WorldWideScience

Sample records for subcerebral projection neurons

  1. Mutual regulation between Satb2 and Fezf2 promotes subcerebral projection neuron identity in the developing cerebral cortex.

    Science.gov (United States)

    McKenna, William L; Ortiz-Londono, Christian F; Mathew, Thomas K; Hoang, Kendy; Katzman, Sol; Chen, Bin

    2015-09-15

    Generation of distinct cortical projection neuron subtypes during development relies in part on repression of alternative neuron identities. It was reported that the special AT-rich sequence-binding protein 2 (Satb2) is required for proper development of callosal neuron identity and represses expression of genes that are essential for subcerebral axon development. Surprisingly, Satb2 has recently been shown to be necessary for subcerebral axon development. Here, we unravel a previously unidentified mechanism underlying this paradox. We show that SATB2 directly activates transcription of forebrain embryonic zinc finger 2 (Fezf2) and SRY-box 5 (Sox5), genes essential for subcerebral neuron development. We find that the mutual regulation between Satb2 and Fezf2 enables Satb2 to promote subcerebral neuron identity in layer 5 neurons, and to repress subcerebral characters in callosal neurons. Thus, Satb2 promotes the development of callosal and subcerebral neurons in a cell context-dependent manner.

  2. Human von Economo neurons express transcription factors associated with Layer V subcerebral projection neurons.

    Science.gov (United States)

    Cobos, Inma; Seeley, William W

    2015-01-01

    The von Economo neurons (VENs) are large bipolar Layer V projection neurons found chiefly in the anterior cingulate and frontoinsular cortices. Although VENs have been linked to prevalent illnesses such as frontotemporal dementia, autism, and schizophrenia, little is known about VEN identity, including their major projection targets. Here, we undertook a developmental transcription factor expression study, focusing on markers associated with specific classes of Layer V projection neurons. Using mRNA in situ hybridization, we found that VENs prominently express FEZF2 and CTIP2, transcription factors that regulate the fate and differentiation of subcerebral projection neurons, in humans aged 3 months to 65 years. In contrast, few VENs expressed markers associated with callosal or corticothalamic projections. These findings suggest that VENs may represent a specialized Layer V projection neuron for linking cortical autonomic control sites to brainstem or spinal cord regions. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. Area-specific development of distinct projection neuron subclasses is regulated by postnatal epigenetic modifications.

    Science.gov (United States)

    Harb, Kawssar; Magrinelli, Elia; Nicolas, Céline S; Lukianets, Nikita; Frangeul, Laura; Pietri, Mariel; Sun, Tao; Sandoz, Guillaume; Grammont, Franck; Jabaudon, Denis; Studer, Michele; Alfano, Christian

    2016-01-27

    During cortical development, the identity of major classes of long-distance projection neurons is established by the expression of molecular determinants, which become gradually restricted and mutually exclusive. However, the mechanisms by which projection neurons acquire their final properties during postnatal stages are still poorly understood. In this study, we show that the number of neurons co-expressing Ctip2 and Satb2, respectively involved in the early specification of subcerebral and callosal projection neurons, progressively increases after birth in the somatosensory cortex. Ctip2/Satb2 postnatal co-localization defines two distinct neuronal subclasses projecting either to the contralateral cortex or to the brainstem suggesting that Ctip2/Satb2 co-expression may refine their properties rather than determine their identity. Gain- and loss-of-function approaches reveal that the transcriptional adaptor Lmo4 drives this maturation program through modulation of epigenetic mechanisms in a time- and area-specific manner, thereby indicating that a previously unknown genetic program postnatally promotes the acquisition of final subtype-specific features.

  4. The CB1 cannabinoid receptor drives corticospinal motor neuron differentiation through the Ctip2/Satb2 transcriptional regulation axis

    Science.gov (United States)

    Díaz-Alonso, Javier; Aguado, Tania; Wu, Chia-Shan; Palazuelos, Javier; Hofmann, Clementine; Garcez, Patricia; Guillemot, Francois; Lu, Hui-Chen; Lutz, Beat; Guzmán, Manuel; Galve-Roperh, Ismael

    2012-01-01

    The generation and specification of pyramidal neuron subpopulations during development relies on a complex network of transcription factors. The CB1 cannabinoid receptor is the major molecular target of endocannabinoids and marijuana active compounds. This receptor has been shown to influence neural progenitor proliferation and axonal growth, but its involvement in neuronal differentiation and the functional impact in the adulthood caused by altering its signaling during brain development are not known. Here we show that the CB1 receptor, by preventing Satb2-mediated repression, increased Ctip2 promoter activity and Ctip2+ neuron generation. Unbalanced neurogenic fate determination found in complete CB1−/− mice and in glutamatergic neuron-specific Nex-CB1−/− mice induced overt alterations in corticospinal motor neuron generation and subcerebral connectivity, thereby resulting in an impairment of skilled motor function in adult mice. Likewise, genetic deletion of CB1 receptors in Thy1-YFP-H mice elicited alterations in corticospinal tract development. Altogether, these data demonstrate that the CB1 receptor contributes to the generation of deep-layer cortical neurons, by coupling endocannabinoid signals from the neurogenic niche to the intrinsic proneurogenic Ctip2/Satb2 axis, thus influencing appropriate subcerebral projection neuron specification and corticospinal motor function in the adulthood. PMID:23175820

  5. Selective serotonergic excitation of callosal projection neurons

    Directory of Open Access Journals (Sweden)

    Daniel eAvesar

    2012-03-01

    Full Text Available Serotonin (5-HT acting as a neurotransmitter in the cerebral cortex is critical for cognitive function, yet how 5-HT regulates information processing in cortical circuits is not well understood. We tested the serotonergic responsiveness of layer 5 pyramidal neurons (L5PNs of the mouse medial prefrontal cortex (mPFC, and found 3 distinct response types: long-lasting 5-HT1A (1A receptor-dependent inhibitory responses (84% of L5PNs, 5-HT2A (2A receptor-dependent excitatory responses (9%, and biphasic responses in which 2A-dependent excitation followed brief inhibition (5%. Relative to 5-HT-inhibited neurons, those excited by 5-HT had physiological properties characteristic of callosal/commissural (COM neurons that project to the contralateral cortex. We tested whether serotonergic responses in cortical pyramidal neurons are correlated with their axonal projection pattern using retrograde fluorescent labeling of COM and corticopontine-projecting (CPn neurons. 5-HT generated excitatory or biphasic responses in all 5-HT-responsive layer 5 COM neurons. Conversely, CPn neurons were universally inhibited by 5-HT. Serotonergic excitation of COM neurons was blocked by the 2A antagonist MDL 11939, while serotonergic inhibition of CPn neurons was blocked by the 1A antagonist WAY 100635, confirming a role for these two receptor subtypes in regulating pyramidal neuron activity. Selective serotonergic excitation of COM neurons was not layer-specific, as COM neurons in layer 2/3 were also selectively excited by 5-HT relative to their non-labeled pyramidal neuron neighbors. Because neocortical 2A receptors are implicated in the etiology and pathophysiology of schizophrenia, we propose that COM neurons may represent a novel cellular target for intervention in psychiatric disease.

  6. Optogenetic identification of hypothalamic orexin neuron projections to paraventricular spinally projecting neurons.

    Science.gov (United States)

    Dergacheva, Olga; Yamanaka, Akihiro; Schwartz, Alan R; Polotsky, Vsevolod Y; Mendelowitz, David

    2017-04-01

    Orexin neurons, and activation of orexin receptors, are generally thought to be sympathoexcitatory; however, the functional connectivity between orexin neurons and a likely sympathetic target, the hypothalamic spinally projecting neurons (SPNs) in the paraventricular nucleus of the hypothalamus (PVN) has not been established. To test the hypothesis that orexin neurons project directly to SPNs in the PVN, channelrhodopsin-2 (ChR2) was selectively expressed in orexin neurons to enable photoactivation of ChR2-expressing fibers while examining evoked postsynaptic currents in SPNs in rat hypothalamic slices. Selective photoactivation of orexin fibers elicited short-latency postsynaptic currents in all SPNs tested (n = 34). These light-triggered responses were heterogeneous, with a majority being excitatory glutamatergic responses (59%) and a minority of inhibitory GABAergic (35%) and mixed glutamatergic and GABAergic currents (6%). Both glutamatergic and GABAergic responses were present in the presence of tetrodotoxin and 4-aminopyridine, suggesting a monosynaptic connection between orexin neurons and SPNs. In addition to generating postsynaptic responses, photostimulation facilitated action potential firing in SPNs (current clamp configuration). Glutamatergic, but not GABAergic, postsynaptic currents were diminished by application of the orexin receptor antagonist almorexant, indicating orexin release facilitates glutamatergic neurotransmission in this pathway. This work identifies a neuronal circuit by which orexin neurons likely exert sympathoexcitatory control of cardiovascular function.NEW & NOTEWORTHY This is the first study to establish, using innovative optogenetic approaches in a transgenic rat model, that there are robust heterogeneous projections from orexin neurons to paraventricular spinally projecting neurons, including excitatory glutamatergic and inhibitory GABAergic neurotransmission. Endogenous orexin release modulates glutamatergic, but not GABAergic

  7. A map of taste neuron projections in the Drosophila CNS

    Indian Academy of Sciences (India)

    We provide a map of the projections of taste neurons in the CNS of Drosophila. Using a collection of 67 GAL4 drivers representing the entire repertoire of Gr taste receptors, we systematically map the projections of neurons expressing these drivers in the thoracico-abdominal ganglion and the suboesophageal ganglion ...

  8. Subtypes of GABAergic neurons project axons in the neocortex

    Directory of Open Access Journals (Sweden)

    Shigeyoshi Higo

    2009-11-01

    Full Text Available γ-aminobutyric acid (GABAergic neurons in the neocortex have been regarded as interneurons and speculated to modulate the activity of neurons locally. Recently, however, several experiments revealed that neuronal nitric oxide synthase (nNOS-positive GABAergic neurons project cortico-cortically with long axons. In this study, we illustrate Golgi-like images of the nNOS-positive GABAergic neurons using a nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d reaction and follow the emanating axon branches in cat brain sections. These axon branches projected cortico-cortically with other non-labeled arcuate fibers, contra-laterally via the corpus callosum and anterior commissure. The labeled fibers were not limited to the neocortex but found also in the fimbria of the hippocampus. In order to have additional information on these GABAergic neuron projections, we investigated green fluorescent protein (GFP-labeled GABAergic neurons in GAD67-Cre knock-in / GFP Cre-reporter mice. GFP-labeled axons emanate densely, especially in the fimbria, a small number in the anterior commissure, and very sparsely in the corpus callosum. These two different approaches confirm that not only nNOS-positive GABAergic neurons but also other subtypes of GABAergic neurons project long axons in the cerebral cortex and are in a position to be involved in information processing.

  9. Distribution, structure and projections of the frog intracardiac neurons.

    Science.gov (United States)

    Batulevicius, Darius; Skripkiene, Gertruda; Batuleviciene, Vaida; Skripka, Valdas; Dabuzinskiene, Anita; Pauza, Dainius H

    2012-05-21

    Histochemistry for acetylcholinesterase was used to determine the distribution of intracardiac neurons in the frog Rana temporaria. Seventy-nine intracardiac neurons from 13 frogs were labelled iontophoretically by the intracellular markers Alexa Fluor 568 and Lucifer Yellow CH to determine their structure and projections. Total neuronal number per frog heart was (Mean ± SE) 1374 ± 56. Largest collections of neurons were found in the interatrial septum (46%), atrioventricular junction (25%) and venal sinus (12%). Among the intracellularly labelled neurons, we found the cells of unipolar (71%), multipolar (20%) and bipolar (9%) types. Multiple processes originated from the neuron soma, hillock and proximal axon. These processes projected onto adjacent neuron somata and cardiac muscle fibers within the interatrial septum. Average total length of the processes from proximal axon was 348 ± 50 μm. Average total length of processes from soma and hillock was less, 118 ± 27 μm and 109 ± 24 μm, respectively. The somata of 59% of neurons had bubble- or flake-shaped extensions. Most neurons from the major nerves in the interatrial septum sent their axons towards the ventricle. In contrast, most neurons from the ventral part of the interatrial septum sent their axons towards the atria. Our findings contradict to a view that the frog intracardiac ganglia contain only non-dendritic neurons of the unipolar type. We conclude that the frog intracardiac neurons are structurally complex and diverse. This diversity may account for the complicated integrative functions of the frog intrinsic cardiac ganglia. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Anatomic and Molecular Development of Corticostriatal Projection Neurons in Mice

    Science.gov (United States)

    Sohur, U. Shivraj; Padmanabhan, Hari K.; Kotchetkov, Ivan S.; Menezes, Joao R.L.; Macklis, Jeffrey D.

    2014-01-01

    Corticostriatal projection neurons (CStrPN) project from the neocortex to ipsilateral and contralateral striata to control and coordinate motor programs and movement. They are clinically important as the predominant cortical population that degenerates in Huntington's disease and corticobasal ganglionic degeneration, and their injury contributes to multiple forms of cerebral palsy. Together with their well-studied functions in motor control, these clinical connections make them a functionally, behaviorally, and clinically important population of neocortical neurons. Little is known about their development. “Intratelencephalic” CStrPN (CStrPNi), projecting to the contralateral striatum, with their axons fully within the telencephalon (intratelencephalic), are a major population of CStrPN. CStrPNi are of particular interest developmentally because they share hodological and axon guidance characteristics of both callosal projection neurons (CPN) and corticofugal projection neurons (CFuPN); CStrPNi send axons contralaterally before descending into the contralateral striatum. The relationship of CStrPNi development to that of broader CPN and CFuPN populations remains unclear; evidence suggests that CStrPNi might be evolutionary “hybrids” between CFuPN and deep layer CPN—in a sense “chimeric” with both callosal and corticofugal features. Here, we investigated the development of CStrPNi in mice—their birth, maturation, projections, and expression of molecular developmental controls over projection neuron subtype identity. PMID:23118198

  11. A map of taste neuron projections in the Drosophila CNS

    Science.gov (United States)

    KWON, JAE YOUNG; DAHANUKAR, ANUPAMA; WEISS, LINNEA A; CARLSON, JOHN R

    2014-01-01

    We provide a map of the projections of taste neurons in the CNS of Drosophila. Using a collection of 67 GAL4 drivers representing the entire repertoire of Gr taste receptors, we systematically map the projections of neurons expressing these drivers in the thoracico-abdominal ganglion and the suboesophageal ganglion (SOG). We define 9 categories of projections in the thoracico-abdominal ganglia and 10 categories in the SOG. The projection patterns are modular, and can be interpreted as combinations of discrete pattern elements. The elements can be interpreted in terms of the taste organ from which the projections originate, the structures from which they originate, and the quality of taste information that they represent. The extensive diversity in projection patterns provides an anatomical basis for functional diversity in responses elicited by different taste stimuli. PMID:25116611

  12. Prenatal exposure to cannabinoids evokes long-lasting functional alterations by targeting CB1 receptors on developing cortical neurons.

    Science.gov (United States)

    de Salas-Quiroga, Adán; Díaz-Alonso, Javier; García-Rincón, Daniel; Remmers, Floortje; Vega, David; Gómez-Cañas, María; Lutz, Beat; Guzmán, Manuel; Galve-Roperh, Ismael

    2015-11-03

    The CB1 cannabinoid receptor, the main target of Δ(9)-tetrahydrocannabinol (THC), the most prominent psychoactive compound of marijuana, plays a crucial regulatory role in brain development as evidenced by the neurodevelopmental consequences of its manipulation in animal models. Likewise, recreational cannabis use during pregnancy affects brain structure and function of the progeny. However, the precise neurobiological substrates underlying the consequences of prenatal THC exposure remain unknown. As CB1 signaling is known to modulate long-range corticofugal connectivity, we analyzed the impact of THC exposure on cortical projection neuron development. THC administration to pregnant mice in a restricted time window interfered with subcerebral projection neuron generation, thereby altering corticospinal connectivity, and produced long-lasting alterations in the fine motor performance of the adult offspring. Consequences of THC exposure were reminiscent of those elicited by CB1 receptor genetic ablation, and CB1-null mice were resistant to THC-induced alterations. The identity of embryonic THC neuronal targets was determined by a Cre-mediated, lineage-specific, CB1 expression-rescue strategy in a CB1-null background. Early and selective CB1 reexpression in dorsal telencephalic glutamatergic neurons but not forebrain GABAergic neurons rescued the deficits in corticospinal motor neuron development of CB1-null mice and restored susceptibility to THC-induced motor alterations. In addition, THC administration induced an increase in seizure susceptibility that was mediated by its interference with CB1-dependent regulation of both glutamatergic and GABAergic neuron development. These findings demonstrate that prenatal exposure to THC has long-lasting deleterious consequences in the adult offspring solely mediated by its ability to disrupt the neurodevelopmental role of CB1 signaling.

  13. IDENTIFICATION OF VESTIBULOOCULAR PROJECTION NEURONS IN THE DEVELOPING CHICKEN MEDIAL VESTIBULAR NUCLEUS

    Science.gov (United States)

    Gottesman-Davis, Adria; Peusner, Kenna D.

    2010-01-01

    Biocytin was injected into the oculomotor, trochlear, or abducens nucleus on one side using isolated chicken brainstem preparations or brain slices to identify the medial vestibular nucleus (MVN) neurons projecting to these targets. Oculomotor nucleus injections produced retrogradely labeled neurons in the contralateral ventrolateral MVN (MVNVL), with few labeled neurons in the ipsilateral MVNVL, and rarely in the dorsomedial MVN on either side. Labeled MVNVL neurons were identified as stellate (95%) and elongate cells (5%). Trochlear nucleus injections produced a similar pattern of MVN neuron labeling. Abducens nucleus injections resulted in retrogradely labeled stellate (87%) and elongate (13%) neurons in the MVNVL which had smaller cell bodies than those projecting to the oculomotor nucleus. Anteroposteriorly, labeled MVNVL neurons were coextensive with the tangential nucleus, with neurons projecting to the oculomotor nucleus distributed lateral to and intermixed with the more medially situated neurons projecting to the abducens nucleus. The fundamental pattern of vestibuloocular projecting neurons was similar at both embryonic ages studied, E16 and E13. In contrast to mammals, where most vestibuloocular projection neurons reside within the MVN, the majority of retrogradely labeled neurons in these chicken preparations were found within the ventrolateral vestibular, descending vestibular, and tangential nuclei. The morphological identification and mapping of vestibuloocular projection neurons in the chicken MVN described here represents the first step in a systematic evaluation of the relationship between avian vestibuloocular neuron structure and function. PMID:19705454

  14. Single-axon level morphological analysis of corticofugal projection neurons in mouse barrel field.

    Science.gov (United States)

    Guo, Congdi; Peng, Jie; Zhang, Yalun; Li, Anan; Li, Yuxin; Yuan, Jing; Xu, Xiaofeng; Ren, Miao; Gong, Hui; Chen, Shangbin

    2017-06-06

    Corticofugal projection neurons are key components in connecting the neocortex and the subcortical regions. In the barrel field, these neurons have various projection targets and play crucial roles in the rodent whisker sensorimotor system. However, the projection features of corticofugal projection neurons at the single-axon level are far from comprehensive elucidation. Based on a brain-wide positioning system with high-resolution imaging for Thy1-GFP M-line mice brains, we reconstructed and analyzed more than one hundred corticofugal projection neurons in both layer V and VI of barrel cortex. The dual-color imaging made it possible to locate the neurons' somata, trace their corresponding dendrites and axons and then distinguish the neurons as L5 type I/II or L6 type. The corticofugal projection pattern showed significant diversity across individual neurons. Usually, the L5 type I neurons have greater multi-region projection potential. The thalamus and the midbrain are the most frequent projection targets among the investigated multidirectional projection neurons, and the hypothalamus is particularly unique in that it only appears in multidirectional projection situations. Statistically, the average branch length of apical dendrites in multi-region projection groups is larger than that of single-region projection groups. This study demonstrated a single-axon-level analysis for barrel corticofugal projection neurons, which could provide a micro-anatomical basis for interpreting whisker sensorimotor circuit function.

  15. Diversity of layer 5 projection neurons in the mouse motor cortex.

    Science.gov (United States)

    Oswald, Manfred J; Tantirigama, Malinda L S; Sonntag, Ivo; Hughes, Stephanie M; Empson, Ruth M

    2013-01-01

    In the primary motor cortex (M1), layer 5 projection neurons signal directly to distant motor structures to drive movement. Despite their pivotal position and acknowledged diversity these neurons are traditionally separated into broad commissural and corticofugal types, and until now no attempt has been made at resolving the basis for their diversity. We therefore probed the electrophysiological and morphological properties of retrogradely labeled M1 corticospinal (CSp), corticothalamic (CTh), and commissural projecting corticostriatal (CStr) and corticocortical (CC) neurons. An unsupervised cluster analysis established at least four phenotypes with additional differences between lumbar and cervical projecting CSp neurons. Distinguishing parameters included the action potential (AP) waveform, firing behavior, the hyperpolarisation-activated sag potential, sublayer position, and soma and dendrite size. CTh neurons differed from CSp neurons in showing spike frequency acceleration and a greater sag potential. CStr neurons had the lowest AP amplitude and maximum rise rate of all neurons. Temperature influenced spike train behavior in corticofugal neurons. At 26°C CTh neurons fired bursts of APs more often than CSp neurons, but at 36°C both groups fired regular APs. Our findings provide reliable phenotypic fingerprints to identify distinct M1 projection neuron classes as a tool to understand their unique contributions to motor function.

  16. Kölliker-Fuse GABAergic and glutamatergic neurons project to distinct targets.

    Science.gov (United States)

    Geerling, Joel C; Yokota, Shigefumi; Rukhadze, Irma; Roe, Dan; Chamberlin, Nancy L

    2017-06-01

    The Kölliker-Fuse nucleus (KF) is known primarily for its respiratory function as the "pneumotaxic center" or "pontine respiratory group." Considered part of the parabrachial (PB) complex, KF contains glutamatergic neurons that project to respiratory-related targets in the medulla and spinal cord (Yokota, Oka, Tsumori, Nakamura, & Yasui, 2007). Here we describe an unexpected population of neurons in the caudal KF and adjacent lateral crescent subnucleus (PBlc), which are γ-aminobutyric acid (GABA)ergic and have an entirely different pattern of projections than glutamatergic KF neurons. First, immunofluorescence, in situ hybridization, and Cre-reporter labeling revealed that many of these GABAergic neurons express FoxP2 in both rats and mice. Next, using Cre-dependent axonal tracing in Vgat-IRES-Cre and Vglut2-IRES-Cre mice, we identified different projection patterns from GABAergic and glutamatergic neurons in this region. GABAergic neurons in KF and PBlc project heavily and almost exclusively to trigeminal sensory nuclei, with minimal projections to cardiorespiratory nuclei in the brainstem, and none to the spinal cord. In contrast, glutamatergic KF neurons project heavily to the autonomic, respiratory, and motor regions of the medulla and spinal cord previously identified as efferent targets mediating KF cardiorespiratory effects. These findings identify a novel, GABAergic subpopulation of KF/PB neurons with a distinct efferent projection pattern targeting the brainstem trigeminal sensory system. Rather than regulating breathing, we propose that these neurons influence vibrissal sensorimotor function. © 2017 Wiley Periodicals, Inc.

  17. Brainstem and spinal projections of augmenting expiratory neurons in the rat.

    Science.gov (United States)

    Ezure, Kazuhisa; Tanaka, Ikuko; Saito, Yoshiaki

    2003-01-01

    There are two types of expiratory neurons with augmenting firing patterns (E-AUG neurons), those in the Bötzinger complex (BOT) and those in the caudal ventral respiratory group (cVRG). We studied their axonal projections morphologically using intracellular labeling of single E-AUG neurons with Neurobiotin, in anesthetized, paralyzed and artificially-ventilated rats. BOT E-AUG neurons (n = 11) had extensive axonal projections to the brainstem, but E-AUG neurons (n = 5) of the cVRG sent axons that descended the contralateral spinal cord without medullary collaterals. In addition to these somewhat expected characteristics, the present study revealed a number of new projection patterns of the BOT E-AUG neurons. First, as compared with the dense projections to the ipsilateral brainstem, those to the contralateral side were sparse. Second, several BOT E-AUG neurons sent long ascending collaterals to the pons, which included an axon that reached the ipsilateral parabrachial and Kölliker-Fuse nuclei and distributed boutons. Third, conspicuous projections from branches of these ascending collaterals to the area dorsolateral to the facial nucleus were found. Thus, the present study has shown an anatomical substrate for the extensive inhibitory projections of single BOT E-AUG neurons to the areas spanning the bilateral medulla and the pons. Copyright 2002 Elsevier Science Ireland Ltd and the Japan Neuroscience Society

  18. Dysregulation of striatal projection neurons in Parkinson's disease.

    Science.gov (United States)

    Beck, Goichi; Singh, Arun; Papa, Stella M

    2017-06-15

    The loss of nigrostriatal dopamine (DA) is the primary cause of motor dysfunction in Parkinson's disease (PD), but the underlying striatal mechanisms remain unclear. In spite of abundant literature portraying structural, biochemical and plasticity changes of striatal projection neurons (SPNs), in the past there has been a data vacuum from the natural human disease and its close model in non-human primates. Recently, single-cell recordings in advanced parkinsonian primates have generated new insights into the altered function of SPNs. Currently, there are also human data that provide direct evidence of profoundly dysregulated SPN activity in PD. Here, we review primate recordings that are impacting our understanding of the striatal dysfunction after DA loss, particularly through the analysis of physiologic correlates of parkinsonian motor behaviors. In contrast to recordings in rodents, data obtained in primates and patients demonstrate similar major abnormalities of the spontaneous SPN firing in the alert parkinsonian state. Furthermore, these studies also show altered SPN responses to DA replacement in the advanced parkinsonian state. Clearly, there is yet much to learn about the striatal discharges in PD, but studies using primate models are contributing unique information to advance our understanding of pathophysiologic mechanisms.

  19. Physiology and morphology of callosal projection neurons in mouse

    Science.gov (United States)

    Ramos, Raddy L.; Tam, Danny M.; Brumberg, Joshua C.

    2008-01-01

    In the mammalian neocortex, the corpus callosum serves as the major source of interhemispheric communication, comprised of axons from callosal neurons located in supragranular (II/III) and infragranular (V/VI) layers. We sought to characterize the physiology and morphology of supragranular and infragranular callosal neurons in mice using retrograde tracers and whole-cell patch clamp recordings. Whole-cell patch clamp recordings were made from retrogradely labeled callosal neurons following unilateral injection of fluorescent latex microspheres in the contralateral sensory-motor cortex. Following recordings and biocytin dialysis, labeled neurons were reconstructed using computer-assisted camera lucida (Neurolucida) for morphological analyses. Whole-cell recordings revealed that callosal neurons in both supra- and infragranular layers display very similar intrinsic membrane properties and are characteristic regular-spiking neurons. Morphological features examined from biocytin filled reconstructions as well as retrogradely BDA labeled cells did not reveal any differences. Analysis of spontaneous postsynaptic potentials from callosal neurons did reveal several differences including average amplitude, frequency, and decay time. These findings suggest that callosal neurons in both supra- and infragranular layers have similar phenotypes though belong to different local, intracortical networks. PMID:18424008

  20. Feed-forward and feedback projections of midbrain reticular formation neurons in the cat.

    Science.gov (United States)

    Perkins, Eddie; May, Paul J; Warren, Susan

    2014-01-10

    Gaze changes involving the eyes and head are orchestrated by brainstem gaze centers found within the superior colliculus (SC), paramedian pontine reticular formation (PPRF), and medullary reticular formation (MdRF). The mesencephalic reticular formation (MRF) also plays a role in gaze. It receives a major input from the ipsilateral SC and contains cells that fire in relation to gaze changes. Moreover, it provides a feedback projection to the SC and feed-forward projections to the PPRF and MdRF. We sought to determine whether these MRF feedback and feed-forward projections originate from the same or different neuronal populations by utilizing paired fluorescent retrograde tracers in cats. Specifically, we tested: 1. whether MRF neurons that control eye movements form a single population by injecting the SC and PPRF with different tracers, and 2. whether MRF neurons that control head movements form a single population by injecting the SC and MdRF with different tracers. In neither case were double labeled neurons observed, indicating that feedback and feed-forward projections originate from separate MRF populations. In both cases, the labeled reticulotectal and reticuloreticular neurons were distributed bilaterally in the MRF. However, neurons projecting to the MdRF were generally constrained to the medial half of the MRF, while those projecting to the PPRF, like MRF reticulotectal neurons, were spread throughout the mediolateral axis. Thus, the medial MRF may be specialized for control of head movements, with control of eye movements being more widespread in this structure.

  1. Spinal sensory projection neuron responses to spinal cord stimulation are mediated by circuits beyond gate control.

    Science.gov (United States)

    Zhang, Tianhe C; Janik, John J; Peters, Ryan V; Chen, Gang; Ji, Ru-Rong; Grill, Warren M

    2015-07-01

    Spinal cord stimulation (SCS) is a therapy used to treat intractable pain with a putative mechanism of action based on the Gate Control Theory. We hypothesized that sensory projection neuron responses to SCS would follow a single stereotyped response curve as a function of SCS frequency, as predicted by the Gate Control circuit. We recorded the responses of antidromically identified sensory projection neurons in the lumbar spinal cord during 1- to 150-Hz SCS in both healthy rats and neuropathic rats following chronic constriction injury (CCI). The relationship between SCS frequency and projection neuron activity predicted by the Gate Control circuit accounted for a subset of neuronal responses to SCS but could not account for the full range of observed responses. Heterogeneous responses were classifiable into three additional groups and were reproduced using computational models of spinal microcircuits representing other interactions between nociceptive and nonnociceptive sensory inputs. Intrathecal administration of bicuculline, a GABAA receptor antagonist, increased spontaneous and evoked activity in projection neurons, enhanced excitatory responses to SCS, and reduced inhibitory responses to SCS, suggesting that GABAA neurotransmission plays a broad role in regulating projection neuron activity. These in vivo and computational results challenge the Gate Control Theory as the only mechanism underlying SCS and refine our understanding of the effects of SCS on spinal sensory neurons within the framework of contemporary understanding of dorsal horn circuitry. Copyright © 2015 the American Physiological Society.

  2. Projection and synaptic connectivity of trigeminal mesencephalic nucleus neurons controlling jaw reflexes

    National Research Council Canada - National Science Library

    Yoshida, Atsushi; Moritani, Masayuki; Nagase, Yoshitaka; Bae, Yong Chul

    2017-01-01

    Neurons in the trigeminal mesencephalic nucleus (Vmes) receive deep sensation (proprioception) from jaw-closing muscle spindles and periodontal ligaments and project primarily to the jaw-closing motoneuron pool...

  3. Efficient Generation of Corticofugal Projection Neurons from Human Embryonic Stem Cells

    National Research Council Canada - National Science Library

    Zhu, Xiaoqing; Ai, Zongyong; Hu, Xintian; Li, Tianqing

    2016-01-01

    Efforts to study development and function of corticofugal projection neurons (CfuPNs) in the human cerebral cortex for health and disease have been limited by the unavailability of highly enriched CfuPNs...

  4. Projection-Target-Defined Effects of Orexin and Dynorphin on VTA Dopamine Neurons.

    Science.gov (United States)

    Baimel, Corey; Lau, Benjamin K; Qiao, Min; Borgland, Stephanie L

    2017-02-07

    Circuit-specific signaling of ventral tegmental area (VTA) dopamine neurons drives different aspects of motivated behavior, but the neuromodulatory control of these circuits is unclear. We tested the actions of co-expressed lateral hypothalamic peptides, orexin A (oxA) and dynorphin (dyn), on projection-target-defined dopamine neurons in mice. We determined that VTA dopamine neurons that project to the nucleus accumbens lateral shell (lAcbSh), medial shell (mAcbSh), and basolateral amygdala (BLA) are largely non-overlapping cell populations with different electrophysiological properties. Moreover, the neuromodulatory effects of oxA and dyn on these three projections differed. OxA selectively increased firing in lAcbSh- and mAcbSh-projecting dopamine neurons. Dyn decreased firing in the majority of mAcbSh- and BLA-projecting dopamine neurons but reduced firing only in a small fraction of those that project to the lAcbSh. In conclusion, the oxA-dyn input to the VTA may drive reward-seeking behavior by tuning dopaminergic output in a projection-target-dependent manner. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  5. Visualization of Sensory Neurons and Their Projections in an Upper Motor Neuron Reporter Line.

    Science.gov (United States)

    Genç, Barış; Lagrimas, Amiko Krisa Bunag; Kuru, Pınar; Hess, Robert; Tu, Michael William; Menichella, Daniela Maria; Miller, Richard J; Paller, Amy S; Özdinler, P Hande

    2015-01-01

    Visualization of peripheral nervous system axons and cell bodies is important to understand their development, target recognition, and integration into complex circuitries. Numerous studies have used protein gene product (PGP) 9.5 [a.k.a. ubiquitin carboxy-terminal hydrolase L1 (UCHL1)] expression as a marker to label sensory neurons and their axons. Enhanced green fluorescent protein (eGFP) expression, under the control of UCHL1 promoter, is stable and long lasting in the UCHL1-eGFP reporter line. In addition to the genetic labeling of corticospinal motor neurons in the motor cortex and degeneration-resistant spinal motor neurons in the spinal cord, here we report that neurons of the peripheral nervous system are also fluorescently labeled in the UCHL1-eGFP reporter line. eGFP expression is turned on at embryonic ages and lasts through adulthood, allowing detailed studies of cell bodies, axons and target innervation patterns of all sensory neurons in vivo. In addition, visualization of both the sensory and the motor neurons in the same animal offers many advantages. In this report, we used UCHL1-eGFP reporter line in two different disease paradigms: diabetes and motor neuron disease. eGFP expression in sensory axons helped determine changes in epidermal nerve fiber density in a high-fat diet induced diabetes model. Our findings corroborate previous studies, and suggest that more than five months is required for significant skin denervation. Crossing UCHL1-eGFP with hSOD1G93A mice generated hSOD1G93A-UeGFP reporter line of amyotrophic lateral sclerosis, and revealed sensory nervous system defects, especially towards disease end-stage. Our studies not only emphasize the complexity of the disease in ALS, but also reveal that UCHL1-eGFP reporter line would be a valuable tool to visualize and study various aspects of sensory nervous system development and degeneration in the context of numerous diseases.

  6. Morphology and projections of neurons in Remak's nerve of the domestic fowl revealed by intracellular injection of biocytin.

    Science.gov (United States)

    Lunam, C A; Smith, T K

    1996-05-01

    Micro-injections of biocytin were made into neurons in whole-mount preparations of Remak's nerve of the domestic fowl to visualise the morphology and projections of Remak's neurons. Remak's neurons were classified into four distinct morphological types. Remak type-I and -II neurons had a morphology resembling that of mammalian sympathetic neurons. Type-I neurons (found only in juxta-jejunal ganglia) had numerous primary dendritic processes (8-14) with large dendritic fields and extensive dendritic arborizations. Type-II neurons had 2-9 primary dendritic processes, large dendritic fields and sparse dendritic branching. These were found in similar numbers in juxta-rectal and juxta-jejunal ganglia. Remak type-III neurons were the most numerous cell type of juxta-rectal ganglia. They had small cell somata and short dendritic processes that branched infrequently. Remak type-IV neurons (found only in juxta-jejunal ganglia) had a morphology resembling that of invertebrate neurons in that they possessed a prominent long tapering axon from which most of the numerous long dendritic processes emerged. In juxta-jejunal ganglia, all type-IV and most type-I, -II and -III neurons projected orally, whereas axons of juxta-rectal neurons (types II and III) projected either orally or aborally, or projected directly into a lateral nerve bundle supplying the gut. These regional differences in neuron types and axonal projections suggest that different neural circuits exist between Remak's nerve and the small and large intestine.

  7. Organization of Valence-Encoding and Projection-Defined Neurons in the Basolateral Amygdala

    Directory of Open Access Journals (Sweden)

    Anna Beyeler

    2018-01-01

    Full Text Available The basolateral amygdala (BLA mediates associative learning for both fear and reward. Accumulating evidence supports the notion that different BLA projections distinctly alter motivated behavior, including projections to the nucleus accumbens (NAc, medial aspect of the central amygdala (CeM, and ventral hippocampus (vHPC. Although there is consensus regarding the existence of distinct subsets of BLA neurons encoding positive or negative valence, controversy remains regarding the anatomical arrangement of these populations. First, we map the location of more than 1,000 neurons distributed across the BLA and recorded during a Pavlovian discrimination task. Next, we determine the location of projection-defined neurons labeled with retrograde tracers and use CLARITY to reveal the axonal path in 3-dimensional space. Finally, we examine the local influence of each projection-defined populations within the BLA. Understanding the functional and topographical organization of circuits underlying valence assignment could reveal fundamental principles about emotional processing.

  8. Exercise promotes axon regeneration of newborn striatonigral and corticonigral projection neurons in rats after ischemic stroke.

    Directory of Open Access Journals (Sweden)

    Qiu-Wan Zhang

    Full Text Available Newborn striatal neurons induced by middle cerebral artery occlusion (MCAO can form functional projections targeting into the substantia nigra, which should be very important for the recovery of motor function. Exercise training post-stroke improves motor recovery in clinic patients and increases striatal neurogenesis in experimental animals. This study aimed to investigate the effects of exercise on axon regeneration of newborn projection neurons in adult rat brains following ischemic stroke. Rats were subjected to a transient MCAO to induce focal cerebral ischemic injury, followed by 30 minutes of exercise training daily from 5 to 28 days after MCAO. Motor function was tested using the rotarod test. We used fluorogold (FG nigral injection to trace striatonigral and corticonigral projection neurons, and green fluorescent protein (GFP-targeting retroviral vectors combined with FG double labeling (GFP(+ -FG(+ to detect newborn projection neurons. The results showed that exercise improved the recovery of motor function of rats after MCAO. Meanwhile, exercise also increased the levels of BDNF and VEGF, and reduced Nogo-A in ischemic brain. On this condition, we further found that exercise significantly increased the number of GFP(+ -FG(+ neurons in the striatum and frontal and parietal cortex ipsilateral to MCAO, suggesting an increase of newborn striatonigral and corticonigral projection neurons by exercise post-stroke. In addition, we found that exercise also increased NeuN(+ and FG(+ cells in the striatum and frontal and parietal cortex, the ischemic territory, and tyrosine hydroxylase (TH immunopositive staining cells in the substantia nigra, a region remote from the ischemic territory. Our results provide the first evidence that exercise can effectively enhance the capacity for regeneration of newborn projection neurons in ischemic injured mammalian brains while improving motor function. Our results provide a very important cellular mechanism

  9. Nitric oxide producing neurones in the rat medulla oblongata that project to nucleus tractus solitarii.

    Science.gov (United States)

    Esteves, F O; McWilliam, P N; Batten, T F

    2000-11-01

    The production of nitric oxide in neurones of the rat medulla oblongata that project to the nucleus tractus solitarii (NTS) was examined by simultaneous immunohistochemical detection of nitric oxide synthase (NOS) and of cholera toxin B-subunit (CTb), which was injected into the caudal zone of the NTS. Neurones immunoreactive for CTb and neurones immunoreactive for NOS were widely co-distributed and found in almost all the anatomical divisions of the medulla. Dual-labelled cells, containing both CTb and NOS immunoreactivities were more numerous ipsilaterally to the injection sites. They were concentrated principally in the more rostral zone of the NTS, raphé nuclei, dorsal, intermediate and lateral reticular areas, spinal trigeminal and paratrigeminal nuclei and the external cuneate and medial vestibular nuclei. Isolated dual-labelled neurones were also scattered throughout most of the divisions of the reticular formation. These observations indicate that many areas of the medulla that are known to relay somatosensory and viscerosensory inputs contain NOS immunoreactive neurones that project to the NTS, and may, therefore, contribute to the dense NOS-immunoreactive innervation of the NTS. The release of nitric oxide from the axon terminals of these neurones may modulate autonomic responses generated by NTS neurones in relation to peripheral sensory stimuli, and thus ultimately regulate sympathetic and/or parasympathetic outflow.

  10. Rab23 Regulates Radial Migration of Projection Neurons via N-cadherin.

    Science.gov (United States)

    Hor, Catherine H H; Goh, Eyleen L K

    2018-02-06

    Radial migration of cortical projection neurons is a prerequisite for shaping a distinct multilayered cerebral cortex during mammalian corticogenesis. Members of Rab GTPases family were reported to regulate radial migration. Here, in vivo conditional knockout or in utero knockdown (KD) of Rab23 in mice neocortex causes aberrant polarity and halted migration of cortical projection neurons. Further investigation of the underlying mechanism reveals down-regulation of N-cadherin in the Rab23-deficient neurons, which is a cell adhesion protein previously known to modulate radial migration. (Shikanai M, Nakajima K, Kawauchi T. 2011. N-cadherin regulates radial glial fiber-dependent migration of cortical locomoting neurons. Commun Integr Biol. 4:326-330.) Interestingly, pharmacological inhibition of extracellular signal-regulated kinases (ERK1/2) also decreases the expression of N-cadherin, implicating an upstream effect of ERK1/2 on N-cadherin and also suggesting a link between Rab23 and ERK1/2. Further biochemical studies show that silencing of Rab23 impedes activation of ERK1/2 via perturbed platelet-derived growth factor-alpha (PDGFRα) signaling. Restoration of the expression of Rab23 or N-cadherin in Rab23-KD neurons could reverse neuron migration defects, indicating that Rab23 modulates migration through N-cadherin. These studies suggest that cortical neuron migration is mediated by a molecular hierarchy downstream of Rab23 via N-cadherin. © The Author(s) 2018. Published by Oxford University Press.

  11. Synaptic connections of PDF-immunoreactive lateral neurons projecting to the dorsal protocerebrum of Drosophila melanogaster.

    Science.gov (United States)

    Yasuyama, Kouji; Meinertzhagen, Ian A

    2010-02-01

    Recent studies in Drosophila melanogaster indicate that the neuropeptide pigment-dispersing factor (PDF) is an important output signal from a set of major clock neurons, s-LN(v)s (small ventral lateral neurons), which transmit the circadian phase to subsets of other clock neurons, DNs (dorsal neurons). Both s-LN(v)s and DNs have fiber projections to the dorsal protocerebrum of the brain, so that this area is a conspicuous locus for coupling between different subsets of clock neurons. To unravel the neural circuits underlying the fly's circadian rhythms, we examined the detailed subcellular morphology of the PDF-positive fibers of the s-LN(v)s in the dorsal protocerebrum, focusing on their synaptic connections, using preembedding immunoelectron microscopy. To examine the distribution of synapses, we also reconstructed the three-dimensional morphology of PDF-positive varicosities from fiber profiles in the dorsal protocerebrum. The varicosities contained large dense-core vesicles (DCVs), and also numerous small clear vesicles, forming divergent output synapses onto unlabeled neurites. The DCVs apparently dock at nonsynaptic sites, suggesting their nonsynaptic release. In addition, a 3D reconstruction revealed the presence of input synapses onto the PDF-positive fibers. These were detected less frequently than output sites. These observations suggest that the PDF-positive clock neurons receive neural inputs directly through synaptic connections in the dorsal protocerebrum, in addition to supplying dual outputs, either synaptic or via paracrine release of the DCV contents, to unidentified target neurons.

  12. Individual mediodorsal thalamic neurons project to multiple areas of the rat prefrontal cortex: A single neuron-tracing study using virus vectors.

    Science.gov (United States)

    Kuramoto, Eriko; Pan, Shixiu; Furuta, Takahiro; Tanaka, Yasuhiro R; Iwai, Haruki; Yamanaka, Atsushi; Ohno, Sachi; Kaneko, Takeshi; Goto, Tetsuya; Hioki, Hiroyuki

    2017-01-01

    The prefrontal cortex has an important role in a variety of cognitive and executive processes, and is generally defined by its reciprocal connections with the mediodorsal thalamic nucleus (MD). The rat MD is mainly subdivided into three segments, the medial (MDm), central (MDc), and lateral (MDl) divisions, on the basis of the cytoarchitecture and chemoarchitecture. The MD segments are known to topographically project to multiple prefrontal areas at the population level: the MDm mainly to the prelimbic, infralimbic, and agranular insular areas; the MDc to the orbital and agranular insular areas; and the MDl to the prelimbic and anterior cingulate areas. However, it is unknown whether individual MD neurons project to single or multiple prefrontal cortical areas. In the present study, we visualized individual MD neurons with Sindbis virus vectors, and reconstructed whole structures of MD neurons. While the main cortical projection targets of MDm, MDc, and MDl neurons were generally consistent with those of previous results, it was found that individual MD neurons sent their axon fibers to multiple prefrontal areas, and displayed various projection patterns in the target areas. Furthermore, the axons of single MD neurons were not homogeneously spread, but were rather distributed to form patchy axon arbors approximately 1 mm in diameter. The multiple-area projections and patchy axon arbors of single MD neurons might be able to coactivate cortical neuron groups in distant prefrontal areas simultaneously. Furthermore, considerable heterogeneity of the projection patterns is likely, to recruit the different sets of cortical neurons, and thus contributes to a variety of prefrontal functions. J. Comp. Neurol. 525:166-185, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. Central Projections of Antennal and Labial Palp Sensory Neurons in the Migratory ArmywormMythimna separata.

    Science.gov (United States)

    Ma, Bai-Wei; Zhao, Xin-Cheng; Berg, Bente G; Xie, Gui-Ying; Tang, Qing-Bo; Wang, Gui-Rong

    2017-01-01

    The oriental armyworm, Mythimna separata (Walker), is a polyphagous, migratory pest relying on olfactory cues to find mates, locate nectar, and guide long-distance flight behavior. In the present study, a combination of neuroanatomical techniques were utilized on this species, including backfills, confocal microscopy, and three-dimensional reconstructions, to trace the central projections of sensory neurons from the antenna and the labial pit organ, respectively. As previously shown, the axons of the labial sensory neurons project via the ipsilateral labial nerve and terminate in three main areas of the central nervous system: (1) the labial-palp pit organ glomerulus of each antennal lobe, (2) the gnathal ganglion, and (3) the prothoracic ganglion of the ventral nerve cord. Similarly, the antennal sensory axons project to multiple areas of the central nervous system. The ipsilateral antennal nerve targets mainly the antennal lobe, the antennal mechanosensory and motor center, and the prothoracic and mesothoracic ganglia. Specific staining experiments including dye application to each of the three antennal segments indicate that the antennal lobe receives input from flagellar olfactory neurons exclusively, while the antennal mechanosensory and motor center is innervated by mechanosensory neurons from the whole antenna, comprising the flagellum, pedicle, and scape. The terminals in the mechanosensory and motor center are organized in segregated zones relating to the origin of neurons. The flagellar mechanosensory axons target anterior zones, while the pedicular and scapal axons terminate in posterior zones. In the ventral nerve cord, the processes from the antennal sensory neurons terminate in the motor area of the thoracic ganglia, suggesting a close connection with motor neurons. Taken together, the numerous neuropils innervated by axons both from the antenna and labial palp indicate the multiple roles these sensory organs serve in insect behavior.

  14. Central Projections of Antennal and Labial Palp Sensory Neurons in the Migratory Armyworm Mythimna separata

    Directory of Open Access Journals (Sweden)

    Bai-Wei Ma

    2017-11-01

    Full Text Available The oriental armyworm, Mythimna separata (Walker, is a polyphagous, migratory pest relying on olfactory cues to find mates, locate nectar, and guide long-distance flight behavior. In the present study, a combination of neuroanatomical techniques were utilized on this species, including backfills, confocal microscopy, and three-dimensional reconstructions, to trace the central projections of sensory neurons from the antenna and the labial pit organ, respectively. As previously shown, the axons of the labial sensory neurons project via the ipsilateral labial nerve and terminate in three main areas of the central nervous system: (1 the labial-palp pit organ glomerulus of each antennal lobe, (2 the gnathal ganglion, and (3 the prothoracic ganglion of the ventral nerve cord. Similarly, the antennal sensory axons project to multiple areas of the central nervous system. The ipsilateral antennal nerve targets mainly the antennal lobe, the antennal mechanosensory and motor center, and the prothoracic and mesothoracic ganglia. Specific staining experiments including dye application to each of the three antennal segments indicate that the antennal lobe receives input from flagellar olfactory neurons exclusively, while the antennal mechanosensory and motor center is innervated by mechanosensory neurons from the whole antenna, comprising the flagellum, pedicle, and scape. The terminals in the mechanosensory and motor center are organized in segregated zones relating to the origin of neurons. The flagellar mechanosensory axons target anterior zones, while the pedicular and scapal axons terminate in posterior zones. In the ventral nerve cord, the processes from the antennal sensory neurons terminate in the motor area of the thoracic ganglia, suggesting a close connection with motor neurons. Taken together, the numerous neuropils innervated by axons both from the antenna and labial palp indicate the multiple roles these sensory organs serve in insect behavior.

  15. Chemogenetic Excitation of Accumbens-Projecting Infralimbic Cortical Neurons Blocks Toluene-Induced Conditioned Place Preference.

    Science.gov (United States)

    Wayman, Wesley N; Woodward, John J

    2018-02-07

    Abuse rates for inhalants among adolescents continue to be high, yet preclinical models for studying mechanisms underlying inhalant abuse remain limited. Our laboratory has previously shown that, in male rats, an acute binge-like exposure to toluene vapor that mimics human solvent abuse modifies the intrinsic excitability of mPFC pyramidal neurons projecting to the NAc. These changes showed region (infralimbic; IL vs prelimbic; PRL), layer (shallow; 2/3 vs deep; 5/6), target (core vs shell), and age (adolescent vs adult) dependent differences (Wayman and Woodward, 2017). To expand these findings using reward-based models that may better mimic human drug abuse, we used whole-cell electrophysiology and drug receptors exclusively activated by designer drugs to examine changes in neuronal function and behavior in rats showing a conditioned place preference (CPP) to toluene. Repeated pairings of adolescent rats to binge concentrations of toluene vapor previously shown to enhance dopamine release in reward-sensitive areas of the brain produced CPP that persisted for 7 but not 30 d. Toluene-induced CPP was associated with increased excitability of IL5/6 mPFC neurons projecting to the core of the NAc and reduced excitability of those projecting to the NAc shell. No changes in PRL-NAc-projecting neurons were found in toluene-CPP rats. Chemogenetic reversal of the toluene-induced decrease in IL5/6-NAc shell neurons blocked the expression of toluene-induced CPP while manipulating IL5/6-NAc core neuron activity had no effect. These data reveal that alterations in selective mPFC-NAc pathways are required for expression of toluene-induced CPP. SIGNIFICANCE STATEMENT Disturbed physiology of pyramidal neurons projecting from the mPFC to the NAc has been shown to have different roles in drug-seeking behaviors for a number of drugs (e.g., methamphetamine, cocaine, ecstasy, alcohol, heroin). Here, we report that rats repeatedly exposed to the volatile organic solvent toluene, a

  16. Spinal afferent neurons projecting to the rat lung and pleura express acid sensitive channels

    Science.gov (United States)

    Groth, Michael; Helbig, Tanja; Grau, Veronika; Kummer, Wolfgang; Haberberger, Rainer V

    2006-01-01

    Background The acid sensitive ion channels TRPV1 (transient receptor potential vanilloid receptor-1) and ASIC3 (acid sensing ion channel-3) respond to tissue acidification in the range that occurs during painful conditions such as inflammation and ischemia. Here, we investigated to which extent they are expressed by rat dorsal root ganglion neurons projecting to lung and pleura, respectively. Methods The tracer DiI was either injected into the left lung or applied to the costal pleura. Retrogradely labelled dorsal root ganglion neurons were subjected to triple-labelling immunohistochemistry using antisera against TRPV1, ASIC3 and neurofilament 68 (marker for myelinated neurons), and their soma diameter was measured. Results Whereas 22% of pulmonary spinal afferents contained neither channel-immunoreactivity, at least one is expressed by 97% of pleural afferents. TRPV1+/ASIC3- neurons with probably slow conduction velocity (small soma, neurofilament 68-negative) were significantly more frequent among pleural (35%) than pulmonary afferents (20%). TRPV1+/ASIC3+ neurons amounted to 14 and 10% respectively. TRPV1-/ASIC3+ neurons made up between 44% (lung) and 48% (pleura) of neurons, and half of them presumably conducted in the A-fibre range (larger soma, neurofilament 68-positive). Conclusion Rat pleural and pulmonary spinal afferents express at least two different acid-sensitive channels that make them suitable to monitor tissue acidification. Patterns of co-expression and structural markers define neuronal subgroups that can be inferred to subserve different functions and may initiate specific reflex responses. The higher prevalence of TRPV1+/ASIC3- neurons among pleural afferents probably reflects the high sensitivity of the parietal pleura to painful stimuli. PMID:16813657

  17. Activation of lateral hypothalamus-projecting parabrachial neurons by intraorally delivered gustatory stimuli

    Directory of Open Access Journals (Sweden)

    Kenichi eTokita

    2014-07-01

    Full Text Available The present study investigated a subpopulation of neurons in the mouse parabrachial nucleus (PbN, a gustatory and visceral relay area in the brainstem, that project to the lateral hypothalamus (LH. We made injections of the retrograde tracer Fluorogold (FG into LH, resulting in fluorescent labeling of neurons located in different regions of the PbN. Mice were stimulated through an intraoral cannula with one of seven different taste stimuli, and PbN sections were processed for immunohistochemical detection of the immediate early gene c-Fos, which labels activated neurons. LH projection neurons were found in all PbN subnuclei, but in greater concentration in lateral subnuclei, including the dorsal lateral subnucleus (dl. Fos-like immunoreactivity (FLI was observed in the PbN in a stimulus-dependent pattern, with the greatest differentiation between intraoral stimulation with sweet (0.5 M sucrose and bitter (0.003 M quinine compounds. In particular, sweet and umami-tasting stimuli evoked robust FLI in cells in the dl, whereas quinine evoked almost no FLI in cells in this subnucleus. Double-labeled cells were also found in the greatest quantity in the dl. Overall, these results support the hypothesis that the dl contains direct a projection to the LH that is activated preferentially by appetitive compounds; this projection may be mediated by taste and/or postingestive mechanisms.

  18. Serotonergic versus Nonserotonergic Dorsal Raphe Projection Neurons: Differential Participation in Reward Circuitry

    Directory of Open Access Journals (Sweden)

    Ross A. McDevitt

    2014-09-01

    Full Text Available The dorsal raphe nucleus (DRN contains the largest group of serotonin-producing neurons in the brain and projects to regions controlling reward. Although pharmacological studies suggest that serotonin inhibits reward seeking, electrical stimulation of the DRN strongly reinforces instrumental behavior. Here, we provide a targeted assessment of the behavioral, anatomical, and electrophysiological contributions of serotonergic and nonserotonergic DRN neurons to reward processes. To explore DRN heterogeneity, we used a simultaneous two-vector knockout/optogenetic stimulation strategy, as well as cre-induced and cre-silenced vectors in several cre-expressing transgenic mouse lines. We found that the DRN is capable of reinforcing behavior primarily via nonserotonergic neurons, for which the main projection target is the ventral tegmental area (VTA. Furthermore, these nonserotonergic projections provide glutamatergic excitation of VTA dopamine neurons and account for a large majority of the DRN-VTA pathway. These findings help to resolve apparent discrepancies between the roles of serotonin versus the DRN in behavioral reinforcement.

  19. Hypothalamic Vasopressinergic Projections Innervate Central Amygdala GABAergic Neurons: Implications for Anxiety and Stress Coping.

    Science.gov (United States)

    Hernández, Vito S; Hernández, Oscar R; Perez de la Mora, Miguel; Gómora, María J; Fuxe, Kjell; Eiden, Lee E; Zhang, Limei

    2016-01-01

    The arginine-vasopressin (AVP)-containing hypothalamic magnocellular neurosecretory neurons (VPMNNs) are known for their role in hydro-electrolytic balance control via their projections to the neurohypophysis. Recently, projections from these same neurons to hippocampus, habenula and other brain regions in which vasopressin infusion modulates contingent social and emotionally-affected behaviors, have been reported. Here, we present evidence that VPMNN collaterals also project to the amygdaloid complex, and establish synaptic connections with neurons in central amygdala (CeA). The density of AVP innervation in amygdala was substantially increased in adult rats that had experienced neonatal maternal separation (MS), consistent with our previous observations that MS enhances VPMNN number in the paraventricular (PVN) and supraoptic (SON) nuclei of the hypothalamus. In the CeA, V1a AVP receptor mRNA was only observed in GABAergic neurons, demonstrated by complete co-localization of V1a transcripts in neurons expressing Gad1 and Gad2 transcripts in CeA using the RNAscope method. V1b and V2 receptor mRNAs were not detected, using the same method. Water-deprivation (WD) for 24 h, which increased the metabolic activity of VPMNNs, also increased anxiety-like behavior measured using the elevated plus maze (EPM) test, and this effect was mimicked by bilateral microinfusion of AVP into the CeA. Anxious behavior induced by either WD or AVP infusion was reversed by CeA infusion of V1a antagonist. VPMNNs are thus a newly discovered source of CeA inhibitory circuit modulation, through which both early-life and adult stress coping signals are conveyed from the hypothalamus to the amygdala.

  20. Hypothalamic vasopressinergic projections innervate central amygdala GABAergic neurons: implications for anxiety and stress coping

    Directory of Open Access Journals (Sweden)

    Vito Salvador Hernandez

    2016-11-01

    Full Text Available The arginine-vasopressin (AVP-containing hypothalamic magnocellular neurosecretory neurons (VPMNNs are known for their role in hydro-electrolytic balance control via their projections to neurohypophysis. Recently, projections from these same neurons to hippocampus, habenula, and other brain regions, in which vasopressin infusion modulates contingent social and emotionally-affected behaviors, have been reported. Here, we present evidence that VPMNN collaterals also project to the amygdaloid complex, and establish synaptic connections with neurons in central amygdala (CeA. The density of AVP innervation in amygdala was substantially increased in adult rats that had experienced neonatal maternal separation (MS, consistent with our previous observations that MS enhances VPMNN number in the paraventricular (PVN and supraoptic (SON nuclei of the hypothalamus. In the CeA, V1a AVP receptor mRNA was only observed in GABAergic neurons, demonstrated by complete co-localization of V1a transcripts in neurons expressing Gad1 and Gad2 transcripts in CeA using the RNAscope method. V1b and V2 receptors mRNA were not detected, using the same method. Water-deprivation for 24 hrs, which increased the metabolic activity of VPMNNs, also increased anxiety-like behavior measured using the elevated plus maze test, and this effect was mimicked by bilateral microinfusion of VP into the CeA. Anxious behavior induced by either water deprivation or VP infusion was reversed by CeA infusion of V1a antagonist. VPMNNs are thus a newly discovered source of central amygdala inhibitory circuit modulation, through which both early-life and adult stress coping signals are conveyed from the hypothalamus to the amygdala.

  1. Visualization of cortical projection neurons with retrograde TET-off lentiviral vector.

    Science.gov (United States)

    Watakabe, Akiya; Kato, Shigeki; Kobayashi, Kazuto; Takaji, Masafumi; Nakagami, Yuki; Sadakane, Osamu; Ohtsuka, Masanari; Hioki, Hiroyuki; Kaneko, Takeshi; Okuno, Hiroyuki; Kawashima, Takashi; Bito, Haruhiko; Kitamura, Yoshihiro; Yamamori, Tetsuo

    2012-01-01

    We are interested in identifying and characterizing various projection neurons that constitute the neocortical circuit. For this purpose, we developed a novel lentiviral vector that carries the tetracycline transactivator (tTA) and the transgene under the TET Responsive Element promoter (TRE) on a single backbone. By pseudotyping such a vector with modified rabies G-protein, we were able to express palmitoylated-GFP (palGFP) or turboFP635 (RFP) in corticothalamic, corticocortical, and corticopontine neurons of mice. The high-level expression of the transgene achieved by the TET-Off system enabled us to observe characteristic elaboration of neuronal processes for each cell type. At higher magnification, we were able to observe fine structures such as boutons and spines as well. We also injected our retrograde TET-Off vector to the marmoset cortex and proved that it can be used to label the long-distance cortical connectivity of millimeter scale. In conclusion, our novel retrograde tracer provides an attractive option to investigate the morphologies of identified cortical projection neurons of various species.

  2. Visualization of cortical projection neurons with retrograde TET-off lentiviral vector.

    Directory of Open Access Journals (Sweden)

    Akiya Watakabe

    Full Text Available We are interested in identifying and characterizing various projection neurons that constitute the neocortical circuit. For this purpose, we developed a novel lentiviral vector that carries the tetracycline transactivator (tTA and the transgene under the TET Responsive Element promoter (TRE on a single backbone. By pseudotyping such a vector with modified rabies G-protein, we were able to express palmitoylated-GFP (palGFP or turboFP635 (RFP in corticothalamic, corticocortical, and corticopontine neurons of mice. The high-level expression of the transgene achieved by the TET-Off system enabled us to observe characteristic elaboration of neuronal processes for each cell type. At higher magnification, we were able to observe fine structures such as boutons and spines as well. We also injected our retrograde TET-Off vector to the marmoset cortex and proved that it can be used to label the long-distance cortical connectivity of millimeter scale. In conclusion, our novel retrograde tracer provides an attractive option to investigate the morphologies of identified cortical projection neurons of various species.

  3. Manipulating gene expression in projection-specific neuronal populations using combinatorial viral approaches.

    Science.gov (United States)

    Gore, Bryan B; Soden, Marta E; Zweifel, Larry S

    2013-01-01

    The mammalian brain contains tremendous structural and genetic complexity that is vital for its function. The elucidation of gene expression profiles in the brain, coupled with the development of large-scale connectivity maps and emerging viral vector-based approaches for target-selective gene manipulation, now allow for detailed dissection of gene-circuit interfaces. This protocol details how to perform combinatorial viral injections to manipulate gene expression in subsets of neurons interconnecting two brain regions. This method utilizes stereotaxic injection of a retrograde transducing CAV2-Cre virus into one brain region, combined with injection of a locally transducing Cre-dependent AAV virus into another brain region. This technique is widely applicable to the genetic dissection of neural circuitry, as it enables selective expression of candidate genes, dominant-negatives, fluorescent reporters, or genetic tools within heterogeneous populations of neurons based upon their projection targets.

  4. Projection neurons in Drosophila antennal lobes signal the acceleration of odor concentrations.

    Science.gov (United States)

    Kim, Anmo J; Lazar, Aurel A; Slutskiy, Yevgeniy B

    2015-05-14

    Temporal experience of odor gradients is important in spatial orientation of animals. The fruit fly Drosophila melanogaster exhibits robust odor-guided behaviors in an odor gradient field. In order to investigate how early olfactory circuits process temporal variation of olfactory stimuli, we subjected flies to precisely defined odor concentration waveforms and examined spike patterns of olfactory sensory neurons (OSNs) and projection neurons (PNs). We found a significant temporal transformation between OSN and PN spike patterns, manifested by the PN output strongly signaling the OSN spike rate and its rate of change. A simple two-dimensional model admitting the OSN spike rate and its rate of change as inputs closely predicted the PN output. When cascaded with the rate-of-change encoding by OSNs, PNs primarily signal the acceleration and the rate of change of dynamic odor stimuli to higher brain centers, thereby enabling animals to reliably respond to the onsets of odor concentrations.

  5. Zbtb20 Defines a Hippocampal Neuronal Identity Through Direct Repression of Genes That Control Projection Neuron Development in the Isocortex

    DEFF Research Database (Denmark)

    Nielsen, Jakob V; Thomassen, Mads; Møllgård, Kjeld

    2014-01-01

    Hippocampal pyramidal neurons are important for encoding and retrieval of spatial maps and episodic memories. While previous work has shown that Zbtb20 is a cell fate determinant for CA1 pyramidal neurons, the regulatory mechanisms governing this process are not known. In this study, we demonstrate...... that Zbtb20 binds to genes that control neuronal subtype specification in the developing isocortex, including Cux1, Cux2, Fezf2, Foxp2, Mef2c, Rorb, Satb2, Sox5, Tbr1, Tle4, and Zfpm2. We show that Zbtb20 represses these genes during ectopic CA1 pyramidal neuron development in transgenic mice. These data...... reveal a novel regulatory mechanism by which Zbtb20 suppresses the acquisition of an isocortical fate during archicortical neurogenesis to ensure commitment to a CA1 pyramidal neuron fate. We further show that the expression pattern of Zbtb20 is evolutionary conserved in the fetal human hippocampus...

  6. Double-labelling with rhodamine beads and biocytin: a technique for studying corticospinal and other projection neurons in vitro.

    Science.gov (United States)

    Tseng, G F; Parada, I; Prince, D A

    1991-04-01

    Corticospinal neurons retrogradely labelled with rhodamine-labelled latex microspheres (RLMs) in vivo were studied intracellularly in a slice preparation up to 13 months later with electrodes containing biocytin. The physiological properties of these double-labelled corticospinal neurons were indistinguishable from those of comparable neurons which were impaled with biocytin-containing electrodes without prior RLM-labelling, and neurons studied with potassium acetate-filled electrodes in similar areas. Thus, neither labelling with RLMs nor injection of biocytin affected neuronal properties. This important advantage of RLMs makes them suitable for prelabelling projection neurons in vivo for subsequent studies that take advantage of the versatility of a brain slice preparation. In addition to its lack of effects on neuronal properties, intracellular labelling with biocytin also provides high-quality morphological details ideal for anatomical analysis. The compatibility of retrograde labelling with RLMs and intracellular staining with biocytin make this a useful combined technique for tracking electrophysiological and anatomical changes in identified projection neurons over time.

  7. Different correlation patterns of cholinergic and GABAergic interneurons with striatal projection neurons

    Directory of Open Access Journals (Sweden)

    Avital eAdler

    2013-09-01

    Full Text Available The striatum is populated by a single projection neuron group, the medium spiny neurons (MSNs, and several groups of interneurons. Two of the electrophysiologically well-characterized striatal interneuron groups are the tonically active neurons (TANs, which are presumably cholinergic interneurons, and the fast spiking interneurons (FSIs, presumably parvalbumin (PV expressing GABAergic interneurons. To better understand striatal processing it is thus crucial to define the functional relationship between MSNs and these interneurons in the awake and behaving animal. We used multiple electrodes and standard physiological methods to simultaneously record MSN spiking activity and the activity of TANs or FSIs from monkeys engaged in a classical conditioning paradigm. All three cell populations were highly responsive to the behavioral task. However, they displayed different average response profiles and a different degree of response synchronization (signal correlation. TANs displayed the most transient and synchronized response, MSNs the most diverse and sustained response and FSIs were in between on both parameters. We did not find evidence for direct monosynaptic connectivity between the MSNs and either the TANs or the FSIs. However, while the cross correlation histograms of TAN to MSN pairs were flat, those of FSI to MSN displayed positive asymmetrical broad peaks. The FSI-MSN correlogram profile implies that the spikes of MSNs follow those of FSIs and both are driven by a common, most likely cortical, input. Thus, the two populations of striatal interneurons are probably driven by different afferents and play complementary functional roles in the physiology of the striatal microcircuit.

  8. Mechanisms Underlying Serotonergic Excitation of Callosal Projection Neurons in the Mouse Medial Prefrontal Cortex

    Directory of Open Access Journals (Sweden)

    Emily K. Stephens

    2018-01-01

    Full Text Available Serotonin (5-HT selectively excites subpopulations of pyramidal neurons in the neocortex via activation of 5-HT2A (2A receptors coupled to Gq subtype G-protein alpha subunits. Gq-mediated excitatory responses have been attributed primarily to suppression of potassium conductances, including those mediated by KV7 potassium channels (i.e., the M-current, or activation of non-specific cation conductances that underlie calcium-dependent afterdepolarizations (ADPs. However, 2A-dependent excitation of cortical neurons has not been extensively studied, and no consensus exists regarding the underlying ionic effector(s involved. In layer 5 of the mouse medial prefrontal cortex, we tested potential mechanisms of serotonergic excitation in commissural/callosal (COM projection neurons, a subpopulation of pyramidal neurons that exhibits 2A-dependent excitation in response to 5-HT. In baseline conditions, 5-HT enhanced the rate of action potential generation in COM neurons experiencing suprathreshold somatic current injection. This serotonergic excitation was occluded by activation of muscarinic acetylcholine (ACh receptors, confirming that 5-HT acts via the same Gq-signaling cascades engaged by ACh. Like ACh, 5-HT promoted the generation of calcium-dependent ADPs following spike trains. However, calcium was not necessary for serotonergic excitation, as responses to 5-HT were enhanced (by >100%, rather than reduced, by chelation of intracellular calcium with 10 mM BAPTA. This suggests intracellular calcium negatively regulates additional ionic conductances gated by 2A receptors. Removal of extracellular calcium had no effect when intracellular calcium signaling was intact, but suppressed 5-HT response amplitudes, by about 50%, when BAPTA was included in patch pipettes. This suggests that 2A excitation involves activation of a non-specific cation conductance that is both calcium-sensitive and calcium-permeable. M-current suppression was found to be a third

  9. Different corticostriatal integration in spiny projection neurons from direct and indirect pathways

    Directory of Open Access Journals (Sweden)

    Edén Flores-Barrera

    2010-06-01

    Full Text Available The striatum is the principal input structure of the basal ganglia (BG. Major glutamatergic afferents to the striatum come from the cerebral cortex and make monosynaptic contacts with medium spiny projection neurons (MSNs and interneurons. Despite differences in axonal projections, dopamine receptors expression and differences in excitability between MSNs from “direct” and “indirect” BG pathways, these neuronal classes have been thought as electrophysiologically very similar. Based on work with BAC transgenic mice, here it is shown that corticostriatal responses in D1- and D2-receptor expressing MSNs (D1- and D2-MSNs are radically different so as to establish an electrophysiological footprint that readily differentiates between them. Experiments in BAC mice allowed us to predict, with high probability (P>0.9, in rats or non-BAC mice, whether a recorded neuron, from rat or mouse, was going to be substance P or enkephalin immunoreactive. Responses are more prolonged and evoke more action potentials in D1-MSNs, while they are briefer and exhibit intrinsic autoregenerative responses in D2-MSNs. A main cause for these differences was the interaction of intrinsic properties with the inhibitory contribution in each response Inhibition always depressed corticostriatal depolarization in D2-MSNs, while it helped in sustaining prolonged depolarizations in D1-MSNs, in spite of depressing early discharge. Corticostriatal responses changed dramatically after striatal DA-depletion in 6-hydroxy-dopamine (6-OHDA lesioned animals: a response reduction was seen in SP+ MSNs whereas an enhanced response was seen in ENK+ MSNs. The end result was that differences in the responses were greatly diminished after DA depletion.

  10. Olfactory projection neuron pathways in two species of marine Isopoda (Peracarida, Malacostraca, Crustacea).

    Science.gov (United States)

    Stemme, Torben; Eickhoff, René; Bicker, Gerd

    2014-08-01

    The neuroanatomy of the olfactory pathway has been intensely studied in many representatives of Malacostraca. Nevertheless, the knowledge about bilateral olfactory integration pathways is mainly based on Decapoda. Here, we investigated the olfactory projection neuron pathway of two marine isopod species, Saduria entomon and Idotea emarginata, by lipophilic dye injections into the olfactory neuropil. We show that both arms of the olfactory globular tract form a chiasm in the center of the brain, as known from several other crustaceans. Furthermore, the olfactory projection neurons innervate both the medulla terminalis and the hemiellipsoid body of the ipsi- and the contralateral hemisphere. Both protocerebral neuropils are innervated to a comparable extent. This is reminiscent of the situation in the basal decapod taxon Dendrobranchiata. Thus, we propose that an innervation by the olfactory globular tract of both the medulla terminalis and the hemiellipsoid body is characteristic of the decapod ground pattern, but also of the ground pattern of Caridoida. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Distribution of glycine/GABA neurons in the ventromedial medulla with descending spinal projections and evidence for an ascending glycine/GABA projection.

    Science.gov (United States)

    Hossaini, Mehdi; Goos, Jacqueline A C; Kohli, Somesh K; Holstege, Jan C

    2012-01-01

    The ventromedial medulla (VM), subdivided in a rostral (RVM) and a caudal (CVM) part, has a powerful influence on the spinal cord. In this study, we have identified the distribution of glycine and GABA containing neurons in the VM with projections to the cervical spinal cord, the lumbar dorsal horn, and the lumbar ventral horn. For this purpose, we have combined retrograde tracing using fluorescent microspheres with fluorescent in situ hybridization (FISH) for glycine transporter 2 (GlyT2) and GAD67 mRNAs to identify glycinergic and/or GABAergic (Gly/GABA) neurons. Since the results obtained with FISH for GlyT2, GAD67, or GlyT2 + GAD67 mRNAs were not significantly different, we concluded that glycine and GABA coexisted in the various projection neurons. After injections in the cervical cord, we found that 29% ± 1 (SEM) of the retrogradely labeled neurons in the VM were Gly/GABA (RVM: 43%; CVM: 21%). After lumbar dorsal horn injections 31% ± 3 of the VM neurons were Gly/GABA (RVM: 45%; CVM: 12%), and after lumbar ventral horn injections 25% ± 2 were Gly/GABA (RVM: 35%; CVM: 17%). In addition, we have identified a novel ascending Gly/GABA pathway originating from neurons in the area around the central canal (CC) throughout the spinal cord and projecting to the RVM, emphasizing the interaction between the ventromedial medulla and the spinal cord. The present study has now firmly established that GABA and glycine are present in many VM neurons that project to the spinal cord. These neurons strongly influence spinal processing, most notably the inhibition of nociceptive transmission.

  12. Distribution of glycine/GABA neurons in the ventromedial medulla with descending spinal projections and evidence for an ascending glycine/GABA projection.

    Directory of Open Access Journals (Sweden)

    Mehdi Hossaini

    Full Text Available The ventromedial medulla (VM, subdivided in a rostral (RVM and a caudal (CVM part, has a powerful influence on the spinal cord. In this study, we have identified the distribution of glycine and GABA containing neurons in the VM with projections to the cervical spinal cord, the lumbar dorsal horn, and the lumbar ventral horn. For this purpose, we have combined retrograde tracing using fluorescent microspheres with fluorescent in situ hybridization (FISH for glycine transporter 2 (GlyT2 and GAD67 mRNAs to identify glycinergic and/or GABAergic (Gly/GABA neurons. Since the results obtained with FISH for GlyT2, GAD67, or GlyT2 + GAD67 mRNAs were not significantly different, we concluded that glycine and GABA coexisted in the various projection neurons. After injections in the cervical cord, we found that 29% ± 1 (SEM of the retrogradely labeled neurons in the VM were Gly/GABA (RVM: 43%; CVM: 21%. After lumbar dorsal horn injections 31% ± 3 of the VM neurons were Gly/GABA (RVM: 45%; CVM: 12%, and after lumbar ventral horn injections 25% ± 2 were Gly/GABA (RVM: 35%; CVM: 17%. In addition, we have identified a novel ascending Gly/GABA pathway originating from neurons in the area around the central canal (CC throughout the spinal cord and projecting to the RVM, emphasizing the interaction between the ventromedial medulla and the spinal cord. The present study has now firmly established that GABA and glycine are present in many VM neurons that project to the spinal cord. These neurons strongly influence spinal processing, most notably the inhibition of nociceptive transmission.

  13. Mechanosensory Lateral Line Nerve Projections to Auditory Neurons in the Dorsal Descending Octaval Nucleus in the Goldfish, Carassius auratus.

    Science.gov (United States)

    McCormick, Catherine A; Gallagher, Shannon; Cantu-Hertzler, Evan; Woodrick, Scarlet

    2016-01-01

    The nucleus medialis is the main first-order target of the mechanosensory lateral line (LL) system. This report definitively demonstrates that mechanosensory LL inputs also terminate in the ipsilateral dorsal portion of the descending octaval nucleus (dDO) in the goldfish. The dDO, which is the main first-order auditory nucleus in bony fishes, includes neurons that receive direct input from the otolithic end organs of the inner ear and project to the auditory midbrain. There are two groups of such auditory projection neurons: medial and lateral. The medial and the lateral groups in turn contain several neuronal populations, each of which includes one or more morphological cell types. In goldfish, the exclusively mechanosensory anterior and posterior LL nerves terminate only on specific cell types of auditory projection neurons in the lateral dDO group. Single neurons in the lateral dDO group may receive input from both anterior and posterior LL nerves. It is possible that some of the lateral dDO neurons that receive LL input also receive input from one or more of the otolithic end organs. These results are consistent with functional studies demonstrating low frequency acoustic sensitivity of the mechanosensory LL in teleosts, and they reveal that the anatomical substrate for sensory integration of otolithic and LL inputs is present at the origin of the central ascending auditory pathway in an otophysine fish. © 2016 S. Karger AG, Basel.

  14. Fear conditioning leads to alteration in specific genes expression in cortical and thalamic neurons that project to the lateral amygdala.

    Science.gov (United States)

    Katz, Ira K; Lamprecht, Raphael

    2015-02-01

    RNA transcription is needed for memory formation. However, the ability to identify genes whose expression is altered by learning is greatly impaired because of methodological difficulties in profiling gene expression in specific neurons involved in memory formation. Here, we report a novel approach to monitor the expression of genes after learning in neurons in specific brain pathways needed for memory formation. In this study, we aimed to monitor gene expression after fear learning. We retrogradely labeled discrete thalamic neurons that project to the lateral amygdala (LA) of rats. The labeled neurons were dissected, using laser microdissection microscopy, after fear conditioning learning or unpaired training. The RNAs from the dissected neurons were subjected to microarray analysis. The levels of selected RNAs detected by the microarray analysis to be altered by fear conditioning were also assessed by nanostring analysis. We observed that the expression of genes involved in the regulation of translation, maturation and degradation of proteins was increased 6 h after fear conditioning compared to unpaired or naïve trained rats. These genes were not expressed 24 h after training or in cortical neurons that project to the LA. The expression of genes involved in transcription regulation and neuronal development was altered after fear conditioning learning in the cortical-LA pathway. The present study provides key information on the identity of genes expressed in discrete thalamic and cortical neurons that project to the LA after fear conditioning. Such an approach could also serve to identify gene products as targets for the development of a new generation of therapeutic agents that could be aimed to functionally identified brain circuits to treat memory-related disorders. © 2014 International Society for Neurochemistry.

  15. The normal distribution and projections of constitutive NADPH-d/NOS neurons in the brainstem vestibular complex of the rat.

    Science.gov (United States)

    Saxon, D W; Beitz, A J

    2000-09-11

    The vestibular system is a highly conserved sensory system in vertebrates that is largely responsible for maintenance of one's orientation in space, posture, and balance and for visual fixation of objects during motion. In light of the considerable literature indicating an involvement of nitric oxide (NO) in sensory systems, it is important to determine whether NO is associated with vestibular pathways. To study the relationship of NO to vestibular pathways, we first examined the normal distribution of constitutive NADPH-diaphorase (NADPH-d), a marker for nitric oxide synthase (NOS), in the vestibular complex (VC) and then examined its association with selected vestibular projection neurons. Survey of the four major vestibular nuclei revealed that only the medial vestibular nucleus contained significant numbers of perikarya stained for NADPH-d/NOS. By contrast, all the vestibular nuclei contained a network of fine processes that stained positive for NADPH-d, although the density of this network varied among the individual nuclei. To determine whether NADPH-d/NOS neurons project to vestibular efferent targets, injections of the retrograde tracer Fluoro-Gold were made into known targets of second-order vestibular neurons. Vestibular neurons containing constitutive NADPH-d/NOS were found to project predominantly to the oculomotor nucleus. A small number of neurons also participate in vestibulothalamic and intrinsic vestibular connections. These results indicate that NADPH-d/NOS neurons are prevalent in the MVN and that a subpopulation of these neurons project to the oculomotor complex. Nitric oxide is probably released locally from axons located throughout the vestibular complex but may play a particularly important role in vestibulo-ocular pathways. Copyright 2000 Wiley-Liss, Inc.

  16. Targeted deletion of Sox10 by Wnt1-cre defects neuronal migration and projection in the mouse inner ear.

    Directory of Open Access Journals (Sweden)

    YanYan Mao

    Full Text Available Sensory nerves of the brainstem are mostly composed of placode-derived neurons, neural crest-derived neurons and neural crest-derived Schwann cells. This mixed origin of cells has made it difficult to dissect interdependence for fiber guidance. Inner ear-derived neurons are known to connect to the brain after delayed loss of Schwann cells in ErbB2 mutants. However, the ErbB2 mutant related alterations in the ear and the brain compound interpretation of the data. We present here a new model to evaluate exclusively the effect of Schwann cell loss on inner ear innervation. Conditional deletion of the neural crest specific transcription factor, Sox10, using the rhombic lip/neural crest specific Wnt1-cre driver spares Sox10 expression in the ear. We confirm that neural crest-derived cells provide a stop signal for migrating spiral ganglion neurons. In the absence of Schwann cells, spiral ganglion neurons migrate into the center of the cochlea and even out of the ear toward the brain. Spiral ganglion neuron afferent processes reach the organ of Corti, but many afferent fibers bypass the organ of Corti to enter the lateral wall of the cochlea. In contrast to this peripheral disorganization, the central projection to cochlear nuclei is normal. Compared to ErbB2 mutants, conditional Sox10 mutants have limited cell death in spiral ganglion neurons, indicating that the absence of Schwann cells alone contributes little to the embryonic survival of neurons. These data suggest that neural crest-derived cells are dispensable for all central and some peripheral targeting of inner ear neurons. However, Schwann cells provide a stop signal for migratory spiral ganglion neurons and facilitate proper targeting of the organ of Corti by spiral ganglion afferents.

  17. Octavolateral neurons projecting to the middle and posterior rhombencephalic reticular nuclei of larval lamprey: a retrograde horseradish peroxidase labeling study.

    Science.gov (United States)

    González, M J; Manso, M J; Anadón, R

    1997-08-04

    The octavolateral area of lampreys, which receives primary fibers from the octaval and lateral line nerves, is involved in the premotor organization of body movements through secondary projections to the reticular formation. Here, the typology of neurons of the three octavolateral nuclei (ventral, medial, and dorsal) that putatively project to the middle and posterior rhombencephalic reticular nuclei were studied by retrograde transport of horseradish peroxidase (HRP) applied to these reticular nuclei. Several types of neurons were labeled in the ventral nucleus, both ipsilateral and contralateral to the site of HRP application. Some of these neurons showed a rather simple morphology (octavomotor neurons, monopolar cells), but most had more- or less-branched dendrites that were associated with one, or several, fields of terminal fibers in the octavolateral area. Unlike those of the ventral nucleus, labeled neurons of the medial nucleus were homogeneous in appearance (mostly pear-shaped). The dorsal nucleus was scarcely developed in larvae, as judged from the very simple and small labeled cells. The presence of terminal or "en-passant" boutons of secondary octavolateral fibers in the reticular area and the commissural nature of these fibers were also investigated by means of application of HRP or indocarbocyanine dye to the octavolateral nuclei. In addition, neurons of other alar plate nuclei that were labeled by the HRP application to the reticular nuclei (trigeminal descending root nucleus and solitary nucleus) were also characterized. The functional significance of these results is discussed.

  18. TSHZ3 deletion causes an autism syndrome and defects in cortical projection neurons

    Science.gov (United States)

    Andrieux, Joris; Roubertoux, Pierre L.; Metwaly, Mehdi; Jacq, Bernard; Fatmi, Ahmed; Had-Aissouni, Laurence; Kwan, Kenneth Y.; Salin, Pascal; Carlier, Michèle; Liedén, Agne; Rudd, Eva; Shinawi, Marwan; Vincent-Delorme, Catherine; Cuisset, Jean-Marie; Lemaitre, Marie-Pierre; Abderrehamane, Fatimetou; Duban, Bénédicte; Lemaitre, Jean-François; Woolf, Adrian S.; Bockenhauer, Detlef; Severac, Dany; Dubois, Emeric; Zhu, Ying; Sestan, Nenad; Garratt, Alistair N.; Kerkerian-Le Goff, Lydia; Fasano, Laurent

    2016-01-01

    TSHZ3, which encodes a zinc-finger transcription factor, was recently positioned as a hub gene in a module of genes with the highest expression in the developing human neocortex, but its functions remained unknown. Here, we identify TSHZ3 as the critical region for a syndrome associated with heterozygous deletions at 19q12q13.11, which includes autism spectrum disorder (ASD). In Tshz3 null mice, differentially expressed genes include layer-specific markers of cerebral cortical projection neurons (CPNs) and their human orthologues are strongly associated with ASD. Furthermore, mice heterozygous for Tshz3 deletion show functional changes at synapses established by CPNs and exhibit core ASD-like behavioral abnormalities. These findings reveal essential roles for Tshz3 in CPN development and function, whose alterations can account for ASD in the newly-defined TSHZ3 deletion syndrome. PMID:27668656

  19. Cell-type-specific inhibition of the dendritic plateau potential in striatal spiny projection neurons.

    Science.gov (United States)

    Du, Kai; Wu, Yu-Wei; Lindroos, Robert; Liu, Yu; Rózsa, Balázs; Katona, Gergely; Ding, Jun B; Kotaleski, Jeanette Hellgren

    2017-09-05

    Striatal spiny projection neurons (SPNs) receive convergent excitatory synaptic inputs from the cortex and thalamus. Activation of spatially clustered and temporally synchronized excitatory inputs at the distal dendrites could trigger plateau potentials in SPNs. Such supralinear synaptic integration is crucial for dendritic computation. However, how plateau potentials interact with subsequent excitatory and inhibitory synaptic inputs remains unknown. By combining computational simulation, two-photon imaging, optogenetics, and dual-color uncaging of glutamate and GABA, we demonstrate that plateau potentials can broaden the spatiotemporal window for integrating excitatory inputs and promote spiking. The temporal window of spiking can be delicately controlled by GABAergic inhibition in a cell-type-specific manner. This subtle inhibitory control of plateau potential depends on the location and kinetics of the GABAergic inputs and is achieved by the balance between relief and reestablishment of NMDA receptor Mg2+ block. These findings represent a mechanism for controlling spatiotemporal synaptic integration in SPNs.

  20. Cell-type–specific inhibition of the dendritic plateau potential in striatal spiny projection neurons

    Science.gov (United States)

    Du, Kai; Wu, Yu-Wei; Lindroos, Robert; Liu, Yu; Rózsa, Balázs; Katona, Gergely; Ding, Jun B.; Kotaleski, Jeanette Hellgren

    2017-01-01

    Striatal spiny projection neurons (SPNs) receive convergent excitatory synaptic inputs from the cortex and thalamus. Activation of spatially clustered and temporally synchronized excitatory inputs at the distal dendrites could trigger plateau potentials in SPNs. Such supralinear synaptic integration is crucial for dendritic computation. However, how plateau potentials interact with subsequent excitatory and inhibitory synaptic inputs remains unknown. By combining computational simulation, two-photon imaging, optogenetics, and dual-color uncaging of glutamate and GABA, we demonstrate that plateau potentials can broaden the spatiotemporal window for integrating excitatory inputs and promote spiking. The temporal window of spiking can be delicately controlled by GABAergic inhibition in a cell-type–specific manner. This subtle inhibitory control of plateau potential depends on the location and kinetics of the GABAergic inputs and is achieved by the balance between relief and reestablishment of NMDA receptor Mg2+ block. These findings represent a mechanism for controlling spatiotemporal synaptic integration in SPNs. PMID:28827326

  1. Structural effects and potential changes in growth factor signalling in penis-projecting autonomic neurons after axotomy

    Science.gov (United States)

    Palma, Catalina A; Keast, Janet R

    2006-01-01

    Background The responses of adult parasympathetic ganglion neurons to injury and the neurotrophic mechanisms underlying their axonal regeneration are poorly understood. This is especially relevant to penis-projecting parasympathetic neurons, which are vulnerable to injury during pelvic surgery such as prostatectomy. We investigated the changes in pelvic ganglia of adult male rats in the first week after unilateral cavernous (penile) nerve axotomy (cut or crush lesions). In some experiments FluoroGold was injected into the penis seven days prior to injury to allow later identification of penis-projecting neurons. Neurturin and glial cell line-derived neurotrophic factor (GDNF) are neurotrophic factors for penile parasympathetic neurons, so we also examined expression of relevant receptors, GFRα1 and GFRα2, in injured pelvic ganglion neurons. Results Axotomy caused prolific growth of axon collaterals (sprouting) in pelvic ganglia ipsilateral to the injury. These collaterals were most prevalent in the region near the exit of the penile nerve. This region contained the majority of FluoroGold-labelled neurons. Many sprouting fibres formed close associations with sympathetic and parasympathetic pelvic neurons, including many FluoroGold neurons. However immunoreactivity for synaptic proteins could not be demonstrated in these collaterals. Preganglionic terminals showed a marked loss of synaptic proteins, suggesting a retrograde effect of the injury beyond the injured neurons. GFRα2 immunofluorescence intensity was decreased in the cytoplasm of parasympathetic neurons, but GFRα1 immunofluorescence was unaffected in these neurons. Conclusion These studies show that there are profound changes within the pelvic ganglion after penile nerve injury. Sprouting of injured postganglionic axons occurs concurrently with structural or chemical changes in preganglionic terminals. New growth of postganglionic axon collaterals within the ganglion raises the possibility of the

  2. Topographical and quantitative distribution of the projecting neurons to main divisions of the septal area.

    Science.gov (United States)

    Haghdoost-Yazdi, H; Pasbakhsh, P; Vatanparast, J; Rajaei, F; Behzadi, G

    2009-06-01

    Septal area is a limbic structure that is involved in the regulation of several autonomic, learning-related and behavioral functions. Participation of this area in various physiologic functions is indicative of its extensive connections with different brain areas. It contains two major divisions: lateral septum (LS) and medial septum/diagonal band of Broca (MS/DBB). In the present work, we examined topographical distribution of projecting neurons to these divisions and quantitatively verified them. Horseradish peroxidase (HRP) retrograde tract tracing was performed. Our results show that about two-thirds of projections to the septal area terminate in the LS. They mostly originate ipsilaterally from the septal area itself (8%), hippocampal formation (38%), non-specific thalamic nuclei (23%), lateral pre-optic area, lateral hypothalamus, perifornical area and mammillary complex in hypothalamus (20%), ventral tegmental area, raphe and tegmental nuclei, and also locus coeruleus in brainstem (10%). Most afferents to the MS come ipsilaterally from the septal area itself (18%), hippocampal formation (12%), lateral pre-optic area, lateral hypothalamus and mammillary complex in hypothalamus (42%), ventral tegmental area, raphe and tegmental nuclei, central gray matter and also locus coeruleus in brainstem (20%). Some afferents to the septal area originate contralaterally from the lateral hypothalamus, supramammillary area, raphe nuclei and locus coeruleus. Afferents from the interanterodorsal and mediodorsal thalamic nuclei, which increase the role of the septal area in arousal and awareness, are reported for the first time. Projecting cells to the MS support the learning-related function of this area. Projecting cells to the LS that are more scattered throughout the brain indicate its involvement in more diverse functions.

  3. A systematic analysis of Drosophila gustatory receptor gene expression in abdominal neurons which project to the central nervous system.

    Science.gov (United States)

    Park, Jeong-Ho; Kwon, Jae Young

    2011-10-01

    In Drosophila, the gustatory receptor (Gr) gene family contains 60 family members that encode 68 proteins through alternative splicing. Some gustatory receptors (Grs) are involved in the sensing of sugars, bitter substrates, CO(2), pheromones, and light. Here, we systematically examined the expression of all 68 Grs in abdominal neurons which project to the abdominal ganglion of the central nervous system using the GAL4/UAS system. Gr gene expression patterns have been successfully analyzed in previous studies by using the GAL4/UAS system to drive reporter gene expression. Interestingly, 21 Gr-GAL4 drivers showed abdominal ganglion projection, and 18 of these 21 Gr-GAL4 drivers labeled multidendritic neurons of the abdominal wall. 4 drivers also labeled neuronal processes innervating the reproductive organs. The peripheral expression of Gr-GAL4 drivers in abdominal multidendritic neurons or neurons innervating the reproductive organs suggests that these Grs have atypical sensory functions in these organs not limited to conventional taste sensing.

  4. Exposure to an open-field arena increases c-Fos expression in a subpopulation of neurons in the dorsal raphe nucleus, including neurons projecting to the basolateral amygdaloid complex

    DEFF Research Database (Denmark)

    Hale, M.W.; Hay-Schmidt, A.; Mikkelsen, J.D.

    2008-01-01

    Serotonergic systems in the dorsal raphe nucleus are thought to play an important role in the regulation of anxiety states. To investigate responses of neurons in the dorsal raphe nucleus to a mild anxiety-related stimulus, we exposed rats to an open-field, under low-light or high-light conditions...... of neurons in the midbrain raphe complex that projects to forebrain circuits regulating anxiety states, we used cholera toxin B subunit (CTb) as a retrograde tracer to identify neurons projecting to the basolateral amygdaloid complex (BL) in combination with c-Fos immunostaining to identify cells...... that activated neurons were serotonergic, non-serotonergic, or both. These data are consistent with the hypothesis that exposure to anxiogenic stimuli activates a subset of neurons in the midbrain raphe complex projecting to amygdala anxiety circuits Udgivelsesdato: 2008/12/10...

  5. Long-range projection neurons of the mouse ventral tegmental area: a single-cell axon tracing analysis

    Directory of Open Access Journals (Sweden)

    Ana eAransay

    2015-05-01

    Full Text Available Pathways arising from the ventral tegmental area (VTA release dopamine and other neurotransmitters during the expectation and achievement of reward, and are regarded as central links of the brain networks that create drive, pleasure, and addiction. While the global pattern of VTA projections is well-known, the actual axonal wiring of individual VTA neurons had never been investigated. Here, we labeled and analyzed the axons of 30 VTA single neurons by means of single-cell transfection with the Sindbis-pal-eGFP vector in mice. These observations were complemented with those obtained by labeling the axons of small populations of VTA cells with iotophoretic microdeposits of biotinylated dextran amine. In the single-cell labeling experiments, each entire axonal tree was reconstructed from serial sections, the length of terminal axonal arbors was estimated by stereology, and the dopaminergic phenotype was tested by double-labeling for tyrosine hydroxylase immunofluorescence. We observed two main, markedly different VTA cell morphologies: neurons with a single main axon targeting only forebrain structures (FPN cells, and neurons with multibranched axons targeting both the forebrain and the brainstem (F+BSPN cells. Dopaminergic phenotype was observed in FPN cells. Moreover, four subtypes could be distinguished among the FPN cells based on their projection targets: 1 Mesocorticolimbic FPN projecting to both neocortex and basal forebrain; 2 Mesocortical FPN innervating the neocortex almost exclusively; 3 Mesolimbic FPN projecting to the basal forebrain, accumbens and caudateputamen; and 4 Mesostriatal FPN targeting only the caudateputamen. While the F+BSPN cells were scattered within VTA, the mesolimbic neurons were abundant in the paranigral nucleus. The observed diversity in wiring architectures is consistent with the notion that different VTA cell subpopulations modulate the activity of specific sets of prosencephalic and brainstem structures.

  6. Castration modulates singing patterns and electrophysiological properties of RA projection neurons in adult male zebra finches

    Directory of Open Access Journals (Sweden)

    Songhua Wang

    2014-04-01

    Full Text Available Castration can change levels of plasma testosterone. Androgens such as testosterone play an important role in stabilizing birdsong. The robust nucleus of the arcopallium (RA is an important premotor nucleus critical for singing. In this study, we investigated the effect of castration on singing patterns and electrophysiological properties of projection neurons (PNs in the RA of adult male zebra finches. Adult male zebra finches were castrated and the changes in bird song assessed. We also recorded the electrophysiological changes from RA PNs using patch clamp recording. We found that the plasma levels of testosterone were significantly decreased, song syllable’s entropy was increased and the similarity of motif was decreased after castration. Spontaneous and evoked firing rates, membrane time constants, and membrane capacitance of RA PNs in the castration group were lower than those of the control and the sham groups. Afterhyperpolarization AHP time to peak of spontaneous action potential (AP was prolonged after castration.These findings suggest that castration decreases song stereotypy and excitability of RA PNs in male zebra finches.

  7. In-situ recording of ionic currents in projection neurons and Kenyon cells in the olfactory pathway of the honeybee.

    Directory of Open Access Journals (Sweden)

    Jan Kropf

    Full Text Available The honeybee olfactory pathway comprises an intriguing pattern of convergence and divergence: ~60.000 olfactory sensory neurons (OSN convey olfactory information on ~900 projection neurons (PN in the antennal lobe (AL. To transmit this information reliably, PNs employ relatively high spiking frequencies with complex patterns. PNs project via a dual olfactory pathway to the mushroom bodies (MB. This pathway comprises the medial (m-ALT and the lateral antennal lobe tract (l-ALT. PNs from both tracts transmit information from a wide range of similar odors, but with distinct differences in coding properties. In the MBs, PNs form synapses with many Kenyon cells (KC that encode odors in a spatially and temporally sparse way. The transformation from complex information coding to sparse coding is a well-known phenomenon in insect olfactory coding. Intrinsic neuronal properties as well as GABAergic inhibition are thought to contribute to this change in odor representation. In the present study, we identified intrinsic neuronal properties promoting coding differences between PNs and KCs using in-situ patch-clamp recordings in the intact brain. We found very prominent K+ currents in KCs clearly differing from the PN currents. This suggests that odor coding differences between PNs and KCs may be caused by differences in their specific ion channel properties. Comparison of ionic currents of m- and l-ALT PNs did not reveal any differences at a qualitative level.

  8. Calcium dynamics predict direction of synaptic plasticity in striatal spiny projection neurons.

    Science.gov (United States)

    Jędrzejewska-Szmek, Joanna; Damodaran, Sriraman; Dorman, Daniel B; Blackwell, Kim T

    2017-04-01

    The striatum is a major site of learning and memory formation for sensorimotor and cognitive association. One of the mechanisms used by the brain for memory storage is synaptic plasticity - the long-lasting, activity-dependent change in synaptic strength. All forms of synaptic plasticity require an elevation in intracellular calcium, and a common hypothesis is that the amplitude and duration of calcium transients can determine the direction of synaptic plasticity. The utility of this hypothesis in the striatum is unclear in part because dopamine is required for striatal plasticity and in part because of the diversity in stimulation protocols. To test whether calcium can predict plasticity direction, we developed a calcium-based plasticity rule using a spiny projection neuron model with sophisticated calcium dynamics including calcium diffusion, buffering and pump extrusion. We utilized three spike timing-dependent plasticity (STDP) induction protocols, in which postsynaptic potentials are paired with precisely timed action potentials and the timing of such pairing determines whether potentiation or depression will occur. Results show that despite the variation in calcium dynamics, a single, calcium-based plasticity rule, which explicitly considers duration of calcium elevations, can explain the direction of synaptic weight change for all three STDP protocols. Additional simulations show that the plasticity rule correctly predicts the NMDA receptor dependence of long-term potentiation and the L-type channel dependence of long-term depression. By utilizing realistic calcium dynamics, the model reveals mechanisms controlling synaptic plasticity direction, and shows that the dynamics of calcium, not just calcium amplitude, are crucial for synaptic plasticity. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  9. Differentiation of pluripotent stem cells into striatal projection neurons: a pure MSN fate may not be sufficient

    Directory of Open Access Journals (Sweden)

    Amy eReddington

    2014-12-01

    Full Text Available Huntington’s disease (HD is an autosomal dominant inherited disorder leading to the loss of DARPP-32 medium spiny projection neurons (‘MSNs’ in the striatum. The relative specificity of cell loss early in HD has made cell replacement by neural transplantation an attractive therapeutic possibility. Transplantation of human fetal striatal precursors has shown ‘proof-of-principle’ in clinical trials; however, the practical and ethical difficulty associated with sourcing fetal tissue has stimulated the need to identify alternative sources of donor cells that are more readily available and suitable for standardisation. The first generation of protocols to generate DARPP-32 positive MSN-like neurons from pluripotent stem cells are now available and have been successfully grafted in animal models of HD. However, whether these grafts can provide stable functional recovery to the level that can regularly be achieved with primary fetal striatal grafts remains to be demonstrated. Of particular concern, primary fetal striatal grafts are not homogeneous; they contain not only the MSN subpopulation of striatal projection neurons but also include diverse neuronal and glia cell types of the mature striatum that certainly contribute to normal striatal function. By contrast, present protocols for pluripotent stem cell differentiation just target specifying neurons of an MSN lineage, and evidence for functional integration of stem-cell derived grafts is correspondingly limited. Indeed, consideration of the features of full striatal reconstruction that is achieved with primary fetal striatal grafts suggests that effective stem cell-based therapy in HD will require that graft protocols be developed to allow inclusion of multiple striatal cell types, including interneurons and striatal glia. A rational solution to this technical challenge requires that we re-address the underlying question – what constitutes a functional striatal graft?

  10. Integration of stress and leptin signaling by CART producing neurons in the rodent midbrain centrally projecting Edinger-Westphal nucleus

    Directory of Open Access Journals (Sweden)

    Lu eXu

    2014-03-01

    Full Text Available Leptin targets the brain to regulate feeding, neuroendocrine function and metabolism. The leptin receptor is present in hypothalamic centers controlling energy metabolism as well as in the centrally projecting Edinger-Westphal nucleus (EWcp, a region implicated in the stress response and in various aspects of stress-related behaviors. We hypothesized that the stress response by cocaine- and amphetamine-regulated transcript (CART-producing EWcp-neurons would depend on the animal’s energy state. To test this hypothesis, we investigated the effects of changes in energy state (mimicked by low, normal and high leptin levels, which were achieved by 24h fasting, normal chow and leptin injection, respectively on the response of CART neurons in the EWcp of rats subjected or not to acute restraint stress. Our data show that leptin treatment alone significantly increases CART mRNA expression in the rat EWcp and that in leptin receptor deficient (db/db mice, the number of CART producing neurons in this nucleus is reduced. This suggests that leptin has a stimulatory effect on the production of CART in the EWcp under non-stressed condition. Under stressed condition, however, leptin blunts stress-induced activation of EWcp neurons and decreases their CART mRNA expression. Interestingly, fasting, does not influence the stress-induced activation of EWcp-neurons, and specifically EWcp-CART neurons are not activated. These results suggest that the stress response by the EWcp depends to some degree on the animal’s energy state, a mechanism that may contribute to a better understanding of the complex interplay between obesity and stress.

  11. Integration of stress and leptin signaling by CART producing neurons in the rodent midbrain centrally projecting Edinger-Westphal nucleus.

    Science.gov (United States)

    Xu, Lu; Janssen, Donny; van der Knaap, Noortje; Roubos, Eric W; Leshan, Rebecca L; Myers, Martin G; Gaszner, Balázs; Kozicz, Tamás

    2014-01-01

    Leptin targets the brain to regulate feeding, neuroendocrine function and metabolism. The leptin receptor is present in hypothalamic centers controlling energy metabolism as well as in the centrally projecting Edinger-Westphal nucleus (EWcp), a region implicated in the stress response and in various aspects of stress-related behaviors. We hypothesized that the stress response by cocaine- and amphetamine-regulated transcript (CART)-producing EWcp-neurons would depend on the animal's energy state. To test this hypothesis, we investigated the effects of changes in energy state (mimicked by low, normal and high leptin levels, which were achieved by 24 h fasting, normal chow and leptin injection, respectively) on the response of CART neurons in the EWcp of rats subjected or not to acute restraint stress. Our data show that leptin treatment alone significantly increases CART mRNA expression in the rat EWcp and that in leptin receptor deficient (db/db) mice, the number of CART producing neurons in this nucleus is reduced. This suggests that leptin has a stimulatory effect on the production of CART in the EWcp under non-stressed condition. Under stressed condition, however, leptin blunts stress-induced activation of EWcp neurons and decreases their CART mRNA expression. Interestingly, fasting, does not influence the stress-induced activation of EWcp-neurons, and specifically EWcp-CART neurons are not activated. These results suggest that the stress response by the EWcp depends to some degree on the animal's energy state, a mechanism that may contribute to a better understanding of the complex interplay between obesity and stress.

  12. Three times as many lamina I neurons project to the periaqueductal gray than to the thalamus : a retrograde tracing study in the cat

    NARCIS (Netherlands)

    Mouton, Leonora J.; Holstege, Gert

    1998-01-01

    The number and distribution of lamina I neurons projecting to the periaqueductal gray (PAG) were examined by a retrograde tracing study in the cat. WGA-HRP injections in the intermediate and caudal FAG resulted in as much as 1600 labeled lamina I neurons throughout the length of the spinal cord,

  13. Local Circuits of V1 Layer 4B Neurons Projecting to V2 Thick Stripes Define Distinct Cell Classes and Avoid Cytochrome Oxidase Blobs

    Science.gov (United States)

    Yarch, Jeff; Federer, Frederick

    2017-01-01

    Decades of anatomical studies on the primate primary visual cortex (V1) have led to a detailed diagram of V1 intrinsic circuitry, but this diagram lacks information about the output targets of V1 cells. Understanding how V1 local processing relates to downstream processing requires identification of neuronal populations defined by their output targets. In primates, V1 layers (L)2/3 and 4B send segregated projections to distinct cytochrome oxidase (CO) stripes in area V2: neurons in CO blob columns project to thin stripes while neurons outside blob columns project to thick and pale stripes, suggesting functional specialization of V1-to-V2 CO streams. However, the conventional diagram of V1 shows all L4B neurons, regardless of their soma location in blob or interblob columns, as projecting selectively to CO blobs in L2/3, suggesting convergence of blob/interblob information in L2/3 blobs and, possibly, some V2 stripes. However, it is unclear whether all L4B projection neurons show similar local circuitries. Using viral-mediated circuit tracing, we have identified the local circuits of L4B neurons projecting to V2 thick stripes in macaque. Consistent with previous studies, we found the somata of this L4B subpopulation to reside predominantly outside blob columns; however, unlike previous descriptions of local L4B circuits, these cells consistently projected outside CO blob columns in all layers. Thus, the local circuits of these L4B output neurons, just like their extrinsic projections to V2, preserve CO streams. Moreover, the intra-V1 laminar patterns of axonal projections identify two distinct neuron classes within this L4B subpopulation, including a rare novel neuron type, suggestive of two functionally specialized output channels. SIGNIFICANCE STATEMENT Conventional diagrams of primate primary visual cortex (V1) depict neuronal connections within and between different V1 layers, but lack information about the cells' downstream targets. This information is critical

  14. CK2 Oppositely Modulates l-DOPA-Induced Dyskinesia via Striatal Projection Neurons Expressing D1 or D2 Receptors.

    Science.gov (United States)

    Cortés, Marisol; Malave, Lauren; Castello, Julia; Flajolet, Marc; Cenci, M Angela; Friedman, Eitan; Rebholz, Heike

    2017-12-06

    We have previously shown that casein kinase 2 (CK2) negatively regulates dopamine D1 and adenosine A 2A receptor signaling in the striatum. Ablation of CK2 in D1 receptor-positive striatal neurons caused enhanced locomotion and exploration at baseline, whereas CK2 ablation in D2 receptor-positive neurons caused increased locomotion after treatment with A 2A antagonist, caffeine. Because both, D1 and A 2A receptors, play major roles in the cellular responses to l-DOPA in the striatum, these findings prompted us to examine the impact of CK2 ablation on the effects of l-DOPA treatment in the unilateral 6-OHDA lesioned mouse model of Parkinson's disease. We report here that knock-out of CK2 in striatonigral neurons reduces the severity of l-DOPA-induced dyskinesia (LID), a finding that correlates with lowered pERK but unchanged pPKA substrate levels in D1 medium spiny neurons as well as in cholinergic interneurons. In contrast, lack of CK2 in striatopallidal neurons enhances LID and ERK phosphorylation. Coadministration of caffeine with a low dose of l-DOPA reduces dyskinesia in animals with striatopallidal knock-out to wild-type levels, suggesting a dependence on adenosine receptor activity. We also detect reduced G olf levels in the striatonigral but not in the striatopallidal knock-out in response to l-DOPA treatment.Our work shows, in a rodent model of PD, that treatment-induced dyskinesia and striatal ERK activation are bidirectionally modulated by ablating CK2 in D1- or D2-positive projection neurons, in male and female mice. The results reveal that CK2 regulates signaling events critical to LID in each of the two main populations of striatal neurons. SIGNIFICANCE STATEMENT To date, l-DOPA is the most effective treatment for PD. Over time, however, its efficacy decreases, and side effects including l-DOPA-induced dyskinesia (LID) increase, affecting up to 78% of patients within 10 years of therapy (Hauser et al., 2007). It is understood that supersensitivity of

  15. GABAergic striatal neurons project dendrites and axons into the postnatal subventricular zone leading to calcium activity

    Directory of Open Access Journals (Sweden)

    Stephanie Z Young

    2014-01-01

    Full Text Available GABA regulates the behavior of neuroblasts and neural progenitor cells in the postnatal neurogenic subventricular zone (SVZ through GABAA receptor (GABAAR-mediated calcium increases. However, the source of GABA necessary for sufficient GABAAR-mediated depolarization and calcium increase has remained speculative. Here, we explored whether GABAergic striatal neurons functionally connect with SVZ cells. Using patch clamp recordings or single cell electroporation, striatal neurons along the SVZ were filled with a fluorescent dye revealing that they send both dendrites and axons into the SVZ. About 93% of the recorded neurons were medium spiny or aspiny GABAergic neurons and each neuron sent 3-4 processes into the SVZ covering ~56 µm. Using calcium imaging, we found that depolarization of striatal neurons led to increased calcium activity in SVZ cells that were mediated by GABAAR activation. Collectively, these findings undercover a novel mode of signaling in the SVZ providing a mechanism of brain activity-mediated regulation of postnatal neurogenesis through GABAergic striatal activity.

  16. Endogenous GLP-1 acts on paraventricular nucleus to suppress feeding: projection from nucleus tractus solitarius and activation of corticotropin-releasing hormone, nesfatin-1 and oxytocin neurons.

    Science.gov (United States)

    Katsurada, Kenichi; Maejima, Yuko; Nakata, Masanori; Kodaira, Misato; Suyama, Shigetomo; Iwasaki, Yusaku; Kario, Kazuomi; Yada, Toshihiko

    2014-08-22

    Glucagon-like peptide-1 (GLP-1) receptor agonists have been used to treat type 2 diabetic patients and shown to reduce food intake and body weight. The anorexigenic effects of GLP-1 and GLP-1 receptor agonists are thought to be mediated primarily via the hypothalamic paraventricular nucleus (PVN). GLP-1, an intestinal hormone, is also localized in the nucleus tractus solitarius (NTS) of the brain stem. However, the role of endogenous GLP-1, particularly that in the NTS neurons, in feeding regulation remains to be established. The present study examined whether the NTS GLP-1 neurons project to PVN and whether the endogenous GLP-1 acts on PVN to restrict feeding. Intra-PVN injection of GLP-1 receptor antagonist exendin (9-39) increased food intake. Injection of retrograde tracer into PVN combined with immunohistochemistry for GLP-1 in NTS revealed direct projection of NTS GLP-1 neurons to PVN. Moreover, GLP-1 evoked Ca(2+) signaling in single neurons isolated from PVN. The majority of GLP-1-responsive neurons were immunoreactive predominantly to corticotropin-releasing hormone (CRH) and nesfatin-1, and less frequently to oxytocin. These results indicate that endogenous GLP-1 targets PVN to restrict feeding behavior, in which the projection from NTS GLP-1 neurons and activation of CRH and nesfatin-1 neurons might be implicated. This study reveals a neuronal basis for the anorexigenic effect of endogenous GLP-1 in the brain. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Trace Fear Conditioning Differentially Modulates Intrinsic Excitability of Medial Prefrontal Cortex–Basolateral Complex of Amygdala Projection Neurons in Infralimbic and Prelimbic Cortices

    Science.gov (United States)

    Song, Chenghui; Ehlers, Vanessa L.

    2015-01-01

    Neuronal activity in medial prefrontal cortex (mPFC) is critical for the formation of trace fear memory, yet the cellular mechanisms underlying these memories remain unclear. One possibility involves the modulation of intrinsic excitability within mPFC neurons that project to the basolateral complex of amygdala (BLA). The current study used a combination of retrograde labeling and in vitro whole-cell patch-clamp recordings to examine the effect of trace fear conditioning on the intrinsic excitability of layer 5 mPFC–BLA projection neurons in adult rats. Trace fear conditioning significantly enhanced the intrinsic excitability of regular spiking infralimbic (IL) projection neurons, as evidenced by an increase in the number of action potentials after current injection. These changes were also associated with a reduction in spike threshold and an increase in h current. In contrast, trace fear conditioning reduced the excitability of regular spiking prelimbic (PL) projection neurons, through a learning-related decrease of input resistance. Interestingly, the amount of conditioned freezing was (1) positively correlated with excitability of IL-BLA projection neurons after conditioning and (2) negatively correlated with excitability of PL-BLA projection neurons after extinction. Trace fear conditioning also significantly enhanced the excitability of burst spiking PL-BLA projection neurons. In both regions, conditioning-induced plasticity was learning specific (observed in conditioned but not in pseudoconditioned rats), flexible (reversed by extinction), and transient (lasted conditioning. SIGNIFICANCE STATEMENT Frontal lobe-related function is vital for a variety of important behaviors, some of which decline during aging. This study involves a novel combination of electrophysiological recordings from fluorescently labeled mPFC-to-amygdala projection neurons in rats with acquisition and extinction of trace fear conditioning to determine how specific neurons change during

  18. Molecular pathways underlying projection neuron production and migration during cerebral cortical development

    Directory of Open Access Journals (Sweden)

    Chiaki eOhtaka-Maruyama

    2015-12-01

    Full Text Available Glutamatergic neurons of the mammalian cerebral cortex originate from the radial glia (RG progenitors in the ventricular zone (VZ. During corticogenesis, neuroblasts migrate toward the pial surface using two different migration modes. One is multipolar (MP migration with random directional movement, and the other is locomotion, which is a unidirectional movement guided by the RG fiber. After reaching their final destination, the neurons finalize their migration by terminal translocation, which is followed by maturation via dendrite extension to initiate synaptogenesis and thereby complete neural circuit formation. This switching of migration modes during cortical development is unique in mammals, which suggests that the RG-guided locomotion mode may contribute to the evolution of the mammalian neocortical 6-layer structure. Many factors have been reported to be involved in the regulation of this radial neuronal migration process. In general, the radial migration can be largely divided into four steps; (1 maintenance and departure from the VZ of neural progenitor cells, (2 MP migration and transition to bipolar cells, (3 RG-guided locomotion, and (4 terminal translocation and dendrite maturation. Among these, many different gene mutations or knockdown effects have resulted in failure of the MP to bipolar transition (step 2, suggesting that it is a critical step, particularly in radial migration. Moreover, this transition occurs at the subplate layer. In this review, we summarize recent advances in our understanding of the molecular mechanisms underlying each of these steps. Finally, we discuss the evolutionary aspects of neuronal migration in corticogenesis.

  19. Parallel olfactory processing in the honey bee brain: odor learning and generalization under selective lesion of a projection neuron tract

    Directory of Open Access Journals (Sweden)

    Julie eCarcaud

    2016-01-01

    Full Text Available The function of parallel neural processing is a fundamental problem in Neuroscience, as it is found across sensory modalities and evolutionary lineages, from insects to humans. Recently, parallel processing has attracted increased attention in the olfactory domain, with the demonstration in both insects and mammals that different populations of second-order neurons encode and/or process odorant information differently. Among insects, Hymenoptera present a striking olfactory system with a clear neural dichotomy from the periphery to higher-order centers, based on two main tracts of second-order (projection neurons: the medial and lateral antennal lobe tracts (m-ALT and l-ALT. To unravel the functional role of these two pathways, we combined specific lesions of the m-ALT tract with behavioral experiments, using the classical conditioning of the proboscis extension response (PER conditioning. Lesioned and intact bees had to learn to associate an odorant (1-nonanol with sucrose. Then the bees were subjected to a generalization procedure with a range of odorants differing in terms of their carbon chain length or functional group. We show that m-ALT lesion strongly affects acquisition of an odor-sucrose association. However, lesioned bees that still learned the association showed a normal gradient of decreasing generalization responses to increasingly dissimilar odorants. Generalization responses could be predicted to some extent by in vivo calcium imaging recordings of l-ALT neurons. The m-ALT pathway therefore seems necessary for normal classical olfactory conditioning performance.

  20. Area-specific analysis of the distribution of hypothalamic neurons projecting to the rat ventral tegmental area, with special reference to the GABAergic and glutamatergic efferents

    Science.gov (United States)

    Kalló, Imre; Molnár, Csilla S.; Szöke, Sarolta; Fekete, Csaba; Hrabovszky, Erik; Liposits, Zsolt

    2015-01-01

    The ventral tegmental area (VTA) is a main regulator of reward and integrates a wide scale of hormonal and neuronal information. Feeding-, energy expenditure-, stress, adaptation- and reproduction-related hypothalamic signals are processed in the VTA and influence the reward processes. However, the neuroanatomical origin and chemical phenotype of neurons mediating these signals to the VTA have not been fully characterized. In this study we have systematically mapped hypothalamic neurons that project to the VTA using the retrograde tracer Choleratoxin B subunit (CTB) and analyzed their putative gamma-aminobutyric acid (GABA) and/or glutamate character with in situ hybridization in male rats. 23.93 ± 3.91% of hypothalamic neurons projecting to the VTA was found in preoptic and 76.27 ± 4.88% in anterior, tuberal and mammillary hypothalamic regions. Nearly half of the retrogradely-labeled neurons in the preoptic, and more than one third in the anterior, tuberal and mammillary hypothalamus appeared in medially located regions. The analyses of vesicular glutamate transporter 2 (VGLUT2) and glutamate decarboxylase 65 (GAD65) mRNA expression revealed both amino acid markers in different subsets of retrogradely-labeled hypothalamic neurons, typically with the predominance of the glutamatergic marker VGLUT2. About one tenth of CTB-IR neurons were GAD65-positive even in hypothalamic nuclei expressing primarily VGLUT2. Some regions were populated mostly by GAD65 mRNA-containing retrogradely-labeled neurons. These included the perifornical part of the lateral hypothalamus where 58.63 ± 19.04% of CTB-IR neurons were GABAergic. These results indicate that both the medial and lateral nuclear compartments of the hypothalamus provide substantial input to the VTA. Furthermore, colocalization studies revealed that these projections not only use glutamate but also GABA for neurotransmission. These GABAergic afferents may underlie important inhibitory mechanism to fine-tune the

  1. Double labelling immunohistochemistry on the sympathetic trunk ganglia neurons projecting to the extrinsic penile smooth musculature of the pig: an experimental study on the retractor penis muscle.

    Science.gov (United States)

    Botti, Maddalena; Gazza, Ferdinando; Ragionieri, Luisa; Minelli, Luisa Bo; Panu, Rino

    2013-01-01

    Retrograde neuronal tracing and double labelling immunofluorescence methods were used to define the neurochemical content of sympathetic trunk ganglia neurons projecting to the pig retractor penis muscle, which was taken as an experimental model of the male genital smooth musculature. After the injection of Fast Blue into the bulbo-penile portion of the retractor penis muscle, the eventual co-existence of the catecholaminergic marker tyrosine hydroxylase with calcitonine gene related peptide, leu-enkephalin, neuropeptide Y, neuronal nitric oxide synthase, substance P, vasoactive intestinal polypeptide or vesicular acetylcholine transporter was studied in the ipsilateral S1 sympathetic trunk ganglia, which resulted to contain the greatest number of autonomic retractor penis muscle projecting cells. The observation of Fast Blue positive neurons under the fluorescent microscope allowed the identification of different subpopulations of catecholaminergic and non-catecholaminergic retractor penis muscle-projecting neurons. The majority of catecholaminergic cells contained tyrosine hydroxylase alone, while the remaining part showed co-localization of tyrosine hydroxylase with all the other tested markers. These last neurons were immunoreactive, in decreasing percentages, for neuropeptide Y, leu-enkephalin, neuronal nitric oxide synthase, substance P, calcitonine gene related peptide, vasoactive intestinal polypeptide and vesicular acetylcholine transporter. The majority of non-catecholaminergic neurons were immunonegative for all the tested markers. The remaining non-catecholaminergic cells contained, in decreasing percentages, neuropeptide Y, neuronal nitric oxide synthase, leu-enkephalin, vasoactive intestinal polypeptide, vesicular acetylcholine transporter, substance P and calcitonine gene related peptide. Our findings documented the complexity of the neurochemical interactions that regulate both the motor functions of RPM and the blood flow through the muscle.

  2. Input-output organization of inhibitory neurons in the interstitial nucleus of Cajal projecting to the contralateral trochlear and oculomotor nucleus.

    Science.gov (United States)

    Sugiuchi, Y; Takahashi, M; Shinoda, Y

    2013-08-01

    Neurons in the interstitial nucleus of Cajal (INC) that are known to be involved in eye and head movements are excitatory. We investigated the input-output organization of inhibitory INC neurons involved in controlling vertical saccades. Intracellular recordings were made in INC neurons activated antidromically by stimulation of the contralateral trochlear or oculomotor nucleus, and their synaptic input properties from the superior colliculi (SCs) and the contralateral INC were analyzed in anesthetized cats. Many INC neurons projected to the contralateral trochlear nucleus, Forel's field H, INC, and oculomotor nucleus, and mainly received monosynaptic excitation followed by disynaptic inhibition from the ipsi- and contralateral SCs. After sectioning the commissural connections between the SCs, these neurons received monosynaptic excitation from the ipsilateral medial SC and disynaptic inhibition via the INC from the contralateral lateral SC. Another group of INC neurons were antidromically activated from the contralateral oculomotor nucleus, INC and Forel's field H, but not from the trochlear nucleus, and received monosynaptic excitation from the ipsilateral lateral SC and disynaptic inhibition from the contralateral medial SC. The former group was considered to inhibit contralateral trochlear and inferior rectus motoneurons in upward saccades, whereas the latter was considered to inhibit contralateral superior rectus and inferior oblique motoneurons in downward saccades. The mutual inhibition existed between these two groups of INC neurons for upward saccades on one side and downward saccades on the other. This pattern of input-output organization of inhibitory INC neurons suggests that the basic neural circuits for horizontal and vertical saccades are similar.

  3. Central Projection of Antennal Sensory Neurons in the Central Nervous System of the Mirid Bug Apolygus lucorum (Meyer-Dür.

    Directory of Open Access Journals (Sweden)

    Gui-Ying Xie

    Full Text Available The mirid bug Apolygus lucorum (Meyer-Dür, a polyphagous pest, is dependent on olfactory cues to locate various host plant species and mates. In this study, we traced the projection pathway of the antennal sensory neurons and visualized their projection patterns in the central nervous system of A. lucorum through confocal microscopy and digital reconstructions. We also examined the glomerular organization of the primary olfactory center of the brain, the antennal lobe, and created a three-dimensional model of the glomeruli. We found that the axons of the sensory neurons project into the brain via the ipsilateral antennal nerve, and descend further into the gnathal ganglion, prothoracic ganglion, mesothoracic ganglion, and metathoracic ganglion, and reach as far as to the abdominal ganglion. Such a projection pattern indicates that antennal sensory neurons of A. lucorum may be potentially directly connected to motor neurons. The antennal lobe, however, is the major target area of antennal sensory neurons. The antennal lobe is composed of a large number of glomeruli, i.e. 70-80 glomeruli in one AL of A. lucorum. The results of this study which provide information about the basic anatomical arrangement of the brain olfactory center of A. lucorum, are important for further investigations of chemosensory encoding mechanisms of the mirid bug.

  4. Oxytocin receptors are expressed on dopamine and glutamate neurons in the mouse ventral tegmental area that project to nucleus accumbens and other mesolimbic targets.

    Science.gov (United States)

    Peris, Joanna; MacFadyen, Kaley; Smith, Justin A; de Kloet, Annette D; Wang, Lei; Krause, Eric G

    2017-04-01

    The mesolimbic dopamine (DA) circuitry determines which behaviors are positively reinforcing and therefore should be encoded in the memory to become a part of the behavioral repertoire. Natural reinforcers, like food and sex, activate this pathway, thereby increasing the likelihood of further consummatory, social, and sexual behaviors. Oxytocin (OT) has been implicated in mediating natural reward and OT-synthesizing neurons project to the ventral tegmental area (VTA) and nucleus accumbens (NAc); however, direct neuroanatomical evidence of OT regulation of DA neurons within the VTA is sparse. To phenotype OT-receptor (OTR) expressing neurons originating within the VTA, we delivered Cre-inducible adeno-associated virus that drives the expression of fluorescent marker into the VTA of male mice that had Cre-recombinase driven by OTR gene expression. OTR-expressing VTA neurons project to NAc, prefrontal cortex, the extended amygdala, and other forebrain regions but less than 10% of these OTR-expressing neurons were identified as DA neurons (defined by tyrosine hydroxylase colocalization). Instead, almost 50% of OTR-expressing cells in the VTA were glutamate (GLU) neurons, as indicated by expression of mRNA for the vesicular GLU transporter (vGluT). About one-third of OTR-expressing VTA neurons did not colocalize with either DA or GLU phenotypic markers. Thus, OTR expression by VTA neurons implicates that OT regulation of reward circuitry is more complex than a direct action on DA neurotransmission. J. Comp. Neurol. 525:1094-1108, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. Projections of nucleus accumbens adenosine A2A receptor neurons in the mouse brain and their implications in mediating sleep-wake regulation.

    Science.gov (United States)

    Zhang, Jian-Ping; Xu, Qi; Yuan, Xiang-Shan; Cherasse, Yoan; Schiffmann, Serge N; de Kerchove d'Exaerde, Alban; Qu, Wei-Min; Urade, Yoshihiro; Lazarus, Michael; Huang, Zhi-Li; Li, Rui-Xi

    2013-01-01

    Adenosine A2A receptors (A2ARs) in the nucleus accumbens (Acb) have been demonstrated to play an important role in the arousal effect of adenosine receptor antagonist caffeine, and may be involved in physiological sleep. To better understand the functions of these receptors in sleep, projections of A2AR neurons were mapped utilizing adeno-associated virus (AAV) encoding humanized Renilla green fluorescent protein (hrGFP) as a tracer for long axonal pathways. The Cre-dependent AAV was injected into the core (AcbC) and shell (AcbSh) of the Acb in A2AR-Cre mice. Immunohistochemistry was then used to visualize hrGFP, highlighting the perikarya of the A2AR neurons in the injection sites, and their axons in projection regions. The data revealed that A2AR neurons exhibit medium-sized and either round or elliptic perikarya with their processes within the Acb. Moreover, the projections from the Acb distributed to nuclei in the forebrain, diencephalon, and brainstem. In the forebrain, A2AR neurons from all Acb sub-regions jointly projected to the ventral pallidum, the nucleus of the diagonal band, and the substantia innominata. Heavy projections from the AcbC and the ventral AcbSh, and weaker projections from the medial AcbSh, were observed in the lateral hypothalamus and lateral preoptic area. In the brainstem, the Acb projections were found in the ventral tegmental area, while AcbC and ventral AcbSh also projected to the median raphe nucleus, the dorsal raphe nucleus, and the ventrolateral periaqueductal gray. The results supply a solid base for understanding the roles of the A2AR and A2AR neurons in the Acb, especially in the regulation of sleep.

  6. Projections of nucleus accumbens adenosine A2A receptor neurons in the mouse brain and their implications in mediating sleep-wake regulation

    Directory of Open Access Journals (Sweden)

    Jianping eZhang

    2013-12-01

    Full Text Available Adenosine A2A receptors (A2ARs in the nucleus accumbens (Acb have been demonstrated to play an important role in the arousal effect of adenosine receptor antagonist caffeine, and may be involved in physiological sleep. To better understand the functions of these receptors in sleep, projections of A2AR neurons were mapped utilizing adeno-associated virus (AAV encoding humanized Renilla green fluorescent protein (hrGFP as a tracer for long axonal pathways. The Cre-dependent AAV was injected into the core (AcbC and shell (AcbSh of the Acb in A2AR-Cre mice. Immunohistochemistry was then used to visualize hrGFP, highlighting the perikarya of the A2AR neurons in the injection sites, and their axons in projection regions. The data revealed that A2AR neurons exhibit medium-sized and either round or elliptic perikarya with their processes within the Acb. Moreover, the projections from the Acb distributed to nuclei in the forebrain, diencephalon, and brainstem. In the forebrain, A2AR neurons from all Acb sub-regions jointly projected to the ventral pallidum, the nucleus of the diagonal band, and the substantia innominata. Heavy projections from the AcbC and the ventral AcbSh, and weaker projections from the medial AcbSh, were observed in the lateral hypothalamus and lateral preoptic area. In the brainstem, the Acb projections were found in the ventral tegmental area, while AcbC and ventral AcbSh also projected to the median raphe nucleus, the dorsal raphe nucleus, and the ventrolateral periaqueductal gray. The results supply a solid base for understanding the roles of the A2AR and A2AR neurons in the Acb, especially in the regulation of sleep.

  7. Distribution of cortical neurons projecting to the superior colliculus in macaque monkeys

    Directory of Open Access Journals (Sweden)

    Cerkevich CM

    2014-09-01

    Full Text Available Christina M Cerkevich,1 David C Lyon,2 Pooja Balaram,3 Jon H Kaas3 1Department of Neurobiology, University of Pittsburgh School of Medicine, Systems Neuroscience Institute, Pittsburgh, PA, USA; 2Department of Anatomy and Neurobiology, University of California, Irvine, CA, USA; 3Department of Psychology, Vanderbilt University, Nashville, TN, USA Abstract: To better reveal the pattern of corticotectal projections to the superficial layers of the superior colliculus (SC, we made a total of ten retrograde tracer injections into the SC of three macaque monkeys (Macaca mulatta. The majority of these injections were in the superficial layers of the SC, which process visual information. To isolate inputs to the purely visual layers in the superficial SC from those inputs to the motor and multisensory layers deeper in the SC, two injections were placed to include the intermediate and deep layers of the SC. In another case, an injection was placed in the medial pulvinar, a nucleus not known to be strongly connected with visual cortex, to identify possible projections from tracer spread past the lateral boundary of the SC. Four conclusions are supported by the results: 1 all early visual areas of cortex, including V1, V2, V3, and the middle temporal area, project to the superficial layers of the SC; 2 with the possible exception of the frontal eye field, few areas of cortex outside of the early visual areas project to the superficial SC, although many do, however, project to the intermediate and deep layers of the SC; 3 roughly matching retinotopy is conserved in the projections of visual areas to the SC; and 4 the projections from different visual areas are similarly dense, although projections from early visual areas appear somewhat denser than those of higher order visual areas in macaque cortex. Keywords: visual cortex, superior colliculus, frontal eye field, posterior parietal cortex, visual system

  8. Projection of secondary vestibular neurons to the abducens nucleus in the carpet shark Cephaloscyllium isabella.

    Science.gov (United States)

    Montgomery, J C; Cotton, P

    1985-01-01

    The abducens nucleus in carpet sharks is not a discrete delimited nucleus, as the dendrites of the motoneurons extend into the reticular formation and the medial longitudinal fasciculus. Injections of horseradish peroxidase (HRP) designed to trace the inputs to these neurons are therefore difficult to confine to this system alone. Despite this problem a consistent finding from injection of HRP in the area of the abducens nucleus is the retrograde labelling of a column of cells in the contralateral octaval nuclei. The column of cells is predominantly in the ventral portion of the descending octaval nucleus, but does straddle the entrance of nerve VIII, extending into the caudal part of the ascending octaval nucleus. Labelled cells correspond in location and morphology to those cells receiving input from horizontal canal afferent fibers, confirming the trineuronal nature of the horizontal vestibulo-ocular reflex arc in elasmobranch fishes.

  9. 17β-Estradiol alters the response of subfornical organ neurons that project to supraoptic nucleus to plasma angiotensin II and hypernatremia.

    Science.gov (United States)

    Ciriello, John; Roder, Stefanie

    2013-08-14

    This study was done in urethane anesthetized, ovariectomized (OVX) female rats that were either implanted or not implanted with silastic capsules containing17β-estradiol (E2) to investigate the effect of systemic changes in E2 on the discharge rate of subfornical organ (SFO) neurons that projected to supraoptic nucleus (SON) and responded to changes in plasma levels of angiotensin II (ANG II) or hypernatremia. Extracellular single unit recordings were made from 146 histologically verified single units in SFO. Intra-carotid infusions of ANG II excited ~57% of these neurons, whereas ~23% were excited by hypertonic NaCl. Basal discharge rate of neurons excited by ANG II or hypertonic NaCl was significantly lower in OVX+E2 rats compared to OVX only animals. The response of SFO neurons antidromically activated by SON stimulation to intra-carotid injections of ANG II or hypertonic NaCl was greater in the OVX only compared to the OVX+E2 rats. Intra-carotid injections of E2 in either group attenuated not only the basal discharge of these neurons, but also their response to ANG II or hypertonic NaCl. In all cases this inhibitory effect of E2 was blocked by an intra-carotid injection of the E2 receptor antagonist ICI-182780, although ICI-182780 did not alter the neuron's response to ANG II or hypertonic NaCl. Additionally, ICI-182780 in the OVX+E2 animals significantly raised the basal discharge of SFO neurons and their response to ANG II or hypertonic NaCl. These data indicate that E2 alters the response of SFO neurons to ANG II or NaCl that project to SON, and suggest that E2 functions in the female to regulate neurohypophyseal function in response to circulating ANG II and plasma hypernatremia. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Brainstem neurons projecting to the rostral ventral respiratory group (VRG) in the medulla oblongata of the rat revealed by co-application of NMDA and biocytin.

    Science.gov (United States)

    Zheng, Y; Riche, D; Rekling, J C; Foutz, A S; Denavit-Saubié, M

    1998-01-26

    Groups of neurons in the medulla and pons are essential for the rhythm generation, pattern formation and modulation of respiration. The rostral Ventral Respiratory Group (rVRG) is thought to be a crucial area for rhythm generation. Here we co-applied biocytin and NMDA in the rVRG to label retrogradely brainstem neurons reciprocally connected to a population of inspiratory neurons in the rat rVRG. The procedure excited rVRG neurons in multi-unit recordings and led to a Golgi-like labelling of distant cells presumably excited by efferents from the rVRG. Injection of biocytin without NMDA did not label neurons in distant structures. Several brainstem ipsi- and contralateral structures were found to project to the rVRG, but three major respiratory-related structures, the nucleus of the solitary tract (NTS), the parabrachialis medialis and Kölliker-Fuse nuclei (PB/KF) and the caudal VRG, which are known to project bilaterally to the rVRG, were exclusively labelled ipsilaterally, suggesting an ipsilateral excitation of these structures by the rVRG. The pathways of efferent axons from labelled neurons in the rVRG were traced rostrally towards the pons and caudally to the spinal cord. Terminal axonal arborizations were seen in the same regions where retrogradely filled neurons were found as well as in a few other motor nuclei (the dorsal vagal motor nucleus and XII nucleus). Moreover, in the NTS and the PB/KF, efferent terminal varicosities were seen closely apposed to the soma and proximal dendrites of labelled neurons, suggesting monosynaptic connections between the rVRG and these nuclei.

  11. Integration of the antennal lobe glomeruli and three projection neurons in the standard brain atlas of the moth Heliothis virescens

    Directory of Open Access Journals (Sweden)

    Bjarte B Løfaldli

    2010-02-01

    Full Text Available Digital three dimensional standard brain atlases are valuable tools for integrating neuroimaging data of different preparations. In insects, standard brain atlases of five species are available, including the atlas of the female Heliothis virescens moth brain. Like for the other species, the antennal lobes of the moth brain atlas were integrated as one material identity without internal structures. Different from the others, the H. virescens standard brain atlas exclusively included the glomerular layer of the antennal lobe. This was an advantage in the present study for performing a direct registration of the glomerular layer of individual preparations into the standard brain. We here present the H. virescens female standard brain atlas with a new model of the antennal lobe glomeruli integrated into the atlas, i.e. with each of the 66 glomeruli identified and labelled with a specific number. The new model differs from the previous H. virescens antennal lobe model both in respect to the number of glomeruli and the numbering system; the latter according to the system used for the antennal lobe atlases of two other heliothine species. For identifying female specific glomeruli comparison with the male antennal lobe was necessary. This required a new male antennal lobe atlas, included in this paper. As demonstrated by the integration of three antennal lobe projection neurons of different preparations, the new standard brain atlas with the integrated glomruli is a helpful tool for determining the glomeruli innervated as well as the relative position of the axonal projections in the protocerebrum.

  12. Organization of the pallium in the fire-bellied toad Bombina orientalis. I: Morphology and axonal projection pattern of neurons revealed by intracellular biocytin labeling.

    Science.gov (United States)

    Roth, Gerhard; Laberge, Frédéric; Mühlenbrock-Lenter, Sabine; Grunwald, Wolfgang

    2007-03-20

    The cytoarchitecture and axonal projection pattern of pallial areas was studied in the fire-bellied toad Bombina orientalis by intracellular injection of biocytin into a total of 326 neurons forming 204 clusters. Five pallial regions were identified, differing in morphology and projection pattern of neurons. The rostral pallium receiving the bulk of dorsal thalamic afferents has reciprocal connections with all other pallial areas and projects to the septum, nucleus accumbens, and anterior dorsal striatum. The medial pallium projects bilaterally to the medial pallium, septum, nucleus accumbens, mediocentral amygdala, and hypothalamus and ipsilaterally to the rostral, dorsal, and lateral pallium. The ventral part of the medial pallium is distinguished by efferents to the eminentia thalami and the absence of contralateral projections. The dorsal pallium has only ipsilateral projections running to the rostral, medial, and lateral pallium; septum; nucleus accumbens; and eminentia thalami. The lateral pallium has ipsilateral projections to the olfactory bulbs and to the rostral, medial, dorsal, and ventral pallium. The ventral pallium including the striatopallial transition area (SPTA) has ipsilateral projections to the olfactory bulbs, rostral and lateral pallium, dorsal striatopallidum, vomeronasal amygdala, and hypothalamus. The medial pallium can be tentatively homologized with the mammalian hippocampal formation, the dorsal pallium with allocortical areas, the lateral pallium rostrally with the piriform and caudally with the entorhinal cortex, the ventral pallium with the accessory olfactory amygdala. The rostral pallium, with its projections to the dorsal and ventral striatopallidum, resembles the mammalian frontal cortex. 2007 Wiley-Liss, Inc.

  13. Inosine Alters Gene Expression and Axonal Projections in Neurons Contralateral to a Cortical Infarct and Improves Skilled Use of the Impaired Limb

    Science.gov (United States)

    Zai, Laila; Ferrari, Christina; Subbaiah, Sathish; Havton, Leif A.; Coppola, Giovanni; Strittmatter, Stephen; Irwin, Nina; Geschwind, Daniel; Benowitz, Larry I.

    2010-01-01

    Recovery after stroke and other types of brain injury is restricted in part by the limited ability of undamaged neurons to form compensatory connections. Inosine, a naturally occurring purine nucleoside, stimulates neurons to extend axons in culture and, in vivo, enhances the ability of undamaged neurons to form axon collaterals after brain damage. The molecular changes induced by inosine are unknown, as is the ability of inosine to restore complex functions associated with a specific cortical area. Using a unilateral injury model limited to the sensorimotor cortex, we show that inosine triples the number of corticospinal tract axons that project from the unaffected hemisphere and form synaptic bouton-like structures in the denervated half of the spinal cord. These changes correlate with improved recovery in animals’ ability to grasp and consume food pellets with the affected forepaw. Studies using laser-capture microdissection and microarray analysis show that inosine profoundly affects gene expression in corticospinal neurons contralateral to the injury. Inosine attenuates transcriptional changes caused by the stroke, while upregulating the expression of genes associated with axon growth and the complement cascade. Thus, inosine alters gene expression in neurons contralateral to a stroke, enhances the ability of these neurons to form connections on the denervated side of the spinal cord, and improves performance with the impaired limb. PMID:19553458

  14. Dorsal root ganglion neurons with dichotomizing axons projecting to the hip joint and the knee skin in rats: possible mechanism of referred knee pain in hip joint disease.

    Science.gov (United States)

    Miura, Yoko; Ohtori, Seiji; Nakajima, Takayuki; Kishida, Shinji; Harada, Yoshitada; Takahashi, Kazuhisa

    2011-11-01

    Patients who have hip joint diseases sometimes complain of knee pain as well as hip joint area pain. However, the precise sensory innervation pattern and correlation of the sensory nerves of the hip joint and knee are unknown. The purpose of this study was to investigate dorsal root ganglion (DRG) neurons with dichotomizing axons projecting to both the hip joint and the knee skin in rats using double fluorescent labeling techniques, and to examine characteristics of the DRG neurons with dichotomizing axons using immunohistochemical staining for inflammatory neuropeptides such as calcitonin gene-related peptide (CGRP). For 20 rats, two kinds of neurotracers, Fluoro-Gold (FG) and 1,1'-dioctadecyl-3,3,3',3'-tetramethyl-indocarbocyanine perchlorate (DiI), were used in the double-labeling study. FG was injected into the left hip joint, and DiI was applied to the left medial portion of knee skin. Ten days after application, bilateral DRGs were harvested and immunohistochemically stained for CGRP. DRG neurons double labeled with FG and DiI were observed only from L2 to L4 on the left side. Approximately 1.6% of all DRG neurons innervating the hip joints had other axons that extended to the medial portion of knee skin, and 35% of double-labeled neurons were CGRP positive. Our results showed that the double-labeled neurons had peripheral axons that dichotomized into both the hip joint and the knee skin. CGRP-positive neurons of these dichotomizing fibers may play some role in the manifestation of referred knee pain with hip joint pain.

  15. Differential changes in thalamic and cortical excitatory synapses onto striatal spiny projection neurons in a Huntington disease mouse model.

    Science.gov (United States)

    Kolodziejczyk, Karolina; Raymond, Lynn A

    2016-02-01

    Huntington disease (HD), a neurodegenerative disorder caused by CAG repeat expansion in the gene encoding huntingtin, predominantly affects the striatum, especially the spiny projection neurons (SPN). The striatum receives excitatory input from cortex and thalamus, and the role of the former has been well-studied in HD. Here, we report that mutated huntingtin alters function of thalamostriatal connections. We used a novel thalamostriatal (T-S) coculture and an established corticostriatal (C-S) coculture, generated from YAC128 HD and WT (FVB/NJ background strain) mice, to investigate excitatory neurotransmission onto striatal SPN. SPN in T-S coculture from WT mice showed similar mini-excitatory postsynaptic current (mEPSC) frequency and amplitude as in C-S coculture; however, both the frequency and amplitude were significantly reduced in YAC128 T-S coculture. Further investigation in T-S coculture showed similar excitatory synapse density in WT and YAC128 SPN dendrites by immunostaining, suggesting changes in total dendritic length or probability of release as possible explanations for mEPSC frequency changes. Synaptic N-methyl-D-aspartate receptor (NMDAR) current was similar, but extrasynaptic current, associated with cell death signaling, was enhanced in YAC128 SPN in T-S coculture. Employing optical stimulation of cortical versus thalamic afferents and recording from striatal SPN in brain slice, we found increased glutamate release probability and reduced AMPAR/NMDAR current ratios in thalamostriatal synapses, most prominently in YAC128. Enhanced extrasynaptic NMDAR current in YAC128 SPN was apparent with both cortical and thalamic stimulation. We conclude that thalamic afferents to the striatum are affected early, prior to an overt HD phenotype; however, changes in NMDAR localization in SPN are independent of the source of glutamatergic input. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Type 1 Cannabinoid Receptor Ligands Display Functional Selectivity in a Cell Culture Model of Striatal Medium Spiny Projection Neurons*

    Science.gov (United States)

    Laprairie, Robert B.; Bagher, Amina M.; Kelly, Melanie E. M.; Dupré, Denis J.; Denovan-Wright, Eileen M.

    2014-01-01

    Modulation of type 1 cannabinoid receptor (CB1) activity has been touted as a potential means of treating addiction, anxiety, depression, and neurodegeneration. Different agonists of CB1 are known to evoke varied responses in vivo. Functional selectivity is the ligand-specific activation of certain signal transduction pathways at a receptor that can signal through multiple pathways. To understand cannabinoid-specific functional selectivity, different groups have examined the effect of individual cannabinoids on various signaling pathways in heterologous expression systems. In the current study, we compared the functional selectivity of six cannabinoids, including two endocannabinoids (2-arachidonyl glycerol (2-AG) and anandamide (AEA)), two synthetic cannabinoids (WIN55,212-2 and CP55,940), and two phytocannabinoids (cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC)) on arrestin2-, Gαi/o-, Gβγ-, Gαs-, and Gαq-mediated intracellular signaling in the mouse STHdhQ7/Q7 cell culture model of striatal medium spiny projection neurons that endogenously express CB1. In this system, 2-AG, THC, and CP55,940 were more potent mediators of arrestin2 recruitment than other cannabinoids tested. 2-AG, AEA, and WIN55,212-2, enhanced Gαi/o and Gβγ signaling, with 2-AG and AEA treatment leading to increased total CB1 levels. 2-AG, AEA, THC, and WIN55,212-2 also activated Gαq-dependent pathways. CP55,940 and CBD both signaled through Gαs. CP55,940, but not CBD, activated downstream Gαs pathways via CB1 targets. THC and CP55,940 promoted CB1 internalization and decreased CB1 protein levels over an 18-h period. These data demonstrate that individual cannabinoids display functional selectivity at CB1 leading to activation of distinct signaling pathways. To effectively match cannabinoids with therapeutic goals, these compounds must be screened for their signaling bias. PMID:25037227

  17. Alterations to dendritic spine morphology, but not dendrite patterning, of cortical projection neurons in Tc1 and Ts1Rhr mouse models of Down syndrome.

    Directory of Open Access Journals (Sweden)

    Matilda A Haas

    Full Text Available Down Syndrome (DS is a highly prevalent developmental disorder, affecting 1/700 births. Intellectual disability, which affects learning and memory, is present in all cases and is reflected by below average IQ. We sought to determine whether defective morphology and connectivity in neurons of the cerebral cortex may underlie the cognitive deficits that have been described in two mouse models of DS, the Tc1 and Ts1Rhr mouse lines. We utilised in utero electroporation to label a cohort of future upper layer projection neurons in the cerebral cortex of developing mouse embryos with GFP, and then examined neuronal positioning and morphology in early adulthood, which revealed no alterations in cortical layer position or morphology in either Tc1 or Ts1Rhr mouse cortex. The number of dendrites, as well as dendrite length and branching was normal in both DS models, compared with wildtype controls. The sites of projection neuron synaptic inputs, dendritic spines, were analysed in Tc1 and Ts1Rhr cortex at three weeks and three months after birth, and significant changes in spine morphology were observed in both mouse lines. Ts1Rhr mice had significantly fewer thin spines at three weeks of age. At three months of age Tc1 mice had significantly fewer mushroom spines--the morphology associated with established synaptic inputs and learning and memory. The decrease in mushroom spines was accompanied by a significant increase in the number of stubby spines. This data suggests that dendritic spine abnormalities may be a more important contributor to cognitive deficits in DS models, rather than overall neuronal architecture defects.

  18. Inclusion of a portion of the native SNCA 3'UTR reduces toxicity of human S129A SNCA on striatal-projecting dopamine neurons in rat substantia nigra.

    Science.gov (United States)

    Khodr, Christina E; Pedapati, Jyothi; Han, Ye; Bohn, Martha C

    2012-06-01

    Experimental models of Parkinson's disease (PD) created by aberrant expression of the alpha-synuclein (SNCA) coding region have been reported. However, noncoding regions function in normal physiology and recent in vitro studies have shown that microRNAs-7 and -153 regulate SNCA expression by binding the 3'UTR. Here, effects of different hSNCA forms were examined in vivo. Adult, male rats were injected into one substantia nigra (SN) with AAV-wtSNCA, AAV-S129A hSNCA, or AAV-S129D hSNCA either with or without a portion of the native 3'UTR. DA neurons in SN that maintained striatal (ST) projections at the end of treatment were retrogradely labeled by bilateral ST fluorogold (FG) injections and FG-positive DA neurons in SN were counted. At 5 weeks, hSNCA coding vectors reduced numbers of FG-positive neurons in injected SN compared with uninjected SN (wtSNCA, p = 0.05; S129A/D hSNCA, p = 0.01). At 7 and 9 weeks, wtSNCA- and S129D hSNCA-treated rats exhibited recovery, but S129A hSNCA-injected rats did not (p = 0.01). In contrast, numbers of FG-positive neurons were unaffected by hSNCA expression when the 3'UTR was included. When FG-positive neurons were expressed as the ratio of numbers in injected to uninjected sides, the S129A hSNCA coding vector resulted in the highest decrease at 9 weeks versus wtSNCA (p = 0.05) or S129D hSNCA (p = 0.01). Inclusion of the 3'UTR resulted in no significant differences in FG-positive neuron ratios. These data suggest that inclusion of the 3'UTR protects against S129A hSNCA-induced loss of nigrostriatal-projecting DA neurons in vivo and that mis-regulation of hSNCA expression and function at noncoding regions contribute to PD pathogenesis. Copyright © 2011 Wiley Periodicals, Inc.

  19. Targeting corticotropin-releasing factor (CRF) projections from the oval nucleus of the BNST using cell-type specific neuronal tracing studies in mouse and rat brain

    Science.gov (United States)

    Dabrowska, Joanna; Martinon, Daisy; Moaddab, Mahsa; Rainnie, Donald G.

    2016-01-01

    The bed nucleus of the stria terminalis (BNST) is known to play a critical role in mediating the behavioral and autonomic responses to stressors. The oval nucleus of the BNST (BNSTov) contains cell bodies that synthesize the stress hormone, corticotropin releasing factor (CRF). Although afferent fibers originating from the BNSTov have been shown to innervate several key structures of the neuroendocrine and central autonomic system, the question remains as to whether, some of these fibers are CRF-positive. To directly address this question, we injected a “floxed” anterograde tracer (rAAV5/EF1a-DIO-mCherry) into the BNSTov of CRFp3.0CreGFP transgenic mice, which express a green fluorescent protein (GFP) under the control of the CRF promoter. Serial sections were then analyzed for the presence of double-labeled fibers in potential projection sites. To determine whether CRF neurons in the rat BNSTov send comparable projections, we infused rat BNSTov with an AAV in which the human synapsin promoter drives enhanced GFP expression. We then used CRF immunoreactivity to examine double-labeled fluorescent fibers and axon terminals in projection sites from brain sections of the AAV-infused rats. We have observed several terminal fields in the mouse and rat brain with double-labeled fibers in the Dorsal raphe nucleus (DRD), the Paraventricular nucleus of the hypothalamus, and to a lesser extent in the Ventral tegmental area. We found double-labeled terminal boutons in the nucleus accumbens shell, prelimbic cortex, and posterior basolateral nucleus of the amygdala. The most intense double-labeling was found in midbrain, including substantia nigra pars compacta, red nucleus, periaqueductal gray, pontine nuclei, as well as DRD. The results of our study indicate that CRF neurons are the output neurons of the BNSTov and they send projections to the centers of neuroendocrine and autonomic regulation, but also regions modulating reward and motivation, vigilance, motor function

  20. The transcriptional repressor Zbtb20 is essential for specification of hippocampal projection neurons and territory in mice

    DEFF Research Database (Denmark)

    Rosenthal, Eva Helga

    for specification of both hippocampal pyramidal neurons and territory in a mouse knockout model. Homozygous Zbtb20-/- mice are viable at birth, but display dwarfism and die during the first month of postnatal life. Characterization of the Zbtb20-/- brain phenotype reveals a small vestigial hippocampus...

  1. The Me31B DEAD-box helicase localizes to postsynaptic foci and regulates expression of a CaMKII reporter mRNA in dendrites of Drosophila olfactory projection neurons

    Directory of Open Access Journals (Sweden)

    Jens Hillebrand

    2010-11-01

    Full Text Available mRNP granules at adult central synapses are postulated to regulate local mRNA translation and synapse plasticity. However, they are very poorly characterized in vivo. Here, in Drosophila olfactory synapses, we present early observations and characterization of candidate synaptic mRNP particles, one of which contains a widely conserved, DEAD-box helicase, Me31B. In Drosophila, Me31B is required for translational repression of maternal and miRNA-target mRNAs. A role in neuronal translational control is primarily suggested by Me31B’s localization, in cultured primary neurons, to neuritic mRNP granules that contain: i various translational regulators; ii CaMKII mRNA; and iii several P-body markers including the mRNA hydrolases, Dcp1 and Pcm/Xrn-1. In adult neurons, Me31B localizes to P-body like cytoplasmic foci/particles in neuronal soma. In addition it is present to synaptic foci that may lack RNA degradative enzymes and localize predominantly to dendritic elements of olfactory sensory and projection neurons. MARCM clones of projection-neurons mutant for Me31B show loss of both Me31B and Dcp1-positive dendritic puncta, suggesting potential interactions between these granule types. In projection neurons, expression of validated hairpin-RNAi constructs against Me31B causes visible knockdown of endogenous protein, as assessed by the brightness and number of Me31B puncta. Knockdown of Me31B also causes a substantial elevation in observed levels of a translational reporter of CaMKII, a postsynaptic protein whose mRNA has been shown to be localized to projection neuron dendrites and to be translationally regulated, at least in part through the miRNA pathway. Thus, neuronal Me31B is present in dendritic particles in vivo and is required for repression of a translationally regulated synaptic mRNA.

  2. Diverse Short-Term Dynamics of Inhibitory Synapses Converging on Striatal Projection Neurons: Differential Changes in a Rodent Model of Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Janet Barroso-Flores

    2015-01-01

    Full Text Available Most neurons in the striatum are projection neurons (SPNs which make synapses with each other within distances of approximately 100 µm. About 5% of striatal neurons are GABAergic interneurons whose axons expand hundreds of microns. Short-term synaptic plasticity (STSP between fast-spiking (FS interneurons and SPNs and between SPNs has been described with electrophysiological and optogenetic techniques. It is difficult to obtain pair recordings from some classes of interneurons and due to limitations of actual techniques, no other types of STSP have been described on SPNs. Diverse STSPs may reflect differences in presynaptic release machineries. Therefore, we focused the present work on answering two questions: Are there different identifiable classes of STSP between GABAergic synapses on SPNs? And, if so, are synapses exhibiting different classes of STSP differentially affected by dopamine depletion? Whole-cell voltage-clamp recordings on SPNs revealed three classes of STSPs: depressing, facilitating, and biphasic (facilitating-depressing, in response to stimulation trains at 20 Hz, in a constant ionic environment. We then used the 6-hydroxydopamine (6-OHDA rodent model of Parkinson’s disease to show that synapses with different STSPs are differentially affected by dopamine depletion. We propose a general model of STSP that fits all the dynamics found in our recordings.

  3. Chronic, systemic treatment with a metabotropic glutamate receptor 5 antagonist produces anxiolytic-like effects and reverses abnormal firing activity of projection neurons in the basolateral nucleus of the amygdala in rats with bilateral 6-OHDA lesions.

    Science.gov (United States)

    Chen, Li; Liu, Jian; Ali, Umar; Gui, Zhen Hua; Hou, Chen; Fan, Ling Ling; Wang, Yong; Wang, Tao

    2011-02-28

    Although 2-methyl-6-(phenylethynyl)-pyridine (MPEP), a selective metabotropic glutamate receptor 5 antagonist, improves the motor symptoms of Parkinson's disease (PD), the effects of MPEP on the psychiatric symptom of PD and the mechanism involved are still unclear. In the present study, we examined the effects of MPEP in anxiolytic-like behavior and firing activity of projection neurons in the basolateral nucleus of the amygdala (BLA) in rats with 6-hydroxydopamine (6-OHDA) injected bilaterally into dorsal striatum. Rats were divided into three groups, sham-operated group, 6-OHDA lesion with vehicle treatment group and 6-OHDA lesion with MPEP treatment group. Injection of 6-OHDA (10.5 μg) into the dorsal striatum produced 31.5% loss of tyrosine hydroxylase immunoreactive (TH-ir) neurons in the SNpc. The 6-OHDA-lesioned rats showed anxiety behavior and the firing rate of BLA projection neurons decreased significantly compared with sham-operated rats, and no difference was found in the firing pattern of these neurons. Whereas chronic, systemic treatment of MPEP (3 mg/kg/day, i.p.; 14 days) attenuated loss of TH-ir neurons, produced anxiolytic-like effect and normalized the abnormal firing rate of projection neurons of the BLA in rats with the bilateral lesions. Systemic administration of cumulative apomorphine (10-160 μg/kg, i.v.) inhibited the firing rate of BLA projection neurons in sham-operated, 6-OHDA lesion with vehicle-treated and MPEP-treated rats, but the 6-OHDA lesion decreased the response of BLA projection neurons to apomorphine stimulation, while MPEP reversed the reactivity of these neurons. These data demonstrate that the partial lesion of the nigrostriatal pathway causes anxiety symptom and decreases firing rate of BLA projection neurons in the rat. Furthermore, chronic, systemic MPEP treatment has the neuroprotective and anxiolytic-like effects, and reverses the abnormal firing rate of BLA projection neurons, suggesting that MPEP has important

  4. Morphology and axonal projection pattern of neurons in the telencephalon of the fire-bellied toad Bombina orientalis: an anterograde, retrograde, and intracellular biocytin labeling study.

    Science.gov (United States)

    Roth, Gerhard; Mühlenbrock-Lenter, Sabine; Grunwald, Wolfgang; Laberge, Frédéric

    2004-10-04

    The connectivity and cytoarchitecture of telencephalic centers except dorsal and medial pallium were studied in the fire-bellied toad Bombina orientalis by anterograde and retrograde biocytin labeling and intracellular biocytin injection (total of 148 intracellularly labeled neurons or neuron clusters). Our findings suggest the following telencephalic divisions: (1) a central amygdala-bed nucleus of the stria terminalis in the caudal midventral telencephalon, connected to visceral-autonomic centers; (2) a vomeronasal amygdala in the caudolateral ventral telencephalon receiving input from the accessory olfactory bulb and projecting mainly to the preoptic region/hypothalamus; (3) an olfactory amygdala in the caudal pole of the telencephalon lateral to the vomeronasal amygdala receiving input from the main olfactory bulb and projecting to the hypothalamus; (4) a medial amygdala receiving input from the anterior dorsal thalamus and projecting to the medial pallium, septum, and hypothalamus; (5) a ventromedial column formed by a nucleus accumbens and a ventral pallidum projecting to the central amygdala, hypothalamus, and posterior tubercle; (6) a lateral column constituting the dorsal striatum proper rostrally and the dorsal pallidum caudally, and a ventrolateral column constituting the ventral striatum. We conclude that the caudal mediolateral complex consisting of the extended central, vomeronasal, and olfactory amygdala of anurans represents the ancestral condition of the amygdaloid complex. During the evolution of the mammalian telencephalon this complex was shifted medially and involuted. The mammalian basolateral amygdala apparently is an evolutionary new structure, but the medial portion of the amygdalar complex of anurans reveals similarities in input and output with this structure and may serve similar functions.

  5. Kappe neurons, a novel population of olfactory sensory neurons

    Science.gov (United States)

    Ahuja, Gaurav; Nia, Shahrzad Bozorg; Zapilko, Veronika; Shiriagin, Vladimir; Kowatschew, Daniel; Oka, Yuichiro; Korsching, Sigrun I.

    2014-02-01

    Perception of olfactory stimuli is mediated by distinct populations of olfactory sensory neurons, each with a characteristic set of morphological as well as functional parameters. Beyond two large populations of ciliated and microvillous neurons, a third population, crypt neurons, has been identified in teleost and cartilaginous fishes. We report here a novel, fourth olfactory sensory neuron population in zebrafish, which we named kappe neurons for their characteristic shape. Kappe neurons are identified by their Go-like immunoreactivity, and show a distinct spatial distribution within the olfactory epithelium, similar to, but significantly different from that of crypt neurons. Furthermore, kappe neurons project to a single identified target glomerulus within the olfactory bulb, mdg5 of the mediodorsal cluster, whereas crypt neurons are known to project exclusively to the mdg2 glomerulus. Kappe neurons are negative for established markers of ciliated, microvillous and crypt neurons, but appear to have microvilli. Kappe neurons constitute the fourth type of olfactory sensory neurons reported in teleost fishes and their existence suggests that encoding of olfactory stimuli may require a higher complexity than hitherto assumed already in the peripheral olfactory system.

  6. Two closely located areas in the suboesophageal ganglion and the tritocerebrum receive projections of gustatory receptor neurons located on the antennae and the proboscis in the moth Heliothis virescens.

    Science.gov (United States)

    Jørgensen, Kari; Kvello, Pål; Almaas, Tor Jørgen; Mustaparta, Hanna

    2006-05-01

    Sucrose stimulation of gustatory receptor neurons on the antennae, the tarsi, and the mouthparts elicits the proboscis extension reflex in many insect species, including lepidopterans. The sensory pathways involved in this reflex have only partly been investigated, and in hymenopterans only. The present paper concerns the pathways of the gustatory receptor neurons on the antennae and on the proboscis involved in the proboscis extension reflex in the moth Heliothis virescens (Lepidoptera; Noctuidae). Fluorescent dyes were applied to the contact chemosensilla, sensilla chaetica on the antennae, and sensilla styloconica on the proboscis, permitting tracing of the axons of the gustatory receptor neurons in the central nervous system. The stained axons showed projections from the two appendages in two closely located but distinct areas in the suboesophageal ganglion (SOG)/tritocerebrum. The projections of the antennal gustatory receptor neurons were located posterior-laterally to those from the proboscis. Electrophysiological recordings from the receptor neurons in s. chaetica during mechanical and chemical stimulation were performed, showing responses of one mechanosensory and of several gustatory receptor neurons. Separate neurons showed excitatory responses to sucrose and sinigrin. The effect of these two tastants on the proboscis extension reflex was tested by repeated stimulations with solutions of the two compounds. Whereas sucrose elicited extension in 100% of the individuals in all repetitions, sinigrin elicited extension in fewer individuals, a number that decreased with repeated stimulation.

  7. Hypothalamic neuronal origin of neuropeptide Y (NPY) or cocaine- and amphetamine-regulated transcript (CART) fibers projecting to the tuberomammillary nucleus of the rat.

    Science.gov (United States)

    Lee, Eun Y; Hwang, Young G; Lee, Hyun S

    2017-02-15

    Based on the importance of tuberomammillary nucleus (TMN) as a target for feeding/arousal-related functions, we aimed in the present study to investigate hypothalamic neuronal origin of neuropeptide Y (NPY) and cocaine- and amphetamine-regulated transcript (CART) fibers projecting to the histaminergic nucleus. In the first series of experiments, we examined NPY (or CART) fiber distribution within the boundary of adenosine deaminase (ADA)-immunoreactive (ir) TMN regions; extensive NPY (or CART)-ir axon terminals were observed in E4 (TMMd), E3 (TMMv), and E2 (TMVr) subdivisions. NPY varicosities co-contained vesicular GABA transporters (vGAT). CART boutons, however, contained either vGAT or vesicular glutamate transporters (vGLU), which suggested dual (or multiple) origins of CART fibers. Based on the previous observation on melanin-concentrating hormone (MCH)-ir neuronal elements in the TMN, their coexistence with CART peptide was examined in detail. In E4 subdivision, approximately 40.8% of MCH-ir somata co-contained CART, but the proportion was reduced to 24.1% in E3 region. In E2 and E1 (TMVc) regions, only MCH-ir axon terminals existed without any MCH-ir somata. In the second series of experiments, we investigated hypothalamic neuronal origin of NPY (or CART) fibers projecting to the TMN. The arcuate nucleus (Arc) was the sole source of hypothalamic NPY fibers projecting to the nucleus. In contrast, CART fibers in the TMN originated from the Arc as well as the other hypothalamic nuclei including the retrochiasmatic nucleus, paraventricular nucleus, lateral hypothalamus (LH), zona incerta (ZI), and dorsal hypothalamic area. Quantitative analysis showed that arcuate CART projection to the TMN occupied approximately 23.5% of the total hypothalamic CART input to the nucleus, while the rest originated mainly from the LH and ZI. The present observations suggested that the TMN might play a key role in energy balance and arousal, by receiving periphery-derived, first

  8. Corticotrigeminal projections from the insular cortex to the trigeminal caudal subnucleus regulate orofacial pain after nerve injury via extracellular signal-regulated kinase activation in insular cortex neurons

    Directory of Open Access Journals (Sweden)

    Jian eWang

    2015-12-01

    Full Text Available Cortical neuroplasticity alterations are implicated in the pathophysiology of chronic orofacial pain. However, the relationship between critical cortex excitability and orofacial pain maintenance has not been fully elucidated. We recently demonstrated a top-down corticospinal descending pain modulation pathway from the anterior cingulate cortex (ACC to the spinal dorsal horn that could directly regulate nociceptive transmission. Thus, we aimed to investigate possible corticotrigeminal connections that directly influence orofacial nociception in rats. Infraorbital nerve chronic constriction injury (IoN-CCI induced significant orofacial nociceptive behaviors as well as pain-related negative emotions such as anxiety/depression in rats. By combining retrograde and anterograde tract tracing, we found powerful evidence that the trigeminal caudal subnucleus (Vc, especially the superficial laminae (I/II, received direct descending projections from granular and dysgranular parts of the insular cortex (IC. Extracellular signal-regulated kinase (ERK, an important signaling molecule involved in neuroplasticity, was significantly activated in the IC following IoN-CCI. Moreover, in IC slices from IoN-CCI rats, U0126, an inhibitor of ERK activation, decreased both the amplitude and the frequency of spontaneous excitatory postsynaptic currents (sEPSCs and reduced the paired-pulse ratio (PPR of Vc-projecting neurons. Additionally, U0126 also reduced the number of action potentials in the Vc-projecting neurons. Finally, intra-IC infusion of U0126 obviously decreased Fos expression in the Vc, accompanied by the alleviation of both nociceptive behavior and negative emotions. Thus, the corticotrigeminal descending pathway from the IC to the Vc could directly regulate orofacial pain, and ERK deactivation in the IC could effectively alleviate neuropathic pain as well as pain-related negative emotions in IoN-CCI rats, probably through this top-down pathway. These

  9. Corticotrigeminal Projections from the Insular Cortex to the Trigeminal Caudal Subnucleus Regulate Orofacial Pain after Nerve Injury via Extracellular Signal-Regulated Kinase Activation in Insular Cortex Neurons.

    Science.gov (United States)

    Wang, Jian; Li, Zhi-Hua; Feng, Ban; Zhang, Ting; Zhang, Han; Li, Hui; Chen, Tao; Cui, Jing; Zang, Wei-Dong; Li, Yun-Qing

    2015-01-01

    Cortical neuroplasticity alterations are implicated in the pathophysiology of chronic orofacial pain. However, the relationship between critical cortex excitability and orofacial pain maintenance has not been fully elucidated. We recently demonstrated a top-down corticospinal descending pain modulation pathway from the anterior cingulate cortex (ACC) to the spinal dorsal horn that could directly regulate nociceptive transmission. Thus, we aimed to investigate possible corticotrigeminal connections that directly influence orofacial nociception in rats. Infraorbital nerve chronic constriction injury (IoN-CCI) induced significant orofacial nociceptive behaviors as well as pain-related negative emotions such as anxiety/depression in rats. By combining retrograde and anterograde tract tracing, we found powerful evidence that the trigeminal caudal subnucleus (Vc), especially the superficial laminae (I/II), received direct descending projections from granular and dysgranular parts of the insular cortex (IC). Extracellular signal-regulated kinase (ERK), an important signaling molecule involved in neuroplasticity, was significantly activated in the IC following IoN-CCI. Moreover, in IC slices from IoN-CCI rats, U0126, an inhibitor of ERK activation, decreased both the amplitude and the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) and reduced the paired-pulse ratio (PPR) of Vc-projecting neurons. Additionally, U0126 also reduced the number of action potentials in the Vc-projecting neurons. Finally, intra-IC infusion of U0126 obviously decreased Fos expression in the Vc, accompanied by the alleviation of both nociceptive behavior and negative emotions. Thus, the corticotrigeminal descending pathway from the IC to the Vc could directly regulate orofacial pain, and ERK deactivation in the IC could effectively alleviate neuropathic pain as well as pain-related negative emotions in IoN-CCI rats, probably through this top-down pathway. These findings may help

  10. A Simple and Efficient In Vivo Non-viral RNA Transfection Method for Labeling the Whole Axonal Tree of Individual Adult Long-Range Projection Neurons.

    Science.gov (United States)

    Porrero, César; Rodríguez-Moreno, Javier; Quetglas, José I; Smerdou, Cristian; Furuta, Takahiro; Clascá, Francisco

    2016-01-01

    We report a highly efficient, simple, and non-infective method for labeling individual long-range projection neurons (LRPNs) in a specific location with enough sparseness and intensity to allow complete and unambiguous reconstructions of their entire axonal tree. The method is based on the "in vivo" transfection of a large RNA construct that drives the massive expression of green fluorescent protein. The method combines two components: injection of a small volume of a hyperosmolar NaCl solution containing the Pal-eGFP-Sindbis RNA construct (Furuta et al., 2001), followed by the application of high-frequency electric current pulses through the micropipette tip. We show that, although each component alone increases transfection efficacy, compared to simple volume injections of standard RNA solution, the highest efficacy (85.7%) is achieved by the combination of both components. In contrast with the infective viral Sindbis vector, RNA transfection occurs exclusively at the position of the injection micropipette tip. This method simplifies consistently labeling one or a few isolated neurons per brain, a strategy that allows unambiguously resolving and quantifying the brain-wide and often multi-branched monosynaptic circuits created by LRPNs.

  11. Dual nitrergic/cholinergic control of short-term plasticity of corticostriatal inputs to striatal projection neurons

    Directory of Open Access Journals (Sweden)

    Craig Peter Blomeley

    2015-11-01

    Full Text Available The ability of nitric oxide and acetylcholine to modulate the short-term plasticity of corticostriatal inputs was investigated using current-clamp recordings in BAC mouse brain slices. Glutamatergic responses were evoked by stimulation of corpus callosum in D1 and D2 dopamine receptor-expressing medium spiny neurons (D1-MSNs and D2-MSN, respectively. Paired-pulse stimulation (50 ms intervals evoked depressing or facilitating responses in subgroups of both D1-MSNs and D2 MSNs. In both neuronal types, glutamatergic responses of cells that displayed paired-pulse depression were not significantly affected by the nitric oxide donor S-nitroso-N-acetylpenicillamine (SNAP; 100 µM. Conversely, in D1-MSNs and D2-MSNs that displayed paired-pulse facilitation, SNAP did not affect the first evoked response, but significantly reduced the amplitude of the second evoked EPSP, converting paired-pulse facilitation into paired-pulse depression. SNAP also strongly excited cholinergic interneurons and increased their cortical glutamatergic responses acting through a presynaptic mechanism. The effects of SNAP on glutamatergic response of D1-MSNs and D2-MSN were mediated by acetylcholine. The broad-spectrum muscarinic receptor antagonist atropine (25 µM did not affect paired-pulse ratios and did not prevent the effects of SNAP. Conversely, the broad-spectrum nicotinic receptor antagonist tubocurarine (10 µM fully mimicked and occluded the effects of SNAP. We concluded that phasic acetylcholine release mediates feedforward facilitation in MSNs through activation of nicotinic receptors on glutamatergic terminals and that nitric oxide, while increasing cholinergic interneurons’ firing, functionally impairs their ability to modulate glutamatergic inputs of MSNs. These results show that nitrergic and cholinergic transmission control the short-term plasticity of glutamatergic inputs in the striatum and reveal a novel cellular mechanism underlying paired

  12. Orexinergic fibers are in contact with Kölliker-Fuse nucleus neurons projecting to the respiration-related nuclei in the medulla oblongata and spinal cord of the rat.

    Science.gov (United States)

    Yokota, Shigefumi; Oka, Tatsuro; Asano, Hirohiko; Yasui, Yukihiko

    2016-10-01

    The neural pathways underlying the respiratory variation dependent on vigilance states remain unsettled. In the present study, we examined the orexinergic innervation of Kölliker-Fuse nucleus (KFN) neurons sending their axons to the rostral ventral respiratory group (rVRG) and phrenic nucleus (PhN) as well as to the hypoglossal nucleus (HGN) by using a combined retrograde tracing and immunohistochemistry. After injection of cholera toxin B subunit (CTb) into the KFN, CTb-labeled neurons that are also immunoreactive for orexin (ORX) were found prominently in the perifornical and medial regions and additionally in the lateral region of the hypothalamic ORX field. After injection of fluorogold (FG) into the rVRG, PhN or HGN, we found an overlapping distribution of ORX-immunoreactive axon terminals and FG-labeled neurons in the KFN. Within the neuropil of the KFN, asymmetrical synaptic contacts were made between these terminals and neurons. We further demonstrated that many neurons labeled with FG injected into the rVRG, PhN, or HGN are immunoreactive for ORX receptor 2. Present data suggest that rVRG-, PhN- and HGN-projecting KFN neurons may be under the excitatory influence of the ORXergic neurons for the state-dependent regulation of respiration. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Representation of pheromones, interspecific signals, and plant odors in higher olfactory centers; mapping physiologically identified antennal-lobe projection neurons in the male heliothine moth

    Directory of Open Access Journals (Sweden)

    Xin-Cheng eZhao

    2014-10-01

    Full Text Available In the primary olfactory centre of the moth brain, for example, a few enlarged glomeruli situated dorsally, at the entrance of the antennal nerve, are devoted to information about female-produced substances whereas a set of more numerous ordinary glomeruli receives input about general odorants. Heliothine moths are particularly suitable for studying central chemosensory mechanisms not only because of their anatomically separated systems for plant odours and pheromones but also due to their use of female-produced substances in communication across the species. Thus, the male-specific system of heliothine moths includes two sub arrangements, one ensuring attraction and mating behavior by carrying information about pheromones released by conspecifics, and the other reproductive isolation via signal information emitted from heterospecifics. Based on previous tracing experiments, a general chemotopic organization of the male-specific glomeruli has been demonstrated in a number of heliothine species. As compared to the well explored organization of the moth antennal lobe, demonstrating a non-overlapping representation of the biologically relevant stimuli, less is known about the neural arrangement residing at the following synaptic level, i.e. the mushroom body calyces and the lateral horn. In the study presented here, we have labelled physiologically characterized antennal-lobe projection neurons in males of the two heliothine species, Heliothis virescens and Helicoverpa assulta, for the purpose of mapping their target regions in the protocerebrum. In order to compare the representation of plant odours, pheromones, and interspecific signals in the higher brain regions of each species, we have created standard brain atlases and registered three-dimensional models of distinct uniglomerular projection neuron types into the relevant atlas.

  14. Integration of stress and leptin signaling by CART producing neurons in the rodent midbrain centrally projecting Edinger-Westphal nucleus

    NARCIS (Netherlands)

    Xu, L.; Janssen, D.; Knaap, N.J.F. van der; Roubos, E.W.; Leshan, R.L.; Myers, M.G.; Gaszner, B.; Kozicz, L.T.

    2014-01-01

    Leptin targets the brain to regulate feeding, neuroendocrine function and metabolism. The leptin receptor is present in hypothalamic centers controlling energy metabolism as well as in the centrally projecting Edinger-Westphal nucleus (EWcp), a region implicated in the stress response and in various

  15. Comparison of the expression of c-fos, nur77 and egr1 mRNAs in rat hypothalamic magnocellular neurons and their putative afferent projection neurons: cell- and stimulus-specific induction.

    Science.gov (United States)

    Luckman, S M

    1997-11-01

    Hypothalamic magnocellular neurons and their afferent inputs provide a model system in which to study the regulation of inducible transcription factors in the brain in vivo. Osmotic stimulation of rats produced by graded infusions of saline at different tonicities was found to lead to the induction of c-fos, nur77 and egr1 mRNAs in magnocellular neurons, as well as in putative afferent neurons, including those in structures of the forebrain (subfornical organ, median preoptic nucleus and organum vasculosum of the lamina terminalis). The results presented suggest that stronger levels of osmotic stimulation recruit additional afferents from the forebrain and brainstem that can act on magnocellular neurons via alternative receptors. A single systemic injection of the peptide cholecystokinin produced robust induction of c-fos and nur77 mRNAs in afferent neurons of the brainstem nucleus tractus solitarii and in magnocellular neurons. Despite the fact that these two neuronal populations are clearly electrically active, egr1 was not induced by this stimulus, providing examples of cell- and stimulus-specificity of its expression. This study re-emphasizes that the induction of transcription factors is largely dependent on the nature of the afferent input and does not correlate necessarily to the electrical activity of the neuron.

  16. Kölliker–Fuse neurons send collateral projections to multiple hypoxia-activated and nonactivated structures in rat brainstem and spinal cord.

    Science.gov (United States)

    Song, Gang; Wang, Hui; Xu, Hui; Poon, Chi-Sang

    2012-10-01

    The Kölliker–Fuse nucleus (KFN) in dorsolateral pons has been implicated in many physiological functions via its extensive efferent connections. Here, we combine iontophoretic anterograde tracing with posthypoxia c-Fos immunohistology to map KFN axonal terminations among hypoxia-activated/nonactivated brain stem and spinal structures in rats. Using a set of stringent inclusion/exclusion criteria to align visualized axons across multiple coronal brain sections, we were able to unequivocally trace axonal trajectories over a long rostrocaudal distance perpendicular to the coronal plane. Structures that were both richly innervated by KFN axonal projections and immunopositive to c-Fos included KFN (contralateral side), ventrolateral pontine area, areas ventral to rostral compact/subcompact ambiguus nucleus, caudal (lateral) ambiguus nucleus, nucleus retroambiguus, and commissural–medial subdivisions of solitary tract nucleus. The intertrigeminal nucleus, facial and hypoglossal nuclei, retrotrapezoid nucleus, parafacial region and spinal cord segment 5 were also richly innervated by KFN axonal projections but were only weakly (or not) immunopositive to c-Fos. The most striking finding was that some descending axons from KFN sent out branches to innervate multiple (up to seven) pontomedullary target structures including facial nucleus, trigeminal sensory nucleus, and various parts of ambiguus nucleus and its surrounding areas. The extensive axonal fan-out from single KFN neurons to multiple brainstem and spinal cord structures("one-to-many relationship"’) provides anatomical evidence that KFN may coordinate diverse physiological functions including hypoxic and hypercapnic respiratory responses, respiratory pattern generation and motor output,diving reflex, modulation of upper airways patency,coughing and vomiting abdominal expiratory reflex, as well as cardiovascular regulation and cardiorespiratory coupling.

  17. Brainstem neurons projecting to the rostral ventral respiratory group (VRG) in the medulla oblongata of the rat revealed by co-application of NMDA and biocytin

    DEFF Research Database (Denmark)

    Zheng, Y; Riche, D; Rekling, J C

    1998-01-01

    Groups of neurons in the medulla and pons are essential for the rhythm generation, pattern formation and modulation of respiration. The rostral Ventral Respiratory Group (rVRG) is thought to be a crucial area for rhythm generation. Here we co-applied biocytin and NMDA in the rVRG to label...... retrogradely brainstem neurons reciprocally connected to a population of inspiratory neurons in the rat rVRG. The procedure excited rVRG neurons in multi-unit recordings and led to a Golgi-like labelling of distant cells presumably excited by efferents from the rVRG. Injection of biocytin without NMDA did...

  18. Distinct Corticostriatal GABAergic Neurons Modulate Striatal Output Neurons and Motor Activity

    Directory of Open Access Journals (Sweden)

    Sarah Melzer

    2017-05-01

    Full Text Available The motor cortico-basal ganglion loop is critical for motor planning, execution, and learning. Balanced excitation and inhibition in this loop is crucial for proper motor output. Excitatory neurons have been thought to be the only source of motor cortical input to the striatum. Here, we identify long-range projecting GABAergic neurons in the primary (M1 and secondary (M2 motor cortex that target the dorsal striatum. This population of projecting GABAergic neurons comprises both somatostatin-positive (SOM+ and parvalbumin-positive (PV+ neurons that target direct and indirect pathway striatal output neurons as well as cholinergic interneurons differentially. Notably, optogenetic stimulation of M1 PV+ and M2 SOM+ projecting neurons reduced locomotion, whereas stimulation of M1 SOM+ projecting neurons enhanced locomotion. Thus, corticostriatal GABAergic projections modulate striatal output and motor activity.

  19. Noisy Neurons

    Indian Academy of Sciences (India)

    IAS Admin

    Nerves are fibres that conduct electrical signals and hence pass on information from and to the brain. Nerves are made of nerve cells called neurons (Figure 1). Instructions in our body are sent via electrical signals that present themselves as variations in the potential across neuronal membranes. These potential differences ...

  20. Motor Neurons

    DEFF Research Database (Denmark)

    Hounsgaard, Jorn

    2017-01-01

    Motor neurons translate synaptic input from widely distributed premotor networks into patterns of action potentials that orchestrate motor unit force and motor behavior. Intercalated between the CNS and muscles, motor neurons add to and adjust the final motor command. The identity and functional...

  1. Neurons derived from human embryonic stem cells extend long–distance axonal projections through growth along host white matter tracts after intra-cerebral transplantation.

    Directory of Open Access Journals (Sweden)

    Mark eDenham

    2012-03-01

    Full Text Available Human pluripotent stem cells have the capacity for directed differentiation into a wide variety of neuronal subtypes that may be useful for brain repair. While a substantial body of research has lead to a detailed understanding of the ability of neurons in fetal tissue grafts to structurally and functionally integrate after intra-cerebral transplantation, we are only just beginning to understand the in vivo properties of neurons derived from human pluripotent stem cells. Here we have utilised the human embryonic stem (ES cell line Envy, which constitutively expresses green fluorescent protein (GFP, in order to study the in vivo properties of neurons derived from human ES cells. Rapid and efficient neural induction, followed by differentiation as neurospheres resulted in a GFP+ neural precursor population with traits of neuroepithelial and dorsal forebrain identity. Ten weeks after transplantation into neonatal rats, GFP+ fibre patterns revealed extensive axonal growth in the host brain, particularly along host white matter tracts, although innervation of adjacent nuclei was limited. The grafts were composed of a mix of neural cell types including differentiated neurons and glia, but also dividing neural progenitors and migrating neuroblasts, indicating an incomplete state of maturation at 10 weeks. This was reflected in patch-clamp recordings showing stereotypical properties appropriate for mature functional neurons, including the ability to generate action potentials, as well profiles consistent for more immature neurons. These findings illustrate the intrinsic capacity for neurons derived from human ES cells to integrate at a structural and functional level following transplantation.

  2. Parvalbumin+ Neurons and Npas1+ Neurons Are Distinct Neuron Classes in the Mouse External Globus Pallidus

    Science.gov (United States)

    Hernández, Vivian M.; Hegeman, Daniel J.; Cui, Qiaoling; Kelver, Daniel A.; Fiske, Michael P.; Glajch, Kelly E.; Pitt, Jason E.; Huang, Tina Y.; Justice, Nicholas J.

    2015-01-01

    Compelling evidence suggests that pathological activity of the external globus pallidus (GPe), a nucleus in the basal ganglia, contributes to the motor symptoms of a variety of movement disorders such as Parkinson's disease. Recent studies have challenged the idea that the GPe comprises a single, homogenous population of neurons that serves as a simple relay in the indirect pathway. However, we still lack a full understanding of the diversity of the neurons that make up the GPe. Specifically, a more precise classification scheme is needed to better describe the fundamental biology and function of different GPe neuron classes. To this end, we generated a novel multicistronic BAC (bacterial artificial chromosome) transgenic mouse line under the regulatory elements of the Npas1 gene. Using a combinatorial transgenic and immunohistochemical approach, we discovered that parvalbumin-expressing neurons and Npas1-expressing neurons in the GPe represent two nonoverlapping cell classes, amounting to 55% and 27% of the total GPe neuron population, respectively. These two genetically identified cell classes projected primarily to the subthalamic nucleus and to the striatum, respectively. Additionally, parvalbumin-expressing neurons and Npas1-expressing neurons were distinct in their autonomous and driven firing characteristics, their expression of intrinsic ion conductances, and their responsiveness to chronic 6-hydroxydopamine lesion. In summary, our data argue that parvalbumin-expressing neurons and Npas1-expressing neurons are two distinct functional classes of GPe neurons. This work revises our understanding of the GPe, and provides the foundation for future studies of its function and dysfunction. SIGNIFICANCE STATEMENT Until recently, the heterogeneity of the constituent neurons within the external globus pallidus (GPe) was not fully appreciated. We addressed this knowledge gap by discovering two principal GPe neuron classes, which were identified by their nonoverlapping

  3. Eight different types of dopaminergic neurons innervate the Drosophila mushroom body neuropil: anatomical and physiological heterogeneity

    OpenAIRE

    Zhengmei Mao; Davis, Ronald L.

    2009-01-01

    We examined tyrosine hydroxylase (TH-GAL4) expression and anti-TH immunoreactivity in the Drosophila protocerebrum and characterized single cell clones of the TH-GAL4 neurons. Eight clusters of putative dopaminergic neurons were characterized. Neurons in three of the clusters project to the mushroom body neuropil: PAM neurons project to the medial portion of the horizontal lobes; PPL1 neurons project to the vertical lobes, the junction area, the heel and distal peduncle; and PPL2ab neurons pr...

  4. Eight Different Types of Dopaminergic Neurons Innervate the Drosophila Mushroom Body Neuropil: Anatomical and Physiological Heterogeneity

    OpenAIRE

    Mao, Zhengmei; Davis, Ronald L.

    2009-01-01

    We examined tyrosine hydroxylase (TH-GAL4) expression and anti-TH immunoreactivity in the Drosophila protocerebrum and characterized single cell clones of the TH-GAL4 neurons. Eight clusters of putative dopaminergic neurons were characterized. Neurons in three of the clusters project to the mushroom body neuropil: PAM neurons project to the medial portion of the horizontal lobes; PPL1 neurons project to the vertical lobes, the junction area, the heel and distal peduncle; and PPL2ab neurons pr...

  5. Inhibitory Interneurons That Express GFP in the PrP-GFP Mouse Spinal Cord Are Morphologically Heterogeneous, Innervated by Several Classes of Primary Afferent and Include Lamina I Projection Neurons among Their Postsynaptic Targets

    Science.gov (United States)

    Ganley, Robert P.; Iwagaki, Noboru; del Rio, Patricia; Baseer, Najma; Dickie, Allen C.; Boyle, Kieran A.; Polgár, Erika; Watanabe, Masahiko; Abraira, Victoria E; Zimmerman, Amanda

    2015-01-01

    The superficial dorsal horn of the spinal cord contains numerous inhibitory interneurons, which regulate the transmission of information perceived as touch, pain, or itch. Despite the importance of these cells, our understanding of their roles in the neuronal circuitry is limited by the difficulty in identifying functional populations. One group that has been identified and characterized consists of cells in the mouse that express green fluorescent protein (GFP) under control of the prion protein (PrP) promoter. Previous reports suggested that PrP-GFP cells belonged to a single morphological class (central cells), received inputs exclusively from unmyelinated primary afferents, and had axons that remained in lamina II. However, we recently reported that the PrP-GFP cells expressed neuronal nitric oxide synthase (nNOS) and/or galanin, and it has been shown that nNOS-expressing cells are more diverse in their morphology and synaptic connections. We therefore used a combined electrophysiological, pharmacological, and anatomical approach to reexamine the PrP-GFP cells. We provide evidence that they are morphologically diverse (corresponding to “unclassified” cells) and receive synaptic input from a variety of primary afferents, with convergence onto individual cells. We also show that their axons project into adjacent laminae and that they target putative projection neurons in lamina I. This indicates that the neuronal circuitry involving PrP-GFP cells is more complex than previously recognized, and suggests that they are likely to have several distinct roles in regulating the flow of somatosensory information through the dorsal horn. PMID:25972186

  6. Noisy Neurons

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 20; Issue 1. Noisy Neurons: Hodgkin-Huxley Model and Stochastic Variants. Shurti Paranjape. General Article Volume 20 Issue 1 January 2015 pp 34-43. Fulltext. Click here to view fulltext PDF. Permanent link:

  7. Glutamatergic Nonpyramidal Neurons From Neocortical Layer VI and Their Comparison With Pyramidal and Spiny Stellate Neurons

    Science.gov (United States)

    Andjelic, Sofija; Gallopin, Thierry; Cauli, Bruno; Hill, Elisa L.; Roux, Lisa; Badr, Sammy; Hu, Emilie; Tamás, Gábor; Lambolez, Bertrand

    2009-01-01

    The deeper part of neocortical layer VI is dominated by nonpyramidal neurons, which lack a prominent vertically ascending dendrite and predominantly establish corticocortical connections. These neurons were studied in rat neocortical slices using patch-clamp, single-cell reverse transcription–polymerase chain reaction, and biocytin labeling. The majority of these neurons expressed the vesicular glutamate transporter but not glutamic acid decarboxylase, suggesting that a high proportion of layer VI nonpyramidal neurons are glutamatergic. Indeed, they exhibited numerous dendritic spines and established asymmetrical synapses. Our sample of glutamatergic nonpyramidal neurons displayed a wide variety of somatodendritic morphologies and a subset of these cells expressed the Nurr1 mRNA, a marker for ipsilateral, but not commissural corticocortical projection neurons in layer VI. Comparison with spiny stellate and pyramidal neurons from other layers showed that glutamatergic neurons consistently exhibited a low occurrence of GABAergic interneuron markers and regular spiking firing patterns. Analysis of electrophysiological diversity using unsupervised clustering disclosed three groups of cells. Layer V pyramidal neurons were segregated into a first group, whereas a second group consisted of a subpopulation of layer VI neurons exhibiting tonic firing. A third heterogeneous cluster comprised spiny stellate, layer II/III pyramidal, and layer VI neurons exhibiting adaptive firing. The segregation of layer VI neurons in two different clusters did not correlate either with their somatodendritic morphologies or with Nurr1 expression. Our results suggest that electrophysiological similarities between neocortical glutamatergic neurons extend beyond layer positioning, somatodendritic morphology, and projection specificity. PMID:19052106

  8. The Influence of Antral Ulcers on Intramural Gastric Nerve Projections Supplying the Pyloric Sphincter in the Pig (Sus scrofa domestica-Neuronal Tracing Studies.

    Directory of Open Access Journals (Sweden)

    Michal Zalecki

    Full Text Available Gastric ulcerations in the region of antrum pylori represent a serious medical problem in humans and animals. Such localization of ulcers can influence the intrinsic descending nerve supply to the pyloric sphincter. The pyloric function is precisely regulated by intrinsic and extrinsic nerves. Impaired neural regulation could result in pyloric sphincter dysfunction and gastric emptying malfunction. The aim of the study was to determine the effect of gastric antral ulcerations on the density and distribution of intramural gastric descending neurons supplying the pyloric sphincter in pigs.The experiment was performed on 2 groups of pigs: healthy gilts (n=6 and gilts with experimentally induced peptic ulcers in the region of antrum pylori (n=6. Gastric neurons supplying pyloric sphincter were labeled using the retrograde neuronal tracing technique (20μl of Fast Blue tracer injected into the pyloric sphincter muscle. After a week survival period the animals were sacrificed and the stomachs were collected. Then, the stomach wall was cross-cut into 0.5cm thick sections taken in specified intervals (section I - 1.5cm; section II - 3.5cm; section III - 5.5cm; section IV - 7.5cm starting from the sphincter. Consecutive microscopic slices prepared from each section were analyzed under fluorescent microscope to count traced neurons. Obtained data were statistically analyzed. The total number of FB-positive perikarya observed within all studied sections significantly decreased from 903.3 ± 130.7 in control to 243.8 ± 67.3 in experimental animals. In healthy pigs 76.1 ± 6.7% of labeled neurons were observed within the section I, 23.53 ± 6.5% in section II and only occasional cells in section III. In experimental animals, as many as 93.8 ± 2.1% of labeled cells were observed within the section I and only 6.2 ± 2.2% in section II, while section III was devoid of such neurons. There were no traced perikarya in section IV observed in both groups of pigs

  9. Dcc regulates asymmetric outgrowth of forebrain neurons in zebrafish.

    Directory of Open Access Journals (Sweden)

    Jingxia Gao

    Full Text Available The guidance receptor DCC (deleted in colorectal cancer ortholog UNC-40 regulates neuronal asymmetry development in Caenorhabditis elegans, but it is not known whether DCC plays a role in the specification of neuronal polarity in vertebrates. To examine the roles of DCC in neuronal asymmetry regulation in vertebrates, we studied zebrafish anterior dorsal telencephalon (ADt neuronal axons. We generated transgenic zebrafish animals expressing the photo-convertible fluorescent protein Kaede in ADt neurons and then photo-converted Kaede to label specifically the ADt neuron axons. We found that ADt axons normally project ventrally. Knock down of Dcc function by injecting antisense morpholino oligonucleotides caused the ADt neurons to project axons dorsally. To examine the axon projection pattern of individual ADt neurons, we labeled single ADt neurons using a forebrain-specific promoter to drive fluorescent protein expression. We found that individual ADt neurons projected axons dorsally or formed multiple processes after morpholino knock down of Dcc function. We further found that knock down of the Dcc ligand, Netrin1, also caused ADt neurons to project axons dorsally. Knockdown of Neogenin1, a guidance receptor closely related to Dcc, enhanced the formation of aberrant dorsal axons in embryos injected with Dcc morpholino. These experiments provide the first evidence that Dcc regulates polarized axon initiation and asymmetric outgrowth of forebrain neurons in vertebrates.

  10. Targeting Corticotropin-Releasing Factor Projections from the Oval Nucleus of the Bed Nucleus of the Stria Terminalis Using Cell-Type Specific Neuronal Tracing Studies in Mouse and Rat Brain.

    Science.gov (United States)

    Dabrowska, J; Martinon, D; Moaddab, M; Rainnie, D G

    2016-12-01

    The bed nucleus of the stria terminalis (BNST) is known to play a critical role in mediating the behavioural and autonomic responses to stressors. The oval nucleus of the BNST (BNSTov) contains cell bodies that synthesise the stress hormone corticotropin-releasing factor (CRF). Although afferent fibres originating from the BNSTov have been shown to innervate several key structures of the neuroendocrine and central autonomic system, the question remains as to whether some of these fibres are CRF-positive. To directly address this question, we injected a 'floxed' anterograde tracer (rAAV5/EF1a-DIO-mCherry) into the BNSTov of CRFp3.0CreGFP transgenic mice, which express a green fluorescent protein (GFP) under the control of the CRF promoter. Serial sections were then analysed for the presence of double-labelled fibres in potential projection sites. To determine whether CRF neurons in the rat BNSTov send comparable projections, we infused rat BNSTov with an adeno-associated viral vector (AAV) in which the human synapsin promoter drives enhanced GFP expression. We then used CRF immunoreactivity to examine double-labelled fluorescent fibres and axon terminals in projection sites from brain sections of the AAV-infused rats. We have observed several terminal fields in the mouse and rat brain with double-labelled fibres in the Dorsal raphe nucleus (DRD), the paraventricular nucleus of the hypothalamus and, to a lesser extent, in the ventral tegmental area. We found double-labelled terminal boutons in the nucleus accumbens shell, prelimbic cortex and posterior basolateral nucleus of the amygdala. The most intense double-labelling was found in midbrain, including substantia nigra pars compacta, red nucleus, periaqueductal grey and pontine nuclei, as well as DRD. The results of the present study indicate that CRF neurons are the output neurons of the BNSTov and they send projections not only to the centres of neuroendocrine and autonomic regulation, but also regions modulating

  11. Changes in Somatostatin-Like Immunoreactivity in the Sympathetic Neurons Projecting to the Prepyloric Area of the Porcine Stomach Induced by Selected Pathological Conditions

    Directory of Open Access Journals (Sweden)

    Katarzyna Palus

    2017-01-01

    Full Text Available The aim of the present study was to define changes in the expression of somatostatin (SOM in the sympathetic perikarya innervating the porcine stomach prepyloric area during acetylsalicylic-acid-induced gastritis (ASA and experimentally induced hyperacidity (HCL and following partial stomach resection (RES. On day 1, the stomachs were injected with neuronal retrograde tracer Fast Blue (FB. Animals in the ASA group were given acetylsalicylic acid orally for 21 days. On the 22nd day after FB injection, partial stomach resection was performed in RES animals. On day 23, HCL animals were intragastrically given 5 ml/kg of body weight of a 0.25 M aqueous solution of hydrochloric acid. On day 28, all pigs were euthanized. Then, 14-μm thick cryostat sections of the coeliac-superior mesenteric ganglion (CSMG complexes were processed for routine double-labelling immunofluorescence. All pathological conditions studied resulted in upregulation of SOM-like (SOM-LI immunoreactivity (from 14.97±1.57% in control group to 33.72±4.39% in the ASA group, to 39.02±3.65% in the RES group, and to 29.63±0.85% in the HCL group. The present studies showed that altered expression of SOM occurs in sympathetic neurons supplying the prepyloric area of the porcine stomach during adaptation to various pathological insults.

  12. Von Economo neurons: A review of the anatomy and functions ...

    African Journals Online (AJOL)

    Von Economo neurons (VENs) are large bipolar neurons found in the anterior cingulate, fronto‑insular, and dorsolateral prefrontal cortices of great apes and the humans. VENs are defined by their thin, elongated cell body, and long dendrites projecting from the apical and basal ends. These neurons are mostly present in ...

  13. Replaceable neurons and neurodegenerative disease share depressed UCHL1 levels

    OpenAIRE

    Lombardino, Anthony J.; Li, Xiao-Ching; Hertel, Moritz; Nottebohm, Fernando

    2005-01-01

    Might there be systematic differences in gene expression between neurons that undergo spontaneous replacement in the adult brain and those that do not? We first explored this possibility in the high vocal center (HVC) of male zebra finches by using a combination of neuronal tracers, laser capture microdissection, and RNA profiling. HVC has two kinds of projection neurons, one of which continues to be produced and replaced in adulthood. HVC neurons of the replaceable kind showed a consistent a...

  14. In cat four times as many lamina I neurons project to the parabrachial nuclei and twice as many to the periaqueductal gray as to the thalamus

    NARCIS (Netherlands)

    Klop, EM; Mouton, LJ; Hulsebosch, R; Boers, J; Holstege, G

    2005-01-01

    The spinothalamic tract, and especially its fibers originating in lamina 1, is the best known pathway for transmission of nociceptive information. On the other hand, different studies have suggested that more lamina I cells project to the parabrachial nuclei (PBN) and periaqueductal gray (PAG) than

  15. Sensory neuron-derived eph regulates glomerular arbors and modulatory function of a central serotonergic neuron.

    Directory of Open Access Journals (Sweden)

    Ajeet Pratap Singh

    2013-04-01

    Full Text Available Olfactory sensory neurons connect to the antennal lobe of the fly to create the primary units for processing odor cues, the glomeruli. Unique amongst antennal-lobe neurons is an identified wide-field serotonergic neuron, the contralaterally-projecting, serotonin-immunoreactive deutocerebral neuron (CSDn. The CSDn spreads its termini all over the contralateral antennal lobe, suggesting a diffuse neuromodulatory role. A closer examination, however, reveals a restricted pattern of the CSDn arborization in some glomeruli. We show that sensory neuron-derived Eph interacts with Ephrin in the CSDn, to regulate these arborizations. Behavioural analysis of animals with altered Eph-ephrin signaling and with consequent arborization defects suggests that neuromodulation requires local glomerular-specific patterning of the CSDn termini. Our results show the importance of developmental regulation of terminal arborization of even the diffuse modulatory neurons to allow them to route sensory-inputs according to the behavioural contexts.

  16. Physiological functions of glucose-inhibited neurones.

    Science.gov (United States)

    Burdakov, D; González, J A

    2009-01-01

    Glucose-inhibited neurones are an integral part of neurocircuits regulating cognitive arousal, body weight and vital adaptive behaviours. Their firing is directly suppressed by extracellular glucose through poorly understood signalling cascades culminating in opening of post-synaptic K(+) or possibly Cl(-) channels. In mammalian brains, two groups of glucose-inhibited neurones are best understood at present: neurones of the hypothalamic arcuate nucleus (ARC) that express peptide transmitters NPY and agouti-related peptide (AgRP) and neurones of the lateral hypothalamus (LH) that express peptide transmitters orexins/hypocretins. The activity of ARC NPY/AgRP neurones promotes food intake and suppresses energy expenditure, and their destruction causes a severe reduction in food intake and body weight. The physiological actions of ARC NPY/AgRP cells are mediated by projections to numerous hypothalamic areas, as well as extrahypothalamic sites such as the thalamus and ventral tegmental area. Orexin/hypocretin neurones of the LH are critical for normal wakefulness, energy expenditure and reward-seeking, and their destruction causes narcolepsy. Orexin actions are mediated by highly widespread central projections to virtually all brain areas except the cerebellum, including monosynaptic innervation of the cerebral cortex and autonomic pre-ganglionic neurones. There, orexins act on two specific G-protein-coupled receptors generally linked to neuronal excitation. In addition to sensing physiological changes in sugar levels, the firing of both NPY/AgRP and orexin neurones is inhibited by the 'satiety' hormone leptin and stimulated by the 'hunger' hormone ghrelin. Glucose-inhibited neurones are thus well placed to coordinate diverse brain states and behaviours based on energy levels.

  17. Statistical Mechanics Characterization of Neuronal Mosaics

    CERN Document Server

    Costa, Luciano da Fontoura; de Lima, Silene Maria Araujo

    2005-01-01

    The spatial distribution of neuronal cells is an important requirement for achieving proper neuronal function in several parts of the nervous system of most animals. For instance, specific distribution of photoreceptors and related neuronal cells, particularly the ganglion cells, in mammal's retina is required in order to properly sample the projected scene. This work presents how two concepts from the areas of statistical mechanics and complex systems, namely the \\emph{lacunarity} and the \\emph{multiscale entropy} (i.e. the entropy calculated over progressively diffused representations of the cell mosaic), have allowed effective characterization of the spatial distribution of retinal cells.

  18. Juvenil neuronal ceroid lipofuscinosis

    DEFF Research Database (Denmark)

    Ostergaard, J R; Hertz, Jens Michael

    1998-01-01

    Neuronal ceroid-lipofuscinosis is a group of neurodegenerative diseases which are characterized by an abnormal accumulation of lipopigment in neuronal and extraneuronal cells. The diseases can be differentiated into several subgroups according to age of onset, the clinical picture...

  19. Bidirectional Anticipation of Future Osmotic Challenges by Vasopressin Neurons.

    Science.gov (United States)

    Mandelblat-Cerf, Yael; Kim, Angela; Burgess, Christian R; Subramanian, Siva; Tannous, Bakhos A; Lowell, Bradford B; Andermann, Mark L

    2017-01-04

    Ingestion of water and food are major hypo- and hyperosmotic challenges. To protect the body from osmotic stress, posterior pituitary-projecting, vasopressin-secreting neurons (VPpp neurons) counter osmotic perturbations by altering their release of vasopressin, which controls renal water excretion. Vasopressin levels begin to fall within minutes of water consumption, even prior to changes in blood osmolality. To ascertain the precise temporal dynamics by which water or food ingestion affect VPpp neuron activity, we directly recorded the spiking and calcium activity of genetically defined VPpp neurons. In states of elevated osmolality, water availability rapidly decreased VPpp neuron activity within seconds, beginning prior to water ingestion, upon presentation of water-predicting cues. In contrast, food availability following food restriction rapidly increased VPpp neuron activity within seconds, but only following feeding onset. These rapid and distinct changes in activity during drinking and feeding suggest diverse neural mechanisms underlying anticipatory regulation of VPpp neurons. Published by Elsevier Inc.

  20. Vagal Sensory Neuron Subtypes that Differentially Control Breathing

    OpenAIRE

    Chang, Rui B.; Strochlic, David E.; Williams, Erika K.; Umans, Benjamin D.; Liberles, Stephen D.

    2015-01-01

    Breathing is essential for survival and under precise neural control. The vagus nerve is a major conduit between lung and brain required for normal respiration. Here, we identify two populations of mouse vagus nerve afferents (P2ry1, Npy2r), each a few hundred neurons, that exert powerful and opposing effects on breathing. Genetically guided anatomical mapping revealed that these neurons densely innervate the lung and send long-range projections to different brainstem targets. Npy2r neurons a...

  1. Responses of MST neurons to plaid stimuli.

    Science.gov (United States)

    Khawaja, Farhan A; Liu, Liu D; Pack, Christopher C

    2013-07-01

    The estimation of motion information from retinal input is a fundamental function of the primate dorsal visual pathway. Previous work has shown that this function involves multiple cortical areas, with each area integrating information from its predecessors. Compared with neurons in the primary visual cortex (V1), neurons in the middle temporal (MT) area more faithfully represent the velocity of plaid stimuli, and the observation of this pattern selectivity has led to two-stage models in which MT neurons integrate the outputs of component-selective V1 neurons. Motion integration in these models is generally complemented by motion opponency, which refines velocity selectivity. Area MT projects to a third stage of motion processing, the medial superior temporal (MST) area, but surprisingly little is known about MST responses to plaid stimuli. Here we show that increased pattern selectivity in MST is associated with greater prevalence of the mechanisms implemented by two-stage MT models: Compared with MT neurons, MST neurons integrate motion components to a greater degree and exhibit evidence of stronger motion opponency. Moreover, when tested with more challenging unikinetic plaid stimuli, an appreciable percentage of MST neurons are pattern selective, while such selectivity is rare in MT. Surprisingly, increased motion integration is found in MST even for transparent plaid stimuli, which are not typically integrated perceptually. Thus the relationship between MST and MT is qualitatively similar to that between MT and V1, as repeated application of basic motion mechanisms leads to novel selectivities at each stage along the pathway.

  2. A Neuron-Based Model of Sleep-Wake Cycles

    Science.gov (United States)

    Postnova, Svetlana; Peters, Achim; Braun, Hans

    2008-03-01

    In recent years it was discovered that a neuropeptide orexin/hypocretin plays a main role in sleep processes. This peptide is produced by the neurons in the lateral hypothalamus, which project to almost all brain areas. We present a computational model of sleep-wake cycles, which is based on the Hodgkin-Huxley type neurons and considers reciprocal glutaminergic projections between the lateral hypothalamus and the prefrontal cortex. Orexin is released as a neuromodulator and is required to keep the neurons firing, which corresponds to the wake state. When orexin is depleted the neurons are getting silent as observed in the sleep state. They can be reactivated by the circadian signal from the suprachiasmatic nucleus and/or external stimuli (alarm clock). Orexin projections to the thalamocortical neurons also can account for their transition from tonic firing activity during wakefulness to synchronized burst discharges during sleep.

  3. Glutamate and GABA in vestibulo-sympathetic pathway neurons

    Directory of Open Access Journals (Sweden)

    Gay R Holstein

    2016-02-01

    Full Text Available The vestibulo-sympathetic reflex actively modulates blood pressure during changes in posture. This reflex allows humans to stand up and quadrupeds to rear or climb without a precipitous decline in cerebral perfusion. The vestibulo-sympathetic reflex pathway conveys signals from the vestibular end organs to the caudal vestibular nuclei. These cells, in turn, project to pre-sympathetic neurons in the rostral and caudal ventrolateral medulla (RVLM and CVLM, respectively. The present study assessed glutamate- and GABA-related immunofluorescence associated with central vestibular neurons of the vestibulo-sympathetic reflex pathway in rats. Retrograde FluoroGold tract tracing was used to label vestibular neurons with projections to RVLM or CVLM, and sinusoidal galvanic vestibular stimulation was employed to activate these pathways. Central vestibular neurons of the vestibulo-sympathetic reflex were identified by co-localization of FluoroGold and cFos protein, which accumulates in some vestibular neurons following galvanic stimulation. Triple-label immunofluorescence was used to co-localize glutamate- or GABA- labeling in the identified vestibulo-sympathetic reflex pathway neurons. Most activated projection neurons displayed intense glutamate immunofluorescence, suggestive of glutamatergic neurotransmission. To support this, anterograde tracer was injected into the caudal vestibular nuclei. Vestibular axons and terminals in RVLM and CVLM co-localized the anterograde tracer and vesicular glutamate transporter-2 signals. Other retrogradely-labeled cFos-positive neurons displayed intense GABA immunofluorescence. Vestibulo-sympathetic reflex pathway neurons of both phenotypes were present in the caudal medial and spinal vestibular nuclei, and projected to both RVLM and CVLM. As a group, however, triple-labeled vestibular cells with intense glutamate immunofluorescence were located more rostrally in the vestibular nuclei than the GABAergic neurons. Only the

  4. Control of abdominal muscles by brain stem respiratory neurons in the cat

    Science.gov (United States)

    Miller, Alan D.; Ezure, Kazuhisa; Suzuki, Ichiro

    1985-01-01

    The nature of the control of abdominal muscles by the brain stem respiratory neurons was investigated in decerebrate unanesthetized cats. First, it was determined which of the brain stem respiratory neurons project to the lumbar cord (from which the abdominal muscles receive part of their innervation), by stimulating the neurons monopolarly. In a second part of the study, it was determined if lumbar-projecting respiratory neurons make monosynaptic connections with abdominal motoneurons; in these experiments, discriminate spontaneous spikes of antidromically acivated expiratory (E) neurons were used to trigger activity from both L1 and L2 nerves. A large projection was observed from E neurons in the caudal ventral respiratory group to the contralateral upper lumber cord. However, cross-correlation experiments found only two (out of 47 neuron pairs tested) strong monosynaptic connections between brain stem neurons and abdominal motoneurons.

  5. Biocytin: a neuronal tracer compatible with rapid decalcification procedures.

    Science.gov (United States)

    Wirsig-Wiechmann, C R

    1994-03-01

    The compatibility of neuronal tract-tracing and decalcification procedures was examined in salamander nasal chemosensory systems. Biocytin, but not horseradish peroxidase, retained its labeling capacity following rapid decalcification of the cranial bone. The combination of biocytin tract-tracing and decalcification procedures allows the visualization of labeled neurons and/or their projections within bony regions of intact specimens.

  6. Functional dissociation in sweet taste receptor neurons between and within taste organs of Drosophila.

    Science.gov (United States)

    Thoma, Vladimiros; Knapek, Stephan; Arai, Shogo; Hartl, Marion; Kohsaka, Hiroshi; Sirigrivatanawong, Pudith; Abe, Ayako; Hashimoto, Koichi; Tanimoto, Hiromu

    2016-02-19

    Finding food sources is essential for survival. Insects detect nutrients with external taste receptor neurons. Drosophila possesses multiple taste organs that are distributed throughout its body. However, the role of different taste organs in feeding remains poorly understood. By blocking subsets of sweet taste receptor neurons, we show that receptor neurons in the legs are required for immediate sugar choice. Furthermore, we identify two anatomically distinct classes of sweet taste receptor neurons in the leg. The axonal projections of one class terminate in the thoracic ganglia, whereas the other projects directly to the brain. These two classes are functionally distinct: the brain-projecting neurons are involved in feeding initiation, whereas the thoracic ganglia-projecting neurons play a role in sugar-dependent suppression of locomotion. Distinct receptor neurons for the same taste quality may coordinate early appetitive responses, taking advantage of the legs as the first appendages to contact food.

  7. Neuronal Rac1 is required for learning-evoked neurogenesis

    DEFF Research Database (Denmark)

    Haditsch, Ursula; Anderson, Matthew P; Freewoman, Julia

    2013-01-01

    Hippocampus-dependent learning and memory relies on synaptic plasticity as well as network adaptations provided by the addition of adult-born neurons. We have previously shown that activity-induced intracellular signaling through the Rho family small GTPase Rac1 is necessary in forebrain projection...... neurons for normal synaptic plasticity in vivo, and here we show that selective loss of neuronal Rac1 also impairs the learning-evoked increase in neurogenesis in the adult mouse hippocampus. Earlier work has indicated that experience elevates the abundance of adult-born neurons in the hippocampus...

  8. Three-dimensional distribution of sensory stimulation-evoked neuronal activity of spinal dorsal horn neurons analyzed by in vivo calcium imaging.

    Directory of Open Access Journals (Sweden)

    Kazuhiko Nishida

    Full Text Available The spinal dorsal horn comprises heterogeneous populations of interneurons and projection neurons, which form neuronal circuits crucial for processing of primary sensory information. Although electrophysiological analyses have uncovered sensory stimulation-evoked neuronal activity of various spinal dorsal horn neurons, monitoring these activities from large ensembles of neurons is needed to obtain a comprehensive view of the spinal dorsal horn circuitry. In the present study, we established in vivo calcium imaging of multiple spinal dorsal horn neurons by using a two-photon microscope and extracted three-dimensional neuronal activity maps of these neurons in response to cutaneous sensory stimulation. For calcium imaging, a fluorescence resonance energy transfer (FRET-based calcium indicator protein, Yellow Cameleon, which is insensitive to motion artifacts of living animals was introduced into spinal dorsal horn neurons by in utero electroporation. In vivo calcium imaging following pinch, brush, and heat stimulation suggests that laminar distribution of sensory stimulation-evoked neuronal activity in the spinal dorsal horn largely corresponds to that of primary afferent inputs. In addition, cutaneous pinch stimulation elicited activities of neurons in the spinal cord at least until 2 spinal segments away from the central projection field of primary sensory neurons responsible for the stimulated skin point. These results provide a clue to understand neuronal processing of sensory information in the spinal dorsal horn.

  9. Three-dimensional distribution of sensory stimulation-evoked neuronal activity of spinal dorsal horn neurons analyzed by in vivo calcium imaging.

    Science.gov (United States)

    Nishida, Kazuhiko; Matsumura, Shinji; Taniguchi, Wataru; Uta, Daisuke; Furue, Hidemasa; Ito, Seiji

    2014-01-01

    The spinal dorsal horn comprises heterogeneous populations of interneurons and projection neurons, which form neuronal circuits crucial for processing of primary sensory information. Although electrophysiological analyses have uncovered sensory stimulation-evoked neuronal activity of various spinal dorsal horn neurons, monitoring these activities from large ensembles of neurons is needed to obtain a comprehensive view of the spinal dorsal horn circuitry. In the present study, we established in vivo calcium imaging of multiple spinal dorsal horn neurons by using a two-photon microscope and extracted three-dimensional neuronal activity maps of these neurons in response to cutaneous sensory stimulation. For calcium imaging, a fluorescence resonance energy transfer (FRET)-based calcium indicator protein, Yellow Cameleon, which is insensitive to motion artifacts of living animals was introduced into spinal dorsal horn neurons by in utero electroporation. In vivo calcium imaging following pinch, brush, and heat stimulation suggests that laminar distribution of sensory stimulation-evoked neuronal activity in the spinal dorsal horn largely corresponds to that of primary afferent inputs. In addition, cutaneous pinch stimulation elicited activities of neurons in the spinal cord at least until 2 spinal segments away from the central projection field of primary sensory neurons responsible for the stimulated skin point. These results provide a clue to understand neuronal processing of sensory information in the spinal dorsal horn.

  10. Spike-timing dynamics of neuronal groups.

    Science.gov (United States)

    Izhikevich, Eugene M; Gally, Joseph A; Edelman, Gerald M

    2004-08-01

    A neuronal network inspired by the anatomy of the cerebral cortex was simulated to study the self-organization of spiking neurons into neuronal groups. The network consisted of 100 000 reentrantly interconnected neurons exhibiting known types of cortical firing patterns, receptor kinetics, short-term plasticity and long-term spike-timing-dependent plasticity (STDP), as well as a distribution of axonal conduction delays. The dynamics of the network allowed us to study the fine temporal structure of emerging firing patterns with millisecond resolution. We found that the interplay between STDP and conduction delays gave rise to the spontaneous formation of neuronal groups--sets of strongly connected neurons capable of firing time-locked, although not necessarily synchronous, spikes. Despite the noise present in the model, such groups repeatedly generated patterns of activity with millisecond spike-timing precision. Exploration of the model allowed us to characterize various group properties, including spatial distribution, size, growth, rate of birth, lifespan, and persistence in the presence of synaptic turnover. Localized coherent input resulted in shifts of receptive and projective fields in the model similar to those observed in vivo.

  11. NEURON and Python.

    Science.gov (United States)

    Hines, Michael L; Davison, Andrew P; Muller, Eilif

    2009-01-01

    The NEURON simulation program now allows Python to be used, alone or in combination with NEURON's traditional Hoc interpreter. Adding Python to NEURON has the immediate benefit of making available a very extensive suite of analysis tools written for engineering and science. It also catalyzes NEURON software development by offering users a modern programming tool that is recognized for its flexibility and power to create and maintain complex programs. At the same time, nothing is lost because all existing models written in Hoc, including graphical user interface tools, continue to work without change and are also available within the Python context. An example of the benefits of Python availability is the use of the xml module in implementing NEURON's Import3D and CellBuild tools to read MorphML and NeuroML model specifications.

  12. Communication among neurons.

    Science.gov (United States)

    Marner, Lisbeth

    2012-04-01

    The communication among neurons is the prerequisite for the working brain. To understand the cellular, neurochemical, and structural basis of this communication, and the impacts of aging and disease on brain function, quantitative measures are necessary. This thesis evaluates several quantitative neurobiological methods with respect to possible bias and methodological issues. Stereological methods are suited for the unbiased estimation of number, length, and volumes of components of the nervous system. Stereological estimates of the total length of myelinated nerve fibers were made in white matter of post mortem brains, and the impact of aging and diseases as Schizophrenia and Alzheimer's disease were evaluated. Although stereological methods are in principle unbiased, shrinkage artifacts are difficult to account for. Positron emission tomography (PET) recordings, in conjunction with kinetic modeling, permit the quantitation of radioligand binding in brain. The novel serotonin 5-HT4 antagonist [11C]SB207145 was used as an example of the validation process for quantitative PET receptor imaging. Methods based on reference tissue as well as methods based on an arterial plasma input function were evaluated with respect to precision and accuracy. It was shown that [11C]SB207145 binding had high sensitivity to occupancy by unlabeled ligand, necessitating high specific activity in the radiosynthesis to avoid bias. The established serotonin 5-HT2A ligand [18F]altanersin was evaluated in a two-year follow-up study in elderly subjects. Application of partial volume correction of the PET data diminished the reliability of the measures, but allowed for the correct distinction between changes due to brain atrophy and receptor availability. Furthermore, a PET study of patients with Alzheimer's disease with the serotonin transporter ligand [11C]DASB showed relatively preserved serotonergic projections, despite a marked decrease in 5-HT2A receptor binding. Possible confounders are

  13. Separate groups of dopamine neurons innervate caudate head and tail encoding flexible and stable value memories

    Directory of Open Access Journals (Sweden)

    Hyoung F Kim

    2014-10-01

    Full Text Available Dopamine neurons are thought to be critical for reward value-based learning by modifying synaptic transmissions in the striatum. Yet, different regions of the striatum seem to guide different kinds of learning. Do dopamine neurons contribute to the regional differences of the striatum in learning? As a first step to answer this question, we examined whether the head and tail of the caudate nucleus of the monkey (Macaca mulatta receive inputs from the same or different dopamine neurons. We chose these caudate regions because we previously showed that caudate head neurons learn values of visual objects quickly and flexibly, whereas caudate tail neurons learn object values slowly but retain them stably. Here we confirmed the functional difference by recording single neuronal activity while the monkey performed the flexible and stable value tasks, and then injected retrograde tracers in the functional domains of caudate head and tail. The projecting dopaminergic neurons were identified using tyrosine hydroxylase immunohistochemistry. We found that two groups of dopamine neurons in the substantia nigra pars compacta project largely separately to the caudate head and tail. These groups of dopamine neurons were mostly separated topographically: head-projecting neurons were located in the rostral-ventral-medial region, while tail-projecting neurons were located in the caudal-dorsal-lateral regions of the substantia nigra. Furthermore, they showed different morphological features: tail-projecting neurons were larger and less circular than head-projecting neurons. Our data raise the possibility that different groups of dopamine neurons selectively guide learning of flexible (short-term and stable (long-term memories of object values.

  14. Single neuron computation

    CERN Document Server

    McKenna, Thomas M; Zornetzer, Steven F

    1992-01-01

    This book contains twenty-two original contributions that provide a comprehensive overview of computational approaches to understanding a single neuron structure. The focus on cellular-level processes is twofold. From a computational neuroscience perspective, a thorough understanding of the information processing performed by single neurons leads to an understanding of circuit- and systems-level activity. From the standpoint of artificial neural networks (ANNs), a single real neuron is as complex an operational unit as an entire ANN, and formalizing the complex computations performed by real n

  15. Nicotinic activation of laterodorsal tegmental neurons

    DEFF Research Database (Denmark)

    Ishibashi, Masaru; Leonard, Christopher S; Kohlmeier, Kristi A

    2009-01-01

    ). However, recent data suggest that neurons of the laterodorsal tegmental (LDT) nucleus, which sends cholinergic, GABAergic, and glutamatergic-containing projections to DA-containing neurons of the VTA, are critical to gating normal functioning of this nucleus. The actions of nicotine on LDT neurons...... depolarization that often induced firing and TTX-resistant inward currents. Nicotine also enhanced sensitivity to injected current; and, baseline changes in intracellular calcium were elicited in the dendrites of some cholinergic LDT cells. In addition, activity-dependent calcium transients were increased......, suggesting that nicotine exposure sufficient to induce firing may lead to enhancement of levels of intracellular calcium. Nicotine also had strong actions on glutamate and GABA-releasing presynaptic terminals, as it greatly increased the frequency of miniature EPSCs and IPSCs to both cholinergic and non...

  16. Neuromorphic Silicon Neuron Circuits

    Science.gov (United States)

    Indiveri, Giacomo; Linares-Barranco, Bernabé; Hamilton, Tara Julia; van Schaik, André; Etienne-Cummings, Ralph; Delbruck, Tobi; Liu, Shih-Chii; Dudek, Piotr; Häfliger, Philipp; Renaud, Sylvie; Schemmel, Johannes; Cauwenberghs, Gert; Arthur, John; Hynna, Kai; Folowosele, Fopefolu; Saighi, Sylvain; Serrano-Gotarredona, Teresa; Wijekoon, Jayawan; Wang, Yingxue; Boahen, Kwabena

    2011-01-01

    Hardware implementations of spiking neurons can be extremely useful for a large variety of applications, ranging from high-speed modeling of large-scale neural systems to real-time behaving systems, to bidirectional brain–machine interfaces. The specific circuit solutions used to implement silicon neurons depend on the application requirements. In this paper we describe the most common building blocks and techniques used to implement these circuits, and present an overview of a wide range of neuromorphic silicon neurons, which implement different computational models, ranging from biophysically realistic and conductance-based Hodgkin–Huxley models to bi-dimensional generalized adaptive integrate and fire models. We compare the different design methodologies used for each silicon neuron design described, and demonstrate their features with experimental results, measured from a wide range of fabricated VLSI chips. PMID:21747754

  17. Neuromorphic Silicon Neuron Circuits

    National Research Council Canada - National Science Library

    Indiveri, Giacomo; Linares-Barranco, Bernabé; Hamilton, Tara Julia; Schaik, André van; Etienne-Cummings, Ralph; Delbruck, Tobi; Liu, Shih-Chii; Dudek, Piotr; Häfliger, Philipp; Renaud, Sylvie; Schemmel, Johannes; Cauwenberghs, Gert; Arthur, John; Hynna, Kai; Folowosele, Fopefolu; Saighi, Sylvain; Serrano-Gotarredona, Teresa; Wijekoon, Jayawan; Wang, Yingxue; Boahen, Kwabena

    2011-01-01

    Hardware implementations of spiking neurons can be extremely useful for a large variety of applications, ranging from high-speed modeling of large-scale neural systems to real-time behaving systems...

  18. Neuromorphic silicon neuron circuits

    Directory of Open Access Journals (Sweden)

    Giacomo eIndiveri

    2011-05-01

    Full Text Available Hardware implementations of spiking neurons can be extremely useful for a large variety of applications, ranging from high-speed modeling of large-scale neural systems to real-time behaving systems, to bidirectional brain-machine interfaces. The specific circuit solutions used to implement silicon neurons depend on the application requirements. In this paper we describe the most common building blocks and techniques used to implement these circuits, and present an overview of a wide range of neuromorphic silicon neurons, which implement different computational models, ranging from biophysically realistic and conductance based Hodgkin-Huxley models to bi-dimensional generalized adaptive Integrate and Fire models. We compare the different design methodologies used for each silicon neuron design described, and demonstrate their features with experimental results, measured from a wide range of fabricated VLSI chips.

  19. Lumping Izhikevich neurons

    OpenAIRE

    Visser Sid; van Gils Stephan A

    2014-01-01

    We present the construction of a planar vector field that yields the firing rate of a bursting Izhikevich neuron can be read out, while leaving the sub-threshold behaviour intact. This planar vector field is used to derive lumped formulations of two complex heterogeneous networks of bursting Izhikevich neurons. In both cases, the lumped model is compared with the spiking network. There is excellent agreement in terms of duration and number of action potentials within the bursts, but there is ...

  20. NeuronBank: A Tool for Cataloging Neuronal Circuitry

    Science.gov (United States)

    Katz, Paul S.; Calin-Jageman, Robert; Dhawan, Akshaye; Frederick, Chad; Guo, Shuman; Dissanayaka, Rasanjalee; Hiremath, Naveen; Ma, Wenjun; Shen, Xiuyn; Wang, Hsui C.; Yang, Hong; Prasad, Sushil; Sunderraman, Rajshekhar; Zhu, Ying

    2010-01-01

    The basic unit of any nervous system is the neuron. Therefore, understanding the operation of nervous systems ultimately requires an inventory of their constituent neurons and synaptic connectivity, which form neural circuits. The presence of uniquely identifiable neurons or classes of neurons in many invertebrates has facilitated the construction of cellular-level connectivity diagrams that can be generalized across individuals within a species. Homologous neurons can also be recognized across species. Here we describe NeuronBank.org, a web-based tool that we are developing for cataloging, searching, and analyzing neuronal circuitry within and across species. Information from a single species is represented in an individual branch of NeuronBank. Users can search within a branch or perform queries across branches to look for similarities in neuronal circuits across species. The branches allow for an extensible ontology so that additional characteristics can be added as knowledge grows. Each entry in NeuronBank generates a unique accession ID, allowing it to be easily cited. There is also an automatic link to a Wiki page allowing an encyclopedic explanation of the entry. All of the 44 previously published neurons plus one previously unpublished neuron from the mollusc, Tritonia diomedea, have been entered into a branch of NeuronBank as have 4 previously published neurons from the mollusc, Melibe leonina. The ability to organize information about neuronal circuits will make this information more accessible, ultimately aiding research on these important models. PMID:20428500

  1. AgRP Neurons Can Increase Food Intake during Conditions of Appetite Suppression and Inhibit Anorexigenic Parabrachial Neurons.

    Science.gov (United States)

    Essner, Rachel A; Smith, Alison G; Jamnik, Adam A; Ryba, Anna R; Trutner, Zoe D; Carter, Matthew E

    2017-09-06

    To maintain energy homeostasis, orexigenic (appetite-inducing) and anorexigenic (appetite suppressing) brain systems functionally interact to regulate food intake. Within the hypothalamus, neurons that express agouti-related protein (AgRP) sense orexigenic factors and orchestrate an increase in food-seeking behavior. In contrast, calcitonin gene-related peptide (CGRP)-expressing neurons in the parabrachial nucleus (PBN) suppress feeding. PBN CGRP neurons become active in response to anorexigenic hormones released following a meal, including amylin, secreted by the pancreas, and cholecystokinin (CCK), secreted by the small intestine. Additionally, exogenous compounds, such as lithium chloride (LiCl), a salt that creates gastric discomfort, and lipopolysaccharide (LPS), a bacterial cell wall component that induces inflammation, exert appetite-suppressing effects and activate PBN CGRP neurons. The effects of increasing the homeostatic drive to eat on feeding behavior during appetite suppressing conditions are unknown. Here, we show in mice that food deprivation or optogenetic activation of AgRP neurons induces feeding to overcome the appetite suppressing effects of amylin, CCK, and LiCl, but not LPS. AgRP neuron photostimulation can also increase feeding during chemogenetic-mediated stimulation of PBN CGRP neurons. AgRP neuron stimulation reduces Fos expression in PBN CGRP neurons across all conditions. Finally, stimulation of projections from AgRP neurons to the PBN increases feeding following administration of amylin, CCK, and LiCl, but not LPS. These results demonstrate that AgRP neurons are sufficient to increase feeding during noninflammatory-based appetite suppression and to decrease activity in anorexigenic PBN CGRP neurons, thereby increasing food intake during homeostatic need.SIGNIFICANCE STATEMENT The motivation to eat depends on the relative balance of activity in distinct brain regions that induce or suppress appetite. An abnormal amount of activity in

  2. Identifying local and descending inputs for primary sensory neurons.

    Science.gov (United States)

    Zhang, Yi; Zhao, Shengli; Rodriguez, Erica; Takatoh, Jun; Han, Bao-Xia; Zhou, Xiang; Wang, Fan

    2015-10-01

    Primary pain and touch sensory neurons not only detect internal and external sensory stimuli, but also receive inputs from other neurons. However, the neuronal derived inputs for primary neurons have not been systematically identified. Using a monosynaptic rabies viruses-based transneuronal tracing method combined with sensory-specific Cre-drivers, we found that sensory neurons receive intraganglion, intraspinal, and supraspinal inputs, the latter of which are mainly derived from the rostroventral medulla (RVM). The viral-traced central neurons were largely inhibitory but also consisted of some glutamatergic neurons in the spinal cord and serotonergic neurons in the RVM. The majority of RVM-derived descending inputs were dual GABAergic and enkephalinergic (opioidergic). These inputs projected through the dorsolateral funiculus and primarily innervated layers I, II, and V of the dorsal horn, where pain-sensory afferents terminate. Silencing or activation of the dual GABA/enkephalinergic RVM neurons in adult animals substantially increased or decreased behavioral sensitivity, respectively, to heat and mechanical stimuli. These results are consistent with the fact that both GABA and enkephalin can exert presynaptic inhibition of the sensory afferents. Taken together, this work provides a systematic view of and a set of tools for examining peri- and extrasynaptic regulations of pain-afferent transmission.

  3. Glutamate and GABA as rapid effectors of hypothalamic peptidergic neurons

    Directory of Open Access Journals (Sweden)

    Cornelia eSchöne

    2012-11-01

    Full Text Available Vital hypothalamic neurons regulating hunger, wakefulness, reward-seeking, and body weight are often defined by unique expression of hypothalamus-specific neuropeptides. Gene-ablation studies show that some of these peptides, notably orexin/hypocretin (hcrt/orx, are themselves critical for stable states of consciousness and metabolic health. However, neuron-ablation studies often reveal more severe phenotypes, suggesting key roles for co-expressed transmitters. Indeed, most hypothalamic neurons, including hcrt/orx cells, contain fast transmitters glutamate and GABA, as well as several neuropeptides. What are the roles and relations between different transmitters expressed by the same neuron? Here, we consider signaling codes for releasing different transmitters in relation to transmitter and receptor diversity in behaviorally-defined, widely-projecting peptidergic neurons, such as hcrt/orx cells. We then discuss latest optogenetic studies of endogenous transmitter release from defined sets of axons in situ, which suggest that recently-characterized vital peptidergic neurons (e.g. hcrt/orx, proopiomelanocortin , and agouti-related peptide cells, as well as classical modulatory neurons (e.g. dopamine and acetylcholine cells, all use fast transmitters to control their postsynaptic targets. These optogenetic insights are complemented by recent observations of behavioral deficiencies caused by genetic ablation of fast transmission from specific neuropeptidergic and aminergic neurons. Powerful and fast (millisecond-scale GABAergic and glutamatergic signaling from neurons previously considered to be primarily modulatory raises new questions about the roles of slower co-transmitters they co-express.

  4. Neuronal avalanches and learning

    Energy Technology Data Exchange (ETDEWEB)

    Arcangelis, Lucilla de, E-mail: dearcangelis@na.infn.it [Department of Information Engineering and CNISM, Second University of Naples, 81031 Aversa (Italy)

    2011-05-01

    Networks of living neurons represent one of the most fascinating systems of biology. If the physical and chemical mechanisms at the basis of the functioning of a single neuron are quite well understood, the collective behaviour of a system of many neurons is an extremely intriguing subject. Crucial ingredient of this complex behaviour is the plasticity property of the network, namely the capacity to adapt and evolve depending on the level of activity. This plastic ability is believed, nowadays, to be at the basis of learning and memory in real brains. Spontaneous neuronal activity has recently shown features in common to other complex systems. Experimental data have, in fact, shown that electrical information propagates in a cortex slice via an avalanche mode. These avalanches are characterized by a power law distribution for the size and duration, features found in other problems in the context of the physics of complex systems and successful models have been developed to describe their behaviour. In this contribution we discuss a statistical mechanical model for the complex activity in a neuronal network. The model implements the main physiological properties of living neurons and is able to reproduce recent experimental results. Then, we discuss the learning abilities of this neuronal network. Learning occurs via plastic adaptation of synaptic strengths by a non-uniform negative feedback mechanism. The system is able to learn all the tested rules, in particular the exclusive OR (XOR) and a random rule with three inputs. The learning dynamics exhibits universal features as function of the strength of plastic adaptation. Any rule could be learned provided that the plastic adaptation is sufficiently slow.

  5. CALBINDIN CONTENT AND DIFFERENTIAL VULNERABILITY OF MIDBRAIN EFFERENT DOPAMINERGIC NEURONS IN MACAQUES

    Directory of Open Access Journals (Sweden)

    Iria G Dopeso-Reyes

    2014-12-01

    Full Text Available Calbindin (CB is a calcium binding protein reported to protect dopaminergic neurons from degeneration. Although a direct link between CB content and differential vulnerability of dopaminergic neurons has long been accepted, factors other than CB have also been suggested, particularly those related to the dopamine transporter. Indeed, several studies have reported that CB levels are not causally related to the differential vulnerability of dopaminergic neurons against neurotoxins. Here we have used dual stains for tyrosine hydroxylase (TH and CB in 3 control and 3 MPTP-treated monkeys to visualize dopaminergic neurons in the ventral tegmental area (VTA and in the dorsal and ventral tiers of the substantia nigra pars compacta (SNcd and SNcv co-expressing TH and CB. In control animals, the highest percentages of co-localization were found in VTA (58.2%, followed by neurons located in the SNcd (34.7%. As expected, SNcv neurons lacked CB expression. In MPTP-treated animals, the percentage of CB-ir/TH-ir neurons in the VTA was similar to control monkeys (62.1%, whereas most of the few surviving neurons in the SNcd were CB-ir/TH-ir (88.6%. Next, we have elucidated the presence of CB within identified nigrostriatal and nigroextrastriatal midbrain dopaminergic projection neurons. For this purpose, two control monkeys received one injection of Fluoro-Gold into the caudate nucleus and one injection of cholera toxin (CTB into the postcommissural putamen, whereas two more monkeys were injected with CTB into the internal division of the globus pallidus. As expected, all the nigrocaudate- and nigroputamen-projecting neurons were TH-ir, although surprisingly, all of these nigrostriatal-projecting neurons were negative for CB. Furthermore, all the nigropallidal-projecting neurons co-expressed both TH and CB. In summary, although CB-ir dopaminergic neurons seem to be less prone to MPTP-induced degeneration, our data clearly demonstrated that these neurons are not

  6. Lumping Izhikevich neurons

    Directory of Open Access Journals (Sweden)

    Visser Sid

    2014-12-01

    Full Text Available We present the construction of a planar vector field that yields the firing rate of a bursting Izhikevich neuron can be read out, while leaving the sub-threshold behavior intact. This planar vector field is used to derive lumped formulations of two complex heterogeneous networks of bursting Izhikevich neurons. In both cases, the lumped model is compared with the spiking network. There is excellent agreement in terms of duration and number of action potentials within the bursts, but there is a slight mismatch of the burst frequency. The lumped model accurately accounts for both intrinsic bursting and post inhibitory rebound potentials in the neuron model, features which are absent in prevalent neural mass models.

  7. Stochastic neuron models

    CERN Document Server

    Greenwood, Priscilla E

    2016-01-01

    This book describes a large number of open problems in the theory of stochastic neural systems, with the aim of enticing probabilists to work on them. This includes problems arising from stochastic models of individual neurons as well as those arising from stochastic models of the activities of small and large networks of interconnected neurons. The necessary neuroscience background to these problems is outlined within the text, so readers can grasp the context in which they arise. This book will be useful for graduate students and instructors providing material and references for applying probability to stochastic neuron modeling. Methods and results are presented, but the emphasis is on questions where additional stochastic analysis may contribute neuroscience insight. An extensive bibliography is included. Dr. Priscilla E. Greenwood is a Professor Emerita in the Department of Mathematics at the University of British Columbia. Dr. Lawrence M. Ward is a Professor in the Department of Psychology and the Brain...

  8. Imaging voltage in neurons

    Science.gov (United States)

    Peterka, Darcy S.; Takahashi, Hiroto; Yuste, Rafael

    2011-01-01

    In the last decades, imaging membrane potential has become a fruitful approach to study neural circuits, especially in invertebrate preparations with large, resilient neurons. At the same time, particularly in mammalian preparations, voltage imaging methods suffer from poor signal to noise and secondary side effects, and they fall short of providing single-cell resolution when imaging of the activity of neuronal populations. As an introduction to these techniques, we briefly review different voltage imaging methods (including organic fluorophores, SHG chromophores, genetic indicators, hybrid, nanoparticles and intrinsic approaches), and illustrate some of their applications to neuronal biophysics and mammalian circuit analysis. We discuss their mechanisms of voltage sensitivity, from reorientation, electrochromic or electro-optical phenomena, to interaction among chromophores or membrane scattering, and highlight their advantages and shortcomings, commenting on the outlook for development of novel voltage imaging methods. PMID:21220095

  9. Dynamic GABAergic afferent modulation of AgRP neurons.

    Science.gov (United States)

    Garfield, Alastair S; Shah, Bhavik P; Burgess, Christian R; Li, Monica M; Li, Chia; Steger, Jennifer S; Madara, Joseph C; Campbell, John N; Kroeger, Daniel; Scammell, Thomas E; Tannous, Bakhos A; Myers, Martin G; Andermann, Mark L; Krashes, Michael J; Lowell, Bradford B

    2016-12-01

    Agouti-related peptide (AgRP) neurons of the arcuate nucleus of the hypothalamus (ARC) promote homeostatic feeding at times of caloric insufficiency, yet they are rapidly suppressed by food-related sensory cues before ingestion. Here we identify a highly selective inhibitory afferent to AgRP neurons that serves as a neural determinant of this rapid modulation. Specifically, GABAergic projections arising from the ventral compartment of the dorsomedial nucleus of the hypothalamus (vDMH) contribute to the preconsummatory modulation of ARCAgRP neurons. In a manner reciprocal to ARCAgRP neurons, ARC-projecting leptin receptor-expressing GABAergic vDMH neurons exhibit rapid activation upon availability of food that additionally reflects the relative value of the food. Thus, leptin receptor-expressing GABAergic vDMH neurons form part of the sensory network that relays real-time information about the nature and availability of food to dynamically modulate ARCAgRP neuron activity and feeding behavior.

  10. Glutamate gated spiking Neuron Model.

    Science.gov (United States)

    Deka, Krisha M; Roy, Soumik

    2014-01-01

    Biological neuron models mainly analyze the behavior of neural networks. Neurons are described in terms of firing rates viz an analog signal. The Izhikevich neuron model is an efficient, powerful model of spiking neuron. This model is a reduction of Hodgkin-Huxley model to a two variable system and is capable of producing rich firing patterns for many biological neurons. In this paper, the Regular Spiking (RS) neuron firing pattern is used to simulate the spiking of Glutamate gated postsynaptic membrane. Simulation is done in MATLAB environment for excitatory action of synapses. Analogous simulation of spiking of excitatory postsynaptic membrane potential is obtained.

  11. Photosensitive neurons in mollusks

    Directory of Open Access Journals (Sweden)

    Kartelija Gordana

    2005-01-01

    Full Text Available In addition to regular photoreceptors, some invertebrates possess simple extra ocular photoreceptors. For ex­ample, the central ganglia of mollusks contain photosensitive neurons. These neurons are located on the dorsal surface of the ganglia and based on their electrophysiological properties it has been postulated that they are internal photoreceptors. Besides the eye, transduction of light also occurs in these extra-ocular photoreceptors. In the present work, we analyze the reactivity of these nerve cells to light and describe the underlying mechanism mediating the light-induced response.

  12. From Neurons to Newtons

    DEFF Research Database (Denmark)

    Nielsen, Bjørn Gilbert

    2001-01-01

    proteins generate forces, to the macroscopic levels where overt arm movements are vol- untarily controlled within an unpredictable environment by legions of neurons¯ring in orderly fashion. An extensive computer simulation system has been developed for this thesis, which at present contains a neural...... network scripting language for specifying arbitrary neural architectures, de¯nition ¯les for detailed spinal networks, various biologically realistic models of neurons, and dynamic synapses. Also included are structurally accurate models of intrafusal and extra-fusal muscle ¯bers and a general body...

  13. Neuronal survival in the brain: neuron type-specific mechanisms

    DEFF Research Database (Denmark)

    Pfisterer, Ulrich Gottfried; Khodosevich, Konstantin

    2017-01-01

    numbers of neurons that are not yet completely integrated into the local circuits helps to ensure that maturation and homeostatic function of neuronal networks in the brain proceed correctly. External signals from brain microenvironment together with intrinsic signaling pathways determine whether......Neurogenic regions of mammalian brain produce many more neurons that will eventually survive and reach a mature stage. Developmental cell death affects both embryonically produced immature neurons and those immature neurons that are generated in regions of adult neurogenesis. Removal of substantial...... a particular neuron will die. To accommodate this signaling, immature neurons in the brain express a number of transmembrane factors as well as intracellular signaling molecules that will regulate the cell survival/death decision, and many of these factors cease being expressed upon neuronal maturation...

  14. Neuronal survival in the brain: neuron type-specific mechanisms

    DEFF Research Database (Denmark)

    Pfisterer, Ulrich Gottfried; Khodosevich, Konstantin

    2017-01-01

    Neurogenic regions of mammalian brain produce many more neurons that will eventually survive and reach a mature stage. Developmental cell death affects both embryonically produced immature neurons and those immature neurons that are generated in regions of adult neurogenesis. Removal of substantial...... numbers of neurons that are not yet completely integrated into the local circuits helps to ensure that maturation and homeostatic function of neuronal networks in the brain proceed correctly. External signals from brain microenvironment together with intrinsic signaling pathways determine whether...... a particular neuron will die. To accommodate this signaling, immature neurons in the brain express a number of transmembrane factors as well as intracellular signaling molecules that will regulate the cell survival/death decision, and many of these factors cease being expressed upon neuronal maturation...

  15. Control of REM sleep by ventral medulla GABAergic neurons.

    Science.gov (United States)

    Weber, Franz; Chung, Shinjae; Beier, Kevin T; Xu, Min; Luo, Liqun; Dan, Yang

    2015-10-15

    Rapid eye movement (REM) sleep is a distinct brain state characterized by activated electroencephalogram and complete skeletal muscle paralysis, and is associated with vivid dreams. Transection studies by Jouvet first demonstrated that the brainstem is both necessary and sufficient for REM sleep generation, and the neural circuits in the pons have since been studied extensively. The medulla also contains neurons that are active during REM sleep, but whether they play a causal role in REM sleep generation remains unclear. Here we show that a GABAergic (γ-aminobutyric-acid-releasing) pathway originating from the ventral medulla powerfully promotes REM sleep in mice. Optogenetic activation of ventral medulla GABAergic neurons rapidly and reliably initiated REM sleep episodes and prolonged their durations, whereas inactivating these neurons had the opposite effects. Optrode recordings from channelrhodopsin-2-tagged ventral medulla GABAergic neurons showed that they were most active during REM sleep (REMmax), and during wakefulness they were preferentially active during eating and grooming. Furthermore, dual retrograde tracing showed that the rostral projections to the pons and midbrain and caudal projections to the spinal cord originate from separate ventral medulla neuron populations. Activating the rostral GABAergic projections was sufficient for both the induction and maintenance of REM sleep, which are probably mediated in part by inhibition of REM-suppressing GABAergic neurons in the ventrolateral periaqueductal grey. These results identify a key component of the pontomedullary network controlling REM sleep. The capability to induce REM sleep on command may offer a powerful tool for investigating its functions.

  16. Vagal Sensory Neuron Subtypes that Differentially Control Breathing.

    Science.gov (United States)

    Chang, Rui B; Strochlic, David E; Williams, Erika K; Umans, Benjamin D; Liberles, Stephen D

    2015-04-23

    Breathing is essential for survival and under precise neural control. The vagus nerve is a major conduit between lung and brain required for normal respiration. Here, we identify two populations of mouse vagus nerve afferents (P2ry1, Npy2r), each a few hundred neurons, that exert powerful and opposing effects on breathing. Genetically guided anatomical mapping revealed that these neurons densely innervate the lung and send long-range projections to different brainstem targets. Npy2r neurons are largely slow-conducting C fibers, while P2ry1 neurons are largely fast-conducting A fibers that contact pulmonary endocrine cells (neuroepithelial bodies). Optogenetic stimulation of P2ry1 neurons acutely silences respiration, trapping animals in exhalation, while stimulating Npy2r neurons causes rapid, shallow breathing. Activating P2ry1 neurons did not impact heart rate or gastric pressure, other autonomic functions under vagal control. Thus, the vagus nerve contains intermingled sensory neurons constituting genetically definable labeled lines with different anatomical connections and physiological roles. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Lumping Izhikevich neurons

    NARCIS (Netherlands)

    Visser, S.; van Gils, Stephanus A.

    2014-01-01

    We present the construction of a planar vector field that yields the firing rate of a bursting Izhikevich neuron can be read out, while leaving the sub-threshold behaviour intact. This planar vector field is used to derive lumped formulations of two complex heterogeneous networks of bursting

  18. Spiking neuron network Helmholtz machine

    National Research Council Canada - National Science Library

    Sountsov, Pavel; Miller, Paul

    2015-01-01

    .... This paper aims to unify the two fields of probabilistic inference and synaptic plasticity by using a neuronal network of realistic model spiking neurons to implement a well-studied computational...

  19. Identifying neuronal oscillations using rhythmicity

    NARCIS (Netherlands)

    Fransen, A.M.M.; Ede, F.L. van; Maris, E.G.G.

    2015-01-01

    Neuronal oscillations are a characteristic feature of neuronal activity and are typically investigated through measures of power and coherence. However, neither of these measures directly reflects the distinctive feature of oscillations: their rhythmicity. Rhythmicity is the extent to which future

  20. Eight Different Types of Dopaminergic Neurons Innervate the Drosophila Mushroom Body Neuropil: Anatomical and Physiological Heterogeneity

    Science.gov (United States)

    Mao, Zhengmei; Davis, Ronald L.

    2009-01-01

    We examined tyrosine hydroxylase (TH-GAL4) expression and anti-TH immunoreactivity in the Drosophila protocerebrum and characterized single cell clones of the TH-GAL4 neurons. Eight clusters of putative dopaminergic neurons were characterized. Neurons in three of the clusters project to the mushroom body neuropil: PAM neurons project to the medial portion of the horizontal lobes; PPL1 neurons project to the vertical lobes, the junction area, the heel and distal peduncle; and PPL2ab neurons project to the calyx. Five types of PPL1 neurons were discovered that innervate different zones of the mushroom body lobes. Functional imaging experiments showed that the dopaminergic processes in four of the zones differ in response properties to odor, electric shock, or following the pairing of odor and electric shock. These results indicate that distinct dopaminergic neurons define separate zones of the mushroom body lobes and are probably involved in different functions. Differences in functional response properties of these neurons suggest that they are involved in different behavioral processes. PMID:19597562

  1. Eight different types of dopaminergic neurons innervate the Drosophila mushroom body neuropil: anatomical and physiological heterogeneity

    Directory of Open Access Journals (Sweden)

    Zhengmei Mao

    2009-07-01

    Full Text Available We examined tyrosine hydroxylase (TH-GAL4 expression and anti-TH immunoreactivity in the Drosophila protocerebrum and characterized single cell clones of the TH-GAL4 neurons. Eight clusters of putative dopaminergic neurons were characterized. Neurons in three of the clusters project to the mushroom body neuropil: PAM neurons project to the medial portion of the horizontal lobes; PPL1 neurons project to the vertical lobes, the junction area, the heel and distal peduncle; and PPL2ab neurons project to the calyx. Five types of PPL1 neurons were discovered that innervate different zones of the mushroom body lobes. Functional imaging experiments showed that the dopaminergic processes in four of the zones differ in response properties to odor, electric shock, or following the pairing of odor and electric shock. These results indicate that distinct dopaminergic neurons define separate zones of the mushroom body lobes and are probably involved in different functions. Differences in functional response properties of these neurons suggest that they are involved in different behavioral processes.

  2. Motor neuron disease in blacks

    African Journals Online (AJOL)

    1989-08-19

    Aug 19, 1989 ... We reported earlier that motor neuron disease occurs more commonly among blacks than Parkinson's disease, which is relatively rare in this race group.! The hypothesis that these conditions, and other neuronal abiotrophies, are the result of previous subclinical neuronal insult and subsequent age-related.

  3. Simple model of spiking neurons.

    Science.gov (United States)

    Izhikevich, E M

    2003-01-01

    A model is presented that reproduces spiking and bursting behavior of known types of cortical neurons. The model combines the biologically plausibility of Hodgkin-Huxley-type dynamics and the computational efficiency of integrate-and-fire neurons. Using this model, one can simulate tens of thousands of spiking cortical neurons in real time (1 ms resolution) using a desktop PC.

  4. Moving Neurons back into place

    OpenAIRE

    Kerjan, Geraldine; Gleeson, Joseph G.

    2009-01-01

    Subcortical band heterotopia (SBH) is a neuron migration disorder characterized by an aberrant ‘band-like’ accumulation of neurons within the neocortical white matter, frequently leading to mental retardation and epilepsy. SBH can now be regressed by reactivating neuronal migration.

  5. Neuronal substrate of eating disorders

    OpenAIRE

    Timofeeva, Elena; Calvez, Juliane

    2014-01-01

    Eating disorders are devastating and life-threatening psychiatric diseases. Although clinical and experimental investigations have significantly progressed in discovering the neuronal causes of eating disorders, the exact neuronal and molecular mechanisms of the development and maintenance of these pathologies are not fully understood. The complexity of the neuronal substrate of eating disorders hampers progress in revealing the precise mechanisms. The present re...

  6. Understanding Neuronal Mechanisms of Epilepsy ...

    Indian Academy of Sciences (India)

    Admin

    Control il ti. Human brain. Control epileptic. Mutani et al., 1994 ... of Calcium Transients Evoked in. Response to Spontaneous Epileptic ... Proof : Feed forward inhibition in subiculum. CA1. Subiculum. Stimulation artifact. -60 mV. Excitatory neuron. Inhibitory neuron. Excitatory neuron. Excitatory. Synapse. Inhibitory. Synapse.

  7. Vasculo-Neuronal Coupling: Retrograde Vascular Communication to Brain Neurons.

    Science.gov (United States)

    Kim, Ki Jung; Ramiro Diaz, Juan; Iddings, Jennifer A; Filosa, Jessica A

    2016-12-14

    Continuous cerebral blood flow is essential for neuronal survival, but whether vascular tone influences resting neuronal function is not known. Using a multidisciplinary approach in both rat and mice brain slices, we determined whether flow/pressure-evoked increases or decreases in parenchymal arteriole vascular tone, which result in arteriole constriction and dilation, respectively, altered resting cortical pyramidal neuron activity. We present evidence for intercellular communication in the brain involving a flow of information from vessel to astrocyte to neuron, a direction opposite to that of classic neurovascular coupling and referred to here as vasculo-neuronal coupling (VNC). Flow/pressure increases within parenchymal arterioles increased vascular tone and simultaneously decreased resting pyramidal neuron firing activity. On the other hand, flow/pressure decreases evoke parenchymal arteriole dilation and increased resting pyramidal neuron firing activity. In GLAST-CreERT2; R26-lsl-GCaMP3 mice, we demonstrate that increased parenchymal arteriole tone significantly increased intracellular calcium in perivascular astrocyte processes, the onset of astrocyte calcium changes preceded the inhibition of cortical pyramidal neuronal firing activity. During increases in parenchymal arteriole tone, the pyramidal neuron response was unaffected by blockers of nitric oxide, GABAA, glutamate, or ecto-ATPase. However, VNC was abrogated by TRPV4 channel, GABAB, as well as an adenosine A1 receptor blocker. Differently to pyramidal neuron responses, increases in flow/pressure within parenchymal arterioles increased the firing activity of a subtype of interneuron. Together, these data suggest that VNC is a complex constitutive active process that enables neurons to efficiently adjust their resting activity according to brain perfusion levels, thus safeguarding cellular homeostasis by preventing mismatches between energy supply and demand. We present evidence for vessel-to-neuron

  8. A mechanism for cognitive dynamics: neuronal communication through neuronal coherence.

    Science.gov (United States)

    Fries, Pascal

    2005-10-01

    At any one moment, many neuronal groups in our brain are active. Microelectrode recordings have characterized the activation of single neurons and fMRI has unveiled brain-wide activation patterns. Now it is time to understand how the many active neuronal groups interact with each other and how their communication is flexibly modulated to bring about our cognitive dynamics. I hypothesize that neuronal communication is mechanistically subserved by neuronal coherence. Activated neuronal groups oscillate and thereby undergo rhythmic excitability fluctuations that produce temporal windows for communication. Only coherently oscillating neuronal groups can interact effectively, because their communication windows for input and for output are open at the same times. Thus, a flexible pattern of coherence defines a flexible communication structure, which subserves our cognitive flexibility.

  9. Insulin signaling regulates neurite growth during metamorphic neuronal remodeling

    Directory of Open Access Journals (Sweden)

    Tingting Gu

    2013-12-01

    Although the growth capacity of mature neurons is often limited, some neurons can shift through largely unknown mechanisms from stable maintenance growth to dynamic, organizational growth (e.g. to repair injury, or during development transitions. During insect metamorphosis, many terminally differentiated larval neurons undergo extensive remodeling, involving elimination of larval neurites and outgrowth and elaboration of adult-specific projections. Here, we show in the fruit fly, Drosophila melanogaster (Meigen, that a metamorphosis-specific increase in insulin signaling promotes neuronal growth and axon branching after prolonged stability during the larval stages. FOXO, a negative effector in the insulin signaling pathway, blocked metamorphic growth of peptidergic neurons that secrete the neuropeptides CCAP and bursicon. RNA interference and CCAP/bursicon cell-targeted expression of dominant-negative constructs for other components of the insulin signaling pathway (InR, Pi3K92E, Akt1, S6K also partially suppressed the growth of the CCAP/bursicon neuron somata and neurite arbor. In contrast, expression of wild-type or constitutively active forms of InR, Pi3K92E, Akt1, Rheb, and TOR, as well as RNA interference for negative regulators of insulin signaling (PTEN, FOXO, stimulated overgrowth. Interestingly, InR displayed little effect on larval CCAP/bursicon neuron growth, in contrast to its strong effects during metamorphosis. Manipulations of insulin signaling in many other peptidergic neurons revealed generalized growth stimulation during metamorphosis, but not during larval development. These findings reveal a fundamental shift in growth control mechanisms when mature, differentiated neurons enter a new phase of organizational growth. Moreover, they highlight strong evolutionarily conservation of insulin signaling in neuronal growth regulation.

  10. Properties of solitary tract neurones responding to peripheral arterial chemoreceptors.

    Science.gov (United States)

    Paton, J F; Deuchars, J; Li, Y W; Kasparov, S

    2001-01-01

    Despite the highly integrated pattern of response evoked by peripheral chemoreceptor stimulation, limited information exists regarding the neurones within the nucleus of the solitary tract that mediate this reflex. Using a working heart-brainstem preparation, we describe evoked synaptic response patterns, some intrinsic membrane properties, location, morphology and axonal projections of physiologically characterised 'chemoreceptive' neurones located in the solitary tract nucleus in the rat. From 172 whole cell recordings, 56 neurones were identified as chemoreceptive since they responded to aortic injections of low doses of sodium cyanide (2-5 microg). Chemoreceptive neurones had a mean resting membrane potential of -52+/-1 mV and input resistance was 297+/-15 M(Omega) (n=56). Synaptic responses evoked included excitatory synaptic potentials alone, excitatory-inhibitory post-synaptic potential complexes, inhibitory synaptic potentials alone and central respiratory modulated synaptic potentials. Synaptic response latency data were obtained by stimulating electrically the solitary tract: the mean excitatory synaptic latency was 5.2+/-0.4 ms (range 2.5-8.0 ms; n=17). Chemoreceptive neurones showed a heterogeneity in their intrinsic membrane properties: neurones displayed either steady state, augmenting or adapting firing responses to depolarising current injection and, in some neurones, either delayed excitation or rebound activity following hyperpolarising pulses. Eleven chemoreceptive neurones were labelled and provided the first morphological data of these cells. Labelled somata were detected dorsomedial or medial to the solitary tract spanning the obex. Neurones typically had three to eight primary dendrites which often entered the solitary tract as well as extending across the ipsilateral region of the nucleus of the solitary tract. Axons were mostly unmyelinated with boutons of the en passant variety and often ramified within the solitary tract nucleus as well

  11. Phosphoinositide signaling in somatosensory neurons

    Science.gov (United States)

    Rohacs, Tibor

    2015-01-01

    Somatosensory neurons of the dorsal root ganglia (DRG) and trigeminal ganglia (TG) are responsible for detecting thermal and tactile stimuli. They are also the primary neurons mediating pain and itch. A large number of cell surface receptors in these neurons couple to phospholipase C (PLC) enzymes leading to the hydrolysis of phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] and the generation of downstream signaling molecules. These neurons also express many different ion channels, several of which are regulated by phosphoinositides. This review will summarize the knowledge on phosphoinositide signaling in these neurons, with special focus on effects on sensory and other ion channels. PMID:26724974

  12. Transcriptional co-regulation of neuronal migration and laminar identity in the neocortex.

    Science.gov (United States)

    Kwan, Kenneth Y; Sestan, Nenad; Anton, E S

    2012-05-01

    The cerebral neocortex is segregated into six horizontal layers, each containing unique populations of molecularly and functionally distinct excitatory projection (pyramidal) neurons and inhibitory interneurons. Development of the neocortex requires the orchestrated execution of a series of crucial processes, including the migration of young neurons into appropriate positions within the nascent neocortex, and the acquisition of layer-specific neuronal identities and axonal projections. Here, we discuss emerging evidence supporting the notion that the migration and final laminar positioning of cortical neurons are also co-regulated by cell type- and layer-specific transcription factors that play concomitant roles in determining the molecular identity and axonal connectivity of these neurons. These transcriptional programs thus provide direct links between the mechanisms controlling the laminar position and identity of cortical neurons.

  13. Transmission of olfactory information between three populations of neurons in the antennal lobe of the fly.

    Science.gov (United States)

    Ng, Minna; Roorda, Robert D; Lima, Susana Q; Zemelman, Boris V; Morcillo, Patrick; Miesenböck, Gero

    2002-10-24

    Three classes of neurons form synapses in the antennal lobe of Drosophila, the insect counterpart of the vertebrate olfactory bulb: olfactory receptor neurons, projection neurons, and inhibitory local interneurons. We have targeted a genetically encoded optical reporter of synaptic transmission to each of these classes of neurons and visualized population responses to natural odors. The activation of an odor-specific ensemble of olfactory receptor neurons leads to the activation of a symmetric ensemble of projection neurons across the glomerular synaptic relay. Virtually all excited glomeruli receive inhibitory input from local interneurons. The extent, odor specificity, and partly interglomerular origin of this input suggest that inhibitory circuits assemble combinatorially during odor presentations. These circuits may serve as dynamic templates that extract higher order features from afferent activity patterns.

  14. The Edinger-Westphal nucleus of the juvenile rat contains transient- and repetitive-firing neurons

    DEFF Research Database (Denmark)

    Laursen, M; Rekling, J C

    2006-01-01

    Classically, the Edinger-Westphal nucleus is described as containing neurons controlling accommodation and pupillary constriction via projections to the ciliary ganglion. However, in several species including rat, some Edinger-Westphal neurons have ascending or descending CNS projections suggesting...... an immunohistochemical procedure directed at the peptide Urocortin, which is expressed in Edinger-Westphal neurons. Passive and active membrane responses were investigated and two different neuron types were identified. One type had a transient firing response to 400 ms depolarizing current pulses and one type had...... a repetitive firing response. Transient-firing neurons had an outward rectifying response inhibiting firing, possibly due to slowly inactivating I(D)-like potassium channels since low concentrations (200 microM) of the potassium channel blocker 4-aminopyridine elicited repetitive firing. In all neurons, low...

  15. Elucidating the Neuronal Architecture of Olfactory Glomeruli in the Drosophila Antennal Lobe

    Directory of Open Access Journals (Sweden)

    Veit Grabe

    2016-09-01

    Full Text Available Olfactory glomeruli are morphologically conserved spherical compartments of the olfactory system, distinguishable solely by their chemosensory repertoire, anatomical position, and volume. Little is known, however, about their numerical neuronal composition. We therefore characterized their neuronal architecture and correlated these anatomical features with their functional properties in Drosophila melanogaster. We quantitatively mapped all olfactory sensory neurons (OSNs innervating each glomerulus, including sexually dimorphic distributions. Our data reveal the impact of OSN number on glomerular dimensions and demonstrate yet unknown sex-specific differences in several glomeruli. Moreover, we quantified uniglomerular projection neurons for each glomerulus, which unraveled a glomerulus-specific numerical innervation. Correlation between morphological features and functional specificity showed that glomeruli innervated by narrowly tuned OSNs seem to possess a larger number of projection neurons and are involved in less lateral processing than glomeruli targeted by broadly tuned OSNs. Our study demonstrates that the neuronal architecture of each glomerulus encoding crucial odors is unique.

  16. Light and electron microscopic immunocytochemistry of neurons in the blowfly optic lobe reacting with antisera to RFamide and FMRFamide

    DEFF Research Database (Denmark)

    Nässel, D R; Ohlsson, Lisbeth; Johansson, K U

    1988-01-01

    Different antisera to the molluscan cardioexcitatory peptide FMRFamide, and its fragment, RFamide (Arg-Phe-NH2), label a distinct population of neurons in the optic lobe of the blowfly, Calliphora erythrocephala. Seven morphological types of RFamide/FMRFamide-like immunoreactive neurons could...... be distinguished in the optic lobes based on the locations of their cell bodies, their axonal projections and the distribution of their processes. Of these, two types could be resolved in their entire extent, the others were labeled only in their cell bodies and terminal processes or were partly obscured by other...... immunoreactive processes. The RF-like immunoreactive neurons in the optic lobes are of two main classes: (1) two types of large field projection neurons and (2) five types of local neurons. One type of projection neurons (five in each lobe) connects the entire projected retinal mosaic of the medulla and lobula...

  17. Somatostatin Neurons in the Basal Forebrain Promote High-Calorie Food Intake

    Directory of Open Access Journals (Sweden)

    Chen Zhu

    2017-07-01

    Full Text Available Obesity has become a global issue, and the overconsumption of food is thought to be a major contributor. However, the regulatory neural circuits that regulate palatable food consumption remain unclear. Here, we report that somatostatin (SOM neurons and GABAergic (VGAT neurons in the basal forebrain (BF play specific roles in regulating feeding. Optogenetic stimulation of BF SOM neurons increased fat and sucrose intake within minutes and promoted anxiety-like behaviors. Furthermore, optogenetic stimulation of projections from BF SOM neurons to the lateral hypothalamic area (LHA selectively resulted in fat intake. In addition, activation of BF VGAT neurons rapidly induced general food intake and gnawing behaviors. Whole-brain mapping of inputs and outputs showed that BF SOM neurons form bidirectional connections with several brain areas important in feeding and regulation of emotion. Collectively, these results suggest that BF SOM neurons play a selective role in hedonic feeding.

  18. Neuron-specific splicing.

    Science.gov (United States)

    Hakim, Nor Hakimah Ab; Majlis, Burhanuddin Yeop; Suzuki, Hitoshi; Tsukahara, Toshifumi

    2017-03-22

    During pre-mRNA splicing events, introns are removed from the pre-mRNA, and the remaining exons are connected together to form a single continuous molecule. Alternative splicing is a common mechanism for the regulation of gene expression in eukaryotes. More than 90% of human genes are known to undergo alternative splicing. The most common type of alternative splicing is exon skipping, which is also known as cassette exon. Other known alternative splicing events include alternative 5' splice sites, alternative 3' splice sites, intron retention, and mutually exclusive exons. Alternative splicing events are controlled by regulatory proteins responsible for both positive and negative regulation. In this review, we focus on neuronal splicing regulators and discuss several notable regulators in depth. In addition, we have also included an example of splicing regulation mediated by the RBFox protein family. Lastly, as previous studies have shown that a number of splicing factors are associated with neuronal diseases such as Alzheime's disease (AD) and Autism spectrum disorder (ASD), here we consider their importance in neuronal diseases wherein the underlying mechanisms have yet to be elucidated.

  19. Neocortical neuronal morphology in the newborn giraffe (Giraffa camelopardalis tippelskirchi) and African elephant (Loxodonta africana).

    Science.gov (United States)

    Jacobs, Bob; Lee, Laura; Schall, Matthew; Raghanti, Mary Ann; Lewandowski, Albert H; Kottwitz, Jack J; Roberts, John F; Hof, Patrick R; Sherwood, Chet C

    2016-02-01

    Although neocortical neuronal morphology has been documented in the adult giraffe (Giraffa camelopardalis tippelskirchi) and African elephant (Loxodonta africana), no research has explored the cortical architecture in newborns of these species. To this end, the current study examined the morphology of neurons from several cortical areas in the newborn giraffe and elephant. After cortical neurons were stained with a modified Golgi technique (N = 153), dendritic branching and spine distributions were analyzed by using computer-assisted morphometry. The results showed that newborn elephant neurons were considerably larger in terms of all dendritic and spine measures than newborn giraffe neurons. Qualitatively, neurons in the newborns appeared morphologically comparable to those in their adult counterparts. Neurons in the newborn elephant differed considerably from those observed in other placental mammals, including the giraffe, particularly with regard to the morphology of spiny projection neurons. Projection neurons were observed in both species, with a much larger variety in the elephant (e.g., flattened pyramidal, nonpyramidal multipolar, and inverted pyramidal neurons). Although local circuit neurons (i.e., interneurons, neurogliaform, Cajal-Retzius neurons) resembled those observed in other eutherian mammals, these were usually spiny, which contrasts with their adult, aspiny equivalents. Newborn projection neurons were smaller than the adult equivalents in both species, but newborn interneurons were approximately the same size as their adult counterparts. Cortical neuromorphology in the newborn giraffe is thus generally consistent with what has been observed in other cetartiodactyls, whereas newborn and adult elephant morphology appears to deviate substantially from what is commonly observed in other placental mammals. © 2015 Wiley Periodicals, Inc.

  20. Neuronal development in larval chiton Ischnochiton hakodadensis (Mollusca: Polyplacophora).

    Science.gov (United States)

    Voronezhskaya, Elena E; Tyurin, Sergei A; Nezlin, Leonid P

    2002-02-25

    Chitons are the most primitive molluscs and, thus, a matter of considerable interest for understanding both basic principles of molluscan neurogenesis and phylogeny. The development of the nervous system in trochophores of the chiton Ischnochiton hakodadensis from hatching to metamorphosis is described in detail by using confocal laser scanning microscopy and antibodies raised against serotonin, FMRFamide, and acetylated alpha tubulin. The earliest nervous elements detected were peripheral neurons located in the frontal hemisphere of posthatching trochophores and projecting into the apical organ. Among them, two pairs of unique large lateral cells appear to pioneer the pathways of developing adult nervous system. Chitons possess an apical organ that contains the largest number of neurons among all molluscan larvae investigated so far. Besides, many pretrochal neurons are situated outside the apical organ. The prototroch is not innervated by larval neurons. The first neurons of the developing adult central nervous system (CNS) appear later in the cerebral ganglion and pedal cords. None of the neurons of the larval nervous system are retained in the adult CNS. They cease to express their transmitter content and disintegrate after settlement. Although the adult CNS of chitons resembles that of polychaetes, their general scenario of neuronal development resembles that of advanced molluscs and differs from annelids. Thus, our data demonstrate the conservative pattern of molluscan neurogenesis and suggest independent origin of molluscan and annelid trochophores. Copyright 2002 Wiley Liss, Inc.

  1. A Subset of Serotonergic Neurons Evokes Hunger in Adult Drosophila.

    Science.gov (United States)

    Albin, Stephanie D; Kaun, Karla R; Knapp, Jon-Michael; Chung, Phuong; Heberlein, Ulrike; Simpson, Julie H

    2015-09-21

    Hunger is a complex motivational state that drives multiple behaviors. The sensation of hunger is caused by an imbalance between energy intake and expenditure. One immediate response to hunger is increased food consumption. Hunger also modulates behaviors related to food seeking such as increased locomotion and enhanced sensory sensitivity in both insects and vertebrates. In addition, hunger can promote the expression of food-associated memory. Although progress is being made, how hunger is represented in the brain and how it coordinates these behavioral responses is not fully understood in any system. Here, we use Drosophila melanogaster to identify neurons encoding hunger. We found a small group of neurons that, when activated, induced a fed fly to eat as though it were starved, suggesting that these neurons are downstream of the metabolic regulation of hunger. Artificially activating these neurons also promotes appetitive memory performance in sated flies, indicating that these neurons are not simply feeding command neurons but likely play a more general role in encoding hunger. We determined that the neurons relevant for the feeding effect are serotonergic and project broadly within the brain, suggesting a possible mechanism for how various responses to hunger are coordinated. These findings extend our understanding of the neural circuitry that drives feeding and enable future exploration of how state influences neural activity within this circuit. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Neuronal Reward and Decision Signals: From Theories to Data

    Science.gov (United States)

    Schultz, Wolfram

    2015-01-01

    Rewards are crucial objects that induce learning, approach behavior, choices, and emotions. Whereas emotions are difficult to investigate in animals, the learning function is mediated by neuronal reward prediction error signals which implement basic constructs of reinforcement learning theory. These signals are found in dopamine neurons, which emit a global reward signal to striatum and frontal cortex, and in specific neurons in striatum, amygdala, and frontal cortex projecting to select neuronal populations. The approach and choice functions involve subjective value, which is objectively assessed by behavioral choices eliciting internal, subjective reward preferences. Utility is the formal mathematical characterization of subjective value and a prime decision variable in economic choice theory. It is coded as utility prediction error by phasic dopamine responses. Utility can incorporate various influences, including risk, delay, effort, and social interaction. Appropriate for formal decision mechanisms, rewards are coded as object value, action value, difference value, and chosen value by specific neurons. Although all reward, reinforcement, and decision variables are theoretical constructs, their neuronal signals constitute measurable physical implementations and as such confirm the validity of these concepts. The neuronal reward signals provide guidance for behavior while constraining the free will to act. PMID:26109341

  3. Neuronal Reward and Decision Signals: From Theories to Data.

    Science.gov (United States)

    Schultz, Wolfram

    2015-07-01

    Rewards are crucial objects that induce learning, approach behavior, choices, and emotions. Whereas emotions are difficult to investigate in animals, the learning function is mediated by neuronal reward prediction error signals which implement basic constructs of reinforcement learning theory. These signals are found in dopamine neurons, which emit a global reward signal to striatum and frontal cortex, and in specific neurons in striatum, amygdala, and frontal cortex projecting to select neuronal populations. The approach and choice functions involve subjective value, which is objectively assessed by behavioral choices eliciting internal, subjective reward preferences. Utility is the formal mathematical characterization of subjective value and a prime decision variable in economic choice theory. It is coded as utility prediction error by phasic dopamine responses. Utility can incorporate various influences, including risk, delay, effort, and social interaction. Appropriate for formal decision mechanisms, rewards are coded as object value, action value, difference value, and chosen value by specific neurons. Although all reward, reinforcement, and decision variables are theoretical constructs, their neuronal signals constitute measurable physical implementations and as such confirm the validity of these concepts. The neuronal reward signals provide guidance for behavior while constraining the free will to act. Copyright © 2015 the American Physiological Society.

  4. Ramifications of the axons of AH-neurons injected with the intracellular marker biocytin in the myenteric plexus of the guinea pig small intestine.

    Science.gov (United States)

    Bornstein, J C; Hendriks, R; Furness, J B; Trussell, D C

    1991-12-15

    The projections and terminal ramifications of electrophysiologically characterized myenteric neurons of the guinea pig small intestine were studied after intracellular injection of the marker substance biocytin. Myenteric neurons were impaled with microelectrodes containing 4% biocytin in 2 M KCl (pH 7.4) and characterized electrophysiologically as either AH-neurons or S-neurons. AH-neurons were neurons in which action potentials were followed by prolonged after-hyperpolarizations (lasting greater than 4 seconds). S-neurons were neurons in which such hyperpolarizations were not seen. Electrical stimulation of internodal strands evoked prominent fast excitatory synaptic potentials in S-neurons, but not in AH-neurons. Biocytin was injected electrophoretically into the impaled AH-neurons by passage of hyperpolarizing current (0.6-0.8 nA for 5-15 minutes) through the recording electrode. The preparation was then fixed in Zamboni's fixative, dehydrated, and exposed to avidin coupled to horseradish peroxidase which allowed the injected biocytin to be visualised via a diaminobenzidine reaction. In many cases, the injected biocytin appeared to fill all the processes of injected AH-neurons that ramified within the myenteric plexus. The filled processes included axons running up to 4 mm within the plexus and profuse varicose terminals ramifying within both the ganglion containing the injected cell body and nearby ganglia. Most (90%) cell bodies of the injected AH-neurons had the morphology of Dogiel type II neurons; large, mostly smooth cell bodies with few short processes and several long processes. The other 10% of the AH-neurons had similar cell bodies and long processes but also had prominent short filamentous processes. This population was termed dendritic AH-neurons. The projections and terminals of 28 AH/Dogiel type II neurons and 7 dendritic AH-neurons were analysed in detail. Both types of neurons project circumferentially to provide terminals to nearby ganglia, but

  5. A Neuron Model Based Ultralow Current Sensor System for Bioapplications

    Directory of Open Access Journals (Sweden)

    A. K. M. Arifuzzman

    2016-01-01

    Full Text Available An ultralow current sensor system based on the Izhikevich neuron model is presented in this paper. The Izhikevich neuron model has been used for its superior computational efficiency and greater biological plausibility over other well-known neuron spiking models. Of the many biological neuron spiking features, regular spiking, chattering, and neostriatal spiny projection spiking have been reproduced by adjusting the parameters associated with the model at hand. This paper also presents a modified interpretation of the regular spiking feature in which the firing pattern is similar to that of the regular spiking but with improved dynamic range offering. The sensor current ranges between 2 pA and 8 nA and exhibits linearity in the range of 0.9665 to 0.9989 for different spiking features. The efficacy of the sensor system in detecting low amount of current along with its high linearity attribute makes it very suitable for biomedical applications.

  6. Morphological and electrophysiological features of motor neurons and putative interneurons in the dorsal vagal complex of rats and mice

    Science.gov (United States)

    Gao, Hong; Glatzer, Nicholas R.; Williams, Kevin W.; Derbenev, Andrei V.; Liu, Dan; Smith, Bret N.

    2009-01-01

    The dorsal motor nucleus of the vagus (DMV) contains preganglionic motor neurons that control viscera along the subdiaphragmatic digestive tract, but may also contain neurons that do not project to the viscera. Neurons that expressed EGFP 60-72 h subsequent to PRV-152 inoculation of vagal terminals in the stomach wall were targeted for whole-cell patch-clamp recording and biocytin filling in transverse brainstem slices from rats and their quantitative morphological and electrophysiological characteristics were compared with uninfected cells. Over 90% of PRV-152 labeled neurons were also labeled subsequent to intraperitoneal injection of FluoroGold, indicating most were preganglionic motor neurons. In reconstructed neurons with an identifiable axon trajectory, two cellular subtypes were distinguished. The axon projected ventrolaterally from the DMV in 44 of 49 cells and these were likely to be vagal motor neurons. Axons of other neurons ramified within the nucleus tractus solitarius (NTS) or DMV. These cells were smaller and otherwise morphologically distinct from putative motor neurons. Transgenic mice with GFP-expressing inhibitory neurons (i.e., GIN mice) were used to identify a GABAergic subset vagal neurons. These neurons had locally-ramifying axons and formed a morphologically distinct subset of DMV cells, which were similar in size and axon trajectory to GABAergic neurons in the NTS. Most neurons in the DMV therefore possess morphological features of motor neurons, but locally projecting cells and inhibitory neurons with distinct morphological features are also found within the DMV. These cells likely contribute to regulation of vagal function. PMID:19619517

  7. Astroglial networks promote neuronal coordination.

    Science.gov (United States)

    Chever, Oana; Dossi, Elena; Pannasch, Ulrike; Derangeon, Mickael; Rouach, Nathalie

    2016-01-12

    Astrocytes interact with neurons to regulate network activity. Although the gap junction subunits connexin 30 and connexin 43 mediate the formation of extensive astroglial networks that cover large functional neuronal territories, their role in neuronal synchronization remains unknown. Using connexin 30- and connexin 43-deficient mice, we showed that astroglial networks promoted sustained population bursts in hippocampal slices by setting the basal active state of neurons. Astroglial networks limited excessive neuronal depolarization induced by spontaneous synaptic activity, increased neuronal release probability, and favored the recruitment of neurons during bursting, thus promoting the coordinated activation of neuronal networks. In vivo, this sustained neuronal coordination translated into increased severity of acutely evoked epileptiform events and convulsive behavior. These results revealed that connexin-mediated astroglial networks synchronize bursting of neuronal assemblies, which can exacerbate pathological network activity and associated behavior. Our data thus provide molecular and biophysical evidence predicting selective astroglial gap junction inhibitors as anticonvulsive drugs. Copyright © 2016, American Association for the Advancement of Science.

  8. Motor neurons and the generation of spinal motor neurons diversity

    OpenAIRE

    Nicolas eStifani

    2014-01-01

    Motor neurons (MNs) are neuronal cells located in the central nervous system (CNS) controlling a variety of downstream targets. This function infers the existence of MN subtypes matching the identity of the targets they innervate. To illustrate the mechanism involved in the generation of cellular diversity and the acquisition of specific identity, this review will focus on spinal motor neurons (SpMNs) that have been the core of significant work and discoveries during the last decades. SpMNs a...

  9. Nasal neuron PET imaging quantifies neuron generation and degeneration

    National Research Council Canada - National Science Library

    Van de Bittner, Genevieve C; Riley, Misha M; Cao, Luxiang; Ehses, Janina; Herrick, Scott P; Ricq, Emily L; Wey, Hsiao-Ying; O'Neill, Michael J; Ahmed, Zeshan; Murray, Tracey K; Smith, Jaclyn E; Wang, Changning; Schroeder, Frederick A; Albers, Mark W; Hooker, Jacob M

    2017-01-01

    .... Quantification of the olfactory sensory neurons (OSNs), which detect odors within the nasal cavity, would provide insight into the etiology of olfactory dysfunction associated with disease and mortality...

  10. Resonate-and-fire neurons.

    Science.gov (United States)

    Izhikevich, E M

    2001-01-01

    We suggest a simple spiking model-resonate-and-fire neuron, which is similar to the integrate-and-fire neuron except that the state variable is complex. The model provides geometric illustrations to many interesting phenomena occurring in biological neurons having subthreshold damped oscillations of membrane potential. For example, such neurons prefer a certain resonant frequency of the input that is nearly equal to their eigenfrequency, they can be excited or inhibited by a doublet (two pulses) depending on its interspike interval, and they can fire in response to an inhibitory input. All these properties could be observed in Hodgkin-Huxley-type models. We use the resonate-and-fire model to illustrate possible sensitivity of biological neurons to the fine temporal structure of the input spike train. Being an analogue of the integrate-and-fire model, the resonate-and-fire model is computationally efficient and suitable for simulations of large networks of spiking neurons.

  11. Layer 6 Corticothalamic Neurons Activate a Cortical Output Layer, Layer 5a

    Science.gov (United States)

    Kim, Juhyun; Matney, Chanel J.; Blankenship, Aaron; Hestrin, Shaul

    2014-01-01

    Layer 6 corticothalamic neurons are thought to modulate incoming sensory information via their intracortical axons targeting the major thalamorecipient layer of the neocortex, layer 4, and via their long-range feedback projections to primary sensory thalamic nuclei. However, anatomical reconstructions of individual layer 6 corticothalamic (L6 CT) neurons include examples with axonal processes ramifying within layer 5, and the relative input of the overall population of L6 CT neurons to layers 4 and 5 is not well understood. We compared the synaptic impact of L6 CT cells on neurons in layers 4 and 5. We found that the axons of L6 CT neurons densely ramified within layer 5a in both visual and somatosensory cortices of the mouse. Optogenetic activation of corticothalamic neurons generated large EPSPs in pyramidal neurons in layer 5a. In contrast, excitatory neurons in layer 4 exhibited weak excitation or disynaptic inhibition. Fast-spiking parvalbumin-positive cells in both layer 5a and layer 4 were also strongly activated by L6 CT neurons. The overall effect of L6 CT activation was to suppress layer 4 while eliciting action potentials in layer 5a pyramidal neurons. Together, our data indicate that L6 CT neurons strongly activate an output layer of the cortex. PMID:25031405

  12. STDP in recurrent neuronal networks

    Directory of Open Access Journals (Sweden)

    Matthieu Gilson

    2010-09-01

    Full Text Available Recent results about spike-timing-dependent plasticity (STDP in recurrently connected neurons are reviewed, with a focus on the relationship between the weight dynamics and the emergence of network structure. In particular, the evolution of synaptic weights in the two cases of incoming connections for a single neuron and recurrent connections are compared and contrasted. A theoretical framework is used that is based upon Poisson neurons with a temporally inhomogeneous firing rate and the asymptotic distribution of weights generated by the learning dynamics. Different network configurations examined in recent studies are discussed and an overview of the current understanding of STDP in recurrently connected neuronal networks is presented.

  13. The biophysics of neuronal growth

    Energy Technology Data Exchange (ETDEWEB)

    Franze, Kristian; Guck, Jochen [Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE (United Kingdom)

    2010-09-01

    For a long time, neuroscience has focused on biochemical, molecular biological and electrophysiological aspects of neuronal physiology and pathology. However, there is a growing body of evidence indicating the importance of physical stimuli for neuronal growth and development. In this review we briefly summarize the historical background of neurobiophysics and give an overview over the current understanding of neuronal growth from a physics perspective. We show how biophysics has so far contributed to a better understanding of neuronal growth and discuss current inconsistencies. Finally, we speculate how biophysics may contribute to the successful treatment of lesions to the central nervous system, which have been considered incurable until very recently.

  14. Metamorphosis of an identified serotonergic neuron in the Drosophila olfactory system.

    Science.gov (United States)

    Roy, Bidisha; Singh, Ajeet P; Shetty, Chetak; Chaudhary, Varun; North, Annemarie; Landgraf, Matthias; Vijayraghavan, K; Rodrigues, Veronica

    2007-10-24

    Odors are detected by sensory neurons that carry information to the olfactory lobe where they connect to projection neurons and local interneurons in glomeruli: anatomically well-characterized structures that collect, integrate and relay information to higher centers. Recent studies have revealed that the sensitivity of such networks can be modulated by wide-field feedback neurons. The connectivity and function of such feedback neurons are themselves subject to alteration by external cues, such as hormones, stress, or experience. Very little is known about how this class of central neurons changes its anatomical properties to perform functions in altered developmental contexts. A mechanistic understanding of how central neurons change their anatomy to meet new functional requirements will benefit greatly from the establishment of a model preparation where cellular and molecular changes can be examined in an identified central neuron. In this study, we examine a wide-field serotonergic neuron in the Drosophila olfactory pathway and map the dramatic changes that it undergoes from larva to adult. We show that expression of a dominant-negative form of the ecdysterone receptor prevents remodeling. We further use different transgenic constructs to silence neuronal activity and report defects in the morphology of the adult-specific dendritic trees. The branching of the presynaptic axonal arbors is regulated by mechanisms that affect axon growth and retrograde transport. The neuron develops its normal morphology in the absence of sensory input to the antennal lobe, or of the mushroom bodies. However, ablation of its presumptive postsynaptic partners, the projection neurons and/or local interneurons, affects the growth and branching of terminal arbors. Our studies establish a cellular system for studying remodeling of a central neuromodulatory feedback neuron and also identify key elements in this process. Understanding the morphogenesis of such neurons, which have been

  15. Metamorphosis of an identified serotonergic neuron in the Drosophila olfactory system

    Directory of Open Access Journals (Sweden)

    Landgraf Matthias

    2007-10-01

    Full Text Available Abstract Background Odors are detected by sensory neurons that carry information to the olfactory lobe where they connect to projection neurons and local interneurons in glomeruli: anatomically well-characterized structures that collect, integrate and relay information to higher centers. Recent studies have revealed that the sensitivity of such networks can be modulated by wide-field feedback neurons. The connectivity and function of such feedback neurons are themselves subject to alteration by external cues, such as hormones, stress, or experience. Very little is known about how this class of central neurons changes its anatomical properties to perform functions in altered developmental contexts. A mechanistic understanding of how central neurons change their anatomy to meet new functional requirements will benefit greatly from the establishment of a model preparation where cellular and molecular changes can be examined in an identified central neuron. Results In this study, we examine a wide-field serotonergic neuron in the Drosophila olfactory pathway and map the dramatic changes that it undergoes from larva to adult. We show that expression of a dominant-negative form of the ecdysterone receptor prevents remodeling. We further use different transgenic constructs to silence neuronal activity and report defects in the morphology of the adult-specific dendritic trees. The branching of the presynaptic axonal arbors is regulated by mechanisms that affect axon growth and retrograde transport. The neuron develops its normal morphology in the absence of sensory input to the antennal lobe, or of the mushroom bodies. However, ablation of its presumptive postsynaptic partners, the projection neurons and/or local interneurons, affects the growth and branching of terminal arbors. Conclusion Our studies establish a cellular system for studying remodeling of a central neuromodulatory feedback neuron and also identify key elements in this process

  16. The role of ghrelin-responsive mediobasal hypothalamic neurons in mediating feeding responses to fasting

    Directory of Open Access Journals (Sweden)

    Bharath K. Mani

    2017-08-01

    Conclusions: These results suggest that 1 activation of GHSR-expressing neurons in the MBH is required for the normal feeding responses following both peripheral administration of ghrelin and fasting, 2 activation of MBH GHSR-expressing neurons is sufficient to induce feeding, and 3 axonal projections to a subset of hypothalamic and/or extra-hypothalamic regions likely mediate these responses. The Ghsr-IRES-Cre line should serve as a valuable tool to further our understanding of the functional significance of ghrelin-responsive/GHSR-expressing neurons and the neuronal circuitry within which they act.

  17. Project 2010 Project Management

    CERN Document Server

    Happy, Robert

    2010-01-01

    The ideal on-the-job reference guide for project managers who use Microsoft Project 2010. This must-have guide to using Microsoft Project 2010 is written from a real project manager's perspective and is packed with information you can use on the job. The book explores using Project 2010 during phases of project management, reveals best practices, and walks you through project flow from planning through tracking to closure. This valuable book follows the processes defined in the PMBOK Guide, Fourth Edition , and also provides exam prep for Microsoft's MCTS: Project 2010 certification.: Explains

  18. Circadian pacemaker neurons change synaptic contacts across the day

    Science.gov (United States)

    Gorostiza, E. Axel; Depetris-Chauvin, Ana; Frenkel, Lia; Pírez, Nicolás; Ceriani, María Fernanda

    2014-01-01

    Summary Daily cycles of rest and activity are a common example of circadian control of physiology. In Drosophila rhythmic locomotor cycles rely on the activity of 150-200 neurons grouped in seven clusters [1, 2]. Work from many laboratories points to the small Lateral Neurons ventral (sLNvs) as essential for circadian control of locomotor rhythmicity [3-7]. sLNv neurons undergo circadian remodeling of their axonal projections opening the possibility for a circadian control of connectivity of these relevant circadian pacemakers [8]. Here we show that circadian plasticity of the sLNv axonal projections has further implications than mere structural changes. First, we found that the degree of daily structural plasticity exceeds that originally described [8] underscoring that changes in the degree of fasciculation as well as extension or pruning of axonal terminals could be involved. Interestingly, the quantity of active zones changes along the day, lending support to the attractive hypothesis that new synapses are formed while others are dismantled between late night and the following morning. More remarkably, taking full advantage of the GFP Reconstitution Across Synaptic Partners (GRASP) technique [9] we showed that, in addition to new synapses being added or removed, sLNv neurons contact different synaptic partners at different times along the day. These results lead us to propose that the circadian network, and in particular the sLNv neurons, orchestrates some of the physiological and behavioral differences between day and night by changing the path through which information travels. PMID:25155512

  19. The DIADEM metric: comparing multiple reconstructions of the same neuron.

    Science.gov (United States)

    Gillette, Todd A; Brown, Kerry M; Ascoli, Giorgio A

    2011-09-01

    Digital reconstructions of neuronal morphology are used to study neuron function, development, and responses to various conditions. Although many measures exist to analyze differences between neurons, none is particularly suitable to compare the same arborizing structure over time (morphological change) or reconstructed by different people and/or software (morphological error). The metric introduced for the DIADEM (DIgital reconstruction of Axonal and DEndritic Morphology) Challenge quantifies the similarity between two reconstructions of the same neuron by matching the locations of bifurcations and terminations as well as their topology between the two reconstructed arbors. The DIADEM metric was specifically designed to capture the most critical aspects in automating neuronal reconstructions, and can function in feedback loops during algorithm development. During the Challenge, the metric scored the automated reconstructions of best-performing algorithms against manually traced gold standards over a representative data set collection. The metric was compared with direct quality assessments by neuronal reconstruction experts and with clocked human tracing time saved by automation. The results indicate that relevant morphological features were properly quantified in spite of subjectivity in the underlying image data and varying research goals. The DIADEM metric is freely released open source ( http://diademchallenge.org ) as a flexible instrument to measure morphological error or change in high-throughput reconstruction projects.

  20. Nitric Oxide Signaling in Hypergravity-Induced Neuronal Plasticity

    Science.gov (United States)

    Holstein, Gay R.

    2003-01-01

    The goal of this research project was to identify the neurons and circuits in the vestibular nuclei and nucleus prepositus hypoglossi that utilize nitric oxide (NO) for intercellular signaling during gravity-induced plasticity. This objective was pursued using histochemical and immunocytochemical approaches to localize NO-producing neurons and characterize the fine morphology of the cells in ground-based studies of normal rats, rats adapted to hypergravity, and rats adapted to hypergravity and then re-adapted to the 1G environment. NO-producing neurons were identified and studied using four methodologies: i) immunocytochemistry employing polyclonal antibodies directed against neuronal nitric oxide synthase (nNOS), to provide an indication of the capacity of a cell for NO production; ii) immunocytochemistry employing a monoclonal antibody directed against L-citrulline, to provide an indirect index of the enzyme's activity; iii) histochemistry based on the NADPH-diaphorase reaction, for fuI1 cytological visualization of neurons; and iv) double immunofluorescence to co-localize nNOS and L-citrulline in individual vestibular nuclei (VN) and neurons.

  1. Digital, three-dimensional average shaped atlas of the heliothis virescens brain with integrated gustatory and olfactory neurons

    Directory of Open Access Journals (Sweden)

    Pål Kvello

    2009-10-01

    Full Text Available We use the moth Heliothis virescens as model organism for studying the neural network involved in chemosensory coding and learning. The constituent neurons are characterised by intracellular recordings combined with staining, resulting in a single neuron identified in each brain preparation. In order to spatially relate the neurons of different preparations a common brain framework was required. We here present an average shaped atlas of the moth brain. It is based on 11 female brain preparations, each stained with a fluorescent synaptic marker and scanned in confocal laser-scanning microscope. Brain neuropils of each preparation were manually reconstructed in the computer software AMIRA, followed by generating the atlas using the Iterative Shape Average Procedure. To demonstrate the application of the atlas we have registered two olfactory and two gustatory interneurons, as well as the axonal projections of gustatory receptor neurons into the atlas, visualising their spatial relationships. The olfactory interneurons, showing the typical morphology of inner-tract antennal lobe projection neurons, projected in the calyces of the mushroom body and laterally in the protocerebral lobe. The two gustatory interneurons, responding to sucrose and quinine respectively, projected in different areas of the brain. The wide projections of the quinine responding neuron included a lateral area adjacent to the projections of the olfactory interneurons. The sucrose responding neuron was confined to the suboesophageal ganglion with dendritic arborizations overlapping the axonal projections of the gustatory receptor neurons on the proboscis. By serving as a tool for the integration of neurons, the atlas offers visual access to the spatial relationship between the neurons in three dimensions, and thus facilitates the study of neuronal networks in the Heliothis virescens brain. The moth standard brain is accessible at http://www.nt.ntnu.no/users/kvello/H_virescens_standardbrain/

  2. Prototypic and Arkypallidal Neurons in the Dopamine-Intact External Globus Pallidus

    Science.gov (United States)

    Abdi, Azzedine; Mallet, Nicolas; Mohamed, Foad Y.; Sharott, Andrew; Dodson, Paul D.; Nakamura, Kouichi C.; Suri, Sana; Avery, Sophie V.; Larvin, Joseph T.; Garas, Farid N.; Garas, Shady N.; Vinciati, Federica; Morin, Stéphanie; Bezard, Erwan

    2015-01-01

    Studies in dopamine-depleted rats indicate that the external globus pallidus (GPe) contains two main types of GABAergic projection cell; so-called “prototypic” and “arkypallidal” neurons. Here, we used correlative anatomical and electrophysiological approaches in rats to determine whether and how this dichotomous organization applies to the dopamine-intact GPe. Prototypic neurons coexpressed the transcription factors Nkx2-1 and Lhx6, comprised approximately two-thirds of all GPe neurons, and were the major GPe cell type innervating the subthalamic nucleus (STN). In contrast, arkypallidal neurons expressed the transcription factor FoxP2, constituted just over one-fourth of GPe neurons, and innervated the striatum but not STN. In anesthetized dopamine-intact rats, molecularly identified prototypic neurons fired at relatively high rates and with high regularity, regardless of brain state (slow-wave activity or spontaneous activation). On average, arkypallidal neurons fired at lower rates and regularities than prototypic neurons, and the two cell types could be further distinguished by the temporal coupling of their firing to ongoing cortical oscillations. Complementing the activity differences observed in vivo, the autonomous firing of identified arkypallidal neurons in vitro was slower and more variable than that of prototypic neurons, which tallied with arkypallidal neurons displaying lower amplitudes of a “persistent” sodium current important for such pacemaking. Arkypallidal neurons also exhibited weaker driven and rebound firing compared with prototypic neurons. In conclusion, our data support the concept that a dichotomous functional organization, as actioned by arkypallidal and prototypic neurons with specialized molecular, structural, and physiological properties, is fundamental to the operations of the dopamine-intact GPe. PMID:25926446

  3. Neuronal avalanches and coherence potentials

    Science.gov (United States)

    Plenz, D.

    2012-05-01

    The mammalian cortex consists of a vast network of weakly interacting excitable cells called neurons. Neurons must synchronize their activities in order to trigger activity in neighboring neurons. Moreover, interactions must be carefully regulated to remain weak (but not too weak) such that cascades of active neuronal groups avoid explosive growth yet allow for activity propagation over long-distances. Such a balance is robustly realized for neuronal avalanches, which are defined as cortical activity cascades that follow precise power laws. In experiments, scale-invariant neuronal avalanche dynamics have been observed during spontaneous cortical activity in isolated preparations in vitro as well as in the ongoing cortical activity of awake animals and in humans. Theory, models, and experiments suggest that neuronal avalanches are the signature of brain function near criticality at which the cortex optimally responds to inputs and maximizes its information capacity. Importantly, avalanche dynamics allow for the emergence of a subset of avalanches, the coherence potentials. They emerge when the synchronization of a local neuronal group exceeds a local threshold, at which the system spawns replicas of the local group activity at distant network sites. The functional importance of coherence potentials will be discussed in the context of propagating structures, such as gliders in balanced cellular automata. Gliders constitute local population dynamics that replicate in space after a finite number of generations and are thought to provide cellular automata with universal computation. Avalanches and coherence potentials are proposed to constitute a modern framework of cortical synchronization dynamics that underlies brain function.

  4. Neurons to algorithms LDRD final report.

    Energy Technology Data Exchange (ETDEWEB)

    Rothganger, Fredrick H.; Aimone, James Bradley; Warrender, Christina E.; Trumbo, Derek

    2013-09-01

    Over the last three years the Neurons to Algorithms (N2A) LDRD project teams has built infrastructure to discover computational structures in the brain. This consists of a modeling language, a tool that enables model development and simulation in that language, and initial connections with the Neuroinformatics community, a group working toward similar goals. The approach of N2A is to express large complex systems like the brain as populations of a discrete part types that have specific structural relationships with each other, along with internal and structural dynamics. Such an evolving mathematical system may be able to capture the essence of neural processing, and ultimately of thought itself. This final report is a cover for the actual products of the project: the N2A Language Specification, the N2A Application, and a journal paper summarizing our methods.

  5. Stereological analysis of the mediodorsal thalamic nucleus in schizophrenia: volume, neuron number, and cell types

    DEFF Research Database (Denmark)

    Dorph-Petersen, Karl-Anton; Pierri, Joseph N; Sun, Zhuoxin

    2004-01-01

    The mediodorsal thalamic nucleus (MD) is the principal relay nucleus for the prefrontal cortex, a brain region thought to be dysfunctional in schizophrenia. Several, but not all, postmortem studies of the MD in schizophrenia have reported decreased volume and total neuronal number. However......, it is not clear whether the findings are specific for schizophrenia nor is it known which subtypes of thalamic neurons are affected. We studied the left MD in 11 subjects with schizophrenia, 9 control subjects, and 12 subjects with mood disorders. Based on morphological criteria, we divided the neurons into two...... subclasses, presumably corresponding to projection neurons and local circuit neurons. We estimated MD volume and the neuron number of each subclass using methods based on modern unbiased stereological principles. We also estimated the somal volumes of each subclass using a robust, but biased, approach...

  6. [Neurons and values].

    Science.gov (United States)

    Camps, Victoria

    2013-09-01

    This article examines the advances made by neuroscience in the attempt to find an answer to the question regarding the origin and foundation of moral judgements and of human behaviour in compliance with them. The conception of the brain as something dynamic and capable of adapting to the social and cultural surroundings is seen to be an important point for philosophy. At the same time, the complexity of ethical issues that cannot be reduced to observations based strictly on neurons alone also becomes quite apparent. Nevertheless, scientists and philosophers should get together and communicate with one another so as to be able to pose their questions with greater rigour and take advantage of each other's respective knowledge.

  7. Multiplying with Neurons

    Science.gov (United States)

    Gabbiani, F.; Krapp, H.; Koch, C.; Laurent, G.

    1998-03-01

    LGMD and DCMD are a pair of identified neurons in the locust brain thought to be involved in visually triggered escape behavior. LGMD integrates visual inputs in its dendritic arbor, converts them into spikes transmitted in a 1:1 manner to DCMD which relays this information to motor centers. We measured the spike activity of DCMD during simulated object approach and observed that its peak occured prior to the expected collision. The time difference between peak activity and collision depended linearly on the ratio of object size to approach velocity, as expected if LGMD/DCMD were detecting the moment in time when the approaching object reaches a fixed angular threshold θ_thresh on the locust's retina. The response of LGMD/DCMD could be fitted by multiplying the angular velocity at which an approaching object is increasing in size over the retina, dot θ, with an exponential function of the object's angular size, θ: f(t) = g(dot θ(t-δ) e^-α θ(t-δ)) where g is a static non-linearity, α a constant related to the angular threshold detected by LGMD/DCMD (θ_thresh = arctan (2/α)) and δ denotes the lag of the neuronal response with respect to the stimulus. This suggests that LGMD/DCMD derives its angular threshold sensitivity by multiplying dot θ with an exponential of θ. A biophysical implementation would be through linear summation of excitatory and inhibitory inputs proportional to log(dot θ) and -α θ, followed by a conversion to spike rate according to the static non-linearity (g circ exp). We have performed several experiments to test this hypothesis.

  8. Mechanisms for multiple activity modes of VTA dopamine neurons

    Directory of Open Access Journals (Sweden)

    Andrew eOster

    2015-07-01

    Full Text Available Midbrain ventral segmental area (VTA dopaminergic neurons send numerous projections to cortical and sub-cortical areas, and diffusely release dopamine (DA to their targets. DA neurons display a range of activity modes that vary in frequency and degree of burst firing. Importantly, DA neuronal bursting is associated with a significantly greater degree of DA release than an equivalent tonic activity pattern. Here, we introduce a single compartmental, conductance-based computational model for DA cell activity that captures the behavior of DA neuronal dynamics and examine the multiple factors that underlie DA firing modes: the strength of the SK conductance, the amount of drive, and GABA inhibition. Our results suggest that neurons with low SK conductance fire in a fast firing mode, are correlated with burst firing, and require higher levels of applied current before undergoing depolarization block. We go on to consider the role of GABAergic inhibition on an ensemble of dynamical classes of DA neurons and find that strong GABA inhibition suppresses burst firing. Our studies suggest differences in the distribution of the SK conductance and GABA inhibition levels may indicate subclasses of DA neurons within the VTA. We further identify, that by considering alternate potassium dynamics, the dynamics display burst patterns that terminate via depolarization block, akin to those observed in vivo in VTA DA neurons and in substantia nigra pars compacta DA cell preparations under apamin application. In addition, we consider the generation of transient burst firing events that are NMDA-initiated or elicited by a sudden decrease of GABA inhibition, that is, disinhibition.

  9. Postmitotic specification of Drosophila insulinergic neurons from pioneer neurons.

    Directory of Open Access Journals (Sweden)

    Irene Miguel-Aliaga

    2008-03-01

    Full Text Available Insulin and related peptides play important and conserved functions in growth and metabolism. Although Drosophila has proved useful for the genetic analysis of insulin functions, little is known about the transcription factors and cell lineages involved in insulin production. Within the embryonic central nervous system, the MP2 neuroblast divides once to generate a dMP2 neuron that initially functions as a pioneer, guiding the axons of other later-born embryonic neurons. Later during development, dMP2 neurons in anterior segments undergo apoptosis but their posterior counterparts persist. We show here that surviving posterior dMP2 neurons no longer function in axonal scaffolding but differentiate into neuroendocrine cells that express insulin-like peptide 7 (Ilp7 and innervate the hindgut. We find that the postmitotic transition from pioneer to insulin-producing neuron is a multistep process requiring retrograde bone morphogenetic protein (BMP signalling and four transcription factors: Abdominal-B, Hb9, Fork Head, and Dimmed. These five inputs contribute in a partially overlapping manner to combinatorial codes for dMP2 apoptosis, survival, and insulinergic differentiation. Ectopic reconstitution of this code is sufficient to activate Ilp7 expression in other postmitotic neurons. These studies reveal striking similarities between the transcription factors regulating insulin expression in insect neurons and mammalian pancreatic beta-cells.

  10. Target neurons of floccular middle zone inhibition in medial vestibular nucleus.

    Science.gov (United States)

    Sato, Y; Kanda, K; Kawasaki, T

    1988-04-19

    Unitary activities of 288 neurons were recorded extracellularly in the medial vestibular nucleus (MV) in anesthetized cats. In 19 neurons, located in the rostral part of the MV adjacent to the stria acustica, floccular middle zone stimulation resulted in cessation of spontaneous discharges. Systematic microstimulation in the brainstem during recording of 16 of 19 target neurons of floccular middle zone inhibition revealed that the target neurons projected to the ipsilateral abducens nucleus (ABN), and not to the contralateral ABN nor the oculomotor nucleus. The conjugate ipsilateral horizontal eye movement elicited by middle zone stimulation may be mediated by this pathway to motoneurons and internuclear neurons in the ipsilateral ABN. In additional experiments, the MV neurons responding antidromically to ipsilateral ABN stimulation and orthodromically to ipsilateral 8 nerve stimulation were recorded extracellularly. In only 7 of 36 recorded neurons, middle zone stimulation depressed the orthodromic and spontaneous activities. Many neurons were free of floccular inhibition. As to the route of floccular inhibitory control over the vestibulo-ocular reflex (VOR) during visual-vestibular stimulation, we propose that the interaction of target and VOR relay neurons takes place at the ipsilateral ABN and modulates the VOR, in addition to well known Ito's proposal that the interaction of the floccular output and the VOR takes place at secondary vestibular neurons and modulates the VOR.

  11. Neurons of the ascidian larval nervous system in Ciona intestinalis: II. Peripheral nervous system.

    Science.gov (United States)

    Imai, Janice H; Meinertzhagen, Ian A

    2007-03-20

    The peripheral nervous system of the ascidian tadpole larva comprises a distributed population of isolated receptor neurons, most of unproved function, organized along the trunk or tail epithelium. Previous reports using immunocytochemical methods failed to resolve the detailed morphology of the neurons and their axon pathways. Precleavage embryos of Ciona intestinalis transfected with the promoter of the neuron-specific synaptotagmin gene fused to a green fluorescent protein (GFP) gene yielded clearly labelled GFP profiles. These we examined in confocal image stacks of 31 larvae. Anchor cells, at least eight in each adhesive apical papilla, contribute axons to the papillar nerves that terminate in the sensory vesicle of the central nervous system. Two nerve bundles projected from each papilla, suggesting that at least two subpopulations of papillar neurons exist. Each bundle fasciculated with axons of the rostral trunk epidermal neurons (RTEN) in a stereotyped pattern. The RTEN had a hitherto unreported elaborate arbor of sensory dendrites within the tunic, suggesting that each has an extended sensorial field. Two subpopulations of apical trunk epidermal neurons (ATEN), anterior and posterior, were distinguished. As with the RTEN, these neurons extended dendritic arbors into the tunic. Two additional types of tail neuron, the caudal epidermal neurons (dorsal and ventral) as well as a novel bipolar interneuron, were identified. These identified neuron types are the substrate for the ascidian larva's entire peripheral sensory input, important during larval swimming and settlement. 2007 Wiley-Liss, Inc.

  12. Axonal dynamics of excitatory and inhibitory neurons in somatosensory cortex.

    Directory of Open Access Journals (Sweden)

    Sally A Marik

    2010-06-01

    Full Text Available Cortical topography can be remapped as a consequence of sensory deprivation, suggesting that cortical circuits are continually modified by experience. To see the effect of altered sensory experience on specific components of cortical circuits, we imaged neurons, labeled with a genetically modified adeno-associated virus, in the intact mouse somatosensory cortex before and after whisker plucking. Following whisker plucking we observed massive and rapid reorganization of the axons of both excitatory and inhibitory neurons, accompanied by a transient increase in bouton density. For horizontally projecting axons of excitatory neurons there was a net increase in axonal projections from the non-deprived whisker barrel columns into the deprived barrel columns. The axon collaterals of inhibitory neurons located in the deprived whisker barrel columns retracted in the vicinity of their somata and sprouted long-range projections beyond their normal reach towards the non-deprived whisker barrel columns. These results suggest that alterations in the balance of excitation and inhibition in deprived and non-deprived barrel columns underlie the topographic remapping associated with sensory deprivation.

  13. Modulation of orientation-selective neurons by motion: when additive, when multiplicative?

    Directory of Open Access Journals (Sweden)

    Torsten eLüdge

    2014-06-01

    Full Text Available The recurrent interaction among orientation-selective neurons in the primary visual cortex (V1 is suited to enhance contours in a noisy visual scene. Motion is known to have a strong pop-up effect in perceiving contours, but how motion-sensitive neurons in V1 support contour detection remains vastly elusive. Here we suggest how the various types of motion-sensitive neurons observed in V1 should be wired together in a micro-circuitry to optimally extract contours in the visual scene. Motion-sensitive neurons can be selective about the direction of motion occurring at some spot or respond equally to all directions (pandirectional. We show that, in the light of figure-ground segregation, direction-selective motion neurons should additively modulate the corresponding orientation-selective neurons with preferred orientation orthogonal to the motion direction. In turn, to maximally enhance contours, pandirectional motion neurons should multiplicatively modulate all orientation-selective neurons with co-localized receptive fields. This multiplicative modulation amplifies the local V1-circuitry among co-aligned orientation-selective neurons for detecting elongated contours. We suggest that the additive modulation by direction- specific motion neurons is achieved through synaptic projections to the somatic region, and the multiplicative modulation by pandirectional motion neurons through projections to the apical region of orientation-specific pyramidal neurons. For the purpose of contour detection, the V1- intrinsic integration of motion information is advantageous over a downstream integration as it exploits the recurrent V1-circuitry designed for that task.

  14. The TRH neuron: a hypothalamic integrator of energy metabolism.

    Science.gov (United States)

    Lechan, Ronald M; Fekete, Csaba

    2006-01-01

    Thyrotropin-releasing hormone (TRH) has an important role in the regulation of energy homeostasis not only through effects on thyroid function orchestrated through hypophysiotropic neurons in the hypothalamic paraventricular nucleus (PVN), but also through central effects on feeding behavior, thermogenesis, locomotor activation and autonomic regulation. Hypophysiotropic TRH neurons are located in the medial and periventricular parvocellular subdivisions of the PVN and receive direct monosynaptic projections from two, separate, populations of leptin-responsive neurons in the hypothalamic arcuate nucleus containing either alpha-melanocyte-stimulating hormone (alpha-MSH) and cocaine- and amphetamine-regulated transcript (CART), peptides that promote weight loss and increase energy expenditure, or neuropeptide Y (NPY) and agouti-related protein (AGRP), peptides that promote weight gain and reduce energy expenditure. During fasting, the reduction in TRH mRNA in hypophysiotropic neurons mediated by suppression of alpha-MSH/CART simultaneously with an increase in NPY/AGRP gene expression in arcuate nucleus neurons contributes to the fall in circulating thyroid hormone levels, presumably by increasing the sensitivity of the TRH gene to negative feedback inhibition by thyroid hormone. Endotoxin administration, however, has the paradoxical effect of increasing circulating levels of leptin and melanocortin signaling and CART gene expression in arcuate nucleus neurons, but inhibiting TRH gene expression in hypophysiotropic neurons. This may be explained by an overriding inhibitory effect of endotoxin to increase type 2 iodothyroine deiodinase (D2) in a population of specialized glial cells, tanycytes, located in the base and infralateral walls of the third ventricle. By increasing the conversion of T4 into T3, tanycytes may increase local tissue concenetrations of thyroid hormone, and thereby induce a state of local tissue hyperthyroidism in the region of hypophysisotrophic

  15. A Neuron Model for FPGA Spiking Neuronal Network Implementation

    Directory of Open Access Journals (Sweden)

    BONTEANU, G.

    2011-11-01

    Full Text Available We propose a neuron model, able to reproduce the basic elements of the neuronal dynamics, optimized for digital implementation of Spiking Neural Networks. Its architecture is structured in two major blocks, a datapath and a control unit. The datapath consists of a membrane potential circuit, which emulates the neuronal dynamics at the soma level, and a synaptic circuit used to update the synaptic weight according to the spike timing dependent plasticity (STDP mechanism. The proposed model is implemented into a Cyclone II-Altera FPGA device. Our results indicate the neuron model can be used to build up 1K Spiking Neural Networks on reconfigurable logic suport, to explore various network topologies.

  16. Long descending cervical propriospinal neurons differ from thoracic propriospinal neurons in response to low thoracic spinal injury

    Directory of Open Access Journals (Sweden)

    Stelzner Dennis J

    2010-11-01

    Full Text Available Abstract Background Propriospinal neurons, with axonal projections intrinsic to the spinal cord, have shown a greater regenerative response than supraspinal neurons after axotomy due to spinal cord injury (SCI. Our previous work focused on the response of axotomized short thoracic propriospinal (TPS neurons following a low thoracic SCI (T9 spinal transection or moderate spinal contusion injury in the rat. The present investigation analyzes the intrinsic response of cervical propriospinal neurons having long descending axons which project into the lumbosacral enlargement, long descending propriospinal tract (LDPT axons. These neurons also were axotomized by T9 spinal injury in the same animals used in our previous study. Results Utilizing laser microdissection (LMD, qRT-PCR, and immunohistochemistry, we studied LDPT neurons (located in the C5-C6 spinal segments between 3-days, and 1-month following a low thoracic (T9 spinal cord injury. We examined the response of 89 genes related to growth factors, cell surface receptors, apoptosis, axonal regeneration, and neuroprotection/cell survival. We found a strong and significant down-regulation of ~25% of the genes analyzed early after injury (3-days post-injury with a sustained down-regulation in most instances. In the few genes that were up-regulated (Actb, Atf3, Frs2, Hspb1, Nrap, Stat1 post-axotomy, the expression for all but one was down-regulated by 2-weeks post-injury. We also compared the uninjured TPS control neurons to the uninjured LDPT neurons used in this experiment for phenotypic differences between these two subpopulations of propriospinal neurons. We found significant differences in expression in 37 of the 84 genes examined between these two subpopulations of propriospinal neurons with LDPT neurons exhibiting a significantly higher base line expression for all but 3 of these genes compared to TPS neurons. Conclusions Taken collectively these data indicate a broad overall down

  17. Neuronal responses to physiological stress

    DEFF Research Database (Denmark)

    Kagias, Konstantinos; Nehammer, Camilla; Pocock, Roger David John

    2012-01-01

    damage during aging that results in decline and eventual death. Studies have shown that the nervous system plays a pivotal role in responding to stress. Neurons not only receive and process information from the environment but also actively respond to various stresses to promote survival. These responses...... include changes in the expression of molecules such as transcription factors and microRNAs that regulate stress resistance and adaptation. Moreover, both intrinsic and extrinsic stresses have a tremendous impact on neuronal development and maintenance with implications in many diseases. Here, we review...... the responses of neurons to various physiological stressors at the molecular and cellular level....

  18. Evidence of involvement of neurone-glia/neurone-neurone communications via gap junctions in synchronised activity of KNDy neurones.

    Science.gov (United States)

    Ikegami, K; Minabe, S; Ieda, N; Goto, T; Sugimoto, A; Nakamura, S; Inoue, N; Oishi, S; Maturana, A D; Sanbo, M; Hirabayashi, M; Maeda, K-I; Tsukamura, H; Uenoyama, Y

    2017-06-01

    Pulsatile secretion of gonadotrophin-releasing hormone (GnRH)/luteinising hormone is indispensable for the onset of puberty and reproductive activities at adulthood in mammalian species. A cohort of neurones expressing three neuropeptides, namely kisspeptin, encoded by the Kiss1 gene, neurokinin B (NKB) and dynorphin A, localised in the hypothalamic arcuate nucleus (ARC), so-called KNDy neurones, comprises a putative intrinsic source of the GnRH pulse generator. Synchronous activity among KNDy neurones is considered to be required for pulsatile GnRH secretion. It has been reported that gap junctions play a key role in synchronising electrical activity in the central nervous system. Thus, we hypothesised that gap junctions are involved in the synchronised activities of KNDy neurones, which is induced by NKB-NK3R signalling. We determined the role of NKB-NK3R signalling in Ca 2+ oscillation (an indicator of neuronal activities) of KNDy neurones and its synchronisation mechanism among KNDy neurones. Senktide, a selective agonist for NK3R, increased the frequency of Ca 2+ oscillations in cultured Kiss1-GFP cells collected from the mediobasal hypothalamus of the foetal Kiss1-green fluorescent protein (GFP) mice. The senktide-induced Ca 2+ oscillations were synchronised in the Kiss1-GFP and neighbouring glial cells. Confocal microscopy analysis of these cells, which have shown synchronised Ca 2+ oscillations, revealed close contacts between Kiss1-GFP cells, as well as between Kiss1-GFP cells and glial cells. Dye coupling experiments suggest cell-to-cell communication through gap junctions between Kiss1-GFP cells and neighbouring glial cells. Connexin-26 and -37 mRNA were found in isolated ARC Kiss1 cells taken from adult female Kiss1-GFP transgenic mice. Furthermore, 18β-glycyrrhetinic acids and mefloquine, which are gap junction inhibitors, attenuated senktide-induced Ca 2+ oscillations in Kiss1-GFP cells. Taken together, these results suggest that NKB-NK3R signalling

  19. Nonsulfated cholecystokinins in cerebral neurons

    DEFF Research Database (Denmark)

    Agersnap, Mikkel; Zhang, Ming-Dong; Harkany, Tibor

    2016-01-01

    Cholecystokinin (CCK) is a widely expressed neuropeptide system originally discovered in the gut. Both cerebral and peripheral neurons as well as endocrine I-cells in the small intestine process proCCK to tyrosyl-O-sulfated and α-carboxyamidated peptides. Recently, we reported that gut endocrine I...... for nonsulfated CCK-8 with an antibody recognizing both sulfated and nonsulfated CCK. However, nonsulfated CCK immunoreactivity was stronger than that of sulfated CCK in cell bodies and weaker in nerve terminals. We conclude that only a small fraction of neuronal CCK is nonsulfated. The intracellular distribution...... of nonsulfated CCK in neurons suggests that they contribute only modestly to the CCK transmitter activity....

  20. Neurones and neuropeptides in coelenterates

    DEFF Research Database (Denmark)

    Grimmelikhuijzen, C J; Ebbesen, Ditte Graff; McFarlane, I D

    1989-01-01

    The first nervous system probably evolved in coelenterates. Many neurons in coelenterates have morphological characteristics of both sensory and motor neurones, and appear to be multifunctional. Using immunocytochemistry with antisera to the sequence Arg-Phe-NH2 (RFamide), RFamide-like peptides......) was isolated, which also belongs to the less than Glu...Arg-X-NH2 family. Using specific antisera it was shown that all four peptides were located in neurones. Application of low doses of Antho-RFamide, or Antho-RWamide I or II induced contractions of endodermal muscles of sea anemones. This indicates...

  1. Lack of Dopaminergic Inputs Elongates the Primary Cilia of Striatal Neurons

    Science.gov (United States)

    Miyoshi, Ko; Kasahara, Kyosuke; Murakami, Shinki; Takeshima, Mika; Kumamoto, Natsuko; Sato, Asako; Miyazaki, Ikuko; Matsuzaki, Shinsuke; Sasaoka, Toshikuni; Katayama, Taiichi; Asanuma, Masato

    2014-01-01

    In the rodent brain, certain G protein-coupled receptors and adenylyl cyclase type 3 are known to localize to the neuronal primary cilium, a primitive sensory organelle protruding singly from almost all neurons. A recent chemical screening study demonstrated that many compounds targeting dopamine receptors regulate the assembly of Chlamydomonas reinhardtii flagella, structures which are analogous to vertebrate cilia. Here we investigated the effects of dopaminergic inputs loss on the architecture of neuronal primary cilia in the rodent striatum, a brain region that receives major dopaminergic projections from the midbrain. We first analyzed the lengths of neuronal cilia in the dorsolateral striatum of hemi-parkinsonian rats with unilateral lesions of the nigrostriatal dopamine pathway. In these rats, the striatal neuronal cilia were significantly longer on the lesioned side than on the non-lesioned side. In mice, the repeated injection of reserpine, a dopamine-depleting agent, elongated neuronal cilia in the striatum. The combined administration of agonists for dopamine receptor type 2 (D2) with reserpine attenuated the elongation of striatal neuronal cilia. Repeated treatment with an antagonist of D2, but not of dopamine receptor type 1 (D1), elongated the striatal neuronal cilia. In addition, D2-null mice displayed longer neuronal cilia in the striatum compared to wild-type controls. Reserpine treatment elongated the striatal neuronal cilia in D1-null mice but not in D2-null mice. Repeated treatment with a D2 agonist suppressed the elongation of striatal neuronal cilia on the lesioned side of hemi-parkinsonian rats. These results suggest that the elongation of striatal neuronal cilia following the lack of dopaminergic inputs is attributable to the absence of dopaminergic transmission via D2 receptors. Our results provide the first evidence that the length of neuronal cilia can be modified by the lack of a neurotransmitter's input. PMID:24830745

  2. Statistical inference on spontaneous neuronal discharge patterns. I. Single neuron.

    Science.gov (United States)

    Lánský, P; Radil, T

    1987-01-01

    A statistical analysis was performed on extracellularly recorded spike trains of spontaneously active mesencephalic reticular neurons of rats. Only stationary records were used for detailed examination. The moments of interspike intervals were computed, hypothesis of renewal process and its specific forms was tested. Implications for statistical methodology are considered on the basis of the results. The main emphasis is laid on the connection between experimental results and stochastic neuronal models.

  3. Zbtb20-Induced CA1 Pyramidal Neuron Development and Area Enlargement in the Cerebral Midline Cortex of Mice

    DEFF Research Database (Denmark)

    Nielsen, Jakob V; Blom, Jonas B; Noraberg, Jens

    2010-01-01

    Expression of the transcriptional repressor Zbtb20 is confined to the hippocampal primordium of the developing dorsal midline cortex in mice. Here, we show that misexpression of Zbtb20 converts projection neurons of the subiculum and postsubiculum (dorsal presubiculum) to CA1 pyramidal neurons...... that are innervated by Schaffer collateral projections in ectopic strata oriens and radiatum. The Zbtb20-transformed neurons express Bcl11B, Satb2, and Calbindin-D28k, which are markers of adult CA1 pyramidal neurons. Downregulation of Zbtb20 expression by RNA interference impairs the normal maturation of CA1...... pyramidal neurons resulting in deficiencies in Calbindin-D28k expression and in reduced apical dendritic arborizations in stratum lacunosum moleculare. Overall, the results show that Zbtb20 is required for various aspects of CA1 pyramidal neuron development such as the postnatal extension of apical...

  4. Quantitative analysis of axon bouton distribution of subthalamic nucleus neurons in the rat by single neuron visualization with a viral vector.

    Science.gov (United States)

    Koshimizu, Yoshinori; Fujiyama, Fumino; Nakamura, Kouichi C; Furuta, Takahiro; Kaneko, Takeshi

    2013-06-15

    The subthalamic nucleus (STN) of the basal ganglia plays a key role in motor control, and STN efferents are known to mainly target the external segment of the globus pallidus (GPe), entopeduncular nucleus (Ep), and substantia nigra (SN) with some axon collaterals to the other regions. However, it remains to be clarified how each STN neuron projects axon fibers and collaterals to those target nuclei of the STN. Here we visualized the whole axonal arborization of single STN neurons in the rat brain by using a viral vector expressing membrane-targeted green fluorescent protein, and examined the distribution of axon boutons in those target nuclei. The vast majority (8-9) of 10 reconstructed STN neurons projected to the GPe, SN, caudate-putamen (CPu), and Ep, which received, on average ± SD, 457 ± 425, 400 ± 347, 126 ± 143, and 106 ± 100 axon boutons per STN neuron, respectively. Furthermore, the density of axon boutons in the GPe was highest among these nuclei. Although these target nuclei were divided into calbindin-rich and -poor portions, STN projection showed no exclusive preference for those portions. Since STN neurons mainly projected not only to the GPe, SN, and Ep but also to the CPu, the subthalamostriatal projection might serve as a positive feedback path for the striato-GPe-subthalamic disinhibitory pathway, or work as another route of cortical inputs to the striatum through the corticosubthalamostriatal disynaptic excitatory pathway. Copyright © 2012 Wiley Periodicals, Inc.

  5. Differential activity patterns of putaminal neurons with inputs from the primary motor cortex and supplementary motor area in behaving monkeys.

    Science.gov (United States)

    Takara, Sayuki; Hatanaka, Nobuhiko; Takada, Masahiko; Nambu, Atsushi

    2011-09-01

    Activity patterns of projection neurons in the putamen were investigated in behaving monkeys. Stimulating electrodes were implanted chronically into the proximal (MI(proximal)) and distal (MI(distal)) forelimb regions of the primary motor cortex (MI) and the forelimb region of the supplementary motor area (SMA). Cortical inputs to putaminal neurons were identified by excitatory orthodromic responses to stimulation of these motor cortices. Then, neuronal activity was recorded during the performance of a goal-directed reaching task with delay. Putaminal neurons with inputs from the MI and SMA showed different activity patterns, i.e., movement- and delay-related activity, during task performance. MI-recipient neurons increased activity in response to arm-reach movements, whereas SMA-recipient neurons increased activity during delay periods, as well as during movements. The activity pattern of MI + SMA-recipient neurons was of an intermediate type between those of MI- and SMA-recipient neurons. Approximately one-half of MI(proximal)-, SMA-, and MI + SMA-recipient neurons changed activities before the onset of movements, whereas a smaller number of MI(distal)- and MI(proximal + distal)-recipient neurons did. Movement-related activity of MI-recipient neurons was modulated by target directions, whereas SMA- and MI + SMA-recipient neurons had a lower directional selectivity. MI-recipient neurons were located mainly in the ventrolateral part of the caudal aspect of the putamen, whereas SMA-recipient neurons were located in the dorsomedial part. MI + SMA-recipient neurons were found in between. The present results suggest that a subpopulation of putaminal neurons displays specific activity patterns depending on motor cortical inputs. Each subpopulation receives convergent or nonconvergent inputs from the MI and SMA, retains specific motor information, and sends it to the globus pallidus and the substantia nigra through the direct and indirect pathways of the basal ganglia.

  6. Neuronal boost to evolutionary dynamics.

    Science.gov (United States)

    de Vladar, Harold P; Szathmáry, Eörs

    2015-12-06

    Standard evolutionary dynamics is limited by the constraints of the genetic system. A central message of evolutionary neurodynamics is that evolutionary dynamics in the brain can happen in a neuronal niche in real time, despite the fact that neurons do not reproduce. We show that Hebbian learning and structural synaptic plasticity broaden the capacity for informational replication and guided variability provided a neuronally plausible mechanism of replication is in place. The synergy between learning and selection is more efficient than the equivalent search by mutation selection. We also consider asymmetric landscapes and show that the learning weights become correlated with the fitness gradient. That is, the neuronal complexes learn the local properties of the fitness landscape, resulting in the generation of variability directed towards the direction of fitness increase, as if mutations in a genetic pool were drawn such that they would increase reproductive success. Evolution might thus be more efficient within evolved brains than among organisms out in the wild.

  7. Information processing by neuronal populations

    National Research Council Canada - National Science Library

    Hölscher, Christian; Munk, Matthias

    2009-01-01

    ... simultaneously recorded spike trains 120 Mark Laubach, Nandakumar S. Narayanan, and Eyal Y. Kimchi Part III Neuronal population information coding and plasticity in specific brain areas 149 7 F...

  8. Hydrodynamic Limit for Interacting Neurons

    Science.gov (United States)

    De Masi, A.; Galves, A.; Löcherbach, E.; Presutti, E.

    2015-02-01

    This paper studies the hydrodynamic limit of a stochastic process describing the time evolution of a system with N neurons with mean-field interactions produced both by chemical and by electrical synapses. This system can be informally described as follows. Each neuron spikes randomly following a point process with rate depending on its membrane potential. At its spiking time, the membrane potential of the spiking neuron is reset to the value 0 and, simultaneously, the membrane potentials of the other neurons are increased by an amount of potential . This mimics the effect of chemical synapses. Additionally, the effect of electrical synapses is represented by a deterministic drift of all the membrane potentials towards the average value of the system. We show that, as the system size N diverges, the distribution of membrane potentials becomes deterministic and is described by a limit density which obeys a non linear PDE which is a conservation law of hyperbolic type.

  9. Neuronal control of energy homeostasis

    OpenAIRE

    Gao, Qian; Horvath, Tamas L.

    2007-01-01

    Neuronal control of body energy homeostasis is the key mechanism by which animals and humans regulate their long-term energy balance. Various hypothalamic neuronal circuits (which include the hypothalamic melanocortin, midbrain dopamine reward and caudal brainstem autonomic feeding systems) control energy intake and expenditure to maintain body weight within a narrow range for long periods of a life span. Numerous peripheral metabolic hormones and nutrients target these structures providing f...

  10. Novel model of neuronal bioenergetics

    DEFF Research Database (Denmark)

    Bak, Lasse Kristoffer; Obel, Linea Lykke Frimodt; Walls, Anne B

    2012-01-01

    We have previously investigated the relative roles of extracellular glucose and lactate as fuels for glutamatergic neurons during synaptic activity. The conclusion from these studies was that cultured glutamatergic neurons utilize glucose rather than lactate during NMDA (N-methyl-d-aspartate)-ind......We have previously investigated the relative roles of extracellular glucose and lactate as fuels for glutamatergic neurons during synaptic activity. The conclusion from these studies was that cultured glutamatergic neurons utilize glucose rather than lactate during NMDA (N...... of an ionomycin-induced increase in intracellular Ca2+ (i.e. independent of synaptic activity) on neuronal energy metabolism employing 13C-labelled glucose and lactate and subsequent mass spectrometric analysis of labelling in glutamate, alanine and lactate. The results demonstrate that glucose utilization...... is positively correlated with intracellular Ca2+ whereas lactate utilization is not. This result lends further support for a significant role of glucose in neuronal bioenergetics and that Ca2+ signalling may control the switch between glucose and lactate utilization during synaptic activity. Based...

  11. Arcuate AgRP neurons and the regulation of energy balance.

    Science.gov (United States)

    Cansell, Céline; Denis, Raphaël G P; Joly-Amado, Aurélie; Castel, Julien; Luquet, Serge

    2012-01-01

    The arcuate nucleus of the hypothalamus contains at least two populations of neurons that continuously monitor signals reflecting energy status and promote the appropriate behavioral and metabolic responses to changes in energy demand. Activation of neurons making pro-opiomelanocortin (POMC) decreases food intake and increases energy expenditure through activation of G protein-coupled melanocortin receptors via the release of α-melanocyte-stimulating hormone. Until recently, the prevailing idea was that the neighboring neurons [agouti-related protein (AgRP) neurons] co-expressing the orexigenic neuropeptides, AgRP, and neuropeptide Y increase feeding by opposing the anorexigenic actions of the POMC neurons. However, it has now been demonstrated that only AgRP neurons activation - not POMC neurons inhibition - is necessary and sufficient to promote feeding. Projections of AgRP-expressing axons innervate mesolimbic, midbrain, and pontine structures where they regulate feeding and feeding-independent functions such as reward or peripheral nutrient partitioning. AgRP neurons also make gamma aminobutyric acid , which is now thought to mediate many of critical functions of these neurons in a melanocortin-independent manner and on a timescale compatible with neuromodulation.

  12. Functional Characterization of Lamina X Neurons in ex-Vivo Spinal Cord Preparation

    Directory of Open Access Journals (Sweden)

    Volodymyr Krotov

    2017-11-01

    Full Text Available Functional properties of lamina X neurons in the spinal cord remain unknown despite the established role of this area for somatosensory integration, visceral nociception, autonomic regulation and motoneuron output modulation. Investigations of neuronal functioning in the lamina X have been hampered by technical challenges. Here we introduce an ex-vivo spinal cord preparation with both dorsal and ventral roots still attached for functional studies of the lamina X neurons and their connectivity using an oblique LED illumination for resolved visualization of lamina X neurons in a thick tissue. With the elaborated approach, we demonstrate electrophysiological characteristics of lamina X neurons by their membrane properties, firing pattern discharge and fiber innervation (either afferent or efferent. The tissue preparation has been also probed using Ca2+ imaging with fluorescent Ca2+ dyes (membrane-impermeable or -permeable to demonstrate the depolarization-induced changes in intracellular calcium concentration in lamina X neurons. Finally, we performed visualization of subpopulations of lamina X neurons stained by retrograde labeling with aminostilbamidine dye to identify sympathetic preganglionic and projection neurons in the lamina X. Thus, the elaborated approach provides a reliable tool for investigation of functional properties and connectivity in specific neuronal subpopulations, boosting research of lamina X of the spinal cord.

  13. GABAergic neurons in the rostral mesencephalon of the macaque monkey that control vertical eye movements.

    Science.gov (United States)

    Horn, Anja K E; Helmchen, Christoph; Wahle, Petra

    2003-10-01

    The mesencephalic reticular formation is important for the generation of vertical eye movements, but up until now the location of inhibitory premotor neurons is not known in primates. With tract-tracer methods combined with immunocytochemistry or in situ hybridization, we investigated the location of GABAergic premotor neurons in the rostral interstitial nucleus of the medial longitudinal fascicle (riMLF) and interstitial nucleus of Cajal (iC) in macaque monkeys. In the present work, only the premotor pathways of the downward pulling eye muscles, superior oblique (SO) and inferior rectus (IR), were studied. We found that very few, small GABAergic neurons are present in the riMLF, and none of them was found to project to the oculomotor nuclei, suggesting the presence of exclusively excitatory projections from the riMLF to the oculomotor neurons. However, in the iC, medium-sized and large GABAergic neurons were identified projecting contralaterally to the SO and IR motoneurons, and presumably the iC of the other side. These commissural GABAergic projections are well suited to inhibit the SO and IR motoneurons and possibly premotor down-burst-tonic neurons during upward eye movements.

  14. Culture of Mouse Olfactory Sensory Neurons

    OpenAIRE

    Gong, Qizhi

    2012-01-01

    Olfactory sensory neurons, located in the nasal epithelium, detect and transmit odorant information to the central nervous system. This requires that these neurons form specific neuronal connections within the olfactory bulb and express receptors and signaling molecules specific for these functions. This protocol describes a primary olfactory sensory neuron culture technique that allows in vitro investigation of olfactory sensory neuron differentiation, axon outgrowth, odorant receptor expres...

  15. Correlations between neuronal morphology and electrophysiological features in the rodent superficial dorsal horn

    Science.gov (United States)

    Grudt, T J; Perl, E R

    2002-01-01

    Relationships between the morphology of individual neurones of the spinal superficial dorsal horn (SDH), laminae I and II, and their electrophysiological properties were studied in spinal cord slices prepared from anaesthetized, free-ranging hamsters. Tight-seal, whole-cell recordings were made with pipette microelectrodes filled with biocytin to establish electrophysiological characteristics and to label the studied neurones. Neurones were categorized according to location and size of the somata, the dendritic and axonal pattern of arborization, spontaneous synaptic potentials, evoked postsynaptic currents, pattern of discharge to depolarizing pulses and current-voltage relationships. Data were obtained for 170 neurones; 13 of these had somata in lamina I and 157 in lamina II. Stimulation of the segmental dorsal root evoked a prompt excitatory response in almost every neurone sampled (161/166) with nearly 3/4 displaying putative monosynaptic EPSCs. The majority of neurones (133/170) fitted one of several distinctive morphological categories. To a considerable extent, neurones with a common morphological configuration and neurite disposition shared electrophysiological characteristics. Five of the 13 lamina I neurones were relatively large with extensive dendritic arborization in the horizontal dimension and a prominent axon directed ventrally and contralaterally. These presumptive ventrolateral projection neurones differed structurally and electrophysiologically from the other lamina I neurones, which had ipsilateral, locally arborizing axons and/or branches entering the dorsal lateral funiculus. One hundred and twenty lamina II neurones fitted one of five morphological categories: islet, central, medial-lateral, radial or vertical. Central cells were further divided into three groups on functional features. We conclude that the spinal SDH comprises many types of neurones whose morphological characteristics are associated with specific functional features implying

  16. The fine structure of the neurons in the rat substantia nigra.

    Science.gov (United States)

    Gulley, R L; Wood, R L

    1971-01-01

    Three distinct neurons were identified in the substantia nigra of the rat using Golgi, light, and electron microscopic techniques. A large neuron, found in the pars reticulata, is characterized by well-developed RER, a tubular cytoplasmic inclusion, and somatic and dendritic thorns. A medium-sized neuron, found in the pars compacta, has an eccentric nucleus, distinct Nissl bodies, and an inclusion composed of whorls of concentric cisternae. A small neuron, found in both nigral regions, contains a highly invaginated nucleus, fibrous nuclear inclusion, and paucity of cytoplasmic organelles. Its axon synapses around other nigral dendrites. The presence of these neurons was correlated with the efferent projections and function of the substantia nigra.

  17. Assessing temporal and spatial evolution of clusters of functionally interdependent neurons using graph partitioning techniques.

    Science.gov (United States)

    Oweiss, Karim G; Jin, Rong; Chen, Feilong

    2006-01-01

    This paper suggests a new approach for identifying clusters of neurons with correlated spiking activity in large-size neuronal ensembles recorded with high-density microelectrode arrays. The nonparametric approach relies on mapping the neuronal spike trains to a 'scale space' using a nested multiresolution projection. Similarity measures can be arbitrarily defined in the scale space independent of the fixed bin width classically used to assess neuronal correlation. This representation allows efficient graph partitioning techniques to be used to identify clusters of correlated firing within distinct behavioral contexts. We use a new probabilistic spectral clustering algorithm that simultaneously maximizes cluster aggregation based on similarity measures. The technique is able to efficiently identify functionally interdependent neurons regardless of the temporal scale from which rate functions are typically estimated. We report the clustering performance of the algorithm applied to a synthesized neurophysiological data set and compare it to known clustering techniques to illustrate the substantial gain in the performance.

  18. A small subset of fruitless subesophageal neurons modulate early courtship in Drosophila.

    Directory of Open Access Journals (Sweden)

    David H Tran

    Full Text Available We show that a small subset of two to six subesophageal neurons, expressing the male products of the male courtship master regulator gene products fruitless Male (fru M, are required in the early stages of the Drosophila melanogaster male courtship behavioral program. Loss of fru M expression or inhibition of synaptic transmission in these fru M(+ neurons results in delayed courtship initiation and a failure to progress to copulation primarily under visually-deficient conditions. We identify a fru M-dependent sexually dimorphic arborization in the tritocerebrum made by two of these neurons. Furthermore, these SOG neurons extend descending projections to the thorax and abdominal ganglia. These anatomical and functional characteristics place these neurons in the position to integrate gustatory and higher-order signals in order to properly initiate and progress through early courtship.

  19. Organization and morphology of thalamocortical neurons of mouse ventral lateral thalamus.

    Science.gov (United States)

    Tlamsa, Aileen P; Brumberg, Joshua C

    2010-01-01

    The ventral lateral nucleus of the thalamus (VL) serves as a central integrative center for motor control, receiving inputs from the cerebellum, striatum, and cortex and projecting to the primary motor cortex. We aimed to determine the somatotopy and morphological features of the thalamocortical neurons within mouse VL. Retrograde tracing studies revealed that whisker-related VL neurons were found relatively anterior and medial to those labeled following injection of retrograde tracer into hindpaw motor areas. Simultaneous injections of fluorescent microspheres in both cortical regions did not result in double-labeled neurons in VL. Quantitative analysis of dendritic and somatic morphologies did not reveal any differences between hindpaw and whisker thalamocortical neurons within VL. The morphology of the thalamocortical neurons within mouse VL is similar to those in other mammals and suggests that mouse can be used as a model system for studying thalamocortical transformations within the motor system as well as plasticity following sensory deprivation or enrichment.

  20. Equipment to Support Development of Neuronal Network Controlled Robots

    Science.gov (United States)

    2016-06-25

    Equipment to Support Development of Neuronal Network Controlled Robots With this award, our team purchased an ALA 2-channel stimulus generator, an...34 laser cutter, and a Rethink Robotics Baxter Robot . This equipment supported two ARO awards, a DARPA award and two NSF-funded projects. The views...Controlled Robots Report Title With this award, our team purchased an ALA 2-channel stimulus generator, an ALA 60-channel amplifier with pre-filter

  1. Ephaptic coupling in cortical neurons

    Directory of Open Access Journals (Sweden)

    Costas Anastassiou

    2014-03-01

    Full Text Available The electrochemical processes that underlie neural function manifest themselves in ceaseless spatial and temporal fluctuations in the extracellular electric field. The local field potential (LFP, used to study neural interactions during various brain states, is regarded as an epiphenomenon of coordinated neural activity. Yet the extracellular field activity feeds back onto the electrical potential across the neuronal membrane via ephaptic coupling (Jefferys et al, Physiol Rev, 1995. The extent to which such ephaptic coupling alters the functioning of individual neurons and neural assemblies under physiological conditions has remained largely speculative despite recent advances (Ozen et al, JNeurosci, 2010; Fröhlich & McCormick, Neuron, 2010, Anastassiou et al, JNeurosci, 2010. To address this question we use a 12-pipette setup that allows independent positioning of each pipette under visual control with μm accuracy, with the flexibility of using an arbitrary number of these as patching, extracellularly stimulating or extracellular recording pipettes only a few μm away from the cell body of patched neurons (Anastassiou et al, Nat Neurosci, 2011. We stimulated in rat somatosensory cortical slices a variety of layer 5 neural types and recorded inside and outside their cell bodies while pharmacologically silencing synaptic transmission. Pyramidal cells couple to the extracellular field distinctly different from interneurons. Ephaptic coupling strength depends both on the field strength (as measured at the neuron soma as well as the spike-history of neurons. In particular, we find that ephaptic coupling strength depends both on the field strength (as measured at the cell body as well as the spike-history of neurons. How do such effects manifest themselves in vivo? We address this question through detailed large-scale simulations from thousands of biophysically realistic and interconnected neurons (Reimann, Anastassiou et al, Neuron, 2013 emulating

  2. Electrical characteristics and responses to jejunal distension of neurons in Remak's juxta-jejunal ganglia of the domestic fowl

    Science.gov (United States)

    Smith, Terence K; Lunam, Christine A

    1998-01-01

    Remak's nerve is a ganglionated nerve trunk found only in birds that runs parallel to the gut from the duodenal–jejunal junction to the cloaca. We report the first electrophysiological characterization of these neurons and their responses to gut distension. A segment of chicken jejunum with attached Remak's nerve was pinned in an electrophysiological chamber. Neurons in Remak's ganglia were impaled with microelectrodes. The adjacent segment of gut was distended with fluid. One hundred and thirty neurons were characterized into three electrophysiological classes: (i) tonic neurons (74 %) fired action potentials spontaneously (frequency 3.5 Hz) and continuously (up to 40 Hz) throughout a depolarizing current pulse; (ii) AD neurons (22 %) fired a brief burst of action potentials (1–10), which were followed by a prolonged after-depolarization (AD) of duration 2.8 ± 0.3 s; and (iii) phasic neurons (4 %) fired an initial burst of action potentials followed by an after-hyperpolarization (duration, 520.0 ± 32.0 ms). Tetrodotoxin (1 μM) abolished action potentials in tonic and AD neurons as well as the after-depolarization. Spontaneous fast excitatory postsynaptic potentials (FEPSPs) occurred in all classes of neurons; they were not observed, however, in ganglia isolated from the jejunum. Intracellular injection of biocytin revealed that neurons could be characterized into four morphological classes. Tonic neurons, which had long and extensive dendritic trees, were Remak's Type I, II and IV neurons. AD neurons also comprised Remak's type II neurons. Phasic neurons were Remak's Type III neurons. Most neurons had axons that projected orally along Remak's nerve. Distension of the jejunum evoked FEPSPs and action potentials in tonic neurons, and repetitive bursts of action potentials (1–4) followed by an after-depolarization in AD neurons. All responses to distension were blocked by hexamethonium (300 μM) and tetrodotoxin (1 μM). In conclusion, neurons in Remak

  3. Neuronal factors determining high intelligence.

    Science.gov (United States)

    Dicke, Ursula; Roth, Gerhard

    2016-01-05

    Many attempts have been made to correlate degrees of both animal and human intelligence with brain properties. With respect to mammals, a much-discussed trait concerns absolute and relative brain size, either uncorrected or corrected for body size. However, the correlation of both with degrees of intelligence yields large inconsistencies, because although they are regarded as the most intelligent mammals, monkeys and apes, including humans, have neither the absolutely nor the relatively largest brains. The best fit between brain traits and degrees of intelligence among mammals is reached by a combination of the number of cortical neurons, neuron packing density, interneuronal distance and axonal conduction velocity--factors that determine general information processing capacity (IPC), as reflected by general intelligence. The highest IPC is found in humans, followed by the great apes, Old World and New World monkeys. The IPC of cetaceans and elephants is much lower because of a thin cortex, low neuron packing density and low axonal conduction velocity. By contrast, corvid and psittacid birds have very small and densely packed pallial neurons and relatively many neurons, which, despite very small brain volumes, might explain their high intelligence. The evolution of a syntactical and grammatical language in humans most probably has served as an additional intelligence amplifier, which may have happened in songbirds and psittacids in a convergent manner. © 2015 The Author(s).

  4. Brain Neurons as Quantum Computers:

    Science.gov (United States)

    Bershadskii, A.; Dremencov, E.; Bershadskii, J.; Yadid, G.

    The question: whether quantum coherent states can sustain decoherence, heating and dissipation over time scales comparable to the dynamical timescales of brain neurons, has been actively discussed in the last years. A positive answer on this question is crucial, in particular, for consideration of brain neurons as quantum computers. This discussion was mainly based on theoretical arguments. In the present paper nonlinear statistical properties of the Ventral Tegmental Area (VTA) of genetically depressive limbic brain are studied in vivo on the Flinders Sensitive Line of rats (FSL). VTA plays a key role in the generation of pleasure and in the development of psychological drug addiction. We found that the FSL VTA (dopaminergic) neuron signals exhibit multifractal properties for interspike frequencies on the scales where healthy VTA dopaminergic neurons exhibit bursting activity. For high moments the observed multifractal (generalized dimensions) spectrum coincides with the generalized dimensions spectrum calculated for a spectral measure of a quantum system (so-called kicked Harper model, actively used as a model of quantum chaos). This observation can be considered as a first experimental (in vivo) indication in the favor of the quantum (at least partially) nature of brain neurons activity.

  5. Neuronal vulnerability in Parkinson's disease.

    Science.gov (United States)

    Double, Kay L

    2012-01-01

    The classic motor symptoms of Parkinson's disease result from the progressive death of dopaminergic neurons within the substantia nigra. To date the relatively selective vulnerability of this brain region is not understood. The unique feature of dopaminergic neurons of the human substantia nigra pars compacta is the presence of the polymer pigment neuromelanin which gives this region its characteristic dark colour. In the healthy brain, neuromelanin appears to play a functional role to protect neurons from oxidative load but we have shown that in the Parkinson's disease brain the pigment undergoes structural changes and is associated with aggregation of α-synuclein protein, even early in the disease process. Further, the role of the pigment as a metal binder has also been suggested to underlie the relative vulnerability of these neurons, as changes in metal levels are suggested to be associated with neurodegenerative cascades in Parkinson's disease. While most research to date has focused on the role of iron in these pathways we have recently shown that changes in copper may contribute to neuronal vulnerability in this disorder. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Micro fluidic System for Culturing and Monitoring of Neuronal Cells and Tissue

    DEFF Research Database (Denmark)

    Bakmand, Tanya; Waagepetersen, Helle S.

    The aim of this Ph.D. project was to combine experience within cell and tissue culturing, electrochemistry and microfabrication in order to develop an in vivo-like fluidic culturing platform, challenging the traditional culturing methods. The first goal was to develope a fluidic system...... for culturing of brain tissue. The second goal was to develop a sensor system with the potential for incorporation into both conventional culture systems and fluidic culturing systems. The third and final goal of this project was to develop a system for culturing of neuronal cells with the possibility...... neuronal cells on a Peptide Nano Wires (PNW) modified substrate aiming to bring conventional neuronal cultures closer to mimic the in vivo situation. The work describes both the fabrication of the culture substrates and results comparing the performance of PNWcultured neurons and conventional cultures...

  7. Long-term Cre-mediated Retrograde Tagging of Neurons Using a Novel Recombinant Pseudorabies Virus

    Directory of Open Access Journals (Sweden)

    Hassana eOyibo

    2014-09-01

    Full Text Available Brain regions contain diverse populations of neurons that project to different long-range targets. The study of these subpopulations in circuit function and behavior requires a toolkit to characterize and manipulate their activity in vivo. We have developed a novel set of reagents based on Pseudorabies Virus (PRV for efficient and long-term genetic tagging of neurons based on their projection targets. By deleting IE180, the master transcriptional regulator in the PRV genome, we have produced a mutant virus capable of infection and transgene expression in neurons but unable to replicate in or spread from those neurons. IE180-null mutants showed no cytotoxicity, and infected neurons exhibited normal physiological function more than 45 days after infection, indicating the utility of these engineered viruses for chronic experiments. To enable rapid and convenient construction of novel IE180-null recombinants, we engineered a bacterial artificial chromosome (BAC shuttle-vector system for moving new constructs into the PRV IE180-null genome. Using this system we generated an IE180-null recombinant virus expressing the site-specific recombinase Cre. This Cre-expressing virus (PRV-hSyn-Cre efficiently and robustly infects neurons in vivo and activates transgene expression from Cre-dependent vectors in local and retrograde projecting populations of neurons in the mouse. We also generated an assortment of recombinant viruses expressing fluorescent proteins (mCherry, EGFP, ECFP. These viruses exhibit long-term labeling of neurons in vitro but transient labeling in vivo. Together these novel IE180-null PRV reagents expand the toolkit for targeted gene expression in the brain, facilitating functional dissection of neuronal circuits in vivo.

  8. VTA GABA neurons modulate specific learning behaviours through the control of dopamine and cholinergic systems

    Directory of Open Access Journals (Sweden)

    Meaghan C Creed

    2014-01-01

    Full Text Available The mesolimbic reward system is primarily comprised of the ventral tegmental area (VTA and the nucleus accumbens (NAc as well as their afferent and efferent connections. This circuitry is essential for learning about stimuli associated with motivationally-relevant outcomes. Moreover, addictive drugs affect and remodel this system, which may underlie their addictive properties. In addition to DA neurons, the VTA also contains approximately 30% ɣ-aminobutyric acid (GABA neurons. The task of signalling both rewarding and aversive events from the VTA to the NAc has mostly been ascribed to DA neurons and the role of GABA neurons has been largely neglected until recently. GABA neurons provide local inhibition of DA neurons and also long-range inhibition of projection regions, including the NAc. Here we review studies using a combination of in vivo and ex vivo electrophysiology, pharmacogenetic and optogenetic manipulations that have characterized the functional neuroanatomy of inhibitory circuits in the mesolimbic system, and describe how GABA neurons of the VTA regulate reward and aversion-related learning. We also discuss pharmacogenetic manipulation of this system with benzodiazepines (BDZs, a class of addictive drugs, which act directly on GABAA receptors located on GABA neurons of the VTA. The results gathered with each of these approaches suggest that VTA GABA neurons bi-directionally modulate activity of local DA neurons, underlying reward or aversion at the behavioural level. Conversely, long-range GABA projections from the VTA to the NAc selectively target cholinergic interneurons (CINs to pause their firing and temporarily reduce cholinergic tone in the NAc, which modulates associative learning. Further characterization of inhibitory circuit function within and beyond the VTA is needed in order to fully understand the function of the mesolimbic system under normal and pathological conditions.

  9. Prospective Coding by Spiking Neurons.

    Directory of Open Access Journals (Sweden)

    Johanni Brea

    2016-06-01

    Full Text Available Animals learn to make predictions, such as associating the sound of a bell with upcoming feeding or predicting a movement that a motor command is eliciting. How predictions are realized on the neuronal level and what plasticity rule underlies their learning is not well understood. Here we propose a biologically plausible synaptic plasticity rule to learn predictions on a single neuron level on a timescale of seconds. The learning rule allows a spiking two-compartment neuron to match its current firing rate to its own expected future discounted firing rate. For instance, if an originally neutral event is repeatedly followed by an event that elevates the firing rate of a neuron, the originally neutral event will eventually also elevate the neuron's firing rate. The plasticity rule is a form of spike timing dependent plasticity in which a presynaptic spike followed by a postsynaptic spike leads to potentiation. Even if the plasticity window has a width of 20 milliseconds, associations on the time scale of seconds can be learned. We illustrate prospective coding with three examples: learning to predict a time varying input, learning to predict the next stimulus in a delayed paired-associate task and learning with a recurrent network to reproduce a temporally compressed version of a sequence. We discuss the potential role of the learning mechanism in classical trace conditioning. In the special case that the signal to be predicted encodes reward, the neuron learns to predict the discounted future reward and learning is closely related to the temporal difference learning algorithm TD(λ.

  10. The role of ghrelin-responsive mediobasal hypothalamic neurons in mediating feeding responses to fasting.

    Science.gov (United States)

    Mani, Bharath K; Osborne-Lawrence, Sherri; Mequinion, Mathieu; Lawrence, Sydney; Gautron, Laurent; Andrews, Zane B; Zigman, Jeffrey M

    2017-08-01

    Ghrelin is a stomach-derived hormone that affects food intake and regulates blood glucose. The best-characterized actions of ghrelin are mediated by its binding to and activation of the growth hormone secretagogue receptor (GHSR; ghrelin receptor). Adequate examination of the identity, function, and relevance of specific subsets of GHSR-expressing neurons has been hampered by the absence of a suitable Cre recombinase (Cre)-expressing mouse line with which to manipulate gene expression in a targeted fashion within GHSR-expressing neurons. The present study aims to characterize the functional significance and neurocircuitry of GHSR-expressing neurons in the mediobasal hypothalamus (MBH), as they relate to ghrelin-induced food intake and fasting-associated rebound hyperphagia, using a novel mouse line in which Cre expression is controlled by the Ghsr promoter. A Ghsr-IRES-Cre mouse line that expresses Cre directed by the Ghsr promoter was generated. The line was validated by comparing Cre activity in reporter mice to the known brain distribution pattern of GHSR. Next, the requirement of MBH GHSR-expressing neuronal activity in mediating food intake in response to administered ghrelin and in response to fasting was assessed after stereotaxic delivery of inhibitory designer receptor exclusively activated by designer drugs (DREADD) virus to the MBH. In a separate cohort of Ghsr-IRES-Cre mice, stereotaxic delivery of stimulatory DREADD virus to the MBH was performed to assess the sufficiency of MBH GHSR-expressing neuronal activity on food intake. Finally, the distribution of MBH GHSR-expressing neuronal axonal projections was assessed in the DREADD virus-injected animals. The pattern of Cre activity in the Ghsr-IRES-Cre mouse line mostly faithfully reproduced the known GHSR expression pattern. DREADD-assisted inhibition of MBH GHSR neuronal activity robustly suppressed the normal orexigenic response to ghrelin and fasting-associated rebound food intake. DREADD

  11. Copying and evolution of neuronal topology.

    Directory of Open Access Journals (Sweden)

    Chrisantha Fernando

    Full Text Available We propose a mechanism for copying of neuronal networks that is of considerable interest for neuroscience for it suggests a neuronal basis for causal inference, function copying, and natural selection within the human brain. To date, no model of neuronal topology copying exists. We present three increasingly sophisticated mechanisms to demonstrate how topographic map formation coupled with Spike-Time Dependent Plasticity (STDP can copy neuronal topology motifs. Fidelity is improved by error correction and activity-reverberation limitation. The high-fidelity topology-copying operator is used to evolve neuronal topologies. Possible roles for neuronal natural selection are discussed.

  12. Neuronal involvement in cisplatin neuropathy

    DEFF Research Database (Denmark)

    Krarup-Hansen, A; Helweg-Larsen, Susanne Elisabeth; Schmalbruch, H

    2007-01-01

    Although it is well known that cisplatin causes a sensory neuropathy, the primary site of involvement is not established. The clinical symptoms localized in a stocking-glove distribution may be explained by a length dependent neuronopathy or by a distal axonopathy. To study whether the whole neuron...... of large dorsal root ganglion cells. Motor conduction studies, autonomic function and warm and cold temperature sensation remained unchanged at all doses of cisplatin treatment. The results of these studies are consistent with degeneration of large sensory neurons whereas there was no evidence of distal...

  13. Communication between mast cells and rat submucosal neurons.

    Science.gov (United States)

    Bell, Anna; Althaus, Mike; Diener, Martin

    2015-08-01

    Histamine is a mast cell mediator released e.g. during food allergy. The aim of the project was to identify the effect of histamine on rat submucosal neurons and the mechanisms involved. Cultured submucosal neurons from rat colon express H1, H2 and H3 receptors as shown by immunocytochemical staining confirmed by reverse transcriptase polymerase chain reaction (RT-PCR) with messenger RNA (mRNA) isolated from submucosal homogenates as starting material. Histamine evoked a biphasic rise of the cytosolic Ca(2+) concentration in cultured submucosal neurons, consisting in a release of intracellularly stored Ca(2+) followed by an influx from the extracellular space. Although agonists of all three receptor subtypes evoked an increase in the cytosolic Ca(2+) concentration, experiments with antagonists revealed that mainly H1 (and to a lesser degree H2) receptors mediate the response to histamine. In coculture experiments with RBL-2H3 cells, a mast cell equivalent, compound 48/80, evoked an increase in the cytosolic Ca(2+) concentration of neighbouring neurons. Like the response to native histamine, the neuronal response to the mast cell degranulator was strongly inhibited by the H1 receptor antagonist pyrilamine and reduced by the H2 receptor antagonist cimetidine. In rats sensitized against ovalbumin, exposure to the antigen induced a rise in short-circuit current (I sc) across colonic mucosa-submucosa preparations without a significant increase in paracellular fluorescein fluxes. Pyrilamine strongly inhibited the increase in I sc, a weaker inhibition was observed after blockade of protease receptors or 5-lipoxygenase. Consequently, H1 receptors on submucosal neurons seem to play a pivotal role in the communication between mast cells and the enteric nervous system.

  14. Neuronal coherence and its functional role in communication between neurons

    NARCIS (Netherlands)

    Zeitler-Geurds, M.

    2010-01-01

    Neuronal oscillations are observed in many brain areas in various frequency bands. Each of the frequency bands is associated with a particular functional role. Gamma oscillations (30-80 Hz) are thought to be related to cognitive tasks like memory and attention and possibly also involved in the

  15. Visual Input to the Drosophila Central Complex by Developmentally and Functionally Distinct Neuronal Populations.

    Science.gov (United States)

    Omoto, Jaison Jiro; Keleş, Mehmet Fatih; Nguyen, Bao-Chau Minh; Bolanos, Cheyenne; Lovick, Jennifer Kelly; Frye, Mark Arthur; Hartenstein, Volker

    2017-04-24

    The Drosophila central brain consists of stereotyped neural lineages, developmental-structural units of macrocircuitry formed by the sibling neurons of single progenitors called neuroblasts. We demonstrate that the lineage principle guides the connectivity and function of neurons, providing input to the central complex, a collection of neuropil compartments important for visually guided behaviors. One of these compartments is the ellipsoid body (EB), a structure formed largely by the axons of ring (R) neurons, all of which are generated by a single lineage, DALv2. Two further lineages, DALcl1 and DALcl2, produce neurons that connect the anterior optic tubercle, a central brain visual center, with R neurons. Finally, DALcl1/2 receive input from visual projection neurons of the optic lobe medulla, completing a three-legged circuit that we call the anterior visual pathway (AVP). The AVP bears a fundamental resemblance to the sky-compass pathway, a visual navigation circuit described in other insects. Neuroanatomical analysis and two-photon calcium imaging demonstrate that DALcl1 and DALcl2 form two parallel channels, establishing connections with R neurons located in the peripheral and central domains of the EB, respectively. Although neurons of both lineages preferentially respond to bright objects, DALcl1 neurons have small ipsilateral, retinotopically ordered receptive fields, whereas DALcl2 neurons share a large excitatory receptive field in the contralateral hemifield. DALcl2 neurons become inhibited when the object enters the ipsilateral hemifield and display an additional excitation after the object leaves the field of view. Thus, the spatial position of a bright feature, such as a celestial body, may be encoded within this pathway. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Modulation of specific sensory cortical areas by segregated basal forebrain cholinergic neurons demonstrated by neuronal tracing and optogenetic stimulation in mice

    Directory of Open Access Journals (Sweden)

    Irene eChaves-Coira

    2016-04-01

    Full Text Available Neocortical cholinergic activity plays a fundamental role in sensory processing and cognitive functions. Previous results have suggested a refined anatomical and functional topographical organization of basal forebrain (BF projections that may control cortical sensory processing in a specific manner. We have used retrograde anatomical procedures to demonstrate the existence of specific neuronal groups in the BF involved in the control of specific sensory cortices. Fluoro-gold and Fast Blue fluorescent retrograde tracers were deposited into the primary somatosensory (S1 and primary auditory (A1 cortices in mice. Our results revealed that the BF is a heterogeneous area in which neurons projecting to different cortical areas are segregated into different neuronal groups. Most of the neurons located in the horizontal limb of the diagonal band of Broca (HDB projected to the S1 cortex, indicating that this area is specialized in the sensory processing of tactile stimuli. However, the nucleus basalis magnocellularis (B nucleus shows a similar number of cells projecting to the S1 as to the A1 cortices. In addition, we analyzed the cholinergic effects on the S1 and A1 cortical sensory responses by optogenetic stimulation of the BF neurons in urethane-anesthetized transgenic mice. We used transgenic mice expressing the light-activated cation channel, channelrhodopsin-2, tagged with a fluorescent protein (ChR2-YFP under the control of the choline-acetyl transferase promoter (ChAT. Cortical evoked potentials were induced by whisker deflections or by auditory clicks. According to the anatomical results, optogenetic HDB stimulation induced more extensive facilitation of tactile evoked potentials in S1 than auditory evoked potentials in A1, while optogenetic stimulation of the B nucleus facilitated either tactile or auditory evoked potentials equally. Consequently, our results suggest that cholinergic projections to the cortex are organized into segregated

  17. Modulation of Specific Sensory Cortical Areas by Segregated Basal Forebrain Cholinergic Neurons Demonstrated by Neuronal Tracing and Optogenetic Stimulation in Mice.

    Science.gov (United States)

    Chaves-Coira, Irene; Barros-Zulaica, Natali; Rodrigo-Angulo, Margarita; Núñez, Ángel

    2016-01-01

    Neocortical cholinergic activity plays a fundamental role in sensory processing and cognitive functions. Previous results have suggested a refined anatomical and functional topographical organization of basal forebrain (BF) projections that may control cortical sensory processing in a specific manner. We have used retrograde anatomical procedures to demonstrate the existence of specific neuronal groups in the BF involved in the control of specific sensory cortices. Fluoro-Gold (FlGo) and Fast Blue (FB) fluorescent retrograde tracers were deposited into the primary somatosensory (S1) and primary auditory (A1) cortices in mice. Our results revealed that the BF is a heterogeneous area in which neurons projecting to different cortical areas are segregated into different neuronal groups. Most of the neurons located in the horizontal limb of the diagonal band of Broca (HDB) projected to the S1 cortex, indicating that this area is specialized in the sensory processing of tactile stimuli. However, the nucleus basalis magnocellularis (B) nucleus shows a similar number of cells projecting to the S1 as to the A1 cortices. In addition, we analyzed the cholinergic effects on the S1 and A1 cortical sensory responses by optogenetic stimulation of the BF neurons in urethane-anesthetized transgenic mice. We used transgenic mice expressing the light-activated cation channel, channelrhodopsin-2, tagged with a fluorescent protein (ChR2-YFP) under the control of the choline-acetyl transferase promoter (ChAT). Cortical evoked potentials were induced by whisker deflections or by auditory clicks. According to the anatomical results, optogenetic HDB stimulation induced more extensive facilitation of tactile evoked potentials in S1 than auditory evoked potentials in A1, while optogenetic stimulation of the B nucleus facilitated either tactile or auditory evoked potentials equally. Consequently, our results suggest that cholinergic projections to the cortex are organized into segregated

  18. Sweet Taste and Nutrient Value Subdivide Rewarding Dopaminergic Neurons in Drosophila

    Science.gov (United States)

    Huetteroth, Wolf; Perisse, Emmanuel; Lin, Suewei; Klappenbach, Martín; Burke, Christopher; Waddell, Scott

    2015-01-01

    Summary Dopaminergic neurons provide reward learning signals in mammals and insects [1–4]. Recent work in Drosophila has demonstrated that water-reinforcing dopaminergic neurons are different to those for nutritious sugars [5]. Here, we tested whether the sweet taste and nutrient properties of sugar reinforcement further subdivide the fly reward system. We found that dopaminergic neurons expressing the OAMB octopamine receptor [6] specifically convey the short-term reinforcing effects of sweet taste [4]. These dopaminergic neurons project to the β′2 and γ4 regions of the mushroom body lobes. In contrast, nutrient-dependent long-term memory requires different dopaminergic neurons that project to the γ5b regions, and it can be artificially reinforced by those projecting to the β lobe and adjacent α1 region. Surprisingly, whereas artificial implantation and expression of short-term memory occur in satiated flies, formation and expression of artificial long-term memory require flies to be hungry. These studies suggest that short-term and long-term sugar memories have different physiological constraints. They also demonstrate further functional heterogeneity within the rewarding dopaminergic neuron population. PMID:25728694

  19. Short communication: hippocampal neuronal activity and imprinting in the behaving domestic chick.

    Science.gov (United States)

    Nicol, A U; Brown, M W; Horn, G

    1998-08-01

    The hippocampus of the chick projects to the intermediate and medial part of the hyperstriatum ventrale (IMHV) which stores information acquired through the learning process of imprinting. We have investigated whether the response properties of hippocampal neurons are similar to those of IMHV neurons. Chicks were imprinted by exposure, one group (n = 7) to a rotating red box (RB), the other (n = 5) to a rotating blue cylinder (BC). Four chicks were untrained. The following day, when the chicks were approximately 48 h old, neuronal activity was recorded in the left hippocampus. The proportion of neurons responding to the RB and that to the BC in untrained chicks were compared with the proportions in trained birds. (i) In RB-trained chicks both the proportion responding to the RB and that to the BC were significantly increased. (ii) In BC-trained chicks no significant effect on these proportions was found. Of the responsive neurons some were colour (red or blue) sensitive and others were shape (box or cylinder) sensitive; the proportions so responsive were not influenced by training condition. Certain neurons responded significantly differently when a stimulus was 0.5 m or 2 m from the chick (35%; d-sensitive); very few neurons were equivalently responsive to a stimulus at both distances (3%; d-invariant). These proportions were not significantly affected by training condition. Hippocampal responses are compared with those in the left IMHV. It is concluded that IMHV responses do not passively reflect those of hippocampal neurons.

  20. Dye-coupled magnocellular peptidergic neurons of the rat paraventricular nucleus show homotypic immunoreactivity.

    Science.gov (United States)

    Cobbett, P; Smithson, K G; Hatton, G I

    1985-12-01

    Magnocellular neurons in rat hypothalamic slices are known to exhibit dye coupling: the transfer of the fluorescent dye, Lucifer Yellow, from an intracellularly-injected neuron to one or more nearby neurons. The question of the hormonal identity of coupled cells and the possibility of dye coupling as an artefact led us to determine the immunoreactivity of dye-coupled magnocellular neurons in the paraventricular nucleus of the rat hypothalamus using antisera to oxytocin- and vasopressin-associated neurophysins. In 23 pairs, one triplet, and one quadruplet, immunoreactivity to one or the other antiserum was always exclusive, and dye coupling was always homotypic, that is, coupled neurons in each instance were reactive to the same antiserum. The quadruplet, triplet and 17 pairs were immunoreactive to vasopressin-associated neurophysin, and oxytoxin-associated neurophysin immunoreactivity was observed in the remaining pairs. Immunoreactivity to each antiserum was found for somasomatic and non somasomatic modes of coupling and for coupled neurons in the three magnocellular areas of the nucleus. A relationship between mode of coupling and hormone content was not detected. The data support the hypothesis that coupling is a real, functionally significant mechanism for coordinating neuronal activity in this nucleus, particularly under conditions of high hormone demand. They do not support the idea that coupling is artefact. The possibility of a relationship between hormone content and mode of coupling, and the projection pathway(s) of the coupled neurons of each type require further study.

  1. An obligate role of oxytocin neurons in diet induced energy expenditure.

    Directory of Open Access Journals (Sweden)

    Zhaofei Wu

    Full Text Available Oxytocin neurons represent one of the major subsets of neurons in the paraventricular hypothalamus (PVH, a critical brain region for energy homeostasis. Despite substantial evidence supporting a role of oxytocin in body weight regulation, it remains controversial whether oxytocin neurons directly regulate body weight homeostasis, feeding or energy expenditure. Pharmacologic doses of oxytocin suppress feeding through a proposed melanocortin responsive projection from the PVH to the hindbrain. In contrast, deficiency in oxytocin or its receptor leads to reduced energy expenditure without feeding abnormalities. To test the physiological function of oxytocin neurons, we specifically ablated oxytocin neurons in adult mice. Our results show that oxytocin neuron ablation in adult animals has no effect on body weight, food intake or energy expenditure on a regular diet. Interestingly, male mice lacking oxytocin neurons are more sensitive to high fat diet-induced obesity due solely to reduced energy expenditure. In addition, despite a normal food intake, these mice exhibit a blunted food intake response to leptin administration. Thus, our study suggests that oxytocin neurons are required to resist the obesity associated with a high fat diet; but their role in feeding is permissive and can be compensated for by redundant pathways.

  2. LGR5/GPR49 is implicated in motor neuron specification in nervous system.

    Science.gov (United States)

    Song, Shao-jun; Mao, Xing-gang; Wang, Chao; Han, An-guo; Yan, Ming; Xue, Xiao-yan

    2015-01-01

    The biological roles of stem cell marker LGR5, the receptor for the Wnt-agonistic R-spondins, for nervous system are poorly known. Bioinformatics analysis in normal human brain tissues revealed that LGR5 is closely related with neuron development and functions. Interestingly, LGR5 and its ligands R-spondins (RSPO2 and RSPO3) are specifically highly expressed in projection motor neurons in the spinal cord, brain stem and cerebral. Inhibition of Notch activity in neural stem cells (NSCs) increased the percentage of neuronal cells and promoted LGR5 expression, while activation of Notch signal decreased neuronal cells and inhibited the LGR5 expression. Furthermore, knockdown of LGR5 inhibited the expression of neuronal markers MAP2, NeuN, GAP43, SYP and CHRM3, and also reduced the expression of genes that program the identity of motor neurons, including Isl1, Lhx3, PHOX2A, TBX20 and NEUROG2. Our data demonstrated that LGR5 is highly expressed in motor neurons in nervous system and is involved in their development by regulating transcription factors that program motor neuron identity. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. Medial prefrontal cortex inversely regulates toluene-induced changes in markers of synaptic plasticity of mesolimbic dopamine neurons

    Science.gov (United States)

    Beckley, Jacob T.; Evins, Caitlin E.; Fedarovich, Hleb; Gilstrap, Meghin J.; Woodward, John J.

    2013-01-01

    Toluene is a volatile solvent that is intentionally inhaled by children, adolescents and adults for its intoxicating effects. While voluntary use of toluene suggests that it possesses rewarding properties and abuse potential, it is unknown whether toluene alters excitatory synaptic transmission in reward sensitive dopamine neurons like other drugs of abuse. Here, using a combination of retrograde labeling and slice electrophysiology, we show that a brief in vivo exposure of rats to a behaviorally relevant concentration of toluene vapor enhances glutamatergic synaptic strength of dopamine (DA) neurons projecting to nucleus accumbens core and medial shell neurons. This effect persisted for up to 3 days in mesoaccumbens core DA neurons and for at least 21 days in those projecting to the medial shell. In contrast, toluene vapor exposure had no effect on synaptic strength of DA neurons that project to the medial prefrontal cortex (mPFC). Furthermore, infusion of GABAergic modulators into the mPFC prior to vapor exposure to pharmacologically manipulate output, inhibited or potentiated toluene's action on mesoaccumbens DA neurons. Taken together, the results of these studies indicate that toluene induces a target-selective increase in mesolimbic DA neuron synaptic transmission and strongly implicates the mPFC as an important regulator of drug-induced plasticity of mesolimbic dopamine neurons. PMID:23303956

  4. Characterization of cutaneous and articular sensory neurons.

    Science.gov (United States)

    da Silva Serra, Ines; Husson, Zoé; Bartlett, Jonathan D; Smith, Ewan St John

    2016-01-01

    A wide range of stimuli can activate sensory neurons and neurons innervating specific tissues often have distinct properties. Here, we used retrograde tracing to identify sensory neurons innervating the hind paw skin (cutaneous) and ankle/knee joints (articular), and combined immunohistochemistry and electrophysiology analysis to determine the neurochemical phenotype of cutaneous and articular neurons, as well as their electrical and chemical excitability. Immunohistochemistry analysis using RetroBeads as a retrograde tracer confirmed previous data that cutaneous and articular neurons are a mixture of myelinated and unmyelinated neurons, and the majority of both populations are peptidergic. In whole-cell patch-clamp recordings from cultured dorsal root ganglion neurons, voltage-gated inward currents and action potential parameters were largely similar between articular and cutaneous neurons, although cutaneous neuron action potentials had a longer half-peak duration (HPD). An assessment of chemical sensitivity showed that all neurons responded to a pH 5.0 solution, but that acid-sensing ion channel (ASIC) currents, determined by inhibition with the nonselective acid-sensing ion channel antagonist benzamil, were of a greater magnitude in cutaneous compared to articular neurons. Forty to fifty percent of cutaneous and articular neurons responded to capsaicin, cinnamaldehyde, and menthol, indicating similar expression levels of transient receptor potential vanilloid 1 (TRPV1), transient receptor potential ankyrin 1 (TRPA1), and transient receptor potential melastatin 8 (TRPM8), respectively. By contrast, significantly more articular neurons responded to ATP than cutaneous neurons. This work makes a detailed characterization of cutaneous and articular sensory neurons and highlights the importance of making recordings from identified neuronal populations: sensory neurons innervating different tissues have subtly different properties, possibly reflecting different

  5. Design of a drone's control with a neuronal headset: searching the future technology

    OpenAIRE

    Fernández Serra, Enrique

    2015-01-01

    The project is about combining new engineering technologies with healthy investigation, using Brain Computer Interface (BCI) readings from a project external device. As a pilot project, a drone is going to be controlled by mind with a neuronal headset (EmotivEPOC+) and a personal computer (PC).The main goal is the investigation and development in neuroscience, building and walking through a bridge between engineering and medics’ technology, pulling forward the biomedical’s future and helping ...

  6. Synaptic inputs from stroke-injured brain to grafted human stem cell-derived neurons activated by sensory stimuli.

    Science.gov (United States)

    Tornero, Daniel; Tsupykov, Oleg; Granmo, Marcus; Rodriguez, Cristina; Grønning-Hansen, Marita; Thelin, Jonas; Smozhanik, Ekaterina; Laterza, Cecilia; Wattananit, Somsak; Ge, Ruimin; Tatarishvili, Jemal; Grealish, Shane; Brüstle, Oliver; Skibo, Galina; Parmar, Malin; Schouenborg, Jens; Lindvall, Olle; Kokaia, Zaal

    2017-03-01

    Transplanted neurons derived from stem cells have been proposed to improve function in animal models of human disease by various mechanisms such as neuronal replacement. However, whether the grafted neurons receive functional synaptic inputs from the recipient's brain and integrate into host neural circuitry is unknown. Here we studied the synaptic inputs from the host brain to grafted cortical neurons derived from human induced pluripotent stem cells after transplantation into stroke-injured rat cerebral cortex. Using the rabies virus-based trans-synaptic tracing method and immunoelectron microscopy, we demonstrate that the grafted neurons receive direct synaptic inputs from neurons in different host brain areas located in a pattern similar to that of neurons projecting to the corresponding endogenous cortical neurons in the intact brain. Electrophysiological in vivo recordings from the cortical implants show that physiological sensory stimuli, i.e. cutaneous stimulation of nose and paw, can activate or inhibit spontaneous activity in grafted neurons, indicating that at least some of the afferent inputs are functional. In agreement, we find using patch-clamp recordings that a portion of grafted neurons respond to photostimulation of virally transfected, channelrhodopsin-2-expressing thalamo-cortical axons in acute brain slices. The present study demonstrates, for the first time, that the host brain regulates the activity of grafted neurons, providing strong evidence that transplanted human induced pluripotent stem cell-derived cortical neurons can become incorporated into injured cortical circuitry. Our findings support the idea that these neurons could contribute to functional recovery in stroke and other conditions causing neuronal loss in cerebral cortex. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Control of abdominal and expiratory intercostal muscle activity during vomiting - Role of ventral respiratory group expiratory neurons

    Science.gov (United States)

    Miller, Alan D.; Tan, L. K.; Suzuki, Ichiro

    1987-01-01

    The role of ventral respiratory group (VRG) expiratory (E) neurons in the control of abdominal and internal intercostal muscle activity during vomiting was investigated in cats. Two series of experiments were performed: in one, the activity of VRG E neurons was recorded during fictive vomiting in cats that were decerebrated, paralyzed, and artificially ventilated; in the second, the abdominal muscle activity during vomiting was compared before and after sectioning the axons of descending VRG E neurons in decerebrate spontaneously breathing cats. The results show that about two-thirds of VRG E neurons that project at least as far caudally as the lower thoracic cord contribute to internal intercostal muscle activity during vomiting. The remaining VRG E neurons contribute to abdominal muscle activation. As shown by severing the axons of the VRG E neurons, other, as yet unidenified, inputs (either descending from the brain stem or arising from spinal reflexes) can also produce abdominal muscle activation.

  8. What do mirror neurons mirror?

    NARCIS (Netherlands)

    Uithol, S.; Rooij, I.J.E.I. van; Bekkering, H.; Haselager, W.F.G.

    2011-01-01

    Single cell recordings in monkeys provide strong evidence for an important role of the motor system in action understanding. This evidence is backed up by data from studies of the (human) mirror neuron system using neuroimaging or TMS techniques, and behavioral experiments. Although the data

  9. The Neuronal Infrastructure of Speaking

    Science.gov (United States)

    Menenti, Laura; Segaert, Katrien; Hagoort, Peter

    2012-01-01

    Models of speaking distinguish producing meaning, words and syntax as three different linguistic components of speaking. Nevertheless, little is known about the brain's integrated neuronal infrastructure for speech production. We investigated semantic, lexical and syntactic aspects of speaking using fMRI. In a picture description task, we…

  10. ULTRASTRUCTURAL CHANGES OF THE NEURONAL ...

    African Journals Online (AJOL)

    Objectives To study ultrastructural changes in the neuronal component of the detrusor muscle during the spinal shock phase and following early electric neurostimulation in an animal model. Material and Methods 12 dogs were decentralized at the levels from S1 to S3, while three animals were provided as normal controls.

  11. Bursting deep dorsal horn neurons

    DEFF Research Database (Denmark)

    Carlsen, Eva Meier; Rasmussen, Rune

    2017-01-01

    In a recent publication, Thaweerattanasinp et al. (J Neurophysiol 116: 1644–1653, 2016) investigated spinal cord injury and firing properties of deep dorsal horn neurons during NMDA or zolmitriptan application by employing electrophysiology in an in vitro spinal cord preparation. Deep dorsal horn...

  12. Computing with Spiking Neuron Networks

    NARCIS (Netherlands)

    H. Paugam-Moisy; S.M. Bohte (Sander); G. Rozenberg; T.H.W. Baeck (Thomas); J.N. Kok (Joost)

    2012-01-01

    htmlabstractAbstract Spiking Neuron Networks (SNNs) are often referred to as the 3rd gener- ation of neural networks. Highly inspired from natural computing in the brain and recent advances in neurosciences, they derive their strength and interest from an ac- curate modeling of synaptic interactions

  13. Uncertainty propagation in neuronal dynamical systems

    NARCIS (Netherlands)

    A. Torres Valderrama (Aldemar); J.G. Blom (Joke)

    2013-01-01

    htmlabstractOne of the most notorious characteristics of neuronal electrical activity is its variability, whose origin is not just instrumentation noise, but mainly the intrinsically stochastic nature of neural computations. Neuronal models based on deterministic differential equations cannot

  14. Shape, connectedness and dynamics in neuronal networks.

    Science.gov (United States)

    Comin, Cesar Henrique; da Fontoura Costa, Luciano

    2013-11-15

    The morphology of neurons is directly related to several aspects of the nervous system, including its connectedness, health, development, evolution, dynamics and, ultimately, behavior. Such interplays of the neuronal morphology can be understood within the more general shape-function paradigm. The current article reviews, in an introductory way, some key issues regarding the role of neuronal morphology in the nervous system, with emphasis on works developed in the authors' group. The following topics are addressed: (a) characterization of neuronal shape; (b) stochastic synthesis of neurons and neuronal systems; (c) characterization of the connectivity of neuronal networks by using complex networks concepts; and (d) investigations of influences of neuronal shape on network dynamics. The presented concepts and methods are useful also for several other multiple object systems, such as protein-protein interaction, tissues, aggregates and polymers. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Identification of novel vibration- and deflection-sensitive neuronal subgroups in Johnston’s organ of the fruit fly

    Directory of Open Access Journals (Sweden)

    Eriko eMatsuo

    2014-05-01

    Full Text Available The fruit fly Drosophila melanogaster responds behaviorally to sound, gravity, and wind. Johnston’s organ (JO at the antennal base serves as a sensory organ in the fruit fly to detect these mechanosensory stimuli. Among the five anatomically defined subgroups of sensory neurons in JO, subgroups A and B detect sound vibrations and subgroups C and E respond to static deflections, such as gravity and wind. The functions of subgroup-D JO neurons, however, remain unknown. In this study, we used molecular-genetic methods to explore the physiologic properties of subgroup-D JO neurons. Both vibrations and static deflection of the antennal receiver activated subgroup-D JO neurons. This finding clearly revealed that zone D in the antennal mechanosensory and motor center (AMMC, the projection target of subgroup-D JO neurons, is a primary center for antennal vibrations and deflection in the fly brain. We anatomically identified two types of interneurons downstream of subgroup-D JO neurons, AMMC LNs and AMMC D1 neurons. AMMC LNs are local neurons whose projections are confined within the AMMC, connecting zones B and D. On the other hand, AMMC D1 neurons have both local dendritic arborizations within the AMMC and descending projections to the thoracic ganglia, suggesting that AMMC D1 neurons are likely to relay information of the antennal movement detected by subgroup-D JO neurons from the AMMC directly to the thorax. Together, these findings provide a neural basis for how JO and its brain targets encode information of complex movements of the fruit fly antenna.

  16. Brain-derived neurotrophic factor is required for axonal growth of selective groups of neurons in the arcuate nucleus.

    Science.gov (United States)

    Liao, Guey-Ying; Bouyer, Karine; Kamitakahara, Anna; Sahibzada, Niaz; Wang, Chien-Hua; Rutlin, Michael; Simerly, Richard B; Xu, Baoji

    2015-06-01

    Brain-derived neurotrophic factor (BDNF) is a potent regulator of neuronal development, and the Bdnf gene produces two populations of transcripts with either a short or long 3' untranslated region (3' UTR). Deficiencies in BDNF signaling have been shown to cause severe obesity in humans; however, it remains unknown how BDNF signaling impacts the organization of neuronal circuits that control energy balance. We examined the role of BDNF on survival, axonal projections, and synaptic inputs of neurons in the arcuate nucleus (ARH), a structure critical for the control of energy balance, using Bdnf (klox/klox) mice, which lack long 3' UTR Bdnf mRNA and develop severe hyperphagic obesity. We found that a small fraction of neurons that express the receptor for BDNF, TrkB, also expressed proopiomelanocortin (POMC) or neuropeptide Y (NPY)/agouti-related protein (AgRP) in the ARH. Bdnf(klox/klox) mice had normal numbers of POMC, NPY, and TrkB neurons in the ARH; however, retrograde labeling revealed a drastic reduction in the number of ARH axons that project to the paraventricular hypothalamus (PVH) in these mice. In addition, fewer POMC and AgRP axons were found in the dorsomedial hypothalamic nucleus (DMH) and the lateral part of PVH, respectively, in Bdnf (klox/klox) mice. Using immunohistochemistry, we examined the impact of BDNF deficiency on inputs to ARH neurons. We found that excitatory inputs onto POMC and NPY neurons were increased and decreased, respectively, in Bdnf (klox/klox) mice, likely due to a compensatory response to marked hyperphagia displayed by the mutant mice. This study shows that the majority of TrkB neurons in the ARH are distinct from known neuronal populations and that BDNF plays a critical role in directing projections from these neurons to the DMH and PVH. We propose that hyperphagic obesity due to BDNF deficiency is in part attributable to impaired axonal growth of TrkB-expressing ARH neurons.

  17. A map of taste neuron projections in the Drosophila CNS

    Indian Academy of Sciences (India)

    2014-07-08

    Jul 8, 2014 ... Taste allows the fly to evaluate potential food sources. The presence of nutritious sugars, which taste sweet, and toxins, which taste bitter, is detected by gustatory organs. Their input is integrated in the CNS and provides a basis for feeding decisions. Drosophila is a valuable system in which to investigate ...

  18. Responses from two firing patterns in inferior colliculus neurons to stimulation of the lateral lemniscus dorsal nucleus

    Directory of Open Access Journals (Sweden)

    Xiao-ting Li

    2016-01-01

    Full Text Available The γ-aminobutyric acid neurons (GABAergic neurons in the inferior colliculus are classified into various patterns based on their intrinsic electrical properties to a constant current injection. Although this classification is associated with physiological function, the exact role for neurons with various firing patterns in acoustic processing remains poorly understood. In the present study, we analyzed characteristics of inferior colliculus neurons in vitro, and recorded responses to stimulation of the dorsal nucleus of the lateral lemniscus using the whole-cell patch clamp technique. Seven inferior colliculus neurons were tested and were classified into two firing patterns: sustained-regular (n = 4 and sustained-adapting firing patterns (n = 3. The majority of inferior colliculus neurons exhibited slight changes in response to stimulation and bicuculline. The responses of one neuron with a sustained-adapting firing pattern were suppressed after stimulation, but recovered to normal levels following application of the γ-aminobutyric acid receptor antagonist. One neuron with a sustained-regular pattern showed suppressed stimulation responses, which were not affected by bicuculline. Results suggest that GABAergic neurons in the inferior colliculus exhibit sustained-regular or sustained-adapting firing patterns. Additionally, GABAergic projections from the dorsal nucleus of the lateral lemniscus to the inferior colliculus are associated with sound localization. The different neuronal responses of various firing patterns suggest a role in sound localization. A better understanding of these mechanisms and functions will provide better clinical treatment paradigms for hearing deficiencies.

  19. An ontological approach to describing neurons and their relationships

    Directory of Open Access Journals (Sweden)

    David J. Hamilton

    2012-04-01

    Full Text Available The advancement of neuroscience, perhaps the most information rich discipline of all the life sciences, requires basic frameworks for organizing the vast amounts of data generated by the research community to promote novel insights and integrated understanding. Since Cajal, the neuron remains a fundamental unit of the nervous system, yet even with the explosion of information technology, we still have few comprehensive or systematic strategies for aggregating cell-level knowledge. Progress toward this goal is hampered by the multiplicity of names for cells and by lack of a consensus on the criteria for defining neuron types. However, through umbrella projects like the Neuroscience Information Framework and the International Neuroinformatics Coordinating Facility, we have the opportunity to propose and implement an informatics infrastructure for establishing common tools and approaches to describe neurons through a standard terminology for nerve cells and a database (a Neuron Registry where these descriptions can be deposited and compared. This article provides an overview of the problem and outlines a solution approach utilizing ontological characterizations.

  20. VTA neurons show a potentially protective transcriptional response to MPTP.

    Science.gov (United States)

    Phani, Sudarshan; Gonye, Gregory; Iacovitti, Lorraine

    2010-07-09

    Parkinson's disease and its characteristic symptoms are thought to arise from the progressive degeneration of specific midbrain dopamine (DA) neurons. In humans, DA neurons of the substantia nigra (SN) and their projections to the striatum show selective vulnerability, while neighboring DA neurons of the ventral tegmental area (VTA) are relatively spared from degeneration. This pattern of cell loss is mimicked in humans, primates, and certain rodents by the neurotoxin MPTP. In this study, we aimed to test the hypothesis that there are factors in the VTA that are potentially neuroprotective against MPTP and that these factors change over time. We have found a dynamic transcriptional response within the cells of the VTA to sustained exposure to a low dose of MPTP. Specifically, the VTA has increased expression of 148 genes as an early response to MPTP and 113 genes as a late response to MPTP toxicity. This response encompasses many areas of cellular function, including protein regulation (Phf6) and ion/metal regulation (PANK2 and Car4). Notably, these responses were largely absent from the cells of the SN. Our data show a clear dynamic response in maintaining the homeostasis and viability of the neurons in the VTA that is lacking in the SN after neurotoxin challenge. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  1. Spiking Neuron Network Helmholtz Machine

    Directory of Open Access Journals (Sweden)

    Pavel eSountsov

    2015-04-01

    Full Text Available An increasing amount of behavioral and neurophysiological data suggests that the brain performs optimal (or near-optimal probabilistic inference and learning during perception and other tasks. Although many machine learning algorithms exist that perform inference and learning in an optimal way, the complete description of how one of those algorithms (or a novel algorithm can be implemented in the brain is currently incomplete. There have been many proposed solutions that address how neurons can perform optimal inference but the question of how synaptic plasticity can implement optimal learning is rarely addressed. This paper aims to unify the two fields of probabilistic inference and synaptic plasticity by using a neuronal network of realistic model spiking neurons to implement a well studied computational model called the Helmholtz Machine. The Helmholtz Machine is amenable to neural implementation as the algorithm it uses to learn its parameters, called the wake-sleep algorithm, uses a local delta learning rule. Our spiking-neuron network implements both the delta rule and a small example of a Helmholtz machine. This neuronal network can learn an internal model of continuous-valued training data sets without supervision. The network can also perform inference on the learned internal models. We show how various biophysical features of the neural implementation constrain the parameters of the wake-sleep algorithm, such as the duration of the wake and sleep phases of learning and the minimal sample duration. We examine the deviations from optimal performance and tie them to the properties of the synaptic plasticity rule.

  2. Response of pontomedullary reticulospinal neurons to vestibular stimuli in vertical planes. Role in vertical vestibulospinal reflexes of the decerebrate cat

    Science.gov (United States)

    Bolton, P. S.; Goto, T.; Schor, R. H.; Wilson, V. J.; Yamagata, Y.; Yates, B. J.

    1992-01-01

    1. To investigate the neural substrate of vestibulospinal reflexes in decerebrate cats, we studied the responses of pontomedullary reticulospinal neurons to natural stimulation of the labyrinth in vertical planes. Our principal aim was to determine whether reticulospinal neurons that terminate in, or are likely to give off collaterals to, the upper cervical segments had properties similar to those of the vestibulocollic reflex (VCR). 2. Antidromic stimulation was used to determine whether the neurons projected to the neck, lower cervical, thoracic, or lumbar levels. Dynamics of the responses of spontaneously firing neurons were studied with sinusoidal stimuli delivered at 0.05-1 Hz and aligned to the plane of body rotation, that produced maximal modulation of the neuron (response vector orientation). Each neuron was assigned a vestibular input classification of otolith, vertical canal, otolith + canal, or spatial-temporal convergence (STC). 3. We found, in agreement with previous studies, that the largest fraction of pontomedullary reticulospinal neurons projected to the lumbar cord, and that only a small number ended in the neck segments. Neurons projecting to all levels of the spinal cord had similar responses to labyrinth stimulation. 4. Reticulospinal neurons that received only vertical canal inputs were rare (1 of 67 units). Most reticulospinal neurons (48%) received predominant otolith inputs, 18% received otolith + canal input, and only 9% had STC behavior. These data are in sharp contrast to the results of our previous studies of vestibulospinal neurons. A considerable portion of vestibulospinal neurons receives vertical canal input (38%), fewer receive predominantly otolith input (22%), whereas the proportion that have otolith + canal input or STC behavior is similar to our present reticulospinal data. 5. The response vector orientations of our reticulospinal neurons, particularly those with canal inputs (canal, otolith + canal, STC) were predominantly in

  3. Neuropeptide S Activates Paraventricular Oxytocin Neurons to Induce Anxiolysis.

    Science.gov (United States)

    Grund, Thomas; Goyon, Stephanie; Li, Yuting; Eliava, Marina; Liu, Haikun; Charlet, Alexandre; Grinevich, Valery; Neumann, Inga D

    2017-12-13

    Neuropeptides, such as neuropeptide S (NPS) and oxytocin (OXT), represent potential options for the treatment of anxiety disorders due to their potent anxiolytic profile. In this study, we aimed to reveal the mechanisms underlying the behavioral action of NPS, and present a chain of evidence that the effects of NPS within the hypothalamic paraventricular nucleus (PVN) are mediated via actions on local OXT neurons in male Wistar rats. First, retrograde studies identified NPS fibers originating in the brainstem locus coeruleus, and projecting to the PVN. FACS identified prominent NPS receptor expression in PVN-OXT neurons. Using genetically encoded calcium indicators, we further demonstrated that NPS reliably induces a transient increase in intracellular Ca 2+ concentration in a subpopulation of OXT neurons, an effect mediated by NPS receptor. In addition, intracerebroventricular (i.c.v.) NPS evoked a significant somatodendritic release of OXT within the PVN as assessed by microdialysis in combination with a highly sensitive radioimmunoassay. Finally, we could show that the anxiolytic effect of NPS seen after i.c.v. or intra-PVN infusion requires responsive OXT neurons of the PVN and locally released OXT. Thus, pharmacological blockade of OXT receptors as well as chemogenetic silencing of OXT neurons within the PVN prevented the effect of synthetic NPS. In conclusion, our results indicate a significant role of the OXT system in mediating the effects of NPS on anxiety, and fill an important gap in our understanding of brain neuropeptide interactions in the context of regulation of emotional behavior within the hypothalamus. SIGNIFICANCE STATEMENT Given the rising scientific interest in neuropeptide research in the context of emotional and stress-related behaviors, our findings demonstrate a novel intrahypothalamic mechanism involving paraventricular oxytocin neurons that express the neuropeptide S receptor. These neurons respond with transient Ca 2+ increase and

  4. Selective neurofilament (SMI-32, FNP-7 and N200) expression in subpopulations of layer V pyramidal neurons in vivo and in vitro.

    Science.gov (United States)

    Voelker, Courtney C J; Garin, Nathalie; Taylor, Jeremy S H; Gähwiler, Beat H; Hornung, Jean-Pierre; Molnár, Zoltán

    2004-11-01

    There are two main types of layer V pyramidal neurons in rat cortex. Type I neurons have tufted apical dendrites extending into layer I, produce bursts of action potentials and project to subcortical targets (spinal cord, superior colliculus and pontine nuclei). Type II neurons have apical dendrites, which arborize in layers II-IV, do not produce bursts of action potentials and project to ipsilateral and contralateral cortex. The specific expression of different genes and proteins in these two distinct layer V neurons is unknown. To distinguish between distinct subpopulations, fluorescent microspheres were injected into subcortical targets (labeling type I neurons) or primary somatosensory cortex (labeling type II neurons) of adult rats. After transport, cortical sections were processed for immunohistochemistry using various antibodies. This study demonstrated that antigens recognized by SMI-32, N200 and FNP-7 antibodies were only expressed in subcortical (type I)--but not in contralateral (type II)--projecting neurons. NR1, NR2a/b, PLCbeta1, BDNF, NGF and TrkB antigens were highly expressed in all neuronal subpopulations examined. Organotypic culture experiments demonstrated that the development of neurofilament expression and laminar specificity does not depend on the presence of the subcortical targets. This study suggests specific markers for the subcortical projecting layer V neuron subpopulations.

  5. Correlating Anatomy and Function with Gene Expression in Individual Neurons by Combining in Vivo Labeling, Patch Clamp, and Single Cell RNA-seq

    Directory of Open Access Journals (Sweden)

    Carsten K. Pfeffer

    2017-11-01

    Full Text Available The classification of neurons into distinct types is an ongoing effort aimed at revealing and understanding the diversity of the components of the nervous system. Recently available methods allow us to determine the gene expression pattern of individual neurons in the mammalian cerebral cortex to generate powerful categorization schemes. For a thorough understanding of neuronal diversity such genetic categorization schemes need to be combined with traditional classification parameters like position, axonal projection or response properties to sensory stimulation. Here we describe a method to link the gene expression of individual neurons with their position, axonal projection, or sensory response properties. Neurons are labeled in vivo based on their anatomical or functional properties and, using patch clamp pipettes, their RNA individually harvested in vitro for RNAseq. We validate the methodology using multiple established molecularly and anatomically distinct cell populations and explore molecular differences between uncharacterized neurons in mouse visual cortex. Gene expression patterns between L5 neurons projecting to frontal or contralateral cortex are distinct while L2 neurons differing in position, projection, or function are molecularly similar. With this method we can determine the genetic expression pattern of functionally and anatomically identified individual neurons.

  6. Ecological constraints on the origin of neurones.

    Science.gov (United States)

    Monk, Travis; Paulin, Michael G; Green, Peter

    2015-12-01

    The basic functional characteristics of spiking neurones are remarkably similar throughout the animal kingdom. Their core design and function features were presumably established very early in their evolutionary history. Identifying the selection pressures that drove animals to evolve spiking neurones could help us interpret their design and function today. This paper provides a quantitative argument, based on ecology, that animals evolved neurones after they started eating each other, about 550 million years ago. We consider neurones as devices that aid an animal's foraging performance, but incur an energetic cost. We introduce an idealised stochastic model ecosystem of animals and their food, and obtain an analytic expression for the probability that an animal with a neurone will fix in a neurone-less population. Analysis of the fixation probability reveals two key results. First, a neurone will never fix if an animal forages low-value food at high density, even if that neurone incurs no cost. Second, a neurone will fix with high probability if an animal is foraging high-value food at low density, even if that neurone is expensive. These observations indicate that the transition from neurone-less to neurone-armed animals can be facilitated by a transition from filter-feeding or substrate grazing to episodic feeding strategies such as animal-on-animal predation (macrophagy).

  7. Oscillating from Neurosecretion to Multitasking Dopamine Neurons

    Directory of Open Access Journals (Sweden)

    David R. Grattan

    2016-04-01

    Full Text Available In this issue of Cell Reports, Stagkourakis et al. (2016 report that oscillating hypothalamic TIDA neurons, previously thought to be simple neurosecretory neurons controlling pituitary prolactin secretion, control dopamine output via autoregulatory mechanisms and thus could potentially regulate other physiologically important hypothalamic neuronal circuits.

  8. Effect of Methamidophos on cerebellar neuronal cells

    African Journals Online (AJOL)

    olayemitoyin

    Taken together, our study shows that low dose methamidophos may negatively impact. TH-mediated cerebellar neuronal cell development and function, and consequently could interfere with TH-regulated neuronal events. Keywords: Methamidophos, Thyroid hormone, Purkinje cells, Granule cell, Neuronal development.

  9. Neuronal Network Mechanisms of Gamma Oscillations

    NARCIS (Netherlands)

    Viriyopase, A.

    2017-01-01

    Neuronal oscillations at various frequency bands play an important role in neuronal information processing. In this thesis, we mathematically and computationally investigated the properties of the gamma band (30-80 Hz) with different networks: a simplified network with two neurons, a large network

  10. HUMAN CONNECTOME PROJECT (HCP)

    OpenAIRE

    Shashank Shekhar Tiwari*, Shivani Joshi, Tanvi Mittal, Shruti Jain

    2016-01-01

    This project deals with the nervous system and its function in brain. Here connectome means the microscopic neural connectivity and its mapping between all the neurons present in the brain which further represents their graphical representation on the visual screen also which will further help us to zoom into a region to explore the cells and the functions depending on it and taking this one step ahead the memory implementation in human brain so it will be used as a memory unit except the fac...

  11. Exposure of C. elegans eggs to a glyphosate-containing herbicide leads to abnormal neuronal morphology.

    Science.gov (United States)

    McVey, Kenneth A; Snapp, Isaac B; Johnson, Megan B; Negga, Rekek; Pressley, Aireal S; Fitsanakis, Vanessa A

    2016-01-01

    Recent data demonstrate that chronic exposure of Caenorhabditis elegans (C. elegans) to a high-use glyphosate-containing herbicide, Touchdown (TD), potentially damages the adult nervous system. It is unknown, however, whether unhatched worms exposed to TD during the egg stage show abnormal neurodevelopment post-hatching. Therefore, we investigated whether early treatment with TD leads to aberrant neuronal or neurite development in C. elegans. Studies were completed in three different worm strains with green fluorescent protein (GFP)-tagged neurons to facilitate visual neuronal assessment. Initially, eggs from C. elegans with all neurons tagged with GFP were chronically exposed to TD. Visual inspection suggested decreased neurite projections associated with ventral nerve cord neurons. Data analysis showed a statistically significant decrease in overall green pixel numbers at the fourth larval (L4) stage (*p<0.05). We further investigated whether specific neuronal populations were preferentially vulnerable to TD by treating eggs from worms that had all dopaminergic (DAergic) or γ-aminobutyric acid (GABAergic) neurons tagged with GFP. As before, green pixel number associated with these discrete neuronal populations was analyzed at multiple larval stages. Data analysis indicated statistically significant decreases in pixel number associated with DAergic, but not GABAergic, neurons (***p<0.001) at all larval stages. Finally, statistically significant decreases (at the first larval stage, L1) or increases (at the fourth larval stage, L4) in superoxide levels, a developmental signaling molecule, were detected (*p<0.05). These data suggest that early exposure to TD may impair neuronal development, perhaps through superoxide perturbation. Since toxic insults during development may late render individuals more vulnerable to neurodegenerative diseases in adulthood, these studies provide some of the first evidence in this model organism that early exposure to TD may adversely

  12. Oscillatory integration windows in neurons

    Science.gov (United States)

    Gupta, Nitin; Singh, Swikriti Saran; Stopfer, Mark

    2016-01-01

    Oscillatory synchrony among neurons occurs in many species and brain areas, and has been proposed to help neural circuits process information. One hypothesis states that oscillatory input creates cyclic integration windows: specific times in each oscillatory cycle when postsynaptic neurons become especially responsive to inputs. With paired local field potential (LFP) and intracellular recordings and controlled stimulus manipulations we directly test this idea in the locust olfactory system. We find that inputs arriving in Kenyon cells (KCs) sum most effectively in a preferred window of the oscillation cycle. With a computational model, we show that the non-uniform structure of noise in the membrane potential helps mediate this process. Further experiments performed in vivo demonstrate that integration windows can form in the absence of inhibition and at a broad range of oscillation frequencies. Our results reveal how a fundamental coincidence-detection mechanism in a neural circuit functions to decode temporally organized spiking. PMID:27976720

  13. [Mirror neurons--novel data on the neurobiology of intersubjectivity].

    Science.gov (United States)

    Simon, Mária; Herold, Róbert; Fekete, Sándor; Tényi, Tamás

    2007-01-01

    Social experiences are largely intersubjective in nature, offering an abundance of pre-reflective, simulative knowledge of others' subjective experiences. In the last decades, special mirror neurons have been found in the premotor area and in the posterior parietal cortex. They directly link perception to action: the perception of actions activates the relevant parts of the observer's motor system. Emotional expressions evoke resonance states inside the observer in a similar way. Besides underscoring the prereflective and implicit nature of intersubjectivity, this can provide an access to the neuronal basis of empathy and intuition. Moreover, a new integration of psychoanalysis and neuroscience seems to be possible, which shifts the psychoanalytic technique toward non-verbal and non-interpretative methods, and can explain psychoanalytic phenomena, such as introjection, projection, transference, counter-transference, and the very complex enactments.

  14. Transsynaptic Mapping of Second-Order Taste Neurons in Flies by trans-Tango.

    Science.gov (United States)

    Talay, Mustafa; Richman, Ethan B; Snell, Nathaniel J; Hartmann, Griffin G; Fisher, John D; Sorkaç, Altar; Santoyo, Juan F; Chou-Freed, Cambria; Nair, Nived; Johnson, Mark; Szymanski, John R; Barnea, Gilad

    2017-11-15

    Mapping neural circuits across defined synapses is essential for understanding brain function. Here we describe trans-Tango, a technique for anterograde transsynaptic circuit tracing and manipulation. At the core of trans-Tango is a synthetic signaling pathway that is introduced into all neurons in the animal. This pathway converts receptor activation at the cell surface into reporter expression through site-specific proteolysis. Specific labeling is achieved by presenting a tethered ligand at the synapses of genetically defined neurons, thereby activating the pathway in their postsynaptic partners and providing genetic access to these neurons. We first validated trans-Tango in the Drosophila olfactory system and then implemented it in the gustatory system, where projections beyond the first-order receptor neurons are not fully characterized. We identified putative second-order neurons within the sweet circuit that include projection neurons targeting known neuromodulation centers in the brain. These experiments establish trans-Tango as a flexible platform for transsynaptic circuit analysis. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Elucidating the Neuronal Architecture of Olfactory Glomeruli in the Drosophila Antennal Lobe.

    Science.gov (United States)

    Grabe, Veit; Baschwitz, Amelie; Dweck, Hany K M; Lavista-Llanos, Sofia; Hansson, Bill S; Sachse, Silke

    2016-09-20

    Olfactory glomeruli are morphologically conserved spherical compartments of the olfactory system, distinguishable solely by their chemosensory repertoire, anatomical position, and volume. Little is known, however, about their numerical neuronal composition. We therefore characterized their neuronal architecture and correlated these anatomical features with their functional properties in Drosophila melanogaster. We quantitatively mapped all olfactory sensory neurons (OSNs) innervating each glomerulus, including sexually dimorphic distributions. Our data reveal the impact of OSN number on glomerular dimensions and demonstrate yet unknown sex-specific differences in several glomeruli. Moreover, we quantified uniglomerular projection neurons for each glomerulus, which unraveled a glomerulus-specific numerical innervation. Correlation between morphological features and functional specificity showed that glomeruli innervated by narrowly tuned OSNs seem to possess a larger number of projection neurons and are involved in less lateral processing than glomeruli targeted by broadly tuned OSNs. Our study demonstrates that the neuronal architecture of each glomerulus encoding crucial odors is unique. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  16. Otolith-Canal Convergence in Vestibular Nuclei Neurons

    Science.gov (United States)

    Dickman, J. David

    1996-01-01

    During manned spaceflight, acute vestibular disturbances often occur, leading to physical duress and a loss of performance. Vestibular adaptation to the weightless environment follows within two to three days yet the mechanisms responsible for the disturbance and subsequent adaptation are still unknown In order to understand vestibular system function in space and normal earth conditions the basic physiological mechanisms of vestibular information co coding must be determined. Information processing regarding head movement and head position with respect to gravity takes place in the vestibular nuclei neurons that receive signals From the semicircular canals and otolith organs in the vestibular labyrinth. These neurons must synthesize the information into a coded output signal that provides for the head and eye movement reflexes as well as the conscious perception of the body in three-dimensional space The current investigation will for the first time. determine how the vestibular nuclei neurons quantitatively synthesize afferent information from the different linear and angular acceleration receptors in the vestibular labyrinths into an integrated output signal. During the second year of funding, progress on the current project has been focused on the anatomical orientation of semicircular canals and the spatial orientation of the innervating afferent responses. This information is necessary in order to understand how vestibular nuclei neurons process the incoming afferent spatial signals particularly with the convergent otolith afferent signals that are also spatially distributed Since information from the vestibular nuclei is presented to different brain regions associated with differing reflexive and sensory functions it is important to understand the computational mechanisms used by vestibular neurons to produce the appropriate output signal.

  17. Cervical vagus nerve stimulation augments spontaneous discharge in second- and higher-order sensory neurons in the rat nucleus of the solitary tract.

    Science.gov (United States)

    Beaumont, Eric; Campbell, Regenia P; Andresen, Michael C; Scofield, Stephanie; Singh, Krishna; Libbus, Imad; KenKnight, Bruce H; Snyder, Logan; Cantrell, Nathan

    2017-08-01

    Vagus nerve stimulation (VNS) currently treats patients with drug-resistant epilepsy, depression, and heart failure. The mild intensities used in chronic VNS suggest that primary visceral afferents and central nervous system activation are involved. Here, we measured the activity of neurons in the nucleus of the solitary tract (NTS) in anesthetized rats using clinically styled VNS. Our chief findings indicate that VNS at threshold bradycardic intensity activated NTS neuron discharge in one-third of NTS neurons. This VNS directly activated only myelinated vagal afferents projecting to second-order NTS neurons. Most VNS-induced activity in NTS, however, was unsynchronized to vagal stimuli. Thus, VNS activated unsynchronized activity in NTS neurons that were second order to vagal afferent C-fibers as well as higher-order NTS neurons only polysynaptically activated by the vagus. Overall, cardiovascular-sensitive and -insensitive NTS neurons were similarly activated by VNS: 3/4 neurons with monosynaptic vagal A-fiber afferents, 6/42 neurons with monosynaptic vagal C-fiber afferents, and 16/21 polysynaptic NTS neurons. Provocatively, vagal A-fibers indirectly activated C-fiber neurons during VNS. Elevated spontaneous spiking was quantitatively much higher than synchronized activity and extended well into the periods of nonstimulation. Surprisingly, many polysynaptic NTS neurons responded to half the bradycardic intensity used in clinical studies, indicating that a subset of myelinated vagal afferents is sufficient to evoke VNS indirect activation. Our study uncovered a myelinated vagal afferent drive that indirectly activates NTS neurons and thus central pathways beyond NTS and support reconsideration of brain contributions of vagal afferents underpinning of therapeutic impacts.NEW & NOTEWORTHY Acute vagus nerve stimulation elevated activity in neurons located in the medial nucleus of the solitary tract. Such stimuli directly activated only myelinated vagal afferents but

  18. Evidence for the involvement of histaminergic neurones in the regulation of the rat oxytocinergic system during pregnancy and parturition.

    Science.gov (United States)

    Luckman, S M; Larsen, P J

    1997-06-15

    1. Previous studies have shown that histaminergic neurones of the tuberomammillary nucleus project directly to hypothalamic magnocellular nuclei and that intracerebroventricular administration of histamine increases the synthetic activity of magnocellular oxytocin neurones. 2. Histaminergic neurones of the dorsomedial tuberomammillary nucleus that project to the magnocellular region of the paraventricular nucleus are activated during late pregnancy and lactation, as measured by an increase in mRNA for the synthetic enzyme histidine decarboxylase. 3. There is a concomitant increase in oxytocin mRNA in magnocellular neurones of the paraventricular nucleus. This increase in mRNA contributes to an accumulation of oxytocin before birth and to continued oxytocin synthesis during lactation. 4. Intracerebroventricular administration of mepyramine, a specific antagonist of the H1 histamine receptor, causes a delay in the birth of subsequent pups if given to the mother during parturition. Vehicle or the H2 receptor antagonist cimetidine has no effect. Thus, histamine acts centrally, via H1 receptors, during parturition and may have an excitatory effect on oxytocin release. 5. These results suggest that afferent histaminergic neurones show increased activity during pregnancy and may be responsible for the increase of synthesis in magnocellular oxytocin neurones at this time. If, as previously reported, these histamine neurones can reduce the electrical activity of oxytocin neurones via H2 receptors, then they may have a dual effect, increasing the synthesis of oxytocin while inhibiting its premature release. At term, any inhibitory effects of histamine are overcome to allow oxytocin secretion.

  19. Confocal imaging of autonomic preganglionic neurons in the spinal cord of the caecilian Typhlonectes natans (Amphibia: Gymnophiona).

    Science.gov (United States)

    Zaccone, Daniele; Lauriano, Eugenia Rita; Capillo, Gioele; Zuwała, Krystyna; Budzik, Karolina Agata; Kuciel, Michał; Zaccone, Giacomo

    2014-10-01

    Little is known about the spinal sympathetic organization in the caecilian amphibians. We examined for the first time the location of sympathetic preganglionic neurons (SPNs) in the spinal cord using a panel of specific markers expressed in SPNs. The SPNs of anuran amphibians form two cell columns segregated mainly in the lateral and medial marginal areas of the central gray matter. In the caecilian Typhlonectes natans immunoreactivity for galanin and ChAT is found in most laterally arranged neurons lying in spinal segments 2-7. They are encircled by TH- and nNOS-immunoreactive nerve fibers. These neurons might project specifically to a population of adrenergic sympathetic postganglionic neurons in paravertebral ganglia and/or non-adrenergic sympathetic postganglionic neurons in the celiac ganglia. However the segmental restriction and target specificity of the neurons of the species studied are not known. As mucous and granular glands in the dermis may represent one of the peripheral targets of the adrenergic ganglion cells and reflect the prominent preganglionic cell columns, an immunohistochemical study was done also on these glands. Retrograde-tracing studies are, however, needed to study the segmental localization of the preganglionic neurons and their projections to the postganglionic neurons in sympathetic ganglia. Copyright © 2014 Elsevier GmbH. All rights reserved.

  20. Properties of Neurons in External Globus Pallidus Can Support Optimal Action Selection.

    Directory of Open Access Journals (Sweden)

    Rafal Bogacz

    2016-07-01

    Full Text Available The external globus pallidus (GPe is a key nucleus within basal ganglia circuits that are thought to be involved in action selection. A class of computational models assumes that, during action selection, the basal ganglia compute for all actions available in a given context the probabilities that they should be selected. These models suggest that a network of GPe and subthalamic nucleus (STN neurons computes the normalization term in Bayes' equation. In order to perform such computation, the GPe needs to send feedback to the STN equal to a particular function of the activity of STN neurons. However, the complex form of this function makes it unlikely that individual GPe neurons, or even a single GPe cell type, could compute it. Here, we demonstrate how this function could be computed within a network containing two types of GABAergic GPe projection neuron, so-called 'prototypic' and 'arkypallidal' neurons, that have different response properties in vivo and distinct connections. We compare our model predictions with the experimentally-reported connectivity and input-output functions (f-I curves of the two populations of GPe neurons. We show that, together, these dichotomous cell types fulfil the requirements necessary to compute the function needed for optimal action selection. We conclude that, by virtue of their distinct response properties and connectivities, a network of arkypallidal and prototypic GPe neurons comprises a neural substrate capable of supporting the computation of the posterior probabilities of actions.

  1. Large-scale Exploration of Neuronal Morphologies Using Deep Learning and Augmented Reality.

    Science.gov (United States)

    Li, Zhongyu; Butler, Erik; Li, Kang; Lu, Aidong; Ji, Shuiwang; Zhang, Shaoting

    2018-02-12

    Recently released large-scale neuron morphological data has greatly facilitated the research in neuroinformatics. However, the sheer volume and complexity of these data pose significant challenges for efficient and accurate neuron exploration. In this paper, we propose an effective retrieval framework to address these problems, based on frontier techniques of deep learning and binary coding. For the first time, we develop a deep learning based feature representation method for the neuron morphological data, where the 3D neurons are first projected into binary images and then learned features using an unsupervised deep neural network, i.e., stacked convolutional autoencoders (SCAEs). The deep features are subsequently fused with the hand-crafted features for more accurate representation. Considering the exhaustive search is usually very time-consuming in large-scale databases, we employ a novel binary coding method to compress feature vectors into short binary codes. Our framework is validated on a public data set including 58,000 neurons, showing promising retrieval precision and efficiency compared with state-of-the-art methods. In addition, we develop a novel neuron visualization program based on the techniques of augmented reality (AR), which can help users take a deep exploration of neuron morphologies in an interactive and immersive manner.

  2. Responses of descending neurons to looming stimuli in the praying mantis Tenodera aridifolia.

    Science.gov (United States)

    Yamawaki, Yoshifumi; Toh, Yoshihiro

    2009-03-01

    Responses to visual stimuli of some neurons that descend the nerve cord from the brain were recorded extracellularly in the mantis Tenodera aridifolia. Most of the recorded neurons showed their largest responses to looming stimuli that simulated a black circle approaching towards the mantis. The neurons showed a transient excitatory response to a gradually darkening or receding circle. The neurons showed sustained excitation to the linearly expanding stimuli, but the spike frequency decreased rapidly. The responses of the neurons were affected by both the diameter and the speed of looming stimuli. Faster or smaller looming stimuli elicited a higher peak frequency. These responses were observed in both recordings from the connective between suboesophageal and prothoracic ganglia and the connective between prothoracic and mesothoracic ganglia. There was a one-to-one correspondence of spike firing between these two recordings with a fixed delay. The neurons had the receptive field on ipsilateral side to its axon at the cervical connective. These results suggest that there is a looming-sensitive descending neuron, with an axon projecting over prothoracic ganglion, in the mantis nervous system.

  3. Mushroom body efferent neurons responsible for aversive olfactory memory retrieval in Drosophila.

    Science.gov (United States)

    Séjourné, Julien; Plaçais, Pierre-Yves; Aso, Yoshinori; Siwanowicz, Igor; Trannoy, Séverine; Thoma, Vladimiros; Tedjakumala, Stevanus R; Rubin, Gerald M; Tchénio, Paul; Ito, Kei; Isabel, Guillaume; Tanimoto, Hiromu; Preat, Thomas

    2011-06-19

    Aversive olfactory memory is formed in the mushroom bodies in Drosophila melanogaster. Memory retrieval requires mushroom body output, but the manner in which a memory trace in the mushroom body drives conditioned avoidance of a learned odor remains unknown. To identify neurons that are involved in olfactory memory retrieval, we performed an anatomical and functional screen of defined sets of mushroom body output neurons. We found that MB-V2 neurons were essential for retrieval of both short- and long-lasting memory, but not for memory formation or memory consolidation. MB-V2 neurons are cholinergic efferent neurons that project from the mushroom body vertical lobes to the middle superiormedial protocerebrum and the lateral horn. Notably, the odor response of MB-V2 neurons was modified after conditioning. As the lateral horn has been implicated in innate responses to repellent odorants, we propose that MB-V2 neurons recruit the olfactory pathway involved in innate odor avoidance during memory retrieval.

  4. Accelerated high-yield generation of limb-innervating motor neurons from human stem cells

    Science.gov (United States)

    Amoroso, Mackenzie W.; Croft, Gist F.; Williams, Damian J.; O’Keeffe, Sean; Carrasco, Monica A.; Davis, Anne R.; Roybon, Laurent; Oakley, Derek H.; Maniatis, Tom; Henderson, Christopher E.; Wichterle, Hynek

    2013-01-01

    Human pluripotent stem cells are a promising source of differentiated cells for developmental studies, cell transplantation, disease modeling, and drug testing. However, their widespread use even for intensely studied cell types like spinal motor neurons is hindered by the long duration and low yields of existing protocols for in vitro differentiation and by the molecular heterogeneity of the populations generated. We report a combination of small molecules that within 3 weeks induce motor neurons at up to 50% abundance and with defined subtype identities of relevance to neurodegenerative disease. Despite their accelerated differentiation, motor neurons expressed combinations of HB9, ISL1 and column-specific markers that mirror those observed in vivo in human fetal spinal cord. They also exhibited spontaneous and induced activity, and projected axons towards muscles when grafted into developing chick spinal cord. Strikingly, this novel protocol preferentially generates motor neurons expressing markers of limb-innervating lateral motor column motor neurons (FOXP1+/LHX3−). Access to high-yield cultures of human limb-innervating motor neuron subtypes will facilitate in-depth study of motor neuron subtype-specific properties, disease modeling, and development of large-scale cell-based screening assays. PMID:23303937

  5. A role of melanin-concentrating hormone producing neurons in the central regulation of paradoxical sleep

    Directory of Open Access Journals (Sweden)

    Salin Paul

    2003-09-01

    Full Text Available Abstract Background Peptidergic neurons containing the melanin-concentrating hormone (MCH and the hypocretins (or orexins are intermingled in the zona incerta, perifornical nucleus and lateral hypothalamic area. Both types of neurons have been implicated in the integrated regulation of energy homeostasis and body weight. Hypocretin neurons have also been involved in sleep-wake regulation and narcolepsy. We therefore sought to determine whether hypocretin and MCH neurons express Fos in association with enhanced paradoxical sleep (PS or REM sleep during the rebound following PS deprivation. Next, we compared the effect of MCH and NaCl intracerebroventricular (ICV administrations on sleep stage quantities to further determine whether MCH neurons play an active role in PS regulation. Results Here we show that the MCH but not the hypocretin neurons are strongly active during PS, evidenced through combined hypocretin, MCH, and Fos immunostainings in three groups of rats (PS Control, PS Deprived and PS Recovery rats. Further, we show that ICV administration of MCH induces a dose-dependant increase in PS (up to 200% and slow wave sleep (up to 70% quantities. Conclusion These results indicate that MCH is a powerful hypnogenic factor. MCH neurons might play a key role in the state of PS via their widespread projections in the central nervous system.

  6. A role of melanin-concentrating hormone producing neurons in the central regulation of paradoxical sleep.

    Science.gov (United States)

    Verret, Laure; Goutagny, Romain; Fort, Patrice; Cagnon, Laurène; Salvert, Denise; Léger, Lucienne; Boissard, Romuald; Salin, Paul; Peyron, Christelle; Luppi, Pierre-Hervé

    2003-09-09

    Peptidergic neurons containing the melanin-concentrating hormone (MCH) and the hypocretins (or orexins) are intermingled in the zona incerta, perifornical nucleus and lateral hypothalamic area. Both types of neurons have been implicated in the integrated regulation of energy homeostasis and body weight. Hypocretin neurons have also been involved in sleep-wake regulation and narcolepsy. We therefore sought to determine whether hypocretin and MCH neurons express Fos in association with enhanced paradoxical sleep (PS or REM sleep) during the rebound following PS deprivation. Next, we compared the effect of MCH and NaCl intracerebroventricular (ICV) administrations on sleep stage quantities to further determine whether MCH neurons play an active role in PS regulation. Here we show that the MCH but not the hypocretin neurons are strongly active during PS, evidenced through combined hypocretin, MCH, and Fos immunostainings in three groups of rats (PS Control, PS Deprived and PS Recovery rats). Further, we show that ICV administration of MCH induces a dose-dependent increase in PS (up to 200%) and slow wave sleep (up to 70%) quantities. These results indicate that MCH is a powerful hypnogenic factor. MCH neurons might play a key role in the state of PS via their widespread projections in the central nervous system.

  7. The NIMA-family kinase Nek3 regulates microtubule acetylation in neurons.

    Science.gov (United States)

    Chang, Jufang; Baloh, Robert H; Milbrandt, Jeffrey

    2009-07-01

    NIMA-related kinases (Neks) belong to a large family of Ser/Thr kinases that have critical roles in coordinating microtubule dynamics during ciliogenesis and mitotic progression. The Nek kinases are also expressed in neurons, whose axonal projections are, similarly to cilia, microtubule-abundant structures that extend from the cell body. We therefore investigated whether Nek kinases have additional, non-mitotic roles in neurons. We found that Nek3 influences neuronal morphogenesis and polarity through effects on microtubules. Nek3 is expressed in the cytoplasm and axons of neurons and is phosphorylated at Thr475 located in the C-terminal PEST domain, which regulates its catalytic activity. Although exogenous expression of wild-type or phosphomimic (T475D) Nek3 in cultured neurons has no discernible impact, expression of a phospho-defective mutant (T475A) or PEST-truncated Nek3 leads to distorted neuronal morphology with disturbed polarity and deacetylation of microtubules via HDAC6 in its kinase-dependent manner. Thus, the phosphorylation at Thr475 serves as a regulatory switch that alters Nek3 function. The deacetylation of microtubules in neurons by unphosphorylated Nek3 raises the possibility that it could have a role in disorders where axonal degeneration is an important component.

  8. Projects Work!

    Science.gov (United States)

    Textor, Martin R.

    2005-01-01

    The great educational value of projects is emphasized by contrasting negative aspects of the life of today's children with the goals of project work. This is illustrated by a project "Shopping." It is shown what children are learning in such projects and what the advantages of project work are. Relevant topic areas, criteria for selecting a…

  9. Adolescent maturation of inhibitory inputs onto cingulate cortex neurons is cell-type specific and TrkB dependent

    Directory of Open Access Journals (Sweden)

    Angela eVandenberg

    2015-02-01

    Full Text Available The maturation of inhibitory circuits during adolescence may be tied to the onset of mental health disorders such as schizophrenia. Neurotrophin signaling likely plays a critical role in supporting inhibitory circuit development and is also implicated in psychiatric disease. Within the neocortex, subcircuits may mature at different times and show differential sensitivity to neurotrophin signaling. We measured miniature inhibitory and excitatory postsynaptic currents (mIPSC and mEPSCs in Layer 5 cell-types in the mouse anterior cingulate across the periadolescent period. We differentiated cell-types mainly by Thy1 YFP transgene expression and also retrobead injection labeling in the contralateral cingulate and ipsilateral pons. We found that YFP- neurons and commissural projecting neurons had lower frequency of mIPSCs than neighboring YFP+ neurons or pons projecting neurons in juvenile mice (P21-25. YFP- neurons and to a lesser extent commissural projecting neurons also showed a significant increase in mIPSC amplitude during the periadolescent period (P21-25 vs. P40-50, which was not seen in YFP+ neurons or pons projecting neurons. Systemic disruption of tyrosine kinase receptor B (TrkB signaling during P23-50 in TrkBF616A mice blocked developmental changes in mIPSC amplitude, without affecting miniature excitatory post synaptic currents (mEPSCs. Our data suggest that the maturation of inhibitory inputs onto layer 5 pyramidal neurons is cell-type specific. These data may inform our understanding of adolescent brain development across species and aid in identifying candidate subcircuits that may show greater vulnerability in mental illness.

  10. Hallmarks of Alzheimer's Disease in Stem-Cell-Derived Human Neurons Transplanted into Mouse Brain.

    Science.gov (United States)

    Espuny-Camacho, Ira; Arranz, Amaia M; Fiers, Mark; Snellinx, An; Ando, Kunie; Munck, Sebastian; Bonnefont, Jerome; Lambot, Laurie; Corthout, Nikky; Omodho, Lorna; Vanden Eynden, Elke; Radaelli, Enrico; Tesseur, Ina; Wray, Selina; Ebneth, Andreas; Hardy, John; Leroy, Karelle; Brion, Jean-Pierre; Vanderhaeghen, Pierre; De Strooper, Bart

    2017-03-08

    Human pluripotent stem cells (PSCs) provide a unique entry to study species-specific aspects of human disorders such as Alzheimer's disease (AD). However, in vitro culture of neurons deprives them of their natural environment. Here we transplanted human PSC-derived cortical neuronal precursors into the brain of a murine AD model. Human neurons differentiate and integrate into the brain, express 3R/4R Tau splice forms, show abnormal phosphorylation and conformational Tau changes, and undergo neurodegeneration. Remarkably, cell death was dissociated from tangle formation in this natural 3D model of AD. Using genome-wide expression analysis, we observed upregulation of genes involved in myelination and downregulation of genes related to memory and cognition, synaptic transmission, and neuron projection. This novel chimeric model for AD displays human-specific pathological features and allows the analysis of different genetic backgrounds and mutations during the course of the disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Cellular Programming and Reprogramming: Sculpting Cell Fate for the Production of Dopamine Neurons for Cell Therapy

    Directory of Open Access Journals (Sweden)

    Julio C. Aguila

    2012-01-01

    success of clinical applications depends on our ability to steer pluripotent stem cells towards the right neuronal identity. In Parkinson disease, the loss of dopamine neurons is more pronounced in the ventrolateral population that projects to the sensorimotor striatum. Because synapses are highly specific, only neurons with this precise identity will contribute, upon transplantation, to the synaptic reconstruction of the dorsal striatum. Thus, understanding the developmental cell program of the mesostriatal dopamine neurons is critical for the identification of the extrinsic signals and cell-intrinsic factors that instruct and, ultimately, determine cell identity. Here, we review how extrinsic signals and transcription factors act together during development to shape midbrain cell fates. Further, we discuss how these same factors can be applied in vitro to induce, select, and reprogram cells to the mesostriatal dopamine fate.

  12. Results on a Binding Neuron Model and Their Implications for Modified Hourglass Model for Neuronal Network

    Directory of Open Access Journals (Sweden)

    Viswanathan Arunachalam

    2013-01-01

    Full Text Available The classical models of single neuron like Hodgkin-Huxley point neuron or leaky integrate and fire neuron assume the influence of postsynaptic potentials to last till the neuron fires. Vidybida (2008 in a refreshing departure has proposed models for binding neurons in which the trace of an input is remembered only for a finite fixed period of time after which it is forgotten. The binding neurons conform to the behaviour of real neurons and are applicable in constructing fast recurrent networks for computer modeling. This paper develops explicitly several useful results for a binding neuron like the firing time distribution and other statistical characteristics. We also discuss the applicability of the developed results in constructing a modified hourglass network model in which there are interconnected neurons with excitatory as well as inhibitory inputs. Limited simulation results of the hourglass network are presented.

  13. Single-cell axotomy of cultured hippocampal neurons integrated in neuronal circuits.

    Science.gov (United States)

    Gomis-Rüth, Susana; Stiess, Michael; Wierenga, Corette J; Meyn, Liane; Bradke, Frank

    2014-05-01

    An understanding of the molecular mechanisms of axon regeneration after injury is key for the development of potential therapies. Single-cell axotomy of dissociated neurons enables the study of the intrinsic regenerative capacities of injured axons. This protocol describes how to perform single-cell axotomy on dissociated hippocampal neurons containing synapses. Furthermore, to axotomize hippocampal neurons integrated in neuronal circuits, we describe how to set up coculture with a few fluorescently labeled neurons. This approach allows axotomy of single cells in a complex neuronal network and the observation of morphological and molecular changes during axon regeneration. Thus, single-cell axotomy of mature neurons is a valuable tool for gaining insights into cell intrinsic axon regeneration and the plasticity of neuronal polarity of mature neurons. Dissociation of the hippocampus and plating of hippocampal neurons takes ∼2 h. Neurons are then left to grow for 2 weeks, during which time they integrate into neuronal circuits. Subsequent axotomy takes 10 min per neuron and further imaging takes 10 min per neuron.

  14. Development and maturation of embryonic cortical neurons grafted into the damaged adult motor cortex

    Directory of Open Access Journals (Sweden)

    Nissrine Ballout

    2016-08-01

    Full Text Available Injury to the human central nervous system can lead to devastating consequences due to its poor ability to self-repair. Neural transplantation aimed at replacing lost neurons and restore functional circuitry has proven to be a promising therapeutical avenue. We previously reported in adult rodent animal models with cortical lesions that grafted fetal cortical neurons could effectively re-establish specific patterns of projections and synapses. The current study was designed to provide a detailed characterization of the spatio-temporal in vivo development of fetal cortical transplanted cells within the lesioned adult motor cortex and their corresponding axonal projections. We show here that as early as two weeks after grafting, cortical neuroblasts transplanted into damaged adult motor cortex developed appropriate projections to cortical and subcortical targets. Grafted cells initially exhibited characteristics of immature neurons, which then differentiated into mature neurons with appropriate cortical phenotypes where most were glutamatergic and few were GABAergic. All cortical subtypes identified with the specific markers CTIP2, Cux1, FOXP2 and Tbr1 were generated after grafting as evidenced with BrdU co-labeling.The set of data provided here is of interest as it sets biological standards for future studies aimed at replacing fetal cells with embryonic stem cells as a source of cortical neurons.

  15. Synaptic potentiation onto habenula neurons in the learned helplessness model of depression

    Energy Technology Data Exchange (ETDEWEB)

    Li, B.; Schulz, D.; Li, B; Piriz, J.; Mirrione, M.; Chung, C.H.; Proulx, C.D.; Schulz, D.; Henn, F.; Malinow, R.

    2011-02-24

    The cellular basis of depressive disorders is poorly understood. Recent studies in monkeys indicate that neurons in the lateral habenula (LHb), a nucleus that mediates communication between forebrain and midbrain structures, can increase their activity when an animal fails to receive an expected positive reward or receives a stimulus that predicts aversive conditions (that is, disappointment or anticipation of a negative outcome). LHb neurons project to, and modulate, dopamine-rich regions, such as the ventral tegmental area (VTA), that control reward-seeking behaviour and participate in depressive disorders. Here we show that in two learned helplessness models of depression, excitatory synapses onto LHb neurons projecting to the VTA are potentiated. Synaptic potentiation correlates with an animal's helplessness behaviour and is due to an enhanced presynaptic release probability. Depleting transmitter release by repeated electrical stimulation of LHb afferents, using a protocol that can be effective for patients who are depressed, markedly suppresses synaptic drive onto VTA-projecting LHb neurons in brain slices and can significantly reduce learned helplessness behaviour in rats. Our results indicate that increased presynaptic action onto LHb neurons contributes to the rodent learned helplessness model of depression.

  16. Motor neurons and the generation of spinal motor neurons diversity

    Directory of Open Access Journals (Sweden)

    Nicolas eStifani

    2014-10-01

    Full Text Available Motor neurons (MNs are neuronal cells located in the central nervous system (CNS controlling a variety of downstream targets. This function infers the existence of MN subtypes matching the identity of the targets they innervate. To illustrate the mechanism involved in the generation of cellular diversity and the acquisition of specific identity, this review will focus on spinal motor neurons (SpMNs that have been the core of significant work and discoveries during the last decades. SpMNs are responsible for the contraction of effector muscles in the periphery. Humans possess more than 500 different skeletal muscles capable to work in a precise time and space coordination to generate complex movements such as walking or grasping. To ensure such refined coordination, SpMNs must retain the identity of the muscle they innervate.Within the last two decades, scientists around the world have produced considerable efforts to elucidate several critical steps of SpMNs differentiation. During development, SpMNs emerge from dividing progenitor cells located in the medial portion of the ventral neural tube. MN identities are established by patterning cues working in cooperation with intrinsic sets of transcription factors. As the embryo develop, MNs further differentiate in a stepwise manner to form compact anatomical groups termed pools connecting to a unique muscle target. MN pools are not homogeneous and comprise subtypes according to the muscle fibers they innervate.This article aims to provide a global view of MN classification as well as an up-to-date review of the molecular mechanisms involved in the generation of SpMN diversity. Remaining conundrums will be discussed since a complete understanding of those mechanisms constitutes the foundation required for the elaboration of prospective MN regeneration therapies.

  17. NMDA receptors on non-dopaminergic neurons in the VTA support cocaine sensitization.

    Directory of Open Access Journals (Sweden)

    Yu Luo

    2010-08-01

    Full Text Available The initiation of behavioral sensitization to cocaine and other psychomotor stimulants is thought to reflect N-methyl-D-aspartate receptor (NMDAR-mediated synaptic plasticity in the mesolimbic dopamine (DA circuitry. The importance of drug induced NMDAR mediated adaptations in ventral tegmental area (VTA DA neurons, and its association with drug seeking behaviors, has recently been evaluated in Cre-loxp mice lacking functional NMDARs in DA neurons expressing Cre recombinase under the control of the endogenous dopamine transporter gene (NR1(DATCre mice.Using an additional NR1(DATCre mouse transgenic model, we demonstrate that while the selective inactivation of NMDARs in DA neurons eliminates the induction of molecular changes leading to synaptic strengthening, behavioral measures such as cocaine induced locomotor sensitization and conditioned place preference remain intact in NR1(DATCre mice. Since VTA DA neurons projecting to the prefrontal cortex and amygdala express little or no detectable levels of the dopamine transporter, it has been speculated that NMDA receptors in DA neurons projecting to these brain areas may have been spared in NR1(DATCre mice. Here we demonstrate that the NMDA receptor gene is ablated in the majority of VTA DA neurons, including those exhibiting undetectable DAT expression levels in our NR1(DATCre transgenic model, and that application of an NMDAR antagonist within the VTA of NR1(DATCre animals still blocks sensitization to cocaine.These results eliminate the possibility of NMDAR mediated neuroplasticity in the different DA neuronal subpopulations in our NR1(DATCre mouse model and therefore suggest that NMDARs on non-DA neurons within the VTA must play a major role in cocaine-related addictive behavior.

  18. PROJECTIONS OF DORSAL AND MEDIAN RAPHE NUCLEI TO DORSAL AND VENTRAL STRIATUM

    Directory of Open Access Journals (Sweden)

    G. R. Hassanzadeh G. Behzadi

    2007-08-01

    Full Text Available The ascending serotonergic projections are derived mainly from mesencephalic raphe nuclei. Topographical projections from mesencephalic raphe nuclei to the striatum were examined in the rat by the retrograde transport technique of HRP (horseradish peroxidase. In 29 rats stereotaxically injection of HRP enzyme were performed in dorsal and ventral parts of striatum separately. The extent of the injection sites and distribution of retrogradely labeled neuronal cell bodies were drawed on representative sections using a projection microscope. Following ipsilateral injection of HRP into the dorsal striatum, numerous labeled neurons were seen in rostral portion of dorsal raphe (DR nucleus. In the same level the cluster of labeled neurons were hevier through caudal parts of DR. A few neurons were also located in lateral wing of DR. More caudally some labeled neurons were found in lateral, medial line of DR. In median raphe nucleus (MnR the labeled neurons were scattered only in median portion of this nucleus. The ipsilateral injection of HRP into the ventral region of striatum resulted on labeling of numerous neurons in rostral, caudal and lateral portions of DR. Through the caudal extension of DR on 4th ventricle level, a large number of labeled neurons were distributed along the ventrocaudal parts of DR. In MnR, labeled neurons were observed only in median part of this nucleus. These findings suggest the mesencephalic raphe nuclei projections to caudo-putamen are topographically organized. In addition dorsal and median raphe nuclei have a stronger projection to the ventral striatum.

  19. A single GABAergic neuron mediates feedback of odor-evoked signals in the mushroom body of larval Drosophila

    Directory of Open Access Journals (Sweden)

    Liria Monica Masuda-Nakagawa

    2014-04-01

    Full Text Available Inhibition has a central role in defining the selectivity of the responses of higher order neurons to sensory stimuli. However, the circuit mechanisms of regulation of these responses by inhibitory neurons are still unclear. In Drosophila, the mushroom bodies (MBs are necessary for olfactory memory, and by implication for the selectivity of learned responses to specific odors. To understand the circuitry of inhibition in the calyx (the input dendritic region of the MBs, and its relationship with MB excitatory activity, we used the simple anatomy of the Drosophila larval olfactory system to identify any inhibitory inputs that could contribute to the selectivity of MB odor responses. We found that a single neuron accounts for all detectable GABA innervation in the calyx of the MBs, and that this neuron has presynaptic terminals in the calyx and postsynaptic branches in the MB lobes (output axonal area. We call this neuron the larval anterior paired lateral (APL neuron, because of its similarity to the previously described adult APL neuron. Reconstitution of GFP partners (GRASP suggests that the larval APL makes extensive contacts with the MB intrinsic neurons, Kenyon Cells (KCs, but few contacts with incoming projection neurons. Using calcium imaging of neuronal activity in live larvae, we show that the larval APL responds to odors, in a mannner that requires output from KCs. Our data suggest that the larval APL is the sole GABAergic neuron that innervates the MB input region and carries inhibitory feedback from the MB output region, consistent with a role in modulating the olfactory selectivity of MB neurons.

  20. Differential expression of HDACs and KATs in high and low regeneration capacity neurons during spinal cord regeneration.

    Science.gov (United States)

    Chen, Jie; Laramore, Cindy; Shifman, Michael I

    2016-06-01

    After spinal cord injury (SCI) in mammals, injured axons fail to regenerate. By contrast, lampreys recover from complete spinal transection and axons regenerate selectively in their correct paths. Yet the large, identified reticulospinal neurons in the lamprey brain vary greatly in their regenerative abilities - some have high regeneration capacity (probability of regeneration >50%) and others have low regeneration capacity (regenerating and non-regenerating neurons located in the same brain region and projecting to the same axon tracts suggests that differences in their regenerating abilities depend upon factors intrinsic to the neurons. Previous work has suggested that axon regeneration, especially in PNS, could depend on epigenetic mechanisms of histone modifications, such as the acetylation of histone tails. Our data indicated that expression of the enzymes responsible for regulating the acetylation of histone (KATs and HDACs) - KAT2A, KAT5 and P300 and HDAC3 did not change after SCI in either high regeneration capacity or low regeneration capacity neurons. In the present report, we show a novel and unexpected relationship between neuron regeneration abilities and expression of HDAC1. While HDAC1 expression was downregulated in both high and low regeneration capacity neurons 2 and 4weeks after SCI, it was upregulated at 7weeks at almost all RS neurons. However, at 10weeks post-transection only high regeneration capacity neurons displayed elevated HDAC1 mRNA expression and HDAC1 expression was again downregulated in low regeneration capacity neurons. Moreover, we show that HDAC1 is preferentially expressed in regenerated neurons, but not in non-regenerating neurons. Together, these results suggest that SCI causes significant changes in HDAC1 expression and that HDAC1 expression in regenerating neurons may modulates a survival or regeneration programs. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Developmental Profiling of Spiral Ganglion Neurons Reveals Insights into Auditory Circuit Assembly

    Science.gov (United States)

    Lu, Cindy C.; Appler, Jessica M.; Houseman, E. Andres; Goodrich, Lisa V.

    2011-01-01

    The sense of hearing depends on the faithful transmission of sound information from the ear to the brain by spiral ganglion (SG) neurons. However, how SG neurons develop the connections and properties that underlie auditory processing is largely unknown. We catalogued gene expression in mouse SG neurons from embryonic day 12 (E12), when SG neurons first extend projections, up until postnatal day 15 (P15), after the onset of hearing. For comparison, we also analyzed the closely-related vestibular ganglion (VG). Gene ontology analysis confirmed enriched expression of genes associated with gene regulation and neurite outgrowth at early stages, with the SG and VG often expressing different members of the same gene family. At later stages, the neurons transcribe more genes related to mature function, and exhibit a dramatic increase in immune gene expression. Comparisons of the two populations revealed enhanced expression of TGFβ pathway components in SG neurons and established new markers that consistently distinguish auditory and vestibular neurons. Unexpectedly, we found that Gata3, a transcription factor commonly associated with auditory development, is also expressed in VG neurons at early stages. We therefore defined new cohorts of transcription factors and axon guidance molecules that are uniquely expressed in SG neurons and may drive auditory-specific aspects of their differentiation and wiring. We show that one of these molecules, the receptor guanylyl cyclase Npr2, is required for bifurcation of the SG central axon. Hence, our data set provides a useful resource for uncovering the molecular basis of specific auditory circuit assembly events. PMID:21795542

  2. Somal size of prefrontal cortical pyramidal neurons in schizophrenia: differential effects across neuronal subpopulations.

    Science.gov (United States)

    Pierri, Joseph N; Volk, Christine L E; Auh, Sungyoung; Sampson, Allan; Lewis, David A

    2003-07-15

    Cognitive dysfunction in schizophrenia may be related to morphologic abnormalities of pyramidal neurons in the dorsal prefrontal cortex (dPFC) and the largest pyramidal neurons in deep layer 3 may be most affected. Immunoreactivity (IR) for the nonphosphorylated epitopes of neurofilament protein (NNFP) identifies a subset of large dPFC deep layer 3 pyramidal neurons. We tested the hypotheses that the average size of NNFP-IR neurons is smaller in schizophrenia and that the decrease in size of these neurons is greater than that observed in the general population of deep layer 3 pyramidal neurons. We estimated the mean somal volume of NNFP-IR neurons in deep layer 3 of 9 in 13 matched pairs of control and schizophrenia subjects and compared the differences in somal size of NNFP-IR neurons to the differences in size of all deep layer 3 pyramidal neurons identified in Nissl-stained material. In subjects with schizophrenia, the somal volume of NNFP-IR neurons was nonsignificantly decreased by 6.6%, whereas that of the Nissl-stained pyramidal neurons was significantly decreased by 14.2%. These results suggest that the NNFP-IR subpopulation of dPFC pyramidal neurons are not preferentially affected in schizophrenia. Thus, a subpopulation of dPFC deep layer 3 pyramidal neurons, other than those identified by NNFP-IR, may be selectively vulnerable in schizophrenia.

  3. A chimeric path to neuronal synchronization

    Energy Technology Data Exchange (ETDEWEB)

    Essaki Arumugam, Easwara Moorthy; Spano, Mark L. [School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85287-9709 (United States)

    2015-01-15

    Synchronization of neuronal activity is associated with neurological disorders such as epilepsy. This process of neuronal synchronization is not fully understood. To further our understanding, we have experimentally studied the progression of this synchronization from normal neuronal firing to full synchronization. We implemented nine FitzHugh-Nagumo neurons (a simplified Hodgkin-Huxley model) via discrete electronics. For different coupling parameters (synaptic strengths), the neurons in the ring were either unsynchronized or completely synchronized when locally coupled in a ring. When a single long-range connection (nonlocal coupling) was introduced, an intermediate state known as a chimera appeared. The results indicate that (1) epilepsy is likely not only a dynamical disease but also a topological disease, strongly tied to the connectivity of the underlying network of neurons, and (2) the synchronization process in epilepsy may not be an “all or none” phenomenon, but can pass through an intermediate stage (chimera)

  4. L-system modeling of neurons

    Science.gov (United States)

    McCormick, Bruce H.; Mulchandani, K.

    1994-09-01

    A formal representation of neuron morphology, adequate for the geometric modeling of manually-traced neurons, is presented. The concept of a stochastic L-system is then introduced and the critical distribution functions governing the stochastic generation of dendritic and axonal trees are defined. Experiments with various stochastic L-system models for pyramidal, motoneuron, and Purkinje cells are reported which generate synthetic neurons with promising proximity to neurons in the neurobiology literature. Work is in progress to improve this degree of proximity, but more importantly to validate the derived stochastic models against available databases of manually-traced neurons. To this end a neuron morphology modeler is described which provides a methodology for iterative refinement of the stochastic L-system model.

  5. Assessing neuronal networks: understanding Alzheimer's disease.

    LENUS (Irish Health Repository)

    Bokde, Arun L W

    2012-02-01

    Findings derived from neuroimaging of the structural and functional organization of the human brain have led to the widely supported hypothesis that neuronal networks of temporally coordinated brain activity across different regional brain structures underpin cognitive function. Failure of integration within a network leads to cognitive dysfunction. The current discussion on Alzheimer\\'s disease (AD) argues that it presents in part a disconnection syndrome. Studies using functional magnetic resonance imaging, positron emission tomography and electroencephalography demonstrate that synchronicity of brain activity is altered in AD and correlates with cognitive deficits. Moreover, recent advances in diffusion tensor imaging have made it possible to track axonal projections across the brain, revealing substantial regional impairment in fiber-tract integrity in AD. Accumulating evidence points towards a network breakdown reflecting disconnection at both the structural and functional system level. The exact relationship among these multiple mechanistic variables and their contribution to cognitive alterations and ultimately decline is yet unknown. Focused research efforts aimed at the integration of both function and structure hold great promise not only in improving our understanding of cognition but also of its characteristic progressive metamorphosis in complex chronic neurodegenerative disorders such as AD.

  6. Performance limitations of relay neurons.

    Directory of Open Access Journals (Sweden)

    Rahul Agarwal

    Full Text Available Relay cells are prevalent throughout sensory systems and receive two types of inputs: driving and modulating. The driving input contains receptive field properties that must be transmitted while the modulating input alters the specifics of transmission. For example, the visual thalamus contains relay neurons that receive driving inputs from the retina that encode a visual image, and modulating inputs from reticular activating system and layer 6 of visual cortex that control what aspects of the image will be relayed back to visual cortex for perception. What gets relayed depends on several factors such as attentional demands and a subject's goals. In this paper, we analyze a biophysical based model of a relay cell and use systems theoretic tools to construct analytic bounds on how well the cell transmits a driving input as a function of the neuron's electrophysiological properties, the modulating input, and the driving signal parameters. We assume that the modulating input belongs to a class of sinusoidal signals and that the driving input is an irregular train of pulses with inter-pulse intervals obeying an exponential distribution. Our analysis applies to any [Formula: see text] order model as long as the neuron does not spike without a driving input pulse and exhibits a refractory period. Our bounds on relay reliability contain performance obtained through simulation of a second and third order model, and suggest, for instance, that if the frequency of the modulating input increases or the DC offset decreases, then relay increases. Our analysis also shows, for the first time, how the biophysical properties of the neuron (e.g. ion channel dynamics define the oscillatory patterns needed in the modulating input for appropriately timed relay of sensory information. In our discussion, we describe how our bounds predict experimentally observed neural activity in the basal ganglia in (i health, (ii in Parkinson's disease (PD, and (iii in PD during

  7. Neuronal communication: firing spikes with spikes.

    Science.gov (United States)

    Brecht, Michael

    2012-08-21

    Spikes of single cortical neurons can exert powerful effects even though most cortical synapses are too weak to fire postsynaptic neurons. A recent study combining single-cell stimulation with population imaging has visualized in vivo postsynaptic firing in genetically identified target cells. The results confirm predictions from in vitro work and might help to understand how the brain reads single-neuron activity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. High-Degree Neurons Feed Cortical Computations.

    Directory of Open Access Journals (Sweden)

    Nicholas M Timme

    2016-05-01

    Full Text Available Recent work has shown that functional connectivity among cortical neurons is highly varied, with a small percentage of neurons having many more connections than others. Also, recent theoretical developments now make it possible to quantify how neurons modify information from the connections they receive. Therefore, it is now possible to investigate how information modification, or computation, depends on the number of connections a neuron receives (in-degree or sends out (out-degree. To do this, we recorded the simultaneous spiking activity of hundreds of neurons in cortico-hippocampal slice cultures using a high-density 512-electrode array. This preparation and recording method combination produced large numbers of neurons recorded at temporal and spatial resolutions that are not currently available in any in vivo recording system. We utilized transfer entropy (a well-established method for detecting linear and nonlinear interactions in time series and the partial information decomposition (a powerful, recently developed tool for dissecting multivariate information processing into distinct parts to quantify computation between neurons where information flows converged. We found that computations did not occur equally in all neurons throughout the networks. Surprisingly, neurons that computed large amounts of information tended to receive connections from high out-degree neurons. However, the in-degree of a neuron was not related to the amount of information it computed. To gain insight into these findings, we developed a simple feedforward network model. We found that a degree-modified Hebbian wiring rule best reproduced the pattern of computation and degree correlation results seen in the real data. Interestingly, this rule also maximized signal propagation in the presence of network-wide correlations, suggesting a mechanism by which cortex could deal with common random background input. These are the first results to show that the extent to

  9. Sensory Neurons in the Human Geniculate Ganglion.

    Science.gov (United States)

    Sato, Tadasu; Yamaguma, Yu; Sasaki, Yu; Kanda, Noriyuki; Sasahara, Nobuyuki; Kokubun, Souichi; Yajima, Takehiro; Ichikawa, Hiroyuki

    2017-01-01

    The geniculate ganglion (GG) contains visceral and somatic sensory neurons of the facial nerve. In this study, the number and cell size of sensory neurons in the human GG were investigated. The estimated number of GG neurons ranged from 1,580 to 2,561 (mean ± SD = 1,960 ± 364.6). The cell size of GG neurons ranged from 393.0 to 2,485.4 μm2 (mean ± SD = 1,067.4 ± 99.5 μm2). Sensory neurons in the GG were significantly smaller in size than those in the dorsal root (range = 326.6-5343.4 μm2, mean ± SD = 1,683.2 ± 203.8 μm2) or trigeminal ganglia (range = 349.6-4,889.28 μm2, mean ± SD = 1,529.0 ± 198.48 μm2). Sensory neurons had similar cell body sizes in the GG and nodose ganglion (range = 357.2-3,488.33 μm2, mean ± SD = 1,160.4 ± 156.61 μm2). These findings suggest that viscerosensory neurons have smaller cell bodies than somatosensory neurons. In addition, immunohistochemistry for several neurochemical substances was performed on the human GG. In the ganglion, sensory neurons were mostly immunoreactive for secreted protein, acidic and rich in cysteine-like 1 (94.3%). One third of GG neurons showed vesicular glutamate transporter 2 immunoreactivity (31.3%). Only 7.3% of GG neurons were immunoreactive for transient receptor potential cation channel subfamily V member 1. Sensory neurons in the human GG may respond to gustatory, nociceptive, and/or mechanoreceptive stimuli from tongues, soft palates, and external auditory canals. © 2017 S. Karger AG, Basel.

  10. Functions of class V myosins in neurons.

    Science.gov (United States)

    Hammer, John A; Wagner, Wolfgang

    2013-10-04

    This minireview focuses on recent studies implicating class V myosins in organelle and macromolecule transport within neurons. These studies reveal that class V myosins play important roles in a wide range of fundamental processes occurring within neurons, including the transport into dendritic spines of organelles that support synaptic plasticity, the establishment of neuronal shape, the specification of polarized cargo transport, and the subcellular localization of mRNA.

  11. Tectal neurons that participate in centrifugal control of the quail retina: a morphological study by means of retrograde labeling with biocytin.

    Science.gov (United States)

    Uchiyama, H; Yamamoto, N; Ito, H

    1996-01-01

    An avian retinopetal nucleus, the isthmo-optic nucleus (ION), is known to receive predominant inputs from the ipsilateral optic tectum. We injected biocytin into the ION in the Japanese quail, and retrogradely labeled tectal neurons projecting to the isthmo-optic (IO) neurons, or the tecto-IO neurons, with an extraordinary Golgi-like quality. Somata of the tecto-IO neurons were located in layer 9 of the tectum. The tecto-IO neurons did not have apical dendrites extending into superficial retino-recipient layers (layers 2-7), but had descending dendrites ramified in layers 9-12. They also possessed short ascending dendrites ramifying in the upper half of layer 9. This dendritic morphology suggests that main input to the tecto-IO neurons may not be of retinal origin. The tecto-IO neurons were spatially arranged in a regular pattern. Distances between neighboring tecto-IO neurons were 50-100 microns. The dendrites of each tecto-IO neuron were not widely dispersed in the horizontal plane, and were confined in a vertically oriented column of 100-200 microns diameter. They possessed axon collaterals extending horizontally in layers 12 and 13. The estimated total number of the tecto-IO neurons was approximately 7000-10,000, which is almost identical to the total cell number of the IO neurons. To label a small number of the tecto-IO terminals, biocytin was injected into a confined area of the optic tectum. The tecto-IO fibers densely arborized in a restricted space of the ION, which is comparable to the dimension of dendritic arborization of individual IO neurons. It is suggested that single tecto-IO neurons may make contact with single IO neurons. IO neurons are known to make synaptic contact with single target cells (association cells of Cajal) in the retina (Uchiyama & Ito, 1993; Uchiyama et al., 1995). The arborization pattern of the tecto-IO neurons' dendrites indicates that the tecto-IO neurons receive very local information in sensory and sensorimotor coordinate

  12. Glutamate Mediated Astrocytic Filtering of Neuronal Activity

    Science.gov (United States)

    Herzog, Nitzan; De Pittà, Maurizio; Jacob, Eshel Ben; Berry, Hugues; Hanein, Yael

    2014-01-01

    Neuron-astrocyte communication is an important regulatory mechanism in various brain functions but its complexity and role are yet to be fully understood. In particular, the temporal pattern of astrocyte response to neuronal firing has not been fully characterized. Here, we used neuron-astrocyte cultures on multi-electrode arrays coupled to Ca2+ imaging and explored the range of neuronal stimulation frequencies while keeping constant the amount of stimulation. Our results reveal that astrocytes specifically respond to the frequency of neuronal stimulation by intracellular Ca2+ transients, with a clear onset of astrocytic activation at neuron firing rates around 3-5 Hz. The cell-to-cell heterogeneity of the astrocyte Ca2+ response was however large and increasing with stimulation frequency. Astrocytic activation by neurons was abolished with antagonists of type I metabotropic glutamate receptor, validating the glutamate-dependence of this neuron-to-astrocyte pathway. Using a realistic biophysical model of glutamate-based intracellular calcium signaling in astrocytes, we suggest that the stepwise response is due to the supralinear dynamics of intracellular IP3 and that the heterogeneity of the responses may be due to the heterogeneity of the astrocyte-to-astrocyte couplings via gap junction channels. Therefore our results present astrocyte intracellular Ca2+ activity as a nonlinear integrator of glutamate-dependent neuronal activity. PMID:25521344

  13. Role of DAPK in neuronal cell death.

    Science.gov (United States)

    Fujita, Yuki; Yamashita, Toshihide

    2014-02-01

    Neuronal cell death happens as a result of the normal physiological process that occurs during development, or as part of the pathological process that occurs during disease. Death-associated protein kinase (DAPK) is an intracellular protein that mediates cell death by its serine/threonine kinase activity, and transmits apoptotic cell death signals in various cells, including neurons. DAPK is elevated in injured neurons in acute models of injury such as ischemia and seizure. The absence of DAPK has been shown to protect neurons from a wide variety of acute toxic insults. Moreover, DAPK also regulates neuronal cell death during central nervous system development. Neurons are initially overproduced in the developing nervous system, following which approximately one-half of the original cell population dies. This "naturally-occurring" or "programmed" cell death is essential for the construction of the developing nervous system. In this review, we focus on the role of DAPK in neuronal cell death after neuronal injury. The participation of DAPK in developmental neuronal death is also explained.

  14. Tuning curves, neuronal variability, and sensory coding.

    Directory of Open Access Journals (Sweden)

    Daniel A Butts

    2006-04-01

    Full Text Available Tuning curves are widely used to characterize the responses of sensory neurons to external stimuli, but there is an ongoing debate as to their role in sensory processing. Commonly, it is assumed that a neuron's role is to encode the stimulus at the tuning curve peak, because high firing rates are the neuron's most distinct responses. In contrast, many theoretical and empirical studies have noted that nearby stimuli are most easily discriminated in high-slope regions of the tuning curve. Here, we demonstrate that both intuitions are correct, but that their relative importance depends on the experimental context and the level of variability in the neuronal response. Using three different information-based measures of encoding applied to experimentally measured sensory neurons, we show how the best-encoded stimulus can transition from high-slope to high-firing-rate regions of the tuning curve with increasing noise level. We further show that our results are consistent with recent experimental findings that correlate neuronal sensitivities with perception and behavior. This study illustrates the importance of the noise level in determining the encoding properties of sensory neurons and provides a unified framework for interpreting how the tuning curve and neuronal variability relate to the overall role of the neuron in sensory encoding.

  15. Cognition and behaviour in motor neurone disease.

    Science.gov (United States)

    Lillo, Patricia; Hodges, John R

    2010-12-01

    Motor neurone disease has traditionally been considered a pure motor syndrome which spares aspects of cognition and behaviour, although in recent years it has been suggested that up to 50% of patients with motor neurone disease may develop frontal dysfunction which, in some cases, is severe enough to reach criteria for frontotemporal dementia. We review the cognitive and behavioural changes in motor neurone disease emphasizing the recent advances. A major advance in pathology has been the recent discovery of TDP-43 and FUS inclusions as the key components in cases of motor neurone disease, frontotemporal dementia-motor neurone disease and some cases with pure frontotemporal dementia. In addition, mutations in TARDBP and FUS genes have been reported in recent years. Longitudinal studies showed that progression of cognitive impairment over the course of motor neurone disease appears to be mild and occurs only in a proportion of motor neurone disease patients. The presence of cognitive impairment seems to be related to a faster disease and a shorter survival. Motor neurone disease is a multi-system disorder which overlaps with frontotemporal dementia. Behavioural and cognitive changes appear to occur in a subset of patients with motor neurone disease, but the cause of this variability remains unclear.

  16. Functional connectivity in in vitro neuronal assemblies

    Science.gov (United States)

    Poli, Daniele; Pastore, Vito P.; Massobrio, Paolo

    2015-01-01

    Complex network topologies represent the necessary substrate to support complex brain functions. In this work, we reviewed in vitro neuronal networks coupled to Micro-Electrode Arrays (MEAs) as biological substrate. Networks of dissociated neurons developing in vitro and coupled to MEAs, represent a valid experimental model for studying the mechanisms governing the formation, organization and conservation of neuronal cell assemblies. In this review, we present some examples of the use of statistical Cluster Coefficients and Small World indices to infer topological rules underlying the dynamics exhibited by homogeneous and engineered neuronal networks. PMID:26500505

  17. Shaping Neuronal Network Activity by Presynaptic Mechanisms.

    Directory of Open Access Journals (Sweden)

    Ayal Lavi

    2015-09-01

    Full Text Available Neuronal microcircuits generate oscillatory activity, which has been linked to basic functions such as sleep, learning and sensorimotor gating. Although synaptic release processes are well known for their ability to shape the interaction between neurons in microcircuits, most computational models do not simulate the synaptic transmission process directly and hence cannot explain how changes in synaptic parameters alter neuronal network activity. In this paper, we present a novel neuronal network model that incorporates presynaptic release mechanisms, such as vesicle pool dynamics and calcium-dependent release probability, to model the spontaneous activity of neuronal networks. The model, which is based on modified leaky integrate-and-fire neurons, generates spontaneous network activity patterns, which are similar to experimental data and robust under changes in the model's primary gain parameters such as excitatory postsynaptic potential and connectivity ratio. Furthermore, it reliably recreates experimental findings and provides mechanistic explanations for data obtained from microelectrode array recordings, such as network burst termination and the effects of pharmacological and genetic manipulations. The model demonstrates how elevated asynchronous release, but not spontaneous release, synchronizes neuronal network activity and reveals that asynchronous release enhances utilization of the recycling vesicle pool to induce the network effect. The model further predicts a positive correlation between vesicle priming at the single-neuron level and burst frequency at the network level; this prediction is supported by experimental findings. Thus, the model is utilized to reveal how synaptic release processes at the neuronal level govern activity patterns and synchronization at the network level.

  18. Shaping Neuronal Network Activity by Presynaptic Mechanisms

    Science.gov (United States)

    Ashery, Uri

    2015-01-01

    Neuronal microcircuits generate oscillatory activity, which has been linked to basic functions such as sleep, learning and sensorimotor gating. Although synaptic release processes are well known for their ability to shape the interaction between neurons in microcircuits, most computational models do not simulate the synaptic transmission process directly and hence cannot explain how changes in synaptic parameters alter neuronal network activity. In this paper, we present a novel neuronal network model that incorporates presynaptic release mechanisms, such as vesicle pool dynamics and calcium-dependent release probability, to model the spontaneous activity of neuronal networks. The model, which is based on modified leaky integrate-and-fire neurons, generates spontaneous network activity patterns, which are similar to experimental data and robust under changes in the model's primary gain parameters such as excitatory postsynaptic potential and connectivity ratio. Furthermore, it reliably recreates experimental findings and provides mechanistic explanations for data obtained from microelectrode array recordings, such as network burst termination and the effects of pharmacological and genetic manipulations. The model demonstrates how elevated asynchronous release, but not spontaneous release, synchronizes neuronal network activity and reveals that asynchronous release enhances utilization of the recycling vesicle pool to induce the network effect. The model further predicts a positive correlation between vesicle priming at the single-neuron level and burst frequency at the network level; this prediction is supported by experimental findings. Thus, the model is utilized to reveal how synaptic release processes at the neuronal level govern activity patterns and synchronization at the network level. PMID:26372048

  19. Macroscopic Description for Networks of Spiking Neurons

    Science.gov (United States)

    Montbrió, Ernest; Pazó, Diego; Roxin, Alex

    2015-04-01

    A major goal of neuroscience, statistical physics, and nonlinear dynamics is to understand how brain function arises from the collective dynamics of networks of spiking neurons. This challenge has been chiefly addressed through large-scale numerical simulations. Alternatively, researchers have formulated mean-field theories to gain insight into macroscopic states of large neuronal networks in terms of the collective firing activity of the neurons, or the firing rate. However, these theories have not succeeded in establishing an exact correspondence between the firing rate of the network and the underlying microscopic state of the spiking neurons. This has largely constrained the range of applicability of such macroscopic descriptions, particularly when trying to describe neuronal synchronization. Here, we provide the derivation of a set of exact macroscopic equations for a network of spiking neurons. Our results reveal that the spike generation mechanism of individual neurons introduces an effective coupling between two biophysically relevant macroscopic quantities, the firing rate and the mean membrane potential, which together govern the evolution of the neuronal network. The resulting equations exactly describe all possible macroscopic dynamical states of the network, including states of synchronous spiking activity. Finally, we show that the firing-rate description is related, via a conformal map, to a low-dimensional description in terms of the Kuramoto order parameter, called Ott-Antonsen theory. We anticipate that our results will be an important tool in investigating how large networks of spiking neurons self-organize in time to process and encode information in the brain.

  20. Effective stimuli for constructing reliable neuron models.

    Directory of Open Access Journals (Sweden)

    Shaul Druckmann

    2011-08-01

    Full Text Available The rich dynamical nature of neurons poses major conceptual and technical challenges for unraveling their nonlinear membrane properties. Traditionally, various current waveforms have been injected at the soma to probe neuron dynamics, but the rationale for selecting specific stimuli has never been rigorously justified. The present experimental and theoretical study proposes a novel framework, inspired by learning theory, for objectively selecting the stimuli that best unravel the neuron's dynamics. The efficacy of stimuli is assessed in terms of their ability to constrain the parameter space of biophysically detailed conductance-based models that faithfully replicate the neuron's dynamics as attested by their ability to generalize well to the neuron's response to novel experimental stimuli. We used this framework to evaluate a variety of stimuli in different types of cortical neurons, ages and animals. Despite their simplicity, a set of stimuli consisting of step and ramp current pulses outperforms synaptic-like noisy stimuli in revealing the dynamics of these neurons. The general framework that we propose paves a new way for defining, evaluating and standardizing effective electrical probing of neurons and will thus lay the foundation for a much deeper understanding of the electrical nature of these highly sophisticated and non-linear devices and of the neuronal networks that they compose.

  1. Odor processing by adult-born neurons.

    Science.gov (United States)

    Livneh, Yoav; Adam, Yoav; Mizrahi, Adi

    2014-03-05

    The adult mammalian brain is continuously supplied with adult-born neurons in the olfactory bulb (OB) and hippocampus, where they are thought to be important for circuit coding and plasticity. However, direct evidence for the actual involvement of these neurons in neural processing is still lacking. We recorded the spiking activity of adult-born periglomerular neurons in the mouse OB in vivo using two-photon-targeted patch recordings. We show that odor responsiveness reaches a peak during neuronal development and then recedes at maturity. Sensory enrichment during development enhances the selectivity of adult-born neurons after maturation, without affecting neighboring resident neurons. Thus, in the OB circuit, adult-born neurons functionally integrate into the circuit, where they acquire distinct response profiles in an experience-dependent manner. The constant flow of these sensitive neurons into the circuit provides it with a mechanism of long-term plasticity, wherein new neurons mature to process odor information based on past demands. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. A genome-wide signature of glucocorticoid receptor binding in neuronal PC12 cells

    Directory of Open Access Journals (Sweden)

    Polman J Annelies E

    2012-10-01

    Full Text Available Abstract Background Glucocorticoids, secreted by the adrenals in response to stress, profoundly affect structure and plasticity of neurons. Glucocorticoid action in neurons is mediated by glucocorticoid receptors (GR that operate as transcription factors in the regulation of gene expression and either bind directly to genomic glucocorticoid response elements (GREs or indirectly to the genome via interactions with bound transcription factors. These two modes of action, respectively called transactivation and transrepression, result in the regulation of a wide variety of genes important for neuronal function. The objective of the present study was to identify genome-wide glucocorticoid receptor binding sites in neuronal PC12 cells using Chromatin ImmunoPrecipitation combined with next generation sequencing (ChIP-Seq. Results In total we identified 1183 genomic binding sites of GR, the majority of which were novel and not identified in other ChIP-Seq studies on GR binding. More than half (58% of the binding sites contained a GRE. The remaining 42% of the GBS did not harbour a GRE and therefore likely bind GR via an intermediate transcription factor tethering GR to the DNA. While the GRE-containing binding sites were more often located nearby genes involved in general cell functions and processes such as apoptosis, cell motion, protein dimerization activity and vasculature development, the binding sites without a GRE were located nearby genes with a clear role in neuronal processes such as neuron projection morphogenesis, neuron projection regeneration, synaptic transmission and catecholamine biosynthetic process. A closer look at the sequence of the GR binding sites revealed the presence of several motifs for transcription factors that are highly divergent from those previously linked to GR-signaling, including Gabpa, Prrx2, Zfp281, Gata1 and Zbtb3. These transcription factors may represent novel crosstalk partners of GR in a neuronal context

  3. Amplified Mechanically Gated Currents in Distinct Subsets of Myelinated Sensory Neurons following In Vivo Inflammation of Skin and Muscle.

    Science.gov (United States)

    Weyer, Andy D; O'Hara, Crystal L; Stucky, Cheryl L

    2015-06-24

    Primary afferents are sensitized to mechanical stimuli following in vivo inflammation, but whether sensitization of mechanically gated ion channels contributes to this phenomenon is unknown. Here we identified two populations of murine A fiber-type sensory neurons that display markedly different responses to focal mechanical stimuli of the membrane based on their expression of calcitonin gene-related peptide (CGRP). Following inflammation of the hindpaw, myelinated, CGRP-positive neurons projecting to the paw skin displayed elevated mechanical currents in response to mechanical stimuli. Conversely, muscle inflammation markedly amplified mechanical currents in myelinated, CGRP-negative neurons projecting to muscle. These data show, for the first time, that mechanically gated currents are amplified following in vivo tissue inflammation, and also suggest that mechanical sensitization can occur in myelinated neurons after inflammation. Copyright © 2015 the authors 0270-6474/15/359456-07$15.00/0.

  4. Define Project

    DEFF Research Database (Denmark)

    Munk-Madsen, Andreas

    2005-01-01

    "Project" is a key concept in IS management. The word is frequently used in textbooks and standards. Yet we seldom find a precise definition of the concept. This paper discusses how to define the concept of a project. The proposed definition covers both heavily formalized projects and informally...... organized, agile projects. Based on the proposed definition popular existing definitions are discussed....

  5. Project Management

    DEFF Research Database (Denmark)

    Project Management Theory Meets Practice contains the proceedings from the 1st Danish Project Management Research Conference (DAPMARC 2015), held in Copenhagen, Denmark, on May 21st, 2015.......Project Management Theory Meets Practice contains the proceedings from the 1st Danish Project Management Research Conference (DAPMARC 2015), held in Copenhagen, Denmark, on May 21st, 2015....

  6. Aversive learning shapes neuronal orientation tuning in human visual cortex.

    Science.gov (United States)

    McTeague, Lisa M; Gruss, L Forest; Keil, Andreas

    2015-07-28

    The responses of sensory cortical neurons are shaped by experience. As a result perceptual biases evolve, selectively facilitating the detection and identification of sensory events that are relevant for adaptive behaviour. Here we examine the involvement of human visual cortex in the formation of learned perceptual biases. We use classical aversive conditioning to associate one out of a series of oriented gratings with a noxious sound stimulus. After as few as two grating-sound pairings, visual cortical responses to the sound-paired grating show selective amplification. Furthermore, as learning progresses, responses to the orientations with greatest similarity to the sound-paired grating are increasingly suppressed, suggesting inhibitory interactions between orientation-selective neuronal populations. Changes in cortical connectivity between occipital and fronto-temporal regions mirror the changes in visuo-cortical response amplitudes. These findings suggest that short-term behaviourally driven retuning of human visual cortical neurons involves distal top-down projections as well as local inhibitory interactions.

  7. Project Management

    DEFF Research Database (Denmark)

    Pilkington, Alan; Chai, Kah-Hin; Le, Yang

    2015-01-01

    This paper identifies the true coverage of PM theory through a bibliometric analysis of the International Journal of Project Management from 1996-2012. We identify six persistent research themes: project time management, project risk management, programme management, large-scale project management......, project success/failure and practitioner development. These differ from those presented in review and editorial articles in the literature. In addition, topics missing from the PM BOK: knowledge management project-based organization and project portfolio management have become more popular topics...

  8. NETMORPH: a framework for the stochastic generation of large scale neuronal networks with realistic neuron morphologies

    NARCIS (Netherlands)

    Koene, R.A.; Tijms, B.; van Hees, P.; Postma, F.; de Ridder, A.; Ramakers, G.J.A.; van Pelt, J.; van Ooyen, A.

    2009-01-01

    We present a simulation framework, called NETMORPH, for the developmental generation of 3D large-scale neuronal networks with realistic neuron morphologies. In NETMORPH, neuronal morphogenesis is simulated from the perspective of the individual growth cone. For each growth cone in a growing axonal

  9. Testing Brain Overgrowth and Synaptic Models of Autism Using NPCs and Neurons From Patient Derived iPS Cells

    Science.gov (United States)

    2015-12-01

    AWARD NUMBER: W81XWH-13-1-0414 TITLE: Testing Brain Overgrowth and Synaptic Models of Autism Using NPCs and Neurons From Patient-Derived iPS...3. DATES COVERED 15 Sep 2013 - 14 Sep 2015 4. TITLE AND SUBTITLE Testing Brain Overgrowth and Synaptic Models of Autism Using NPCs and Neurons From... autism pathogenesis: early brain overgrowth and synaptogenesis defects. The goal of this project is to produce human cellular models of non

  10. Detection of cannabinoid receptors CB1 and CB2 within basal ganglia output neurons in macaques: changes following experimental parkinsonism

    OpenAIRE

    S. Sierra; Luquin, N. (Natasha); Rico, A.J. (Alberto J.); Gomez-Bautista, V. (V.); Roda, E; Dopeso-Reyes, I G; Vazquez, A.; Martinez-Pinilla, E. (Eva); Labandeira-Garcia, J.L. (José L.); Franco, R.; J.L. Lanciego

    2014-01-01

    Abstract Although type 1 cannabinoid receptors (CB1- Rs) are expressed abundantly throughout the brain, the presence of type 2 cannabinoid receptors (CB2Rs) in neurons is still somewhat controversial. Taking advantage of newly designed CB1R and CB2R mRNA riboprobes, we demonstrate by PCR and in situ hybridization that transcripts for both cannabinoid receptors are present within labeled pallidothalamic-projecting neurons of control and MPTP-treated macaques, whereas th...

  11. Sensitivity to Pigment-Dispersing Factor (PDF) Is Cell-Type Specific among PDF-Expressing Circadian Clock Neurons in the Madeira Cockroach.

    Science.gov (United States)

    Gestrich, Julia; Giese, Maria; Shen, Wen; Zhang, Yi; Voss, Alexandra; Popov, Cyril; Stengl, Monika; Wei, HongYing

    2017-11-01

    Transplantation studies have pinpointed the circadian clock of the Madeira cockroach to the accessory medulla (AME) of the brain's optic lobes. The AME is innervated by approximately 240 adjacent neuropeptidergic neurons, including 12 pigment-dispersing factor (PDF)-expressing neurons anterior to the AME (aPDFMEs). Four of the aPDFMEs project contralaterally, controlling locomotor activity rhythms of the night-active cockroach. The present in vitro Ca2+ imaging analysis focuses on contralaterally projecting AME neurons and their responses to PDF, GABA, and acetylcholine (ACh). First, rhodamine-dextran backfills from the contralateral optic stalk identified contralaterally projecting AME neurons, which were then dispersed in primary cell cultures. After characterization of PDF, GABA, and ACh responses, PDF immunocytochemistry identified ipsilaterally and contralaterally projecting PDFMEs. All PDF-sensitive clock neurons, PDF-immunoreactive clock neurons, and the majority of ipsilaterally and contralaterally projecting cells were excited by ACh. GABA inhibited all PDF-expressing clock neurons, and about half of other ipsilaterally projecting and most contralaterally projecting clock neurons. For the first time, we identified PDF autoreceptors in PDF-secreting cockroach circadian pacemakers. The medium-sized aPDFMEs and all other contralaterally projecting PDF-sensitive clock cells were inhibited by PDF. The ipsilaterally remaining small PDF-sensitive clock cells were activated by PDF. Only the largest aPDFME did not express PDF autoreceptors. We hypothesize that opposing PDF signaling generates 2 different ensembles of clock cells with antiphasic activity, regulating and maintaining a constant phase relationship between rest and activity cycles of the night-active cockroach.

  12. Transgenic Mouse Lines Subdivide External Segment of the Globus Pallidus (GPe) Neurons and Reveal Distinct GPe Output Pathways

    Science.gov (United States)

    Mastro, Kevin J.; Bouchard, Rachel S.; Holt, Hiromi A. K.

    2014-01-01

    Cell-type diversity in the brain enables the assembly of complex neural circuits, whose organization and patterns of activity give rise to brain function. However, the identification of distinct neuronal populations within a given brain region is often complicated by a lack of objective criteria to distinguish one neuronal population from another. In the external segment of the globus pallidus (GPe), neuronal populations have been defined using molecular, anatomical, and electrophysiological criteria, but these classification schemes are often not generalizable across preparations and lack consistency even within the same preparation. Here, we present a novel use of existing transgenic mouse lines, Lim homeobox 6 (Lhx6)–Cre and parvalbumin (PV)–Cre, to define genetically distinct cell populations in the GPe that differ molecularly, anatomically, and electrophysiologically. Lhx6–GPe neurons, which do not express PV, are concentrated in the medial portion of the GPe. They have lower spontaneous firing rates, narrower dynamic ranges, and make stronger projections to the striatum and substantia nigra pars compacta compared with PV–GPe neurons. In contrast, PV–GPe neurons are more concentrated in the lateral portions of the GPe. They have narrower action potentials, deeper afterhyperpolarizations, and make stronger projections to the subthalamic nucleus and parafascicular nucleus of the thalamus. These electrophysiological and anatomical differences suggest that Lhx6–GPe and PV–GPe neurons participate in different circuits with the potential to contribute to different aspects of motor function and dysfunction in disease. PMID:24501350

  13. A novel dopamine transporter transgenic mouse line for identification and purification of midbrain dopaminergic neurons reveals midbrain heterogeneity

    DEFF Research Database (Denmark)

    Christiansen, Mia Apuschkin; Stilling, Sara; Rahbek-Clemmensen, Troels

    2015-01-01

    Midbrain dopaminergic (DAergic) neurons are a heterogeneous cell group, composed of functionally distinct cell populations projecting to the basal ganglia, prefrontal cortex and limbic system. Despite their functional significance, the midbrain population of DAergic neurons is sparse, constituting...... only 20 000-30 000 neurons in mice, and development of novel tools to identify these cells is warranted. Here, a bacterial artificial chromosome mouse line [Dat1-enhanced green fluorescent protein (eGFP)] from the Gene Expression Nervous System Atlas (GENSAT) that expresses eGFP under control...

  14. A Unified Framework for Reservoir Computing and Extreme Learning Machines based on a Single Time-delayed Neuron.

    Science.gov (United States)

    Ortín, S; Soriano, M C; Pesquera, L; Brunner, D; San-Martín, D; Fischer, I; Mirasso, C R; Gutiérrez, J M

    2015-10-08

    In this paper we present a unified framework for extreme learning machines and reservoir computing (echo state networks), which can be physically implemented using a single nonlinear neuron subject to delayed feedback. The reservoir is built within the delay-line, employing a number of "virtual" neurons. These virtual neurons receive random projections from the input layer containing the information to be processed. One key advantage of this approach is that it can be implemented efficiently in hardware. We show that the reservoir computing implementation, in this case optoelectronic, is also capable to realize extreme learning machines, demonstrating the unified framework for both schemes in software as well as in hardware.

  15. Glucose-sensing neurons of the hypothalamus.

    Science.gov (United States)

    Burdakov, Denis; Luckman, Simon M; Verkhratsky, Alexei

    2005-12-29

    Specialized subgroups of hypothalamic neurons exhibit specific excitatory or inhibitory electrical responses to changes in extracellular levels of glucose. Glucose-excited neurons were traditionally assumed to employ a 'beta-cell' glucose-sensing strategy, where glucose elevates cytosolic ATP, which closes KATP channels containing Kir6.2 subunits, causing depolarization and increased excitability. Recent findings indicate that although elements of this canonical model are functional in some hypothalamic cells, this pathway is not universally essential for excitation of glucose-sensing neurons by glucose. Thus glucose-induced excitation of arcuate nucleus neurons was recently reported in mice lacking Kir6.2, and no significant increases in cytosolic ATP levels could be detected in hypothalamic neurons after changes in extracellular glucose. Possible alternative glucose-sensing strategies include electrogenic glucose entry, glucose-induced release of glial lactate, and extracellular glucose receptors. Glucose-induced electrical inhibition is much less understood than excitation, and has been proposed to involve reduction in the depolarizing activity of the Na+/K+ pump, or activation of a hyperpolarizing Cl- current. Investigations of neurotransmitter identities of glucose-sensing neurons are beginning to provide detailed information about their physiological roles. In the mouse lateral hypothalamus, orexin/hypocretin neurons (which promote wakefulness, locomotor activity and foraging) are glucose-inhibited, whereas melanin-concentrating hormone neurons (which promote sleep and energy conservation) are glucose-excited. In the hypothalamic arcuate nucleus, excitatory actions of glucose on anorexigenic POMC neurons in mice have been reported, while the appetite-promoting NPY neurons may be directly inhibited by glucose. These results stress the fundamental importance of hypothalamic glucose-sensing neurons in orchestrating sleep-wake cycles, energy expenditure and

  16. Peripheral chemoreceptor inputs to retrotrapezoid nucleus (RTN) CO2-sensitive neurons in rats

    Science.gov (United States)

    Takakura, Ana Carolina Thomaz; Moreira, Thiago Santos; Colombari, Eduardo; West, Gavin H; Stornetta, Ruth L; Guyenet, Patrice G

    2006-01-01

    The rat retrotrapezoid nucleus (RTN) contains pH-sensitive neurons that are putative central chemoreceptors. Here, we examined whether these neurons respond to peripheral chemoreceptor stimulation and whether the input is direct from the solitary tract nucleus (NTS) or indirect via the respiratory network. A dense neuronal projection from commissural NTS (commNTS) to RTN was revealed using the anterograde tracer biotinylated dextran amine (BDA). Within RTN, 51% of BDA-labelled axonal varicosities contained detectable levels of vesicular glutamate transporter-2 (VGLUT2) but only 5% contained glutamic acid decarboxylase-67 (GAD67). Awake rats were exposed to hypoxia (n = 6) or normoxia (n = 5) 1 week after injection of the retrograde tracer cholera toxin B (CTB) into RTN. Hypoxia-activated neurons were identified by the presence of Fos-immunoreactive nuclei. CommNTS neurons immunoreactive for both Fos and CTB were found only in hypoxia-treated rats. VGLUT2 mRNA was detected in 92 ± 13% of these neurons whereas only 12 ± 9% contained GAD67 mRNA. In urethane–chloralose-anaesthetized rats, bilateral inhibition of the RTN with muscimol eliminated the phrenic nerve discharge (PND) at rest, during hyperoxic hypercapnia (10% CO2), and during peripheral chemoreceptor stimulation (hypoxia and/or i.v. sodium cyanide, NaCN). RTN CO2-activated neurons were recorded extracellularly in anaesthetized intact or vagotomized rats. These neurons were strongly activated by hypoxia (10–15% O2; 30 s) or by NaCN. Hypoxia and NaCN were ineffective in rats with carotid chemoreceptor denervation. Bilateral injection of muscimol into the ventral respiratory column 1.5 mm caudal to RTN eliminated PND and the respiratory modulation of RTN neurons. Muscimol did not change the threshold and sensitivity of RTN neurons to hyperoxic hypercapnia nor their activation by peripheral chemoreceptor stimulation. In conclusion, RTN neurons respond to brain PCO2 presumably via their intrinsic

  17. Calretinin as a marker for premotor neurons involved in upgaze in human brainstem

    Directory of Open Access Journals (Sweden)

    Christopher eAdamczyk

    2015-12-01

    indicated by co-expression of glutamate decarboxylase in a subpopulation. Calretinin-positive neurons ensheathed by perineuronal nets in the human y-group are considered as the homologue premotor neurons described in monkey, projecting to superior rectus and inferior oblique motoneurons. In conclusion, combined immunostaining for parvalbumin, perineuronal nets and calretinin may well be suited for the specific identification and subsequent analysis of premotor upgaze pathways in clinical cases of isolated up- or downgaze deficits.

  18. Three-dimensional analysis of vestibular efferent neurons innervating semicircular canals of the gerbil

    Science.gov (United States)

    Purcell, I. M.; Perachio, A. A.

    1997-01-01

    Anterograde labeling techniques were used to examine peripheral innervation patterns of vestibular efferent neurons in the crista ampullares of the gerbil. Vestibular efferent neurons were labeled by extracellular injections of biocytin or biotinylated dextran amine into the contralateral or ipsilateral dorsal subgroup of efferent cell bodies (group e) located dorsolateral to the facial nerve genu. Anterogradely labeled efferent terminal field varicosities consist mainly of boutons en passant with fewer of the terminal type. The bouton swellings are located predominately in apposition to the basolateral borders of the afferent calyces and type II hair cells, but several boutons were identified close to the hair cell apical border on both types. Three-dimensional reconstruction and morphological analysis of the terminal fields from these cells located in the sensory neuroepithelium of the anterior, horizontal, and posterior cristae were performed. We show that efferent neurons densely innervate each end organ in widespread terminal fields. Subepithelial bifurcations of parent axons were minimal, with extensive collateralization occurring after the axons penetrated the basement membrane of the neuroepithelium. Axonal branching ranged between the 6th and 27th orders and terminal field collecting area far exceeds that of the peripheral terminals of primary afferent neurons. The terminal fields of the efferent neurons display three morphologically heterogeneous types: central, peripheral, and planum. All cell types possess terminal fields displaying a high degree of anisotropy with orientations typically parallel to or within +/-45 degrees of the longitudinal axis if the crista. Terminal fields of the central and planum zones predominately project medially toward the transverse axis from the more laterally located penetration of the basement membrane by the parent axon. Peripheral zone terminal fields extend predominately toward the planum semilunatum. The innervation

  19. Sub-cellular organization of the melanin-concentrating hormone neurons in the hypothalamus.

    Science.gov (United States)

    Jancsik, Veronika; Bene, Roland; Sótonyi, Péter; Zachar, Gergely

    2018-01-01

    Melanin-concentrating hormone (MCH) is a potent orexigenic and sleep-promoting neuropeptide in mammals produced predominately by hypothalamic neurons which project to a wide variety of brain areas. Several MCH producing neurons contain MCH as the only neuropeptide, while others comprise cocaine- and amphetamine regulated transcript (CART) as well. The intrahypothalamic localization and the projection pattern of these two subpopulations are distinct. To provide structural grounding to understand the mechanism of action of MCH neurons we show here the subcellular localization of the neuropeptides in the two subpopulations within the hypothalamus of healthy young male mice by applying single and double immunofluorescence labelling.; Thick, prominent MCH immunopositive reticulation and fine discrete granules are detected within the perikarya of both CART positive and CART-free MCH neurons. Typically, one or more immunoreactive processes emanate from the perikarya. The bulk of CART immunoreactivity is also centrally positioned, surrounded by sparse immunoreactive granules within the perikarya and in the processes. In double immunopositive neurons, the two neuropeptides seem to colocalize in the heavily labelled central area, while the immunopositive granules in the cell body periphery and in the processes apparently contain either MCH or CART. This spatial arrangement suggests that MCH and CART, after being synthetized and processed in the endoplasmic reticulum/Golgi complex, are sorted into separate dense core vesicles, which then enter into the cell processes. This mechanism allows for both concerted and independent regulation of the transport and release of MCH and CART. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Sequential generation of olfactory bulb glutamatergic neurons by Neurog2-expressing precursor cells

    Directory of Open Access Journals (Sweden)

    Brill Monika S

    2011-04-01

    Full Text Available Abstract Background While the diversity and spatio-temporal origin of olfactory bulb (OB GABAergic interneurons has been studied in detail, much less is known about the subtypes of glutamatergic OB interneurons. Results We studied the temporal generation and diversity of Neurog2-positive precursor progeny using an inducible genetic fate mapping approach. We show that all subtypes of glutamatergic neurons derive from Neurog2 positive progenitors during development of the OB. Projection neurons, that is, mitral and tufted cells, are produced at early embryonic stages, while a heterogeneous population of glutamatergic juxtaglomerular neurons are generated at later embryonic as well as at perinatal stages. While most juxtaglomerular neurons express the T-Box protein Tbr2, those generated later also express Tbr1. Based on morphological features, these juxtaglomerular cells can be identified as tufted interneurons and short axon cells, respectively. Finally, targeted electroporation experiments provide evidence that while the majority of OB glutamatergic neurons are generated from intrabulbar progenitors, a small portion of them originate from extrabulbar regions at perinatal ages. Conclusions We provide the first comprehensive analysis of the temporal and spatial generation of OB glutamatergic neurons and identify distinct populations of juxtaglomerular interneurons that differ in their antigenic properties and time of origin.

  1. Oxytocin stimulates hippocampal neurogenesis via oxytocin receptor expressed in CA3 pyramidal neurons.

    Science.gov (United States)

    Lin, Yu-Ting; Chen, Chien-Chung; Huang, Chiung-Chun; Nishimori, Katsuhiko; Hsu, Kuei-Sen

    2017-09-14

    In addition to the regulation of social and emotional behaviors, the hypothalamic neuropeptide oxytocin has been shown to stimulate neurogenesis in adult dentate gyrus; however, the mechanisms underlying the action of oxytocin are still unclear. Taking advantage of the conditional knockout mouse model, we show here that endogenous oxytocin signaling functions in a non-cell autonomous manner to regulate survival and maturation of newly generated dentate granule cells in adult mouse hippocampus via oxytocin receptors expressed in CA3 pyramidal neurons. Through bidirectional chemogenetic manipulations, we also uncover a significant role for CA3 pyramidal neuron activity in regulating adult neurogenesis in the dentate gyrus. Retrograde neuronal tracing combined with immunocytochemistry revealed that the oxytocin neurons in the paraventricular nucleus project directly to the CA3 region of the hippocampus. Our findings reveal a critical role for oxytocin signaling in adult neurogenesis.Oxytocin (OXT) has been implicated in adult neurogenesis. Here the authors show that CA3 pyramidal cells in the adult mouse hippocampus express OXT receptors and receive inputs from hypothalamic OXT neurons; activation of OXT signaling in CA3 pyramidal cells promotes the survival and maturation of newborn neurons in the dentate gyrus in a non-cell autonomous manner.

  2. Zinc finger gene fez-like functions in the formation of subplate neurons and thalamocortical axons.

    Science.gov (United States)

    Hirata, Tustomu; Suda, Yoko; Nakao, Kazuki; Narimatsu, Masahiro; Hirano, Toshio; Hibi, Masahiko

    2004-07-01

    fez-like (fezl) is a forebrain-expressed zinc finger gene required for the formation of the hypothalamic dopaminergic and serotonergic (monoaminergic) neurons in zebrafish. To reveal its function in mammals, we analyzed the expression of the mouse orthologue of fezl and generated fezl-deficient mice by homologous recombination. Mouse fezl was expressed specifically in the forebrain from embryonic day 8.5. At mid-gestation, fezl expression was detected in subdomains of the forebrain, including the dorsal telencephalon and ventral diencephalon. Unlike the zebrafish fezl mutant too few, the fezl-deficient mice displayed normal development of hypothalamic monoaminergic neurons, but showed abnormal "hyperactive" behavior. In fezl(-/-) mice, the thalamocortical axons (TCA) were reduced in number and aberrantly projected to the cortex. These mutants had a reduced number of subplate neurons, which are involved in guiding the TCA from the dorsal thalamus, although the subplate neurons were born normally. These results suggest that fezl is required for differentiation or survival of the subplate neurons, and reduction of the subplate neurons in fezl-deficient mice leads to abnormal development of the TCA, providing a possible link between the transcriptional regulation of forebrain development and hyperactive behavior. Copyright 2004 Wiley-Liss, Inc.

  3. Endosomal pH in Neuronal Signaling and Synaptic Transmission: Role of Na+/H+ Exchangers

    Directory of Open Access Journals (Sweden)

    Graham H Diering

    2014-01-01

    Full Text Available Neuronal precursor cells extend multiple neurites during development, one of which extends to form an axon whereas others develop into dendrites. Chemical stimulation of N-methyl D-aspartate (NMDA receptor in fully-differentiated neurons induces projection of dendritic spines, small spikes protruding from dendrites, thereby establishing another layer of polarity within the dendrite. Neuron-enriched Na+/H+ exchanger NHE5 contributes to both neurite growth and dendritic spine formation. In resting neurons and neuro-endocrine cells, neuron-enriched NHE5 is predominantly associated with recycling endosomes where it colocalizes with nerve growth factor (NGF receptor TrkA. NHE5 potently acidifies the lumen of TrkA-positive recycling endosomes and regulates cell-surface targeting of TrkA, whereas chemical stimulation of NMDA receptor rapidly recruits NHE5 to dendritic spines, alkalinizes dendrites and down-regulates the dendritic spine formation. Possible roles of NHE5 in neuronal signaling via proton movement in subcellular compartments are discussed.

  4. Characterization of Induced Pluripotent Stem Cell-derived Human Serotonergic Neurons.

    Science.gov (United States)

    Cao, Lining; Hu, Rui; Xu, Ting; Zhang, Zhen-Ning; Li, Weida; Lu, Jianfeng

    2017-01-01

    In the brain, the serotonergic neurons located in the raphe nucleus are the unique resource of the neurotransmitter serotonin, which plays a pivotal role in the regulation of brain development and functions. Dysfunction of the serotonin system is present in many psychiatric disorders. Lack of in vitro functional human model limits the understanding of human central serotonergic system and its related diseases and clinical applications. Previously, we have developed a method generating human serotonergic neurons from induced pluripotent stem cells (iPSCs). In this study, we analyzed the features of these human iPSCs-derived serotonergic neurons both in vitro and in vivo. We found that these human serotonergic neurons are sensitive to the selective neurotoxin 5, 7-Dihydroxytryptamine (5,7-DHT) in vitro. After being transplanted into newborn mice, the cells not only expressed their typical molecular markers, but also showed the migration and projection to the host's cerebellum, hindbrain and spinal cord. The data demonstrate that these human iPSCs-derived neurons exhibit the typical features as the serotonergic neurons in the brain, which provides a solid foundation for studying on human serotonin system and its related disorders.

  5. Characterization of Induced Pluripotent Stem Cell-derived Human Serotonergic Neurons

    Directory of Open Access Journals (Sweden)

    Lining Cao

    2017-05-01

    Full Text Available In the brain, the serotonergic neurons located in the raphe nucleus are the unique resource of the neurotransmitter serotonin, which plays a pivotal role in the regulation of brain development and functions. Dysfunction of the serotonin system is present in many psychiatric disorders. Lack of in vitro functional human model limits the understanding of human central serotonergic system and its related diseases and clinical applications. Previously, we have developed a method generating human serotonergic neurons from induced pluripotent stem cells (iPSCs. In this study, we analyzed the features of these human iPSCs-derived serotonergic neurons both in vitro and in vivo. We found that these human serotonergic neurons are sensitive to the selective neurotoxin 5, 7-Dihydroxytryptamine (5,7-DHT in vitro. After being transplanted into newborn mice, the cells not only expressed their typical molecular markers, but also showed the migration and projection to the host’s cerebellum, hindbrain and spinal cord. The data demonstrate that these human iPSCs-derived neurons exhibit the typical features as the serotonergic neurons in the brain, which provides a solid foundation for studying on human serotonin system and its related disorders.

  6. Medullary Serotonin Neuron Abnormalities in an Australian Cohort of Sudden Infant Death Syndrome.

    Science.gov (United States)

    Bright, Fiona M; Byard, Roger W; Vink, Robert; Paterson, David S

    2017-10-01

    Serotonin (5-hydroxytryptamine [5-HT]) neurons in the medulla oblongata project extensively to key autonomic and respiratory nuclei in the brainstem and spinal cord regulating critical homeostatic functions. Multiple abnormalities in markers of 5-HT function in the medulla in sudden infant death syndrome (SIDS) have been reported, informing the hypothesis that at least a subset of SIDS cases is caused by deficits in 5-HT function resulting in impaired homeostatic responses to potentially life-threatening events during sleep. To investigate medullary 5-HT defects in SIDS further, we undertook qualitative analysis immunohistochemical assessment of 5-HT neuron expression within the medulla of SIDS infants (n41) and nonSIDS controls (n = 28) in an independent cohort from Forensic Science South Australia. Compared with controls SIDS cases had significantly higher 5-HT neuron numbers and density in addition to significantly altered 5-HT neuron morphology. Thus, for the first time, we replicated and corroborated previous observations of a significant abnormality in medullary 5-HT neuron expression in SIDS in a separate independent SIDS cohort. This study further supports the hypothesis that medullary 5-HT defects contribute to the pathogenesis of a subset of SIDS victims and provides additional evidence of a more complex abnormality in 5-HT neuron dysfunction specifically within the different caudal and rostral medullary 5-HT domains. © 2017 American Association of Neuropathologists, Inc. All rights reserved.

  7. Protooncogene Ski cooperates with the chromatin-remodeling factor Satb2 in specifying callosal neurons.

    Science.gov (United States)

    Baranek, Constanze; Dittrich, Manuela; Parthasarathy, Srinivas; Bonnon, Carine Gaiser; Britanova, Olga; Lanshakov, Dmitriy; Boukhtouche, Fatiha; Sommer, Julia E; Colmenares, Clemencia; Tarabykin, Victor; Atanasoski, Suzana

    2012-02-28

    First insights into the molecular programs orchestrating the progression from neural stem cells to cortical projection neurons are emerging. Loss of the transcriptional regulator Ski has been linked to the human 1p36 deletion syndrome, which includes central nervous system defects. Here, we report critical roles for Ski in the maintenance of the neural stem cell pool and the specification of callosal neurons. Ski-deficient callosal neurons lose their identity and ectopically express the transcription factor Ctip2. The misspecified callosal neurons largely fail to form the corpus callosum and instead redirect their axons toward subcortical targets. We identify the chromatin-remodeling factor Satb2 as a partner of Ski, and show that both proteins are required for transcriptional repression of Ctip2 in callosal neurons. We propose a model in which Satb2 recruits Ski to the Ctip2 locus, and Ski attracts histone deacetylases, thereby enabling the formation of a functional nucleosome remodeling and deacetylase repressor complex. Our findings establish a central role for Ski-Satb2 interactions in regulating transcriptional mechanisms of callosal neuron specification.

  8. Synaptic dynamics regulation in response to high frequency stimulation in neuronal networks

    Science.gov (United States)

    Su, Fei; Wang, Jiang; Li, Huiyan; Wei, Xile; Yu, Haitao; Deng, Bin

    2018-02-01

    High frequency stimulation (HFS) has confirmed its ability in modulating the pathological neural activities. However its detailed mechanism is unclear. This study aims to explore the effects of HFS on neuronal networks dynamics. First, the two-neuron FitzHugh-Nagumo (FHN) networks with static coupling strength and the small-world FHN networks with spike-time-dependent plasticity (STDP) modulated synaptic coupling strength are constructed. Then, the multi-scale method is used to transform the network models into equivalent averaged models, where the HFS intensity is modeled as the ratio between stimulation amplitude and frequency. Results show that in static two-neuron networks, there is still synaptic current projected to the postsynaptic neuron even if the presynaptic neuron is blocked by the HFS. In the small-world networks, the effects of the STDP adjusting rate parameter on the inactivation ratio and synchrony degree increase with the increase of HFS intensity. However, only when the HFS intensity becomes very large can the STDP time window parameter affect the inactivation ratio and synchrony index. Both simulation and numerical analysis demonstrate that the effects of HFS on neuronal network dynamics are realized through the adjustment of synaptic variable and conductance.

  9. Automated Tracing and Segmentation Tool for Migrating Neurons in 4D Confocal Imagery

    Energy Technology Data Exchange (ETDEWEB)

    Karakaya, Mahmut [ORNL; Kerekes, Ryan A [ORNL; Solecki, Dr. David [St. Jude Children' s Research Hospital

    2013-01-01

    Accurate tracing and segmentation of subcellular components of migrating neurons in confocal image sequences are prerequisite steps in many neurobiology studies to understand the biological machinery behind the movement of developing neurons. In this paper, we present an automated tracking, tracing, and segmentation tool for soma, leading, and trailing process of migrating neurons in time-lapse image stacks acquired with a confocal fluorescence microscope. In our approach, we first localize each neuron in the maximum intensity projection of the first frame using manual labeling of the soma and end points of the leading and trailing process. By using each soma position at the first frame, we automatically track the somas in rest of the frames. Then, leading and trailing process are traced in each frame from the soma center to the labeled end tip of the process by using fast marching algorithm. Finally, the soma, leading and trailing processes of each neuron are segmented by using the soma center and traces as seed points, and their boundaries are separated from each other. Based on qualitative results, we demonstrate the capability to automatically track, trace, and segment the soma, leading, and trailing processes of a migrating neuron with minimal user input.

  10. A pair of pharyngeal gustatory receptor neurons regulates caffeine-dependent ingestion in Drosophila larvae

    Directory of Open Access Journals (Sweden)

    Jaekyun Choi

    2016-07-01

    Full Text Available The sense of taste is an essential chemosensory modality that enables animals to identify appropriate food sources and control feeding behavior. In particular, the recognition of bitter taste prevents animals from feeding on harmful substances. Feeding is a complex behavior comprised of multiple steps, and food quality is continuously assessed. We here examined the role of pharyngeal gustatory organs in ingestion behavior. As a first step, we constructed a gustatory receptor-to-neuron map of the larval pharyngeal sense organs, and examined corresponding gustatory receptor neuron projections in the larval brain. Out of 22 candidate bitter compounds, we found 14 bitter compounds that elicit inhibition of ingestion in a dose-dependent manner. We provide evidence that certain pharyngeal gustatory receptor neurons are necessary and sufficient for the ingestion response of larvae to caffeine. Additionally, we show that a specific pair of pharyngeal gustatory receptor neurons, DP1, responds to caffeine by calcium imaging. In this study we show that a specific pair of gustatory receptor neurons in the pharyngeal sense organs coordinates caffeine sensing with regulation of behavioral responses such as ingestion. Our results indicate that in Drosophila larvae, the pharyngeal gustatory receptor neurons have a major role in sensing food palatability to regulate ingestion behavior. The pharyngeal sense organs are prime candidates to influence ingestion due to their position in the pharynx, and they may act as first level sensors of ingested food.

  11. Reelin-dependent ApoER2 downregulation uncouples newborn neurons from progenitor cells

    Directory of Open Access Journals (Sweden)

    F. Javier Pérez-Martínez

    2012-10-01

    Reelin and its receptor machinery are well known to be required for the migration and positioning of neocortical projection neurons. More recently, reelin has been shown both necessary and sufficient to determine the rate of neocortical neurogenesis. The molecular links underlying its seemingly distinct proliferative and post-proliferative functions remain unknown. Here we reveal an enriched expression of functional reelin receptors, largely of Apolipoprotein E Receptor 2 (ApoER2, in radial glia basal processes and intermediate progenitor cells during mid/late cortical development. In vivo, ApoER2 overexpression inhibits neuronal migration. In contrast, precluding excessive levels of ApoER2 in reelin-deficient cortices, by either ApoER2 knock-down or the transgenic expression of reelin in neural progenitor cells, improves neuronal migration and positioning. Our study provides groundwork for the highly orchestrated clearance of neocortical neurons from their birth site, suggesting that a reelin-dependent ApoER2 downregulation mechanism uncouples newborn neurons from progenitor cells, thereby enabling neurons to migrate.

  12. Repeated restraint stress increases basolateral amygdala neuronal activity in an age-dependent manner

    Science.gov (United States)

    Zhang, Wei; Rosenkranz, J. Amiel

    2012-01-01

    Chronic stress is a precipitating factor for affective disorders such as depression and anxiety. This is associated with the effects of chronic stress on the amygdala. Adolescents may be more vulnerable to the effects of chronic stress, which may be related to its impact on amygdala function. However, the stress-induced changes in amygdala neuronal activity, and the age-dependent impact of chronic stress on amygdala neuronal activity have not been studied in depth. In this study, we investigated how repeated restraint impacts basolateral amygdala (BLA) projection neuron activity in both adolescent and adult rats. Using in vivo extracellular recordings from anesthetized rats, we found that repeated restraint increased the number of spontaneously firing neurons in the BLA of adolescent rats, but did not significantly increase the firing rate. In contrast, repeated restraint increased the firing rate of BLA neurons in adult rats, but did not change the number of spontaneously firing neurons. This is the first direct evidence of how stress differently impacts amygdala physiology in adolescent and adult rats. These findings may shed light on the mechanism by which chronic stress may age-dependently precipitate psychiatric disorders. PMID:22986163

  13. Heavy metals in locus ceruleus and motor neurons in motor neuron disease

    Science.gov (United States)

    2013-01-01

    Background The causes of sporadic amyotrophic lateral sclerosis (SALS) and other types of motor neuron disease (MND) remain largely unknown. Heavy metals have long been implicated in MND, and it has recently been shown that inorganic mercury selectively enters human locus ceruleus (LC) and motor neurons. We therefore used silver nitrate autometallography (AMG) to look for AMG-stainable heavy metals (inorganic mercury and bismuth) in LC and motor neurons of 24 patients with MND (18 with SALS and 6 with familial MND) and in the LC of 24 controls. Results Heavy metals in neurons were found in significantly more MND patients than in controls when comparing: (1) the presence of any versus no heavy metal-containing LC neurons (MND 88%, controls 42%), (2) the median percentage of heavy metal-containing LC neurons (MND 9.5%, control 0.0%), and (3) numbers of individuals with heavy metal-containing LC neurons in the upper half of the percentage range (MND 75%, controls 25%). In MND patients, 67% of remaining spinal motor neurons contained heavy metals; smaller percentages were found in hypoglossal, nucleus ambiguus and oculomotor neurons, but none in cortical motor neurons. The majority of MND patients had heavy metals in both LC and spinal motor neurons. No glia or other neurons, including neuromelanin-containing neurons of the substantia nigra, contained stainable heavy metals. Conclusions Uptake of heavy metals by LC and lower motor neurons appears to be fairly common in humans, though heavy metal staining in the LC, most likely due to inorganic mercury, was seen significantly more often in MND patients than in controls. The LC innervates many cell types that are affected in MND, and it is possible that MND is triggered by toxicant-induced interactions between LC and motor neurons. PMID:24330485

  14. Neurobiological study of fish brains gives insights into the nature of Gonadotropin-releasing hormone 1-3 neurons.

    Directory of Open Access Journals (Sweden)

    Tomomi eKarigo

    2013-11-01

    Full Text Available Accumulating evidence suggests that up to three different molecular species of GnRH peptides encoded by different paralogs of gnrh genes are expressed by anatomically distinct groups of GnRH neurons in the brain of one vertebrate species. They are called gnrh1, gnrh2, and gnrh3. Recent evidence from molecular, anatomical, and physiological experiments strongly suggests that each GnRH system functions differently. Here, we review recent advancement in the functional studies of the three different GnRH neuron systems, mainly focusing on the electrophysiological analysis of the GnRH-green fluorescent protein (GFP transgenic animals. The introduction of GFP transgenic animals for the electrophysiological analysis of GnRH neurons greatly advanced our knowledge on their anatomy and electrophysiology, especially of gnrh1 neurons, which has long defied detailed electrophysiological analysis of single neurons because of their small size and scattered distribution. Based on the results of recent studies, we propose that different electrophysiological properties, especially the spontaneous patterns of electrical activities and their time-dependent changes, and the axonal projections characterize the different functions of GnRH1-3 neurons; GnRH1 neurons act as hypophysiotropic neuroendocrine regulators, and GnRH2 and GnRH3 neurons act as neuromodulators in wide areas of the brain.

  15. Neuronal dynamics on FPGA: Izhikevich's model

    Science.gov (United States)

    La Rosa, M.; Caruso, E.; Fortuna, L.; Frasca, M.; Occhipinti, L.; Rivoli, F.

    2005-06-01

    The study of spatio-temporal patterns generation and processing in systems with high parallelism like biological neuronal networks gives birth to a new technology able to realize architectures with robust performance even in noisy environments. The behavioural properties of neural assemblies warrant an effective exchange and use of information in presence of high-level neuronal noise. Neuron population processing and self-organization have been reproduced by connecting several neuron through synaptic connections, which can be either electrical or chemical, in artificial information processing architectures based on Field Programmable Gate Arrays (FPGA). The adopted neuron model is based on Izhikevich"s description of cortical neuron dynamics [1]. The development of biological neuronal network models has been focused on architecture features like changes over time of topologies, uniformity of the connections, node diversity, etc. The hardware reproduction of neuron dynamical behaviour, by giving high computation performance, allows the development of innovative computational methods and models based on self-organizing nonlinear architectures.

  16. Bursting and synaptic plasticity in neuronal networks

    NARCIS (Netherlands)

    Stegenga, J.

    2010-01-01

    Networks of neonatal cortical neurons, cultured on multi electrode arrays (MEAs) exhibit spontaneous action potential firings. The electrodes embedded in the glass surface of a MEA can be used to record and stimulate activity at 60 sites in a network of ~50.000 neurons. Such in-vitro networks enable

  17. Sorting out polarized transport mechanisms in neurons

    NARCIS (Netherlands)

    Lipka, J.

    2015-01-01

    Neurons are highly polarized cells with two distinct processes called axons and dendrites. To establish and maintain their specialized morphology and function, neurons use molecular motors: kinesins, myosins and dynein to steer cargo transport along the cytoskeleton into axons and dendrites.

  18. Polarity and intracellular compartmentalization of Drosophila neurons

    Directory of Open Access Journals (Sweden)

    Henner Astra L

    2007-04-01

    Full Text Available Abstract Background Proper neuronal function depends on forming three primary subcellular compartments: axons, dendrites, and soma. Each compartment has a specialized function (the axon to send information, dendrites to receive information, and the soma is where most cellular components are produced. In mammalian neurons, each primary compartment has distinctive molecular and morphological features, as well as smaller domains, such as the axon initial segment, that have more specialized functions. How neuronal subcellular compartments are established and maintained is not well understood. Genetic studies in Drosophila have provided insight into other areas of neurobiology, but it is not known whether flies are a good system in which to study neuronal polarity as a comprehensive analysis of Drosophila neuronal subcellular organization has not been performed. Results Here we use new and previously characterized markers to examine Drosophila neuronal compartments. We find that: axons and dendrites can accumulate different microtubule-binding proteins; protein synthesis machinery is concentrated in the cell body; pre- and post-synaptic sites localize to distinct regions of the neuron; and specializations similar to the initial segment are present. In addition, we track EB1-GFP dynamics and determine microtubules in axons and dendrites have opposite polarity. Conclusion We conclude that Drosophila will be a powerful system to study the establishment and maintenance of neuronal compartments.

  19. Adaptive Neurons For Artificial Neural Networks

    Science.gov (United States)

    Tawel, Raoul

    1990-01-01

    Training time decreases dramatically. In improved mathematical model of neural-network processor, temperature of neurons (in addition to connection strengths, also called weights, of synapses) varied during supervised-learning phase of operation according to mathematical formalism and not heuristic rule. Evidence that biological neural networks also process information at neuronal level.

  20. Power laws from linear neuronal cable theory

    DEFF Research Database (Denmark)

    Pettersen, Klas H; Lindén, Henrik Anders; Tetzlaff, Tom

    2014-01-01

    suggested to be at the root of this phenomenon, we here demonstrate a possible origin of such power laws in the biophysical properties of single neurons described by the standard cable equation. Taking advantage of the analytical tractability of the so called ball and stick neuron model, we derive general...

  1. Locally active Hindmarsh-Rose neurons

    Energy Technology Data Exchange (ETDEWEB)

    Arena, Paolo [Dipartimento di Ingegneria Elettrica, Elettronica e dei Sistemi, Universita degli Studi di Catania, viale A. Doria 6, 95100 Catania (Italy); Fortuna, Luigi [Dipartimento di Ingegneria Elettrica, Elettronica e dei Sistemi, Universita degli Studi di Catania, viale A. Doria 6, 95100 Catania (Italy)] e-mail: lfortuna@diees.unict.it; Frasca, Mattia [Dipartimento di Ingegneria Elettrica, Elettronica e dei Sistemi, Universita degli Studi di Catania, viale A. Doria 6, 95100 Catania (Italy)] e-mail: mfrasca@diees.unict.it; Rosa, Manuela La [SST Group, Corporate R and D, STMicroelectronics, Stradale Primosole 50, 95121 Catania (Italy)] e-mail: manuela.la-rosa@st.com

    2006-01-01

    In this paper the locally active and the edge of chaos regions of the Hindmarsh-Rose (HR) model for neuron dynamics are studied. From these regions parameters are chosen to set emergent phenomena both in 2D and 3D grids of HR neurons.

  2. Neuronal involvement in cisplatin neuropathy

    DEFF Research Database (Denmark)

    Krarup-Hansen, A; Helweg-Larsen, Susanne Elisabeth; Schmalbruch, H

    2007-01-01

    Although it is well known that cisplatin causes a sensory neuropathy, the primary site of involvement is not established. The clinical symptoms localized in a stocking-glove distribution may be explained by a length dependent neuronopathy or by a distal axonopathy. To study whether the whole neuron...... higher than 300 mg/m2 the patients lost distal tendon and H-reflexes and displayed reduced vibration sense in the feet and the fingers. The amplitudes of sensory nerve action potentials (SNAP) from the fingers innervated by the median nerve and the dorsolateral side of the foot innervated by the sural...... of the foot evoked by a tactile probe showed similar changes to those observed in SNAPs evoked by electrical stimulation. At these doses, somatosensory evoked potentials (SEPs) from the tibial nerve had increased latencies of peripheral, spinal and central responses suggesting loss of central processes...

  3. Optogenetic stimulation of MCH neurons increases sleep.

    Science.gov (United States)

    Konadhode, Roda Rani; Pelluru, Dheeraj; Blanco-Centurion, Carlos; Zayachkivsky, Andrew; Liu, Meng; Uhde, Thomas; Glen, W Bailey; van den Pol, Anthony N; Mulholland, Patrick J; Shiromani, Priyattam J

    2013-06-19

    Melanin concentrating hormone (MCH) is a cyclic neuropeptide present in the hypothalamus of all vertebrates. MCH is implicated in a number of behaviors but direct evidence is lacking. To selectively stimulate the MCH neurons the gene for the light-sensitive cation channel, channelrhodopsin-2, was inserted into the MCH neurons of wild-type mice. Three weeks later MCH neurons were stimulated for 1 min every 5 min for 24 h. A 10 Hz stimulation at the start of the night hastened sleep onset, reduced length of wake bouts by 50%, increased total time in non-REM and REM sleep at night, and increased sleep intensity during the day cycle. Sleep induction at a circadian time when all of the arousal neurons are active indicates that MCH stimulation can powerfully counteract the combined wake-promoting signal of the arousal neurons. This could be potentially useful in treatment of insomnia.

  4. Neuronal Migration and AUTS2 Syndrome.

    Science.gov (United States)

    Hori, Kei; Hoshino, Mikio

    2017-05-14

    Neuronal migration is one of the pivotal steps to form a functional brain, and disorganization of this process is believed to underlie the pathology of psychiatric disorders including schizophrenia, autism spectrum disorders (ASD) and epilepsy. However, it is not clear how abnormal neuronal migration causes mental dysfunction. Recently, a key gene for various psychiatric diseases, the Autism susceptibility candidate 2 (AUTS2), has been shown to regulate neuronal migration, which gives new insight into understanding this question. Interestingly, the AUTS2 protein has dual functions: Cytoplasmic AUTS2 regulates actin cytoskeleton to control neuronal migration and neurite extension, while nuclear AUTS2 controls transcription of various genes as a component of the polycomb complex 1 (PRC1). In this review, we discuss AUTS2 from the viewpoint of human genetics, molecular function, brain development, and behavior in animal models, focusing on its role in neuronal migration.

  5. Neuronal hyperplasia in the anal canal

    DEFF Research Database (Denmark)

    Fenger, C; Schrøder, H D

    1990-01-01

    In a consecutive series of minor surgical specimens from the anal canal, neuronal hyperplasia was found in nine of 56 haemorrhoidectomy specimens and in four of 23 fibrous polyps. In an additional series of 14 resections of the anal canal, neuronal hyperplasia was present in six cases, of which...... five showed haemorrhoids. In all cases, neuronal hyperplasia was located in the submucosa beneath squamous epithelium and extended over an area from 5 to 12 mm. Immunohistochemically, the foci of hyperplasia were found to consist of both neuronal and Schwann cell components. Staining for vasoactive...... intestinal peptide, neuropeptide Y and calcitonin gene related peptide, did not demonstrate any increased terminal density. It is suggested that anal neuronal hyperplasia in these cases represents an acquired lesion due to local mechanical influence....

  6. Attractor dynamics in local neuronal networks

    Directory of Open Access Journals (Sweden)

    Jean-Philippe eThivierge

    2014-03-01

    Full Text Available Patterns of synaptic connectivity in various regions of the brain are characterized by the presence of synaptic motifs, defined as unidirectional and bidirectional synaptic contacts that follow a particular configuration and link together small groups of neurons. Recent computational work proposes that a relay network (two populations communicating via a third, relay population of neurons can generate precise patterns of neural synchronization. Here, we employ two distinct models of neuronal dynamics and show that simulated neural circuits designed in this way are caught in a global attractor of activity that prevents neurons from modulating their response on the basis of incoming stimuli. To circumvent the emergence of a fixed global attractor, we propose a mechanism of selective gain inhibition that promotes flexible responses to external stimuli. We suggest that local neuronal circuits may employ this mechanism to generate precise patterns of neural synchronization whose transient nature delimits the occurrence of a brief stimulus.

  7. Multidisciplinary Interventions in Motor Neuron Disease

    Directory of Open Access Journals (Sweden)

    U. E. Williams

    2014-01-01

    Full Text Available Motor neuron disease is a neurodegenerative disease characterized by loss of upper motor neuron in the motor cortex and lower motor neurons in the brain stem and spinal cord. Death occurs 2–4 years after the onset of the disease. A complex interplay of cellular processes such as mitochondrial dysfunction, oxidative stress, excitotoxicity, and impaired axonal transport are proposed pathogenetic processes underlying neuronal cell loss. Currently evidence exists for the use of riluzole as a disease modifying drug; multidisciplinary team care approach to patient management; noninvasive ventilation for respiratory management; botulinum toxin B for sialorrhoea treatment; palliative care throughout the course of the disease; and Modafinil use for fatigue treatment. Further research is needed in management of dysphagia, bronchial secretion, pseudobulbar affect, spasticity, cramps, insomnia, cognitive impairment, and communication in motor neuron disease.

  8. Neuron-derived IgG Protects Neurons from Complement-dependent Cytotoxicity

    Science.gov (United States)

    Zhang, Jie; Li, Bingjie; McNutt, Michael A.

    2013-01-01

    Passive immunity of the nervous system has traditionally been thought to be predominantly due to the blood-brain barrier. This concept must now be revisited based on the existence of neuron-derived IgG. The conventional concept is that IgG is produced solely by mature B lymphocytes, but it has now been found to be synthesized by murine and human neurons. However, the function of this endogenous IgG is poorly understood. In this study, we confirm IgG production by rat cortical neurons at the protein and mRNA levels, with 69.0 ± 5.8% of cortical neurons IgG-positive. Injury to primary-culture neurons was induced by complement leading to increases in IgG production. Blockage of neuron-derived IgG resulted in more neuronal death and early apoptosis in the presence of complement. In addition, FcγRI was found in microglia and astrocytes. Expression of FcγR I in microglia was increased by exposure to neuron-derived IgG. Release of NO from microglia triggered by complement was attenuated by neuron-derived IgG, and this attenuation could be reversed by IgG neutralization. These data demonstrate that neuron-derived IgG is protective of neurons against injury induced by complement and microglial activation. IgG appears to play an important role in maintaining the stability of the nervous system. PMID:23979841

  9. Coupled activation of primary sensory neurons contributes to chronic pain

    Science.gov (United States)

    Kim, Yu Shin; Anderson, Michael; Park, Kyoungsook; Zheng, Qin; Agarwal, Amit; Gong, Catherine; Saijilafu; Young, LeAnne; He, Shaoqiu; LaVinka, Pamela Colleen; Zhou, Fengquan; Bergles, Dwight; Hanani, Menachem; Guan, Yun; Spray, David C.; Dong, Xinzhong

    2016-01-01

    SUMMARY Primary sensory neurons in the DRG play an essential role in initiating pain by detecting painful stimuli in the periphery. Tissue injury can sensitize DRG neurons, causing heightened pain sensitivity, often leading to chronic pain. Despite the functional importance, how DRG neurons function at a population level is unclear due to the lack of suitable tools. Here we developed an imaging technique that allowed us to simultaneously monitor the activities of >1,600 neurons/DRG in live mice and discovered a striking neuronal coupling phenomenon that adjacent neurons tend to activate together following tissue injury. This coupled activation occurs among various neurons and is mediated by an injury-induced upregulation of gap junctions in glial cells surrounding DRG neurons. Blocking gap junctions attenuated neuronal coupling and mechanical hyperalgesia. Therefore, neuronal coupling represents a new form of neuronal plasticity in the DRG and contributes to pain hypersensitivity by “hijacking” neighboring neurons through gap junctions. PMID:27568517

  10. Phrenic long-term facilitation following intrapleural CTB-SAP-induced respiratory motor neuron death.

    Science.gov (United States)

    Nichols, Nicole L; Craig, Taylor A; Tanner, Miles A

    2017-08-16

    Amyotrophic lateral sclerosis (ALS) is a devastating disease leading to progressive motor neuron degeneration and death by ventilatory failure. In a rat model of ALS (SOD1(G93A)), phrenic long-term facilitation (pLTF) following acute intermittent hypoxia (AIH) is enhanced greater than expected at disease end-stage but the mechanism is unknown. We suggest that one trigger for this enhancement is motor neuron death itself. Intrapleural injections of cholera toxin B fragment conjugated to saporin (CTB-SAP) selectively kill respiratory motor neurons and mimic motor neuron death observed in SOD1(G93A) rats. This CTB-SAP model allows us to study the impact of respiratory motor neuron death on breathing without many complications attendant to ALS. Here, we tested the hypothesis that phrenic motor neuron death is sufficient to enhance pLTF. pLTF was assessed in anesthetized, paralyzed and ventilated Sprague Dawley rats 7 and 28days following bilateral intrapleural injections of: 1) CTB-SAP (25μg), or 2) un-conjugated CTB and SAP (control). CTB-SAP enhanced pLTF at 7 (CTB-SAP: 162±18%, n=8 vs. 63±3%; n=8; pSAP: 64±10%, n=10 vs. 60±13; n=8; p>0.05). Thus, pLTF at 7 (not 28) days post-CTB-SAP closely resembles pLTF in end-stage ALS rats, suggesting that processes unique to the early period of motor neuron death enhance pLTF. This project increases our understanding of respiratory plasticity and its implications for breathing in motor neuron disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Anatomy and physiology of neurons composing the commissural ring nerve of the cricket, Acheta domesticus.

    Science.gov (United States)

    Killian, K A; Bollins, J P; Govind, C K

    2000-03-01

    The commissural ring nerve (RN) of the cricket Acheta domesticus links together the two cercal motor nerves of the terminal abdominal ganglion. It contains the axons of almost 100 neurons including two bilateral clusters of eight to 13 ventrolateral neurons and approximately 75 neurons with midline somata within the terminal abdominal ganglion. The ventrolateral neurons have an ipsilateral dendritic arborization within the dorsal neuropil of the ganglion and their axons use the RN as a commissure in order to enter the contralateral nerves of the tenth ganglionic neuromere. In contrast, most midline neurons have bifurcating axons projecting bilaterally into the neuropil of the ganglion as well as into the RN where they often branch extensively before entering the contralateral tenth nerves. Most RN neurons have small, non-spiking somata with spike initiation zones distant from the soma. Many midline neurons also produce double-peaked spikes in their somata, indicative of multiple spike initiation zones. Spontaneous neuronal activity recorded extracellularly from the RN reveals several units, some with variable firing patterns, but none responding to sensory stimuli. The RN is primarily composed of small (50 nm diameter) axon profiles with a few large (0.5-1 microm diameter) profiles. Occasionally, profiles of nerve terminals containing primarily small clear vesicles and a few large dense vesicles are observed. These vesicles can sometimes be clustered about an active zone. We conclude that the primary function of the RN is to serve as a peripheral nerve commissure and that its role as a neurohemal organ is negligible. J. Exp. Zool. 286:350-366, 2000. Copyright 2000 Wiley-Liss, Inc.

  12. Distribution and chemical coding of sensory neurons innervating the skin of the porcine hindlimb.

    Science.gov (United States)

    Kozłowska, Anna; Mikołajczyk, Anita; Adamiak, Zbigniew; Majewski, Mariusz

    2017-02-01

    The aim of the present study was to establish the origin and chemical phenotyping of neurons involved in skin innervation of the porcine hind leg. The dorsal root ganglia (DRGs) of the lumbar (L4-L6) and sacral (S1-S3) spinal nerves were visualized using the fluorescent tracer Fast Blue (FB). The morphometric analysis of FB-positive (FB+)neurons showed that in the L4, L5, S1 and S2 DRGs, the small-sized perikarya constituted the major population, whereas in the L6 and S3 DRGs the medium-sized cells made up the major population. In all these ganglia, large-sized FB+ perikarya constituted only a small percentage of all FB+ neurons. Immunohistochemistry revealed that small- and medium-sized FB+ perikarya contained sensory markers such as: substance P (SP), calcitonin gene related peptide (CGRP) and galanin (GAL); as well as various other factors such as somatostatin (SOM), calbindin-D28k (CB), pituitary adenylate cyclase-activating polypeptide (PACAP) and neuronal nitric oxide synthase (nNOS). Meanwhile large-sized FB+ perikarya usually expressed SP, CGRP or PACAP. In the lumbar DRGs, some large cells also contained SOM and CB. Double-labeling immunohistochemistry showed that SP-positive neurons co-expressed CGRP, GAL or PACAP; while PACAP-positive cells co-expressed GAL or nNOS. Neurons stained for SOM were also immunoreactive for CB or GAL, while neurons stained for nNOS were also immunoreactive for GAL. In conclusion, the present data has indicated that the distribution and chemical phenotyping of the porcine skin-projecting neurons are different within DRGs of the lumbar (forming a femoral nerve) and sacral (forming a sciatic nerve) spinal nerves. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Developmental changes in membrane excitability and morphology of neurons in the nucleus angularis of the chicken

    Science.gov (United States)

    Fukui, Iwao; Ohmori, Harunori

    2003-01-01

    In order to understand how sound intensity information is extracted and processed in the auditory nuclei, we investigated the neuronal excitability in the nucleus angularis (NA) of the chicken (P0–5) and the chicken embryo (E16–21). In embryos, neurons fired basically in three patterns in response to current injections: the onset pattern (19 %), the tonic pattern (52 %) and the pause pattern (29 %). After hatching, neurons fired either in the tonic pattern (83 %) or in the onset pattern (17 %). In both pre- and post-hatch periods, multiple firing neurons (tonic and pause) increased the maximum rate of rise of the action potential 2.6-fold, the fall 3.9-fold, and the maximum firing frequency 4-fold, and shifted the threshold potential to be more negative. After hatching, the firing frequency of tonic neurons reached a maximum at about 650 Hz. Application of TEA (1 mm) reduced the firing frequency, broadened action potentials and reduced the maximum rate of fall, but the threshold current was not changed. Dendrotoxin-I (DTX, 100 nm) reduced the threshold current. Application of DTX induced the onset neuron to fire repetitively. Branching patterns of auditory nerve fibres (ANFs) in NA were visualized by labelling with 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate (Di-I) placed within the cochlea. Di-I placed near the apex of the cochlea labelled the ventral part of the NA, and Di-I placed in the base labelled the dorso-lateral part. Tonic neurons labelled with biocytin extended dendrites in parallel with the projection of ANFs in the nucleus after hatching. ANF activity of a limited range of characteristic sound frequencies is thought to be extracted by tonic neurons and encoded into firing frequencies proportional to the strength of the input. PMID:12576492

  14. Axonal branching patterns of nucleus accumbens neurons in the rat.

    Science.gov (United States)

    Tripathi, Anushree; Prensa, Lucía; Cebrián, Carolina; Mengual, Elisa

    2010-11-15

    The patterns of axonal collateralization of nucleus accumbens (Acb) projection neurons were investigated in the rat by means of single-axon tracing techniques using the anterograde tracer biotinylated dextran amine. Seventy-three axons were fully traced, originating from either the core (AcbC) or shell (AcbSh) compartment, as assessed by differential calbindin D28k-immunoreactivity. Axons from AcbC and AcbSh showed a substantial segregation in their targets; target areas were either exclusively or preferentially innervated from AcbC or AcbSh. Axon collaterals in the subthalamic nucleus were found at higher than expected frequencies; moreover, these originated exclusively in the dorsal AcbC. Intercompartmental collaterals were observed from ventral AcbC axons into AcbSh, and likewise, interconnections at pallidal and mesencephalic levels were also observed, although mostly from AcbC axons toward AcbSh targets, possibly supporting crosstalk between the two subcircuits at several levels. Cell somata giving rise to short-range accumbal axons, projecting to the ventral pallidum (VP), were spatially intermingled with others, giving rise to long-range axons that innervated VP and more caudal targets. This anatomical organization parallels that of the dorsal striatum and provides the basis for possible dual direct and indirect actions from a single axon on either individual or small sets of neurons. Copyright © 2010 Wiley-Liss, Inc.

  15. Efficient retrograde neuronal transduction utilizing self-complementary AAV1.

    Science.gov (United States)

    Hollis, Edmund R; Kadoya, Ken; Hirsch, Matthew; Samulski, Richard J; Tuszynski, Mark H

    2008-02-01

    Adeno-associated virus (AAV) is frequently used for gene transfer into the central nervous system (CNS). Similar to adenovirus and rabies virus, AAV can be taken up by axons and retrogradely transported, resulting in neuronal gene expression distant from the injection site. We investigated the retrograde transport properties of self-complementary AAV (scAAV) serotypes 1-6 following peripheral injection. Injection of scAAV into either rat extensor carpi muscle or sciatic nerve resulted in detectable retrograde vector transport and reporter gene expression in spinal cord motor neurons (MNs). Serotype 1 resulted in the highest level of retrograde transport, with 4.1 +/- 0.3% of cervical MNs projecting to the extensor carpi transduced following intramuscular injection, and 7.5 +/- 3.1% of lumbar MNs transduced after sciatic nerve injection. In contrast to scAAV1, retrograde transduction with scAAV2 was undetectable following intramuscular injection, and was detected in only 0.81 +/- 0.15% of MNs projecting to the sciatic nerve following intranerve injection. Furthermore, sciatic injection of single-stranded AAV1 required injection of tenfold higher numbers of viral particles for detectable transgene expression compared to scAAV1, and then only 0.91 +/- 0.24% of lumbar MNs were transduced. Our data provide the basis for increased retrograde transduction efficiency using peripheral injections of scAAV1 vectors for therapeutic gene delivery to the spinal cord.

  16. Death of Neurons following Injury Requires Conductive Neuronal Gap Junction Channels but Not a Specific Connexin.

    Science.gov (United States)

    Fontes, Joseph D; Ramsey, Jon; Polk, Jeremy M; Koop, Andre; Denisova, Janna V; Belousov, Andrei B

    2015-01-01

    Pharmacological blockade or genetic knockout of neuronal connexin 36 (Cx36)-containing gap junctions reduces neuronal death caused by ischemia, traumatic brain injury and NMDA receptor (NMDAR)-mediated excitotoxicity. However, whether Cx36 gap junctions contribute to neuronal death via channel-dependent or channel-independent mechanism remains an open question. To address this, we manipulated connexin protein expression via lentiviral transduction of mouse neuronal cortical cultures and analyzed neuronal death twenty-four hours following administration of NMDA (a model of NMDAR excitotoxicity) or oxygen-glucose deprivation (a model of ischemic injury). In cultures prepared from wild-type mice, over-expression and knockdown of Cx36-containing gap junctions augmented and prevented, respectively, neuronal death from NMDAR-mediated excitotoxicity and ischemia. In cultures obtained form from Cx36 knockout mice, re-expression of functional gap junction channels, containing either neuronal Cx36 or non-neuronal Cx43 or Cx31, resulted in increased neuronal death following insult. In contrast, the expression of communication-deficient gap junctions (containing mutated connexins) did not have this effect. Finally, the absence of ethidium bromide uptake in non-transduced wild-type neurons two hours following NMDAR excitotoxicity or ischemia suggested the absence of active endogenous hemichannels in those neurons. Taken together, these results suggest a role for neuronal gap junctions in cell death via a connexin type-independent mechanism that likely relies on channel activities of gap junctional complexes among neurons. A possible contribution of gap junction channel-permeable death signals in neuronal death is discussed.

  17. Contribution of synchronized GABAergic neurons to dopaminergic neuron firing and bursting

    Science.gov (United States)

    Myroshnychenko, Maxym; Zakharov, Denis; di Volo, Matteo; Gutkin, Boris; Lapish, Christopher C.; Kuznetsov, Alexey

    2016-01-01

    In the ventral tegmental area (VTA), interactions between dopamine (DA) and γ-aminobutyric acid (GABA) neurons are critical for regulating DA neuron activity and thus DA efflux. To provide a mechanistic explanation of how GABA neurons influence DA neuron firing, we developed a circuit model of the VTA. The model is based on feed-forward inhibition and recreates canonical features of the VTA neurons. Simulations revealed that γ-aminobutyric acid (GABA) receptor (GABAR) stimulation can differentially influence the firing pattern of the DA neuron, depending on the level of synchronization among GABA neurons. Asynchronous activity of GABA neurons provides a constant level of inhibition to the DA neuron and, when removed, produces a classical disinhibition burst. In contrast, when GABA neurons are synchronized by common synaptic input, their influence evokes additional spikes in the DA neuron, resulting in increased measures of firing and bursting. Distinct from previous mechanisms, the increases were not based on lowered firing rate of the GABA neurons or weaker hyperpolarization by the GABAR synaptic current. This phenomenon was induced by GABA-mediated hyperpolarization of the DA neuron that leads to decreases in intracellular calcium (Ca2+) concentration, thus reducing the Ca2+-dependent potassium (K+) current. In this way, the GABA-mediated hyperpolarization replaces Ca2+-dependent K+ current; however, this inhibition is pulsatile, which allows the DA neuron to fire during the rhythmic pauses in inhibition. Our results emphasize the importance of inhibition in the VTA, which has been discussed in many studies, and suggest a novel mechanism whereby computations can occur locally. PMID:27440240

  18. Generation of sensory neurons is stimulated by leukemia inhibitory factor.

    OpenAIRE

    Murphy, M; Reid, K; Hilton, D J; Bartlett, P F

    1991-01-01

    The processes that regulate the development of peripheral neurons from their precursors in the embryonic neural crest are essentially unknown. In this report, we show that leukemia inhibitory factor stimulates the generation of neurons in cultures of mouse neural crest. These neurons have the morphology of sensory neurons and contain neuropeptides found in mammalian sensory neurons. Consistent with these neurons being of the sensory lineage is the finding that they arise from nondividing prec...

  19. Alzheimer's Project

    Medline Plus

    Full Text Available ... Momentum in Science, Part 2" (70 minutes) Be a part of something big. HBO's "THE ALZHEIMER'S PROJECT" ... vital research and services. "THE ALZHEIMER'S PROJECT" is a presentation of HBO Documentary Films and the National ...

  20. Understanding how discrete populations of hypothalamic neurons orchestrate complicated behavioral states

    Directory of Open Access Journals (Sweden)

    Allison eGraebner

    2015-08-01

    Full Text Available A major question in systems neuroscience is how a single population of neurons can interact with the rest of the brain to orchestrate complex behavioral states. The hypothalamus contains many such discrete neuronal populations that individually regulate arousal, feeding, and drinking. For example, hypothalamic neurons that express hypocretin (Hcrt neuropeptides can sense homeostatic and metabolic factors affecting wakefulness and orchestrate organismal arousal. Neurons that express agouti-related protein (AgRP can sense the metabolic needs of the body and orchestrate a state of hunger. The organum vasculosum of the lamina terminalis (OVLT can detect the hypertonicity of blood and orchestrate a state of thirst. Each hypothalamic population is sufficient to generate complicated behavioral states through the combined efforts of distinct efferent projections. The principal challenge to understanding these brain systems is therefore to determine the individual roles of each downstream projection for each behavioral state. In recent years, the development and application of temporally precise, genetically encoded tools have greatly improved our understanding of the structure and function of these neural systems. This review will survey recent advances in our understanding of how these individual hypothalamic populations can orchestrate complicated behavioral states due to the combined efforts of individual downstream projections.

  1. Project ethics

    CERN Document Server

    Jonasson, Haukur Ingi

    2013-01-01

    How relevant is ethics to project management? The book - which aims to demystify the field of ethics for project managers and managers in general - takes both a critical and a practical look at project management in terms of success criteria, and ethical opportunities and risks. The goal is to help the reader to use ethical theory to further identify opportunities and risks within their projects and thereby to advance more directly along the path of mature and sustainable managerial practice.

  2. Role of serotonergic neurons in the Drosophila larval response to light

    Directory of Open Access Journals (Sweden)

    Campos Ana

    2009-06-01

    Full Text Available Abstract Background Drosophila larval locomotion consists of forward peristalsis interrupted by episodes of pausing, turning and exploratory behavior (head swinging. This behavior can be regulated by visual input as seen by light-induced increase in pausing, head swinging and direction change as well as reduction of linear speed that characterizes the larval photophobic response. During 3rd instar stage, Drosophila larvae gradually cease to be repelled by light and are photoneutral by the time they wander in search for a place to undergo metamorphosis. Thus, Drosophila larval photobehavior can be used to study control of locomotion. Results We used targeted neuronal silencing to assess the role of candidate neurons in the regulation of larval photobehavior. Inactivation of DOPA decarboxylase (Ddc neurons increases the response to light throughout larval development, including during the later stages of the 3rd instar characterized by photoneutral response. Increased response to light is characterized by increase in light-induced direction change and associated pause, and reduction of linear movement. Amongst Ddc neurons, suppression of the activity of corazonergic and serotonergic but not dopaminergic neurons increases the photophobic response observed during 3rd instar stage. Silencing of serotonergic neurons does not disrupt larval locomotion or the response to mechanical stimuli. Reduced serotonin (5-hydroxytryptamine, 5-HT signaling within serotonergic neurons recapitulates the results obtained with targeted neuronal silencing. Ablation of serotonergic cells in the ventral nerve cord (VNC does not affect the larval response to light. Similarly, disruption of serotonergic projections that contact the photoreceptor termini in the brain hemispheres does not impact the larval response to light. Finally, pan-neural over-expression of 5-HT1ADro receptors, but not of any other 5-HT receptor subtype, causes a significant decrease in the response to

  3. Ancylostoma caninum: the finger cell neurons mediate thermotactic behavior by infective larvae of the dog hookworm.

    Science.gov (United States)

    Bhopale, V M; Kupprion, E K; Ashton, F T; Boston, R; Schad, G A

    2001-02-01

    Bhopale, V. M., Kupprion, E. K., Ashton, F. T., Boston, R., and Schad, G. A. 2001. Ancylostoma caninum: The finger cell neurons mediate thermotactic behavior by infective larvae of the dog hookworm. Experimental Parasitology 97, 70-76. In the amphids (anteriorly positioned, paired sensilla) of the free-living nematode Caenorhabditis elegans, the so-called finger cells (AFD), a pair of neurons, each of which ends in a cluster of microvilli-like projections, are known to be the primary thermoreceptors. A similar neuron pair in the amphids of the parasitic nematode Haemonchus contortus is also known to be thermoreceptive. The hookworm of dogs, Ancylostoma caninum, has apparent structural homologs of finger cells in its amphids. The neuroanatomy of the amphids of A. caninum and H. contortus is strikingly similar, and the amphidial cell bodies in the lateral ganglia of the latter nematode have been identified and mapped. When the lateral ganglia of first-stage larvae (L1) of A. caninum are examined with differential interference contrast microscopy, positional homologs of the recognized amphidial cell bodies in the lateral ganglia of H. contortus L1 are readily identified in A. caninum. The amphidial neurons in A. caninum were consequently given the same names as those of their apparent homologs in H. contortus. It was hypothesized that the finger cell neurons (AFD) might mediate thermotaxis by the skin-penetrating infective larvae (L3) of A. caninum. Laser microbeam ablation experiments with A. caninum were conducted, using the H. contortus L1 neuronal map as a guide. A. caninum L1 were anesthetized and the paired AFD class neurons were ablated. The larvae were then cultured to L3 and assayed for thermotaxis on a thermal gradient. L3 with ablated AFD-class neuron pairs showed significantly reduced thermotaxis compared to control groups. The thermoreceptive function of the AFD-class neurons associates this neuron pair with the host-finding process of the A. caninum

  4. Forced neuronal interactions cause poor communication.

    Science.gov (United States)

    Krzisch, Marine; Toni, Nicolas

    2017-01-01

    Post-natal hippocampal neurogenesis plays a role in hippocampal function, and neurons born post-natally participate to spatial memory and mood control. However, a great proportion of granule neurons generated in the post-natal hippocampus are eliminated during the first 3 weeks of their maturation, a mechanism that depends on their synaptic integration. In a recent study, we examined the possibility of enhancing the synaptic integration of neurons born post-natally, by specifically overexpressing synaptic cell adhesion molecules in these cells. Synaptic cell adhesion molecules are transmembrane proteins mediating the physical connection between pre- and post-synaptic neurons at the synapse, and their overexpression enhances synapse formation. Accordingly, we found that overexpressing synaptic adhesion molecules increased the synaptic integration and survival of newborn neurons. Surprisingly, the synaptic adhesion molecule with the strongest effect on new neurons' survival, Neuroligin-2A, decreased memory performances in a water maze task. We present here hypotheses explaining these surprising results, in the light of the current knowledge of the mechanisms of synaptic integration of new neurons in the post-natal hippocampus.

  5. Staufen2 Regulates Neuronal Target RNAs

    Directory of Open Access Journals (Sweden)

    Jacki E. Heraud-Farlow

    2013-12-01

    Full Text Available RNA-binding proteins play crucial roles in directing RNA translation to neuronal synapses. Staufen2 (Stau2 has been implicated in both dendritic RNA localization and synaptic plasticity in mammalian neurons. Here, we report the identification of functionally relevant Stau2 target mRNAs in neurons. The majority of Stau2-copurifying mRNAs expressed in the hippocampus are present in neuronal processes, further implicating Stau2 in dendritic mRNA regulation. Stau2 targets are enriched for secondary structures similar to those identified in the 3′ UTRs of Drosophila Staufen targets. Next, we show that Stau2 regulates steady-state levels of many neuronal RNAs and that its targets are predominantly downregulated in Stau2-deficient neurons. Detailed analysis confirms that Stau2 stabilizes the expression of one synaptic signaling component, the regulator of G protein signaling 4 (Rgs4 mRNA, via its 3′ UTR. This study defines the global impact of Stau2 on mRNAs in neurons, revealing a role in stabilization of the levels of synaptic targets.

  6. AgRP Neurons Regulate Bone Mass

    Directory of Open Access Journals (Sweden)

    Jae Geun Kim

    2015-10-01

    Full Text Available The hypothalamus has been implicated in skeletal metabolism. Whether hunger-promoting neurons of the arcuate nucleus impact the bone is not known. We generated multiple lines of mice to affect AgRP neuronal circuit integrity. We found that mice with Ucp2 gene deletion, in which AgRP neuronal function was impaired, were osteopenic. This phenotype was rescued by cell-selective reactivation of Ucp2 in AgRP neurons. When the AgRP circuitry was impaired by early postnatal deletion of AgRP neurons or by cell autonomous deletion of Sirt1 (AgRP-Sirt1−/−, mice also developed reduced bone mass. No impact of leptin receptor deletion in AgRP neurons was found on bone homeostasis. Suppression of sympathetic tone in AgRP-Sirt1−/− mice reversed osteopenia in transgenic animals. Taken together, these observations establish a significant regulatory role for AgRP neurons in skeletal bone metabolism independent of leptin action.

  7. Neuronal medium that supports basic synaptic functions and activity of human neurons in vitro

    Science.gov (United States)

    Bardy, Cedric; van den Hurk, Mark; Eames, Tameji; Marchand, Cynthia; Hernandez, Ruben V.; Kellogg, Mariko; Gorris, Mark; Galet, Ben; Palomares, Vanessa; Brown, Joshua; Bang, Anne G.; Mertens, Jerome; Böhnke, Lena; Boyer, Leah; Simon, Suzanne; Gage, Fred H.

    2015-01-01

    Human cell reprogramming technologies offer access to live human neurons from patients and provide a new alternative for modeling neurological disorders in vitro. Neural electrical activity is the essence of nervous system function in vivo. Therefore, we examined neuronal activity in media widely used to culture neurons. We found that classic basal media, as well as serum, impair action potential generation and synaptic communication. To overcome this problem, we designed a new neuronal medium (BrainPhys basal + serum-free supplements) in which we adjusted the concentrations of inorganic salts, neuroactive amino acids, and energetic substrates. We then tested that this medium adequately supports neuronal activity and survival of human neurons in culture. Long-term exposure to this physiological medium also improved the proportion of neurons that were synaptically active. The medium was designed to culture human neurons but also proved adequate for rodent neurons. The improvement in BrainPhys basal medium to support neurophysiological activity is an important step toward reducing the gap between brain physiological conditions in vivo and neuronal models in vitro. PMID:25870293

  8. Human embryonic stem cell-derived neuronal cells form spontaneously active neuronal networks in vitro.

    Science.gov (United States)

    Heikkilä, Teemu J; Ylä-Outinen, Laura; Tanskanen, Jarno M A; Lappalainen, Riikka S; Skottman, Heli; Suuronen, Riitta; Mikkonen, Jarno E; Hyttinen, Jari A K; Narkilahti, Susanna

    2009-07-01

    The production of functional human embryonic stem cell (hESC)-derived neuronal cells is critical for the application of hESCs in treating neurodegenerative disorders. To study the potential functionality of hESC-derived neurons, we cultured and monitored the development of hESC-derived neuronal networks on microelectrode arrays. Immunocytochemical studies revealed that these networks were positive for the neuronal marker proteins beta-tubulin(III) and microtubule-associated protein 2 (MAP-2). The hESC-derived neuronal networks were spontaneously active and exhibited a multitude of electrical impulse firing patterns. Synchronous bursts of electrical activity similar to those reported for hippocampal neurons and rodent embryonic stem cell-derived neuronal networks were recorded from the differentiated cultures until up to 4 months. The dependence of the observed neuronal network activity on sodium ion channels was examined using tetrodotoxin (TTX). Antagonists for the glutamate receptors NMDA [D(-)-2-amino-5-phosphonopentanoic acid] and AMPA/kainate [6-cyano-7-nitroquinoxaline-2,3-dione], and for GABAA receptors [(-)-bicuculline methiodide] modulated the spontaneous electrical activity, indicating that pharmacologically susceptible neuronal networks with functional synapses had been generated. The findings indicate that hESC-derived neuronal cells can generate spontaneously active networks with synchronous communication in vitro, and are therefore suitable for use in developmental and drug screening studies, as well as for regenerative medicine.

  9. Context-aware modeling of neuronal morphologies

    Science.gov (United States)

    Torben-Nielsen, Benjamin; De Schutter, Erik

    2014-01-01

    Neuronal morphologies are pivotal for brain functioning: physical overlap between dendrites and axons constrain the circuit topology, and the precise shape and composition of dendrites determine the integration of inputs to produce an output signal. At the same time, morphologies are highly diverse and variant. The variance, presumably, originates from neurons developing in a densely packed brain substrate where they interact (e.g., repulsion or attraction) with other actors in this substrate. However, when studying neurons their context is never part of the analysis and they are treated as if they existed in isolation. Here we argue that to fully understand neuronal morphology and its variance it is important to consider neurons in relation to each other and to other actors in the surrounding brain substrate, i.e., their context. We propose a context-aware computational framework, NeuroMaC, in which large numbers of neurons can be grown simultaneously according to growth rules expressed in terms of interactions between the developing neuron and the surrounding brain substrate. As a proof of principle, we demonstrate that by using NeuroMaC we can generate accurate virtual morphologies of distinct classes both in isolation and as part of neuronal forests. Accuracy is validated against population statistics of experimentally reconstructed morphologies. We show that context-aware generation of neurons can explain characteristics of variation. Indeed, plausible variation is an inherent property of the morphologies generated by context-aware rules. We speculate about the applicability of this framework to investigate morphologies and circuits, to classify healthy and pathological morphologies, and to generate large quantities of morphologies for large-scale modeling. PMID:25249944

  10. Context-aware modeling of neuronal morphologies

    Directory of Open Access Journals (Sweden)

    Benjamin eTorben-Nielsen

    2014-09-01

    Full Text Available Neuronal morphologies are pivotal for brain functioning: physical overlap between dendrites and axons constrain the circuit topology, and the precise shape and composition of dendrites determine the integration of inputs to produce an output signal. At the same time, morphologies are highly diverse and variant. The variance, presumably, originates from neurons developing in a densely packed brain substrate where they interact (e.g., repulsion or attraction with other actors in this substrate. However, when studying neurons their context is never part of the analysis and they are treated as if they existed in isolation.Here we argue that to fully understand neuronal morphology and its variance it is important to consider neurons in relation to each other and to other actors in the surrounding brain substrate, i.e., their context. We propose a context-aware computational framework, NeuroMaC, in which large numbers of neurons can be grown simultaneously according to growth rules expressed in terms of interactions between the developing neuron and the surrounding brain substrate.As a proof of principle, we demonstrate that by using NeuroMaC we can generate accurate virtual morphologies of distinct classes both in isolation and as part of neuronal forests. Accuracy is validated against population statistics of experimentally reconstructed morphologies. We show that context-aware generation of neurons can explain characteristics of variation. Indeed, plausible variation is an inherent property of the morphologies generated by context-aware rules. We speculate about the applicability of this framework to investigate morphologies and circuits, to classify healthy and pathological morphologies, and to generate large quantities of morphologies for large-scale modeling.

  11. Virtual projects

    DEFF Research Database (Denmark)

    Svejvig, Per; Commisso, Trine Hald

    2012-01-01

    Virtual projects are common with global competition, market development, and not least the financial crisis forcing organizations to reduce their costs drastically. Organizations therefore have to place high importance on ways to carry out virtual projects and consider appropriate practices...... for performing these projects. This paper compares best practices with practiced practices for virtual projects and discusses ways to bridge the gap between them. We have studied eleven virtual projects in five Danish organizations and compared them with a predefined list of best practices compiled from...... that the best practice knowledge has not permeated sufficiently to the practice. Furthermore, the appropriate application of information and communication technology (ICT) remains a big challenge, and finally project managers are not sufficiently trained in organizing and conducting virtual projects...

  12. Project Temporalities

    DEFF Research Database (Denmark)

    Tryggestad, Kjell; Justesen, Lise; Mouritsen, Jan

    2013-01-01

    Purpose – The purpose of this paper is to explore how animals can become stakeholders in interaction with project management technologies and what happens with project temporalities when new and surprising stakeholders become part of a project and a recognized matter of concern to be taken...... into account. Design/methodology/approach – The paper is based on a qualitative case study of a project in the building industry. The authors use actor-network theory (ANT) to analyze the emergence of animal stakeholders, stakes and temporalities. Findings – The study shows how project temporalities can...... multiply in interaction with project management technologies and how conventional linear conceptions of project time may be contested with the emergence of new non-human stakeholders and temporalities. Research limitations/implications – The study draws on ANT to show how animals can become stakeholders...

  13. Reaction-Diffusion in the NEURON Simulator

    Directory of Open Access Journals (Sweden)

    Robert A. McDougal

    2013-11-01

    Full Text Available In order to support research on the role of cell biological principles (genomics, proteomics, signaling cascades and reaction dynamics on the dynamics of neuronal response in health and disease, NEURON has developed a Reaction-Diffusion (rxd module in Python which provides specification and simulation for these dynamics, coupled with the electrophysiological dynamics of the cell membrane. Arithmetic operations on species and parameters are overloaded, allowing arbitrary reaction formulas to be specified using Python syntax. These expressions are then transparently compiled into bytecode that uses NumPy for fast vectorized calculations. At each time step, rxd combines NEURON's integrators with SciPy’s sparse linear algebra library.

  14. Managing Brain Extracellular K(+) during Neuronal Activity

    DEFF Research Database (Denmark)

    Larsen, Brian Roland; Stoica, Anca; MacAulay, Nanna

    2016-01-01

    isoform compositions of the Na(+)/K(+)-ATPase remain unresolved. The various cell types in the brain serve a certain temporal contribution in the face of network activity; astrocytes respond directly to the immediate release of K(+) from neurons, whereas the neurons themselves become the primary K...... characteristics required to fulfill their distinct physiological roles in clearance of K(+) from the extracellular space in the face of neuronal activity. Understanding the nature, impact and effects of the various Na(+)/K(+)-ATPase isoform combinations in K(+) management in the central nervous system might...

  15. Evoking prescribed spike times in stochastic neurons

    Science.gov (United States)

    Doose, Jens; Lindner, Benjamin

    2017-09-01

    Single cell stimulation in vivo is a powerful tool to investigate the properties of single neurons and their functionality in neural networks. We present a method to determine a cell-specific stimulus that reliably evokes a prescribed spike train with high temporal precision of action potentials. We test the performance of this stimulus in simulations for two different stochastic neuron models. For a broad range of parameters and a neuron firing with intermediate firing rates (20-40 Hz) the reliability in evoking the prescribed spike train is close to its theoretical maximum that is mainly determined by the level of intrinsic noise.

  16. Tracing lineages to uncover neuronal identity

    Directory of Open Access Journals (Sweden)

    Perlmann Thomas

    2011-07-01

    Full Text Available Abstract Many previous studies have focused on understanding how midbrain dopamine neurons, which are implicated in many neurological conditions, are generated during embryogenesis. One of the remaining questions concerns how different dopamine neuron subtypes are specified. A recent paper in Neural Development has revealed features of a spatial and temporal lineage map that, together with other studies, begins to elucidate the developmental origin of distinct neuronal subtypes within the developing midbrain. See research article http://www.neuraldevelopment.com/content/6/1/29

  17. Neuron-glia interactions in glutamatergic neurotransmission

    DEFF Research Database (Denmark)

    Schousboe, A; Sickmann, H M; Bak, Lasse Kristoffer

    2011-01-01

    theses processes also has not been fully elucidated. Cultured astrocytes and neurons were utilized to monitor these processes related to glutamatergic neurotransmission. Inhibitors of glycolysis and TCA cycle in combination with pathway-selective substrates were used to study glutamate uptake and release...... in providing energy for glutamate uptake both in astrocytes and in neurons. The neuronal vesicular glutamate release was less dependent on glycolytic ATP. Dependence of glutamate uptake on glycolytic ATP may be at least partially explained by a close association in the membrane of GAPDH and PGK...

  18. Neuronal damage by secretory phospholipase A2

    DEFF Research Database (Denmark)

    Kolko, Miriam; Rodriguez de Turco, Elena B; Diemer, Nils H

    2003-01-01

    signal transduction has previously been suggested (J Biol Chem 271:32722; 1996). Here we show, using neuronal cell cultures, an up-regulation of cPLA(2) expression and an inhibition by the selective cPLA(2) inhibitor AACOCF3 after exposure to neurotoxic concentrations of sPLA(2)-OS2. Pretreatment...... of neuronal cultures with recombinant PAF acetylhydrolase (rPAF-AH) or the presynaptic PAF receptor antagonist, BN52021, partially blocked neuronal cell death induced by sPLA(2)-OS2. Furthermore, selective COX-2 inhibitors ameliorated sPLA(2)-OS2-induced neurotoxicity. We conclude that sPLA(2)-OS2 activates...

  19. Contribution of amygdala CRF neurons to chronic pain.

    Science.gov (United States)

    Andreoli, Matthew; Marketkar, Tanvi; Dimitrov, Eugene

    2017-12-01

    We investigated the role of amygdala corticotropin-releasing factor (CRF) neurons in the perturbations of descending pain inhibition caused by neuropathic pain. Forced swim increased the tail-flick response latency in uninjured mice, a phenomenon known as stress-induced analgesia (SIA) but did not change the tail-flick response latency in mice with neuropathic pain caused by sciatic nerve constriction. Neuropathic pain also increased the expression of CRF in the central amygdala (CeAmy) and ΔFosB in the dorsal horn of the spinal cord. Next, we injected the CeAmy of CRF-cre mice with cre activated AAV-DREADD (Designer Receptors Exclusively Activated by Designer Drugs) vectors. Activation of CRF neurons by DREADD/Gq did not affect the impaired SIA but inhibition of CRF neurons by DREADD/Gi restored SIA and decreased allodynia in mice with neuropathic pain. The possible downstream circuitry involved in the regulation of SIA was investigated by combined injections of retrograde cre-virus (CAV2-cre) into the locus ceruleus (LC) and cre activated AAV-diphtheria toxin (AAV-FLEX-DTX) virus into the CeAmy. The viral injections were followed by a sciatic nerve constriction ipsilateral or contralateral to the injections. Ablation of amygdala projections to the LC on the side of injury but not on the opposite side, completely restored SIA, decreased allodynia and decreased ΔFosB expression in the spinal cord in mice with neuropathic pain. The possible lateralization of SIA impairment to the side of injury was confirmed by an experiment in which unilateral inhibition of the LC decreased SIA even in uninjured mice. The current view in the field of pain research attributes the process of pain chronification to abnormal functioning of descending pain inhibition. Our results demonstrate that the continuous activity of CRF neurons brought about by persistent pain leads to impaired SIA, which is a symptom of dysregulation of descending pain inhibition. Therefore, an over

  20. Do premotor interneurons act in parallel on spinal motoneurons and on dorsal horn spinocerebellar and spinocervical tract neurons in the cat?

    Science.gov (United States)

    Krutki, Piotr; Jelen, Sabina

    2011-01-01

    It has previously been established that ventral spinocerebellar tract (VSCT) neurons and dorsal spinocerebellar tract neurons located in Clarke's column (CC DSCT neurons) forward information on actions of premotor interneurons in reflex pathways from muscle afferents on α-motoneurons. Whether DSCT neurons located in the dorsal horn (dh DSCT neurons) and spinocervical tract (SCT) neurons are involved in forwarding similar feedback information has not yet been investigated. The aim of the present study was therefore to examine the input from premotor interneurons to these neurons. Electrical stimuli were applied within major hindlimb motor nuclei to activate axon-collaterals of interneurons projecting to these nuclei, and intracellular records were obtained from dh DSCT and SCT neurons. Direct actions of the stimulated interneurons were differentiated from indirect actions by latencies of postsynaptic potentials evoked by intraspinal stimuli and by the absence or presence of temporal facilitation. Direct actions of premotor interneurons were found in a smaller proportion of dh DSCT than of CC DSCT neurons. However, they were evoked by both excitatory and inhibitory interneurons, whereas only inhibitory premotor interneurons were previously found to affect CC DSCT neurons [as indicated by monosynaptic excitatory postsynaptic potentials (EPSPs) and inhibitory postsynaptic potentials (IPSPs) in dh DSCT and only IPSPs in CC DSCT neurons]. No effects of premotor interneurons were found in SCT neurons, since monosynaptic EPSPs or IPSPs were only evoked in them by stimuli applied outside motor nuclei. The study thus reveals a considerable differentiation of feedback information provided by different populations of ascending tract neurons. PMID:21273308

  1. Orthodenticle is necessary for survival of a cluster of clonally related dopaminergic neurons in the Drosophila larval and adult brain

    Directory of Open Access Journals (Sweden)

    Pandey Rahul

    2011-10-01

    Full Text Available Abstract Background The dopaminergic (DA neurons present in the central brain of the Drosophila larva are spatially arranged in stereotyped groups that define clusters of bilaterally symmetrical neurons. These clusters have been classified according to anatomical criteria (position of the cell bodies within the cortex and/or projection pattern of the axonal tracts. However, information pertaining to the developmental biology, such as lineage relationship of clustered DA neurons and differential cell subtype-specific molecular markers and mechanisms of differentiation and/or survival, is currently not available. Results Using MARCM and twin-spot MARCM techniques together with anti-tyrosine hydroxylase immunoreactivity, we have analyzed the larval central brain DA neurons from a developmental point of view and determined their time of birth, their maturation into a DA neurotransmitter phenotype as well as their lineage relationships. In addition, we have found that the homeodomain containing transcription factor Orthodenticle (Otd is present in a cluster of clonally related DA neurons in both the larval and adult brain. Taking advantage of the otd hypomorphic mutation ocelliless (oc and the oc2-Gal4 reporter line, we have studied the involvement of orthodenticle (otd in the survival and/or cell fate specification of these post-mitotic neurons. Conclusions Our findings provide evidence of the presence of seven neuroblast lineages responsible for the generation of the larval central brain DA neurons during embryogenesis. otd is expressed in a defined group of clonally related DA neurons from first instar larvae to adulthood, making it possible to establish an identity relationship between the larval DL2a and the adult PPL2 DA clusters. This poses otd as a lineage-specific and differential marker of a subset of clonally related DA neurons. Finally, we show that otd is required in those DA neurons for their survival.

  2. A novel enteric neuron-glia coculture system reveals the role of glia in neuronal development.

    Science.gov (United States)

    Le Berre-Scoul, Catherine; Chevalier, Julien; Oleynikova, Elena; Cossais, François; Talon, Sophie; Neunlist, Michel; Boudin, Hélène

    2017-01-15

    Unlike astrocytes in the brain, the potential role of enteric glial cells (EGCs) in the formation of the enteric neuronal circuit is currently unknown. To examine the role of EGCs in the formation of the neuronal network, we developed a novel neuron-enriched culture model from embryonic rat intestine grown in indirect coculture with EGCs. We found that EGCs shape axonal complexity and synapse density in enteric neurons, through purinergic- and glial cell line-derived neurotrophic factor-dependent pathways. Using a novel and valuable culture model to study enteric neuron-glia interactions, our study identified EGCs as a key cellular actor regulating neuronal network maturation. In the nervous system, the formation of neuronal circuitry results from a complex and coordinated action of intrinsic and extrinsic factors. In the CNS, extrinsic mediators derived from astrocytes have been shown to play a key role in neuronal maturation, including dendritic shaping, axon guidance and synaptogenesis. In the enteric nervous system (ENS), the potential role of enteric glial cells (EGCs) in the maturation of developing enteric neuronal circuit is currently unknown. A major obstacle in addressing this question is the difficulty in obtaining a valuable experimental model in which enteric neurons could be isolated and maintained without EGCs. We adapted a cell culture method previously developed for CNS neurons to establish a neuron-enriched primary culture from embryonic rat intestine which was cultured in indirect coculture with EGCs. We demonstrated that enteric neurons grown in such conditions showed several structural, phenotypic and functional hallmarks of proper development and maturation. However, when neurons were grown without EGCs, the complexity of the axonal arbour and the density of synapses were markedly reduced, suggesting that glial-derived factors contribute strongly to the formation of the neuronal circuitry. We found that these effects played by EGCs were

  3. Cellular and molecular neuronal plasticity.

    Science.gov (United States)

    Griesbach, Grace S; Hovda, David A

    2015-01-01

    The brain has the capability to adapt to function when tissue is compromised. This capability of adaptation paves the road to recovery and allows for rehabilitation after a traumatic brain injury (TBI). This chapter addresses neuroplasticity within the context of TBI. Here neuroplasticity is defined as changes in neuronal structure and function, including synaptic changes as well as modifications in neural pathways. First, the influence of TBI pathology on neuroplasticity is addressed. Here, proteins that are important in neuroplasticity are introduced and a description given of how these are affected in a temporal and severity-dependent manner. Secondly, given that we are becoming increasingly aware that the brain's response to injury is highly influenced by the environmental milieu, the manner in which behavioral manipulations have an effect on TBI-associated neuroplasticity is addressed. A description is given of how specific environmental qualities may facilitate or hinder neuroplasticity. Finally, the long-term effects of neuroplasticity and the relevance it has to rehabilitation are described. © 2015 Elsevier B.V. All rights reserved.

  4. Genetic inactivation of glutamate neurons in the rat sublaterodorsal tegmental nucleus recapitulates REM sleep behaviour disorder.

    Science.gov (United States)

    Valencia Garcia, Sara; Libourel, Paul-Antoine; Lazarus, Michael; Grassi, Daniela; Luppi, Pierre-Hervé; Fort, Patrice

    2017-02-01

    SEE SCHENCK AND MAHOWALD DOI101093/AWW329 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: Idiopathic REM sleep behaviour disorder is characterized by the enactment of violent dreams during paradoxical (REM) sleep in the absence of normal muscle atonia. Accumulating clinical and experimental data suggest that REM sleep behaviour disorder might be due to the neurodegeneration of glutamate neurons involved in paradoxical sleep and located within the pontine sublaterodorsal tegmental nucleus. The purpose of the present work was thus to functionally determine first, the role of glutamate sublaterodorsal tegmental nucleus neurons in paradoxical sleep and second, whether their genetic inactivation is sufficient for recapitulating REM sleep behaviour disorder in rats. For this goal, we first injected two retrograde tracers in the intralaminar thalamus and ventral medulla to disentangle neuronal circuits in which sublaterodorsal tegmental nucleus is involved; second we infused bilaterally in sublaterodorsal tegmental nucleus adeno-associated viruses carrying short hairpin RNAs targeting Slc17a6 mRNA [which encodes vesicular glutamate transporter 2 (vGluT2)] to chronically impair glutamate synaptic transmission in sublaterodorsal tegmental nucleus neurons. At the neuroanatomical level, sublaterodorsal tegmental nucleus neurons specifically activated during paradoxical sleep hypersomnia send descending efferents to glycine/GABA neurons within the ventral medulla, but not ascending projections to the intralaminar thalamus. These data suggest a crucial role of sublaterodorsal tegmental nucleus neurons rather in muscle atonia than in paradoxical sleep generation. In line with this hypothesis, 30 days after adeno-associated virus injections into sublaterodorsal tegmental nucleus rats display a decrease of 30% of paradoxical sleep daily quantities, and a significant increase of muscle tone during paradoxical sleep concomitant to a tremendous increase of abnormal motor dream

  5. The physiological motor patterns produced by neurons in the nucleus retroambiguus in the rat and their modulation by vagal, peripheral chemosensory, and nociceptive stimulation.

    Science.gov (United States)

    Subramanian, Hari H; Huang, Zheng-Gui; Silburn, Peter A; Balnave, Ron J; Holstege, Gert

    2018-02-01

    The nucleus retroambiguus (NRA) is a neuronal cell group in the medullary ventrolateral tegmentum, rostrocaudally between the obex and the first cervical spinal segment. NRA neurons are premotor interneurons with direct projections to the motoneurons of soft palate, pharynx, and larynx in the nucleus ambiguus in the lateral medulla as well as to the motoneurons in the spinal cord innervating diaphragm, abdominal, and pelvic floor muscles and the lumbosacral motoneurons generating sexual posture. These NRA premotor interneurons receive very strong projections from the periaqueductal gray (PAG) in the context of basic survival mechanisms as fight, flight, freezing, sound production, and sexual behavior. In the present study in rat we investigated the physiological motor patterns generated by NRA neurons, as the result of vagal, peripheral chemosensory, and nociceptive stimulation. The results show that the NRA contains phasic respiratory modulated neurons, as well as nonphasic tonically modulated neurons. Stimulation in the various rostrocaudal levels of the NRA generates site-specific laryngeal, respiratory, abdominal, and pelvic floor motor activities. Vagal and peripheral chemosensory stimulation induces both excitatory and inhibitory modulation of phasic NRA-neurons, while peripheral chemosensory and nociceptive stimulation causes excitation and inhibition of nonphasic NRA-neurons. These results are in agreement with the concept that the NRA represents a multifunctional group of neurons involved in the output of the emotional motor system, such as vomiting, vocalization, mating, and changes in respiration. © 2017 Wiley Periodicals, Inc.

  6. Anatomical characterization of PDF-Tri neurons and peptidergic neurons associated with eclosion behavior in Drosophila.

    Science.gov (United States)

    Selcho, Mareike; Mühlbauer, Barbara; Hensgen, Ronja; Shiga, Sakiko; Wegener, Christian; Yasuyama, Kouji

    2018-02-10

    The peptidergic PDF-Tri neurons are a group of non-clock neurons that appear transiently around the time of adult ecdysis (=eclosion) in the fruit fly Drosophila melanogaster. This specific developmental pattern points to a function of these neurons in eclosion or other processes that are active around pupal-adult transition. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.

  7. Frizzled-5 receptor is involved in neuronal polarity and morphogenesis of hippocampal neurons.

    Directory of Open Access Journals (Sweden)

    Paula G Slater

    Full Text Available The Wnt signaling pathway plays important roles during different stages of neuronal development, including neuronal polarization and dendritic and axonal outgrowth. However, little is known about the identity of the Frizzled receptors mediating these processes. In the present study, we investigated the role of Frizzled-5 (Fzd5 on neuronal development in cultured Sprague-Dawley rat hippocampal neurons. We found that Fzd5 is expressed early in cultured neurons on actin-rich structures localized at minor neurites and axonal growth cones. At 4 DIV, Fzd5 polarizes towards the axon, where its expression is detected mainly at the peripheral zone of axonal growth cones, with no obvious staining at dendrites; suggesting a role of Fzd5 in neuronal polarization. Overexpression of Fzd5 during the acquisition of neuronal polarity induces mislocalization of the receptor and a loss of polarized axonal markers. Fzd5 knock-down leads to loss of axonal proteins, suggesting an impaired neuronal polarity. In contrast, overexpression of Fzd5 in neurons that are already polarized did not alter polarity, but decreased the total length of axons and increased total dendrite length and arborization. Fzd5 activated JNK in HEK293 cells and the effects triggered by Fzd5 overexpression in neurons were partially prevented by inhibition of JNK, suggesting that a non-canonical Wnt signaling mechanism might be involved. Our results suggest that, Fzd5 has a role in the establishment of neuronal polarity, and in the morphogenesis of neuronal processes, in part through the activation of the non-canonical Wnt mechanism involving JNK.

  8. Transient Synchronization in Complex Neuronal Networks

    CERN Document Server

    Costa, Luciano da Fontoura

    2008-01-01

    Transient synchronization in complex neuronal networks as a consequence of activation-conserved dynamics induced by having sources placed at specific neurons is investigated. The basic integrate-and-fire neuron is adopted, and the dynamics is estimated computationally so as to obtain the activation at each node along each instant of time. The dynamics is implemented so as to conserve the total activation entering the system, which is a distinctive feature of the current work. The synchronization of the activation of the network is then quantified along time in terms of its normalized instantaneous entropy. The potential of such concepts and measurements is explored with respect to 6 theoretical models, as well as for the neuronal network of \\emph{C. elegans}. A series of interesting results are obtained and discussed, including the fact that all models led to a transient period of synchronization, whose specific features depend heavily on the topological features of the networks.

  9. Growth control mechanisms in neuronal regeneration

    National Research Council Canada - National Science Library

    Doron-Mandel, Ella; Fainzilber, Mike; Terenzio, Marco

    2015-01-01

    Neurons grow during development and extend long axons to make contact with their targets with the help of an intrinsic program of axonal growth as well as a range of extrinsic cues and a permissive milieu...

  10. The Age of Human Cerebral Cortex Neurons

    Energy Technology Data Exchange (ETDEWEB)

    Bhardwaj, R D; Curtis, M A; Spalding, K L; Buchholz, B A; Fink, D; Bjork-Eriksson, T; Nordborg, C; Gage, F H; Druid, H; Eriksson, P S; Frisen, J

    2006-04-06

    The traditional static view of the adult mammalian brain has been challenged by the realization of continuous generation of neurons from stem cells. Based mainly on studies in experimental animals, adult neurogenesis may contribute to recovery after brain insults and decreased neurogenesis has been implicated in the pathogenesis of neurological and psychiatric diseases in man. The extent of neurogenesis in the adult human brain has, however, been difficult to establish. We have taken advantage of the integration of {sup 14}C, generated by nuclear bomb tests during the Cold War, in DNA to establish the age of neurons in the major areas of the human cerebral cortex. Together with the analysis of the cortex from patients who received BrdU, which integrates in the DNA of dividing cells, our results demonstrate that whereas non-neuronal cells turn over, neurons in the human cerebral cortex are not generated postnatally at detectable levels, but are as old as the individual.

  11. Review Paper: Polyphenolic Antioxidants and Neuronal Regeneration

    Directory of Open Access Journals (Sweden)

    Amin Ataie

    2016-05-01

    Full Text Available Many studies indicate that oxidative stress is involved in the pathophysiology of neurodegenerative diseases. Oxidative stress can induce neuronal damages, modulate intracellular signaling and ultimately leads to neuronal death by apoptosis or necrosis. To review antioxidants preventive effects on oxidative stress and neurodegenerative diseases we accumulated data from international medical journals and academic informations' sites. According to many studies, antioxidants could reduce toxic neuronal damages and many studies confirmed the efficacy of polyphenol antioxidants in fruits and vegetables to reduce neuronal death and to diminish oxidative stress. This systematic review showed the antioxidant activities of phytochemicals which play as natural neuroprotectives with low adverse effects against some neurodegenerative diseases as Parkinson or Alzheimer diseases.

  12. The Neuronal Network Orchestration behind Motor Behaviors

    DEFF Research Database (Denmark)

    Petersen, Peter Christian

    In biological networks, millions of neurons organize themselves from microscopic noisy individuals to robust macroscopic entities. These entities are capable of producing higher functions like sensory processing, decision-making, and elaborate behavioral responses. Every aspect of these behaviors...... is the outcome of an advanced orchestration of the activity of populations of neurons. Through spiking activity, neurons are able to interact; yet we know little about how this interaction occurs in spinal networks. How is the activity distributed across the population? What is the composition of synaptic input...... that is received by the individual neurons and how is the synaptic input processed? This thesis focuses on aspects of these questions for spinal networks involved in the generation of stereotypical motor behaviors. The thesis consists of two studies. In the first study, I investigated the synaptic input...

  13. Sigma-1 Receptor and Neuronal Excitability.

    Science.gov (United States)

    Kourrich, Saïd

    2017-01-01

    The sigma-1 receptor (Sig-1R), via interaction with various proteins, including voltage-gated and ligand-gated ion channels (VGICs and LGICs), is involved in a plethora of neuronal functions. This capability to regulate a variety of ion channel targets endows the Sig-1R with a powerful capability to fine tune neuronal excitability, and thereby the transmission of information within brain circuits. This versatility may also explain why the Sig-1R is associated to numerous diseases at both peripheral and central levels. To date, how the Sig-1R chooses its targets and how the combinations of target modulations alter overall neuronal excitability is one of the challenges in the field of Sig-1R-dependent regulation of neuronal activity. Here, we will describe and discuss the latest findings on Sig-1R-dependent modulation of VGICs and LGICs, and provide hypotheses that may explain the diverse excitability outcomes that have been reported so far.

  14. Transition to Chaos in Random Neuronal Networks

    National Research Council Canada - National Science Library

    Jonathan Kadmon; Haim Sompolinsky

    2015-01-01

    .... Indeed, simplified rate-based neuronal networks with synaptic connections drawn from Gaussian distribution and sigmoidal nonlinearity are known to exhibit chaotic dynamics when the synaptic gain (i.e...

  15. How Might New Neurons Buffer Against Stress?

    Science.gov (United States)

    ... other possible mechanisms involving stress-related thinking and emotion circuitry. VIDEO Maturation and function of new neurons ... A college student’s stint in a Porter neuroscience lab Heather Frank, then a senior majoring in neuroscience ...

  16. Extrasynaptic neurotransmission in the modulation of brain function. Focus on the striatal neuronal-glial networks

    Directory of Open Access Journals (Sweden)

    Kjell eFuxe

    2012-06-01

    Full Text Available Extrasynaptic neurotransmission is an important short distance form of volume transmission (VT and describes the extracellular diffusion of transmitters and modulators after synaptic spillover or extrasynaptic release in the local circuit regions binding to and activating mainly extrasynaptic neuronal and glial receptors in the neuroglial networks of the brain. Receptor-receptor interactions in G protein-coupled receptor (GPCR heteromers play a major role, on dendritic spines and nerve terminals including glutamate synapses, in the integrative processes of the extrasynaptic signaling. Heteromeric complexes between GPCR and ion-channel receptors play a special role in the integration of the synaptic and extrasynaptic signals. Changes in extracellular concentrations of the classical synaptic neurotransmitters glutamate and GABA found with microdialysis is likely an expression of the activity of the neuron-astrocyte unit of the brain and can be used as an index of VT-mediated actions of these two neurotransmitters in the brain. Thus, the activity of neurons may be functionally linked to the activity of astrocytes, which may release glutamate and GABA to the extracellular space where extrasynaptic glutamate and GABA receptors do exist. Wiring transmission (WT and VT are fundamental properties of all neurons of the CNS but the balance between WT and VT varies from one nerve cell population to the other. The focus is on the striatal cellular networks, and the WT and VT and their integration via receptor heteromers are described in the GABA projection neurons, the glutamate, dopamine, 5-hydroxytryptamine (5-HT and histamine striatal afferents, the cholinergic interneurons and different types of GABA interneurons. In addition, the role in these networks of VT signaling of the energy-dependent modulator adenosine and of endocannabinoids mainly formed in the striatal projection neurons will be underlined to understand the communication in the striatal

  17. Diversity among principal and GABAergic neurons of the anterior olfactory nucleus

    Directory of Open Access Journals (Sweden)

    Rachel eKay

    2014-04-01

    Full Text Available Understanding the cellular components of neural circuits is an essential step in discerning regional function. The anterior olfactory nucleus (AON is reciprocally connected to both the ipsi- and contralateral olfactory bulb (OB and piriform cortex (PC, and, as a result, can broadly influence the central processing of odor information. While both the AON and PC are simple cortical structures, the regions differ in many ways including their general organization, internal wiring and synaptic connections with other brain areas. The present work used targeted whole-cell patch clamping to investigate the morphological and electrophysiological properties of the AON’s two main neuronal populations: excitatory projection neurons and inhibitory interneurons. Retrograde fluorescent tracers placed into either the OB or PC identified projection neurons. Two classes were observed with different physiological signatures and locations (superficial and deep pyramidal neurons, suggesting the AON contains independent efferent channels. Transgenic mice in which GABA-containing cells expressed green fluorescent protein were used to assess inhibitory neurons. These cells were further identified as containing one or more of seven molecular markers including three calcium-binding proteins (calbindin, calretinin, parvalbumin or four neuropeptides (somatostatin, vasoactive intestinal peptide, neuropeptide Y, cholecystokinin. The proportion of GABAergic cells containing these markers varied across subregions reinforcing notions that the AON has local functional subunits. At least five classes of inhibitory cells were observed: fast-spiking multipolar, regular-spiking multipolar, superficial neurogliaform, deep neurogliaform, and horizontal neurons. While some of these cell types are similar to those reported in the PC and other cortical regions, the AON also has unique populations. These studies provide the first examination of the cellular components of this simple

  18. Integrated microfluidic platforms for investigating neuronal networks

    Science.gov (United States)

    Kim, Hyung Joon

    This dissertation describes the development and application of integrated microfluidics-based assay platforms to study neuronal activities in the nervous system in-vitro. The assay platforms were fabricated using soft lithography and micro/nano fabrication including microfluidics, surface patterning, and nanomaterial synthesis. The use of integrated microfluidics-based assay platform allows culturing and manipulating many types of neuronal tissues in precisely controlled microenvironment. Furthermore, they provide organized multi-cellular in-vitro model, long-term monitoring with live cell imaging, and compatibility with molecular biology techniques and electrophysiology experiment. In this dissertation, the integrated microfluidics-based assay platforms are developed for investigation of neuronal activities such as local protein synthesis, impairment of axonal transport by chemical/physical variants, growth cone path finding under chemical/physical cues, and synaptic transmission in neuronal circuit. Chapter 1 describes the motivation, objectives, and scope for developing in-vitro platform to study various neuronal activities. Chapter 2 introduces microfluidic culture platform for biochemical assay with large-scale neuronal tissues that are utilized as model system in neuroscience research. Chapter 3 focuses on the investigation of impaired axonal transport by beta-Amyloid and oxidative stress. The platform allows to control neuronal processes and to quantify mitochondrial movement in various regions of axons away from applied drugs. Chapter 4 demonstrates the development of microfluidics-based growth cone turning assay to elucidate the mechanism underlying axon guidance under soluble factors and shear flow. Using this platform, the behaviors of growth cone of mammalian neurons are verified under the gradient of inhibitory molecules and also shear flow in well-controlled manner. In Chapter 5, I combine in-vitro multicellular model with microfabricated MEA

  19. Project studies

    DEFF Research Database (Denmark)

    Geraldi, Joana; Söderlund, Jonas

    2018-01-01

    Project organising is a growing field of scholarly inquiry and management practice. In recent years, two important developments have influenced this field: (1) the study and practice of projects have extended their level of analysis from mainly focussing on individual projects to focussing on micro......- as well as macro-level concerns around projects; and (2) there has been a greater interest in different kinds of scholarly inquiry. Taken together, these two developments call for closer scrutiny of how the levels of analysis and the types of inquiry are related and benefit each other...... project research: (1) levels of analysis; and (2) type of research. Analysing recent developments within project studies, we observe the emergence of what we refer to as type 3 research, which reconciles the need for theoretical development and engagement with practice. Type 3 research suggests pragmatic...

  20. Nicotine Modulates Multiple Regions in the Limbic Stress Network Regulating Activation of Hypophysiotrophic Neurons in Hypothalamic Paraventricular Nucleus

    Science.gov (United States)

    Yu, Guoliang; Sharp, Burt M.

    2012-01-01

    Nicotine intake affects CNS responses to stressors. We reported that nicotine self-administration (SA) augmented the hypothalamo-pituitary-adrenal (HPA) stress response, in part due to altered neurotransmission and neuropeptide expression within hypothalamic paraventricular nucleus (PVN). Limbic-PVN interactions involving medial prefrontal cortex, amygdala, bed nucleus of the stria terminalis (BST) greatly impact the HPA stress response. Therefore, we investigated the effects of nicotine SA on stress-induced neuronal activation in limbic-PVN network, using c-Fos protein immunohistochemistry and retrograde tracing. Nicotine decreased stress-induced c-Fos in prelimbic cortex (PrL), anteroventral BST (avBST), and peri-PVN; but increased c-Fos induction in medial amygdala (MeA), locus coeruleus, and PVN. Fluoro-gold (FG) was injected into avBST or PVN, since GABAergic neurons in avBST projecting to PVN corticotrophin-releasing factor (CRF) neurons relay information from both PrL glutamatergic and MeA GABAergic neurons. The stress-induced c-Fos expression in retrograde-labeled FG+ neurons was decreased in PrL by nicotine, but increased in MeA, and also reduced in avBST. Therefore, within limbic-PVN network, nicotine SA exerts selective regional effects on neuronal activation by stress. These findings expand the mechanistic framework by demonstrating altered limbic-BST-PVN interactions underlying the disinhibition of PVN CRF neurons, an essential compone