseline, two, four, and eight weeks post-surgery, and macroscopic evaluation was independently performed by two blinded orthopedic surgeons. The signal intensities and morphologies of chondral and subchondral structures by MRI accurately reflected the degree of OA. Cartilage defects progressed from a grade of 0.05-0.15 to 1.15-1.30 to 1.90-1.97 to 3.00-3.35 at each successive time point, respectively (pSubchondral bone lesions progressed from a grade of 0.00 to 0.78-0.90 to 1.27-1.58 to 1.95-2.23 at each successive time point, respectively (p = 0.000). Osteophytes progressed from a size (mm) of 0.00 to 0.87-1.06 to 1.24-1.87 to 2.21-3.21 at each successive time point, respectively (p = 0.000). Serial observations revealed that MRI can accurately detect the progression of cartilage lesions and subchondral bone edema over an eight-week period but may not be accurate in detecting osteophyte sizes. Week four post-surgery was considered the timepoint between OA-negative and OA-positive status in this OA model. The combination of this OA model with MRI evaluation should provide a promising tool for the pre-clinical evaluation of new disease-modifying osteoarthritis drugs.

  4. Assessment of Cortical and Trabecular Bone Changes in Two Models of Post-Traumatic Osteoarthritis

    Science.gov (United States)

    Pauly, Hannah M; Larson, Blair E; Coatney, Garrett A; Button, Keith D.; DeCamp, Charlie E; Fajardo, Ryan S; Haut, Roger C; Donahue, Tammy L Haut

    2015-01-01

    Subchondral bone is thought to play a significant role in the initiation and progression of the post-traumatic osteoarthritis. The goal of this study was to document changes in tibial and femoral subchondral bone that occur as a result of two lapine models of anterior cruciate ligament injury, a modified ACL transection model and a closed-joint traumatic compressive impact model. Twelve weeks post-injury bones were scanned via micro-computed tomography. The subchondral bone of injured limbs from both models showed decreases in bone volume and bone mineral density. Surgical transection animals showed significant bone changes primarily in the medial hemijoint of femurs and tibias, while significant changes were noted in both the medial and lateral hemijoints of both bones for traumatic impact animals. It is believed that subchondral bone changes in the medial hemijoint were likely caused by compromised soft tissue structures seen in both models. Subchondral bone changes in the lateral hemijoint of traumatic impact animals are thought to be due to transmission of the compressive impact force through the joint. The joint-wide bone changes shown in the traumatic impact model were similar to clinical findings from studies investigating the progression of osteoarthritis in humans. PMID:26147652

  5. Quantitative Assessment of Degenerative Cartilage and Subchondral Bony Lesions in a Preserved Cadaveric Knee: Propagation-Based Phase-Contrast CT Versus Conventional MRI and CT.

    Science.gov (United States)

    Geith, Tobias; Brun, Emmanuel; Mittone, Alberto; Gasilov, Sergei; Weber, Loriane; Adam-Neumair, Silvia; Bravin, Alberto; Reiser, Maximilian; Coan, Paola; Horng, Annie

    2018-04-09

    The aim of this study was to quantitatively assess hyaline cartilage and subchondral bone conditions in a fully preserved cadaveric human knee joint using high-resolution x-ray propagation-based phase-contrast imaging (PBI) CT and to compare the performance of the new technique with conventional CT and MRI. A cadaveric human knee was examined using an x-ray beam of 60 keV, a detector with a 90-mm 2 FOV, and a pixel size of 46 × 46 μm 2 . PBI CT images were reconstructed with both the filtered back projection algorithm and the equally sloped tomography method. Conventional 3-T MRI and CT were also performed. Measurements of cartilage thickness, cartilage lesions, International Cartilage Repair Society scoring, and detection of subchondral bone changes were evaluated. Visual inspection of the specimen akin to arthroscopy was conducted and served as a standard of reference for lesion detection. Loss of cartilage height was visible on PBI CT and MRI. Quantification of cartilage thickness showed a strong correlation between the two modalities. Cartilage lesions appeared darker than the adjacent cartilage on PBI CT. PBI CT showed similar agreement to MRI for depicting cartilage substance defects or lesions compared with the visual inspection. The assessment of subchondral bone cysts showed moderate to strong agreement between PBI CT and CT. In contrast to the standard clinical methods of MRI and CT, PBI CT is able to simultaneously depict cartilage and bony changes at high resolution. Though still an experimental technique, PBI CT is a promising high-resolution imaging method to evaluate comprehensive changes of osteoarthritic disease in a clinical setting.

  6. Breast Cancer and Bone Loss

    Science.gov (United States)

    ... Menopause Map Featured Resource Find an Endocrinologist Search Breast Cancer and Bone Loss July 2010 Download PDFs English ... G. Komen Foundation What is the link between breast cancer and bone loss? Certain treatments for breast cancer ...

  7. Horizontal alveolar bone loss: A periodontal orphan

    Science.gov (United States)

    Jayakumar, A.; Rohini, S.; Naveen, A.; Haritha, A.; Reddy, Krishnanjeneya

    2010-01-01

    Background: Attempts to successfully regenerate lost alveolar bone have always been a clinician’s dream. Angular defects, at least, have a fairer chance, but the same cannot be said about horizontal bone loss. The purpose of the present study was to evaluate the prevalence of horizontal alveolar bone loss and vertical bone defects in periodontal patients; and later, to correlate it with the treatment modalities available in the literature for horizontal and vertical bone defects. Materials and Methods: The study was conducted in two parts. Part I was the radiographic evaluation of 150 orthopantomographs (OPGs) (of patients diagnosed with chronic periodontitis and seeking periodontal care), which were digitized and read using the AutoCAD 2006 software. All the periodontitis-affected teeth were categorized as teeth with vertical defects (if the defect angle was ≤45° and defect depth was ≥3 mm) or as having horizontal bone loss. Part II of the study comprised search of the literature on treatment modalities for horizontal and vertical bone loss in four selected periodontal journals. Results: Out of the 150 OPGs studied, 54 (36%) OPGs showed one or more vertical defects. Totally, 3,371 teeth were studied, out of which horizontal bone loss was found in 3,107 (92.2%) teeth, and vertical defects were found only in 264 (7.8%) of the teeth, which was statistically significant (P<.001). Search of the selected journals revealed 477 papers have addressed the treatment modalities for vertical and horizontal types of bone loss specifically. Out of the 477 papers, 461 (96.3%) have addressed vertical bone loss, and 18 (3.7%) have addressed treatment options for horizontal bone loss. Two papers have addressed both types of bone loss and are included in both categories. Conclusion: Horizontal bone loss is more prevalent than vertical bone loss but has been sidelined by researchers as very few papers have been published on the subject of regenerative treatment modalities for

  8. Medicines and Bone Loss

    Science.gov (United States)

    ... The doses of thyroid hormone used to treat hypothyroidism (underactive thyroid) don’t harm bone and shouldn’t be cause for concern. Only high doses, used for thyroid cancer treatment, can cause bone loss. High doses or long- ...

  9. Response of induced bone defects in horses to collagen matrix containing the human parathyroid hormone gene.

    Science.gov (United States)

    Backstrom, Kristin C; Bertone, Alicia L; Wisner, Erik R; Weisbrode, Stephen E

    2004-09-01

    To determine whether human parathyroid hormone (hPTH) gene in collagen matrix could safely promote bone formation in diaphyseal or subchondral bones of horses. 8 clinically normal adult horses. Amount, rate, and quality of bone healing for 13 weeks were determined by use of radiography, quantitative computed tomography, and histomorphometric analysis. Diaphyseal cortex and subchondral bone defects of metacarpi were filled with hPTH(1-34) gene-activated matrix (GAM) or remained untreated. Joints were assessed on the basis of circumference, synovial fluid analysis, pain on flexion, lameness, and gross and histologic examination. Bone volume index was greater for cortical defects treated with hPTH(1-34) GAM, compared with untreated defects. Bone production in cortical defects treated with hPTH(1-34) GAM positively correlated with native bone formation in untreated defects. In contrast, less bone was detected in hPTH(1-34) GAM-treated subchondral bone defects, compared with untreated defects, and histology confirmed poorer healing and residual collagen sponge. Use of hPTH(1-34) GAM induced greater total bone, specifically periosteal bone, after 13 weeks of healing in cortical defects of horses. The hPTH(1-34) GAM impeded healing of subchondral bone but was biocompatible with joint tissues. Promotion of periosteal bone formation may be beneficial for healing of cortical fractures in horses, but the delay in onset of bone formation may negate benefits. The hPTH(1-34) GAM used in this study should not be placed in articular subchondral bone defects, but contact with articular surfaces is unlikely to cause short-term adverse effects.

  10. Cement stress predictions after anatomic total shoulder arthroplasty are correlated with preoperative glenoid bone quality.

    Science.gov (United States)

    Terrier, Alexandre; Obrist, Raphaël; Becce, Fabio; Farron, Alain

    2017-09-01

    We hypothesized that biomechanical parameters typically associated with glenoid implant failure after anatomic total shoulder arthroplasty (aTSA) would be correlated with preoperative glenoid bone quality. We developed an objective automated method to quantify preoperative glenoid bone quality in different volumes of interest (VOIs): cortical bone, subchondral cortical plate, subchondral bone after reaming, subchondral trabecular bone, and successive layers of trabecular bone. Average computed tomography (CT) numbers (in Hounsfield units [HU]) were measured in each VOI from preoperative CT scans. In parallel, we built patient-specific finite element models of simulated aTSAs to predict cement stress, bone-cement interfacial stress, and bone strain around the glenoid implant. CT measurements and finite element predictions were obtained for 20 patients undergoing aTSA for primary glenohumeral osteoarthritis. We tested all linear correlations between preoperative patient characteristics (age, sex, height, weight, glenoid bone quality) and biomechanical predictions (cement stress, bone-cement interfacial stress, bone strain). Average CT numbers gradually decreased from cortical (717 HU) to subchondral and trabecular (362 HU) bone. Peak cement stress (4-10 MPa) was located within the keel hole, above the keel, or behind the glenoid implant backside. Cement stress, bone-cement interfacial stress, and bone strain were strongly negatively correlated with preoperative glenoid bone quality, particularly in VOIs behind the implant backside (subchondral trabecular bone) but also in deeper trabecular VOIs. Our numerical study suggests that preoperative glenoid bone quality is an important parameter to consider in aTSA, which may be associated with aseptic loosening of the glenoid implant. These initial results should now be confronted with clinical and radiologic outcomes. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc

  11. Decrease in local volumetric bone mineral density (vBMD) in osteoarthritic joints is associated with the increase in cartilage damage: a pQCT study

    Science.gov (United States)

    Tamaddon, Maryam; Chen, Shen Mao; Vanaclocha, Leyre; Hart, Alister; El-Husseiny, Moataz; Henckel, Johann; Liu, Chaozong

    2017-11-01

    Osteoarthritis (OA) is the most common type of arthritis and a major cause of disability in the adult population. It affects both cartilage and subchondral bone in the joints. There has been some progress in understanding the changes in subchondral bone with progression of osteoarthritis. However, local changes in subchondral bone such as microstructure or volumetric bone mineral density in connection with the defect in cartilage are relatively unexplored. To develop an effective treatment for progression of OA, it is important to understand how the physical environment provided by the subchondral bone affects the overlying cartilage. In this study we examined the volumetric bone mineral density (vBMD) distribution in the osteoarthritic joint tissues obtained from total hip replacement surgeries due to osteoarthritis, using peripheral quantitative CT (pQCT). It was found that there is a significant decrease in volumetric bone mineral density, which co-localises with the damage in the overlying cartilage. This was not limited to the subchondral bone immediately adjacent to the cartilage defect but continued in the layers below. Bone resorption and cyst formation in the OA tissues were also detected. We observed that the bone surrounding subchondral bone cysts exhibited much higher volumetric bone mineral density than that of the surrounding bones. PQCT was able to detect significant changes in vBMD between OA and non-OA samples, as well as between areas of different cartilage degeneration, which points to its potential as a technique for detection of early OA.

  12. Quantitative histological grading methods to assess subchondral bone and synovium changes subsequent to medial meniscus transection in the rat.

    Science.gov (United States)

    Kloefkorn, Heidi E; Allen, Kyle D

    The importance of the medial meniscus to knee health is demonstrated by studies which show meniscus injuries significantly increase the likelihood of developing osteoarthritis (OA), and knee OA can be modeled in rodents using simulated meniscus injuries. Traditionally, histological assessments of OA in these models have focused on damage to the articular cartilage; however, OA is now viewed as a disease of the entire joint as an organ system. The aim of this study was to develop quantitative histological measures of bone and synovial changes in a rat medial meniscus injury model of knee OA. To initiate OA, a medial meniscus transection (MMT) and a medial collateral ligament transection (MCLT) were performed in 32 male Lewis rats (MMT group). MCLT alone served as the sham procedure in 32 additional rats (MCLT sham group). At weeks 1, 2, 4, and 6 post-surgery, histological assessment of subchondral bone and synovium was performed (n = 8 per group per time point). Trabecular bone area and the ossification width at the osteochondral interface increased in both the MMT and MCLT groups. Subintimal synovial cell morphology also changed in MMT and MCLT groups relative to naïve animals. OA affects the joint as an organ system, and quantifying changes throughout an entire joint can improve our understanding of the relationship between joint destruction and painful OA symptoms following meniscus injury.

  13. Pathogenesis of age-related bone loss in humans.

    Science.gov (United States)

    Khosla, Sundeep

    2013-10-01

    Although data from rodent systems are extremely useful in providing insights into possible mechanisms of age-related bone loss, concepts evolving from animal models need to ultimately be tested in humans. This review provides an update on mechanisms of age-related bone loss in humans based on the author's knowledge of the field and focused literature reviews. Novel imaging, experimental models, biomarkers, and analytic techniques applied directly to human studies are providing new insights into the patterns of bone mass acquisition and loss as well as the role of sex steroids, in particular estrogen, on bone metabolism and bone loss with aging in women and men. These studies have identified the onset of trabecular bone loss at multiple sites that begins in young adulthood and remains unexplained, at least based on current paradigms of the mechanisms of bone loss. In addition, estrogen appears to be a major regulator of bone metabolism not only in women but also in men. Studies assessing mechanisms of estrogen action on bone in humans have identified effects of estrogen on RANKL expression by several different cell types in the bone microenvironment, a role for TNF-α and IL-1β in mediating effects of estrogen deficiency on bone, and possible regulation of the Wnt inhibitor, sclerostin, by estrogen. There have been considerable advances in our understanding of age-related bone loss in humans. However, there are also significant gaps in knowledge, particularly in defining cell autonomous changes in bone in human studies to test or validate concepts emerging from studies in rodents. Decision Editor: Luigi Ferrucci, MD, PhD.

  14. Proximal alveolar bone loss in a longitudinal radiographic investigation

    International Nuclear Information System (INIS)

    Lavstvedt, S.; Bolin, A.; Henrikson, C.O.

    1986-01-01

    Four hundred and six individuals from an unselected sample from the County of Stockholm aged 18 to 65 years in 1970 were examined radiographically in 1970 and 1980. The differences in proximal alveolar bone height were recorded, attention being paid to the divergences in projection between the two investigations. The mean of the alveolar bone differnce was 5.5% of the mean root length, which corresponds to an average annual bone loss of 0.09 mm. Ninety per cent of the individuals had a difference in alveolar bone height of less than 10% of the root length, that is an average bone loss of 1.6 mm or less during 10 years. By linear regression analysis it was shown that the difference in alveolar bone height is a function of the initial bone loss; that is, the greater the initial bone loss, the greater the alveolar bone loss during the 10-year period. The result of the regression analysis may facilitate predictions of alveolar bone loss

  15. Marginal bone loss around non-submerged implants is associated with salivary microbiome during bone healing.

    Science.gov (United States)

    Duan, Xiao-Bo; Wu, Ting-Xi; Guo, Yu-Chen; Zhou, Xue-Dong; Lei, Yi-Ling; Xu, Xin; Mo, An-Chun; Wang, Yong-Yue; Yuan, Quan

    2017-06-01

    Marginal bone loss during bone healing exists around non-submerged dental implants. The aim of this study was to identify the relationship between different degrees of marginal bone loss during bone healing and the salivary microbiome. One hundred patients were recruited, and marginal bone loss around their implants was measured using cone beam computed tomography during a 3-month healing period. The patients were divided into three groups according to the severity of marginal bone loss. Saliva samples were collected from all subjected and were analysed using 16S MiSeq sequencing. Although the overall structure of the microbial community was not dramatically altered, the relative abundance of several taxonomic groups noticeably changed. The abundance of species in the phyla Spirochaeta and Synergistetes increased significantly as the bone loss became more severe. Species within the genus Treponema also exhibited increased abundance, whereas Veillonella, Haemophilus and Leptotrichia exhibited reduced abundances, in groups with more bone loss. Porphyromonasgingivalis, Treponemadenticola and Streptococcus intermedius were significantly more abundant in the moderate group and/or severe group. The severity of marginal bone loss around the non-submerged implant was associated with dissimilar taxonomic compositions. An increased severity of marginal bone loss was related to increased proportions of periodontal pathogenic species. These data suggest a potential role of microbes in the progression of marginal bone loss during bone healing.

  16. Chondroitin sulfate and glucosamine in the cartilage and subchondral bone repair of dogs - Histological findings

    Directory of Open Access Journals (Sweden)

    R.B. Eleotério

    2015-04-01

    Full Text Available Chondroitin and glucosamine sulfate nutraceuticals are commonly used in the management of degenerative articular disease in veterinary routine. However, there are controversies on the contribution of these substances to articular cartilage. The purpose of this study was to evaluate the efficiency of a chondroitin and glucosamine sulfate-based veterinary nutraceutical on the repair of an induced osteochondral defect in a dog femoral condyle, by macroscopic, histological and histomorphometric analyses. The nutraceutical was orally administered the day following injury induction, every 24 hours (treated group, TG, n=24, compared with animals that did not receive the product (control group, CG, n=24. Six animals per group were anaesthetized for sample collection at 15, 30, 60 and 90 days after surgery. At 15 days, defects were macroscopically filled with red-pinkish tissue. After 30 days, whitish color tissue was observed, both in TG and CG animals, with firmer consistency to touch at 60 and 90 postoperative days. Histological analysis demonstrated that, in both groups, there was initial blood clot formation, which was subsequently substituted by a fibrin net, with capillary proliferation from the adjacent bone marrow and infiltration of mesenchymal cells in clot periphery. As cellular differentiation developed, repair tissue presented a fibrocartilage aspect most of the time, and new subchondral bone formation occurred in the deepest area corresponding to the defect. Histomorphometry suggested that the nutraceutical did not favor the articular cartilage repair process. It was concluded that nutraceutical did not significantly influence chondrocytes proliferation or hyaline architecture restoration.

  17. Managing peri-implant bone loss: current understanding.

    Science.gov (United States)

    Aljateeli, Manar; Fu, Jia-Hui; Wang, Hom-Lay

    2012-05-01

    With the improved macro- and micro-designs, dental implants enjoy a high survival rate. However, peri-implant bone loss has recently emerged to be the focus of implant therapy. As such, researchers and clinicians are in need of finding predictable techniques to treat peri-implant bone loss and stop its progression. Literature search on the currently available treatment modalities was performed and a brief description of each modality was provided. Numerous techniques have been proposed and none has been shown to be superior and effective in managing peri-implant bone loss. This may be because of the complex of etiological factors acting on the implant-supported prosthesis hence the treatment approach has to be individually tailored. Due to the lack of high-level clinical evidence on the management of peri-implant bone loss, the authors, through a literature review, attempt to suggest a decision tree or guideline, based on sound periodontal surgical principles, to aid clinicians in managing peri-implantitis associated bone loss. © 2011 Wiley Periodicals, Inc.

  18. Mangiferin Reduces the Inhibition of Chondrogenic Differentiation by IL-1β in Mesenchymal Stem Cells from Subchondral Bone and Targets Multiple Aspects of the Smad and SOX9 Pathways

    Directory of Open Access Journals (Sweden)

    Jeong-Eun Huh

    2014-09-01

    Full Text Available Mangiferin is a natural immunomodulator found in plants including mango trees. The effects of mangiferin on chondrogenesis and cartilage repair have not yet been reported. This study was designed to determine the effect of mangiferin on chondrogenic differentiation in IL-1β-stimulated mesenchymal stem cells (MSCs from subchondral bone and to explore the mechanisms underlying these effects. MSCs were isolated from the subchondral bone of rabbit and treated with mangiferin alone and/or interleukin-1β (IL-1β. Mangiferin induced chondrogenic differentiation in MSCs by upregulating transforming growth factor (TGF-β, bone morphogenetic protein (BMP-2, and BMP-4 and several key markers of chondrogenesis, including sex-determining region Y–box (SRY-box containing gene 9 (SOX9, type 2α1 collagen (Col2α1, cartilage link protein, and aggrecan. In IL-1β-stimulated MSCs, mangiferin significantly reversed the production of TGF-β, BMP-2, BMP-4, SOX9, Col2α1, cartilage link protein, and aggrecan, as well as matrix metalloproteinase (MMP-1, MMP-13, and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS5. Mangiferin upregulated the phosphorylation of Smad 2, Smad 3, Smad 1/5/8, and SOX9 in IL-1β-stimulated MSCs. In the presence of mangiferin, SOX9 siRNA suppressed the activation of Smad 2, Smad 3, Smad 1/5/8, aggrecan, and Col2α1 expression. In conclusion, mangiferin exhibits both chondrogenic and chondroprotective effects on damaged MSCs and mediates these effects by targeting multiple aspects of the Smad and SOX9 signaling pathways.

  19. Distal clavicular osteolysis: MR evidence for subchondral fracture

    Energy Technology Data Exchange (ETDEWEB)

    Kassarjian, Ara; Palmer, William E. [Massachusetts General Hospital, Department of Radiology, Division of Musculoskeletal Radiology, Yawkey Center, Boston, MA (United States); Llopis, Eva [Hospital de la Ribera, Department of Radiology, Valencia (Spain)

    2007-01-15

    To investigate the association between distal clavicular osteolysis and subchondral fractures of the distal clavicle at MRI. This study was approved by the hospital human research committee, which waived the need for informed consent. Three radiologists retrospectively analyzed 36 shoulder MR examinations in 36 patients with imaging findings of distal clavicular osteolysis. The presence of a subchondral fracture of the distal clavicle, abnormalities of the acromioclavicular joint, rotator cuff tears and labral tears were assessed by MRI. These cases were then compared with 36 age-matched controls. At MRI, 31 of 36 patients (86%) had a subchondral line within the distal clavicular edema, consistent with a subchondral fracture. Of the 36 patients, 32 (89%) had fluid in the acromioclavicular joint, while 27 of 36 patients (75%) had cysts or erosions in the distal clavicle. There were 13 patients (36%) with associated labral tears, while eight patients (22%) had partial-thickness rotator cuff tears. In the control group one of 36 (3%) had a subchondral line (P<0.05), while ten of 36 (28%) had rotator cuff tears and 13 of 36 (36%) had labral tears. These latter two were not statistically significant between the groups. A distal clavicular subchondral fracture is a common finding in patients with imaging evidence of distal clavicular osteolysis. These subchondral fractures may be responsible for the propensity of findings occurring on the clavicular side of the acromioclavicular joint. (orig.)

  20. Distal clavicular osteolysis: MR evidence for subchondral fracture

    International Nuclear Information System (INIS)

    Kassarjian, Ara; Palmer, William E.; Llopis, Eva

    2007-01-01

    To investigate the association between distal clavicular osteolysis and subchondral fractures of the distal clavicle at MRI. This study was approved by the hospital human research committee, which waived the need for informed consent. Three radiologists retrospectively analyzed 36 shoulder MR examinations in 36 patients with imaging findings of distal clavicular osteolysis. The presence of a subchondral fracture of the distal clavicle, abnormalities of the acromioclavicular joint, rotator cuff tears and labral tears were assessed by MRI. These cases were then compared with 36 age-matched controls. At MRI, 31 of 36 patients (86%) had a subchondral line within the distal clavicular edema, consistent with a subchondral fracture. Of the 36 patients, 32 (89%) had fluid in the acromioclavicular joint, while 27 of 36 patients (75%) had cysts or erosions in the distal clavicle. There were 13 patients (36%) with associated labral tears, while eight patients (22%) had partial-thickness rotator cuff tears. In the control group one of 36 (3%) had a subchondral line (P<0.05), while ten of 36 (28%) had rotator cuff tears and 13 of 36 (36%) had labral tears. These latter two were not statistically significant between the groups. A distal clavicular subchondral fracture is a common finding in patients with imaging evidence of distal clavicular osteolysis. These subchondral fractures may be responsible for the propensity of findings occurring on the clavicular side of the acromioclavicular joint. (orig.)

  1. A novel method to assess subchondral bone formation using [18F]NaF-PET in the evaluation of knee degeneration.

    Science.gov (United States)

    Jonnakuti, Venkata S; Raynor, William Y; Taratuta, Elena; Werner, Thomas J; Alavi, Abass; Baker, Joshua F

    2018-05-01

    Fluorine-18-sodium fluoride-PET ([F]NaF-PET) facilitates direct assessment of subchondral bone formation to evaluate degeneration in articulating joints. No standards exist for the quantification of joint activity using [F]NaF-PET, and many techniques rely on focal uptake to characterize an entire region of interest. This study proposes a novel method of quantitative global knee analysis to assess regions of expected bone remodeling in the evaluation of knee degeneration. The study population consisted of 18 patients with rheumatoid arthritis who underwent [F]NaF-PET/computed tomography imaging. The maximum standardized uptake value (knee SUVmax) in addition to a target-to-background ratio (TBR) that represents global knee activity adjusted for systemic bone formation measured at the lateral femoral neck (global knee TBR) were calculated. A radiologist scored standard radiographs of the knee in nine patients using the Kellgren-Lawrence grading system. Patients with greater [F]NaF uptake demonstrated greater knee deterioration, which was corroborated by the radiograph findings. Average Kellgren-Lawrence grading was strongly associated with both global knee TBR (Spearman ρ=0.69, P=0.04) and knee SUVmax scores (Spearman ρ=0.93, P=0.0003). Assessment of global activity within the joint is a feasible and clinically useful technique for characterizing disease activity with a single value. Furthermore, a ratio based on systemic bone turnover in a nonarticulating, weight-bearing site adjusts for differences in bone formation related to bodyweight or metabolic bone diseases. We hypothesize that a global knee TBR score may be more sensitive at detecting changes in disease progression, as new spatially distinct lesions with a lower SUV that develop within an region of interest would not be detected by the SUVmax methodology. Longitudinal studies assessing sensitivity with larger patient cohorts are needed to further validate this methodology.

  2. Joint unloading implant modifies subchondral bone trabecular structure in medial knee osteoarthritis: 2-year outcomes of a pilot study using fractal signature analysis

    Directory of Open Access Journals (Sweden)

    Miller LE

    2015-01-01

    Full Text Available Larry E Miller,1,2 Miki Sode,3 Thomas Fuerst,3 Jon E Block2 1Miller Scientific Consulting, Inc., Asheville, NC, USA; 2The Jon Block Group, San Francisco, CA, USA; 3Bioclinica, Newark, CA, USA Background: Knee osteoarthritis (OA is largely attributable to chronic excessive and aberrant joint loading. The purpose of this pilot study was to quantify radiographic changes in subchondral bone after treatment with a minimally invasive joint unloading implant (KineSpring® Knee Implant System.Methods: Nine patients with unilateral medial knee OA resistant to nonsurgical therapy were treated with the KineSpring System and followed for 2 years. Main outcomes included Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC pain, function, and stiffness subscores and independent core laboratory determinations of joint space width and fractal signature of the tibial cortex.Results: WOMAC scores, on average, improved by 92% for pain, 91% for function, and 79% for stiffness over the 2-year follow-up period. Joint space width in the medial compartment of the treated knee significantly increased from 0.9 mm at baseline to 3.1 mm at 2 years; joint space width in the medial compartment of the untreated knee was unchanged. Fractal signatures of the vertically oriented trabeculae in the medial compartment decreased by 2.8% in the treated knee and increased by 2.1% in the untreated knee over 2 years. No statistically significant fractal signature changes were observed in the horizontally oriented trabeculae in the medial compartment or in the horizontal or vertical trabeculae of the lateral compartment in the treated knee.Conclusion: Preliminary evidence suggests that the KineSpring System may modify knee OA disease progression by increasing joint space width and improving subchondral bone trabecular integrity, thereby reducing pain and improving joint function. Keywords: disease modification, KineSpring, joint space, pain, trabecular

  3. Inhibited osteoclastic bone resorption through alendronate treatment in rats reduces severe osteoarthritis progression.

    Science.gov (United States)

    Siebelt, M; Waarsing, J H; Groen, H C; Müller, C; Koelewijn, S J; de Blois, E; Verhaar, J A N; de Jong, M; Weinans, H

    2014-09-01

    Osteoarthritis (OA) is a non-rheumatoid joint disease characterized by progressive degeneration of extra-cellular cartilage matrix (ECM), enhanced subchondral bone remodeling, osteophyte formation and synovial thickening. Alendronate (ALN) is a potent inhibitor of osteoclastic bone resorption and results in reduced bone remodeling. This study investigated the effects of pre-emptive use of ALN on OA related osteoclastic subchondral bone resorption in an in vivo rat model for severe OA. Using multi-modality imaging we measured effects of ALN treatment within cartilage and synovium. Severe osteoarthritis was induced in left rat knees using papain injections in combination with a moderate running protocol. Twenty rats were treated with subcutaneous ALN injections and compared to twenty untreated controls. Animals were longitudinally monitored for 12weeks with in vivo μCT to measure subchondral bone changes and SPECT/CT to determine synovial macrophage activation using a folate-based radiotracer. Articular cartilage was analyzed at 6 and 12weeks with ex vivo contrast enhanced μCT and histology to measure sulfated-glycosaminoglycan (sGAG) content and cartilage thickness. ALN treatment successfully inhibited subchondral bone remodeling. As a result we found less subchondral plate porosity and reduced osteophytosis. ALN treatment did not reduce subchondral sclerosis. However, after the OA induction phase, ALN treatment protected cartilage ECM from degradation and reduced synovial macrophage activation. Surprisingly, ALN treatment also improved sGAG content of tibia cartilage in healthy joints. Our data was consistent with the hypothesis that osteoclastic bone resorption might play an important role in OA and may be a driving force for progression of the disease. However, our study suggest that this effect might not solely be effects on osteoclastic activity, since ALN treatment also influenced macrophage functioning. Additionally, ALN treatment and physical activity

  4. Subchondral stress fracture of femoral head in a healthy adult

    Directory of Open Access Journals (Sweden)

    Anand Ashish

    2010-01-01

    Full Text Available Subchondral fracture of the femoral head is an uncommon entity and usually occurs as an insufficiency fracture associated with poor bone quality or as a fatigue fracture in young military recruits. This condition should be considered in the differential diagnosis of acute hip pain in young patients along with transient osteoporosis and avascular necrosis of the hip. We report a case of acute onset hip pain in an asymptomatic healthy adult in which the diagnosis was made by magnetic resonance imaging and the patient responded well to conservative treatment.

  5. Malalignment and subchondral bone turnover in contralateral knees of overweight/obese women with unilateral osteoarthritis: implications for bilateral disease.

    Science.gov (United States)

    Mazzuca, Steven A; Brandt, Kenneth D; Lane, Kathleen A; Chakr, Rafael

    2011-11-01

    To explore whether the risk of incident tibiofemoral (TF) osteoarthritis (OA) in the radiographically normal contralateral knee of overweight/obese women with unilateral knee OA is mediated by malalignment and/or preceded by increased turnover of subchondral bone. We used data of post hoc analyses from a randomized controlled trial. Cross-sectional analyses evaluated the baseline association between frontal plane alignment and bone turnover in the medial TF compartment in 78 radiographically normal contralateral knees. Longitudinal analyses ascertained whether incident radiographic OA (TF osteophyte formation within 30 months) was associated with malalignment and/or increased bone turnover at baseline. Alignment subcategories (varus/neutral/valgus) were based on the anatomic axis angle. (99m)Tc-methylene diphosphonate uptake in a late-phase bone scan was quantified in regions of interest in the medial tibia (MT) and medial femur (MF) and adjusted for uptake in a reference segment of the ipsilateral tibial shaft (TS). MF and MT uptake in varus contralateral knees was 50-55% greater than in the TS. Adjusted MT uptake in varus contralateral knees was significantly greater than that in neutral and valgus contralateral knees (mean 1.55 versus 1.38 and 1.43, respectively; P < 0.05). Among 69 contralateral knees followed longitudinally, 22 (32%) developed TF OA. Varus angulation was associated with a marginally significant increase in the odds of incident OA (adjusted odds ratio 3.98, P = 0.067). While the small sample size limited our ability to detect statistically significant risk factors, these data suggest that the risk of developing bilateral TF OA in overweight/obese women may be mediated by varus malalignment. Copyright © 2011 by the American College of Rheumatology.

  6. Receptor tyrosine kinase inhibition causes simultaneous bone loss and excess bone formation within growing bone in rats

    International Nuclear Information System (INIS)

    Nurmio, Mirja; Joki, Henna; Kallio, Jenny; Maeaettae, Jorma A.; Vaeaenaenen, H. Kalervo; Toppari, Jorma; Jahnukainen, Kirsi; Laitala-Leinonen, Tiina

    2011-01-01

    During postnatal skeletal growth, adaptation to mechanical loading leads to cellular activities at the growth plate. It has recently become evident that bone forming and bone resorbing cells are affected by the receptor tyrosine kinase (RTK) inhibitor imatinib mesylate (STI571, Gleevec (registered) ). Imatinib targets PDGF, ABL-related gene, c-Abl, c-Kit and c-Fms receptors, many of which have multiple functions in the bone microenvironment. We therefore studied the effects of imatinib in growing bone. Young rats were exposed to imatinib (150 mg/kg on postnatal days 5-7, or 100 mg/kg on postnatal days 5-13), and the effects of RTK inhibition on bone physiology were studied after 8 and 70 days (3-day treatment), or after 14 days (9-day treatment). X-ray imaging, computer tomography, histomorphometry, RNA analysis and immunohistochemistry were used to evaluate bone modeling and remodeling in vivo. Imatinib treatment eliminated osteoclasts from the metaphyseal osteochondral junction at 8 and 14 days. This led to a resorption arrest at the growth plate, but also increased bone apposition by osteoblasts, thus resulting in local osteopetrosis at the osteochondral junction. The impaired bone remodelation observed on day 8 remained significant until adulthood. Within the same bone, increased osteoclast activity, leading to bone loss, was observed at distal bone trabeculae on days 8 and 14. Peripheral quantitative computer tomography (pQCT) and micro-CT analysis confirmed that, at the osteochondral junction, imatinib shifted the balance from bone resorption towards bone formation, thereby altering bone modeling. At distal trabecular bone, in turn, the balance was turned towards bone resorption, leading to bone loss. - Research highlights: → 3-Day imatinib treatment. → Causes growth plate anomalies in young rats. → Causes biomechanical changes and significant bone loss at distal trabecular bone. → Results in loss of osteoclasts at osteochondral junction.

  7. Effect of exercise on thicknesses of mature hyaline cartilage, calcified cartilage, and subchondral bone of equine tarsi.

    Science.gov (United States)

    Tranquille, Carolyne A; Blunden, Antony S; Dyson, Sue J; Parkin, Tim D H; Goodship, Allen E; Murray, Rachel C

    2009-12-01

    OBJECTIVE-To investigate effects of exercise on hyaline cartilage (HC), calcified cartilage (CC), and subchondral bone (SCB) thickness patterns of equine tarsi. SAMPLE POPULATION-30 tarsi from cadavers of horses with known exercise history. PROCEDURES-Tarsi were assigned to 3 groups according to known exercise history as follows: pasture exercise only (PE tarsi), low-intensity general-purpose riding exercise (LE tarsi), and high-intensity elite competition riding exercise (EE tarsi). Osteochondral tissue from distal tarsal joints underwent histologic preparation. Hyaline cartilage, CC, and SCB thickness were measured at standard sites at medial, midline, and lateral locations across joints with a histomorphometric technique. RESULTS-HC, CC, and SCB thickness were significantly greater at all sites in EE tarsi, compared with PE tarsi; this was also true when LE tarsi were compared with PE tarsi. At specific sites, HC, CC, and SCB were significantly thicker in EE tarsi, compared with LE tarsi. Along the articular surface of the proximal aspect of the third metatarsal bone, SCB was thickest in EE tarsi and thinnest in LE tarsi; increases were greatest at sites previously reported to undergo peak strains and osteochondral damage. CONCLUSIONS AND CLINICAL RELEVANCE-Increased exercise was associated with increased HC, CC, and SCB thickness in mature horses. At sites that undergo high compressive strains, with a reported predisposition to osteoarthritic change, there was increased CC and SCB thickness. These results may provide insight into the interaction between adaptive response to exercise and pathological change.

  8. Bed Rest and Immobilization: Risk Factors for Bone Loss

    Science.gov (United States)

    ... Risk Factors for Bone Loss Bed Rest and Immobilization: Risk Factors for Bone Loss Like muscle, bone ... complications of pregnancy; and those who are experiencing immobilization of some part of the body because of ...

  9. [Bone loss in lactating women and post-pregnancy osteoporosis].

    Science.gov (United States)

    Hirata, Go; Chaki, Osamu

    2011-09-01

    Measurement of the bone mineral density have shown that lactating women had 1 to 3% decrease in bone mineral density. Post pregnancy osteoporosis is rare condition that causes fragile fracture mostly in vertebrae. The bone loss in lactating women is caused by calcium loss, decrease in estrogen level, and increase in PTHrP (parathyroid hormone related protein) level. Some data have shown that extended lactation and amenorrhea had an association with the degree of bone loss. Mostly, the bone loss of the lactating women recovers to the baseline level, soon after the weaning, and there is no long term effect. Post pregnancy osteoporosis should be concerned, when we see a lactating woman with fragile fracture of the vertebrae.

  10. Cepharanthine Prevents Estrogen Deficiency-Induced Bone Loss by Inhibiting Bone Resorption

    Directory of Open Access Journals (Sweden)

    Chen-he Zhou

    2018-03-01

    Full Text Available Osteoporosis is a common health problem worldwide caused by an imbalance of bone formation vs. bone resorption. However, current therapeutic approaches aimed at enhancing bone formation or suppressing bone resorption still have some limitations. In this study, we demonstrated for the first time that cepharanthine (CEP, derived from Stephania cepharantha Hayata exerted a protective effect on estrogen deficiency-induced bone loss. This protective effect was confirmed to be achieved through inhibition of bone resorption in vivo, rather than through enhancement of bone formation in vivo. Furthermore, the in vitro study revealed that CEP attenuated receptor activator of nuclear factor κB ligand (RANKL-induced osteoclast formation, and suppressed bone resorption by impairing the c-Jun N-terminal kinase (JNK and phosphatidylinositol 3-kinase (PI3K-AKT signaling pathways. The inhibitory effect of CEP could be partly reversed by treatment with anisomycin (a JNK and p38 agonist and/or SC79 (an AKT agonist in vitro. Our results thus indicated that CEP could prevent estrogen deficiency-induced bone loss by inhibiting osteoclastogenesis. Hence, CEP might be a novel therapeutic agent for anti-osteoporosis therapy.

  11. Uncommon observation of bifocal giant subchondral cysts in the hip. Diagnostic role of CT arthrography and MRI, with pathological correlation

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Espino, Pauline; Cauter, Maite van; Gossing, Louis [Universite Catholique de Louvain, Department of Orthopedic Surgery, Institut de Recherche Experimentale et Clinique (IREC), Cliniques Universitaires Saint Luc, Brussels (Belgium); Galant, Christine C. [Universite Catholique de Louvain, Department of Pathology, Institut de Recherche Experimentale et Clinique (IREC), Cliniques Universitaires Saint Luc, Brussels (Belgium); Acid, Souad; Lecouvet, Frederic E. [Universite Catholique de Louvain, Department of Radiology, Institut de Recherche Experimentale et Clinique (IREC), Cliniques Universitaires Saint Luc, Brussels (Belgium)

    2018-04-15

    Subchondral cysts (or geodes) are common in osteoarthritis (OA), usually in association with other typical signs, i.e., joint space narrowing, subchondral bone sclerosis, and osteophytosis. However, large lesions without the typical signs of OA or lesions located outside the weight-bearing areas are unusual and may be confused for other conditions, in particular, those of tumoral origin. We report the findings in a 48-year-old man who had been complaining of left buttock pain for 3 years, getting worse over the last year, and an evolutive limited range of motion of the hip. The pain was increased by weight-bearing and was not relieved by nonsteroidal anti-inflammatory drugs. Radiographs and CT showed a large multilocular lytic lesion within the femoral head and a large lytic lesion in the left ilio-ischiatic ramus, raising the question of bifocal tumoral involvement. On MRI, the lesions had low signal intensity on T1- and high signal intensity on T2-weighted MR images, with subtle peripheral enhancement on post-contrast T1-weighted images. CT arthrography, by demonstrating a communication between the femoral head and ischiatic cysts and the joint space allowed us to definitively rule out malignant conditions and to make the diagnosis of subchondral bone cysts. Total hip arthroplasty was performed. Pathological analysis of the resected femoral head and of material obtained at curettage of the ischiatic lesion confirmed the diagnosis of degenerative geodes. This case illustrates an atypical bifocal location of giant subchondral cysts in the hip joint mimicking lytic tumors, in the absence of osteoarthritis or rheumatoid arthritis, and highlights the role of CT arthrography in identifying this condition. (orig.)

  12. Age-associated bone loss and intraskeletal variability in the Imperial Romans.

    Science.gov (United States)

    Cho, Helen; Stout, Sam Darrel

    2011-01-01

    An Imperial Roman sample from the Isola Sacra necropolis (100-300 A.D.) offered an opportunity to histologically examine bone loss and intraskeletal variability in an urban archaeological population. Rib and femur samples were analyzed for static indices of bone remodeling and measures of bone mass. The Imperial Romans experienced normal age-associated bone loss via increased intracortical porosity and endosteal expansion, with females exhibiting greater bone loss and bone turnover rates than in males. Life events such as menopause and lactation coupled with cultural attitudes and practices regarding gender and food may have led to increased bone loss in females. Remodeling dynamics differ between the rib and femur and the higher remodeling rates in the rib may be attributed to different effective age of the adult compacta or loading environment. This study demonstrates that combining multiple methodologies to examine bone loss is necessary to shed light on the biocultural factors that influence bone mass and bone loss.

  13. Mechanical Loading Attenuates Radiation-Induced Bone Loss in Bone Marrow Transplanted Mice

    Science.gov (United States)

    Govey, Peter M.; Zhang, Yue; Donahue, Henry J.

    2016-01-01

    Exposure of bone to ionizing radiation, as occurs during radiotherapy for some localized malignancies and blood or bone marrow cancers, as well as during space travel, incites dose-dependent bone morbidity and increased fracture risk. Rapid trabecular and endosteal bone loss reflects acutely increased osteoclastic resorption as well as decreased bone formation due to depletion of osteoprogenitors. Because of this dysregulation of bone turnover, bone’s capacity to respond to a mechanical loading stimulus in the aftermath of irradiation is unknown. We employed a mouse model of total body irradiation and bone marrow transplantation simulating treatment of hematologic cancers, hypothesizing that compression loading would attenuate bone loss. Furthermore, we hypothesized that loading would upregulate donor cell presence in loaded tibias due to increased engraftment and proliferation. We lethally irradiated 16 female C57Bl/6J mice at age 16 wks with 10.75 Gy, then IV-injected 20 million GFP(+) total bone marrow cells. That same day, we initiated 3 wks compression loading (1200 cycles 5x/wk, 10 N) in the right tibia of 10 of these mice while 6 mice were irradiated, non-mechanically-loaded controls. As anticipated, before-and-after microCT scans demonstrated loss of trabecular bone (-48.2% Tb.BV/TV) and cortical thickness (-8.3%) at 3 wks following irradiation. However, loaded bones lost 31% less Tb.BV/TV and 8% less cortical thickness (both pbones also had significant increases in trabecular thickness and tissue mineral densities from baseline. Mechanical loading did not affect donor cell engraftment. Importantly, these results demonstrate that both cortical and trabecular bone exposed to high-dose therapeutic radiation remain capable of an anabolic response to mechanical loading. These findings inform our management of bone health in cases of radiation exposure. PMID:27936104

  14. Secondary Hyperparathyroidism and Bone Turnover in Elderly with Bone Loss - Original Investigation

    Directory of Open Access Journals (Sweden)

    Nurdan Peker

    2006-12-01

    Full Text Available Bone loss is common in the elderly. Parathyroid hormone (PTH, which regulates serum calcium levels,calcitonin and vitamin D metabolites have various effects on skeletal system. The aim of this study was to assess secondary hyperparathyroidism (HPTH and bone turnover in elderly with bone loss. Fifty-five patients (9 men,46 women older than 65 years with bone loss were included in the study. Bone mineral density was measured by dual energy x-ray absorptiomety (DXA at L1-4 vertebrae and proximal femur regions. Patients with T scores <-1.5 at one of the measurement sites were included in the study. Study subjects were assessed in terms of fracture history, sunbathing and walking activity. Routine biochemical tests, serum osteocalcin (OC and C-telopeptide type 1 collagen (CTX and lateral thoracal and lumbar vertebrae radyographic evaluation was performed. Our results showed that 70.9% of the patients had HPTH. Total femur BMD values and femur neck T scores were significantly lower in HPTH group than PTH normal one (p=0.05, p=0.03. Serum OC and CTX levels were higher in both groups. There was a negative correlation with femur neck BMD and CTX (r=0,321. There was no correlation between serum PTH levels and lumbar vertebrae and proximal femur BMD values. Serum PTH and alkaline phosphatase levels showed a significant positive correlation. In conclusion secondary HPTH and increased bone turnover is common elderly with bone loss. Adequate calcium and vitamin D intake is important the older people. (Osteoporoz Dünyasından 2006; 12: 70-3

  15. Visualisation of subchondral erosion in rat monoarticular arthritis by magnetic resonance imaging

    International Nuclear Information System (INIS)

    Carpenter, T.A.; Everett, J.R.; Hall, L.D.; Harper, G.P.; Hodgson, R.J.; James, M.F.

    1995-01-01

    High-resolution magnetic resonance imaging (MRI) was used to investigate antigen-induced monoarticular arthritis (AIMA) in the rat. In sagittal, spin-echo images of the knee, characteristic parallel bands, in the order dark-light-dark, were consistently observed 5-8 days after arthritis induction; the bands ran concentric with, and just beneath, the femoral and tibial articular surfaces. Concurrent radiology, histology and MRI (chemical shift-selective imaging and contrast enhancement with magnetisation transfer and gadolinium) established that the phenomenon reflected subchondral erosion, not artefact. The outer hypointense band corresponded to calcified cartilage underlying the articular surface. The central hyperintense band reflected inflammatory matrix displacing normal haematopoietic tissue immediately subchondrally; here, trabecular bone had mostly disappeared, but adjacent articular cartilage, although under attack and lacking proteoglycan, appeared structurally normal. The inner hypointense band reflected deeper, truncated trabeculae within inflammatory matrix, layered with pallisading osteoblast-like cells. This study exemplifies the power of MRI for revealing localised joint pathology non-invasively, and shows that rat AIMA shares many pathological features with arthritis in human beings. (orig.)

  16. Automated assessment of bone changes in cross-sectional micro-CT studies of murine experimental osteoarthritis.

    Science.gov (United States)

    Das Neves Borges, Patricia; Vincent, Tonia L; Marenzana, Massimo

    2017-01-01

    The degradation of articular cartilage, which characterises osteoarthritis (OA), is usually paired with excessive bone remodelling, including subchondral bone sclerosis, cysts, and osteophyte formation. Experimental models of OA are widely used to investigate pathogenesis, yet few validated methodologies for assessing periarticular bone morphology exist and quantitative measurements are limited by manual segmentation of micro-CT scans. The aim of this work was to chart the temporal changes in periarticular bone in murine OA by novel, automated micro-CT methods. OA was induced by destabilisation of the medial meniscus (DMM) in 10-week old male mice and disease assessed cross-sectionally from 1- to 20-weeks post-surgery. A novel approach was developed to automatically segment subchondral bone compartments into plate and trabecular bone in micro-CT scans of tibial epiphyses. Osteophyte volume, as assessed by shape differences using 3D image registration, and by measuring total epiphyseal volume was performed. Significant linear and volumetric structural modifications in subchondral bone compartments and osteophytes were measured from 4-weeks post-surgery and showed progressive changes at all time points; by 20 weeks, medial subchondral bone plate thickness increased by 160±19.5 μm and the medial osteophyte grew by 0.124±0.028 μm3. Excellent agreement was found when automated measurements were compared with manual assessments. Our automated methods for assessing bone changes in murine periarticular bone are rapid, quantitative, and highly accurate, and promise to be a useful tool in future preclinical studies of OA progression and treatment. The current approaches were developed specifically for cross-sectional micro-CT studies but could be applied to longitudinal studies.

  17. Automated assessment of bone changes in cross-sectional micro-CT studies of murine experimental osteoarthritis.

    Directory of Open Access Journals (Sweden)

    Patricia Das Neves Borges

    Full Text Available The degradation of articular cartilage, which characterises osteoarthritis (OA, is usually paired with excessive bone remodelling, including subchondral bone sclerosis, cysts, and osteophyte formation. Experimental models of OA are widely used to investigate pathogenesis, yet few validated methodologies for assessing periarticular bone morphology exist and quantitative measurements are limited by manual segmentation of micro-CT scans. The aim of this work was to chart the temporal changes in periarticular bone in murine OA by novel, automated micro-CT methods.OA was induced by destabilisation of the medial meniscus (DMM in 10-week old male mice and disease assessed cross-sectionally from 1- to 20-weeks post-surgery. A novel approach was developed to automatically segment subchondral bone compartments into plate and trabecular bone in micro-CT scans of tibial epiphyses. Osteophyte volume, as assessed by shape differences using 3D image registration, and by measuring total epiphyseal volume was performed.Significant linear and volumetric structural modifications in subchondral bone compartments and osteophytes were measured from 4-weeks post-surgery and showed progressive changes at all time points; by 20 weeks, medial subchondral bone plate thickness increased by 160±19.5 μm and the medial osteophyte grew by 0.124±0.028 μm3. Excellent agreement was found when automated measurements were compared with manual assessments.Our automated methods for assessing bone changes in murine periarticular bone are rapid, quantitative, and highly accurate, and promise to be a useful tool in future preclinical studies of OA progression and treatment. The current approaches were developed specifically for cross-sectional micro-CT studies but could be applied to longitudinal studies.

  18. Morphological studies at subchondral bone structures in human early arthrosis. Final report; Morphologische Studien an subchondralen Knochenstrukturen bei humanen Frueharthrosen. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1992-12-31

    Quantitative histomorphometric studies using an image analysis system were performed simultaneously on hyaline cartilage, calcified cartilage and subchondral cancellous bone of human tibial heads for detailed information about the pathogenesis of arthrosis. Joint structures need to be fully detected in three dimensions since measurement values are more affected by topographical aspects than by either age, or sex, or arthrosin stage. Mechanical factors were found to affect essentially the initiation and progression of arthrosis. Results are demonstrated in detail. (orig.) [Deutsch] Um detaillierte Aussagen ueber die Pathogenese der Arthrose machen zu koennen, wurden hyaliner Knorpel, Kalkknorpel und subchondrale Spongiosa menschlicher Tibiakoepfe gleichzeitig mit Hilfe eines Bildanalysesystems quantitativ histomorphometrisch untersucht. Eine umfangreiche dreidimensionale Erfassung der Gelenkstrukturen ist erforderlich, da sich topographische Aspekte wesentlich staerker auf die Messwerte auswirken als Alter, Geschlecht oder Arthrosestadium. Insgesamt zeigt sich ein wesentlicher Einfluss mechanischer Faktoren auf die Arthroseinitiierung und -progredienz. Die Ergebnisse werden detailliert dargestellt. (orig.)

  19. Bioactive silica nanoparticles reverse age-associated bone loss in mice.

    Science.gov (United States)

    Weitzmann, M Neale; Ha, Shin-Woo; Vikulina, Tatyana; Roser-Page, Susanne; Lee, Jin-Kyu; Beck, George R

    2015-05-01

    We recently reported that in vitro, engineered 50nm spherical silica nanoparticles promote the differentiation and activity of bone building osteoblasts but suppress bone-resorbing osteoclasts. Furthermore, these nanoparticles promote bone accretion in young mice in vivo. We have now investigated the capacity of these nanoparticles to reverse bone loss in aged mice, a model of human senile osteoporosis. Aged mice received nanoparticles weekly and bone mineral density (BMD), bone structure, and bone turnover were quantified. Our data revealed a significant increase in BMD, bone volume, and biochemical markers of bone formation. Biochemical and histological examinations failed to identify any abnormalities caused by nanoparticle administration. Our studies demonstrate that silica nanoparticles effectively blunt and reverse age-associated bone loss in mice by a mechanism involving promotion of bone formation. The data suggest that osteogenic silica nanoparticles may be a safe and effective therapeutic for counteracting age-associated bone loss. Osteoporosis poses a significant problem in the society. Based on their previous in-vitro findings, the authors' group investigated the effects of spherical silica nanoparticles in reversing bone loss in a mouse model of osteoporosis. The results showed that intra-peritoneal injections of silica nanoparticles could increase bone mineral density, with little observed toxic side effects. This novel method may prove important in future therapy for combating osteoporosis. Published by Elsevier Inc.

  20. Glucocorticoid: A potential role in microgravity-induced bone loss

    Science.gov (United States)

    Yang, Jiancheng; Yang, Zhouqi; Li, Wenbin; Xue, Yanru; Xu, Huiyun; Li, Jingbao; Shang, Peng

    2017-11-01

    Exposure of animals and humans to conditions of microgravity, including actual spaceflight and simulated microgravity, results in numerous negative alterations to bone structure and mechanical properties. Although there are abundant researches on bone loss in microgravity, the explicit mechanism is not completely understood. At present, it is widely accepted that the absence of mechanical stimulus plays a predominant role in bone homeostasis disorders in conditions of weightlessness. However, aside from mechanical unloading, nonmechanical factors such as various hormones, cytokines, dietary nutrition, etc. are important as well in microgravity induced bone loss. The stress-induced increase in endogenous glucocorticoid (GC) levels is inevitable in microgravity environments. Moreover, it is well known that GCs have a detrimental effect to bone health at excess concentrations. Therefore, GC plays a potential role in microgravity-induced bone loss. This review summarizeds several studies and their prospective solutions to this hypothesis.

  1. Carnosol Inhibits Pro-Inflammatory and Catabolic Mediators of Cartilage Breakdown in Human Osteoarthritic Chondrocytes and Mediates Cross-Talk between Subchondral Bone Osteoblasts and Chondrocytes.

    Directory of Open Access Journals (Sweden)

    Christelle Sanchez

    Full Text Available The aim of this work was to evaluate the effects of carnosol, a rosemary polyphenol, on pro-inflammatory and catabolic mediators of cartilage breakdown in chondrocytes and via bone-cartilage crosstalk.Osteoarthritic (OA human chondrocytes were cultured in alginate beads for 4 days in presence or absence of carnosol (6 nM to 9 μM. The production of aggrecan, matrix metalloproteinase (MMP-3, tissue inhibitor of metalloproteinase (TIMP-1, interleukin (IL-6 and nitric oxide (NO and the expression of type II collagen and ADAMTS-4 and -5 were analyzed. Human osteoblasts from sclerotic (SC or non-sclerotic (NSC subchondral bone were cultured for 3 days in presence or absence of carnosol before co-culture with chondrocytes. Chondrocyte gene expression was analyzed after 4 days of co-culture.In chondrocytes, type II collagen expression was significantly enhanced in the presence of 3 μM carnosol (p = 0.008. MMP-3, IL-6, NO production and ADAMTS-4 expression were down-regulated in a concentration-dependent manner by carnosol (p<0.01. TIMP-1 production was slightly increased at 3 μM (p = 0.02 and ADAMTS-5 expression was decreased from 0.2 to 9 μM carnosol (p<0.05. IL-6 and PGE2 production was reduced in the presence of carnosol in both SC and NSC osteoblasts while alkaline phosphatase activity was not changed. In co-culture experiments preincubation of NSC and SC osteoblasts wih carnosol resulted in similar effects to incubation with anti-IL-6 antibody, namely a significant increase in aggrecan and decrease in MMP-3, ADAMTS-4 and -5 gene expression by chondrocytes.Carnosol showed potent inhibition of pro-inflammatory and catabolic mediators of cartilage breakdown in chondrocytes. Inhibition of matrix degradation and enhancement of formation was observed in chondrocytes cocultured with subchondral osteoblasts preincubated with carnosol indicating a cross-talk between these two cellular compartments, potentially mediated via inhibition of IL-6 in

  2. Probiotics protect mice from ovariectomy-induced cortical bone loss.

    Science.gov (United States)

    Ohlsson, Claes; Engdahl, Cecilia; Fåk, Frida; Andersson, Annica; Windahl, Sara H; Farman, Helen H; Movérare-Skrtic, Sofia; Islander, Ulrika; Sjögren, Klara

    2014-01-01

    The gut microbiota (GM) modulates the hosts metabolism and immune system. Probiotic bacteria are defined as live microorganisms which when administered in adequate amounts confer a health benefit on the host and can alter the composition of the GM. Germ-free mice have increased bone mass associated with reduced bone resorption indicating that the GM also regulates bone mass. Ovariectomy (ovx) results in bone loss associated with altered immune status. The purpose of this study was to determine if probiotic treatment protects mice from ovx-induced bone loss. Mice were treated with either a single Lactobacillus (L) strain, L. paracasei DSM13434 (L. para) or a mixture of three strains, L. paracasei DSM13434, L. plantarum DSM 15312 and DSM 15313 (L. mix) given in the drinking water during 6 weeks, starting two weeks before ovx. Both the L. para and the L. mix treatment protected mice from ovx-induced cortical bone loss and bone resorption. Cortical bone mineral content was higher in both L. para and L. mix treated ovx mice compared to vehicle (veh) treated ovx mice. Serum levels of the resorption marker C-terminal telopeptides and the urinary fractional excretion of calcium were increased by ovx in the veh treated but not in the L. para or the L. mix treated mice. Probiotic treatment reduced the expression of the two inflammatory cytokines, TNFα and IL-1β, and increased the expression of OPG, a potent inhibitor of osteoclastogenesis, in cortical bone of ovx mice. In addition, ovx decreased the frequency of regulatory T cells in bone marrow of veh treated but not probiotic treated mice. In conclusion, treatment with L. para or the L. mix prevents ovx-induced cortical bone loss. Our findings indicate that these probiotic treatments alter the immune status in bone resulting in attenuated bone resorption in ovx mice.

  3. Probiotics protect mice from ovariectomy-induced cortical bone loss.

    Directory of Open Access Journals (Sweden)

    Claes Ohlsson

    Full Text Available The gut microbiota (GM modulates the hosts metabolism and immune system. Probiotic bacteria are defined as live microorganisms which when administered in adequate amounts confer a health benefit on the host and can alter the composition of the GM. Germ-free mice have increased bone mass associated with reduced bone resorption indicating that the GM also regulates bone mass. Ovariectomy (ovx results in bone loss associated with altered immune status. The purpose of this study was to determine if probiotic treatment protects mice from ovx-induced bone loss. Mice were treated with either a single Lactobacillus (L strain, L. paracasei DSM13434 (L. para or a mixture of three strains, L. paracasei DSM13434, L. plantarum DSM 15312 and DSM 15313 (L. mix given in the drinking water during 6 weeks, starting two weeks before ovx. Both the L. para and the L. mix treatment protected mice from ovx-induced cortical bone loss and bone resorption. Cortical bone mineral content was higher in both L. para and L. mix treated ovx mice compared to vehicle (veh treated ovx mice. Serum levels of the resorption marker C-terminal telopeptides and the urinary fractional excretion of calcium were increased by ovx in the veh treated but not in the L. para or the L. mix treated mice. Probiotic treatment reduced the expression of the two inflammatory cytokines, TNFα and IL-1β, and increased the expression of OPG, a potent inhibitor of osteoclastogenesis, in cortical bone of ovx mice. In addition, ovx decreased the frequency of regulatory T cells in bone marrow of veh treated but not probiotic treated mice. In conclusion, treatment with L. para or the L. mix prevents ovx-induced cortical bone loss. Our findings indicate that these probiotic treatments alter the immune status in bone resulting in attenuated bone resorption in ovx mice.

  4. Effects of Spaceflight on Bone: The Rat as an Animal Model for Human Bone Loss

    Science.gov (United States)

    Halloran, B.; Weider, T.; Morey-Holton, E.

    1999-01-01

    The loss of weight bearing during spaceflight results in osteopenia in humans. Decrements in bone mineral reach 3-10% after as little as 75-184 days in space. Loss of bone mineral during flight decreases bone strength and increases fracture risk. The mechanisms responsible for, and the factors contributing to, the changes in bone induced by spaceflight are poorly understood. The rat has been widely used as an animal model for human bone loss during spaceflight. Despite its potential usefulness, the results of bone studies performed in the rat in space have been inconsistent. In some flights bone formation is decreased and cancellous bone volume reduced, while in others no significant changes in bone occur. In June of 1996 Drs. T. Wronski, S. Miller and myself participated in a flight experiment (STS 78) to examine the effects of glucocorticoids on bone during weightlessness. Technically the 17 day flight experiment was flawless. The results, however, were surprising. Cancellous bone volume and osteoblast surface in the proximal tibial metaphysis were the same in flight and ground-based control rats. Normal levels of cancellous bone mass and bone formation were also detected in the lumbar vertebrae and femoral neck of flight rats. Furthermore, periosteal bone formation rate was found to be identical in flight and ground-based control rats. Spaceflight had little or no effect on bone metabolism! These results prompted us to carefully review the changes in bone observed in, and the flight conditions of previous spaceflight missions.

  5. Cadmium accelerates bone loss in ovariectomized mice and fetal rat limb bones in culture

    International Nuclear Information System (INIS)

    Bhattacharyya, M.H.; Whelton, B.D.; Stern, P.H.; Peterson, D.P.

    1988-01-01

    Loss of bone mineral after ovariectomy was studied in mice exposed to dietary cadmium at 0.25, 5, or 50 ppm. Results show that dietary cadmium at 50 ppm increased bone mineral loss to a significantly greater extent in ovariectomized mice than in sham-operated controls. These results were obtained from two studies, one in which skeletal calcium content was determined 6 months after ovariectomy and a second in which 45 Ca release from 45 Ca-prelabeled bones was measured immediately after the start of dietary cadmium exposure. Furthermore, experiments with 45 Ca-prelabeled fetal rat limb bones in culture demonstrated that Cd at 10 nM in the medium, a concentration estimated to be in the plasma of mice exposed to 50 ppm dietary Cd, strikingly increased bone resorption. These in vitro results indicate that cadmium may enhance bone mineral loss by a direct action on bone. Results of the in vivo studies are consistent with a significant role of cadmium in the etiology of Itai-Itai disease among postmenopausal women in Japan and may in part explain the increased risk of postmenopausal osteoporosis among women who smoke

  6. Carpometacarpal subchondral cysts due to repetitive movements in shoemaker: a case report.

    Science.gov (United States)

    Tonini, Stefano; Candura, Stefano M; Lanfranco, Andrea; Mennoia, N Valerio

    2011-12-01

    Subchondral carpometacarpal cysts are classic and almost pathognomonic lesions found in workers using vibrating instruments over prolonged periods of time. We present the case of a 53-year-old woman who worked for 30 years sewing shoe uppers, a task which required grasping firmly a pear-shaped handle awl and pushing it through the leather upper and the sole of the shoe, with combined flexion and supination movement of the wrist. After approximately 20 years of working, the patient noted gradual onset of paresthesias in the dominant (right) hand, with increasing difficulty in grasping the awl. Subsequent diagnosis of carpal tunnel syndrome was confirmed by electrophysiologic testing and its surgical release was performed. Nevertheless, hand pain, paresthesias and weakness persisted. Ultrasound of the snuffbox tendons excluded DeQuervain tenosynovitis. Radiographic imaging of the symptomatic hand showed carpometacarpal subchondral cystic formations. In addition to demonstrating the usefulness of radiographic imaging in patients with persistent hand pain post-carpal release, this case is important in illustrating that repetitive movements with high pressure over the palmar carpal area may cause bone cysts, even if the subjects do not use vibrating tools.

  7. Room temperature housing results in premature cancellous bone loss in growing female mice: implications for the mouse as a preclinical model for age-related bone loss.

    Science.gov (United States)

    Iwaniec, U T; Philbrick, K A; Wong, C P; Gordon, J L; Kahler-Quesada, A M; Olson, D A; Branscum, A J; Sargent, J L; DeMambro, V E; Rosen, C J; Turner, R T

    2016-10-01

    Room temperature housing (22 °C) results in premature cancellous bone loss in female mice. The bone loss was prevented by housing mice at thermoneutral temperature (32 °C). Thermogenesis differs markedly between mice and humans and mild cold stress induced by standard room temperature housing may introduce an unrecognized confounding variable into preclinical studies. Female mice are often used as preclinical models for osteoporosis but, in contrast to humans, mice exhibit cancellous bone loss during growth. Mice are routinely housed at room temperature (18-23 °C), a strategy that exaggerates physiological differences in thermoregulation between mice (obligatory daily heterotherms) and humans (homeotherms). The purpose of this investigation was to assess whether housing female mice at thermoneutral (temperature range where the basal rate of energy production is at equilibrium with heat loss) alters bone growth, turnover and microarchitecture. Growing (4-week-old) female C57BL/6J and C3H/HeJ mice were housed at either 22 or 32 °C for up to 18 weeks. C57BL/6J mice housed at 22 °C experienced a 62 % cancellous bone loss from the distal femur metaphysis during the interval from 8 to 18 weeks of age and lesser bone loss from the distal femur epiphysis, whereas cancellous and cortical bone mass in 32 °C-housed mice were unchanged or increased. The impact of thermoneutral housing on cancellous bone was not limited to C57BL/6J mice as C3H/HeJ mice exhibited a similar skeletal response. The beneficial effects of thermoneutral housing on cancellous bone were associated with decreased Ucp1 gene expression in brown adipose tissue, increased bone marrow adiposity, higher rates of bone formation, higher expression levels of osteogenic genes and locally decreased bone resorption. Housing female mice at 22 °C resulted in premature cancellous bone loss. Failure to account for species differences in thermoregulation may seriously confound interpretation of studies

  8. The estrogen-related receptors (ERRs): potential targets against bone loss.

    Science.gov (United States)

    Zhang, Ling; Wong, Jiemin; Vanacker, Jean-Marc

    2016-10-01

    Bone loss and the resulting skeletal fragility is induced by several pathological or natural conditions, the most prominent of which being aging as well as the decreased levels of circulating estrogens in post-menopause females. To date, most treatments against bone loss aim at preventing excess bone resorption. We here summarize data indicating that the estrogen-related receptors (ERRs) α and γ prevent bone formation. Inhibiting these receptors may thus constitute an anabolic approach by increasing bone formation.

  9. Effect of antiresorptive and anabolic bone therapy on development of osteoarthritis in a posttraumatic rat model of OA

    OpenAIRE

    Bagi, Cedo M.; Berryman, Edwin; Zakur, David E.; Wilkie, Dean; Andresen, Catharine J.

    2015-01-01

    Introduction Osteoarthritis (OA) is a leading cause of disability, but despite the high unmet clinical need and extensive research seeking dependable therapeutic interventions, no proven disease-modifying treatment for OA is currently available. Due to the close interaction and interplay between the articular cartilage and the subchondral bone plate, it has been hypothesized that antiresorptive drugs can also reduce cartilage degradation, inhibit excessive turnover of the subchondral bone pla...

  10. Microstructural changes in cartilage and bone related to repetitive overloading in an equine athlete model.

    Science.gov (United States)

    Turley, Sean M; Thambyah, Ashvin; Riggs, Christopher M; Firth, Elwyn C; Broom, Neil D

    2014-06-01

    The palmar aspect of the third metacarpal (MC3) condyle of equine athletes is known to be subjected to repetitive overloading that can lead to the accumulation of joint tissue damage, degeneration, and stress fractures, some of which result in catastrophic failure. However, there is still a need to understand at a detailed microstructural level how this damage progresses in the context of the wider joint tissue complex, i.e. the articular surface, the hyaline and calcified cartilage, and the subchondral bone. MC3 bones from non-fractured joints were obtained from the right forelimbs of 16 Thoroughbred racehorses varying in age between 3 and 8 years, with documented histories of active race training. Detailed microstructural analysis of two clinically important sites, the parasagittal grooves and the mid-condylar regions, identified extensive levels of microdamage in the calcified cartilage and subchondral bone concealed beneath outwardly intact hyaline cartilage. The study shows a progression in microdamage severity, commencing with mild hard-tissue microcracking in younger animals and escalating to severe subchondral bone collapse and lesion formation in the hyaline cartilage with increasing age and thus athletic activity. The presence of a clearly distinguishable fibrous tissue layer at the articular surface immediately above sites of severe subchondral collapse suggested a limited reparative response in the hyaline cartilage. © 2014 Anatomical Society.

  11. Microstructural changes in cartilage and bone related to repetitive overloading in an equine athlete model

    Science.gov (United States)

    Turley, Sean M; Thambyah, Ashvin; Riggs, Christopher M; Firth, Elwyn C; Broom, Neil D

    2014-01-01

    The palmar aspect of the third metacarpal (MC3) condyle of equine athletes is known to be subjected to repetitive overloading that can lead to the accumulation of joint tissue damage, degeneration, and stress fractures, some of which result in catastrophic failure. However, there is still a need to understand at a detailed microstructural level how this damage progresses in the context of the wider joint tissue complex, i.e. the articular surface, the hyaline and calcified cartilage, and the subchondral bone. MC3 bones from non-fractured joints were obtained from the right forelimbs of 16 Thoroughbred racehorses varying in age between 3 and 8 years, with documented histories of active race training. Detailed microstructural analysis of two clinically important sites, the parasagittal grooves and the mid-condylar regions, identified extensive levels of microdamage in the calcified cartilage and subchondral bone concealed beneath outwardly intact hyaline cartilage. The study shows a progression in microdamage severity, commencing with mild hard-tissue microcracking in younger animals and escalating to severe subchondral bone collapse and lesion formation in the hyaline cartilage with increasing age and thus athletic activity. The presence of a clearly distinguishable fibrous tissue layer at the articular surface immediately above sites of severe subchondral collapse suggested a limited reparative response in the hyaline cartilage. PMID:24689513

  12. DLK1 is a novel regulator of bone mass that mediates estrogen deficiency-induced bone loss in mice

    DEFF Research Database (Denmark)

    Abdallah, Basem M; Ditzel, Nicholas; Mahmood, Amer

    2011-01-01

    . In a number of in vitro culture systems, Dlk1 stimulated osteoclastogenesis indirectly through osteoblast-dependent increased production of proinflammatory bone-resorbing cytokines (eg, Il7, Tnfa, and Ccl3). We found that ovariectomy (ovx)-induced bone loss was associated with increased production of Dlk1...... in the bone marrow by activated T cells. Interestingly, Dlk1(-/-) mice were significantly protected from ovx-induced bone loss compared with wild-type mice. Thus we identified Dlk1 as a novel regulator of bone mass that functions to inhibit bone formation and to stimulate bone resorption. Increasing DLK1...... production by T cells under estrogen deficiency suggests its possible use as a therapeutic target for preventing postmenopausal bone loss....

  13. Effect of antiresorptive and anabolic bone therapy on development of osteoarthritis in a posttraumatic rat model of OA.

    Science.gov (United States)

    Bagi, Cedo M; Berryman, Edwin; Zakur, David E; Wilkie, Dean; Andresen, Catharine J

    2015-11-06

    Osteoarthritis (OA) is a leading cause of disability, but despite the high unmet clinical need and extensive research seeking dependable therapeutic interventions, no proven disease-modifying treatment for OA is currently available. Due to the close interaction and interplay between the articular cartilage and the subchondral bone plate, it has been hypothesized that antiresorptive drugs can also reduce cartilage degradation, inhibit excessive turnover of the subchondral bone plate, prevent osteophyte formation, and/or that bone anabolic drugs might also stimulate cartilage synthesis by chondrocytes and preserve cartilage integrity. The benefit of intensive zoledronate (Zol) and parathyroid hormone (PTH) therapy for bone and cartilage metabolism was evaluated in a rat model of OA. Medial meniscectomy (MM) was used to induce OA in male Lewis rats. Therapy with Zol and human PTH was initiated immediately after surgery. A dynamic weight-bearing (DWB) system was deployed to evaluate the weight-bearing capacity of the front and hind legs. At the end of the 10-week study, the rats were euthanized and the cartilage pathology was evaluated by contrast (Hexabrix)-enhanced μCT imaging and traditional histology. Bone tissue was evaluated at the tibial metaphysis and epiphysis, including the subchondral bone. Histological techniques and dynamic histomorphometry were used to evaluate cartilage morphology and bone mineralization. The results of this study highlight the complex changes in bone metabolism in different bone compartments influenced by local factors, including inflammation, pain and mechanical loads. Surgery caused severe and extensive deterioration of the articular cartilage at the medial tibial plateau, as evidenced by contrast-enhanced μCT and histology. The study results showed the negative impact of MM surgery on the weight-bearing capacity of the operated limb, which was not corrected by treatment. Although both Zol and PTH improved subchondral bone mass and

  14. Risk Factors for Osteoporosis and Oral Bone Loss in Postmenopausal Women

    National Research Council Canada - National Science Library

    Wactawski-Wende, Jean

    2000-01-01

    ... and oral bone loss, periodontal disease and tooth loss. We hypothesize that reduction in bone density leading to osteoporosis, plays a significant role in increasing susceptibility to destructive periodontitis and tooth loss...

  15. Risk Factors for Osteoporosis and Oral Bone Loss in Postmenopausal Women

    National Research Council Canada - National Science Library

    Wactawski-Wende, Jean

    1999-01-01

    ... and oral bone loss, periodontal disease and tooth loss. We hypothesize that reduction in bone density leading to osteoporosis, plays a significant role in increasing susceptibility to destructive periodontitis and tooth loss...

  16. Risk Factors for Osteoporosis and Oral Bone Loss in Postmenopausal Women

    National Research Council Canada - National Science Library

    Wactawski-Wende, Jean

    2001-01-01

    ... and oral bone loss, periodontal disease and tooth loss. We hypothesize that reduction in bone density leading to osteoporosis, plays a significant role in increasing susceptibility to destructive periodontitis and tooth loss...

  17. Risk Factors for Osteoporosis and Oral Bone Loss in Postmenopausal Women

    National Research Council Canada - National Science Library

    Wacawski-Wende, Jean

    1997-01-01

    ... and oral bone loss, periodontal disease and tooth loss. We hypothesize that reduction in bone density leading to osteoporosis, plays a significant role in increasing susceptibility to destructive periodontitis and tooth loss...

  18. Risk Factors for Osteoporosis and Oral Bone Loss in Postmenopausal Women

    National Research Council Canada - National Science Library

    Wactawski-Wende, Jean

    1998-01-01

    ... and oral bone loss, periodontal disease and tooth loss. We hypothesize that reduction in bone density leading to osteoporosis, plays a significant role in increasing susceptibility to destructive periodontitis and tooth loss...

  19. Subchondral synovial cysts (intra-osseous ganglion)

    International Nuclear Information System (INIS)

    Graf, L.; Freyschmidt, J.

    1988-01-01

    Twelve cases of subchondral synovial cysts (intra-osseous ganglion) have been seen and their clinical features, radiological findings and differential diagnosis are described. The lesion is a benign cystic tumour-like mass in the subchondral portion of a synovial joint. Our findings in respect of age, sex and localisation are compared with those of other authors. The aetiology and pathogenesis of the lesion is not completely understood. There is an increased incidence in middle life and joints with high dynamic and static stress are favoured, particularly in the lower extremities. Chronic stress or microtrauma, causing damage to the involved joint, therefore appears to be a plausible explanation. (orig.) [de

  20. Metal deposition at the bone-cartilage interface in articular cartilage

    Energy Technology Data Exchange (ETDEWEB)

    Kaabar, W. [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom)], E-mail: w.kaabar@surrey.ac.uk; Daar, E.; Gundogdu, O.; Jenneson, P.M. [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Farquharson, M.J. [Department of Radiography, School of Allied Health Sciences, City University, London EC1V 0HB (United Kingdom); Webb, M.; Jeynes, C. [Surrey Ion Beam Centre, University of Surrey, Guildford GU2 7XH (United Kingdom); Bradley, D.A. [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom)

    2009-03-15

    There is a growing interest being shown in the changes occurring in elemental distribution at the bone-cartilage interface, the changes either being a result of mechanical damage or disease. In particular, such investigations have tended to concern the elemental alterations associated with the osteoarthritic wear and tear damage occurring to the cartilage and subchondral bone of synovial joints or that associated with disease processes such as rheumatic arthritis. Present studies examine sections of femoral head obtained from total hip replacement surgery, use being made of micro-proton-induced X-ray emission ({mu}-PIXE) and the Rutherford back scattering (RBS) techniques. Enhancements of Zn, Ca and P have been observed at the bone-cartilage interface. Further, the concentration of Zn in spongy bone underlying the subchondral surface of a section of the femoral head has been measured, obtaining 136 {mu}g g{sup -1} bone, the presence of Ca and P at the same position being 0.235 and 0.0451 g g{sup -1} bone, respectively. These values are slightly different to figures recently published by other authors using similar techniques.

  1. Rhus javanica Gall Extract Inhibits the Differentiation of Bone Marrow-Derived Osteoclasts and Ovariectomy-Induced Bone Loss

    Directory of Open Access Journals (Sweden)

    Tae-Ho Kim

    2016-01-01

    Full Text Available Inhibition of osteoclast differentiation and bone resorption is a therapeutic strategy for the management of postmenopausal bone loss. This study investigated the effects of Rhus javanica (R. javanica extracts on bone marrow cultures to develop agents from natural sources that may prevent osteoclastogenesis. Extracts of R. javanica (eGr cocoons spun by Rhus javanica (Bell. Baker inhibited the osteoclast differentiation and bone resorption. The effects of aqueous extract (aeGr or 100% ethanolic extract (eeGr on ovariectomy- (OVX- induced bone loss were investigated by various biochemical assays. Furthermore, microcomputed tomography (µCT was performed to study bone remodeling. Oral administration of eGr (30 mg or 100 mg/kg/day for 6 weeks augmented the inhibition of femoral bone mineral density (BMD, bone mineral content (BMC, and other factors involved in bone remodeling when compared to OVX controls. Additionally, eGr slightly decreased bone turnover markers that were increased by OVX. Therefore, it may be suggested that the protective effects of eGr could have originated from the suppression of OVX-induced increase in bone turnover. Collectively, the findings of this study indicate that eGr has potential to activate bone remodeling by inhibiting osteoclast differentiation and bone loss.

  2. Computerized bone density analysis of the proximal phalanx of the horse

    International Nuclear Information System (INIS)

    Thompson, K.N.; Cheung, T.K.; Putnam, M.

    1996-01-01

    This study utilized computed tomography to determine the density patterns and the subchondral bone thickness of the first phalanx of the horse. An image processing system and commercially available software were used to process the computed tomographic slices obtained from the first phalanges of a 2-year-old Thoroughbred horse. The thickness and density of the medial and lateral cortices in the mid-shaft of the bone were similar; however, the cortex on the dorsal aspect was more dense and extended farther toward the proximal and distal aspects of the bone than the cortex on the palmar aspect. Density of the cortical bone was highest at the region of the bone with the smallest diameter. The cortical bone density at mid-shaft was approximately 3.5 times the cancellous bone density at the proximal aspect and 2.5 times that at the distal aspect of the bone. A moderate correlation (r = 0.53, p < 0.01)was found between the subchondral bone density and thickness. Despite limited numbers of specimens used, this study demonstrated the potential applications of computed tomography for investigating equine joint mechanics and diseases

  3. Functional CT imaging: load-dependent visualization of the subchondral mineralization by means of CT osteoabsorptionmetry (CT-OAM); Funktionelle Computertomographie: Beanspruchungsabhaengige Darstellung der subchondralen Mineralisierung mittels CT gestuetzter Osteoabsorptiometrie (CTOAM)

    Energy Technology Data Exchange (ETDEWEB)

    Linsenmaier, U.; Schlichtenhorst, K.; Pfeifer, K.J.; Reiser, M. [Inst. fuer Klinische Radiologie, Innenstadt, Ludwig-Maximilians-Univ. Muenchen (Germany); Kersting, S.; Putz, R.; Mueller-Gerbl, M. [Anatomische Anstalt, Ludwig-Maximilians-Univ. Muenchen (Germany)

    2003-05-01

    Purpose: Functional computed tomography for visualization and quantification of subchondral bone mineralization using CT osteoabsorptiometry (CT-OAM). Materials and Methods: Tarsometatarsal (TMT) and metatarsophalangeal (MTP) joints of 46 human hallux valgus (HV) specimens were examined (sagittal 1/1/1 mm) on a single slice CT scanner SCT (Somatom Plus 4, Siemens AG). Subchondral bone pixels were segmented and assigned to 10 density value groups (triangle 100 HU, range 200 - 1200 HU) the pixels using volume rendering technique (VRT). The data analysis considered the severity of HV as determined by the radiographically measured HV-angle (a.p. projection). Results: CT-OAM could generate reproducible densitograms of the distribution pattern of the subchondral bone density for all four joint surfaces (TMT and MTP joints). The bone density localization enables the assignment to different groups, showing a characteristic HV-angle-dependent distribution of the maximum bone mineralization of the load-dependent densitogram (p < 0.001). Conclusion: CT-OAM is a functional CT technique for visualizing and quantifying the distribution of the subchondral bone density, enabling a noninvasive load-dependent assessment of the joint surfaces. Load-dependent densitograms of hallux valgus specimens show a characteristic correlation with an increase of the HV-angle. (orig.) [German] Ziel: Darstellung und Quantifizierung der subchondralen Mineralisierung in Abhaengigkeit von unterschiedlichen Beanspruchungssituationen mittels funktioneller Computertomographie als CT-Osteoabsorptiometrie (CT-OAM). Methode: An 46 humanen Praeparaten mit Hallux valgus (HV) wurden exemplarisch die TMT I (Tarsometatarsal)- und MTP I (Metatarsophalangeal)-Gelenke des ersten Strahles (sagittal 1/1/1 mm) an einem Singleslice Spiral-CT (SCT, Somatom Plus 4, Siemens AG) untersucht. Der subchondrale Knochen wurde segmentiert, den Pixel wurde mittels Volume Rendering Technik (VRT) 10 Graustufenbereiche (D100 HU

  4. Imaging and histological features of central subchondral osteophytes in racehorses with metacarpophalangeal joint osteoarthritis.

    Science.gov (United States)

    Olive, J; D'Anjou, M A; Girard, C; Laverty, S; Theoret, C L

    2009-12-01

    Marginal osteophytes represent a well known component of osteoarthritis in man and animals. Conversely, central subchondral osteophytes (COs), which are commonly present in human knees with osteoarthritis, have not been reported in horses. To describe and compare computed radiography (CR), single-slice computed tomography (CT), 1.5 Tesla magnetic resonance imaging (MRI), and histological features of COs in equine metacarpophalangeal joints with macroscopic evidence of naturally-occurring osteoarthritis. MRI sequences (sagittal spoiled gradient recalled echo [SPGR] with fat saturation, sagittal T2-weighted fast spin echo with fat saturation [T2-FS], dorsal and transverse T1-weighted gradient-recalled echo [GRE], and sagittal T2*-weighted gradient echo with fast imaging employing steady state acquisition [FIESTA]), as well as transverse and reformatted sagittal CTI and 4 computed radiographic (CR) views of 20 paired metacarpophalangeal joints were acquired ex vivo. Following macroscopic evaluation, samples were harvested in predetermined sites of the metacarpal condyle for subsequent histology. The prevalence and detection level of COs was determined for each imaging modality. Abnormalities consistent with COs were clearly depicted on MRI, using the SPGR sequence, in 7/20 (35%) joints. They were identified as a focal hypointense protuberance from the subchondral plate into the cartilage, at the palmarodistal aspect (n=7) and/or at the very dorsal aspect (n=2) of the metacarpal condyle. COs were visible but less obvious in 5 of the 7 joints using FIESTA and reformatted sagittal CT, and were not identifiable on T2-FS, T1-GRE or CR. Microscopically, they consisted of dense bone protruding into the calcified cartilage and disrupting the tidemarks, and they were consistently associated with overlying cartilage defects. Subchondral osteophytes are a feature of osteoarthritis of equine metacarpophalangeal joints and they may be diagnosed using 1.5 Tesla MRI and CT. Central

  5. Metaphyseal bone loss demonstrated with routine planar radiography

    International Nuclear Information System (INIS)

    Mintzer, C.M.; Robertson, D.D.; Weissman, B.; Ewald, F.; Spector, M.

    1989-01-01

    This paper reports on an vitro study performed to examine the ability of current-day radiography for detecting metaphyseal bone loss. A block was cut from the anterior aspect of a cadaveric distal femur, sequential sections (approximately 4% of the BMC of the block) were cut from the block, and a fat-equivalent material was substituted in to the void. Following removal of each bone section, the femur was placed in a water bath, a lateral radiography was taken, and the ash content of the section was determined. Five readers each evaluated over 100 combinations of two radiographs side by side, noting whether there was no difference or whether one femur's region of interest was denser. The readings were compared with bone mineral differences as determined by ashing. All readers identified losses of 25% or more, and 5%-10% losses were seen by four of five readers half of the time

  6. Marginal Bone Loss after Ten Years in an Adult Danish Population: A Radiographic Study.

    Science.gov (United States)

    Bahrami, Golnosh; Vaeth, Michael; Wenzel, Ann; Isidor, Flemming

    To evaluate marginal bone loss over a 10-year period in individuals and in tooth groups in relation to age and level of marginal bone. In 1997, 616 randomly selected individuals (mean age: 42 years, range: 21-63 years) underwent a full-mouth radiographic survey. In 2008, the survey was repeated in 362 of the same individuals (182 women and 180 men). The marginal bone level of each tooth was measured in mm from the cementoenamel junction to the marginal bone. These measurements were used to calculate marginal bone loss during the 10-year period for individuals and tooth groups in relation to age and to baseline marginal bone level, calculated as the average between measurements in 1997 and 2008 to circumvent regression towards the mean. The average annual marginal bone loss was 0.09 mm (SD ± 0.04 mm) during the 10-year study period. The association between marginal bone loss and baseline marginal bone level was more pronounced in the youngest age group, compared to the other age groups. Molars displayed the most severe bone loss during the study period. Marginal bone loss over a 10-year period is associated with age and baseline marginal bone level. Younger individuals with a reduced marginal bone level were at higher risk for further bone loss. Molars lose marginal bone more rapidly than other tooth groups.

  7. Proximal alveolar bone loss in a longitudinal radiographic investigation

    International Nuclear Information System (INIS)

    Bolin, A.; Lavstedt, S.; Henrikson, C.O.; Frithiof, L.

    1986-01-01

    In Sweden people in all age groups now have more remaining teeth than previosly. An investigation has been made to identify some predictors of alveolar bone loss in a 10-year period in subjects with at least 20 remaining teeth. The material consisted of 349 individuals, examined radiographically, clinically and by interview in 1970 and in 1980. These subjects, born in 1904-1952, constituted a subgroup, with regard to remaining teeth, of an unselected sample of the population of the old county of Stockholm. In the unselected sample statistically significant predictors of alveolar bone loss found in a stepwise multiple regression analysis were 1) alveolar bone loss in 1970, 2) age, 3) number of lost teeth and 4) Russell's Periodontol Index (PI). In the subgroup the predictors were in the order 1) Russell's PI and 2) smoking. The prediction values (R 2 ) of further variables were marginal. The analyses showed that there was an interaction between PI and smoking, implying that the effect of smoking on alveolar bone loss was increased in individuals with high PI values. Furthermore, a tendency was found for a dose-response effect of tobacco consumption. This tendency almost disappeared when controlling for PI

  8. RANK, RANKL and osteoprotegerin in arthritic bone loss

    Directory of Open Access Journals (Sweden)

    M.C. Bezerra

    2005-02-01

    Full Text Available Rheumatoid arthritis is characterized by the presence of inflammatory synovitis and destruction of joint cartilage and bone. Tissue proteinases released by synovia, chondrocytes and pannus can cause cartilage destruction and cytokine-activated osteoclasts have been implicated in bone erosions. Rheumatoid arthritis synovial tissues produce a variety of cytokines and growth factors that induce monocyte differentiation to osteoclasts and their proliferation, activation and longer survival in tissues. More recently, a major role in bone erosion has been attributed to the receptor activator of nuclear factor kappa B ligand (RANKL released by activated lymphocytes and osteoblasts. In fact, osteoclasts are markedly activated after RANKL binding to the cognate RANK expressed on the surface of these cells. RANKL expression can be upregulated by bone-resorbing factors such as glucocorticoids, vitamin D3, interleukin 1 (IL-1, IL-6, IL-11, IL-17, tumor necrosis factor-alpha, prostaglandin E2, or parathyroid hormone-related peptide. Supporting this idea, inhibition of RANKL by osteoprotegerin, a natural soluble RANKL receptor, prevents bone loss in experimental models. Tumor growth factor-ß released from bone during active bone resorption has been suggested as one feedback mechanism for upregulating osteoprotegerin and estrogen can increase its production on osteoblasts. Modulation of these systems provides the opportunity to inhibit bone loss and deformity in chronic arthritis.

  9. Subchondral insufficiency fractures of the femoral head: associated imaging findings and predictors of clinical progression

    Energy Technology Data Exchange (ETDEWEB)

    Hackney, Lauren A.; Joseph, Gabby B.; Link, Thomas M. [University of California, San Francisco, Department of Radiology and Biomedical Imaging, San Francisco, CA (United States); Lee, Min Hee [University of California, San Francisco, Department of Radiology and Biomedical Imaging, San Francisco, CA (United States); University of Ulsan College of Medicine, Department of Radiology and Research Institute of Radiology, Asan Medical Center, Seoul (Korea, Republic of); Vail, Thomas P. [University of California, Department of Orthopaedic Surgery, San Francisco, CA (United States)

    2016-06-15

    To characterize the morphology and imaging findings of femoral head subchondral insufficiency fractures (SIF), and to investigate clinical outcomes in relation to imaging findings. Fifty-one patients with hip/pelvis magnetic resonance (MR) images and typical SIF characteristics were identified and reviewed by two radiologists. Thirty-five patients had follow-up documentation allowing assessment of clinical outcome. Subgroup comparisons were performed using regression models adjusted for age and body mass index. SIF were frequently associated with cartilage loss (35/47, 74.5 %), effusion (33/42, 78.6 %), synovitis (29/44, 66 %), and bone marrow oedema pattern (BMEP) (average cross-sectional area 885.7 ± 730.2 mm{sup 2}). Total hip arthroplasty (THA) was required in 16/35 patients, at an average of 6 months post-MRI. Compared to the THA cohort, the non-THA group had significantly (p < 0.05) smaller overlying cartilage defect size (10 mm vs. 29 mm), smaller band length ratio and fracture diameters, and greater incidence of parallel fracture morphology (p < 0.05). Male gender and increased age were significantly associated with progression, p < 0.05. SIF were associated with synovitis, cartilage loss, effusion, and BMEP. Male gender and increased age had a significant association with progression to THA, as did band length ratio, fracture diameter, cartilage defect size, and fracture deformity/morphology. (orig.)

  10. Bone loss in long-term suppressive therapy with thyroid hormone

    International Nuclear Information System (INIS)

    Firooznia, H.; Blum, M.; Golimbu, C.; Rafii, M.

    1987-01-01

    The trabecular bone density of the spine was measured with CT in 31 women, aged 39-79 years, who had received an average of 13.5 years of thyroid suppressive therapy. The spinal trabecular bone density values in 24 (77%), 18 (58%), and 13 subjects (42%) were respectively below the mean for healthy age-matched controls, the fifth percentile for healthy premenopausal women, and the fifth percentile for age-matched controls. Cortical and trabecular bone loss occurs in hyperthyroidism. Although the intent is not to cause hyperthyroidism in subjects on suppressive therapy, supraphysical doses of thyroid hormone are usually necessary for suppression of thyroid-stimulating hormone. In this study, bone loss was noted in these subjects. Because most of these patients are middle-aged or postmenopausal women, who are at risk for osteoporosis, it is important to be aware of the risk of additional bone loss induced by thyroid suppressive therapy in them

  11. Gross and histological evaluation of early lesions of navicular bone and deep digital flexor tendon in horses

    Directory of Open Access Journals (Sweden)

    Komosa Marcin

    2014-03-01

    Full Text Available The study aimed at evaluation of pathological lesions on flexor surface of navicular bone and deep digital flexor tendon in horses graded in standard X-ray examination as 2 (fair. The evaluation was performed on fifteen horses (6-9 years of age. Analysis procedure involved examining navicular bones on X-ray pictures, post-slaughter preparation of navicular bones from the hoof capsule, macroscopic evaluation of fibrocartilage on flexor surface, and analysis of histologic preparations. In horses with navicular bones graded as 2, early pathological changes have already developed, even if such horses were not lame. The pathological changes included fibrillation and disruption of deep digital flexor tendon surface, loss of fibrocartillage in sagittal ridge area of navicular bone, thinning of subchondral bone on its flexor surface, and fibromyxoid changes in chondroid matrix. In terms of clinical relevance, more studies are needed to understand the sequence of changes in a better way.

  12. Subchondral cysts of the tibia secondary to osteoarthritis of the knee

    International Nuclear Information System (INIS)

    Ostlere, S.J.; Seeger, L.L.; Eckardt, J.J.

    1990-01-01

    Subchondral cysts of the tibia secondary to osteoarthritis of the knee are not usually seen on radiographs. When present, they are typically small and present no diagnostic difficulty. Two cases of unusually large subchondral lesions of the medial tibial plateau are presented. The lesions were well defined and lay adjacent to the medial tibial cortex with their long axes in the sagittal plane. Both were associated with moderate medial compartment osteoarthritis. Additional information obtained from computed tomography indicated that these lesions were subchondral cysts secondary to osteoarthritis rather than tumors or other tumor-like conditions. (orig.)

  13. In vitro assessment of biomaterial-induced remodeling of subchondral and cancellous bone for the early intervention of joint degeneration with focus on the spinal disc

    Science.gov (United States)

    McCanless, Jonathan D.

    Osteoarthritis-associated pain of the spinal disc, knee, and hip derives from degeneration of cartilagenous tissues in these joints. Traditional therapies have focused on these cartilage (and disc specific nucleus pulposus) changes as a means of treatment through tissue grafting, regenerative synthetic implants, non-regenerative space filling implants, arthroplasty, and arthrodesis. Although such approaches may seem apparent upon initial consideration of joint degeneration, tissue pathology has shown changes in the underlying bone and vascular bed precede the onset of cartilaginous changes. It is hypothesized that these changes precedent joint degeneration and as such may provide a route for early prevention. The current work proposes an injectable biomaterial-based therapy within these subchondral and cancellous bone regions as a means of preventing or reversing osteoarthritis. Two human concentrated platelet releasate-containing alginate hydrogel/beta-tricalcium phosphate composites have been developed for this potential biomaterial application. The undertaking of assessing these materials through bench-, in vitro, and ex vivo work is described herein. These studies showed the capability of the biomaterials to initiate a wound healing response in monocytes, angiogenic and differentiation behavior in immature endothelial cells, and early osteochondral differentiation in mesenchymal stem cells. These cellular activities are associated with fracture healing and endochondral bone formation, demonstrating the potential of the biomaterials to induce osseous and vascular tissue remodeling underlying osteoarthritic joints as a novel therapy for a disease with rapidly growing healthcare costs.

  14. Bone Loss During Spaceflight: Available Models and Counter-Measures

    Science.gov (United States)

    Morris, Jonathan; Bach, David; Geller, David

    2015-01-01

    There is ongoing concern for human health during spaceflights. Of particular interest is the uncoupling of bone remodeling and its resultant effect on calcium metabolism and bone loss. The calculated average loss of bone mineral density (BMD) is approximately 1-1.5% per month of spaceflight. The effect of decreased BMD on associated fractures in astronauts is not known. Currently on the International Space Station (ISS), bone loss is managed through dietary supplements and modifications and resistance exercise regimen. As the duration of space flights increases, a review of the current methods available for the prevention of bone loss is warranted. The goal of this project is to review and summarize recent studies that have focused on maintaining BMD during exposure to microgravity. Interventions were divided into physical (Table 1), nutritional (Table 2), or pharmacologic (Table 3) categories. Physical modalities included resistance exercise, low level vibration, and low intensity pulsed ultrasound. Nutritional interventions included altering protein, salt, and fat intake; and vitamin D supplementation. Pharmacologic interventions included the use of bisphosphonates and beta blockers. Studies reported outcomes based on bone density determined by DXA bone scan, micro-architecture of histology and microCT, and serum and urine markers of bone turnover. The ground analog models utilized to approximate osseous physiology in microgravity included human patients previously paralyzed or subjects confined to bedrest. Ground analog animal models include paralysis, immobilization and ovariectomies. As a result of the extensive research performed there is a multi-modality approach available for the management of BMD during spaceflight that includes resistance training, nutrition and dietary supplements. However, there is a paucity of literature describing a formalized tiered protocol to guide investigators through the progression from animal models to human patient ground

  15. A radiographic study of alveolar bone loss in Irish schoolchildren

    International Nuclear Information System (INIS)

    Buckley, L.A.

    1982-01-01

    Bitewing radiographs were used to assess evidence of alveolar bone loss in 1492 children in the age range 7-12 years. According to the method used in this study, alveolar bone loss was shown to occur in 1.7% of the children, and maxillary teeth were affected twice as frequently as mandibular teeth. (Author)

  16. Bone marrow oedema on MR imaging indicates ARCO stage 3 disease in patients with AVN of the femoral head

    Energy Technology Data Exchange (ETDEWEB)

    Meier, Reinhard; Schaeffeler, Christoph; Waldt, Simone; Rummeny, Ernst J.; Woertler, Klaus [Klinikum rechts der Isar, Technische Universitaet Muenchen, Department of Diagnostic and Interventional Radiology, Munich (Germany); Kraus, Tobias M. [Klinikum rechts der Isar, Technische Universitaet Muenchen, Department of Orthopaedics, Munich (Germany); Berufsgenossenschaftliche Unfallklinik Tuebingen, Department of Trauma and Orthopaedics, Tuebingen (Germany); Torka, Sebastian [Klinikum rechts der Isar, Technische Universitaet Muenchen, Department of Orthopaedics, Munich (Germany); Berufsgenossenschaftliche Unfallklinik Murnau, Department of Trauma and Orthopaedics, Murnau (Germany); Schlitter, Anna Melissa; Specht, Katja [Klinikum rechts der Isar, Technische Universitaet Muenchen, Institute of Pathology, Munich (Germany); Haller, Bernhard [Klinikum rechts der Isar, Technische Universitaet Muenchen, Institute of Medical Statistics and Epidemiology, Munich (Germany); Rechl, Hans [Klinikum rechts der Isar, Technische Universitaet Muenchen, Department of Orthopaedics, Munich (Germany)

    2014-09-15

    To test the hypothesis that bone marrow oedema (BME) observed on MRI in patients with avascular necrosis (AVN) of the femoral head represents an indicator of subchondral fracture. Thirty-seven symptomatic hips of 27 consecutive patients (53 % women, mean age 49.2) with AVN of the femoral head and associated BME on magnetic resonance (MR) imaging were included. MR findings were correlated with computed tomography (CT) of the hip and confirmed by histopathological examination of the resected femoral head. Imaging studies were analysed by two radiologists with use of the ARCO classification. On MR imaging a fracture line could be identified in 19/37 (51 %) cases, which were classified as ARCO stage 3 (n = 15) and stage 4 (n = 4). The remaining 18/37 (49 %) cases were classified as ARCO stage 2. However, in all 37/37 (100 %) cases a subchondral fracture was identified on CT, indicating ARCO stage 3/4 disease. The extent of subchondral fractures and the femoral head collapse was graded higher on CT as compared to MRI (P < 0.05). Histopathological analysis confirmed bone necrosis and subchondral fractures. In patients with AVN, BME of the femoral head represents a secondary sign of subchondral fracture and thus indicates ARCO stage 3 disease. circle BME on MRI in AVN of femoral head indicates a subchondral fracture. (orig.)

  17. Bone marrow oedema on MR imaging indicates ARCO stage 3 disease in patients with AVN of the femoral head

    International Nuclear Information System (INIS)

    Meier, Reinhard; Schaeffeler, Christoph; Waldt, Simone; Rummeny, Ernst J.; Woertler, Klaus; Kraus, Tobias M.; Torka, Sebastian; Schlitter, Anna Melissa; Specht, Katja; Haller, Bernhard; Rechl, Hans

    2014-01-01

    To test the hypothesis that bone marrow oedema (BME) observed on MRI in patients with avascular necrosis (AVN) of the femoral head represents an indicator of subchondral fracture. Thirty-seven symptomatic hips of 27 consecutive patients (53 % women, mean age 49.2) with AVN of the femoral head and associated BME on magnetic resonance (MR) imaging were included. MR findings were correlated with computed tomography (CT) of the hip and confirmed by histopathological examination of the resected femoral head. Imaging studies were analysed by two radiologists with use of the ARCO classification. On MR imaging a fracture line could be identified in 19/37 (51 %) cases, which were classified as ARCO stage 3 (n = 15) and stage 4 (n = 4). The remaining 18/37 (49 %) cases were classified as ARCO stage 2. However, in all 37/37 (100 %) cases a subchondral fracture was identified on CT, indicating ARCO stage 3/4 disease. The extent of subchondral fractures and the femoral head collapse was graded higher on CT as compared to MRI (P < 0.05). Histopathological analysis confirmed bone necrosis and subchondral fractures. In patients with AVN, BME of the femoral head represents a secondary sign of subchondral fracture and thus indicates ARCO stage 3 disease. circle BME on MRI in AVN of femoral head indicates a subchondral fracture. (orig.)

  18. Does platform switching really prevent crestal bone loss around implants?

    Directory of Open Access Journals (Sweden)

    Yoshiyuki Hagiwara

    2010-08-01

    Full Text Available To maintain long-term implant stability, it is important to minimize bone loss around the implant. Several clinical studies have shown a mean marginal bone loss around dental implants of 1.5–2 mm in the first year after prosthetic restoration. Currently, concepts to prevent bone loss around dental implants have been reported as the platform switching (PLS. This technique use of prosthetic abutments with reduced width in relation to the implant platform diameter seems to have the greatest potential to limit the crestal resorption. However, there are only a few reports on the mechanism of action or the extent of bone loss prevention, and as such, it is difficult to say that the effect of PLS has been thoroughly examined. Excluding case reports, articles on PLS can be broadly categorized into: (1 radiographic evaluation of crestal bone level in humans, (2 histological and histomorphometrical analysis in animals, or (3 finite element analysis. This review revealed a shortage of published data for above three categories related PLS. Researchers have attempted to explain the mechanism of action of PLS; however, it is necessary to conduct further studies, including histological studies using animals, to clarify the mechanism fully.

  19. Biglycan deficiency interferes with ovariectomy-induced bone loss

    DEFF Research Database (Denmark)

    Nielsen, Karina L; Allen, Matthew R; Bloomfield, Susan A

    2003-01-01

    Biglycan is a matrix proteoglycan with a possible role in bone turnover. In a 4-week study with sham-operated or OVX biglycan-deficient or wildtype mice, we show that biglycan-deficient mice are resistant to OVX-induced trabecular bone loss and that there is a gender difference in the response...

  20. Structural joint damage and hand bone loss in patients with rheumatoid arthritis.

    Science.gov (United States)

    Lykke, Midtbøll Ørnbjerg

    2018-03-01

    Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by pain, swelling and progressive destruction of the joints leading to loss of function and invalidity. The bone destruction in RA is characterised by two distinct features: structural joint damage and hand bone loss, and their prevention is an important treatment goal. Inhibitors of tumour necrosis factor alpha (TNF-inhibitors) have markedly improved the treatment options in RA patients who fail treatment with conventional synthetic Disease Modifying Anti Rheumatic Drugs (sDMARDS), but their effectiveness with regards to structural joint damage and hand bone loss, predictors thereof and the association with disease activity during treatment have mainly been investigated in randomized controlled trials (RCTs) with limited generalizability due to strict in- and exclusion criteria.
 The main aim of the PhD thesis was to assess and predict structural joint damage and hand bone loss in patients with early and established RA treated with sDMARDs and TNF-inhibitors. This was investigated in two cohorts: A) The "DANBIO X-ray study": an observational, nationwide, longitudinal cohort study of established RA patients treated in clinical practice who initiated TNF-inhibitor treatment after failure of sDMARDs and B) The "OPERA study": a randomized controlled trial of sDMARD-naïve patients with early RA treated with methotrexate (MTX) and intraarticular glucocorticoid injections in combination with adalimumab or placebo-adalimumab. Structural joint damage progression was assessed with the Sharp/van der Heijde radiographic method and hand bone loss was assessed with Digital X-ray Radiogrammetry. 
From the studies presented in the PhD thesis the following was concluded:
 Structural joint damage progression and hand bone loss were significantly lower during two years of TNF-inhibitor treatment compared to the previous two years of sDMARD-treatment in the DANBIO X-ray Study. The majority of patients had

  1. Vitamin C reverses hypogonadal bone loss

    Science.gov (United States)

    Epidemiologic studies correlate low vitamin C intake with bone loss. The genetic deletion of enzymes involved in de novo vitamin C synthesis in mice, likewise, causes severe osteoporosis. However, very few studies have evaluated a protective role of this dietary supplement on the skeleton. Here, ...

  2. The Relationship between Osteoporosis and Osteoarthritis of the Knee: A Report of 2 Cases with Suspected Osteonecrosis

    Directory of Open Access Journals (Sweden)

    Akira Horikawa

    2014-01-01

    Full Text Available Knee specimens of two osteoporotic patients who underwent unilateral knee arthroplasty for suspected osteonecrosis of the knee were examined histologically. Preoperative findings of magnetic resonance images in both patients were consistent with the diagnosis of osteonecrosis of the medial femoral condyles, although plain X-rays showed minimal degenerative changes. In both patients, preoperative bone mineral densities of the femoral condyle and proximal tibia of the affected side were lower than those of the unaffected side. Pathological examination of the resected femoral condyle and proximal tibia showed almost intact joint cartilage, healing of the collapsed subchondral bone, and significant trabecular bone loss. Histologically, no evidence of osteonecrosis, including empty lacunae of the trabecular bone, was observed. These findings indicated that subchondral bone collapse caused by osteoporosis, but not osteonecrosis, initiated the osteoarthritic change of the affected knee. This report emphasizes that there may be cases of progressive local osteoarthritis caused by fracture of subchondral bone because of osteoporosis.

  3. Effect of dietary soy isoflavones on bone loss in ovariectomized rats

    African Journals Online (AJOL)

    Abstract. Purpose: To determine the effect of dietary soy isoflavone supplementation on bone loss in ... Keywords: Mineral elements, Alkaline phosphatase, Isoflavones, Bone loss, Notch pathway. This is an Open .... incubated for 3 h in 5% non-fat-milk blocking solution at ..... protect against osteopenia in ovariectomised rats.

  4. The Use of Tomosynthesis in the Global Study of Knee Subchondral Insufficiency Fractures.

    Science.gov (United States)

    Nelson, Fred; Bokhari, Omaima; Oravec, Daniel; Kim, Woong; Flynn, Michael; Lumley, Catherine; McPhilamy, Austin; Yeni, Yener N

    2017-02-01

    Subchondral insufficiency fractures (SIF), previously termed spontaneous osteonecrosis of the knee, are marked by a sudden onset of severe pain. Other than the size of the lesion, prediction for progression to joint replacement is difficult. The objective was to determine if quantitative analysis of bone texture using digital tomosynthesis imaging would be useful in predicting more rapid progression to joint replacement. Tomosynthesis studies of 30 knees with documented SIF were quantified by fractal, mean intercept length (MIL), and line fraction deviation analyses. Fractal dimension, lacunarity, MIL, and line fraction deviation variables measured from these analyses were then correlated to short interval progression to joint replacement surgery. Higher odds for joint replacement were related to higher values of the standard deviation of slope lacunarity and to morphometric measures (eg, MIL). Using digital tomosynthesis images for bone texture assessment may help distinguish condylar bone response in SIF, potentially acting as a clinically relevant predictive tool. In the future, contrasting SIF to the more gradual long-term process of osteoarthritis, there may be a better understanding of the different mechanisms for the two conditions. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  5. Kit W-sh Mutation Prevents Cancellous Bone Loss during Calcium Deprivation.

    Science.gov (United States)

    Lotinun, Sutada; Suwanwela, Jaijam; Poolthong, Suchit; Baron, Roland

    2018-01-01

    Calcium is essential for normal bone growth and development. Inadequate calcium intake increases the risk of osteoporosis and fractures. Kit ligand/c-Kit signaling plays an important role in regulating bone homeostasis. Mice with c-Kit mutations are osteopenic. The present study aimed to investigate whether impairment of or reduction in c-Kit signaling affects bone turnover during calcium deprivation. Three-week-old male WBB6F1/J-Kit W /Kit W-v /J (W/W v ) mice with c-Kit point mutation, Kit W-sh /HNihrJaeBsmJ (W sh /W sh ) mice with an inversion mutation in the regulatory elements upstream of the c-Kit promoter region, and their wild-type controls (WT) were fed either a normal (0.6% calcium) or a low calcium diet (0.02% calcium) for 3 weeks. μCT analysis indicated that both mutants fed normal calcium diet had significantly decreased cortical thickness and cancellous bone volume compared to WT. The low calcium diet resulted in a comparable reduction in cortical bone volume and cortical thickness in the W/W v and W sh /W sh mice, and their corresponding controls. As expected, the low calcium diet induced cancellous bone loss in the W/W v mice. In contrast, W sh /W sh cancellous bone did not respond to this diet. This c-Kit mutation prevented cancellous bone loss by antagonizing the low calcium diet-induced increase in osteoblast and osteoclast numbers in the W sh /W sh mice. Gene expression profiling showed that calcium deficiency increased Osx, Ocn, Alp, type I collagen, c-Fms, M-CSF, and RANKL/OPG mRNA expression in controls; however, the W sh mutation suppressed these effects. Our findings indicate that although calcium restriction increased bone turnover, leading to osteopenia, the decreased c-Kit expression levels in the W sh /W sh mice prevented the low calcium diet-induced increase in cancellous bone turnover and bone loss but not the cortical bone loss.

  6. Using Natural Stable Calcium Isotopes to Rapidly Assess Changes in Bone Mineral Balance Using a Bed Rest Model to Induce Bone Loss

    Science.gov (United States)

    Morgan, J. L. L.; Skulan, J. L.; Gordon, G. E.; Smith, Scott M.; Romaniello, S. J.; Anbar, A. D.

    2012-01-01

    Metabolic bone diseases like osteoporosis result from the disruption of normal bone mineral balance (BMB) resulting in bone loss. During spaceflight astronauts lose substantial bone. Bed rest provides an analog to simulate some of the effects of spaceflight; including bone and calcium loss and provides the opportunity to evaluate new methods to monitor BMB in healthy individuals undergoing environmentally induced-bone loss. Previous research showed that natural variations in the Ca isotope ratio occur because bone formation depletes soft tissue of light Ca isotopes while bone resorption releases that isotopically light Ca back into soft tissue (Skulan et al, 2007). Using a bed rest model, we demonstrate that the Ca isotope ratio of urine shifts in a direction consistent with bone loss after just 7 days of bed rest, long before detectable changes in bone mineral density (BMD) occur. The Ca isotope variations tracks changes observed in urinary N-teleopeptide, a bone resorption biomarker. Bone specific alkaline phosphatase, a bone formation biomarker, is unchanged. The established relationship between Ca isotopes and BMB can be used to quantitatively translate the changes in the Ca isotope ratio to changes in BMD using a simple mathematical model. This model predicts that subjects lost 0.25 0.07% ( SD) of their bone mass from day 7 to day 30 of bed rest. Given the rapid signal observed using Ca isotope measurements and the potential to quantitatively assess bone loss; this technique is well suited to study the short-term dynamics of bone metabolism.

  7. Correlation of interdental and interradicular bone loss in patients ...

    African Journals Online (AJOL)

    2012-01-19

    Jan 19, 2012 ... loss in patients with chronic periodontitis: A clinical ... Key words: Alveolar bone loss, chronic periodontitis, dental, furcation defect, ..... cases for regeneration. ... According to report given by AAP[29] on the clinical reality.

  8. Traumatic subchondral fracture of the femoral head in a healed trochanteric fracture.

    Science.gov (United States)

    Lee, Sang Yang; Niikura, Takahiro; Iwakura, Takashi; Kurosaka, Masahiro

    2014-07-11

    An 82-year-old woman sustained a trochanteric fracture of the left femur after a fall. Fracture fixation was performed using proximal femoral nail antirotation (PFNA) II, and she was able to walk with a T-cane after 3 months. Eleven months following the operation, the patient presented with left hip pain after a fall. Radiographs showed a subchondral collapse of the femoral head located above the blade tip. The authors removed the PFNA-II and subsequently performed cemented bipolar hemiarthroplasty. Histological evaluation of the femoral head showed osteoporosis with no evidence of osteonecrosis. Repair tissue, granulation tissue and callus formation were seen at the collapsed subchondral area. Based on these findings, a traumatic subchondral fracture of the femoral head in a healed trochanteric fracture was diagnosed. A traumatic subchondral fracture of the femoral head may need to be considered as a possible diagnosis after internal fixation of the trochanteric fracture. 2014 BMJ Publishing Group Ltd.

  9. Progression of cartilage degradation, bone resorption and pain in rat temporomandibular joint osteoarthritis induced by injection of iodoacetate.

    Directory of Open Access Journals (Sweden)

    Xue-Dong Wang

    Full Text Available BACKGROUND: Osteoarthritis (OA is an important subtype of temporomandibular disorders. A simple and reproducible animal model that mimics the histopathologic changes, both in the cartilage and subchondral bone, and clinical symptoms of temporomandibular joint osteoarthritis (TMJOA would help in our understanding of its process and underlying mechanism. OBJECTIVE: To explore whether injection of monosodium iodoacetate (MIA into the upper compartment of rat TMJ could induce OA-like lesions. METHODS: Female rats were injected with varied doses of MIA into the upper compartment and observed for up to 12 weeks. Histologic, radiographic, behavioral, and molecular changes in the TMJ were evaluated by light and electron microscopy, MicroCT scanning, head withdrawal threshold test, real-time PCR, immunohistochemistry, and TUNEL assay. RESULTS: The intermediate zone of the disc loosened by 1 day post-MIA injection and thinned thereafter. Injection of an MIA dose of 0.5 mg or higher induced typical OA-like lesions in the TMJ within 4 weeks. Condylar destruction presented in a time-dependent manner, including chondrocyte apoptosis in the early stages, subsequent cartilage matrix disorganization and subchondral bone erosion, fibrosis, subchondral bone sclerosis, and osteophyte formation in the late stages. Nociceptive responses increased in the early stages, corresponding to severe synovitis. Furthermore, chondrocyte apoptosis and an imbalance between anabolism and catabolism of cartilage and subchondral bone might account for the condylar destruction. CONCLUSIONS: Multi-level data demonstrated a reliable and convenient rat model of TMJOA could be induced by MIA injection into the upper compartment. The model might facilitate TMJOA related researches.

  10. An improved cost-effective, reproducible method for evaluation of bone loss in a rodent model.

    Science.gov (United States)

    Fine, Daniel H; Schreiner, Helen; Nasri-Heir, Cibele; Greenberg, Barbara; Jiang, Shuying; Markowitz, Kenneth; Furgang, David

    2009-02-01

    This study was designed to investigate the utility of two "new" definitions for assessment of bone loss in a rodent model of periodontitis. Eighteen rats were divided into three groups. Group 1 was infected by Aggregatibacter actinomycetemcomitans (Aa), group 2 was infected with an Aa leukotoxin knock-out, and group 3 received no Aa (controls). Microbial sampling and antibody titres were determined. Initially, two examiners measured the distance from the cemento-enamel-junction to alveolar bone crest using the three following methods; (1) total area of bone loss by radiograph, (2) linear bone loss by radiograph, (3) a direct visual measurement (DVM) of horizontal bone loss. Two "new" definitions were adopted; (1) any site in infected animals showing bone loss >2 standard deviations above the mean seen at that site in control animals was recorded as bone loss, (2) any animal with two or more sites in any quadrant affected by bone loss was considered as diseased. Using the "new" definitions both evaluators independently found that infected animals had significantly more disease than controls (DVM system; p<0.05). The DVM method provides a simple, cost effective, and reproducible method for studying periodontal disease in rodents.

  11. Green tea polyphenols mitigate bone loss of female rats in a chronic inflammation-induced bone loss model

    Science.gov (United States)

    The purpose of this study was to explore bioavailability, efficacy, and molecular mechanisms of green tea polyphenols (GTP) related to preventing bone loss in rats with chronic inflammation. A 2 (placebo vs. lipopolysaccharide, LPS) × 2 (no GTP vs. 0.5% GTP in drinking water) factorial design using ...

  12. Pattern of alveolar bone loss and reliability of measurements with the radiographic technique

    International Nuclear Information System (INIS)

    Rise, J.; Albandar, J.M.

    1988-01-01

    The purposes of this paper were to study the pattern of bone loss among different teeth at the individual level and to study the effect of using different aggregated units of analysis on measurement error. Bone loss was assessed in standardized periapical radiographs from 293 subjects (18-68 years), and the mean bone loss score for each tooth type was calculated. These were then correlated by means of factor analysis to study the bone loss pattern. Reliability (measurement error) was studied by the internal consistency and the test-retest methods. The pattern of bone loss showed a unidimensional pattern, indicating that any tooth will work equally well as a dependent variable for epidemiologic descriptive purposes. However, a more thorough analysis also showed a multidimensional pattern in terms of four dimensions, which correspond to four tooth groups: incisors, upper premolars, lower premolars and molars. The four dimensions accounted for 80% of the toal variance. The multidimensional pattern may be important for the modeling of bone loss; thus different models may explain the four dimension (indices) used as dependent variables. The reliability (internal consistency) of the four indices was satisfactory. By the test-retest method, reliability was higher when the more aggregated unit (the individual) was used

  13. Detection of osteophytes and subchondral cysts in the knee with use of tomosynthesis.

    Science.gov (United States)

    Hayashi, Daichi; Xu, Li; Roemer, Frank W; Hunter, David J; Li, Ling; Katur, Avinash M; Guermazi, Ali

    2012-04-01

    To evaluate the diagnostic performance of tomosynthesis in depicting osteophytes and subchondral cysts, with use of magnetic resonance (MR) imaging as the reference, and to test whether the lesions detected at radiography and tomosynthesis are associated with pain. The study was approved by local institutional review board, and all subjects gave written informed consent. Forty subjects (80 knees) older than 40 years were recruited irrespective of knee pain or radiographic osteoarthritis. Knees were imaged with radiography, tomosynthesis, and MR imaging. Presence of osteophytes and subchondral cysts in four locations of tibiofemoral joint (medial and lateral femur and tibia) was recorded. Knee pain was assessed by using the Western Ontario and McMaster University pain subscale. MR imaging depicted 171 osteophytes and 51 subchondral cysts. Tomosynthesis had a higher sensitivity for osteophyte detection in left and right lateral femur (0.96 vs 0.75, P = .025, and 1.00 vs 0.71, P = .008, respectively), right medial femur (0.94 vs 0.72, P = .046), and right lateral tibia (1.00 vs 0.83, P = .046). For subchondral cyst detection, the sensitivity of tomosynthesis was 0.14-1.00 and that of radiography was 0.00-0.56. Both modalities had similar specificity for both lesions. Subjects with tomosynthesis-depicted osteophytes (odds ratio, 4.2-6.4; P = .001-.011) and medially located subchondral cysts (odds ratio, 6.7-17.8; P = .004-.03) were more likely to feel pain than those without. However, radiography-depicted osteophytes were more strongly associated with pain than were tomosynthesis-depicted osteophytes. Tomosynthesis depicted more osteophytes and subchondral cysts than did radiography. Subjects with tomosynthesis-depicted osteophytes and subchondral cysts were more likely to feel pain than those without such lesions. © RSNA, 2012.

  14. Minimum Abutment Height to Eliminate Bone Loss: Influence of Implant Neck Design and Platform Switching.

    Science.gov (United States)

    Spinato, Sergio; Galindo-Moreno, Pablo; Bernardello, Fabio; Zaffe, Davide

    This retrospective study quantitatively analyzed the minimum prosthetic abutment height to eliminate bone loss after 4.7-mm-diameter implant placement in maxillary bone and how grafting techniques can affect the marginal bone loss in implants placed in maxillary areas. Two different implant types with a similar neck design were singularly placed in two groups of patients: the test group, with platform-switched implants, and the control group, with conventional (non-platform-switched) implants. Patients requiring bone augmentation underwent unilateral sinus augmentation using a transcrestal technique with mineralized xenograft. Radiographs were taken immediately after implant placement, after delivery of the prosthetic restoration, and after 12 months of loading. The average mesial and distal marginal bone loss of the control group (25 patients) was significantly more than twice that of the test group (26 patients), while their average abutment height was similar. Linear regression analysis highlighted a statistically significant inverse relationship between marginal bone loss and abutment height in both groups; however, the intercept of the regression line, both mesially and distally, was 50% lower for the test group than for the control group. The marginal bone loss was annulled with an abutment height of 2.5 mm for the test group and 3.0 mm for the control group. No statistically significant differences were found regarding marginal bone loss of implants placed in native maxillary bone compared with those placed in the grafted areas. The results suggest that the shorter the abutment height, the greater the marginal bone loss in cement-retained prostheses. Abutment height showed a greater influence in platform-switched than in non-platform-switched implants on the limitation of marginal bone loss.

  15. Reverse total shoulder glenoid baseplate stability with superior glenoid bone loss.

    Science.gov (United States)

    Martin, Elise J; Duquin, Thomas R; Ehrensberger, Mark T

    2017-10-01

    Superior wear of the glenoid bone is common in patients with rotator cuff arthropathy. This can become a treatment challenge for patients who require shoulder arthroplasty. In reverse shoulder arthroplasty (RSA), glenoid bone loss may affect the stability of baseplate fixation. The primary purpose of this biomechanical laboratory study was to assess the initial fixation stability of RSA glenosphere baseplates in the presence of variable amounts of superior glenoid bone loss. High-density solid rigid polyurethane foam (30 pounds/cubic foot) was machined to model the glenoid with variable superior defects that provided different levels of support (100%, 90%, 75%, and 50%) for the glenosphere baseplate. The samples were cyclically loaded (0-750 N at 1 Hz for 5000 cycles) at a 60° glenohumeral angle. The micromotion and migration of the baseplate were calculated from displacement data captured during the loading tests with an array of 3 linear variable differential transformers mounted around the baseplate. Micromotion was significantly greater in samples with 50% defects compared with those with smaller defects. Migration was significantly greater after testing for all defect sizes. Initial fixation of RSA glenosphere baseplates was significantly reduced in models with 50% bone loss on the superior edge compared with models with less bone loss in this high-density bone foam model. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  16. Association Between Dietary Fiber Intake and Bone Loss in the Framingham Offspring Study.

    Science.gov (United States)

    Dai, Zhaoli; Zhang, Yuqing; Lu, Na; Felson, David T; Kiel, Douglas P; Sahni, Shivani

    2018-02-01

    Dietary fiber may increase calcium absorption, but its role in bone mineralization is unclear. Furthermore, the health effect of dietary fiber may be different between sexes. We examined the association between dietary fiber (total fiber and fiber from cereal, fruits, vegetables, nuts, and legumes) and bone loss at the femoral neck, trochanter, and lumbar spine (L 2 to L 4 ) in older men and women. In the Framingham Offspring Study, at baseline (1996-2001), diet was assessed using the Willett food-frequency questionnaire, and bone mineral density (BMD) was measured using dual-energy X-ray absorptiometry. Follow-up BMD was measured in 2001-2005 and 2005-2008 among 792 men (mean age 58.1 years; BMI 28.6 kg/m 2 ) and 1065 women (mean age 57.3 years; BMI 27.2 kg/m 2 ). We used sex-specific generalized estimating equations in multivariable regressions to estimate the difference (β) of annualized BMD change in percent (%ΔBMD) at each skeletal site per 5 g/d increase in dietary fiber. We further estimated the adjusted mean for bone loss (annualized %ΔBMD) among participants in each higher quartile (Q2, Q3, or Q4) compared with those in the lowest quartile (Q1) of fiber intake. Higher dietary total fiber (β = 0.06, p = 0.003) and fruit fiber (β = 0.10, p = 0.008) was protective against bone loss at the femoral neck in men but not in women. When examined in quartiles, men in Q2-Q4 of total fiber had significantly less bone loss at the femoral neck versus those in Q1 (all p fiber from vegetables appeared to be protective against spine bone loss in women but not men. There were no associations with cereal fiber or nut and legume fiber and bone loss in men or women. Our findings suggest that higher dietary fiber may modestly reduce bone loss in men at the hip. © 2017 American Society for Bone and Mineral Research. © 2017 American Society for Bone and Mineral Research.

  17. Inhibition of bone resorption in vitro and prevention of ovariectomy-induced bone loss in vivo by flurbiprofen nitroxybutylester (HCT1026).

    Science.gov (United States)

    Armour, K J; van 't Hof, R J; Armour, K E; Torbergsen, A C; Del Soldato, P; Ralston, S H

    2001-09-01

    Inhibitors of prostaglandin production, such as nonsteroidal antiinflammatory drugs (NSAIDs), and pharmacologic nitric oxide (NO) donors, such as organic nitrates, have been suggested to protect against bone loss in both humans and experimental animals. Recently, a new class of nitrosylated NSAID (known as NO-NSAIDs) has been developed, which combines the properties of a NO donor with those of a cyclooxygenase (COX) inhibitor. This study investigated the effects of one of these compounds, flurbiprofen nitroxybutylester (HCT1026), on bone metabolism in vitro and in vivo. The effects of HCT1026 on osteoclast formation and resorption were determined in vitro using cocultures of primary mouse osteoblasts and osteoclasts. The effect of HCT1026 in vivo was assessed using a mouse model of ovariectomy-induced bone loss. HCT1026 was significantly more efficacious than the parent compound, flurbiprofen, at inhibiting osteoclast formation and bone resorption in vitro, and these effects could not be reproduced by combinations of flurbiprofen with a variety of NO donors. Studies in vivo showed that HCT1026 protected against ovariectomy-induced bone loss by inhibiting osteoclastic bone resorption, whereas flurbiprofen at similar concentrations was ineffective. These data indicate that HCT1026 is a potent inhibitor of bone resorption in vitro and protects against ovariectomy-induced bone loss in vivo by a novel mechanism that appears to be distinct from its NO donor properties and from its inhibitory effects on COX activity. We conclude that HCT1026 may be of clinical value in the prevention and treatment of inflammatory diseases such as rheumatoid arthritis, which are characterized by joint inflammation as well as periarticular and systemic bone loss.

  18. Bone Marrow Aspirate Concentrate-Enhanced Marrow Stimulation of Chondral Defects

    Science.gov (United States)

    Eichler, Hermann; Orth, Patrick

    2017-01-01

    Mesenchymal stem cells (MSCs) from bone marrow play a critical role in osteochondral repair. A bone marrow clot forms within the cartilage defect either as a result of marrow stimulation or during the course of the spontaneous repair of osteochondral defects. Mobilized pluripotent MSCs from the subchondral bone migrate into the defect filled with the clot, differentiate into chondrocytes and osteoblasts, and form a repair tissue over time. The additional application of a bone marrow aspirate (BMA) to the procedure of marrow stimulation is thought to enhance cartilage repair as it may provide both an additional cell population capable of chondrogenesis and a source of growth factors stimulating cartilage repair. Moreover, the BMA clot provides a three-dimensional environment, possibly further supporting chondrogenesis and protecting the subchondral bone from structural alterations. The purpose of this review is to bridge the gap in our understanding between the basic science knowledge on MSCs and BMA and the clinical and technical aspects of marrow stimulation-based cartilage repair by examining available data on the role and mechanisms of MSCs and BMA in osteochondral repair. Implications of findings from both translational and clinical studies using BMA concentrate-enhanced marrow stimulation are discussed. PMID:28607559

  19. GLP-1 receptor agonist treatment increases bone formation and prevents bone loss in weight-reduced obese women

    DEFF Research Database (Denmark)

    Iepsen, Eva Pers Winning; Lundgren, Julie Rehné; Hartmann, Bolette

    2015-01-01

    with or without administration of the GLP-1 RA liraglutide (1.2mg/day) for 52 weeks. In case of weight gain, up to two meals per day could be substituted with a low-calorie diet product in order to maintain the weight loss. MAIN OUTCOME MEASURES: Total, pelvic and arm-leg bone mineral content (BMC) and bone...... markers (CTX-1 and P1NP) were investigated before, after weight loss and after 52 weeks weight maintenance. Primary end points: Change in BMC and bone markers after 52 weeks weight maintenance with or without GLP-1 RA treatment. RESULTS: Total, pelvic and arm-leg BMC decreased during weight maintenance...... in the control group (ptotal and arm-leg BMC loss was 4 times greater in the control group compared to the liraglutide group (estimated difference 27g (95% CI 5-48), p=0.01), although the 12% weight loss was maintained in both groups...

  20. Anti-osteoporotic activity of harpagide by regulation of bone formation in osteoblast cell culture and ovariectomy-induced bone loss mouse models.

    Science.gov (United States)

    Chung, Hwa-Jin; Kyung Kim, Won; Joo Park, Hyen; Cho, Lan; Kim, Me-Riong; Kim, Min Jeong; Shin, Joon-Shik; Ho Lee, Jin; Ha, In-Hyuk; Kook Lee, Sang

    2016-02-17

    Harpagide, an iridoid glucoside, is a constituent of the root of Harpagophytum procumbens var. sublobatum (Engl.) Stapf, Devil's claw which has been used in patients with osteoarthritis (OA). In the present study, we investigated the anti-osteoporotic potential of harpagide and its underlying mechanism of action in in vitro cell culture and in vivo bone loss animal models. Harpagide was obtained from the alkalic hydrolysis of harpagoside, a major constituent of H. procumbens var. sublobatum Analysis of biomarkers for bone formation in osteoblastic MC3T3-E1 cells and bone resorption in osteoclast cells derived from mouse bone marrow cells was performed to evaluate the mechanism of action. The protective activity of harpagide against bone loss was also evaluated in ovariectomized (OVX) mouse model. Harpagide improved bone properties by stimulating the process of differentiation and maturation of osteoblast cells and suppressing the process of RANKL-induced differentiation of osteoclast cells. In OVX-induced bone loss mouse model, oral administration of harpagide significantly improved recovery of bone mineral density, trabecular bone volume, and trabecular number in the femur. Harpagide also prevented increase of trabecular separation and structure model index induced by OVX. Harpagide effectively inhibited the serum levels of biochemical markers of bone loss, including alkaline phosphatase, osteocalcin, C-terminal telopeptide, and tartrate-resistant acid phosphatase. Taken together, the present study demonstrates that harpagide has a potential for prevention of bone loss in OVX mice by regulating the stimulation of osteoblast differentiation and the suppression of osteoclast formation. Therefore, these findings suggest that harpagide might serve as a bioactive compound derived from H. procumbens var. sublobatum for improvement of age-dependent bone destruction disease. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. Bone fatigue and its implications for injuries in racehorses.

    Science.gov (United States)

    Martig, S; Chen, W; Lee, P V S; Whitton, R C

    2014-07-01

    Musculoskeletal injuries are a common cause of lost training days and wastage in racehorses. Many bone injuries are a consequence of repeated high loading during fast work, resulting in chronic damage accumulation and material fatigue of bone. The highest joint loads occur in the fetlock, which is also the most common site of subchondral bone injury in racehorses. Microcracks in the subchondral bone at sites where intra-articular fractures and palmar osteochondral disease occur are similar to the fatigue damage detected experimentally after repeated loading of bone. Fatigue is a process that has undergone much study in material science in order to avoid catastrophic failure of engineering structures. The term 'fatigue life' refers to the numbers of cycles of loading that can be sustained before failure occurs. Fatigue life decreases exponentially with increasing load. This is important in horses as loads within the limb increase with increasing speed. Bone adapts to increased loading by modelling to maintain the strains within the bone at a safe level. Bone also repairs fatigued matrix through remodelling. Fatigue injuries develop when microdamage accumulates faster than remodelling can repair. Remodelling of the equine metacarpus is reduced during race training and accelerated during rest periods. The first phase of remodelling is bone resorption, which weakens the bone through increased porosity. A bone that is porous following a rest period may fail earlier than a fully adapted bone. Maximising bone adaptation is an important part of training young racehorses. However, even well-adapted bones accumulate microdamage and require ongoing remodelling. If remodelling inhibition at the extremes of training is unavoidable then the duration of exposure to high-speed work needs to be limited and appropriate rest periods instituted. Further research is warranted to elucidate the effect of fast-speed work and rest on bone damage accumulation and repair. © 2014 EVJ Ltd.

  2. CD38 is associated with premenopausal and postmenopausal bone mineral density and postmenopausal bone loss.

    LENUS (Irish Health Repository)

    Drummond, Frances J

    2012-02-03

    One goal of osteoporosis research is to identify the genes and environmental factors that contribute to low bone mineral density (BMD) and fracture. Linkage analyses have identified quantitative trait loci (QTLs), however, the genes contributing to low BMD are largely unknown. We examined the potential association of an intronic polymorphism in CD38 with BMD and postmenopausal bone loss. CD38 resides in 4p15, where a QTL for BMD has been described. CD38-\\/- mice display an osteoporotic phenotype at 3 months, with normalization of BMD by 5 months. The CD38 polymorphism was identified by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis in 457 postmenopausal and 173 premenopausal Caucasian women whose spine and hip BMD was measured by dual energy X-ray absorptiometry (DXA). Influence of the CD38 polymorphism on bone loss was analyzed in 273 postmenopausal women over a follow-up of 2.94 +\\/- 1.50 years. The CD38-PvuII polymorphism was significantly associated with premenopausal and postmenopausal (P = 0.001) lumbar spine BMD. Women homozygous for the G allele had >14% lower spinal BMD than women with GC\\/CC genotypes. An allele dose effect was observed at the spine in premenopausal (P = 0.002) and postmenopausal (P < 0.001) cohorts. The CD38-PvuII polymorphism was significantly associated with femoral neck BMD in pre- and postmenopausal women (P = 0.002 and P = 0.011, respectively). However, significance was lost following adjustment of hip BMD for covariates in the postmenopausal cohort (P = 0.081). The CD38-PvuII polymorphism was weakly associated with bone loss at the spine (P = 0.024), in postmenopausal women not taking hormone replacement therapy. We suggest that the CD38-PvuII polymorphism may influence the attainment and maintenance of peak BMD and postmenopausal bone loss.

  3. Monoaxial distraction of ulna to second metacarpal followed by single bone forearm in massive post infective radial bone loss

    Directory of Open Access Journals (Sweden)

    Jitendra N Pal

    2012-01-01

    Full Text Available Introduction: Radial bone loss associated with gross manus valgus deformity can be managed by open reduction internal fixation using intervening strut bone graft, callus distraction using ring or monoaxial fixator, and achieving union by distraction histogenesis. These methods are particularly suitable when bone loss is small. Single or staged procedure is described for congenital as well as in acquired extensive bone loss of radius. Distraction through radial proximal to distal segments, to achieve reduction of distal radio-ulnar joint (DRUJ, is also described in acquired cases. In the present series, functional results of distraction through ulna to 2 nd metacarpal is studied alongwith, functional status of hand, stability of wrist, level of patient′s satisfaction are also studied. Materials and Methods: 7 unilateral cases of radial loss (M = 5, F = 2 affecting 4 right hands of mean age 17 years (range 9 to 24 years were included in this study. They were treated by distracting through ulna to 2 nd metacarpal to achieve DRUJ alignment in first stage. Subsequently ulna was osteotomised and translated to distal stump of radius. It was then fixed to the distal radial remnant in 30° pronation in dominant and 30° supination non dominant hands. Results: Union was achieved in all cases associated with beneficial cross union of distal ulna. Hand functions improved near to normal, with fully corrected stable wrist joint, hypertrophied ulna and without recurrence. All of them had practically complete loss of forearm rotations, however patients were fully satisfied. Conclusion: This method is particularly suitable when associated with 6 cm or more radial bone loss. But when loss is small, sacrifice of one bone may not be justifiable.

  4. Risk Factors for Osteoporosis and Oral Bone Loss in Postmenopausal Women

    National Research Council Canada - National Science Library

    Wactawski-Wende, Jean

    2000-01-01

    The overall purpose of this study is to determine the relationship between skeletal and oral bone density, identify factors influencing bone loss, and determine the relationship between osteoporosis...

  5. Risk Factors for Osteoporosis and Oral Bone Loss in Postmenopausal Women

    National Research Council Canada - National Science Library

    Wactawski-Wende, Jean

    1999-01-01

    The overall purpose of this study is to determine the relationship between skeletal and oral bone density, identify factors influencing bone loss, and determine the relationship between osteoporosis...

  6. Risk Factors for Osteoporosis and Oral Bone Loss in Postmenopausal Women

    National Research Council Canada - National Science Library

    Wactawski-Wende, Jean

    2001-01-01

    The overall purpose of this study is to determine the relationship between skeletal and oral bone density, identify factors influencing bone loss, and determine the relationship between osteoporosis...

  7. Vitamin K supplementation does not prevent bone loss in ovariectomized Norway rats

    Science.gov (United States)

    Despite plausible biological mechanisms, the differential abilities of phylloquinone (PK) and menaquinones (MKn) to prevent bone loss remain controversial. The objective of the current study was to compare the effects of PK, menaquinone-4 (MK-4) and menaquinone-7(MK-7) on the rate of bone loss in o...

  8. The Use of Structural Allograft in Primary and Revision Knee Arthroplasty with Bone Loss

    Directory of Open Access Journals (Sweden)

    Raul A. Kuchinad

    2011-01-01

    Full Text Available Bone loss around the knee in the setting of total knee arthroplasty remains a difficult and challenging problem for orthopaedic surgeons. There are a number of options for dealing with smaller and contained bone loss; however, massive segmental bone loss has fewer options. Small, contained defects can be treated with cement, morselized autograft/allograft or metal augments. Segmental bone loss cannot be dealt with through simple addition of cement, morselized autograft/allograft, or metal augments. For younger or higher demand patients, the use of allograft is a good option as it provides a durable construct with high rates of union while restoring bone stock for future revisions. Older patients, or those who are low demand, may be better candidates for a tumour prosthesis, which provides immediate ability to weight bear and mobilize.

  9. Positive effect of removal of subchondral bone plate for cemented acetabular component fixation in total hip arthroplasty: a randomised RSA study with ten-year follow-up.

    Science.gov (United States)

    Flivik, G; Kristiansson, I; Ryd, L

    2015-01-01

    We hypothesised that the removal of the subchondral bone plate (SCBP) for cemented acetabular component fixation in total hip arthroplasty (THA) offers advantages over retention by improving the cement-bone interface, without jeopardising implant stability. We have previously published two-year follow-up data of a randomised controlled trial (RCT), in which 50 patients with primary osteoarthritis were randomised to either retention or removal of the SCBP. The mean age of the retention group (n = 25, 13 males) was 70.0 years (sd 6.8). The mean age in the removal group (n = 25, 16 males) was 70.3 years (sd 7.9). Now we have followed up the patients at six (retention group, n = 21; removal group, n = 20) and ten years (retention group: n = 17, removal group: n = 18), administering clinical outcome questionnaires and radiostereometric analysis (RSA), and determining the presence of radiolucent lines (RLLs) on conventional radiographs. RSA demonstrated similar translation and rotation patterns up to six years. Between six and ten years, proximal acetabular component migration and changes of inclination were larger in the retention group, although the mean differences did not reach statistical significance. Differences in migration were driven by two patients in the SCBP retention group with extensive migration versus none in the SCBP removal group. The significant difference (p < 0.001) in the development of radiolucent lines in the retention group, previously observed at two years, increased even further during the course of follow-up (p < 0.001). While recognising SCBP removal is a more demanding technique, we conclude that, wherever possible, the SCBP should be removed to improve the cement-bone interface in order to maximise acetabular component stability and longevity. ©2015 The British Editorial Society of Bone & Joint Surgery.

  10. Severity and pattern of bone mineral loss in endocrine causes of osteoporosis as compared to age-related bone mineral loss

    Directory of Open Access Journals (Sweden)

    D Dutta

    2016-01-01

    Full Text Available Background: Data are scant on bone health in endocrinopathies from India. This study evaluated bone mineral density (BMD loss in endocrinopathies [Graves′ disease (GD, type 1 diabetes mellitus (T1DM, hypogonadotrophic hypogonadism (HypoH, hypergonadotropic hypogonadism (HyperH, hypopituitarism, primary hyperparathyroidism (PHPT] as compared to age-related BMD loss [postmenopausal osteoporosis (PMO, andropause]. Materials and Methods: Retrospective audit of records of patients >30 years age attending a bone clinic from August 2014 to January 2016 was done. Results: Five-hundred and seven records were screened, out of which 420 (females:male = 294:126 were analyzed. A significantly higher occurrence of vitamin D deficiency and insufficiency was noted in T1DM (89.09%, HyperH (85%, and HypoH (79.59% compared to age-related BMD loss (60.02%; P < 0.001. The occurrence of osteoporosis among females and males was 55.41% and 53.97%, respectively, and of osteopenia among females and males was 28.91% and 32.54%, respectively. In females, osteoporosis was significantly higher in T1DM (92%, HyperH (85%, and HypoH (59.26% compared to PMO (49.34%; P < 0.001. Z score at LS, TF, NOF, and greater trochanter (GT was consistently lowest in T1DM women. Among men, osteoporosis was significantly higher in T1DM (76.67% and HypoH (54.55% compared to andropause (45.45%; P = 0.001. Z score at LS, TF, NOF, GT, and TR was consistently lowest in T1DM men. In GD, the burden of osteoporosis was similar to PMO and andropause. BMD difference among the study groups was not significantly different after adjusting for body mass index (BMI and vitamin D. Conclusion: Low bone mass is extremely common in endocrinopathies, warranting routine screening and intervention. Concomitant vitamin D deficiency compounds the problem. Calcium and vitamin D supplementations may improve bone health in this setting.

  11. Buccal bone loss after immediate implantation can be reduced by the flapless approach

    Directory of Open Access Journals (Sweden)

    ARTHUR BELÉM NOVAES JR

    2011-10-01

    Full Text Available Aim: The aim of this study was to evaluate the buccal bone remodeling after immediate implantation with flap or flapless approach. Material and Methods: The mandibular bilateral premolars of 3 dogs were extracted and immediately three implants were placed in both hemi-arches of each dog. Randomly, one hemi-arch was treated with the flapless approach, while in the contra lateral hemi-arch tooth extractions and implant placement were done after mucoperiosteal flap elevation. Non-submerged healing of 12 weeks was provided for both groups. Histomorphometric analysis was done to compare buccal and lingual bone height loss, bone density and bone-to-implant contact in the groups. Fluorescence analysis was performed to investigate the dynamic of bone remodeling in the different groups. Results: There was a significant association between the surgical flap and the extent of bone resorption around immediate implants. The loss of buccal bone height was significantly lower in the flapless group when compared to the flap group (0.98 mm x 2.14 mm, respectively, p<0.05. The coronal and apical buccal bone densities of the flap group were significantly higher when compared to the lingual components, showing anatomical differences between the bone plates. Fluorescence analysis showed no major differences in bone healing between the flap and flapless groups, supporting that the higher loss of buccal bone height is linked to the anatomic characteristics of this plate and to the negative influence of the detachment of the periosteum in immediate implant therapy. Conclusion: The flapless approach for immediate post-extraction implants reduces the buccal bone height loss.

  12. The Ovariectomized Rat as a Model for Studying Alveolar Bone Loss in Postmenopausal Women

    Directory of Open Access Journals (Sweden)

    Bryan D. Johnston

    2015-01-01

    Full Text Available In postmenopausal women, reduced bone mineral density at the hip and spine is associated with an increased risk of tooth loss, possibly due to a loss of alveolar bone. In turn, having fewer natural teeth may lead to compromised food choices resulting in a poor diet that can contribute to chronic disease risk. The tight link between alveolar bone preservation, tooth retention, better nutritional status, and reduced risk of developing a chronic disease begins with the mitigation of postmenopausal bone loss. The ovariectomized rat, a widely used preclinical model for studying postmenopausal bone loss that mimics deterioration of bone tissue in the hip and spine, can also be used to study mineral and structural changes in alveolar bone to develop drug and/or dietary strategies aimed at tooth retention. This review discusses key findings from studies investigating mandible health and alveolar bone in the ovariectomized rat model. Considerations to maximize the benefits of this model are also included. These include the measurement techniques used, the age at ovariectomy, the duration that a rat is studied after ovariectomy and habitual diet consumed.

  13. Contribution of mechanical unloading to trabecular bone loss following non-invasive knee injury in mice.

    Science.gov (United States)

    Anderson, Matthew J; Diko, Sindi; Baehr, Leslie M; Baar, Keith; Bodine, Sue C; Christiansen, Blaine A

    2016-10-01

    Development of osteoarthritis commonly involves degeneration of epiphyseal trabecular bone. In previous studies, we observed 30-44% loss of epiphyseal trabecular bone (BV/TV) from the distal femur within 1 week following non-invasive knee injury in mice. Mechanical unloading (disuse) may contribute to this bone loss; however, it is unclear to what extent the injured limb is unloaded following injury, and whether disuse can fully account for the observed magnitude of bone loss. In this study, we investigated the contribution of mechanical unloading to trabecular bone changes observed following non-invasive knee injury in mice (female C57BL/6N). We investigated changes in gait during treadmill walking, and changes in voluntary activity level using Open Field analysis at 4, 14, 28, and 42 days post-injury. We also quantified epiphyseal trabecular bone using μCT and weighed lower-limb muscles to quantify atrophy following knee injury in both ground control and hindlimb unloaded (HLU) mice. Gait analysis revealed a slightly altered stride pattern in the injured limb, with a decreased stance phase and increased swing phase. However, Open Field analysis revealed no differences in voluntary movement between injured and sham mice at any time point. Both knee injury and HLU resulted in comparable magnitudes of trabecular bone loss; however, HLU resulted in considerably more muscle loss than knee injury, suggesting another mechanism contributing to bone loss following injury. Altogether, these data suggest that mechanical unloading likely contributes to trabecular bone loss following non-invasive knee injury, but the magnitude of this bone loss cannot be fully explained by disuse. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1680-1687, 2016. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  14. Glycemic control and alveolar bone loss progression in type 2 diabetes.

    Science.gov (United States)

    Taylor, G W; Burt, B A; Becker, M P; Genco, R J; Shlossman, M

    1998-07-01

    This study tested the hypothesis that the risk for alveolar bone loss is greater, and bone loss progression more severe, for subjects with poorly controlled (PC) type 2 diabetes mellitus (type 2 DM) compared to those without type 2 DM or with better controlled (BC) type 2 DM. The PC group had glycosylated hemoglobin (HbA1) > or = 9%; the BC group had HbA1 or = 75% were used to identify the worst bone score (WBS) in the dentition. Change in worst bone score at follow-up, the outcome, was specified on a 4-category ordinal scale as no change, or a 1-, 2-, 3-, or 4-category increase over baseline WBS (WBS1). Poorly controlled diabetes, age, calculus, time to follow-up examination, and WBS1 were statistically significant explanatory variables in ordinal logistic regression models. Poorly controlled type 2 DM was positively associated with greater risk for a change in bone score (compared to subjects without type 2 DM) when the covariates were included in the model. The cumulative odds ratio (COR) at each threshold of the ordered response was 11.4 (95% CI = 2.5, 53.3). When contrasted with subjects with BC type 2 DM, the COR for those in the PC group was 5.3 (95% CI = 0.8, 53.3). The COR for subjects with BC type 2 DM was 2.2 (95% CI = 0.7, 6.5), when contrasted to those without type 2 DM. These results suggest that poorer glycemic control leads to both an increased risk for alveolar bone loss and more severe progression over those without type 2 DM, and that there may be a gradient, with the risk for bone loss progression for those with better controlled type 2 DM intermediate to the other 2 groups.

  15. Contribution of mechanical unloading to trabecular bone loss following non-invasive knee injury in mice

    OpenAIRE

    Anderson, Matthew J.; Diko, Sindi; Baehr, Leslie M.; Baar, Keith; Bodine, Sue C.; Christiansen, Blaine A.

    2016-01-01

    Development of osteoarthritis commonly involves degeneration of epiphyseal trabecular bone. In previous studies, we observed 30–44% loss of epiphyseal trabecular bone (BV/TV) from the distal femur within one week following non-invasive knee injury in mice. Mechanical unloading (disuse) may contribute to this bone loss, however it is unclear to what extent the injured limb is unloaded following injury, and whether disuse can fully account for the observed magnitude of bone loss. In this study,...

  16. Pathology of the distal condyles of the third metacarpal and third metatarsal bones of the horse

    International Nuclear Information System (INIS)

    Riggs, C.M.; Whitehouse, G.H.; Boyde, A.

    1999-01-01

    This study examined material from Thoroughbred horses, the majority of which had been in race training, for evidence of pathology in the third metacarpal (McIII) and third metatarsal (MtIII) bones which might be related to the occurrence of distal condylar fractures. Whole bone samples were studied and documented by macrophotography prior to macroradiography and computed tomographic (CT) imaging. Microradiographs were made from 100 microm thick mediolateral sections cut perpendicular to the dorsal and palmar/plantar articular surfaces of distal condylar regions of McIII and MtIII. Blocks were prepared for morphological imaging using the backscattered electron mode of scanning electron microscopy (BSE SEM). Linear defects in mineralised articular cartilage and subchondral bone were found in the palmar/plantar aspects of the condylar grooves adjacent to the sagittal ridge. These were closely related to the pattern of densification of the subchondral bone and were associated with intense focal remodelling of the immediately adjacent and subjacent bone. Parasagittal fractures of the condyles originated in similar defects. A unifying hypothesis for the aetiopathogenesis of these fractures is presented

  17. Regenerate augmentation with bone marrow concentrate after traumatic bone loss

    Directory of Open Access Journals (Sweden)

    Jan Gessmann

    2012-03-01

    Full Text Available Distraction osteogenesis after post-traumatic segmental bone loss of the tibia is a complex and time-consuming procedure that is often complicated due to prolonged consolidation or complete insufficiency of the regenerate. The aim of this feasibility study was to investigate the potential of bone marrow aspiration concentrate (BMAC for percutaneous regenerate augmentation to accelerate bony consolidation of the regenerate. Eight patients (age 22-64 with an average posttraumatic bone defect of 82.4 mm and concomitant risk factors (nicotine abuse, soft-tissue defects, obesity and/or circulatory disorders were treated with a modified Ilizarov external frame using an intramedullary cable transportation system. At the end of the distraction phase, each patient was treated with a percutaneously injection of autologous BMAC into the centre of the regenerate. The concentration factor was analysed using flow cytometry. The mean follow up after frame removal was 10 (4-15 months. With a mean healing index (HI of 36.9 d/cm, bony consolidation of the regenerate was achieved in all eight cases. The mean concentration factor of the bone marrow aspirate was 4.6 (SD 1.23. No further operations concerning the regenerate were needed and no adverse effects were observed with the BMAC procedure. This procedure can be used for augmentation of the regenerate in cases of segmental bone transport. Further studies with a larger number of patients and control groups are needed to evaluate a possible higher success rate and accelerating effects on regenerate healing.

  18. Cancer treatment-induced bone loss in premenopausal women: a need for therapeutic intervention?

    Science.gov (United States)

    Hadji, P; Gnant, M; Body, J J; Bundred, N J; Brufsky, A; Coleman, R E; Guise, T A; Lipton, A; Aapro, M S

    2012-10-01

    Current clinical treatment guidelines recommend cytotoxic chemotherapy, endocrine therapy, or both (with targeted therapy if indicated) for premenopausal women with early-stage breast cancer, depending on the biologic characteristics of the primary tumor. Some of these therapies can induce premature menopause or are specifically designed to suppress ovarian function and reduce circulating estrogen levels. In addition to bone loss associated with low estrogen levels, cytotoxic chemotherapy may have a direct negative effect on bone metabolism. As a result, cancer treatment-induced bone loss poses a significant threat to bone health in premenopausal women with breast cancer. Clinical trials of antiresorptive therapies, such as bisphosphonates, have demonstrated the ability to slow or prevent bone loss in this setting. Current fracture risk assessment tools are based on data from healthy postmenopausal women and do not adequately address the risks associated with breast cancer therapy, especially in younger premenopausal women. We therefore recommend that all premenopausal women with breast cancer be informed about the potential risk of bone loss prior to beginning anticancer therapy. Women who experience amenorrhea should have bone mineral density assessed by dual-energy X-ray absorptiometry and receive regular follow-up to monitor bone health. Regular exercise and daily calcium and vitamin D supplementation are recommended. Women with a Z-score <-2.0 or Z-score ≤-1.0 and/or a 5-10% annual decrease in bone mineral density should be considered for bisphosphonate therapy in addition to calcium and vitamin D supplements. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. A soluble activin type IIA receptor mitigates the loss of femoral neck bone strength and cancellous bone mass in a mouse model of disuse osteopenia.

    Science.gov (United States)

    Lodberg, Andreas; Eijken, Marco; van der Eerden, Bram C J; Okkels, Mette Wendelboe; Thomsen, Jesper Skovhus; Brüel, Annemarie

    2018-05-01

    Disuse causes a rapid and substantial bone loss distinct in its pathophysiology from the bone loss associated with cancers, age, and menopause. While inhibitors of the activin-receptor signaling pathway (IASPs) have been shown to prevent ovariectomy- and cancer-induced bone loss, their application in a model of disuse osteopenia remains to be tested. Here, we show that a soluble activin type IIA receptor (ActRIIA-mFc) increases diaphyseal bone strength and cancellous bone mass, and mitigates the loss of femoral neck bone strength in the Botulinum Toxin A (BTX)-model of disuse osteopenia in female C57BL/6J mice. We show that ActRIIA-mFc treatment preferentially stimulates a dual-effect (anabolic-antiresorptive) on the periosteal envelope of diaphyseal bone, demonstrating in detail the effects of ActRIIA-mFc on cortical bone. These observations constitute a previously undescribed feature of IASPs that mediates at least part of their ability to mitigate detrimental effects of unloading on bone tissue. The study findings support the application of IASPs as a strategy to combat bone loss during disuse. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Bilateral rapidly destructive arthrosis of the hip joint resulting from subchondral fracture with superimposed secondary osteonecrosis

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Takuaki; Iwamoto, Yukihide [Kyushu University, Department of Orthopaedic Surgery, Fukuoka (Japan); Schneider, Robert [Hospital for Special Surgery, Department of Radiology, New York (United States); Bullough, Peter G. [Hospital for Special Surgery, Department of Laboratory Medicine, New York, NY (United States)

    2010-02-15

    A 57-year-old woman suffered rapid destruction of both hip joints over a 10 months period. At the first visit, her radiographs demonstrated slight joint space narrowing and acetabular cyst formation in both hips. Five months later, joint space narrowing had further progressed, and intra-articular injection of steroid was given in both hips. However, the hip pain gradually became worse. Five months later, both joint spaces had totally disappeared and both femoral heads had undergone massive collapse. At gross examination, both resected femoral heads showed extensive opaque yellow areas consistent with osteonecrosis. Microscopic examination of these areas revealed evidence of both extensive fracture and callus formation, as well as necrosis throughout, indicating that the osteonecrosis observed in this case was a secondary phenomenon superimposed on pre-existing osteoarthritis and subchondral fracture. There were many pseudogranulomatous lesions in the marrow space and necrotic area, where tiny fragments of bone and articular cartilage, surrounded by histiocytes and giant cells, were embedded, such as are typically seen in rapidly destructive arthrosis. No radiologic or morphologic evidence of primary osteonecrosis was noted. This case indicates that at least some cases of rapidly destructive arthritis are the result of subchondral fracture with superimposed secondary osteonecrosis. (orig.)

  1. Bilateral rapidly destructive arthrosis of the hip joint resulting from subchondral fracture with superimposed secondary osteonecrosis

    International Nuclear Information System (INIS)

    Yamamoto, Takuaki; Iwamoto, Yukihide; Schneider, Robert; Bullough, Peter G.

    2010-01-01

    A 57-year-old woman suffered rapid destruction of both hip joints over a 10 months period. At the first visit, her radiographs demonstrated slight joint space narrowing and acetabular cyst formation in both hips. Five months later, joint space narrowing had further progressed, and intra-articular injection of steroid was given in both hips. However, the hip pain gradually became worse. Five months later, both joint spaces had totally disappeared and both femoral heads had undergone massive collapse. At gross examination, both resected femoral heads showed extensive opaque yellow areas consistent with osteonecrosis. Microscopic examination of these areas revealed evidence of both extensive fracture and callus formation, as well as necrosis throughout, indicating that the osteonecrosis observed in this case was a secondary phenomenon superimposed on pre-existing osteoarthritis and subchondral fracture. There were many pseudogranulomatous lesions in the marrow space and necrotic area, where tiny fragments of bone and articular cartilage, surrounded by histiocytes and giant cells, were embedded, such as are typically seen in rapidly destructive arthrosis. No radiologic or morphologic evidence of primary osteonecrosis was noted. This case indicates that at least some cases of rapidly destructive arthritis are the result of subchondral fracture with superimposed secondary osteonecrosis. (orig.)

  2. Dietary phosphorus exacerbates bone loss induced by cadmium in ovariectomized rats.

    Science.gov (United States)

    Bakhshalian, Neema; Johnson, Sarah A; Hooshmand, Shirin; Feresin, Rafaela G; Elam, Marcus L; Soung, Do Y; Payton, Mark E; Arjmandi, Bahram H

    2014-12-01

    Postmenopausal bone loss can be exacerbated by environmental contaminants, including the heavy metal cadmium (Cd). We hypothesized that incorporating phosphorus (P) into the diet would lead to the chelation of Cd into P, preventing its absorption and subsequent bone loss. To test this hypothesis, we used ovariectomized rats as a model of postmenopausal osteoporosis to examine the deleterious effects of Cd on bone with and without added P. Fifty 3-month-old ovariectomized Sprague-Dawley rats were assigned to five treatment groups (n = 10 per group) for 3 months as follows: (1) control; (2) 50 ppm Cd; (3) 50 ppm Cd plus 1.2% P; (4) 200 ppm Cd; and (5) 200 ppm Cd plus 1.2% P. Cd plus P caused a significant loss of whole body (P = 0.0001 and P properties, 50 ppm Cd plus 1.2% P caused an increase in trabecular separation, whereas 200 ppm Cd plus 1.2% P caused a decrease in bone volume-to-total volume ratio, a decrease in trabecular number, and an increase in trabecular separation and structural model index. Our findings indicate that Cd exposure, along with high intake of P, may be a public health hazard with respect to bone health.

  3. Automated assessment of bone changes in cross-sectional micro-CT studies of murine experimental osteoarthritis

    OpenAIRE

    Das Neves Borges, P; Vincent, TL; Marenzana, M; Espinoza Orías, AA

    2017-01-01

    OBJECTIVE: The degradation of articular cartilage, which characterises osteoarthritis (OA), is usually paired with excessive bone remodelling, including subchondral bone sclerosis, cysts, and osteophyte formation. Experimental models of OA are widely used to investigate pathogenesis, yet few validated methodologies for assessing periarticular bone morphology exist and quantitative measurements are limited by manual segmentation of micro-CT scans. The aim of this work was to chart the temporal...

  4. The current state of bone loss research: data from spaceflight and microgravity simulators.

    Science.gov (United States)

    Nagaraja, Mamta Patel; Risin, Diana

    2013-05-01

    Bone loss is a well documented phenomenon occurring in humans both in short- and in long-term spaceflights. This phenomenon can be also reproduced on the ground in human and animals and also modeled in cell-based analogs. Since space flights are infrequent and expensive to study the biomedical effects of microgravity on the human body, much of the known pathology of bone loss comes from experimental studies. The most commonly used in vitro simulators of microgravity are clinostats while in vivo simulators include the bed rest studies in humans and hindlimb unloading experiments in animals. Despite the numerous reports that have documented bone loss in wide ranges in multiple crew members, the pathology remains a key concern and development of effective countermeasures is still a major task. Thus far, the offered modalities have not shown much success in preventing or alleviating bone loss in astronauts and cosmonauts. The objective of this review is to capture the most recent research on bone loss from spaceflights, bed rest and hindlimb unloading, and in vitro studies utilizing cellular models in clinostats. Additionally, this review offers projections on where the research has to focus to ensure the most rapid development of effective countermeasures. Copyright © 2012 Wiley Periodicals, Inc.

  5. Spaceflight-induced vertebral bone loss in ovariectomized rats is associated with increased bone marrow adiposity and no change in bone formation

    Science.gov (United States)

    Keune, Jessica A; Philbrick, Kenneth A; Branscum, Adam J; Iwaniec, Urszula T; Turner, Russell T

    2016-01-01

    There is often a reciprocal relationship between bone marrow adipocytes and osteoblasts, suggesting that marrow adipose tissue (MAT) antagonizes osteoblast differentiation. MAT is increased in rodents during spaceflight but a causal relationship between MAT and bone loss remains unclear. In the present study, we evaluated the effects of a 14-day spaceflight on bone mass, bone resorption, bone formation, and MAT in lumbar vertebrae of ovariectomized (OVX) rats. Twelve-week-old OVX Fischer 344 rats were randomly assigned to a ground control or flight group. Following flight, histological sections of the second lumbar vertebrae (n=11/group) were stained using a technique that allowed simultaneous quantification of cells and preflight fluorochrome label. Compared with ground controls, rats flown in space had 32% lower cancellous bone area and 306% higher MAT. The increased adiposity was due to an increase in adipocyte number (224%) and size (26%). Mineral apposition rate and osteoblast turnover were unchanged during spaceflight. In contrast, resorption of a preflight fluorochrome and osteoclast-lined bone perimeter were increased (16% and 229%, respectively). The present findings indicate that cancellous bone loss in rat lumbar vertebrae during spaceflight is accompanied by increased bone resorption and MAT but no change in bone formation. These findings do not support the hypothesis that increased MAT during spaceflight reduces osteoblast activity or lifespan. However, in the context of ovarian hormone deficiency, bone formation during spaceflight was insufficient to balance increased resorption, indicating defective coupling. The results are therefore consistent with the hypothesis that during spaceflight mesenchymal stem cells are diverted to adipocytes at the expense of forming osteoblasts. PMID:28725730

  6. Bone marrow MR imaging findings in disuse osteoporosis

    International Nuclear Information System (INIS)

    Abreu, Marcelo R. de; Wesselly, Michelle; Chung, Christine B.; Resnick, Donald

    2011-01-01

    To demonstrate MR imaging findings in the cortical and trabecular bone as well as marrow changes in patients with disuse osteoporosis (DO). Sixteen patients (14 men, 2 women, aged 27-86 years) with clinical and radiographic evidence of DO of a lower limb joint (10 knees, 6 ankles) with MR examination of the same joint performed within a 1-month period were selected, as well as 16 healthy volunteers (7 men, 9 women, aged 25-75 years, 10 knees and 6 ankles). MR imaging findings of the bone marrow were analyzed by 2 musculoskeletal radiologists in consensus regarding: diffuse or focal signal alteration, reinforcement of vertical or longitudinal trabecular lines, and presence of abnormal vascularization. All patients (100%,16/16) with DO presented MR imaging abnormalities of the bone marrow, such as: accentuation of vertical trabecular lines (50%, 8/16), presence of subchondral lobules of fat (37.5%, 6/16), presence of horizontal trabecular lines (31%, 5/16), prominence of bone vessels (25%, 4/16), and presence of dotted areas of high signal intensity on T2-weighted fat-suppressed sequences (12.5%, 2/16). Such MR findings did not appear in the control individuals. There are several MR imaging findings in bones with DO that range from accentuation of vertical and horizontal marrow lines, presence of subchondral lobules of fat, prominent bone vascularization and the presence of dotted foci of high signal intensity on T2-weighted fat-suppressed sequences. Recognition of these signs may prove helpful in the identification of DO as well as distinguishing these findings from other entities. (orig.)

  7. Spinacia oleracea extract attenuates disease progression and sub-chondral bone changes in monosodium iodoacetate-induced osteoarthritis in rats.

    Science.gov (United States)

    Choudhary, Dharmendra; Kothari, Priyanka; Tripathi, Ashish Kumar; Singh, Sonu; Adhikary, Sulekha; Ahmad, Naseer; Kumar, Sudhir; Dev, Kapil; Mishra, Vijay Kumar; Shukla, Shubha; Maurya, Rakesh; Mishra, Prabhat R; Trivedi, Ritu

    2018-02-20

    Spinacia oleracea is an important dietary vegetable in India and throughout the world and has many beneficial effects. It is cultivated globally. However, its effect on osteoarthritis that mainly targets the cartilage cells remains unknown. In this study we aimed to evaluate the anti-osteoarthritic and chondro-protective effects of SOE on chemically induced osteoarthritis (OA). OA was induced by intra-patellar injection of monosodium iodoacetate (MIA) at the knee joint in rats. SOE was then given orally at 250 and 500 mg.kg - 1  day - 1 doses for 28 days to these rats. Anti-osteoarthritic potential of SOE was evaluated by micro-CT, mRNA and protein expression of pro-inflammatory and chondrogenic genes, clinically relevant biomarker's and behavioural experiments. In vitro cell free and cell based assays indicated that SOE acts as a strong anti-oxidant and an anti-inflammatory agent. Histological analysis of knee joints at the end of the experiment by safranin-o and toluidine blue staining established its protective effect. Radiological data corroborated the findings with improvement in the joint space and irregularity of the articular and atrophied femoral condyles and tibial plateau. Micro-CT analysis of sub-chondral bone indicated that SOE had the ability to mitigate OA effects by increasing bone volume to tissue volume (BV/TV) which resulted in decrease of trabecular pattern factor (Tb.Pf) by more than 200%. SOE stimulated chondrogenic marker gene expression with reduction in pro-inflammatory markers. Purified compounds isolated from SOE exhibited increased Sox-9 and Col-II protein expression in articular chondrocytes. Serum and urine analysis indicated that SOE had the potential to down-regulate glutathione S-transferase (GST) activity, clinical markers of osteoarthritis like cartilage oligometric matrix protein (COMP) and CTX-II. Overall, this led to a significant improvement in locomotion and balancing activity in rats as assessed by Open-field and Rota

  8. Grizzly bears (Ursus arctos horribilis) and black bears (Ursus americanus) prevent trabecular bone loss during disuse (hibernation).

    Science.gov (United States)

    McGee-Lawrence, Meghan E; Wojda, Samantha J; Barlow, Lindsay N; Drummer, Thomas D; Castillo, Alesha B; Kennedy, Oran; Condon, Keith W; Auger, Janene; Black, Hal L; Nelson, O Lynne; Robbins, Charles T; Donahue, Seth W

    2009-12-01

    Disuse typically causes an imbalance in bone formation and bone resorption, leading to losses of cortical and trabecular bone. In contrast, bears maintain balanced intracortical remodeling and prevent cortical bone loss during disuse (hibernation). Trabecular bone, however, is more detrimentally affected than cortical bone in other animal models of disuse. Here we investigated the effects of hibernation on bone remodeling, architectural properties, and mineral density of grizzly bear (Ursus arctos horribilis) and black bear (Ursus americanus) trabecular bone in several skeletal locations. There were no differences in bone volume fraction or tissue mineral density between hibernating and active bears or between pre- and post-hibernation bears in the ilium, distal femur, or calcaneus. Though indices of cellular activity level (mineral apposition rate, osteoid thickness) decreased, trabecular bone resorption and formation indices remained balanced in hibernating grizzly bears. These data suggest that bears prevent bone loss during disuse by maintaining a balance between bone formation and bone resorption, which consequently preserves bone structure and strength. Further investigation of bone metabolism in hibernating bears may lead to the translation of mechanisms preventing disuse-induced bone loss in bears into novel treatments for osteoporosis.

  9. Repair of articular cartilage and subchondral defects in rabbit knee joints with a polyvinyl alcohol/nano-hydroxyapatite/polyamide 66 biological composite material.

    Science.gov (United States)

    Guo, Tao; Tian, Xiaobin; Li, Bo; Yang, Tianfu; Li, Yubao

    2017-11-15

    This study sought to prepare a new PVA/n-HA/PA66 composite to investigate the repair of articular cartilage and subchondral defects in rabbit knee joints. A 5 × 5 × 5 mm-sized defect was created in the patellofemoral joints of 72 healthy adult New Zealand rabbits. The rabbits were then randomly divided into three groups (n = 24): PVA/n-HA+PA66 group, polyvinyl alcohol (PVA) group, and control (untreated) group. Cylindrical PVA/n-HA+PA66, 5 × 5 mm, comprised an upper PVA layer and a lower n-HA+PA66 layer. Macroscopic and histological evaluations were performed at 4, 8, 12, and 24 weeks, postoperatively. Type II collagen was measured by immunohistochemical staining. The implant/cartilage and bone interfaces were observed by scanning electron microscopy. At 24 weeks postoperatively, the lower PVA/n-HA+PA66 layer became surrounded by cartilage, with no obvious degeneration. In the PVA group, an enlarged space was observed between the implant and the host tissue that had undergone degeneration. In the control group, the articular cartilage had become calcified. In the PVA/n-HA+PA66 group, positive type II collagen staining was observed between the composite and the surrounding cartilage and on the implant surface. In the PVA group, positive staining was slightly increased between the PVA and the surrounding cartilage, but reduced on the PVA surface. In the control group, reduced staining was observed throughout. Scanning electron microscopy showed increased bone tissue in the lower n-HA+PA66 layer that was in close approximation with the upper PVA layer of the composite. In the PVA group, the bone tissue around the material had receded, and in the control group, the defect was filled with bone tissue, while the superior aspect of the defect was filled with disordered, fibrous tissue. The diphase biological composite material PVA/n-HA+PA66 exhibits good histocompatibility and offers a satisfactory substitute for articular cartilage and subchondral bone.

  10. Relationships between in vivo dynamic knee joint loading, static alignment and tibial subchondral bone microarchitecture in end-stage knee osteoarthritis.

    Science.gov (United States)

    Roberts, B C; Solomon, L B; Mercer, G; Reynolds, K J; Thewlis, D; Perilli, E

    2018-04-01

    To study, in end-stage knee osteoarthritis (OA) patients, relationships between indices of in vivo dynamic knee joint loads obtained pre-operatively using gait analysis, static knee alignment, and the subchondral trabecular bone (STB) microarchitecture of their excised tibial plateau quantified with 3D micro-CT. Twenty-five knee OA patients scheduled for total knee arthroplasty underwent pre-operative gait analysis. Mechanical axis deviation (MAD) was determined radiographically. Following surgery, excised tibial plateaus were micro-CT-scanned and STB microarchitecture analysed in four subregions (anteromedial, posteromedial, anterolateral, posterolateral). Regional differences in STB microarchitecture and relationships between joint loading and microarchitecture were examined. STB microarchitecture differed among subregions (P knee adduction moment (KAM) and internal rotation moment (|r|-range: 0.54-0.74). When controlling for walking speed, KAM and MAD, the ERM explained additional 11-30% of the variations in anteromedial BV/TV and medial-to-lateral BV/TV ratio (R 2  = 0.59, R 2  = 0.69, P knee joint loading indices in end-stage knee OA patients. Particularly, anteromedial BV/TV correlates strongest with ERM, whereas medial-to-lateral BV/TV ratio correlates strongest with indicators of medial-to-lateral joint loading (MAD, KAM) and rotational moments. However, associations with ERM should be interpreted with caution. Copyright © 2018 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  11. Subchondral insufficiency fracture of the femoral head in a patient with alkaptonuria

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, Takahiro; Shida, Jun-ichi; Inokuchi, Akihiko; Arizono, Takeshi [Kyushu Central Hospital, Department of Orthopaedic Surgery, Fukuoka-city (Japan); Yamamoto, Takuaki [Kyushu University, Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Fukuoka-city (Japan)

    2014-06-15

    We report a patient with alkaptonuria accompanied by bilateral rapidly destructive arthrosis of the hip. The destruction of the left hip joint with its severe functional impairment necessitated total hip arthroplasty (THA). The outcome was satisfactory. Both magnetic resonance imaging (MRI) and pathologic findings were compatible with a subchondral insufficiency fracture. A year and half later, during a follow-up visit, the patient complained of right coxalgia. Radiography showed that the right femoral head had already disappeared, requiring THA of the right hip. Although there have been a few reports of rapid destructive hip osteoarthritis associated with ochronotic arthropathy, the pathogenesis of the destructive change is not clear. Subchondral insufficiency fracture was diagnosed on MR imaging and pathologically confirmed in our patient with alkaptonuria, suggesting that subchondral insufficiency fracture is one of the causes of ochronotic hip destruction. (orig.)

  12. Subchondral insufficiency fracture of the femoral head in a patient with alkaptonuria

    International Nuclear Information System (INIS)

    Hamada, Takahiro; Shida, Jun-ichi; Inokuchi, Akihiko; Arizono, Takeshi; Yamamoto, Takuaki

    2014-01-01

    We report a patient with alkaptonuria accompanied by bilateral rapidly destructive arthrosis of the hip. The destruction of the left hip joint with its severe functional impairment necessitated total hip arthroplasty (THA). The outcome was satisfactory. Both magnetic resonance imaging (MRI) and pathologic findings were compatible with a subchondral insufficiency fracture. A year and half later, during a follow-up visit, the patient complained of right coxalgia. Radiography showed that the right femoral head had already disappeared, requiring THA of the right hip. Although there have been a few reports of rapid destructive hip osteoarthritis associated with ochronotic arthropathy, the pathogenesis of the destructive change is not clear. Subchondral insufficiency fracture was diagnosed on MR imaging and pathologically confirmed in our patient with alkaptonuria, suggesting that subchondral insufficiency fracture is one of the causes of ochronotic hip destruction. (orig.)

  13. Subchondral insufficiency fracture of the femoral head in a patient with alkaptonuria.

    Science.gov (United States)

    Hamada, Takahiro; Yamamoto, Takuaki; Shida, Jun-ichi; Inokuchi, Akihiko; Arizono, Takeshi

    2014-06-01

    We report a patient with alkaptonuria accompanied by bilateral rapidly destructive arthrosis of the hip. The destruction of the left hip joint with its severe functional impairment necessitated total hip arthroplasty (THA). The outcome was satisfactory. Both magnetic resonance imaging (MRI) and pathologic findings were compatible with a subchondral insufficiency fracture. A year and half later, during a follow-up visit, the patient complained of right coxalgia. Radiography showed that the right femoral head had already disappeared, requiring THA of the right hip. Although there have been a few reports of rapid destructive hip osteoarthritis associated with ochronotic arthropathy, the pathogenesis of the destructive change is not clear. Subchondral insufficiency fracture was diagnosed on MR imaging and pathologically confirmed in our patient with alkaptonuria, suggesting that subchondral insufficiency fracture is one of the causes of ochronotic hip destruction.

  14. Male Astronauts Have Greater Bone Loss and Risk of Hip Fracture Following Long Duration Spaceflights than Females

    Science.gov (United States)

    Ellman, Rachel; Sibonga, Jean; Bouxsein, Mary

    2010-01-01

    This slide presentation reviews bone loss in males and compares it to female bone loss during long duration spaceflight. The study indicates that males suffer greater bone loss than females and have a greater risk of hip fracture. Two possible reason for the greater male bone loss are that the pre-menopausal females have the estrogen protection and the greater strength of men max out the exercise equipment that provide a limited resistance to 135 kg.

  15. Effects of Active Mastication on Chronic Stress-Induced Bone Loss in Mice.

    Science.gov (United States)

    Azuma, Kagaku; Furuzawa, Manabu; Fujiwara, Shu; Yamada, Kumiko; Kubo, Kin-ya

    2015-01-01

    Chronic psychologic stress increases corticosterone levels, which decreases bone density. Active mastication or chewing attenuates stress-induced increases in corticosterone. We evaluated whether active mastication attenuates chronic stress-induced bone loss in mice. Male C57BL/6 (B6) mice were randomly divided into control, stress, and stress/chewing groups. Stress was induced by placing mice in a ventilated restraint tube (60 min, 2x/day, 4 weeks). The stress/chewing group was given a wooden stick to chew during the experimental period. Quantitative micro-computed tomography, histologic analysis, and biochemical markers were used to evaluate the bone response. The stress/chewing group exhibited significantly attenuated stress-induced increases in serum corticosterone levels, suppressed bone formation, enhanced bone resorption, and decreased trabecular bone mass in the vertebrae and distal femurs, compared with mice in the stress group. Active mastication during exposure to chronic stress alleviated chronic stress-induced bone density loss in B6 mice. Active mastication during chronic psychologic stress may thus be an effective strategy to prevent and/or treat chronic stress-related osteopenia.

  16. Wnt16 Is Associated with Age-Related Bone Loss and Estrogen Withdrawal in Murine Bone.

    Directory of Open Access Journals (Sweden)

    Henry Todd

    Full Text Available Genome Wide Association Studies suggest that Wnt16 is an important contributor to the mechanisms controlling bone mineral density, cortical thickness, bone strength and ultimately fracture risk. Wnt16 acts on osteoblasts and osteoclasts and, in cortical bone, is predominantly derived from osteoblasts. This led us to hypothesize that low bone mass would be associated with low levels of Wnt16 expression and that Wnt16 expression would be increased by anabolic factors, including mechanical loading. We therefore investigated Wnt16 expression in the context of ageing, mechanical loading and unloading, estrogen deficiency and replacement, and estrogen receptor α (ERα depletion. Quantitative real time PCR showed that Wnt16 mRNA expression was lower in cortical bone and marrow of aged compared to young female mice. Neither increased nor decreased (by disuse mechanical loading altered Wnt16 expression in young female mice, although Wnt16 expression was decreased following ovariectomy. Both 17β-estradiol and the Selective Estrogen Receptor Modulator Tamoxifen increased Wnt16 expression relative to ovariectomy. Wnt16 and ERβ expression were increased in female ERα-/- mice when compared to Wild Type. We also addressed potential effects of gender on Wnt16 expression and while the expression was lower in the cortical bone of aged males as in females, it was higher in male bone marrow of aged mice compared to young. In the kidney, which we used as a non-bone reference tissue, Wnt16 expression was unaffected by age in either males or females. In summary, age, and its associated bone loss, is associated with low levels of Wnt16 expression whereas bone loss associated with disuse has no effect on Wnt16 expression. In the artificially loaded mouse tibia we observed no loading-related up-regulation of Wnt16 expression but provide evidence that its expression is influenced by estrogen receptor signaling. These findings suggest that while Wnt16 is not an

  17. Improved cartilage regeneration by implantation of acellular biomaterials after bone marrow stimulation: a systematic review and meta-analysis of animal studies

    NARCIS (Netherlands)

    Pot, M.W.; Gonzales, V.K.; Buma, P.; Hout, J. in't; Kuppevelt, T.H. van; Vries, R.B. de; Daamen, W.F.

    2016-01-01

    Microfracture surgery may be applied to treat cartilage defects. During the procedure the subchondral bone is penetrated, allowing bone marrow-derived mesenchymal stem cells to migrate towards the defect site and form new cartilage tissue. Microfracture surgery generally results in the formation of

  18. Implant and root supported overdentures - a literature review and some data on bone loss in edentulous jaws

    OpenAIRE

    Carlsson, Gunnar E

    2014-01-01

    PURPOSE To present a literature review on implant overdentures after a brief survey of bone loss after extraction of all teeth. MATERIALS AND METHODS Papers on alveolar bone loss and implant overdentures have been studied for a narrative review. RESULTS Bone loss of the alveolar process after tooth extraction occurs with great individual variation, impossible to predict at the time of extraction. The simplest way to prevent bone loss is to avoid extraction of all teeth. To keep a few teeth an...

  19. Molecular changes in articular cartilage and subchondral bone in the rat anterior cruciate ligament transection and meniscectomized models of osteoarthritis

    OpenAIRE

    Zhuo Ya; Hayami Tadashi; Pickarski Maureen; Duong Le T

    2011-01-01

    Abstract Background Osteoarthritis (OA) is a debilitating, progressive joint disease. Methods Similar to the disease progression in humans, sequential events of early cartilage degradation, subchondral osteopenia followed by sclerosis, and late osteophyte formation were demonstrated in the anterior cruciate ligament transection (ACLT) or ACLT with partial medial meniscectomy (ACLT + MMx) rat OA models. We describe a reliable and consistent method to examine the time dependent changes in the g...

  20. Decreased bone tissue mineralization can partly explain subchondral sclerosis observed in osteoarthritis

    NARCIS (Netherlands)

    Cox, L.G.E.; Donkelaar, van C.C.; Rietbergen, van B.; Emans, P.J.; Ito, K.

    2012-01-01

    For many years, pharmaceutical therapies for osteoarthritis (OA) were focused on cartilage. However, it has been theorized that bone changes such as increased bone volume fraction and decreased bone matrix mineralization may play an important role in the initiation and pathogenesis of OA as well.

  1. Measurement of spinal or peripheral bone mass to estimate early postmenopausal bone loss

    International Nuclear Information System (INIS)

    Riis, B.J.; Christiansen, C.

    1988-01-01

    This report presents data from 153 healthy, early postmenopausal women who were randomly allocated to two years of treatment with estrogen or placebo. Bone mineral content in the forearms was measured by single-photon absorptiometry, and bone mineral density of the lumbar spine and total-body bone mineral by dual-photon absorptiometry, before and after one and two years of treatment. At the end of the two years, there were highly significant differences of 6 to 7 percent between the estrogen and the placebo groups at all sites measured. The range of the changes of the spine measurement was twice that of the forearm and total-body measurements. It is concluded that measurement of the forearm by single-photon absorptiometry is superior to measurement of the spine by dual-photon absorptiometry both in clinical studies and in the individual patient for detecting estrogen-dependent bone loss and its treatment by estrogen replacement

  2. Effects of long-term estrogen replacement therapy on bone turnover in periarticular tibial osteophytes in surgically postmenopausal cynomolgus monkeys

    OpenAIRE

    Olson, Erik J.; Lindgren, Bruce R.; Carlson, Cathy S.

    2007-01-01

    The aims of the present study were to assess the effects of long-term estrogen replacement therapy (ERT) on size and indices of bone turnover in periarticular osteophytes in ovariectomized cynomolgus monkeys and to compare dynamic indices of bone turnover in osteophyte bone with those of subchondral bone (SCB) and epiphyseal/metaphyseal cancellous (EMC) bone. One hundred sixty-five adult female cynomolgus macaques were bilaterally ovariectomized and randomly divided into three age- and weight...

  3. Decreased bone turnover with balanced resorption and formation prevent cortical bone loss during disuse (hibernation) in grizzly bears (Ursus arctos horribilis)

    OpenAIRE

    McGee, Meghan E.; Maki, Aaron J.; Johnson, Steven E.; Lynne Nelson, O.; Robbins, Charles T.; Donahue, Seth W.

    2007-01-01

    Disuse uncouples bone formation from resorption, leading to increased porosity, decreased bone geometrical properties, and decreased bone mineral content which compromises bone mechanical properties and increases fracture risk. However, black bear bone properties are not adversely affected by aging despite annual periods of disuse (i.e., hibernation), which suggests that bears either prevent bone loss during disuse or lose bone and subsequently recover it at a faster rate than other animals. ...

  4. Association between disk position and degenerative bone changes of the temporomandibular joints: an imaging study in subjects with TMD.

    Science.gov (United States)

    Cortés, Daniel; Sylvester, Daniel Cortés; Exss, Eduardo; Marholz, Carlos; Millas, Rodrigo; Moncada, Gustavo

    2011-04-01

    The aim of this study was to determine the frequency and relationship between disk position and degenerative bone changes in the temporomandibular joints (TMJ), in subjects with internal derangement (ID). MRI and CT scans of 180 subjects with temporomandibular disorders (TMD) were studied. Different image parameters or characteristics were observed, such as disk position, joint effusion, condyle movement, degenerative bone changes (flattened, cortical erosions and irregularities), osteophytes, subchondral cysts and idiopathic condyle resorption. The present study concluded that there is a significant association between disk displacement without reduction and degenerative bone changes in patients with TMD. The study also found a high probability of degenerative bone changes when disk displacement without reduction is present. No association was found between TMD and condyle range of motion, joint effusion and/or degenerative bone changes. The following were the most frequent morphological changes observed: flattening of the anterior surface of the condyle; followed by erosions and irregularities of the joint surfaces; flattening of the articular surface of the temporal eminence, subchondral cysts, osteophytes; and idiopathic condyle resorption, in decreasing order.

  5. Impact of Weight Loss With Intragastric Balloon on Bone Density and Microstructure in Obese Adults.

    Science.gov (United States)

    Madeira, Eduardo; Madeira, Miguel; Guedes, Erika Paniago; Mafort, Thiago Thomaz; Moreira, Rodrigo Oliveira; de Mendonça, Laura Maria Carvalho; Lima, Inayá Correa Barbosa; Neto, Leonardo Vieira; de Pinho, Paulo Roberto Alves; Lopes, Agnaldo José; Farias, Maria Lucia Fleiuss

    2018-03-21

    The historical concept that obesity protects against bone fractures has been questioned. Weight loss appears to reduce bone mineral density (BMD); however, the results in young adults are inconsistent, and data on the effects of weight loss on bone microstructure are limited. This study aimed to evaluate the impact of weight loss using an intragastric balloon (IGB) on bone density and microstructure. Forty obese patients with metabolic syndrome (mean age 35.1 ± 7.3 yr) used an IGB continuously for 6 mo. Laboratory tests, areal BMD, and body composition measurements via dual-energy X-ray absorptiometry, and volumetric BMD and bone microstructure measurements via high-resolution peripheral quantitative computed tomography were conducted before IGB placement and after IGB removal. The mean weight loss was 11.5%. After 6 mo, there were significant increases in vitamin D and carboxyterminal telopeptide of type 1 collagen levels. After IGB use, areal BMD increased in the spine but decreased in the total femur and the 33% radius. Cortical BMD increased in the distal radius but tended to decrease in the distal tibia. The observed trabecular bone loss in the distal tibia contributed to the decline in the total volumetric BMD at this site. There was a negative correlation between the changes in leptin levels and the measures of trabecular quality in the tibia on high-resolution peripheral quantitative computed tomography. Weight loss may negatively impact bone microstructure in young patients, especially for weight-bearing bones, in which obesity has a more prominent effect. Copyright © 2018 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.

  6. Recurrent anterior glenohumeral instability: the quantification of glenoid bone loss using magnetic resonance imaging

    International Nuclear Information System (INIS)

    Martins e Souza, Patricia; Brandao, Bruno Lobo; Motta, Geraldo; Monteiro, Martim; Brown, Eduardo; Marchiori, Edson

    2014-01-01

    To investigate the accuracy of conventional magnetic resonance imaging (MRI) in determining the severity of glenoid bone loss in patients with anterior shoulder dislocation by comparing the results with arthroscopic measurements. Institutional review board approval and written consent from all patients were obtained. Thirty-six consecutive patients (29 men, seven women; mean age, 34.5 [range, 18-55] years) with recurrent anterior shoulder dislocation (≥3 dislocations; mean, 37.9; range, 3-200) and suspected glenoid bone loss underwent shoulder MRI before arthroscopy (mean interval, 28.5 [range, 9-73] days). Assessments of glenoid bone loss by MRI (using the best-fit circle area method) and arthroscopy were compared. Inter- and intrareader reproducibility of MRI-derived measurements was evaluated using arthroscopy as a comparative standard. Glenoid bone loss was evident on MRI and during arthroscopy in all patients. Inter- and intrareader correlations of MRI-derived measurements were excellent (intraclass correlation coefficient = 0.80-0.82; r = 0.81-0.86). The first and second observers' measurements showed strong (r = 0.76) and moderate (r = 0.69) interreader correlation, respectively, with arthroscopic measurements. Conventional MRI can be used to measure glenoid bone loss, particularly when employed by an experienced musculoskeletal radiologist. (orig.)

  7. Recurrent anterior glenohumeral instability: the quantification of glenoid bone loss using magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Martins e Souza, Patricia [Fleury Medicina e Saude and Instituto Nacional de Traumatologia e Ortopedia, Rio de Janeiro, RJ (Brazil); Brandao, Bruno Lobo; Motta, Geraldo; Monteiro, Martim [Instituto Nacional de Traumatologia e Ortopedia, Rio de Janeiro, RJ (Brazil); Brown, Eduardo [Grupo Fleury Medicina Diagnostica, Rio de Janeiro, RJ (Brazil); Marchiori, Edson [Universidade Federal do Rio de Janeiro, Petropolis, RJ (Brazil)

    2014-08-15

    To investigate the accuracy of conventional magnetic resonance imaging (MRI) in determining the severity of glenoid bone loss in patients with anterior shoulder dislocation by comparing the results with arthroscopic measurements. Institutional review board approval and written consent from all patients were obtained. Thirty-six consecutive patients (29 men, seven women; mean age, 34.5 [range, 18-55] years) with recurrent anterior shoulder dislocation (≥3 dislocations; mean, 37.9; range, 3-200) and suspected glenoid bone loss underwent shoulder MRI before arthroscopy (mean interval, 28.5 [range, 9-73] days). Assessments of glenoid bone loss by MRI (using the best-fit circle area method) and arthroscopy were compared. Inter- and intrareader reproducibility of MRI-derived measurements was evaluated using arthroscopy as a comparative standard. Glenoid bone loss was evident on MRI and during arthroscopy in all patients. Inter- and intrareader correlations of MRI-derived measurements were excellent (intraclass correlation coefficient = 0.80-0.82; r = 0.81-0.86). The first and second observers' measurements showed strong (r = 0.76) and moderate (r = 0.69) interreader correlation, respectively, with arthroscopic measurements. Conventional MRI can be used to measure glenoid bone loss, particularly when employed by an experienced musculoskeletal radiologist. (orig.)

  8. The relationship between blood lead levels and periodontal bone loss in the United States, 1988-1994.

    OpenAIRE

    Dye, Bruce A; Hirsch, Rosemarie; Brody, Debra J

    2002-01-01

    An association between bone disease and bone lead has been reported. Studies have suggested that lead stored in bone may adversely affect bone mineral metabolism and blood lead (PbB) levels. However, the relationship between PbB levels and bone loss attributed to periodontal disease has never been reported. In this study we examined the relationship between clinical parameters that characterize bone loss due to periodontal disease and PbB levels in the U.S. population. We used data from the T...

  9. Repression of osteoblast maturation by ERRα accounts for bone loss induced by estrogen deficiency.

    Directory of Open Access Journals (Sweden)

    Marlène Gallet

    Full Text Available ERRα is an orphan member of the nuclear receptor family, the complete inactivation of which confers resistance to bone loss induced by ageing and estrogen withdrawal to female mice in correlation with increased bone formation in vivo. Furthermore ERRα negatively regulates the commitment of mesenchymal cells to the osteoblast lineage ex vivo as well as later steps of osteoblast maturation. We searched to determine whether the activities of ERRα on osteoblast maturation are responsible for one or both types of in vivo induced bone loss. To this end we have generated conditional knock out mice in which the receptor is normally present during early osteoblast differentiation but inactivated upon osteoblast maturation. Bone ageing in these animals was similar to that observed for control animals. In contrast conditional ERRαKO mice were completely resistant to bone loss induced by ovariectomy. We conclude that the late (maturation, but not early (commitment, negative effects of ERRα on the osteoblast lineage contribute to the reduced bone mineral density observed upon estrogen deficiency.

  10. Repression of osteoblast maturation by ERRα accounts for bone loss induced by estrogen deficiency.

    Science.gov (United States)

    Gallet, Marlène; Saïdi, Soraya; Haÿ, Eric; Photsavang, Johann; Marty, Caroline; Sailland, Juliette; Carnesecchi, Julie; Tribollet, Violaine; Barenton, Bruno; Forcet, Christelle; Birling, Marie-Christine; Sorg, Tania; Chassande, Olivier; Cohen-Solal, Martine; Vanacker, Jean-Marc

    2013-01-01

    ERRα is an orphan member of the nuclear receptor family, the complete inactivation of which confers resistance to bone loss induced by ageing and estrogen withdrawal to female mice in correlation with increased bone formation in vivo. Furthermore ERRα negatively regulates the commitment of mesenchymal cells to the osteoblast lineage ex vivo as well as later steps of osteoblast maturation. We searched to determine whether the activities of ERRα on osteoblast maturation are responsible for one or both types of in vivo induced bone loss. To this end we have generated conditional knock out mice in which the receptor is normally present during early osteoblast differentiation but inactivated upon osteoblast maturation. Bone ageing in these animals was similar to that observed for control animals. In contrast conditional ERRαKO mice were completely resistant to bone loss induced by ovariectomy. We conclude that the late (maturation), but not early (commitment), negative effects of ERRα on the osteoblast lineage contribute to the reduced bone mineral density observed upon estrogen deficiency.

  11. Bone Loss in Space: Shuttle/MIR Experience and Bed Rest Countermeasure Program

    Science.gov (United States)

    Shackelford, L. C.; LeBlanc, A.; Feiveson, A.; Oganov, V.

    1999-01-01

    Loss of bone mineral during space flight was documented in the 1970's Skylab missions. The USSR space program made similar observations in the 1980's. The Institute of Biomedical Problems in Moscow and NASA JSC in 1989 began to collect pre- and post-flight bone mineral density (BMD) using Hologic QDR 1000 DEXA scanners transferred from JSC to Moscow and Star City. DEXA whole body, hip, and lumbar spine scans were performed prior to and during the first week after return from 4- to 6-month missions (plus one 8-month mission and one 14- month mission) on the Mir space station. These data documented the extent and regional nature of bone loss during long duration space flight. Of the 18 cosmonauts participating in this study between 1990 and 1995, seven flew two missions. BMD scans prior to the second flight compared to the first mission preflight scans indicated that recovery was possibly delayed or incomplete. Because of these findings, NASA and IBMP initiated the study "Bone Mineral Loss and Recovery After Shuttle/Mir Flights" in 1995 to evaluate bone recovery during a 3-year post-flight period. All of the 14 participants thus far evaluated lost bone in at least one region of the spine and lower extremities during flight. Of the 14, only one to date has exhibited full return to baseline BNM values in all regions. The current study will continue until the last participant has reached full bone recovery in all regions, has reached a plateau, or until three years after the flight (2001 for the last mission of the program). Bone mineral density losses in space and difficulty in returning to baseline indicate a need for countermeasure development. In late 1996 NASA JSC and Baylor College of Medicine were approved to conduct two countermeasure studies during 17 weeks of bed rest. In 1997 the studies were begun in the bed rest facility established by NASA, Baylor College of Medicine, and The Methodist Hospital in Houston. To date, three bed rest controls, five resistive

  12. Identification of trabecular excrescences, novel microanatomical structures, present in bone in osteoarthropathies

    Directory of Open Access Journals (Sweden)

    AM Taylor

    2012-04-01

    Full Text Available It is widely held that bone architecture is finely regulated in accordance with homeostatic requirements. Aberrant remodelling (hyperdensification and/or cyst formation in the immediately subchondral region has previously been described in bone underlying cartilage in arthropathies. The present study examined the trabecular architecture of samples of bone, initially in the severe osteoarthropathy of alkaptonuria, but subsequently in osteoarthritis using a combination of light microscopy, 3D scanning electron microscopy and quantitative backscattered electron scanning electron microscopy. We report an extraordinary and previously unrecognised bone phenotype in both disorders, including novel microanatomical structures. The underlying subchondral trabecular bone contained idiosyncratic architecture. Trabecular surfaces had numerous outgrowths that we have termed "trabecular excrescences", of which three distinct types were recognised. The first type arose from incomplete resorption of branching secondary trabeculae arising from the deposition of immature (woven bone in prior marrow space. These were characterised by very deeply scalloped surfaces and rugged edges. The second type had arisen in a similar way but been smoothed over by new bone deposition. The third type, which resembled coarse stucco, probably arises from resting surfaces that had been focally reactivated. These were poorly integrated with the prior trabecular wall. We propose that these distinctive microanatomical structures are indicative of abnormal osteoclast/osteoblast modelling in osteoarthropathies, possibly secondary to altered mechanical loading or other aberrant signalling. Identification of the mechanisms underlying the formation of trabecular excrescences will contribute to a better understanding of the role of aberrant bone remodelling in arthropathies and development of new therapeutic strategies.

  13. The Role of Mechanical Stimulation in Recovery of Bone Loss-High versus Low Magnitude and Frequency of Force.

    Science.gov (United States)

    Nagaraja, Mamta Patel; Jo, Hanjoong

    2014-04-02

    Musculoskeletal pathologies associated with decreased bone mass, including osteoporosis and disuse-induced bone loss, affect millions of Americans annually. Microgravity-induced bone loss presents a similar concern for astronauts during space missions. Many pharmaceutical treatments have slowed osteoporosis, and recent data shows promise for countermeasures for bone loss observed in astronauts. Additionally, high magnitude and low frequency impact such as running has been recognized to increase bone and muscle mass under normal but not microgravity conditions. However, a low magnitude and high frequency (LMHF) mechanical load experienced in activities such as postural control, has also been shown to be anabolic to bone. While several clinical trials have demonstrated that LMHF mechanical loading normalizes bone loss in vivo, the target tissues and cells of the mechanical load and underlying mechanisms mediating the responses are unknown. In this review, we provide an overview of bone adaptation under a variety of loading profiles and the potential for a low magnitude loading as a way to counteract bone loss as experienced by astronauts.

  14. Transplantation of osteoporotic bone marrow stromal cells rejuvenated by the overexpression of SATB2 prevents alveolar bone loss in ovariectomized rats.

    Science.gov (United States)

    Xu, Rongyao; Fu, Zongyun; Liu, Xue; Xiao, Tao; Zhang, Ping; Du, Yifei; Yuan, Hua; Cheng, Jie; Jiang, Hongbing

    2016-11-01

    Estrogen-deficient osteoporosis is an aging-related disease with high morbidity that not only significantly increases a woman's risk of fragility fracture but is also associated with tooth and bone loss in the supporting alveolar bone of the jaw. Emerging evidence suggests that the aging of bone marrow stromal cells (BMSCs) contributes to the development of osteoporosis. In this study, we aimed to investigate the role of the special AT-rich sequence-binding protein 2 (SATB2), a stemness and senescence regulator of craniofacial BMSCs, in rat ovariectomy-induced alveolar osteoporosis. We also sought to determine whether transplantation of SATB2-modified BMSCs could ameliorate estrogen deficient alveolar bone loss. Our data revealed that BMSCs from ovariectomy-induced alveolar bone exhibited typical senescence phenotypes such as diminished stemness and osteogenic capacity, increased expression of senescence or osteoclastic markers and enhanced adipogenic potential. These phenotypic changes are a result of SATB2-mediated senescence dysregulation as evidenced by nuclear γH2AX foci formation. Moreover, overexpression of SATB2 significantly alleviated the senescence of osteoporotic BMSCs in vitro. Importantly, transplantation of SATB2-modified BMSCs significantly attenuated ovariectomy-induced alveolar bone loss in vivo. Together, our results revealed that SATB2 is a critical regulator of alveolar BMSC senescence, and its overexpression decreases these senescent changes both in vitro and in vivo. SATB2-modified BMSC delivery could be a viable and promising therapeutic strategy for alveolar bone loss induced by estrogen-deficient osteoporosis. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Correlation of interdental and interradicular bone loss in patients ...

    African Journals Online (AJOL)

    2012-01-19

    Jan 19, 2012 ... This was followed by Tukeys HSD post hoc tests to know the significant difference ... Key words: Alveolar bone loss, chronic periodontitis, dental, furcation defect, ... The main goals of the diagnosis of periodontal disease.

  16. Bone-anchored hearing devices in children with unilateral conductive hearing loss: a patient-carer perspective.

    Science.gov (United States)

    Banga, Rupan; Doshi, Jayesh; Child, Anne; Pendleton, Elizabeth; Reid, Andrew; McDermott, Ann-Louise

    2013-09-01

    We sought to determine the outcome of implantation of a bone-anchored hearing device in children with unilateral conductive hearing loss. A retrospective case note analysis was used in a tertiary referral pediatric hospital to study 17 consecutive cases of pediatric patients with unilateral conductive hearing loss who were fitted with a bone-anchored hearing device between 2005 and 2010. The average age of the patients at the time of bone-anchored hearing device fitting was 10 years 6 months (range, 6 years 3 months to 16 years). Qualitative subjective outcome measures demonstrated benefit. The vast majority of patients reported improved social and physical functioning and improved quality of life. All 17 patients are currently using their bone-anchored hearing device on a daily basis after a follow-up of 6 months. This study has shown improved quality of life in children with unilateral hearing loss after implantation of their bone-anchored hearing device. There was a high degree of patient satisfaction and improvement in health status reported by children and/or carers. Bone-anchored hearing devices have an important role in the management of children with symptomatic unilateral hearing loss. Perhaps earlier consideration of a bone-anchored hearing device would be appropriate in selected cases.

  17. The Role of Peripheral Nerve Function in Age-Related Bone Loss and Changes in Bone Adaptation

    Science.gov (United States)

    2015-12-01

    E Production of Osteoblasts, and Attenuates the Inflammatory Bone Loss Induced by Lipopolysaccharide. ISRN Pharmacol, 2012. 2012: p. 439860. 17...Kobayashi M, Watanabe K, Yokoyama S, et al. Capsaicin, a TRPV1 Ligand, Suppresses Bone Resorption by Inhibit- ing the Prostaglandin E Production of...example, mechanoreceptors in the skin respond to bending and stretching and can provide information about touch. Pacini’s corpuscle consists of onion like

  18. Structural variation of the distal condyles of the third metacarpal and third metatarsal bones in the horse

    International Nuclear Information System (INIS)

    Riggs, C.M.; Whitehouse, G.H.; Boyde, A.

    1999-01-01

    This study examined 3-dimensional (3D) distribution of sectors with contrasting density in the equine third metacarpal (McIII) and third metatarsal (MtIII) bones with a view to explaining the aetiology of distal condylar fractures. Macroradiography and computed tomographic (CT) imaging were used in the nondestructive study of bones obtained from horses, most of which were Thoroughbreds in race training. Distal condylar regions of McIII and MtIII were also studied in microradiographs of 100 mu m thick mediolateral sections cut perpendicular to the dorsal and palmar/plantar articular surfaces. Qualitative and quantitative results from all methods used (radiography, CTand microradiographic stereology) demonstrated densification (sclerosis) of subchondral bone located in the palmar/plantar regions of the medial and lateral condyles of both McIII and MtIII, Substantial density gradients between the denser condyles and the subchondral bone of the sagittal groove were shown to equate with anatomical differences in loading intensity during locomotion. It is hypothesised that such differences in bone density results in stress concentration at the palmar/plantar aspect of the condylar grooves, which may predispose to fracture

  19. An Unusual Bone Loss Around Implants

    Directory of Open Access Journals (Sweden)

    Amirreza Rokn

    2013-01-01

    Full Text Available AbstractPre-implant disease is an inflammatory process, which can affect the surrounding tissues of a functional Osseointegrated implant that is usually as a result of a disequilibrium between the micro-flora and the body defense system.This case reports a 57 years old male with unusual bone loss around dental implants.This was an unusual case of peri-implantitis which occurred only in the implants on one side of the mouth although they all were unloaded implants.

  20. Bisphosphonate effects in rat unloaded hindlimb bone loss model: three-dimensional microcomputed tomographic, histomorphometric, and densitometric analyses.

    Science.gov (United States)

    Barou, O; Lafage-Proust, M H; Martel, C; Thomas, T; Tirode, F; Laroche, N; Barbier, A; Alexandre, C; Vico, L

    1999-10-01

    The effects of antiresorptive drugs on bone loss remain unclear. Using three-dimensional microtomography, dual X-ray/densitometry, and histomorphometry, we evaluated tiludronate effects in the bone loss model of immobilization in tail-suspended rats after 7, 13, and 23 days. Seventy-eight 12-week-old Wistar male rats were assigned to 13 groups: 1 baseline group, and for each time point, 1 control group treated with vehicle and three tail-suspended groups treated with either tiludronate (0.5 or 5 mg/kg) or vehicle, administered s. c. every other day, during the last week before sacrifice. In primary spongiosa (ISP), immobilization-induced bone loss plateaued after day 7 and was prevented by tiludronate. In secondary spongiosa (IISP), bone loss appeared at day 13 with a decrease in trabecular thickness and trabecular number (Tb.N) as assessed by three-dimensional microtomography. Osteoclastic parameters did not differ in tail-suspended rats versus control rats, whereas bone formation showed a biphasic pattern: after a marked decrease at day 7, osteoblastic activity and recruitment normalized at days 13 and 23, respectively. At day 23, the 80% decrease in bone mass was fully prevented by high-dose tiludronate with an increase in Tb.N without preventing trabecular thinning. In summary, at day 7, tiludronate prevented bone loss in ISP. After day 13, tiludronate prevented bone loss in ISP and IISP despite a further decrease in bone formation. Thus, the preventive effects of tiludronate in this model may be related to the alteration in bone modeling with an increase in Tb.N in ISP and subsequently in IISP.

  1. Enlarging bilateral femoral condylar bone cysts without scintigraphic uptake in a yearling foal

    International Nuclear Information System (INIS)

    Squire, K.R.E.; Fessler, J.F.; Cantwell, H.D.; Widmer, W.R.

    1992-01-01

    Bilateral subchondral bone cysts of the femoral condyles were diagnosed by conventional radiography in a 14 month old Appaloosa colt. Surgical debridement was performed, and over the next 18 months the appearance of the cysts was evaluated with radiography and bone scintigraphy. On the preoperative scintigrams, increased radiopharmaceutical uptake was associated with the cysts. Despite continued radiographic enlargement, the cysts did not demonstrate increased radiopharmaceutical uptake post-operatively

  2. Decreased bone turnover with balanced resorption and formation prevent cortical bone loss during disuse (hibernation) in grizzly bears (Ursus arctos horribilis).

    Science.gov (United States)

    McGee, Meghan E; Maki, Aaron J; Johnson, Steven E; Nelson, O Lynne; Robbins, Charles T; Donahue, Seth W

    2008-02-01

    Disuse uncouples bone formation from resorption, leading to increased porosity, decreased bone geometrical properties, and decreased bone mineral content which compromises bone mechanical properties and increases fracture risk. However, black bear bone properties are not adversely affected by aging despite annual periods of disuse (i.e., hibernation), which suggests that bears either prevent bone loss during disuse or lose bone and subsequently recover it at a faster rate than other animals. Here we show decreased cortical bone turnover during hibernation with balanced formation and resorption in grizzly bear femurs. Hibernating grizzly bear femurs were less porous and more mineralized, and did not demonstrate any changes in cortical bone geometry or whole bone mechanical properties compared to active grizzly bear femurs. The activation frequency of intracortical remodeling was 75% lower during hibernation than during periods of physical activity, but the normalized mineral apposition rate was unchanged. These data indicate that bone turnover decreases during hibernation, but osteons continue to refill at normal rates. There were no changes in regional variation of porosity, geometry, or remodeling indices in femurs from hibernating bears, indicating that hibernation did not preferentially affect one region of the cortex. Thus, grizzly bears prevent bone loss during disuse by decreasing bone turnover and maintaining balanced formation and resorption, which preserves bone structure and strength. These results support the idea that bears possess a biological mechanism to prevent disuse osteoporosis.

  3. A statistical method (cross-validation) for bone loss region detection after spaceflight

    Science.gov (United States)

    Zhao, Qian; Li, Wenjun; Li, Caixia; Chu, Philip W.; Kornak, John; Lang, Thomas F.

    2010-01-01

    Astronauts experience bone loss after the long spaceflight missions. Identifying specific regions that undergo the greatest losses (e.g. the proximal femur) could reveal information about the processes of bone loss in disuse and disease. Methods for detecting such regions, however, remains an open problem. This paper focuses on statistical methods to detect such regions. We perform statistical parametric mapping to get t-maps of changes in images, and propose a new cross-validation method to select an optimum suprathreshold for forming clusters of pixels. Once these candidate clusters are formed, we use permutation testing of longitudinal labels to derive significant changes. PMID:20632144

  4. Evolutionary medicine and bone loss in chronic inflammatory diseases--A theory of inflammation-related osteopenia.

    Science.gov (United States)

    Straub, Rainer H; Cutolo, Maurizio; Pacifici, Roberto

    2015-10-01

    Bone loss is typical in chronic inflammatory diseases such as rheumatoid arthritis, psoriasis, ankylosing spondylitis, systemic lupus erythematosus, multiple sclerosis, inflammatory bowel diseases, pemphigus vulgaris, and others. It is also typical in transplantation-related inflammation and during the process of aging. While we recognized that bone loss is tightly linked to immune system activation or inflamm-aging in the form of acute, chronic active, or chronic smoldering inflammation, bone loss is typically discussed to be an "accident of inflammation." Extensive literature search in PubMed central. Using elements of evolutionary medicine, energy regulation, and neuroendocrine regulation of homeostasis and immune function, we work out that bone waste is an adaptive, evolutionarily positively selected program that is absolutely necessary during acute inflammation. However, when acute inflammation enters a chronic state due to the inability to terminate inflammation (e.g., in autoimmunity or in continuous immunity against microbes), the acute program of bone loss is a misguided adaptive program. The article highlights the complexity of interwoven pathways of osteopenia. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Effect of dietary soy isoflavones on bone loss in ovariectomized rats ...

    African Journals Online (AJOL)

    Purpose: To determine the effect of dietary soy isoflavone supplementation on bone loss in ovariectomized (OVX) rats. Methods: Forty-eight rats were assigned randomly to groups of OVX rats receiving soy isoflavones (20, 30, or 40 mg/kg of body weight daily), untreated OVX rats, or untreated intact rats. After 8 weeks, bone ...

  6. The effects of simulated bone loss on the implant-abutment assembly and likelihood of fracture: an in vitro study.

    Science.gov (United States)

    Manzoor, Behzad; Suleiman, Mahmood; Palmer, Richard M

    2013-01-01

    The crestal bone level around a dental implant may influence its strength characteristics by offering protection against mechanical failures. Therefore, the present study investigated the effect of simulated bone loss on modes, loads, and cycles to failure in an in vitro model. Different amounts of bone loss were simulated: 0, 1.5, 3.0, and 4.5 mm from the implant head. Forty narrow-diameter (3.0-mm) implant-abutment assemblies were tested using compressive bending and cyclic fatigue testing. Weibull and accelerated life testing analysis were used to assess reliability and functional life. Statistical analyses were performed using the Fisher-Exact test and the Spearman ranked correlation. Compressive bending tests showed that the level of bone loss influenced the load-bearing capacity of implant-abutment assemblies. Fatigue testing showed that the modes, loads, and cycles to failure had a statistically significant relationship with the level of bone loss. All 16 samples with bone loss of 3.0 mm or more experienced horizontal implant body fractures. In contrast, 14 of 16 samples with 0 and 1.5 mm of bone loss showed abutment and screw fractures. Weibull and accelerated life testing analysis indicated a two-group distribution: the 0- and 1.5-mm bone loss samples had better functional life and reliability than the 3.0- and 4.5-mm samples. Progressive bone loss had a significant effect on modes, loads, and cycles to failure. In addition, bone loss influenced the functional life and reliability of the implant-abutment assemblies. Maintaining crestal bone levels is important in ensuring biomechanical sustainability and predictable long-term function of dental implant assemblies.

  7. Modulation of insulin-like growth factor 1 levels in human osteoarthritic subchondral bone osteoblasts.

    Science.gov (United States)

    Massicotte, Frédéric; Fernandes, Julio Cesar; Martel-Pelletier, Johanne; Pelletier, Jean-Pierre; Lajeunesse, Daniel

    2006-03-01

    Human osteoarthritis (OA) is characterized by cartilage loss, bone sclerosis, osteophyte formation and inflammation of the synovial membrane. We previously reported that OA osteoblasts (Ob) show abnormal phenotypic characteristics possibly responsible for bone sclerosis and that two subgroups of OA patients can be identified by low or high endogenous production of prostaglandin E2 (PGE2) by OA Ob. Here, we determined that the elevated PGE2 levels in the high OA subgroup were linked with enhanced cyclooxygenase-2 (COX-2) protein levels compared to normal and low OA Ob. A linear relationship was observed between endogenous PGE2 levels and insulin-like growth factor 1 (IGF-1) levels in OA Ob. As parathyroid hormone (PTH) and PGE2 are known stimulators of IGF-1 production in Ob, we next evaluated their effect in OA Ob. Both subgroups increased their IGF-1 production similarly in response to PGE2, while the high OA subgroup showed a blunted response to PTH compared to the low OA group. Conversely, only the high OA group showed a significant inhibition of IGF-1 production when PGE2 synthesis was reduced with Naproxen, a non-steroidal antiinflammatory drug (NSAID) that inhibits cyclooxygenases (COX). The PGE2-dependent stimulation of IGF-1 synthesis was due in part to the cAMP/protein kinase A pathway since both the direct inhibition of this pathway with H-89 and the inhibition of EP2 or EP4 receptors, linked to cAMP production, reduced IGF-1 synthesis. The production of the most abundant IGF-1 binding proteins (IGFBPs) in bone tissue, IGFBP-3, -4, and -5, was lower in OA compared to normal Ob independently of the OA group. Under basal condition, OA Ob expressed similar IGF-1 mRNA to normal Ob; however, PGE2 stimulated IGF-1 mRNA expression more in OA than normal Ob. These data suggest that increased IGF-1 levels correlate with elevated endogenous PGE2 levels in OA Ob and that higher IGF-1 levels in OA Ob could be important for bone sclerosis in OA.

  8. Comparison of bone density in amenorrheic women due to athletics, weight loss, and premature menopause.

    Science.gov (United States)

    Jones, K P; Ravnikar, V A; Tulchinsky, D; Schiff, I

    1985-07-01

    Studied was the peripheral bone density of 39 women (ages 18 to 43) with the diagnosis of secondary amenorrhea in an effort to define the population of amenorrheic women at risk for osteoporosis. Eight women had exercise-induced amenorrhea (athletes), 20 women had amenorrhea associated with weight loss, and 11 women had premature menopause. These diagnoses were made on the basis of history, physical examination, and luteinizing hormone (LH), follicle-stimulating hormone (FSH), and prolactin levels, and failure to have withdrawal bleeding after the administration of progestin. Twenty-five nonathletic, normally menstruating women served as control subjects. The peripheral bone density of the amenorrheic athletes (0.738 g/cm2 +/- 0.047) was not significantly different from that of the controls (0.726 g/cm2 +/- 0.044). The average bone density of the group with weight loss-associated amenorrhea (0.672 g/cm2 +/- 0.066) was significantly less than controls (P less than .005) as was that of the women with premature menopause (0.616 g/cm2 +/- 0.048, P less than .001). There was a significant correlation between months of amenorrhea and decrease in bone density (r = 0.506, P less than .001). From this study it was concluded that women with exercise-associated amenorrhea are not at significant risk for cortical bone loss as measured by direct photon absorptiometry. Women with weight loss-associated amenorrhea and women with premature menopause are at significant risk for bone loss when compared with normal controls.

  9. Marginal bone loss and dental implant failure may be increased in smokers.

    Science.gov (United States)

    Veitz-Keenan, Analia

    2016-03-01

    An electronic search was performed in PubMed, Web of Science and the Cochrane Central Register of Controlled Trials up to February 2015. References of included studies were also searched. No language restrictions were applied. Study selection: Prospective, retrospective and randomised clinical trials that compared marginal bone loss and failure rates between smokers and non-smokers. Implant failure was considered as total loss of the implant. Studies with patients who had periodontal disease prior to treatment or who had metabolic diseases were excluded. Two reviewers were involved in the research and screening process and disagreements were resolved by discussion. The quality of the studies was analysed using the Newcastle-Ottawa scale for non-randomised clinical trials. Data extracted from the studies included, when available: follow up period, number of subjects, smoking status, number of implants placed, implant system, implant length and diameter, healing period, antibiotics and mouth-rinse use, marginal bone loss, failure rate and drop-outs. For binary outcomes (implant failure) the estimate of the intervention effect was expressed in the form of an odds ratio (OR) with the confidence interval (CI) of 95%. For continuous outcomes (marginal bone loss) the average and standard deviation (SD) were used to calculate the standardised mean difference with a 95% CI. Meta-analysis was performed for studies with similar outcomes, I(2) a statistical test was used to express the heterogeneity among the studies. Publication bias was explored as well. A total of 15 observational studies were included in the review. The number of participants ranged from 60 to 1727 and the average age was 52.5 years. The follow-up period ranged from eight to 240 months. The total number of implants placed was 5840 in smokers and 14,683 in non-smokers. The Branemak system, (Noble Biocare AB, Goteborg, Sweden), was the most commonly used implant system. There was a statistically significant

  10. Cartilage degeneration in the human patellae and its relationship to the mineralisation of the underlying bone: a key to the understanding of chondromalacia patellae and femoropatellar arthrosis?

    Science.gov (United States)

    Eckstein, F; Putz, R; Müller-Gerbl, M; Steinlechner, M; Benedetto, K P

    1993-01-01

    According to the literature subchondral bone plays a significant role in the transmission of load through joints and in the pathogenesis of osteoarthrosis. Therefore the degeneration of the articular cartilage was investigated in the patellae from 30 dissecting-room specimens and of 20 patients, previously submitted to arthroscopy, and subchondral mineralisation of their underlying bone was at the same time assessed by means of CT osteoabsorptiometry. Lateral cartilage lesions were localised over highly mineralised subchondral bone; these appear to be due to long-term stress. They were mainly found in the older specimens and showed a high rate of progression with increasing age. Medially localised cartilage lesions, on the other hand, were situated in a transitional region between moderate and slight subchondral mineralisation; they may be caused by infrequent stress peaks and by shear stress in the articular cartilage, the very medial part of the joint being deprived of mechanical stimulation for much of the time. These lesions were to be found predominantly in the younger specimens and showed little progress with advancing age. Patients with lateral cartilage degeneration exhibited higher, patients with medial chondromalacia patellae lower mineralisation than normals. Their density patterns therefore indicate a different mechanical pathogenesis of the cartilage lesions in the lateral and medial facet. It could be shown that CT osteoabsorptiometry allows an assessment of the mechanical situation, present in individual femoro-patellar joints, and that this situation is highly relevant for the pathogenesis of patellar cartilage degeneration.

  11. The orally available Btk inhibitor ibrutinib (PCI-32765) protects against osteoclast-mediated bone loss.

    Science.gov (United States)

    Shinohara, Masahiro; Chang, Betty Y; Buggy, Joseph J; Nagai, Yusuke; Kodama, Tatsuhiko; Asahara, Hiroshi; Takayanagi, Hiroshi

    2014-03-01

    Bone-resorbing osteoclasts play an essential role in normal bone homeostasis, as well as in various bone disorders such as osteoporosis and rheumatoid arthritis. Previously we showed that the Tec family of tyrosine kinases is essential for the differentiation of osteoclasts and the inhibition of Btk is a promising strategy for the prevention of the bone loss in osteoclast-associated bone disorders. Here we demonstrate that an orally available Btk inhibitor, ibrutinib (PCI-32765), suppresses osteoclastic bone resorption by inhibiting both osteoclast differentiation and function. Ibrutinib downregulated the expression of NFATc1, the key transcription factor for osteoclastogenesis, and disrupted the formation of the actin ring in mature osteoclasts. In addition, genome-wide screening revealed that Btk regulates the expression of the genes involved in osteoclast differentiation and function in both an NFATc1-dependent and -independent manner. Finally, we showed that ibrutinib administration ameliorated the bone loss that developed in a RANKL-induced osteoporosis mouse model. Thus, this study suggests ibrutinib to be a promising therapeutic agent for osteoclast-associated bone diseases. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Vitamin K’s role in age-related bone loss: A critical review

    Science.gov (United States)

    The protective role of vitamin K in age-related bone loss continues to be controversial. The results of observational analyses are inconsistent with respect to associations between vitamin K status and bone, which arguably may be related to the limitations of observational study designs and analyt...

  13. Two Different Isomers of Vitamin E Prevent Bone Loss in Postmenopausal Osteoporosis Rat Model

    Directory of Open Access Journals (Sweden)

    Norliza Muhammad

    2012-01-01

    Full Text Available Postmenopausal osteoporotic bone loss occurs mainly due to cessation of ovarian function, a condition associated with increased free radicals. Vitamin E, a lipid-soluble vitamin, is a potent antioxidant which can scavenge free radicals in the body. In this study, we investigated the effects of alpha-tocopherol and pure tocotrienol on bone microarchitecture and cellular parameters in ovariectomized rats. Three-month-old female Wistar rats were randomly divided into ovariectomized control, sham-operated, and ovariectomized rats treated with either alpha-tocopherol or tocotrienol. Their femurs were taken at the end of the four-week study period for bone histomorphometric analysis. Ovariectomy causes bone loss in the control group as shown by reduction in both trabecular volume (BV/TV and trabecular number (Tb.N and an increase in trabecular separation (Tb.S. The increase in osteoclast surface (Oc.S and osteoblast surface (Ob.S in ovariectomy indicates an increase in bone turnover rate. Treatment with either alpha-tocopherol or tocotrienol prevents the reduction in BV/TV and Tb.N as well as the increase in Tb.S, while reducing the Oc.S and increasing the Ob.S. In conclusion, the two forms of vitamin E were able to prevent bone loss due to ovariectomy. Both tocotrienol and alpha-tocopherol exert similar effects in preserving bone microarchitecture in estrogen-deficient rat model.

  14. Safflower bud inhibits RANKL-induced osteoclast differentiation and prevents bone loss in ovariectomized mice.

    Science.gov (United States)

    Choi, Joo-Hee; Lim, Seul-Ki; Kim, Dong-Il; Park, Min-Jung; Kim, Young-Kuk; Lee, An-Chul; Kim, Young-Min; Yang, Soo-Jin; Park, Jong-Hwan

    2017-10-15

    The powder and extract of safflower seeds are known to be effective in the prevention of bone loss in ovariectomized animals. However, the inhibitory effect and molecular mechanisms of safflower bud (SB), the germinated safflower, on bone destruction is unclear. The present study was designed to investigate the inhibitory effect and molecular mechanism of SB on osteoclastic differentiation and on bone loss in ovarietomized (OVX) mice. Osteoclastogenesis was determined by TRAP staining, F-actin ring formation, and bone resorption assay. NF-κB and MAPKs activation was analyzed by transfection assay and Western blot, respectively. Real-time PCR was performed to examine the expression of osteoclastogenesis-related genes. Histological changes, increases in TRAP-positive cells, and cathepsin K expression were examined in the metaphysis of OVX mice. Density of bone marrow was evaluated by µCT. SB inhibited the RANKL-induced differentiation of BMDMs into osteoclasts in a dose-dependent manner. F-actin ring formation and bone resorption were also reduced by SB in RANKL-treated BMDMs. In addition, SB decreased the activation of NF-κB and MAPKs and the expression of osteoclastogenesis-related genes in BMDMs treated with RANKL. Feeding of SB-included diet prevented bone loss in OVX mice. The number of TRAP-positive cells and level of protein expression of cathepsin K was reduced and bone mineral density was increased in the metaphysis of mice fed SB compared with OVX mice. These findings suggest that SB can be a preventive and therapeutic candidate for destructive bone diseases. Copyright © 2017. Published by Elsevier GmbH.

  15. Correlation of interdental and interradicular bone loss in patients ...

    African Journals Online (AJOL)

    Objective: The aim of this study was to investigate the correlation between interdental and interradicular bone loss and clinical parameters in patients with chronic periodontitis. Materials and Methods: One hundred-twenty intraoral periapical radiographs of first molars were obtained from patients with chronic periodontitis ...

  16. Alveolar bone loss and mineralization in the pig with experimental periodontal disease

    Directory of Open Access Journals (Sweden)

    Mandee Yang

    2018-03-01

    Full Text Available Objective: To address how experimental periodontal disease affects alveolar bone mass and mineral apposition in a young pig model. Materials and methods: Seven three-month-old pigs were periodically inoculated with 4 types of periodontal bacteria, along with a ligature around the last maxillary deciduous molar for 8 weeks to induce periodontal disease (PG. Eight same-aged pigs served as the control (CG. Segmentations of 3D cone-beam CT images were performed to quantify volumes of the total alveolar bone, alveolar ridge, and all roots of the target molar. Calcein and alizarin were administered for labeling mineral apposition before euthanasia. The harvested molar blocks were sectioned and examined under epifluorescence. The inter-label distance between the two vital markers at regional bone surfaces were measured and mineral apposition rate (MAR was calculated. Results: A significant reduction of total alveolar bone volume was seen in PG with the major loss at the alveolar ridge. MAR was significantly higher at the root furcation region than those at both buccal and palatal ridges in CG. Compared with CG, PG animals showed more interrupted labeled bands with significantly lower MAR at the furcation region. MARs were positively associated with both the volumes of total alveolar bone and ridge in CG, but only with the total alveolar bone in PG. Conclusions: In young growing pigs, mineral apposition is region specific. The experimental periodontal disease not only leads to alveolar bone loss, but also perturbs mineral apposition for new bone formation, thus impairing the homeostasis of alveolar bone remodeling. Keyword: Dentistry

  17. Rate of bone loss in postmenopausal and osteoporotic women

    International Nuclear Information System (INIS)

    Aloia, J.F.; Ross, P.; Vaswani, A.; Zanzi, I.; Cohn, S.H.

    1982-01-01

    Regional and total bone mass were determined in three groups of women by photon absorptiometry of the distal radius [bone mineral content (BMC)] and total neutron activation analysis [total body calcium (TBCa)], respectively. There were three groups of patients: group A, osteoporotic women treated with a variety of pharmacologic agents; group B, osteoporotic women (controls) taking only calcium supplements; and group C, normal postmenopausal women. The mean TBCa and BMC were considerably higher in the postmenopausal women than in the osteoporotic women. The rate of change of bone mass in group C was -0.45%/yr and -0.9%/yr for the total skeleton and radius, respectively. Group B had no significant rate of loss, whereas group A demonstrated a significant increase in TBCa of 0.75%/yr with no change in the BMC of the radius. There were no significant between-subject correlations for the slopes (rates of change) of the two bone mineral measurements

  18. Epidemiologic Analyses of Risk Factors for Bone Loss and Recovery Related to Long-Duration Space Flight

    Science.gov (United States)

    Sibonga, Jean; Amin, Shreyasee

    2010-01-01

    AIM 1: To investigate the risk of microgravity exposure on long-term changes in bone health and fracture risk. compare data from crew members ("observed") with what would be "expected" from Rochester Bone Health Study. AIM 2: To provide a summary of current evidence available on potential risk factors for bone loss, recovery & fracture following long-duration space flight. integrative review of all data pre, in-, and post-flight across disciplines (cardiovascular, nutrition, muscle, etc.) and their relation to bone loss and recovery

  19. Implant and root supported overdentures - a literature review and some data on bone loss in edentulous jaws.

    Science.gov (United States)

    Carlsson, Gunnar E

    2014-08-01

    To present a literature review on implant overdentures after a brief survey of bone loss after extraction of all teeth. Papers on alveolar bone loss and implant overdentures have been studied for a narrative review. Bone loss of the alveolar process after tooth extraction occurs with great individual variation, impossible to predict at the time of extraction. The simplest way to prevent bone loss is to avoid extraction of all teeth. To keep a few teeth and use them or their roots for a tooth or root-supported overdenture substantially reduces bone loss. Jaws with implant-supported prostheses show less bone loss than jaws with conventional dentures. Mandibular 2-implant overdentures provide patients with better outcomes than do conventional dentures, regarding satisfaction, chewing ability and oral-health-related quality of life. There is no strong evidence for the superiority of one overdenture retention-system over the others regarding patient satisfaction, survival, peri-implant bone loss and relevant clinical factors. Mandibular single midline implant overdentures have shown promising results but long-term results are not yet available. For a maxillary overdenture 4 to 6 implants splinted with a bar provide high survival both for implants and overdenture. In edentulous mandibles, 2-implant overdentures provide excellent long-term success and survival, including patient satisfaction and improved oral functions. To further reduce the costs a single midline implant overdenture can be a promising option. In the maxilla, overdentures supported on 4 to 6 implants splinted with a bar have demonstrated good functional results.

  20. Implant and root supported overdentures - a literature review and some data on bone loss in edentulous jaws

    Science.gov (United States)

    2014-01-01

    PURPOSE To present a literature review on implant overdentures after a brief survey of bone loss after extraction of all teeth. MATERIALS AND METHODS Papers on alveolar bone loss and implant overdentures have been studied for a narrative review. RESULTS Bone loss of the alveolar process after tooth extraction occurs with great individual variation, impossible to predict at the time of extraction. The simplest way to prevent bone loss is to avoid extraction of all teeth. To keep a few teeth and use them or their roots for a tooth or root-supported overdenture substantially reduces bone loss. Jaws with implant-supported prostheses show less bone loss than jaws with conventional dentures. Mandibular 2-implant overdentures provide patients with better outcomes than do conventional dentures, regarding satisfaction, chewing ability and oral-health-related quality of life. There is no strong evidence for the superiority of one overdenture retention-system over the others regarding patient satisfaction, survival, peri-implant bone loss and relevant clinical factors. Mandibular single midline implant overdentures have shown promising results but long-term results are not yet available. For a maxillary overdenture 4 to 6 implants splinted with a bar provide high survival both for implants and overdenture. CONCLUSION In edentulous mandibles, 2-implant overdentures provide excellent long-term success and survival, including patient satisfaction and improved oral functions. To further reduce the costs a single midline implant overdenture can be a promising option. In the maxilla, overdentures supported on 4 to 6 implants splinted with a bar have demonstrated good functional results. PMID:25177466

  1. Systemic Administration of Allogeneic Mesenchymal Stem Cells Does Not Halt Osteoporotic Bone Loss in Ovariectomized Rats.

    Directory of Open Access Journals (Sweden)

    Shuo Huang

    Full Text Available Mesenchymal stem cells (MSCs have innate ability to self-renew and immunosuppressive functions, and differentiate into various cell types. They have become a promising cell source for treating many diseases, particular for bone regeneration. Osteoporosis is a common metabolic bone disorder with elevated systemic inflammation which in turn triggers enhanced bone loss. We hypothesize that systemic infusion of MSCs may suppress the elevated inflammation in the osteoporotic subjects and slow down bone loss. The current project was to address the following two questions: (1 Will a single dose systemic administration of allogenic MSCs have any effect on osteoporotic bone loss? (2 Will multiple administration of allogenic MSCs from single or multiple donors have similar effect on osteoporotic bone loss? 18 ovariectomized (OVX rats were assigned into 3 groups: the PBS control group, MSCs group 1 (receiving 2x106 GFP-MSCs at Day 10, 46, 91 from the same donor following OVX and MSCs group 2 (receiving 2x106 GFP-MSCs from three different donors at Day 10, 46, 91. Examinations included Micro-CT, serum analysis, mechanical testing, immunofluorescence staining and bone histomorphometry analysis. Results showed that BV/TV at Day 90, 135, BMD of TV and trabecular number at Day 135 in the PBS group were significantly higher than those in the MSCs group 2, whereas trabecular spacing at Day 90, 135 was significantly smaller than that in MSCs group 2. Mechanical testing data didn't show significant difference among the three groups. In addition, the ELISA assay showed that level of Rantes in serum in MSCs group 2 was significantly higher than that of the PBS group, whereas IL-6 and IL-10 were significantly lower than those of the PBS group. Bone histomorphometry analysis showed that Oc.S/BS and Oc.N/BS in the PBS group were significant lower than those in MSCs group 2; Ob.S/BS and Ob.N/BS did not show significant difference among the three groups. The current study

  2. Establishment of age- and sex-adjusted reference data for hand bone mass and investigation of hand bone loss in patients with rheumatoid arthritis treated in clinical practice

    DEFF Research Database (Denmark)

    Ørnbjerg, Lykke Midtbøll; Østergaard, Mikkel; Jensen, Trine

    2016-01-01

    remission (0.0032 vs. 0.0058 g/cm(2)/year; p clinical practice, and only......BACKGROUND: Rheumatoid arthritis is characterised by progressive joint destruction and loss of periarticular bone mass. Hand bone loss (HBL) has therefore been proposed as an outcome measure for treatment efficacy. A definition of increased HBL adjusted for age- and sex-related bone loss is lacking....... In this study, we aimed to: 1) establish reference values for normal hand bone mass (bone mineral density measured by digital x-ray radiogrammetry (DXR-BMD)); and 2) examine whether HBL is normalised in rheumatoid arthritis patients during treatment with tumour necrosis factor alpha inhibitors (TNFI). METHODS...

  3. Three-dimensional Microarchitecture of Adolescent Cancellous Bone

    DEFF Research Database (Denmark)

    Ding, Ming; Hvid, I; Overgaard, Søren

    regarding three-dimensional (3-D) microarchitecture of normal adolescent cancellous bone. The objective of this study was to investigate 3-D microarchitecture of normal adolescent cancellous bone, and compared them with adult cancellous bone, thus seeking more insight into the subchondral bone adaptations...... of lateral condyle in the young adult. There were no statistical significances in the mechanical properties apart from the Young’s modulus of adolescent in anterior-posterior direction was significantly lower than the other groups. DISCUSSION: This is the first study on the 3-D microarchitecture of human......, Switzerland) resulting in cubic voxel sizes of 10*10*10 m3. Microarchitectural properties were calculated, and the mean values for either tibia, medial or lateral condyle were used in analyses. Furthermore, the samples were first tested non-destructively in compression in antero-posterior (AP) and medial...

  4. Effects of obesity and diabetes on rate of bone density loss.

    Science.gov (United States)

    Leslie, W D; Morin, S N; Majumdar, S R; Lix, L M

    2018-01-01

    In this large registry-based study, women with diabetes had marginally greater bone mineral density (BMD) loss at the femoral neck but not at other measurement sites, whereas obesity was not associated with greater BMD loss. Our data do not support the hypothesis that rapid BMD loss explains the increased fracture risk associated with type 2 diabetes and obesity observed in prior studies. Type 2 diabetes and obesity are associated with higher bone mineral density (BMD) which may be less protective against fracture than previously assumed. Inconsistent data suggest that rapid BMD loss may be a contributing factor. We examined the rate of BMD loss in women with diabetes and/or obesity in a population-based BMD registry for Manitoba, Canada. We identified 4960 women aged ≥ 40 years undergoing baseline and follow-up BMD assessments (mean interval 4.3 years) without confounding medication use or large weight fluctuation. We calculated annualized rate of BMD change for the lumbar spine, total hip, and femoral neck in relation to diagnosed diabetes and body mass index (BMI) category. Baseline age-adjusted BMD was greater in women with diabetes and for increasing BMI category (all P obese women but BMI did not significantly affect hip BMD loss.

  5. Treatment of Radix Dipsaci extract prevents long bone loss induced by modeled microgravity in hindlimb unloading rats.

    Science.gov (United States)

    Niu, Yinbo; Li, Chenrui; Pan, Yalei; Li, Yuhua; Kong, Xianghe; Wang, Shuo; Zhai, YuanKun; Wu, Xianglong; Fan, Wutu; Mei, Qibing

    2015-01-01

    Radix Dipsaci is a kidney tonifying herbal medicine with a long history of safe use for treatment of bone fractures and joint diseases in China. Previous studies have shown that Radix Dipsaci extract (RDE) could prevent bone loss in ovariectomized rats. This study investigates the effect of RDE against bone loss induced by simulated microgravity. A hindlimb unloading rat model was established to determine the effect of RDE on bone mineral density and bone microarchitecture. Twenty-four male Sprague-Dawley rats were divided into four groups (n = 6 per group): control (CON), hindlimb unloading with vehicle (HLU), hindlimb unloading treated with alendronate (HLU-ALN, 2.0 mg/kg/d), and hindlimb unloading treated with RDE (HLU-RDE, 500 mg/kg/d). RDE or ALN was administrated orally for 4 weeks. Treatment with RDE had a positive effect on mechanical strength, BMD, BMC, bone turnover markers, and the changes in urinary calcium and phosphorus excretion. MicroCT analysis showed that RDE significantly prevented the reduction of the bone volume fraction, connectivity density, trabecular number, thickness, tissue mineral density, and tissue mineral content as well as improved the trabecular separation and structure model index. RDE was demonstrated to prevent the loss of bone mass induced by HLU treatment, which suggests the potential application of RDE in the treatment of microgravity-induced bone loss.

  6. Combined oral administration of bovine collagen peptides with calcium citrate inhibits bone loss in ovariectomized rats.

    Science.gov (United States)

    Liu, JunLi; Wang, YiHu; Song, ShuJun; Wang, XiJie; Qin, YaYa; Si, ShaoYan; Guo, YanChuan

    2015-01-01

    Collagen peptides (CPs) and calcium citrate are commonly used as bone health supplements for treating osteoporosis. However, it remains unknown whether the combination of oral bovine CPs with calcium citrate is more effective than administration of either agent alone. Forty 12-week-old Sprague-Dawley rats were randomly divided into five groups (n = 8) for once-daily intragastric administration of different treatments for 3 months at 3 months after ovariectomy (OVX) as follows: sham + vehicle; OVX + vehicle; OVX + 750 mg/kg CP; OVX + CP-calcium citrate (75 mg/kg); OVX + calcium citrate (75 mg/kg). After euthanasia, the femurs were removed and analyzed by dual energy X-ray absorptiometry and micro-computed tomography, and serum samples were analyzed for bone metabolic markers. OVX rats supplemented with CPs or CP-calcium citrate showed osteoprotective effects, with reductions in the OVX-induced decreases in their femoral bone mineral density. Moreover, CP-calcium citrate prevented trabecular bone loss, improved the microarchitecture of the distal femur, and significantly inhibited bone loss with increased bone volume, connectivity density, and trabecular number compared with OVX control rats. CP or CP-calcium citrate administration significantly increased serum procollagen type I N-terminal propeptide levels and reduced serum bone-specific alkaline phosphatase, osteocalcin, and C-telopeptide of type I collagen levels. Our data indicate that combined oral administration of bovine CPs with calcium citrate inhibits bone loss in OVX rats. The present findings suggest that combined oral administration of bovine CPs with calcium citrate is a promising alternative for reducing bone loss in osteopenic postmenopausal women.

  7. Combined oral administration of bovine collagen peptides with calcium citrate inhibits bone loss in ovariectomized rats.

    Directory of Open Access Journals (Sweden)

    JunLi Liu

    Full Text Available Collagen peptides (CPs and calcium citrate are commonly used as bone health supplements for treating osteoporosis. However, it remains unknown whether the combination of oral bovine CPs with calcium citrate is more effective than administration of either agent alone.Forty 12-week-old Sprague-Dawley rats were randomly divided into five groups (n = 8 for once-daily intragastric administration of different treatments for 3 months at 3 months after ovariectomy (OVX as follows: sham + vehicle; OVX + vehicle; OVX + 750 mg/kg CP; OVX + CP-calcium citrate (75 mg/kg; OVX + calcium citrate (75 mg/kg. After euthanasia, the femurs were removed and analyzed by dual energy X-ray absorptiometry and micro-computed tomography, and serum samples were analyzed for bone metabolic markers.OVX rats supplemented with CPs or CP-calcium citrate showed osteoprotective effects, with reductions in the OVX-induced decreases in their femoral bone mineral density. Moreover, CP-calcium citrate prevented trabecular bone loss, improved the microarchitecture of the distal femur, and significantly inhibited bone loss with increased bone volume, connectivity density, and trabecular number compared with OVX control rats. CP or CP-calcium citrate administration significantly increased serum procollagen type I N-terminal propeptide levels and reduced serum bone-specific alkaline phosphatase, osteocalcin, and C-telopeptide of type I collagen levels.Our data indicate that combined oral administration of bovine CPs with calcium citrate inhibits bone loss in OVX rats. The present findings suggest that combined oral administration of bovine CPs with calcium citrate is a promising alternative for reducing bone loss in osteopenic postmenopausal women.

  8. Effects of total flavonoids from Drynariae Rhizoma prevent bone loss in vivo and in vitro

    Directory of Open Access Journals (Sweden)

    Shuang-hong Song

    2016-12-01

    Full Text Available Estrogen deficiency is one of the major causes of osteoporosis in postmenopausal women. Drynariae Rhizoma is a widely used traditional Chinese medicine for the treatment of bone diseases. In this study, we investigated the therapeutic effects of the total Drynariae Rhizoma flavonoids (DRTF on estrogen deficiency-induced bone loss using an ovariectomized rat model and osteoblast-like MC3T3-E1 cells. Our results indicated that DRTF produced osteo-protective effects on the ovariectomized rats in terms of bone loss reduction, including decreased levels of bone turnover markers, enhanced biomechanical femur strength and trabecular bone microarchitecture deterioration prevention. In vitro experiments revealed that the actions of DRTF on regulating osteoblastic activities were mediated by the estrogen receptor (ER dependent pathway. Our data also demonstrated that DRTF inhibited osteoclastogenesis via up-regulating osteoprotegrin (OPG, as well as down-regulating receptor activator of NF–κB ligand (RANKL expression. In conclusion, this study indicated that DRTF treatment effectively suppressed bone mass loss in an ovariectomized rat model, and in vitro evidence suggested that the effects were exerted through actions on both osteoblasts and osteoclasts. Keywords: Osteoporosis, Osteoblast, Osteoclast, Ovariectomy, Drynariae Rhizoma

  9. Protective Effects of Vildagliptin against Pioglitazone-Induced Bone Loss in Type 2 Diabetic Rats.

    Science.gov (United States)

    Eom, Young Sil; Gwon, A-Ryeong; Kwak, Kyung Min; Kim, Ju-Young; Yu, Seung Hee; Lee, Sihoon; Kim, Yeun Sun; Park, Ie Byung; Kim, Kwang-Won; Lee, Kiyoung; Kim, Byung-Joon

    2016-01-01

    Long-term use of thiazolidinediones (TZDs) is associated with bone loss and an increased risk of fracture in patients with type 2 diabetes (T2DM). Incretin-based drugs (glucagon-like peptide-1 (GLP-1) agonists and dipeptidylpeptidase-4 (DPP-4) inhibitors) have several benefits in many systems in addition to glycemic control. In a previous study, we reported that exendin-4 might increase bone mineral density (BMD) by decreasing the expression of SOST/sclerostin in osteocytes in a T2DM animal model. In this study, we investigated the effects of a DPP-4 inhibitor on TZD-induced bone loss in a T2DM animal model. We randomly divided 12-week-old male Zucker Diabetic Fatty (ZDF) rats into four groups; control, vildagliptin, pioglitazone, and vildagliptin and pioglitazone combination. Animals in each group received the respective treatments for 5 weeks. We performed an intraperitoneal glucose tolerance test (IPGTT) before and after treatment. BMD and the trabecular micro-architecture were measured by DEXA and micro CT, respectively, at the end of the treatment. The circulating levels of active GLP-1, bone turnover markers, and sclerostin were assayed. Vildagliptin treatment significantly increased BMD and trabecular bone volume. The combination therapy restored BMD, trabecular bone volume, and trabecular bone thickness that were decreased by pioglitazone. The levels of the bone formation marker, osteocalcin, decreased and that of the bone resorption marker, tartrate-resistant acid phosphatase (TRAP) 5b increased in the pioglitazone group. These biomarkers were ameliorated and the pioglitazone-induced increase in sclerostin level was lowered to control values by the addition of vildagliptin. In conclusion, our results indicate that orally administered vildagliptin demonstrated a protective effect on pioglitazone-induced bone loss in a type 2 diabetic rat model.

  10. Dietary flavonoid kaempferol inhibits glucocorticoid-induced bone loss by promoting osteoblast survival.

    Science.gov (United States)

    Adhikary, Sulekha; Choudhary, Dharmendra; Ahmad, Naseer; Karvande, Anirudha; Kumar, Avinash; Banala, Venkatesh Teja; Mishra, Prabhat Ranjan; Trivedi, Ritu

    2018-02-13

    Kaempferol, a dietary flavonoid found in fruits and vegetables, has been reported to reverse osteopenic condition in ovariectomized rats. Because kaempferol is endowed with osteogenic activity, the aim of this study was to determine whether it has a beneficial effect on glucocorticoid (GC)-induced bone loss. Adult female rats were divided into four groups as control (vehicle; distilled water), methylprednisolone (MP; 5 mg•kg•d, subcutaneously), MP + kaempferol (5 mg•kg•d, oral), and MP + human parathyroid 1-34 (30 µg/kg, 5 times/wk, subcutaneously) and treated for 4 wk. To study the antagonizing effect of kaempferol on GC-induced inhibition of fracture healing, drill-hole injury was performed on control and GC-treated rats. An oral dose of kaempferol was given for 14 d to observe the effect on callus formation at the site of injury. After treatment, bones were collected for further analysis. GC was associated with a decreased bone mineral density and impaired bone microarchitecture parameters. Consumption of kaempferol induced bone-sparing effects in GC-induced osteopenic condition. Additionally, improved callus formation at site of drill injury in femur diaphysis was observed with kaempferol consumption in animals on GC. Consistent with the in vivo data, kaempferol elicited a higher expression of osteogenic markers in vitro and antagonized the apoptotic effect of dexamethasone on calvarial osteoblasts. These results suggested that kaempferol reduced GC-induced bone loss and enhanced bone regeneration at fractured site, thus emphasizing the positive role of flavonoids on bone health. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Effect of Cistanches Herba Aqueous Extract on Bone Loss in Ovariectomized Rat

    Directory of Open Access Journals (Sweden)

    Zaiguo Huang

    2011-08-01

    Full Text Available To assess the ability of traditional Chinese medicine Cistanches Herba extract (CHE to prevent bone loss in the ovariectomized (OVX rat, Cistanches Herba extract (CHE was administered intragastrically to the rats. Female rats were anesthetized with pentobarbital sodium (40 mg kg−1, i.p., and their ovaries were removed bilaterally. The rats in the sham-operated group were anesthetized, laparotomized, and sutured without removing their ovaries. After 1 week of recovery from surgery, the OVX rats were randomly divided into three groups and orally treated with H2O (OVX group or CHE (100 or 200 mg kg−1 daily for 3 months. The sham-operated group (n = 8 was orally treated with H2O. After 3 months, the total body bone mineral density (BMD, bone mineral content (BMC, Bone biomechanical index, blood mineral levels and blood antioxidant enzymes activities were examined in sham-operated, ovariectomized and Cistanches Herba extract treated rats. Results showed that Cistanches Herba extract treatment significantly dose-dependently enhanced bone mineral density (BMD, bone mineral content (BMC, maximum load, displacement at maximum load, stress at maximum load, load at auto break, displacement at auto break, and stress at auto break, and blood antioxidant enzymes activities, decreased blood Ca, Zn and Cu levels compared to the OVX group. This experiment demonstrates that the administration of Cistanches Herba extract to ovariectomized rats reverses bone loss and prevents osteoporosis.

  12. Ethanol Extract of Atractylodes macrocephala Protects Bone Loss by Inhibiting Osteoclast Differentiation

    Directory of Open Access Journals (Sweden)

    Youn-Hwan Hwang

    2013-06-01

    Full Text Available The rhizome of Atractylodes macrocephala has been used mainly in Traditional Chinese Medicine for invigorating the functions of the stomach and spleen. In the present study, we investigated the inhibitory effect of the 70% ethanol extract of the rhizome of Atractylodes macrocephala (AMEE on osteoclast differentiation. We found that AMEE inhibits osteoclast differentiation from its precursors induced by receptor activator of nuclear factor-κB ligand (RANKL, an essential cytokine required for osteoclast differentiation. AMEE attenuated RANKL-induced activation of NF-κB signaling pathway, subsequently inhibiting the induction of osteoclastogenic transcription factors, c-Fos and nuclear factor of activated T cells cytoplasmic 1. Consistent with the in vitro results, administration of AMEE protected RANKL-induced bone loss in mice. We also identified atractylenolide I and II as active constituents contributing to the anti-osteoclastogenic effect of AMEE. Taken together, our results demonstrate that AMEE has a protective effect on bone loss via inhibiting osteoclast differentiation and suggest that AMEE may be useful in preventing and treating various bone diseases associated with excessive bone resorption.

  13. Bone strength and material properties of the glenoid

    DEFF Research Database (Denmark)

    Frich, Lars Henrik; Jensen, N.C.; Odgaard, A.

    1997-01-01

    of bone specimens harvested from the central part of the glenoid subchondral area. The elastic modulus varied from approximately 100 MPa at the glenoid bare area to 400 MPa at the superior part of the glenoid. With the elastic constants used a predictor of the mechanical anisotropy, the average anisotropy...... ratio was 5.2, indicating strong anisotropy. The apparent density was an average 0.35 gr. cm-3, and the Poisson ratio averaged 0.263. According to our findings the anisotropy of the glenoid cancellous bone, details concerning the strength distribution, and the load-bearing function of the cortical shell......The quality of the glenoid bone is important to a successful total shoulder replacement. Finite element models have been used to model the response of the glenoid bone to an implanted prosthesis. Because very little is known about the bone strength and the material properties at the glenoid...

  14. Proximal alveolar bone loss in a longitudinal radiographic investigation

    International Nuclear Information System (INIS)

    Lavstvedt, S.; Bolin, A.; Henrikson, C.O.; Carstensen, J.

    1986-01-01

    A longitudinal radiographic investigation was made of the progression of the proximal alveolar bone loss over a 10-year period (1970-1980). The material was unselected and consisted of 669 individuals in the county of Stockholm. 61 individuals were randomly selected for evaluation of a recording system using alternative methods of measurement, and 90% of the measurement sites could then be assessed. The correlations between some of the methods were high, such as between measurement of alveolar bone height and root length and between aleveolar bone height and tooth length. To reduce the number of measurements, a partial recording was made, giving a high correlation coefficient between the partial recording and total recording. When five measurement sites were used, the correlation coefficient was 0.96, and a slight increase of the coefficient was obtained when using additional sites

  15. Correlation analysis of alveolar bone loss in buccal/palatal and proximal surfaces in rats

    Directory of Open Access Journals (Sweden)

    Carolina Barrera de Azambuja

    2012-12-01

    Full Text Available The aim was to correlate alveolar bone loss in the buccal/palatal and the mesial/distal surfaces of upper molars in rats. Thirty-three, 60-day-old, male Wistar rats were divided in two groups, one treated with alcohol and the other not treated with alcohol. All rats received silk ligatures on the right upper second molars for 4 weeks. The rats were then euthanized and their maxillae were split and defleshed with sodium hypochlorite (9%. The cemento-enamel junction (CEJ was stained with 1% methylene blue and the alveolar bone loss in the buccal/palatal surfaces was measured linearly in 5 points on standardized digital photographs. Measurement of the proximal sites was performed by sectioning the hemimaxillae, restaining the CEJ and measuring the alveolar bone loss linearly in 3 points. A calibrated and blinded examiner performed all the measurements. Intraclass Correlation Coefficient revealed values of 0.96 and 0.89 for buccal/lingual and proximal surfaces, respectively. The Pearson Correlation Coefficient (r between measurements in buccal/palatal and proximal surfaces was 0.35 and 0.05 for the group treated with alcohol, with and without ligatures, respectively. The best correlations between buccal/palatal and proximal surfaces were observed in animals not treated with alcohol, in sites both with and without ligatures (r = 0.59 and 0.65, respectively. A positive correlation was found between alveolar bone loss in buccal/palatal and proximal surfaces. The correlation is stronger in animals that were not treated with alcohol, in sites without ligatures. Areas with and without ligature-induced periodontal destruction allow detection of alveolar bone loss in buccal/palatal and proximal surfaces.

  16. Inducible nitric oxide synthase mediates bone loss in ovariectomized mice.

    NARCIS (Netherlands)

    Cuzzocrea, S.; Mazzon, E.; Dugo, L.; Genovese, T.; Paola, R. Di; Ruggeri, Z.; Vegeto, E.; Caputi, A.P.; Loo, F.A.J. van de; Puzzolo, D.; Maggi, A.

    2003-01-01

    Several clinical studies have shown that bone loss may be attributed to osteoclast recruitment induced by mediators of inflammation. In different experimental paradigms we have recently demonstrated that estrogen exhibits antiinflammatory activity by preventing the induction of inducible nitric

  17. Brachygnathia superior and degenerative joint disease: a new lethal syndrome in Angus calves.

    Science.gov (United States)

    Jayo, M; Leipold, H W; Dennis, S M; Eldridge, F E

    1987-03-01

    Brachygnathia superior and generalized diarthrodial degenerative joint disease were seen in 17 related, purebred Angus calves ranging in age from 2 days to 4 months. Craniometrical studies revealed decreased maxillary and palatine bone lengths and increased cranial, skull, and facial indices. Radiological evaluation of major appendicular joints demonstrated lipping of the joint margins with osteophyte formation, sclerosis of subchondral bone, and narrowing of joint spaces. Synovial fluid evaluation indicated joint degeneration but no etiologic agent. Rheumatoid factor analysis of plasma was negative. Grossly, all major appendicular joints were defective including the atlanto-occipital articulation. Lesions ranged from loss of surface luster to erosions and deep ulcers with eburnation of the subchondral bone and secondary proliferative synovitis. Histological changes were degeneration of the articular cartilage matrix, chondrocyte necrosis, flaking and fibrillation, chondrone formation, erosions and ulcers of the articular cartilage with subchondral bone sclerosis, vascular invasion with fibrosis, and chronic, nonsuppurative, proliferative synovitis. Growth plates had defective chondrocyte proliferation and hypertrophy with aberrant ossification of calcified cartilaginous matrix. Histochemical analysis of cartilage and bone failed to incriminate which component was defective, glycosaminoglycan or collagen, but indicated different distribution or absence of one or the other. Genealogic studies revealed a genetic basis for the new defect.

  18. Cigarette smoke inhalation increases the alveolar bone loss caused by primary occlusal trauma in a rat model.

    Science.gov (United States)

    Campos, M L G; Corrêa, M G; Júnior, F H N; Casati, M Z; Sallum, E A; Sallum, A W

    2014-04-01

    Occlusal trauma (OT) and smoking are both factors that alter alveolar bone metabolism and therefore could synergistically act on alveolar bone loss. The aim of this experimental study was to evaluate the influence of short-term cigarette smoke inhalation (CSI) on inter-radicular alveolar bone loss promoted by primary OT in a rat model. Forty-eight animals were randomly assigned to one of three groups based on treatment type: OT + CSI (n = 16), animals were exposed to CSI three times per day, for 8 min per exposure, and they concomitantly received unilateral vertical augmentation creating an occlusal interference inducing experimental OT; OT (n = 16), animals received only unilateral vertical augmentation; negative control (NC; n = 16), animals maintained for equal periods to achieve periodontal baseline values of periodontal ligament dimension. Each group was divided into two subgroups (n = 8) based on treatment length: 7 or 14 d. After 7 d, the OT + CSI group exhibited significantly higher bone loss compared to the NC group (p = 0.0022). After 14 d, the OT (p < 0.0001) and OT + CSI (p < 0.0001) groups presented significantly higher bone loss compared to the NC group, and OT + CSI resulted in significantly higher bone loss than OT alone (p = 0.0241). The number of tartrate-resistant acid phosphatase-positive cells on the linear surface of the bone crest after 7 d was significantly higher in the OT + CSI group as compared to the NC and OT groups (p < 0.0001 and p = 0.0045, respectively) and remained significantly higher in the OT + CSI group after 14 d, compared to the OT group (p < 0.0001). Short-term CSI increases early bone loss in association with OT after 7 d, and this worsens in severity after 14 d of exposure. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Mandibular atrophy and metabolic bone loss. Endocrinology, radiology and histomorphometry

    NARCIS (Netherlands)

    Habets, L. L.; Bras, J.; Borgmeyer-Hoelen, A. M.

    1988-01-01

    In 11 edentulous patients with a severe atrophy of the mandible and submitted for ridge augmentation, endocrinological, radiological and histomorphometrical studies were carried out. The results showed that metabolic bone loss, histologically in nearly all patients characterized as a disturbance in

  20. Evaluation of the Survival Rate and Bone Loss of Implants with Various Lengths

    Directory of Open Access Journals (Sweden)

    AR. Rokn

    2006-12-01

    Full Text Available Statement of Problem: The replacement of missing teeth with implant-associated restorations has become a widely used treatment modality in recent years. The length of dental implants may be a critical factor in achieving and maintaining osseointegration.Purpose: The aim of this study was to evaluate the survival rate and bone loss of dental implants with different lengthsMaterials and Methods: A retrospective cohort study was performed on 60 ITI-system implants, evenly distributed into three groups including 8, 10 and 12 mm high implants in the posterior segments of both jaws. Demographic information, oral hygiene,cigarette smoking, implant length, duration of implant placement (at least 24 months,bleeding on probing index and pocket probing depth were recorded for all participants.Bone loss was calculated using pre- and post-operative panoramic radiographs.Results: The mean rate of bone loss was different among the three groups and were found to be 0.21 (0.45, 0.3 (0.41 and 0.43 (0.55 mm in the 8, 10, and 12 mm high implants, respectively. Neither mean bone loss nor bleeding on probing index showed significant differences with implant length. A significant correlation was found between implant length and pocket probing depth (P<0.0001.Conclusion: The results of this study suggest that both short (8 mm high and long (10 or 12 mm high implants may be used with nearly equal success rates in the posterior segments of the jaws.

  1. Use of 3D MR reconstructions in the evaluation of glenoid bone loss: a clinical study

    International Nuclear Information System (INIS)

    Gyftopoulos, Soterios; Beltran, Luis S.; Yemin, Avner; Recht, Michael P.; Strauss, Eric; Meislin, Robert; Jazrawi, Laith

    2014-01-01

    To assess the ability of 3D MR shoulder reconstructions to accurately quantify glenoid bone loss in the clinical setting using findings at the time of arthroscopy as the gold standard. Retrospective review of patients with MR shoulder studies that included 3D MR reconstructions (3D MR) produced using an axial Dixon 3D-T1W-FLASH sequence at our institution was conducted with the following inclusion criteria: history of anterior shoulder dislocation, arthroscopy (OR) performed within 6 months of the MRI, and an estimate of glenoid bone loss made in the OR using the bare-spot method. Two musculoskeletal radiologists produced estimates of bone loss along the glenoid width, measured in mm and %, on 3D MR using the best-fit circle method, which were then compared to the OR measurements. There were a total of 15 patients (13 men, two women; mean age, 28, range, 19-51 years). There was no significant difference, on average, between the MRI (mean 3.4 mm/12.6 %; range, 0-30 %) and OR (mean, 12.7 %; range, 0-30 %) measurements of glenoid bone loss (p = 0.767). A 95 % confidence interval for the mean absolute error extended from 0.45-2.21 %, implying that, when averaged over all patients, the true mean absolute error of the MRI measurements relative to the OR measurements is expected to be less than 2.21 %. Inter-reader agreement between the two readers had an IC of 0.92 and CC of 0.90 in terms of percentage of bone loss. 3D MR reconstructions of the shoulder can be used to accurately measure glenoid bone loss. (orig.)

  2. Use of 3D MR reconstructions in the evaluation of glenoid bone loss: a clinical study

    Energy Technology Data Exchange (ETDEWEB)

    Gyftopoulos, Soterios; Beltran, Luis S.; Yemin, Avner; Recht, Michael P. [NYU Langone Medical Center, Department of Radiology, New York, NY (United States); Strauss, Eric; Meislin, Robert; Jazrawi, Laith [NYU Langone Medical Center, Center for Musculoskeletal Care, Department of Orthopaedic Surgery, New York, NY (United States)

    2014-02-15

    To assess the ability of 3D MR shoulder reconstructions to accurately quantify glenoid bone loss in the clinical setting using findings at the time of arthroscopy as the gold standard. Retrospective review of patients with MR shoulder studies that included 3D MR reconstructions (3D MR) produced using an axial Dixon 3D-T1W-FLASH sequence at our institution was conducted with the following inclusion criteria: history of anterior shoulder dislocation, arthroscopy (OR) performed within 6 months of the MRI, and an estimate of glenoid bone loss made in the OR using the bare-spot method. Two musculoskeletal radiologists produced estimates of bone loss along the glenoid width, measured in mm and %, on 3D MR using the best-fit circle method, which were then compared to the OR measurements. There were a total of 15 patients (13 men, two women; mean age, 28, range, 19-51 years). There was no significant difference, on average, between the MRI (mean 3.4 mm/12.6 %; range, 0-30 %) and OR (mean, 12.7 %; range, 0-30 %) measurements of glenoid bone loss (p = 0.767). A 95 % confidence interval for the mean absolute error extended from 0.45-2.21 %, implying that, when averaged over all patients, the true mean absolute error of the MRI measurements relative to the OR measurements is expected to be less than 2.21 %. Inter-reader agreement between the two readers had an IC of 0.92 and CC of 0.90 in terms of percentage of bone loss. 3D MR reconstructions of the shoulder can be used to accurately measure glenoid bone loss. (orig.)

  3. Doxorubicin-mediated bone loss in breast cancer bone metastases is driven by an interplay between oxidative stress and induction of TGFβ.

    Directory of Open Access Journals (Sweden)

    Tapasi Rana

    Full Text Available Breast cancer patients, who are already at increased risk of developing bone metastases and osteolytic bone damage, are often treated with doxorubicin. Unfortunately, doxorubicin has been reported to induce damage to bone. Moreover, we have previously reported that doxorubicin treatment increases circulating levels of TGFβ in murine pre-clinical models. TGFβ has been implicated in promoting osteolytic bone damage, a consequence of increased osteoclast-mediated resorption and suppression of osteoblast differentiation. Therefore, we hypothesized that in a preclinical breast cancer bone metastasis model, administration of doxorubicin would accelerate bone loss in a TGFβ-mediated manner. Administration of doxorubicin to 4T1 tumor-bearing mice produced an eightfold increase in osteolytic lesion areas compared untreated tumor-bearing mice (P = 0.002 and an almost 50% decrease in trabecular bone volume expressed in BV/TV (P = 0.0005, both of which were rescued by anti-TGFβ antibody (1D11. Doxorubicin, which is a known inducer of oxidative stress, decreased osteoblast survival and differentiation, which was rescued by N-acetyl cysteine (NAC. Furthermore, doxorubicin treatment decreased Cu-ZnSOD (SOD1 expression and enzyme activity in vitro, and treatment with anti-TGFβ antibody was able to rescue both. In conclusion, a combination therapy using doxorubicin and anti-TGFβ antibody might be beneficial for preventing therapy-related bone loss in cancer patients.

  4. Proximal alveolar bone loss in a longitudinal radiographic investigation

    International Nuclear Information System (INIS)

    Bolin, A.; Lavstedt, S.; Henrikson, C.O.; Frithiof, L.

    1986-01-01

    The difference in proximal alveolar bone height between 1970 and 1980, the ''ABD index'', has been measured longitudinally in radiographs from an unselected material. The group constitutes 406 individuals born in 1904 - 1952 in the county of Stockholm. 13 of 18 predictors determined in 1970 were significantly related to the ABD index in the simple correlation analyses. The predictor ''the alveolar bone loss 1970'' (ABL index 1970) had the strongest correlation to the ABD index. In the stepwise multiple regression analysis the predictor ABL index 1970 and three other predictors reached significant levels. These were age, number of lost teeth and Russell's Periodontal Index

  5. Bone marrow oedema on MR imaging indicates ARCO stage 3 disease in patients with AVN of the femoral head.

    Science.gov (United States)

    Meier, Reinhard; Kraus, Tobias M; Schaeffeler, Christoph; Torka, Sebastian; Schlitter, Anna Melissa; Specht, Katja; Haller, Bernhard; Waldt, Simone; Rechl, Hans; Rummeny, Ernst J; Woertler, Klaus

    2014-09-01

    To test the hypothesis that bone marrow oedema (BME) observed on MRI in patients with avascular necrosis (AVN) of the femoral head represents an indicator of subchondral fracture. Thirty-seven symptomatic hips of 27 consecutive patients (53% women, mean age 49.2) with AVN of the femoral head and associated BME on magnetic resonance (MR) imaging were included. MR findings were correlated with computed tomography (CT) of the hip and confirmed by histopathological examination of the resected femoral head. Imaging studies were analysed by two radiologists with use of the ARCO classification. On MR imaging a fracture line could be identified in 19/37 (51%) cases, which were classified as ARCO stage 3 (n = 15) and stage 4 (n = 4). The remaining 18/37 (49%) cases were classified as ARCO stage 2. However, in all 37/37 (100%) cases a subchondral fracture was identified on CT, indicating ARCO stage 3/4 disease. The extent of subchondral fractures and the femoral head collapse was graded higher on CT as compared to MRI (P AVN, BME of the femoral head represents a secondary sign of subchondral fracture and thus indicates ARCO stage 3 disease. BME on MRI in AVN of femoral head indicates a subchondral fracture. BME in AVN of the femoral head represents ARCO stage 3/4 disease. CT identifies subchondral fractures and femoral head collapse better than MR imaging. This knowledge helps to avoid understaging and to trigger adequate treatment.

  6. Donepezil prevents RANK-induced bone loss via inhibition of osteoclast differentiation by downregulating acetylcholinesterase

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Sato

    2015-09-01

    Conclusions: AChE promotes osteoclast differentiation in vitro. Donepezil inhibits osteoclast function in vitro and prevents bone loss by suppressing bone resorption in vivo, suggesting the possibility that donepezil reduces fracture risk in patients with Alzheimer's disease.

  7. Patterns of bone loss around teeth restored with endodontic posts

    NARCIS (Netherlands)

    Katsamakis, S.; Timmerman, M.; van der Velden, U.; de Cleen, M.; van der Weijden, F.

    2009-01-01

    Objectives: This retrospective study described the pattern of bone loss around teeth with endodontic posts in periodontitis patients, and compared it with contra-lateral teeth without posts. Material and Methods: From full-mouth radiographic surveys of 146 periodontitis patients (35 years), 194

  8. Tibiofemoral subchondral surface ratio (SSR) is a predictor of osteoarthritis symptoms and radiographic progression: data from the Osteoarthritis Initiative (OAI).

    Science.gov (United States)

    Everhart, J S; Siston, R A; Flanigan, D C

    2014-06-01

    Symptomatic knee osteoarthritis (OA) is poorly correlated with radiographic severity, but subchondral bone measures may be useful for risk assessment as bone shape is grossly unaffected at early radiographic stages. We sought to determine whether compartment-specific size mismatch in the naturally asymmetric tibiofemoral joint, measured as tibiofemoral subchondral surface ratio (SSR): (1) predicts incident symptoms, (2) predicts incident or progressive OA, (3) is reproducible and time invariant. OA Initiative participants with baseline MRIs and up to 48-month follow-up (n = 1,338) were analyzed. Logistic regression was used to determine the association between SSR and incident symptoms, incident OA, and progression of OA after adjusting for demographic, radiologic, injury-related, and lifestyle-related factors. Reproducibility was assessed as % coefficient of variation (CV) on repeat MRI studies at baseline and 24 months. Increased medial SSR is protective against incident symptoms at 48 months (per 0.1 increase: OR 0.48 CI 0.30, 0.75; P = 0.001). Increased lateral SSR values are protective against lateral OA incidence (OR 0.23 CI 0.06, 0.77; P = 0.016) or progression (OR 0.66 CI 0.43, 0.99; P = 0.049) at 24 months. Both medial and lateral SSR are stable over time (medial: mean change 0.001 SD 0.016; lateral: mean change 0.000 SD 0.017) and are highly reproducible (3.0% CV medial SSR; 2.7% CV lateral SSR). A larger medial SSR is protective against developing OA-related symptoms. A larger lateral SSR is protective against lateral OA incidence or progression. Finally, lateral and medial SSR are stable over time and are highly reproducible across MRI studies. Copyright © 2014 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  9. Digital radiographic evaluation of alveolar bone loss, density and lamina dura integrity on post splinting mandibular anterior with chronic periodontitis

    Science.gov (United States)

    Rafini, F.; Priaminiarti, M.; Sukardi, I.; Lessang, R.

    2017-08-01

    The healing of periodontal splinting can be detected both with clinical and radiographic examination. In this study, the alveolar bone was evaluated by radiographic digital periapical analysis. Periodontal tooth splinting is periodontal support therapy used to prevent periodontal injury during repair and regeneration of periodontal therapy. Radiographic digital periapical analysis of alveolar bone in the mandibular anterior region with chronic periodontitis and 2/3 cervical bone loss after three months of periodontal splinting. Eighty four proximal site (43 mesial and 41 distal) from 16 patients with chronic periodontitis and treated with spinting were examined by taking periapical digital radiographic at day 1 and 91. The bone loss, bone density and utility of lamina dura were evaluated. The statistical analysis after three months evaluation using T-test for bone loss, Wilcoxon sign rank test for bone density and utility lamina dura showed no significantly differences (pchronic periodontitis with 2/3 alveolar bone loss after three months splinting.

  10. Marginal Bone Loss Around Early-Loaded SLA and SLActive Implants: Radiological Follow-Up Evaluation Up to 6.5 Years.

    Science.gov (United States)

    Şener-Yamaner, Işil Damla; Yamaner, Gökhan; Sertgöz, Atilla; Çanakçi, Cenk Fatih; Özcan, Mutlu

    2017-08-01

    The aim of this study was to compare marginal bone loss around early-loaded SLA and SLActive tissue-level implants (Straumann Dental Implants; Institut Straumann AG, Basel, Switzerland) after a mean of 81-month follow-up period. One hundred seven SLA and 68 SLActive implants were placed in 55 patients and loaded with final restoration after 8 and 3 weeks of healing time, respectively. Marginal bone loss around implants was determined radiographically at initial and after a mean observation time ranging between 20 and 81 months. The effect of location (mandible vs maxilla), smoking habit, sex, implant length and diameter, and the type of prosthesis on the marginal bone loss was evaluated. The overall cumulative survival rate was 98.2% being 99% for SLA implants and 97% for SLActive implants. After 20-month follow-up period, mean marginal bone loss values for the SLA and SLActive implants were 0.24 and 0.17 mm, respectively. After 81 months, mean marginal bone loss for the SLA and SLActive implants reached 0.71 and 0.53 mm, respectively. Marginal bone loss was affected by the length and type of implant and patients' smoking habit after a mean observation time of 20 months. However, none of the parameters had any significant effect on the marginal bone loss after a follow-up period of 81 months. With both SLA and SLActive implants, successful clinical results could be achieved up to 6.5 years of follow-up period.

  11. Local vibration enhanced the efficacy of passive exercise on mitigating bone loss in hindlimb unloading rats

    Science.gov (United States)

    Huang, Yunfei; Luan, Huiqin; Sun, Lianwen; Bi, Jingfang; Wang, Ying; Fan, Yubo

    2017-08-01

    Spaceflight induced bone loss is seriously affecting astronauts. Mechanical stimulation from exercise has been shown to restrain bone resorption as well as improve bone formation. Current exercise countermeasures in space cannot prevent it completely. Active exercise may convert to passive exercise in some ways because of the loss of gravity stimulus and inertia of exercise equipment. The aim of this study was to compare the efficacy of passive exercise or/and local vibration on counteracting the deterioration of the musculoskeletal system, including bone, muscle and tendons in tail-suspended rats. We hypothesized that local vibration could enhance the efficacy of passive exercise on countering bone loss. 40 Sprague Dawley rats were randomly distributed into five groups (n = 8, each): tail-suspension (TS), TS+35 Hz vibration (TSV), TS + passive exercise (TSP), TS + passive exercise coupled with 35 Hz vibration (TSPV) and control (CON). Passive exercise or/and local vibration was performed for 21 days. On day 0 and 21, bone mineral density (BMD) was observed by dual energy X-ray absorptiometry (DXA), and trabecular microstructure was evaluated by microcomputer tomography (μCT) analysis in vivo. Mechanical properties of tibia and tendon were determined by a mechanical testing system. Soleus and bone ash weight was tested by an electronic balance. Results showed that the passive exercise could not prevent the decrease of trabecular BMD, microstructure and bone ash weight induced by TS, whereas vibration and passive exercise coupled with local vibration (PV) could. Biomechanical properties of the tibia and tendon in TSPV group significantly increased compared with TS group. In summary, PV in this study was the best method in preventing weightlessness-induced bone loss. Consistent with our hypothesis, local vibration partly enhanced the effect of passive exercise. Furthermore, this study will be useful in improving countermeasure for astronauts, but also for the

  12. Rhizoma Dioscoreae extract protects against alveolar bone loss in ovariectomized rats via microRNAs regulation.

    Science.gov (United States)

    Zhang, Zhiguo; Song, Changheng; Zhang, Fangzhen; Xiang, Lihua; Chen, Yanjing; Li, Yan; Pan, Jinghua; Liu, Hong; Xiao, Gary Guishan; Ju, Dahong

    2015-02-16

    The aim of this study was to evaluate the osteoprotective effect of aqueous Rhizoma Dioscoreae extract (RDE) on the alveolar bone of rats with ovariectomy-induced bone loss. Female Wistar rats underwent either ovariectomy or sham operation (SHAM). The ovariectomized (OVX) rats were treated with vehicle (OVX), estradiol valerate (EV), or RDE. After treatments, the bone mineral density (BMD) and the three-dimensional microarchitecture of the alveolar bone were analyzed to assess bone mass. Microarrays were used to evaluate microRNA expression profiles in alveolar bone from RDE-treated and OVX rats. The differential expression of microRNAs was validated using real-time quantitative RT-PCR (qRT-PCR), and the target genes of validated microRNAs were predicted and further analyzed using Ingenuity Pathway Analysis (IPA). The key findings were verified using qRT-PCR. Our results show that RDE inhibits alveolar bone loss in OVX rats. Compared to the OVX rats, the RDE-treated rats showed upregulated expression levels of 8 microRNAs and downregulated expression levels of 8 microRNAs in the alveolar bone in the microarray analysis. qRT-PCR helped validate 13 of 16 differentially expressed microRNAs, and 114 putative target genes of the validated microRNAs were retrieved. The IPA showed that these putative target genes had the potential to code for proteins that were involved in the transforming growth factor (TGF)-β/bone morphogenetic proteins (BMPs)/Smad signaling pathway (Tgfbr2/Bmpr2, Smad3/4/5, and Bcl-2) and interleukin (IL)-6/oncostatin M (OSM)/Jak1/STAT3 signaling pathway (Jak1, STAT3, and Il6r). These experiments revealed that RDE could inhibit ovariectomy-induced alveolar bone loss in rats. The mechanism of this anti-osteopenic effect in alveolar bone may involve the simultaneous inhibition of bone formation and bone resorption, which is associated with modulation of the TGF-β/BMPs/Smad and the IL-6/OSM/Jak1/STAT3 signaling pathways via microRNA regulation.

  13. P2X7 receptor regulates osteoclast function and bone loss in a mouse model of osteoporosis.

    Science.gov (United States)

    Wang, Ning; Agrawal, Ankita; Jørgensen, Niklas Rye; Gartland, Alison

    2018-02-22

    Post-menopausal osteoporosis is a condition that affects millions worldwide and places a huge socio-economic burden on society. Previous research has shown an association of loss of function SNPs in the gene for the purinergic receptor P2X7R with low bone mineral density, increased rates of bone loss and vertebral fractures in post-menopausal women. In this study we use a mouse model of oestrogen deficiency-induced bone loss and the BALB/cJ P2X7R -/- to show that absence of the P2X7R resulted in increased bone loss. Osteoclast precursors were isolated from both BALB/cJ P2X7R -/- and BALB/cJ P2X7R +/+ mice and then cultured in vitro to form mature resorbing osteoclasts. The BALB/cJ P2X7R -/- derived precursors generated slightly more osteoclasts but with a significant reduction in the amount of resorption per osteoclast. Furthermore, when using modified culture conditions osteoclast activity was additionally increased in the absence of the P2X7R suggest that P2X7R may regulate the lifespan and activity of osteoclasts. Finally using mechanical loading as an anabolic stimulus for bone formation, we demonstrated that the increased oestrogen-deficient bone loss could be rescued, even in the absence of P2X7R. This study paves the way for clinical intervention for women with post-menopausal osteoporosis and P2XR7 loss of function polymorphisms.

  14. Vegetarianism, bone loss, fracture and vitamin D: a longitudinal study in Asian vegans and non-vegans.

    Science.gov (United States)

    Ho-Pham, L T; Vu, B Q; Lai, T Q; Nguyen, N D; Nguyen, T V

    2012-01-01

    The effect of vegan diet on bone loss has not been studied. The aim of this study was to examine the association between veganism and bone loss in postmenopausal women. The study was designed as a prospective longitudinal investigation with 210 women, including 105 vegans and 105 omnivores. Femoral neck (FN) bone mineral density (BMD) was measured in 2008 and 2010 by dual-energy X-ray absorptiometry (Hologic QDR4500). The incidence of vertebral fracture was ascertained by X-ray report. Serum levels of C-terminal telopeptide of type I collagen (βCTX) and N-terminal propeptide of type I procollagen (PINP) were measured by Roche Elecsys assays. Serum concentration of 25-hydroxyvitamin D and parathyroid hormone were measured by electrochemiluminescence. Among the 210 women who initially participated in the study in 2008, 181 women had completed the study and 29 women were lost to follow-up. The rate of loss in FN BMD was -1.91±3.45%/year in omnivores and -0.86±3.81%/year (P=0.08) in vegans. Lower body weight, higher intakes of animal protein and lipid, and corticosteroid use were associated with greater rate of bone loss. The 2-year incidence of fracture was 5.7% (n=5/88) in vegans, which was not significantly different from omnivores (5.4%, n=6/93). There were no significant differences in βCTX and PINP between vegans and omnivores. The prevalence of vitamin D insufficiency in vegans was higher than in omnivores (73% versus 46%; P=0.0003). Vegan diet did not have adverse effect on bone loss and fracture. Corticosteroid use and high intakes of animal protein and animal lipid were negatively associated with bone loss.

  15. Growth hormone mitigates loss of periosteal bone formation and muscle mass in disuse osteopenic rats.

    Science.gov (United States)

    Grubbe, M-C; Thomsen, J S; Nyengaard, J R; Duruox, M; Brüel, A

    2014-12-01

    Growth hormone (GH) is a potent anabolic agent capable of increasing both bone and muscle mass. The aim was to investigate whether GH could counteract disuse-induced loss of bone and muscle mass in a rat model. Paralysis was induced by injecting 4 IU Botox (BTX) into the muscles of the right hind limb. Sixty female Wistar rats, 14 weeks old, were divided into the following groups: baseline, controls, BTX, BTX+GH, and GH. GH was given at a dosage of 5 mg/kg/d for 4 weeks. Compared with controls, BTX resulted in lower periosteal bone formation rate (BFR/BS,-79%, Pbone mineral density (aBMD, -13%, Pbone volume (BV/TV, -26%, Pbone strength (-12%, Pbone strength was found. In addition, GH partly prevented loss of muscle mass (+29% vs. BTX, P<0.001), and tended to prevent loss of muscle CSA (+11%, P=0.064). In conclusion, GH mitigates disuse-induced loss of periosteal BFR/BS at the mid-femur and rectus femoris muscle mass.

  16. Osteoarthritis of the knee: correlation of subchondral MR signal abnormalities with histopathologic and radiographic features

    International Nuclear Information System (INIS)

    Bergman, A.G.; Willen, H.K.; Lindstrand, A.L.; Pettersson, H.T.A.

    1994-01-01

    Subchondral signal abnormalities are often present on magnetic resonance (MR) images of patients with osteoarthritis, but no study correlating these changes with histopathology has been published. We selected nine consecutive patients with clinical and radiographic diagnosis of moderate to severe osteoarthritis of the knee scheduled to under go joint replacement surgery, and performed MR imaging and conventional radiographs pre-operatively. After surgery, the resected portions of the femur and tibia underwent gross and microscopic examination, and the findings were correlated with the corresponding findings on the imaging studies. Subchondral MR signal abnormalities of the femur or tibia were present in seven of the nine patients, with intermediate signal on T1-weighted images and low or isointense signal on T2-weighted images. The subchondral signal abnormalities were hemispherical in configuration and corresponded predominantly to fibrous tissue replacing the fatty marrow. A component of trabecular thickening was also present. (orig.)

  17. Alpha-1 antitrypsin gene therapy prevented bone loss in ovariectomy induced osteoporosis mouse model

    Science.gov (United States)

    Osteoporosis is a major healthcare burden affecting mostly postmenopausal women characterized by compromised bone strength and increased risk of fragility fracture. Although pathogenesis of this disease is complex, elevated proinflammatory cytokine production is clearly involved in bone loss at meno...

  18. Micro-CT Arthrographic Analysis of Monosodium Iodoacetate- Induced Osteoarthritis in Rat Knees

    International Nuclear Information System (INIS)

    Kwon, Jong Won; Kang, Heung Sik; Hong, Sung Hwan

    2010-01-01

    To evaluate the arthrographic findings of MIA-induced osteoarthritis in rat knees using the micro-CT arthrography. Intra-articular monosodium iodoacetate (MIA) injection-induced arthritis was induced in the right knees of twelve rats; their left knees served as the control group. Eight weeks after MIA injection, micro-CT arthrography was performed on each knee. We measured the thickness of retro-patellar cartilages, the distances of tibio-femoral joint space, subchondral bone plate thickness, tibial epiphyseal height, and transverse patellar diameter. Subchondral trabecular bone indices were measured in the tibial lateral condylar epiphysis. The data were analyzed statistically using a paired t-test. The retro-patellar articular cartilage showed thinning on the right side that had been induced to develop osteoarthritis. The right knees showed a significant reduction in the distance of the tibio-femoral joint space, prominent patellar osteophytes, and the resorption of subchondral bone. Among the subchondral trabecular bone indices, percent bone volume, and trabecular thickness was reduced on the right side. The articular cartilage thickness of MIA-induced arthritis model could be measured using micro- CT arthrography. It was possible to evaluate the osteoarthritic findings including the change in subchondral bone plate thickness, osteophyte formation, and subchondral bone resorption, as well as quantitatively analyze the trabecular bone indices

  19. Micro-CT Arthrographic Analysis of Monosodium Iodoacetate- Induced Osteoarthritis in Rat Knees

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Jong Won [Samsung Medical Center, Sungkyunkwan University, Seoul (Korea, Republic of); Kang, Heung Sik [Seoul National University Bundang Hospital, Seongnam (Korea, Republic of); Hong, Sung Hwan [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2010-10-15

    To evaluate the arthrographic findings of MIA-induced osteoarthritis in rat knees using the micro-CT arthrography. Intra-articular monosodium iodoacetate (MIA) injection-induced arthritis was induced in the right knees of twelve rats; their left knees served as the control group. Eight weeks after MIA injection, micro-CT arthrography was performed on each knee. We measured the thickness of retro-patellar cartilages, the distances of tibio-femoral joint space, subchondral bone plate thickness, tibial epiphyseal height, and transverse patellar diameter. Subchondral trabecular bone indices were measured in the tibial lateral condylar epiphysis. The data were analyzed statistically using a paired t-test. The retro-patellar articular cartilage showed thinning on the right side that had been induced to develop osteoarthritis. The right knees showed a significant reduction in the distance of the tibio-femoral joint space, prominent patellar osteophytes, and the resorption of subchondral bone. Among the subchondral trabecular bone indices, percent bone volume, and trabecular thickness was reduced on the right side. The articular cartilage thickness of MIA-induced arthritis model could be measured using micro- CT arthrography. It was possible to evaluate the osteoarthritic findings including the change in subchondral bone plate thickness, osteophyte formation, and subchondral bone resorption, as well as quantitatively analyze the trabecular bone indices.

  20. No major effect of estrogen receptor gene polymorphisms on bone mineral density or bone loss in postmenopausal Danish women

    DEFF Research Database (Denmark)

    Bagger, Y Z; Jørgensen, H L; Heegaard, Anne-Marie

    2000-01-01

    The polymorphisms of the estrogen receptor (ER) gene defined by the restriction enodonucleases PvuII and XbaI have recently been reported to be associated with bone mineral density (BMD) in postmenopausal women. To investigate the possible relation of the PvuII and XbaI restriction fragment......-length polymorphisms of the ER gene with BMD in Danish postmenopausal women, two studies were undertaken: 1) a cross-sectional study of 499 postmenopausal women, where the ER genotypes and alleles were related to BMD of the hip, spine, and lower forearm; and 2) a longitudinal study of 101 postmenopausal women followed...... up for 18 years. In the latter study, late postmenopausal bone loss in the hip and spine was determined over a period of 6 years in women (mean age of 63 to 69 years), and long-term postmenopausal bone loss in the lower forearm was determined over a period of 18 years in women (mean age of 51 to 69...

  1. Intra Articular Therapeutic Delivery for Post Traumatic Osteoarthritis

    Science.gov (United States)

    2016-10-01

    size distribution therapeutic timepoints EPIC-µCT Articular cartilage Subchondral bone Osteophytes Proteoglycans 3. OVERALL PROJECT SUMMARY: In...joint degeneration induced by MMT. Previously documented in Year 1 annual report: Changes in articular cartilage and subchondral bone morphology...and resulted in increased cartilage thickness at 3 weeks. The majority of alterations to subchondral bone (density, thickness) were detected at 3

  2. Bone contusions in the adolescent knee: confusion with rupture of anterior cruciate ligament

    International Nuclear Information System (INIS)

    Roca, M.; Mota, J.; Guedea, A.

    1998-01-01

    One of the most specific secondary findings, on magnetic resonance imaging, associated with acute rupture of anterior cruciate ligament (ACL) are bone contusions of lateral femoral condyle or tibial plateau.Given the marked specificity of these indirect findings (97% to 100%), their presence corroborates the diagnosis of ACL tears. The unreliability of these signs in adolescents has recently been reported. We present a case of subchondral bone contusion with intact ACL, the knowledge of which may prevent potential misinterpretations and unnecessary arthroscopic examinations. (Author) 9 refs

  3. Rehabilitation and Return-to-Sports Activity after Debridement and Bone Marrow Stimulation of Osteochondral Talar Defects

    NARCIS (Netherlands)

    van Eekeren, Inge C. M.; Reilingh, Mikel L.; van Dijk, C. Niek

    2012-01-01

    An osteochondral defect (OD) is a lesion involving the articular cartilage and the underlying subchondral bone. ODs of the talus can severely impact on the quality of life of patients, who are usually young and athletic. The primary treatment for ODs that are too small for fixation, consists of

  4. Clinical Parameters and Crestal Bone Loss in Internal Versus External Hex Implants at One Year after Loading

    Directory of Open Access Journals (Sweden)

    HamidReza Arab

    2015-09-01

    Full Text Available Introduction: The survival of an implant system is affected by the choice of antirotational design, which can include an external or internal hex. Implant success also is affected by the maintenance of the crestal bone around implants. The aim of present study was to evaluate the crestal bone loss and clinical parameters related to bone loss in patients loaded with an external or internal hex 3i implant (3i Implant Innovation, Palm Beach Gardens, FL, USA. The evaluations were performed one year after loading. Materials and Methods: A total of 39 implants (23 external hex, 16 internal hex were placed randomly in 23 patients (10 male, 13 female by a submerged approach. None of patients had compromised conditions or parafunctional habits. At placement and at one year after loading, periapical radiographs were taken via the parallel method from the implant sites. Results: Crestal bone loss was -0.712±0.831 mm in implants with an internal hex connection and -0.139±0.505 mm in implants with an external hex connection (P≤0.05. No correlation was found between crestal bone loss and parameters such as age, gender, jaw, implant location (anterior, premolar, or molar, implant diameter, or implant length. Conclusions: Crestal bone loss was greater in patients with internal hex 3i implants than in those with external implants. Similar results in other clinical factors were found between the groups.

  5. Rates of bone loss among women initiating antidepressant medication use in midlife.

    Science.gov (United States)

    Diem, Susan J; Ruppert, Kristine; Cauley, Jane A; Lian, YinJuan; Bromberger, Joyce T; Finkelstein, Joel S; Greendale, Gail A; Solomon, Daniel H

    2013-11-01

    Concern has been raised that medications that block serotonin reuptake may affect bone metabolism, resulting in bone loss. The aim of the study was to compare annual bone mineral density (BMD) changes among new users of selective serotonin reuptake inhibitors (SSRIs), new users of tricyclic antidepressants (TCAs), and nonusers of antidepressant medications. We conducted a prospective cohort study at five clinical centers in the United States. The study included 1972 community-dwelling women, aged 42 years and older, enrolled in the Study of Women's Health Across the Nation (SWAN). The use of antidepressant medications was assessed by interview and verified from medication containers at annual visits. Subjects were categorized as nonusers (no SSRI or TCA use at any examination), SSRI users (initiated SSRI use after the baseline SWAN visit), or TCA users (initiated TCA use after the baseline visit), using a computerized dictionary to categorize type of medication. BMD at the lumbar spine, total hip, and femoral neck was measured using dual-energy x-ray absorptiometry at annual visits. BMD was compared among 311 new users of SSRIs, 71 new users of TCAs, and 1590 nonusers. After adjustment for potential confounders, including age, race, body mass index, menopausal status, and hormone therapy use, mean lumbar spine BMD decreased on average 0.68% per year in nonusers, 0.63% per year in SSRI users (P = .37 for comparison to nonusers), and 0.40% per year in TCA users (P = .16 for comparison to nonusers). At the total hip and femoral neck, there was also no evidence that SSRI or TCA users had an increased rate of bone loss compared with nonusers. Results were similar in subgroups of women stratified by the Center for Epidemiologic Studies Depression Scale (women, use of SSRIs and TCAs was not associated with an increased rate of bone loss at the spine, total hip, or femoral neck.

  6. Exercise-induced metacarpophalangeal joint adaptation in the Thoroughbred racehorse

    Science.gov (United States)

    Muir, P; Peterson, A L; Sample, S J; Scollay, M C; Markel, M D; Kalscheur, V L

    2008-01-01

    between groups. We conclude that differences in site-specific microdamage accumulation and associated targeted remodeling between athletic and non-athletic horses are much greater than differences in subchondral osteocyte morphology. However, the presence of atypical subchondral bone matrix in athletic horses was associated with extensive osteocyte loss. Although osteocyte mechanotransduction is considered important for functional adaptation, in this model, adaptation is likely regulated by multiple mechanotransduction pathways. PMID:19094186

  7. Muscle changes can account for bone loss after botulinum toxin injection.

    Science.gov (United States)

    Manske, Sarah L; Boyd, Steven K; Zernicke, Ronald F

    2010-12-01

    Studies to date have assumed that botulinum toxin type A (BTX) affects bone indirectly, through its action on muscle. We hypothesized that BTX has no discernable effect on bone morphometry, independent of its effect on muscle. Therefore, we investigated whether BTX had an additional effect on bone when combined with tenotomy compared to tenotomy in isolation. Female BALB/c mice (n = 73) underwent one of the following procedures in the left leg: BTX injection and Achilles tenotomy (BTX-TEN), BTX injection and sham surgery (BTX-sham), Achilles tenotomy (TEN), or sham surgery (sham). BTX groups were injected with 20 μL of BTX (1 U/100 g) in the posterior lower hindlimb. At 4 weeks, muscle cross-sectional area (MCSA) and tibial bone morphometry were assessed using micro-CT. Each treatment, other than sham, resulted in significant muscle and bone loss (P properties. We found that BTX injection resulted in more adverse muscle and bone effects than tenotomy and that effects were amplified when the procedures were combined. However, between-group differences in bone could be accounted for by MCSA. We conclude that any independent effect of BTX on bone morphometry is likely small or negligible compared with the effect on muscle.

  8. Coincidence of calcified carotid atheromatous plaque, osteoporosis, and periodontal bone loss in dental panoramic radiographs

    International Nuclear Information System (INIS)

    Ramesh, Aruna; Ganguly, Rumpa; Soroushian, Sheila

    2013-01-01

    This study was performed to assess the correlation of calcified carotid atheromatous plaque (CCAP), the mandibular cortical index, and periodontal bone loss in panoramic radiographs. One hundred eighty-five panoramic radiographs with CCAP and 234 without this finding were evaluated by 3 observers for the presence of osseous changes related to osteoporosis and periodontal bone loss. Chi-squared and Mann-Whitney U tests were used to compare the two groups for an association of CCAP with the mandibular cortical index and periodontal bone loss, respectively. There was a statistically significant coincidence of CCAP and osseous changes related to osteopenia/osteoporosis, with a p-value <0.001. There was no statistically significant coincidence of CCAP and periodontal bone loss. When comparing the 2 groups, 'With CCAP' and 'Without CCAP', there was a statistically significant association with the mean body mass index (BMI), number of remaining teeth, positive history of diabetes mellitus, and vascular accidents. There was no statistically significant association with gender or a history of smoking. This study identified a possible concurrence of CCAP and mandibular cortical changes secondary to osteopenia/osteoporosis in panoramic radiographs. This could demonstrate the important role of dental professionals in screening for these systemic conditions, leading to timely and appropriate referrals resulting in early interventions and thus improving overall health.

  9. Pinhole bone scan mapping of metabolic profiles in osteoarthritis of the knee: a radiographic correlation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S. H.; Kim, H. H.; Chung, Y. A.; Chung, S. K.; Bahk, Y. W. [College of Medicine, The Catholic Univ. of Korea, Seoul (Korea, Republic of)

    1999-07-01

    Osteoarthritis (OA) is mixture of damage to a joint and reaction induced therefrom. Heterogeneity, slow change and no proper means of assessing pathology make it a difficult disease to study. Diagnosis can be made by radiography when OA is established. But subtle metabolic change without radiographic alteration can only be detected by bone scan. Present study was performed to assess metabolic profiles of OA of the knee with various radiographic and preradiographic changes using pinhole bone scan (PBS). PBS and radiography were taken at the same time or a few days apart. We used single-head gamma camera and a 4-mm pinhole collimator. Patients were 9 men and 19 women (30-74 yr with mean being 55). PBS was correlated with radiography in each case. Increased tracer uptake was seen in 111 lesions in 28 knees. Intensity was arbitrarily graded into Grade 0-2. The results were divided into group with radiographic change (n=85; Table) and group without (n=26). Generally, tracer uptake was much intense in the sclerotic and cystic form. In radiographically normal group pathological uptake occurred mostly in subchondral bone (n=17) and some in the femoral condyle (n=9) denoting that subchondral bone is the most vulnerable. PBS is sensitive indicator of metabolic alternations in various disease processes of OA in both radiographically normal and abnormal cases.

  10. Magnetic resonance imaging can accurately assess the long-term progression of knee structural changes in experimental dog osteoarthritis.

    Science.gov (United States)

    Boileau, C; Martel-Pelletier, J; Abram, F; Raynauld, J-P; Troncy, E; D'Anjou, M-A; Moreau, M; Pelletier, J-P

    2008-07-01

    Osteoarthritis (OA) structural changes take place over decades in humans. MRI can provide precise and reliable information on the joint structure and changes over time. In this study, we investigated the reliability of quantitative MRI in assessing knee OA structural changes in the experimental anterior cruciate ligament (ACL) dog model of OA. OA was surgically induced by transection of the ACL of the right knee in five dogs. High resolution three dimensional MRI using a 1.5 T magnet was performed at baseline, 4, 8 and 26 weeks post surgery. Cartilage volume/thickness, cartilage defects, trochlear osteophyte formation and subchondral bone lesion (hypersignal) were assessed on MRI images. Animals were killed 26 weeks post surgery and macroscopic evaluation was performed. There was a progressive and significant increase over time in the loss of knee cartilage volume, the cartilage defect and subchondral bone hypersignal. The trochlear osteophyte size also progressed over time. The greatest cartilage loss at 26 weeks was found on the tibial plateaus and in the medial compartment. There was a highly significant correlation between total knee cartilage volume loss or defect and subchondral bone hypersignal, and also a good correlation between the macroscopic and the MRI findings. This study demonstrated that MRI is a useful technology to provide a non-invasive and reliable assessment of the joint structural changes during the development of OA in the ACL dog model. The combination of this OA model with MRI evaluation provides a promising tool for the evaluation of new disease-modifying osteoarthritis drugs (DMOADs).

  11. NF-κB decoy oligodeoxynucleotide mitigates wear particle-associated bone loss in the murine continuous infusion model.

    Science.gov (United States)

    Lin, Tzu-Hua; Pajarinen, Jukka; Sato, Taishi; Loi, Florence; Fan, Changchun; Córdova, Luis A; Nabeshima, Akira; Gibon, Emmanuel; Zhang, Ruth; Yao, Zhenyu; Goodman, Stuart B

    2016-09-01

    Total joint replacement is a cost-effective surgical procedure for patients with end-stage arthritis. Wear particle-induced chronic inflammation is associated with the development of periprosthetic osteolysis. Modulation of NF-κB signaling in macrophages, osteoclasts, and mesenchymal stem cells could potentially mitigate this disease. In the current study, we examined the effects of local delivery of decoy NF-κB oligo-deoxynucleotide (ODN) on wear particle-induced bone loss in a murine continuous femoral particle infusion model. Ultra-high molecular weight polyethylene particles (UHMWPE) with or without lipopolysaccharide (LPS) were infused via osmotic pumps into hollow titanium rods placed in the distal femur of mice for 4weeks. Particle-induced bone loss was evaluated by μCT, and immunohistochemical analysis of sections from the femur. Particle infusion alone resulted in reduced bone mineral density and trabecular bone volume fraction in the distal femur. The decoy ODN reversed the particle-associated bone volume fraction loss around the implant, irrespective of the presence of LPS. Particle-infusion with LPS increased bone mineral density in the distal femur compared with particle-infusion alone. NF-κB decoy ODN reversed or further increased the bone mineral density in the femur (3-6mm from the distal end) exposed to particles alone or particles plus LPS. NF-κB decoy ODN also inhibited macrophage infiltration and osteoclast number, but had no significant effects on osteoblast numbers in femurs exposed to wear particles and LPS. Our study suggests that targeting NF-κB activity via local delivery of decoy ODN has great potential to mitigate wear particle-induced osteolysis. Total joint replacement is a cost-effective surgical procedure for patients with end-stage arthritis. Chronic inflammation is crucial for the development of wear particle-associated bone loss. Modulation of NF-κB signaling in macrophages (pro-inflammatory cells), osteoclasts (bone

  12. Intra-Articular Therapeutic Delivery for Post Traumatic Osteoarthritis

    Science.gov (United States)

    2015-10-01

    cartilage Subchondral bone Osteophytes Proteoglycans 3. OVERALL PROJECT SUMMARY: In the first annual funding period (Sept 2014 – Sept 2015...Depiction of medial tibial articular cartilage and subchondral bone quantification regions (medial 1/3 and medial marginal osteophyte ). Figure 7...Conclusions A B C D E 12 Articular cartilage composition, subchondral bone, and osteophyte data showed a beneficial effect of single dHACM injection

  13. Effect of an estrogen-deficient state and alendronate therapy on bone loss resulting from experimental periapical lesions in rats.

    Science.gov (United States)

    Xiong, Haofei; Peng, Bin; Wei, Lili; Zhang, Xiaolei; Wang, Li

    2007-11-01

    The aim of the research was to evaluate the impact of an estrogen-deficient state and alendronate (ALD) therapy on bone loss resulting from experimental periapical lesions in rats. Periapical lesions were induced on ovariectomized (OVX) and sham-ovariectomized (Sham) rats. After sample preparation, histologic and radiographic examination for periapical bone loss area and an enzyme histochemical test for tartrate-resistant acid phosphatase (TRAP) were performed. The results showed that OVX significantly increased bone loss resulting from periradicular lesions. After daily subcutaneous injection of ALD, the bone loss area and the number of TRAP-positive cells (osteoclasts) were reduced. These findings suggested that alendronate may protect against increased bone loss from experimental periapical lesions in estrogen-deficient rats. Given recent recognition of adverse effects of bisphosphonates, including an increased risk for osteonecrosis, the findings from this study should not be interpreted as a new indication for ALD treatment. However, they may offer insight into understanding and predicting outcomes in female postmenopausal patients already on ALD therapy for medical indications.

  14. Mitochondria related peptide MOTS-c suppresses ovariectomy-induced bone loss via AMPK activation

    Energy Technology Data Exchange (ETDEWEB)

    Ming, Wei, E-mail: weiming@xiyi.edu.cn [State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, Fourth Military Medical University, Xi’an 710032 (China); Department of Pharmacology, Xi’an Medical University, Xi’an 710021 (China); Lu, Gan, E-mail: leonming99@163.com [Department of Gynecology of Shaanxi Provincial People’s Hospital, Xi’an, 710068 (China); Xin, Sha, E-mail: 248967979@qq.com [Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032 (China); Huanyu, Lu, E-mail: 2366927258@qq.com [Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi’an 710032 (China); Yinghao, Jiang, E-mail: jiangyh@fmmu.edu.cn [State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, Fourth Military Medical University, Xi’an 710032 (China); Xiaoying, Lei, E-mail: leixiaoy@fmmu.edu.cn [State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, Fourth Military Medical University, Xi’an 710032 (China); Chengming, Xu, E-mail: chengmingxu@yeah.net [State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, Fourth Military Medical University, Xi’an 710032 (China); Banjun, Ruan, E-mail: running@163.com [State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, Fourth Military Medical University, Xi’an 710032 (China); Li, Wang, E-mail: wanglifw@fmmu.edu.cn [State Key Laboratory of Cancer Biology, Department of Pharmacogenomics, Fourth Military Medical University, Xi’an 710032 (China); and others

    2016-08-05

    Therapeutic targeting bone loss has been the focus of the study in osteoporosis. The present study is intended to evaluate whether MOTS-c, a novel mitochondria related 16 aa peptide, can protect mice from ovariectomy-induced osteoporosis. After ovary removal, the mice were injected with MOTS-c at a dose of 5 mg/kg once a day for 12 weeks. Our results showed that MOTS-c treatment significantly alleviated bone loss, as determined by micro-CT examination. Mechanistically, we found that the receptor activator of nuclear factor-κB ligand (RANKL) induced osteoclast differentiation was remarkably inhibited by MOTS-c. Moreover, MOTS-c increased phosphorylated AMPK levels, and compound C, an AMPK inhibitor, could partially abrogate the effects of the MOTS-c on osteoclastogenesis. Thus, our findings provide evidence that MOTS-c may exert as an inhibitor of osteoporosis via AMPK dependent inhibition of osteoclastogenesis. -- Highlights: •MOTS-c decreases OVX-induced bone loss in vivo. •MOTS-c inhibits RANKL-induced osteoclast formation. •MOTS-c inhibits RANKL-induced osteoclast-specific gene expression. •MOTS-c represses osteoclast differentiation via the activation of AMPK.

  15. Mitochondria related peptide MOTS-c suppresses ovariectomy-induced bone loss via AMPK activation

    International Nuclear Information System (INIS)

    Ming, Wei; Lu, Gan; Xin, Sha; Huanyu, Lu; Yinghao, Jiang; Xiaoying, Lei; Chengming, Xu; Banjun, Ruan; Li, Wang

    2016-01-01

    Therapeutic targeting bone loss has been the focus of the study in osteoporosis. The present study is intended to evaluate whether MOTS-c, a novel mitochondria related 16 aa peptide, can protect mice from ovariectomy-induced osteoporosis. After ovary removal, the mice were injected with MOTS-c at a dose of 5 mg/kg once a day for 12 weeks. Our results showed that MOTS-c treatment significantly alleviated bone loss, as determined by micro-CT examination. Mechanistically, we found that the receptor activator of nuclear factor-κB ligand (RANKL) induced osteoclast differentiation was remarkably inhibited by MOTS-c. Moreover, MOTS-c increased phosphorylated AMPK levels, and compound C, an AMPK inhibitor, could partially abrogate the effects of the MOTS-c on osteoclastogenesis. Thus, our findings provide evidence that MOTS-c may exert as an inhibitor of osteoporosis via AMPK dependent inhibition of osteoclastogenesis. -- Highlights: •MOTS-c decreases OVX-induced bone loss in vivo. •MOTS-c inhibits RANKL-induced osteoclast formation. •MOTS-c inhibits RANKL-induced osteoclast-specific gene expression. •MOTS-c represses osteoclast differentiation via the activation of AMPK.

  16. Regulatory Effect of Catalpol on Th1/Th2 cells in Mice with Bone Loss Induced by Estrogen Deficiency.

    Science.gov (United States)

    Lai, Nannan; Zhang, Jianhai; Ma, Xingyan; Wang, Bin; Miao, Xiuming; Wang, Zhaoxia; Guo, Yuqi; Wang, Li; Yao, Chengfang; Li, Xia; Jiang, Guosheng

    2015-12-01

    Estradiol (E2 ) deficiency can cause bone loss and the skew of Th1/Th2 cells. However, the correlation between the Th1/Th2 cells and the bone loss induced by estrogen deficiency remains unclear. Our aim was to investigate the role of Th1/Th2 in bone loss induced by estrogen deficiency and elucidated the therapeutical effect of catalpol in this condition. Young, sham-operated (Sham), ovariectomized (Ovx), and naturally aged mice, treated with catalpol at different doses or control vehicle, were used in this study as indicated in each experiment. ELISA assay, dual-energy X-ray absorptiometry, and flow cytometry were used to analyze E2 , C-terminal telopeptides of type I collagen (CTx-I), bone mineral density (BMD), and Th1/Th2 subsets, respectively. The mRNA and protein expressions of specific transcription factors for Th1/Th2 cells (T-bet and GATA-3) were analyzed using real-time quantitative PCR and Western blot, respectively. Bone mineral density and E2 levels positively correlated with the proportion of Th2 subset while negatively correlated with that of Th1 subset and the ratio of Th1/Th2. Catalpol alleviated bone loss effectively by regulating Th1/Th2 polarization. Catalpol promoted the expression of Th2-specific transcription factors while inhibited that associated with Th1. Th1/Th2 skew is involved in bone loss induced by estrogen deficiency. Catalpol alleviates bone loss effectively by regulating Th1/Th2 paradigm. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Senescent T-Cells Promote Bone Loss in Rheumatoid Arthritis

    Directory of Open Access Journals (Sweden)

    Johannes Fessler

    2018-02-01

    Full Text Available ObjectiveT-cells are critical players in the pathogenesis of osteoporosis in patients with rheumatoid arthritis (RA. Premature senescence of lymphocytes including the accumulation of senescent CD4+ T-cells is a hallmark feature of RA. Whether T-cell senescence is associated with bone loss in RA patients is elusive so far.MethodsThis includes a prospective study of consecutive patients with RA (n = 107, patients with primary osteopenia/-porosis (n = 75, and healthy individuals (n = 38. Bone mineral density (BMD was determined by dual-energy X-ray absorptiometry scan. Flow cytometry, magnetic-associated cell sorting, and cell culture experiments were performed to analyze the pro-osteoclastic phenotype and the function of senescent CD4+CD28− T-cells.ResultsPatients with osteopenia/-porosis yielded a higher prevalence of senescent CD4+CD28− T-cells than individuals with normal BMD, in the RA, as well as in the non-RA cohort. Receptor activator of nuclear factor kappa-B ligand (RANKL was expressed at higher levels on CD4+CD28− T-cells as compared to CD28+ T-cells. Stimulation with interleukin-15 led to an up-regulation of RANKL expression, particularly on CD28− T-cells. CD4+CD28− T-cells induced osteoclastogenesis more efficiently than CD28+ T-cells.ConclusionOur data indicate that senescent T-cells promote osteoclastogenesis more efficiently than conventional CD28+ T-cells, which might contribute to the pathogenesis of systemic bone loss in RA and primary osteoporosis.

  18. Covalent binding of bone morphogenetic protein-2 and transforming growth factor-β3 to 3D plotted scaffolds for osteochondral tissue regeneration

    NARCIS (Netherlands)

    Di Luca, Andrea; Klein Gunnewiek, Michel; Vancso, Julius; van Blitterswijk, Clemens; Benetti, Edmondo Maria; Moroni, Lorenzo

    2017-01-01

    Engineering the osteochondral tissue presents some challenges mainly relying in its function of transition from the subchondral bone to articular cartilage and the gradual variation in several biological, mechanical, and structural features. A possible solution for osteochondral regeneration might

  19. Hwangryun-Haedok-Tang Fermented with Lactobacillus casei Suppresses Ovariectomy-Induced Bone Loss

    Directory of Open Access Journals (Sweden)

    Ki-Shuk Shim

    2012-01-01

    Full Text Available Hwangryun-haedok-tang (HRT is the common recipe in traditional Asian medicine, and microbial fermentation is used for the conventional methods for processing traditional medicine. We investigated the inhibitory effect of the n-butanol fraction of HRT (HRT-BU and fHRT (fHRT-BU on the RANKL-induced osteoclastogenesis in bone-marrow-derived macrophages. mRNA expression of osteoclastogenesis-related genes were evaluated by real-time QPCR. The activation of signaling pathways was determined by western blot analysis. The marker compounds of HRT-BU and fHRT-BU were analyzed by HPLC. The inhibitory effect of HRT or fHRT on ovariectomy-induced bone loss were evaluated using OVX rats with orally administered HRT, fHRT (300, 1000 mg/kg, or its vehicle for 12 weeks. fHRT-BU significantly inhibited RANKL-induced osteoclastogenesis, and phosphorylation of p38, IKKα/β, and NF-κBp65 compared to HRT-BU. In addition, fHRT-BU also significantly inhibited the mRNA expression of Nfκb2, TNF-α, NFATc1, TRAP, ATPv0d2, and cathepsin K. Furthermore, administration of fHRT had a greater effect on the increase of BMD, and greater improved bone microstructure of the femora than that of HRT in ovariectomy rats. This study demonstrated that bacterial fermentation enhances the inhibitory effect of HRT on osteoclastogenesis and bone loss. These results suggest that fermented HRT might have the beneficial effects on bone disease by inhibiting osteoclastogenesis.

  20. Staged Custom, Intramedullary Antibiotic Spacers for Severe Segmental Bone Loss in Infected Total Hip Arthroplasty

    Directory of Open Access Journals (Sweden)

    Atul F. Kamath

    2011-01-01

    Full Text Available Introduction. Total hip arthroplasty (THA infections with severe bone loss pose significant reconstructive challenges. We present our experience with two-stage hip reimplantation using an intramedullary, antibiotic-impregnated nail. Methods. Three patients with infected THA with severe proximal femoral bone loss (Mallory type IIIB or greater were treated using a custom antibiotic spacer. Clinical outcomes and any complications were recorded. Average followup was 49 months from final reimplantation. Results. Mean age at spacer placement (stage 1 was 53 years. The mean Harris Hip Score at final followup was 80. Two patients had asymptomatic heterotopic ossification, and one patient had a 2 cm leg-length discrepancy. Conclusions. A custom intramedullary nail antibiotic spacer is a reliable option in the staged management of the infected THA with severe proximal femoral bone loss. Benefits of this technique include limb salvage with maintenance of leg length, soft tissue tension, and functional status.

  1. Feeding blueberry diets in early life prevent senescence of osteoblasts and bone loss in ovariectomized adult female rats.

    Directory of Open Access Journals (Sweden)

    Jian Zhang

    Full Text Available Appropriate nutrition during early development is essential for maximal bone mass accretion; however, linkage between early nutrition, childhood bone mass, peak bone mass in adulthood, and prevention of bone loss later in life has not been studied.In this report, we show that feeding a high quality diet supplemented with blueberries (BB to pre-pubertal rats throughout development or only between postnatal day 20 (PND20 and PND34 prevented ovariectomy (OVX-induced bone loss in adult life. This protective effect of BB is due to suppression of osteoblastic cell senescence associated with acute loss of myosin expression after OVX. Early exposure of pre-osteoblasts to serum from BB-fed rats was found to consistently increase myosin expression. This led to maintenance osteoblastic cell development and differentiation and delay of cellular entrance into senescence through regulation of the Runx2 gene. High bone turnover after OVX results in insufficient collagenous matrix support for new osteoblasts and their precursors to express myosin and other cytoskeletal elements required for osteoblast activity and differentiation.These results indicate: 1 a significant prevention of OVX-induced bone loss from adult rats can occur with only 14 days consumption of a BB-containing diet immediately prior to puberty; and 2 the molecular mechanisms underlying these effects involves increased myosin production which stimulates osteoblast differentiation and reduces mesenchymal stromal cell senescence.

  2. Inactivity-induced bone loss is not exacerbated by moderate energy restriction

    Science.gov (United States)

    Heer, M.; Boese, A.; Baecker, N.; Zittermann, A.; Smith, S. M.

    Severe energy restriction leads to decreased bone mineral density (BMD) in postmenopausal women, adolescent females, and in male athletes. Astronauts in space also lose bone mass, and most of them have reduced energy intake (about 25 % below requirements). The aim of our study was to examine if bone loss in space is partly induced by moderate energy restriction. Physiological changes of space flight were simulated by 6 head-down tilt bed rest (HDBR). Nine healthy male subjects (age: 23.6 ± 3.0 years; BMI: 23.0 ± 2.9 kg/m2, mean ± SD) finished four study phases, two of normocaloric nutrition, either ambulatory or HDBR, and two of hypocaloric nutrition, either ambulatory or HDBR. Urine samples (24 h) were analyzed for calcium excretion (UCaV) and bone resorption markers (C-Telopeptide, CTX, and N-Telopeptide, NTX). Serum calcium, parathyroid hormone (PTH) and bone formation markers (Procollagen-I-C-terminal-Peptide, PICP, Procollagen-I-N-terminal-Peptide, PINP, and bone-specific alkaline phosphatase, bAP) were analyzed. No significant changes in serum calcium or PTH were noted either during HDBR or during hypocaloric nutrition. PICP, but not PINP or bAP, decreased significantly during HDBR (normocaloric: prestriction did not exaggerate bone resorption during HDBR.

  3. Comparison of peri-implant bone loss between conventional drilling with irrigation versus low-speed drilling without irrigation.

    Science.gov (United States)

    Pellicer-Chover, H; Peñarrocha-Oltra, D; Aloy-Prosper, A; Sanchis-Gonzalez, J-C; Peñarrocha-Diago, M-A; Peñarrocha-Diago, M

    2017-11-01

    To compare the technique of high speed drilling with irrigation and low speed drilling without irrigation in order to evaluate the success rate and peri-implant bone loss at 12 months of follow-up. A randomized, controlled, parallel-group clinical trial was carried out in patients requiring dental implants to rehabilitate their unitary edentulism. Patients were recruited from the Oral Surgery Unit of the University of Valencia (Spain) between September 2014 and August 2015. Patients who met the inclusion criteria were randomized to two groups: group A (high-speed drilling with irrigation) and group B (low-speed drilling without irrigation). The success rate and peri-implant bone loss were recorded at 12 months of follow-up. Twenty-five patients (9 men and 16 women) with 30 implants were enrolled in the study: 15 implants in group A and 15 implants in group B. The mean bone loss of the implants in group A and group B was 0.83 ± 0.73 mm and 0.62 ± 0.70 mm, respectively (p> 0.05). In the maxilla, the bone loss was 1.04 ± 0.63 mm in group A and 0.71 ± 0.36 mm in group B (p> 0.05), while bone loss in the mandible was 0.59 ± 0.80 mm in group A and 0.69 ± 0.77 mm in group B (p> 0.05). The implant success rate at 12 months was 93.3% in group A and 100% in group B. Within the limitations of the study, the low-speed drilling technique presented peri-implant bone loss outcomes similar to those of the conventional drilling technique at 12 months of follow-up.

  4. Bone Loss in the Acute Stage Following Burn Injury - Original Investigation

    Directory of Open Access Journals (Sweden)

    Berrin Leblebici

    2007-06-01

    Full Text Available Aim: The purpose of this study was to determine whether a bone loss occurs during acute period following burn injury or not, and to investigate the effects of various parameters on it. Materials and Methods: This study was conducted on 19 patients, ages between 20 and 50, who had a burn injury with more than %20 of Total Body Surface Area (TBSA. We recorded the patients’ burn cause, localization, percantage, ambulation and functional status. At the end of the first month, we measured bone mıneral densıty of total L1-L4 vertebrae, left distal forearm, left total femur, in all patients. A Z score less than –1 was accepted to be the indicator of bone loss. Results: The mean age of the patients (14 male and 5 female was 33.09±11.61. We found a Z score less then -1 in 68.4% of left distal forearm, 21.1% of left total femur and 36.8% of total L1-L4 vertabrae measurements. There were no significant correlations between TBSA, Functional Ambulatıon Scale and Functional Independence Measure, and Z scores. Conclusion: There is a reduction in Bone Mineral Density in patıents wıth moderate/severe burn ınjuries in the acute period which is not correlated wıth neither TBSA nor functional status. (From the World of Osteoporosis 2007;13:33-6

  5. P2X7 receptor regulates osteoclast function and bone loss in a mouse model of osteoporosis

    DEFF Research Database (Denmark)

    Wang, Ning; Agrawal, Ankita; Jørgensen, Niklas Rye

    2018-01-01

    Post-menopausal osteoporosis is a condition that affects millions worldwide and places a huge socio-economic burden on society. Previous research has shown an association of loss of function SNPs in the gene for the purinergic receptor P2X7R with low bone mineral density, increased rates of bone...... loss and vertebral fractures in post-menopausal women. In this study we use a mouse model of oestrogen deficiency-induced bone loss and the BALB/cJ P2X7R-/- to show that absence of the P2X7R resulted in increased bone loss. Osteoclast precursors were isolated from both BALB/cJ P2X7R-/- and BALB/cJ P2X7......R+/+ mice and then cultured in vitro to form mature resorbing osteoclasts. The BALB/cJ P2X7R-/- derived precursors generated slightly more osteoclasts but with a significant reduction in the amount of resorption per osteoclast. Furthermore, when using modified culture conditions osteoclast activity...

  6. Deep erosions of the palmar aspect of the navicular bone diagnosed by standing magnetic resonance imaging.

    Science.gov (United States)

    Sherlock, C; Mair, T; Blunden, T

    2008-11-01

    Erosion of the palmar (flexor) aspect of the navicular bone is difficult to diagnose with conventional imaging techniques. To review the clinical, magnetic resonance (MR) and pathological features of deep erosions of the palmar aspect of the navicular bone. Cases of deep erosions of the palmar aspect of the navicular bone, diagnosed by standing low field MR imaging, were selected. Clinical details, results of diagnostic procedures, MR features and pathological findings were reviewed. Deep erosions of the palmar aspect of the navicular bone were diagnosed in 16 mature horses, 6 of which were bilaterally lame. Sudden onset of lameness was recorded in 63%. Radiography prior to MR imaging showed equivocal changes in 7 horses. The MR features consisted of focal areas of intermediate or high signal intensity on T1-, T2*- and T2-weighted images and STIR images affecting the dorsal aspect of the deep digital flexor tendon, the fibrocartilage of the palmar aspect, subchondral compact bone and medulla of the navicular bone. On follow-up, 7/16 horses (44%) had been subjected to euthanasia and only one was being worked at its previous level. Erosions of the palmar aspect of the navicular bone were confirmed post mortem in 2 horses. Histologically, the lesions were characterised by localised degeneration of fibrocartilage with underlying focal osteonecrosis and fibroplasia. The adjacent deep digital flexor tendon showed fibril formation and fibrocartilaginous metaplasia. Deep erosions of the palmar aspect of the navicular bone are more easily diagnosed by standing low field MR imaging than by conventional radiography. The lesions involve degeneration of the palmar fibrocartilage with underlying osteonecrosis and fibroplasia affecting the subchondral compact bone and medulla, and carry a poor prognosis for return to performance. Diagnosis of shallow erosive lesions of the palmar fibrocartilage may allow therapeutic intervention earlier in the disease process, thereby preventing

  7. Coincidence of calcified carotid atheromatous plaque, osteoporosis, and periodontal bone loss in dental panoramic radiographs

    Energy Technology Data Exchange (ETDEWEB)

    Ramesh, Aruna; Ganguly, Rumpa [Dept. of Diagnosis and Health Promotion, Division of Oral and Maxillofacial Radiology, Tufts University School of Dental Medicine, Boston (United States); Soroushian, Sheila [Dept. of Orthodontics, Howard University College of Dentistry, Washington, DC(United States)

    2013-12-15

    This study was performed to assess the correlation of calcified carotid atheromatous plaque (CCAP), the mandibular cortical index, and periodontal bone loss in panoramic radiographs. One hundred eighty-five panoramic radiographs with CCAP and 234 without this finding were evaluated by 3 observers for the presence of osseous changes related to osteoporosis and periodontal bone loss. Chi-squared and Mann-Whitney U tests were used to compare the two groups for an association of CCAP with the mandibular cortical index and periodontal bone loss, respectively. There was a statistically significant coincidence of CCAP and osseous changes related to osteopenia/osteoporosis, with a p-value <0.001. There was no statistically significant coincidence of CCAP and periodontal bone loss. When comparing the 2 groups, 'With CCAP' and 'Without CCAP', there was a statistically significant association with the mean body mass index (BMI), number of remaining teeth, positive history of diabetes mellitus, and vascular accidents. There was no statistically significant association with gender or a history of smoking. This study identified a possible concurrence of CCAP and mandibular cortical changes secondary to osteopenia/osteoporosis in panoramic radiographs. This could demonstrate the important role of dental professionals in screening for these systemic conditions, leading to timely and appropriate referrals resulting in early interventions and thus improving overall health.

  8. Disrupted bone remodeling leads to cochlear overgrowth and hearing loss in a mouse model of fibrous dysplasia.

    Directory of Open Access Journals (Sweden)

    Omar Akil

    Full Text Available Normal hearing requires exquisite cooperation between bony and sensorineural structures within the cochlea. For example, the inner ear secretes proteins such as osteoprotegrin (OPG that can prevent cochlear bone remodeling. Accordingly, diseases that affect bone regulation can also result in hearing loss. Patients with fibrous dysplasia develop trabecular bone overgrowth resulting in hearing loss if the lesions affect the temporal bones. Unfortunately, the mechanisms responsible for this hearing loss, which could be sensorineural and/or conductive, remain unclear. In this study, we used a unique transgenic mouse model of increased Gs G-protein coupled receptor (GPCR signaling induced by expression of an engineered receptor, Rs1, in osteoblastic cells. These ColI(2.3+/Rs1+ mice showed dramatic bone lesions that histologically and radiologically resembled fibrous dysplasia. We found that ColI(2.3+/Rs1+ mice showed progressive and severe conductive hearing loss. Ossicular chain impingement increased with the size and number of dysplastic lesions. While sensorineural structures were unaffected, ColI(2.3+/Rs1+ cochleae had abnormally high osteoclast activity, together with elevated tartrate resistant acid phosphatase (TRAP activity and receptor activator of nuclear factor kappa-B ligand (Rankl mRNA expression. ColI(2.3+/Rs1+ cochleae also showed decreased expression of Sclerostin (Sost, an antagonist of the Wnt signaling pathway that normally increases bone formation. The osteocyte canalicular networks of ColI(2.3+/Rs1+ cochleae were disrupted and showed abnormal osteocyte morphology. The osteocytes in the ColI(2.3+/Rs1+ cochleae showed increased expression of matrix metalloproteinase 13 (MMP-13 and TRAP, both of which can support osteocyte-mediated peri-lacunar remodeling. Thus, while the ossicular chain impingement is sufficient to account for the progressive hearing loss in fibrous dysplasia, the deregulation of bone remodeling extends to the

  9. Retrospective analysis of survival rates and marginal bone loss on short implants in the mandible.

    Science.gov (United States)

    Draenert, Florian G; Sagheb, Keyvan; Baumgardt, Katharina; Kämmerer, Peer W

    2012-09-01

    Short implants have become an interesting alternative to bone augmentation in dental implantology. Design of shorter implants and longer surveillance times are a current research issue. The goal of this study was to show the survival rates of short implants below 9 mm in the partly edentulous mandibular premolar and molar regions with fixed prosthetics. Marginal vertical and 2D bone loss was evaluated additionally. Different implant designs are orientationally evaluated. A total of 247 dental implants with fixed prosthetics (crowns and bridges) in the premolar and molar region of the mandible were evaluated; 47 implants were 9 mm or shorter. Patient data were evaluated to acquire implant survival rates, implant diameter, gender and age. Panoramic X-rays were analysed for marginal bone loss. Average surveillance time was 1327 days. Cumulative survival rate (CSR) of short implants was 98% (1 implants lost) compared to 94% in the longer implants group without significance. Thirty-five of the short implants were Astratech (0 losses) and 12 were Camlog Screw Line Promote Plus (1 loss). Early vertical and two-dimensional marginal bone loss was not significantly different in short and regular length implant group with an average of 0.6 mm and 0.7 mm(2) in short implants over the observation period. Within the limitations of this study, we conclude that short implants with a length of 9 mm or less have equal survival rates compared with longer implants over the observation period of 1-3 years. © 2011 John Wiley & Sons A/S.

  10. Novel hybrid drilling protocol: evaluation for the implant healing--thermal changes, crestal bone loss, and bone-to-implant contact.

    Science.gov (United States)

    Calvo-Guirado, José Luis; Delgado-Peña, Jorge; Maté-Sánchez, Jose E; Mareque Bueno, Javier; Delgado-Ruiz, Rafael Arcesio; Romanos, Georgios E

    2015-07-01

    To evaluate a new hybrid drilling protocol, by the analysis of thermal changes in vitro, and their effects in the crestal bone loss and bone-to-implant contact in vivo. Temperature changes during simulated osteotomies with a hybrid drilling technique (biologic plus simplified) (test) versus an incremental drilling technique (control) were investigated. One hundred and twenty random osteotomies were performed (60 by group) in pig ribs up to 3.75-mm-diameter drill to a depth of 10 mm. Thermal changes and time were recorded by paired thermocouples. In a parallel experiment, bilateral mandibular premolars P2, P3, P4, and first molar M1 were extracted from six dogs. After 2-month healing, implant sites were randomly prepared using either of the drilling techniques. Forty eight implants of 3.75 mm diameter and 10 mm length were inserted. The dogs were euthanized at 30 and 90 days, and crestal bone loss (CBL) and bone-to-implant contact (BIC) were evaluated. The control group showed maximum temperatures of 35.3 °C ± 1.8 °C, ΔT of 10.4 °C, and a mean time of 100 s/procedure; meanwhile, the test group showed maximum temperatures of 36.7 °C ± 1.2 °C, ΔT of 8.1 °C, and a mean time of 240 s/procedure. After 30 days, CBL values for both groups (test: 1.168 ± 0.194 mm; control: 1.181 ± 0.113 mm) and BIC values (test: 43 ± 2.8%; control: 45 ± 1.3%) were similar, without significant differences (P > 0.05). After 90 days, CBL (test: 1.173 ± 0.187 mm; control: 1.205 ± 0.122 mm) and BIC (test: 64 ± 3.3%; control: 64 ± 2.4%) values were similar, without significant differences (P > 0.05). The BIC values were increased at 90 days in both groups compared with the 30-day period (P drilling procedure in vitro. Crestal bone loss and bone-to-implant contact in the hybrid drilling protocol are comparable with the conventional drilling protocol and do not affect the osseointegration process in vivo. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Radiographic bone loss in a Scottish non-smoking Type 1 Diabetes mellitus population; a Bitewing Radiographic Study.

    Science.gov (United States)

    Plessas, Anastasios; Robertson, Douglas P; Hodge, Penny J

    2018-05-15

    The dental complications of uncontrolled diabetes include reduced salivary flow rate, candidiasis and periodontal manifestations. A recent meta-analysis concluded that diabetes patients have a significantly higher severity, but not extent, of destructive periodontal disease than non-diabetes people. The authors reported that most type-1 diabetes studies using dental radiographic data have not controlled for confounding factors such as smoking. The aim of this cross-sectional study was to compare radiographic alveolar bone loss between type 1 diabetes (T1DM) and non-diabetes (NDM) participants in a Scottish non-smoking population. Digital bitewing radiographs for 174 Scottish adult never or ex-smoker (> 5 years) participants (108 T1DM, 66 NDS), recruited from outpatient clinics throughout Greater Glasgow and Clyde, were included in the analysis. A single blinded, trained and calibrated examiner recorded the radiographic bone loss seen on bitewing radiographs using the digital screen caliper. The bone loss was measured as the distance between the cemento-enamel junction (CEJ) and the deepest radiographic alveolar bone margin interproximally of each tooth. T1DM participants had more radiographic alveolar bone loss throughout the all teeth measured (median:1.27 mm vs 1.06 mm, P diabetes subjects. Patients suffering from type 1 diabetes are at higher risk of periodontitis even when controlling for multiple possible confounding factors and this difference can be detected on routine dental radiographs at an early stage. These data confirm radiographically the previously reported association between T1DM and periodontal bone loss. This article is protected by copyright. All rights reserved. © 2018 American Academy of Periodontology.

  12. Probiotic Lactobacillus rhamnosus GG prevents alveolar bone loss in a mouse model of experimental periodontitis.

    Science.gov (United States)

    Gatej, Simona M; Marino, Victor; Bright, Richard; Fitzsimmons, Tracy R; Gully, Neville; Zilm, Peter; Gibson, Rachel J; Edwards, Suzanne; Bartold, Peter M

    2018-02-01

    This study investigated the role of Lactobacillus rhamnosus GG (LGG) on bone loss and local and systemic inflammation in an in vivo mouse model of experimental periodontitis (PD). Experimental PD was induced in mice by oral inoculation with Porphyromonas gingivalis and Fusobacterium nucleatum over a period of 44 days. The probiotic LGG was administered via oral inoculation or oral gavage prior to, and during disease induction. The antimicrobial activity of LGG on the inoculum was also tested. Alveolar bone levels and gingival tissue changes were assessed using in vivo microcomputed tomography and histological analysis. Serum levels of mouse homologues for IL-8 were measured using multiplex assays. Pre-treatment with probiotics either via oral gavage or via oral inoculation significantly reduced bone loss (p loss in a mouse model of induced PD irrespective of the mode of administration. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. What causes bone loss?

    Science.gov (United States)

    ... Paula FJA, Black DM, Rosen CJ. Osteoporosis and bone biology. In: Melmed S, Polonsky KS, Larsen PR, Kronenberg HM, eds. Williams Textbook of Endocrinology . 13th ed. Philadelphia, PA: ... HM. Bone development and remodeling. In: Jameson JL, De Groot ...

  14. Smart Sensing System for Early Detection of Bone Loss: Current Status and Future Possibilities

    Directory of Open Access Journals (Sweden)

    Nasrin Afsarimanesh

    2018-02-01

    Full Text Available Bone loss and osteoporosis is a serious health problem worldwide. The impact of osteoporosis is far greater than many other serious health problems, such as breast and prostate cancers. Statistically, one in three women and one in five men over 50 years of age will experience osteoporotic fractures in their life. In this paper, the design and development of a portable IoT-based sensing system for early detection of bone loss have been presented. The CTx-I biomarker was measured in serum samples as a marker of bone resorption. A planar interdigital sensor was used to evaluate the changes in impedance by any variation in the level of CTx-I. Artificial antibodies were used to introduce selectivity to the sensor for CTx-I molecule. Artificial antibodies for CTx-I molecules were created using molecular imprinted polymer (MIP technique in order to increase the stability of the system and reduce the production cost and complexity of the assay procedure. Real serum samples collected from sheep blood were tested and the result validation was done by using an ELISA kit. The PoC device was able to detect CTx-I concentration as low as 0.09 ng/mL. It exhibited an excellent linear behavior in the range of 0.1–2.5 ng/mL, which covers the normal reference ranges required for bone loss detection. Future possibilities to develop a smart toilet for simultaneous measurement of different bone turnover biomarkers was also discussed.

  15. A novel role for dopamine signaling in the pathogenesis of bone loss from the atypical antipsychotic drug risperidone in female mice.

    Science.gov (United States)

    Motyl, Katherine J; Beauchemin, Megan; Barlow, Deborah; Le, Phuong T; Nagano, Kenichi; Treyball, Annika; Contractor, Anisha; Baron, Roland; Rosen, Clifford J; Houseknecht, Karen L

    2017-10-01

    Atypical antipsychotic (AA) drugs, including risperidone (RIS), are used to treat schizophrenia, bipolar disorder, and autism, and are prescribed off-label for other mental health issues. AA drugs are associated with severe metabolic side effects of obesity and type 2 diabetes. Cross-sectional and longitudinal data also show that risperidone causes bone loss and increases fracture risk in both men and women. There are several potential mechanisms of bone loss from RIS. One is hypogonadism due to hyperprolactinemia from dopamine receptor antagonism. However, many patients have normal prolactin levels; moreover we demonstrated that bone loss from RIS in mice can be blocked by inhibition of β-adrenergic receptor activation with propranolol, suggesting the sympathetic nervous system (SNS) plays a pathological role. Further, when, we treated ovariectomized (OVX) and sham operated mice daily for 8weeks with RIS or vehicle we demonstrated that RIS causes significant trabecular bone loss in both sham operated and OVX mice. RIS directly suppressed osteoblast number in both sham and OVX mice, but increased osteoclast number and surface in OVX mice alone, potentially accounting for the augmented bone loss. Thus, hypogonadism alone cannot explain RIS induced bone loss. In the current study, we show that dopamine and RIS are present in the bone marrow compartment and that RIS can exert its effects directly on bone cells via dopamine receptors. Our findings of both direct and indirect effects of AA drugs on bone are relevant for current and future clinical and translational studies investigating the mechanism of skeletal changes from AA drugs. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Retinaldehyde dehydrogenase 1 deficiency inhibits PPARγ-mediated bone loss and marrow adiposity.

    Science.gov (United States)

    Nallamshetty, Shriram; Le, Phuong T; Wang, Hong; Issacsohn, Maya J; Reeder, David J; Rhee, Eun-Jung; Kiefer, Florian W; Brown, Jonathan D; Rosen, Clifford J; Plutzky, Jorge

    2014-10-01

    PPARγ, a ligand-activated nuclear receptor, regulates fundamental aspects of bone homeostasis and skeletal remodeling. PPARγ-activating anti-diabetic thiazolidinediones in clinical use promote marrow adiposity, bone loss, and skeletal fractures. As such, delineating novel regulatory pathways that modulate the action of PPARγ, and its obligate heterodimeric partner RXR, may have important implications for our understanding and treatment of disorders of low bone mineral density. We present data here establishing retinaldehyde dehydrogenase 1 (Aldh1a1) and its substrate retinaldehyde (Rald) as novel determinants of PPARγ-RXR actions in the skeleton. When compared to wild type (WT) controls, retinaldehyde dehydrogenase-deficient (Aldh1a1(-/-)) mice were protected against bone loss and marrow adiposity induced by either the thiazolidinedione rosiglitazone or a high fat diet, both of which potently activate the PPARγ-RXR complex. Consistent with these results, Rald, which accumulates in vivo in Aldh1a1(-/-) mice, protects against rosiglitazone-mediated inhibition of osteoblastogenesis in vitro. In addition, Rald potently inhibits in vitro adipogenesis and osteoclastogenesis in WT mesenchymal stem cells (MSCs) and hematopoietic stem cells (HSCs) respectively. Primary Aldh1a1(-/-) HSCs also demonstrate impaired osteoclastogenesis in vitro compared to WT controls. Collectively, these findings identify Rald and retinoid metabolism through Aldh1a1 as important novel modulators of PPARγ-RXR transactivation in the marrow niche. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Sheep model for osteoporosis: The effects of peripheral hormone therapy on centrally induced systemic bone loss in an osteoporotic sheep model.

    Science.gov (United States)

    Oheim, Ralf; Simon, Maciej J K; Steiner, Malte; Vettorazzi, Eik; Barvencik, Florian; Ignatius, Anita; Amling, Michael; Clarke, Iain J; Pogoda, Pia; Beil, F Timo

    2017-04-01

    Hypothalamic-pituitary disconnection (HPD) leads to low bone turnover followed by bone loss and reduced biomechanical properties in sheep. To investigate the role of peripheral hormones in this centrally induced systemic bone loss model, we planned a hormone replacement experiment. Therefore, estrogen (OHE), thyroxin (OHT) or a combination of both (OHTE) was substituted in ovariectomized HPD sheep, as both hormones are decreased in HPD sheep and are known to have a significant but yet not fully understood impact on bone metabolism. Bone turnover and structural parameters were analyzed in comparison to different control groups - untreated sheep (C), ovariectomized (O) and ovariectomized+HPD sheep (OH). We performed histomorphometric and HR-pQCT analyses nine months after the HPD procedure, as well as biomechanical testing of all ewes studied. In HPD sheep (OH) the low bone turnover led to a significant bone loss. Treatment with thyroxin alone (OHT) mainly increased bone resorption, leading to a further reduction in bone volume. In contrast, the treatment with estrogen alone (OHE) and the combined treatment with estrogen and thyroxin (OHTE) prevented HPD-induced bone loss completely. In conclusion, peripheral hormone substitution was able to prevent HPD-induced low-turnover osteoporosis in sheep. But only the treatment with estrogen alone or in combination with thyroxin was able to completely preserve bone mass and structure. These findings demonstrate the importance of peripheral hormones for a balanced bone remodeling and a physiological bone turnover. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Evaluation of the efficacy of zoledronic acid and amifostine on radiation induced bone loss in mice

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Wook; Lee, Sueum; Kang, Sohi; Moon, Cahng Jong; Kim, Jong Choon; Kim, Sung Ho [College of Veterinary Medicine, Chonnam National University, Gwangju (Korea, Republic of); Jung, Uhee; Jo, Sung Kee [Advanced Radiation Technology Institute, Jeungeup (Korea, Republic of); Jang, Jong Sik [College of Ecology and Environmental Science, Kyungpook National University, Sangju (Korea, Republic of)

    2016-09-15

    This study investigated the effects of zoledronic acid (ZA) on radiation-induced bone loss in C3H/HeN mice. C3H/HeN mice were divided into sham control and three irradiated groups (3 Gy, gamma ray). The irradiated mice were treated for 12 weeks with vehicle, amifostine (intraperitoneal injection), or ZA (subcutaneous injection). Grip strength, uterus weight, and serum alkaline phosphatase (ALP), and tartrate-resistant acid phosphatase (TRAP) levels were measured. Tibiae were analyzed using micro-computed tomography. Treatment of ZA (100 μg·kg{sup -1}·week{sup -1}) significantly preserved trabecular bone volume, trabecular thickness, trabecular number, trabecular separation, bone mineral density of proximal tibia metaphysic, and cortical bone volume, but did not alter the uterus weight of the mice. The administration of ZA for 12 weeks lowered serum ALP and TRAP levels in irradiated mice, suggesting that ZA can reduce the bone turnover rate in mice. No differences were apparent between the amifostine-treated group and the irradiation control group. The results indicate that ZA can prevent radiation-induced bone loss in mice.

  19. Phyto-oestrogen excretion and rate of bone loss in postmenopausal women

    NARCIS (Netherlands)

    Kardinaal, A.F.M.; Morton, M.S.; Brüggemann-Rotgans, I.E.M.; Beresteijn, E.C.H. van

    1998-01-01

    Objective: The hypothesis was tested that the rate of postmenopausal bone loss is inversely associated with long-term urinary excretion of phyto-oestrogens, as a marker of habitual dietary intake. Design: Secondary analysis of a 10-year follow-up study (1979-1989) among postmenopausal women in the

  20. Absence of ERRalpha in female mice confers resistance to bone loss induced by age or estrogen-deficiency.

    Directory of Open Access Journals (Sweden)

    Catherine Teyssier

    Full Text Available BACKGROUND: ERRalpha is an orphan member of the nuclear hormone receptor superfamily, which acts as a transcription factor and is involved in various metabolic processes. ERRalpha is also highly expressed in ossification zones during mouse development as well as in human bones and cell lines. Previous data have shown that this receptor up-modulates the expression of osteopontin, which acts as an inhibitor of bone mineralization and whose absence results in resistance to ovariectomy-induced bone loss. Altogether this suggests that ERRalpha may negatively regulate bone mass and could impact on bone fragility that occurs in the absence of estrogens. METHODS/PRINCIPAL FINDINGS: In this report, we have determined the in vivo effect of ERRalpha on bone, using knock-out mice. Relative to wild type animals, female ERRalphaKO bones do not age and are resistant to bone loss induced by estrogen-withdrawal. Strikingly male ERRalphaKO mice are indistinguishable from their wild type counterparts, both at the unchallenged or gonadectomized state. Using primary cell cultures originating from ERRalphaKO bone marrow, we also show that ERRalpha acts as an inhibitor of osteoblast differentiation. CONCLUSION/SIGNIFICANCE: Down-regulating ERRalpha could thus be beneficial against osteoporosis.

  1. Does the Laser-Microtextured Short Implant Collar Design Reduce Marginal Bone Loss in Comparison with a Machined Collar?

    Directory of Open Access Journals (Sweden)

    B. Alper Gultekin

    2016-01-01

    Full Text Available Purpose. To compare marginal bone loss between subgingivally placed short-collar implants with machined collars and those with machined and laser-microtextured collars. Materials and Methods. The investigators used a retrospective study design and included patients who needed missing posterior teeth replaced with implants. Short-collar implants with identical geometries were divided into two groups: an M group, machined collar; and an L group, machined and laser-microtextured collar. Implants were evaluated according to marginal bone loss, implant success, and probing depth (PD at 3 years of follow-up. Results. Sixty-two patients received 103 implants (56 in the M group and 47 in the L group. The cumulative survival rate was 100%. All implants showed clinically acceptable marginal bone loss, although bone resorption was lower in the L group (0.49 mm than in the M group (1.38 mm at 3 years (p<0.01. A significantly shallower PD was found for the implants in the L group during follow-up (p<0.01. Conclusions. Our results suggest predictable outcomes with regard to bone loss for both groups; however, bone resorption was less in the L group than in the M group before and after loading. The laser-microtextured collar implant may provide a shallower PD than the machined collar implant.

  2. Vascularized fibular graft in infected tibial bone loss

    Directory of Open Access Journals (Sweden)

    C Cheriyan Kovoor

    2011-01-01

    Full Text Available Background : The treatment options of bone loss with infections include bone transport with external fixators, vascularized bone grafts, non-vascularized autogenous grafts and vascularized allografts. The research hypothesis was that the graft length and intact ipsilateral fibula influenced hypertrophy and stress fracture. We retrospectively studied the graft hypertrophy in 15 patients, in whom vascularized fibular graft was done for post-traumatic tibial defects with infection. Materials and Methods : 15 male patients with mean age 33.7 years (range 18 - 56 years of post traumatic tibial bone loss were analysed. The mean bony defect was 14.5 cm (range 6.5 - 20 cm. The mean length of the graft was 16.7 cm (range 11.5 - 21 cm. The osteoseptocutaneous flap (bone flap with attached overlying skin flap from the contralateral side was used in all patients except one. The graft was fixed to the recipient bone at both ends by one or two AO cortical screws, supplemented by a monolateral external fixator. A standard postoperative protocol was followed in all patients. The hypertrophy percentage of the vascularized fibular graft was calculated by a modification of the formula described by El-Gammal. The followup period averaged 46.5 months (range 24 - 164 months. The Pearson correlation coefficient (r was worked out, to find the relationship between graft length and hypertrophy. The t-test was performed to find out if there was any significant difference in the graft length of those who had a stress fracture and those who did not and to find out whether there was any significant difference in hypertrophy with and without ipsilateral fibula union. The Chi square test was performed to identify whether there was any association between the stress fracture and the fibula union. Given the small sample size we have not used any statistical analysis to determine the relation between the percentage of the graft hypertrophy and stress fracture. Results : Graft

  3. Comparison of Marginal Bone Loss Between Implants with Internal and External Connections: A Systematic Review.

    Science.gov (United States)

    Palacios-Garzón, Natalia; Mauri-Obradors, Elisabeth; Roselló-LLabrés, Xavier; Estrugo-Devesa, Albert; Jané-Salas, Enric; López-López, José

    The objective of this systematic review was to compare the loss of marginal bone between implants with internal and external connections by analyzing results reported in studies published after 2010. A literature search in MEDLINE with the keywords "dental implant connections, external internal implant connection, bone loss implant designs, internal and external connection implant studies in humans" was conducted. Clinical trials on human beings, comparing both connections and published in English, from 2010 to 2016 were selected. Their methodologic quality was assessed using the Jadad scale. From the initial search, 415 articles were obtained; 32 were chosen as potentially relevant based on their titles and abstracts. Among them, only 10 finally met the inclusion criteria. A total of 1,523 patients with 3,965 implants were analyzed. Six out of 10 studies observed that internal connections showed significantly less bone loss compared with external connections. The remaining four articles did not find statistically significant differences between the two connections. According to this systematic review and considering its limitation due to the degree of heterogeneity between the included studies, both internal and external connections present high survival rates. To assess whether marginal bone loss differs significantly between the two connections, more homogenous clinical studies are needed with identical implant characteristics, larger samples, and longer follow-up periods. Studies included in this review and characterized by long-term follow-ups showed that the external connection is a reliable connection on a long-term basis.

  4. Increased periodontal bone loss in temporarily B lymphocyte-deficient rats

    DEFF Research Database (Denmark)

    Klausen, B; Hougen, H P; Fiehn, N E

    1989-01-01

    In order to study the role of T lymphocytes and B lymphocytes in the development of marginal periodontitis, experiments were performed on specific-pathogen-free (SPF) rats with various immunologic profiles. The study comprised nude (congenitally T lymphocyte-deficient), thymus-grafted nude (T-lym......-lymphocyte deficiency did not interfere with the development of periodontal disease in this model, whereas a temporary and moderate reduction in B-lymphocyte numbers seemed to predispose for aggravation of periodontal bone loss.......In order to study the role of T lymphocytes and B lymphocytes in the development of marginal periodontitis, experiments were performed on specific-pathogen-free (SPF) rats with various immunologic profiles. The study comprised nude (congenitally T lymphocyte-deficient), thymus-grafted nude (T...... had significantly less periodontal bone support than controls. Anti-mu treated inoculated rats had significantly less periodontal bone support than nude and normal rats, whereas no difference was found between normal, nude, and thymus-grafted rats. It is concluded that permanent T...

  5. Hypercortisolemia Is Associated with Severity of Bone Loss and Depression in Hypothalamic Amenorrhea and Anorexia Nervosa

    OpenAIRE

    Lawson, Elizabeth A.; Donoho, Daniel; Miller, Karen K.; Misra, Madhusmita; Meenaghan, Erinne; Lydecker, Janet; Wexler, Tamara; Herzog, David B.; Klibanski, Anne

    2009-01-01

    Context: Anorexia nervosa (AN) and functional hypothalamic amenorrhea (HA) are associated with low bone density, anxiety, and depression. Women with AN and HA have elevated cortisol levels. Significant hypercortisolemia, as in Cushing’s disease, causes bone loss. It is unknown whether anxiety and depression and/or cortisol dysregulation contribute to low bone density in AN or HA.

  6. Increased activity of osteocyte autophagy in ovariectomized rats and its correlation with oxidative stress status and bone loss

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yuehua, E-mail: yuesjtu@126.com; Zheng, Xinfeng, E-mail: zxf272@126.com; Li, Bo, E-mail: libo@126.com; Jiang, Shengdan, E-mail: jiangsd@126.com; Jiang, Leisheng, E-mail: leisheng_jiang@126.com

    2014-08-15

    Highlights: • Examine autophagy level in the proximal tibia of ovariectomized rats. • Investigate whether autophagy level is associated with bone loss. • Investigate whether autophagy level is associated with oxidative stress status. - Abstract: Objectives: The objectives of the present study were to investigate ovariectomy on autophagy level in the bone and to examine whether autophagy level is associated with bone loss and oxidative stress status. Methods: 36 female Sprague–Dawley rats were randomly divided into sham-operated (Sham), and ovariectomized (OVX) rats treated either with vehicle or 17-β-estradiol. At the end of the six-week treatment, bone mineral density (BMD) and bone micro-architecture in proximal tibias were assessed by micro-CT. Serum 17β-estradiol (E2) level were measured. Total antioxidant capacity (T-AOC), superoxide dismutase (SOD) activity, catalase (CAT) activity in proximal tibia was also determined. The osteocyte autophagy in proximal tibias was detected respectively by Transmission Electron Microscopy (TEM), immunofluorescent histochemistry (IH), realtime-PCR and Western blot. In addition, the spearman correlation between bone mass, oxidative stress status, serum E2 and autophagy were analyzed. Results: Ovariectomy increased Atg5, LC3, and Beclin1 mRNA and proteins expressions while decreased p62 expression. Ovariectomy also declined the activities of T-AOC, CAT, and SOD. Treatment with E2 prevented the reduction in bone mass as well as restored the autophagy level. Furthermore, LC3-II expression was inversely correlated with T-AOC, CAT, and SOD activities. A significant inverse correlation between LC3-II expression and BV/TV, Tb.N, BMD in proximal tibias was found. Conclusions: Ovariectomy induced oxidative stress, autophagy and bone loss. Autophagy of osteocyte was inversely correlated with oxidative stress status and bone loss.

  7. Frequent complications and severe bone loss associated with the repiphysis expandable distal femoral prosthesis.

    Science.gov (United States)

    Cipriano, Cara A; Gruzinova, Irina S; Frank, Rachel M; Gitelis, Steven; Virkus, Walter W

    2015-03-01

    The treatment of choice for distal femur malignancies in skeletally immature patients remains controversial. An expandable endoprosthesis device (Repiphysis Limb Salvage System; Wright Medical Technology, Arlington, TN, USA) allows for limb preservation and noninvasive lengthening but has been associated with significant complications; however, the extent and implications of bone loss associated with this implant have not been reported. Our goals were to report (1) the 2-year minimum clinical outcomes after placement of the Repiphysis expandable prosthesis for pediatric distal femur malignancies; (2) the complications associated with this prosthesis; (3) the failure rate of this prosthesis; and (4) the revision alternatives available for salvage procedures. Between 2002 and 2010, one surgeon (SG) treated all skeletally immature patients (mean age, 10.1 years; range, 4.7-13.6 years) with distal femoral osteosarcoma using a Repiphysis expandable prosthesis. Of the 12 patients who met these criteria, two were excluded for death from disease before 2 years, and mean followup for the remaining 10 was 72 months (range, 26-119 months). Medical records were retrospectively reviewed for complications and clinical outcomes, as assessed by the Musculoskeletal Tumor Society (MSTS) scoring system. Radiographs at final followup were reviewed for bone loss and analyzed by the two senior authors (SG, WWV) to determine reconstruction options available for future revisions. MSTS scores averaged 67%, and we observed 37 implant-related complications requiring a total of 15 reoperations. Six patients underwent implant revisions with aseptic loosening being the predominant mode of failure; ultimately, four of these were converted to adult modular oncology prostheses, and two underwent total femoral replacements. Bone loss in this series was severe in terms of femoral length, cortical thinning, and metadiaphyseal compromise, and most patients will not have sufficient bone stock to permit

  8. Immunization with FSHβ fusion protein antigen prevents bone loss in a rat ovariectomy-induced osteoporosis model

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Wenxin; Yan, Xingrong; Du, Huicong; Cui, Jihong; Li, Liwen, E-mail: liven@nwu.edu.cn; Chen, Fulin, E-mail: chenfl@nwu.edu.cn

    2013-05-03

    Highlights: •A GST-FSH fusion protein was successfully expressed in E. coli. •Immunization with GST-FSH antigen can raise high-titer anti-FSH polyclonal sera. •Anti-FSH polyclonal sera can neutralize osteoclastogenic effect of FSH in vitro. •FSH immunization can prevent bone loss in a rat osteoporosis model. -- Abstract: Osteoporosis, a metabolic bone disease, threatens postmenopausal women globally. Hormone replacement therapy (HTR), especially estrogen replacement therapy (ERT), is used widely in the clinic because it has been generally accepted that postmenopausal osteoporosis is caused by estrogen deficiency. However, hypogonadal α and β estrogen receptor null mice were only mildly osteopenic, and mice with either receptor deleted had normal bone mass, indicating that estrogen may not be the only mediator that induces osteoporosis. Recently, follicle-stimulating hormone (FSH), the serum concentration of which increases from the very beginning of menopause, has been found to play a key role in postmenopausal osteoporosis by promoting osteoclastogenesis. In this article, we confirmed that exogenous FSH can enhance osteoclast differentiation in vitro and that this effect can be neutralized by either an anti-FSH monoclonal antibody or anti-FSH polyclonal sera raised by immunizing animals with a recombinant GST-FSHβ fusion protein antigen. Moreover, immunizing ovariectomized rats with the GST-FSHβ antigen does significantly prevent trabecular bone loss and thereby enhance the bone strength, indicating that a FSH-based vaccine may be a promising therapeutic strategy to slow down bone loss in postmenopausal women.

  9. Combined nanoindentation testing and scanning electron microscopy of bone and articular calcified cartilage in an equine fracture predilection site

    OpenAIRE

    M Doube; EC Firth; A Boyde; AJ Bushby

    2010-01-01

    Condylar fracture of the third metacarpal bone (Mc3) is the commonest cause of racetrack fatality in Thoroughbred horses. Linear defects involving hyaline articular cartilage, articular calcified cartilage (ACC) and subchondral bone (SCB) have been associated with the fracture initiation site, which lies in the sagittal grooves of the Mc3 condyle. We discovered areas of thickened and abnormally-mineralised ACC in the sagittal grooves of several normal 18-month-old horses, at the same site tha...

  10. The effects of different doses of IGF-1 on cartilage and subchondral bone during the repair of full-thickness articular cartilage defects in rabbits.

    Science.gov (United States)

    Zhang, Z; Li, L; Yang, W; Cao, Y; Shi, Y; Li, X; Zhang, Q

    2017-02-01

    To investigate the effects of different doses of insulin-like growth factor 1 (IGF-1) on the cartilage layer and subchondral bone (SB) during repair of full-thickness articular cartilage (AC) defects. IGF-1-loaded collagen membrane was implanted into full-thickness AC defects in rabbits. The effects of two different doses of IGF-1 on cartilage layer and SB adjacent to the defect, the cartilage structure, formation and integration, and the new SB formation were evaluated at the 1st, 4th and 8th week postoperation. Meanwhile, after 1 week treatment, the relative mRNA expressions in tissues adjacent to the defect, including cartilage and SB were determined by quantitative real-time RT-PCR (qRT-PCR), respectively. Different doses of IGF-1 induced different gene expression profiles in tissues adjacent to the defect and resulted in different repair outcomes. Particularly, at high dose IGF-1 aided cell survival, regulated the gene expressions in cartilage layer adjacent defect and altered ECM composition more effectively, improved the formation and integrity of neo-cartilage. While, at low dose IGF-1 regulated the gene expressions in SB more efficaciously and subsequently promoted the SB remodeling and reconstruction. Different doses of IGF-1 induced different responses of cartilage or SB during the repair of full-thickness AC defects. Particularly, high dose of IGF-1 was more beneficial to the neo-cartilage formation and integration, while low dose of it was more effective for the SB formation. Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  11. Bisphosphonates Inhibit Pain, Bone Loss, and Inflammation in a Rat Tibia Fracture Model of Complex Regional Pain Syndrome.

    Science.gov (United States)

    Wang, Liping; Guo, Tian-Zhi; Hou, Saiyun; Wei, Tzuping; Li, Wen-Wu; Shi, Xiaoyou; Clark, J David; Kingery, Wade S

    2016-10-01

    Bisphosphonates are used to prevent the bone loss and fractures associated with osteoporosis, bone metastases, multiple myeloma, and osteogenesis deformans. Distal limb fractures cause regional bone loss with cutaneous inflammation and pain in the injured limb that can develop into complex regional pain syndrome (CRPS). Clinical trials have reported that antiresorptive bisphosphonates can prevent fracture-induced bone loss, inhibit serum inflammatory cytokine levels, and alleviate CRPS pain. Previously, we observed that the inhibition of inflammatory cytokines or adaptive immune responses attenuated the development of pain behavior in a rat fracture model of CRPS, and we hypothesized that bisphosphonates could prevent pain behavior, trabecular bone loss, postfracture cutaneous cytokine upregulation, and adaptive immune responses in this CRPS model. Rats underwent tibia fracture and cast immobilization for 4 weeks and were chronically administered either subcutaneously perfused alendronate or oral zoledronate. Behavioral measurements included hindpaw von Frey allodynia, unweighting, warmth, and edema. Bone microarchitecture was measured by microcomputed tomography, and bone cellular activity was evaluated by static and dynamic histomorphometry. Spinal cord Fos immunostaining was performed, and skin cytokine (tumor necrosis factor, interleukin [IL]-1, IL-6) and nerve growth factor (NGF) levels were determined by enzyme immunoassay. Skin and sciatic nerve immunoglobulin levels were determined by enzyme immunoassay. Rats with tibia fractures developed hindpaw allodynia, unweighting, warmth, and edema, increased spinal Fos expression and trabecular bone loss in the lumbar vertebra and bilateral distal femurs as measured by microcomputed tomography, increased trabecular bone resorption and osteoclast surface with decreased bone formation rates, increased cutaneous inflammatory cytokine and NGF expression, and elevated immunocomplex deposition in skin and nerve

  12. Bone mineral content and bone metabolism in young adults with severe periodontitis

    DEFF Research Database (Denmark)

    Wowern von, N.; Westergaard, J.; Kollerup, G.

    2001-01-01

    Bone loss, bone markers, bone metabolism, bone mineral content, osteoporosis, severe periodontitis......Bone loss, bone markers, bone metabolism, bone mineral content, osteoporosis, severe periodontitis...

  13. Immediate Initiation of Antiretroviral Therapy for HIV Infection Accelerates Bone Loss Relative to Deferring Therapy

    DEFF Research Database (Denmark)

    Hoy, Jennifer F; Grund, Birgit; Roediger, Mollie P

    2017-01-01

    Both HIV infection and antiretroviral therapy (ART) are associated with lower bone mineral density (BMD) and increased fracture risk. Because the relative contributions of ART and untreated HIV to BMD loss are unclear, it is important to quantify the effect of ART on bone. We compared the effect ...

  14. Proteinase-activated receptor 2 modulates OA-related pain, cartilage and bone pathology.

    Science.gov (United States)

    Huesa, Carmen; Ortiz, Ana C; Dunning, Lynette; McGavin, Laura; Bennett, Louise; McIntosh, Kathryn; Crilly, Anne; Kurowska-Stolarska, Mariola; Plevin, Robin; van 't Hof, Rob J; Rowan, Andrew D; McInnes, Iain B; Goodyear, Carl S; Lockhart, John C; Ferrell, William R

    2016-11-01

    Proteinase-activated receptor 2 (PAR2) deficiency protects against cartilage degradation in experimental osteoarthritis (OA). The wider impact of this pathway upon OA-associated pathologies such as osteophyte formation and pain is unknown. Herein, we investigated early temporal bone and cartilage changes in experimental OA in order to further elucidate the role of PAR2 in OA pathogenesis. OA was induced in wild-type (WT) and PAR2-deficient (PAR2 -/- ) mice by destabilisation of the medial meniscus (DMM). Inflammation, cartilage degradation and bone changes were monitored using histology and microCT. In gene rescue experiments, PAR2 -/- mice were intra-articularly injected with human PAR2 (hPAR2)-expressing adenovirus. Dynamic weight bearing was used as a surrogate of OA-related pain. Osteophytes formed within 7 days post-DMM in WT mice but osteosclerosis was only evident from 14 days post induction. Importantly, PAR2 was expressed in the proliferative/hypertrophic chondrocytes present within osteophytes. In PAR2 -/- mice, osteophytes developed significantly less frequently but, when present, were smaller and of greater density; no osteosclerosis was observed in these mice up to day 28. The pattern of weight bearing was altered in PAR2 -/- mice, suggesting reduced pain perception. The expression of hPAR2 in PAR2 -/- mice recapitulated osteophyte formation and cartilage damage similar to that observed in WT mice. However, osteosclerosis was absent, consistent with lack of hPAR2 expression in subchondral bone. This study clearly demonstrates PAR2 plays a critical role, via chondrocytes, in osteophyte development and subchondral bone changes, which occur prior to PAR2-mediated cartilage damage. The latter likely occurs independently of OA-related bone changes. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  15. Proteinase-activated receptor 2 modulates OA-related pain, cartilage and bone pathology

    Science.gov (United States)

    Huesa, Carmen; Ortiz, Ana C; Dunning, Lynette; McGavin, Laura; Bennett, Louise; McIntosh, Kathryn; Crilly, Anne; Kurowska-Stolarska, Mariola; Plevin, Robin; van ‘t Hof, Rob J; Rowan, Andrew D; McInnes, Iain B; Goodyear, Carl S; Lockhart, John C; Ferrell, William R

    2016-01-01

    Objective Proteinase-activated receptor 2 (PAR2) deficiency protects against cartilage degradation in experimental osteoarthritis (OA). The wider impact of this pathway upon OA-associated pathologies such as osteophyte formation and pain is unknown. Herein, we investigated early temporal bone and cartilage changes in experimental OA in order to further elucidate the role of PAR2 in OA pathogenesis. Methods OA was induced in wild-type (WT) and PAR2-deficient (PAR2−/−) mice by destabilisation of the medial meniscus (DMM). Inflammation, cartilage degradation and bone changes were monitored using histology and microCT. In gene rescue experiments, PAR2−/− mice were intra-articularly injected with human PAR2 (hPAR2)-expressing adenovirus. Dynamic weight bearing was used as a surrogate of OA-related pain. Results Osteophytes formed within 7 days post-DMM in WT mice but osteosclerosis was only evident from 14 days post induction. Importantly, PAR2 was expressed in the proliferative/hypertrophic chondrocytes present within osteophytes. In PAR2−/− mice, osteophytes developed significantly less frequently but, when present, were smaller and of greater density; no osteosclerosis was observed in these mice up to day 28. The pattern of weight bearing was altered in PAR2−/− mice, suggesting reduced pain perception. The expression of hPAR2 in PAR2−/− mice recapitulated osteophyte formation and cartilage damage similar to that observed in WT mice. However, osteosclerosis was absent, consistent with lack of hPAR2 expression in subchondral bone. Conclusions This study clearly demonstrates PAR2 plays a critical role, via chondrocytes, in osteophyte development and subchondral bone changes, which occur prior to PAR2-mediated cartilage damage. The latter likely occurs independently of OA-related bone changes. PMID:26698846

  16. Pyogenic granuloma associated with periodontal abscess and bone loss - A rare case report

    Directory of Open Access Journals (Sweden)

    Bhrugesh J Panseriya

    2011-01-01

    Full Text Available A diverse group of the pathologic process can produce the enlargement of soft tissues in the oral cavity and often present a diagnostic challenge. This soft tissue enlargement may represent a variation of the normal anatomic structure, inflammatory reaction, cyst, neoplasm, and developmental anomalies. A group of reactive hyperplasias, which develop in response to chronic recurring tissue injury that stimulates an excessive tissue repair response. The pyogenic granuloma (PG is a reactive enlargement that is an inflammatory response to local irritation such as calculus, a fractured tooth, rough dental restoration, and foreign materials or hormonal (pregnancy tumor and rarely associated with bone loss. This paper presents a rare case of PG associated with periodontal abscess and bone loss in a 30-year-old male.

  17. Pyogenic granuloma associated with periodontal abscess and bone loss - A rare case report.

    Science.gov (United States)

    Panseriya, Bhrugesh J; Hungund, Shital

    2011-07-01

    A diverse group of the pathologic process can produce the enlargement of soft tissues in the oral cavity and often present a diagnostic challenge. This soft tissue enlargement may represent a variation of the normal anatomic structure, inflammatory reaction, cyst, neoplasm, and developmental anomalies. A group of reactive hyperplasias, which develop in response to chronic recurring tissue injury that stimulates an excessive tissue repair response. The pyogenic granuloma (PG) is a reactive enlargement that is an inflammatory response to local irritation such as calculus, a fractured tooth, rough dental restoration, and foreign materials or hormonal (pregnancy tumor) and rarely associated with bone loss. This paper presents a rare case of PG associated with periodontal abscess and bone loss in a 30-year-old male.

  18. BMI-1 Mediates Estrogen-Deficiency-Induced Bone Loss by Inhibiting Reactive Oxygen Species Accumulation and T Cell Activation.

    Science.gov (United States)

    Li, Jinbo; Wang, Qian; Yang, Renlei; Zhang, Jiaqi; Li, Xing; Zhou, Xichao; Miao, Dengshun

    2017-05-01

    Previous studies have shown that estrogen regulates bone homeostasis through regulatory effects on oxidative stress. However, it is unclear how estrogen deficiency triggers reactive oxygen species (ROS) accumulation. Recent studies provide evidence that the B lymphoma Mo-MLV insertion region 1 (BMI-1) plays a critical role in protection against oxidative stress and that this gene is directly regulated by estrogen via estrogen receptor (ER) at the transcriptional level. In this study, ovariectomized mice were given drinking water with/without antioxidant N-acetyl-cysteine (NAC, 1 mg/mL) supplementation, and compared with each other and with sham mice. Results showed that ovariectomy resulted in bone loss with increased osteoclast surface, increased ROS levels, T cell activation, and increased TNF and RANKL levels in serum and in CD4 T cells; NAC supplementation largely prevented these alterations. BMI-1 expression levels were dramatically downregulated in CD4 T cells from ovariectomized mice. We supplemented drinking water to BMI-1-deficient mice with/without NAC and compared them with each other and with wild-type (WT) mice. We found that BMI-1 deficiency mimicked alterations observed in ovariectomy whereas NAC supplementation reversed all alterations induced by BMI-1 deficiency. Because T cells are critical in mediating ovariectomy-induced bone loss, we further assessed whether BMI-1 overexpression in lymphocytes can protect against estrogen deficiency-induced osteoclastogenesis and bone loss by inhibiting oxidative stress, T cell activation, and RANKL production. When WT and Eμ-BMI-1 transgenic mice with BMI-1 specifically overexpressed in lymphocytes were ovariectomized and compared with each other and with WT sham mice, we found that BMI-1 overexpression in lymphocytes clearly reversed all alterations induced by ovariectomy. Results from this study indicate that estrogen deficiency downregulates BMI-1 and subsequently increases ROS, T cell activation, and

  19. The influence of implant-abutment connection to peri-implant bone loss: A systematic review and meta-analysis.

    Science.gov (United States)

    Caricasulo, Riccardo; Malchiodi, Luciano; Ghensi, Paolo; Fantozzi, Giuliano; Cucchi, Alessandro

    2018-05-15

    Different implant-abutment connections are available and it has been claimed they could have an effect on marginal bone loss. The aim of this review is to establish if implant connection configuration influences peri-implant bone loss (PBL) after functional loading. A specific question was formulated according to the Population, Intervention, Control, and Outcome (PICO): Does the type of implant-abutment connection (external, internal, or conical) have an influence on peri-implant bone loss? A PubMed/MEDLINE electronic search was conducted to identify English language publications published in international journals during the last decade (from 2006 to 2016). The search was conducted by using the Medical Subject Headings (MeSH) keywords "dental implants OR dental abutment AND external connection OR internal connection OR conical connection OR Morse Taper." Selected studies were randomized clinical trials and prospective studies; in vitro studies, case reports and retrospective studies were excluded. Titles and abstracts and, in the second phase, full texts, were evaluated autonomously and in duplicate by two reviewers. A total of 1649 articles were found, but only 14 studies met the pre-established inclusion criteria and were considered suitable for meta-analytic analysis. The network meta-analysis (NMA) suggested a significant difference between the external and the conical connections; this was less evident for the internal and conical ones. Platform-switching (PS) seemed to positively affect bone levels, non-regarding the implant-connection it was applied to. Within the limitations of this systematic review, it can be concluded that crestal bone levels are better maintained in the short-medium term when internal kinds of interface are adopted. In particular, conical connections seem to be more advantageous, showing lower peri-implant bone loss, but further studies are necessary to investigate the efficacy of implant-abutment connection on stability of crestal

  20. Antibody-based inhibition of circulating DLK1 protects from estrogen deficiency-induced bone loss in mice

    DEFF Research Database (Denmark)

    Figeac, Florence; Andersen, Ditte C.; Nipper Nielsen, Casper A.

    2018-01-01

    /TV) and inhibition of bone resorption. No significant changes were observed in total fat mass or in the number of bone marrow adipocytes. These results support the potential use of anti-DLK1 antibody therapy as a novel intervention to protect from E deficiency associated bone loss....... resorption and inhibition of bone formation. Further, serum DLK1 levels are elevated and positively correlated to bone turnover markers in estrogen (E)-deficient rodents and women. In this report, we examined whether inhibition of serum DLK1 activity using a neutralizing monoclonal antibody protects from E...

  1. Primary Hyperparathyroidism: The Influence of Bone Marrow Adipose Tissue on Bone Loss and of Osteocalcin on Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Maira L. Mendonça

    Full Text Available OBJECTIVES: Bone marrow adipose tissue has been associated with low bone mineral density. However, no data exist regarding marrow adipose tissue in primary hyperparathyroidism, a disorder associated with bone loss in conditions of high bone turnover. The objective of the present study was to investigate the relationship between marrow adipose tissue, bone mass and parathyroid hormone. The influence of osteocalcin on the homeostasis model assessment of insulin resistance was also evaluated. METHODS: This was a cross-sectional study conducted at a university hospital, involving 18 patients with primary hyperparathyroidism (PHPT and 21 controls (CG. Bone mass was assessed by dual-energy x-ray absorptiometry and marrow adipose tissue was assessed by 1H magnetic resonance spectroscopy. The biochemical evaluation included the determination of parathyroid hormone, osteocalcin, glucose and insulin levels. RESULTS: A negative association was found between the bone mass at the 1/3 radius and parathyroid hormone levels (r = -0.69; p<0.01. Marrow adipose tissue was not significantly increased in patients (CG = 32.8±11.2% vs PHPT = 38.6±12%. The serum levels of osteocalcin were higher in patients (CG = 8.6±3.6 ng/mL vs PHPT = 36.5±38.4 ng/mL; p<0.005, but no associations were observed between osteocalcin and insulin or between insulin and both marrow adipose tissue and bone mass. CONCLUSION: These results suggest that the increment of adipogenesis in the bone marrow microenvironment under conditions of high bone turnover due to primary hyperparathyroidism is limited. Despite the increased serum levels of osteocalcin due to primary hyperparathyroidism, these patients tend to have impaired insulin sensitivity.

  2. Peri-Implant Crestal Bone Loss: A Putative Mechanism

    Directory of Open Access Journals (Sweden)

    Yuko Ujiie

    2012-01-01

    Full Text Available Purpose. The immunological mechanisms of peri-implant crestal bone loss have, hitherto, not been elucidated. We hypothesized that bacterial products from the microgap cause upregulation of cytokines in otherwise healthy peri-implant cells, which results in osteoclast formation and, ultimately, in bone resorption. Materials and Methods. We used RT-PCR and ELISA to assay mediators of osteoclastogenesis in rat and human macrophages (r-and hMO; bone marrow derived stromal cells (r-and hBMCs; and human gingival fibroblasts (hGF—with or without stimulation by LPS. TRAP positive multinucleate cells were assessed for their resorptive ability. Results. We show that IL-1α, IL-1β, and IL-6 were expressed by all examined cell types, and TNF-α was upregulated in hGF. Secretion of IL-1α and IL-1β proteins was stimulated in hMO by LPS, and IL-6 protein secretion was highly stimulated in hBMCs and hGF. Both LPS and RANKL stimulated macrophages to form osteoclast-like TRAP positive cells, which resorbed calcium phosphate substrates. Conclusion. Taken together, the results of our study support the hypothesis that bacterial endotoxins upregulate enhanced mediators of osteoclastogenesis in resident cells found in the healthy peri-implant compartment and that the local synergistic action of cytokines secreted by such cells results in the genesis of resorptively active osteoclasts.

  3. Prophylactic pamidronate partially protects from glucocorticoid-induced bone loss in the mdx mouse model of Duchenne muscular dystrophy.

    Science.gov (United States)

    Yoon, Sung-Hee; Chen, Jinghan; Grynpas, Marc D; Mitchell, Jane

    2016-09-01

    Glucocorticoids are extensively used to treat patients with Duchenne muscular dystrophy because of their ability to delay muscle damage, prolong ambulation and extend life. However, use of glucocorticoids significantly increases bone loss, fragility and fractures. To determine if antiresorptive bisphosphonates could prevent the effects of glucocorticoids on bone quality, we used dystrophic mdx mice treated with the glucocorticoid prednisone during 8weeks of rapid bone growth from 5 to 13weeks of age and treated some mice with the bisphosphonate pamidronate during the first two weeks of prednisone administration. Prednisone reduced long bone growth, decreased cortical bone thickness and area and decreased the strength of the femurs. Pamidronate treatment protected mice from cortical bone loss but did not increase bone strength. The combination of prednisone and pamidronate inhibited remodeling of metaphyseal trabecular bone with large numbers of trabeculae containing remnants of calcified cartilage. Prednisone improved muscle strength in the mdx mice and decreased serum creatine kinase with evidence of improved muscle histology and these effects were maintained in mice treated with pamidronate. Copyright © 2016. Published by Elsevier Inc.

  4. Galloping exercise induces regional changes in bone density within the third and radial carpal bones of Thoroughbred horses

    International Nuclear Information System (INIS)

    Firth, E.C.; Delahunt, J.; Wichtel, J.W.; Birch, H.L.; Goodship, A.E.

    1999-01-01

    This study was performed to test the hypothesis that a localised bone hypertrophy could occur within the subchondral cancellous architecture of the third and radial carpal bones. Using 2 levels of controlled and defined exercise, it was observed that a high intensity treadmill exercise protocol resulted in functional adaptation of the carpal bones. The increase in trabecular thickening and density was seen to be localised to those regions underlying common sites of cartilage degradation, the interface of the thickened trabeculae with the normal architecture in the third carpal hone was coincident with a common site of clinical fractures. The bone changes were determined both qualitatively on examination of slab radiographs and quantified by dual energy x-ray absorptiometry. The findings from this study are relevant to mechanical factors involved in the pathophysiology of joint degeneration. The potential clinical implications of this study are in relation to changes in the type and duration of exercise regimens used in training of equine athletes. The rapid response of bone to mechanical stimulation has implications in the longer term for localised cartilage degradation. Imaging techniques could be developed to monitor these early bone changes in the specific areas identified in this study and thus allow appropriate changes in training intensity to minimise subsequent damage to the articular surface

  5. Recurrent anterior shoulder instability: accuracy of estimations of glenoid bone loss with computed tomography is insufficient for therapeutic decision-making

    Energy Technology Data Exchange (ETDEWEB)

    Huijsmans, Polydoor Emile [Haga Hospital, Department of Orthopedic Surgery, The Hague (Netherlands); Witte, Pieter Bas de [Leiden University Medical Center, Department of Orthopedic Surgery, Leiden (Netherlands); Villiers, Richard V.P. de; Kruger, Niel Ruben [Van Wageningen and Partners, Radiology Department, Somerset West (South Africa); Wolterbeek, Derk Willem; Warmerdam, Piet [Haga Hospital, Department of Radiology, The Hague (Netherlands); Beer, Joe F. de [Cape Shoulder Institute, Department of Orthopedic Surgery, Cape Town (South Africa)

    2011-10-15

    To evaluate the reliability of glenoid bone loss estimations based on either axial computed tomography (CT) series or single sagittal (''en face'' to glenoid) CT reconstructions, and to assess their accuracy by comparing with actual CT-based bone loss measurements, in patients with anterior glenohumeral instability. In two separate series of patients diagnosed with recurrent anterior glenohumeral instability, glenoid bone loss was estimated on axial CT series and on the most lateral sagittal (en face) glenoid view by two blinded radiologists. Additionally, in the second series of patients, glenoid defects were measured on sagittal CT reconstructions by an independent observer. In both series, larger defects were estimated when based on sagittal CT images compared to axial views. In the second series, mean measured bone loss was 11.5% (SD = 6.0) of the total original glenoid area, with estimations of 9.6% (SD = 7.2) and 7.8% (SD = 4.2) for sagittal and axial views, respectively. Correlations of defect estimations with actual measurements were fair to poor; glenoid defects tended to be underestimated, especially when based on axial views. CT-based estimations of glenoid bone defects are inaccurate. Especially for axial views, there is a high chance of glenoid defect underestimation. When using glenoid bone loss quantification in therapeutic decision-making, measuring the defect instead of estimating is strongly advised. (orig.)

  6. Men and Women in Space: Bone Loss and Kidney Stone Risk after Long-Duration Space Flight

    Science.gov (United States)

    Smith, Scott M.; Zwart, Sara R.; Heer, Martina; Hudson, Edgar, K.; Shackelford, Linda; Morgan, Jennifer L. L.

    2014-01-01

    Bone loss on Earth is more prevalent in women than men, leading to the assumption that women may be at greater risk from bone loss during flight. Until recently, the number of women having flown long-duration missions was too small to allow any type of statistical analysis. We report here data from 42 astronauts on long-duration missions to the International Space Station, 33 men and 9 women. Bone mineral density (dual-energy X-ray absorptiometry), bone biochemistry (from blood and urine samples), and renal stone risk factors were evaluated before and after flight. Data were analyzed in two groups, based on available resistance exercise equipment. The response of bone mineral density to flight was the same for men and women, and the typical decrease in bone mineral density (whole body and/or regional) after flight was not observed for either sex for those using an Advanced Resistive Exercise Device. Bone biochemistry, specifically markers of formation and resorption, generally responded similarly in male and female astronauts. The response of urinary supersaturation risk to space flight was not significantly different between men and women, although risks were typically increased after flight in both groups and risks were generally greater in men than in women before and after flight. Overall, the bone and renal stone responses of men and women to space flight were not different.

  7. A reversal phase arrest uncoupling the bone formation and resorption contributes to the bone loss in glucocorticoid treated ovariectomised aged sheep

    DEFF Research Database (Denmark)

    Andreasen, Christina Møller; Ding, Ming; Overgaard, Søren

    2015-01-01

    Large animals as sheep are often used as models for human osteoporosis. Our aim was therefore to determine how glucocorticoid treatment of ovariectomised sheep affects the cancellous bone, determining the cellular events within the bone remodelling process that contributes to their bone loss...... in postmenopausal women with glucocorticoid-induced osteoporosis. This supports the relevance of the sheep model to the pathophysiology of glucocorticoid-induced osteoporosis in postmenopausal women, making it a relevant preclinical model for orthopaedic implant and biomaterial research........ Twenty female sheep were assigned for two groups; an untreated control group and an ovariectomised group treated with glucocorticoids (0.6mg/kg/day, 5 times weekly) for 7months. At 7months the glucocorticoid-treated ovariectomised sheep showed a significant change in the bone microstructure revealed...

  8. Hypercortisolemia is associated with severity of bone loss and depression in hypothalamic amenorrhea and anorexia nervosa.

    Science.gov (United States)

    Lawson, Elizabeth A; Donoho, Daniel; Miller, Karen K; Misra, Madhusmita; Meenaghan, Erinne; Lydecker, Janet; Wexler, Tamara; Herzog, David B; Klibanski, Anne

    2009-12-01

    Anorexia nervosa (AN) and functional hypothalamic amenorrhea (HA) are associated with low bone density, anxiety, and depression. Women with AN and HA have elevated cortisol levels. Significant hypercortisolemia, as in Cushing's disease, causes bone loss. It is unknown whether anxiety and depression and/or cortisol dysregulation contribute to low bone density in AN or HA. Our objective was to investigate whether hypercortisolemia is associated with bone loss and mood disturbance in women with HA and AN. We conducted a cross-sectional study in a clinical research center. We studied 52 women [21 healthy controls (HC), 13 normal-weight women with functional HA, and 18 amenorrheic women with AN]. Serum samples were measured every 20 min for 12 h overnight and pooled for average cortisol levels. Bone mineral density (BMD) was assessed by dual-energy x-ray absorptiometry (DXA) at anteroposterior and lateral spine and hip. Hamilton Rating Scales for Anxiety (HAM-A) and Depression (HAM-D) were administered. BMD was lower in AN and HA than HC at all sites and lower in AN than HA at the spine. On the HAM-D and HAM-A, AN scored higher than HA, and HA scored higher than HC. Cortisol levels were highest in AN, intermediate in HA, and lowest in HC. HAM-A and HAM-D scores were associated with decreased BMD. Cortisol levels were positively associated with HAM-A and HAM-D scores and negatively associated with BMD. Hypercortisolemia is a potential mediator of bone loss and mood disturbance in these disorders.

  9. Impact of marked weight loss induced by bariatric surgery on bone mineral density and remodeling

    Directory of Open Access Journals (Sweden)

    F.A. Pereira

    2007-04-01

    Full Text Available Data about the impact of bariatric surgery (BS and subsequent weight loss on bone are limited. The objective of the present study was to determine bone mineral density (BMD, bone remodeling metabolites and hormones that influence bone trophism in premenopausal women submitted to BS 9.8 months, on average, before the study (OGg, N = 16. The data were compared to those obtained for women of normal weight (CG, N = 11 and for obese women (OG, N = 12. Eight patients in each group were monitored for one year, with the determination of BMD, of serum calcium, phosphorus, magnesium, parathyroid hormone, 25-hydroxyvitamin D, insulin-like growth factor-I (IGF-I and osteocalcin, and of urinary calcium and deoxypyridinoline. The biochemical determinations were repeated every three months in the longitudinal study and BMD was measured at the end of the study. Parathyroid hormone levels were similar in the three groups. IGF-I levels (CG = 332 ± 62 vs OG = 230 ± 37 vs OGg = 128 ± 19 ng/mL were significantly lower in the operated patients compared to the non-operated obese women. Only OGg patients presented a significant fall in BMD of 6.2% at L1-L4, of 10.2% in the femoral neck, and of 5.1% in the forearm. These results suggest that the weight loss induced by BS is associated with a significant loss of bone mass even at sites that are not influenced by weight overload, with hormonal factors such as IGF-I being associated with this process.

  10. Factors affecting bone mineral mass loss after lower-limb fractures in a pediatric population.

    Science.gov (United States)

    Ceroni, Dimitri; Martin, Xavier; Kherad, Omar; Salvo, Davide; Dubois-Ferrière, Victor

    2015-06-01

    The purpose of this study was to assess the effects of the durations of cast immobilization and non-weight-bearing periods, and decreases in vigorous physical activity (VPA) on bone mineral parameters in a pediatric population treated for a lower-limb fracture. Fifty children and teenagers who had undergone a cast-mediated immobilization for a leg or ankle fracture were prospectively recruited. The durations of cast immobilization and non-weight-bearing periods were recorded for each participant. Dual-energy x-ray absorptiometry scans were performed at the time of fracture treatment (baseline) and at cast removal. Physical activity during cast immobilization was assessed using accelerometers. A strong negative correlation was found between the total duration of cast immobilization and decreases in both calcaneal bone mineral density (BMD) (r=-0.497) and total lower-limb bone mineral content (BMC) (r=-0.405). A strong negative correlation was also noted between the durations of the non-weight-bearing periods and alterations in calcaneal BMD (r=-0.420). No apparent correlations were found between lower BMD and BMC and decreased VPA. Bone mineral loss was correlated to the total duration of cast immobilization for all measurement sites on the affected leg, whereas it was only correlated to the durations of non-weight-bearing periods for calcaneal BMD and total lower-limb BMC. However, no correlations were noted between bone mineral loss and decreased VPA.

  11. Radiographic analysis of pasteurized autologous bone graft

    International Nuclear Information System (INIS)

    Ahmed, Adel Refaat; Manabe, Jun; Kawaguchi, Noriyoshi; Matsumoto, Seiichi; Matsushita, Yasushi

    2003-01-01

    Local malignant bone tumor excision followed by pasteurization and subsequent reimplantation is a unique technique for reconstruction after resection of primary bone sarcomas. The purpose of this investigation was to assess the normal and abnormal long-term radiographic findings of intercalary and osteo-chondral pasteurized bone graft/implant composite. The long-term radiographic findings of pasteurized bone grafts used in reconstruction after resection of bone and soft tissue sarcomas in relation to patients' clinical data were reviewed retrospectively. Thirty-one patients (18 females, 13 males; age range 7-77 years, mean 30 years) who underwent surgery between April 1990 and January 1997 at the authors' institute constituted the material of this study. They were followed up for at least 3 years or until the patient's death (mean 69 months). The International Society of Limb Salvage graft evaluation method that assesses the fusion, resorption, fracture, graft shortening, fixation, subluxation, joint narrowing and subchondral bone was used for evaluation of the radiographs. Twenty-one patients (68%) showed complete incorporation of graft and eight patients (26%) had partial incorporation. The overall radiographic evaluation rate was 81%. Fracture (10%) and infection (16%) were the main complications. No local recurrence was detected. These results indicate that pasteurization of bone is a useful option for reconstruction after resection of malignant bone tumors. (orig.)

  12. Radiographic analysis of pasteurized autologous bone graft

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Adel Refaat [Department of Orthopedic Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Kamiikebukuro 1-37-1, Toshima-ku, 170-0012, Tokyo (Japan); Department of Orthopedic Surgery, Alexandria University, Alexandria (Egypt); Manabe, Jun; Kawaguchi, Noriyoshi; Matsumoto, Seiichi; Matsushita, Yasushi [Department of Orthopedic Surgery, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Kamiikebukuro 1-37-1, Toshima-ku, 170-0012, Tokyo (Japan)

    2003-08-01

    Local malignant bone tumor excision followed by pasteurization and subsequent reimplantation is a unique technique for reconstruction after resection of primary bone sarcomas. The purpose of this investigation was to assess the normal and abnormal long-term radiographic findings of intercalary and osteo-chondral pasteurized bone graft/implant composite. The long-term radiographic findings of pasteurized bone grafts used in reconstruction after resection of bone and soft tissue sarcomas in relation to patients' clinical data were reviewed retrospectively. Thirty-one patients (18 females, 13 males; age range 7-77 years, mean 30 years) who underwent surgery between April 1990 and January 1997 at the authors' institute constituted the material of this study. They were followed up for at least 3 years or until the patient's death (mean 69 months). The International Society of Limb Salvage graft evaluation method that assesses the fusion, resorption, fracture, graft shortening, fixation, subluxation, joint narrowing and subchondral bone was used for evaluation of the radiographs. Twenty-one patients (68%) showed complete incorporation of graft and eight patients (26%) had partial incorporation. The overall radiographic evaluation rate was 81%. Fracture (10%) and infection (16%) were the main complications. No local recurrence was detected. These results indicate that pasteurization of bone is a useful option for reconstruction after resection of malignant bone tumors. (orig.)

  13. Roles of Chondrocytes in Endochondral Bone Formation and Fracture Repair

    Science.gov (United States)

    Hinton, R.J.; Jing, Y.; Jing, J.; Feng, J.Q.

    2016-01-01

    The formation of the mandibular condylar cartilage (MCC) and its subchondral bone is an important but understudied topic in dental research. The current concept regarding endochondral bone formation postulates that most hypertrophic chondrocytes undergo programmed cell death prior to bone formation. Under this paradigm, the MCC and its underlying bone are thought to result from 2 closely linked but separate processes: chondrogenesis and osteogenesis. However, recent investigations using cell lineage tracing techniques have demonstrated that many, perhaps the majority, of bone cells are derived via direct transformation from chondrocytes. In this review, the authors will briefly discuss the history of this idea and describe recent studies that clearly demonstrate that the direct transformation of chondrocytes into bone cells is common in both long bone and mandibular condyle development and during bone fracture repair. The authors will also provide new evidence of a distinct difference in ossification orientation in the condylar ramus (1 ossification center) versus long bone ossification formation (2 ossification centers). Based on our recent findings and those of other laboratories, we propose a new model that contrasts the mode of bone formation in much of the mandibular ramus (chondrocyte-derived) with intramembranous bone formation of the mandibular body (non-chondrocyte-derived). PMID:27664203

  14. Human adipose-derived mesenchymal stem cell-conditioned media suppresses inflammatory bone loss in a lipopolysaccharide-induced murine model.

    Science.gov (United States)

    Li, Yu; Gao, Xin; Wang, Jinbing

    2018-02-01

    Conditioned media (CM) from mesenchymal stem cells (MSCs) contains various cytokines, growth factors and microRNAs, which may serve important roles in modulating the inflammatory process. However, the effect of MSC-CM on inflammatory bone loss remains unknown. The present study investigated the effects of conditioned media from human adipose-derived mesenchymal stem cells (AMSC-CM) on the prevention of lipopolysaccharide (LPS)-mediated bone loss in mice. To investigate the underlying mechanisms of this effect, the effects of AMSC-CM on serum levels of inflammation-associated cytokines [tumor necrosis factor (TNF)-α, interleukin (IL)-1, IL-6 and IL-10] in LPS-treated mice, in addition to their mRNA expression in LPS-treated macrophages, was investigated. Micro-computed tomography and histological analysis revealed that AMSC-CM administration effectively inhibited LPS-induced bone destruction in vivo . ELISA analysis indicated that AMSC-CM significantly reduced the serum levels of proinflammatory cytokines (TNF-α, IL-1 and IL-6) in LPS-treated mice. Furthermore, AMSC-CM treatment significantly decreased the mRNA expression levels of TNF-α, IL-1 and IL-6 in macrophages treated with LPS. These findings indicate that AMSC-CM inhibits LPS-induced bone loss by decreasing the production of proinflammatory cytokines, suggesting that the use of AMSC-CM may be a potential therapeutic strategy for the treatment of inflammatory bone loss.

  15. Association of stressful life events with accelerated bone loss in older men: the Osteoporotic Fractures in Men (MrOS) Study

    Science.gov (United States)

    Fink, Howard A.; Kuskowski, Michael A.; Cauley, Jane A.; Taylor, Brent C.; Schousboe, John T.; Cawthon, Peggy M.; Ensrud, Kristine E.

    2015-01-01

    Purpose/Introduction Prior studies suggest that stressful life events may increase adverse health outcomes, including falls and possibly fractures. The current study builds on these findings and examines whether stressful life events are associated with increased bone loss. Methods 4388 men aged ≥65 years in the Osteoporotic Fractures in Men study completed total hip bone mineral density (BMD) measures at baseline and visit 2, approximately 4.6 years later, and self-reported stressful life events data mid-way between baseline and visit 2, and at visit 2. We used linear regression to model the association of stressful life events with concurrent annualized total hip BMD loss, and log binomial regression or Poisson regression to model risk of concurrent accelerated BMD loss (>1 SD more than mean annualized change). Results 75.3% of men reported ≥1 type of stressful life event, including 43.3% with ≥2 types of stressful life events. Mean annualized BMD loss was −0.36% (SD 0.88) and 13.9% of men were categorized with accelerated BMD loss (about 5.7% or more total loss). Rate of annualized BMD loss increased with the number of types of stressful life events after adjustment for age (pstressful life events (RR, 1.10 [95% CI, 1.04–1.16]) per increase of 1 type of stressful life event). Fracture risk was not significantly different between stressful life event-accelerated bone loss subgroups (p=0.08). Conclusions In these older men, stressful life events were associated with a small, dose-related increase in risk of concurrent accelerated hip bone loss. Low frequency of fractures limited assessment of whether rapid bone loss mediates any association of stressful life events with incident fractures. Future studies are needed to confirm these findings and to investigate the mechanism that may underlie this association. PMID:25169421

  16. Clinicopathological findings in horses with a bi- or tripartite navicular bone.

    Science.gov (United States)

    van der Zaag, Ellen J; Weerts, Erik A W S; van den Belt, Antoon J M; Back, Willem

    2016-04-09

    Navicular bone partition is a rare condition reported in horses, which is during the evaluation of a lameness or prepurchase examination often misinterpreted for a parasagittal fracture. In this report, the clinicopathological findings of three cases of navicular bone partition are evaluated. The possible pathomechanisms underlying the condition are hypothesised, focusing on a potential origin of foetal vascular disturbance. This study is furthermore aiming at a clearer and earlier recognition of navicular bone partition, since this condition would finally predispose for a clinical lameness with a poor prognosis. Case 1 was a 10-year-old Belgian Warmblood gelding with a Grade 3/5 chronic, recurrent left-forelimb lameness that had persisted for 4 months. Perineural palmar digital nerve block of the distal foot abolished the lameness. Radiographic examination revealed a bipartite navicular bone in the left forelimb. Unfortunately, the animal was lost to follow-up. Case 2 was a 7-year-old Quarter Horse stallion with a Grade 3/5 recurrent right forelimb lameness that had persisted for 2 years. The lameness switched to the contralateral left forelimb with a palmar digital nerve block. Radiographic examination identified a tripartite navicular bone in both forelimbs. Pathological examination additionally revealed chronic degenerative changes of the cartilage and subchondral bone with marked cystic changes. Case 3 was a 5-year-old Dutch Warmblood gelding with a Grade 3/5 recurrent left hindlimb lameness that had persisted for 6 months. Owing to the uncooperative behaviour of the horse, only a combined peroneal and tibial nerve block could be performed, which abolished the lameness. Radiographic examination revealed a bipartite navicular bone in the left hindlimb. Pathological examination showed a navicular bipartition in the left hindlimb, with microscopic changes comparable to those evident in Case 2; additionally, cartilage indentations were also found in the navicular

  17. Effect of alendronate on early bone loss of renal transplant recipients.

    Science.gov (United States)

    Abediazar, S; Nakhjavani, M R

    2011-03-01

    Renal transplant recipients (RTRs) are at risk of developing osteoporosis and osteopenia due to underlying renal osteodystrophy, hypophosphatemia, and immunosuppression. This process occurs more frequently in the first year after renal transplantation (RTX), resulting in eventual bone loss and fractures. The purpose of this study was to evaluate the effect of low-dose alendronate to prevent early bone loss after RTX. We prospectively studied 43 successful RTR including 22 men and 21-women with a mean overall age of 39.16±11.73 years, mean body mass index of 23.6±3.73, and mean dialysis duration of 25.73±17.67 months. We matched them based on age and sex: the alendronate-treated group received vitamin D (Vit D) during the study plus 30 mg alendronate weekly from 1 month after RTX. The control group only received Vit D. We measured serum calcium, phosphate, alkaline phosphatase, blood urea, creatinine, and intact parathyroid hormone (iPTH) at the pretransplant baseline and monthly thereafter as well as BMD of the lumbar spine, femur, and radius pretransplant baseline versus 3 and 6 months after RTX. At 6 month after RTX, the lumbar BMD in the alendronate group increased significantly from 0.819±0.11 to 0.863±0.14 (Pbone loss and increase BMD immediately after RTX. Copyright © 2011. Published by Elsevier Inc.

  18. Severe Bone Loss induced by Orthodontic Elastic Separator: A Rare Case Report

    Directory of Open Access Journals (Sweden)

    A E Vishwanath

    2013-01-01

    Full Text Available A displaced orthodontic elastic separator was proposed as being the source of a gingival abscess that progressed to severe bone loss and exfoliation in a healthy adolescent patient with sound periodontal status prior to commencement of orthodontic treatment. After 1 year of undergoing orthodontic treatment, the patient presented with dull pain and mobility in the left upper permanent molar for which there was no apparent etiology. On clinical examination, the patient had gingival inflammation, associated with a deep pocket and severe mobility (grade III in relation to the same teeth. Radiographic examination of an orthopantomogram and intraoral periapical radiography (IOPAR revealed a chronic periodontal abscess with severe necrosis of the periodontal ligament and severe alveolar bone loss. A radiopaque mass on the distal surface below the cementoenamel junction (CEJ was also observed. The patient was referred to the department of periodontics for assessment and appropriate treatment. On curettage, it was found that there was orthodontic elastic separator which was displaced subgingivally.

  19. A Dual Role of Upper Zone of Growth Plate and Cartilage Matrix-Associated Protein in Human and Mouse Osteoarthritic Cartilage: Inhibition of Aggrecanases and Promotion of Bone Turnover

    NARCIS (Netherlands)

    Stock, M.; Menges, S.; Eitzinger, N.; Gesslein, M.; Botschner, R.; Wormser, L.; Distler, A.; Schlotzer-Schrehardt, U.; Dietel, K.; Distler, J.; Beyer, C.; Gelse, K.; Engelke, K.; Koenders, M.I.; Berg, W.B. van den; Mark, K. von der; Schett, G.

    2017-01-01

    OBJECTIVE: Cartilage damage and subchondral bone changes are closely connected in osteoarthritis. Nevertheless, how these processes are interlinked is, to date, incompletely understood. This study was undertaken to investigate the mechanistic role of a cartilage-derived protein, upper zone of growth

  20. Effect of alendronate on post-traumatic osteoarthritis induced by anterior cruciate ligament rupture in mice.

    Science.gov (United States)

    Khorasani, Mohammad S; Diko, Sindi; Hsia, Allison W; Anderson, Matthew J; Genetos, Damian C; Haudenschild, Dominik R; Christiansen, Blaine A

    2015-02-16

    Previous studies in animal models of osteoarthritis suggest that alendronate (ALN) has antiresorptive and chondroprotective effects, and can reduce osteophyte formation. However, these studies used non-physiologic injury methods, and did not investigate early time points during which bone is rapidly remodeled prior to cartilage degeneration. The current study utilized a non-invasive model of knee injury in mice to investigate the effect of ALN treatment on subchondral bone changes, articular cartilage degeneration, and osteophyte formation following injury. Non-invasive knee injury via tibial compression overload or sham injury was performed on a total of 90 mice. Mice were treated with twice weekly subcutaneous injections of low-dose ALN (40 μg/kg/dose), high-dose ALN (1,000 μg/kg/dose), or vehicle, starting immediately after injury until sacrifice at 7, 14 or 56 days. Trabecular bone of the femoral epiphysis, subchondral cortical bone, and osteophyte volume were quantified using micro-computed tomography (μCT). Whole-joint histology was performed at all time points to analyze articular cartilage and joint degeneration. Blood was collected at sacrifice, and serum was analyzed for biomarkers of bone formation and resorption. μCT analysis revealed significant loss of trabecular bone from the femoral epiphysis 7 and 14 days post-injury, which was effectively prevented by high-dose ALN treatment. High-dose ALN treatment was also able to reduce subchondral bone thickening 56 days post-injury, and was able to partially preserve articular cartilage 14 days post-injury. However, ALN treatment was not able to reduce osteophyte formation at 56 days post-injury, nor was it able to prevent articular cartilage and joint degeneration at this time point. Analysis of serum biomarkers revealed an increase in bone resorption at 7 and 14 days post-injury, with no change in bone formation at any time points. High-dose ALN treatment was able to prevent early trabecular

  1. Bone loss in rheumatoid arthritis

    International Nuclear Information System (INIS)

    Gotfredsen, A.; Als, O.S.; Hassager, C.; Christiansen, C.

    1986-01-01

    The authors studied 159 patients with rheumatoid arthritis (RA) treated with a variety of drugs. Stratification of the patients was done according to treatment, sex, menopausal state, duration of the disease, and functional impairment. Forearm bone mineral content (BMC) and total body bone mineral (TBBM) were measured by single and dual photon absorptiometry. Bone turnover was estimated by biochemical markers. All patients had significantly decreased BMC and TBBM compared to normals. Comparing glucocorticoid and penicillamine treatment in premenopausal patients, they found significantly lower BMC and TBBM values in the glucocorticoid treated group. However, no differences in BMC and TBBM values were found in the corresponding postmenopausal groups. In the premenopausal glucocorticoid group with the duration of treatment and cumulated dose correlated with BMC, whereas no such correlations were found in the postmenopausal women. In the patients who did not receive glucocorticoids they found significant relationships between BMC and functional impairment as well as duration of the disease. Indices of bone turnover rose with increasing functional, impairment, particularly those of bone resorption

  2. A full-mouth radiographic survey of periodontal bone loss in dogs

    International Nuclear Information System (INIS)

    Pavlica, Z.; Erjavec, V.; Erzen, D.; Petelin, M.

    2003-01-01

    The objective of this study was to evaluate the relationship between clinically observed periodontal disease indicators and radiographic findings using fullmouth radiographs in poodles. The dogs were divided into three groups according to their age. Upper and lower incisors, canines and premolars/molars were used for clinical and radiographic analyses. The prevalence and severity of periodontal disease increased with age. In addition, the deepest pockets and most severe bone loss were found around the canine teeth. The values obtained from radiographic analysis correlated well with clinical measurements. Fullmouth radiographic surveys show clearly the alveolar bone level around the whole dentition of dogs. It should be performed prior to the institution of any treatment

  3. Identification of induced and naturally occurring conductive hearing loss in mice using bone conduction.

    Science.gov (United States)

    Chhan, David; McKinnon, Melissa L; Rosowski, John J

    2017-03-01

    While many mouse models of hearing loss have been described, a significant fraction of the genetic defects in these models affect both the inner ear and middle ears. A common method used to separate inner-ear (sensory-neural) from middle-ear (conductive) pathologies in the hearing clinic is the combination of air-conduction and bone-conduction audiometry. In this report, we investigate the use of air- and bone-conducted evoked auditory brainstem responses to perform a similar separation in mice. We describe a technique by which we stimulate the mouse ear both acoustically and via whole-head vibration. We investigate the sensitivity of this technique to conductive hearing loss by introducing middle-ear lesions in normal hearing mice. We also use the technique to investigate the presence of an age-related conductive hearing loss in a common mouse model of presbycusis, the BALB/c mouse. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Effect of occlusal (mechanical) stimulus on bone remodelling in rat mandibular condyle.

    Science.gov (United States)

    Gazit, D; Ehrlich, J; Kohen, Y; Bab, I

    1987-09-01

    Mechanical load influences the remodelling of skeletal tissues. In the mandibular condyle, occlusal alterations and the consequent mechanical stimulus induce changes in chondrocytes and cartilage mineralization. In the present study we quantified in the mandibular condyle the effect of occlusal interference on remodelling of the subchondral bone. Computerized histomorphometry after 5-21-day exposure to the influence of a unilateral occlusal splint revealed an increased rate of trabecular remodelling, consisting of enhancement in osteoblast and osteoclast numbers and activities. The bone formation parameters reached their high values on Days 5 or 9 and remained stable thereafter. Bone resorption showed a gradual increase throughout the experimental period. These results further characterize the temporomandibular joint reaction to occlusal alterations. It is suggested that the present increase in bone turnover together with the known enhancement in chondrogenesis are part of a process of functional adaptation in response to mechanical stimulus.

  5. Cytokines and T-lymphocyte subsets in healthy post-menopausal women: estrogen retards bone loss without affecting the release of IL-1 or IL-1ra

    DEFF Research Database (Denmark)

    Abrahamsen, Bo; Bendtzen, Klaus; Beck-Nielsen, H

    1997-01-01

    resorptive cytokines and have also been linked with bone metabolism and the development of osteoporosis. Cytokine secretion from whole blood cell cultures was compared between two randomized groups of healthy early post-menopausal women (mean age 52.5 yrs, N = 91) and lymphocyte subsets were quantitated....... There was no association between cytokine release and bone mass or loss assessed over 2 yrs. The only exception was a weak estrogen-independent correlation between basal IL-1ra secretion and bone loss (r = -0.21, p loss...... cells may be important in the pathophysiology of post-menopausal bone loss. The possibility that IL-1ra acts as an independent bone-sparing factor unrelated to estrogen withdrawal warrants further investigation. In conclusion, ERT maintains bone without affecting the release of the IL-1 family...

  6. A well-balanced diet combined or not with exercise induces fat mass loss without any decrease of bone mass despite bone micro-architecture alterations in obese rat.

    Science.gov (United States)

    Gerbaix, Maude; Metz, Lore; Mac-Way, Fabrice; Lavet, Cédric; Guillet, Christelle; Walrand, Stéphane; Masgrau, Aurélie; Vico, Laurence; Courteix, Daniel

    2013-04-01

    The association of a well-balanced diet with exercise is a key strategy to treat obesity. However, weight loss is linked to an accelerated bone loss. Furthermore, exercise is known to induce beneficial effects on bone. We investigated the impact of a well-balanced isoenergetic reducing diet (WBR) and exercise on bone tissue in obese rats. Sixty male rats had previously been fed with a high fat/high sucrose diet (HF/HS) for 4months to induce obesity. Then, 4 regimens were initiated for 2months: HF/HS diet plus exercise (treadmill: 50min/day, 5days/week), WBR diet plus exercise, HF/HS diet plus inactivity and WBR diet plus inactivity. Body composition and total BMD were assessed using DXA and visceral fat mass was weighed. Tibia densitometry was assessed by Piximus. Bone histomorphometry was performed on the proximal metaphysis of tibia and on L2 vertebrae (L2). Trabecular micro-architectural parameters were measured on tibia and L2 by 3D microtomography. Plasma concentration of osteocalcin and CTX were measured. Both WBR diet and exercise had decreased global weight, global fat and visceral fat mass (pdiet alone failed to alter total and tibia bone mass and BMD. However, Tb.Th, bone volume density and degree of anisotropy of tibia were decreased by the WBR diet (pdiet had involved a significant lower MS/BS and BFR/BS in L2 (pdiet inducing weight and fat mass losses did not affected bone mass and BMD of obese rats despite alterations of their bone micro-architecture. The moderate intensity exercise performed had improved the tibia BMD of obese rats without any trabecular and cortical adaptation. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Diagnosis of osteoarthritis and prognosis of tibial cartilage loss by quantification of tibia trabecular bone from MRI

    DEFF Research Database (Denmark)

    Marques, Joselene; Genant, Harry K.; Lillholm, Martin

    2013-01-01

    loss were assessed by a segmentation process. Aiming to quantify and potentially capture the structure of the trabecular bone anatomy, a machine learning approach used a set of texture features for training a classifier to recognize the trabecular bone of a knee with radiographic osteoarthritis. Using...

  8. Evidence for the prevention of bone loss in elderly and old early non-metastatic breast cancer patients treated with aromatase inhibitors

    DEFF Research Database (Denmark)

    Gunmalm, V.; Jørgensen, N. R.; Abrahamsen, B.

    2017-01-01

    Breast cancer (BC) is the most common cancer amongst women worldwide. Bone health is emerging as an important issue for BC survivors. In this literature study, we focus on agents for preventing bone loss in early non-metastatic estrogen receptor positive BC in treatment with aromatase inhibitors...... (AI) and to assess the evidence for antiresorptive treatment of bone loss in early non-metastatic breast cancer. We included randomized controlled trials (RCT's) comparing: (a) bisphosphonates and control; (b) different bisphosphonates; (c) denosumab and control and (d) bisphosphonates vs. denosumab...... in early non-metastatic BC women in AI treatment. Among antiresorptives, zoledronic acid currently has the highest evidence for prevention of AI associated bone loss in early non-metastatic BC. Data on fracture prevention among all patients, elderly and old is sparse. More randomized controlled studies...

  9. Suppressor of cytokine signaling 1 expression during LPS-induced inflammation and bone loss in rats

    Directory of Open Access Journals (Sweden)

    João Antonio Chaves de SOUZA

    2017-10-01

    Full Text Available Abstract This study aimed to characterize the dynamics of suppressor of cytokine signaling (SOCS1 expression in a rat model of lipopolysaccharide-induced periodontitis. Wistar rats in the experimental groups were injected three times/week with LPS from Escherichia coli on the palatal aspect of the first molars, and control animals were injected with vehicle (phosphate-buffered saline. Animals were sacrificed 7, 15, and 30 days after the first injection to analyze inflammation (stereometric analysis, bone loss (macroscopic analysis, gene expression (qRT-PCR, and protein expression/activation (Western blotting. The severity of inflammation and bone loss associated with LPS-induced periodontitis increased from day 7 to day 15, and it was sustained through day 30. Significant (p < 0.05 increases in SOCS1, RANKL, OPG, and IFN-γ gene expression were observed in the experimental group versus the control group at day 15. SOCS1 protein expression and STAT1 and NF-κB activation were increased throughout the 30-day experimental period. Gingival tissues affected by experimental periodontitis express SOCS1, indicating that this protein may potentially downregulate signaling events involved in inflammatory reactions and bone loss and thus may play a relevant role in the development and progression of periodontal disease.

  10. Depression and risk of fracture and bone loss: an updated meta-analysis of prospective studies.

    Science.gov (United States)

    Wu, Q; Liu, B; Tonmoy, S

    2018-03-12

    This meta-analysis pooled results from 23 qualifying individual cohort studies and found that depression was significantly associated with an increased risk of fractures and bone loss. The association between depression and risk of fracture remains controversial. We conducted a comprehensive meta-analysis to examine the effect of depression on the risk of osteoporotic fractures and bone loss. We searched databases and reviewed citations in relevant articles for eligible cohort studies. Two investigators independently conducted study selection, appraisal, and data abstraction through the use of a standardized protocol. Random effect models were used for meta-analysis. Cochrane Q and I 2 statistics were used to assess heterogeneity. Funnel plots and rank correlation tests were used to evaluate publication bias. Twenty-three studies were included for meta-analysis. In studies that reported hazard ratio (HR) as the outcome (nine studies [n = 309,862]), depression was associated with 26% increase in fracture risk (HR = 1.26, 95% CI, 1.10-1.43, p meta-analysis having modified inclusion criteria and in different subgroup analyses as well. Significant heterogeneity was observed in the meta-analysis; however, no significant publication bias was detected. Depression is associated with a significant increased risk in fracture and bone loss. Effective prevention may decrease such risk.

  11. Prevention of bone loss by vitamin D supplementation in elderly women : A randomized double-blind trial

    NARCIS (Netherlands)

    Ooms, Marcel E.; Roos, Jan C.; Bezemer, P. Dick; van der Vijgh, Wim J F; Bouter, Lex M.; Lips, Paul

    1995-01-01

    The purpose of the study was to determine the effect of vitamin D supplementation on bone turnover and bone loss in elderly women. Three hundred forty-eight women, ages 70 yr and older, were randomized to receive 400 IU vitamin D3 per day (n = 177) or placebo (n = 171), double-blind, for a period of

  12. Systemic Mesenchymal Stromal Cell Transplantation Prevents Functional Bone Loss in a Mouse Model of Age-Related Osteoporosis.

    Science.gov (United States)

    Kiernan, Jeffrey; Hu, Sally; Grynpas, Marc D; Davies, John E; Stanford, William L

    2016-05-01

    Age-related osteoporosis is driven by defects in the tissue-resident mesenchymal stromal cells (MSCs), a heterogeneous population of musculoskeletal progenitors that includes skeletal stem cells. MSC decline leads to reduced bone formation, causing loss of bone volume and the breakdown of bony microarchitecture crucial to trabecular strength. Furthermore, the low-turnover state precipitated by MSC loss leads to low-quality bone that is unable to perform remodeling-mediated maintenance--replacing old damaged bone with new healthy tissue. Using minimally expanded exogenous MSCs injected systemically into a mouse model of human age-related osteoporosis, we show long-term engraftment and markedly increased bone formation. This led to improved bone quality and turnover and, importantly, sustained microarchitectural competence. These data establish proof of concept that MSC transplantation may be used to prevent or treat human age-related osteoporosis. This study shows that a single dose of minimally expanded mesenchymal stromal cells (MSCs) injected systemically into a mouse model of human age-related osteoporosis display long-term engraftment and prevent the decline in bone formation, bone quality, and microarchitectural competence. This work adds to a growing body of evidence suggesting that the decline of MSCs associated with age-related osteoporosis is a major transformative event in the progression of the disease. Furthermore, it establishes proof of concept that MSC transplantation may be a viable therapeutic strategy to treat or prevent human age-related osteoporosis. ©AlphaMed Press.

  13. Single-nucleotide polymorphisms in the P2X7 receptor gene are associated with post-menopausal bone loss and vertebral fractures

    DEFF Research Database (Denmark)

    Rye Jørgensen, Niklas; Husted, Lise Bjerre; Skarratt, Kristen K

    2012-01-01

    to bone mass and fracture incidence in post-menopausal women. A total of 1694 women (aged 45-58) participating in the Danish Osteoporosis Prevention Study were genotyped for 12 functional P2X7 receptor variants. Bone mineral density was determined at baseline and after 10 years. In addition, vertebral...... had increased bone loss. In contrast, the Gln460Arg polymorphism was associated with protection against bone loss. The Ala348Thr polymorphism was associated with a lower vertebral fracture incidence 10 years after menopause. Finally, we developed a risk model, which integrated P2RX7 genotypes. Using...

  14. MicroCT evaluation of bone mineral density loss in human bones

    International Nuclear Information System (INIS)

    Nogueira, Liebert P.; Braz, Delson; Lopes, Ricardo T.; Barroso, Regina C.; Oliveira, Luis F.

    2007-01-01

    Bone is a connective tissue largely composed of an organic protein, collagen and the inorganic mineral hydroxyapatite [Ca 10 (PO 4 ) 6 OH 2 ], which combine to provide a mechanical and supportive role in the body. Depending on the orientation of collagen fibers, two types of bone can be distinguished: trabecular and cortical bone. Degree of mineralization is considered an important feature of bone quality. Changes in the degree of mineralization is generally due to osteoporosis, but many recent studies have already shown that alterations in degree of mineralization can occur due to a large variety of factors. The transmission X-ray microtomography is one of the most popular methods, which provides the spatial distribution of the total absorption coefficient inside the sample. The aim of this study was to investigate the suitability of using microCT as a supplementary tool for the diagnosis of the health status of human bones. Eleven samples were constructed simulating the physiological range of bone mineral density (BMD) found in cortical human bone. The samples represent healthy mixtures of swine compact bone dried at room temperature, powdered and mixed with fat (0 - 100 % by mass). The samples were imaged by a microfocus tube (Fein-Focus) with focal size of about 60 μm (±5%), and a CCD camera (0.143 mm pixel size) coupled with an intensifier tube with fluoroscope screen at the Nuclear Instrumentation Laboratory (COPPE/UFRJ), Brazil. The images were reconstructed and treated with suitable software developed at the Nuclear Instrumentation Laboratory. The mineral content in cortical bone is defined by the volume of dry, fat-free bone per unit bulk volume of the bone. The volumes were calculated from the bone density using the relationship between volume and density. The densities of fat and bone were taken to be 0.95 g.cm -3 and 1.92 g.cm -3 respectively. The correlation of the measured absorption coefficient with the mineral content in the samples was then

  15. MicroCT evaluation of bone mineral density loss in human bones

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, Liebert P.; Braz, Delson; Lopes, Ricardo T. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Lab. de Instrumentacao Nuclear]. E-mails: lnogueira@con.ufrj.br; Barroso, Regina C.; Oliveira, Luis F. [Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ (Brazil). Inst. de Fisica]. E-mail: cely@uerj.br

    2007-07-01

    Bone is a connective tissue largely composed of an organic protein, collagen and the inorganic mineral hydroxyapatite [Ca{sub 10}(PO{sub 4}){sub 6}OH{sub 2}], which combine to provide a mechanical and supportive role in the body. Depending on the orientation of collagen fibers, two types of bone can be distinguished: trabecular and cortical bone. Degree of mineralization is considered an important feature of bone quality. Changes in the degree of mineralization is generally due to osteoporosis, but many recent studies have already shown that alterations in degree of mineralization can occur due to a large variety of factors. The transmission X-ray microtomography is one of the most popular methods, which provides the spatial distribution of the total absorption coefficient inside the sample. The aim of this study was to investigate the suitability of using microCT as a supplementary tool for the diagnosis of the health status of human bones. Eleven samples were constructed simulating the physiological range of bone mineral density (BMD) found in cortical human bone. The samples represent healthy mixtures of swine compact bone dried at room temperature, powdered and mixed with fat (0 - 100 % by mass). The samples were imaged by a microfocus tube (Fein-Focus) with focal size of about 60 {mu}m ({+-}5%), and a CCD camera (0.143 mm pixel size) coupled with an intensifier tube with fluoroscope screen at the Nuclear Instrumentation Laboratory (COPPE/UFRJ), Brazil. The images were reconstructed and treated with suitable software developed at the Nuclear Instrumentation Laboratory. The mineral content in cortical bone is defined by the volume of dry, fat-free bone per unit bulk volume of the bone. The volumes were calculated from the bone density using the relationship between volume and density. The densities of fat and bone were taken to be 0.95 g.cm{sup -3} and 1.92 g.cm{sup -3} respectively. The correlation of the measured absorption coefficient with the mineral content

  16. Protective effect of Rhizoma Dioscoreae extract against alveolar bone loss in ovariectomized rats via regulation of IL-6/STAT3 signaling.

    Science.gov (United States)

    Zhang, Zhi-Guo; Chen, Yan-Jing; Xiang, Li-Hua; Pan, Jing-Hua; Wang, Zhen; Xiao, Gary Guishan; Ju, Da-Hong

    2017-11-01

    The aim of the present study was to assess the effectiveness of Rhizoma Dioscoreae extract (RDE) on preventing rat alveolar bone loss induced by ovariectomy (OVX), and to determine the role of interleukin-6 (IL-6)/signal transducer and activator of transcription 3 (STAT3) signaling pathway in this effect. Female Wistar rats were subjected to OVX or sham surgery. The rats that had undergone OVX were treated with RDE (RDE group), vehicle (OVX group) or 17β-estradiol subcutaneous injection (E2 group). Subsequently, bone metabolic activity was assessed by analyzing 3-D alveolar bone construction, bone mineral density, as well as the plasma biomarkers of bone turnover. The gene expression of alveolar bone in the OVX and RDE groups was evaluated by IL-6/STAT3 signaling pathway polymerase chain reaction (PCR) arrays, and differentially expressed genes were determined through reverse transcription-quantitative PCR. The inhibitory effect of RDE on alveolar bone loss in the OVX group was demonstrated in the study. In comparison with the OVX group, the RDE group exhibited 19 downregulated genes and 1 upregulated gene associated with the IL-6/STAT3 signaling pathway in alveolar bone. Thus, RDE was shown to relieve OVX-induced alveolar bone loss in rats, an effect which was likely associated with decreased abnormal bone remodeling via regulation of the IL-6/STAT3 signaling pathway.

  17. Protection against T1DM-Induced Bone Loss by Zinc Supplementation: Biomechanical, Histomorphometric, and Molecular Analyses in STZ-Induced Diabetic Rats.

    Directory of Open Access Journals (Sweden)

    Raul Hernandes Bortolin

    Full Text Available Several studies have established an association between diabetes and alterations in bone metabolism; however, the underlying mechanism is not well established. Although zinc is recognized as a potential preventive agent against diabetes-induced bone loss, there is no evidence demonstrating its effect in chronic diabetic conditions. This study evaluated the effects of zinc supplementation in a chronic (90 days type 1 diabetes-induced bone-loss model. Male Wistar rats were distributed in three groups: control, type 1 diabetes mellitus (T1DM, and T1DM plus zinc supplementation (T1DMS. Serum biochemical analysis; tibia histomorphometric, biomechanical, and collagen-content analyses; and femur mRNA expression were evaluated. Relative to T1DM, the zinc-supplemented group showed increased histomorphometric parameters such as TbWi and BAr and decreased TbSp, increased biomechanical parameters (maximum load, stiffness, ultimate strain, and Young's modulus, and increased type I collagen content. Interestingly, similar values for these parameters were observed between the T1DMS and control groups. These results demonstrate the protective effect of zinc on the maintenance of bone strength and flexibility. In addition, downregulation of OPG, COL1A, and MMP-9 genes was observed in T1DMS, and the anabolic effects of zinc were evidenced by increased OC expression and serum ALP activity, both related to osteoblastogenesis, demonstrating a positive effect on bone formation. In contrast, T1DM showed excessive bone loss, observed through reduced histomorphometric and biomechanical parameters, characterizing diabetes-associated bone loss. The bone loss was also observed through upregulation of OPG, COL1A, and MMP-9 genes. In conclusion, zinc showed a positive effect on the maintenance of bone architecture and biomechanical parameters. Indeed, OC upregulation and control of expression of OPG, COL1A, and MMP-9 mRNAs, even in chronic hyperglycemia, support an anabolic

  18. Evaluation of bone loss due to primary occlusal trauma in two experimental models of occlusal overload

    Directory of Open Access Journals (Sweden)

    Ana Cristina Távora de Albuquerque LOPES

    Full Text Available Abstract Introduction Primary occlusal trauma (OT is an injury of the periodontium with normal height as a result of occlusal forces which exceed their adaptive capacity. Objective To evaluate, histometrically, the alveolar bone loss in the furcation region of rats experimentally submitted to 2 models of occlusal overload. Material and method 45 animals randomly divided into 3 groups: Occlusal Interference (OI, n = 15 - fixing an orthodontic wire segment on the occlusal surface of the first lower molar; Occlusal Overload (OO, n = 15 - wearing of the cusps of the lower contralateral molars, the second and third molars next to the first molar that had its dimensions maintained; Negative Control (NC, n = 15 - evaluation of the initial dimensions of the periodontal ligament (PL. Five animals / group were sacrificed after 14, 21 and 28 days. Result Intergroup evaluation showed significant bone loss in OI (p0.05. The thickness of the PL remained stable in NC (p>0.05. Conclusion OI and OO were effective in the experimental reproduction of OT, and OI promoted greater alveolar bone loss compared to OO, showing that the impact of occlusal overload in OI increased the extent of the OT injury.

  19. An altered hormonal profile and elevated rate of bone loss are associated with low bone mass in professional horse-racing jockeys.

    Science.gov (United States)

    Dolan, Eimear; McGoldrick, Adrian; Davenport, Colin; Kelleher, Grainne; Byrne, Brendan; Tormey, William; Smith, Diarmuid; Warrington, Giles D

    2012-09-01

    Horse-racing jockeys are a group of weight-restricted athletes, who have been suggested as undertaking rapid and extreme weight cycling practices in order to comply with stipulated body-mass standards. The aim of this study was to examine bone mass, turnover and endocrine function in jockeys and to compare this group with age, gender and body mass index matched controls. Twenty male professional jockeys and 20 healthy male controls participated. Dual energy X-ray absorptiometry scans and early morning fasting blood and urine samples were used to measure bone mass, turnover and a hormonal profile. Total body bone mineral density (BMD) was significantly lower in jockeys (1.143 ± 0.05 vs. 1.27 ± 0.06 g cm(-3), p professional jockeys have an elevated rate of bone loss and reduced bone mass that appears to be associated with disrupted hormonal activity. It is likely that this may have occurred in response to the chronic weight cycling habitually experienced by this group.

  20. Exercise Countermeasures for Bone Loss During Space Flight: A Method for the Study of Ground Reaction Forces and their Implications for Bone Strain

    Science.gov (United States)

    Peterman, M.; McCrory, J. L.; Sharkey, N. A.; Piazza, S.; Cavanagh, P. R.

    1999-01-01

    Effective countermeasures to prevent loss of bone mineral during long duration space flight remain elusive. Despite an exercise program on MIR flights, the data from LeBlanc et al. (1996) indicated that there was still a mean rate of loss of bone mineral density in the proximal femur of 1.58% per month (n=18, flight duration 4 - 14.4 months). The specific mechanisms regulating bone mass are not known, but most investigators agree that bone maintenance is largely dependent upon mechanical demand and the resultant local bone strains. A plausible hypothesis is that bone loss during space flight, such as that reported by LeBlanc et al. (1996), may result from failure to effectively load the skeleton in order to generate localized bone strains of sufficient magnitude to prevent disuse osteoporosis. A variety of methods have been proposed to simulate locomotor exercise in reduced gravity. In such simulations, and in an actual microgravity environment, a gravity replacement load (GRL) must always be added to return the exercising subject to the support surface and the resulting skeletal load is critically dependent upon the magnitude of the GRL. To our knowledge, GRLs during orbital flight have only been measured once (on STS 81) and it is likely that most or all prior treadmill exercise in space has used GRLs that were less than one body weight. McCrory (1997) has shown that subjects walking and running in simulated zero-G can tolerate GRLs of 1 if an appropriate harness is used. Several investigators have attempted to measure in vivo strains and forces in the bones of humans, but have faced ethical and technical limitations. The anteromedial aspect of the tibial midshaft has been a common site for the placement of strain gauges; one reason to measure strains in the anterior tibia is that this region is surgically accessible. Aamodt et al. (1997) were able to measure strains on the lateral surface of the proximal femur only because their experimental subjects were

  1. Cellular and Matrix Response of the Mandibular Condylar Cartilage to Botulinum Toxin.

    Directory of Open Access Journals (Sweden)

    Eliane H Dutra

    Full Text Available To evaluate the cellular and matrix effects of botulinum toxin type A (Botox on mandibular condylar cartilage (MCC and subchondral bone.Botox (0.3 unit was injected into the right masseter of 5-week-old transgenic mice (Col10a1-RFPcherry at day 1. Left side masseter was used as intra-animal control. The following bone labels were intraperitoneally injected: calcein at day 7, alizarin red at day 14 and calcein at day 21. In addition, EdU was injected 48 and 24 hours before sacrifice. Mice were sacrificed 30 days after Botox injection. Experimental and control side mandibles were dissected and examined by x-ray imaging and micro-CT. Subsequently, MCC along with the subchondral bone was sectioned and stained with tartrate resistant acid phosphatase (TRAP, EdU, TUNEL, alkaline phosphatase, toluidine blue and safranin O. In addition, we performed immunohistochemistry for pSMAD and VEGF.Bone volume fraction, tissue density and trabecular thickness were significantly decreased on the right side of the subchondral bone and mineralized cartilage (Botox was injected when compared to the left side. There was no significant difference in the mandibular length and condylar head length; however, the condylar width was significantly decreased after Botox injection. Our histology showed decreased numbers of Col10a1 expressing cells, decreased cell proliferation and increased cell apoptosis in the subchondral bone and mandibular condylar cartilage, decreased TRAP activity and mineralization of Botox injected side cartilage and subchondral bone. Furthermore, we observed reduced proteoglycan and glycosaminoglycan distribution and decreased expression of pSMAD 1/5/8 and VEGF in the MCC of the Botox injected side in comparison to control side.Injection of Botox in masseter muscle leads to decreased mineralization and matrix deposition, reduced chondrocyte proliferation and differentiation and increased cell apoptosis in the MCC and subchondral bone.

  2. Marked disparity between trabecular and cortical bone loss with age in healthy men. Measurement by vertebral computed tomography and radial photon absorptiometry

    International Nuclear Information System (INIS)

    Meier, D.E.; Orwoll, E.S.; Jones, J.M.

    1984-01-01

    To define age-related changes in bone mineral content in normal men, we measured radial (proximal and distal) and vertebral bone mineral content in 62 men aged 30 to 92 years. Radial bone mineral content (largely cortical bone) was measured by single photon absorptiometry, and trabecular vertebral content (T12, L1 to L3) by computed tomography. Radial bone mineral content fell gradually (2% to 3.4% per decade) with age, but vertebral trabecular content fell more rapidly (12% per decade). Body size was not associated with the rate of bone loss from the distal radial and vertebral sites, but men with lower surface areas lost bone more rapidly at the predominantly cortical proximal radial site. The fact that radial cortical bone mineral content falls much less rapidly than vertebral trabecular content with age and is also associated with surface area indicates that trabecular and cortical bone compartments may be independently modulated. Age-related bone loss should not be considered a homogeneous process

  3. Suppression Effect of Astaxanthin on Osteoclast Formation In Vitro and Bone Loss In Vivo

    Directory of Open Access Journals (Sweden)

    Yun-Ho Hwang

    2018-03-01

    Full Text Available Osteoporosis is characterized by a reduction of the bone mineral density (BMD and microarchitectural deterioration of the bone, which lead to bone fragility and susceptibility to fracture. Astaxanthin (AST has a variety of biological activities, such as a protective effect against asthma or neuroinflammation, antioxidant effect, and decrease of the osteoclast number in the right mandibles in the periodontitis model. Although treatment with AST is known to have an effect on inflammation, no studies on the effect of AST exposure on bone loss have been performed. Thus, in the present study, we examined the antiosteoporotic effect of AST on bone mass in ovariectomized (OVX mice and its possible mechanism of action. The administration of AST (5, 10 mg/kg for 6 weeks suppressed the enhancement of serum calcium, inorganic phosphorus, alkaline phosphatase, total cholesterol, and tartrate-resistant acid phosphatase (TRAP activity. The bone mineral density (BMD and bone microarchitecture of the trabecular bone in the tibia and femur were recovered by AST exposure. Moreover, in the in vitro experiment, we demonstrated that AST inhibits osteoclast formation through the expression of the nuclear factor of activated T cells (NFAT c1, dendritic cell-specific transmembrane protein (DC-STAMP, TRAP, and cathepsin K without any cytotoxic effects on bone marrow-derived macrophages (BMMs. Therefore, we suggest that AST may have therapeutic potential for the treatment of postmenopausal osteoporosis.

  4. Effects of electromagnetic fields on bone loss in hyperthyroidism rat model.

    Science.gov (United States)

    Liu, Chaoxu; Zhang, Yingchi; Fu, Tao; Liu, Yang; Wei, Sheng; Yang, Yong; Zhao, Dongming; Zhao, Wenchun; Song, Mingyu; Tang, Xiangyu; Wu, Hua

    2017-02-01

    Optimal therapeutics for hyperthyroidism-induced osteoporosis are still lacking. As a noninvasive treatment, electromagnetic fields (EMF) have been proven to be effective for treating osteoporosis in non-hyperthyroidism conditions. We herein systematically evaluated the reduced effects of EMF on osteoporosis in a hyperthyroidism rat model. With the use of Helmholtz coils and an EMF stimulator, 15 Hz/1 mT EMF was generated. Forty-eight 5-month-old male Sprague-Dawley rats were randomly divided into four different groups: control, levothyroxine treated (L-T4), EMF exposure + levothyroxine (EMF + L-T4), and EMF exposure without levothyroxine administration (EMF). All rats were treated with L-T4 (100 mg/day) except those in control and EMF groups. After 12 weeks, the results obtained from bone mineral density analyses and bone mechanical measurements showed significant differences between L-T4 and EMF + L-T4 groups. Micro CT and bone histomorphometric analyses indicated that trabecular bone mass and architecture in distal femur and proximal tibia were augmented and restored partially in EMF + L-T4 group. In addition, bone thyroid hormone receptors (THR) expression of hyperthyroidism rats was attenuated in EMF + L-T4 group, compared to control group, which was not observed in L-T4 group. According to these results, we concluded that 15 Hz/1 mT EMF significantly inhibited bone loss and micro architecture deterioration in hyperthyroidism rats, which might occur due to reduced THR expression caused by EMF exposure. Bioelectromagnetics. 38:137-150, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. Minimally Manipulated Bone Marrow Concentrate Compared with Microfracture Treatment of Full-Thickness Chondral Defects: A One-Year Study in an Equine Model.

    Science.gov (United States)

    Chu, Constance R; Fortier, Lisa A; Williams, Ashley; Payne, Karin A; McCarrel, Taralyn M; Bowers, Megan E; Jaramillo, Diego

    2018-01-17

    Microfracture is commonly performed for cartilage repair but usually results in fibrocartilage. Microfracture augmented by autologous bone marrow concentrate (BMC) was previously shown to yield structurally superior cartilage repairs in an equine model compared with microfracture alone. The current study was performed to test the hypothesis that autologous BMC without concomitant microfracture improves cartilage repair compared with microfracture alone. Autologous sternal bone marrow aspirate (BMA) was concentrated using a commercial system. Cells from BMC were evaluated for chondrogenic potential in vitro and in vivo. Bilateral full-thickness chondral defects (15-mm diameter) were created on the midlateral trochlear ridge in 8 horses. Paired defects were randomly assigned to treatment with BMC without concomitant microfracture, or to microfracture alone. The repairs were evaluated at 1 year by in vitro assessment, arthroscopy, morphological magnetic resonance imaging (MRI), quantitative T2-weighted and ultrashort echo time enhanced T2* (UTE-T2*) MRI mapping, and histological assessment. Culture-expanded but not freshly isolated cells from BMA and BMC underwent cartilage differentiation in vitro. In vivo, cartilage repairs in both groups were fibrous to fibrocartilaginous at 1 year of follow-up, with no differences observed between BMC and microfracture by arthroscopy, T2 and UTE-T2* MRI values, and histological assessment (p > 0.05). Morphological MRI showed subchondral bone changes not observed by arthroscopy and improved overall outcomes for the BMC repairs (p = 0.03). Differences in repair tissue UTE-T2* texture features were observed between the treatment groups (p BMC was applied directly to critical-sized, full-thickness chondral defects in an equine model, the cartilage repair results were similar to those of microfracture. Our data suggest that, given the few mesenchymal stem cells in minimally manipulated BMC, other mechanisms such as paracrine, anti

  6. Qualitative assessment of bone density at the distal articulating surface of the third metacarpal in Thoroughbred racehorses with and without condylar fracture.

    Science.gov (United States)

    Loughridge, A B; Hess, A M; Parkin, T D; Kawcak, C E

    2017-03-01

    Changes in subchondral bone density, induced by the repetitive cyclical loading of exercise, may potentiate fatigue damage and the risk of fracture. To use computed tomography (CT) to characterise bone density patterns at the articular surface of the third metacarpal bone in racehorses with and without lateral condylar fractures. Case control METHODS: Computed tomographic images of the distal articulating surface of the third metacarpal bone were obtained from Thoroughbred racehorses subjected to euthanasia in the UK. Third metacarpal bones were divided into 3 groups based on lateral condyle status; fractured (FX, n = 42), nonfractured contralateral condyle (NFX, n = 42) and control condyles from horses subjected to euthanasia for reasons unrelated to the third metacarpal bone (control, n = 94). Colour CT images were generated whereby each colour represented a range of pixel values and thus a relative range of bone density. A density value was calculated qualitatively by estimating the percentage of each colour within a specific region. Subchondral bone density was assessed in 6 regions from dorsal to palmar and 1 mm medial and lateral to the centre of the lateral parasagittal groove in NFX and control condyles and 1 mm medial and lateral to the fracture in FX condyles. Bone density was significantly higher in the FX and NFX condyles compared with control condyles for all 6 regions. A significantly higher bone density was observed in FX condyles relative to NFX condyles in the lateral middle and lateral palmar regions. Fractured condyles had increased heterogeneity in density among the 6 regions of interest compared with control and NFX condyles. Adjacent to the fracture, a focal increase in bone density and increased heterogeneity of density were characteristic of limbs with lateral condylar fractures compared with control and NFX condyles. These differences may represent pathological changes in bone density that increase the risk for lateral condylar fractures in

  7. Bone-anchored hearing aids in conductive and mixed hearing losses: why do patients reject them?

    Science.gov (United States)

    Siau, Richard T K; Dhillon, Baljeet; Siau, Derrick; Green, Kevin M J

    2016-10-01

    This study aimed to report the bone-anchored hearing aid uptake rate and the reasons for their rejection by patients with conductive and mixed hearing losses. A retrospective review was performed of 113 consecutive patients with unilateral or bilateral conductive or mixed hearing loss referred to the Greater Manchester bone-anchored hearing aid (BAHA) programme between September 2008 and August 2011. 98 (86.7 %) patients were deemed audiologically suitable for BAHA implantation. Of these, 38 (38.8 %) had BAHA implanted; 60 (61.2 %) patients declined. Of those who declined, 27 (45 %) cited anxiety over surgery, 18 (30 %) cited cosmetic reasons, 16 (26.7 %) perceived limited benefit from the device and six (10 %) preferred conventional hearing aids. Our study highlights a 38.8 % BAHA uptake rate in audiologically suitable patients. The main reasons cited for rejection of BAHA were anxiety over surgery and cosmetic concerns. It is important that clinicians address these early during consultation with prospective BAHA recipients and avoid rushing to implant these patients with a bone-anchored hearing aid.

  8. Progesterone and Bone: Actions Promoting Bone Health in Women

    Directory of Open Access Journals (Sweden)

    Vanadin Seifert-Klauss

    2010-01-01

    Full Text Available Estradiol (E2 and progesterone (P4 collaborate within bone remodelling on resorption (E2 and formation (P4. We integrate evidence that P4 may prevent and, with antiresorptives, treat women's osteoporosis. P4 stimulates osteoblast differentiation in vitro. Menarche (E2 and onset of ovulation (P4 both contribute to peak BMD. Meta-analysis of 5 studies confirms that regularly cycling premenopausal women lose bone mineral density (BMD related to subclinical ovulatory disturbances (SODs. Cyclic progestin prevents bone loss in healthy premenopausal women with amenorrhea or SOD. BMD loss is more rapid in perimenopause than postmenopause—decreased bone formation due to P4 deficiency contributes. In 4 placebo-controlled RCTs, BMD loss is not prevented by P4 in postmenopausal women with increased bone turnover. However, 5 studies of E2-MPA co-therapy show greater BMD increases versus E2 alone. P4 fracture data are lacking. P4 prevents bone loss in pre- and possibly perimenopausal women; progesterone co-therapy with antiresorptives may increase bone formation and BMD.

  9. Science and animal models of marrow stimulation for cartilage repair.

    Science.gov (United States)

    Fortier, Lisa A; Cole, Brian J; McIlwraith, C Wayne

    2012-03-01

    Microfracture of subchondral bone to enhance cartilage repair is a popular surgical technique used in human and animal patients. Clinical results with resolution or improvement in pain are promising and last on average for 2 to 3 years. Animal studies aimed at understanding microfracture indicate that the repair tissue continues to remodel toward chondrogenesis for at least a year, but longer term results are not available to gain insight into the mechanism of microfracture function or failure over time. Subchondral bone sclerosis and central lesional osteophyte formation following subchondral bone microfracture have been observed in animal models of microfracture, but studies do not provide any insight into the etiology of these pathologies. The continued maturation of microfracture repair tissue over time supports further investigation of microfracture or microfracture-augmented cartilage repair procedures with caution for the investigator and clinician to be observant for conditions that lead to subchondral bone sclerosis or central osteophyte formation, and what affect these boney reactions have on clinical outcome.

  10. Comparison of two methods for alveolar bone loss measurement in an experimental periodontal disease model in rats

    Directory of Open Access Journals (Sweden)

    Diego Nique Liberman

    2011-02-01

    Full Text Available There are many studies that evaluate possible risk factors for periodontal diseases in animals. Most of them have focused only on the biological aspects of disease occurrence; therefore, it has been difficult to compare studies of the different methodological approaches. The aim of the present study was to compare different methods - linear and area - of the evaluation of morphometrical alveolar bone loss. Sixty hemimaxillae, defleshed and stained with 1% methylene blue to delineate the cementoenamel junction and alveolar bone crest, were obtained from a previous study that induced periodontal disease by means of ligatures in two groups of fifteen Wistar rats during 9 weeks. Ligatures were placed around the right upper second molars, and the contra-lateral teeth remained as intra-group controls. Digital photographs were taken from the specimens and submitted to a single, calibrated, blind examiner who performed the morphometrical evaluation of alveolar bone loss using both linear and area methods. Mean values of linear and area measurements were obtained from each side - buccal and palatal - of the specimens. The degree of association between the two methods was determined by Pearson's Correlation Coefficient. An almost perfect association (0.98 was determined between the linear and area evaluations. A mathematical formula was subsequently created to estimate the total area of alveolar bone loss, from linear mean measurements. Both methods were suitable for detecting bone level alterations. The results of the present study allow for the transformation of data and better compilation of results from different studies.

  11. Influence of surgical and prosthetic techniques on marginal bone loss around titanium implants. Part I: immediate loading in fresh extraction sockets.

    Science.gov (United States)

    Berberi, Antoine N; Tehini, Georges E; Noujeim, Ziad F; Khairallah, Alexandre A; Abousehlib, Moustafa N; Salameh, Ziad A

    2014-10-01

    Delayed placement of implant abutments has been associated with peri-implant marginal bone loss; however, long-term results obtained by modifying surgical and prosthetic techniques after implant placement are still lacking. This study aimed to evaluate the marginal bone loss around titanium implants placed in fresh extraction sockets using two loading protocols after a 5-year follow-up period. A total of 36 patients received 40 titanium implants (Astra Tech) intended for single-tooth replacement. Implants were immediately placed into fresh extraction sockets using either a one-stage (immediate loading by placing an interim prosthesis into functional occlusion) or a two-stage prosthetic loading protocol (insertion of abutments after 8 weeks of healing time). Marginal bone levels relative to the implant reference point were evaluated at four time intervals using intraoral radiographs: at time of implant placement, and 1, 3, and 5 years after implant placement. Measurements were obtained from mesial and distal surfaces of each implant (α = 0.05). One-stage immediate implant placement into fresh extraction sockets resulted in a significant reduction in marginal bone loss (p sockets reduced marginal bone loss and did not compromise the success rate of the restorations. © 2014 by the American College of Prosthodontists.

  12. Retaining Residual Ovarian Tissue following Ovarian Failure Has Limited Influence on Bone Loss in Aged Mice

    Directory of Open Access Journals (Sweden)

    Zelieann R. Craig

    2010-01-01

    Full Text Available Previous work showed that retaining residual ovarian tissue protects young mice from accelerated bone loss following ovarian failure. The present study was designed to determine whether this protection is also present in aged animals. Aged (9–12 months C57BL/6Hsd female mice were divided into: CON (vehicle, VCD (160 mg/kg; 15d, or OVX (ovariectomized. Lumbar BMD was monitored by DXA and μCT used to assess vertebral microarchitecture. BMD was not different between VCD and CON at any time point but was lower (P<.05 than baseline, starting 1 month after ovarian failure in VCD and OVX mice. Following μCT analysis there were no differences between CON and VCD, but OVX mice had lower bone volume fraction, trabecular thickness, and a trend for decreased connectivity density. These findings provide evidence that retention of residual ovarian tissue may protect aged follicle-depleted mice from accelerated bone loss to a lesser extent than that observed in young mice.

  13. X-ray phase contrast imaging of the bone-cartilage interface

    International Nuclear Information System (INIS)

    Ismail, Elna Che; Kaabar, W.; Garrity, D.; Gundogdu, O.; Bunk, O.; Pfeiffer, F.; Farquharson, M.J.; Bradley, D.A.

    2010-01-01

    Synovial joints articulate in a lubricating environment, the system providing for smooth articulation. The articular cartilage overlying the bone consists of a network of collagen fibres. This network is essential to cartilage integrity, suffering damage in degenerative joint disease such as osteoarthritis. At Surrey and also in work conducted by this group at the Paul Scherrer Institute (PSI) synchrotron site we have been applying a number of techniques to study the bone-cartilage interface and of changes occurring in this with disease. One of the techniques attracting particular interest is X-ray phase contrast imaging, yielding information on anatomical features that manifest from the large scale organisation of collagen and the mineralised phase contained within the collagen fibres in the deep cartilage zone. This work briefly reviews some of the basic supporting physics of X-ray phase contrast imaging and then shows example images of the articular surface and subchondral bone and other supporting results obtained to-date. Present results have been obtained on sections of bone not displaying evidence of an osteoarthritic lesion and can be used as a baseline against which diseased bone can be compared.

  14. X-ray phase contrast imaging of the bone-cartilage interface

    Energy Technology Data Exchange (ETDEWEB)

    Ismail, Elna Che; Kaabar, W.; Garrity, D.; Gundogdu, O. [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom); Bunk, O. [Paul Scherrer Institut, CH-5232 Villigen (Switzerland); Pfeiffer, F. [Paul Scherrer Institut, CH-5232 Villigen (Switzerland); Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne (Switzerland); Farquharson, M.J. [Department of Radiography, City University, London EC1V OHB (United Kingdom); Bradley, D.A. [Department of Physics, University of Surrey, Guildford GU2 7XH (United Kingdom)], E-mail: d.a.bradley@surrey.ac.uk

    2010-04-15

    Synovial joints articulate in a lubricating environment, the system providing for smooth articulation. The articular cartilage overlying the bone consists of a network of collagen fibres. This network is essential to cartilage integrity, suffering damage in degenerative joint disease such as osteoarthritis. At Surrey and also in work conducted by this group at the Paul Scherrer Institute (PSI) synchrotron site we have been applying a number of techniques to study the bone-cartilage interface and of changes occurring in this with disease. One of the techniques attracting particular interest is X-ray phase contrast imaging, yielding information on anatomical features that manifest from the large scale organisation of collagen and the mineralised phase contained within the collagen fibres in the deep cartilage zone. This work briefly reviews some of the basic supporting physics of X-ray phase contrast imaging and then shows example images of the articular surface and subchondral bone and other supporting results obtained to-date. Present results have been obtained on sections of bone not displaying evidence of an osteoarthritic lesion and can be used as a baseline against which diseased bone can be compared.

  15. Impact of intra- and extra-osseous soft tissue composition on changes in bone mineral density with weight loss and regain.

    Science.gov (United States)

    Bosy-Westphal, Anja; Later, Wiebke; Schautz, Britta; Lagerpusch, Merit; Goele, Kristin; Heller, Martin; Glüer, Claus-C; Müller, Manfred J

    2011-07-01

    Recent studies report a significant gain in bone mineral density (BMD) after diet-induced weight loss. This might be explained by a measurement artefact. We therefore investigated the impact of intra- and extra-osseous soft tissue composition on bone measurements by dual X-ray absorptiometry (DXA) in a longitudinal study of diet-induced weight loss and regain in 55 women and 17 men (19-46 years, BMI 28.2-46.8 kg/m(2)). Total and regional BMD were measured before and after 12.7 ± 2.2 week diet-induced weight loss and 6 months after significant weight regain (≥30%). Hydration of fat free mass (FFM) was assessed by a 3-compartment model. Skeletal muscle (SM) mass, extra-osseous adipose tissue, and bone marrow were measured by whole body magnetic resonance imaging (MRI). Mean weight loss was -9.2 ± 4.4 kg (P BMAT) were not related to changes in BMD.

  16. The Effect of Subcritical Bone Loss and Exposure on Recurrent Instability After Arthroscopic Bankart Repair in Intercollegiate American Football.

    Science.gov (United States)

    Dickens, Jonathan F; Owens, Brett D; Cameron, Kenneth L; DeBerardino, Thomas M; Masini, Brendan D; Peck, Karen Y; Svoboda, Steven J

    2017-07-01

    There is no consensus on the optimal method of stabilization (arthroscopic or open) in collision athletes with anterior shoulder instability. To examine the effect of "subcritical" bone loss and football-specific exposure on the rate of recurrent shoulder instability after arthroscopic stabilization in an intercollegiate American football population. Case-control study; Level of evidence, 3. Fifty intercollegiate football players underwent primary arthroscopic stabilization for anterior shoulder instability and returned to football for at least a single season. Preoperatively, 32 patients experienced recurrent subluxations, and 18 patients experienced a single or recurrent dislocation. Shoulders with glenoid bone loss >20%, an engaging Hill-Sachs lesion, an off-track lesion, and concomitant rotator cuff repair were excluded from the study. The primary outcome of interest was the ability to return to football without subsequent instability. Patients were followed for time to a subsequent instability event after return to play using days of exposure to football and total follow-up time after arthroscopic stabilization. Fifty consecutive patients returned to American football for a mean 1.5 seasons (range, 1-3) after arthroscopic stabilization. Three of 50 (6%; 95% CI, 1.3%-16.5%) patients experienced recurrent instability. There were no subsequent instability events after a mean 3.2 years of military service. All shoulders with glenoid bone loss >13.5% (n = 3) that underwent arthroscopic stabilization experienced recurrent instability upon returning to sport, while none of the shoulders with football ( X 2 = 15.80, P 13.5% glenoid bone loss had an incidence rate of 5.31 cases of recurrent instability per 1000 athlete-exposures of football. In 72,000 athlete-exposures to football with football players with <13.5% glenoid bone loss provides reliable outcomes and low recurrence rates.

  17. Treatments to Prevent Bone Loss in Functional Hypothalamic Amenorrhea: A Systematic Review and Meta-Analysis

    OpenAIRE

    Altayar, Osama; Al Nofal, Alaa; Carranza Leon, B. Gisella; Prokop, Larry J.; Wang, Zhen; Murad, M. Hassan

    2017-01-01

    Objective: We conducted a systematic review and meta-analysis of studies that evaluated the effect of hormonal therapy [estrogen therapy including oral contraceptive pills (OCP)] and bisphosphonates in preventing bone loss in patients with functional hypothalamic amenorrhea (FHA). Methods: We searched several electronic databases for controlled and noncontrolled studies that enrolled females of any age presenting with FHA (including athletic, weight loss, and stress-associated amenorrhea/olig...

  18. Combined nanoindentation testing and scanning electron microscopy of bone and articular calcified cartilage in an equine fracture predilection site.

    Science.gov (United States)

    Doube, M; Firth, E C; Boyde, A; Bushby, A J

    2010-06-03

    Condylar fracture of the third metacarpal bone (Mc3) is the commonest cause of racetrack fatality in Thoroughbred horses. Linear defects involving hyaline articular cartilage, articular calcified cartilage (ACC) and subchondral bone (SCB) have been associated with the fracture initiation site, which lies in the sagittal grooves of the Mc3 condyle. We discovered areas of thickened and abnormally-mineralised ACC in the sagittal grooves of several normal 18-month-old horses, at the same site that linear defects and condylar fracture occur in older Thoroughbreds and questioned whether this tissue had altered mechanical properties. We embedded bone slices in PMMA, prepared flat surfaces normal to the articular surface and studied ACC and SCB using combined quantitative backscattered electron scanning electron microscopy (qBSE) and nanoindentation testing: this allowed correlation of mineralisation density and tissue stiffness (E) at the micron scale. We studied both normal and affected grooves, and also normal condylar regions. Large arrays of indentations could be visualised as 2-dimensional maps of E with a limit to resolution of indentation spacing, which is much larger than qBSE pixel spacing. ACC was more highly mineralised but less stiff in early linear defects than in control regions, while subchondral bone was more highly mineralised and stiffer in specimens with early linear defects than those without. Thus both ACC and SCB mineralisation may be abnormal in a class of early linear defect in 18-month-old Thoroughbred horses, and this may possibly contribute to later fracture of the Mc3 condyle.

  19. Combined nanoindentation testing and scanning electron microscopy of bone and articular calcified cartilage in an equine fracture predilection site

    Directory of Open Access Journals (Sweden)

    M Doube

    2010-06-01

    Full Text Available Condylar fracture of the third metacarpal bone (Mc3 is the commonest cause of racetrack fatality in Thoroughbred horses. Linear defects involving hyaline articular cartilage, articular calcified cartilage (ACC and subchondral bone (SCB have been associated with the fracture initiation site, which lies in the sagittal grooves of the Mc3 condyle. We discovered areas of thickened and abnormally-mineralised ACC in the sagittal grooves of several normal 18-month-old horses, at the same site that linear defects and condylar fracture occur in older Thoroughbreds and questioned whether this tissue had altered mechanical properties. We embedded bone slices in PMMA, prepared flat surfaces normal to the articular surface and studied ACC and SCB using combined quantitative backscattered electron scanning electron microscopy (qBSE and nanoindentation testing: this allowed correlation of mineralisation density and tissue stiffness (E at the micron scale. We studied both normal and affected grooves, and also normal condylar regions. Large arrays of indentations could be visualised as 2-dimensional maps of E with a limit to resolution of indentation spacing, which is much larger than qBSE pixel spacing. ACC was more highly mineralised but less stiff in early linear defects than in control regions, while subchondral bone was more highly mineralised and stiffer in specimens with early linear defects than those without. Thus both ACC and SCB mineralisation may be abnormal in a class of early linear defect in 18-month-old Thoroughbred horses, and this may possibly contribute to later fracture of the Mc3 condyle.

  20. Polycythemia is associated with bone loss and reduced osteoblast activity in mice.

    Science.gov (United States)

    Oikonomidou, P R; Casu, C; Yang, Z; Crielaard, B; Shim, J H; Rivella, S; Vogiatzi, M G

    2016-04-01

    Increased fragility has been described in humans with polycythemia vera (PV). Herein, we describe an osteoporotic phenotype associated with decreased osteoblast activity in a mouse model of PV and another mouse of polycythemia and elevated circulating erythropoietin (EPO). Our results are important for patients with PV or those treated with recombinant EPO (rEPO). PV and other myeloproliferative syndromes have been recently associated with an increased risk for fractures. However, the presence of osteoporosis in these patients has not been well documented. EPO, a hormone primarily known to stimulate erythropoiesis, has been shown recently to regulate bone homeostasis in mice. The aim of this study was to examine the bone phenotype of a mouse model of PV and compare it to that of animals with polycythemia caused by elevated circulating EPO. Bone mass and remodeling were evaluated by micro-computed tomography and histomorphometry. The JAK2(V617F) knock-in mouse, a model of human PV, manifests polycythemia and low circulating EPO levels. Results from this mouse were compared to wild type (wt) controls and the tg6 transgenic mouse that shows polycythemia caused by increased constitutive expression of EPO. Compared to wt, both JAK2(V617F) and tg6 mice had a decrease in trabecular bone mass. Tg6 mice showed an additional modest decrease in cortical thickness and cortical bone volume per tissue volume (P Polycythemia caused by chronically elevated circulating EPO also results in bone loss, and implications on patients treated with rEPO should be evaluated.

  1. The protective effect of Rhizoma Dioscoreae extract against alveolar bone loss in ovariectomized rats via regulating Wnt and p38 MAPK signaling.

    Science.gov (United States)

    Zhang, Zhiguo; Xiang, Lihua; Bai, Dong; Wang, Wenlai; Li, Yan; Pan, Jinghua; Liu, Hong; Wang, Shaojun; Xiao, Gary Guishan; Ju, Dahong

    2014-12-12

    The aim of this study was to evaluate the osteoprotective effect of aqueous Rhizoma Dioscoreae extract (RDE) on the alveolar bone of rats with ovariectomy-induced bone loss. Female Wistar rats were subjected to either ovariectomy or a sham operation (SHAM). The ovariectomized (OVX) rats were treated with vehicle (OVX) or RDE by oral gavage or with 17β-estradiol (E2) subcutaneously. After treatments, the bone mineral density (BMD), the three-dimensional bone architecture of the alveolar bone and the plasma biomarkers of bone turnover were analyzed to assess bone metabolism, and the histomorphometry of the alveolar bone was observed. Microarrays were used to evaluate gene expression profiles in alveolar bone from RDE-treated and OVX rats. The differential expression of genes was further analyzed using Ingenuity Pathway Analysis (IPA). The key findings were verified using real-time quantitative RT-PCR (qRT-PCR). Our results showed that RDE inhibited alveolar bone loss in OVX rats. Compared to the OVX rats, the RDE-treated rats showed upregulated expression levels of 207 genes and downregulated expression levels of 176 genes in the alveolar bone. The IPA showed that several genes had the potential to code for proteins that were involved in the Wnt/β-catenin signaling pathway (Wnt7a, Fzd2, Tcf3, Spp1, Frzb, Sfrp2 and Sfrp4) and the p38 MAPK signaling pathway (Il1rn and Mapk14). These experiments revealed that RDE could inhibit ovariectomy-induced alveolar bone loss in rats. The mechanism of this anti-osteopenic effect in alveolar bone may be involved in the reduced abnormal bone remodeling, which is associated with the modulation of the Wnt/β-catenin and the p38 MAPK signaling pathways via gene regulation.

  2. Niclosamide suppresses RANKL-induced osteoclastogenesis and prevents LPS-induced bone loss

    Energy Technology Data Exchange (ETDEWEB)

    Cheon, Yoon-Hee [Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, Jeonbuk 570-749 (Korea, Republic of); Kim, Ju-Young [Imaging Science-based Lung and Bone Diseases Research Center, Wonkwang University School of Medicine, Iksan, Jeonbuk 570-749 (Korea, Republic of); Baek, Jong Min; Ahn, Sung-Jun [Department of Anatomy, School of Medicine, Wonkwang University School of Medicine, Iksan, Jeonbuk 570-749 (Korea, Republic of); So, Hong-Seob, E-mail: jeanso@wku.ac.kr [Center for Metabolic Function Regulation, Wonkwang University School of Medicine, Iksan, Jeonbuk 570-749 (Korea, Republic of); Oh, Jaemin, E-mail: jmoh@wku.ac.kr [Imaging Science-based Lung and Bone Diseases Research Center, Wonkwang University School of Medicine, Iksan, Jeonbuk 570-749 (Korea, Republic of); Department of Anatomy, School of Medicine, Wonkwang University School of Medicine, Iksan, Jeonbuk 570-749 (Korea, Republic of); Institute for Skeletal Disease, Wonkwang University School of Medicine, Iksan, Jeonbuk 570-749 (Korea, Republic of)

    2016-02-05

    Niclosamide (5-chloro-salicyl-(2-chloro-4-nitro) anilide) is an oral anthelmintic drug used for treating intestinal infection of most tapeworms. Recently, niclosamide was shown to have considerable efficacy against some tumor cell lines, including colorectal, prostate, and breast cancers, and acute myelogenous leukemia. Specifically, the drug was identified as a potent inhibitor of signal transducer and activator of transcription 3 (STAT3), which is associated with osteoclast differentiation and function. In this study, we assessed the effect of niclosamide on osteoclastogenesis in vitro and in vivo. Our in vitro study showed that receptor activator of nuclear factor-kappaB ligand (RANKL)-induced osteoclast differentiation was inhibited by niclosamide, due to inhibition of serine–threonine protein kinase (Akt) phosphorylation, inhibitor of nuclear factor-kappaB (IκB), and STAT3 serine{sup 727}. Niclosamide decreased the expression of the major transcription factors c-Fos and NFATc1, and thereafter abrogated the mRNA expression of osteoclast-specific genes, including TRAP, OSCAR, αv/β3 integrin (integrin αv, integrin β3), and cathepsin K (CtsK). In an in vivo model, niclosamide prevented lipopolysaccharide-induced bone loss by diminishing osteoclast activity. Taken together, our results show that niclosamide is effective in suppressing osteoclastogenesis and may be considered as a new and safe therapeutic candidate for the clinical treatment of osteoclast-related diseases such as osteoporosis. - Highlights: • We first investigated the anti-osteoclastogenic effects of niclosamide in vitro and in vivo. • Niclosamide impairs the activation of the Akt-IκB-STAT3 ser{sup 727} signaling axis. • Niclosamide acts a negative regulator of actin ring formation during osteoclast differentiation. • Niclosamide suppresses LPS-induced bone loss in vivo. • Niclosamide deserves new evaluation as a potential treatment target in various bone diseases.

  3. Evaluation of marginal bone loss of dental implants with internal or external connections and its association with other variables: A systematic review.

    Science.gov (United States)

    de Medeiros, Rodrigo Antonio; Pellizzer, Eduardo Piza; Vechiato Filho, Aljomar José; Dos Santos, Daniela Micheline; da Silva, Emily Vivianne Freitas; Goiato, Marcelo Coelho

    2016-10-01

    Different factors can influence marginal bone loss around dental implants, including the type of internal and external connection between the implant and the abutment. The evidence needed to evaluate these factors is unclear. The purpose of this systematic review was to evaluate marginal bone loss by radiographic analysis around dental implants with internal or external connections. A systematic review was conducted following the criteria defined by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Initially, a population, intervention, comparison, and outcome(s) (PICO) question was defined: does the connection type (internal or external) influence marginal bone loss in patients undergoing implantation? An electronic search of PubMed/MEDLINE and Scopus databases was performed for studies in English language published between January 2000 and December 2014 by 2 independent reviewers, who analyzed the marginal bone loss of dental implants with an internal and/or external connection. From an initial screening yield of 595 references and after considering inclusion and exclusion criteria, 17 articles were selected for this review. Among them, 10 studies compared groups of implants with internal and external connections; 1 study evaluated external connections; and 6 studies analyzed internal connections. A total of 2708 implants were placed in 864 patients. Regarding the connection type, 2347 implants had internal connections, and 361 implants had external connections. Most studies showed lower marginal bone loss values for internal connection implants than for external connection implants. Osseointegrated dental implants with internal connections exhibited lower marginal bone loss than implants with external connections. This finding is mainly the result of the platform switching concept, which is more frequently found in implants with internal connections. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry

  4. Circumferential bone loss around splinted and nonsplinted immediately loaded implants retaining mandibular overdentures: A randomized controlled clinical trial using cone beam computed tomography.

    Science.gov (United States)

    Elsyad, Moustafa Abdou; Khirallah, Ahmed Samir

    2016-11-01

    Circumferential marginal bone around 2 splinted and nonsplinted immediately loaded implants in the edentulous mandible has not been previously investigated. The purpose of this randomized controlled clinical trial was to assess circumferential bone loss around splinted and nonsplinted immediately loaded implants retaining mandibular overdentures, using cone beam computed tomography (CBCT). Thirty participants with complete edentulism were allocated to 2 groups and received 2 implants in the canine region of the mandible. Implants were either left nonsplinted (with ball attachment [BA]) or splinted (with bar attachment [RA]). Mandibular overdentures were connected to the implants 1 week later. CBCT was used to evaluate vertical bone loss (VBL) and horizontal bone loss (HBLo) bone loss at the distal (D), buccal (B), mesial (M), and lingual (L) sites of each implant upon overdenture insertion (baseline, T0), 1 year (T1) and 3 years (T3) after insertion. Repeated measures ANOVA was used for statistical analysis (α=.05). No significant difference in the survival rate (93.3% for BA and 100% for RA) was found between groups (P=.156). VBL and HBLo increased significantly at T3 compared with T1 for both groups (Poverdentures were associated with significantly higher vertical and horizontal circumferential bone loss than those associated with splinted implants after a follow-up of 3 years. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  5. Combined Effects of Phytoestrogen Genistein and Silicon on Ovariectomy-Induced Bone Loss in Rat.

    Science.gov (United States)

    Qi, Shanshan; Zheng, Hongxing

    2017-06-01

    This study was performed to evaluate the effect of concomitant supplementation of genistein and silicon on bone mineral density and bone metabolism-related markers in ovariectomized rat. Three-month-old Sprague Dawley female rats were subjected to bilateral ovariectomy (OVX) or sham surgery, and then the OVX rats were randomly divided into four groups: OVX-GEN, OVX-Si, OVX-GEN-Si, and OVX. Genistein and silicon supplementation was started immediately after OVX and continued for 10 weeks. In the OVX-GEN group, 5 mg genistein per gram body weight was injected subcutaneously. The OVX-Si group was given soluble silicon daily in demineralized water (Si 20 mg/kg body weight/day). The OVX-GEN-Si group was given subcutaneous injections of 5 mg genistein per gram body weight, at the same time, given soluble silicon daily (Si 20 mg/kg body weight/day). The results showed that the genistein supplementation in the OVX rats significantly prevented the loss of uterus weight; however, the silicon supplementation showed no effect on the uterus weight loss. The lumbar spine and femur bone mineral density was significantly decreased after OVX surgery; however, this decrease was inhibited by the genistein and/or silicon, and the BMD of the lumbar spine and femur was the highest in the OVX-GEN-Si-treated group. Histomorphometric analyses showed that the supplementation of genistein and/or silicon restored bone volume and trabecular thickness of femoral trabecular bone in the OVX group. Besides, the treatment with genistein and silicon for 10 weeks increased the serum levels of calcium and phosphorus in the OVX rats; serum calcium and serum phosphorus in the OVX-GEN-Si group were higher than those in the OVX-GEN and OVX-Si group (P silicon decreased serum alkaline phosphatase (ALP) and osteocalcin, which were increased by ovariectomy; serum ALP and osteocalcin in the OVX-GEN-Si group were lower than those in the OVX-GEN and OVX-Si groups (P silicon have synergistic effects on

  6. High-impact exercise in rats prior to and during suspension can prevent bone loss

    International Nuclear Information System (INIS)

    Yanagihara, G.R.; Paiva, A.G.; Gasparini, G.A.; Macedo, A.P.; Frighetto, P.D.; Volpon, J.B.; Shimano, A.C.

    2016-01-01

    High-impact exercise has been considered an important method for treating bone loss in osteopenic experimental models. In this study, we investigated the effects of osteopenia caused by inactivity in femora and tibiae of rats subjected to jump training using the rat tail suspension model. Eight-week-old female Wistar rats were divided into five groups (n=10 each group): jump training for 2 weeks before suspension and training during 3 weeks of suspension; jump training for 2 weeks before suspension; jump training only during suspension; suspension without any training; and a control group. The exercise protocol consisted of 20 jumps/day, 5 days/week, with a jump height of 40 cm. The bone mineral density of the femora and tibiae was measured by double energy X-ray absorptiometry and the same bones were evaluated by mechanical tests. Bone microarchitecture was evaluated by scanning electron microscopy. One-way ANOVA was used to compare groups. Significance was determined as P<0.05. Regarding bone mineral density, mechanical properties and bone microarchitecture, the beneficial effects were greater in the bones of animals subjected to pre-suspension training and subsequently to training during suspension, compared with the bones of animals subjected to pre-suspension training or to training during suspension. Our results indicate that a period of high impact exercise prior to tail suspension in rats can prevent the installation of osteopenia if there is also training during the tail suspension

  7. High-impact exercise in rats prior to and during suspension can prevent bone loss

    Energy Technology Data Exchange (ETDEWEB)

    Yanagihara, G.R.; Paiva, A.G.; Gasparini, G.A.; Macedo, A.P. [Laboratório de Bioengenharia, Departamento de Biomecânica, Medicina e Reabilitação do Aparelho Locomotor, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Frighetto, P.D. [Instituto Federal de Educação, Ciência e Tecnologia de São Paulo, São Paulo, SP (Brazil); Volpon, J.B.; Shimano, A.C. [Laboratório de Bioengenharia, Departamento de Biomecânica, Medicina e Reabilitação do Aparelho Locomotor, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil)

    2016-02-02

    High-impact exercise has been considered an important method for treating bone loss in osteopenic experimental models. In this study, we investigated the effects of osteopenia caused by inactivity in femora and tibiae of rats subjected to jump training using the rat tail suspension model. Eight-week-old female Wistar rats were divided into five groups (n=10 each group): jump training for 2 weeks before suspension and training during 3 weeks of suspension; jump training for 2 weeks before suspension; jump training only during suspension; suspension without any training; and a control group. The exercise protocol consisted of 20 jumps/day, 5 days/week, with a jump height of 40 cm. The bone mineral density of the femora and tibiae was measured by double energy X-ray absorptiometry and the same bones were evaluated by mechanical tests. Bone microarchitecture was evaluated by scanning electron microscopy. One-way ANOVA was used to compare groups. Significance was determined as P<0.05. Regarding bone mineral density, mechanical properties and bone microarchitecture, the beneficial effects were greater in the bones of animals subjected to pre-suspension training and subsequently to training during suspension, compared with the bones of animals subjected to pre-suspension training or to training during suspension. Our results indicate that a period of high impact exercise prior to tail suspension in rats can prevent the installation of osteopenia if there is also training during the tail suspension.

  8. Pharmacological study of the possible protective effect of certain natural products against irradiation-induced bone loss in female rats

    International Nuclear Information System (INIS)

    Elsabbagh, W.M.A.

    2007-01-01

    osteoporosis is a common human bone disease characterized by decreased bone mass and increased risk of fractures . it is associated with numerous risk factors; post menopausal oestrogen loss is the major factor. on another hand, exposure to γ -radiation may be responsible for the late reduction in bone mass following radiotherapy. research in nutrition suggests that diet can help to achieve optimal health specifically that human diet that contain macro nutrients and phytochemicals which have antioxidant and anti-inflammatory properties. the present study has been constructed to identify the effect of radiation exposure on bone, and to investigate the possible protective effect of garlic oil and parsley extract against bone loss induced in female virgin rats(180-200 g) either by ovariectomization or by exposure to γ -radiation. a pilot lest was carried first in this study on 2 groups of female virgin rats to estimate the degree of bone loss induced by exposure to fractionated doses of γ -radiation . the 1 st group's rats were normal non-irradiated and served as control normal group. in the 2 nd group, female rats were exposed to total dose of 15 Gy fractionated over 5 weeks (1 Gy 3 times weekly for 5 weeks), and measurements of urinary calcium and urinary hydroxyproline were carried out periodically after 4,8,11 and 15 weeks from the 1 st day of exposure to γ -radiation doses . the highest values were detected after 11 weeks i.e. after 6 weeks from the last exposure to γ -radiation

  9. Development and Reliability of the OMERACT Thumb Base Osteoarthritis Magnetic Resonance Imaging Scoring System

    DEFF Research Database (Denmark)

    Kroon, Féline P B; Conaghan, Philip G; Foltz, Violaine

    2017-01-01

    : The TOMS assessed the first carpometacarpal (CMC-1) and scaphotrapeziotrapezoid (STT) joints for synovitis, subchondral bone defects (including erosions, cysts, and bone attrition), osteophytes, cartilage, and bone marrow lesions on a 0-3 scale (normal to severe). Subluxation was evaluated only in the CMC......, with better performance for subchondral bone defects, subluxation, and bone marrow lesions. CONCLUSION: A thumb base OA MRI scoring system has been developed. The OMERACT TOMS demonstrated good intrareader and interreader reliability. Longitudinal studies are warranted to investigate reliability of change...

  10. 15-deoxy-δ12,14-prostaglandin j2 inhibits osteolytic breast cancer bone metastasis and estrogen deficiency-induced bone loss.

    Directory of Open Access Journals (Sweden)

    Ki Rim Kim

    Full Text Available Breast cancer is the major cause of cancer death in women worldwide. The most common site of metastasis is bone. Bone metastases obstruct the normal bone remodeling process and aberrantly enhance osteoclast-mediated bone resorption, which results in osteolytic lesions. 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2 is an endogenous ligand of peroxisome proliferator-activated receptor gamma (PPARγ that has anti-inflammatory and antitumor activity at micromolar concentrations through PPARγ-dependent and/or PPARγ-independent pathways. We investigated the inhibitory activity of 15d-PGJ2 on the bone loss that is associated with breast cancer bone metastasis and estrogen deficiency caused by cancer treatment. 15d-PGJ2 dose-dependently inhibited viability, migration, invasion, and parathyroid hormone-related protein (PTHrP production in MDA-MB-231 breast cancer cells. 15d-PGJ2 suppressed receptor activator of nuclear factor kappa-B ligand (RANKL mRNA levels and normalized osteoprotegerin (OPG mRNA levels in hFOB1.19 osteoblastic cells treated with culture medium from MDA-MB-231 cells or PTHrP, which decreased the RANKL/OPG ratio. 15d-PGJ2 blocked RANKL-induced osteoclastogenesis and inhibited the formation of resorption pits by decreasing the activities of cathepsin K and matrix metalloproteinases, which are secreted by mature osteoclasts. 15d-PGJ2 exerted its effects on breast cancer and bone cells via PPARγ-independent pathways. In Balb/c nu/nu mice that received an intracardiac injection of MDA-MB-231 cells, subcutaneously injected 15d-PGJ2 substantially decreased metastatic progression, cancer cell-mediated bone destruction in femora, tibiae, and mandibles, and serum PTHrP levels. 15d-PGJ2 prevented the destruction of femoral trabecular structures in estrogen-deprived ICR mice as measured by bone morphometric parameters and serum biochemical data. Therefore, 15d-PGJ2 may be beneficial for the prevention and treatment of breast cancer

  11. Subcutaneous administration of insulin-like growth factor (IGF)-II/IGF binding protein-2 complex stimulates bone formation and prevents loss of bone mineral density in a rat model of disuse osteoporosis

    Science.gov (United States)

    Conover, Cheryl A.; Johnstone, Edward W.; Turner, Russell T.; Evans, Glenda L.; John Ballard, F. John; Doran, Patrick M.; Khosla, Sundeep

    2002-01-01

    Elevated serum levels of insulin-like growth factor binding protein-2 (IGFBP-2) and a precursor form of IGF-II are associated with marked increases in bone formation and skeletal mass in patients with hepatitis C-associated osteosclerosis. In vitro studies indicate that IGF-II in complex with IGFBP-2 has high affinity for bone matrix and is able to stimulate osteoblast proliferation. The purpose of this study was to determine the ability of the IGF-II/IGFBP-2 complex to increase bone mass in vivo. Osteopenia of the femur was induced by unilateral sciatic neurectomy in rats. At the time of surgery, 14-day osmotic minipumps containing vehicle or 2 microg IGF-II+9 microg IGFBP-2/100g body weight/day were implanted subcutaneously in the neck. Bone mineral density (BMD) measurements were taken the day of surgery and 14 days later using a PIXImus small animal densitometer. Neurectomy of the right hindlimb resulted in a 9% decrease in right femur BMD (P<0.05 vs. baseline). This loss in BMD was completely prevented by treatment with IGF-II/IGFBP-2. On the control limb, there was no loss of BMD over the 14 days and IGF-II/IGFBP-2 treatment resulted in a 9% increase in left femur BMD (P<0.05). Bone histomorphometry indicated increases in endocortical and cancellous bone formation rates and in trabecular thickness. These results demonstrate that short-term administration of the IGF-II/IGFBP-2 complex can prevent loss of BMD associated with disuse osteoporosis and stimulate bone formation in adult rats. Furthermore, they provide proof of concept for a novel anabolic approach to increasing bone mass in humans with osteoporosis.

  12. Femoral Head Bone Loss Following Short and Long-Duration Spaceflight

    Science.gov (United States)

    Blaber, Elizabeth A.; Cheng-Campbell, Margareth A.; Almeida, Eduardo A. C.

    2016-01-01

    Exposure to mechanical unloading during spaceflight is known to have significant effects on the musculoskeletal system. Our ongoing studies with the mouse bone model have identified the failure of normal stem cell-based tissue regeneration, in addition to tissue degeneration, as a significant concern for long-duration spaceflight, especially in the mesenchymal and hematopoietic tissue lineages. The 30-day BionM1 and the 37-day Rodent Research 1 (RR1) missions enabled the possibility of studying these effects in long-duration microgravity experiments. We hypothesized that the inhibition of stem cell-based tissue regeneration in short-duration spaceflight would continue during long-duration spaceflight and furthermore would result in significant tissue alterations. MicroCT analysis of BionM1 femurs revealed 31 decrease in bone volume ratio, a 14 decrease in trabecular thickness, and a 20 decrease in trabecular number in the femoral head of space-flown mice. Furthermore, high-resolution MicroCT and immunohistochemical analysis of spaceflight tissues revealed a severe disruption of the epiphyseal boundary, resulting in endochondral ossification of the femoral head and perforation of articular cartilage by bone. This suggests that spaceflight in microgravity may cause rapid induction of an aging-like phenotype with signs of osteoarthritic disease in the hip joint. However, mice from RR1 exhibited significant bone loss in the femoral head but did not exhibit the severe aging and disease-like phenotype observed during BionM1. This may be due to increased physical activity in the RH hardware. Immunohistochemical analysis of the epiphyseal plate and investigation of cellular proliferation and differentiation pathways within the marrow compartment and whole bone tissue is currently being conducted to determine alterations in stem cell-based tissue regeneration between these experiments. Our results show that the observed inhibition of stem cell-based tissue regeneration

  13. A selective androgen receptor modulator that reduces prostate tumor size and prevents orchidectomy-induced bone loss in rats.

    Science.gov (United States)

    Allan, George; Lai, Muh-Tsann; Sbriscia, Tifanie; Linton, Olivia; Haynes-Johnson, Donna; Bhattacharjee, Sheela; Dodds, Robert; Fiordeliso, James; Lanter, James; Sui, Zhihua; Lundeen, Scott

    2007-01-01

    The pharmacological activity of JNJ-26146900 is described. JNJ-26146900 is a nonsteroidal androgen receptor (AR) ligand with tissue-selective activity in rats. The compound was evaluated in in vitro and in vivo models of AR activity. It binds to the rat AR with a K(i) of 400nM and acts as a pure androgen antagonist in an in vitro cell-based assay. Its in vitro profile is similar to the androgen antagonist bicalutamide (Casodex). In intact rats, JNJ-26146900 reduces ventral prostate weight with an oral potency (ED(50)) of 20-30mg/kg, again comparable to that of bicalutamide. JNJ-26146900 prevented prostate tumor growth in the Dunning rat model, maximally inhibiting growth at a dose of 10mg/kg. It slowed tumor growth significantly in a CWR22-LD1 mouse xenograft model of human prostate cancer. It was tested in aged male rats for its ability to prevent bone loss and loss of lean body mass following orchidectomy. After 6 weeks of dosing, bone volume decreased by 33% in orchidectomized versus intact vehicle-treated rats with a probability (P) of less than 0.05, as measured by micro-computerized tomography analysis. At a dose of 30mg/kg, JNJ-26146900 significantly reduced castration-induced tibial bone loss as indicated by the following parameters: bone volume, trabecular connectivity, trabecular number and spacing between trabeculae. Bone mineral density decreased from 229+/-34mg/cm(3) of hydroxyapatite to 166+/-26mg/cm(3) following orchidectomy, and was maintained at 194+/-20mg/cm(3) with JNJ-26146900 treatment (Pselective androgen receptor modulators (SARMs) have the potential for anabolic effects on bone and muscle while maintaining therapeutic efficacy in prostate cancer.

  14. Damping ratio analysis of tooth stability under various simulated degrees of vertical alveolar bone loss and different root types.

    Science.gov (United States)

    Ho, Kuo-Ning; Lee, Sheng-Yang; Huang, Haw-Ming

    2017-08-03

    The purpose of this study was to evaluate the feasibility of using damping ratio (DR) analysis combined with resonance frequency (RF) and periotest (PTV) analyses to provide additional information about natural tooth stability under various simulated degrees of alveolar vertical bone loss and various root types. Three experimental tooth models, including upper central incisor, upper first premolar, and upper first molar were fabricated using Ti6Al4V alloy. In the tooth models, the periodontal ligament and alveolar bone were simulated using a soft lining material and gypsum, respectively. Various degrees of vertical bone loss were simulated by decreasing the surrounding bone level apically from the cementoenamel junction in 2-mm steps incrementally downward for 10 mm. A commercially available RF analyzer was used to measure the RF and DR of impulse-forced vibrations on the tooth models. The results showed that DRs increased as alveolar vertical bone height decreased and had high coefficients of determination in the linear regression analysis. The damping ratio of the central incisor model without a simulated periodontal ligament were 11.95 ± 1.92 and 27.50 ± 0.67% respectively when their bone levels were set at 2 and 10 mm apically from the cementoenamel junction. These values significantly changed to 28.85 ± 2.54% (p = 0.000) and 51.25 ± 4.78% (p = 0.003) when the tooth model was covered with simulated periodontal ligament. Moreover, teeth with different root types showed different DR and RF patterns. Teeth with multiple roots had lower DRs than teeth with single roots. Damping ratio analysis combined with PTV and RF analysis provides more useful information on the assessment of changes in vertical alveolar bone loss than PTV or RF analysis alone.

  15. Pomegranate Peel Extract Prevents Bone Loss in a Preclinical Model of Osteoporosis and Stimulates Osteoblastic Differentiation in Vitro

    Directory of Open Access Journals (Sweden)

    Mélanie Spilmont

    2015-11-01

    Full Text Available The nutritional benefits of pomegranate have attracted great scientific interest. The pomegranate, including the pomegranate peel, has been used worldwide for many years as a fruit with medicinal activity, mostly antioxidant properties. Among chronic diseases, osteoporosis, which is associated with bone remodelling impairment leading to progressive bone loss, could eventually benefit from antioxidant compounds because of the involvement of oxidative stress in the pathogenesis of osteopenia. In this study, with in vivo and ex vivo experiments, we investigated whether the consumption of pomegranate peel extract (PGPE could limit the process of osteopenia. We demonstrated that in ovariectomized (OVX C57BL/6J mice, PGPE consumption was able to significantly prevent the decrease in bone mineral density (−31.9%; p < 0.001 vs. OVX mice and bone microarchitecture impairment. Moreover, the exposure of RAW264.7 cells to serum harvested from mice that had been given a PGPE-enriched diet elicited reduced osteoclast differentiation and bone resorption, as shown by the inhibition of the major osteoclast markers. In addition, PGPE appeared to substantially stimulate osteoblastic MC3T3-E1 alkaline phosphatase (ALP activity at day 7, mineralization at day 21 and the transcription level of osteogenic markers. PGPE may be effective in preventing the bone loss associated with ovariectomy in mice, and offers a promising alternative for the nutritional management of this disease.

  16. Pomegranate Peel Extract Prevents Bone Loss in a Preclinical Model of Osteoporosis and Stimulates Osteoblastic Differentiation in Vitro.

    Science.gov (United States)

    Spilmont, Mélanie; Léotoing, Laurent; Davicco, Marie-Jeanne; Lebecque, Patrice; Miot-Noirault, Elisabeth; Pilet, Paul; Rios, Laurent; Wittrant, Yohann; Coxam, Véronique

    2015-11-11

    The nutritional benefits of pomegranate have attracted great scientific interest. The pomegranate, including the pomegranate peel, has been used worldwide for many years as a fruit with medicinal activity, mostly antioxidant properties. Among chronic diseases, osteoporosis, which is associated with bone remodelling impairment leading to progressive bone loss, could eventually benefit from antioxidant compounds because of the involvement of oxidative stress in the pathogenesis of osteopenia. In this study, with in vivo and ex vivo experiments, we investigated whether the consumption of pomegranate peel extract (PGPE) could limit the process of osteopenia. We demonstrated that in ovariectomized (OVX) C57BL/6J mice, PGPE consumption was able to significantly prevent the decrease in bone mineral density (-31.9%; p < 0.001 vs. OVX mice) and bone microarchitecture impairment. Moreover, the exposure of RAW264.7 cells to serum harvested from mice that had been given a PGPE-enriched diet elicited reduced osteoclast differentiation and bone resorption, as shown by the inhibition of the major osteoclast markers. In addition, PGPE appeared to substantially stimulate osteoblastic MC3T3-E1 alkaline phosphatase (ALP) activity at day 7, mineralization at day 21 and the transcription level of osteogenic markers. PGPE may be effective in preventing the bone loss associated with ovariectomy in mice, and offers a promising alternative for the nutritional management of this disease.

  17. Marginal bone loss evaluation around immediate non-occlusal microthreaded implants placed in fresh extraction sockets in the maxilla: a 3-year study.

    Science.gov (United States)

    Calvo-Guirado, José L; Gómez-Moreno, Gerardo; Aguilar-Salvatierra, Antonio; Guardia, Javier; Delgado-Ruiz, Rafael A; Romanos, Georgios E

    2015-07-01

    To evaluate marginal bone loss over 3 years around immediate microthreaded implants placed in the maxillary anterior/esthetic zone and immediately restored with single crowns. Seventy-one implants (with microthreads up to the platform--rough surface body and neck, internal connection and platform switching) were placed in fresh extraction sockets in the maxillary arches of 30 men and 23 women (mean age 37.85 ± 7.09 years, range 27-60). All subjects had at least 3 mm of soft tissue to allow the establishment of adequate biologic width and to reduce bone resorption. Each patient received a provisional restoration immediately after implant placement with slight occlusal contact. Mesial and distal bone height was evaluated using digital radiography on the day following implant placement (baseline) and after 1, 2, and 3 years. Primary stability was measured with resonance frequency analysis. No implants failed, resulting in a cumulative survival rate of 100% after 3 years. Marginal bone loss from implant collar to bone crest measured at baseline (peri-implant bone defect at the fresh extraction socket) and after 3 years was 0.86 mm ± 0.29 mm. Mesial and distal site crestal bone loss ranged from 3.42 mm ± 1.2 mm at baseline to 3.51 mm ± 1.5 mm after 3 years (P = 0.063) and from 3.38 mm ± 0.9 mm at baseline to 3.49 mm ± 0.9 mm after 3 years, respectively (P = 0.086). This prospective study found minimal marginal bone loss and a 100% implant survival rate over the 3-year follow-up for microthreaded immediate implants subjected to immediate non-occlusal loading. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. [A temporal bone CT study of the infants with hearing loss referred from universal newborn hearing screening].

    Science.gov (United States)

    Tao, Zheng; Li, Yun; Hou, Zheng; Cheng, Lan

    2007-02-01

    To explore the high resolution CT image of temporal bone in infants with hearing loss, and its value in evaluating the cause of hearing loss. In 2005, 0.12 million newborns have been included in the hearing screening system in Shanghai, and 1077 infants have failed to pass the hearing screening. One hundred and eight four infants were diagnosed as congenital hearing loss from mild to profound. A temporal bone HRCT scanning was performed to these infants. Among the 184 patients with congenital hearing loss, HRCT showed that 26 cases (14.1%) were associated with external ear malformation, and 21 cases (11.4%) were associated with middle ear malformation, 31 cases (16.8%) associated with inner ear malformation. The patients with inner ear malformation included 12 cases with Mondini malformation, 1 case with common cavity malformation, 6 cases with large vestibule malformation, 5 cases with internal auditory canal abnormalities, and 10 cases with vestibule, semicircular canals abnormalities. In addition, there were 20 cases (10.8%) with fluid in middle ear. HRCT image play an important role in the differential diagnosis and treatment of infants with congenital hearing loss.

  19. Dietary emu oil supplementation suppresses 5-fluorouracil chemotherapy-induced inflammation, osteoclast formation, and bone loss.

    Science.gov (United States)

    Raghu Nadhanan, Rethi; Abimosleh, Suzanne M; Su, Yu-Wen; Scherer, Michaela A; Howarth, Gordon S; Xian, Cory J

    2012-06-01

    Cancer chemotherapy can cause osteopenia or osteoporosis, and yet the underlying mechanisms remain unclear, and currently, no preventative treatments are available. This study investigated damaging effects of 5-fluorouracil (5-FU) on histological, cellular, and molecular changes in the tibial metaphysis and potential protective benefits of emu oil (EO), which is known to possess a potent anti-inflammatory property. Female dark agouti rats were gavaged orally with EO or water (1 ml·day(-1)·rat(-1)) for 1 wk before a single ip injection of 5-FU (150 mg/kg) or saline (Sal) was given. The treatment groups were H(2)O + Sal, H(2)O + 5-FU, EO + 5-FU, and EO + Sal. Oral gavage was given throughout the whole period up to 1 day before euthanasia (days 3, 4, and 5 post-5-FU). Histological analysis showed that H(2)O + 5-FU significantly reduced heights of primary spongiosa on days 3 and 5 and trabecular bone volume of secondary spongiosa on days 3 and 4. It reduced density of osteoblasts slightly and caused an increase in the density of osteoclasts on trabecular bone surface on day 4. EO supplementation prevented reduction of osteoblasts and induction of osteoclasts and bone loss caused by 5-FU. Gene expression studies confirmed an inhibitory effect of EO on osteoclasts since it suppressed 5-FU-induced expression of proinflammatory and osteoclastogenic cytokine TNFα, osteoclast marker receptor activator of nuclear factor-κB, and osteoclast-associated receptor. Therefore, this study demonstrated that EO can counter 5-FU chemotherapy-induced inflammation in bone, preserve osteoblasts, suppress osteoclast formation, and potentially be useful in preventing 5-FU chemotherapy-induced bone loss.

  20. Imaging and histopathological evaluation of a cystlike formation in subchondral insufficiency fracture of the femoral head: A case report and literature review.

    Science.gov (United States)

    Fukui, Kiyokazu; Kaneuji, Ayumi; Fukushima, Mana; Matsumoto, Tadami

    2014-01-01

    In the majority of subchondral insufficiency fractures (SIFs) of the femoral head, T1-weighted magnetic resonance imaging shows an irregular, serpiginous, low-intensity band that is convex to the articular surface. We report a case of a cystlike formation in SIF of the femoral head in an elderly woman. A 71-year-old woman reported right hip pain without any history of antecedent trauma. The initial radiograph showed a slight narrowing of the joint space in the right hip. The patient was treated with conservative therapy for 2 months. Radiographs obtained 3 months after the onset of pain showed non-progressive joint-space narrowing. T1-weighted magnetic resonance images obtained 2 months after pain onset revealed a round, cystlike, low-intensity area just beneath the articular cartilage. The patient underwent total hip arthroplasty. Histopathological examination showed fracture callus and granulation tissue in the subchondral area, surrounded by vascular-rich granulation tissue and fibrous tissue, which corresponded to the round, low-intensity band observed on the T1-weighted image. This case was a rare SIF of the femoral head which had a cystlike formation with a low signal intensity on T1-weighted images and a very high signal intensity on STIR sequences in the superolateral portion of the femoral head, surrounded by a pattern of edema in the bone marrow. To our knowledge, no similar cases were cited in the literature. It is important for surgeons to keep in mind that sometimes SIFs of the femoral head can appear as a round cystlike formation. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.