WorldWideScience

Sample records for subcellular spatial resolution

  1. Cellular and Subcellular Level Localization of Maize Lipids and Metabolites Using High-Spatial Resolution MALDI Mass Spectrometry Imaging.

    Science.gov (United States)

    Dueñas, Maria Emilia; Feenstra, Adam D; Korte, Andrew R; Hinners, Paige; Lee, Young Jin

    2018-01-01

    Recent technological advances have pushed the achievable spatial resolution for mass spectrometry imaging (MSI) to cellular and subcellular levels. Direct visualization of maize tissues by this tool has provided key insights into the localization of metabolites and lipids. This chapter outlines methodology for sample preparation, data acquisition, and data analysis of maize tissue sections using high-spatial resolution matrix-assisted laser desorption ionization (MALDI)-MSI, as well as the incorporation of a multi-resolution optical system, which allows for simple inter-conversion between different resolution setups (5, 10, and 50 μm imaging).

  2. Targeted Multiplex Imaging Mass Spectrometry in Transmission Geometry for Subcellular Spatial Resolution

    Science.gov (United States)

    Thiery-Lavenant, Gwendoline; Zavalin, Andre I.; Caprioli, Richard M.

    2013-04-01

    Targeted multiplex imaging mass spectrometry utilizes several different antigen-specific primary antibodies, each directly labeled with a unique photocleavable mass tag, to detect multiple antigens in a single tissue section. Each photocleavable mass tag bound to an antibody has a unique molecular weight and can be readily ionized by laser desorption ionization mass spectrometry. This article describes a mass spectrometry method that allows imaging of targeted single cells within tissue using transmission geometry laser desorption ionization mass spectrometry. Transmission geometry focuses the laser beam on the back side of the tissue placed on a glass slide, providing a 2 μm diameter laser spot irradiating the biological specimen. This matrix-free method enables simultaneous localization at the sub-cellular level of multiple antigens using specific tagged antibodies. We have used this technology to visualize the co-expression of synaptophysin and two major hormones peptides, insulin and somatostatin, in duplex assays in beta and delta cells contained in a human pancreatic islet.

  3. Laserspritzer: a simple method for optogenetic investigation with subcellular resolutions.

    Science.gov (United States)

    Sun, Qian-Quan; Wang, Xinjun; Yang, Weiguo

    2014-01-01

    To build a detailed circuit diagram in the brain, one needs to measure functional synaptic connections between specific types of neurons. A high-resolution circuit diagram should provide detailed information at subcellular levels such as soma, distal and basal dendrites. However, a limitation lies in the difficulty of studying long-range connections between brain areas separated by millimeters. Brain slice preparations have been widely used to help understand circuit wiring within specific brain regions. The challenge exists because long-range connections are likely to be cut in a brain slice. The optogenetic approach overcomes these limitations, as channelrhodopsin 2 (ChR2) is efficiently transported to axon terminals that can be stimulated in brain slices. Here, we developed a novel fiber optic based simple method of optogenetic stimulation: the laserspritzer approach. This method facilitates the study of both long-range and local circuits within brain slice preparations. This is a convenient and low cost approach that can be easily integrated with a slice electrophysiology setup, and repeatedly used upon initial validation. Our data with direct ChR2 mediated-current recordings demonstrates that the spatial resolution of the laserspritzer is correlated with the size of the laserspritzer, and the resolution lies within the 30 µm range for the 5 micrometer laserspritzer. Using olfactory cortical slices, we demonstrated that the laserspritzer approach can be applied to selectively activate monosynaptic perisomatic GABAergic basket synapses, or long-range intracortical glutamatergic inputs formed on different subcellular domains within the same cell (e.g. distal and proximal dendrites). We discuss significant advantages of the laserspritzer approach over the widely used collimated LED whole-field illumination method in brain slice electrophysiological research.

  4. Laserspritzer: a simple method for optogenetic investigation with subcellular resolutions.

    Directory of Open Access Journals (Sweden)

    Qian-Quan Sun

    Full Text Available To build a detailed circuit diagram in the brain, one needs to measure functional synaptic connections between specific types of neurons. A high-resolution circuit diagram should provide detailed information at subcellular levels such as soma, distal and basal dendrites. However, a limitation lies in the difficulty of studying long-range connections between brain areas separated by millimeters. Brain slice preparations have been widely used to help understand circuit wiring within specific brain regions. The challenge exists because long-range connections are likely to be cut in a brain slice. The optogenetic approach overcomes these limitations, as channelrhodopsin 2 (ChR2 is efficiently transported to axon terminals that can be stimulated in brain slices. Here, we developed a novel fiber optic based simple method of optogenetic stimulation: the laserspritzer approach. This method facilitates the study of both long-range and local circuits within brain slice preparations. This is a convenient and low cost approach that can be easily integrated with a slice electrophysiology setup, and repeatedly used upon initial validation. Our data with direct ChR2 mediated-current recordings demonstrates that the spatial resolution of the laserspritzer is correlated with the size of the laserspritzer, and the resolution lies within the 30 µm range for the 5 micrometer laserspritzer. Using olfactory cortical slices, we demonstrated that the laserspritzer approach can be applied to selectively activate monosynaptic perisomatic GABAergic basket synapses, or long-range intracortical glutamatergic inputs formed on different subcellular domains within the same cell (e.g. distal and proximal dendrites. We discuss significant advantages of the laserspritzer approach over the widely used collimated LED whole-field illumination method in brain slice electrophysiological research.

  5. High resolution imaging of temporal and spatial changes of subcellular ascorbate, glutathione and H₂O₂ distribution during Botrytis cinerea infection in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Uwe K Simon

    Full Text Available In order to study the mechanisms behind the infection process of the necrotrophic fungus Botrytis cinerea, the subcellular distribution of hydrogen peroxide (H₂O₂ was monitored over a time frame of 96 h post inoculation (hpi in Arabidopsis thaliana Col-0 leaves at the inoculation site (IS and the area around the IS which was defined as area adjacent to the inoculation site (AIS. H₂O₂ accumulation was correlated with changes in the compartment-specific distribution of ascorbate and glutathione and chloroplast fine structure. This study revealed that the severe breakdown of the antioxidative system, indicated by a drop in ascorbate and glutathione contents at the IS at later stages of infection correlated with an accumulation of H₂O₂ in chloroplasts, mitochondria, cell walls, nuclei and the cytosol which resulted in the development of chlorosis and cell death, eventually visible as tissue necrosis. A steady increase of glutathione contents in most cell compartments within infected tissues (up to 600% in chloroplasts at 96 hpi correlated with an accumulation of H₂O₂ in chloroplasts, mitochondria and cell walls at the AIS indicating that high glutathione levels could not prevent the accumulation of reactive oxygen species (ROS which resulted in chlorosis. Summing up, this study reveals the intracellular sequence of events during Botrytis cinerea infection and shows that the breakdown of the antioxidative system correlated with the accumulation of H₂O₂ in the host cells. This resulted in the degeneration of the leaf indicated by severe changes in the number and ultrastructure of chloroplasts (e.g. decrease of chloroplast number, decrease of starch and thylakoid contents, increase of plastoglobuli size, chlorosis and necrosis of the leaves.

  6. High Resolution Imaging of Temporal and Spatial Changes of Subcellular Ascorbate, Glutathione and H2O2 Distribution during Botrytis cinerea Infection in Arabidopsis

    Science.gov (United States)

    Simon, Uwe K.; Polanschütz, Lisa M.; Koffler, Barbara E.; Zechmann, Bernd

    2013-01-01

    In order to study the mechanisms behind the infection process of the necrotrophic fungus Botrytis cinerea, the subcellular distribution of hydrogen peroxide (H2O2) was monitored over a time frame of 96 h post inoculation (hpi) in Arabidopsis thaliana Col-0 leaves at the inoculation site (IS) and the area around the IS which was defined as area adjacent to the inoculation site (AIS). H2O2 accumulation was correlated with changes in the compartment-specific distribution of ascorbate and glutathione and chloroplast fine structure. This study revealed that the severe breakdown of the antioxidative system, indicated by a drop in ascorbate and glutathione contents at the IS at later stages of infection correlated with an accumulation of H2O2 in chloroplasts, mitochondria, cell walls, nuclei and the cytosol which resulted in the development of chlorosis and cell death, eventually visible as tissue necrosis. A steady increase of glutathione contents in most cell compartments within infected tissues (up to 600% in chloroplasts at 96 hpi) correlated with an accumulation of H2O2 in chloroplasts, mitochondria and cell walls at the AIS indicating that high glutathione levels could not prevent the accumulation of reactive oxygen species (ROS) which resulted in chlorosis. Summing up, this study reveals the intracellular sequence of events during Botrytis cinerea infection and shows that the breakdown of the antioxidative system correlated with the accumulation of H2O2 in the host cells. This resulted in the degeneration of the leaf indicated by severe changes in the number and ultrastructure of chloroplasts (e.g. decrease of chloroplast number, decrease of starch and thylakoid contents, increase of plastoglobuli size), chlorosis and necrosis of the leaves. PMID:23755284

  7. In vivo imaging of specific drug-target binding at subcellular resolution

    Science.gov (United States)

    Dubach, J. M.; Vinegoni, C.; Mazitschek, R.; Fumene Feruglio, P.; Cameron, L. A.; Weissleder, R.

    2014-05-01

    The possibility of measuring binding of small-molecule drugs to desired targets in live cells could provide a better understanding of drug action. However, current approaches mostly yield static data, require lysis or rely on indirect assays and thus often provide an incomplete understanding of drug action. Here, we present a multiphoton fluorescence anisotropy microscopy live cell imaging technique to measure and map drug-target interaction in real time at subcellular resolution. This approach is generally applicable using any fluorescently labelled drug and enables high-resolution spatial and temporal mapping of bound and unbound drug distribution. To illustrate our approach we measure intracellular target engagement of the chemotherapeutic Olaparib, a poly(ADP-ribose) polymerase inhibitor, in live cells and within a tumour in vivo. These results are the first generalizable approach to directly measure drug-target binding in vivo and present a promising tool to enhance understanding of drug activity.

  8. Challenges of biological sample preparation for SIMS imaging of elements and molecules at subcellular resolution

    Science.gov (United States)

    Chandra, Subhash

    2008-12-01

    Secondary ion mass spectrometry (SIMS) based imaging techniques capable of subcellular resolution characterization of elements and molecules are becoming valuable tools in many areas of biology and medicine. Due to high vacuum requirements of SIMS, the live cells cannot be analyzed directly in the instrument. The sample preparation, therefore, plays a critical role in preserving the native chemical composition for SIMS analysis. This work focuses on the evaluation of frozen-hydrated and frozen freeze-dried sample preparations for SIMS studies of cultured cells with a CAMECA IMS-3f dynamic SIMS ion microscope instrument capable of producing SIMS images with a spatial resolution of 500 nm. The sandwich freeze-fracture method was used for fracturing the cells. The complimentary fracture planes in the plasma membrane were characterized by field-emission secondary electron microscopy (FESEM) in the frozen-hydrated state. The cells fractured at the dorsal surface were used for SIMS analysis. The frozen-hydrated SIMS analysis of individual cells under dynamic primary ion beam (O 2+) revealed local secondary ion signal enhancements correlated with the water image signals of 19(H 3O) +. A preferential removal of water from the frozen cell matrix in the Z-axis was also observed. These complications render the frozen-hydrated sample type less desirable for subcellular dynamic SIMS studies. The freeze-drying of frozen-hydrated cells, either inside the instrument or externally in a freeze-drier, allowed SIMS imaging of subcellular chemical composition. Morphological evaluations of fractured freeze-dried cells with SEM and confocal laser scanning microscopy (CLSM) revealed well-preserved mitochondria, Golgi apparatus, and stress fibers. SIMS analysis of fractured freeze-dried cells revealed well-preserved chemical composition of even the most highly diffusible ions like K + and Na + in physiologically relevant concentrations. The high K-low Na signature in individual cells

  9. Challenges of biological sample preparation for SIMS imaging of elements and molecules at subcellular resolution

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, Subhash [Cornell SIMS Laboratory, Department of Earth and Atmospheric Sciences, Snee Hall, Cornell University, Ithaca, NY 14853 (United States)], E-mail: sc40@cornell.edu

    2008-12-15

    Secondary ion mass spectrometry (SIMS) based imaging techniques capable of subcellular resolution characterization of elements and molecules are becoming valuable tools in many areas of biology and medicine. Due to high vacuum requirements of SIMS, the live cells cannot be analyzed directly in the instrument. The sample preparation, therefore, plays a critical role in preserving the native chemical composition for SIMS analysis. This work focuses on the evaluation of frozen-hydrated and frozen freeze-dried sample preparations for SIMS studies of cultured cells with a CAMECA IMS-3f dynamic SIMS ion microscope instrument capable of producing SIMS images with a spatial resolution of 500 nm. The sandwich freeze-fracture method was used for fracturing the cells. The complimentary fracture planes in the plasma membrane were characterized by field-emission secondary electron microscopy (FESEM) in the frozen-hydrated state. The cells fractured at the dorsal surface were used for SIMS analysis. The frozen-hydrated SIMS analysis of individual cells under dynamic primary ion beam (O{sub 2}{sup +}) revealed local secondary ion signal enhancements correlated with the water image signals of {sup 19}(H{sub 3}O){sup +}. A preferential removal of water from the frozen cell matrix in the Z-axis was also observed. These complications render the frozen-hydrated sample type less desirable for subcellular dynamic SIMS studies. The freeze-drying of frozen-hydrated cells, either inside the instrument or externally in a freeze-drier, allowed SIMS imaging of subcellular chemical composition. Morphological evaluations of fractured freeze-dried cells with SEM and confocal laser scanning microscopy (CLSM) revealed well-preserved mitochondria, Golgi apparatus, and stress fibers. SIMS analysis of fractured freeze-dried cells revealed well-preserved chemical composition of even the most highly diffusible ions like K{sup +} and Na{sup +} in physiologically relevant concentrations. The high K

  10. First spatial and high-resolution imaging in perfused pig heart: intracellular 3D monitoring of myoglobin, cytochromes, and subcellular structures of myocytes by use of EMPHO-Oxyscan

    Science.gov (United States)

    Rauh, Robert; Boehnert, Markus; Mahlke, Christine; Kessler, Manfred D.

    2001-05-01

    Living tissue of mammals contains a large amount of subcellular particles like mitochondria that are involved in light scattering. Since these particles correlate in a certain way with the functional status of cells, light scattering may be useful for monitoring of functional tissue state. With EMPHO SSK Oxyscan we investigated functional parameters in a new kind of isolated perfused pig heart model. In this perfusion model we use organs obtained from the abattoir that are reperfused by use of a heart-lung machine. By creating 3D images of tissue light scattering we found an interesting relation between morphological structures of myocardium and the patterns of the 3D images. Additionally, we created 3D images of myoglobin oxygenation. Furthermore, we got spectra showing the redox state of cytochromes. We believe that this new kind of tissue imaging method will give us the opportunity to get new insights into myocardial function.

  11. High-Resolution Secondary Ion Mass Spectrometry Reveals the Contrasting Subcellular Distribution of Arsenic and Silicon in Rice Roots

    National Research Council Canada - National Science Library

    Katie L. Moore; Markus Schröder; Zhongchang Wu; Barry G.H. Martin; Chris R. Hawes; Steve P. McGrath; Malcolm J. Hawkesford; Jian Feng Ma; Fang-Jie Zhao; Chris R.M. Grovenor

    2011-01-01

    .... In this study, the cellular and subcellular distributions of As and silicon (Si) in rice roots were investigated using high-pressure freezing, high-resolution secondary ion mass spectrometry, and transmission electron microscopy...

  12. An improved procedure for subcellular spatial alignment during live-cell CLEM.

    Directory of Open Access Journals (Sweden)

    Benjamin S Padman

    Full Text Available Live-cell correlative light and electron microscopy (CLEM offers unique insights into the ultrastructure of dynamic cellular processes. A critical and technically challenging part of CLEM is the 3-dimensional relocation of the intracellular region of interest during sample processing. We have developed a simple CLEM procedure that uses toner particles from a laser printer as orientation marks. This facilitates easy tracking of a region of interest even by eye throughout the whole procedure. Combined with subcellular fluorescence markers for the plasma membrane and nucleus, the toner particles allow for precise subcellular spatial alignment of the optical and electron microscopy data sets. The toner-based reference grid is printed and transferred onto a polymer film using a standard office printer and laminator. We have also designed a polymer film holder that is compatible with most inverted microscopes, and have validated our strategy by following the ultrastructure of mitochondria that were selectively photo-irradiated during live-cell microscopy. In summary, our inexpensive and robust CLEM procedure simplifies optical imaging, without limiting the choice of optical microscope.

  13. An Improved Procedure for Subcellular Spatial Alignment during Live-Cell CLEM

    Science.gov (United States)

    Padman, Benjamin S.; Bach, Markus; Ramm, Georg

    2014-01-01

    Live-cell correlative light and electron microscopy (CLEM) offers unique insights into the ultrastructure of dynamic cellular processes. A critical and technically challenging part of CLEM is the 3-dimensional relocation of the intracellular region of interest during sample processing. We have developed a simple CLEM procedure that uses toner particles from a laser printer as orientation marks. This facilitates easy tracking of a region of interest even by eye throughout the whole procedure. Combined with subcellular fluorescence markers for the plasma membrane and nucleus, the toner particles allow for precise subcellular spatial alignment of the optical and electron microscopy data sets. The toner-based reference grid is printed and transferred onto a polymer film using a standard office printer and laminator. We have also designed a polymer film holder that is compatible with most inverted microscopes, and have validated our strategy by following the ultrastructure of mitochondria that were selectively photo-irradiated during live-cell microscopy. In summary, our inexpensive and robust CLEM procedure simplifies optical imaging, without limiting the choice of optical microscope. PMID:24755651

  14. Beyond co-localization: inferring spatial interactions between sub-cellular structures from microscopy images

    Directory of Open Access Journals (Sweden)

    Paul Grégory

    2010-07-01

    Full Text Available Abstract Background Sub-cellular structures interact in numerous direct and indirect ways in order to fulfill cellular functions. While direct molecular interactions crucially depend on spatial proximity, other interactions typically result in spatial correlations between the interacting structures. Such correlations are the target of microscopy-based co-localization analysis, which can provide hints of potential interactions. Two complementary approaches to co-localization analysis can be distinguished: intensity correlation methods capitalize on pattern discovery, whereas object-based methods emphasize detection power. Results We first reinvestigate the classical co-localization measure in the context of spatial point pattern analysis. This allows us to unravel the set of implicit assumptions inherent to this measure and to identify potential confounding factors commonly ignored. We generalize object-based co-localization analysis to a statistical framework involving spatial point processes. In this framework, interactions are understood as position co-dependencies in the observed localization patterns. The framework is based on a model of effective pairwise interaction potentials and the specification of a null hypothesis for the expected pattern in the absence of interaction. Inferred interaction potentials thus reflect all significant effects that are not explained by the null hypothesis. Our model enables the use of a wealth of well-known statistical methods for analyzing experimental data, as demonstrated on synthetic data and in a case study considering virus entry into live cells. We show that the classical co-localization measure typically under-exploits the information contained in our data. Conclusions We establish a connection between co-localization and spatial interaction of sub-cellular structures by formulating the object-based interaction analysis problem in a spatial statistics framework based on nearest-neighbor distance

  15. Robust classification of subcellular location patterns in high resolution 3D fluorescence microscope images.

    Science.gov (United States)

    Chen, Xiang; Murphy, Robert

    2004-01-01

    Knowledge of a protein's subcellular location is essential to a complete understanding of its functions. Automated interpretation methods for protein location patterns are needed for proteomics projects, and we have previously described systems for classifying the major subcellular patterns in cultured mammalian cells. We describe here the calculation of improved 3D Haralick texture features, which yielded a near-perfect classification accuracy when combined with 3D morphological and edge features. In particular, a set of 7 features achieved 98% overall accuracy for classifying 10 major subcellular location patterns in HeLa cells.

  16. Dielectric elastomer actuator for the measurement of cell traction forces with sub-cellular resolution

    Science.gov (United States)

    Rosset, Samuel; Poulin, Alexandre; Zollinger, Alicia; Smith, Michael; Shea, Herbert

    2017-04-01

    We report on the use of dielectric elastomer actuators (DEAs) to measure the traction force field of cells with subcellular resolution. The study of cellular electrochemical and mechanical response to deformation is an important area of research, as mechanotransduction has been shown to be linked with fundamental cell functions, or the progression of diseases such as cancer or atherosclerosis. Experimental cell mechanics is based on two fundamental concepts: the ability to measure cell stiffness, and to apply controlled strains to small clusters of cells. However, there is a lack of tools capable of applying precise deformation to a small cell population while being compatible with an inverted microscope (stable focal plane, transparency, compactness, etc.). Here, we use an anisotropically prestretched silicone-based DEA to deform a soft (7.6kPa) polyacrylamide gel on which the cells are cultured. An array of micro-dots of fluorescent fibronectin is transferred on the gel by micro-contact printing and serves as attachment points for the cells. In addition, the fluorescent dots (which have a diameter of 2 μm with a spacing of 6 μm) are used during the experiment to monitor the traction forces of a single cell (or small cluster of cells). The cell locally exerts traction on the gel, thus deforming the matrix of dots. The position of dots versus time is monitored live when the cells are submitted to a uniaxial strain step. Our deformable bioreactor enables the measurement of the local stiffness of cells submitted to mechanical strain, and is fully compatible with an inverted microscope set-up.

  17. Spatial resolution limits of an optical profiler

    Science.gov (United States)

    Creath, Katherine

    1990-07-01

    Interferometric optical profilers have a spatial resolution which is either limited by the detector array sample spacing and element size or by the optical resolution of the system. To test the working spatial resolution of an optical profiler a sinsusoidal grating with 300 lines/mm was measured using an optical profiler at lOx 2Ox 40x and 200x with detector arrays having element-to-element spacings of 6. 8 j. tm and 40 tm. The highest magnification gave the greatest and most accurate depth for the grating for all of the detectors. At 40x as long as there were more than about 8 sample points per cycle as there were with the two smaller detector spacings the grating depth can be measured quite accurately. With fewer points the peak-to-valley height measurement of the grating is too low even though the optical resolution of the system is sufficient enough to resolve the grating. The results of this work show that for accurate representation of surface heights containing high frequency structures oversampling is desirable. Summary The spatial resolution of an interferometric optical proffler depends upon both the optical resolution of the system and the characteristics of the detector array used to sample the image. The limiting resolution wifi be the larger of the optical and detector resolution. One means of defining optical resolution is the Sparrow criterion which states that the image of two points is just

  18. Neonatal anoxia in rats: hippocampal cellular and subcellular changes related to cell death and spatial memory.

    Science.gov (United States)

    Takada, S H; dos Santos Haemmerle, C A; Motta-Teixeira, L C; Machado-Nils, A V; Lee, V Y; Takase, L F; Cruz-Rizzolo, R J; Kihara, A H; Xavier, G F; Watanabe, I-S; Nogueira, M I

    2015-01-22

    Neonatal anoxia in rodents has been used to understand brain changes and cognitive dysfunction following asphyxia. This study investigated the time-course of cellular and subcellular changes and hippocampal cell death in a non-invasive model of anoxia in neonatal rats, using Terminal deoxynucleotidyl transferase-mediated dUTP Nick End Labeling (TUNEL) to reveal DNA fragmentation, Fluoro-Jade® B (FJB) to show degenerating neurons, cleaved caspase-3 immunohistochemistry (IHC) to detect cells undergoing apoptosis, and transmission electron microscopy (TEM) to reveal fine ultrastructural changes related to cell death. Anoxia was induced by exposing postnatal day 1 (P1) pups to a flow of 100% gaseous nitrogen for 25 min in a chamber maintained at 37 °C. Control rats were similarly exposed to this chamber but with air flow instead of nitrogen. Brain changes following anoxia were evaluated at postnatal days 2, 14, 21 and 60 (P2, P14, P21 and P60). In addition, spatial reference memory following anoxia and control treatments was evaluated in the Morris water maze, starting at P60. Compared to their respective controls, P2 anoxic rats exhibited (1) higher TUNEL labeling in cornus ammonis (CA) 1 and the dentate gyrus (DG), (2) higher FJB-positive cells in the CA2-3, and (3) somato-dendritic swelling, mitochondrial injury and chromatin condensation in irregular bodies, as well as other subcellular features indicating apoptosis, necrosis, autophagy and excitotoxicity in the CA1, CA2-3 and DG, as revealed by TEM. At P14, P21 and P60, both groups showed small numbers of TUNEL-positive and FJB-positive cells. Stereological analysis at P2, P14, P21 and P60 revealed a lack of significant differences in cleaved caspase-3 IHC between anoxic and control subjects. These results suggest that the type of hippocampal cell death following neonatal anoxia is likely independent of caspase-3 activation. Neonatal anoxia induced deficits in acquisition and performance of spatial reference

  19. Spatial resolution considerations for urban hydrological modelling

    Science.gov (United States)

    Krebs, G.; Kokkonen, T.; Valtanen, M.; Setälä, H.; Koivusalo, H.

    2014-05-01

    Hydrological model simulations can be applied to evaluate the performance of low impact development (LID) tools in urban areas. However, the assessment for large-scale urban areas remains a challenge due to the required high spatial resolution and limited availability of field measurements for model calibration. This study proposes a methodology to parameterize a hydrological model (SWMM) with sufficiently high spatial resolution and direct accessibility of model parameters for LID performance simulation applicable to a large-scale ungauged urban area. Based on calibrated high-resolution models for three small-scale study catchments (6-12 ha), we evaluated how constraints implied by large-scale urban modelling, such as data limitations, affect the model results. The high-resolution surface representation, resulting in subcatchments of uniform surface types, reduced the number of calibration parameters. Calibration conducted independently for all catchments yielded similar parameter values for same surface types in each study catchment. These results suggest the applicability of the parameter values calibrated for high resolution models to be regionalized to larger, ungauged urban areas. The accessibility of surface specific model parameters for LID simulation is then also retained. Conducted perturbations in spatial resolution through sewer network truncation showed that while the runoff volume was mostly unaffected by resolution perturbations, lower resolutions resulted in over-simulation of peak flows due to excessively rapid catchment response to storm events. Our results suggest that a hydrological model where parameter values are adopted from high-resolution models and that is developed based on a minimum conduit diameter of 300 mm provides good simulation performance and is applicable to large-scale urban areas with reasonable effort.

  20. Beholding the subcellular world in your PALM: nanometer resolution optical measurements of protein assemblies in cells

    Science.gov (United States)

    Shroff, Hari

    2012-02-01

    Key to understanding a protein's biological function is the accurate determination of its spatial distribution inside a cell. Although fluorescent protein markers enable specific targeting with molecular precision, much of this utility is lost when the resultant fusions are imaged with conventional, diffraction-limited optics. In response, several imaging modalities that rely on the stochastic activation and bleaching of single molecules, and that are capable of resolution 10x below the diffraction limit (250 nm for visible wavelengths), have emerged. This talk will cover superresolution imaging of biological structures using photoactivated localization microscopy (PALM). In addition to covering the theory, we will also discuss the use of the technique in understanding biological phenomena on the nanoscale, including the organization of bacterial chemoreceptors, the movement of actin in neuronal spines, and the stratification of focal adhesions.

  1. A novel optical microscope for imaging large embryos and tissue volumes with sub-cellular resolution throughout.

    Science.gov (United States)

    McConnell, Gail; Trägårdh, Johanna; Amor, Rumelo; Dempster, John; Reid, Es; Amos, William Bradshaw

    2016-09-23

    Current optical microscope objectives of low magnification have low numerical aperture and therefore have too little depth resolution and discrimination to perform well in confocal and nonlinear microscopy. This is a serious limitation in important areas, including the phenotypic screening of human genes in transgenic mice by study of embryos undergoing advanced organogenesis. We have built an optical lens system for 3D imaging of objects up to 6 mm wide and 3 mm thick with depth resolution of only a few microns instead of the tens of microns currently attained, allowing sub-cellular detail to be resolved throughout the volume. We present this lens, called the Mesolens, with performance data and images from biological specimens including confocal images of whole fixed and intact fluorescently-stained 12.5-day old mouse embryos.

  2. Combining wide-field super-resolution microscopy and electron tomography: rendering nanoscopic correlative arrays on subcellular architecture.

    Science.gov (United States)

    Braet, Filip; Cheng, Delfine; Huynh, Minh; Henriquez, Jeffrey; Shami, Gerry; Lampe, Marko

    2014-01-01

    In this chapter, the authors outline in full detail, an uncomplicated approach that enables the combination of wide-field fluorescence super-resolution microscopy with electron tomography, thereby providing an approach that affords the best possible confidence in the structures investigated. The methodical steps to obtain these high-throughput correlative nanoscopic arrays will be visually explored and outlined in detail. The authors will demonstrate the feasibility of the method on cultured Caco-2 colorectal cancer cells that are labeled for filamentous actin. The presented images, morphometric data, and generated models illustrate the strengths of our correlative approach for future advanced structural-biology-oriented questions. Correlative nanoscopy applications can be readily found in which there is a need to reveal biomolecular information at unprecedented resolution on subcellular behavior in various biological and pathobiological processes. © 2014 Elsevier Inc. All rights reserved.

  3. Quantitative single cell monitoring of protein synthesis at subcellular resolution using fluorescently labeled tRNA

    Science.gov (United States)

    Barhoom, Sima; Kaur, Jaskiran; Cooperman, Barry S.; Smorodinsky, Nechama I.; Smilansky, Zeev; Ehrlich, Marcelo; Elroy-Stein, Orna

    2011-01-01

    We have developed a novel technique of using fluorescent tRNA for translation monitoring (FtTM). FtTM enables the identification and monitoring of active protein synthesis sites within live cells at submicron resolution through quantitative microscopy of transfected bulk uncharged tRNA, fluorescently labeled in the D-loop (fl-tRNA). The localization of fl-tRNA to active translation sites was confirmed through its co-localization with cellular factors and its dynamic alterations upon inhibition of protein synthesis. Moreover, fluorescence resonance energy transfer (FRET) signals, generated when fl-tRNAs, separately labeled as a FRET pair occupy adjacent sites on the ribosome, quantitatively reflect levels of protein synthesis in defined cellular regions. In addition, FRET signals enable detection of intra-populational variability in protein synthesis activity. We demonstrate that FtTM allows quantitative comparison of protein synthesis between different cell types, monitoring effects of antibiotics and stress agents, and characterization of changes in spatial compartmentalization of protein synthesis upon viral infection. PMID:21795382

  4. Classification of High Spatial Resolution, Hyperspectral ...

    Science.gov (United States)

    EPA announced the availability of the final report,Classification of High Spatial Resolution, Hyperspectral Remote Sensing Imagery of the Little Miami River Watershed in Southwest Ohio, USA . This report and associated land use/land cover (LULC) coverage is the result of a collaborative effort among an interdisciplinary team of scientists with the U.S. Environmental Protection Agency's (U.S. EPA's) Office of Research and Development in Cincinnati, Ohio. A primary goal of this project is to enhance the use of geography and spatial analytic tools in risk assessment, and to improve the scientific basis for risk management decisions affecting drinking water and water quality. The land use/land cover classification is derived from 82 flight lines of Compact Airborne Spectrographic Imager (CASI) hyperspectral imagery acquired from July 24 through August 9, 2002 via fixed-wing aircraft.

  5. Optofluidic microscope with 3D spatial resolution

    DEFF Research Database (Denmark)

    Vig, Asger Laurberg; Marie, Rodolphe; Jensen, Eric

    2010-01-01

    This paper reports on-chip based optical detection with three-dimensional spatial resolution by integration of an optofluidic microscope (OFM) in a microfluidic pinched flow fractionation (PFF) separation device. This setup also enables on-chip particle image velocimetry (PIV). The position...... fluorescence microscope readout. The size separated microspheres are detected by OFM with an accuracy of ≤0.92μm. The position in the height of the channel and the velocity of the separated microspheres are detected with an accuracy of 1.4μm and 0.08 mm/s respectively. Throughout the measurements of the height...

  6. Two-Photon Irradiation of an Intracellular Singlet Oxygen Photosensitizer: Achieving Localized Sub-Cellular Excitation in Spatially-Resolved Experiments

    DEFF Research Database (Denmark)

    Pedersen, Brian Wett; Breitenbach, Thomas; Redmond, Robert W.

    2010-01-01

    The response of a given cell to spatially-resolved sub-cellular irradiation of a singlet oxygen photosensitizer (protoporphyrin IX, PpIX) using a focused laser was assessed. In these experiments, incident light was scattered over a volume greater than that defi ned by the dimensions of the laser...

  7. The spatial patterning of RGD and BMP-2 mimetic peptides at the subcellular scale modulates human mesenchymal stem cells osteogenesis.

    Science.gov (United States)

    Bilem, I; Plawinski, L; Chevallier, P; Ayela, C; Sone, E D; Laroche, G; Durrieu, M C

    2017-11-16

    Engineering artificial extracellular matrices (ECMs), based on the biomimicry of the spatial distribution of proteins and growth factors within their native microenvironment, is of great importance for understanding mechanisms of bone tissue regeneration. Herein, photolithography is used to decorate glass surfaces with subcellular patterns of RGD and BMP-2 ligands; two mimetic peptides recognized to be involved in stem cells osteogenesis. The biological relevance of well-defined RGD and BMP-2 patterned surfaces is evaluated by investigating the differentiation of human mesenchymal stem cells (hMSCs) into osteoblasts, in the absence of induction media. The extent of hMSCs differentiation is revealed to be dependent on both the pattern shape and the ligand type. Indeed, the spatial patterning of BMP-2, but not RGD peptide, significantly enhances the extent of hMSCs differentiation, suggesting that geometric cues guide stem cells specification into specialized cells in a ligand type dependent manner. Such cell culture models provide an interesting tool to investigate how stem cells perceive and respond to their microenvironment and may contribute to the development of next-generation biomaterials capable of producing clinically relevant volume of bone tissue. This article is protected by copyright. All rights reserved. © 2017 Wiley Periodicals, Inc.

  8. High spatial resolution probes for neurobiology applications

    Science.gov (United States)

    Gunning, D. E.; Kenney, C. J.; Litke, A. M.; Mathieson, K.

    2009-06-01

    Position-sensitive biological neural networks, such as the brain and the retina, require position-sensitive detection methods to identify, map and study their behavior. Traditionally, planar microelectrodes have been employed to record the cell's electrical activity with device limitations arising from the electrode's 2-D nature. Described here is the development and characterization of an array of electrically conductive micro-needles aimed at addressing the limitations of planar electrodes. The capability of this array to penetrate neural tissue improves the electrode-cell electrical interface and allows more complicated 3-D networks of neurons, such as those found in brain slices, to be studied. State-of-the-art semiconductor fabrication techniques were used to etch and passivate conformally the metal coat and fill high aspect ratio holes in silicon. These are subsequently transformed into needles with conductive tips. This process has enabled the fabrication of arrays of unprecedented dimensions: 61 hexagonally close-packed electrodes, ˜200 μm tall with 60 μm spacing. Electroplating the tungsten tips with platinum ensure suitable impedance values (˜600 kΩ at 1 kHz) for the recording of neuronal signals. Without compromising spatial resolution of the neuronal recordings, this array adds a new and exciting dimension to the study of biological neural networks.

  9. Scanning SQUID susceptometers with sub-micron spatial resolution

    Energy Technology Data Exchange (ETDEWEB)

    Kirtley, John R., E-mail: jkirtley@stanford.edu; Rosenberg, Aaron J.; Palmstrom, Johanna C.; Holland, Connor M.; Moler, Kathryn A. [Department of Applied Physics, Stanford University, Stanford, California 94305-4045 (United States); Paulius, Lisa [Department of Physics, Western Michigan University, Kalamazoo, Michigan 49008-5252 (United States); Spanton, Eric M. [Department of Physics, Stanford University, Stanford, California 94305-4045 (United States); Schiessl, Daniel [Attocube Systems AG, Königinstraße 11A, 80539 Munich (Germany); Jermain, Colin L.; Gibbons, Jonathan [Department of Physics, Cornell University, Cornell, Ithaca, New York 14853 (United States); Fung, Y.-K.K.; Gibson, Gerald W. [IBM Research Division, T. J. Watson Research Center, Yorktown Heights, New York 10598 (United States); Huber, Martin E. [Department of Physics, University of Colorado Denver, Denver, Colorado 80217-3364 (United States); Ralph, Daniel C. [Department of Physics, Cornell University, Cornell, Ithaca, New York 14853 (United States); Kavli Institute at Cornell, Ithaca, New York 14853 (United States); Ketchen, Mark B. [OcteVue, Hadley, Massachusetts 01035 (United States)

    2016-09-15

    Superconducting QUantum Interference Device (SQUID) microscopy has excellent magnetic field sensitivity, but suffers from modest spatial resolution when compared with other scanning probes. This spatial resolution is determined by both the size of the field sensitive area and the spacing between this area and the sample surface. In this paper we describe scanning SQUID susceptometers that achieve sub-micron spatial resolution while retaining a white noise floor flux sensitivity of ≈2μΦ{sub 0}/Hz{sup 1/2}. This high spatial resolution is accomplished by deep sub-micron feature sizes, well shielded pickup loops fabricated using a planarized process, and a deep etch step that minimizes the spacing between the sample surface and the SQUID pickup loop. We describe the design, modeling, fabrication, and testing of these sensors. Although sub-micron spatial resolution has been achieved previously in scanning SQUID sensors, our sensors not only achieve high spatial resolution but also have integrated modulation coils for flux feedback, integrated field coils for susceptibility measurements, and batch processing. They are therefore a generally applicable tool for imaging sample magnetization, currents, and susceptibilities with higher spatial resolution than previous susceptometers.

  10. Spatial Resolution Assessment of the Telops Airborne TIR Imagery

    Science.gov (United States)

    Mousakhani, S.; Eslami, M.; Saadatseresht, M.

    2017-09-01

    Having a high spatial resolution of Thermal InfraRed (TIR) Sensors is a challenge in remote sensing applications. Airborne high spatial resolution TIR is a novel source of data that became available lately. Recent developments in spatial resolution of the TIR sensors have been an interesting topic for scientists. TIR sensors are very sensitive to the energies emitted from objects. Past researches have been shown that increasing the spatial resolution of an airborne image will decrease the spectral content of the data and will reduce the Signal to Noise Ratio (SNR). Therefore, in this paper a comprehensive assessment is adapted to estimate an appropriate spatial resolution of the TIR data (TELOPS TIR data), in consideration of the SNR. So, firstly, a low-pass filter is applied on TIR data and the achieved products fed to a classification method for analysing of the accuracy improvement. The obtained results show that, there is no significant change in classification accuracy by applying low-pass filter. Furthermore, estimation of the appropriate spatial resolution of the TIR data is evaluated for obtaining higher spectral content and SNR. For this purpose, different resolutions of the TIR data are created and fed to the maximum likelihood classification method separately. The results illustrated in the case of using images with ground pixel size four times greater than the original image, the classification accuracy is not reduced. Also, SNR and spectral contents are improved. But the corners sharpening is declined.

  11. Linear and nonlinear optical spectroscopy: Spectral, temporal and spatial resolution

    DEFF Research Database (Denmark)

    Hvam, Jørn Marcher

    1997-01-01

    Selected linear and nonlinear optical spectroscopies are being described with special emphasis on the possibility of obtaining simultaneous spectral, temporal and spatial resolution. The potential of various experimental techniques is being demonstrated by specific examples mostly taken from...

  12. Effect of spatial resolution on cluster detection: a simulation study

    Directory of Open Access Journals (Sweden)

    White Laura

    2007-11-01

    Full Text Available Abstract Background Aggregation of spatial data is intended to protect privacy, but some effects of aggregation on spatial methods have not yet been quantified. Methods We generated 3,000 spatial data sets and evaluated power of detection at 12 different levels of aggregation using the spatial scan statistic implemented in SaTScan v6.0. Results Power to detect clusters decreased from nearly 100% when using exact locations to roughly 40% at the coarsest level of spatial resolution. Conclusion Aggregation has the potential for obfuscation.

  13. Spatial-resolution analysis and optimal design of integral imaging.

    Science.gov (United States)

    Wu, ChunHong; Wang, QianQian; Wang, HongXia; Lan, JinHui

    2013-11-01

    Integral imaging is a promising technology for 3D imaging and display. This paper reports the 3D spatial-resolution research based on reconstructed 3D space. Through geometric analysis of the reconstructed optical distribution from all the element images that attend recording, the relationship among microlens parameters, planar-recording resolution, and 3D spatial resolution was obtained. The effect of microlens parameter accuracy on the reconstructed position error also was discussed. The research was carried on the depth priority integral imaging system (DPII). The results can be used in the optimal design of integral imaging.

  14. The spatial resolution of the time projection chamber at triumf

    Science.gov (United States)

    Hargrove, C. K.; Mes, H.; Bennett, A.; Bryman, D. A.; Hasinoff, M.; Macdonald, J. A.; Poutissou, J. M.; Numao, T.; Spuller, J.; Azuelos, G.; Poutissou, R.; Blecher, M.; Gotow, K.; Carter, A. L.

    1984-02-01

    The spatial resolution of the time projection chamber at TRIUMF has been investigated. The best resolution, σ ⋍ 200 μ m, occurs at the minimum drift length and for an optimum track to anode crossing angle determined by the magnetic field. The resolution worsens for tracks crossing at larger or smaller angles and for longer drift lengths. The observed resolution is quantitatively reproduced by considering the diffusion of the drifting electrons, the track to anode crossing angle, E × B effects near the anode wire and the discrete nature of the ionization process.

  15. Spatial resolutions of the time projection chamber at TRIUMF

    Energy Technology Data Exchange (ETDEWEB)

    Hargrove, C.K.; Mes, H.; Bennett, A.; Bryman, D.A.; Hasinoff, M.; Macdonald, J.A.; Poutissou, J.M.; Numao, T.; Spuller, J.; Azuelos, G.

    1984-02-01

    The spatial resolution of the time projection chamber at TRIUMF has been investigated. The best resolution, sigmaapprox.=200 ..mu..m, occurs at the minimum drift length and for an optimum track to anode crossing angle determined by the magnetic field. The resolution worsens for tracks crossing at larger or smaller angles and for longer drift lengths. The observed resolution is quantitatively reproduced by considering the diffusion of the drifting electrons, the track to anode crossing angle, ExB effects near the anode wire and the discrete nature of the ionization process.

  16. Generating High-Temporal and Spatial Resolution TIR Image Data

    Science.gov (United States)

    Herrero-Huerta, M.; Lagüela, S.; Alfieri, S. M.; Menenti, M.

    2017-09-01

    Remote sensing imagery to monitor global biophysical dynamics requires the availability of thermal infrared data at high temporal and spatial resolution because of the rapid development of crops during the growing season and the fragmentation of most agricultural landscapes. Conversely, no single sensor meets these combined requirements. Data fusion approaches offer an alternative to exploit observations from multiple sensors, providing data sets with better properties. A novel spatio-temporal data fusion model based on constrained algorithms denoted as multisensor multiresolution technique (MMT) was developed and applied to generate TIR synthetic image data at both temporal and spatial high resolution. Firstly, an adaptive radiance model is applied based on spectral unmixing analysis of . TIR radiance data at TOA (top of atmosphere) collected by MODIS daily 1-km and Landsat - TIRS 16-day sampled at 30-m resolution are used to generate synthetic daily radiance images at TOA at 30-m spatial resolution. The next step consists of unmixing the 30 m (now lower resolution) images using the information about their pixel land-cover composition from co-registered images at higher spatial resolution. In our case study, TIR synthesized data were unmixed to the Sentinel 2 MSI with 10 m resolution. The constrained unmixing preserves all the available radiometric information of the 30 m images and involves the optimization of the number of land-cover classes and the size of the moving window for spatial unmixing. Results are still being evaluated, with particular attention for the quality of the data streams required to apply our approach.

  17. GENERATING HIGH-TEMPORAL AND SPATIAL RESOLUTION TIR IMAGE DATA

    Directory of Open Access Journals (Sweden)

    M. Herrero-Huerta

    2017-09-01

    Full Text Available Remote sensing imagery to monitor global biophysical dynamics requires the availability of thermal infrared data at high temporal and spatial resolution because of the rapid development of crops during the growing season and the fragmentation of most agricultural landscapes. Conversely, no single sensor meets these combined requirements. Data fusion approaches offer an alternative to exploit observations from multiple sensors, providing data sets with better properties. A novel spatio-temporal data fusion model based on constrained algorithms denoted as multisensor multiresolution technique (MMT was developed and applied to generate TIR synthetic image data at both temporal and spatial high resolution. Firstly, an adaptive radiance model is applied based on spectral unmixing analysis of . TIR radiance data at TOA (top of atmosphere collected by MODIS daily 1-km and Landsat – TIRS 16-day sampled at 30-m resolution are used to generate synthetic daily radiance images at TOA at 30-m spatial resolution. The next step consists of unmixing the 30 m (now lower resolution images using the information about their pixel land-cover composition from co-registered images at higher spatial resolution. In our case study, TIR synthesized data were unmixed to the Sentinel 2 MSI with 10 m resolution. The constrained unmixing preserves all the available radiometric information of the 30 m images and involves the optimization of the number of land-cover classes and the size of the moving window for spatial unmixing. Results are still being evaluated, with particular attention for the quality of the data streams required to apply our approach.

  18. Biomechanics of subcellular structures by non-invasive Brillouin microscopy

    Science.gov (United States)

    Antonacci, Giuseppe; Braakman, Sietse

    2016-11-01

    Cellular biomechanics play a pivotal role in the pathophysiology of several diseases. Unfortunately, current methods to measure biomechanical properties are invasive and mostly limited to the surface of a cell. As a result, the mechanical behaviour of subcellular structures and organelles remains poorly characterised. Here, we show three-dimensional biomechanical images of single cells obtained with non-invasive, non-destructive Brillouin microscopy with an unprecedented spatial resolution. Our results quantify the longitudinal elastic modulus of subcellular structures. In particular, we found the nucleoli to be stiffer than both the nuclear envelope (p biomechanics and its role in pathophysiology.

  19. A fast high-spatial-resolution Raman distributed temperature sensor

    Science.gov (United States)

    Chen, Y.; Hartog, A. H.; Marsh, R. J.; Hilton, I. M.; Hadley, M. R.; Ross, P. A.

    2014-05-01

    Conventional high-spatial-resolution Raman distributed temperature sensing (DTS) systems are based on photoncounting techniques, which result in slow measurements over short sensing fibers. We describe an alternative approach that uses a high-power, short-pulse-width laser and provides fast measurements over fibers longer than 1 km. We demonstrate measurements with 1-s update times over fiber lengths greater than 1 km with better than 0.4-m spatial resolution. We introduce a figure of merit for DTS and we show a substantial improvement (x 100) over earlier results.

  20. High spatial resolution distributed optical fiber dynamic strain sensor with enhanced frequency and strain resolution.

    Science.gov (United States)

    Masoudi, Ali; Newson, Trevor P

    2017-01-15

    A distributed optical fiber dynamic strain sensor with high spatial and frequency resolution is demonstrated. The sensor, which uses the ϕ-OTDR interrogation technique, exhibited a higher sensitivity thanks to an improved optical arrangement and a new signal processing procedure. The proposed sensing system is capable of fully quantifying multiple dynamic perturbations along a 5 km long sensing fiber with a frequency and spatial resolution of 5 Hz and 50 cm, respectively. The strain resolution of the sensor was measured to be 40 nε.

  1. Generating high-temporal and spatial resolution tir image data

    NARCIS (Netherlands)

    Herrero Huerta, M.; Lagüela, S.; Alfieri, S.M.; Menenti, M.; Lichti, D.; Weng, Q

    2017-01-01

    Remote sensing imagery to monitor global biophysical dynamics requires the availability of thermal infrared data at high temporal and spatial resolution because of the rapid development of crops during the growing season and the fragmentation of most agricultural landscapes. Conversely, no single

  2. Spatial Resolution of a Wedge Shaped MSGC Module

    CERN Document Server

    Bachmann, Sebastian

    1997-01-01

    A banana shaped closed design MSGC detector module was tested together with silicon detectors and other MSGCs in a 100 GeV muon beam. Despite of an undesirable geometry of the test setup, a spatial resolution below 40 micron m was reached. The efficiency of the module, defined by track reconstruction, shows to be 95,6 percent

  3. High spatial resolution diffusion tensor imaging and its applications

    CERN Document Server

    Wang, J J

    2002-01-01

    Introduction Magnetic Resonance Imaging is at present the only imaging technique available to measure diffusion of water and metabolites in humans. It provides vital insights to brain connectivity and has proved to be an important tool in diagnosis and therapy planning in many neurological diseases such as brain tumour, ischaemia and multiple sclerosis. This project focuses on the development of a high resolution diffusion tensor imaging technique. In this thesis, the basic theory of diffusion tensor MR Imaging is presented. The technical challenges encountered during development of these techniques will be discussed, with proposed solutions. New sequences with high spatial resolution have been developed and the results are compared with the standard technique more commonly used. Overview The project aims at the development of diffusion tensor imaging techniques with a high spatial resolution. Chapter 2 will describe the basic physics of MRI, the phenomenon of diffusion and the measurement of diffusion by MRI...

  4. Towards 0.1-mm spatial resolution in neutron diffractometry

    CERN Document Server

    Stoica, A D

    2002-01-01

    A design goal for VULCAN, the SNS engineering neutron diffractometer, is to enable spatial mapping with 0.1-mm resolution. Because the targeted applications often involve the use of large samples or special environments, slits cannot be used for this purpose. In this paper, methods to achieve 0.1-mm spatial resolution are outlined. For the incident beam, a new compact focusing device is proposed. The device is made of a stack of bent silicon wafers, each having a reflective multilayer (supermirror) deposited on one side and a neutron-absorbing layer on the other side. The optimal design to minimize the optical spatial aberrations is discussed and Monte Carlo simulation results are presented. For the diffracted beam, imaging devices made from thick packets of diffracting bent silicon wafers (known as Bragg mirrors) could be used. The requirements to achieve sharp imaging together with a large phase-space acceptance window are discussed and preliminary testing results are presented. (orig.)

  5. High resolution imaging of subcellular glutathione concentrations by quantitative immunoelectron microscopy in different leaf areas of Arabidopsis

    Science.gov (United States)

    Koffler, Barbara E.; Bloem, Elke; Zellnig, Günther; Zechmann, Bernd

    2013-01-01

    Glutathione is an important antioxidant and redox buffer in plants. It fulfills many important roles during plant development, defense and is essential for plant metabolism. Even though the compartment specific roles of glutathione during abiotic and biotic stress situations have been studied in detail there is still great lack of knowledge about subcellular glutathione concentrations within the different leaf areas at different stages of development. In this study a method is described that allows the calculation of compartment specific glutathione concentrations in all cell compartments simultaneously in one experiment by using quantitative immunogold electron microscopy combined with biochemical methods in different leaf areas of Arabidopsis thaliana Col-0 (center of the leaf, leaf apex, leaf base and leaf edge). The volume of subcellular compartments in the mesophyll of Arabidopsis was found to be similar to other plants. Vacuoles covered the largest volume within a mesophyll cell and increased with leaf age (up to 80% in the leaf apex of older leaves). Behind vacuoles, chloroplasts covered the second largest volume (up to 20% in the leaf edge of the younger leaves) followed by nuclei (up to 2.3% in the leaf edge of the younger leaves), mitochondria (up to 1.6% in the leaf apex of the younger leaves), and peroxisomes (up to 0.3% in the leaf apex of the younger leaves). These values together with volumes of the mesophyll determined by stereological methods from light and electron micrographs and global glutathione contents measured with biochemical methods enabled the determination of subcellular glutathione contents in mM. Even though biochemical investigations did not reveal differences in global glutathione contents, compartment specific differences could be observed in some cell compartments within the different leaf areas. Highest concentrations of glutathione were always found in mitochondria, where values in a range between 8.7 mM (in the apex of younger

  6. Evolution of spatial resolution in breast CT at UC Davis

    Energy Technology Data Exchange (ETDEWEB)

    Gazi, Peymon M. [Department of Biomedical Engineering, University of California, Davis, One Shields Avenue, Davis, California 95616 (United States); Yang, Kai [Department of Radiological Sciences, University of Oklahoma Health Sciences Center, 940 N.E. 13th Street, Nicholson Tower, Oklahoma City, Oklahoma 73104 (United States); Burkett, George W.; Aminololama-Shakeri, Shadi [Department of Radiology, University of California, Davis Medical Center, 4860 Y Street, Suite 3100 Ellison Building, Sacramento, California 95817 (United States); Anthony Seibert, J.; Boone, John M., E-mail: john.boone@ucdmc.ucdavis.edu [Department of Biomedical Engineering, University of California, Davis, One Shields Avenue, Davis, California 95616 and Department of Radiology, University of California, Davis Medical Center, 4860 Y Street, Suite 3100 Ellison Building, Sacramento, California 95817 (United States)

    2015-04-15

    Purpose: Dedicated breast computed tomography (bCT) technology for the purpose of breast cancer screening has been a focus of research at UC Davis since the late 1990s. Previous studies have shown that improvement in spatial resolution characteristics of this modality correlates with greater microcalcification detection, a factor considered a potential limitation of bCT. The aim of this study is to improve spatial resolution as characterized by the modulation transfer function (MTF) via changes in the scanner hardware components and operational schema. Methods: Four prototypes of pendant-geometry, cone-beam breast CT scanners were designed and developed spanning three generations of design evolution. To improve the system MTF in each bCT generation, modifications were made to the imaging components (x-ray tube and flat-panel detector), system geometry (source-to-isocenter and detector distance), and image acquisition parameters (technique factors, number of projections, system synchronization scheme, and gantry rotational speed). Results: Characterization of different generations of bCT systems shows these modifications resulted in a 188% improvement of the limiting MTF properties from the first to second generation and an additional 110% from the second to third. The intrinsic resolution degradation in the azimuthal direction observed in the first generation was corrected by changing the acquisition from continuous to pulsed x-ray acquisition. Utilizing a high resolution detector in the third generation, along with modifications made in system geometry and scan protocol, resulted in a 125% improvement in limiting resolution. An additional 39% improvement was obtained by changing the detector binning mode from 2 × 2 to 1 × 1. Conclusions: These results underscore the advancement in spatial resolution characteristics of breast CT technology. The combined use of a pulsed x-ray system, higher resolution flat-panel detector and changing the scanner geometry and image

  7. High-Temporal-Resolution High-Spatial-Resolution Spaceborne SAR Based on Continuously Varying PRF.

    Science.gov (United States)

    Men, Zhirong; Wang, Pengbo; Li, Chunsheng; Chen, Jie; Liu, Wei; Fang, Yue

    2017-07-25

    Synthetic Aperture Radar (SAR) is a well-established and powerful imaging technique for acquiring high-spatial-resolution images of the Earth's surface. With the development of beam steering techniques, sliding spotlight and staring spotlight modes have been employed to support high-spatial-resolution applications. In addition to this strengthened high-spatial-resolution and wide-swath capability, high-temporal-resolution (short repeat-observation interval) represents a key capability for numerous applications. However, conventional SAR systems are limited in that the same patch can only be illuminated for several seconds within a single pass. This paper considers a novel high-squint-angle system intended to acquire high-spatial-resolution spaceborne SAR images with repeat-observation intervals varying from tens of seconds to several minutes within a single pass. However, an exponentially increased range cell migration would arise and lead to a conflict between the receive window and 'blind ranges'. An efficient data acquisition technique for high-temporal-resolution, high-spatial-resolution and high-squint-angle spaceborne SAR, in which the pulse repetition frequency (PRF) is continuously varied according to the changing slant range, is presented in this paper. This technique allows echo data to remain in the receive window instead of conflicting with the transmitted pulse or nadir echo. Considering the precision of hardware, a compromise and practical strategy is also proposed. Furthermore, a detailed performance analysis of range ambiguities is provided with respect to parameters of TerraSAR-X. For strong point-like targets, the range ambiguity of this technique would be better than that of uniform PRF technique. For this innovative technique, a resampling strategy and modified imaging algorithm have been developed to handle the non-uniformly sampled echo data. Simulations are performed to validate the efficiency of the proposed technique and the associated

  8. Spatially resolved and observer-free experimental quantification of spatial resolution in tomographic images

    Science.gov (United States)

    Tsekenis, S. A.; Tait, N.; McCann, H.

    2015-03-01

    We present a novel framework and experimental method for the quantification of spatial resolution of a tomography system. The framework adopts the "black box" view of an imaging system, considering only its input and output. The tomography system is locally stimulated with a step input, viz., a sharp edge. The output, viz., the reconstructed images, is analysed by Fourier decomposition of their spatial frequency components, and the local limiting spatial resolution is determined using a cut-off threshold. At no point is an observer involved in the process. The framework also includes a means of translating the quantification region in the imaging space, thus creating a spatially resolved map of objectively quantified spatial resolution. As a case-study, the framework is experimentally applied using a gaseous propane phantom measured by a well-established chemical species tomography system. A spatial resolution map consisting of 28 regions is produced. In isolated regions, the indicated performance is 4-times better than that suggested in the literature and varies by 57% across the imaging space. A mechanism based on adjacent but non-interacting beams is hypothesised to explain the observed behaviour. The mechanism suggests that, as also independently concluded by other methods, a geometrically regular beam array maintains maximum objectivity in reconstructions. We believe that the proposed framework, methodology, and findings will be of value in the design and performance evaluation of tomographic imaging arrays and systems.

  9. Sub-pixel spatial resolution wavefront phase imaging

    Science.gov (United States)

    Stahl, H. Philip (Inventor); Mooney, James T. (Inventor)

    2012-01-01

    A phase imaging method for an optical wavefront acquires a plurality of phase images of the optical wavefront using a phase imager. Each phase image is unique and is shifted with respect to another of the phase images by a known/controlled amount that is less than the size of the phase imager's pixels. The phase images are then combined to generate a single high-spatial resolution phase image of the optical wavefront.

  10. Trace metal imaging with high spatial resolution: Applications in biomedicine

    OpenAIRE

    Qin, Z.; Caruso, J A; B. Lai; Matusch, A.; Becker, J. S.

    2011-01-01

    New generations of analytical techniques for imaging of metals are pushing hitherto boundaries of spatial resolution and quantitative analysis in biology. Because of this, the application of these imaging techniques described herein to the study of the organization and dynamics of metal cations and metal-containing biomolecules in biological cell and tissue is becoming an important issue in biomedical research. In the current review, three common metal imaging techniques in biomedical researc...

  11. Elevated-temperature luminescence measurements to improve spatial resolution

    Science.gov (United States)

    Pluska, Mariusz; Czerwinski, Andrzej

    2018-01-01

    Various branches of applied physics use luminescence based methods to investigate light-emitting specimens with high spatial resolution. A key problem is that luminescence signals lack all the advantages of high locality (i.e. of high spatial resolution) when structures with strong built-in electric field are measured. Such fields exist intentionally in most photonic structures, and occur unintentionally in many other materials. In this case, as a result of beam-induced current generation and its outflow, information that indicates irregularities, nonuniformities and inhomogeneities, such as defects, is lost. We show that to avoid nonlocality and enable truly local luminescence measurements, an elevated measurement temperature as high as 350 K (or even higher) is, perhaps surprisingly, advantageous. This is in contrast to a widely used approach, where cryogenic temperatures, or at least room temperature, are recommended. The elevated temperature of a specimen, together with the current outflow being limited by focused ion beam (FIB) milling, is shown to improve the spatial resolution of luminescence measurements greatly. All conclusions drawn using the example of cathodoluminescence are useful for other luminescence techniques.

  12. Wide band focusing x-ray spectrograph with spatial resolution.

    Science.gov (United States)

    Pikuz, S A; Douglass, J D; Shelkovenko, T A; Sinars, D B; Hammer, D A

    2008-01-01

    A new, wide spectral bandwidth x-ray spectrograph, the wide-bandwidth focusing spectrograph with spatial resolution (WB-FSSR), based on spherically bent mica crystals, is described. The wide bandwidth is achieved by combining three crystals to form a large aperture dispersive element. Since the WB-FSSR covers a wide spectral band, it is very convenient for application as a routine diagnostic tool in experiments in which the desired spectral coverage is different from one test to the next. The WB-FSSR has been tested in imploding wire-array experiments on a 1 MA pulsed power machine, and x-ray spectra were recorded in the 1-20 A spectral band using different orders of mica crystal reflection. Using a two mirror-symmetrically placed WB-FSSR configuration, it was also possible to distinguish between a real spectral shift and a shift of recorded spectral lines caused by the spatial distribution of the radiating plasma. A spectral resolution of about 2000 was demonstrated and a spatial resolution of approximately 100 microm was achieved in the spectral band of 5-10 A in second order of mica reflection. A simple method of numerical analysis of spectrograph capability is proposed.

  13. Photoacoustic lymphatic imaging with high spatial-temporal resolution

    Science.gov (United States)

    Martel, Catherine; Yao, Junjie; Huang, Chih-Hsien; Zou, Jun; Randolph, Gwendalyn J.; Wang, Lihong V.

    2014-11-01

    Despite its critical function in coordinating the egress of inflammatory and immune cells out of tissues and maintaining fluid balance, the causative role of lymphatic network dysfunction in pathological settings is still understudied. Engineered-animal models and better noninvasive high spatial-temporal resolution imaging techniques in both preclinical and clinical studies will help to improve our understanding of different lymphatic-related pathologic disorders. Our aim was to take advantage of our newly optimized noninvasive wide-field fast-scanning photoacoustic (PA) microcopy system to coordinately image the lymphatic vasculature and its flow dynamics, while maintaining high resolution and detection sensitivity. Here, by combining the optical-resolution PA microscopy with a fast-scanning water-immersible microelectromechanical system scanning mirror, we have imaged the lymph dynamics over a large field-of-view, with high spatial resolution and advanced detection sensitivity. Depending on the application, lymphatic vessels (LV) were spectrally or temporally differentiated from blood vessels. Validation experiments were performed on phantoms and in vivo to identify the LV. Lymphatic flow dynamics in nonpathological and pathological conditions were also visualized. These results indicate that our newly developed PA microscopy is a promising tool for lymphatic-related biological research.

  14. EBSD spatial resolution for detecting sigma phase in steels

    Energy Technology Data Exchange (ETDEWEB)

    Bordín, S. Fernandez; Limandri, S. [Instituto de Física Enrique Gaviola, CONICET. M. Allende s/n, Ciudad Universitaria, 5000 Córdoba (Argentina); Ranalli, J.M. [Comisión Nacional de Energía Atómica, Av. Gral. Paz 1499, San Martín, 1650 Buenos Aires (Argentina); Castellano, G. [Instituto de Física Enrique Gaviola, CONICET. M. Allende s/n, Ciudad Universitaria, 5000 Córdoba (Argentina)

    2016-12-15

    The spatial resolution of the electron backscatter diffraction signal is explored by Monte Carlo simulation for the sigma phase in steel at a typical instrumental set-up. In order to estimate the active volume corresponding to the diffracted electrons, the fraction of the backscattered electrons contributing to the diffraction signal was inferred by extrapolating the Kikuchi pattern contrast measured by other authors, as a function of the diffracted electron energy. In the resulting estimation, the contribution of the intrinsic incident beam size and the software capability to deconvolve patterns were included. A strong influence of the beam size on the lateral resolution was observed, resulting in 20 nm for the aperture considered. For longitudinal and depth directions the resolutions obtained were 75 nm and 16 nm, respectively. The reliability of this last result is discussed in terms of the survey of the last large-angle deflection undergone by the backscattered electrons involved in the diffraction process. Bearing in mind the mean transversal resolution found, it was possible to detect small area grains of sigma phase by EBSD measurements, for a stabilized austenitic AISI 347 stainless steel under heat treatments, simulating post welding (40 h at 600 °C) and aging (284 h at 484 °C) effects—as usually occurring in nuclear reactor pressure vessels. - Highlights: • EBSD spatial resolution is studied by Monte Carlo simulation for σ-phase in steel. • The contribution of the intrinsic incident beam size was included. • A stabilized austenitic stainless steel under heat treatments was measured by EBSD. • With the transversal resolution found, small area σ-phase grains could be identified.

  15. On the creation of high spatial resolution imaging spectroscopy data from multi-temporal low spatial resolution imagery

    Science.gov (United States)

    Yao, Wei; van Aardt, Jan; Messinger, David

    2017-05-01

    The Hyperspectral Infrared Imager (HyspIRI) mission aims to provide global imaging spectroscopy data to the benefit of especially ecosystem studies. The onboard spectrometer will collect radiance spectra from the visible to short wave infrared (VSWIR) regions (400-2500 nm). The mission calls for fine spectral resolution (10 nm band width) and as such will enable scientists to perform material characterization, species classification, and even sub-pixel mapping. However, the global coverage requirement results in a relatively low spatial resolution (GSD 30m), which restricts applications to objects of similar scales. We therefore have focused on the assessment of sub-pixel vegetation structure from spectroscopy data in past studies. In this study, we investigate the development or reconstruction of higher spatial resolution imaging spectroscopy data via fusion of multi-temporal data sets to address the drawbacks implicit in low spatial resolution imagery. The projected temporal resolution of the HyspIRI VSWIR instrument is 15 days, which implies that we have access to as many as six data sets for an area over the course of a growth season. Previous studies have shown that select vegetation structural parameters, e.g., leaf area index (LAI) and gross ecosystem production (GEP), are relatively constant in summer and winter for temperate forests; we therefore consider the data sets collected in summer to be from a similar, stable forest structure. The first step, prior to fusion, involves registration of the multi-temporal data. A data fusion algorithm then can be applied to the pre-processed data sets. The approach hinges on an algorithm that has been widely applied to fuse RGB images. Ideally, if we have four images of a scene which all meet the following requirements - i) they are captured with the same camera configurations; ii) the pixel size of each image is x; and iii) at least r2 images are aligned on a grid of x/r - then a high-resolution image, with a pixel

  16. Temporal and spatial resolution in transmission Raman spectroscopy.

    Science.gov (United States)

    Everall, Neil; Matousek, Pavel; MacLeod, Neil; Ronayne, Kate L; Clark, Ian P

    2010-01-01

    Picosecond time-resolved transmission Raman data were acquired for 1 mm thick powder samples of trans-stilbene, and a Monte Carlo model was developed that can successfully model the laser and Raman pulse profiles. Photon migration broadened the incident (approximately 1 ps) probe pulse by two orders of magnitude. As expected from previous studies of Raman photon migration in backscattering mode, the transmitted Raman pulse was broader than the transmitted laser pulse and took longer to propagate through the sample. The late-arriving photons followed tortuous flight paths in excess of 50 mm on traversing the 1 mm sample. The Monte Carlo code was also used to study the spatial resolution (lateral and depth) of steady-state transmission Raman spectroscopy in the diffusion regime by examining the distribution of Raman generation positions as a function of incident beam size, sample thickness, and transport length. It was predicted that the lateral resolution should worsen linearly with sample thickness (typically the resolution was about 50% of the sample thickness), and this is an inevitable consequence of operating in the diffusion regime. The lateral resolution was better at the sample surface (essentially determined by the probe beam diameter or the collection aperture) than for buried objects, but transmission sampling was shown to be biased towards the mid-point of thick samples. Time-resolved transmission experiments should improve the lateral resolution by preferentially detecting snake photons, subject to constraints of signal-to-noise ratio.

  17. High spatial resolution diffusion tensor imaging and its applications

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jiun-Jie

    2002-07-01

    Introduction Magnetic Resonance Imaging is at present the only imaging technique available to measure diffusion of water and metabolites in humans. It provides vital insights to brain connectivity and has proved to be an important tool in diagnosis and therapy planning in many neurological diseases such as brain tumour, ischaemia and multiple sclerosis. This project focuses on the development of a high resolution diffusion tensor imaging technique. In this thesis, the basic theory of diffusion tensor MR Imaging is presented. The technical challenges encountered during development of these techniques will be discussed, with proposed solutions. New sequences with high spatial resolution have been developed and the results are compared with the standard technique more commonly used. Overview The project aims at the development of diffusion tensor imaging techniques with a high spatial resolution. Chapter 2 will describe the basic physics of MRI, the phenomenon of diffusion and the measurement of diffusion by MRI. The basic parameters used all through the projects will be presented. In Chapter 3, a reproducibility study on DTI with the single shot EPI sequence will be conducted. The single shot DT-EPI was carried out on a stroke patient. In Chapter 4, current techniques on high spatial resolution DTI will be explored. Sequences of Interleaved EPI of two segments and EPI with Half Fourier acquisition will be developed. The sources of artefacts which contaminate most DT images will be discussed with solution proposed. Chapter 5 proposed a new selective averaging algorithm for the data acquired by the sequences of interleaved EPI. It does not require cardiac gating during data acquisition period and thus increase the speed of data collection. A new ghost free segmented EPI sequence will be presented in Chapter 6: Half-FOV EPI. The technique will be tested on a phantom in vitro as well as in two normal male volunteers in vivo. A comparison study on diffusion tensor imaging

  18. High spatial resolution soft-x-ray microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Meyer-Ilse, W.; Medecki, H.; Brown, J.T. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    A new soft x-ray microscope (XM-1) with high spatial resolution has been constructed by the Center for X-ray Optics. It uses bending magnet radiation from beamline 6.1 at the Advanced Light Source, and is used in a variety of projects and applications in the life and physical sciences. Most of these projects are ongoing. The instrument uses zone plate lenses and achieves a resolution of 43 nm, measured over 10% to 90% intensity with a knife edge test sample. X-ray microscopy permits the imaging of relatively thick samples, up to 10 {mu}m thick, in water. XM-1 has an easy to use interface, that utilizes visible light microscopy to precisely position and focus the specimen. The authors describe applications of this device in the biological sciences, as well as in studying industrial applications including structured polymer samples.

  19. Preliminary testing of microstructured Imaging Plates with improved spatial resolution

    CERN Document Server

    Kondratyev, V I; Mezentsev, N A; Mezentseva, L A; Nazmov, V P; Pavlyukhin, Y T; Pindyurin, V F; Sidelnikov, A A; Tolochko, B P

    2000-01-01

    Read-out device and method for the Contrast-Frequency Characteristics (CFC) measurements of the Imaging Plates X-ray area detectors are described. The results of the CFC measurements for the different types of these detectors are shown. Also shown is the preliminary result of CFC measurement for the new detector type - microstructured memorized Imaging Plates with improved spatial resolution, produced with LIGA-technology on the synchrotron radiation beam on the VEPP-3 storage ring. These results demonstrate that the specific information capacity of the new microstructured detectors more than 2 times exceed the specific information capacity of the FUJI serial production detectors.

  20. Localization bias and spatial resolution of adaptive and non-adaptive spatial filters for MEG source reconstruction

    OpenAIRE

    Sekihara, Kensuke; Sahani, Maneesh; Nagarajan, Srikantan S

    2005-01-01

    This paper discusses the location bias and the spatial resolution in the reconstruction of a single dipole source by various spatial filtering techniques used for neuromagnetic imaging. We first analyze the location bias for several representative adaptive and non-adaptive spatial filters using their resolution kernels. This analysis theoretically validates previously reported empirical findings that standardized low-resolution electromagnetic tomography (sLORETA) has no location bias. We als...

  1. A Method of Spatial Mapping and Reclassification for High-Spatial-Resolution Remote Sensing Image Classification

    Directory of Open Access Journals (Sweden)

    Guizhou Wang

    2013-01-01

    Full Text Available This paper presents a new classification method for high-spatial-resolution remote sensing images based on a strategic mechanism of spatial mapping and reclassification. The proposed method includes four steps. First, the multispectral image is classified by a traditional pixel-based classification method (support vector machine. Second, the panchromatic image is subdivided by watershed segmentation. Third, the pixel-based multispectral image classification result is mapped to the panchromatic segmentation result based on a spatial mapping mechanism and the area dominant principle. During the mapping process, an area proportion threshold is set, and the regional property is defined as unclassified if the maximum area proportion does not surpass the threshold. Finally, unclassified regions are reclassified based on spectral information using the minimum distance to mean algorithm. Experimental results show that the classification method for high-spatial-resolution remote sensing images based on the spatial mapping mechanism and reclassification strategy can make use of both panchromatic and multispectral information, integrate the pixel- and object-based classification methods, and improve classification accuracy.

  2. A Method of Spatial Mapping and Reclassification for High-Spatial-Resolution Remote Sensing Image Classification

    Science.gov (United States)

    Wang, Guizhou; Liu, Jianbo; He, Guojin

    2013-01-01

    This paper presents a new classification method for high-spatial-resolution remote sensing images based on a strategic mechanism of spatial mapping and reclassification. The proposed method includes four steps. First, the multispectral image is classified by a traditional pixel-based classification method (support vector machine). Second, the panchromatic image is subdivided by watershed segmentation. Third, the pixel-based multispectral image classification result is mapped to the panchromatic segmentation result based on a spatial mapping mechanism and the area dominant principle. During the mapping process, an area proportion threshold is set, and the regional property is defined as unclassified if the maximum area proportion does not surpass the threshold. Finally, unclassified regions are reclassified based on spectral information using the minimum distance to mean algorithm. Experimental results show that the classification method for high-spatial-resolution remote sensing images based on the spatial mapping mechanism and reclassification strategy can make use of both panchromatic and multispectral information, integrate the pixel- and object-based classification methods, and improve classification accuracy. PMID:24453808

  3. Trace metal imaging with high spatial resolution: applications in biomedicine.

    Science.gov (United States)

    Qin, Zhenyu; Caruso, Joseph A; Lai, Barry; Matusch, Andreas; Becker, J Sabine

    2011-01-01

    New generations of analytical techniques for imaging of metals are pushing hitherto boundaries of spatial resolution and quantitative analysis in biology. Because of this, the application of these imaging techniques described herein to the study of the organization and dynamics of metal cations and metal-containing biomolecules in biological cell and tissue is becoming an important issue in biomedical research. In the current review, three common metal imaging techniques in biomedical research are introduced, including synchrotron X-ray fluorescence (SXRF) microscopy, secondary ion mass spectrometry (SIMS), and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). These are exemplified by a demonstration of the dopamine-Fe complexes, by assessment of boron distribution in a boron neutron capture therapy cell model, by mapping Cu and Zn in human brain cancer and a rat brain tumor model, and by the analysis of metal topography within neuromelanin. These studies have provided solid evidence that demonstrates that the sensitivity, spatial resolution, specificity, and quantification ability of metal imaging techniques is suitable and highly desirable for biomedical research. Moreover, these novel studies on the nanometre scale (e.g., of individual single cells or cell organelles) will lead to a better understanding of metal processes in cells and tissues.

  4. Spatial Ensemble Postprocessing of Precipitation Forecasts Using High Resolution Analyses

    Science.gov (United States)

    Lang, Moritz N.; Schicker, Irene; Kann, Alexander; Wang, Yong

    2017-04-01

    Ensemble prediction systems are designed to account for errors or uncertainties in the initial and boundary conditions, imperfect parameterizations, etc. However, due to sampling errors and underestimation of the model errors, these ensemble forecasts tend to be underdispersive, and to lack both reliability and sharpness. To overcome such limitations, statistical postprocessing methods are commonly applied to these forecasts. In this study, a full-distributional spatial post-processing method is applied to short-range precipitation forecasts over Austria using Standardized Anomaly Model Output Statistics (SAMOS). Following Stauffer et al. (2016), observation and forecast fields are transformed into standardized anomalies by subtracting a site-specific climatological mean and dividing by the climatological standard deviation. Due to the need of fitting only a single regression model for the whole domain, the SAMOS framework provides a computationally inexpensive method to create operationally calibrated probabilistic forecasts for any arbitrary location or for all grid points in the domain simultaneously. Taking advantage of the INCA system (Integrated Nowcasting through Comprehensive Analysis), high resolution analyses are used for the computation of the observed climatology and for model training. The INCA system operationally combines station measurements and remote sensing data into real-time objective analysis fields at 1 km-horizontal resolution and 1 h-temporal resolution. The precipitation forecast used in this study is obtained from a limited area model ensemble prediction system also operated by ZAMG. The so called ALADIN-LAEF provides, by applying a multi-physics approach, a 17-member forecast at a horizontal resolution of 10.9 km and a temporal resolution of 1 hour. The performed SAMOS approach statistically combines the in-house developed high resolution analysis and ensemble prediction system. The station-based validation of 6 hour precipitation sums

  5. Forming intermediate spatial resolution of microscopy images for continuous zooming on multi-resolution processing system

    Science.gov (United States)

    Putranto, Evan H. E.; Suzuki, Tomohiro; Usuki, Shin; Miura, Kenjiro T.

    2017-09-01

    Digital zooming especially on microscopy image has attempted to improve their quality of measurement into a better assessment. However, since the field of view of high-resolution image are not wide despite of the fact that high-resolution image has more information detail and low-resolution image has their merits which is bring a big picture of the whole structure, we need to observe the sample in any scale. This problem was been solved by developing dual-view of high and low images resolution1 but in a single interpolated images. The goal of this research is utilize multi-resolution images to develop smooth zooming magnification of microscopy image. In order to achieve smooth zooming magnification on different condition of the images, scheme process will be needed. First, we took a several spatial images of the same sample based on the different objective lens, author was used 4 objective lens which are 10×, 20×, 50× and 150× magnification. In this synthesize phase, we interpolate lower resolution image for synthesize purpose with the next higher resolution image of the sample. Second, continue to looking for the feature point of both images with SIFT feature point method until we synthesize both images. Third, author treat this synthesized image with discrete fourier transform (DFT) with low-pass filter as the same size with numerical aperture (NA) that was input on the first phase. Then the fourth phase is looping this processes until intermediate images are generated enough to be blend with pyramid blend method. In this article we also try to make a system that can arbitrarily generate intermediate image with hierarchical system.

  6. Non Local Spatial and Angular Matching: Enabling higher spatial resolution diffusion MRI datasets through adaptive denoising.

    Science.gov (United States)

    St-Jean, Samuel; Coupé, Pierrick; Descoteaux, Maxime

    2016-08-01

    Diffusion magnetic resonance imaging (MRI) datasets suffer from low Signal-to-Noise Ratio (SNR), especially at high b-values. Acquiring data at high b-values contains relevant information and is now of great interest for microstructural and connectomics studies. High noise levels bias the measurements due to the non-Gaussian nature of the noise, which in turn can lead to a false and biased estimation of the diffusion parameters. Additionally, the usage of in-plane acceleration techniques during the acquisition leads to a spatially varying noise distribution, which depends on the parallel acceleration method implemented on the scanner. This paper proposes a novel diffusion MRI denoising technique that can be used on all existing data, without adding to the scanning time. We first apply a statistical framework to convert both stationary and non stationary Rician and non central Chi distributed noise to Gaussian distributed noise, effectively removing the bias. We then introduce a spatially and angular adaptive denoising technique, the Non Local Spatial and Angular Matching (NLSAM) algorithm. Each volume is first decomposed in small 4D overlapping patches, thus capturing the spatial and angular structure of the diffusion data, and a dictionary of atoms is learned on those patches. A local sparse decomposition is then found by bounding the reconstruction error with the local noise variance. We compare against three other state-of-the-art denoising methods and show quantitative local and connectivity results on a synthetic phantom and on an in-vivo high resolution dataset. Overall, our method restores perceptual information, removes the noise bias in common diffusion metrics, restores the extracted peaks coherence and improves reproducibility of tractography on the synthetic dataset. On the 1.2 mm high resolution in-vivo dataset, our denoising improves the visual quality of the data and reduces the number of spurious tracts when compared to the noisy acquisition. Our

  7. Differential Search Coils Based Magnetometers: Conditioning, Magnetic Sensitivity, Spatial Resolution

    Directory of Open Access Journals (Sweden)

    Timofeeva Maria

    2012-03-01

    Full Text Available A theoretical and experimental comparison of optimized search coils based magnetometers, operating either in the Flux mode or in the classical Lenz-Faraday mode, is presented. The improvements provided by the Flux mode in terms of bandwidth and measuring range of the sensor are detailed. Theory, SPICE model and measurements are in good agreement. The spatial resolution of the sensor is studied which is an important parameter for applications in non destructive evaluation. A general expression of the magnetic sensitivity of search coils sensors is derived. Solutions are proposed to design magnetometers with reduced weight and volume without degrading the magnetic sensitivity. An original differential search coil based magnetometer, made of coupled coils, operating in flux mode and connected to a differential transimpedance amplifier is proposed. It is shown that this structure is better in terms of volume occupancy than magnetometers using two separated coils without any degradation in magnetic sensitivity. Experimental results are in good agreement with calculations.

  8. Tactile Feedback Display with Spatial and Temporal Resolutions

    Science.gov (United States)

    Vishniakou, Siarhei; Lewis, Brian W.; Niu, Xiaofan; Kargar, Alireza; Sun, Ke; Kalajian, Michael; Park, Namseok; Yang, Muchuan; Jing, Yi; Brochu, Paul; Sun, Zhelin; Li, Chun; Nguyen, Truong; Pei, Qibing; Wang, Deli

    2013-08-01

    We report the electronic recording of the touch contact and pressure using an active matrix pressure sensor array made of transparent zinc oxide thin-film transistors and tactile feedback display using an array of diaphragm actuators made of an interpenetrating polymer elastomer network. Digital replay, editing and manipulation of the recorded touch events were demonstrated with both spatial and temporal resolutions. Analog reproduction of the force is also shown possible using the polymer actuators, despite of the high driving voltage. The ability to record, store, edit, and replay touch information adds an additional dimension to digital technologies and extends the capabilities of modern information exchange with the potential to revolutionize physical learning, social networking, e-commerce, robotics, gaming, medical and military applications.

  9. Tactile Feedback Display with Spatial and Temporal Resolutions

    Science.gov (United States)

    Vishniakou, Siarhei; Lewis, Brian W.; Niu, Xiaofan; Kargar, Alireza; Sun, Ke; Kalajian, Michael; Park, Namseok; Yang, Muchuan; Jing, Yi; Brochu, Paul; Sun, Zhelin; Li, Chun; Nguyen, Truong; Pei, Qibing; Wang, Deli

    2013-01-01

    We report the electronic recording of the touch contact and pressure using an active matrix pressure sensor array made of transparent zinc oxide thin-film transistors and tactile feedback display using an array of diaphragm actuators made of an interpenetrating polymer elastomer network. Digital replay, editing and manipulation of the recorded touch events were demonstrated with both spatial and temporal resolutions. Analog reproduction of the force is also shown possible using the polymer actuators, despite of the high driving voltage. The ability to record, store, edit, and replay touch information adds an additional dimension to digital technologies and extends the capabilities of modern information exchange with the potential to revolutionize physical learning, social networking, e-commerce, robotics, gaming, medical and military applications. PMID:23982053

  10. Characterizing Subpixel Spatial Resolution of a Hybrid CMOS Detector

    Science.gov (United States)

    Bray, Evan; Burrows, Dave; Chattopadhyay, Tanmoy; Falcone, Abraham; Hull, Samuel; Kern, Matthew; McQuaide, Maria; Wages, Mitchell

    2018-01-01

    The detection of X-rays is a unique process relative to other wavelengths, and allows for some novel features that increase the scientific yield of a single observation. Unlike lower photon energies, X-rays liberate a large number of electrons from the silicon absorber array of the detector. This number is usually on the order of several hundred to a thousand for moderate-energy X-rays. These electrons tend to diffuse outward into what is referred to as the charge cloud. This cloud can then be picked up by several pixels, forming a specific pattern based on the exact incident location. By conducting the first ever “mesh experiment" on a hybrid CMOS detector (HCD), we have experimentally determined the charge cloud shape and used it to characterize responsivity of the detector with subpixel spatial resolution.

  11. Accelerated High Spatial Resolution Diffusion-Weighted Imaging.

    Science.gov (United States)

    Scherrer, Benoit; Afacan, Onur; Taquet, Maxime; Prabhu, Sanjay P; Gholipour, Ali; Warfield, Simon K

    2015-01-01

    Acquisition of a series of anisotropically oversampled acquisitions (so-called anisotropic "snapshots") and reconstruction in the image space has recently been proposed to increase the spatial resolution in diffusion weighted imaging (DWI), providing a theoretical 8x acceleration at equal signal-to-noise ratio (SNR) compared to conventional dense k-space sampling. However, in most works, each DW image is reconstructed separately and the fact that the DW images constitute different views of the same anatomy is ignored. In addition, current approaches are limited by their inability to reconstruct a high resolution (HR) acquisition from snapshots with different subsets of diffusion gradients: an isotropic HR gradient image cannot be reconstructed if one .of its anisotropic snapshots is missing, for example due to intra-scan motion, even if other snapshots for this gradient were successfully acquired. In this work, we propose a novel multi-snapshot DWI reconstruction technique that simultaneously achieves HR reconstruction and local tissue model estimation while enabling reconstruction from snapshots containing different subsets of diffusion gradients, providing increased robustness to patient motion and potential for acceleration. Our approach is formalized as a joint probabilistic model with missing observations, from which interactions between missing snapshots, HR reconstruction and a generic tissue model naturally emerge. We evaluate our approach with synthetic simulations, simulated multi-snapshot scenario and in vivo multi-snapshot imaging. We show that (1) our combined approach ultimately provides both better HR reconstruction and better tissue model estimation and (2) the error in the case of missing snapshots can be quantified. Our novel multi-snapshot technique will enable improved high spatial characterization of the brain connectivity and microstructure in vivo.

  12. DNA-dependent homodimerization, sub-cellular partitioning, and protein destabilization control WUSCHEL levels and spatial patterning.

    Science.gov (United States)

    Rodriguez, Kevin; Perales, Mariano; Snipes, Stephen; Yadav, Ram Kishor; Diaz-Mendoza, Mercedes; Reddy, G Venugopala

    2016-10-11

    The homeodomain transcription factor WUSCHEL (WUS) promotes stem cell maintenance in inflorescence meristems of Arabidopsis thaliana WUS, which is synthesized in the rib meristem, migrates and accumulates at lower levels in adjacent cells. Maintenance of WUS protein levels and spatial patterning distribution is not well-understood. Here, we show that the last 63-aa stretch of WUS is necessary for maintaining different levels of WUS protein in the rib meristem and adjacent cells. The 63-aa region contains the following transcriptional regulatory domains: the acidic region, the WUS-box, which is conserved in WUS-related HOMEOBOX family members, and the ethylene-responsive element binding factor-associated amphiphilic repression (EAR-like) domain. Our analysis reveals that the opposing functions of WUS-box, which is required for nuclear retention, and EAR-like domain, which participates in nuclear export, are necessary to maintain higher nuclear levels of WUS in cells of the rib meristem and lower nuclear levels in adjacent cells. We also show that the N-terminal DNA binding domain, which is required for both DNA binding and homodimerization, along with the homodimerization sequence located in the central part of the protein, restricts WUS from spreading excessively and show that the homodimerization is critical for WUS function. Our analysis also reveals that a higher level of WUS outside the rib meristem leads to protein destabilization, suggesting a new tier of regulation in WUS protein regulation. Taken together our data show that processes that influence WUS protein levels and spatial distribution are highly coupled to its transcriptional activity.

  13. Spatial resolution in X-ray imaging with scintillating glass optical fiber plates

    Science.gov (United States)

    Pavan, P.; Zanella, G.; Zannoni, R.; Marigo, A.

    1993-04-01

    Some scintillating optical fiber plates, fabricated with terbium glasses are tested for their intrinsic spatial resolution under X-ray irradiation and the result is compared with a typical phosphor screen. The spatial resolution (CTF and MTF) is measured as a function of spatial frequency and the standard deviation of the corresponding Gaussian PSF is derived.

  14. Device for high spatial resolution chemical analysis of a sample and method of high spatial resolution chemical analysis

    Science.gov (United States)

    Van Berkel, Gary J.

    2015-10-06

    A system and method for analyzing a chemical composition of a specimen are described. The system can include at least one pin; a sampling device configured to contact a liquid with a specimen on the at least one pin to form a testing solution; and a stepper mechanism configured to move the at least one pin and the sampling device relative to one another. The system can also include an analytical instrument for determining a chemical composition of the specimen from the testing solution. In particular, the systems and methods described herein enable chemical analysis of specimens, such as tissue, to be evaluated in a manner that the spatial-resolution is limited by the size of the pins used to obtain tissue samples, not the size of the sampling device used to solubilize the samples coupled to the pins.

  15. Immunogold labeling reveals subcellular localisation of silica nanoparticles in a human blood-brain barrier model

    Science.gov (United States)

    Ye, Dong; Anguissola, Sergio; O'Neill, Tiina; Dawson, Kenneth A.

    2015-05-01

    Subcellular location of nanoparticles has been widely investigated with fluorescence microscopy, via fluorescently labeled antibodies to visualise target antigens in cells. However, fluorescence microscopy, such as confocal or live cell imaging, has generally limited 3D spatial resolution. Conventional electron microscopy can be useful in bridging resolution gap, but still not ideal in resolving subcellular organelle identities. Using the pre-embedding immunogold electron microscopic imaging, we performed accurate examination of the intracellular trafficking and gathered further evidence of transport mechanisms of silica nanoparticles across a human in vitro blood-brain barrier model. Our approach can effectively immunolocalise a variety of intracellular compartments and provide new insights into the uptake and subcellular transport of nanoparticles.Subcellular location of nanoparticles has been widely investigated with fluorescence microscopy, via fluorescently labeled antibodies to visualise target antigens in cells. However, fluorescence microscopy, such as confocal or live cell imaging, has generally limited 3D spatial resolution. Conventional electron microscopy can be useful in bridging resolution gap, but still not ideal in resolving subcellular organelle identities. Using the pre-embedding immunogold electron microscopic imaging, we performed accurate examination of the intracellular trafficking and gathered further evidence of transport mechanisms of silica nanoparticles across a human in vitro blood-brain barrier model. Our approach can effectively immunolocalise a variety of intracellular compartments and provide new insights into the uptake and subcellular transport of nanoparticles. Electronic supplementary information (ESI) available: Nanoparticle characterisation data, preservation of cellular structures, staining controls, optimisation of size amplification via the silver enhancement, and more imaging results from anti-clathrin and anti-caveolin 1

  16. Spatial-Resolution Improvement in Optical Frequency Domain Reflectometry System Based on Tunable Linear Fiber Laser

    Energy Technology Data Exchange (ETDEWEB)

    Li Guoyu; Li Yan [Institute of Information Engineering, Handan College, Handan, 056005 (China); Zhao Peng, E-mail: guoyu_li@yahoo.cn [School of Physics and Optoelectronic Engineering, Dalian University of Technology, Dalian 116024 (China)

    2011-02-01

    In optical frequency domain reflectometry (OFDR) system, the spatial resolution is obtained by using the total frequency-sweep span of the tunable laser. However, in practice, the spatial resolution is severely limited by nonlinearity in the lightwave-frequency sweep of the tunable laser. A closed-loop PZT modulated DBR linear fiber laser is proposed to improve the spatial resolution of the OFDR system. Experimental results show that the spatial resolution of OFDR system has improved greatly. When the frequency sweep excursion is 66GHz and the fiber under test (FUT) is 7 m, the OFDR system has a spatial resolution of 1.5 m with open-loop PZT modulated laser. But the spatial resolution increases to 35 cm with closed-loop PZT modulated laser.

  17. Global anthropogenic heat flux database with high spatial resolution

    Science.gov (United States)

    Dong, Y.; Varquez, A. C. G.; Kanda, M.

    2017-02-01

    This study developed a top-down method for estimating global anthropogenic heat emission (AHE), with a high spatial resolution of 30 arc-seconds and temporal resolution of 1 h. Annual average AHE was derived from human metabolic heating and primary energy consumption, which was further divided into three components based on consumer sector. The first and second components were heat loss and heat emissions from industrial sectors equally distributed throughout the country and populated areas, respectively. The third component comprised the sum of emissions from commercial, residential, and transportation sectors (CRT). Bulk AHE from the CRT was proportionally distributed using a global population dataset, with a radiance-calibrated nighttime lights adjustment. An empirical function to estimate monthly fluctuations of AHE based on gridded monthly temperatures was derived from various Japanese and American city measurements. Finally, an AHE database with a global coverage was constructed for the year 2013. Comparisons between our proposed AHE and other existing datasets revealed that the problem of overestimation of AHE intensity in previous top-down models was mitigated by the separation of energy consumption sectors; furthermore, the problem of AHE underestimation at central urban areas was solved by the nighttime lights adjustment. A strong agreement in the monthly profiles of AHE between our database and other bottom-up datasets further proved the validity of the current methodology. Investigations of AHE for the 29 largest urban agglomerations globally highlighted that the share of heat emissions from CRT sectors to the total AHE at the city level was 40-95%; whereas that of metabolic heating varied with the city's level of development by a range of 2-60%. A negative correlation between gross domestic product (GDP) and the share of metabolic heating to a city's total AHE was found. Globally, peak AHE values were found to occur between December and February, while

  18. Development of a large-area Multigap RPC with adequate spatial resolution for muon tomography

    Science.gov (United States)

    Wang, J.; Wang, Y.; Wang, X.; Zeng, M.; Xie, B.; Han, D.; Lyu, P.; Wang, F.; Li, Y.

    2016-11-01

    We study the performance of a large-area 2-D Multigap Resistive Plate Chamber (MRPC) designed for muon tomography with high spatial resolution. An efficiency up to 98% and a spatial resolution of around 270 μ m are obtained in cosmic ray and X-ray tests. The performance of the MRPC is also investigated for two working gases: standard gas and pure Freon. The result shows that the MRPC working in pure Freon can provide higher efficiency and better spatial resolution.

  19. Analysis of the impact of spatial resolution on land/water classifications using high-resolution aerial imagery

    Science.gov (United States)

    Enwright, Nicholas M.; Jones, William R.; Garber, Adrienne L.; Keller, Matthew J.

    2014-01-01

    Long-term monitoring efforts often use remote sensing to track trends in habitat or landscape conditions over time. To most appropriately compare observations over time, long-term monitoring efforts strive for consistency in methods. Thus, advances and changes in technology over time can present a challenge. For instance, modern camera technology has led to an increasing availability of very high-resolution imagery (i.e. submetre and metre) and a shift from analogue to digital photography. While numerous studies have shown that image resolution can impact the accuracy of classifications, most of these studies have focused on the impacts of comparing spatial resolution changes greater than 2 m. Thus, a knowledge gap exists on the impacts of minor changes in spatial resolution (i.e. submetre to about 1.5 m) in very high-resolution aerial imagery (i.e. 2 m resolution or less). This study compared the impact of spatial resolution on land/water classifications of an area dominated by coastal marsh vegetation in Louisiana, USA, using 1:12,000 scale colour-infrared analogue aerial photography (AAP) scanned at four different dot-per-inch resolutions simulating ground sample distances (GSDs) of 0.33, 0.54, 1, and 2 m. Analysis of the impact of spatial resolution on land/water classifications was conducted by exploring various spatial aspects of the classifications including density of waterbodies and frequency distributions in waterbody sizes. This study found that a small-magnitude change (1–1.5 m) in spatial resolution had little to no impact on the amount of water classified (i.e. percentage mapped was less than 1.5%), but had a significant impact on the mapping of very small waterbodies (i.e. waterbodies ≤ 250 m2). These findings should interest those using temporal image classifications derived from very high-resolution aerial photography as a component of long-term monitoring programs.

  20. Quantitative evaluation of boron neutron capture therapy (BNCT) drugs for boron delivery and retention at subcellular scale resolution in human glioblastoma cells with imaging secondary ion mass spectrometry (SIMS)

    Science.gov (United States)

    Chandra, S.; Ahmad, T.; Barth, R. F.; Kabalka, G. W.

    2014-01-01

    Boron neutron capture therapy (BNCT) of cancer depends on the selective delivery of a sufficient number of boron-10 (10B) atoms to individual tumor cells. Cell killing results from the 10B (n, α)7Li neutron capture and fission reactions that occur if a sufficient number of 10B atoms are localized in the tumor cells. Intranuclear 10B localization enhances the efficiency of cell killing via damage to the DNA. The net cellular content of 10B atoms reflects both bound and free pools of boron in individual tumor cells. The assessment of these pools, delivered by a boron delivery agent, currently cannot be made at subcellular scale resolution by clinically applicable techniques such as PET and MRI. In this study, secondary ion mass spectrometry (SIMS) based imaging instrument, a CAMECA IMS 3f ion microscope, capable of 500 nm spatial resolution was employed. Cryogenically prepared cultured human T98G glioblastoma cells were evaluated for boron uptake and retention of two delivery agents. The first, L-p-boronophenylalanine (BPA), has been used clinically for BNCT of high grade gliomas, recurrent tumors of the head and neck region and melanomas. The second, a boron analogue of an unnatural amino acid, 1-amino-3-borono-cyclopentanecarboxylic acid (cis-ABCPC), has been studied in rodent glioma and melanoma models by quantification of boron in the nucleus and cytoplasm of individual tumor cells. The bound and free pools of boron were assessed by exposure of cells to boron-free nutrient medium. Both BPA and cis-ABCPC delivered almost 70% of the pool of boron in the free or loosely bound form to the nucleus and cytoplasm of human glioblastoma cells. This free pool of boron could be easily mobilized out of the cell and was in some sort of equilibrium with extracellular boron. In the case of BPA, the intracellular free pool of boron also was affected by the presence of phenylalanine in the nutrient medium. This suggests that it might be advantageous if patients were placed on a

  1. Quantitative evaluation of boron neutron capture therapy (BNCT) drugs for boron delivery and retention at subcellular-scale resolution in human glioblastoma cells with imaging secondary ion mass spectrometry (SIMS).

    Science.gov (United States)

    Chandra, S; Ahmad, T; Barth, R F; Kabalka, G W

    2014-06-01

    Boron neutron capture therapy (BNCT) of cancer depends on the selective delivery of a sufficient number of boron-10 ((10)B) atoms to individual tumour cells. Cell killing results from the (10)B (n, α)(7) Li neutron capture and fission reactions that occur if a sufficient number of (10)B atoms are localized in the tumour cells. Intranuclear (10)B localization enhances the efficiency of cell killing via damage to the DNA. The net cellular content of (10)B atoms reflects both bound and free pools of boron in individual tumour cells. The assessment of these pools, delivered by a boron delivery agent, currently cannot be made at subcellular-scale resolution by clinically applicable techniques such as positron emission tomography and magnetic resonance imaging. In this study, a secondary ion mass spectrometry based imaging instrument, a CAMECA IMS 3f ion microscope, capable of 500 nm spatial resolution was employed. Cryogenically prepared cultured human T98G glioblastoma cells were evaluated for boron uptake and retention of two delivery agents. The first, L-p-boronophenylalanine (BPA), has been used clinically for BNCT of high-grade gliomas, recurrent tumours of the head and neck region and melanomas. The second, a boron analogue of an unnatural amino acid, 1-amino-3-borono-cyclopentanecarboxylic acid (cis-ABCPC), has been studied in rodent glioma and melanoma models by quantification of boron in the nucleus and cytoplasm of individual tumour cells. The bound and free pools of boron were assessed by exposure of cells to boron-free nutrient medium. Both BPA and cis-ABCPC delivered almost 70% of the pool of boron in the free or loosely bound form to the nucleus and cytoplasm of human glioblastoma cells. This free pool of boron could be easily mobilized out of the cell and was in some sort of equilibrium with extracellular boron. In the case of BPA, the intracellular free pool of boron also was affected by the presence of phenylalanine in the nutrient medium. This

  2. X-ray phase-contrast tomography for high-spatial-resolution zebrafish muscle imaging

    Science.gov (United States)

    Vågberg, William; Larsson, Daniel H.; Li, Mei; Arner, Anders; Hertz, Hans M.

    2015-11-01

    Imaging of muscular structure with cellular or subcellular detail in whole-body animal models is of key importance for understanding muscular disease and assessing interventions. Classical histological methods for high-resolution imaging methods require excision, fixation and staining. Here we show that the three-dimensional muscular structure of unstained whole zebrafish can be imaged with sub-5 μm detail with X-ray phase-contrast tomography. Our method relies on a laboratory propagation-based phase-contrast system tailored for detection of low-contrast 4-6 μm subcellular myofibrils. The method is demonstrated on 20 days post fertilization zebrafish larvae and comparative histology confirms that we resolve individual myofibrils in the whole-body animal. X-ray imaging of healthy zebrafish show the expected structured muscle pattern while specimen with a dystrophin deficiency (sapje) displays an unstructured pattern, typical of Duchenne muscular dystrophy. The method opens up for whole-body imaging with sub-cellular detail also of other types of soft tissue and in different animal models.

  3. Estimating Urban Gross Primary Productivity at High Spatial Resolution

    Science.gov (United States)

    Miller, D. L.; Roberts, D. A.; McFadden, J. P.

    2016-12-01

    Gross primary productivity (GPP) is an important metric of ecosystem function and describes the rate of carbon uptake as the sum of net photosynthesis by all plants at the ecosystem scale. To quantify regional and global carbon budgets, GPP is commonly mapped at large scales using remote sensing techniques. While urban areas often have high proportions of vegetated cover, they are largely excluded from global estimates of GPP due to the challenges of small-scale heterogeneity in cover types. Here, we created a map of mid-summer GPP for the Minneapolis-Saint Paul, Minnesota metropolitan region based on in-situ carbon flux measurements and remotely sensed data. Using 2-meter multispectral imagery from the WorldView-2 satellite, we were able to distinguish vegetated from non-vegetated surfaces, reducing the level of within-pixel land cover mixing that normally would be present in coarser resolution imagery. Additional data sources for classification included canopy height from airborne lidar and land use/land cover polygons from MetroGIS. Our overall classification accuracy was 98.17% (kappa = 0.9725). We found that trees and turf grasses within our study area had similar total extents, with trees covering 28% and grass covering 24% of the total study area of 894 km2. We estimated GPP with a light use efficiency approach, using eddy covariance and sap flow measurements of GPP that were independently obtained for tree and turf grass cover types in the study area. Our preliminary results showed significant differences in GPP between the tree and turf grass cover types, as well as high spatial variability of GPP within the cover types across the study area.

  4. Breast density estimation from high spectral and spatial resolution MRI

    Science.gov (United States)

    Li, Hui; Weiss, William A.; Medved, Milica; Abe, Hiroyuki; Newstead, Gillian M.; Karczmar, Gregory S.; Giger, Maryellen L.

    2016-01-01

    Abstract. A three-dimensional breast density estimation method is presented for high spectral and spatial resolution (HiSS) MR imaging. Twenty-two patients were recruited (under an Institutional Review Board--approved Health Insurance Portability and Accountability Act-compliant protocol) for high-risk breast cancer screening. Each patient received standard-of-care clinical digital x-ray mammograms and MR scans, as well as HiSS scans. The algorithm for breast density estimation includes breast mask generating, breast skin removal, and breast percentage density calculation. The inter- and intra-user variabilities of the HiSS-based density estimation were determined using correlation analysis and limits of agreement. Correlation analysis was also performed between the HiSS-based density estimation and radiologists’ breast imaging-reporting and data system (BI-RADS) density ratings. A correlation coefficient of 0.91 (pdensity estimations. An interclass correlation coefficient of 0.99 (pdensity estimations. A moderate correlation coefficient of 0.55 (p=0.0076) was observed between HiSS-based breast density estimations and radiologists’ BI-RADS. In summary, an objective density estimation method using HiSS spectral data from breast MRI was developed. The high reproducibility with low inter- and low intra-user variabilities shown in this preliminary study suggest that such a HiSS-based density metric may be potentially beneficial in programs requiring breast density such as in breast cancer risk assessment and monitoring effects of therapy. PMID:28042590

  5. Localization bias and spatial resolution of adaptive and non-adaptive spatial filters for MEG source reconstruction.

    Science.gov (United States)

    Sekihara, Kensuke; Sahani, Maneesh; Nagarajan, Srikantan S

    2005-05-01

    This paper discusses the location bias and the spatial resolution in the reconstruction of a single dipole source by various spatial filtering techniques used for neuromagnetic imaging. We first analyze the location bias for several representative adaptive and non-adaptive spatial filters using their resolution kernels. This analysis theoretically validates previously reported empirical findings that standardized low-resolution electromagnetic tomography (sLORETA) has no location bias. We also find that the minimum-variance spatial filter does exhibit bias in the reconstructed location of a single source, but that this bias is eliminated by using the normalized lead field. We then focus on the comparison of sLORETA and the lead-field normalized minimum-variance spatial filter, and analyze the effect of noise on source location bias. We find that the signal-to-noise ratio (SNR) in the measurements determines whether the sLORETA reconstruction has source location bias, while the lead-field normalized minimum-variance spatial filter has no location bias even in the presence of noise. Finally, we compare the spatial resolution for sLORETA and the minimum-variance filter, and show that the minimum-variance filter attains much higher resolution than sLORETA does. The results of these analyses are validated by numerical experiments as well as by reconstructions based on two sets of evoked magnetic responses.

  6. High-resolution full-field spatial coherence gated optical tomography using monochromatic light source

    Science.gov (United States)

    Srivastava, Vishal; Nandy, Sreyankar; Singh Mehta, Dalip

    2013-09-01

    We demonstrate dispersion free, high-resolution full-field spatial coherence gated optical tomography using spatially incoherent monochromatic light source. Spatial coherence properties of light source were synthesized by means of combining a static diffuser and vibrating multi mode fiber bundle. Due to low spatial coherence of light source, the axial resolution of the system was achieved similar to that of conventional optical coherence tomography which utilizes low temporal coherence. Experimental results of fringe visibility versus optical path difference are presented for varying numerical apertures objective lenses. High resolution optically sectioned images of multilayer onion skin, and red blood cells are presented.

  7. Emotional cues enhance the attentional effects on spatial and temporal resolution

    NARCIS (Netherlands)

    B.R. Bocanegra (Bruno); R. Zeelenberg (René)

    2011-01-01

    textabstractIn the present study, we demonstrated that the emotional significance of a spatial cue enhances the effect of covert attention on spatial and temporal resolution (i. e., our ability to discriminate small spatial details and fast temporal flicker). Our results indicated that fearful face

  8. Accelerator-based single-shot ultrafast transmission electron microscope with picosecond temporal resolution and nanometer spatial resolution

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, D., E-mail: dxiang@sjtu.edu.cn [Key Laboratory for Laser Plasmas (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Fu, F.; Zhang, J. [Key Laboratory for Laser Plasmas (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Huang, X.; Wang, L.; Wang, X. [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Wan, W. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2014-09-21

    We present feasibility study of an accelerator-based ultrafast transmission electron microscope (u-TEM) capable of producing a full field image in a single-shot with simultaneous picosecond temporal resolution and nanometer spatial resolution. We study key physics related to performance of u-TEMs and discuss major challenges as well as possible solutions for practical realization of u-TEMs. The feasibility of u-TEMs is confirmed through simulations using realistic electron beam parameters. We anticipate that u-TEMs with a product of temporal and spatial resolution beyond 10{sup −19} ms will open up new opportunities in probing matter at ultrafast temporal and ultrasmall spatial scales.

  9. Strain measurements of a fiber loop rosette using high spatial resolution Rayleigh scatter distributed sensing

    Science.gov (United States)

    Gifford, Dawn K.; Sang, Alex K.; Kreger, Steven T.; Froggatt, Mark E.

    2010-09-01

    Strain is measured with high spatial resolution on fiber loops bonded to a metal test sample to form a fiber rosette. Strain measurements are made using an Optical Backscatter Reflectometer to detect changes in the phase of the Rayleigh Scatter of the fiber with 160 μm spatial resolution along the length of the fiber. Using this experimental set-up, applied strain levels as well as the axis along which the loads are applied are measured. Thermal gradients are also detected. The high spatial resolution and strain sensitivity of this technique enable highly functional fiber rosettes formed of small diameter loops of standard low-bend-loss optical fiber.

  10. Using remote sensing products to classify landscape. A multi-spatial resolution approach

    Science.gov (United States)

    García-Llamas, Paula; Calvo, Leonor; Álvarez-Martínez, José Manuel; Suárez-Seoane, Susana

    2016-08-01

    The European Landscape Convention encourages the inventory and characterization of landscapes for environmental management and planning actions. Among the range of data sources available for landscape classification, remote sensing has substantial applicability, although difficulties might arise when available data are not at the spatial resolution of operational interest. We evaluated the applicability of two remote sensing products informing on land cover (the categorical CORINE map at 30 m resolution and the continuous NDVI spectral index at 1 km resolution) in landscape classification across a range of spatial resolutions (30 m, 90 m, 180 m, 1 km), using the Cantabrian Mountains (NW Spain) as study case. Separate landscape classifications (using topography, urban influence and land cover as inputs) were accomplished, one per each land cover dataset and spatial resolution. Classification accuracy was estimated through confusion matrixes and uncertainty in terms of both membership probability and confusion indices. Regarding landscape classifications based on CORINE, both typology and number of landscape classes varied across spatial resolutions. Classification accuracy increased from 30 m (the original resolution of CORINE) to 90m, decreasing towards coarser resolutions. Uncertainty followed the opposite pattern. In the case of landscape classifications based on NDVI, the identified landscape patterns were geographically structured and showed little sensitivity to changes across spatial resolutions. Only the change from 1 km (the original resolution of NDVI) to 180 m improved classification accuracy. The value of confusion indices increased with resolution. We highlight the need for greater effort in selecting data sources at the suitable spatial resolution, matching regional peculiarities and minimizing error and uncertainty.

  11. Exploring the spatial resolution of position-sensitive microchannel plate detectors

    Science.gov (United States)

    Wiggins, Blake; Siwal, Davinder; Desouza, Romualdo

    2016-03-01

    High amplification and excellent timing make microchannel plate (MCP) detectors excellent devices for detection of photons, electrons, and ions. In addition to providing sub-nanosecond time resolution MCP detectors can also provide spatial resolution, thus making them useful in imaging applications. Use of a resistive anode (RA) is a routinely used approach to make an MCP position-sensitive. The spatial resolution of the RA associated with detection of a single incident electron was determined. Factors impacting the spatial resolution obtained with the RA will be discussed and the achieved spatial resolution of 64 μm (FWHM) will be presented. Recently, a novel approach has been developed to provide position-sensitivity for an MCP detector. In this approach, namely the induced signal approach, the position of the incident particle is determined by sensing the electron cloud emanating from a MCP stack. By utilizing the zero-crossing point of the inherently bipolar signals, a spatial resolution of 466 μm (FWHM) has been achieved. Work to improve the spatial resolution of the induced signal approach further will be presented. Supported by the US DOE NNSA under Award No. DE-NA0002012.

  12. An evaluation for spatial resolution, using a single target on a medical image

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyung Sung [Dept. of Radiotechnology, Cheju Halla University, Cheju (Korea, Republic of)

    2016-12-15

    Hitherto, spatial resolution has commonly been evaluated by test patterns or phantoms built on some specific distances (from close to far) between two objects (or double targets). This evaluation method's shortcoming is that resolution is restricted to target distances of phantoms made for test. Therefore, in order to solve the problem, this study proposes and verifies a new method to efficiently test spatial resolution with a single target. For the research I used PSF and JND to propose an idea to measure spatial resolution. After that, I made experiments by commonly used phantoms to verify my new evaluation hypothesis inferred from the above method. To analyse the hypothesis, I used LabVIEW program and got a line pixel from digital image. The result was identical to my spatial-resolution hypothesis inferred from a single target. The findings of the experiment proves only a single target can be enough to relatively evaluate spatial resolution on a digital image. In other words, the limit of the traditional spatial-resolution evaluation method, based on double targets, can be overcome by my new evaluation one using a single target.

  13. Investigating the Effects of Higher Spatial Resolution on Benthic Classification Accuracy at Midway Atoll

    National Research Council Canada - National Science Library

    Arledge, Richard K; Hatcher, Ervin B

    2008-01-01

    ...s. This thesis will compare 2 multispectral systems and investigate the effects of increased spatial resolution on benthic classifications in the highly heterogeneous coral reef environment of Midway Atoll...

  14. High spatial resolution aerosol retrieval with MAIAC: Application to mountain regions

    National Research Council Canada - National Science Library

    Emili, E; Lyapustin, A; Wang, Y; Popp, C; Korkin, S; Zebisch, M; Wunderle, S; Petitta, M

    2011-01-01

    .... Satellites provide an effective tool to map aerosols on an operational basis, but most of the aerosol products intended for continental/global applications have a coarse spatial resolution (10–18 km...

  15. High spatial resolution phase-sensitive optical time domain reflectometer with a frequency-swept pulse.

    Science.gov (United States)

    Lu, Bin; Pan, Zhengqing; Wang, Zhaoyong; Zheng, Hanrong; Ye, Qing; Qu, Ronghui; Cai, Haiwen

    2017-02-01

    A high spatial resolution phase-sensitive optical time domain reflectometer (ϕ-OTDR) with an optical frequency-swept pulse (FSP) is proposed, and the experimental results are presented in the Letter. The FSP ϕ-OTDR uses optical pulses with linear frequency modulation with higher pulse energy for longer sensing fiber and uses matched filter in the receiver to compress the processed pulse width. Thus, the contradiction between spatial resolution and the working distance in ordinary ϕ-OTDR is relaxed. A spatial resolution of 30 cm, a sensing distance of 19.8 km, and a signal-to-noise ratio of 10 dB for vibration sensing were obtained experimentally. To our best of our knowledge, this is the first time that a sub-meter spatial resolution over such a long sensing range has been reported in ϕ-OTDR sensors.

  16. An evaluation of spatial resolution of a prototype proton CT scanner.

    Science.gov (United States)

    Plautz, Tia E; Bashkirov, V; Giacometti, V; Hurley, R F; Johnson, R P; Piersimoni, P; Sadrozinski, H F-W; Schulte, R W; Zatserklyaniy, A

    2016-12-01

    To evaluate the spatial resolution of proton CT using both a prototype proton CT scanner and Monte Carlo simulations. A custom cylindrical edge phantom containing twelve tissue-equivalent inserts with four different compositions at varying radial displacements from the axis of rotation was developed for measuring the modulation transfer function (MTF) of a prototype proton CT scanner. Two scans of the phantom, centered on the axis of rotation, were obtained with a 200 MeV, low-intensity proton beam: one scan with steps of 4°, and one scan with the phantom continuously rotating. In addition, Monte Carlo simulations of the phantom scan were performed using scanners idealized to various degrees. The data were reconstructed using an iterative projection method with added total variation superiorization based on individual proton histories. Edge spread functions in the radial and azimuthal directions were obtained using the oversampling technique. These were then used to obtain the modulation transfer functions. The spatial resolution was defined by the 10% value of the modulation transfer function (MTF10%) in units of line pairs per centimeter (lp/cm). Data from the simulations were used to better understand the contributions of multiple Coulomb scattering in the phantom and the scanner hardware, as well as the effect of discretization of proton location. The radial spatial resolution of the prototype proton CT scanner depends on the total path length, W, of the proton in the phantom, whereas the azimuthal spatial resolution depends both on W and the position, u-, at which the most-likely path uncertainty is evaluated along the path. For protons contributing to radial spatial resolution, W varies with the radial position of the edge, whereas for protons contributing to azimuthal spatial resolution, W is approximately constant. For a pixel size of 0.625 mm, the radial spatial resolution of the image reconstructed from the fully idealized simulation data ranged between

  17. A high time and spatial resolution MRPC designed for muon tomography

    Science.gov (United States)

    Shi, L.; Wang, Y.; Huang, X.; Wang, X.; Zhu, W.; Li, Y.; Cheng, J.

    2014-12-01

    A prototype of cosmic muon scattering tomography system has been set up in Tsinghua University in Beijing. Multi-gap Resistive Plate Chamber (MRPC) is used in the system to get the muon tracks. Compared with other detectors, MRPC can not only provide the track but also the Time of Flight (ToF) between two detectors which can estimate the energy of particles. To get a more accurate track and higher efficiency of the tomography system, a new type of high time and two-dimensional spatial resolution MRPC has been developed. A series of experiments have been done to measure the efficiency, time resolution and spatial resolution. The results show that the efficiency can reach 95% and its time resolution is around 65 ps. The cluster size is around 4 and the spatial resolution can reach 200 μ m.

  18. Evaluating the influence of spatial resolutions of DEM on watershed ...

    Indian Academy of Sciences (India)

    Digital elevation model (DEM) of a watershed forms key basis for hydrologic modelling and its resolution plays a key role in accurate prediction of ... DEM is a digital (raster) dataset of ele- vations in 3D (x, y, z co-ordinates), which is ..... Advanced Space borne Thermal 30×30. Ministry of Economy, Trade and Industry (METI).

  19. High Spatial Resolution Bidirectional Reflectance Retrieval Using Satellite Data

    Science.gov (United States)

    2010-12-01

    could be used to improve the BRDF and albedo products created by the Moderate Resolution Imaging SpectroRadiometer ( MODIS ) instrument, also onboard...Bruegge, and J. V. Martonchik, Improving MODIS surface BRDF/ Albedo retrieval with MISR multiangle observations, Geoscience and Remote Sensing, vol...19 Figure 16. Terra Spacecraft with 5 Climate-Monitoring Sensors: MODIS

  20. Calculation of the spatial resolution in two-photon absorption spectroscopy applied to plasma diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Lechuga, M. [Departamento de Física Teórica, Atómica y Óptica, Universidad de Valladolid, 47011-Valladolid (Spain); Laser Processing Group, Instituto de Óptica “Daza de Valdés,” CSIC, 28006-Madrid (Spain); Fuentes, L. M. [Departamento de Física Aplicada, Universidad de Valladolid, 47011-Valladolid (Spain); Grützmacher, K.; Pérez, C., E-mail: concha@opt.uva.es; Rosa, M. I. de la [Departamento de Física Teórica, Atómica y Óptica, Universidad de Valladolid, 47011-Valladolid (Spain)

    2014-10-07

    We report a detailed characterization of the spatial resolution provided by two-photon absorption spectroscopy suited for plasma diagnosis via the 1S-2S transition of atomic hydrogen for optogalvanic detection and laser induced fluorescence (LIF). A precise knowledge of the spatial resolution is crucial for a correct interpretation of measurements, if the plasma parameters to be analysed undergo strong spatial variations. The present study is based on a novel approach which provides a reliable and realistic determination of the spatial resolution. Measured irradiance distribution of laser beam waists in the overlap volume, provided by a high resolution UV camera, are employed to resolve coupled rate equations accounting for two-photon excitation, fluorescence decay and ionization. The resulting three-dimensional yield distributions reveal in detail the spatial resolution for optogalvanic and LIF detection and related saturation due to depletion. Two-photon absorption profiles broader than the Fourier transform-limited laser bandwidth are also incorporated in the calculations. The approach allows an accurate analysis of the spatial resolution present in recent and future measurements.

  1. Electric crosstalk impairs spatial resolution of multi-electrode arrays in retinal implants.

    Science.gov (United States)

    Wilke, R G H; Moghadam, G Khalili; Lovell, N H; Suaning, G J; Dokos, S

    2011-08-01

    Active multi-electrode arrays are used in vision prostheses, including optic nerve cuffs and cortical and retinal implants for stimulation of neural tissue. For retinal implants, arrays with up to 1500 electrodes are used in clinical trials. The ability to convey information with high spatial resolution is critical for these applications. To assess the extent to which spatial resolution is impaired by electric crosstalk, finite-element simulation of electric field distribution in a simplified passive tissue model of the retina is performed. The effects of electrode size, electrode spacing, distance to target cells, and electrode return configuration (monopolar, tripolar, hexagonal) on spatial resolution is investigated in the form of a mathematical model of electric field distribution. Results show that spatial resolution is impaired with increased distance from the electrode array to the target cells. This effect can be partly compensated by non-monopolar electrode configurations and larger electrode diameters, albeit at the expense of lower pixel densities due to larger covering areas by each stimulation electrode. In applications where multi-electrode arrays can be brought into close proximity to target cells, as presumably with epiretinal implants, smaller electrodes in monopolar configuration can provide the highest spatial resolution. However, if the implantation site is further from the target cells, as is the case in suprachoroidal approaches, hexagonally guarded electrode return configurations can convey higher spatial resolution.

  2. Chromatic and Achromatic Spatial Resolution of Local Field Potentials in Awake Cortex.

    Science.gov (United States)

    Jansen, Michael; Li, Xiaobing; Lashgari, Reza; Kremkow, Jens; Bereshpolova, Yulia; Swadlow, Harvey A; Zaidi, Qasim; Alonso, Jose-Manuel

    2015-10-01

    Local field potentials (LFPs) have become an important measure of neuronal population activity in the brain and could provide robust signals to guide the implant of visual cortical prosthesis in the future. However, it remains unclear whether LFPs can detect weak cortical responses (e.g., cortical responses to equiluminant color) and whether they have enough visual spatial resolution to distinguish different chromatic and achromatic stimulus patterns. By recording from awake behaving macaques in primary visual cortex, here we demonstrate that LFPs respond robustly to pure chromatic stimuli and exhibit ∼2.5 times lower spatial resolution for chromatic than achromatic stimulus patterns, a value that resembles the ratio of achromatic/chromatic resolution measured with psychophysical experiments in humans. We also show that, although the spatial resolution of LFP decays with visual eccentricity as is also the case for single neurons, LFPs have higher spatial resolution and show weaker response suppression to low spatial frequencies than spiking multiunit activity. These results indicate that LFP recordings are an excellent approach to measure spatial resolution from local populations of neurons in visual cortex including those responsive to color. © The Author 2014. Published by Oxford University Press.

  3. Modelling the soil microclimate: does the spatial or temporal resolution of input parameters matter?

    Directory of Open Access Journals (Sweden)

    Anna Carter

    2016-01-01

    Full Text Available The urgency of predicting future impacts of environmental change on vulnerable populations is advancing the development of spatially explicit habitat models. Continental-scale climate and microclimate layers are now widely available. However, most terrestrial organisms exist within microclimate spaces that are very small, relative to the spatial resolution of those layers. We examined the effects of multi-resolution, multi-extent topographic and climate inputs on the accuracy of hourly soil temperature predictions for a small island generated at a very high spatial resolution (<1 m2 using the mechanistic microclimate model in NicheMapR. Achieving an accuracy comparable to lower-resolution, continental-scale microclimate layers (within about 2–3°C of observed values required the use of daily weather data as well as high resolution topographic layers (elevation, slope, aspect, horizon angles, while inclusion of site-specific soil properties did not markedly improve predictions. Our results suggest that large-extent microclimate layers may not provide accurate estimates of microclimate conditions when the spatial extent of a habitat or other area of interest is similar to or smaller than the spatial resolution of the layers themselves. Thus, effort in sourcing model inputs should be focused on obtaining high resolution terrain data, e.g., via LiDAR or photogrammetry, and local weather information rather than in situ sampling of microclimate characteristics.

  4. Impacts of spatial resolution and representation of flow connectivity on large-scale simulation of floods

    Directory of Open Access Journals (Sweden)

    C. M. R. Mateo

    2017-10-01

    Full Text Available Global-scale river models (GRMs are core tools for providing consistent estimates of global flood hazard, especially in data-scarce regions. Due to former limitations in computational power and input datasets, most GRMs have been developed to use simplified representations of flow physics and run at coarse spatial resolutions. With increasing computational power and improved datasets, the application of GRMs to finer resolutions is becoming a reality. To support development in this direction, the suitability of GRMs for application to finer resolutions needs to be assessed. This study investigates the impacts of spatial resolution and flow connectivity representation on the predictive capability of a GRM, CaMa-Flood, in simulating the 2011 extreme flood in Thailand. Analyses show that when single downstream connectivity (SDC is assumed, simulation results deteriorate with finer spatial resolution; Nash–Sutcliffe efficiency coefficients decreased by more than 50 % between simulation results at 10 km resolution and 1 km resolution. When multiple downstream connectivity (MDC is represented, simulation results slightly improve with finer spatial resolution. The SDC simulations result in excessive backflows on very flat floodplains due to the restrictive flow directions at finer resolutions. MDC channels attenuated these effects by maintaining flow connectivity and flow capacity between floodplains in varying spatial resolutions. While a regional-scale flood was chosen as a test case, these findings should be universal and may have significant impacts on large- to global-scale simulations, especially in regions where mega deltas exist.These results demonstrate that a GRM can be used for higher resolution simulations of large-scale floods, provided that MDC in rivers and floodplains is adequately represented in the model structure.

  5. Impacts of spatial resolution and representation of flow connectivity on large-scale simulation of floods

    Science.gov (United States)

    Mateo, Cherry May R.; Yamazaki, Dai; Kim, Hyungjun; Champathong, Adisorn; Vaze, Jai; Oki, Taikan

    2017-10-01

    Global-scale river models (GRMs) are core tools for providing consistent estimates of global flood hazard, especially in data-scarce regions. Due to former limitations in computational power and input datasets, most GRMs have been developed to use simplified representations of flow physics and run at coarse spatial resolutions. With increasing computational power and improved datasets, the application of GRMs to finer resolutions is becoming a reality. To support development in this direction, the suitability of GRMs for application to finer resolutions needs to be assessed. This study investigates the impacts of spatial resolution and flow connectivity representation on the predictive capability of a GRM, CaMa-Flood, in simulating the 2011 extreme flood in Thailand. Analyses show that when single downstream connectivity (SDC) is assumed, simulation results deteriorate with finer spatial resolution; Nash-Sutcliffe efficiency coefficients decreased by more than 50 % between simulation results at 10 km resolution and 1 km resolution. When multiple downstream connectivity (MDC) is represented, simulation results slightly improve with finer spatial resolution. The SDC simulations result in excessive backflows on very flat floodplains due to the restrictive flow directions at finer resolutions. MDC channels attenuated these effects by maintaining flow connectivity and flow capacity between floodplains in varying spatial resolutions. While a regional-scale flood was chosen as a test case, these findings should be universal and may have significant impacts on large- to global-scale simulations, especially in regions where mega deltas exist.These results demonstrate that a GRM can be used for higher resolution simulations of large-scale floods, provided that MDC in rivers and floodplains is adequately represented in the model structure.

  6. Spatial resolution limits for the isotropic-3D PET detector X’tal cube

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Eiji, E-mail: rush@nirs.go.jp; Tashima, Hideaki; Hirano, Yoshiyuki; Inadama, Naoko; Nishikido, Fumihiko; Murayama, Hideo; Yamaya, Taiga

    2013-11-11

    Positron emission tomography (PET) has become a popular imaging method in metabolism, neuroscience, and molecular imaging. For dedicated human brain and small animal PET scanners, high spatial resolution is needed to visualize small objects. To improve the spatial resolution, we are developing the X’tal cube, which is our new PET detector to achieve isotropic 3D positioning detectability. We have shown that the X’tal cube can achieve 1 mm{sup 3} uniform crystal identification performance with the Anger-type calculation even at the block edges. We plan to develop the X’tal cube with even smaller 3D grids for sub-millimeter crystal identification. In this work, we investigate spatial resolution of a PET scanner based on the X’tal cube using Monte Carlo simulations for predicting resolution performance in smaller 3D grids. For spatial resolution evaluation, a point source emitting 511 keV photons was simulated by GATE for all physical processes involved in emission and interaction of positrons. We simulated two types of animal PET scanners. The first PET scanner had a detector ring 14.6 cm in diameter composed of 18 detectors. The second PET scanner had a detector ring 7.8 cm in diameter composed of 12 detectors. After the GATE simulations, we converted the interacting 3D position information to digitalized positions for realistic segmented crystals. We simulated several X’tal cubes with cubic crystals from (0.5 mm){sup 3} to (2 mm){sup 3} in size. Also, for evaluating the effect of DOI resolution, we simulated several X’tal cubes with crystal thickness from (0.5 mm){sup 3} to (9 mm){sup 3}. We showed that sub-millimeter spatial resolution was possible using cubic crystals smaller than (1.0 mm){sup 3} even with the assumed physical processes. Also, the weighted average spatial resolutions of both PET scanners with (0.5 mm){sup 3} cubic crystals were 0.53 mm (14.6 cm ring diameter) and 0.48 mm (7.8 cm ring diameter). For the 7.8 cm ring diameter, spatial

  7. Effects of satellite image spatial aggregation and resolution on estimates of forest land area

    Science.gov (United States)

    M.D. Nelson; R.E. McRoberts; G.R. Holden; M.E. Bauer

    2009-01-01

    Satellite imagery is being used increasingly in association with national forest inventories (NFIs) to produce maps and enhance estimates of forest attributes. We simulated several image spatial resolutions within sparsely and heavily forested study areas to assess resolution effects on estimates of forest land area, independent of other sensor characteristics. We...

  8. Spatial resolution of the HRRT PET scanner using 3D-OSEM PSF reconstruction

    DEFF Research Database (Denmark)

    Olesen, Oline Vinter; Sibomana, Merence; Keller, Sune Høgild

    2009-01-01

    The spatial resolution of the Siemens High Resolution Research Tomograph (HRRT) dedicated brain PET scanner installed at Copenhagen University Hospital (Rigshospitalet) was measured using a point-source phantom with high statistics. Further, it was demonstrated how the newly developed 3D-OSEM PSF...

  9. Spatial resolution of confocal XRF technique using capillary optics.

    Science.gov (United States)

    Dehlinger, Maël; Fauquet, Carole; Lavandier, Sebastien; Aumporn, Orawan; Jandard, Franck; Arkadiev, Vladimir; Bjeoumikhov, Aniouar; Tonneau, Didier

    2013-06-07

    XRF (X-ray fluorescence) is a powerful technique for elemental analysis with a high sensitivity. The resolution is presently limited by the size of the primary excitation X-ray beam. A test-bed for confocal-type XRF has been developed to estimate the ultimate lateral resolution which could be reached in chemical mapping using this technique. A polycapillary lens is used to tightly focus the primary X-ray beam of a low power rhodium X-ray source, while the fluorescence signal is collected by a SDD detector through a cylindrical monocapillary. This system was used to characterize the geometry of the fluorescent zone. Capillary radii ranging from 50 μm down to 5 μm were used to investigate the fluorescence signal maximum level This study allows to estimate the ultimate resolution which could be reached in-lab or on a synchrotron beamline. A new tool combining local XRF and scanning probe microscopy is finally proposed.

  10. The fusion of satellite and UAV data: simulation of high spatial resolution band

    Science.gov (United States)

    Jenerowicz, Agnieszka; Siok, Katarzyna; Woroszkiewicz, Malgorzata; Orych, Agata

    2017-10-01

    Remote sensing techniques used in the precision agriculture and farming that apply imagery data obtained with sensors mounted on UAV platforms became more popular in the last few years due to the availability of low- cost UAV platforms and low- cost sensors. Data obtained from low altitudes with low- cost sensors can be characterised by high spatial and radiometric resolution but quite low spectral resolution, therefore the application of imagery data obtained with such technology is quite limited and can be used only for the basic land cover classification. To enrich the spectral resolution of imagery data acquired with low- cost sensors from low altitudes, the authors proposed the fusion of RGB data obtained with UAV platform with multispectral satellite imagery. The fusion is based on the pansharpening process, that aims to integrate the spatial details of the high-resolution panchromatic image with the spectral information of lower resolution multispectral or hyperspectral imagery to obtain multispectral or hyperspectral images with high spatial resolution. The key of pansharpening is to properly estimate the missing spatial details of multispectral images while preserving their spectral properties. In the research, the authors presented the fusion of RGB images (with high spatial resolution) obtained with sensors mounted on low- cost UAV platforms and multispectral satellite imagery with satellite sensors, i.e. Landsat 8 OLI. To perform the fusion of UAV data with satellite imagery, the simulation of the panchromatic bands from RGB data based on the spectral channels linear combination, was conducted. Next, for simulated bands and multispectral satellite images, the Gram-Schmidt pansharpening method was applied. As a result of the fusion, the authors obtained several multispectral images with very high spatial resolution and then analysed the spatial and spectral accuracies of processed images.

  11. Image jitter enhances visual performance when spatial resolution is impaired.

    Science.gov (United States)

    Watson, Lynne M; Strang, Niall C; Scobie, Fraser; Love, Gordon D; Seidel, Dirk; Manahilov, Velitchko

    2012-09-06

    Visibility of low-spatial frequency stimuli improves when their contrast is modulated at 5 to 10 Hz compared with stationary stimuli. Therefore, temporal modulations of visual objects could enhance the performance of low vision patients who primarily perceive images of low-spatial frequency content. We investigated the effect of retinal-image jitter on word recognition speed and facial emotion recognition in subjects with central visual impairment. Word recognition speed and accuracy of facial emotion discrimination were measured in volunteers with AMD under stationary and jittering conditions. Computer-driven and optoelectronic approaches were used to induce retinal-image jitter with duration of 100 or 166 ms and amplitude within the range of 0.5 to 2.6° visual angle. Word recognition speed was also measured for participants with simulated (Bangerter filters) visual impairment. Text jittering markedly enhanced word recognition speed for people with severe visual loss (101 ± 25%), while for those with moderate visual impairment, this effect was weaker (19 ± 9%). The ability of low vision patients to discriminate the facial emotions of jittering images improved by a factor of 2. A prototype of optoelectronic jitter goggles produced similar improvement in facial emotion discrimination. Word recognition speed in participants with simulated visual impairment was enhanced for interjitter intervals over 100 ms and reduced for shorter intervals. Results suggest that retinal-image jitter with optimal frequency and amplitude is an effective strategy for enhancing visual information processing in the absence of spatial detail. These findings will enable the development of novel tools to improve the quality of life of low vision patients.

  12. Influence of low spatial resolution a priori data on tropospheric NO2 satellite retrievals

    Directory of Open Access Journals (Sweden)

    J. P. Burrows

    2011-09-01

    Full Text Available The retrieval of tropospheric columns of NO2 and other trace gases from satellite observations of backscattered solar radiation relies on the use of accurate a priori information. The spatial resolution of current space sensors is often significantly higher than that of the a priori datasets used, introducing uncertainties from spatial misrepresentation. In this study, the effect of spatial under-sampling of a priori data on the retrieval of NO2 columns was studied for a typical coastal area (around San Francisco. High-resolution (15 × 15 km2 NO2 a priori data from the WRF-Chem model in combination with high-resolution MODIS surface reflectance and aerosol data were used to investigate the uncertainty introduced by applying a priori data at typical global chemical transport model resolution. The results show that the relative uncertainties can be large (more than a factor of 2 if all a priori data used is at the coarsest resolution for individual measurements, mainly due to spatial variations in NO2 profile and surface albedo, with smaller contributions from aerosols and surface height changes. Similar sensitivities are expected for other coastal regions and localised sources such as power plants, highlighting the need for high-resolution a priori data in quantitative analysis of the spatial patterns retrieved from satellite observations of tropospheric pollution.

  13. Land cover classification accuracy as a function of sensor spatial resolution

    Science.gov (United States)

    Markham, B. L.; Townshend, J. R. G.

    1981-01-01

    The benefits obtained from sensor systems for monitoring earth resources will depend on the application and interpretation methods used. A frequently used analysis method is supervised per-pixel multispectral classification with a typical application being land cover classification. An investigation is conducted to evaluate the effect of spatial resolution on the ability to classify land cover types with per-pixel digital image classification techniques. Attention is also given to the documentation of changes in scene noise and the percentage of boundary pixels as a function of spatial resolution, in order to improve the understanding of the interrelationship between classification accuracy and spatial resolution. It is found that scene noise varies considerably between land cover categories. Changes in scene noise with coarsening resolution occur at different rates for different categories.

  14. Impact of precipitation spatial resolution on the hydrological response of an integrated distributed water resources model

    DEFF Research Database (Denmark)

    Fu, Suhua; Sonnenborg, Torben; Jensen, Karsten Høgh

    2011-01-01

    Precipitation is a key input variable to hydrological models, and the spatial variability of the input is expected to impact the hydrological response predicted by a distributed model. In this study, the effect of spatial resolution of precipitation on runoff , recharge and groundwater head...... of the total catchment and runoff discharge hydrograph at watershed outlet. On the other hand, groundwater recharge and groundwater head were both aff ected. The impact of the spatial resolution of precipitation input is reduced with increasing catchment size. The effect on stream discharge is relatively low......, groundwater recharge, and groundwater head were also affected by the method for correction of systematic errors in precipitation measurements. The results underscored the importance of using a spatial resolution of the precipitation input that captures the overall precipitation characteristics...

  15. Downscaling of coarse resolution LAI products to achieve both high spatial and temporal resolution for regions of interest

    KAUST Repository

    Houborg, Rasmus

    2015-11-12

    This paper presents a flexible tool for spatio-temporal enhancement of coarse resolution leaf area index (LAI) products, which is readily adaptable to different land cover types, landscape heterogeneities and cloud cover conditions. The framework integrates a rule-based regression tree approach for estimating Landsat-scale LAI from existing 1 km resolution LAI products, and the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) to intelligently interpolate the downscaled LAI between Landsat acquisitions. Comparisons against in-situ records of LAI measured over corn and soybean highlights its utility for resolving sub-field LAI dynamics occurring over a range of plant development stages.

  16. Ultra high spatial and temporal resolution breast imaging at 7T.

    Science.gov (United States)

    van de Bank, B L; Voogt, I J; Italiaander, M; Stehouwer, B L; Boer, V O; Luijten, P R; Klomp, D W J

    2013-04-01

    There is a need to obtain higher specificity in the detection of breast lesions using MRI. To address this need, Dynamic Contrast-Enhanced (DCE) MRI has been combined with other structural and functional MRI techniques. Unfortunately, owing to time constraints structural images at ultra-high spatial resolution can generally not be obtained during contrast uptake, whereas the relatively low spatial resolution of functional imaging (e.g. diffusion and perfusion) limits the detection of small lesions. To be able to increase spatial as well as temporal resolution simultaneously, the sensitivity of MR detection needs to increase as well as the ability to effectively accelerate the acquisition. The required gain in signal-to-noise ratio (SNR) can be obtained at 7T, whereas acceleration can be obtained with high-density receiver coil arrays. In this case, morphological imaging can be merged with DCE-MRI, and other functional techniques can be obtained at higher spatial resolution, and with less distortion [e.g. Diffusion Weighted Imaging (DWI)]. To test the feasibility of this concept, we developed a unilateral breast coil for 7T. It comprises a volume optimized dual-channel transmit coil combined with a 30-channel receive array coil. The high density of small coil elements enabled efficient acceleration in any direction to acquire ultra high spatial resolution MRI of close to 0.6 mm isotropic detail within a temporal resolution of 69 s, high spatial resolution MRI of 1.5 mm isotropic within an ultra high temporal resolution of 6.7 s and low distortion DWI at 7T, all validated in phantoms, healthy volunteers and a patient with a lesion in the right breast classified as Breast Imaging Reporting and Data System (BI-RADS) IV. Copyright © 2012 John Wiley & Sons, Ltd.

  17. Impact of spatial resolution of the precipitation data on hydrological Forecast

    Science.gov (United States)

    Davis, M.; Bardossy, A.; Sudheer, K.

    2013-05-01

    Flooding is a devastating problem for many countries all over the world. Real time forecasting is a necessary non-structural measure to fight against the damage. Adequate quantitative forecasting of the flood is necessary to provide enough precaution for the affected population. Time lead in the forecast is also a matter of concern considering its significance in the preparedness. The time-lead of forecast depends on the computational time along with the various other issues. The computation time depends on the whether the model is data intensive or process intensive. Considering the use of spatially distributed models in the forecast, the main dynamic data involved in the rainfall runoff models are the precipitation measurement. The data intensity of that depends on the spatial and temporal resolution of the precipitation data. The spatial resolution of the precipitation has the significance in the spatially distributed hydrological models. Neither should the resolution be so less that the quantitative prediction is disturbed nor too much to affect the time lead considerably. Finer spatial resolution of precipitation data may not even yield better forecast (A.Bardossy and T.Das, 2008). So the current study focuses on the impact of spatial and temporal resolution of the hydrological forecast. The spatially distributed model of HBV and HYMOD is being used for the analysis. Spatial resolutions from 1, 4, 9 and 25 square kilometers and a temporal resolution of daily to hourly time-series is also being analysed for their respective effects on prediction. The data from rain gauges are interpolated using the External Drift Kriging Method (EDK). The calibrations of the models are carried out using the Robust Parameter Estimation (ROPE) algorithm (S.K Singh and A. Bardossy, 2010). The framework is illustrated on the Upper Neckar catchment with 13 sub-catchments located in South West Germany. Preliminary results are encouraging. The optimum spatial resolution can be

  18. Influence of the meteorological spatial resolution on Radon-222 backward modelling with FLEXPART

    Science.gov (United States)

    Arnold, D.; Seibert, P.; Vargas, A.

    2009-04-01

    One of the main important origins of uncertainties in atmospheric transport modelling comes from the meteorological input fields. Currently, operational analysis from the ECMWF, one of the reference sources of meteorological inputs used for modelling, are provided with horizontal spatial resolutions from 2 degrees down to 0.2 degrees, and also with different vertical and temporal resolutions. In this work it has been studied how the increase in spatial resolution of the ECMWF fields would affect the dispersion calculations of Radon-222. Backward modelling has been done with the widely used Lagrangian particle dispersion model FLEXPARTv6.2.Simulated radon concentration time series were compared with measurements at a station located in the outskirts of Barcelona (Spain). Results show relevant differences and better agreement is achieved when using the highest resolution fields. This study shows that if good model performance is desired, it is advisable to use ECMWF with 0.2 deg resolution despite the increase in computational dema

  19. Practical Considerations for High Spatial and Temporal Resolution Dynamic Transmission Electron Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, M; Boyden, K; Browning, N D; Campbell, G H; Colvin, J D; DeHope, B; Frank, A M; Gibson, D J; Hartemann, F; Kim, J S; King, W E; LaGrange, T B; Pyke, B J; Reed, B W; Shuttlesworth, R M; Stuart, B C; Torralva, B R

    2006-05-01

    Although recent years have seen significant advances in the spatial resolution possible in the transmission electron microscope (TEM), the temporal resolution of most microscopes is limited to video rate at best. This lack of temporal resolution means that our understanding of dynamic processes in materials is extremely limited. High temporal resolution in the TEM can be achieved, however, by replacing the normal thermionic or field emission source with a photoemission source. In this case the temporal resolution is limited only by the ability to create a short pulse of photoexcited electrons in the source, and this can be as short as a few femtoseconds. The operation of the photo-emission source and the control of the subsequent pulse of electrons (containing as many as 5 x 10{sup 7} electrons) create significant challenges for a standard microscope column that is designed to operate with a single electron in the column at any one time. In this paper, the generation and control of electron pulses in the TEM to obtain a temporal resolution <10{sup -6} s will be described and the effect of the pulse duration and current density on the spatial resolution of the instrument will be examined. The potential of these levels of temporal and spatial resolution for the study of dynamic materials processes will also be discussed.

  20. Practical considerations for high spatial and temporal resolution dynamic transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Michael R. [Materials Science and Technology Division, Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory, P.O. Box 808, L-356, Livermore, CA 94550 (United States)], E-mail: armstrong30@llnl.gov; Boyden, Ken [Materials Science and Technology Division, Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory, P.O. Box 808, L-356, Livermore, CA 94550 (United States); Browning, Nigel D. [Materials Science and Technology Division, Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory, P.O. Box 808, L-356, Livermore, CA 94550 (United States); Department of Chemical Engineering and Materials Science, University of California-Davis, One Shields Avenue, Davis, CA 95616 (United States); Campbell, Geoffrey H.; Colvin, Jeffrey D.; De Hope, William J.; Frank, Alan M. [Materials Science and Technology Division, Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory, P.O. Box 808, L-356, Livermore, CA 94550 (United States); Gibson, David J.; Hartemann, Fred [N Division, Physics and Advanced Technologies Directorate, Lawrence Livermore National Laboratory, P.O. Box 808, L-280, Livermore, CA 94550 (United States); Kim, Judy S. [Materials Science and Technology Division, Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory, P.O. Box 808, L-356, Livermore, CA 94550 (United States); Department of Chemical Engineering and Materials Science, University of California-Davis, One Shields Avenue, Davis, CA 95616 (United States); King, Wayne E.; La Grange, Thomas B.; Pyke, Ben J.; Reed, Bryan W.; Shuttlesworth, Richard M.; Stuart, Brent C.; Torralva, Ben R. [Materials Science and Technology Division, Chemistry and Materials Science Directorate, Lawrence Livermore National Laboratory, P.O. Box 808, L-356, Livermore, CA 94550 (United States)

    2007-04-15

    Although recent years have seen significant advances in the spatial resolution possible in the transmission electron microscope (TEM), the temporal resolution of most microscopes is limited to video rate at best. This lack of temporal resolution means that our understanding of dynamic processes in materials is extremely limited. High temporal resolution in the TEM can be achieved, however, by replacing the normal thermionic or field emission source with a photoemission source. In this case the temporal resolution is limited only by the ability to create a short pulse of photoexcited electrons in the source, and this can be as short as a few femtoseconds. The operation of the photo-emission source and the control of the subsequent pulse of electrons (containing as many as 5x10{sup 7} electrons) create significant challenges for a standard microscope column that is designed to operate with a single electron in the column at any one time. In this paper, the generation and control of electron pulses in the TEM to obtain a temporal resolution <10{sup -6} s will be described and the effect of the pulse duration and current density on the spatial resolution of the instrument will be examined. The potential of these levels of temporal and spatial resolution for the study of dynamic materials processes will also be discussed.

  1. Advanced Extraction of Spatial Information from High Resolution Satellite Data

    Science.gov (United States)

    Pour, T.; Burian, J.; Miřijovský, J.

    2016-06-01

    In this paper authors processed five satellite image of five different Middle-European cities taken by five different sensors. The aim of the paper was to find methods and approaches leading to evaluation and spatial data extraction from areas of interest. For this reason, data were firstly pre-processed using image fusion, mosaicking and segmentation processes. Results going into the next step were two polygon layers; first one representing single objects and the second one representing city blocks. In the second step, polygon layers were classified and exported into Esri shapefile format. Classification was partly hierarchical expert based and partly based on the tool SEaTH used for separability distinction and thresholding. Final results along with visual previews were attached to the original thesis. Results are evaluated visually and statistically in the last part of the paper. In the discussion author described difficulties of working with data of large size, taken by different sensors and different also thematically.

  2. Full-field, high-spatial-resolution detection of local structural damage from low-resolution random strain field measurements

    Science.gov (United States)

    Yang, Yongchao; Sun, Peng; Nagarajaiah, Satish; Bachilo, Sergei M.; Weisman, R. Bruce

    2017-07-01

    Structural damage is typically a local phenomenon that initiates and propagates within a limited area. As such high spatial resolution measurement and monitoring is often needed for accurate damage detection. This requires either significantly increased costs from denser sensor deployment in the case of global simultaneous/parallel measurements, or increased measurement time and labor in the case of global sequential measurements. This study explores the feasibility of an alternative approach to this problem: a computational solution in which a limited set of randomly positioned, low-resolution global strain measurements are used to reconstruct the full-field, high-spatial-resolution, two-dimensional (2D) strain field and rapidly detect local damage. The proposed approach exploits the implicit low-rank and sparse data structure of the 2D strain field: it is highly correlated without many edges and hence has a low-rank structure, unless damage-manifesting itself as sparse local irregularity-is present and alters such a low-rank structure slightly. Therefore, reconstruction of the full-field, high-spatial-resolution strain field from a limited set of randomly positioned low-resolution global measurements is modeled as a low-rank matrix completion framework and damage detection as a sparse decomposition formulation, enabled by emerging convex optimization techniques. Numerical simulations on a plate structure are conducted for validation. The results are discussed and a practical iterative global/local procedure is recommended. This new computational approach should enable the efficient detection of local damage using limited sets of strain measurements.

  3. Preliminary frequency-domain analysis for the reconstructed spatial resolution of muon tomography

    Science.gov (United States)

    Yu, B.; Zhao, Z.; Wang, X.; Wang, Y.; Wu, D.; Zeng, Z.; Zeng, M.; Yi, H.; Luo, Z.; Yue, X.; Cheng, J.

    2014-11-01

    Muon tomography is an advanced technology to non-destructively detect high atomic number materials. It exploits the multiple Coulomb scattering information of muon to reconstruct the scattering density image of the traversed object. Because of the statistics of muon scattering, the measurement error of system and the data incompleteness, the reconstruction is always accompanied with a certain level of interference, which will influence the reconstructed spatial resolution. While statistical noises can be reduced by extending the measuring time, system parameters determine the ultimate spatial resolution that one system can reach. In this paper, an effective frequency-domain model is proposed to analyze the reconstructed spatial resolution of muon tomography. The proposed method modifies the resolution analysis in conventional computed tomography (CT) to fit the different imaging mechanism in muon scattering tomography. The measured scattering information is described in frequency domain, then a relationship between the measurements and the original image is proposed in Fourier domain, which is named as "Muon Central Slice Theorem". Furthermore, a preliminary analytical expression of the ultimate reconstructed spatial is derived, and the simulations are performed for validation. While the method is able to predict the ultimate spatial resolution of a given system, it can also be utilized for the optimization of system design and construction.

  4. Evaluating the Value of High Spatial Resolution in National Capacity Expansion Models using ReEDS

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, Venkat; Cole, Wesley

    2016-07-18

    This poster is based on the paper of the same name, presented at the IEEE Power & Energy Society General Meeting, July18, 2016. Power sector capacity expansion models (CEMs) have a broad range of spatial resolutions. This paper uses the Regional Energy Deployment System (ReEDS) model, a long-term national scale electric sector CEM, to evaluate the value of high spatial resolution for CEMs. ReEDS models the United States with 134 load balancing areas (BAs) and captures the variability in existing generation parameters, future technology costs, performance, and resource availability using very high spatial resolution data, especially for wind and solar modeled at 356 resource regions. In this paper we perform planning studies at three different spatial resolutions - native resolution (134 BAs), state-level, and NERC region level - and evaluate how results change under different levels of spatial aggregation in terms of renewable capacity deployment and location, associated transmission builds, and system costs. The results are used to ascertain the value of high geographically resolved models in terms of their impact on relative competitiveness among renewable energy resources.

  5. The effect of spatial resolution upon cloud optical property retrievals. I - Optical thickness

    Science.gov (United States)

    Feind, Rand E.; Christopher, Sundar A.; Welch, Ronald M.

    1992-01-01

    High spectral and spatial resolution Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) imagery is used to study the effects of spatial resolution upon fair weather cumulus cloud optical thickness retrievals. As a preprocessing step, a variation of the Gao and Goetz three-band ratio technique is used to discriminate clouds from the background. The combination of the elimination of cloud shadow pixels and using the first derivative of the histogram allows for accurate cloud edge discrimination. The data are progressively degraded from 20 m to 960 m spatial resolution. The results show that retrieved cloud area increases with decreasing spatial resolution. The results also show that there is a monotonic decrease in retrieved cloud optical thickness with decreasing spatial resolution. It is also demonstrated that the use of a single, monospectral reflectance threshold is inadequate for identifying cloud pixels in fair weather cumulus scenes and presumably in any inhomogeneous cloud field. Cloud edges have a distribution of reflectance thresholds. The incorrect identification of cloud edges significantly impacts the accurate retrieval of cloud optical thickness values.

  6. Effect of spatial resolution of radar-based inundation maps on the calibration of a spatial inundation model

    Science.gov (United States)

    Gobeyn, Sacha; Vernieuwe, Hilde; De Baets, Bernard; Bates, Paul; Verhoest Niko E., C.

    2013-04-01

    With advances in both flood mapping with satellite radar and computational science, the use of real-time spatial flood data holds the potential to support decision making during flood events. With recent improvements in satellite radar technology, current and future radar images are/will be delivered with higher spatial resolution. It is expected that these higher resolutions should improve the accuracy of the calibration and the prediction through data assimilation as more detailed information is available. However, these finer resolution data will result in an increased computational cost. Still, radar data of coarser resolution will remain available, and the question may then arise whether the calibration of a 2D-hydraulic model is significantly influenced by the resolution of the remotely-sensed inundation map. In order to answer this question, the raster-based inundation model, LISFLOOD-FP (Bates et al., 2000) is calibrated using a high resolution synthetic aperture radar image (ERS-2 SAR) of a flood event of the river Dee, Wales, in December 2006. Different radar resolutions are simulated through coarsening this image to different resolutions and retrieving the flood extent maps for the different resolutions. These flood maps are then used for calibrating the hydraulic model using the generalized likelihood uncertainty estimation (GLUE) framework presented by Aronica et al. (2002) as well as alternative calibration methods (e.g. Particle Swarm Optimization, PSO) to assess the possible impact of spatial resolution of the observed flood extent on the floodplain and channel Manning coefficient. Furthermore, the sensitivity of the calibration surface to error sources in radar measurement is evaluated by applying different magnitudes of noise to the radar image. References Aronica, G., Bates, P. D. and Horritt, M. S. (2002). Assessing the uncertainty in distributed model predictions using observed binary pattern information within GLUE. Hydrological Processes, 16

  7. A High Spatial Resolution CT Scanner for Small Animal Imaging

    Science.gov (United States)

    Cicalini, E.; Baldazzi, G.; Belcari, N.; Del Guerra, A.; Gombia, M.; Motta, A.; Panetta, D.

    2006-01-01

    We have built a micro-CT system that will be integrated with a small animal PET scanner. The components are: an X-ray source with a peak voltage of up to 60 kV, a power of 10 W and a focal spot size of 30 μm; a CCD coupled to CsI(Tl) scintillator, subdivided into 128×3072 square pixels, each with a size of 48 μm; stepping motors for the sample roto-translation; a PCI acquisition board; electronic boards to control and read-out the CCD. A program in Lab VIEW controls the data acquisition. Reconstruction algorithms have been implemented for fan-beam and cone-beam configurations. Images of a bar pattern have been acquired to evaluate the detector performance: the CTF curve has been extracted from the data, obtaining a value of 10 % at 5 lp/mm and about 3 % at 10 lp/mm. Tomographic acquisitions have been performed with a test phantom consisting of a Plexiglas cylinder, 3 cm in diameter, with holes ranging from 3 mm down to 0.6 mm in diameter, filled with different materials. The contrast resolution has been extracted from the reconstructed images: a value of 6 % (in water) for a cubic voxel size of 80 μm has been obtained.

  8. ADVANCED EXTRACTION OF SPATIAL INFORMATION FROM HIGH RESOLUTION SATELLITE DATA

    Directory of Open Access Journals (Sweden)

    T. Pour

    2016-06-01

    Full Text Available In this paper authors processed five satellite image of five different Middle-European cities taken by five different sensors. The aim of the paper was to find methods and approaches leading to evaluation and spatial data extraction from areas of interest. For this reason, data were firstly pre-processed using image fusion, mosaicking and segmentation processes. Results going into the next step were two polygon layers; first one representing single objects and the second one representing city blocks. In the second step, polygon layers were classified and exported into Esri shapefile format. Classification was partly hierarchical expert based and partly based on the tool SEaTH used for separability distinction and thresholding. Final results along with visual previews were attached to the original thesis. Results are evaluated visually and statistically in the last part of the paper. In the discussion author described difficulties of working with data of large size, taken by different sensors and different also thematically.

  9. Hi-Res scan mode in clinical MDCT systems: Experimental assessment of spatial resolution performance.

    Science.gov (United States)

    Cruz-Bastida, Juan P; Gomez-Cardona, Daniel; Li, Ke; Sun, Heyi; Hsieh, Jiang; Szczykutowicz, Timothy P; Chen, Guang-Hong

    2016-05-01

    The introduction of a High-Resolution (Hi-Res) scan mode and another associated option that combines Hi-Res mode with the so-called High Definition (HD) reconstruction kernels (referred to as a Hi-Res/HD mode in this paper) in some multi-detector CT (MDCT) systems offers new opportunities to increase spatial resolution for some clinical applications that demand high spatial resolution. The purpose of this work was to quantify the in-plane spatial resolution along both the radial direction and tangential direction for the Hi-Res and Hi-Res/HD scan modes at different off-center positions. A technique was introduced and validated to address the signal saturation problem encountered in the attempt to quantify spatial resolution for the Hi-Res and Hi-Res/HD scan modes. Using the proposed method, the modulation transfer functions (MTFs) of a 64-slice MDCT system (Discovery CT750 HD, GE Healthcare) equipped with both Hi-Res and Hi-Res/HD modes were measured using a metal bead at nine different off-centered positions (0-16 cm with a step size of 2 cm); at each position, both conventional scans and Hi-Res scans were performed. For each type of scan and position, 80 repeated acquisitions were performed to reduce noise induced uncertainties in the MTF measurements. A total of 15 reconstruction kernels, including eight conventional kernels and seven HD kernels, were used to reconstruct CT images of the bead. An ex vivo animal study consisting of a bone fracture model was performed to corroborate the MTF results, as the detection of this high-contrast and high frequency task is predominantly determined by spatial resolution. Images of this animal model generated by different scan modes and reconstruction kernels were qualitatively compared with the MTF results. At the centered position, the use of Hi-Res mode resulted in a slight improvement in the MTF; each HD kernel generated higher spatial resolution than its counterpart conventional kernel. However, the MTF along the

  10. PVWATTS Version 2 -- Enhanced Spatial Resolution for Calculating Grid-Connected PV Performance: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Marion, B.; Anderberg, M.; Gray-Hann, P.; Heimiller, D.

    2001-10-01

    Presented at the 2001 NCPV Program Review Meeting: Describes the latest version of PVWATTS and how its spatial resolution was improved by a factor of 25. This paper describes the latest version of PVWATTS and how its spatial resolution was improved by a factor of 25 by using a high-resolution (e.g., 40-km by 40-km cells) spatially uniform grid of meteorological input data. Like its predecessor, version 2 is Internet accessible. The user selects a grid cell containing the desired location from an electronic map, thereby initiating a selection by PVWATTS v.2 of the nearest TMY2 station that is climatically similar, followed by an hourly performance simulation for the TMY2 station. Performance is translated back to the selected grid cell based on differences in solar radiation and temperature using previously determined data grid sets of monthly solar radiation and maximum daily temperature.

  11. Improvement of range spatial resolution of medical ultrasound imaging by element-domain signal processing

    Science.gov (United States)

    Hasegawa, Hideyuki

    2017-07-01

    The range spatial resolution is an important factor determining the image quality in ultrasonic imaging. The range spatial resolution in ultrasonic imaging depends on the ultrasonic pulse length, which is determined by the mechanical response of the piezoelectric element in an ultrasonic probe. To improve the range spatial resolution without replacing the transducer element, in the present study, methods based on maximum likelihood (ML) estimation and multiple signal classification (MUSIC) were proposed. The proposed methods were applied to echo signals received by individual transducer elements in an ultrasonic probe. The basic experimental results showed that the axial half maximum of the echo from a string phantom was improved from 0.21 mm (conventional method) to 0.086 mm (ML) and 0.094 mm (MUSIC).

  12. Sea Ice Deformation State From Synthetic Aperture Radar Imagery - Part II: Effects of Spatial Resolution and Noise Level

    DEFF Research Database (Denmark)

    Dierking, Wolfgang; Dall, Jørgen

    2008-01-01

    in the first paper. In this second paper, the main topics are the effects of spatial resolution and signal-to-noise ratio. Airborne, high-resolution SAR scenes are used to generate a sequence of images with increasingly coarser spatial resolution from 5 m to 25 m, keeping the number of looks constant...

  13. Performance and characterization of the prototype nm-scale spatial resolution scanning multilayer Laue lenses microscope

    Science.gov (United States)

    Nazaretski, E.; Kim, Jungdae; Yan, H.; Lauer, K.; Eom, D.; Shu, D.; Maser, J.; Pešić, Z.; Wagner, U.; Rau, C.; Chu, Y. S.

    2013-03-01

    Synchrotron based x-ray microscopy established itself as a prominent tool for noninvasive investigations in many areas of science and technology. Many facilities around the world routinely achieve sub-micrometer resolution with a few instruments capable of imaging with the spatial resolution better than 100 nm. With an ongoing effort to push the 2D/3D resolution down to 10 nm in the hard x-ray regime both fabrication of the nano-focusing optics and stability of a microscope become extremely challenging. In this work we present our approach to overcome technical challenges on the path towards high spatial resolution hard x-ray microscopy and demonstrate the performance of a scanning fluorescence microscope equipped with the multilayer Laue lenses focusing optics.

  14. Large-scale proton radiography with micrometer spatial resolution using femtosecond petawatt laser system

    Directory of Open Access Journals (Sweden)

    W. P. Wang

    2015-10-01

    Full Text Available An image of dragonfly with many details is obtained by the fundamental property of the high-energy proton source on a femtosecond petawatt laser system. Equal imaging of the dragonfly and high spatial resolution on the micrometer scale are simultaneously obtained. The head, wing, leg, tail, and even the internal tissue structures are clearly mapped in detail by the proton beam. Experiments show that image blurring caused by multiple Coulomb scattering can be reduced to a certain extent and the spatial resolution can be increased by attaching the dragonfly to the RCFs, which is consistent with theoretical assumptions.

  15. Electron-Beam Mapping of Vibrational Modes with Nanometer Spatial Resolution.

    Science.gov (United States)

    Dwyer, C; Aoki, T; Rez, P; Chang, S L Y; Lovejoy, T C; Krivanek, O L

    2016-12-16

    We demonstrate that a focused beam of high-energy electrons can be used to map the vibrational modes of a material with a spatial resolution of the order of one nanometer. Our demonstration is performed on boron nitride, a polar dielectric which gives rise to both localized and delocalized electron-vibrational scattering, either of which can be selected in our off-axial experimental geometry. Our experimental results are well supported by our calculations, and should reconcile current controversy regarding the spatial resolution achievable in vibrational mapping with focused electron beams.

  16. Can increased spatial resolution solve the crossing fiber problem for diffusion MRI?

    Science.gov (United States)

    Schilling, Kurt; Gao, Yurui; Janve, Vaibhav; Stepniewska, Iwona; Landman, Bennett A; Anderson, Adam W

    2017-09-15

    It is now widely recognized that voxels with crossing fibers or complex geometrical configurations present a challenge for diffusion MRI (dMRI) reconstruction and fiber tracking, as well as microstructural modeling of brain tissues. This "crossing fiber" problem has been estimated to affect anywhere from 30% to as many as 90% of white matter voxels, and it is often assumed that increasing spatial resolution will decrease the prevalence of voxels containing multiple fiber populations. The aim of this study is to estimate the extent of the crossing fiber problem as we progressively increase the spatial resolution, with the goal of determining whether it is possible to mitigate this problem with higher resolution spatial sampling. This is accomplished using ex vivo MRI data of the macaque brain, followed by histological analysis of the same specimen to validate these measurements, as well as to extend this analysis to resolutions not yet achievable in practice with MRI. In both dMRI and histology, we find unexpected results: the prevalence of crossing fibers increases as we increase spatial resolution. The problem of crossing fibers appears to be a fundamental limitation of dMRI associated with the complexity of brain tissue, rather than a technical problem that can be overcome with advances such as higher fields and stronger gradients. Copyright © 2017 John Wiley & Sons, Ltd.

  17. The effect of spatial resolution on water scarcity estimates in Australia

    Science.gov (United States)

    Gevaert, Anouk; Veldkamp, Ted; van Dijk, Albert; Ward, Philip

    2017-04-01

    Water scarcity is an important global issue with severe socio-economic consequences, and its occurrence is likely to increase in many regions due to population growth, economic development and climate change. This has prompted a number of global and regional studies to identify areas that are vulnerable to water scarcity and to determine how this vulnerability will change in the future. A drawback of these studies, however, is that they typically have coarse spatial resolutions. Here, we studied the effect of increasing the spatial resolution of water scarcity estimates in Australia, and the Murray-Darling Basin in particular. This was achieved by calculating the water stress index (WSI), an indicator showing the ratio of water use to water availability, at 0.5 and 0.05 degree resolution for the period 1990-2010. Monthly water availability data were based on outputs of the Australian Water Resources Assessment Landscape model (AWRA-L), which was run at both spatial resolutions and at a daily time scale. Water use information was obtained from a monthly 0.5 degree global dataset that distinguishes between water consumption for irrigation, livestock, industrial and domestic uses. The data were downscaled to 0.05 degree by dividing the sectoral water uses over the areas covered by relevant land use types using a high resolution ( 0.5km) land use dataset. The monthly WSIs at high and low resolution were then used to evaluate differences in the patterns of water scarcity frequency and intensity. In this way, we assess to what extent increasing the spatial resolution can improve the identification of vulnerable areas and thereby assist in the development of strategies to lower this vulnerability. The results of this study provide insight into the scalability of water scarcity estimates and the added value of high resolution water scarcity information in water resources management.

  18. Exploring the Spatial Resolution of the Photothermal Beam Deflection Technique in the Infrared Region

    CERN Document Server

    Seidel, Wolfgang

    2004-01-01

    In photothermal beam deflection spectroscopy (PTBD) generating and detection of thermal waves occur generally in the sub-millimeter length scale. Therefore, PTBD provides spatial information about the surface of the sample and permits imaging and/or microspectrometry. Recent results of PTBD experiments are presented with a high spatial resolution which is near the diffraction limit of the infrared pump beam (CLIO-FEL). We investigated germanium substrates showing restricted O+-doped regions with an infrared absorption line at a wavelength around 11.6 microns. The spatial resolution was obtained by strongly focusing the probe beam (i.e. a HeNe laser) on a sufficiently small spot. The strong divergence makes it necessary to refocus the probe beam in front of the position detector. The influence of the focusing elements on spatial resolution and signal-to-noise ratio is discussed. In future studies we expect an enhanced spatial resolution due to an extreme focusing of the probe beam leading to a highly sensitive...

  19. Spatial perception of sound fields recorded by spherical microphone arrays with varying spatial resolution.

    Science.gov (United States)

    Avni, Amir; Ahrens, Jens; Geier, Matthias; Spors, Sascha; Wierstorf, Hagen; Rafaely, Boaz

    2013-05-01

    The area of sound field synthesis has significantly advanced in the past decade, facilitated by the development of high-quality sound-field capturing and re-synthesis systems. Spherical microphone arrays are among the most recently developed systems for sound field capturing, enabling processing and analysis of three-dimensional sound fields in the spherical harmonics domain. In spite of these developments, a clear relation between sound fields recorded by spherical microphone arrays and their perception with a re-synthesis system has not yet been established, although some relation to scalar measures of spatial perception was recently presented. This paper presents an experimental study of spatial sound perception with the use of a spherical microphone array for sound recording and headphone-based binaural sound synthesis. Sound field analysis and processing is performed in the spherical harmonics domain with the use of head-related transfer functions and simulated enclosed sound fields. The effect of several factors, such as spherical harmonics order, frequency bandwidth, and spatial sampling, are investigated by applying the repertory grid technique to the results of the experiment, forming a clearer relation between sound-field capture with a spherical microphone array and its perception using binaural synthesis regarding space, frequency, and additional artifacts. The experimental study clearly shows that a source will be perceived more spatially sharp and more externalized when represented by a binaural stimuli reconstructed with a higher spherical harmonics order. This effect is apparent from low spherical harmonics orders. Spatial aliasing, as a result of sound field capturing with a finite number of microphones, introduces unpleasant artifacts which increased with the degree of aliasing error.

  20. Spatial and Temporal Monitoring Resolutions for CO2 Leakage Detection at Carbon Storage Sites

    Science.gov (United States)

    Yang, Y. M.; Dilmore, R. M.; Daley, T. M.; Carroll, S.; Mansoor, K.; Gasperikova, E.; Harbert, W.; Wang, Z.; Bromhal, G. S.; Small, M.

    2016-12-01

    Different leakage monitoring techniques offer different strengths in detection sensitivity, coverage, feedback time, cost, and technology availability, such that they may complement each other when applied together. This research focuses on quantifying the spatial coverage and temporal resolution of detection response for several geophysical remote monitoring and direct groundwater monitoring techniques for an optimal monitoring plan for CO2 leakage detection. Various monitoring techniques with different monitoring depths are selected: 3D time-lapse seismic survey, wellbore pressure, groundwater chemistry and soil gas. The spatial resolution in terms of leakage detectability is quantified through the effective detection distance between two adjacent monitors, given the magnitude of leakage and specified detection probability. The effective detection distances are obtained either from leakage simulations with various monitoring densities or from information garnered from field test data. These spatial leakage detection resolutions are affected by physically feasible monitoring design and detection limits. Similarly, the temporal resolution, in terms of leakage detectability, is quantified through the effective time to positive detection of a given size of leak and a specified detection probability, again obtained either from representative leakage simulations with various monitoring densities or from field test data. The effective time to positive detection is also affected by operational feedback time (associated with sampling, sample analysis and data interpretation), with values obtained mainly through expert interviews and literature review. In additional to the spatial and temporal resolutions of these monitoring techniques, the impact of CO2 plume migration speed and leakage detection sensitivity of each monitoring technique are also discussed with consideration of how much monitoring is necessary for effective leakage detection and how these monitoring

  1. Estimation of the high-spatial-resolution variability in extreme wind speeds for forestry applications

    Science.gov (United States)

    Venäläinen, Ari; Laapas, Mikko; Pirinen, Pentti; Horttanainen, Matti; Hyvönen, Reijo; Lehtonen, Ilari; Junila, Päivi; Hou, Meiting; Peltola, Heli M.

    2017-07-01

    The bioeconomy has an increasing role to play in climate change mitigation and the sustainable development of national economies. In Finland, a forested country, over 50 % of the current bioeconomy relies on the sustainable management and utilization of forest resources. Wind storms are a major risk that forests are exposed to and high-spatial-resolution analysis of the most vulnerable locations can produce risk assessment of forest management planning. In this paper, we examine the feasibility of the wind multiplier approach for downscaling of maximum wind speed, using 20 m spatial resolution CORINE land-use dataset and high-resolution digital elevation data. A coarse spatial resolution estimate of the 10-year return level of maximum wind speed was obtained from the ERA-Interim reanalyzed data. Using a geospatial re-mapping technique the data were downscaled to 26 meteorological station locations to represent very diverse environments. Applying a comparison, we find that the downscaled 10-year return levels represent 66 % of the observed variation among the stations examined. In addition, the spatial variation in wind-multiplier-downscaled 10-year return level wind was compared with the WAsP model-simulated wind. The heterogeneous test area was situated in northern Finland, and it was found that the major features of the spatial variation were similar, but in some locations, there were relatively large differences. The results indicate that the wind multiplier method offers a pragmatic and computationally feasible tool for identifying at a high spatial resolution those locations with the highest forest wind damage risks. It can also be used to provide the necessary wind climate information for wind damage risk model calculations, thus making it possible to estimate the probability of predicted threshold wind speeds for wind damage and consequently the probability (and amount) of wind damage for certain forest stand configurations.

  2. Estimation of the high-spatial-resolution variability in extreme wind speeds for forestry applications

    Directory of Open Access Journals (Sweden)

    A. Venäläinen

    2017-07-01

    Full Text Available The bioeconomy has an increasing role to play in climate change mitigation and the sustainable development of national economies. In Finland, a forested country, over 50 % of the current bioeconomy relies on the sustainable management and utilization of forest resources. Wind storms are a major risk that forests are exposed to and high-spatial-resolution analysis of the most vulnerable locations can produce risk assessment of forest management planning. In this paper, we examine the feasibility of the wind multiplier approach for downscaling of maximum wind speed, using 20 m spatial resolution CORINE land-use dataset and high-resolution digital elevation data. A coarse spatial resolution estimate of the 10-year return level of maximum wind speed was obtained from the ERA-Interim reanalyzed data. Using a geospatial re-mapping technique the data were downscaled to 26 meteorological station locations to represent very diverse environments. Applying a comparison, we find that the downscaled 10-year return levels represent 66 % of the observed variation among the stations examined. In addition, the spatial variation in wind-multiplier-downscaled 10-year return level wind was compared with the WAsP model-simulated wind. The heterogeneous test area was situated in northern Finland, and it was found that the major features of the spatial variation were similar, but in some locations, there were relatively large differences. The results indicate that the wind multiplier method offers a pragmatic and computationally feasible tool for identifying at a high spatial resolution those locations with the highest forest wind damage risks. It can also be used to provide the necessary wind climate information for wind damage risk model calculations, thus making it possible to estimate the probability of predicted threshold wind speeds for wind damage and consequently the probability (and amount of wind damage for certain forest stand configurations.

  3. Development of high-spatial and high-mass resolution mass spectrometric imaging (MSI) and its application to the study of small metabolites and endogenous molecules of plants

    Energy Technology Data Exchange (ETDEWEB)

    Jun, Ji Hyun [Iowa State Univ., Ames, IA (United States)

    2012-01-01

    distribution of targeted metabolites, mainly waxes and flavonoids, was systematically explored on various organs, including flowers, leaves, stems, and roots at high spatial resolution of ~ 12-50 μm and the changes in the abundance level of these metabolites were monitored on the cer1 mutant with respect to the wild-type. This study revealed the metabolic biology of CER1 gene on each individual organ level with very detailed high spatial resolution. The separate MS images of isobaric metabolites, i.e. C29 alkane vs. C28 aldehyde could be constructed on both genotypes from MS imaging at high mass resolution. This allows tracking of abundance changes for those compounds along with the genetic mutation, which is not achievable with low mass resolution mass spectrometry. This study supported previous hypothesis of molecular function of CER1 gene as aldehyde decarbonylase, especially by displaying hyper accumulation of aldehydes and C30 fatty acid and decrease in abundance of alkanes and ketones in several plant organs of cer1 mutant. The scope of analytes was further directed toward internal cell metabolites from the surface metabolites of the plant. MS profiling and imaging of internal cell metabolites were performed on the vibratome section of Arabidopsis leaf. Vibratome sectioning of the leaf was first conducted to remove the surface cuticle layer and it was followed by enzymatic treatment of the section to induce the digestion of primary cell walls, middle lamella, and expose the internal cells underneath to the surface for detection with the laser by LDI-MS. The subsequent MS imaging onto the enzymatically treated vibratome section allowed us to map the distribution of the metabolites in the internal cell layers, linolenic acid (C18:3 FA) and linoleic acid (C18:2 FA). The development of an assay for relative quantification of analytes at the single subcellular/organelle level by LDI-MS imaging was attempted and both plausibility and significant obstacles were seen. As a test

  4. Noise Removal with Maintained Spatial Resolution in Raman Images of Cells Exposed to Submicron Polystyrene Particles

    Directory of Open Access Journals (Sweden)

    Linnea Ahlinder

    2016-04-01

    Full Text Available The biodistribution of 300 nm polystyrene particles in A549 lung epithelial cells has been studied with confocal Raman spectroscopy. This is a label-free method in which particles and cells can be imaged without using dyes or fluorescent labels. The main drawback with Raman imaging is the comparatively low spatial resolution, which is aggravated in heterogeneous systems such as biological samples, which in addition often require long measurement times because of their weak Raman signal. Long measurement times may however induce laser-induced damage. In this study we use a super-resolution algorithm with Tikhonov regularization, intended to improve the image quality without demanding an increased number of collected pixels. Images of cells exposed to polystyrene particles have been acquired with two different step lengths, i.e., the distance between pixels, and compared to each other and to corresponding images treated with the super-resolution algorithm. It is shown that the resolution after application of super-resolution algorithms is not significantly improved compared to the theoretical limit for optical microscopy. However, to reduce noise and artefacts in the hyperspectral Raman images while maintaining the spatial resolution, we show that it is advantageous to use short mapping step lengths and super-resolution algorithms with appropriate regularization. The proposed methodology should be generally applicable for Raman imaging of biological samples and other photo-sensitive samples.

  5. Array diagnostics, spatial resolution, and filtering of undesired radiation with the 3D reconstruction algorithm

    DEFF Research Database (Denmark)

    Cappellin, C.; Pivnenko, Sergey; Jørgensen, E.

    2013-01-01

    This paper focuses on three important features of the 3D reconstruction algorithm of DIATOOL: the identification of array elements improper functioning and failure, the obtainable spatial resolution of the reconstructed fields and currents, and the filtering of undesired radiation and scattering...

  6. The spatial resolution of the porcine multifocal electroretinogram for detection of laser-induced retinal lesions

    DEFF Research Database (Denmark)

    Kyhn, Maria Voss; Kiilgaard, Jens Folke; Scherfig, Erik

    2008-01-01

    This study aimed to investigate the spatial resolution of a porcine multifocal electroretinogram (mfERG) protocol by testing its ability to detect laser-induced retinal lesions. Furthermore, we wanted to describe time-dependent changes in implicit time and amplitude of the different mfERG peaks...

  7. High spatial resolution X-ray and gamma ray imaging system using diffraction crystals

    Science.gov (United States)

    Smither, Robert K [Hinsdale, IL

    2011-05-17

    A method and a device for high spatial resolution imaging of a plurality of sources of x-ray and gamma-ray radiation are provided. The device comprises a plurality of arrays, with each array comprising a plurality of elements comprising a first collimator, a diffracting crystal, a second collimator, and a detector.

  8. Physical Simulator of Infrared Spectroradiometer with Spatial Resolution Enhancement Using Subpixel Image Registration and Processing

    Directory of Open Access Journals (Sweden)

    Lyalko, V.І.

    2015-11-01

    Full Text Available The mathematical and physical models of the new frame infrared spectroradiometer based on microbolometer array sensor with subpixel image registration are presented. It is planned to include the radiometer into onboard instrumentation of the future «Sich» satellite system for the land surface physical characterization by enhanced spatial resolution infrared space imagery.

  9. PET investigation of a fluidized particle : spatial and temporal resolution and short term motion

    NARCIS (Netherlands)

    Hoffmann, AC; Dechsiri, C; van de Wiel, F; Dehling, HG

    The motion of a single particle in a fluidized bed has been followed with high temporal and spatial resolution using an ECAT EXACT HR+ PET camera. An account is given of the analysis of the output from the camera, and the calculation of the particle position. The particle position was determined

  10. PIV study of flow field in Rushton turbine stirred vessel influenced by spatial resolution

    Czech Academy of Sciences Publication Activity Database

    Kotek, M.; Jašíková, D.; Kysela, Bohuš; Šulc, R.; Kopecký, V.

    2017-01-01

    Roč. 2, č. 2017 (2017), s. 79-84 ISSN 2367-8992 R&D Projects: GA ČR GA16-20175S Grant - others:GA MŠk(CZ) LO1201 Institutional support: RVO:67985874 Keywords : mixing process * PIV measurement * spatial resolution Subject RIV: JP - Industrial Processing

  11. Resolving mass flux at high spatial and temporal resolution using GRACE intersatellite measurements

    DEFF Research Database (Denmark)

    Rowlands, D. D.; Luthcke, S. B.; Klosko, S. M.

    2005-01-01

    The GRACE mission is designed to monitor mass flux on the Earth's surface at one month and high spatial resolution through the estimation of monthly gravity fields. Although this approach has been largely successful, information at submonthly time scales can be lost or even aliased through...

  12. A spatial Coherent Global Soil Moisture Product with Improved Temporal Resolution

    NARCIS (Netherlands)

    de Jeu, R.A.M.; Holmes, T.R.H.; Parinussa, R.M.; Owe, M.

    2014-01-01

    Global soil moisture products that are completely independent of any type of ancillary data and solely rely on satellite observations are presented. Additionally, we further develop an existing downscaling technique that enhances the spatial resolution of such products to approximately 11. km. These

  13. On the Importance of Spatial Resolution for Flap Side Edge Noise Prediction

    Science.gov (United States)

    Mineck, Raymond E.; Khorrami, Mehdi R.

    2017-01-01

    A spatial resolution study of flap tip flow and the effects on the farfield noise signature for an 18%-scale, semispan Gulfstream aircraft model are presented. The NASA FUN3D unstructured, compressible Navier-Stokes solver was used to perform the highly resolved, time-dependent, detached eddy simulations of the flow field associated with the flap for this high-fidelity aircraft model. Following our previous work on the same model, the latest computations were undertaken to determine the causes of deficiencies observed in our earlier predictions of the steady and unsteady surface pressures and off-surface flow field at the flap tip regions, in particular the outboard tip area, where the presence of a cavity at the side-edge produces very complex flow features and interactions. The present results show gradual improvement in steady loading at the outboard flap edge region with increasing spatial resolution, yielding more accurate fluctuating surface pressures, off-surface flow field, and farfield noise with improved high-frequency content when compared with wind tunnel measurements. The spatial resolution trends observed in the present study demonstrate that the deficiencies reported in our previous computations are mostly caused by inadequate spatial resolution and are not related to the turbulence model.

  14. Spatial resolution influence on the identification of land cover classes in the Amazon environment

    Directory of Open Access Journals (Sweden)

    PONZONI FLÁVIO J.

    2002-01-01

    Full Text Available To evaluate the role played by the spatial resolution in distinguishing land cover classes in the Amazon region, different levels of spatial resolution (60, 100, 120, 200 and 250 meters were simulated from a Landsat_5 Thematic Mapper (TM image. Thematic maps were produced by visual interpretation from the original (30 x 30 meters and simulated set of images. The map legend included primary forest, old and young woody secondary succession, and non-forest. The results indicated that for the discrimination between primary forest and non-forest, spatial resolution did not have great influence for pixel size equal or lower than 200 meters. The contrary was verified for the identification of old and young woody secondary vegetation due to their occurrence in small polygons. To avoid significant changes in the calculated area of these land cover types, a spatial resolution better than 100 meters is required. This result is an indication that the use of the future Brazilian remote sensing satellite (SSR-1 for secondary succession identification may be unreliable, especially for latitudes between S10degrees and S15degrees where critical areas of deforestation are located and pixel size is expected to vary within the same scene from 100 meters (S10degrees to 200 meters (S15degrees.

  15. Improving spatial resolution of the light field microscope with Fourier ptychography

    Science.gov (United States)

    Tani, Yoshitake; Usuki, Shin; Miura, Kenjiro T.

    2017-09-01

    Light field microscope (LFM) is an optical microscope capable of obtaining images having large depth of field with different viewpoints. By using the parallax of these multi-view images, it is possible to reconstruct the 3D sample. However, the sampling interval of this multi-viewpoint image depends on the pitch interval of the microlens array, so the spatial resolution is low, and the accuracy of the 3D sample to be reconstructed is also low. Conventional research has a method of increasing the spatial resolution by subpixel-shifted multiple images. However, this method has problems such as the necessity of mechanical operation and high cost. Therefore, we propose applying Fourier ptychography to the LFM. Fourier ptychography is a technique to obtain high spatial resolution images by joining images obtained by irradiating samples from different angles using LED arrays in Fourier space. Fourier ptychography does not require mechanical scanning and is high throughput and low cost. In addition, Fourier ptycoography is possible to obtain phase information on a sample, and it is also possible to obtain a fine 3D sample. We propose a method to generate high spatial resolution multiview images using Fourier ptychography and reconstruct highly accurate 3D sample from those images. In this research, we experiment with the original LFM and verify the effect.

  16. High spatial resolution three-dimensional mapping of vegetation spectral dynamics using computer vision

    Science.gov (United States)

    Jonathan P. Dandois; Erle C. Ellis

    2013-01-01

    High spatial resolution three-dimensional (3D) measurements of vegetation by remote sensing are advancing ecological research and environmental management. However, substantial economic and logistical costs limit this application, especially for observing phenological dynamics in ecosystem structure and spectral traits. Here we demonstrate a new aerial remote sensing...

  17. Limits on the spatial resolution of monolithic scintillators read out by APD arrays

    NARCIS (Netherlands)

    Laan, D.J.J. van der; Maas, M.C.; Bruyndonckx, P.; Schaart, D.R.

    2012-01-01

    Cramér-Rao theory can be used to derive the lower bound on the spatial resolution achievable with position-sensitive scintillation detectors as a function of the detector geometry and the pertinent physical properties of the scintillator, the photosensor and the readout electronics. Knowledge of the

  18. Temporal and spatial resolution of rainfall measurements required for urban hydrology

    NARCIS (Netherlands)

    Berne, A.D.; Delrieu, G.; Creutin, J.D.; Obled, C.

    2004-01-01

    The objective of the paper is to provide recommendations on the temporal and spatial resolution of rainfall measurements required for urban hydrological applications, based on quantitative investigations of the space-time scales of urban catchments and rainfall. First the temporal rainfall-runoff

  19. Frequency-comb-based BOTDA sensors for high-spatial-resolution/long-distance sensing.

    Science.gov (United States)

    Jia, Xin-Hong; Chang, Han-Qing; Lin, Kai; Xu, Cong; Wu, Jia-Gui

    2017-03-20

    Frequency-comb-based Brillouin optical time-domain analysis (BOTDA) sensors were developed to achieve acquisition-time reduction and high-spatial-resolution/long-distance sensing simultaneously. We found that, for the standard frequency-comb-based BOTDA, the use of a double-sideband (DSB) pulse generates a series of pulse pairs that simultaneously propagate along the sensing fiber, leading to a nonlinear interaction between the two sidebands of each frequency comb pulse, and a significant splitting of the Brillouin gain spectrum (BGS). This problem prevents its application in high-spatial-resolution sensing due to the higher pulse power requirement. Thus, one of the sidebands of DSB pulse was proposed for greatly suppressing the BGS distortion. In combination with the phonon pre-excitation technique based on phase-shifted pulse, a sensor with a spatial-resolution approximately 60 cm along a fiber approximately 592 m in length was demonstrated. Furthermore, we explored the detailed performance of long-distance sensing by frequency- comb-based BOTDA. The use of a frequency comb for the probe wave can suppress the pulse distortion and non-local effect, which is helpful for extending the sensing distance. A spatial resolution of approximately 6 m along a sensing fiber approximately 74.2 km in length was successfully demonstrated.

  20. The Impact of Spatial and Temporal Resolutions in Tropical Summer Rainfall Distribution: Preliminary Results

    Science.gov (United States)

    Liu, Q.; Chiu, L. S.; Hao, X.

    2017-10-01

    The abundance or lack of rainfall affects peoples' life and activities. As a major component of the global hydrological cycle (Chokngamwong & Chiu, 2007), accurate representations at various spatial and temporal scales are crucial for a lot of decision making processes. Climate models show a warmer and wetter climate due to increases of Greenhouse Gases (GHG). However, the models' resolutions are often too coarse to be directly applicable to local scales that are useful for mitigation purposes. Hence disaggregation (downscaling) procedures are needed to transfer the coarse scale products to higher spatial and temporal resolutions. The aim of this paper is to examine the changes in the statistical parameters of rainfall at various spatial and temporal resolutions. The TRMM Multi-satellite Precipitation Analysis (TMPA) at 0.25 degree, 3 hourly grid rainfall data for a summer is aggregated to 0.5,1.0, 2.0 and 2.5 degree and at 6, 12, 24 hourly, pentad (five days) and monthly resolutions. The probability distributions (PDF) and cumulative distribution functions(CDF) of rain amount at these resolutions are computed and modeled as a mixed distribution. Parameters of the PDFs are compared using the Kolmogrov-Smironov (KS) test, both for the mixed and the marginal distribution. These distributions are shown to be distinct. The marginal distributions are fitted with Lognormal and Gamma distributions and it is found that the Gamma distributions fit much better than the Lognormal.

  1. Lithium fluoride crystal as a novel high dynamic neutron imaging detector with microns scale spatial resolution

    Energy Technology Data Exchange (ETDEWEB)

    Faenov, Anatoly; Pikuz, Tatiana [Quantum Beam Science Directorate, Japan Atomic Energy Agency, Kyoto 619-0215 (Japan); High Temperatures, Russian Academy of Sciences, Izhorskaja Street 13/19, Moscow (Russian Federation); Matsubayashi, Masahito; Yasuda, Ryo; Iikura, Hiroshi; Nojima, Takehiro; Sakai, Takuro [Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Fukuda, Yuji; Kando, Masaki [Quantum Beam Science Directorate, Japan Atomic Energy Agency, Kyoto 619-0215 (Japan); Shiozawa, Masahiro [Nippon SOKEN, Inc., Iwaya 14, Shimohasumi, Nishio, Aichi 445-0012 (Japan); Kato, Yoshiaki [The Graduate School for the Creation of New Photonics Industries, Hamamatsu, Shizuoka 431-1202 (Japan)

    2012-12-15

    Recently, a new field of application of optically stimulated luminescence of color centers (CCs) in lithium fluoride (LiF) crystals was proposed - using them for high-performance neutron imaging - and promising results were obtained (Matsubayashi et al., Nucl. Instrum. Methods A 622, 637 (2010) and Matsubayashi et al., Nucl. Instrum. Methods A 651, 90 (2011)). Here we present the overview of main findings, which clearly demonstrated that the LiF crystal performs efficiently as neutron imaging detector in areas, where a high spatial resolution with a high image gradation resolution is needed. It was shown that the obtained neutron images are almost free from granular noises, have spatial resolution of {proportional_to} 6 {mu}m, and have practically linear response with the dynamic range of at least 10{sup 3}. It was also found that the LiF crystal detector offers a fairly good sensitivity. Moreover, detailed evaluation using a standard sensitivity indicator for neutron radiography showed that two holes with less than 2% transmittance differences could be distinguished. Additionally, we recently demonstrated that the high resolution neutron imaging with LiF crystals could be useful for quantitative characterizations of neutron sources and electric devices, comprising of low-Z elements, for example, such as fuel cells. All of this gives new opportunity for microns scale spatial resolution imaging by neutrons (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Electrophysiological measures of temporal resolution, contrast sensitivity and spatial resolving power in sharks.

    Science.gov (United States)

    Ryan, Laura A; Hemmi, Jan M; Collin, Shaun P; Hart, Nathan S

    2017-03-01

    In most animals, vision plays an important role in detecting prey, predators and conspecifics. The effectiveness of vision in assessing cues such as motion and shape is influenced by the ability of the visual system to detect changes in contrast in both space and time. Understanding the role vision plays in shark behaviour has been limited by a lack of knowledge about their temporal resolution, contrast sensitivity and spatial resolution. In this study, an electrophysiological approach was used to compare these measures across five species of sharks: Chiloscyllium punctatum, Heterodontus portusjacksoni, Hemiscyllium ocellatum, Mustelus mustelus and Haploblepharus edwardsii. All shark species were highly sensitive to brightness contrast and were able to detect contrast differences as low as 1.6%. Temporal resolution of flickering stimuli ranged from 28 to 44 Hz. Species that inhabit brighter environments were found to have higher temporal resolution. Spatial resolving power was estimated in C. punctatum, H. portusjacksoni and H. ocellatum and ranged from 0.10 to 0.35 cycles per degree, which is relatively low compared to other vertebrates. These results suggest that sharks have retinal adaptations that enhance contrast sensitivity at the expense of temporal and spatial resolution, which is beneficial for vision in dimly lit and/or low contrast aquatic environments.

  3. High spatial resolution brain functional MRI using submillimeter balanced steady-state free precession acquisition

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Pei-Hsin; Chung, Hsiao-Wen [Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan (China); Tsai, Ping-Huei [Imaging Research Center, Taipei Medical University, Taipei 11031, Taiwan and Department of Medical Imaging, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan (China); Wu, Ming-Long, E-mail: minglong.wu@csie.ncku.edu.tw [Institute of Medical Informatics, National Cheng-Kung University, Tainan 70101, Taiwan and Department of Computer Science and Information Engineering, National Cheng-Kung University, Tainan 70101, Taiwan (China); Chuang, Tzu-Chao [Department of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan (China); Shih, Yi-Yu [Siemens Limited Healthcare Sector, Taipei 11503, Taiwan (China); Huang, Teng-Yi [Department of Electrical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan (China)

    2013-12-15

    Purpose: One of the technical advantages of functional magnetic resonance imaging (fMRI) is its precise localization of changes from neuronal activities. While current practice of fMRI acquisition at voxel size around 3 × 3 × 3 mm{sup 3} achieves satisfactory results in studies of basic brain functions, higher spatial resolution is required in order to resolve finer cortical structures. This study investigated spatial resolution effects on brain fMRI experiments using balanced steady-state free precession (bSSFP) imaging with 0.37 mm{sup 3} voxel volume at 3.0 T. Methods: In fMRI experiments, full and unilateral visual field 5 Hz flashing checkerboard stimulations were given to healthy subjects. The bSSFP imaging experiments were performed at three different frequency offsets to widen the coverage, with functional activations in the primary visual cortex analyzed using the general linear model. Variations of the spatial resolution were achieved by removing outerk-space data components. Results: Results show that a reduction in voxel volume from 3.44 × 3.44 × 2 mm{sup 3} to 0.43 × 0.43 × 2 mm{sup 3} has resulted in an increase of the functional activation signals from (7.7 ± 1.7)% to (20.9 ± 2.0)% at 3.0 T, despite of the threefold SNR decreases in the original images, leading to nearly invariant functional contrast-to-noise ratios (fCNR) even at high spatial resolution. Activation signals aligning nicely with gray matter sulci at high spatial resolution would, on the other hand, have possibly been mistaken as noise at low spatial resolution. Conclusions: It is concluded that the bSSFP sequence is a plausible technique for fMRI investigations at submillimeter voxel widths without compromising fCNR. The reduction of partial volume averaging with nonactivated brain tissues to retain fCNR is uniquely suitable for high spatial resolution applications such as the resolving of columnar organization in the brain.

  4. Evaluation of charge-sharing effects on the spatial resolution of the PICASSO detector

    Energy Technology Data Exchange (ETDEWEB)

    Rigon, L., E-mail: luigi.rigon@ts.infn.i [Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Trieste, Via Valerio 2, 34127 Trieste (Italy); Arfelli, F. [Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Trieste, Via Valerio 2, 34127 Trieste (Italy); Dipartimento di Fisica, Universita di Trieste, Via Valerio 2, 34127 Trieste (Italy); Bergamaschi, A. [Paul Scherrer Institut (PSI), CH-5232 Villigen (Switzerland); Chen, R.C. [Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Trieste, Via Valerio 2, 34127 Trieste (Italy); Shanghai Institute of Applied Physics, CAS, Shanghai 201800 (China); Dreossi, D. [Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Trieste, Via Valerio 2, 34127 Trieste (Italy); Sincrotrone Trieste SCpA, S.S. 14 km 163.5, 34012 Basovizza (Italy); Longo, R. [Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Trieste, Via Valerio 2, 34127 Trieste (Italy); Dipartimento di Fisica, Universita di Trieste, Via Valerio 2, 34127 Trieste (Italy); Menk, R.-H. [Sincrotrone Trieste SCpA, S.S. 14 km 163.5, 34012 Basovizza (TS) (Italy); Schmitt, B. [Paul Scherrer Institut (PSI), CH-5232 Villigen (Switzerland); Vallazza, E. [Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Trieste, Via Valerio 2, 34127 Trieste (Italy); Castelli, E. [Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Trieste, Via Valerio 2, 34127 Trieste (Italy); Dipartimento di Fisica, Universita di Trieste, Via Valerio 2, 34127 Trieste (Italy)

    2010-05-21

    A double -layer 'edge-on' silicon microstrip detector has been designed and realized in the frame of the PICASSO (Phase Imaging for Clinical Application with Silicon detector and Synchrotron radiatiOn) project at the SYRMEP (SYnchrotron Radiation for MEdical Physics) beamline of Elettra (Trieste, Italy). The detector meets the requirements for synchrotron radiation mammography with patients inregarding: (a) size, since it covers the full beam width (210 mm); (b) spatial resolution, determined by the 0.05 mm strip pitch; (c) single-photon counting capabilities, because it is able to handle more than 10{sup 6} photons/(pixelxs); (d) contrast resolution, thanks to a threshold trim DAC that equalizes the channel sensitivity; (e) efficiency, due to the high absorption in the 15-20 mm sensor depth. Experimental measurements evidence charge sharing, though not compromising the spatial resolution.

  5. Distributed Brillouin sensing with sub-meter spatial resolution: modeling and processing.

    Science.gov (United States)

    Beugnot, Jean-Charles; Tur, Moshe; Mafang, Stella Foaleng; Thévenaz, Luc

    2011-04-11

    A general analytic solution for Brillouin distributed sensing in optical fibers with sub-meter spatial resolution is obtained by solving the acoustical-optical coupled wave equations by a perturbation method. The Brillouin interaction of a triad of square pump pulses with a continuous signal is described, covering a wide range of pumping schemes. The model predicts how the acoustic wave, the signal amplitude and the optical gain spectral profile depend upon the pumping scheme. Sub-meter spatial resolution is demonstrated for bright-, dark- and π-shifted interrogating pump pulses, together with disturbing echo effects, and the results compare favorably with experimental data. This analytic solution is an excellent tool not only for optimizing the pumping scheme but also for post-processing the measured data to remove resolution degrading features. © 2011 Optical Society of America

  6. Evaluation of charge -sharing effects on the spatial resolution of the PICASSO detector

    Science.gov (United States)

    Rigon, L.; Arfelli, F.; Bergamaschi, A.; Chen, R. C.; Dreossi, D.; Longo, R.; Menk, R.-H.; Schmitt, B.; Vallazza, E.; Castelli, E.

    2010-05-01

    A double -layer "edge-on" silicon microstrip detector has been designed and realized in the frame of the PICASSO (Phase Imaging for Clinical Application with Silicon detector and Synchrotron radiatiOn) project at the SYRMEP (SYnchrotron Radiation for MEdical Physics) beamline of Elettra (Trieste, Italy). The detector meets the requirements for synchrotron radiation mammography with patients inregarding: (a) size, since it covers the full beam width (210 mm); (b) spatial resolution, determined by the 0.05 mm strip pitch; (c) single-photon counting capabilities, because it is able to handle more than 10 6 photons/(pixel×s); (d) contrast resolution, thanks to a threshold trim DAC that equalizes the channel sensitivity; (e) efficiency, due to the high absorption in the 15-20 mm sensor depth. Experimental measurements evidence charge sharing, though not compromising the spatial resolution.

  7. High spatial resolution mapping of folds and fractures using Unmanned Aerial Vehicle (UAV) photogrammetry

    Science.gov (United States)

    Cruden, A. R.; Vollgger, S.

    2016-12-01

    The emerging capability of UAV photogrammetry combines a simple and cost-effective method to acquire digital aerial images with advanced computer vision algorithms that compute spatial datasets from a sequence of overlapping digital photographs from various viewpoints. Depending on flight altitude and camera setup, sub-centimeter spatial resolution orthophotographs and textured dense point clouds can be achieved. Orientation data can be collected for detailed structural analysis by digitally mapping such high-resolution spatial datasets in a fraction of time and with higher fidelity compared to traditional mapping techniques. Here we describe a photogrammetric workflow applied to a structural study of folds and fractures within alternating layers of sandstone and mudstone at a coastal outcrop in SE Australia. We surveyed this location using a downward looking digital camera mounted on commercially available multi-rotor UAV that autonomously followed waypoints at a set altitude and speed to ensure sufficient image overlap, minimum motion blur and an appropriate resolution. The use of surveyed ground control points allowed us to produce a geo-referenced 3D point cloud and an orthophotograph from hundreds of digital images at a spatial resolution < 10 mm per pixel, and cm-scale location accuracy. Orientation data of brittle and ductile structures were semi-automatically extracted from these high-resolution datasets using open-source software. This resulted in an extensive and statistically relevant orientation dataset that was used to 1) interpret the progressive development of folds and faults in the region, and 2) to generate a 3D structural model that underlines the complex internal structure of the outcrop and quantifies spatial variations in fold geometries. Overall, our work highlights how UAV photogrammetry can contribute to new insights in structural analysis.

  8. Using High Spatial Resolution Satellite Imagery to Map Forest Burn Severity Across Spatial Scales in a Pine Barrens Ecosystem

    Science.gov (United States)

    Meng, Ran; Wu, Jin; Schwager, Kathy L.; Zhao, Feng; Dennison, Philip E.; Cook, Bruce D.; Brewster, Kristen; Green, Timothy M.; Serbin, Shawn P.

    2017-01-01

    As a primary disturbance agent, fire significantly influences local processes and services of forest ecosystems. Although a variety of remote sensing based approaches have been developed and applied to Landsat mission imagery to infer burn severity at 30 m spatial resolution, forest burn severity have still been seldom assessed at fine spatial scales (less than or equal to 5 m) from very-high-resolution (VHR) data. We assessed a 432 ha forest fire that occurred in April 2012 on Long Island, New York, within the Pine Barrens region, a unique but imperiled fire-dependent ecosystem in the northeastern United States. The mapping of forest burn severity was explored here at fine spatial scales, for the first time using remotely sensed spectral indices and a set of Multiple Endmember Spectral Mixture Analysis (MESMA) fraction images from bi-temporal - pre- and post-fire event - WorldView-2 (WV-2) imagery at 2 m spatial resolution. We first evaluated our approach using 1 m by 1 m validation points at the sub-crown scale per severity class (i.e. unburned, low, moderate, and high severity) from the post-fire 0.10 m color aerial ortho-photos; then, we validated the burn severity mapping of geo-referenced dominant tree crowns (crown scale) and 15 m by 15 m fixed-area plots (inter-crown scale) with the post-fire 0.10 m aerial ortho-photos and measured crown information of twenty forest inventory plots. Our approach can accurately assess forest burn severity at the sub-crown (overall accuracy is 84% with a Kappa value of 0.77), crown (overall accuracy is 82% with a Kappa value of 0.76), and inter-crown scales (89% of the variation in estimated burn severity ratings (i.e. Geo-Composite Burn Index (CBI)). This work highlights that forest burn severity mapping from VHR data can capture heterogeneous fire patterns at fine spatial scales over the large spatial extents. This is important since most ecological processes associated with fire effects vary at the less than 30 m scale and

  9. Spatial resolution requirements for traffic-related air pollutant exposure evaluations

    Science.gov (United States)

    Batterman, Stuart; Chambliss, Sarah; Isakov, Vlad

    2014-09-01

    Vehicle emissions represent one of the most important air pollution sources in most urban areas, and elevated concentrations of pollutants found near major roads have been associated with many adverse health impacts. To understand these impacts, exposure estimates should reflect the spatial and temporal patterns observed for traffic-related air pollutants. This paper evaluates the spatial resolution and zonal systems required to estimate accurately intraurban and near-road exposures of traffic-related air pollutants. The analyses use the detailed information assembled for a large (800 km2) area centered on Detroit, Michigan, USA. Concentrations of nitrogen oxides (NOx) due to vehicle emissions were estimated using hourly traffic volumes and speeds on 9700 links representing all but minor roads in the city, the MOVES2010 emission model, the RLINE dispersion model, local meteorological data, a temporal resolution of 1 h, and spatial resolution as low as 10 m. Model estimates were joined with the corresponding shape files to estimate residential exposures for 700,000 individuals at property parcel, census block, census tract, and ZIP code levels. We evaluate joining methods, the spatial resolution needed to meet specific error criteria, and the extent of exposure misclassification. To portray traffic-related air pollutant exposure, raster or inverse distance-weighted interpolations are superior to nearest neighbor approaches, and interpolations between receptors and points of interest should not exceed about 40 m near major roads, and 100 m at larger distances. For census tracts and ZIP codes, average exposures are overestimated since few individuals live very near major roads, the range of concentrations is compressed, most exposures are misclassified, and high concentrations near roads are entirely omitted. While smaller zones improve performance considerably, even block-level data can misclassify many individuals. To estimate exposures and impacts of traffic

  10. Spatially detailed retrievals of spring phenology from single-season high-resolution image time series

    Science.gov (United States)

    Vrieling, Anton; Skidmore, Andrew K.; Wang, Tiejun; Meroni, Michele; Ens, Bruno J.; Oosterbeek, Kees; O'Connor, Brian; Darvishzadeh, Roshanak; Heurich, Marco; Shepherd, Anita; Paganini, Marc

    2017-07-01

    Vegetation indices derived from satellite image time series have been extensively used to estimate the timing of phenological events like season onset. Medium spatial resolution (≥250 m) satellite sensors with daily revisit capability are typically employed for this purpose. In recent years, phenology is being retrieved at higher resolution (≤30 m) in response to increasing availability of high-resolution satellite data. To overcome the reduced acquisition frequency of such data, previous attempts involved fusion between high- and medium-resolution data, or combinations of multi-year acquisitions in a single phenological reconstruction. The objectives of this study are to demonstrate that phenological parameters can now be retrieved from single-season high-resolution time series, and to compare these retrievals against those derived from multi-year high-resolution and single-season medium-resolution satellite data. The study focuses on the island of Schiermonnikoog, the Netherlands, which comprises a highly-dynamic saltmarsh, dune vegetation, and agricultural land. Combining NDVI series derived from atmospherically-corrected images from RapidEye (5 m-resolution) and the SPOT5 Take5 experiment (10m-resolution) acquired between March and August 2015, phenological parameters were estimated using a function fitting approach. We then compared results with phenology retrieved from four years of 30 m Landsat 8 OLI data, and single-year 100 m Proba-V and 250 m MODIS temporal composites of the same period. Retrieved phenological parameters from combined RapidEye/SPOT5 displayed spatially consistent results and a large spatial variability, providing complementary information to existing vegetation community maps. Retrievals that combined four years of Landsat observations into a single synthetic year were affected by the inclusion of years with warmer spring temperatures, whereas adjustment of the average phenology to 2015 observations was only feasible for a few pixels

  11. Spatial resolution measurement of triple-GEM detector and diffraction imaging test at synchrotron radiation

    Science.gov (United States)

    Zhang, Y. L.; Qi, H. R.; Wen, Z. W.; Wang, H. Y.; Ouyang, Q.; Chen, Y. B.; Zhang, J.; Hu, B. T.

    2017-04-01

    A triple-GEM detector with two-dimensional readout is developed. The detector provides high position resolution for powder diffraction experiments at synchrotron radiation. Spatial resolution of the detector is measured in the lab using a 55Fe X-ray source. A resolution of about 110 μm FWHM is achieved. The energy resolution is better than 27% for 5.9 keV X-rays. The detector's validity under illumination of photons in particular energy range is verified using a Cu X-ray tube. Imaging of the head of a wire stripper with X-ray tube demonstrates its imaging ability. A diffraction imaging experiment using the sample of powder SiO2 is successfully carried out at 1W2B laboratory of Beijing Synchrotron Radiation Facility (BSRF). Different diffraction rings are clearly seen under various X-ray energies.

  12. Effect of frequency characteristic of excitation pulse on lateral spatial resolution in coded ultrasound imaging

    Science.gov (United States)

    Fujita, Hiroki; Hasegawa, Hideyuki

    2017-07-01

    Recently, portable ultrasonic diagnostic equipment has frequently been used in clinical situations. The use of portable ultrasonic diagnostic equipment expands various diagnosis areas, such as remote medical diagnosis, and emergent diagnosis at disaster. It is expected that portable ultrasonic diagnostic equipment will be used more frequently in the future. To make ultrasonic diagnostic equipment portable, the number of transducer elements in an ultrasonic probe should be reduced significantly. Therefore, the transmit-receive sensitivity of the ultrasonic probe is degraded. For the improvement of the signal-to-noise ratio (SNR) of the received ultrasonic echo, coded excitation was introduced in ultrasonic imaging. Owing to pulse compression applied to the received echo signal, its SNR significantly improved without the degradation of the range spatial resolution. However, the lateral spatial resolution in coded ultrasound imaging has not been investigated in previous studies. The present study showed that the lateral resolution in coded ultrasound imaging using a typical code, 5-bit Barker code, was worse than that using a conventional short pulse. Such degradation was discussed in terms of the frequency characteristics of the impulse response of the ultrasonic transducer and the excitation pulse. Also, the Gaussian phase coherence factor was introduced as one of the methods to overcome such degradation in lateral spatial resolution.

  13. Explorative analysis of long time series of very high resolution spatial rainfall

    DEFF Research Database (Denmark)

    Thomassen, Emma Dybro; Sørup, Hjalte Jomo Danielsen; Scheibel, Marc

    2017-01-01

    variables a weather generator should employ. Both principal component analysis and cluster analysis show patterns that are in accordance with our understanding of physical properties of rainfall. In particular it seems that the differences between hourly and daily extremes can be described by relatively...... and daily extreme rainfall with the purpose of identifying suitable characteristics that can be used in a spatial weather generator of similar resolution. The spatial and temporal properties of the extreme events are explored by means of principal component analysis, cluster analysis, and linear models...... simple scaling across the set of variables, i.e. the level of each variable varies signicantly, but not the overall structure of the spatial precipitation. The analysis show that there is a good potential for making a spatial weather generator for high spatio-temporal precipitation for precipitation...

  14. Low-Cost Ultra-High Spatial and Temporal Resolution Mapping of Intertidal Rock Platforms

    Science.gov (United States)

    Bryson, M.; Johnson-Roberson, M.; Murphy, R.

    2012-07-01

    Intertidal ecosystems have primarily been studied using field-based sampling; remote sensing offers the ability to collect data over large areas in a snapshot of time which could compliment field-based sampling methods by extrapolating them into the wider spatial and temporal context. Conventional remote sensing tools (such as satellite and aircraft imaging) provide data at relatively course, sub-meter resolutions or with limited temporal resolutions and relatively high costs for small-scale environmental science and ecology studies. In this paper, we describe a low-cost, kite-based imaging system and photogrammetric pipeline that was developed for constructing highresolution, 3D, photo-realistic terrain models of intertidal rocky shores. The processing pipeline uses automatic image feature detection and matching, structure-from-motion and photo-textured terrain surface reconstruction algorithms that require minimal human input and only a small number of ground control points and allow the use of cheap, consumer-grade digital cameras. The resulting maps combine colour and topographic information at sub-centimeter resolutions over an area of approximately 100m, thus enabling spatial properties of the intertidal environment to be determined across a hierarchy of spatial scales. Results of the system are presented for an intertidal rock platform at Cape Banks, Sydney, Australia. Potential uses of this technique include mapping of plant (micro- and macro-algae) and animal (e.g. gastropods) assemblages at multiple spatial and temporal scales.

  15. A mixed-effects, spatially varying coefficients model with application to multi-resolution functional magnetic resonance imaging data.

    Science.gov (United States)

    Liu, Zhuqing; Bartsch, Andreas J; Berrocal, Veronica J; Johnson, Timothy D

    2018-01-01

    Spatial resolution plays an important role in functional magnetic resonance imaging studies as the signal-to-noise ratio increases linearly with voxel volume. In scientific studies, where functional magnetic resonance imaging is widely used, the standard spatial resolution typically used is relatively low which ensures a relatively high signal-to-noise ratio. However, for pre-surgical functional magnetic resonance imaging analysis, where spatial accuracy is paramount, high-resolution functional magnetic resonance imaging may play an important role with its greater spatial resolution. High spatial resolution comes at the cost of a smaller signal-to-noise ratio. This begs the question as to whether we can leverage the higher signal-to-noise ratio of a standard functional magnetic resonance imaging study with the greater spatial accuracy of a high-resolution functional magnetic resonance imaging study in a pre-operative patient. To answer this question, we propose to regress the statistic image from a high resolution scan onto the statistic image obtained from a standard resolution scan using a mixed-effects model with spatially varying coefficients. We evaluate our model via simulation studies and we compare its performance with a recently proposed model that operates at a single spatial resolution. We apply and compare the two models on data from a patient awaiting tumor resection. Both simulation study results and the real data analysis demonstrate that our newly proposed model indeed leverages the larger signal-to-noise ratio of the standard spatial resolution scan while maintaining the advantages of the high spatial resolution scan.

  16. Ultra-high spatial resolution multi-energy CT using photon counting detector technology

    Science.gov (United States)

    Leng, S.; Gutjahr, R.; Ferrero, A.; Kappler, S.; Henning, A.; Halaweish, A.; Zhou, W.; Montoya, J.; McCollough, C.

    2017-03-01

    Two ultra-high-resolution (UHR) imaging modes, each with two energy thresholds, were implemented on a research, whole-body photon-counting-detector (PCD) CT scanner, referred to as sharp and UHR, respectively. The UHR mode has a pixel size of 0.25 mm at iso-center for both energy thresholds, with a collimation of 32 × 0.25 mm. The sharp mode has a 0.25 mm pixel for the low-energy threshold and 0.5 mm for the high-energy threshold, with a collimation of 48 × 0.25 mm. Kidney stones with mixed mineral composition and lung nodules with different shapes were scanned using both modes, and with the standard imaging mode, referred to as macro mode (0.5 mm pixel and 32 × 0.5 mm collimation). Evaluation and comparison of the three modes focused on the ability to accurately delineate anatomic structures using the high-spatial resolution capability and the ability to quantify stone composition using the multi-energy capability. The low-energy threshold images of the sharp and UHR modes showed better shape and texture information due to the achieved higher spatial resolution, although noise was also higher. No noticeable benefit was shown in multi-energy analysis using UHR compared to standard resolution (macro mode) when standard doses were used. This was due to excessive noise in the higher resolution images. However, UHR scans at higher dose showed improvement in multi-energy analysis over macro mode with regular dose. To fully take advantage of the higher spatial resolution in multi-energy analysis, either increased radiation dose, or application of noise reduction techniques, is needed.

  17. Spatial resolution recovery utilizing multi-ray tracing and graphic processing unit in PET image reconstruction

    Science.gov (United States)

    Liang, Yicheng; Peng, Hao

    2015-02-01

    Depth-of-interaction (DOI) poses a major challenge for a PET system to achieve uniform spatial resolution across the field-of-view, particularly for small animal and organ-dedicated PET systems. In this work, we implemented an analytical method to model system matrix for resolution recovery, which was then incorporated in PET image reconstruction on a graphical processing unit platform, due to its parallel processing capacity. The method utilizes the concepts of virtual DOI layers and multi-ray tracing to calculate the coincidence detection response function for a given line-of-response. The accuracy of the proposed method was validated for a small-bore PET insert to be used for simultaneous PET/MR breast imaging. In addition, the performance comparisons were studied among the following three cases: 1) no physical DOI and no resolution modeling; 2) two physical DOI layers and no resolution modeling; and 3) no physical DOI design but with a different number of virtual DOI layers. The image quality was quantitatively evaluated in terms of spatial resolution (full-width-half-maximum and position offset), contrast recovery coefficient and noise. The results indicate that the proposed method has the potential to be used as an alternative to other physical DOI designs and achieve comparable imaging performances, while reducing detector/system design cost and complexity.

  18. High Cognitive Reserve is associated with a reduced age-related deficit in spatial conflict resolution.

    Directory of Open Access Journals (Sweden)

    Olga ePuccioni

    2012-12-01

    Full Text Available Several studies support the existence of a specific age-related difficulty in suppressing potentially distracting information. The aim of the present study is to investigate whether spatial conflict resolution is selectively affected by aging. The way aging affects individuals could be modulated by many factors determined by the socieconomic status: we investigated whether factors such as cognitive reserve (CR and years of education may play a compensatory role against age-related deficits in the spatial domain. A spatial Stroop task with no feature repetitions was administered to a sample of 17 non-demented older adults (69-79 years old and 18 younger controls (18-34 years old matched for gender and years of education. The two age groups were also administered with measures of intelligence and CR. The overall spatial Stroop effect did not differ according to age, neither for speed nor for accuracy. The two age groups equally showed sequential effects for congruent trials: reduced response times (RTs if another congruent trial preceded them, and accuracy at ceiling. For incongruent trials, older adults, but not younger controls, were influenced by congruency of trialn-1, since RTs increased with preceding congruent trials. Interestingly, such an age-related modulation negatively correlated with CR. These findings suggest that spatial conflict resolution in aging is predominantly affected by general slowing, rather than by a more specific deficit. However, a high level of CR seems to play a compensatory role for both factors.

  19. A New Sparse Representation Framework for Reconstruction of an Isotropic High Spatial Resolution MR Volume From Orthogonal Anisotropic Resolution Scans.

    Science.gov (United States)

    Jia, Yuanyuan; Gholipour, Ali; He, Zhongshi; Warfield, Simon K

    2017-05-01

    In magnetic resonance (MR), hardware limitations, scan time constraints, and patient movement often result in the acquisition of anisotropic 3-D MR images with limited spatial resolution in the out-of-plane views. Our goal is to construct an isotropic high-resolution (HR) 3-D MR image through upsampling and fusion of orthogonal anisotropic input scans. We propose a multiframe super-resolution (SR) reconstruction technique based on sparse representation of MR images. Our proposed algorithm exploits the correspondence between the HR slices and the low-resolution (LR) sections of the orthogonal input scans as well as the self-similarity of each input scan to train pairs of overcomplete dictionaries that are used in a sparse-land local model to upsample the input scans. The upsampled images are then combined using wavelet fusion and error backprojection to reconstruct an image. Features are learned from the data and no extra training set is needed. Qualitative and quantitative analyses were conducted to evaluate the proposed algorithm using simulated and clinical MR scans. Experimental results show that the proposed algorithm achieves promising results in terms of peak signal-to-noise ratio, structural similarity image index, intensity profiles, and visualization of small structures obscured in the LR imaging process due to partial volume effects. Our novel SR algorithm outperforms the nonlocal means (NLM) method using self-similarity, NLM method using self-similarity and image prior, self-training dictionary learning-based SR method, averaging of upsampled scans, and the wavelet fusion method. Our SR algorithm can reduce through-plane partial volume artifact by combining multiple orthogonal MR scans, and thus can potentially improve medical image analysis, research, and clinical diagnosis.

  20. Evaluating the Value of High Spatial Resolution in National Capacity Expansion Models using ReEDS: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, Venkat; Cole, Wesley

    2016-07-01

    Power sector capacity expansion models (CEMs) have a broad range of spatial resolutions. This paper uses the Regional Energy Deployment System (ReEDS) model, a long-term national scale electric sector CEM, to evaluate the value of high spatial resolution for CEMs. ReEDS models the United States with 134 load balancing areas (BAs) and captures the variability in existing generation parameters, future technology costs, performance, and resource availability using very high spatial resolution data, especially for wind and solar modeled at 356 resource regions. In this paper we perform planning studies at three different spatial resolutions--native resolution (134 BAs), state-level, and NERC region level--and evaluate how results change under different levels of spatial aggregation in terms of renewable capacity deployment and location, associated transmission builds, and system costs. The results are used to ascertain the value of high geographically resolved models in terms of their impact on relative competitiveness among renewable energy resources.

  1. Mapping the subcellular localization of Fe3O4@TiO2 nanoparticles by X-ray Fluorescence Microscopy

    Science.gov (United States)

    Yuan, Y.; Chen, S.; Gleber, S. C.; Lai, B.; Brister, K.; Flachenecker, C.; Wanzer, B.; Paunesku, T.; Vogt, S.; Woloschak, G. E.

    2013-10-01

    The targeted delivery of Fe3O4@TiO2 nanoparticles to cancer cells is an important step in their development as nanomedicines. We have synthesized nanoparticles that can bind the Epidermal Growth Factor Receptor, a cell surface protein that is overexpressed in many epithelial type cancers. In order to study the subcellular distribution of these nanoparticles, we have utilized the sub-micron resolution of X-ray Fluorescence Microscopy to map the location of Fe3O4@TiO2 NPs and other trace metal elements within HeLa cervical cancer cells. Here we demonstrate how the higher resolution of the newly installed Bionanoprobe at the Advanced Photon Source at Argonne National Laboratory can greatly improve our ability to distinguish intracellular nanoparticles and their spatial relationship with subcellular compartments.

  2. 3D high spectral and spatial resolution imaging of ex vivo mouse brain

    Energy Technology Data Exchange (ETDEWEB)

    Foxley, Sean, E-mail: sean.foxley@ndcn.ox.ac.uk; Karczmar, Gregory S. [Department of Radiology, University of Chicago, Chicago, Illinois 60637 (United States); Domowicz, Miriam [Department of Pediatrics, University of Chicago, Chicago, Illinois 60637 (United States); Schwartz, Nancy [Department of Pediatrics, Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637 (United States)

    2015-03-15

    Purpose: Widely used MRI methods show brain morphology both in vivo and ex vivo at very high resolution. Many of these methods (e.g., T{sub 2}{sup *}-weighted imaging, phase-sensitive imaging, or susceptibility-weighted imaging) are sensitive to local magnetic susceptibility gradients produced by subtle variations in tissue composition. However, the spectral resolution of commonly used methods is limited to maintain reasonable run-time combined with very high spatial resolution. Here, the authors report on data acquisition at increased spectral resolution, with 3-dimensional high spectral and spatial resolution MRI, in order to analyze subtle variations in water proton resonance frequency and lineshape that reflect local anatomy. The resulting information compliments previous studies based on T{sub 2}{sup *} and resonance frequency. Methods: The proton free induction decay was sampled at high resolution and Fourier transformed to produce a high-resolution water spectrum for each image voxel in a 3D volume. Data were acquired using a multigradient echo pulse sequence (i.e., echo-planar spectroscopic imaging) with a spatial resolution of 50 × 50 × 70 μm{sup 3} and spectral resolution of 3.5 Hz. Data were analyzed in the spectral domain, and images were produced from the various Fourier components of the water resonance. This allowed precise measurement of local variations in water resonance frequency and lineshape, at the expense of significantly increased run time (16–24 h). Results: High contrast T{sub 2}{sup *}-weighted images were produced from the peak of the water resonance (peak height image), revealing a high degree of anatomical detail, specifically in the hippocampus and cerebellum. In images produced from Fourier components of the water resonance at −7.0 Hz from the peak, the contrast between deep white matter tracts and the surrounding tissue is the reverse of the contrast in water peak height images. This indicates the presence of a shoulder in

  3. Simulation study of spatial resolution and sensitivity for the tapered depth of interaction PET detectors for small animal imaging

    Energy Technology Data Exchange (ETDEWEB)

    St James, Sara; Yang Yongfeng; Bowen, Spencer L; Qi Jinyi; Cherry, Simon R [Department of Biomedical Engineering, University of California-Davis, One Shields Avenue, Davis, CA 95616 (United States)], E-mail: sara.stjames@gmail.com, E-mail: srcherry@ucdavis.edu

    2010-01-21

    Improvements to current small animal PET scanners can be made by improving the sensitivity and the spatial resolution of the scanner. In the past, efforts have been made to minimize the crystal dimensions in the axial and transaxial directions to improve the spatial resolution and to increase the crystal length to improve the sensitivity of the scanner. We have designed tapered PET detectors with the purpose of reducing the gaps between detector modules and optimizing the sensitivity of a future-generation small animal PET scanner. In this work, we investigate spatial resolution and sensitivity of a scanner based on tapered detector elements using Monte Carlo simulations. For tapered detector elements more scintillation material is used per detector resulting in a higher sensitivity of the scanner. However, since the detector elements are not uniform in size, degradation in spatial resolution is also expected. To investigate characteristics of tapered PET detectors, the spatial resolution and sensitivity of a one-ring scanner were simulated for a system based on traditional cuboid detectors and a scanner based on tapered detectors. Additionally, the effect of depth of interaction (DOI) resolution on the spatial resolution for the traditional and tapered detectors was evaluated. All simulations were performed using the Monte Carlo simulation package GATE. Using the tapered arrays, a 64% improvement in the sensitivity across the field of view was found compared with traditional detectors for the same ring diameter. The level of DOI encoding was found to be the dominating factor in determining the radial spatial resolution and not the detector shape. For all levels of DOI encoding, no significant difference was found for the spatial resolution when comparing the tapered and the cuboid detectors. Detectors employing the tapered crystal design along with excellent DOI resolution will lead to PET scanners with higher sensitivity and uniform spatial resolution across the

  4. Prioritizing spatial accuracy in high-resolution fMRI data using multivariate feature weight mapping

    Directory of Open Access Journals (Sweden)

    Johannes eStelzer

    2014-04-01

    Full Text Available Although ultra-high-field fMRI at field strengths of 7T or above provides substantial gains in BOLD contrast-to-noise ratio, when very high-resolution fMRI is required such gains are inevitably reduced. The improvement in sensitivity provided by multivariate analysis techniques, as compared with univariate methods, then becomes especially welcome. Information mapping approaches are commonly used, such as the searchlight technique, which take into account the spatially distributed patterns of activation in order to predict stimulus conditions. However, the popular searchlight decoding technique, in particular, has been found to be prone to spatial inaccuracies. For instance, the spatial extent of informative areas is generally exaggerated, and their spatial configuration is distorted. We propose the combination of a nonparametric and permutation-based statistical framework with linear classifiers. We term this new combined method Feature Weight Mapping (FWM. The main goal of the proposed method is to map the specific contribution of each voxel to the classification decision while including a correction for the multiple comparisons problem. Next, we compare this new method to the searchlight approach using a simulation and ultra-high-field 7T experimental data. We found that the searchlight method led to spatial inaccuracies that are especially noticeable in high-resolution fMRI data. In contrast, FWM was more spatially precise, revealing both informative anatomical structures as well as the direction by which voxels contribute to the classification. By maximizing the spatial accuracy of ultra-high-field fMRI results, global multivariate methods provide a substantial improvement for characterizing structure-function relationships.

  5. Laser Beam Filtration for High Spatial Resolution MALDI Imaging Mass Spectrometry

    Science.gov (United States)

    Zavalin, Andre; Yang, Junhai; Caprioli, Richard

    2013-07-01

    We describe an easy and inexpensive way to provide a highly defined Gaussian shaped laser spot on target of 5 μm diameter for imaging mass spectrometry using a commercial MALDI TOF instrument that is designed to produce a 20 μm diameter laser beam on target at its lowest setting. A 25 μm pinhole filter on a swivel arm was installed in the laser beam optics outside the vacuum ion source chamber so it is easily flipped into or out of the beam as desired by the operator. The resulting ion images at 5 μm spatial resolution are sharp since the satellite secondary laser beam maxima have been removed by the filter. Ion images are shown to demonstrate the performance and are compared with the method of oversampling to achieve higher spatial resolution when only a larger laser beam spot on target is available.

  6. Silicon microstrip detectors for digital mammography - evaluation and spatial resolution study

    CERN Document Server

    Mali, T; Mikuz, M

    2001-01-01

    Silicon microstrip detectors were used to build an experimental X-ray imaging setup. The detectors were used in an 'edge-on' geometry, with the photons hitting the detector from the side. Efficiencies up to 90% at 20 keV photon energy could be achieved. The system was tested using a standard mammographic phantom. Images of modeled microcalcifications with various diameters down to 200 mu m and images of modeled tumors were made. Spatial resolution of the system was studied on an X-ray test pattern with frequency of line-pairs between 1 and 10l p/mm. An appropriate scanning step combined with knowledge of the system's line spread function was used to deconvolve the measured image and increase the spatial resolution. In this way the effective pixel size was reduced as much as for a factor of approx 3.

  7. Working memory-driven attention improves spatial resolution: Support for perceptual enhancement.

    Science.gov (United States)

    Pan, Yi; Luo, Qianying; Cheng, Min

    2016-08-01

    Previous research has indicated that attention can be biased toward those stimuli matching the contents of working memory and thereby facilitates visual processing at the location of the memory-matching stimuli. However, whether this working memory-driven attentional modulation takes place on early perceptual processes remains unclear. Our present results showed that working memory-driven attention improved identification of a brief Landolt target presented alone in the visual field. Because the suprathreshold target appeared without any external noise added (i.e., no distractors or masks), the results suggest that working memory-driven attention enhances the target signal at early perceptual stages of visual processing. Furthermore, given that performance in the Landolt target identification task indexes spatial resolution, this attentional facilitation indicates that working memory-driven attention can boost early perceptual processing via enhancement of spatial resolution at the attended location.

  8. [Basic evaluation of sampling step angle and spatial resolution in continuous rotating acquisition with SPECT].

    Science.gov (United States)

    Kangai, Yoshiharu; Nagaki, Akio; Matsutomo, Norikazu; Sugino, Shuichi; Ohata, Yasushi; Mimura, Hiroaki; Onishi, Hideo

    2011-01-01

    In the data sampling in single photon emission computed tomography (SPECT), the continuous rotating acquisition method has high clinical utility. There have been various reports about the optimum sampling step angle for continuous rotating acquisition. Objective evaluation was performed visually and by measuring spatial resolution with a column phantom to find the optimum sampling step angle for continuous rotating acquisition. In locations far from the rotation center, a large sampling step angle produced artificial images with tangential elongation. The spatial resolution was 11.58 ± 0.19 mm full width half maximum (FWHM) as measured at a sampling step angle of 3 degrees and at 10 cm away from the rotation center. Increasing the sampling step angle to more than 3 degrees resulted in an increase of FWHM in the tangential direction. The optimum sampling step angle for continuous rotating acquisition in SPECT needs to be below that calculated from the sampling theorem.

  9. Experimental evaluation of spatial resolution in phase maps retrieved by transport of intensity equation.

    Science.gov (United States)

    Zhang, Xiaobin; Oshima, Yoshifumi

    2015-12-01

    The transport of intensity equation (TIE) is a convenient method of obtaining a potential distribution, as it requires only three transmission electron microscopy images with different amounts of defocus. However, the spatial resolution of the TIE phase map has not yet been evaluated experimentally. In this study, we investigated the phase distribution of spherical gold nanoparticles and its dependence on the defocus difference and found that the spatial resolution was finer than 2 nm, even for a defocus difference of 4 µm. Theoretical calculations reproduced the experimental results well. © The Author 2015. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Spatial resolution and sensitivity of the Inveon small-animal PET scanner.

    Science.gov (United States)

    Visser, Eric P; Disselhorst, Jonathan A; Brom, Maarten; Laverman, Peter; Gotthardt, Martin; Oyen, Wim J G; Boerman, Otto C

    2009-01-01

    The Inveon small-animal PET scanner is characterized by a large, 127-mm axial length and a 161-mm crystal ring diameter. The associated high sensitivity is obtained by using all lines of response (LORs) up to the maximum ring difference (MRD) of 79, for which the most oblique LORs form acceptance angles of 38.3 degrees with transaxial planes. The result is 2 phenomena that are normally not encountered in PET scanners: a parallax or depth-of-interaction effect in the axial direction and the breakdown of Fourier rebinning (FORE). Both effects cause a deterioration of axial spatial resolution. Limiting the MRD to smaller values reduces this axial blurring at the cost of sensitivity. Alternatively, 3-dimensional (3D) reconstruction techniques can be used in which the rebinning step is absent. The aim of this study was to experimentally determine the spatial resolution and sensitivity of the Inveon for its whole field of view (FOV). Spatial resolution and sensitivity were measured using filtered backprojection (FBP) with FORE, FBP with LOR angle-weighted adapted FORE (AFORE), and 3D ordered-subset expectation maximization followed by maximum a posteriori reconstruction (OSEM3D/MAP). Tangential and radial full width at half maximum (FWHM) showed almost no dependence on the MRD using FORE and FBP. Tangential FWHMs were 1.5 mm in the center of the FOV (CFOV) and 1.8 mm at the edge of the FOV (EFOV). Radial FWHMs were 1.5 and 3.0 mm in the CFOV and EFOV, respectively. In contrast, axial FWHMs increased with the MRD and ranged between 1.1 and 2.0 mm in the CFOV and between 1.5 and 2.7 mm in the EFOV for a MRD between 1 and 79. AFORE improved the axial resolution for a large part of the FOV, but image noise increased. OSEM3D/MAP yielded uniform spatial resolution in all directions, with an average FWHM of 1.65+/-0.06 mm. Sensitivity in the CFOV for the default energy and coincidence time window was 0.068; peak sensitivity was 0.111. The Inveon showed high spatial resolution

  11. Assessing the Resolution Adaptability of the Zhang-McFarlane Cumulus Parameterization With Spatial and Temporal Averaging: RESOLUTION ADAPTABILITY OF ZM SCHEME

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Yuxing [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing China; Fan, Jiwen [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; Xiao, Heng [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; Zhang, Guang J. [Scripps Institution of Oceanography, University of California, San Diego CA USA; Ghan, Steven J. [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; Xu, Kuan-Man [NASA Langley Research Center, Hampton VA USA; Ma, Po-Lun [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; Gustafson, William I. [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA

    2017-11-01

    Realistic modeling of cumulus convection at fine model resolutions (a few to a few tens of km) is problematic since it requires the cumulus scheme to adapt to higher resolution than they were originally designed for (~100 km). To solve this problem, we implement the spatial averaging method proposed in Xiao et al. (2015) and also propose a temporal averaging method for the large-scale convective available potential energy (CAPE) tendency in the Zhang-McFarlane (ZM) cumulus parameterization. The resolution adaptability of the original ZM scheme, the scheme with spatial averaging, and the scheme with both spatial and temporal averaging at 4-32 km resolution is assessed using the Weather Research and Forecasting (WRF) model, by comparing with Cloud Resolving Model (CRM) results. We find that the original ZM scheme has very poor resolution adaptability, with sub-grid convective transport and precipitation increasing significantly as the resolution increases. The spatial averaging method improves the resolution adaptability of the ZM scheme and better conserves the total transport of moist static energy and total precipitation. With the temporal averaging method, the resolution adaptability of the scheme is further improved, with sub-grid convective precipitation becoming smaller than resolved precipitation for resolution higher than 8 km, which is consistent with the results from the CRM simulation. Both the spatial distribution and time series of precipitation are improved with the spatial and temporal averaging methods. The results may be helpful for developing resolution adaptability for other cumulus parameterizations that are based on quasi-equilibrium assumption.

  12. Improving detector spatial resolution using pixelated scintillators with a barrier rib structure

    Science.gov (United States)

    Liu, Langechuan; Lu, Minghui; Cao, Wanqing; Peng, Luke; Chen, Arthur

    2016-03-01

    Indirect conversion flat panel detectors (FPDs) based on amorphous silicon (a-Si) technology are widely used in digital X-ray imaging. In such FPDs a scintillator layer is used for converting X-rays into visible light photons. However, the lateral spread of these photons inside the scintillator layer reduces spatial resolution of the FPD. In this study, FPDs incorporating pixelated scintillators with a barrier rib structure were developed to limit lateral spread of light photons thereby improving spatial resolution. For the pixelated scintillator, a two-dimensional barrier rib structure was first manufactured on a substrate layer, coated with reflective materials, and filled to the rim with the scintillating material of gadolinium oxysulfide (GOS). Several scintillator samples were fabricated, with pitch size varying from 160 to 280 μm and rib height from 200 to 280 μm. The samples were directly coupled to an a-Si flat panel photodiode array with a pitch of 200 μm to convert optical photons to electronic signals. With the pixelated scintillator, the detector modulation transfer function was shown to improve significantly (by 94% at 2 cycle/mm) compared to a detector using an unstructured GOS layer. However, the prototype does show lower sensitivity due to the decrease in scintillator fill factor. The preliminary results demonstrated the feasibility of using the barrier-rib structure to improve the spatial resolution of FPDs. Such an improvement would greatly benefit nondestructive testing applications where the spatial resolution is the most important parameter. Further investigation will focus on improving the detector sensitivity and exploring its medical applications.

  13. Influence of spatial resolution and contrast agent dosage on myocardial T1 relaxation times.

    Science.gov (United States)

    Blaszczyk, Edyta; Töpper, Agnieszka; Schmacht, Luisa; Wanke, Felix; Greiser, Andreas; Schulz-Menger, Jeanette; von Knobelsdorff-Brenkenhoff, Florian

    2017-02-01

    Our aim was to study the influence of small variations in spatial resolution and contrast agent dosage on myocardial T1 relaxation time. Twenty-nine healthy volunteers underwent cardiovascular magnetic resonance at 3T twice, including a modified look-locker inversion recovery (MOLLI) technique-3(3)3(3)5-for T1 mapping. Native T1 was assessed in three spatial resolutions (voxel size 1.4 × 1.4 × 6, 1.6 × 1.6 × 6, 1.7 × 1.7 × 6 mm(3)), and postcontrast T1 after 0.1 and 0.2 mmol/kg gadobutrol. Partition coefficient was calculated based on myocardial and blood T1. T1 analysis was done per segment, per slice, and for the whole heart. Native T1 values did not differ with varying spatial resolution per segment (p = 0.116-0.980), per slice (basal: p = 0.772; middle: p = 0.639; apex: p = 0.276), and globally (p = 0.191). Postcontrast T1 values were significantly lower with higher contrast agent dosage (p 3T, very small variations in spatial resolution (voxel sizes between 1.4 × 1.4 × 6 and 1.7 × 1.7 × 6 mm(3)) remained without effect on the native T1 relaxation times. Postcontrast T1 values were naturally shorter with higher contrast agent dosage while the partition coefficient remained constant. Further studies are necessary to test whether these conclusions hold true for larger matrix sizes and in larger cohorts.

  14. Difet: Distributed Feature Extraction Tool for High Spatial Resolution Remote Sensing Images

    Science.gov (United States)

    Eken, S.; Aydın, E.; Sayar, A.

    2017-11-01

    In this paper, we propose distributed feature extraction tool from high spatial resolution remote sensing images. Tool is based on Apache Hadoop framework and Hadoop Image Processing Interface. Two corner detection (Harris and Shi-Tomasi) algorithms and five feature descriptors (SIFT, SURF, FAST, BRIEF, and ORB) are considered. Robustness of the tool in the task of feature extraction from LandSat-8 imageries are evaluated in terms of horizontal scalability.

  15. DIFET: DISTRIBUTED FEATURE EXTRACTION TOOL FOR HIGH SPATIAL RESOLUTION REMOTE SENSING IMAGES

    Directory of Open Access Journals (Sweden)

    S. Eken

    2017-11-01

    Full Text Available In this paper, we propose distributed feature extraction tool from high spatial resolution remote sensing images. Tool is based on Apache Hadoop framework and Hadoop Image Processing Interface. Two corner detection (Harris and Shi-Tomasi algorithms and five feature descriptors (SIFT, SURF, FAST, BRIEF, and ORB are considered. Robustness of the tool in the task of feature extraction from LandSat-8 imageries are evaluated in terms of horizontal scalability.

  16. An optical setup for electric field measurements in MRI with high spatial resolution

    Science.gov (United States)

    Reiss, Simon; Bitzer, Andreas; Bock, Michael

    2015-06-01

    Electric field measurements in the magnetic resonance (MR) imaging environment are important to assess potentially dangerous radio-frequency (RF) heating in the vicinity of metallic structures such as coils, implants or catheters. So far, E-field measurements have been performed with dipole antennas that lag of limited spatial resolution and which are difficult to use in the magnet bore as they interfere with the RF transmit field of the MRI system. In this work an electro-optic sensor is presented that utilizes the Pockels effect to measure the E-field in a clinical MR system with high spatial resolution. This sensor consists of dielectric materials only and thus, it only minimally influences the measured E-field distribution. A 10 m long flexible optical fiber connects the small sensor head to a remote processing unit where the optical signal is transformed into an electrical output signal. Spatially resolved qualitative E-field measurements were performed in a 1.5 T clinical MR system in the vicinity of metallic samples and an active tracking catheter with a resolution of up to 1 mm. The near-field pattern of a resonant U-shaped metallic sample was clearly identified and compared with numerical simulations. A more complex field behavior was found for the tracking catheter where strong E-field enhancements were observed at the distal tip and at its proximal part outside the phantom solution. Due to its sub-mm spatial resolution the optical sensor approach provides detailed insight into the complex and difficult to access field distributions close to implants and metallic structures and has turned out to be promising tool for MRI field and safety inspections.

  17. Visualization of brainstem perfusion using a high spatial resolution SPECT system.

    Science.gov (United States)

    Dierckx, R; Dobbeleir, A; Vandevivere, J; Abts, H; DeDeyn, P P

    1992-05-01

    The authors explored the high spatial resolution of a three-head rotating SPECT system, equipped with lead super-fine fanbeam collimator. The brainstem was high-lighted in a three-dimensional reconstruction, showing perfusion small structures such as mesencephalon, pons, and medulla oblongata. The visualization of brainstem perfusion sets new landmarks in functional neuroimaging and, moreover, was obtained with a commercially available three-head SPECT system.

  18. Quantitative metrics for assessment of chemical image quality and spatial resolution.

    Science.gov (United States)

    Kertesz, Vilmos; Cahill, John F; Van Berkel, Gary J

    2016-04-15

    Currently objective/quantitative descriptions of the quality and spatial resolution of mass spectrometry derived chemical images are not standardized. Development of these standardized metrics is required to objectively describe the chemical imaging capabilities of existing and/or new mass spectrometry imaging technologies. Such metrics would allow unbiased judgment of intra-laboratory advancement and/or inter-laboratory comparison for these technologies if used together with standardized surfaces. Two image metrics, viz., "chemical image contrast" (ChemIC) based on signal-to-noise related statistical measures on chemical image pixels and "corrected resolving power factor" (cRPF) constructed from statistical analysis of mass-to-charge chronograms across features of interest in an image, were developed. These metrics, quantifying chemical image quality and spatial resolution, respectively, were used to evaluate chemical images of a model photoresist patterned surface collected using a laser ablation/liquid vortex capture mass spectrometry imaging system under different instrument operational parameters. The calculated ChemIC and cRPF metrics determined in an unbiased fashion the relative ranking of chemical image quality obtained with the laser ablation/liquid vortex capture mass spectrometry imaging system. These rankings were used to show that both chemical image contrast and spatial resolution deteriorated with increasing surface scan speed, increased lane spacing and decreasing size of surface features. ChemIC and cRPF, respectively, were developed and successfully applied for the objective description of chemical image quality and spatial resolution of chemical images collected from model surfaces using a laser ablation/liquid vortex capture mass spectrometry imaging system. Published in 2016. This article is a U.S. Government work and is in the public domain in the USA. Published in 2016. This article is a U.S. Government work and is in the public domain in

  19. Calculation of Optimal Geometrical Magnification and Spatial Resolution of Betatron Tomograph

    OpenAIRE

    Zhong, Y.; Chakhlov, Sergey Vladimirovich; Trinh, V. B.

    2017-01-01

    One of the perspective directions of development of non-destructive testing is the method of computed tomography. Computed tomography really enhances the ability of X-ray inspection, from thin and simple to thick and complex parts. There are many factors that influence the performance of computed tomography, the main parameters for computed tomography scanners and also scanner based on betatron, are geometric magnification and spatial resolution. Calculations of these parameters for the betat...

  20. Influence of Elevation Data Resolution on Spatial Prediction of Colluvial Soils in a Luvisol Region.

    Directory of Open Access Journals (Sweden)

    Vít Penížek

    Full Text Available The development of a soil cover is a dynamic process. Soil cover can be altered within a few decades, which requires updating of the legacy soil maps. Soil erosion is one of the most important processes quickly altering soil cover on agriculture land. Colluvial soils develop in concave parts of the landscape as a consequence of sedimentation of eroded material. Colluvial soils are recognised as important soil units because they are a vast sink of soil organic carbon. Terrain derivatives became an important tool in digital soil mapping and are among the most popular auxiliary data used for quantitative spatial prediction. Prediction success rates are often directly dependent on raster resolution. In our study, we tested how raster resolution (1, 2, 3, 5, 10, 20 and 30 meters influences spatial prediction of colluvial soils. Terrain derivatives (altitude, slope, plane curvature, topographic position index, LS factor and convergence index were calculated for the given raster resolutions. Four models were applied (boosted tree, neural network, random forest and Classification/Regression Tree to spatially predict the soil cover over a 77 ha large study plot. Models training and validation was based on 111 soil profiles surveyed on a regular sampling grid. Moreover, the predicted real extent and shape of the colluvial soil area was examined. In general, no clear trend in the accuracy prediction was found without the given raster resolution range. Higher maximum prediction accuracy for colluvial soil, compared to prediction accuracy of total soil cover of the study plot, can be explained by the choice of terrain derivatives that were best for Colluvial soils differentiation from other soil units. Regarding the character of the predicted Colluvial soils area, maps of 2 to 10 m resolution provided reasonable delineation of the colluvial soil as part of the cover over the study area.

  1. Influence of Elevation Data Resolution on Spatial Prediction of Colluvial Soils in a Luvisol Region

    Science.gov (United States)

    Penížek, Vít; Zádorová, Tereza; Kodešová, Radka; Vaněk, Aleš

    2016-01-01

    The development of a soil cover is a dynamic process. Soil cover can be altered within a few decades, which requires updating of the legacy soil maps. Soil erosion is one of the most important processes quickly altering soil cover on agriculture land. Colluvial soils develop in concave parts of the landscape as a consequence of sedimentation of eroded material. Colluvial soils are recognised as important soil units because they are a vast sink of soil organic carbon. Terrain derivatives became an important tool in digital soil mapping and are among the most popular auxiliary data used for quantitative spatial prediction. Prediction success rates are often directly dependent on raster resolution. In our study, we tested how raster resolution (1, 2, 3, 5, 10, 20 and 30 meters) influences spatial prediction of colluvial soils. Terrain derivatives (altitude, slope, plane curvature, topographic position index, LS factor and convergence index) were calculated for the given raster resolutions. Four models were applied (boosted tree, neural network, random forest and Classification/Regression Tree) to spatially predict the soil cover over a 77 ha large study plot. Models training and validation was based on 111 soil profiles surveyed on a regular sampling grid. Moreover, the predicted real extent and shape of the colluvial soil area was examined. In general, no clear trend in the accuracy prediction was found without the given raster resolution range. Higher maximum prediction accuracy for colluvial soil, compared to prediction accuracy of total soil cover of the study plot, can be explained by the choice of terrain derivatives that were best for Colluvial soils differentiation from other soil units. Regarding the character of the predicted Colluvial soils area, maps of 2 to 10 m resolution provided reasonable delineation of the colluvial soil as part of the cover over the study area. PMID:27846230

  2. SU-E-T-244: High Spatial Resolution EBT2 Film Dosimetry.

    Science.gov (United States)

    Poppinga, D; Schoenfeld, A; Poppe, B; Chofor, N

    2012-06-01

    The purpose of this study was to measure depth dose curves and dose effects near high-Z interfaces with radiochromic EBT-2 films reaching a spatial resolution superior to conventional methods with no quality losses. The setup is made of two 12cm stacks of RW3, fixing an EBT2 film in a vertical position. To measure a depth dose curve, the setup was irradiated with a 15MV photon beam (Siemens Primus). Since the film is positioned parallel to the beam propagation, the depth dose curve is measured with only one film per depth. Additionally, a dental gold alloy probe was inserted in the RW3 stack at 6cm depth and the dose enhancement in front of the probe was measured with the method described above. Hereby, the bottom edge of the film touches the probe's surface.The irradiated films were digitized with a resolution of 72dpi using an Epson 10000XL flatbed scanner with a transparency unit and alignment frames. With this setup, the spatial resolution is only limited by the scanning resolution. In order to verify the new measurement method, comparisons of the measured depth dose curves with the conventional method of placing the film orthogonal to the beam propagation showed deviations of lesser than 3%.The comparison of the dental gold measurements with Monte Carlo simulations shows a systematic lower measured dose which is still within 5% consistency. However attention has to be paid in the experimental setup and film preparation. The introduced method shows significant advantages to conventional orthogonal EBT2 film positioning. It shows a very high spatial resolution and the area of interest is only limited by the film size. The method will be used in further studies, to investigate dose profiles and dose effects near interfaces and in inhomogeneities. © 2012 American Association of Physicists in Medicine.

  3. Spatial Resolution Studies of Micro Pattern Gas Detectors Using the Charge Dispersion Signal

    Science.gov (United States)

    Bellerive, A.

    2008-06-01

    The Time Projection Chamber (TPC) for the International Linear Collider will need to measure about 200 track points with a spatial resolution close to 100 μm. A Micro Pattern Gas Detector (MPGD) readout TPC could achieve the desired resolution with existing techniques using sub-millimeter pad width at the expense of a large increase in the detector cost and complexity. A new MPGD readout concept of charge dispersion developed in Canada has been recently applied to small prototypes MPGD-TPC. Using cosmic-ray tracks, it demonstrated the feasibility of achieving good resolution with pads similar in width to the ones used for the proportional wire TPC. The charge dispersion technique was used with GEM and micromegas and results on resolution studies are presented. The TPC resolution with GEM and micromegas readout are compared to the earlier results without charge dispersion. First results of performance with charge dispersion in a magnetic field of strength comparable to that for the ILC detector are presented. An unprecedented 50 μm resolution has been achieved, which is an important step toward demonstrating the feasibility of meeting the challenging ILC TPC goal.

  4. When does higher spatial resolution rainfall information improve streamflow simulation? An evaluation on 3620 flood events

    Science.gov (United States)

    Lobligeois, F.; Andréassian, V.; Perrin, C.; Tabary, P.; Loumagne, C.

    2013-10-01

    Precipitation is the key factor controlling the high-frequency hydrological response in catchments, and streamflow simulation is thus dependent on the way rainfall is represented in the hydrological model. A characteristic that distinguishes distributed from lumped models is the ability to explicitly represent the spatial variability of precipitation. Although the literature on this topic is abundant, the results are contrasted and sometimes contradictory. This paper investigates the impact of spatial rainfall on runoff generation to better understand the conditions where higher-resolution rainfall information improves streamflow simulations. In this study, we used the rainfall reanalysis developed by Météo-France over the whole French territory at 1 km and 1 h resolution over a 10 yr period. A hydrological model was applied in the lumped mode (a single spatial unit) and in the semi-distributed mode using three unit sizes of sub-catchments. The model was evaluated against observed streamflow data using split-sample tests on a large set of 181 French catchments representing a variety of size and climate conditions. The results were analyzed by catchment classes and types of rainfall events based on the spatial variability of precipitation. The evaluation clearly showed different behaviors. The lumped model performed as well as the semi-distributed model in western France where catchments are under oceanic climate conditions with quite spatially uniform precipitation fields. In contrast, higher resolution in precipitation inputs significantly improved the simulated streamflow dynamics and accuracy in southern France (Cévennes and Mediterranean regions) for catchments in which precipitation fields were identified to be highly variable in space. In all regions, natural variability allows for contradictory examples to be found, showing that analyzing a large number of events over varied catchments is warranted.

  5. When does higher spatial resolution rainfall information improve streamflow simulation? An evaluation using 3620 flood events

    Science.gov (United States)

    Lobligeois, F.; Andréassian, V.; Perrin, C.; Tabary, P.; Loumagne, C.

    2014-02-01

    Precipitation is the key factor controlling the high-frequency hydrological response in catchments, and streamflow simulation is thus dependent on the way rainfall is represented in a hydrological model. A characteristic that distinguishes distributed from lumped models is the ability to explicitly represent the spatial variability of precipitation. Although the literature on this topic is abundant, the results are contrasting and sometimes contradictory. This paper investigates the impact of spatial rainfall on runoff generation to better understand the conditions where higher-resolution rainfall information improves streamflow simulations. In this study, we used the rainfall reanalysis developed by Météo-France over the whole country of France at 1 km and 1 h resolution over a 10 yr period. A hydrological model was applied in the lumped mode (a single spatial unit) and in the semidistributed mode using three unit sizes of subcatchments. The model was evaluated against observed streamflow data using split-sample tests on a large set of French catchments (181) representing a variety of sizes and climate conditions. The results were analyzed by catchment classes and types of rainfall events based on the spatial variability of precipitation. The evaluation clearly showed different behaviors. The lumped model performed as well as the semidistributed model in western France, where catchments are under oceanic climate conditions with quite spatially uniform precipitation fields. By contrast, higher resolution in precipitation inputs significantly improved the simulated streamflow dynamics and accuracy in southern France (Cévennes and Mediterranean regions) for catchments in which precipitation fields were identified to be highly variable in space. In all regions, natural variability allows for contradictory examples to be found, showing that analyzing a large number of events over varied catchments is warranted.

  6. Ligh Resolution Infrared Laser Projector For Use With Infrared Spatial Modulators

    Science.gov (United States)

    Wallace, B. M...; Sullivan, S.

    1984-11-01

    The LTV Aerospace and Defense Company is currently developing a two dimensional infrared spatial modulator system. A laser projector using an 18 watt ND:YAG laser writes a raster on the modulator which is back illuminated by a blackbody source. Subsequently, the two dimensional infrared pattern is projected onto an IR sensor for viewing. The paper describes the optical and system design criteria of the laser projector which is used to write onto the spatial modulator. The laser projector employs a number of novel techniques to meet the performance specification of the system. In this application an acousto-optic modulation technique known as Scophony modulation is used. Scophony modulation was originally proposed at the beginning of this century for conventional television projection. For current laser projectors it has a number of inherent advantages which range from the ability to modulate high powered lasers with high temporal bandwidths, to improved spatial resolution which results from the coherent imaging process. The expected horizontal resolution is equivalent to 1325 line resolution in the visible region of the spectrum.

  7. High-spatial-resolution thermal remote sensing of active volcanic features using Landsat and hyperspectral data

    Science.gov (United States)

    Flynn, Luke P.; Harris, Andrew J. L.; Rothery, David A.; Oppenheimer, Clive

    After the initial observation in 1987 that high spatial resolution data could be used to acquire thermal information for active volcanoes, satellite technology and its applications have leapt forward in possibilities and complexity. Since 1972, the Landsat series of satellites has provided the longest continuous high spatial resolution (Landsat 4 and 5 (launched in 1982 and 1984, respectively) featuring the Thematic Mapper system have made it possible to detect, map, and model high temperature features such as lava bodies and fires. Landsat 7 was launched in April, 1999, carrying an enhanced instrument package that includes a higher spatial resolution thermal band and a 15-m panchromatic band that will greatly aid detailed mapping of volcanic features. Current planning for the future Landsat 8 instrument includes a fundamental shift towards a lighter, more energy efficient instrument having a greater number of spectral bands. Hyperspectral sensors, such as that of Earth Orbiter-1, that have been planned for launch as part of the New Millennium Program, are being considered as Landsat 8 prototypes. Initial studies of lava flows and lava lakes using field spectrometers afford a glimpse of the capabilities offered by the next generation of satellites to model lava flow temperatures. Hyperspectral measurements of lava flows allow for the solution of numerous thermal components, which can then be used for much more detailed modeling than can be supported by broad band radiometry.

  8. A Simple Method for Improving the Spatial Resolution in Infrared Laser Ablation Mass Spectrometry Imaging.

    Science.gov (United States)

    Hieta, Juha-Pekka; Vaikkinen, Anu; Auno, Samuli; Räikkönen, Heikki; Haapala, Markus; Scotti, Gianmario; Kopra, Jaakko; Piepponen, Petteri; Kauppila, Tiina J

    2017-06-01

    In mass spectrometry imaging of tissues, the size of structures that can be distinguished is determined by the spatial resolution of the imaging technique. Here, the spatial resolution of IR laser ablation is markedly improved by increasing the distance between the laser and the focusing lens. As the distance between the laser and the lens is increased from 1 to 18 m, the ablation spot size decreases from 440 to 44 μm. This way, only the collimated center of the divergent laser beam is directed on the focusing lens, which results in better focusing of the beam. Part of the laser energy is lost at longer distance, but this is compensated by focusing of the radiation to a smaller area on the sample surface. The long distance can also be achieved by a set of mirrors, between which the radiation travels before it is directed to the focusing lens and the sample. This method for improving the spatial resolution can be utilized in mass spectrometry imaging of tissues by techniques that utilize IR laser ablation, such as laser ablation electrospray ionization, laser ablation atmospheric pressure photoionization, and matrix-assisted laser desorption electrospray ionization. Graphical Abstract ᅟ.

  9. Hyperspectral Image Spatial Super-Resolution via 3D Full Convolutional Neural Network

    Directory of Open Access Journals (Sweden)

    Shaohui Mei

    2017-11-01

    Full Text Available Hyperspectral images are well-known for their fine spectral resolution to discriminate different materials. However, their spatial resolution is relatively low due to the trade-off in imaging sensor technologies, resulting in limitations in their applications. Inspired by recent achievements in convolutional neural network (CNN based super-resolution (SR for natural images, a novel three-dimensional full CNN (3D-FCNN is constructed for spatial SR of hyperspectral images in this paper. Specifically, 3D convolution is used to exploit both the spatial context of neighboring pixels and spectral correlation of neighboring bands, such that spectral distortion when directly applying traditional CNN based SR algorithms to hyperspectral images in band-wise manners is alleviated. Furthermore, a sensor-specific mode is designed for the proposed 3D-FCNN such that none of the samples from the target scene are required for training. Fine-tuning by a small number of training samples from the target scene can further improve the performance of such a sensor-specific method. Extensive experimental results on four benchmark datasets from two well-known hyperspectral sensors, namely hyperspectral digital imagery collection experiment (HYDICE and reflective optics system imaging spectrometer (ROSIS sensors, demonstrate that our proposed 3D-FCNN outperforms several existing SR methods by ensuring higher quality both in reconstruction and spectral fidelity.

  10. A Simple Method for Improving the Spatial Resolution in Infrared Laser Ablation Mass Spectrometry Imaging

    Science.gov (United States)

    Hieta, Juha-Pekka; Vaikkinen, Anu; Auno, Samuli; Räikkönen, Heikki; Haapala, Markus; Scotti, Gianmario; Kopra, Jaakko; Piepponen, Petteri; Kauppila, Tiina J.

    2017-06-01

    In mass spectrometry imaging of tissues, the size of structures that can be distinguished is determined by the spatial resolution of the imaging technique. Here, the spatial resolution of IR laser ablation is markedly improved by increasing the distance between the laser and the focusing lens. As the distance between the laser and the lens is increased from 1 to 18 m, the ablation spot size decreases from 440 to 44 μm. This way, only the collimated center of the divergent laser beam is directed on the focusing lens, which results in better focusing of the beam. Part of the laser energy is lost at longer distance, but this is compensated by focusing of the radiation to a smaller area on the sample surface. The long distance can also be achieved by a set of mirrors, between which the radiation travels before it is directed to the focusing lens and the sample. This method for improving the spatial resolution can be utilized in mass spectrometry imaging of tissues by techniques that utilize IR laser ablation, such as laser ablation electrospray ionization, laser ablation atmospheric pressure photoionization, and matrix-assisted laser desorption electrospray ionization. [Figure not available: see fulltext.

  11. Fourier transform infrared absorption spectroscopy characterization of gaseous atmospheric pressure plasmas with 2 mm spatial resolution

    Energy Technology Data Exchange (ETDEWEB)

    Laroche, G. [Laboratoire d' Ingenierie de Surface, Centre de Recherche sur les Materiaux Avances, Departement de genie des mines, de la metallurgie et des materiaux, Universite Laval, 1065, avenue de la Medecine, Quebec G1V 0A6 (Canada); Centre de recherche du CHUQ, Hopital St Francois d' Assise, 10, rue de l' Espinay, local E0-165, Quebec G1L 3L5 (Canada); Vallade, J. [Laboratoire Procedes, Materiaux et Energie Solaire, PROMES, CNRS, Technosud, Rambla de la Thermodynamique, F-66100 Perpignan (France); Agence de l' environnement et de la Ma Latin-Small-Letter-Dotless-I -carettrise de l' Energie, 20, avenue du Gresille, BP 90406, F-49004 Angers Cedex 01 (France); Bazinette, R.; Hernandez, E.; Hernandez, G.; Massines, F. [Laboratoire Procedes, Materiaux et Energie Solaire, PROMES, CNRS, Technosud, Rambla de la Thermodynamique, F-66100 Perpignan (France); Nijnatten, P. van [OMT Solutions bv, High Tech Campus 9, 5656AE Eindhoven (Netherlands)

    2012-10-15

    This paper describes an optical setup built to record Fourier transform infrared (FTIR) absorption spectra in an atmospheric pressure plasma with a spatial resolution of 2 mm. The overall system consisted of three basic parts: (1) optical components located within the FTIR sample compartment, making it possible to define the size of the infrared beam (2 mm Multiplication-Sign 2 mm over a path length of 50 mm) imaged at the site of the plasma by (2) an optical interface positioned between the spectrometer and the plasma reactor. Once through the plasma region, (3) a retro-reflector module, located behind the plasma reactor, redirected the infrared beam coincident to the incident path up to a 45 Degree-Sign beamsplitter to reflect the beam toward a narrow-band mercury-cadmium-telluride detector. The antireflective plasma-coating experiments performed with ammonia and silane demonstrated that it was possible to quantify 42 and 2 ppm of these species in argon, respectively. In the case of ammonia, this was approximately three times less than this gas concentration typically used in plasma coating experiments while the silane limit of quantification was 35 times lower. Moreover, 70% of the incoming infrared radiation was focused within a 2 mm width at the site of the plasma, in reasonable agreement with the expected spatial resolution. The possibility of reaching this spatial resolution thus enabled us to measure the gaseous precursor consumption as a function of their residence time in the plasma.

  12. Mapping the layer count of few-layer hexagonal boron nitride at high lateral spatial resolutions

    Science.gov (United States)

    Mohsin, Ali; Cross, Nicholas G.; Liu, Lei; Watanabe, Kenji; Taniguchi, Takashi; Duscher, Gerd; Gu, Gong

    2018-01-01

    Layer count control and uniformity of two dimensional (2D) layered materials are critical to the investigation of their properties and to their electronic device applications, but methods to map 2D material layer count at nanometer-level lateral spatial resolutions have been lacking. Here, we demonstrate a method based on two complementary techniques widely available in transmission electron microscopes (TEMs) to map the layer count of multilayer hexagonal boron nitride (h-BN) films. The mass-thickness contrast in high-angle annular dark-field (HAADF) imaging in the scanning transmission electron microscope (STEM) mode allows for thickness determination in atomically clean regions with high spatial resolution (sub-nanometer), but is limited by surface contamination. To complement, another technique based on the boron K ionization edge in the electron energy loss spectroscopy spectrum (EELS) of h-BN is developed to quantify the layer count so that surface contamination does not cause an overestimate, albeit at a lower spatial resolution (nanometers). The two techniques agree remarkably well in atomically clean regions with discrepancies within  ±1 layer. For the first time, the layer count uniformity on the scale of nanometers is quantified for a 2D material. The methodology is applicable to layer count mapping of other 2D layered materials, paving the way toward the synthesis of multilayer 2D materials with homogeneous layer count.

  13. Effects of accelerating voltage and specimen thickness on the spatial resolution of transmission electron backscatter diffraction in Cu

    Energy Technology Data Exchange (ETDEWEB)

    Shih, Jhih-Wun; Kuo, Ka-Wei [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan, ROC (China); Kuo, Jui-Chao, E-mail: jckuo@mail.ncku.edu.tw [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan, ROC (China); Kuo, Tsung-Yuan [Department of Mechanical Engineering, Southern Taiwan University of Technology, Tainan 71005, Taiwan, ROC (China)

    2017-06-15

    Highlights: • A quantitative approach is proposed to measure spatial resolutions of t-EBSD. • Increasing accelerating voltage enhances the lateral and longitudinal resolutions. • Decreasing thickness improves the lateral and longitudinal resolutions. • The depth resolution is 34.4 nm for a 100 nm sample thickness at 25 kV. - Abstract: A quantitative approach was proposed to determine the spatial resolution of transmission electron backscatter diffraction (t-EBSD) and to understand the limits of spatial resolution of t-EBSD. In this approach, Cu bicrystals and digital image correlation were employed. The effects of accelerating voltage and specimen thickness on the spatial resolution of t-EBSD were also investigated. t-EBSD specimens with 8 μm × 10 μm dimensions and different thicknesses were prepared using focused ion beam milling. The optimized quality of Kikuchi pattern was achieved at a working distance of 12 mm and a tilting angle of 20°. The optimum depth resolution of 34.4 nm was observed in the lower surface of a 100 nm thick sample at 25 kV. Thus, the penetration depth from the upper surface is 65.6 nm. The optimum lateral and longitudinal resolutions obtained from a 100 nm thick sample at 30 kV are 25.2 and 43.4 nm, respectively. The spatial resolution of t-EBSD can be enhanced by increasing the accelerating voltage and decreasing the sample thickness.

  14. Application of spatially resolved high resolution crystal spectrometry to inertial confinement fusion plasmas.

    Science.gov (United States)

    Hill, K W; Bitter, M; Delgado-Aparacio, L; Pablant, N A; Beiersdorfer, P; Schneider, M; Widmann, K; Sanchez del Rio, M; Zhang, L

    2012-10-01

    High resolution (λ∕Δλ ∼ 10 000) 1D imaging x-ray spectroscopy using a spherically bent crystal and a 2D hybrid pixel array detector is used world wide for Doppler measurements of ion-temperature and plasma flow-velocity profiles in magnetic confinement fusion plasmas. Meter sized plasmas are diagnosed with cm spatial resolution and 10 ms time resolution. This concept can also be used as a diagnostic of small sources, such as inertial confinement fusion plasmas and targets on x-ray light source beam lines, with spatial resolution of micrometers, as demonstrated by laboratory experiments using a 250-μm (55)Fe source, and by ray-tracing calculations. Throughput calculations agree with measurements, and predict detector counts in the range 10(-8)-10(-6) times source x-rays, depending on crystal reflectivity and spectrometer geometry. Results of the lab demonstrations, application of the technique to the National Ignition Facility (NIF), and predictions of performance on NIF will be presented.

  15. Derivation of high spatial resolution albedo from UAV digital imagery: application over the Greenland Ice Sheet

    Science.gov (United States)

    Ryan, Jonathan C.; Hubbard, Alun; Box, Jason E.; Brough, Stephen; Cameron, Karen; Cook, Joseph M.; Cooper, Matthew; Doyle, Samuel H.; Edwards, Arwyn; Holt, Tom; Irvine-Fynn, Tristram; Jones, Christine; Pitcher, Lincoln H.; Rennermalm, Asa K.; Smith, Laurence C.; Stibal, Marek; Snooke, Neal

    2017-05-01

    Measurements of albedo are a prerequisite for modelling surface melt across the Earth's cryosphere, yet available satellite products are limited in spatial and/or temporal resolution. Here, we present a practical methodology to obtain centimetre resolution albedo products with accuracies of 5% using consumer-grade digital camera and unmanned aerial vehicle (UAV) technologies. Our method comprises a workflow for processing, correcting and calibrating raw digital images using a white reference target, and upward and downward shortwave radiation measurements from broadband silicon pyranometers. We demonstrate the method with a set of UAV sorties over the western, K-sector of the Greenland Ice Sheet. The resulting albedo product, UAV10A1, covers 280 km2, at a resolution of 20 cm per pixel and has a root-mean-square difference of 3.7% compared to MOD10A1 and 4.9% compared to ground-based broadband pyranometer measurements. By continuously measuring downward solar irradiance, the technique overcomes previous limitations due to variable illumination conditions during and between surveys over glaciated terrain. The current miniaturization of multispectral sensors and incorporation of upward facing radiation sensors on UAV packages means that this technique will likely become increasingly attractive in field studies and used in a wide range of applications for high temporal and spatial resolution surface mapping of debris, dust, cryoconite and bioalbedo and for directly constraining surface energy balance models.

  16. Effect of Spatial Resolution for Characterizing Soil Properties from Imaging Spectrometer Data

    Science.gov (United States)

    Dutta, D.; Kumar, P.; Greenberg, J. A.

    2015-12-01

    The feasibility of quantifying soil constituents over large areas using airborne hyperspectral data [0.35 - 2.5 μm] in an ensemble bootstrapping lasso algorithmic framework has been demonstrated previously [1]. However the effects of coarsening the spatial resolution of hyperspectral data on the quantification of soil constituents are unknown. We use Airborne Visible Infrared Imaging Spectrometer (AVIRIS) data collected at 7.6m resolution over Birds Point New Madrid (BPNM) floodway for up-scaling and generating multiple coarser resolution datasets including the 60m Hyperspectral Infrared Imager (HyspIRI) like data. HyspIRI is a proposed visible shortwave/thermal infrared mission, which will provide global data over a spectral range of 0.35 - 2.5μm at a spatial resolution of 60m. Our results show that the lasso method, which is based on point scale observational data, is scalable. We found consistent good model performance (R2) values (0.79 10.1109/TGRS.2015.2417547.

  17. High Resolution Spatial and Temporal Mapping of Traffic-Related Air Pollutants

    Directory of Open Access Journals (Sweden)

    Stuart Batterman

    2015-04-01

    Full Text Available Vehicle traffic is one of the most significant emission sources of air pollutants in urban areas. While the influence of mobile source emissions is felt throughout an urban area, concentrations from mobile emissions can be highest near major roadways. At present, information regarding the spatial and temporal patterns and the share of pollution attributable to traffic-related air pollutants is limited, in part due to concentrations that fall sharply with distance from roadways, as well as the few monitoring sites available in cities. This study uses a newly developed dispersion model (RLINE and a spatially and temporally resolved emissions inventory to predict hourly PM2.5 and NOx concentrations across Detroit (MI, USA at very high spatial resolution. Results for annual averages and high pollution days show contrasting patterns, the need for spatially resolved analyses, and the limitations of surrogate metrics like proximity or distance to roads. Data requirements, computational and modeling issues are discussed. High resolution pollutant data enable the identification of pollutant “hotspots”, “project-level” analyses of transportation options, development of exposure measures for epidemiology studies, delineation of vulnerable and susceptible populations, policy analyses examining risks and benefits of mitigation options, and the development of sustainability indicators integrating environmental, social, economic and health information.

  18. Twofold spatial resolution enhancement by two-photon exposure of photographic film

    Science.gov (United States)

    Korobkin, Dmitriy V.; Yablonovitch, Eli

    2002-07-01

    Two-photon absorption of photosensitive media can produce interference fringes with double spatial frequency. This requires the employment of multiple-frequency beams, which interfere with one another to produce a stationary image with double spatial resolution. The required beams were produced by frequency filtering of broadband radiation from a cw mode-locked femtosecond Ti:sapphire laser ((lambda) equals 790 nm) in a dispersion-free pulse shaper. Then the two multifrequency rays converged from opposite edges of a lens, focusing on Kodak commercial film. The laser intensity was high enough to produce a two-photon exposure. The doubling of the spatial frequency of the interference pattern has been observed, but the contrast ratio of the pattern was limited by competition from the more usual one-photon absorption. Laser pulse parameters for a single-pulse two-photon exposure have been estimated.

  19. Sensitivity of the Baltic Sea level prediction to spatial model resolution

    Science.gov (United States)

    Kowalewski, Marek; Kowalewska-Kalkowska, Halina

    2017-09-01

    The three-dimensional hydrodynamic model of the Baltic Sea (M3D) and its new parallel version (PM3D), developed at the Institute of Oceanography, University of Gdańsk in Poland, was tested to establish a grid resolution adequate for the Baltic Sea level prediction. Four outputs of the M3D/PM3D, calculated with spatial resolution varying from 3 NM to 0.5 NM, were validated by comparing the results with hourly sea level readings collected at 9 Baltic gauges in 2010-2015. The spatial resolution of 1 NM applied to the Baltic Sea resulted in a distinct improvement of agreement between the calculated and observed distributions of data. An increase in the resolution to 0.5 NM in the southern Baltic Sea improved the model quality further, as indicated by the lowest variability, the highest correlation and the highest percentage of water level simulations within the range of ± 0.15 m difference relative to readings. The increase in horizontal resolution allowed to improve the fit between the observed water levels and those calculated by the PM3D in the cases of rapid sea level fluctuations, such as those registered in January 2012. The model performed slightly worse for stations with larger ranges of water level oscillations. As parallel calculations were used in the PM3D, the time necessary for computing the simulations was significantly reduced, which allowed to apply the high-resolution grid also to the operational version of the model.

  20. High resolution genome wide binding event finding and motif discovery reveals transcription factor spatial binding constraints.

    Directory of Open Access Journals (Sweden)

    Yuchun Guo

    Full Text Available An essential component of genome function is the syntax of genomic regulatory elements that determine how diverse transcription factors interact to orchestrate a program of regulatory control. A precise characterization of in vivo spacing constraints between key transcription factors would reveal key aspects of this genomic regulatory language. To discover novel transcription factor spatial binding constraints in vivo, we developed a new integrative computational method, genome wide event finding and motif discovery (GEM. GEM resolves ChIP data into explanatory motifs and binding events at high spatial resolution by linking binding event discovery and motif discovery with positional priors in the context of a generative probabilistic model of ChIP data and genome sequence. GEM analysis of 63 transcription factors in 214 ENCODE human ChIP-Seq experiments recovers more known factor motifs than other contemporary methods, and discovers six new motifs for factors with unknown binding specificity. GEM's adaptive learning of binding-event read distributions allows it to further improve upon previous methods for processing ChIP-Seq and ChIP-exo data to yield unsurpassed spatial resolution and discovery of closely spaced binding events of the same factor. In a systematic analysis of in vivo sequence-specific transcription factor binding using GEM, we have found hundreds of spatial binding constraints between factors. GEM found 37 examples of factor binding constraints in mouse ES cells, including strong distance-specific constraints between Klf4 and other key regulatory factors. In human ENCODE data, GEM found 390 examples of spatially constrained pair-wise binding, including such novel pairs as c-Fos:c-Jun/USF1, CTCF/Egr1, and HNF4A/FOXA1. The discovery of new factor-factor spatial constraints in ChIP data is significant because it proposes testable models for regulatory factor interactions that will help elucidate genome function and the

  1. Effect of electric field gradient on sub-nanometer spatial resolution of tip-enhanced Raman spectroscopy.

    Science.gov (United States)

    Meng, Lingyan; Yang, Zhilin; Chen, Jianing; Sun, Mengtao

    2015-03-18

    Tip-enhanced Raman spectroscopy (TERS) with sub-nanometer spatial resolution has been recently demonstrated experimentally. However, the physical mechanism underlying is still under discussion. Here we theoretically investigate the electric field gradient of a coupled tip-substrate system. Our calculations suggest that the ultra-high spatial resolution of TERS can be partially attributed to the electric field gradient effect owning to its tighter spatial confinement and sensitivity to the infrared (IR)-active of molecules. Particularly, in the case of TERS of flat-lying H₂TBPP molecules,we find the electric field gradient enhancement is the dominating factor for the high spatial resolution, which qualitatively coincides with previous experimental report. Our theoretical study offers a new paradigm for understanding the mechanisms of the ultra-high spatial resolution demonstrated in tip-enhanced spectroscopy which is of importance but neglected.

  2. Objective Delineation of River Bed Surface Patches from High-Resolution Spatial Grain Size Data

    Science.gov (United States)

    Nelson, P. A.; Bellugi, D.; Dietrich, W. E.

    2010-12-01

    Gravel-bed rivers commonly display distinct sorting patterns on their beds. Visually, this heterogeneity often appears to form an organization of distinct textural patches or facies. The local bed surface grain size, and therefore bed surface patchiness, exerts considerable influence on local bed mobility, bedload transport rates, hydrodynamic roughness, and benthic microhabitats. Despite the ecological and morphodynamic importance of bed surface patchiness, we lack accurate and objective methods to delineate bed patches. However, recent advances in photographic measurement of bed surface grain size distributions are capable of providing data at a spatial resolution high enough to allow us an opportunity to answer the question: what is a patch? Here, we explore a variety of techniques that can be applied to high-resolution spatial grain size data to automatically generate maps of grain size patches. We apply a state-of-the-art image processing and machine learning procedure to a photographic survey of the bed surface of a near-field scale flume to extract grain size data and to generate a spatial grid of bed surface grain size distributions. The flume bed was composed of gravel 2-45 mm in diameter and it featured clearly identifiable sorting features. Using this dataset, we investigate several possible methods of patch delineation. The grid of grain size distributions can be represented by a graph of nodes (grain size distributions) connected by edges whose weight is a function of the similarity between two nodes. Spectral graph theory is then used to optimally cut the edges in order to produce a spatial structure of patches that minimizes the association between patches and maximizes the association of nodes within a patch. In a different approach, agglomerative clustering of spatially adjacent grain size distributions is used to produce a hierarchical dendrogram that can be thresholded to partition the bed into patches. We also explore using the k-means algorithm

  3. Increasing spatial resolution of CHIRPS rainfall datasets for Cyprus with artificial neural networks

    Science.gov (United States)

    Tymvios, Filippos; Michaelides, Silas; Retalis, Adrianos; Katsanos, Dimitrios; Lelieveld, Jos

    2016-08-01

    The use of high resolution rainfall datasets is an alternative way of studying climatological regions where conventional rain measurements are sparse or not available. Starting in 1981 to near-present, the CHIRPS (Climate Hazards Group InfraRed Precipitation with Station data) dataset incorporates a 5km×5km resolution satellite imagery with in-situ station data to create gridded rainfall time series for trend analysis, severe events and seasonal drought monitoring. The aim of this work is to further increase the resolution of the rainfall dataset for Cyprus to 1km×1km, by correlating the CHIRPS dataset with elevation information, the NDVI index (Normalized Difference Vegetation Index) from satellite images at 1km×1km and precipitation measurements from the official raingauge network of the Cyprus' Department of Meteorology, utilizing Artificial Neural Networks. The Artificial Neural Networks' architecture that was implemented is the Multi-Layer Perceptron (MLP) trained with the back propagation method, which is widely used in environmental studies. Seven different network architectures were tested, all with two hidden layers. The number of neurons ranged from 3 to10 in the first hidden layer and from 5 to 25 in the second hidden layer. The dataset was separated into a randomly selected training set, a validation set and a testing set; the latter is independently used for the final assessment of the models' performance. Using the Artificial Neural Network approach, a new map of the spatial analysis of rainfall is constructed which exhibits a considerable increase in its spatial resolution. A statistical assessment of the new spatial analysis was made using the rainfall ground measurements from the raingauge network. The assessment indicates that the methodology is promising for several applications.

  4. Optical lens-shift design for increasing spatial resolution of 3D ToF cameras

    Science.gov (United States)

    Lietz, Henrik; Hassan, M. Muneeb; Eberhardt, Jörg

    2017-02-01

    Sensor resolution of 3D time-of-flight (ToF) outdoor-capable cameras is strongly limited because of its large pixel dimensions. Computational imaging permits enhancement of the optical system's resolving power without changing physical sensor properties. Super-resolution (SR) algorithms superimpose several sub-pixel-shifted low-resolution (LR) images to overcome the system's limited spatial sampling rate. In this paper, we propose a novel opto-mechanical system to implement sub-pixel shifts by moving an optical lens. This method is more flexible in terms of implementing SR techniques than current sensor-shift approaches. In addition, we describe a SR observation model that has been optimized for the use of LR 3D ToF cameras. A state-of-the-art iteratively reweighted minimization algorithm executes the SR process. It is proven that our method achieves nearly the same resolution increase as if the pixel area would be halved physically. Resolution enhancement is measured objectively for amplitude images of a static object scene.

  5. Imaging cellular and subcellular structure of human brain tissue using micro computed tomography

    Science.gov (United States)

    Khimchenko, Anna; Bikis, Christos; Schweighauser, Gabriel; Hench, Jürgen; Joita-Pacureanu, Alexandra-Teodora; Thalmann, Peter; Deyhle, Hans; Osmani, Bekim; Chicherova, Natalia; Hieber, Simone E.; Cloetens, Peter; Müller-Gerbl, Magdalena; Schulz, Georg; Müller, Bert

    2017-09-01

    Brain tissues have been an attractive subject for investigations in neuropathology, neuroscience, and neurobiol- ogy. Nevertheless, existing imaging methodologies have intrinsic limitations in three-dimensional (3D) label-free visualisation of extended tissue samples down to (sub)cellular level. For a long time, these morphological features were visualised by electron or light microscopies. In addition to being time-consuming, microscopic investigation includes specimen fixation, embedding, sectioning, staining, and imaging with the associated artefacts. More- over, optical microscopy remains hampered by a fundamental limit in the spatial resolution that is imposed by the diffraction of visible light wavefront. In contrast, various tomography approaches do not require a complex specimen preparation and can now reach a true (sub)cellular resolution. Even laboratory-based micro computed tomography in the absorption-contrast mode of formalin-fixed paraffin-embedded (FFPE) human cerebellum yields an image contrast comparable to conventional histological sections. Data of a superior image quality was obtained by means of synchrotron radiation-based single-distance X-ray phase-contrast tomography enabling the visualisation of non-stained Purkinje cells down to the subcellular level and automated cell counting. The question arises, whether the data quality of the hard X-ray tomography can be superior to optical microscopy. Herein, we discuss the label-free investigation of the human brain ultramorphology be means of synchrotron radiation-based hard X-ray magnified phase-contrast in-line tomography at the nano-imaging beamline ID16A (ESRF, Grenoble, France). As an example, we present images of FFPE human cerebellum block. Hard X-ray tomography can provide detailed information on human tissues in health and disease with a spatial resolution below the optical limit, improving understanding of the neuro-degenerative diseases.

  6. Sub-3mm spatial resolution from a large monolithic LaBr3 (Ce scintillator

    Directory of Open Access Journals (Sweden)

    Liprandi Silvia

    2017-09-01

    Full Text Available A Compton camera prototype for ion beam range monitoring via prompt (< 1 ns gamma detection in hadron therapy is being developed and characterized at the Medical Physics Department of LMU Munich. The system consists of a large (50x50x30 mm3 monolithic LaBr3(Ce scintillation crystal as absorber component to detect the multi-MeV Compton scattered photons, together with a stack of 6 double-sided silicon strip detectors (DSSSD acting as scatterer component. Key ingredient of the γ-source reconstruction is the determination of the γ-ray interaction position in the scintillator, which is read out by a 256-fold segmented multi-anode photomultiplier tube (PMT. From simulations an angular resolution of about 1.5o for the photon source reconstruction can be expected for the energy range around 3 – 5 MeV, provided that a spatial resolution of 3 mm can be reached in the absorbing scintillator [1]. Therefore, particular effort was dedicated to characterize this latter property as a function of the γ-ray energy. Intense, tightly collimated 137Cs and 60Co photon sources were used for 2D irradiation scans (step size 0.5 mm as prerequisite for studying the performance of the “k-Nearest-Neighbors” algorithm developed at TU Delft [2] (together with its variant ”Categorical Average Pattern”, CAP and extending its applicability into the energy range beyond the original 511 keV. In this paper we present our most recent interaction position analysis in the absorbing scintillator, leading to a considerably improved value for the spatial resolution: systematic studies were performed as a function of the k-NN parameters and the PMT segmentation. A trend of improving spatial resolution with increasing photon energy was confirmed, resulting in the realization of the presently optimum spatial resolution of 2.9(1 mm @1.3 MeV, thus reaching the design specifications of the Compton camera absorber. The specification goal was reached also for a reduced PMT

  7. High spatial resolution quantitative MR images: an experimental study of dedicated surface coils

    Energy Technology Data Exchange (ETDEWEB)

    Gensanne, D [Laboratoire de Chimie Bioinorganique Medicale, Imagerie therapeutique et diagnostique, JE 2400-CNRS FR 2599, Universite Paul Sabatier, 118, route de Narbonne, 31062 Toulouse Cedex (France); Josse, G [Centre Europeen de Recherche et d' Evaluation sur la Peau et les Epitheliums de Revetement, Institut de Recherche Pierre Fabre, 2, rue Viguerie, BP 3071 31025 Toulouse Cedex 3 (France); Lagarde, J M [Centre Europeen de Recherche et d' Evaluation sur la Peau et les Epitheliums de Revetement, Institut de Recherche Pierre Fabre, 2, rue Viguerie, BP 3071 31025 Toulouse Cedex 3 (France); Vincensini, D [Laboratoire de Chimie Bioinorganique Medicale, Imagerie therapeutique et diagnostique, JE 2400-CNRS FR 2599, Universite Paul Sabatier, 118, route de Narbonne, 31062 Toulouse Cedex (France)

    2006-06-07

    Measuring spin-spin relaxation times (T{sub 2}) by quantitative MR imaging represents a potentially efficient tool to evaluate the physicochemical properties of various media. However, noise in MR images is responsible for uncertainties in the determination of T{sub 2} relaxation times, which limits the accuracy of parametric tissue analysis. The required signal-to-noise ratio (SNR) depends on the T{sub 2} relaxation behaviour specific to each tissue. Thus, we have previously shown that keeping the uncertainty in T{sub 2} measurements within a limit of 10% implies that SNR values be greater than 100 and 300 for mono- and biexponential T{sub 2} relaxation behaviours, respectively. Noise reduction can be obtained either by increasing the voxel size (i.e., at the expense of spatial resolution) or by using high sensitivity dedicated surface coils (which allows us to increase SNR without deteriorating spatial resolution in an excessive manner). However, surface coil sensitivity is heterogeneous, i.e., it- and hence SNR-decreases with increasing depth, and the more so as the coil radius is smaller. The use of surface coils is therefore limited to the analysis of superficial structure such as the hypodermic tissue analysed here. The aim of this work was to determine the maximum limits of spatial resolution and depth compatible with reliable in vivo T{sub 2} quantitative MR images using dedicated surface coils available on various clinical MR scanners. The average thickness of adipose tissue is around 15 mm, and the results obtained have shown that obtaining reliable biexponential relaxation analysis requires a minimum achievable voxel size of 13 mm{sup 3} for a conventional volume birdcage coil and only of 1.7 mm{sup 3} for the smallest available surface coil (23 mm in diameter). Further improvement in spatial resolution allowing us to detect low details in MR images without deteriorating parametric T{sub 2} images can be obtained by image filtering. By using the non

  8. Nanoscale Spatial Organization of Prokaryotic Cells Studied by Super-Resolution Optical Microscopy

    Science.gov (United States)

    McEvoy, Andrea Lynn

    All cells spatially organize their interiors, and this arrangement is necessary for cell viability. Until recently, it was believed that only eukaryotic cells spatially segregate their components. However, it is becoming increasingly clear that bacteria also assemble their proteins into complex patterns. In eukaryotic cells, spatial organization arises from membrane bound organelles as well as motor transport proteins which can move cargos within the cell. To date, there are no known motor transport proteins in bacteria and most microbes lack membrane bound organelles, so it remains a mystery how bacterial spatial organization emerges. In hind-sight it is not surprising that bacteria also exhibit complex spatial organization considering much of what we have learned about the basic processes that take place in all cells, such as transcription and translation was first discovered in prokaryotic cells. Perhaps the fundamental principles that govern spatial organization in prokaryotic cells may be applicable in eukaryotic cells as well. In addition, bacteria are attractive model organism for spatial organization studies because they are genetically tractable, grow quickly and much biochemical and structural data is known about them. A powerful tool for observing spatial organization in cells is the fluorescence microscope. By specifically tagging a protein of interest with a fluorescent probe, it is possible to examine how proteins organize and dynamically assemble inside cells. A significant disadvantage of this technology is its spatial resolution (approximately 250 nm laterally and 500 nm axially). This limitation on resolution causes closely spaced proteins to look blurred making it difficult to observe the fine structure within the complexes. This resolution limit is especially problematic within small cells such as bacteria. With the recent invention of new optical microscopies, we now can surpass the existing limits of fluorescence imaging. In some cases, we can

  9. Modulation of wave-current interactions by horizontal mixing and spatial resolution

    Science.gov (United States)

    Bennis, A.-C.; Dumas, F.; Blanke, B.

    2016-03-01

    The mechanics of rip currents are complex, involving interactions between waves, currents, water levels and bathymetry that pose particular challenges for numerical modeling. Horizontal turbulent diffusion in a rip system is difficult to measure using dye dilution or surfzone drifters, as shown by the range of published values for the horizontal diffusion coefficient. Here, we studied the effects of horizontal mixing on wave-current interactions by testing several diffusivity estimates in a fully coupled 3D wave-current model run at two different spatial resolutions. Published results using very low diffusion have found that near the shore the wave rays converge towards the rip channel because of refraction by the currents. We showed that this process is modulated by both horizontal mixing and spatial resolution. We found that, without the feedback of currents on waves, the flow is more sensitive to horizontal mixing, with large alterations, especially offshore, and generally lower velocities. These modifications ascribed to mixing are similar to those induced by the feedback mechanism. When a large mixing coefficient is used: (i) the behavior of the rip system is similar for both coupling modes (i.e., with and without the feedback of currents on waves) and for each resolution; and (ii) the evolution of the flow is more stable over time. Lastly, we show that the horizontal mixing strongly decreases the intensity of the 3D rip velocity, but not its vertical shear, which is mainly dependent on the vertical mixing scheme and on the forcing terms.

  10. Measuring the spatial resolution of an optical system in an undergraduate optics laboratory

    Science.gov (United States)

    Leung, Calvin; Donnelly, T. D.

    2017-06-01

    Two methods of quantifying the spatial resolution of a camera are described, performed, and compared, with the objective of designing an imaging-system experiment for students in an undergraduate optics laboratory. With the goal of characterizing the resolution of a typical digital single-lens reflex (DSLR) camera, we motivate, introduce, and show agreement between traditional test-target contrast measurements and the technique of using Fourier analysis to obtain the modulation transfer function (MTF). The advantages and drawbacks of each method are compared. Finally, we explore the rich optical physics at work in the camera system by calculating the MTF as a function of wavelength and f-number. For example, we find that the Canon 40D demonstrates better spatial resolution at short wavelengths, in accordance with scalar diffraction theory, but is not diffraction-limited, being significantly affected by spherical aberration. The experiment and data analysis routines described here can be built and written in an undergraduate optics lab setting.

  11. Explore spatial-temporal relations: transient super-resolution with PMD sensors

    Science.gov (United States)

    Han, Chaosheng; Lin, Xing; Lin, Jingyu; Yan, Chenggang; Dai, Qionghai

    2014-11-01

    Transient imaging provides a direct view of how light travel in the scene, which leads to exciting applications such as looking around corners. Low-budget transient imagers, adapted from Time-of-Fight (ToF) cameras, reduce the barrier of entry for performing research of this new imaging modality. However, the image quality is far from satisfactory due to the limited resolution of PMD sensors. In this paper, we improve the resolution of transient images by modulating the illumination. We capture the scene under three linearly independent lighting conditions, and derive a theoretical model for the relationship between the time-profile and the corresponding 3D details of each pixel. Our key idea is that the light flight time in each pixel patch is proportional to the cross product of the illuminating direction and the surface normal. First we capture and reconstruct transient images by Fourier analysis at multiple illumination locations, and then fuse the data of acquired low-spatial resolution images to calculate the surface normal. Afterwards, we use an optimization procedure to split the pixels and finally enhance the image quality. We show that we can not only reveal the fine structure of the object but may also uncover the reflectance properties of different materials. We hope the idea of utilizing spatial-temporal relations will give new insights to the research and applications of transient imaging.

  12. Effects of spatial resolution and spectral purity on transvenous coronary angiography images

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, D.; Thomlinson, W.; Gumer, N.F. [and others

    1994-11-01

    Measurements have been made on the National Synchrotron Light Source (NSLS) Coronary Angiography X17B2 beamline under ideal and real imaging conditions to investigate the optimal imaging conditions for spatial resolution and spectral purity. The spatial resolution tests were performed using two multielement Si(Li) detectors (600 element, 0.5mm, pixel-pixel spacing; 1200 element, 0.25mm pixel-pixel spacing. Images were taken of phantoms containing iodine contrast agent over a wide range of incident beam absorption conditions. Patient images were also obtained using the same viewing projection with both detectors. Harmonics present in the imaging beam can be reduced by operating the superconducting wiggler source at reduced field strength. At regions of high absorption in the patient, the harmonics present can contribute to the detected signal. Iodine phantom images were obtained at a wiggler field strength of 3 Tesla (E{sub c}=13.3keV) and 4 Tesla (E{sub c}= I 7.8keV) for comparison. As before, patient images were obtained using the same projection at both wiggler fields. Results of the detector resolution and wiggler eld measurements will be presented for the phantoms as well as the patient scans.

  13. Spatial and frequency-based super-resolution of ultrasound images

    Science.gov (United States)

    Wu, Mon-Ju; Karls, Joseph; Duenwald-Kuehl, Sarah; Vanderby, Ray; Sethares, William

    2014-01-01

    Modern ultrasound systems can output video images containing more spatial and temporal information than still images. Super-resolution techniques can exploit additional information but face two challenges: image registration and complex motion. In addition, information from multiple available frequencies is unexploited. Herein, we utilised these information sources to create better ultrasound images and videos, extending existing technologies for image capture. Spatial and frequency-based super-resolution processing using multiple motion estimation and frequency combination was applied to ultrasound videos of deforming models. Processed images are larger, have greater clarity and detail, and less variability in intensity between frames. Significantly, strain measurements are more accurate and precise than those from raw videos, and have a higher contrast ratio between ‘tumour’ and ‘surrounding tissue’ in a phantom model. We attribute improvements to reduced noise and increased resolution in processed images. Our methods can significantly improve quantitative and qualitative assessments of ultrasound images when compared assessments of standard images. PMID:25191631

  14. A Compact "Water Window" Microscope with 60 nm Spatial Resolution for Applications in Biology and Nanotechnology.

    Science.gov (United States)

    Wachulak, Przemyslaw; Torrisi, Alfio; Nawaz, Muhammad F; Bartnik, Andrzej; Adjei, Daniel; Vondrová, Šárka; Turňová, Jana; Jančarek, Alexandr; Limpouch, Jiří; Vrbová, Miroslava; Fiedorowicz, Henryk

    2015-10-01

    Short illumination wavelength allows an extension of the diffraction limit toward nanometer scale; thus, improving spatial resolution in optical systems. Soft X-ray (SXR) radiation, from "water window" spectral range, λ=2.3-4.4 nm wavelength, which is particularly suitable for biological imaging due to natural optical contrast provides better spatial resolution than one obtained with visible light microscopes. The high contrast in the "water window" is obtained because of selective radiation absorption by carbon and water, which are constituents of the biological samples. The development of SXR microscopes permits the visualization of features on the nanometer scale, but often with a tradeoff, which can be seen between the exposure time and the size and complexity of the microscopes. Thus, herein, we present a desk-top system, which overcomes the already mentioned limitations and is capable of resolving 60 nm features with very short exposure time. Even though the system is in its initial stage of development, we present different applications of the system for biology and nanotechnology. Construction of the microscope with recently acquired images of various samples will be presented and discussed. Such a high resolution imaging system represents an interesting solution for biomedical, material science, and nanotechnology applications.

  15. Mapping plastic greenhouse with medium spatial resolution satellite data: Development of a new spectral index

    Science.gov (United States)

    Yang, Dedi; Chen, Jin; Zhou, Yuan; Chen, Xiang; Chen, Xuehong; Cao, Xin

    2017-06-01

    Plastic greenhouses (PGs) are an important agriculture development technique to protect and control the growing environment for food crops. The extensive use of PGs can change the agriculture landscape and affects the local environment. Accurately mapping and estimating the coverage of PGs is a necessity to the strategic planning of modern agriculture. Unfortunately, PG mapping over large areas is methodologically challenging, as the medium spatial resolution satellite imagery (such as Landsat data) used for analysis lacks spatial details and spectral variations. To fill the gap, the paper proposes a new plastic greenhouse index (PGI) based on the spectral, sensitivity, and separability analysis of PGs using medium spatial resolution images. In the context of the Landsat Enhanced Thematic Mapper Plus (ETM+) imagery, the paper examines the effectiveness and capability of the proposed PGI. The results indicate that PGs in Landsat ETM+ image can be successfully detected by the PGI if the PG fraction is greater than 12% in a mixed pixel. A kappa coefficient of 0.83 and overall accuracy of 91.2% were achieved when applying the proposed PGI in the case of Weifang District, Shandong, China. These results show that the proposed index can be applied to identifying transparent PGs in atmospheric corrected Landsat image and has the potential for the digital mapping of plastic greenhouse coverage over a large area.

  16. A Multi-Resolution Spatial Model for Large Datasets Based on the Skew-t Distribution

    KAUST Repository

    Tagle, Felipe

    2017-12-06

    Large, non-Gaussian spatial datasets pose a considerable modeling challenge as the dependence structure implied by the model needs to be captured at different scales, while retaining feasible inference. Skew-normal and skew-t distributions have only recently begun to appear in the spatial statistics literature, without much consideration, however, for the ability to capture dependence at multiple resolutions, and simultaneously achieve feasible inference for increasingly large data sets. This article presents the first multi-resolution spatial model inspired by the skew-t distribution, where a large-scale effect follows a multivariate normal distribution and the fine-scale effects follow a multivariate skew-normal distributions. The resulting marginal distribution for each region is skew-t, thereby allowing for greater flexibility in capturing skewness and heavy tails characterizing many environmental datasets. Likelihood-based inference is performed using a Monte Carlo EM algorithm. The model is applied as a stochastic generator of daily wind speeds over Saudi Arabia.

  17. Precision automation of cell type classification and sub-cellular fluorescence quantification from laser scanning confocal images

    Directory of Open Access Journals (Sweden)

    Hardy Craig Hall

    2016-02-01

    Full Text Available While novel whole-plant phenotyping technologies have been successfully implemented into functional genomics and breeding programs, the potential of automated phenotyping with cellular resolution is largely unexploited. Laser scanning confocal microscopy has the potential to close this gap by providing spatially highly resolved images containing anatomic as well as chemical information on a subcellular basis. However, in the absence of automated methods, the assessment of the spatial patterns and abundance of fluorescent markers with subcellular resolution is still largely qualitative and time-consuming. Recent advances in image acquisition and analysis, coupled with improvements in microprocessor performance, have brought such automated methods within reach, so that information from thousands of cells per image for hundreds of images may be derived in an experimentally convenient time-frame. Here, we present a MATLAB-based analytical pipeline to 1 segment radial plant organs into individual cells, 2 classify cells into cell type categories based upon random forest classification, 3 divide each cell into sub-regions, and 4 quantify fluorescence intensity to a subcellular degree of precision for a separate fluorescence channel. In this research advance, we demonstrate the precision of this analytical process for the relatively complex tissues of Arabidopsis hypocotyls at various stages of development. High speed and robustness make our approach suitable for phenotyping of large collections of stem-like material and other tissue types.

  18. Combination of high spatial resolution and low minimum detection limit using thinned specimens in cutting-edge electron probe microanalysis

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, Yugo, E-mail: kubo-yugo@sei.co.jp; Hamada, Kotaro

    2015-10-15

    The effect of sample thickness on the spatial resolution and minimum detection limit (MDL) has been investigated for field-emission electron probe microanalysis with wavelength dispersive X-ray spectroscopy (FE-EPMA–WDX). Indium gallium phosphide samples thinned to thicknesses of about 100, 130, 210, 310, and 430 nm provided effective thin-sample FE-EPMA–WDX in the resolution range of 40–350 nm and MDL range of 13,000–600 ppm (mass). A comparison of the FE-EPMA results for thin and bulk samples demonstrated that thin-sample FE-EPMA can achieve both higher sensitivity and better spatial resolution than is possible using bulk samples. Most of the X-rays that determine the MDL are generated in a surface region of the sample with a depth of approximately 300 nm. The spatial resolution and MDL can be tuned by the sample thickness. Furthermore, analysis of small amounts of Cl in SiO{sub 2} indicated that thin-sample FE-EPMA can realize a spatial resolution and MDL of 41 nm and 446 ppm at I{sub prob}=50 nA, respectively, whereas bulk-sample FE-EPMA offers a resolution of only 348 nm and MDL of 426 ppm. - Highlights: • Mechanism for FE-EPMA combining high spatial resolution with a low detection limit. • Spatial resolution and minimum detection limit controllable by sample thickness. • Achievement of a combined resolution and detection limit of 41 nm and 446 ppm. • Spatial resolution and detection limit for FE-EPMA–WDX and FE-SEM–EDX.

  19. Io’s volcanoes at high spatial, spectral, and temporal resolution from ground-based observations

    Science.gov (United States)

    de Kleer, Katherine R.; de Pater, Imke

    2017-10-01

    Io’s dynamic volcanic eruptions provide a laboratory for studying large-scale volcanism on a body vastly different from Earth, and for unraveling the connections between tidal heating and the geological activity it powers. Ground-based near-infrared observatories allow for high-cadence, long-time-baseline observing programs using diverse instrumentation, and yield new information into the nature and variability of this activity. I will summarize results from four years of ground-based observations of Io’s volcanism, including: (1) A multi-year cadence observing campaign using adaptive optics on 8-10 meter telescopes, which places constraints on tidal heating models through sampling the spatial distribution of Io’s volcanic heat flow, and provides estimates of the occurrence rate of Io’s most energetic eruptions; (2) High-spectral-resolution (R~25,000) studies of Io’s volcanic SO gas emission at 1.7 microns, which resolves this rovibronic line into its different branches, and thus contains detailed information on the temperature and thermal state of the gas; and (3) The highest-spatial-resolution map ever produced of the entire Loki Patera, a 20,000 km2 volcanic feature on Io, derived from adaptive-optics observations of an occultation of Io by Europa. The map achieves a spatial resolution of ~10 km and indicates compositional differences across the patera. These datasets both reveal specific characteristics of Io’s individual eruptions, and provide clues into the sub-surface systems connecting Io’s tidally-heated interior to its surface expressions of volcanism.

  20. Characterizing Pavement Surface Distress Conditions with Hyper-Spatial Resolution Natural Color Aerial Photography

    Directory of Open Access Journals (Sweden)

    Su Zhang

    2016-05-01

    Full Text Available Roadway pavement surface distress information is critical for effective pavement asset management, and subsequently, transportation management agencies at all levels (i.e., federal, state, and local dedicate a large amount of time and money to routinely evaluate pavement surface distress conditions as the core of their asset management programs. However, currently adopted ground-based evaluation methods for pavement surface conditions have many disadvantages, like being time-consuming and expensive. Aircraft-based evaluation methods, although getting more attention, have not been used for any operational evaluation programs yet because the acquired images lack the spatial resolution to resolve finer scale pavement surface distresses. Hyper-spatial resolution natural color aerial photography (HSR-AP provides a potential method for collecting pavement surface distress information that can supplement or substitute for currently adopted evaluation methods. Using roadway pavement sections located in the State of New Mexico as an example, this research explored the utility of aerial triangulation (AT technique and HSR-AP acquired from a low-altitude and low-cost small-unmanned aircraft system (S-UAS, in this case a tethered helium weather balloon, to permit characterization of detailed pavement surface distress conditions. The Wilcoxon Signed Rank test, Mann-Whitney U test, and visual comparison were used to compare detailed pavement surface distress rates measured from HSR-AP derived products (orthophotos and digital surface models generated from AT with reference distress rates manually collected on the ground using standard protocols. The results reveal that S-UAS based hyper-spatial resolution imaging and AT techniques can provide detailed and reliable primary observations suitable for characterizing detailed pavement surface distress conditions comparable to the ground-based manual measurement, which lays the foundation for the future application

  1. Enhancement of Spatial Resolution Using a Metamaterial Sensor in Nondestructive Evaluation

    Directory of Open Access Journals (Sweden)

    Adriana Savin

    2015-11-01

    Full Text Available The current stage of non-destructive evaluation techniques imposes the development of new electromagnetic methods that are based on high spatial resolution and increased sensitivity. Printed circuit boards, integrated circuit boards, composite materials with polymeric matrix containing conductive fibers, as well as some types of biosensors are devices of interest in using such evaluation methods. In order to achieve high performance, the work frequencies must be either radiofrequencies or microwaves. At these frequencies, at the dielectric/conductor interface, plasmon polaritons can appear, propagating between conductive regions as evanescent waves. Detection of these waves, containing required information, can be done using sensors with metamaterial lenses. We propose in this paper the enhancement of the spatial resolution using electromagnetic methods, which can be accomplished in this case using evanescent waves that appear in the current study in slits of materials such as the spaces between carbon fibers in Carbon Fibers Reinforced Plastics or in materials of interest in the nondestructive evaluation field with industrial applications, where microscopic cracks are present. We propose herein a unique design of the metamaterials for use in nondestructive evaluation based on Conical Swiss Rolls configurations, which assure the robust concentration/focusing of the incident electromagnetic waves (practically impossible to be focused using classical materials, as well as the robust manipulation of evanescent waves. Applying this testing method, spatial resolution of approximately λ/2000 can be achieved. This testing method can be successfully applied in a variety of applications of paramount importance such as defect/damage detection in materials used in a variety of industrial applications, such as automotive and aviation technologies.

  2. Modelling malaria risk in East Africa at high-spatial resolution.

    Science.gov (United States)

    Omumbo, J A; Hay, S I; Snow, R W; Tatem, A J; Rogers, D J

    2005-06-01

    Malaria risk maps have re-emerged as an important tool for appropriately targeting the limited resources available for malaria control. In Sub-Saharan Africa empirically derived maps using standardized criteria are few and this paper considers the development of a model of malaria risk for East Africa. Statistical techniques were applied to high spatial resolution remotely sensed, human settlement and land-use data to predict the intensity of malaria transmission as defined according to the childhood parasite ratio (PR) in East Africa. Discriminant analysis was used to train environmental and human settlement predictor variables to distinguish between four classes of PR risk shown to relate to disease outcomes in the region. Independent empirical estimates of the PR were identified from Kenya, Tanzania and Uganda (n = 330). Surrogate markers of climate recorded on-board earth orbiting satellites, population settlement, elevation and water bodies all contributed significantly to the predictive models of malaria transmission intensity in the sub-region. The accuracy of the model was increased by stratifying East Africa into two ecological zones. In addition, the inclusion of urbanization as a predictor of malaria prevalence, whilst reducing formal accuracy statistics, nevertheless improved the consistency of the predictive map with expert opinion malaria maps. The overall accuracy achieved with ecological zone and urban stratification was 62% with surrogates of precipitation and temperature being among the most discriminating predictors of the PR. It is possible to achieve a high degree of predictive accuracy for Plasmodium falciparum parasite prevalence in East Africa using high-spatial resolution environmental data. However, discrepancies were evident from mapped outputs from the models which were largely due to poor coverage of malaria training data and the comparable spatial resolution of predictor data. These deficiencies will only be addressed by more random

  3. Improving the spatial resolution characteristics of dedicated cone-beam breast CT technology

    Science.gov (United States)

    Gazi, Peymon; Boone, John M.

    2014-03-01

    Prior studies have shown that breast CT (bCT) outperforms mammography in the visualization of mass lesions, yet underperforms in the detection of micro-calcifications. The Breast Tomography Project at UC Davis has successively developed and fabricated four dedicated breast CT scanners, the most recent code-named Doheny, that produce high resolution, fully tomographic images, and overcome the tissue superposition effects of mammography at equivalent radiation dose. Over 600 patients have been imaged thus far in an ongoing clinical trial. The Doheny prototype differs from prior bCT generations in its usage of a pulsed rather than continuous x-ray source and in its utilization of a CMOS flat-panel fluoroscopic detector rather than TFT. Spatial Resolution analysis performed on Doheny indicates that the MTF characteristics have been substantially improved.

  4. Improved spatial resolution by MOSFET dosimetry of an x-ray microbeam.

    Science.gov (United States)

    Kaplan, G I; Rosenfeld, A B; Allen, B J; Booth, J T; Carolan, M G; Holmes-Siedle, A

    2000-01-01

    Measurement of the lateral profile of the dose distribution across a narrow x-ray microbeam requires a dosimeter with a micron resolution. We investigated the use of a MOSFET dosimeter in an "edge-on" orientation with the gate insulating oxide layer parallel to the direction of the beam. We compared results using this technique to Gafchromic film measurements of a 200 micrometer wide planar x-ray microbeam. The microbeam was obtained by using a vernier micrometer-driven miniature collimator attached to a Therapax DXT300 x-ray machine operated at 100 kVp. The "edge-on" application allows utilization of the ultra thin sensitive volume of the MOSFET detector. Spatial resolution of both the MOSFET and Gafchromic film dosimeters appeared to be of about 1 micrometer. The MOSFET dosimeter appeared to provide more uniform dose profiles with the advantage of on-line measurements.

  5. A directional array approach for the measurement of rotor noise source distributions with controlled spatial resolution

    Science.gov (United States)

    Brooks, T. F.; Marcolini, M. A.; Pope, D. S.

    1987-01-01

    A special array system has been designed to examine noise source distributions over a helicopter rotor model. The particular measurement environment is for a rotor operating in the open jet of an anechoic wind tunnel. An out-of-flow directional microphone element array is used with a directivity pattern whose major directional lobe projects on the rotor disk. If significant contributions from extraneous tunnel noise sources in the direction of the side lobes are excluded, the dominant output from the array would be that noise emitted from the projected area on the rotor disk. The design incorporates an array element signal blending features which serves to control the spatial resolution of the size of the directional lobes. (Without blending, the resolution and side lobe size are very strong functions of frequency, which severely limits the array's usefulness).

  6. HIGH-RESOLUTION SPATIAL MODELING OF DAILY WEATHER ELEMENTS FOR A CATCHMENT IN THE OREGON CASCADE MOUNTAINS, UNITED STATES

    Science.gov (United States)

    High-quality, daily meteorological data at high spatial resolution are essential for a variety of hydrologic and ecological modeling applications that support environmental risk assessments and decision making. This paper describes the development, application, and assessment of ...

  7. Unexpected materials in a Rembrandt painting characterized by high spatial resolution cluster-TOF-SIMS imaging.

    Science.gov (United States)

    Sanyova, Jana; Cersoy, Sophie; Richardin, Pascale; Laprévote, Olivier; Walter, Philippe; Brunelle, Alain

    2011-02-01

    The painting materials of the Portrait of Nicolaes van Bambeeck (Royal Museums of Fine Arts of Belgium, Brussels, inv. 155) painted by Rembrandt van Rijn in 1641 has been studied using high resolution cluster-TOF-SIMS imaging. In the first step, a moderate spatial resolution (2 μm) was used to characterize the layer structure and the chemical composition of each layer on account of a high mass resolution. Then, in the second step, and despite a low mass resolution, the cluster primary ion beam was focused well below 1 μm in order to reveal smaller structures in the painting sample. The study confirmed the presence of starch in the second ground layer, which is quite surprising and, at least for Rembrandt paintings, has never been reported before. TOF-SIMS also indicated the presence of proteins, which, added to the size and shape of lake particles, suggests that it was manufactured from shearings (waste of textile manufacturing) of dyed wool, used as the source of the dyestuff. The analyses have also shown various lead carboxylates, being the products of the interaction between lead white and the oil of the binding medium. These findings considerably contribute to the understanding of Rembrandt's studio practice and thus demonstrate the importance and potential of cluster-TOF-SIMS imaging in the characterization on a submicrometer scale of artist painting materials.

  8. Novel Application of Fluorescence Lifetime and Fluorescence Microscopy Enables Quantitative Access to Subcellular Dynamics in Plant Cells

    Science.gov (United States)

    Elgass, Kirstin; Caesar, Katharina; Schleifenbaum, Frank; Stierhof, York-Dieter; Meixner, Alfred J.; Harter, Klaus

    2009-01-01

    Background Optical and spectroscopic technologies working at subcellular resolution with quantitative output are required for a deeper understanding of molecular processes and mechanisms in living cells. Such technologies are prerequisite for the realisation of predictive biology at cellular and subcellular level. However, although established in the physical sciences, these techniques are rarely applied to cell biology in the plant sciences. Principal Findings Here, we present a combined application of one-chromophore fluorescence lifetime microscopy and wavelength-selective fluorescence microscopy to analyse the function of a GFP fusion of the Brassinosteroid Insensitive 1 Receptor (BRI1-GFP) with high spatial and temporal resolution in living Arabidopsis cells in their tissue environment. We show a rapid, brassinolide-induced cell wall expansion and a fast BR-regulated change in the BRI1-GFP fluorescence lifetime in the plasmamembrane in vivo. Both cell wall expansion and changes in fluorescence lifetime reflect early BR-induced and BRI1-dependent physiological or signalling processes. Our experiments also show the potential of one-chromophore fluorescence lifetime microscopy for the in vivo monitoring of the biochemical and biophysical subcellular environment using GFP fusion proteins as probes. Significance One-chromophore fluorescence lifetime microscopy, combined with wavelength-specific fluorescence microscopy, opens up new frontiers for in vivo dynamic and quantitative analysis of cellular processes at high resolution which are not addressable by pure imaging technologies or transmission electron microscopy. PMID:19492078

  9. Aberration production using a high-resolution liquid-crystal spatial light modulator.

    Science.gov (United States)

    Schmidt, Jason D; Goda, Matthew E; Duncan, Bradley D

    2007-05-01

    Phase-only liquid-crystal spatial light modulators provide a powerful means of wavefront control. With high resolution and diffractive (modulo 2pi) operation, they can accurately represent large-dynamic-range phase maps. As a result, they provide an excellent means of producing electrically controllable, dynamic, and repeatable aberrations. However, proper calibration is critical to achieving accurate phase maps. Several calibration methods from previous literature were considered. With simplicity and accuracy in mind, we selected one method for each type of necessary calibration. We augmented one of the selected methods with a new step that improves its accuracy. After calibrating our spatial light modulator with our preferred methods, we evaluated its ability to produce aberrations in the laboratory. We studied Zernike polynomial aberrations using interferometry and Fourier-transform-plane images, and atmospheric aberrations using a Shack-Hartmann wavefront sensor. These measurements show the closest agreement with theoretical expectations that we have seen to date.

  10. Plasmonic Hot Electron Transport Driven Site-Specific Surface-Chemistry with Nanoscale Spatial Resolution

    CERN Document Server

    Cortés, Emiliano; Cambiasso, Javier; Jermyn, Adam S; Sundararaman, Ravishankar; Narang, Prineha; Schlücker, Sebastian; Maier, Stefan A

    2016-01-01

    Nanoscale localization of electromagnetic fields near metallic nanostructures underpins the fundamentals and applications of plasmonics. The unavoidable energy loss from plasmon decay, initially seen as a detriment, has now expanded the scope of plasmonic applications to exploit the generated hot carriers. However, quantitative understanding of the spatial localization of these hot carriers, akin to electromagnetic near-field maps, has been elusive. Here we spatially map hot-electron-driven reduction chemistry with 15 nanometre resolution as a function of time and electromagnetic field polarization for different plasmonic nanostructures. We combine experiments employing a six-electron photo-recycling process that modify the terminal group of a self-assembled monolayer on plasmonic silver nanoantennas, with theoretical predictions from first-principles calculations of non-equilibrium hot-carrier transport in these systems. The resulting localization of reactive regions, determined by hot carrier transport from...

  11. High-Resolution Spatial Distribution and Estimation of Access to Improved Sanitation in Kenya.

    Directory of Open Access Journals (Sweden)

    Peng Jia

    Full Text Available Access to sanitation facilities is imperative in reducing the risk of multiple adverse health outcomes. A distinct disparity in sanitation exists among different wealth levels in many low-income countries, which may hinder the progress across each of the Millennium Development Goals.The surveyed households in 397 clusters from 2008-2009 Kenya Demographic and Health Surveys were divided into five wealth quintiles based on their national asset scores. A series of spatial analysis methods including excess risk, local spatial autocorrelation, and spatial interpolation were applied to observe disparities in coverage of improved sanitation among different wealth categories. The total number of the population with improved sanitation was estimated by interpolating, time-adjusting, and multiplying the surveyed coverage rates by high-resolution population grids. A comparison was then made with the annual estimates from United Nations Population Division and World Health Organization /United Nations Children's Fund Joint Monitoring Program for Water Supply and Sanitation.The Empirical Bayesian Kriging interpolation produced minimal root mean squared error for all clusters and five quintiles while predicting the raw and spatial coverage rates of improved sanitation. The coverage in southern regions was generally higher than in the north and east, and the coverage in the south decreased from Nairobi in all directions, while Nyanza and North Eastern Province had relatively poor coverage. The general clustering trend of high and low sanitation improvement among surveyed clusters was confirmed after spatial smoothing.There exists an apparent disparity in sanitation among different wealth categories across Kenya and spatially smoothed coverage rates resulted in a closer estimation of the available statistics than raw coverage rates. Future intervention activities need to be tailored for both different wealth categories and nationally where there are areas of

  12. High-Resolution Spatial Distribution and Estimation of Access to Improved Sanitation in Kenya.

    Science.gov (United States)

    Jia, Peng; Anderson, John D; Leitner, Michael; Rheingans, Richard

    2016-01-01

    Access to sanitation facilities is imperative in reducing the risk of multiple adverse health outcomes. A distinct disparity in sanitation exists among different wealth levels in many low-income countries, which may hinder the progress across each of the Millennium Development Goals. The surveyed households in 397 clusters from 2008-2009 Kenya Demographic and Health Surveys were divided into five wealth quintiles based on their national asset scores. A series of spatial analysis methods including excess risk, local spatial autocorrelation, and spatial interpolation were applied to observe disparities in coverage of improved sanitation among different wealth categories. The total number of the population with improved sanitation was estimated by interpolating, time-adjusting, and multiplying the surveyed coverage rates by high-resolution population grids. A comparison was then made with the annual estimates from United Nations Population Division and World Health Organization /United Nations Children's Fund Joint Monitoring Program for Water Supply and Sanitation. The Empirical Bayesian Kriging interpolation produced minimal root mean squared error for all clusters and five quintiles while predicting the raw and spatial coverage rates of improved sanitation. The coverage in southern regions was generally higher than in the north and east, and the coverage in the south decreased from Nairobi in all directions, while Nyanza and North Eastern Province had relatively poor coverage. The general clustering trend of high and low sanitation improvement among surveyed clusters was confirmed after spatial smoothing. There exists an apparent disparity in sanitation among different wealth categories across Kenya and spatially smoothed coverage rates resulted in a closer estimation of the available statistics than raw coverage rates. Future intervention activities need to be tailored for both different wealth categories and nationally where there are areas of greater needs when

  13. Scaling of Thermal Images at Different Spatial Resolution: The Mixed Pixel Problem

    Directory of Open Access Journals (Sweden)

    Hamlyn G. Jones

    2014-07-01

    Full Text Available The consequences of changes in spatial resolution for application of thermal imagery in plant phenotyping in the field are discussed. Where image pixels are significantly smaller than the objects of interest (e.g., leaves, accurate estimates of leaf temperature are possible, but when pixels reach the same scale or larger than the objects of interest, the observed temperatures become significantly biased by the background temperature as a result of the presence of mixed pixels. Approaches to the estimation of the true leaf temperature that apply both at the whole-pixel level and at the sub-pixel level are reviewed and discussed.

  14. Implementation of a Gaussian Beam Laser and Aspheric Optics for High Spatial Resolution MALDI Imaging MS

    Science.gov (United States)

    Zavalin, Andre; Yang, Junhai; Haase, Andreas; Holle, Armin; Caprioli, Richard

    2014-06-01

    We have investigated the use of a Gaussian beam laser for MALDI Imaging Mass Spectrometry to provide a precisely defined laser spot of 5 μm diameter on target using a commercial MALDI TOF instrument originally designed to produce a 20 μm diameter laser beam spot at its smallest setting. A Gaussian beam laser was installed in the instrument in combination with an aspheric focusing lens. This ion source produced sharp ion images at 5 μm spatial resolution with signals of high intensity as shown for images from thin tissue sections of mouse brain.

  15. Cumulus cloud base height estimation from high spatial resolution Landsat data - A Hough transform approach

    Science.gov (United States)

    Berendes, Todd; Sengupta, Sailes K.; Welch, Ron M.; Wielicki, Bruce A.; Navar, Murgesh

    1992-01-01

    A semiautomated methodology is developed for estimating cumulus cloud base heights on the basis of high spatial resolution Landsat MSS data, using various image-processing techniques to match cloud edges with their corresponding shadow edges. The cloud base height is then estimated by computing the separation distance between the corresponding generalized Hough transform reference points. The differences between the cloud base heights computed by these means and a manual verification technique are of the order of 100 m or less; accuracies of 50-70 m may soon be possible via EOS instruments.

  16. Best period for high spatial resolution satellite images for the detection of marks of buried structures

    Directory of Open Access Journals (Sweden)

    Dimitrios Kaimaris

    2012-06-01

    Full Text Available Improvements in sensor technology in recent decades led to the creation of ground, air and space imaging systems, whose data can be used in archaeological studies. Greece is one of the lucky areas that are rich in archaeological heritage. The detection of prehistoric/historic undiscovered constructions on satellite images or aerial photos is a complex and complicated matter. These marks are not visible from the ground, they can, however, be traced on satellite or aerial images, because of the differences in tone and texture. These differences appear as crop, soil and shadow marks. Undoubtedly, the detection of buried structures requires a suitable spatial resolution image, taken under appropriate meteorological conditions and during the best period of the vegetation growing cycle. According to the pertinent literature, detecting covered memorials may be achieved either accidentally or, usually, after a systematic investigation based on historical narratives. The purpose of this study is to determine the factors that facilitate or hinder the detection of buried structures through high spatial resolution satellite imagery. In this study, pan sharpened images from the QuickBird-2 satellite were used, of a spatial resolution of 0.60-0.70 m. This study concerns the detection of marks of the ancient Via Egnatia, from the ancient Amphipolis to Philippi (Eastern Macedonia, Greece. We studied different types of vegetation in the region and their phenological cycle. Taking into account the vegetation phenological cycle of the study area as well as the meteorological data, four pan sharpened QuickBird-2 images of a spatial resolution of 0.60–0.70 m. were used, during four different seasons. By processing the four images, we can determine the one acquired during the most appropriate conditions for the detection of buried structures. The application of this methodology in the study area had positive results, and not only was the main purpose of this

  17. Enhanced Sensitivity for High Spatial Resolution Lipid Analysis by Negative Ion Mode MALDI Imaging Mass Spectrometry

    OpenAIRE

    Angel, Peggi M.; Spraggins, Jeffrey M.; Baldwin, H. Scott; Caprioli, Richard

    2012-01-01

    We have achieved enhanced lipid imaging to a ~10 μm spatial resolution using negative ion mode matrix assisted laser desorption ionization (MALDI) imaging mass spectrometry, sublimation of 2,5-dihydroxybenzoic acid as the MALDI matrix and a sample preparation protocol that uses aqueous washes. We report on the effect of treating tissue sections by washing with volatile buffers at different pHs prior to negative ion mode lipid imaging. The results show that washing with ammonium formate, pH 6....

  18. The sensitivity of ecosystem service models to choices of input data and spatial resolution

    Science.gov (United States)

    Bagstad, Kenneth J.; Cohen, Erika; Ancona, Zachary H.; McNulty, Steven; Sun, Ge

    2018-01-01

    Although ecosystem service (ES) modeling has progressed rapidly in the last 10–15 years, comparative studies on data and model selection effects have become more common only recently. Such studies have drawn mixed conclusions about whether different data and model choices yield divergent results. In this study, we compared the results of different models to address these questions at national, provincial, and subwatershed scales in Rwanda. We compared results for carbon, water, and sediment as modeled using InVEST and WaSSI using (1) land cover data at 30 and 300 m resolution and (2) three different input land cover datasets. WaSSI and simpler InVEST models (carbon storage and annual water yield) were relatively insensitive to the choice of spatial resolution, but more complex InVEST models (seasonal water yield and sediment regulation) produced large differences when applied at differing resolution. Six out of nine ES metrics (InVEST annual and seasonal water yield and WaSSI) gave similar predictions for at least two different input land cover datasets. Despite differences in mean values when using different data sources and resolution, we found significant and highly correlated results when using Spearman's rank correlation, indicating consistent spatial patterns of high and low values. Our results confirm and extend conclusions of past studies, showing that in certain cases (e.g., simpler models and national-scale analyses), results can be robust to data and modeling choices. For more complex models, those with different output metrics, and subnational to site-based analyses in heterogeneous environments, data and model choices may strongly influence study findings.

  19. On Spatial Resolution in Habitat Models: Can Small-scale Forest Structure Explain Capercaillie Numbers?

    Directory of Open Access Journals (Sweden)

    Ilse Storch

    2002-06-01

    Full Text Available This paper explores the effects of spatial resolution on the performance and applicability of habitat models in wildlife management and conservation. A Habitat Suitability Index (HSI model for the Capercaillie (Tetrao urogallus in the Bavarian Alps, Germany, is presented. The model was exclusively built on non-spatial, small-scale variables of forest structure and without any consideration of landscape patterns. The main goal was to assess whether a HSI model developed from small-scale habitat preferences can explain differences in population abundance at larger scales. To validate the model, habitat variables and indirect sign of Capercaillie use (such as feathers or feces were mapped in six study areas based on a total of 2901 20 m radius (for habitat variables and 5 m radius sample plots (for Capercaillie sign. First, the model's representation of Capercaillie habitat preferences was assessed. Habitat selection, as expressed by Ivlev's electivity index, was closely related to HSI scores, increased from poor to excellent habitat suitability, and was consistent across all study areas. Then, habitat use was related to HSI scores at different spatial scales. Capercaillie use was best predicted from HSI scores at the small scale. Lowering the spatial resolution of the model stepwise to 36-ha, 100-ha, 400-ha, and 2000-ha areas and relating Capercaillie use to aggregated HSI scores resulted in a deterioration of fit at larger scales. Most importantly, there were pronounced differences in Capercaillie abundance at the scale of study areas, which could not be explained by the HSI model. The results illustrate that even if a habitat model correctly reflects a species' smaller scale habitat preferences, its potential to predict population abundance at larger scales may remain limited.

  20. Simulation Study of Spatial Resolution and Sensitivity for Tapered Depth of Interaction PET Detectors for Small Animal Imaging

    OpenAIRE

    James, Sara St.; Yang, Yongfeng; Bowen, Spencer L; Qi, Jinyi; Cherry, Simon R

    2009-01-01

    Improvements to current small animal PET scanners can be made by improving the sensitivity and the spatial resolution of the scanner. In the past, efforts have been made to minimize the crystal dimensions in the axial and transaxial directions to improve the spatial resolution and to increase the crystal length to improve the sensitivity of the scanner. We have designed tapered PET detectors with the purpose of reducing the gaps between detector modules and optimizing the sensitivity of a fut...

  1. High Spatial Resolution Soil Moisture with Passive Active Sensors Using a Change Detection Approach: Studies Using SMAPVEX12 Data

    Science.gov (United States)

    Fang, B.; Lakshmi, V.; Bindlish, R.; Jackson, T. J.

    2014-12-01

    Soil moisture is an important variable in many areas of geosciences. The passive microwave sensors have been providing soil moisture of various spatial resolutions and are available for all-weather conditions. However, restricted by the antenna diameter of microwave radiometer, the spatial resolution of passive microwave soil moisture product is at tens of kilometers and needs to be improved for many applications. The SMAP (Soil Moisture Active Passive) is set to be launched in late 2014 and will be the first mission to provide L-band radar/radiometer soil moisture retrievals at three resolutions. The SMAPVEX12 is a pre-launch field validation experiment for evaluating and testing the soil moisture retrievals acquired from SMAP satellite. Airborne data using PALS (Passive/Active L-band Sensor) at two along-track resolutions (650 m and 1590 m) and UAVSAR (Uninhabited Aerial Vehicle Synthetic Aperture Radar) at 5 m spatial resolution as well as in-situ measurements were collected during the campaign. The study will implement a Single Channel Algorithm (SCA) to retrieve soil moisture from high/low altitude PALS L-band radiometer observations, as well as produce downscaled soil moisture change by combining low spatial resolution soil moisture retrievals and high spatial resolution PALS L-band radar observations through a change-detection algorithm, which models the relationship between change in radar backscatter and the change in soil moisture.

  2. Design and study of a coplanar grid array CdZnTe detector for improved spatial resolution.

    Science.gov (United States)

    Ma, Yuedong; Xiao, Shali; Yang, Guoqiang; Zhang, Liuqiang

    2014-12-01

    Coplanar grid (CPG) CdZnTe detectors have been used as gamma-ray spectrometers for years. Comparing with pixelated CdZnTe detectors, CPG CdZnTe detectors have either no or poor spatial resolution, which directly limits its use in imaging applications. To address the issue, a 2×2 CPG array CdZnTe detector with dimensions of 7×7×5mm(3) was fabricated. Each of the CPG pairs in the detector was moderately shrunk in size and precisely designed to improve the spatial resolution while maintaining good energy resolution, considering the charge loss at the surface between the strips of each CPG pairs. Preliminary measurements were demonstrated at an energy resolution of 2.7-3.9% for the four CPG pairs using 662keV gamma rays and with a spatial resolution of 3.3mm, which is the best spatial resolution ever achieved for CPG CdZnTe detectors. The results reveal that the CPG CdZnTe detector can also be applied to imaging applications at a substantially higher spatial resolution. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. MODIS AOD retrieval at high spatial resolution with MAIAC on the Alpine region

    Science.gov (United States)

    Emili, E.; Lyapustin, A.; Wang, Y.; Korkin, S.; Popp, C. T.; Petitta, M.; Wunderle, S.; Zebisch, M.

    2011-12-01

    Satellite data allow to determine the spatial distribution and variability of aerosols at a large scale. The standard products are developed for global applications and have a coarse resolution, for example 10 km for MODIS standard product (MOD04) Aerosol Optical Depth (AOD). On the other hand, the concentration of aerosols in in mountain regions like the Alps, is very heterogeneous and characterized by scales of variability of several kilometers. Therefore, satellite high resolution products are needed to provide an accurate aerosol mapping in mountain areas. Several approaches to derive aerosol optical depth (AOD) from MODIS at high resolution have been proposed in the recent years. They provide new opportunities for regional scale analysis, but application of these algorithms remains confined to few studies. Recently, the Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm was developed for MODIS, which performs a simultaneous retrieval of surface bidirectional reflection and aerosol properties at a resolution of 1km. This algorithm has a global scope and works over both dark and bright surfaces; it has an internal cloud mask and snow detection, and provides an enhanced data coverage with respect to the MODIS standard product, which is very appealing for the Alpine region. In this study we analyze the quality and potential of MAIAC AOD in the European Alpine region using the 1 km resolution AOD maps for the years 2008-2009. Since unresolved clouds and snow pixel contamination increase the noise of the AOD retrieval, we developed a filter that preserves the spatial resolution of the product and enhances the accuracy of MAIAC AOD for air-quality and climatological applications. The filtering approach is divided in three steps: a coarse and fine mode fraction filter, a proximity-cloud filter and an AOD standard deviation filter. The MAIAC AOD was validated with AERONET measurements in the region and compared with MODIS product MOD04. Similar

  4. Flood monitoring in a semi-arid environment using spatially high resolution radar and optical data.

    Science.gov (United States)

    Seiler, Ralf; Schmidt, Jana; Diallo, Ousmane; Csaplovics, Elmar

    2009-05-01

    The geographic term "Niger Inland Delta" stands for a vast plain of approximately 40,000 km(2), which is situated in the western Sahel (Republic of Mali). The Inland Delta is affected by yearly inundation through the variable water levels of the Niger-Bani river system. Due to a good availability of (surface) water, the ecosystem at the Niger Inland Delta serves as resting place stop-over for many migrating birds and other wildlife species as well as economic base for farmers and pastoral people. To foster the sustainable usage of its natural resources and to protect this natural heritage, the entire Niger Inland Delta became RAMSAR site in 2004. This paper aims to test to which extent texture analysis can improve the quality of flood monitoring in a semi-arid environment using spatially high resolution ASAR imaging mode data. We found the Gray Level Dependence Method (GLDM) was most suitable proceeding for our data. Several statistical parameters were calculated via co-occurrence matrices and were used to classify the images in different gradation of soil moisture classes. In a second step we used additional information from spatially high resolution optical data (ASTER) to improve the separability of open water areas from moisture/vegetated areas.

  5. Large patch convolutional neural networks for the scene classification of high spatial resolution imagery

    Science.gov (United States)

    Zhong, Yanfei; Fei, Feng; Zhang, Liangpei

    2016-04-01

    The increase of the spatial resolution of remote-sensing sensors helps to capture the abundant details related to the semantics of surface objects. However, it is difficult for the popular object-oriented classification approaches to acquire higher level semantics from the high spatial resolution remote-sensing (HSR-RS) images, which is often referred to as the "semantic gap." Instead of designing sophisticated operators, convolutional neural networks (CNNs), a typical deep learning method, can automatically discover intrinsic feature descriptors from a large number of input images to bridge the semantic gap. Due to the small data volume of the available HSR-RS scene datasets, which is far away from that of the natural scene datasets, there have been few reports of CNN approaches for HSR-RS image scene classifications. We propose a practical CNN architecture for HSR-RS scene classification, named the large patch convolutional neural network (LPCNN). The large patch sampling is used to generate hundreds of possible scene patches for the feature learning, and a global average pooling layer is used to replace the fully connected network as the classifier, which can greatly reduce the total parameters. The experiments confirm that the proposed LPCNN can learn effective local features to form an effective representation for different land-use scenes, and can achieve a performance that is comparable to the state-of-the-art on public HSR-RS scene datasets.

  6. Investigation of spatial resolution dependent variability in transcutaneous oxygen saturation using point spectroscopy system

    Science.gov (United States)

    Philimon, Sheena P.; Huong, Audrey K. C.; Ngu, Xavier T. I.

    2017-08-01

    This paper aims to investigate the variation in one’s percent mean transcutaneous oxygen saturation (StO2) with differences in spatial resolution of data. This work required the knowledge of extinction coefficient of hemoglobin derivatives in the wavelength range of 520 - 600 nm to solve for the StO2 value via an iterative fitting procedure. A pilot study was conducted on three healthy subjects with spectroscopic data collected from their right index finger at different arbitrarily selected distances. The StO2 value estimated by Extended Modified Lambert Beer (EMLB) model revealed a higher mean StO2 of 91.1 ± 1.3% at a proximity distance of 30 mm compared to 60.83 ± 2.8% at 200 mm. The results showed a high correlation between data spatial resolution and StO2 value, and revealed a decrease in StO2 value as the sampling distance increased. The preliminary findings from this study contribute to the knowledge of the appropriate distance range for consistent and high repeatability measurement of skin oxygenation.

  7. Enhanced spatial resolution in fluorescence molecular tomography using restarted L1-regularized nonlinear conjugate gradient algorithm.

    Science.gov (United States)

    Shi, Junwei; Liu, Fei; Zhang, Guanglei; Luo, Jianwen; Bai, Jing

    2014-04-01

    Owing to the high degree of scattering of light through tissues, the ill-posedness of fluorescence molecular tomography (FMT) inverse problem causes relatively low spatial resolution in the reconstruction results. Unlike L2 regularization, L1 regularization can preserve the details and reduce the noise effectively. Reconstruction is obtained through a restarted L1 regularization-based nonlinear conjugate gradient (re-L1-NCG) algorithm, which has been proven to be able to increase the computational speed with low memory consumption. The algorithm consists of inner and outer iterations. In the inner iteration, L1-NCG is used to obtain the L1-regularized results. In the outer iteration, the restarted strategy is used to increase the convergence speed of L1-NCG. To demonstrate the performance of re-L1-NCG in terms of spatial resolution, simulation and physical phantom studies with fluorescent targets located with different edge-to-edge distances were carried out. The reconstruction results show that the re-L1-NCG algorithm has the ability to resolve targets with an edge-to-edge distance of 0.1 cm at a depth of 1.5 cm, which is a significant improvement for FMT.

  8. Spatial resolution and velocity field improvement of 4D-flow MRI.

    Science.gov (United States)

    Callaghan, Fraser M; Grieve, Stuart M

    2017-11-01

    4D-flow MRI obtains a time-dependent 3D velocity field; however, its use for the calculation of higher-order parameters is limited by noise. We present an algorithm for denoising 4D-flow data. By integrating a velocity field and eliminating streamlines in noisy flow, depicted by high curvature, a denoised dataset may be extracted. This method, defined as the velocity field improvement (VFIT) algorithm, was validated in an analytical dataset and using in vivo data in comparison with a computation fluid dynamics (CFD) simulation. As a proof of principal, wall shear stress (WSS) measurements in the descending aorta were compared with those defined by CFD. The VFIT algorithm achieved a >100% noise reduction of a corrupted analytical dataset. In addition, 4D-flow data were cleaned to show improved spatial resolution and near wall velocity representation. WSS measures compared well with CFD data and bulk flow dynamics were retained (flow measurements). This study presents a method for denoising 4D-flow datasets with improved spatial resolution. Bulk flow dynamics are accurately conserved while velocity and velocity gradient fields are improved; this is important in the calculation of higher-order parameters such as WSS, which are shown to be more comparable to CFD measures. Magn Reson Med 78:1959-1968, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  9. Monitoring habitat preserves in southern California using high spatial resolution multispectral imagery.

    Science.gov (United States)

    Coulter, Lloyd L; Stow, Douglas A

    2009-05-01

    Habitat preserve systems have been established adjacent to the densely populated regions of southern California to support indigenous plant and animal species that are listed as rare, threatened, or endangered. Monitoring the condition of habitat across these broad preserves is necessary to ensure their long-term viability and may be effectively accomplished using remote sensing techniques with high spatial resolution visible and near-infrared (VNIR) multispectral imagery. The utility of 1 m spatial resolution VNIR imagery for detailed change detection and monitoring of Mediterranean-type ecosystems is assessed here. Image acquisition and preprocessing procedures were conducted to ensure that image-detected changes represented real changes and not artifacts. Change classification products with six spectral-based transition classes were generated using multiband image differencing (MID) for three change periods: 1998-1999, 1998-2001, and 1998-2005. Land cover changes relevant to habitat quality monitoring such as human-induced disturbance, fire, vegetation growth/recovery, and drought related vegetation stress were readily detected using the multitemporal VNIR imagery. Suggestions for operational habitat monitoring using image products and mobile geographic information system technologies are provided.

  10. Limits on the spatial resolution of monolithic scintillators read out by APD arrays.

    Science.gov (United States)

    van der Laan, D J Jan; Maas, Marnix C; Bruyndonckx, Peter; Schaart, Dennis R

    2012-10-21

    Cramér-Rao theory can be used to derive the lower bound on the spatial resolution achievable with position-sensitive scintillation detectors as a function of the detector geometry and the pertinent physical properties of the scintillator, the photosensor and the readout electronics. Knowledge of the Cramér-Rao lower bound (CRLB) can for example be used to optimize the detector design and to test the performance of the method used to derive position information from the detector signals. Here, this approach is demonstrated for monolithic scintillator detectors for positron emission tomography. Two detector geometries are investigated: a 20 × 10 × 10 mm(3) and a 20 × 10 × 20 mm(3) monolithic LYSO:Ce(3+) crystal read out by one or two Hamamatsu S8550SPL avalanche photodiode (APD) arrays, respectively. The results indicate that in these detectors the CRLB is primarily determined by the APD excess noise factor and the number of scintillation photons detected. Furthermore, it is shown that the use of a k-nearest neighbor (k-NN) algorithm for position estimation allows the experimentally obtained spatial resolution to closely approach the CRLB. The approach outlined in this work can in principle be applied to any scintillation detector in which position information is encoded in the distribution of the scintillation light over multiple photosensor elements.

  11. High spatial resolution observations of NGC 7027 with a 10 micron array camera

    Science.gov (United States)

    Arens, J. F.; Lamb, G. M.; Peck, M. C.; Moseley, H.; Hoffmann, W. F.; Tresch-Fienberg, R.; Fazio, G. G.

    1984-01-01

    First observations of a planetary nebula with an infrared charge injection device (CID) array camera are reported. The 10 micron images of NGC 7027 have spatial resolution comparable to that of the highest resolution (less than 2 arcsec) radio aperture-synthesis maps of this source. A much closer correspondence between the mid-infrared and radio appearance of NGC 7027 was found than was known previously, confirming that warm dust is coextensive and well mixed with the gas in the ionized zone. Using maps at three wavelengths, the spatial dependence of the shape of the 8-13 micron spectrum within the nebula is examined. The dip at 9.60 microns is shallowest in regions of enhanced optical extinction (as determined from new images near 4000 and 9000 A obtained with an optical charge coupled device). The 9.60 micron emission is strongest in these same positions. It is shown that the results may be explained not by silicate absorption, but by a combination of emission from two distinct grain populations, one of which is also partly responsible for the variation in extinction across the nebula.

  12. Matrix sublimation/recrystallization for imaging proteins by mass spectrometry at high spatial resolution.

    Science.gov (United States)

    Yang, Junhai; Caprioli, Richard M

    2011-07-15

    We have employed matrix deposition by sublimation for protein image analysis on tissue sections using a hydration/recrystallization process that produces high-quality MALDI mass spectra and high-spatial-resolution ion images. We systematically investigated different washing protocols, the effect of tissue section thickness, the amount of sublimated matrix per unit area, and different recrystallization conditions. The results show that an organic solvent rinse followed by ethanol/water rinses substantially increased sensitivity for the detection of proteins. Both the thickness of the tissue section and the amount of sinapinic acid sublimated per unit area have optimal ranges for maximal protein signal intensity. Ion images of mouse and rat brain sections at 50, 20, and 10 μm spatial resolution are presented and are correlated with hematoxylin and eosin (H&E)-stained optical images. For targeted analysis, histology-directed imaging can be performed using this protocol where MS analysis and H&E staining are performed on the same section.

  13. Acceleration of high angular and spatial resolution diffusion imaging using compressed sensing with multichannel spiral data.

    Science.gov (United States)

    Mani, Merry; Jacob, Mathews; Guidon, Arnaud; Magnotta, Vincent; Zhong, Jianhui

    2015-01-01

    To accelerate the acquisition of simultaneously high spatial and angular resolution diffusion imaging. Accelerated imaging is achieved by recovering the diffusion signal at all voxels simultaneously from under-sampled k-q space data using a compressed sensing algorithm. The diffusion signal at each voxel is modeled as a sparse complex Gaussian mixture model. The joint recovery scheme enables incoherent under-sampling of the 5-D k-q space, obtained by randomly skipping interleaves of a multishot variable density spiral trajectory. This sampling and reconstruction strategy is observed to provide considerably improved reconstructions than classical k-q under-sampling and reconstruction schemes. The complex model enables to account for the noise statistics without compromising the computational efficiency and theoretical convergence guarantees. The reconstruction framework also incorporates compensation of motion induced phase errors that result from the multishot acquisition. Reconstructions of the diffusion signal from under-sampled data using the proposed method yields accurate results with errors less that 5% for different accelerations and b-values. The proposed method is also shown to perform better than standard k-q acceleration schemes. The proposed scheme can significantly accelerate the acquisition of high spatial and angular resolution diffusion imaging by accurately reconstructing crossing fiber architectures from under-sampled data. © 2014 Wiley Periodicals, Inc.

  14. An advanced image processing method to improve the spatial resolution of ion radiographies.

    Science.gov (United States)

    Krah, N; Testa, M; Brons, S; Jäkel, O; Parodi, K; Voss, B; Rinaldi, I

    2015-11-07

    We present an optimization method to improve the spatial resolution and the water equivalent thickness (WET) accuracy of ion radiographies. The method is designed for imaging systems measuring for each actively scanned beam spot the lateral position of the pencil beam and at the same time the Bragg curve (behind the target) in discrete steps without relying on tracker detectors to determine the ion trajectory before and after the irradiated volume. Specifically, the method was used for an imaging set-up consisting of a stack of 61 parallel-plate ionization chambers (PPIC) interleaved with absorber plates of polymethyl methacrylate (PMMA) working as a range telescope. The method uses not only the Bragg peak position, but approximates the entire measured Bragg curve as a superposition of differently shifted Bragg curves. Their relative weights allow to reconstruct the distribution of thickness around each scan spot of a heterogeneous phantom. The approach also allows merging the ion radiography with the geometric information of a co-registered x-ray radiography in order to increase its spatial resolution. The method was tested using Monte Carlo simulated and experimental proton radiographies of a PMMA step phantom and an anthropomorphic head phantom. For the step phantom, the effective spatial resolution was found to be 6 and 4 times higher than the nominal resolution for the simulated and experimental radiographies, respectively. For the head phantom, a gamma index was calculated to quantify the conformity of the simulated proton radiographies with a digitally reconstructed radiography (DRR) obtained from an x-ray CT and properly converted into WET. For a distance-to-agreement (DTA) of 2.5 mm and a relative WET difference (RWET) of 2.5%, the passing ratio was 100%/85% for the optimized/non-optimized case, respectively. When the optimized proton radiography was merged with the co-registered DRR, the passing ratio was 100% at DTA  =  1.3 mm and RWET

  15. A classification-based assessment of the optimal spatial and spectral resolution of coastal wetland imagery

    Science.gov (United States)

    Becker, Brian L.

    Great Lakes wetlands are increasingly being recognized as vital ecosystem components that provide valuable functions such as sediment retention, wildlife habitat, and nutrient removal. Aerial photography has traditionally provided a cost effective means to inventory and monitor coastal wetlands, but is limited by its broad spectral sensitivity and non-digital format. Airborne sensor advancements have now made the acquisition of digital imagery with high spatial and spectral resolution a reality. In this investigation, we selected two Lake Huron coastal wetlands, each from a distinct eco-region, over which, digital, airborne imagery (AISA or CASI-II) was acquired. The 1-meter images contain approximately twenty, 10-nanometer-wide spectral bands strategically located throughout the visible and near-infrared. The 4-meter hyperspectral imagery contains 48 contiguous bands across the visible and short-wavelength near-infrared. Extensive, in-situ, reflectance spectra (SE-590) and sub-meter GPS locations were acquired for the dominant botanical and substrate classes field-delineated at each location. Normalized in-situ spectral signatures were subjected to Principal Components and 2nd Derivative analyses in order to identify the most botanically explanative image bands. Three image-based investigations were implemented in order to evaluate the ability of three classification algorithms (ISODATA, Spectral Angle Mapper and Maximum-Likelihood) to differentiate botanical regions-of-interest. Two additional investigations were completed in order to assess classification changes associated with the independent manipulation of both spatial and spectral resolution. Of the three algorithms tested, the Maximum-Likelihood classifier best differentiated (89%) the regions-of-interest in both study sites. Covariance-based PCA rotation consistently enhanced the performance of the Maximum-Likelihood classifier. Seven non-overlapping bands (425.4, 514.9, 560.1, 685.5, 731.5, 812.3 and 916

  16. Predicting spatial variations of tree species richness in tropical forests from high-resolution remote sensing.

    Science.gov (United States)

    Fricker, Geoffrey A; Wolf, Jeffrey A; Saatchi, Sassan S; Gillespie, Thomas W

    2015-10-01

    There is an increasing interest in identifying theories, empirical data sets, and remote-sensing metrics that can quantify tropical forest alpha diversity at a landscape scale. Quantifying patterns of tree species richness in the field is time consuming, especially in regions with over 100 tree species/ha. We examine species richness in a 50-ha plot in Barro Colorado Island in Panama and test if biophysical measurements of canopy reflectance from high-resolution satellite imagery and detailed vertical forest structure and topography from light detection and ranging (lidar) are associated with species richness across four tree size classes (>1, 1-10, >10, and >20 cm dbh) and three spatial scales (1, 0.25, and 0.04 ha). We use the 2010 tree inventory, including 204,757 individuals belonging to 301 species of freestanding woody plants or 166 ± 1.5 species/ha (mean ± SE), to compare with remote-sensing data. All remote-sensing metrics became less correlated with species richness as spatial resolution decreased from 1.0 ha to 0.04 ha and tree size increased from 1 cm to 20 cm dbh. When all stems with dbh > 1 cm in 1-ha plots were compared to remote-sensing metrics, standard deviation in canopy reflectance explained 13% of the variance in species richness. The standard deviations of canopy height and the topographic wetness index (TWI) derived from lidar were the best metrics to explain the spatial variance in species richness (15% and 24%, respectively). Using multiple regression models, we made predictions of species richness across Barro Colorado Island (BCI) at the 1-ha spatial scale for different tree size classes. We predicted variation in tree species richness among all plants (adjusted r² = 0.35) and trees with dbh > 10 cm (adjusted r² = 0.25). However, the best model results were for understory trees and shrubs (dbh 1-10 cm) (adjusted r² = 0.52) that comprise the majority of species richness in tropical forests. Our results indicate that high-resolution

  17. High spatial resolution NO2 tropospheric slant columns retrieved from OMI spatial-zoom spectra using an earthshine reference

    Science.gov (United States)

    Anand, Jasdeep S.; Leigh, Roland J.; Monks, Paul S.

    2014-08-01

    Future satellite instruments measuring urban NO2 will need to have high spatio-temporal resolution in order to improve air quality model forecasts. However, the likely cost and data telemetry requirements for such instruments will be high with current techniques. In this work we propose a new retrieval algorithm for deriving tropospheric NO2 slant column densities (SCDs) by DOAS fitting an earthshine reference spectrum measured over the Pacific to account for stratospheric NO2, which would eliminate the need for a solar reference and simplify instrument and retrieval design. The retrieval is tested by fitting earthshine radiance spectra measured by the Ozone Measuring Instrument (OMI) during its spatial-zoom mode (nadir pixel size: 13 x 12 km2) and super-zoom mode (nadir pixel size: 13 x 3 km2) using a Pacific reference spectrum. Transects taken over urban areas showed that the retrieval appears to retrieve tropospheric NO2 SCDs with good agreement with the operational L2 DOMINO product over regions with high NOx emissions. The retrieval also appeared to supress across-track striping without the need for a posteriori correction and showed sensitivity to absorption due to sand and liquid water over deserts and oceans. Comparisons with operational-scale retrievals also showed improved SCD precision, if random noise is expected to be the cause of retrieval uncertainty.

  18. On the modulation of wave-current interactions by horizontal mixing and spatial resolution

    Science.gov (United States)

    Bennis, A. C.; Ardhuin, F.; Dumas, F.; Blanke, B.

    2016-02-01

    The mechanics of rip currents are complex, involving interactions between waves, currents, water levels and bathymetry that pose particular challenges for numerical models. Horizontal turbulent diffusion in a rip system is difficult to measure using dye dilution or surfzone drifters, as shown by the range of published values for the horizontal diffusion coeffcient. Here, we study the effects of horizontal mixing on wave-current interactions by testing several diffusivity estimates in a fully coupled 3D wave-current model run at two different spatial resolution. Published results using very low diffusion have found near the shore the wave rays converge towards the rip channel because of refraction by the currents. We show that this process depends on the alongshore gradient of the rip current and that this gradient is modulated by both horizontal mixing and spatial resolution. We find that without the feedback of currents on waves, the flow is more sensitive to horizontal mixing with large alterations especially offshore and generally lower velocities. These modifications ascribed to mixing are similar to those induced by the feedback mechanism. When a large mixing coeffcient is used, we observe that: i) the behavior of the rip system is similar for both coupling modes (i.e. with and without the feedback of currents on waves) and for each resolution, ii) the evolution of the flow is more stable over time. Lastly, we show that the horizontal mixing strongly decreases the intensity of the 3D rip velocity, but not its vertical shear that is strongly dependent on the vertical mixing scheme and on the forcing terms.

  19. Optimizing Spatial Resolution of Imagery for Urban Form Detection—The Cases of France and Vietnam

    Directory of Open Access Journals (Sweden)

    Christiane Weber

    2011-09-01

    Full Text Available The multitude of satellite data products available offers a large choice for urban studies. Urban space is known for its high heterogeneity in structure, shape and materials. To approach this heterogeneity, finding the optimal spatial resolution (OSR is needed for urban form detection from remote sensing imagery. By applying the local variance method to our datasets (pan-sharpened images, we can identify OSR at two levels of observation: individual urban elements and urban districts in two agglomerations in West Europe (Strasbourg, France and in Southeast Asia (Da Nang, Vietnam. The OSR corresponds to the minimal variance of largest number of spectral bands. We carry out three categories of interval values of spatial resolutions for identifying OSR: from 0.8 m to 3 m for isolated objects, from 6 m to 8 m for vegetation area and equal or higher than 20 m for urban district. At the urban district level, according to spatial patterns, form, size and material of elements, we propose the range of OSR between 30 m and 40 m for detecting administrative districts, new residential districts and residential discontinuous districts. The detection of industrial districts refers to a coarser OSR from 50 m to 60 m. The residential continuous dense districts effectively need a finer OSR of between 20 m and 30 m for their optimal identification. We also use fractal dimensions to identify the threshold of homogeneity/heterogeneity of urban structure at urban district level. It seems therefore that our approaches are robust and transferable to different urban contexts.

  20. Estimating babassu palm density using automatic palm tree detection with very high spatial resolution satellite images.

    Science.gov (United States)

    Dos Santos, Alessio Moreira; Mitja, Danielle; Delaître, Eric; Demagistri, Laurent; de Souza Miranda, Izildinha; Libourel, Thérèse; Petit, Michel

    2017-05-15

    High spatial resolution images as well as image processing and object detection algorithms are recent technologies that aid the study of biodiversity and commercial plantations of forest species. This paper seeks to contribute knowledge regarding the use of these technologies by studying randomly dispersed native palm tree. Here, we analyze the automatic detection of large circular crown (LCC) palm tree using a high spatial resolution panchromatic GeoEye image (0.50 m) taken on the area of a community of small agricultural farms in the Brazilian Amazon. We also propose auxiliary methods to estimate the density of the LCC palm tree Attalea speciosa (babassu) based on the detection results. We used the "Compt-palm" algorithm based on the detection of palm tree shadows in open areas via mathematical morphology techniques and the spatial information was validated using field methods (i.e. structural census and georeferencing). The algorithm recognized individuals in life stages 5 and 6, and the extraction percentage, branching factor and quality percentage factors were used to evaluate its performance. A principal components analysis showed that the structure of the studied species differs from other species. Approximately 96% of the babassu individuals in stage 6 were detected. These individuals had significantly smaller stipes than the undetected ones. In turn, 60% of the stage 5 babassu individuals were detected, showing significantly a different total height and a different number of leaves from the undetected ones. Our calculations regarding resource availability indicate that 6870 ha contained 25,015 adult babassu palm tree, with an annual potential productivity of 27.4 t of almond oil. The detection of LCC palm tree and the implementation of auxiliary field methods to estimate babassu density is an important first step to monitor this industry resource that is extremely important to the Brazilian economy and thousands of families over a large scale. Copyright

  1. Determination of spatial resolution of positron emission tomograph of clear PET-XPAD3/CT system

    Energy Technology Data Exchange (ETDEWEB)

    Olaya D, H.; Martinez O, S. A. [Universidad Pedagogica y Tecnologica de Colombia, Grupo de Fisica Nuclear Aplicada y Simulacion, 150003 Tunja, Boyaca (Colombia); Morel, C. [Centre de Physique des Particules de Marseille, ImXgam Group, 13009 Marseille (France); Castro, H. F. [Universidad Nacional de Colombia, Physics Department, Carrera 45 No. 26-85, Bogota (Colombia)

    2016-10-15

    Based on the National Electrical Manufacturers Association (Nema), using the Amine software to construction of sinograms and using a radioactive source {sup 22}Na that emitting positrons were made calculations for determine spatial resolution of ring array system of phoswich detectors of positron emission tomograph included in the Clear PET-XPAD3/CT prototype for small animals made in the laboratories of CCPM and whose project is led by the research group ImXgam. The radioactive source {sup 22}Na approximately 9 MBq of activity, with spherical shape and diameter of 0.57 mm immersed in a plexiglas disc was located at the geometric center of tomographic system with a Field of View (Fov) of 35 mm in the axial and transverse directions. Displacements of radioactive source were performed on the three cartesian axes and was rebuilt a sinogram for each axis. The shape of sinogram allow describe the correct position and the maximum efficiency of each detector. Subsequently, was carried out a scanning in each one of three spatial axes taking an enough distance covering the dimensions of radioactive source, were recorded data for each one of phoswich detector crystals which are aligned in the axis of movement. The process was repeated for other axes and then was offsetting the radioactive source with respect to the Fov and were calculated FWHM (Full Width at Half Maximum) and FWTM (Full Width at Tenth Maximum) values and performing statistics of these values with parabolic fitting, the latter setting allows to obtain parameters of spatial resolution of system. (Author)

  2. Derivation of High Spatial Resolution Albedo from UAV Digital Imagery: Application over the Greenland Ice Sheet

    Directory of Open Access Journals (Sweden)

    Jonathan C. Ryan

    2017-05-01

    Full Text Available Measurements of albedo are a prerequisite for modeling surface melt across the Earth's cryosphere, yet available satellite products are limited in spatial and/or temporal resolution. Here, we present a practical methodology to obtain centimeter resolution albedo products with accuracies of ±5% using consumer-grade digital camera and unmanned aerial vehicle (UAV technologies. Our method comprises a workflow for processing, correcting and calibrating raw digital images using a white reference target, and upward and downward shortwave radiation measurements from broadband silicon pyranometers. We demonstrate the method with a set of UAV sorties over the western, K-sector of the Greenland Ice Sheet. The resulting albedo product, UAV10A1, covers 280 km2, at a resolution of 20 cm per pixel and has a root-mean-square difference of 3.7% compared to MOD10A1 and 4.9% compared to ground-based broadband pyranometer measurements. By continuously measuring downward solar irradiance, the technique overcomes previous limitations due to variable illumination conditions during and between surveys over glaciated terrain. The current miniaturization of multispectral sensors and incorporation of upward facing radiation sensors on UAV packages means that this technique could become increasingly common in field studies and used for a wide range of applications. These include the mapping of debris, dust, cryoconite and bioalbedo, and directly constraining surface energy balance models.

  3. High Spatial Resolution Europa Coverage by the Galileo Near Infrared Mapping Spectrometer (NIMS)

    Science.gov (United States)

    1997-01-01

    The NIMS instrument on the Galileo spacecraft, which is being used to map the mineral and ice properties over the surfaces of the Jovian moons, produces global spectral images at modest spatial resolution and high resolution spectral images for small selected regions on the satellites. This map illustrates the high resolution coverage of Europa obtained by NIMS through the April 1997 G7 orbit.The areas covered are displayed on a Voyager-derived map. A good sampling of the dark trailing-side material (180 to 360 degrees) has been obtained, with less coverage of Europa's leading side.The false-color composites use red, green and blue to represent the infrared brightnesses at 0.7, 1.51 and 1.82 microns respectively. Considerable variations are evident and are related to the composition and sizes of the surface grains.The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov.

  4. Fragmented Land Cover Types and Estimation of Area with Course Spatial Resolution Imagery

    Science.gov (United States)

    Hlavka, Chris; Dungan, Jennifer; Gore, William (Technical Monitor)

    1998-01-01

    Imagery of coarse resolution, such weather satellite imagery with 1 sq km pixels, is increasingly used to monitor dynamic and fragmented types of land surface types, such as scars from recent fires and ponds in wetlands. Accurate estimates of these land cover types at regional to global scales are required to assess the roles of fires and wetlands in global warming, yet difficult to compute when much of the area is accounted for by fragments about the same size as the pixels. In previous research, we found that size distribution of the fragments in several example scenes fit simple two-parameter models and related effects of coarse resolution to errors in area estimates based on pixel counts. We report on progress to develop accurate area estimates based on modelling the size distribution of the fragments, including analysis of size distributions on an expanded set of maps developed from digital imagery and a test of a procedure to correct for effects of coarse spatial resolution.

  5. Neuronal nonlinearity explains greater visual spatial resolution for darks than lights.

    Science.gov (United States)

    Kremkow, Jens; Jin, Jianzhong; Komban, Stanley J; Wang, Yushi; Lashgari, Reza; Li, Xiaobing; Jansen, Michael; Zaidi, Qasim; Alonso, Jose-Manuel

    2014-02-25

    Astronomers and physicists noticed centuries ago that visual spatial resolution is higher for dark than light stimuli, but the neuronal mechanisms for this perceptual asymmetry remain unknown. Here we demonstrate that the asymmetry is caused by a neuronal nonlinearity in the early visual pathway. We show that neurons driven by darks (OFF neurons) increase their responses roughly linearly with luminance decrements, independent of the background luminance. However, neurons driven by lights (ON neurons) saturate their responses with small increases in luminance and need bright backgrounds to approach the linearity of OFF neurons. We show that, as a consequence of this difference in linearity, receptive fields are larger in ON than OFF thalamic neurons, and cortical neurons are more strongly driven by darks than lights at low spatial frequencies. This ON/OFF asymmetry in linearity could be demonstrated in the visual cortex of cats, monkeys, and humans and in the cat visual thalamus. Furthermore, in the cat visual thalamus, we show that the neuronal nonlinearity is present at the ON receptive field center of ON-center neurons and ON receptive field surround of OFF-center neurons, suggesting an origin at the level of the photoreceptor. These results demonstrate a fundamental difference in visual processing between ON and OFF channels and reveal a competitive advantage for OFF neurons over ON neurons at low spatial frequencies, which could be important during cortical development when retinal images are blurred by immature optics in infant eyes.

  6. Spatial resolution dependence on spectral frequency in human speech cortex electrocorticography

    Science.gov (United States)

    Muller, Leah; Hamilton, Liberty S.; Edwards, Erik; Bouchard, Kristofer E.; Chang, Edward F.

    2016-10-01

    Objective. Electrocorticography (ECoG) has become an important tool in human neuroscience and has tremendous potential for emerging applications in neural interface technology. Electrode array design parameters are outstanding issues for both research and clinical applications, and these parameters depend critically on the nature of the neural signals to be recorded. Here, we investigate the functional spatial resolution of neural signals recorded at the human cortical surface. We empirically derive spatial spread functions to quantify the shared neural activity for each frequency band of the electrocorticogram. Approach. Five subjects with high-density (4 mm center-to-center spacing) ECoG grid implants participated in speech perception and production tasks while neural activity was recorded from the speech cortex, including superior temporal gyrus, precentral gyrus, and postcentral gyrus. The cortical surface field potential was decomposed into traditional EEG frequency bands. Signal similarity between electrode pairs for each frequency band was quantified using a Pearson correlation coefficient. Main results. The correlation of neural activity between electrode pairs was inversely related to the distance between the electrodes; this relationship was used to quantify spatial falloff functions for cortical subdomains. As expected, lower frequencies remained correlated over larger distances than higher frequencies. However, both the envelope and phase of gamma and high gamma frequencies (30-150 Hz) are largely uncorrelated (neural frequency of interest. We demonstrate that this relationship is consistent across patients and across cortical areas during activity.

  7. Optimizing landslide susceptibility zonation: Effects of DEM spatial resolution and slope unit delineation on logistic regression models

    Science.gov (United States)

    Schlögel, R.; Marchesini, I.; Alvioli, M.; Reichenbach, P.; Rossi, M.; Malet, J.-P.

    2018-01-01

    We perform landslide susceptibility zonation with slope units using three digital elevation models (DEMs) of varying spatial resolution of the Ubaye Valley (South French Alps). In so doing, we applied a recently developed algorithm automating slope unit delineation, given a number of parameters, in order to optimize simultaneously the partitioning of the terrain and the performance of a logistic regression susceptibility model. The method allowed us to obtain optimal slope units for each available DEM spatial resolution. For each resolution, we studied the susceptibility model performance by analyzing in detail the relevance of the conditioning variables. The analysis is based on landslide morphology data, considering either the whole landslide or only the source area outline as inputs. The procedure allowed us to select the most useful information, in terms of DEM spatial resolution, thematic variables and landslide inventory, in order to obtain the most reliable slope unit-based landslide susceptibility assessment.

  8. Exploring Relationships among Tree-Ring Growth, Climate Variability, and Seasonal Leaf Activity on Varying Timescales and Spatial Resolutions

    Directory of Open Access Journals (Sweden)

    Upasana Bhuyan

    2017-05-01

    Full Text Available In the first section of this study, we explored the relationship between ring width index (RWI and normalized difference vegetation index (NDVI time series on varying timescales and spatial resolutions, hypothesizing positive associations between RWI and current and previous- year NDVI at 69 forest sites scattered in the Northern Hemisphere. We noted that the relationship between RWI and NDVI varies over space and between tree types (deciduous versus coniferous, bioclimatic zones, cumulative NDVI periods, and spatial resolutions. The high-spatial-resolution NDVI (MODIS reflected stronger growth patterns than those with coarse-spatial-resolution NDVI (GIMMS3g. In the second section, we explore the link between RWI, climate and NDVI phenological metrics (in place of NDVI for the same forest sites using random forest models to assess the complicated and nonlinear relationships among them. The results are as following (a The model using high-spatial-resolution NDVI time series explained a higher proportion of the variance in RWI than that of the model using coarse-spatial-resolution NDVI time series. (b Amongst all NDVI phenological metrics, summer NDVI sum could best explain RWI followed by the previous year’s summer NDVI sum and the previous year’s spring NDVI sum. (c We demonstrated the potential of NDVI metrics derived from phenology to improve the existing RWI-climate relationships. However, further research is required to investigate the robustness of the relationship between NDVI and RWI, particularly when more tree-ring data and longer records of the high-spatial-resolution NDVI become available.

  9. Investigation of spatial resolution improvement by use of a mouth-insert detector in the helmet PET scanner.

    Science.gov (United States)

    Ahmed, Abdella M; Tashima, Hideaki; Yamaya, Taiga

    2017-10-06

    The dominant factor limiting the intrinsic spatial resolution of a positron emission tomography (PET) system is the size of the crystal elements in the detector. To increase sensitivity and achieve high spatial resolution, it is essential to use advanced depth-of-interaction (DOI) detectors and arrange them close to the subject. The DOI detectors help maintain high spatial resolution by mitigating the parallax error caused by the thickness of the scintillator near the peripheral regions of the field-of-view. As an optimal geometry for a brain PET scanner, with high sensitivity and spatial resolution, we proposed and developed the helmet-chin PET scanner using 54 four-layered DOI detectors consisting of a 16 × 16 × 4 array of GSOZ scintillator crystals with dimensions of 2.8 × 2.8 × 7.5 mm(3). All the detectors used in the helmet-chin PET scanner had the same spatial resolution. In this study, we conducted a feasibility study of a new add-on detector arrangement for the helmet PET scanner by replacing the chin detector with a segmented crystal cube, having high spatial resolution in all directions, which can be placed inside the mouth. The crystal cube (which we have named the mouth-insert detector) has an array of 20 × 20 × 20 LYSO crystal segments with dimensions of 1 × 1 × 1 mm(3). Thus, the scanner is formed by the combination of the helmet and mouth-insert detectors, and is referred to as the helmet-mouth-insert PET scanner. The results show that the helmet-mouth-insert PET scanner has comparable sensitivity and improved spatial resolution near the center of the hemisphere, compared to the helmet-chin PET scanner.

  10. A high spatial resolution retrieval of NO 2 column densities from OMI: method and evaluation

    Directory of Open Access Journals (Sweden)

    R. C. Cohen

    2011-08-01

    Full Text Available We present a new retrieval of tropospheric NO2 vertical column density from the Ozone Monitoring Instrument (OMI based on high spatial and temporal resolution terrain and profile inputs. We compare our NO2 product, the Berkeley High-Resolution (BEHR product, with operational retrievals and find that the operational retrievals are biased high (30 % over remote areas and biased low (8 % over urban regions. Additionally, we find non-negligible impacts on the retrieved NO2 column for terrain pressure (±20 %, albedo (±40 %, and NO2 vertical profile (−75 %–+10 %. We validate the operational and BEHR products using boundary layer aircraft observations from the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS-CA field campaign which occurred in June 2008 in California. Results indicate that columns derived using our boundary layer extrapolation method show good agreement with satellite observations (R2 = 0.65–0.83; N = 68 and provide a more robust validation of satellite-observed NO2 column than those determined using full vertical spirals (R2 = 0.26; N = 5 as in previous work. Agreement between aircraft observations and the BEHR product (R2 = 0.83 is better than agreement with the operational products (R2 = 0.65–0.72. We also show that agreement between satellite and aircraft observations can be further improved (e.g. BEHR: R2 = 0.91 using cloud information from the Moderate Resolution Imaging Spectroradiometer (MODIS instrument instead of the OMI cloud product. These results indicate that much of the variance in the operational products can be attributed to coarse resolution terrain pressure, albedo, and profile parameters implemented in the retrievals.

  11. Developing a CCD camera with high spatial resolution for RIXS in the soft X-ray range

    Energy Technology Data Exchange (ETDEWEB)

    Soman, M.R., E-mail: m.r.soman@open.ac.uk [e2v centre for electronic imaging, The Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Hall, D.J.; Tutt, J.H.; Murray, N.J.; Holland, A.D. [e2v centre for electronic imaging, The Open University, Walton Hall, Milton Keynes MK7 6AA (United Kingdom); Schmitt, T.; Raabe, J.; Schmitt, B. [Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland)

    2013-12-11

    The Super Advanced X-ray Emission Spectrometer (SAXES) at the Swiss Light Source contains a high resolution Charge-Coupled Device (CCD) camera used for Resonant Inelastic X-ray Scattering (RIXS). Using the current CCD-based camera system, the energy-dispersive spectrometer has an energy resolution (E/ΔE) of approximately 12,000 at 930 eV. A recent study predicted that through an upgrade to the grating and camera system, the energy resolution could be improved by a factor of 2. In order to achieve this goal in the spectral domain, the spatial resolution of the CCD must be improved to better than 5 µm from the current 24 µm spatial resolution (FWHM). The 400 eV–1600 eV energy X-rays detected by this spectrometer primarily interact within the field free region of the CCD, producing electron clouds which will diffuse isotropically until they reach the depleted region and buried channel. This diffusion of the charge leads to events which are split across several pixels. Through the analysis of the charge distribution across the pixels, various centroiding techniques can be used to pinpoint the spatial location of the X-ray interaction to the sub-pixel level, greatly improving the spatial resolution achieved. Using the PolLux soft X-ray microspectroscopy endstation at the Swiss Light Source, a beam of X-rays of energies from 200 eV to 1400 eV can be focused down to a spot size of approximately 20 nm. Scanning this spot across the 16 µm square pixels allows the sub-pixel response to be investigated. Previous work has demonstrated the potential improvement in spatial resolution achievable by centroiding events in a standard CCD. An Electron-Multiplying CCD (EM-CCD) has been used to improve the signal to effective readout noise ratio achieved resulting in a worst-case spatial resolution measurement of 4.5±0.2 μm and 3.9±0.1 μm at 530 eV and 680 eV respectively. A method is described that allows the contribution of the X-ray spot size to be deconvolved from these

  12. Developing a CCD camera with high spatial resolution for RIXS in the soft X-ray range

    Science.gov (United States)

    Soman, M. R.; Hall, D. J.; Tutt, J. H.; Murray, N. J.; Holland, A. D.; Schmitt, T.; Raabe, J.; Schmitt, B.

    2013-12-01

    The Super Advanced X-ray Emission Spectrometer (SAXES) at the Swiss Light Source contains a high resolution Charge-Coupled Device (CCD) camera used for Resonant Inelastic X-ray Scattering (RIXS). Using the current CCD-based camera system, the energy-dispersive spectrometer has an energy resolution (E/ΔE) of approximately 12,000 at 930 eV. A recent study predicted that through an upgrade to the grating and camera system, the energy resolution could be improved by a factor of 2. In order to achieve this goal in the spectral domain, the spatial resolution of the CCD must be improved to better than 5 μm from the current 24 μm spatial resolution (FWHM). The 400 eV-1600 eV energy X-rays detected by this spectrometer primarily interact within the field free region of the CCD, producing electron clouds which will diffuse isotropically until they reach the depleted region and buried channel. This diffusion of the charge leads to events which are split across several pixels. Through the analysis of the charge distribution across the pixels, various centroiding techniques can be used to pinpoint the spatial location of the X-ray interaction to the sub-pixel level, greatly improving the spatial resolution achieved. Using the PolLux soft X-ray microspectroscopy endstation at the Swiss Light Source, a beam of X-rays of energies from 200 eV to 1400 eV can be focused down to a spot size of approximately 20 nm. Scanning this spot across the 16 μm square pixels allows the sub-pixel response to be investigated. Previous work has demonstrated the potential improvement in spatial resolution achievable by centroiding events in a standard CCD. An Electron-Multiplying CCD (EM-CCD) has been used to improve the signal to effective readout noise ratio achieved resulting in a worst-case spatial resolution measurement of 4.5±0.2 μm and 3.9±0.1 μm at 530 eV and 680 eV respectively. A method is described that allows the contribution of the X-ray spot size to be deconvolved from these

  13. Low spatial resolution remote sensing data validation over the Valencia and Alacant Anchor Stations

    Science.gov (United States)

    Velazquez Blazquez, Almudena; Asensi, Sandra; Clerbaux, Nicolas; Coll, Amparo; Dewitte, Steven; Estelles Leal, Victor; Geraldo Ferreira, A.; Gonzalez Sotelino, Luis; Miro, Jose Vicente; Monsoriu, Almudena; Priestley, Kory; Rius, Antonio; Smith, G. Louis; Szewczyk, Z. Peter; Josep, Torrobella; Lopez-Baeza, Ernesto

    In this study we present the review of the comparisons between top of the atmosphere (TOA) broadband radiances and fluxes measured by the Geostationary Earth Radiation Budget (GERB-1) instrument on board Meteosat-9 satellite and those measured by the Clouds and the Earth's Radiant Energy System (CERES) instrument, on board Terra-FM2 satellite, with equivalent ra-diances and fluxes obtained from radiative transfer simulations with ocassion of several ground validation campaigns. The simulations are based on measured atmospheric and surface data gathered during the campaigns at the Valencia and Alacant Anchor Stations areas (VAS and AAS) between February 2004 and November 2008. The Anchor Stations are automatic meteorological stations which aim to help validation studies of low-spatial resolution remote sensing data. They are equipped with instruments to measure air temperature and humidity at different levels, pressure, wind speed and direction, down-welling and upwelling shortwave (SW) and longwave (LW) fluxes, soil moisture, soil heat flux and soil temperature at different depths. In addition to the station data, ancillary data has been used for the simulations, such as, in situ radiosoundings in the case of the VAS field campaigns, and radiosoundings from the Spanish State Meteorological Station of Murcia ( 50 km from the study area in the case of AAS), in-situ measurements of Global Positioning System (GPS) for the retrieval precipitable water vapor content, CIMEL and EKO sunphotometer measurements to derive aerosol optical thickness and diffuse shortwave radiation from Eppley automatic solar tracker (only for AAS validation). Satellite-based data are also used in the study, such as the Total Ozone Mapping Spectrometer (TOMS) Ozone values over the area, CERES/SARB (Surface and Atmospheric Radiation Budget) emissivity maps, and Bidirectional Reflectances of the surface derived from MODIS (Moderate Resolution Imaging Spectroradiometer) MOD43 BRDF product. The

  14. High Spatial Resolution Airborne Multispectral Thermal Infrared Remote Sensing Data for Analysis of Urban Landscape Characteristics

    Science.gov (United States)

    Quattrochi, Dale A.; Luvall, Jeffrey C.; Estes, Maurice G., Jr.; Arnold, James E. (Technical Monitor)

    2000-01-01

    We have used airborne multispectral thermal infrared (TIR) remote sensing data collected at a high spatial resolution (i.e., 10m) over several cities in the United States to study thermal energy characteristics of the urban landscape. These TIR data provide a unique opportunity to quantify thermal responses from discrete surfaces typical of the urban landscape and to identify both the spatial arrangement and patterns of thermal processes across the city. The information obtained from these data is critical to understanding how urban surfaces drive or force development of the Urban Heat Island (UHI) effect, which exists as a dome of elevated air temperatures that presides over cities in contrast to surrounding non-urbanized areas. The UHI is most pronounced in the summertime where urban surfaces, such as rooftops and pavement, store solar radiation throughout the day, and release this stored energy slowly after sunset creating air temperatures over the city that are in excess of 2-4'C warmer in contrast with non-urban or rural air temperatures. The UHI can also exist as a daytime phenomenon with surface temperatures in downtown areas of cities exceeding 38'C. The implications of the UHI are significant, particularly as an additive source of thermal energy input that exacerbates the overall production of ground level ozone over cities. We have used the Airborne Thermal and Land Applications Sensor (ATLAS), flown onboard a Lear 23 jet aircraft from the NASA Stennis Space Center, to acquire high spatial resolution multispectral TIR data (i.e., 6 bandwidths between 8.2-12.2 (um) over Huntsville, Alabama, Atlanta, Georgia, Baton Rouge, Louisiana, Salt Lake City, Utah, and Sacramento, California. These TIR data have been used to produce maps and other products, showing the spatial distribution of heating and cooling patterns over these cities to better understand how the morphology of the urban landscape affects development of the UHI. In turn, these data have been used

  15. Spatiotemporal neurodynamics underlying internally and externally driven temporal prediction: a high spatial resolution ERP study.

    Science.gov (United States)

    Mento, Giovanni; Tarantino, Vincenza; Vallesi, Antonino; Bisiacchi, Patrizia Silvia

    2015-03-01

    Temporal prediction (TP) is a flexible and dynamic cognitive ability. Depending on the internal or external nature of information exploited to generate TP, distinct cognitive and brain mechanisms are engaged with the same final goal of reducing uncertainty about the future. In this study, we investigated the specific brain mechanisms involved in internally and externally driven TP. To this end, we employed an experimental paradigm purposely designed to elicit and compare externally and internally driven TP and a combined approach based on the application of a distributed source reconstruction modeling on a high spatial resolution electrophysiological data array. Specific spatiotemporal ERP signatures were identified, with significant modulation of contingent negative variation and frontal late sustained positivity in external and internal TP contexts, respectively. These different electrophysiological patterns were supported by the engagement of distinct neural networks, including a left sensorimotor and a prefrontal circuit for externally and internally driven TP, respectively.

  16. Miniaturization of high spectral spatial resolution hyperspectral imagers on unmanned aerial systems

    Science.gov (United States)

    Hill, Samuel L.; Clemens, Peter

    2015-06-01

    Traditional airborne environmental monitoring has frequently deployed hyperspectral imaging as a leading tool for characterizing and analyzing a scene's critical spectrum-based signatures for applications in agriculture genomics and crop health, vegetation and mineral monitoring, and hazardous material detection. As the acceptance of hyperspectral evaluation grows in the airborne community, there has been a dramatic trend in moving the technology from use on midsize aircraft to Unmanned Aerial Systems (UAS). The use of UAS accomplishes a number of goals including the reduction in cost to run multiple seasonal evaluations over smaller but highly valuable land-areas, the ability to use frequent data collections to make rapid decisions on land management, and the improvement of spatial resolution by flying at lower altitudes (GIS datasets.

  17. A super-resolution algorithm for synthetic aperture radar based on modified spatially variant apodization

    Science.gov (United States)

    Ni, Chong; Wang, YanFei; Xu, XiangHui; Zhou, ChangYi; Cui, PengFei

    2011-02-01

    The existing spatially variant apodizations (SVAs) either cannot depress the sidelobes effectively or reduce the energy of the mainlobe. To improve this, a modified SVA (MSVA) is put forward in this paper, which expands the traditional filter from 3-taps to 5-taps and sets relevant parameters according to different sampling rates to get the excellent result that satisfies constrained optimization theory. A modified super-SVA is also presented, which compares the result after the iteration with the original signal and makes the one whose amplitude is smaller as the initial value of the next iteration. This method can eliminate the sidelobes produced by the intermediate operation, so that the following bandwidth extrapolation is more available. Super-MSVA is presented based on the modified SVA and modified super-SVA, which is suitable for any Nyquist sampling rate, can extrapolate the signal bandwidth many times through iteration with a commensurate improvement in resolution, as demonstrated by the result of the experiment.

  18. Investigations on the spatial resolution of autocollimator-based slope measuring profilers

    Energy Technology Data Exchange (ETDEWEB)

    Siewert, F., E-mail: frank.siewert@helmholtz-berlin.de [Helmholtz Zentrum Berlin/BESSY-II—Institut für Nanometer Optik und Technologie, Albert-Einstein-Str. 15, 12489 Berlin (Germany); Buchheim, J.; Höft, T.; Zeschke, T. [Helmholtz Zentrum Berlin/BESSY-II—Institut für Nanometer Optik und Technologie, Albert-Einstein-Str. 15, 12489 Berlin (Germany); Schindler, A.; Arnold, T. [IOM—Leibniz Institut für Oberflächenmodifizierung e.V., Permoserstr. 15, 04318 Leipzig (Germany)

    2013-05-11

    During the last decade, autocollimator-based slope measuring profilers like the Nanometer Optical Component Measuring Machine (NOM) at BESSY-II have become standard instrument for the ultra-precise characterization of synchrotron optics with nanometer accuracy. Due to the increasing demand for highest accuracy, which can be provided by these profilers, further investigations are necessary to understand the performance of these instruments. Besides the achievable accuracy, it is of particular interest to characterize the possible spatial resolution of such instrumentation. The performance of the BESSY-NOM was characterized by means of sinusoidal and chirped surface profiles. A dedicated sample was prepared using the Atmospheric Plasma Jet Machining technology at the IOM—Leibniz-Institut für Oberflächenmodifizierung e.V. We report on our tests on the NOM, the interferometer measurements done for comparison as well as the sample preparation.

  19. A new formulation of the linear sampling method: spatial resolution and post-processing

    Energy Technology Data Exchange (ETDEWEB)

    Piana, M [Dipartimento di Informatica, Universita di Verona, Ca' Vignal 2, 37134 Verona (Italy); Aramini, R; Brignone, M [Dipartimento di Matematica, Universita di Genova, via Dodecaneso 35, 16146 Genova (Italy); Coyle, J [Department of Mathematics, Monmouth University, 400 Cedar Avenue, West Long Branch, 07764 New Jersey (United States)], E-mail: piana@sci.univr.it

    2008-07-15

    A new formulation of the linear sampling method is described, which requires the regularized solution of a single functional equation set in a direct sum of L{sup 2} spaces. This new approach presents the following notable advantages: it is computationally more effective than the traditional implementation, since time consuming samplings of the Tikhonov minimum problem and of the generalized discrepancy equation are avoided; it allows a quantitative estimate of the spatial resolution achievable by the method; it facilitates a post-processing procedure for the optimal selection of the scatterer profile by means of edge detection techniques. The formulation is described in a two-dimensional framework and in the case of obstacle scattering, although generalizations to three dimensions and penetrable inhomogeneities are straightforward.

  20. A Theoretical Model for Fast Evaluation of Position Linearity and Spatial Resolution in Gamma Cameras Based on Monolithic Scintillators

    Science.gov (United States)

    Galasso, Matteo; Fabbri, Andrea; Borrazzo, Cristian; Cencelli, Valentino Orsolini; Pani, Roberto

    2016-06-01

    In this work, we developed a model that is able to predict in a few seconds the response of a gamma camera based on continuous scintillator in terms of linearity and spatial resolution in the whole field of view (FoV). This model will be useful during the design phase of a SPECT or PET detector in order to predict and optimize gamma camera performance by varying the parameter values of its components (scintillator, light guides, and photodetector). Starting from a model of the scintillation light distribution on the photodetector sensitive surface, a theoretical analysis based on the estimation theory is carried out in order to find the analytical expressions of bias and FWHM related to four interaction position estimation methods: the classical Center of Gravity method (Anger Logic), an enhanced Center of Gravity method, a Mean Square Error fitting method, and the Maximum Likelihood Estimation method. Afterwards, spatial resolution as well as depth of interaction (DOI) distribution effects are evaluated by processing biases and FWHMs at different DOIs. The comparison between the model and GEANT4 Monte Carlo simulations of four different detection systems has been carried out. Our model prediction errors of spatial resolution, in terms of percentage RMSDs with respect to the simulated spatial resolution, are lower than 13.2% in the whole FoV for three estimation methods. The computational time to calculate spatial resolutions with the model in the whole FoV is five order of magnitudes faster than an equivalent standard Monte Carlo simulation.

  1. Spatial resolution of the pain system: a proximal-to-distal gradient of sensitivity revealed with psychophysical testing.

    Science.gov (United States)

    Weissman-Fogel, Irit; Brayer-Zwi, Nurit; Defrin, Ruth

    2012-01-01

    The spatial resolution of the pain system has not been studied in depth, and results are contradictory regarding the gradient of spatial resolution. Microneurographic recordings have revealed smaller receptive fields and higher density of nociceptors in more distal than proximal leg regions, whereas histological studies report higher density of C-fibers in more proximal than distal body regions. Due to this controversy, we conducted various psychophysical tests in order to examine the nociceptive spatial resolution and its gradient. Heat-pain threshold (HPT), perceived pain intensity, spatial summation (SS) of pain, two-point discrimination (2PD) of pain, and pain localization were measured in four body regions: upper back, thigh, lower leg, and foot. The highest HPT was demonstrated in the lower leg as compared with more proximal regions (P resolution has a proximal-to-distal pattern of performance, namely that the spatial resolution of pain is finer in more distal than proximal body regions, similar to that of the touch system.

  2. Required spatial resolution of hydrological models to evaluate urban flood resilience measures

    Science.gov (United States)

    Gires, A.; Giangola-Murzyn, A.; Tchiguirinskaia, I.; Schertzer, D.; Lovejoy, S.

    2012-04-01

    During a flood in urban area, several non-linear processes (rainfall, surface runoff, sewer flow, and sub-surface flow) interact. Fully distributed hydrological models are a useful tool to better understand these complex interactions between natural processes and man built environment. Developing an efficient model is a first step to improve the understanding of flood resilience in urban area. Given that the previously mentioned underlying physical phenomenon exhibit different relevant scales, determining the required spatial resolution of such model is tricky but necessary issue. For instance such model should be able to properly represent large scale effects of local scale flood resilience measures such as stop logs. The model should also be as simple as possible without being simplistic. In this paper we test two types of model. First we use an operational semi-distributed model over a 3400 ha peri-urban area located in Seine-Saint-Denis (North-East of Paris). In this model, the area is divided into sub-catchments of average size 17 ha that are considered as homogenous, and only the sewer discharge is modelled. The rainfall data, whose resolution is 1 km is space and 5 min in time, comes from the C-band radar of Trappes, located in the West of Paris, and operated by Météo-France. It was shown that the spatial resolution of both the model and the rainfall field did not enable to fully grasp the small scale rainfall variability. To achieve this, first an ensemble of realistic rainfall fields downscaled to a resolution of 100 m is generated with the help of multifractal space-time cascades whose characteristic exponents are estimated on the available radar data. Second the corresponding ensemble of sewer hydrographs is simulated by inputting each rainfall realization to the model. It appears that the probability distribution of the simulated peak flow exhibits a power-law behaviour. This indicates that there is a great uncertainty associated with small scale

  3. Spatial and contrast resolution of ultralow dose dentomaxillofacial CT imaging using iterative reconstruction technology.

    Science.gov (United States)

    Widmann, Gerlig; Bischel, Alexander; Stratis, Andreas; Bosmans, Hilde; Jacobs, Reinhilde; Gassner, Eva-Maria; Puelacher, Wolfgang; Pauwels, Ruben

    2017-04-01

    The objective of this study was to determine how iterative reconstruction technology (IRT) influences contrast and spatial resolution in ultralow-dose dentomaxillofacial CT imaging. A polymethyl methacrylate phantom with various inserts was scanned using a reference protocol (RP) at CT dose index volume 36.56 mGy, a sinus protocol at 18.28 mGy and ultralow-dose protocols (LD) at 4.17 mGy, 2.36 mGy, 0.99 mGy and 0.53 mGy. All data sets were reconstructed using filtered back projection (FBP) and the following IRTs: adaptive statistical iterative reconstructions (ASIRs) (ASIR-50, ASIR-100) and model-based iterative reconstruction (MBIR). Inserts containing line-pair patterns and contrast detail patterns for three different materials were scored by three observers. Observer agreement was analyzed using Cohen's kappa and difference in performance between the protocols and reconstruction was analyzed with Dunn's test at α = 0.05. Interobserver agreement was acceptable with a mean kappa value of 0.59. Compared with the RP using FBP, similar scores were achieved at 2.36 mGy using MBIR. MIBR reconstructions showed the highest noise suppression as well as good contrast even at the lowest doses. Overall, ASIR reconstructions did not outperform FBP. LD and MBIR at a dose reduction of >90% may show no significant differences in spatial and contrast resolution compared with an RP and FBP. Ultralow-dose CT and IRT should be further explored in clinical studies.

  4. High-resolution mapping of the triangle of Koch: Spatial heterogeneity of fast pathway atrionodal connections.

    Science.gov (United States)

    Chua, Kelvin; Upadhyay, Gaurav; Lee, Elliot; Aziz, Zaid; Beaser, Andrew; Ozcan, Cevher; Broman, Michael; Nayak, Hemal; Tung, Roderick

    2017-11-24

    Dedicated mapping studies of the triangle of Koch to characterize retrograde fast pathway activation have not been previously performed using high-resolution, 3-dimensional, multielectrode mapping technology. To delineate the activation pattern and spatial distribution of the retrograde fast pathway within the triangle of Koch during typical atrioventricular nodal reentrant tachycardia (AVNRT) and right ventricular pacing in a consecutive series of patients using the Rhythmia mapping system (Boston Scientific, Natick, MA). A total of 18 patients with symptomatic typical AVNRT referred for ablation underwent ultrahigh-density mapping of atrial activation with minielectrode basket configuration during tachycardia. The earliest atrial activation was mapped using automated annotation, with manual overreading by 2 independent observers. The triangle of Koch was classified into 3 anatomic regions: anteroseptal (His), midseptal, and posteroseptal (coronary sinus roof). Thirteen patients underwent mapping of atrial activation during ventricular pacing. A median of 422 mapping points (interquartile range 258-896 points) was acquired within the triangle of Koch during tachycardia. The most common site of earliest atrial activation within the triangle of Koch was anterior in 67% of patients (n = 12). Midseptal early atrial activation was seen in 17% (n = 3), and posteroseptal activation was observed in 11% (n = 2). One patient exhibited broad simultaneous activation of the entire triangle of Koch. Slow pathway potentials were not identified. With high-resolution multielectrode mapping, atrial activation during typical AVNRT exhibited anatomic variability and spatially heterogeneous activation within the triangle of Koch. These findings highlight the limitations of an anatomically based classification of atrioventricular nodal retrograde pathways. Copyright © 2017 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  5. Estimation of spatial distribution of t-year precipitation with 5 km resolution

    Science.gov (United States)

    Kuzuha, Y.

    2014-12-01

    We estimated the spatial distribution of t-year precipitation such as 100-year precipitation, 50-year precipitation, and so on in Japan. If the return period of t-year precipitation, t, is greater than the data size (number of data of time series of annual maxima), then we use a traditional parametric method by which some probability distributions are used and goodness-of-fit results are mutually compared. The criterion of goodness-of-fit that we used is the Takara-Takasao criterion (1988). The criterion is designated as the standard least squares criterion (SLSC) in Japan. We designate this case as a 'case for a few samples'. However, if the number of data of time series of annual maxima is greater than the return period t, then the case is that for numerous samples. For the case, we used Takara's method (2006), which uses a nonparametric probability distribution.For both cases for a few samples and for numerous samples, the bootstrap method is applied to ascertain the variation of the estimated t-year precipitation obtained using the parametric or nonparametric probability distribution we chose. We emphasize that Monte-Carlo-like simulations are not necessary for the case with numerous samples: a theoretical solution exists for the bootstrap method. We show the theoretical solutions. Furthermore, the data we used are solutions obtained using CGCM (KAKUSHIN-5 km data). Therefore, data with very high spatial resolution of 5 km can be used. Even if sparsely distributed precipitation data are used, high-resolution data can be obtained using CGCM data.

  6. A Line Pair Indicator Made of Gd Film for Evaluating Spatial Resolution

    Science.gov (United States)

    Yasuda, R.; Matsubayashi, M.; Sakai, T.; Nojima, T.; Iikura, H.; Katagiri, M.; Takano, K.; Tatiana, P.; Faenov, A.

    A device for evaluating the spatial resolution of a neutron imaging system was developed. Using laser processes, line- pair patterns were fabricated on a 0.005-mm-thick Gd film evaporated on a glass plate. Large line pairs of widths ranging from 0.2 to 2 mm were machined using an Nd:YVO4 laser (0.03 mm spot size) and displayed on a brightness field, while small line pairs of widths ranging from 0.01 to 0.1 mm were created using an eximer laser on a dark field. A scanning electron microscope (SEM) observation determined that, although the large line pairs machined using the Nd:YVO4 laser were chipped on the corners of the Gd bars, the difference between the measured and designed line- pair widths was controlled absolutely within 0.02 mm. In the small line pairs of less than 0.1 mm width processed using the eximer laser, edges sharper than those of the large line pairs were formed. In neutron imaging tests using a LiF/ZnS(Ag) scintillator and a CCD camera system, good contrast images were obtained with the brightness field, even at 0.005 mm thickness. The small line pairs on the dark field were observed using a LiF single crystal detector having an ultra-high spatial resolution of approximately 0.005 mm. Splits in the small line pairs of as little as 0.01 mm wide were shown with good contrast on the images.

  7. Checking Asymmetry of Magnetic Helicity Using Magnetograms with High Spatial and Temporal Resolution

    Science.gov (United States)

    Tian, Lirong; Zhu, C.; Alexander, D.

    2010-05-01

    In order to check if the helicity imbalance is robust between the leading and following polarities, found by Tian & Alexander, we use an improved technique, differential affline velocity estimator (DAVE), on series of MDI 1m and 96m line-of-sight magnetograms with spatial resolution of 0.6 and 2 arcsecs. respectively, to measure photospheric flow motions of an emerging active region: NOAA 10365 (S08). A better parameter of helicity density (Gθ) than GA is employed to calculate helicity injection rate of leading and following polarities. Our results display that the helicity injection rate of using MDI/1m data is 2 times larger than that of using MDI/ 96m data. The helicity injection rate is little affected by the size of apodizing window selected and the noise level (20 Gauss). However, it is improved so much due to decreasing time difference (up to Δt=10 mines) of two images tracked. The helicity injection rate of two polarities of the active region developed as roughly same step with flux emergence,and maintain its imbalance with more amount in the negative (leading) polarity over tracking period of three days, which is a similar development tendency no matter using MDI/1m data or MDI/96m data. These results reflect that the time difference of two tracking images is the most important factor affecting amount of helicity injection rate, while there is little relation with spatial resolution of data, the size of apodizing window, and the noise level. Therefore, it should be reliable to study the development of helicity injection rate and imbalanced relationship of two polarities when using MDI/96m data, though the amount calculated is two times smaller. Further test for MDI/96m data of ARs 8214 and 0656 confirm that the helicity imbalance indeed exists between the leading and following polarities.

  8. Retrieving aerosol in a cloudy environment: aerosol product availability as a function of spatial resolution

    Directory of Open Access Journals (Sweden)

    L. A. Remer

    2012-07-01

    Full Text Available The challenge of using satellite observations to retrieve aerosol properties in a cloudy environment is to prevent contamination of the aerosol signal from clouds, while maintaining sufficient aerosol product yield to satisfy specific applications. We investigate aerosol retrieval availability at different instrument pixel resolutions using the standard MODIS aerosol cloud mask applied to MODIS data and supplemented with a new GOES-R cloud mask applied to GOES data for a domain covering North America and surrounding oceans. Aerosol product availability is not the same as the cloud free fraction and takes into account the techniques used in the MODIS algorithm to avoid clouds, reduce noise and maintain sufficient numbers of aerosol retrievals. The inherent spatial resolution of each instrument, 0.5×0.5 km for MODIS and 1×1 km for GOES, is systematically degraded to 1×1, 2×2, 1×4, 4×4 and 8×8 km resolutions and then analyzed as to how that degradation would affect the availability of an aerosol retrieval, assuming an aerosol product resolution at 8×8 km. The analysis is repeated, separately, for near-nadir pixels and those at larger view angles to investigate the effect of pixel growth at oblique angles on aerosol retrieval availability. The results show that as nominal pixel size increases, availability decreases until at 8×8 km 70% to 85% of the retrievals available at 0.5 km, nadir, have been lost. The effect at oblique angles is to further decrease availability over land but increase availability over ocean, because sun glint is found at near-nadir view angles. Finer resolution sensors (i.e., 1×1, 2×2 or even 1×4 km will retrieve aerosols in partly cloudy scenes significantly more often than sensors with nadir views of 4×4 km or coarser. Large differences in the results of the two cloud masks designed for MODIS aerosol and GOES cloud products strongly reinforce that cloud masks must be developed with specific purposes in mind and

  9. Enhancement of spatial resolution of terahertz imaging systems based on terajet generation by dielectric cube

    Directory of Open Access Journals (Sweden)

    Hai Huy Nguyen Pham

    2017-05-01

    Full Text Available The terahertz (THz, 0.1–10 THz region has been attracting tremendous research interest owing to its potential in practical applications such as biomedical, material inspection, and nondestructive imaging. Those applications require enhancing the spatial resolution at a specific frequency of interest. A variety of resolution-enhancement techniques have been proposed, such as near-field scanning probes, surface plasmons, and aspheric lenses. Here, we demonstrate for the first time that a mesoscale dielectric cube can be exploited as a novel resolution enhancer by simply placing it at the focused imaging point of a continuous wave THz imaging system. The operating principle of this enhancer is based on the generation—by the dielectric cuboid—of the so-called terajet, a photonic jet in the THz region. A subwavelength hotspot is obtained by placing a Teflon cube, with a 1.46 refractive index, at the imaging point of the imaging system, regardless of the numerical aperture (NA. The generated terajet at 125 GHz is experimentally characterized, using our unique THz-wave visualization system. The full width at half maximum (FWHM of the hotspot obtained by placing the enhancer at the focal point of a mirror with a measured NA of 0.55 is approximately 0.55λ, which is even better than the FWHM obtained by a conventional focusing device with the ideal maximum numerical aperture (NA = 1 in air. Nondestructive subwavelength-resolution imaging demonstrations of a Suica integrated circuit card, which is used as a common fare card for trains in Japan, and an aluminum plate with 0.63λ trenches are presented. The amplitude and phase images obtained with the enhancer at 125 GHz can clearly resolve both the air-trenches on the aluminum plate and the card’s inner electronic circuitry, whereas the images obtained without the enhancer are blurred because of insufficient resolution. An increase of the image contrast by a factor of 4.4 was also obtained using

  10. Optophysiological approach to resolve neuronal action potentials with high spatial and temporal resolution in cultured neurons

    Directory of Open Access Journals (Sweden)

    Stephane ePages

    2011-10-01

    Full Text Available Cell to cell communication in the central nervous system is encoded into transient and local membrane potential changes (ΔVm. Deciphering the rules that govern synaptic transmission and plasticity entails to be able to perform Vm recordings throughout the entire neuronal arborization. Classical electrophysiology is, in most cases, not able to do so within small and fragile neuronal subcompartments. Thus, optical techniques based on the use of fluorescent voltage-sensitive dyes (VSDs have been developed. However, reporting spontaneous or small ΔVm from neuronal ramifications has been challenging, in part due to the limited sensitivity and phototoxicity of VSD-based optical measurements. Here we demonstrate the use of water soluble VSD, ANNINE-6plus, with laser scanning microscopy to optically record ΔVm in cultured neurons. We show that the sensitivity (> 10 % of fluorescence change for 100 mV depolarization and time response (submillisecond of the dye allows the robust detection of action potentials (APs even without averaging, allowing the measurement of spontaneous neuronal firing patterns. In addition, we show that back-propagating APs can be recorded, along distinct dendritic sites and within dendritic spines. Importantly, our approach does not induce any detectable phototoxic effect on cultured neurons. This optophysiological approach provides a simple, minimally invasive and versatile optical method to measure electrical activity in cultured neurons with high temporal (ms resolution and high spatial (µm resolution.

  11. Femtosecond laser-induced breakdown spectroscopy: Elemental imaging of thin films with high spatial resolution

    Science.gov (United States)

    Ahamer, Christoph M.; Riepl, Kevin M.; Huber, Norbert; Pedarnig, Johannes D.

    2017-10-01

    We investigate femtosecond laser-induced breakdown spectroscopy (fs-LIBS) for the spectrochemical imaging of thin films with high spatial resolution. Chemical images are obtained by recording LIBS spectra at each site of 2D raster-scans across the samples employing one fs-laser pulse per site. The diffraction images of the Echelle spectrometer are binned to reduce the read-out time of the intensified CCD detector and to increase the stability of the emission signals against peak drifts in the echellograms. For copper thin films on glass the intensities of Cu I emission lines and the size of ablation craters vary non-monotonously with the film thickness hCu = 5-500 nm. The emission efficiency, defined as the Cu I line intensity per ablated volume, strongly decreases for films thicker than the optical penetration depth. The Na I line intensity from glass increases exponentially with decreasing Cu film thickness. For yttrium barium copper oxide (YBCO) thin films on MgO various atomic and molecular emission lines of the laser-induced plasma are measured (film thickness hYBCO = 200-1000 nm). The obtained element (Y, Ba, Cu, Mg) and molecular (Y-O) fs-LIBS images match the structure of the micro-patterned YBCO films very well. The achieved lateral resolution δr = 6 μm is among the best values reported for spectrochemical LIBS imaging.

  12. Spatial and vertex resolution studies on the ATLAS Pixel Detector based on Combined Testbeam 2004 data

    CERN Document Server

    Reisinger, Ingo; Klingenberg, Reiner

    2006-01-01

    This diploma thesis deals with spatial and vertex resolution studies on the ATLAS Pixel detector based on real data taken during the Combined Testbeam period 2004 (17th May - 15th November). For the Combined Testbeam a barrel segment of the ATLAS Detector was build up and tested under real experimental conditions. Several data sets, being recorded during that time, are reconstructed by the ATLAS control framework called ATHENA. The input information for the reconstruction of the particle tracks through the Pixel Detector are the so-called spacepoints. Their uncertainty affects the resolution of the reconstructed particle tracks and thus, also the accuracy of the vertex reconstruction. Since traversing particles deposite their charge mostly (but not compellingly) within more than one pixel, all pixels corresponding to one hit have to be grouped together to a cluster. To compute the spacepoint from the cluster information two different strategies can be performed. The first one is a digital clustering, w...

  13. Fundamental Limits on Spatial Resolution in Ultrafast X-ray Diffraction

    Directory of Open Access Journals (Sweden)

    Adam Kirrander

    2017-05-01

    Full Text Available X-ray Free-Electron Lasers have made it possible to record time-sequences of diffraction images to determine changes in molecular geometry during ultrafast photochemical processes. Using state-of-the-art simulations in three molecules (deuterium, ethylene, and 1,3-cyclohexadiene, we demonstrate that the nature of the nuclear wavepacket initially prepared by the pump laser, and its subsequent dispersion as it propagates along the reaction path, limits the spatial resolution attainable in a structural dynamics experiment. The delocalization of the wavepacket leads to a pronounced damping of the diffraction signal at large values of the momentum transfer vector q, an observation supported by a simple analytical model. This suggests that high-q measurements, beyond 10–15 Å − 1 , provide scant experimental payback, and that it may be advantageous to prioritize the signal-to-noise ratio and the time-resolution of the experiment as determined by parameters such as the repetition-rate, the photon flux, and the pulse durations. We expect these considerations to influence future experimental designs, including source development and detection schemes.

  14. Tradeoffs in pushing the spatial resolution of fMRI for the 7T Human Connectome Project.

    Science.gov (United States)

    T Vu, An; Jamison, Keith; Glasser, Matthew F; Smith, Stephen M; Coalson, Timothy; Moeller, Steen; Auerbach, Edward J; Uğurbil, Kamil; Yacoub, Essa

    2017-07-01

    Whole-brain functional magnetic resonance imaging (fMRI), in conjunction with multiband acceleration, has played an important role in mapping the functional connectivity throughout the entire brain with both high temporal and spatial resolution. Ultrahigh magnetic field strengths (7T and above) allow functional imaging with even higher functional contrast-to-noise ratios for improved spatial resolution and specificity compared to traditional field strengths (1.5T and 3T). High-resolution 7T fMRI, however, has primarily been constrained to smaller brain regions given the amount of time it takes to acquire the number of slices necessary for high resolution whole brain imaging. Here we evaluate a range of whole-brain high-resolution resting state fMRI protocols (0.9, 1.25, 1.5, 1.6 and 2mm isotropic voxels) at 7T, obtained with both in-plane and slice acceleration parallel imaging techniques to maintain the temporal resolution and brain coverage typically acquired at 3T. Using the processing pipeline developed by the Human Connectome Project, we demonstrate that high resolution images acquired at 7T provide increased functional contrast to noise ratios with significantly less partial volume effects and more distinct spatial features, potentially allowing for robust individual subject parcellations and descriptions of fine-scaled patterns, such as visuotopic organization. Published by Elsevier Inc.

  15. Quantitative FRET Analysis by Fast Acquisition Time Domain FLIM at High Spatial Resolution in Living Cells

    Science.gov (United States)

    Padilla-Parra, Sergi; Audugé, Nicolas; Coppey-Moisan, Maïté; Tramier, Marc

    2008-01-01

    Quantitative analysis in Förster resonance energy transfer (FRET) experiments in live cells for protein interaction studies is still a challenging issue. In a two-component system (FRET and no FRET donor species), fitting of fluorescence lifetime imaging microscopy (FLIM) data gives the fraction of donor molecules involved in FRET (fD) and the intrinsic transfer efficiency. But when fast FLIM acquisitions are used to monitor dynamic changes in protein-protein interactions at high spatial and temporal resolutions in living cells, photon statistics and time resolution are limited. In this case, fitting procedures are not reliable, even for single lifetime donors. We introduce the new concept of a minimal fraction of donor molecules involved in FRET (mfD), coming from the mathematical minimization of fD. We find particular advantage in the use of mfD because it can be obtained without fitting procedures and it is derived directly from FLIM data. mfD constitutes an interesting quantitative parameter for live cell studies because it is related to the minimal relative concentration of interacting proteins. For multi-lifetime donors, the process of fitting complex fluorescence decays to find at least four reliable lifetimes is a near impossible task. Here, mfD extension for multi-lifetime donors is the only quantitative determinant. We applied this methodology for imaging the interaction between the bromodomains of TAFII250 and acetylated histones H4 in living cells at high resolution. We show the existence of discrete acetylated chromatin domains where the minimal fraction of bromodomain interacting with acetylated H4 oscillates from 0.26 to 0.36 and whose size is smaller than half of one micron cube. We demonstrate that mfD by itself is a useful tool to investigate quantitatively protein interactions in live cells, especially when using fast FRET-FLIM acquisition times. PMID:18539634

  16. The influence of spatial resolution on human health risk co-benefit estimates for global climate policy assessments.

    Science.gov (United States)

    Shih, Hsiu-Ching; Crawford-Brown, Douglas; Ma, Hwong-wen

    2015-03-15

    Assessment of the ability of climate policies to produce desired improvements in public health through co-benefits of air pollution reduction can consume resources in both time and research funds. These resources increase significantly as the spatial resolution of models increases. In addition, the level of spatial detail available in macroeconomic models at the heart of climate policy assessments is much lower than that available in traditional human health risk modeling. It is therefore important to determine whether increasing spatial resolution considerably affects risk-based decisions; which kinds of decisions might be affected; and under what conditions they will be affected. Human health risk co-benefits from carbon emissions reductions that bring about concurrent reductions in Particulate Matter (PM10) emissions is therefore examined here at four levels of spatial resolution (Uniform Nation, Uniform Region, Uniform County/city, Health Risk Assessment) in a case study of Taiwan as one of the geographic regions of a global macroeceonomic model, with results that are representative of small, industrialized nations within that global model. A metric of human health risk mortality (YOLL, years of life lost in life expectancy) is compared under assessments ranging from a "uniform simulation" in which there is no spatial resolution of changes in ambient air concentration under a policy to a "highly spatially resolved simulation" (called here Health Risk Assessment). PM10 is chosen in this study as the indicator of air pollution for which risks are assessed due to its significance as a co-benefit of carbon emissions reductions within climate mitigation policy. For the policy examined, the four estimates of mortality in the entirety of Taiwan are 747 YOLL, 834 YOLL, 984 YOLL and 916 YOLL, under Uniform Taiwan, Uniform Region, Uniform County and Health Risk Assessment respectively; or differences of 18%, 9%, 7% if the HRA methodology is taken as the baseline. While

  17. Prototyping and Testing a Wireless Sensor Network to Retrieve SWE at High Spatial Resolution

    Science.gov (United States)

    Kang, D.; Barros, A. P.

    2007-12-01

    A critical challenge in snow research from space is the ability to obtain measurements at the spatial and temporal resolution to characterize the statistical structure of the space-time variability of the physical properties of the snowpack within an area consistent with the pixel resolution in snow hydrology models or that expected from a future NASA mission dedicated to cold region processes. That is, observations of relevant snow dielectric properties are necessary at high spatial and temporal resolution during the accumulation and melt seasons. We present a new wireless sensor network prototype consisting of multiple antennas and buried low-power, multi- channel transmitters operating in L-band that communicate to a central pod equipped with a Vector Signal Analyzer (VSA) that receives, processes and manages the data. Only commercial off-the-shelf hard-ware parts were used to build the sensors. Because the sensors are very low cost and run autonomously, one envisions that self-organizing networks of large numbers of such sensors might be distributed over very large areas, therefore proving much needed data sets for scaling studies. The measurement strategy consists of placing the transmitters the land surface in the beginning of the snow season which are then run autonomously till the end of the spring and waken at pre-determined time-intervals to emit radio frequency signals and thus sample the snowpack. Along with the sensors, an important component of this work entails the development of an estimation algorithm to estimate snow dielectric properties, snow density, and volume fraction of snow (VF) from the time-of-travel, amplitude and phase modification of the multi-channel RF signals as they propagate through the snow-pack. Here, we present results from full system testing and evaluation of the sensors that were conducted at Duke University using ¢®¡Æsynthetic¢®¡¾ limited-area snowpacks (0.5 by 0.5 m2 and 1 by 2 m2) constructed of various

  18. Spatial representativeness of ground-based solar radiation measurements estimated from high-resolution Meteosat data

    Science.gov (United States)

    Zyta Hakuba, Maria; Folini, Doris; Sanchez-Lorenzo, Arturo; Wild, Martin

    2014-05-01

    The validation of gridded surface solar radiation (SSR) data often relies on the comparison with ground-based in-situ measurements. This poses the question on how representative a point measurement is for a larger-scale surrounding. We use the high-resolution (0.03° ) SIS MVIRI data from the Satellite Application Facility on Climate Monitoring (CM SAF) to study the spatial sub-grid variability in all-sky surface solar radiation (SSR) over Europe, Africa, and parts of South America as covered by the Meteosat disk. This is done for the CERES EBAF 1° standard grid and two equal-angle grids of 0.25° and 3° resolution. Furthermore, we quantify the spatial representativeness of numerous surface sites from the BSRN and the GEBA for their site-centered larger surroundings varying in size from 0.25° to 3°, as well as with respect to the given standard grids. These analyses are done on a climatological annual and monthly mean basis over the period 2001-2005. The annual mean sub-grid variability (mean absolute deviation) in the 1° standard grid over European land is on average 1.6% (2.4 Wm¯²), with a maximum of up to 10% in Northern Spain (Hakuba et al. 2013). As expected, highest sub-grid variability is found in mountainous and coastal regions. The annual mean representation error of point values at 143 surface sites in Europe with respect to their 1° surrounding and the 1° standard grid is on average 2% (3 Wm¯² ). For larger surroundings of 3°, the representation error increases to 3% (4.8 Wm¯²), which is of similar order as the measurement accuracy of in-situ observations. Most of the sites can thus be considered as representative for their larger surroundings of up to 3°, which holds also true for the majority of BSRN sites located in Africa and South America. This representation error can be reduced if site-specific correction factors are applied or when multiple sites are available in the same grid cell, i.e., three more sites reduce the error by 50

  19. Photosensitized production of singlet oxygen: spatially-resolved optical studies in single cells

    DEFF Research Database (Denmark)

    Breitenbach, Thomas; Kuimova, Marina; Gbur, Peter

    2009-01-01

    Singlet molecular oxygen, O2(a1g), can be created in photosensitized experiments with sub-cellular spatial resolution in a single cell. This cytotoxic species can subsequently be detected by its 1270 nm phosphorescence (a1g X3-g). Cellular responses to the creation of singlet oxygen can be monito...

  20. Impact of Spatial Resolution on Wind Field Derived Estimates of Air Pressure Depression in the Hurricane Eye

    Directory of Open Access Journals (Sweden)

    Linwood Jones

    2010-03-01

    Full Text Available Measurements of the near surface horizontal wind field in a hurricane with spatial resolution of order 1–10 km are possible using airborne microwave radiometer imagers. An assessment is made of the information content of the measured winds as a function of the spatial resolution of the imager. An existing algorithm is used which estimates the maximum surface air pressure depression in the hurricane eye from the maximum wind speed. High resolution numerical model wind fields from Hurricane Frances 2004 are convolved with various HIRAD antenna spatial filters to observe the impact of the antenna design on the central pressure depression in the eye that can be deduced from it.

  1. Evaluating the effect of remote sensing image spatial resolution on soil exchangeable potassium prediction models in smallholder farm settings.

    Science.gov (United States)

    Xu, Yiming; Smith, Scot E; Grunwald, Sabine; Abd-Elrahman, Amr; Wani, Suhas P

    2017-09-15

    Major end users of Digital Soil Mapping (DSM) such as policy makers and agricultural extension workers are faced with choosing the appropriate remote sensing data. The objective of this research is to analyze the spatial resolution effects of different remote sensing images on soil prediction models in two smallholder farms in Southern India called Kothapally (Telangana State), and Masuti (Karnataka State), and provide empirical guidelines to choose the appropriate remote sensing images in DSM. Bayesian kriging (BK) was utilized to characterize the spatial pattern of exchangeable potassium (K ex ) in the topsoil (0-15 cm) at different spatial resolutions by incorporating spectral indices from Landsat 8 (30 m), RapidEye (5 m), and WorldView-2/GeoEye-1/Pleiades-1A images (2 m). Some spectral indices such as band reflectances, band ratios, Crust Index and Atmospherically Resistant Vegetation Index from multiple images showed relatively strong correlations with soil K ex in two study areas. The research also suggested that fine spatial resolution WorldView-2/GeoEye-1/Pleiades-1A-based and RapidEye-based soil prediction models would not necessarily have higher prediction performance than coarse spatial resolution Landsat 8-based soil prediction models. The end users of DSM in smallholder farm settings need select the appropriate spectral indices and consider different factors such as the spatial resolution, band width, spectral resolution, temporal frequency, cost, and processing time of different remote sensing images. Overall, remote sensing-based Digital Soil Mapping has potential to be promoted to smallholder farm settings all over the world and help smallholder farmers implement sustainable and field-specific soil nutrient management scheme. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. The spatial resolution in dosimetry with normoxic polymer-gels investigated with the dose modulation transfer approach.

    Science.gov (United States)

    Bayreder, Christian; Schön, Robert; Wieland, M; Georg, Dietmar; Moser, Ewald; Berg, Andreas

    2008-05-01

    The verification of dose distributions with high dose gradients as appearing in brachytherapy or stereotactic radiotherapy for example, calls for dosimetric methods with sufficiently high spatial resolution. Polymer gels in combination with a MR or optical scanner as a readout device have the potential of performing the verification of a three-dimensional dose distribution within a single measurement. The purpose of this work is to investigate the spatial resolution achievable in MR-based polymer gel dosimetry. The authors show that dosimetry on a very small spatial scale (voxel size: 94 x 94 x 1000 microm3) can be performed with normoxic polymer gels using parameter selective T2 imaging. In order to prove the spatial resolution obtained we are relying on the dose-modulation transfer function (DMTF) concept based on very fine dose modulations at half periods of 200 microm. Very fine periodic dose modulations of a 60Co photon field were achieved by means of an absorption grid made of tungsten-carbide, specifically designed for quality control. The dose modulation in the polymer gel is compared with that of film dosimetry in one plane via the DMTF concept for general access to the spatial resolution of a dose imaging system. Additionally Monte Carlo simulations were performed and used for the calculation of the DMTF of both, the polymer gel and film dosimetry. The results obtained by film dosimetry agree well with those of Monte Carlo simulations, whereas polymer gel dosimetry overestimates the amplitude value of the fine dose modulations. The authors discuss possible reasons. The in-plane resolution achieved in this work competes with the spatial resolution of standard clinical film-scanner systems.

  3. High Spatial Resolution MRI of Cystic Adventitial Disease of the Iliofemoral Vein Communicating with the Hip Joint

    Energy Technology Data Exchange (ETDEWEB)

    Michaelides, Michael, E-mail: mihalismihailidis@gmail.com [Ygia Polyclinic Hospital, MRI/CT Department (Cyprus); Papas, Stylianos, E-mail: vascular@drpapas.com [Ygia Polyclinic Hospital, Vascular Surgery Department (Cyprus); Pantziara, Maria, E-mail: mgpantziara@gmail.com; Ioannidis, Kleanthis, E-mail: aktinodiagnostis@gmail.com [Ygia Polyclinic Hospital, MRI/CT Department (Cyprus)

    2013-05-14

    Venous cystic adventitial disease (CAD) is an extremely rare entity, and so far less than 20 cases have been described in the literature. Herein, we describe the imaging findings of CAD of iliofemoral vein in a 51-year-old woman who presented with leg swelling with special emphasis on high spatial resolution MRI, which demonstrated communication of the cyst with the hip joint. To our knowledge, this is the first description of high spatial resolution MRI findings in venous CAD supporting a new theory about the pathogenesis of venous CAD.

  4. High spatial resolution MRI of cystic adventitial disease of the iliofemoral vein communicating with the hip joint.

    Science.gov (United States)

    Michaelides, Michael; Papas, Stylianos; Pantziara, Maria; Ioannidis, Kleanthis

    2014-02-01

    Venous cystic adventitial disease (CAD) is an extremely rare entity, and so far less than 20 cases have been described in the literature. Herein, we describe the imaging findings of CAD of iliofemoral vein in a 51-year-old woman who presented with leg swelling with special emphasis on high spatial resolution MRI, which demonstrated communication of the cyst with the hip joint. To our knowledge, this is the first description of high spatial resolution MRI findings in venous CAD supporting a new theory about the pathogenesis of venous CAD.

  5. Nm-scale spatial resolution x-ray imaging with MLL nanofocusing optics: instrumentational requirements and challenges

    Energy Technology Data Exchange (ETDEWEB)

    Nazaretski, E. [Brookhaven National Lab. (BNL), Upton, NY (United States); Yan, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Lauer, K. [Brookhaven National Lab. (BNL), Upton, NY (United States); Huang, X. [Brookhaven National Lab. (BNL), Upton, NY (United States); Xu, W. [Brookhaven National Lab. (BNL), Upton, NY (United States); Kalbfleisch, S. [Brookhaven National Lab. (BNL), Upton, NY (United States); Yan, Hui [Brookhaven National Lab. (BNL), Upton, NY (United States); Li, Li [Brookhaven National Lab. (BNL), Upton, NY (United States); Bouet, N. [Brookhaven National Lab. (BNL), Upton, NY (United States); Zhou, J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Shu, D. [Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source; Conley, R. [Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source; Chu, Y. S. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-08-30

    The Hard X-ray Nanoprobe (HXN) beamline at NSLS-II has been designed and constructed to enable imaging experiments with unprecedented spatial resolution and detection sensitivity. The HXN X-ray Microscope is a key instrument for the beamline, providing a suite of experimental capabilities which includes scanning fluorescence, diffraction, differential phase contrast and ptychography utilizing Multilayer Laue Lenses (MLL) and zoneplate (ZP) as nanofocusing optics. In this paper, we present technical requirements for the MLL-based scanning microscope, outline the development concept and present first ~15 x 15 nm2 spatial resolution x-ray fluorescence images.

  6. Multiscaling of vegetative indexes from remote sensing images obtained at different spatial resolutions

    Science.gov (United States)

    Alonso, Carmelo; Tarquis, Ana M.; Zuñiga, Ignacio; Benito, Rosa M.

    2017-04-01

    Vegetation indexes, such as Normalized Difference Vegetation Index (NDVI) and enhanced Vegetation index (EVI), can been used to estimate root zone soil moisture through high resolution remote sensing images. These indexes are based in red (R), near infrared (NIR) and blue (B) wavelengths data. In this work we have studied the scaling properties of both vegetation indexes analyzing the information contained in two satellite data: Landsat-7 and Ikonos. Because of the potential capacity for systematic observations at various scales, remote sensing technology extends possible data archives from present time to over several decades back. For this advantage, enormous efforts have been made by researchers and application specialists to delineate vegetation indexes from local scale to global scale by applying remote sensing imagery. To study the influence of the spatial resolution the vegetation indexes map estimated with Ikonos-2 coded in 8 bits, with a resolution of 4m, have been compared through a multifractal analysis with the ones obtained with Lansat-7 8 bits, of 30 m. resolution, on the same area of study. The scaling behaviour of NDVI and EVI presents several differences that will be discussed based on the multifractal parameters extracted from the analysis. REFERENCES Alonso, C., Tarquis, A. M., Benito, R. M. and Zuñiga, I. Correlation scaling properties between soil moisture and vegetation indices. Geophysical Research Abstracts, 11, EGU2009-13932, 2009. Alonso, C., Tarquis, A. M. and Benito, R. M. Comparison of fractal dimensions based on segmented NDVI fields obtained from different remote sensors. Geophysical Research Abstracts, 14, EGU2012-14342, 2012. Escribano Rodriguez, J., Alonso, C., Tarquis, A.M., Benito, R.M. and Hernandez Diaz-Ambrona, C. Comparison of NDVI fields obtained from different remote sensors. Geophysical Research Abstracts,15, EGU2013-14153, 2013. Lovejoy, S., Tarquis, A., Gaonac'h, H. and Schertzer, D. Single and multiscale remote sensing

  7. Dependency of planned dose perturbation (PDP) on the spatial resolution of MapCHECK 2 detectors.

    Science.gov (United States)

    Keeling, Vance P; Ahmad, Salahuddin; Algan, Ozer; Jin, Hosang

    2014-01-06

    The purpose of this study is to determine the dependency of the planned dose perturbation (PDP) algorithm (used in Sun Nuclear 3DVH software) on spatial resolution of the MapCHECK 2 detectors. In this study, ten brain (small target), ten brain (large target), ten prostate, and ten head-and-neck (H&N) cases were retrospectively selected for QA measurement. IMRT validation plans were delivered using the field-by-field technique with the MapCHECK 2 device. The measurements were performed using standard detector density (standard resolution; SR) and a doubled detector density (high resolution; HR) by merging regular with shifted measurements. SR and HR measurements were fed into the 3DVH software and ROI (region of interest), planning target volume (PTV), and organ at risk (OAR)) dose statistics (D95, Dmean, and Dmax) were determined for each. Differences of the dose statistics normalized to prescription dose for ROIs between original planning and PDP-perturbed planning were calculated for SR (ΔDSR) and HR (ΔDHR), and difference between ΔDSR and ΔDHR (ΔDSR-HR = ΔDSR - ΔDHR) was also calculated. In addition, 2D and 3D γ passing rates (GPRs) were determined for both resolutions, and a correlation between GPRs and ΔDSR or ΔDHR for PTV dose metrics was determined. No considerably high mean differences between ΔDSR and ΔDHR were found for almost all ROIs and plans (< 2%); however, |ΔDSR|, |ΔDHR|, and |ΔDSR-HR| for PTV were found to significantly increase as the PTV size decreased (e.g., PTV size < 5 cc). And statistically significant differences between SR and HR were observed for OARs proximal to targets in large brain target and H&N cases. As plan modulation represented by fractional MU/prescription dose (MU/cGy) became more complex, the 2D/3D GPRs tended to decrease; however, the modulation complexity did not make any noticeable distinctions in the DVH statistics of PTV between SR and HR, excluding the small brain cases whose PTVs were extremely small (PTV

  8. Estimation of crops biomass and evapotranspiration from high spatial and temporal resolutions remote sensing data

    Science.gov (United States)

    Claverie, Martin; Demarez, Valérie; Duchemin, Benoît.; Ceschia, Eric; Hagolle, Olivier; Ducrot, Danielle; Keravec, Pascal; Beziat, Pierre; Dedieu, Pierre

    2010-05-01

    Carbon and water cycles are closely related to agricultural activities. Agriculture has been indeed identified by IPCC 2007 report as one of the options to sequester carbon in soil. Concerning the water resources, their consumptions by irrigated crops are called into question in view of demographic pressure. In the prospect of an assessment of carbon production and water consumption, the use of crop models at a regional scale is a challenging issue. The recent availability of high spatial resolution (10 m) optical sensors associated to high temporal resolution (1 day) such as FORMOSAT-2 and, in the future, Venµs and SENTINEL-2 will offer new perspectives for agricultural monitoring. In this context, the objective of this work is to show how multi-temporal satellite observations acquired at high spatial resolution are useful for a regional monitoring of following crops biophysical variables: leaf area index (LAI), aboveground biomass (AGB) and evapotranspiration (ET). This study focuses on three summer crops dominant in South-West of France: maize, sunflower and soybean. A unique images data set (82 FORMOSAT-2 images over four consecutive years, 2006-2009) was acquired for this project. The experimental data set includes LAI and AGB measurements over eight agricultural fields. Two fields were intensively monitored where ET flux were measured with a 30 minutes time step using eddy correlation methods. The modelisation approach is based on FAO-56 method coupled with a vegetation functioning model based on Monteith theory: the SAFY model [5]. The model operates at a daily time step model to provide estimates of plant characteristics (LAI, AGB), soil conditions (soil water content) and water use (ET). As a key linking variable, LAI is deduced from FORMOSAT-2 reflectances images, and then introduced into the SAFY model to provide spatial and temporal estimates of these biophysical variables. Most of the SAFY parameters are crop related and have been fixed according to

  9. Evaluation of the Chinese Fine Spatial Resolution Hyperspectral Satellite TianGong-1 in Urban Land-Cover Classification

    Directory of Open Access Journals (Sweden)

    Xueke Li

    2016-05-01

    Full Text Available The successful launch of the Chinese high spatial resolution hyperspectral satellite TianGong-1 (TG-1 opens up new possibilities for applications of remotely-sensed satellite imagery. One of the main goals of the TG-1 mission is to provide observations of surface attributes at local and landscape spatial scales to map urban land cover accurately using the hyperspectral technique. This study attempted to evaluate the TG-1 datasets for urban feature analysis, using existing data over Beijing, China, by comparing the TG-1 (with a spatial resolution of 10 m to EO-1 Hyperion (with a spatial resolution of 30 m. The spectral feature of TG-1 was first analyzed and, thus, finding out optimal hyperspectral wavebands useful for the discrimination of urban areas. Based on this, the pixel-based maximum likelihood classifier (PMLC, pixel-based support vector machine (PSVM, hybrid maximum likelihood classifier (HMLC, and hybrid support vector machine (HSVM were implemented, as well as compared in the application of mapping urban land cover types. The hybrid classifier approach, which integrates the pixel-based classifier and the object-based segmentation approach, was demonstrated as an effective alternative to the conventional pixel-based classifiers for processing the satellite hyperspectral data, especially the fine spatial resolution data. For TG-1 imagery, the pixel-based urban classification was obtained with an average overall accuracy of 89.1%, whereas the hybrid urban classification was obtained with an average overall accuracy of 91.8%. For Hyperion imagery, the pixel-based urban classification was obtained with an average overall accuracy of 85.9%, whereas the hybrid urban classification was obtained with an average overall accuracy of 86.7%. Overall, it can be concluded that the fine spatial resolution satellite hyperspectral data TG-1 is promising in delineating complex urban scenes, especially when using an appropriate classifier, such as the

  10. Quantifying tree mortality in a mixed species woodland using multitemporal high spatial resolution satellite imagery

    Science.gov (United States)

    Garrity, Steven R.; Allen, Craig D.; Brumby, Steven P.; Gangodagamage, Chandana; McDowell, Nate G.; Cai, D. Michael

    2013-01-01

    Widespread tree mortality events have recently been observed in several biomes. To effectively quantify the severity and extent of these events, tools that allow for rapid assessment at the landscape scale are required. Past studies using high spatial resolution satellite imagery have primarily focused on detecting green, red, and gray tree canopies during and shortly after tree damage or mortality has occurred. However, detecting trees in various stages of death is not always possible due to limited availability of archived satellite imagery. Here we assess the capability of high spatial resolution satellite imagery for tree mortality detection in a southwestern U.S. mixed species woodland using archived satellite images acquired prior to mortality and well after dead trees had dropped their leaves. We developed a multistep classification approach that uses: supervised masking of non-tree image elements; bi-temporal (pre- and post-mortality) differencing of normalized difference vegetation index (NDVI) and red:green ratio (RGI); and unsupervised multivariate clustering of pixels into live and dead tree classes using a Gaussian mixture model. Classification accuracies were improved in a final step by tuning the rules of pixel classification using the posterior probabilities of class membership obtained from the Gaussian mixture model. Classifications were produced for two images acquired post-mortality with overall accuracies of 97.9% and 98.5%, respectively. Classified images were combined with land cover data to characterize the spatiotemporal characteristics of tree mortality across areas with differences in tree species composition. We found that 38% of tree crown area was lost during the drought period between 2002 and 2006. The majority of tree mortality during this period was concentrated in piñon-juniper (Pinus edulis-Juniperus monosperma) woodlands. An additional 20% of the tree canopy died or was removed between 2006 and 2011, primarily in areas

  11. ALMA high spatial resolution observations of the dense molecular region of NGC 6302

    Science.gov (United States)

    Santander-García, M.; Bujarrabal, V.; Alcolea, J.; Castro-Carrizo, A.; Sánchez Contreras, C.; Quintana-Lacaci, G.; Corradi, R. L. M.; Neri, R.

    2017-01-01

    Context. The mechanism behind the shaping of bipolar planetary nebulae is still poorly understood. It is becoming increasingly clear that the main agents must operate at their innermost regions, where a significant equatorial density enhancement should be present and related to the collimation of light and jet launching from the central star preferentially towards the polar directions. Most of the material in this equatorial condensation must be lost during the asymptotic giant branch as stellar wind and later released from the surface of dust grains to the gas phase in molecular form. Accurately tracing the molecule-rich regions of these objects can give valuable insight into the ejection mechanisms themselves. Aims: We investigate the physical conditions, structure and velocity field of the dense molecular region of the planetary nebula NGC 6302 by means of ALMA band 7 interferometric maps. Methods: The high spatial resolution of the 12CO and 13CO J = 3-2 ALMA data allows for an analysis of the geometry of the ejecta in unprecedented detail. We built a spatio-kinematical model of the molecular region with the software SHAPE and performed detailed non-LTE calculations of excitation and radiative transfer with the shapemol plug-in. Results: We find that the molecular region consists of a massive ring out of which a system of fragments of lobe walls emerge and enclose the base of the lobes visible in the optical. The general properties of this region are in agreement with previous works, although the much greater spatial resolution of the data allows for a very detailed description. We confirm that the mass of the molecular region is 0.1 M⊙. Additionally, we report a previously undetected component at the nebular equator, an inner, younger ring inclined 60° with respect to the main ring, showing a characteristic radius of 7.5 × 1016 cm, a mass of 2.7 × 10-3M⊙, and a counterpart in optical images of the nebula. This inner ring has the same kinematical age as

  12. High-spatial resolution numerical simulations of in-water radiative transfer processes

    Science.gov (United States)

    D'Alimonte, D.; Kajiyama, T.; Zibordi, G.

    2012-04-01

    Monte Carlo (MC) simulations of radiative processes allow for addressing optical radiometric problems strictly linked to complex geometries. Within such a context, MC simulations have been used to investigate uncertainties affecting in-water radiometric measurements performed with free-fall optical profilers commonly utilized for the vicarious calibration of space sensors or the validation of satellite ocean color primary products (e.g, the normalized water leaving radiance). Specifically, a MC code (henceforth called MOX) has been developed to simulate in-water and above-water radiometric fields with high spatial-resolution (up to 1 cm) over a 2-dimensional (2D) domain of tens of meters. This has been achieved by exploiting high performance computing (HPC) solutions (e.g., parallel programs and job-scheduling based on novel performance prediction and optimization schemes) to trace up to 10^12 photons. A dedicated study, focused on the simulation of in-water radiometric fields, has led to the generation of virtual optical profiles accounting for perturbations due to light focusing effect by sea-surface gravity and capillary waves at a spatial resolution comparable to that of actual measurements. Different from field experiments, which are often constrained by environmental factors like illumination conditions and sea-water optical properties, numerical simulations permits analyzing realistic cases whereas allowing for a free input parameter selection. MOX simulations have shown that uncertainties induced by focusing effects upon radiometric data products can be reduced by slowing the deployment speed of free-fall optical profilers, rather than increasing the sampling frequency (i.e., while keeping the same number of samples per depth unit). This result has confirmed the appropriateness of profiling techniques (i.e., multicasting) so far solely supported by a limited number of field measurements and has additionally suggested the possibility of investigating further

  13. Low-Z target optimization for spatial resolution improvement in megavoltage imaging

    Energy Technology Data Exchange (ETDEWEB)

    Connell, Tanner; Robar, James L. [Medical Physics Unit, McGill University Health Center, 1650 Avenue Cedar, Montreal, Quebec H3G 1A4 (Canada); Department of Radiation Oncology and Department of Physics and Atmospheric Science, Dalhousie University, 5820 University Avenue, Halifax, Nova Scotia B3H 1V7 (Canada)

    2010-01-15

    Purpose: Recently, several authors have shown contrast improvements in megavoltage portal imaging and cone-beam computed tomography using low atomic number (Z) targets. This work compliments previous studies by investigating the effects of varying different beam production parameters including target atomic number, target thickness, and incident electron energy on spatial resolution. Methods: Target materials of beryllium, aluminum, and tungsten were investigated over a range of thicknesses between 10% and 100% of the continuous slowing down approximation range of electrons. Incident electron kinetic energies of 4.5 and 7.0 MeV were used, in conjunction with custom targets installed above the carousel of a modern radiotherapy linear accelerator. Monte Carlo simulations of the accelerator were constructed and compared to the experimental results. Results: The results showed that thinner targets, as well higher incident electron energies, generally produce more favorable modulation transfer function (MTF) curves. Due to an MTF dependence of the detector system on the photon energy, the experimental results showed that low-Z targets produced superior MTF curves. Simulations showed 14.5% and 21.5% increases in f{sub 50} for the 7.0 and 4.5 MeV targets (Al; 60%R{sub %CSDA}), respectively, when moved from the carousel to the location of the clinical target. f{sub 50} values for the custom targets were compared to the clinical 6 MV beam and were found to be between 10.4% lower (4.5 MeV/W) and 15.5% higher (7.0 MeV/Be). Conclusions: Integration of low-Z external targets into the treatment head of a medical linear was achieved with only minor modifications. It was shown that reasonably high resolution images on par or better than those acquired with the clinical 6 MV beam can be achieved using external low-Z targets.

  14. Low-Z target optimization for spatial resolution improvement in megavoltage imaging.

    Science.gov (United States)

    Connell, Tanner; Robar, James L

    2010-01-01

    Recently, several authors have shown contrast improvements in megavoltage portal imaging and cone-beam computed tomography using low atomic number (Z) targets. This work compliments previous studies by investigating the effects of varying different beam production parameters including target atomic number, target thickness, and incident electron energy on spatial resolution. Target materials of beryllium, aluminum, and tungsten were investigated over a range of thicknesses between 10% and 100% of the continuous slowing down approximation range of electrons. Incident electron kinetic energies of 4.5 and 7.0 MeV were used, in conjunction with custom targets installed above the carousel of a modern radiotherapy linear accelerator. Monte Carlo simulations of the accelerator were constructed and compared to the experimental results. The results showed that thinner targets, as well higher incident electron energies, generally produce more favorable modulation transfer function (MTF) curves. Due to an MTF dependence of the detector system on the photon energy, the experimental results showed that low-Z targets produced superior MTF curves. Simulations showed 14.5% and 21.5% increases in f50 for the 7.0 and 4.5 MeV targets (A1; 60% R% CSDA), respectively, when moved from the carousel to the location of the clinical target. f50 values for the custom targets were compared to the clinical 6 MV beam and were found to be between 10.4% lower (4.5 MeV/W) and 15.5% higher (7.0 MeV/Be). Integration of low-Z external targets into the treatment head of a medical linear was achieved with only minor modifications. It was shown that reasonably high resolution images on par or better than those acquired with the clinical 6 MV beam can be achieved using external low-Z targets.

  15. Influence of spatial resolution on precipitation simulations for the central Andes Mountains

    Science.gov (United States)

    Trachte, Katja; Bendix, Jörg

    2013-04-01

    analyze the impact of spatial resolution and thus, the representation of the terrain on the result.

  16. Improved Hardware for Higher Spatial Resolution Strain-ENCoded (SENC) Breast MRI for Strain Measurements

    Science.gov (United States)

    Harouni, Ahmed A.; Hossain, Jakir; Jacobs, Michael A.; Osman, Nael F.

    2012-01-01

    Introduction Early detection of breast lesions using mammography has resulted in lower mortality-rates. However, some breast lesions are mammography occult and magnetic resonance imaging (MRI) is recommended, but has lower specificity. It is possible to achieve higher specificity by using Strain-ENCoded (SENC) MRI and/or magnetic resonance elastography(MRE). SENC breast MRI can measure the strain properties of breast tissue. Similarly, MRE is used to measure elasticity (i.e., shear stiffness) of different tissue compositions interrogating the tissue mechanical properties. Reports have shown that malignant tumors are 3–13 times stiffer than normal tissue and benign tumors. Methods We have developed a Strain-ENCoded (SENC) breast hardware device capable of periodically compressing the breast, thus allowing for longer scanning time and measuring the strain characteristics of breast tissue. This hardware enabled us to use SENC MRI with high spatial resolution (1×1×5mm3) instead of Fast SENC(FSENC). Simple controls and multiple safety measures were added to ensure accurate, repeatable and safe in-vivo experiments. Results Phantom experiments showed that SENC breast MRI has higher SNR and CNR than FSENC under different scanning resolutions. Finally, the SENC breast device reproducibility measurements resulted in a difference of less than one mm with a 1% strain difference. Conclusion SENC breast MR images have higher SNR and CNR than FSENC images. Thus, combining SENC breast strain measurements with diagnostic breast MRI to differentiate benign from malignant lesions could potentially increase the specificity of diagnosis in the clinical setting. PMID:21440464

  17. Improved hardware for higher spatial resolution strain-encoded (SENC) breast MRI for strain measurements.

    Science.gov (United States)

    Harouni, Ahmed A; Hossain, Jakir; Jacobs, Michael A; Osman, Nael F

    2011-06-01

    Early detection of breast lesions using mammography has resulted in lower mortality rates. However, some breast lesions are mammography occult, and magnetic resonance imaging (MRI) is recommended, but it has lower specificity. It is possible to achieve higher specificity by using strain-encoded (SENC) MRI and/or magnetic resonance elastography. SENC breast MRI can measure the strain properties of breast tissue. Similarly, magnetic resonance elastography is used to measure the elasticity (ie, shear stiffness) of different tissue compositions interrogating the tissue mechanical properties. Reports have shown that malignant tumors are three to 13 times stiffer than normal tissue and benign tumors. The investigators have developed a SENC breast hardware device capable of periodically compressing the breast, thus allowing for longer scanning time and measuring the strain characteristics of breast tissue. This hardware enables the use of SENC MRI with high spatial resolution (1 × 1 × 5 mm(3)) instead of fast SENC imaging. Simple controls and multiple safety measures were added to ensure accurate, repeatable, and safe in vivo experiments. Phantom experiments showed that SENC breast MRI has higher signal-to-noise ratio and contrast-to-noise ratio than fast SENC imaging under different scanning resolutions. Finally, the SENC breast device reproducibility measurements resulted in a difference of breast magnetic resonance images have higher signal-to-noise ratio and contrast-to-noise ratios than fast SENC images. Thus, combining SENC breast strain measurements with diagnostic breast MRI to differentiate benign from malignant lesions could potentially increase the specificity of diagnosis in the clinical setting. Copyright © 2011 AUR. Published by Elsevier Inc. All rights reserved.

  18. Modeling Above-Ground Biomass Across Multiple Circum-Arctic Tundra Sites Using High Spatial Resolution Remote Sensing

    Science.gov (United States)

    Räsänen, Aleksi; Juutinen, Sari; Aurela, Mika; Virtanen, Tarmo

    2017-04-01

    Biomass is one of the central bio-geophysical variables in Earth observation for tracking plant productivity, and flow of carbon, nutrients, and water. Most of the satellite based biomass mapping exercises in Arctic environments have been performed by using rather coarse spatial resolution data, e.g. Landsat and AVHRR which have spatial resolutions of 30 m and >1 km, respectively. While the coarse resolution images have high temporal resolution, they are incapable of capturing the fragmented nature of tundra environment and fine-scale changes in vegetation and carbon exchange patterns. Very high spatial resolution (VHSR, spatial resolution 0.5-2 m) satellite images have the potential to detect environmental variables with an ecologically sound spatial resolution. The usage of VHSR images has, nevertheless, been modest so far in biomass modeling in the Arctic. Our objectives were to use VHSR for predicting above ground biomass in tundra landscapes, evaluate whether a common predictive model can be applied across circum-Arctic tundra and peatland sites having different types of vegetation, and produce knowledge on distribution of plant functional types (PFT) in these sites. Such model development is dependent on ground-based surveys of vegetation with the same spatial resolution and extent with the VHSR images. In this study, we conducted ground-based surveys of vegetation composition and biomass in four different arctic tundra or peatland areas located in Russia, Canada, and Finland. First, we sorted species into PFTs and developed PFT-specific models to predict biomass on the basis of non-destructive measurements (cover, height). Second, we predicted overall biomass on landscape scale by combinations of single bands and vegetation indices of very high resolution satellite images (QuickBird or WorldView-2 images of the eight sites). We compared area-specific empirical regression models and common models that were applied across all sites. We found that NDVI was

  19. Understanding the Performance of Automotive Catalysts via Spatial Resolution of Reactions inside Honeycomb Monoliths

    Energy Technology Data Exchange (ETDEWEB)

    Partridge Jr, William P. [ORNL; Choi, Jae-Soon [ORNL

    2017-11-01

    By directly resolving spatial and temporal species distributions within operating honeycomb monolith catalysts, spatially resolved capillary inlet mass spectrometry (SpaciMS) provides a uniquely enabling perspective for advancing automotive catalysis. Specifically, the ability to follow the spatiotemporal evolution of reactions throughout the catalyst is a significant advantage over inlet-and-effluent-limited analysis. Intracatalyst resolution elucidates numerous catalyst details including the network and sequence of reactions, clarifying reaction pathways; the relative rates of different reactions and impacts of operating conditions and catalyst state; and reaction dynamics and intermediate species that exist only within the catalyst. These details provide a better understanding of how the catalyst functions and have basic and practical benefits; e.g., catalyst system design; strategies for on-road catalyst state assessment, control, and on-board diagnostics; and creating robust and accurate predictive catalyst models. Moreover, such spatiotemporally distributed data provide for critical model assessment, and identification of improvement opportunities that might not be apparent from effluent assessment; i.e., while an incorrectly formulated model may provide correct effluent predictions, one that can accurately predict the spatiotemporal evolution of reactions along the catalyst channels will be more robust, accurate, and reliable. In such ways, intracatalyst diagnostics comprehensively enable improved design and development tools, and faster and lower-cost development of more efficient and durable automotive catalyst systems. Beyond these direct contributions, SpaciMS has spawned and been applied to enable other analytical techniques for resolving transient distributed intracatalyst performance. This chapter focuses on SpaciMS applications and associated catalyst insights and improvements, with specific sections related to lean NOx traps, selective catalytic

  20. Global assessment of shipping emissions in 2015 on a high spatial and temporal resolution

    Science.gov (United States)

    Johansson, Lasse; Jalkanen, Jukka-Pekka; Kukkonen, Jaakko

    2017-10-01

    We present a comprehensive global shipping emission inventory and the global activities of ships for the year 2015. The emissions were evaluated using the Ship Traffic Emission Assessment Model (STEAM3), which uses Automatic Identification System data to describe the traffic activities of ships. We have improved the model regarding (i) the evaluation of the missing technical specifications of ships, and (ii) the treatment of shipping activities in case of sparse satellite AIS-data. We have developed a model for the collection and processing of available information on the technical specifications, using data assimilation techniques. We have also developed a path regeneration model that constructs, whenever necessary, the detailed geometry of the ship routes. The presented results for fuel consumption were qualitatively in agreement both with those in the 3rd Greenhouse Gas Study of the International Maritime Organisation and those reported by the International Energy Agency. We have also presented high-resolution global spatial distributions of the shipping emissions of NOx, CO2, SO2 and PM2.5. The emissions were also analysed in terms of selected sea areas, ship categories, the sizes of ships and flag states. The emission datasets provided by this study are available upon request; the datasets produced by the model can be utilized as input data for air quality modelling on a global scale, including the full temporal and spatial variation of shipping emissions for the first time. Dispersion modelling using this inventory as input can be used to assess the impacts of various emission abatement scenarios. The emission computation methods presented in this paper could also be used, e.g., to provide annual updates of the global ship emissions.

  1. Numerical modeling of permafrost dynamics in Alaska using a high spatial resolution dataset

    Directory of Open Access Journals (Sweden)

    E. E. Jafarov

    2012-06-01

    Full Text Available Climate projections for the 21st century indicate that there could be a pronounced warming and permafrost degradation in the Arctic and sub-Arctic regions. Climate warming is likely to cause permafrost thawing with subsequent effects on surface albedo, hydrology, soil organic matter storage and greenhouse gas emissions.

    To assess possible changes in the permafrost thermal state and active layer thickness, we implemented the GIPL2-MPI transient numerical model for the entire Alaska permafrost domain. The model input parameters are spatial datasets of mean monthly air temperature and precipitation, prescribed thermal properties of the multilayered soil column, and water content that are specific for each soil class and geographical location. As a climate forcing, we used the composite of five IPCC Global Circulation Models that has been downscaled to 2 by 2 km spatial resolution by Scenarios Network for Alaska Planning (SNAP group.

    In this paper, we present the modeling results based on input of a five-model composite with A1B carbon emission scenario. The model has been calibrated according to the annual borehole temperature measurements for the State of Alaska. We also performed more detailed calibration for fifteen shallow borehole stations where high quality data are available on daily basis. To validate the model performance, we compared simulated active layer thicknesses with observed data from Circumpolar Active Layer Monitoring (CALM stations. The calibrated model was used to address possible ground temperature changes for the 21st century. The model simulation results show widespread permafrost degradation in Alaska could begin between 2040–2099 within the vast area southward from the Brooks Range, except for the high altitude regions of the Alaska Range and Wrangell Mountains.

  2. GIEMS-D3: A new long-term, dynamical, high-spatial resolution inundation extent dataset at global scale

    Science.gov (United States)

    Aires, Filipe; Miolane, Léo; Prigent, Catherine; Pham Duc, Binh; Papa, Fabrice; Fluet-Chouinard, Etienne; Lehner, Bernhard

    2017-04-01

    The Global Inundation Extent from Multi-Satellites (GIEMS) provides multi-year monthly variations of the global surface water extent at 25kmx25km resolution. It is derived from multiple satellite observations. Its spatial resolution is usually compatible with climate model outputs and with global land surface model grids but is clearly not adequate for local applications that require the characterization of small individual water bodies. There is today a strong demand for high-resolution inundation extent datasets, for a large variety of applications such as water management, regional hydrological modeling, or for the analysis of mosquitos-related diseases. A new procedure is introduced to downscale the GIEMS low spatial resolution inundations to a 3 arc second (90 m) dataset. The methodology is based on topography and hydrography information from the HydroSHEDS database. A new floodability index is adopted and an innovative smoothing procedure is developed to ensure the smooth transition, in the high-resolution maps, between the low-resolution boxes from GIEMS. Topography information is relevant for natural hydrology environments controlled by elevation, but is more limited in human-modified basins. However, the proposed downscaling approach is compatible with forthcoming fusion with other more pertinent satellite information in these difficult regions. The resulting GIEMS-D3 database is the only high spatial resolution inundation database available globally at the monthly time scale over the 1993-2007 period. GIEMS-D3 is assessed by analyzing its spatial and temporal variability, and evaluated by comparisons to other independent satellite observations from visible (Google Earth and Landsat), infrared (MODIS) and active microwave (SAR).

  3. Programmed subcellular release to study the dynamics of cell detachment

    Science.gov (United States)

    Wildt, Bridget

    Cell detachment is central to a broad range of physio-pathological changes however there are no quantitative methods to study this process. Here we report programmed subcellular release, a method for spatially and temporally controlled cellular detachment and present the first quantitative results of the detachment dynamics of 3T3 fibroblasts at the subcellular level. Programmed subcellular release is an in vitro technique designed to trigger the detachment of distinct parts of a single cell from a patterned substrate with both spatial and temporal control. Subcellular release is achieved by plating cells on an array of patterned gold electrodes created by standard microfabrication techniques. The electrodes are biochemically functionalized with an adhesion-promoting RGD peptide sequence that is attached to the gold electrode via a thiol linkage. Each electrode is electrically isolated so that a subcellular section of a single cell spanning multiple electrodes can be released independently. Upon application of a voltage pulse to a single electrode, RGD-thiol molecules on an individual electrode undergo rapid electrochemical desorption that leads to subsequent cell contraction. The dynamics of cell contraction are found to have characteristic induction and contraction times. This thesis presents the first molecular inhibition studies conducted using programmed subcellular release verifying that this technique can be used to study complex signaling pathways critical to cell motility. Molecular level dynamics of focal adhesion proteins and actin stress fibers provide some insight into the complexities associated with triggered cell detachment. In addition to subcellular release, the programmed release of alkanethiols provides a tool for to study the spatially and temporally controlled release of small molecules or particles from individually addressable gold electrodes. Here we report on experiments which determine the dynamics of programmed release using fluorophore

  4. A high spatial resolution double-pulse Thomson scattering diagnostic; description, assessment of accuracy and examples of applications

    NARCIS (Netherlands)

    Beurskens, M. N. A.; Barth, C. J.; Cardozo, N. J. L.; van der Meiden, H. J.

    1999-01-01

    A high spatial resolution (3 mm full width half maximum, i.e. 2% of the minor radius) double-pulse multiposition Thomson scattering system was in operation at the Rijnhuizen tokamak project RTP from March 1996 until September 1998. It upgrades the previously installed single-pulse Thomson scattering

  5. Structural health monitoring by using fiber-optic distributed strain sensors with high spatial resolution

    Science.gov (United States)

    Murayama, Hideaki; Wada, Daichi; Igawa, Hirotaka

    2013-12-01

    In this paper, we review our researches on the topics of the structural health monitoring (SHM) with the fiber-optic distributed strain sensor. Highly-dense information on strains in a structure can be useful to identify some kind of existing damages or applied loads in implementation of SHM. The fiber-optic distributed sensors developed by the authors have been applied to the damage detection of a single-lap joint and load identification of a beam simply supported. We confirmed that the applicability of the distributed sensor to SHM could be improved as making the spatial resolution higher. In addition, we showed that the simulation technique considering both structural and optical effects seamlessly in strain measurement could be powerful tools to evaluate the performance of a sensing system and design it for SHM. Finally, the technique for simultaneous distributed strain and temperature measurement using the PANDA-fiber Bragg grating (FBG) is shown in this paper, because problems caused by the cross-sensitivity toward strain and temperature would be always inevitable in strain measurement for SHM.

  6. Mapping Banana Plants from High Spatial Resolution Orthophotos to Facilitate Plant Health Assessment

    Directory of Open Access Journals (Sweden)

    Kasper Johansen

    2014-09-01

    Full Text Available The Banana Bunchy Top Virus (Genus: Babuvirus reduces plant growth and prevents banana production. Because of the very large number of properties with banana plants in South East Queensland, Australia, a mapping approach was developed to delineate individual and clusters of banana plants to help plant identification and enable prioritization of plant inspections for Banana Bunchy Top Virus. Due to current outbreaks in South East Queensland, there are concerns that the virus may spread to the major banana growing districts further north. The mapping approach developed was based on very high spatial resolution airborne orthophotos. Object-based image analysis was used to: (1 detect banana plants using edge and line detection approaches; (2 produce accurate and realistic outlines around classified banana plants; and (3 evaluate the mapping results. The mapping approach was developed based on 10 image tiles of 1 km × 1 km and was applied to orthophotos (3600 image tiles from September 2011 covering the entire Sunshine Coast Region in South East Queensland. Based on field inspections of the classified maps, a user’s mapping accuracy of 88% (n = 146 was achieved. The results will facilitate the detection of banana plants and increase the inspection rate of Banana Bunchy Top Virus in the future.

  7. Lateral spatial resolution of thermal lens microscopy during continuous scanning for nonstaining biofilm imaging

    Science.gov (United States)

    Rossteuscher, T. T. J.; Hibara, A.; Mawatari, K.; Kitamori, T.

    2009-05-01

    The possible application of continuous scanning thermal lens microscopy (TLM) as alternative online biofilm observation method is studied. As biofilm is a heterogeneous sample, the influence of spatially limited thermal flow at the sample heterogeneities and the biofilm-environment border has to be considered. The influence of the edges on the lateral resolution with respect to scanning velocity during continuous scanning TLM was therefore evaluated. Lateral scanning experiments on 100 nm thin gold stripes showed that the maximum scan speed can be predicted from a time constant of a lock-in amplifier and the beamwidth. Since three-dimensional mapping is needed to fully characterize the biofilm structure, depth scanning experiments with stained 4 μm thick polystyrene samples with the coaxial TLM setup were evaluated for signal width at full width at half maximum. Thus, a minimum step width for depth scanning of 10 μm for observation has been acquired. A three-dimensional image of unstained biofilm grown in a flow chamber was acquired using continuous scanning TLM.

  8. Simple sensors to achieve fine spatial resolution in continuous measurements of soil moisture and salinity

    Directory of Open Access Journals (Sweden)

    F. Konukcu

    2002-01-01

    Full Text Available It is increasingly necessary to be able to measure, simultaneously, continuously and at fine spatial resolution, the salinity and water content of soil. This paper reports the design, construction, calibration and laboratory testing of two simple but robust instruments that enable this to be achieved. Salinity in solution was measured reliably, at 10-mm spacing, by multi-electrode resistivity probes up to saturation with NaCl (c. 6 mol l–1, though these probes required individual calibration and were unable to detect precipitated salt. Volumetric water content was measured with great sensitivity over a wide range, from air-dryness (0.06 m3m–3 to saturation (0.55 m3m–3 in a sandy loam, using thermal-conductivity probes that used a common calibration and were unaffected by the salinity of the soil solution, by temperature and by ageing. Keywords: soil moisture, soil salinity, thermal-conductivity moisture probe, four-electrode salinity probe

  9. Assessment of spatially distributed values of Kc using vegetation indices derived from medium resolution satellite data

    Science.gov (United States)

    Greco, M.; Simoniello, T.; Lanfredi, M.; Russo, A. L.

    2010-09-01

    ground cover. Thermal-based energy balance models are more suitable than the FAO-Kc model for estimating crop ET, especially under moisture stress conditions, but they require many inputs and detailed theoretical background knowledge; so they can be only used in regions where high quality, hourly agricultural weather data are readily available providing instantaneous values of heat fluxes corresponding to the time of the satellite overpass. Thus, FAO-Kc approach is widely used in research activities and real-time irrigation scheduling for several water applications since it does not require temporal upscaling for obtaining daily values and satellite imagery in the reflective bands used for vegetation index computation are more readily available at higher spatial resolution than thermal band data. There is no simple way to compute crop coefficients because they depend on climate, soil type, crop and its varieties, irrigation method, soil water, nutrient content and plant phenology. Consequently, specific calibrations of crop coefficient are required in various climatic regions. Many authors suggested a linear relationship between Kc and vegetation indices, but non-linear relationships have been proposed too. However, according to the radiative transfer theory, the nature of such relationships depends on the crop architecture and the definition of the adopted vegetation index, but the linear assumption can be adopted as first. Such studies, mainly investigated the possibility to use high resolution satellite data, such as Quickbird, Ikonos, TM, which are not suitable for operational purposes since in spite of the high spatial sampling they have an inadequate revisiting time over a given area. To obtain adequate temporal sampling, some authors proposed the use of a virtual constellation made by all currently available high-resolution satellites (e.g., DEMETER project). However the joint use of data from different satellites requires a carefully inter-satellite cross

  10. Spatial Mapping of Lipids at Cellular Resolution in Embryos of Cotton[W][OA

    Science.gov (United States)

    Horn, Patrick J.; Korte, Andrew R.; Neogi, Purnima B.; Love, Ebony; Fuchs, Johannes; Strupat, Kerstin; Borisjuk, Ljudmilla; Shulaev, Vladimir; Lee, Young-Jin; Chapman, Kent D.

    2012-01-01

    Advances in mass spectrometry (MS) have made comprehensive lipidomics analysis of complex tissues relatively commonplace. These compositional analyses, although able to resolve hundreds of molecular species of lipids in single extracts, lose the original cellular context from which these lipids are derived. Recently, high-resolution MS of individual lipid droplets from seed tissues indicated organelle-to-organelle variation in lipid composition, suggesting that heterogeneity of lipid distributions at the cellular level may be prevalent. Here, we employed matrix-assisted laser desorption/ionization–MS imaging (MALDI-MSI) approaches to visualize lipid species directly in seed tissues of upland cotton (Gossypium hirsutum). MS imaging of cryosections of mature cotton embryos revealed a distinct, heterogeneous distribution of molecular species of triacylglycerols and phosphatidylcholines, the major storage and membrane lipid classes in cotton embryos. Other lipids were imaged, including phosphatidylethanolamines, phosphatidic acids, sterols, and gossypol, indicating the broad range of metabolites and applications for this chemical visualization approach. We conclude that comprehensive lipidomics images generated by MALDI-MSI report accurate, relative amounts of lipid species in plant tissues and reveal previously unseen differences in spatial distributions providing for a new level of understanding in cellular biochemistry. PMID:22337917

  11. The Fisher Kernel Coding Framework for High Spatial Resolution Scene Classification

    Directory of Open Access Journals (Sweden)

    Bei Zhao

    2016-02-01

    Full Text Available High spatial resolution (HSR image scene classification is aimed at bridging the semantic gap between low-level features and high-level semantic concepts, which is a challenging task due to the complex distribution of ground objects in HSR images. Scene classification based on the bag-of-visual-words (BOVW model is one of the most successful ways to acquire the high-level semantic concepts. However, the BOVW model assigns local low-level features to their closest visual words in the “visual vocabulary” (the codebook obtained by k-means clustering, which discards too many useful details of the low-level features in HSR images. In this paper, a feature coding method under the Fisher kernel (FK coding framework is introduced to extend the BOVW model by characterizing the low-level features with a gradient vector instead of the count statistics in the BOVW model, which results in a significant decrease in the codebook size and an acceleration of the codebook learning process. By considering the differences in the distributions of the ground objects in different regions of the images, local FK (LFK is proposed for the HSR image scene classification method. The experimental results show that the proposed scene classification methods under the FK coding framework can greatly reduce the computational cost, and can obtain a better scene classification accuracy than the methods based on the traditional BOVW model.

  12. 3D printing of hydrogels in a temperature controlled environment with high spatial resolution

    Directory of Open Access Journals (Sweden)

    Fischer Benjamin

    2016-09-01

    Full Text Available There is great hope in 3D printing techniques to create patient specific scaffolds for therapeutic applications. The majority of these approaches rely on materials that both give support to cells and effectively mimic a tissue specific microenvironment. Hydrogels provide an exceptional support for cells but their physicochemical properties are not suited for conventional additive layer manufacturing. Their low viscosity and resulting fluidic nature inhibit voluminous 3D deposition and lead to crude printing accuracy. To enhance mechanical features, hydrogels are often chemically modified and/or mixed with additives; however it is not clear whether these changes induce effects on cellular behavior or if in vivo applications are at risk. Certainly it increases the complexity of scaffold systems. To circumvent these obstacles, we aimed for a 3D printing technique which is capable of creating scaffolds out of unmodified, pure hydrogels. Here we present a new method to produce alginate scaffolds in a viscosity- independent manner with high spatial resolution. This is achieved by printing in a sub-zero environment which leads to fast freezing of the hydrogels, thus preserving the printed shape and circumventing any viscosity dependent flows. This enables the user to create scaffolds which are able to reflect soft or stiff cell niches.

  13. A measurement of Lorentz angle and spatial resolution of radiation hard silicon pixel sensors

    Energy Technology Data Exchange (ETDEWEB)

    Gorelov, I.; Gorfine, G.; Hoeferkamp, M.; Seidel, S.C.; Ciocio, A.; Einsweiler, K.; Gilchriese, M.; Joshi, A.; Kleinfelder, S.; Marchesini, R.; Milgrome, O.; Palaio, N.; Pengg, F.; Richardson, J.; Zizka, G.; Ackers, M.; Fischer, P.; Keil, M.; Meuser, S.; Stockmanns, T.; Treis, J.; Wermes, N.; Goessling, C.; Huegging, F.; Wuestenfeld, J.; Wunstorf, R.; Barberis, D.; Beccherle, R.; Cervetto, M.; Darbo, G.; Gagliardi, G.; Gemme, C.; Morettini, P.; Netchaeva, P.; Osculati, B.; Parodi, F.; Rossi, L.; Dao, K.; Fasching, D.; Blanquart, L.; Breugnon, P.; Calvet, D.; Clemens, J.-C.; Delpierre, P.; Hallewell, G.; Laugier, D.; Mouthuy, T.; Rozanov, A.; Trouilleau, C.; Valin, I.; Aleppo, M.; Andreazza, A.; Caccia, M.; Lari, T.; Meroni, C.; Ragusa, F.; Troncon, C. E-mail: clara.troncon@mi.infn.itclara.troncon@cern.ch; Vegni, G.; Rohe, T.; Boyd, G.R.; Severini, H.; Skubic, P.L.; Snow, J.; Sicho, P.; Tomasek, L.; Vrba, V.; Holder, M.; Lipka, D.; Ziolkowski, M.; Cauz, D.; D' Auria, S.; Del Papa, C.; Grassman, H.; Santi, L.; Becks, K.H.; Gerlach, P.; Grah, C.; Gregor, I.; Harenberg, T.; Linder, C

    2002-04-01

    Silicon pixel sensors developed by the ATLAS collaboration to meet LHC requirements and to withstand hadronic irradiation to fluences of up to 10{sup 15} n{sub eq}/cm{sup 2} have been evaluated using a test beam facility at CERN providing a magnetic field. The Lorentz angle was measured and found to alter from 9.0 deg. before irradiation, when the detectors operated at 150 V bias at B=1.48 T, to 3.1 deg. after irradiation and operating at 600 V bias at 1.01 T. In addition to the effect due to magnetic field variation, this change is explained by the variation of the electric field inside the detectors arising from the different bias conditions. The depletion depths of irradiated sensors at various bias voltages were also measured. At 600 V bias 280 {mu}m thick sensors depleted to {approx}200 {mu}m after irradiation at the design fluence of 1x10{sup 15} 1 MeV n{sub eq}/cm{sup 2} and were almost fully depleted at a fluence of 0.5x10{sup 15} 1 MeV n{sub eq}/cm{sup 2}. The spatial resolution was measured for angles of incidence between 0 deg. and 30 deg. The optimal value was found to be better than 5.3 {mu}m before irradiation and 7.4 {mu}m after irradiation.

  14. The role of spatial and spectral resolution on the effectiveness of satellite-based vegetation indices

    Science.gov (United States)

    Psomiadis, Emmanouil; Dercas, Nicholas; Dalezios, Nicolas R.; Spyropoulos, Nikolaos V.

    2016-10-01

    Remote Sensing applications are designed to provide farmers with timely crop monitoring and production information. Such information can be used to identify crop needs or health problems and provide solutions for a better crop management. Vegetation indices (VIs) derived from satellite data have been widely used to assess variations in the physiological state and biophysical properties of vegetation. In the present study, the experimental area is located near the village Eleftherion of Larissa Prefecture in the Thessaly Plain, and consisted of two adjacent agricultural fields of cotton and corn. Imagery from WorldView-2 (WV2) satellite platform was obtained from European Space Imaging and Landsat-8 (L8) free of charge data were downloaded from the United States Geological Survey (USGS) archive. The images were selected for a four month span to evaluate continuity with respect to vegetation growth variation. VIs for each satellite platform data such as the Normalized Difference Vegetation Index (NDVI), the Soil-Adjusted Vegetation Index (SAVI) and the Fraction Photosynthetically Radiation (FPAR) were calculated. The comparison of these VIs produced from the two satellite systems with different spatial and spectral resolution was made for each growth stage of the crops and their results were analyzed in order to examine their correlation. Utilizing the WV2 new spectral data, several innovative chlorophyll and vegetation indices were created and evaluated so as to reveal their effectiveness in the detection of problematic plant growth areas. The Green Chlorophyll index appeared to be the most efficient index for the delineation of these areas.

  15. Kite Aerial Photography for Low-Cost, Ultra-high Spatial Resolution Multi-Spectral Mapping of Intertidal Landscapes

    Science.gov (United States)

    Bryson, Mitch; Johnson-Roberson, Matthew; Murphy, Richard J.; Bongiorno, Daniel

    2013-01-01

    Intertidal ecosystems have primarily been studied using field-based sampling; remote sensing offers the ability to collect data over large areas in a snapshot of time that could complement field-based sampling methods by extrapolating them into the wider spatial and temporal context. Conventional remote sensing tools (such as satellite and aircraft imaging) provide data at limited spatial and temporal resolutions and relatively high costs for small-scale environmental science and ecologically-focussed studies. In this paper, we describe a low-cost, kite-based imaging system and photogrammetric/mapping procedure that was developed for constructing high-resolution, three-dimensional, multi-spectral terrain models of intertidal rocky shores. The processing procedure uses automatic image feature detection and matching, structure-from-motion and photo-textured terrain surface reconstruction algorithms that require minimal human input and only a small number of ground control points and allow the use of cheap, consumer-grade digital cameras. The resulting maps combine imagery at visible and near-infrared wavelengths and topographic information at sub-centimeter resolutions over an intertidal shoreline 200 m long, thus enabling spatial properties of the intertidal environment to be determined across a hierarchy of spatial scales. Results of the system are presented for an intertidal rocky shore at Jervis Bay, New South Wales, Australia. Potential uses of this technique include mapping of plant (micro- and macro-algae) and animal (e.g. gastropods) assemblages at multiple spatial and temporal scales. PMID:24069206

  16. Kite aerial photography for low-cost, ultra-high spatial resolution multi-spectral mapping of intertidal landscapes.

    Science.gov (United States)

    Bryson, Mitch; Johnson-Roberson, Matthew; Murphy, Richard J; Bongiorno, Daniel

    2013-01-01

    Intertidal ecosystems have primarily been studied using field-based sampling; remote sensing offers the ability to collect data over large areas in a snapshot of time that could complement field-based sampling methods by extrapolating them into the wider spatial and temporal context. Conventional remote sensing tools (such as satellite and aircraft imaging) provide data at limited spatial and temporal resolutions and relatively high costs for small-scale environmental science and ecologically-focussed studies. In this paper, we describe a low-cost, kite-based imaging system and photogrammetric/mapping procedure that was developed for constructing high-resolution, three-dimensional, multi-spectral terrain models of intertidal rocky shores. The processing procedure uses automatic image feature detection and matching, structure-from-motion and photo-textured terrain surface reconstruction algorithms that require minimal human input and only a small number of ground control points and allow the use of cheap, consumer-grade digital cameras. The resulting maps combine imagery at visible and near-infrared wavelengths and topographic information at sub-centimeter resolutions over an intertidal shoreline 200 m long, thus enabling spatial properties of the intertidal environment to be determined across a hierarchy of spatial scales. Results of the system are presented for an intertidal rocky shore at Jervis Bay, New South Wales, Australia. Potential uses of this technique include mapping of plant (micro- and macro-algae) and animal (e.g. gastropods) assemblages at multiple spatial and temporal scales.

  17. Evaluation of a Global Soil Moisture Product from Finer Spatial Resolution SAR Data and Ground Measurements at Irish Sites

    Directory of Open Access Journals (Sweden)

    Chiara Pratola

    2014-08-01

    Full Text Available In the framework of the European Space Agency Climate Change Initiative, a global, almost daily, soil moisture (SM product is being developed from passive and active satellite microwave sensors, at a coarse spatial resolution. This study contributes to its validation by using finer spatial resolution ASAR Wide Swath and in situ soil moisture data taken over three sites in Ireland, from 2007 to 2009. This is the first time a comparison has been carried out between three sets of independent observations from different sensors at very different spatial resolutions for such a long time series. Furthermore, the SM spatial distribution has been investigated at the ASAR scale within each Essential Climate Variable (ECV pixel, without adopting any particular model or using a densely distributed network of in situ stations. This approach facilitated an understanding of the extent to which geophysical factors, such as soil texture, terrain composition and altitude, affect the retrieved ECV SM product values in temperate grasslands. Temporal and spatial variability analysis provided high levels of correlation (p < 0.025 and low errors between the three datasets, leading to confidence in the new ECV SM global product, despite limitations in its ability to track the driest and wettest conditions.

  18. Detection of Urban Land-cover Change in Altamira, the Brazilian Amazon With High Spatial Resolution Multi-sensor Data

    Science.gov (United States)

    Feng, Y.; Lu, D.; Moran, E. F.; Dutra, L. V.; Calvi, M. F.

    2016-12-01

    Abstract:The hydroelectric dam construction in Belo Monte beginning in 2011 has resulted in rapid urban land cover change in Altamira, Para State, Brazil due to boomed population from less than 80 thousand persons before 2010 to more than 150 thousand persons in 2015. The rapid urbanization has produced many problems in urban planning and environmental conditions. It is an urgent work to monitor annual urban land cover change. However, the frequent cloud cover in the moist tropical region is a big problem constraining the acquisition of cloud-free optical sensor data. Thanks to the availability of different satellite images with high spatial resolution and high temporal resolutions, we collected RapidEye imagery in 2011 and 2012, Pleiades imagery in 2013 and 2014, and SPOT 6 imagery in 2015 with spatial resolutions from 0.5 m to 5 m for this research. This research proposed a comprehensive change detection approach using very high spatial resolution multi-sensor satellite images to examine annually urban land cover change in a moist tropical region of the Brazilian Amazon. A hybrid approach consisting of decision tree and cluster analysis based on spectral signatures, segmentation, vegetation indices, and textural images was proposed to classify the images into six land cover classes: impervious surface area, bare soils, water, pasture, primary forest, and non-forest vegetation. In order to improve the classification accuracy, the classified result was visually interpreted for each land cover class and the result was modified if classification errors were identified. The classified images were converted into vector format and object-based change detection approach was used to explore the annual land cover changes. The spatial patterns and annual land cover change rates were analyzed, and they were further related to household survey data to understand the relationships between and interactions of urbanization and population migration and economic conditions

  19. Geostatistical modelling of the malaria risk in Mozambique: effect of the spatial resolution when using remotely-sensed imagery

    Directory of Open Access Journals (Sweden)

    Federica Giardina

    2015-11-01

    Full Text Available The study of malaria spatial epidemiology has benefited from recent advances in geographic information system and geostatistical modelling. Significant progress in earth observation technologies has led to the development of moderate, high and very high resolution imagery. Extensive literature exists on the relationship between malaria and environmental/climatic factors in different geographical areas, but few studies have linked human malaria parasitemia survey data with remote sensing-derived land cover/land use variables and very few have used Earth Observation products. Comparison among the different resolution products to model parasitemia has not yet been investigated. In this study, we probe a proximity measure to incorporate different land cover classes and assess the effect of the spatial resolution of remotely sensed land cover and elevation on malaria risk estimation in Mozambique after adjusting for other environmental factors at a fixed spatial resolution. We used data from the Demographic and Health survey carried out in 2011, which collected malaria parasitemia data on children from 0 to 5 years old, analysing them with a Bayesian geostatistical model. We compared the risk predicted using land cover and elevation at moderate resolution with the risk obtained employing the same variables at high resolution. We used elevation data at moderate and high resolution and the land cover layer from the Moderate Resolution Imaging Spectroradiometer as well as the one produced by MALAREO, a project covering part of Mozambique during 2010-2012 that was funded by the European Union’s 7th Framework Program. Moreover, the number of infected children was predicted at different spatial resolutions using AFRIPOP population data and the enhanced population data generated by the MALAREO project for comparison of estimates. The Bayesian geostatistical model showed that the main determinants of malaria presence are precipitation and day temperature

  20. Compressed sensing cine imaging with high spatial or high temporal resolution for analysis of left ventricular function.

    Science.gov (United States)

    Goebel, Juliane; Nensa, Felix; Schemuth, Haemi P; Maderwald, Stefan; Gratz, Marcel; Quick, Harald H; Schlosser, Thomas; Nassenstein, Kai

    2016-08-01

    To assess two compressed sensing cine magnetic resonance imaging (MRI) sequences with high spatial or high temporal resolution in comparison to a reference steady-state free precession cine (SSFP) sequence for reliable quantification of left ventricular (LV) volumes. LV short axis stacks of two compressed sensing breath-hold cine sequences with high spatial resolution (SPARSE-SENSE HS: temporal resolution: 40 msec, in-plane resolution: 1.0 × 1.0 mm(2) ) and high temporal resolution (SPARSE-SENSE HT: temporal resolution: 11 msec, in-plane resolution: 1.7 × 1.7 mm(2) ) and of a reference cine SSFP sequence (standard SSFP: temporal resolution: 40 msec, in-plane resolution: 1.7 × 1.7 mm(2) ) were acquired in 16 healthy volunteers on a 1.5T MR system. LV parameters were analyzed semiautomatically twice by one reader and once by a second reader. The volumetric agreement between sequences was analyzed using paired t-test, Bland-Altman plots, and Passing-Bablock regression. Small differences were observed between standard SSFP and SPARSE-SENSE HS for stroke volume (SV; -7 ± 11 ml; P = 0.024), ejection fraction (EF; -2 ± 3%; P = 0.019), and myocardial mass (9 ± 9 g; P = 0.001), but not for end-diastolic volume (EDV; P = 0.079) and end-systolic volume (ESV; P = 0.266). No significant differences were observed between standard SSFP and SPARSE-SENSE HT regarding EDV (P = 0.956), SV (P = 0.088), and EF (P = 0.103), but for ESV (3 ± 5 ml; P = 0.039) and myocardial mass (8 ± 10 ml; P = 0.007). Bland-Altman analysis showed good agreement between the sequences (maximum bias ≤ -8%). Two compressed sensing cine sequences, one with high spatial resolution and one with high temporal resolution, showed good agreement with standard SSFP for LV volume assessment. J. Magn. Reson. Imaging 2016;44:366-374. © 2016 Wiley Periodicals, Inc.

  1. The variable stellar wind of Rigel probed at high spatial and spectral resolution

    Science.gov (United States)

    Chesneau, O.; Kaufer, A.; Stahl, O.; Colvinter, C.; Spang, A.; Dessart, L.; Prinja, R.; Chini, R.

    2014-06-01

    Context. Luminous BA-type supergiants are the brightest stars in the visible that can be observed in distant galaxies and are potentially accurate distance indicators. The impact of the variability of the stellar winds on the distance determination remains poorly understood. Aims: Our aim is to probe the inhomogeneous structures in the stellar wind using spectro-interferometric monitoring. Methods: We present a spatially resolved, high-spectral resolution (R = 12 000) K-band temporal monitoring of the bright supergiant β Orionis (Rigel, B8 Iab) using AMBER at the Very Large Telescope Interferometer (VLTI). Rigel was observed in the Brγ line and its nearby continuum once per month over 3 months in 2006-2007, and 5 months in 2009-2010. These unprecedented observations were complemented by contemporaneous optical high-resolution spectroscopy. We analyse the near-IR spectra and visibilities with the 1D non-LTE radiative-transfer code CMFGEN. The differential and closure phase signals are evidence of asymmetries that are interpreted as perturbations of the wind. Results: A systematic visibility decrease is observed across the Brγ line indicating that at a radius of about 1.25 R∗ the photospheric absorption is filled by emission from the wind. During the 2006-2007 period the Brγ and likely the continuum forming regions were larger than in the 2009-2010 epoch. Using CMFGEN we infer a mass-loss rate change of about 20% between the two epochs. We also find time variations in the differential visibilities and phases. The 2006-2007 period is characterised by noticeable variations in the differential visibilities in Doppler position and width and by weak variations in differential and closure phase. The 2009-2010 period is much quieter with virtually no detectable variations in the dispersed visibilities but a strong S-shaped signal is observed in differential phase coinciding with a strong ejection event discernible in the optical spectra. The differential phase signal

  2. Constant Flux of Spatial Niche Partitioning through High-Resolution Sampling of Magnetotactic Bacteria.

    Science.gov (United States)

    He, Kuang; Gilder, Stuart A; Orsi, William D; Zhao, Xiangyu; Petersen, Nikolai

    2017-10-15

    Magnetotactic bacteria (MTB) swim along magnetic field lines in water. They are found in aquatic habitats throughout the world, yet knowledge of their spatial and temporal distribution remains limited. To help remedy this, we took MTB-bearing sediment from a natural pond, mixed the thoroughly homogenized sediment into two replicate aquaria, and then counted three dominant MTB morphotypes (coccus, spirillum, and rod-shaped MTB cells) at a high spatiotemporal sampling resolution: 36 discrete points in replicate aquaria were sampled every ∼30 days over 198 days. Population centers of the MTB coccus and MTB spirillum morphotypes moved in continual flux, yet they consistently inhabited separate locations, displaying significant anticorrelation. Rod-shaped MTB were initially concentrated toward the northern end of the aquaria, but at the end of the experiment, they were most densely populated toward the south. The finding that the total number of MTB cells increased over time during the experiment argues that population reorganization arose from relative changes in cell division and death and not from migration. The maximum net growth rates were 10, 3, and 1 doublings day -1 and average net growth rates were 0.24, 0.11, and 0.02 doublings day -1 for MTB cocci, MTB spirilla, and rod-shaped MTB, respectively; minimum growth rates for all three morphotypes were -0.03 doublings day -1 Our results suggest that MTB cocci and MTB spirilla occupy distinctly different niches: their horizontal positioning in sediment is anticorrelated and under constant flux. IMPORTANCE Little is known about the horizontal distribution of magnetotactic bacteria in sediment or how the distribution changes over time. We therefore measured three dominant magnetotactic bacterium morphotypes at 36 places in two replicate aquaria each month for 7 months. We found that the spatial positioning of population centers changed over time and that the two most abundant morphotypes (MTB cocci and MTB spirilla

  3. Spatial resolution improvement and dose reduction potential for inner ear CT imaging using a z-axis deconvolution technique.

    Science.gov (United States)

    McCollough, Cynthia H; Leng, Shuai; Sunnegardh, Johan; Vrieze, Thomas J; Yu, Lifeng; Lane, John; Raupach, Rainer; Stierstorfer, Karl; Flohr, Thomas

    2013-06-01

    To assess the z-axis resolution improvement and dose reduction potential achieved using a z-axis deconvolution technique with iterative reconstruction (IR) relative to filtered backprojection (FBP) images created with the use of a z-axis comb filter. Each of three phantoms were scanned with two different acquisition modes: (1) an ultrahigh resolution (UHR) scan mode that uses a comb filter in the fan angle direction to increase in-plane spatial resolution and (2) a z-axis ultrahigh spatial resolution (zUHR) scan mode that uses comb filters in both the fan and cone angle directions to improve both in-plane and z-axis spatial resolution. All other scanning parameters were identical. First, the ACR CT Accreditation phantom, rotated by 90° so that the high-contrast spatial resolution targets were parallel to the coronal plane, was scanned to assess limiting spatial resolution and image noise. Second, section sensitivity profiles (SSPs) were measured using a copper foil embedded in an acrylic cylinder and the full-width-at-half-maximum (FWHM) and full-width-at-tenth-maximum (FWTM) of the SSPs were calculated. Third, an anthropomorphic head phantom containing a human skull was scanned to assess clinical acceptability for imaging of the temporal bone. For each scan, FBP images were reconstructed for the zUHR scan using the narrowest image thickness available. For the CT accreditation phantom, zUHR images were also reconstructed using an IR algorithm (SAFIRE, Siemens Healthcare, Forchheim, Germany) to assess the influence of the IR algorithm on image noise. A z-axis deconvolution technique combined with the IR algorithm was used to reconstruct images at the narrowest image thickness possible from the UHR scan data. Images of the ACR and head phantoms were reformatted into the coronal plane. The head phantom images were evaluated by a neuroradiologist to assess acceptability for use in patients undergoing clinically indicated CT imaging of the temporal bone. The limiting

  4. Fragmentation of urban forms and the environmental consequences: results from a high-spatial resolution model system

    Science.gov (United States)

    Tang, U. W.; Wang, Z. S.

    2008-10-01

    Each city has its unique urban form. The importance of urban form on sustainable development has been recognized in recent years. Traditionally, air quality modelling in a city is in a mesoscale with grid resolution of kilometers, regardless of its urban form. This paper introduces a GIS-based air quality and noise model system developed to study the built environment of highly compact urban forms. Compared with traditional mesoscale air quality model system, the present model system has a higher spatial resolution down to individual buildings along both sides of the street. Applying the developed model system in the Macao Peninsula with highly compact urban forms, the average spatial resolution of input and output data is as high as 174 receptor points per km2. Based on this input/output dataset with a high spatial resolution, this study shows that even the highly compact urban forms can be fragmented into a very small geographic scale of less than 3 km2. This is due to the significant temporal variation of urban development. The variation of urban form in each fragment in turn affects air dispersion, traffic condition, and thus air quality and noise in a measurable scale.

  5. Parametric analysis of the spatial resolution and signal-to-noise ratio in super-resolved spatiotemporally encoded (SPEN) MRI.

    Science.gov (United States)

    Ben-Eliezer, Noam; Shrot, Yoav; Frydman, Lucio; Sodickson, Daniel K

    2014-08-01

    Spatiotemporally Encoded (SPEN) MRI is based on progressive point-by-point refocusing of the image in the spatial rather than the k-space domain through the use of frequency-swept radiofrequency pulses and quadratic phase profiles. This technique provides high robustness against frequency-offsets including B0 inhomogeneities and chemical-shift (e.g., fat/water) distortions, and can consequently perform fMRI at challenging regions such as the orbitofrontal cortex and the olfactory bulb, as well as to improve imaging near metallic implants. This work aims to establish a comprehensive framework for the implementation and super-resolved reconstruction of SPEN-based imaging, and to accurately quantify this method's spatial-resolution and signal-to-noise ratio (SNR). A stepwise formalism was laid-out for calculating the optimal experimental parameters for SPEN, followed by analytical analysis of the ensuing SNR and spatial-resolution versus conventional k-space encoding. Predictions were then confirmed using computer simulations and experimentally. Our findings show that SPEN is governed by the same fundamental signal-processing principles as k-space encoding, leading to similar averaging properties, and ultimately similar spatial-resolution and SNR levels as k-space encoding. Presented analysis is applicable to general multidimensional SPEN designs and provides a unified framework for the analysis of future SPEN and similar approaches based on quadratic phase encoding. Copyright © 2013 Wiley Periodicals, Inc.

  6. High Spatial Resolution Studies of Epithermal Neutron Emission from the Lunar Poles: Constraints on Hydrogen Mobility

    Science.gov (United States)

    Boynton, W. V.; Droege, G. F.; Mitrofanov, I. G.; McClanahan, T. P.; Sanin, A. B.; Litvak, M. L.; Schaffner, M.; Chin, G.; Evans, L. G.; Garvin, J. B.; hide

    2012-01-01

    The data from the collimated sensors of the LEND instrument are shown to be of exceptionally high quality. Counting uncertainties are about 0.3% relative and are shown to be the only significant source of random error, thus conclusions based on small differences in count rates are valid. By comparison with the topography of Shoemaker crater, the spatial resolution of the instrument is shown to be consistent with the design value of 5 km for the radius of the circle over which half the counts from the lunar surface would be determined. The observed epithermal-neutron suppression factor due to the hydrogen deposit in Shoemaker crater of 0.25 plus or minus 0.04 cps is consistent with the collimated field-of-view rate of 1.7 cps estimated by Mitrofanov et al. (2010a). The statistical significance of the neutron suppressed regions (NSRs) relative to the larger surrounding polar region is demonstrated, and it is shown that they are not closely related to the permanently shadowed regions. There is a significant increase in H content in the polar regions independent of the H content of the NSRs. The non-NSR H content increases directly with latitude, and the rate of increase is virtually identical at both poles. There is little or no increase with latitude outside the polar region. Various mechanisms to explain this steep increase in the non-NSR polar H with latitude are investigated, and it is suggested that thermal volatilization is responsible for the increase because it is minimized at the low surface temperatures close to the poles.

  7. Assessing uncertainty in high-resolution spatial climate data across the US Northeast.

    Science.gov (United States)

    Bishop, Daniel A; Beier, Colin M

    2013-01-01

    Local and regional-scale knowledge of climate change is needed to model ecosystem responses, assess vulnerabilities and devise effective adaptation strategies. High-resolution gridded historical climate (GHC) products address this need, but come with multiple sources of uncertainty that are typically not well understood by data users. To better understand this uncertainty in a region with a complex climatology, we conducted a ground-truthing analysis of two 4 km GHC temperature products (PRISM and NRCC) for the US Northeast using 51 Cooperative Network (COOP) weather stations utilized by both GHC products. We estimated GHC prediction error for monthly temperature means and trends (1980-2009) across the US Northeast and evaluated any landscape effects (e.g., elevation, distance from coast) on those prediction errors. Results indicated that station-based prediction errors for the two GHC products were similar in magnitude, but on average, the NRCC product predicted cooler than observed temperature means and trends, while PRISM was cooler for means and warmer for trends. We found no evidence for systematic sources of uncertainty across the US Northeast, although errors were largest at high elevations. Errors in the coarse-scale (4 km) digital elevation models used by each product were correlated with temperature prediction errors, more so for NRCC than PRISM. In summary, uncertainty in spatial climate data has many sources and we recommend that data users develop an understanding of uncertainty at the appropriate scales for their purposes. To this end, we demonstrate a simple method for utilizing weather stations to assess local GHC uncertainty and inform decisions among alternative GHC products.

  8. Brightness of Solar Magnetic Elements As a Function of Magnetic Flux at High Spatial Resolution

    Science.gov (United States)

    Kahil, F.; Riethmüller, T. L.; Solanki, S. K.

    2017-03-01

    We investigate the relationship between the photospheric magnetic field of small-scale magnetic elements in the quiet-Sun (QS) at disk center and the brightness at 214, 300, 313, 388, 397, and 525.02 nm. To this end, we analyzed spectropolarimetric and imaging time series acquired simultaneously by the Imaging Magnetograph eXperiment magnetograph and the SuFI filter imager on board the balloon-borne observatory {{S}}{{UNRISE}} during its first science flight in 2009, with high spatial and temporal resolution. We find a clear dependence of the contrast in the near ultraviolet and the visible on the line-of-sight component of the magnetic field, B LOS, which is best described by a logarithmic model. This function effectively represents the relationship between the Ca ii H-line emission and B LOS and works better than the power-law fit adopted by previous studies. This, along with the high contrast reached at these wavelengths, will help with determining the contribution of small-scale elements in the QS to the irradiance changes for wavelengths below 388 nm. At all wavelengths, including the continuum at 525.40 nm, the intensity contrast does not decrease with increasing B LOS. This result also strongly supports the fact that {{S}}{{UNRISE}} has resolved small strong magnetic field elements in the internetwork, resulting in constant contrasts for large magnetic fields in our continuum contrast at 525.40 nm versus the B LOS scatterplot, unlike the turnover obtained in previous observational studies. This turnover is due to the intermixing of the bright magnetic features with the dark intergranular lanes surrounding them.

  9. High spatial resolution analysis of ferromanganese concretions by LA-ICP-MS†

    Directory of Open Access Journals (Sweden)

    Ingri Johan

    2002-06-01

    Full Text Available A procedure was developed for the determination of element distributions in cross-sections of ferromanganese concretions using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS. The effects of carrier flow rates, rf forward power, ablation energy, ablation spot size, repetition rate and number of shots per point on analyte intensity were studied. It is shown that different carrier gas flow rates are required in order to obtain maximum sensitivities for different groups of elements, thus complicating the optimisation of ICP parameters. On the contrary, LA parameters have very similar effects on almost all elements studied, thus providing a common optimum parameter set for the entire mass range. However, for selected LA parameters, the use of compromise conditions was necessary in order to compensate for relatively slow data acquisition by ICP-MS and maintain high spatial resolution without sacrificing the multielemental capabilities of the technique. Possible variations in ablation efficiency were corrected for mathematically using the sum of Fe and Mn intensities. Quantification by external calibration against matrix-matched standards was successfully used for more than 50 elements. These standards, in the form of pressed pellets (no binder, were prepared in-house using ferromanganese concentrates from a deep-sea nodule reference material as well as from shallow-marine concretions varying in size and having different proportions of three major phases: aluminosilicates, Fe- and Mn-oxyhydroxides. Element concentrations in each standard were determined by means of conventional solution nebulisation ICP-MS following acid digestion. Examples of selected inter-element correlations in distribution patterns along the cross-section of a concretion are given.

  10. Resolution of the stochastic strategy spatial prisoner's dilemma by means of particle swarm optimization.

    Science.gov (United States)

    Zhang, Jianlei; Zhang, Chunyan; Chu, Tianguang; Perc, Matjaž

    2011-01-01

    We study the evolution of cooperation among selfish individuals in the stochastic strategy spatial prisoner's dilemma game. We equip players with the particle swarm optimization technique, and find that it may lead to highly cooperative states even if the temptations to defect are strong. The concept of particle swarm optimization was originally introduced within a simple model of social dynamics that can describe the formation of a swarm, i.e., analogous to a swarm of bees searching for a food source. Essentially, particle swarm optimization foresees changes in the velocity profile of each player, such that the best locations are targeted and eventually occupied. In our case, each player keeps track of the highest payoff attained within a local topological neighborhood and its individual highest payoff. Thus, players make use of their own memory that keeps score of the most profitable strategy in previous actions, as well as use of the knowledge gained by the swarm as a whole, to find the best available strategy for themselves and the society. Following extensive simulations of this setup, we find a significant increase in the level of cooperation for a wide range of parameters, and also a full resolution of the prisoner's dilemma. We also demonstrate extreme efficiency of the optimization algorithm when dealing with environments that strongly favor the proliferation of defection, which in turn suggests that swarming could be an important phenomenon by means of which cooperation can be sustained even under highly unfavorable conditions. We thus present an alternative way of understanding the evolution of cooperative behavior and its ubiquitous presence in nature, and we hope that this study will be inspirational for future efforts aimed in this direction.

  11. Two-dimensional high spatial-resolution dosimeter using europium doped potassium chloride: a feasibility study

    Science.gov (United States)

    Li, H. Harold; Driewer, Joseph P.; Han, Zhaohui; Low, Daniel A.; Yang, Deshan; Xiao, Zhiyan

    2014-01-01

    Recent research has shown that KCl:Eu2+ has great potential for use in megavoltage radiation therapy dosimetry because this material exhibits excellent storage performance and is reusable due to strong radiation hardness. This work reports the authors’ attempts to fabricate 2D KCl:Eu2+ storage phosphor films (SPFs) using both a physical vapor deposition (PVD) method and a tape casting method. X ray diffraction analysis showed that a 10 µm thick PVD sample was composed of highly crystalline KCl. No additional phases were observed, suggesting that the europium activator had completed been incorporated into the KCl matrix. Photostimulated luminescence and photoluminescence spectra suggested that F (Cl-) centers were the electron storage centers post×ray irradiation and that Eu2+ cations acted as luminescence centers in the photostimulation process. The 150-µm thick casted KCl:Eu2+ SPF showed sub-millimeter spatial resolution. Monte Carlo simulations further demonstrated that the admixture of 20% KCl:Eu2+ and 80% low Z polymer binder exhibited almost no energy dependence in a 6 MV beam. KCl:Eu2+ pellet samples showed a large dynamic range from 0.01 cGy to 60 Gy dose-to-water, and saturated at approximately 500 Gy as a result of KCl’s intrinsic high radiation hardness. Taken together, this work provides strong evidence that KCl:Eu2+ based SPF with associated readout apparatus could result in a novel electronic film system that has all the desirable features associated with classic radiographic film and, importantly, water equivalence and the capability of permanent identification of each detector. PMID:24651448

  12. Evaluation of the spatial resolution and the dose in magnified breast simulation in function of collimation system

    Energy Technology Data Exchange (ETDEWEB)

    Policarpo, Erica M.; Alves, Marcos P.S.; Murata, Camila H.; Oliveira, Cassio M.; Farias, Thiago M.B.; Daros, Kellen A.C., E-mail: erica.policarpo@bol.com.br [Universidade Federal de Sao Paulo (DDI/EPM/UNIFESP), Sao Paulo, SP (Brazil). Escola Paulista de Medicina. Departamento de Diagnostico por Imagem

    2017-11-01

    Mammography screening remains the best method for monitoring breast pathologies for its ability to detect microcalcifications and a need for follow-up of asymptomatic patients. Mammography exams are often necessary magnified technique of an anatomical region of interest to supplement the examination. These exams require a attention due to proximity to the X ray tube resulting in increasing dose in the patient breast. The purpose of this study was to evaluate spatial resolution and the kerma-area product doses in magnified mammography for thicker breasts in function of system collimation. Measurements were performed to evaluate high contrast spatial resolution and estimated dose related to each exposure in magnified images. The spatial resolution were evaluated with spatial resolution pattern model 18-251 by Fluke Biomedical® and polymethylmethacrylate (PMMA) plates. Two mammography equipment were tested, Philips-VMI® model Graph Mammo AF and Hologic® Lorad model MIV-113R. The air kerma for each exposure was measured by ionization chamber - Radcal® - model 10 X 6-6M dedicated to mammography and the kerma-area product was estimated. Preliminary results demonstrated that kerma-area product for the Philips-VMI® equipment were significantly higher - about 3 times - than the estimated kerma-area product doses of the Hologic® Lorad and the resolution was reduced when the image was performed without collimation. This fact can be explained due to Philips-VMI® equipment does not have a collimation system. Additionally, the Hologic® Lorad equipment presented better image quality compared to Philips equipment. (author)

  13. Development of a compact and high spatial resolution gamma camera system using LaBr 3(Ce)

    Science.gov (United States)

    Yamamoto, Seiichi; Imaizumi, Masao; Shimosegawa, Eku; Hatazawa, Jun

    2010-10-01

    In small animal imaging using a single photon emitting radionuclide, a high spatial resolution gamma camera is required. However, its spatial resolution is limited by the light output of conventional scintillators such as NaI(Tl). We developed and tested a small field-of-view (FOV) gamma camera using a new scintillator, LaBr3(Ce). The LaBr3(Ce) gamma camera consists of a 2 mm thick LaBr3(Ce) scintillator, a 2 in. 8×8 multi-anode position sensitive photomultiplier tube (Hamamatsu H8500), and a personal computer-based data acquisition system. The LaBr3(Ce) scintillator was directly coupled to the PSPMT and was contained in a hermetically shielded and light tight aluminum case. The signals from the PSPMT were gain corrected, weighted summed, and digitized by 100 MHz free running A-D converters in the data acquisition system. The detector part of the gamma camera was encased in a tungsten gamma shield, and a tungsten pinhole collimator was mounted in front of the detector surface. The intrinsic spatial resolution that was measured using a tungsten slit mask was 0.75 mm FWHM, and the energy resolution was 8.9% FWHM for 122 keV gamma photons. We obtained transmission and emission images that demonstrated the high spatial resolution of the gamma camera system. Approximately two years after the fabrication of the detector, the flood image showed significant distortion due to the change in LaBr3(Ce) of its hygroscopic characteristic. These results confirm that the developed LaBr3(Ce) gamma camera is promising for small animal imaging using a low energy single photon emitting radionuclide if the hygroscopic problem of LaBr3(Ce) will be solved.

  14. Evaluation of the influence of source and spatial resolution of DEMs on derivative products used in landslide mapping

    Directory of Open Access Journals (Sweden)

    Rubini Mahalingam

    2016-11-01

    Full Text Available Landslides are a major geohazard, which result in significant human, infrastructure, and economic losses. Landslide susceptibility mapping can help communities plan and prepare for these damaging events. Digital elevation models (DEMs are one of the most important data-sets used in landslide hazard assessment. Despite their frequent use, limited research has been completed to date on how the DEM source and spatial resolution can influence the accuracy of the produced landslide susceptibility maps. The aim of this paper is to analyse the influence of spatial resolutions and source of DEMs on landslide susceptibility mapping. For this purpose, Advanced Spaceborne Thermal Emission and Reflection (ASTER, National Elevation Dataset (NED, and Light Detection and Ranging (LiDAR DEMs were obtained for two study sections of approximately 140 km2 in north-west Oregon. Each DEM was resampled to 10, 30, and 50 m and slope and aspect grids were derived for each resolution. A set of nine spatial databases was constructed using geoinformation science (GIS for each of the spatial resolution and source. Additional factors such as distance to river and fault maps were included. An analytical hierarchical process (AHP, fuzzy logic model, and likelihood ratio-AHP representing qualitative, quantitative, and hybrid landslide mapping techniques were used for generating landslide susceptibility maps. The results from each of the techniques were verified with the Cohen's kappa index, confusion matrix, and a validation index based on agreement with detailed landslide inventory maps. The spatial resolution of 10 m, derived from the LiDAR data-set showed higher predictive accuracy in all the three techniques used for producing landslide susceptibility maps. At a resolution of 10 m, the output maps based on NED and ASTER had higher misclassification compared to the LiDAR-based outputs. Further, the 30-m LiDAR output showed improved results over the 10-m NED and 10-m

  15. Development of a Multi-Spatial Resolution Approach to the Surveillance of Active Fire Lines Using Himawari-8

    Directory of Open Access Journals (Sweden)

    Chathura H. Wickramasinghe

    2016-11-01

    Full Text Available Satellite remote sensing is regularly used for wildfire detection, fire severity mapping and burnt area mapping. Applications in the surveillance of wildfire using geostationary-based sensors have been limited by low spatial resolutions. With the launch in 2015 of the AHI (Advanced Himawari Imaginer sensor on board Himawari-8, ten-minute interval imagery is available covering an entire earth hemisphere across East Asia and Australasia. Existing active fire detection algorithms depend on middle infrared (MIR and thermal infrared (TIR channels to detect fire. Even though sub-pixel fire detection algorithms can detect much smaller fires, the location of the fire within the AHI 2 × 2 km (400 ha MIR/TIR pixel is unknown. This limits the application of AHI as a wildfire surveillance and tracking sensor. A new multi-spatial resolution approach is presented in this paper that utilizes the available medium resolution channels in AHI. The proposed algorithm is able to map firelines at a 500 m resolution. This is achieved using near infrared (NIR (1 km and RED (500 m data to detect burnt area and smoke within the flagged MIR (2 km pixel. Initial results based on three case studies carried out in Western Australia shows that the algorithm was able to continuously track fires during the day at 500 m resolution. The results also demonstrate the utility for wildfire management activities.

  16. Spatial resolution of single-cell exocytosis by microwell-based individually addressable thin film ultramicroelectrode arrays.

    Science.gov (United States)

    Wang, Jun; Trouillon, Raphaël; Dunevall, Johan; Ewing, Andrew G

    2014-05-06

    We report the fabrication and characterization of microwell-based individually addressable microelectrode arrays (MEAs) and their application to spatially and temporally resolved detection of neurotransmitter release across a single pheochromocytoma (PC12) cell. The microwell-based MEAs consist of 16 4-μm-width square ultramicroelectrodes, 25 3-μm-width square ultramicroelectrodes, or 36 2-μm-width square ultramicroelectrodes, all inside a 40 × 40 μm square SU-8 microwell. MEAs were fabricated on glass substrates by photolithography, thin film deposition, and reactive ion etching. The ultramicroelectrodes in each MEA are tightly defined in a 30 × 30 μm square area, which is further encased inside the SU-8 microwell. With this method, we demonstrate that these microelectrodes are stable, reproducible, and demonstrate good electrochemical properties using cyclic voltammetry. Effective targeting and culture of a single cell is achieved by combining cell-sized microwell trapping and cell-picking micropipet techniques. The surface of the microelectrodes in the MEA was coated with collagen IV to promote cell adhesion and further single-cell culture, as good adhesion between the cell membrane and the electrode surface is critical for the quality of the measurements. Imaging the spatial distribution of exocytosis at the surface of a single PC12 cell has also been demonstrated with this system. Exocytotic signals have been successfully recorded from eight independent 2-μm-wide ultramicroelectrodes from a single PC12 cell showing that the subcellular heterogeneity in single-cell exocytosis can be precisely analyzed with these microwell-based MEAs.

  17. On the influence of temporal and spatial resolution of aircraft emission inventories for mesoscale modeling of pollutant dispersion

    Energy Technology Data Exchange (ETDEWEB)

    Franzkowiak, V.; Petry, H.; Ebel, A. [Cologne Univ. (Germany). Inst. for Geophysics and Meteorology

    1997-12-31

    The sensitivity of a mesoscale chemistry transport model to the temporal and spatial resolution of aircraft emission inventories is evaluated. A statistical analysis of air traffic in the North-Atlantic flight corridor is carried out showing a highly variable, fine structured spatial distribution and a pronounced daily variation. Sensitivity studies comparing different emission scenarios reveal a strong dependency to the emission time and location of both transport and response in chemical formation of subsequent products. The introduction of a pronounced daily variation leads to a 30% higher ozone production in comparison to uniformly distributed emissions. (author) 9 refs.

  18. Spatial models for probabilistic prediction of wind power with application to annual-average and high temporal resolution data

    DEFF Research Database (Denmark)

    Lenzi, Amanda; Pinson, Pierre; Clemmensen, Line Katrine Harder

    2017-01-01

    average wind power generation, and for a high temporal resolution (typically wind power averages over 15-min time steps). In both cases, we use a spatial hierarchical statistical model in which spatial correlation is captured by a latent Gaussian field. We explore how such models can be handled...... with stochastic partial differential approximations of Matérn Gaussian fields together with Integrated Nested Laplace Approximations. We demonstrate the proposed methods on wind farm data from Western Denmark, and compare the results to those obtained with standard geostatistical methods. The results show...

  19. Clumpy galaxies seen in H α: inflated observed clump properties due to limited spatial resolution and sensitivity

    Science.gov (United States)

    Tamburello, Valentina; Rahmati, Alireza; Mayer, Lucio; Cava, Antonio; Dessauges-Zavadsky, Miroslava; Schaerer, Daniel

    2017-07-01

    High-resolution simulations of star-forming massive galactic discs have shown that clumps form with a characteristic baryonic mass in the range 107-108 M⊙, with a small tail exceeding 109 M⊙ produced by clump-clump mergers. This is in contrast with the observed kpc-size clumps with masses up to 1010 M⊙ in high-redshift star-forming galaxies. In this paper, we show that the comparison between simulated and observed star-forming clumps is hindered by limited observational spatial resolution and sensitivity. We post-process high-resolution hydrodynamical simulations of clumpy discs using accurate radiative transfer to model the effect of ionizing radiation from young stars and to compute H α emission maps. By comparing the intrinsic clump size and mass distributions with those inferred from convolving the H α maps with different Gaussian apertures, we mimic the typical resolution used in observations. We found that with 100 pc resolution, mock observations can recover the intrinsic clump radii and stellar masses, in agreement with those found by lensing observations. Instead, using a 1 kpc resolution smears out individual clumps, resulting in their apparent merging. This causes significant overestimations of the clump radii and therefore masses derived using methods that use their observed sizes. We show that limited sensitivity can also force observations to significantly overestimate the clump masses. We conclude that a significant fraction of giant clumps detected in the observations may result from artificially inflated radii and masses, and that ≈100 pc spatial resolution is required to capture correctly the physical characteristics of star-forming clumps if they are coherent structures produced by disc fragmentation.

  20. Impact of the spatial resolution of satellite remote sensing sensors in the quantification of total suspended sediment concentration: A case study in turbid waters of Northern Western Australia

    Science.gov (United States)

    Fearns, Peter

    2017-01-01

    The impact of anthropogenic activities on coastal waters is a cause of concern because such activities add to the total suspended sediment (TSS) budget of the coastal waters, which have negative impacts on the coastal ecosystem. Satellite remote sensing provides a powerful tool in monitoring TSS concentration at high spatiotemporal resolution, but coastal managers should be mindful that the satellite-derived TSS concentrations are dependent on the satellite sensor’s radiometric properties, atmospheric correction approaches, the spatial resolution and the limitations of specific TSS algorithms. In this study, we investigated the impact of different spatial resolutions of satellite sensor on the quantification of TSS concentration in coastal waters of northern Western Australia. We quantified the TSS product derived from MODerate resolution Imaging Spectroradiometer (MODIS)-Aqua, Landsat-8 Operational Land Image (OLI), and WorldView-2 (WV2) at native spatial resolutions of 250 m, 30 m and 2 m respectively and coarser spatial resolution (resampled up to 5 km) to quantify the impact of spatial resolution on the derived TSS product in different turbidity conditions. The results from the study show that in the waters of high turbidity and high spatial variability, the high spatial resolution WV2 sensor reported TSS concentration as high as 160 mg L-1 while the low spatial resolution MODIS-Aqua reported a maximum TSS concentration of 23.6 mg L-1. Degrading the spatial resolution of each satellite sensor for highly spatially variable turbid waters led to variability in the TSS concentrations of 114.46%, 304.68% and 38.2% for WV2, Landsat-8 OLI and MODIS-Aqua respectively. The implications of this work are particularly relevant in the situation of compliance monitoring where operations may be required to restrict TSS concentrations to a pre-defined limit. PMID:28380059

  1. Impact of the spatial resolution of satellite remote sensing sensors in the quantification of total suspended sediment concentration: A case study in turbid waters of Northern Western Australia.

    Directory of Open Access Journals (Sweden)

    Passang Dorji

    Full Text Available The impact of anthropogenic activities on coastal waters is a cause of concern because such activities add to the total suspended sediment (TSS budget of the coastal waters, which have negative impacts on the coastal ecosystem. Satellite remote sensing provides a powerful tool in monitoring TSS concentration at high spatiotemporal resolution, but coastal managers should be mindful that the satellite-derived TSS concentrations are dependent on the satellite sensor's radiometric properties, atmospheric correction approaches, the spatial resolution and the limitations of specific TSS algorithms. In this study, we investigated the impact of different spatial resolutions of satellite sensor on the quantification of TSS concentration in coastal waters of northern Western Australia. We quantified the TSS product derived from MODerate resolution Imaging Spectroradiometer (MODIS-Aqua, Landsat-8 Operational Land Image (OLI, and WorldView-2 (WV2 at native spatial resolutions of 250 m, 30 m and 2 m respectively and coarser spatial resolution (resampled up to 5 km to quantify the impact of spatial resolution on the derived TSS product in different turbidity conditions. The results from the study show that in the waters of high turbidity and high spatial variability, the high spatial resolution WV2 sensor reported TSS concentration as high as 160 mg L-1 while the low spatial resolution MODIS-Aqua reported a maximum TSS concentration of 23.6 mg L-1. Degrading the spatial resolution of each satellite sensor for highly spatially variable turbid waters led to variability in the TSS concentrations of 114.46%, 304.68% and 38.2% for WV2, Landsat-8 OLI and MODIS-Aqua respectively. The implications of this work are particularly relevant in the situation of compliance monitoring where operations may be required to restrict TSS concentrations to a pre-defined limit.

  2. Optimising the spatial resolution of WorldView-2 pan-sharpened imagery for predicting levels of Gonipterus scutellatus defoliation in KwaZulu-Natal, South Africa

    Science.gov (United States)

    Lottering, Romano; Mutanga, Onisimo

    2016-02-01

    Gonipterus scutellatus Gyllenhal is a leaf feeding weevil that is a major defoliator of the genus Eucalyptus. Understanding the relationship between levels of weevil induced vegetation defoliation and the optimal spatial resolution of satellite images is essential for effective management of plantation resources. The objective of this study was to identify appropriate spatial resolutions for predicting levels of weevil induced defoliation. We resampled the Normalized Difference Vegetation Index (NDVI), Simple Ratio (SR) and Enhanced Vegetation Index (EVI) images computed from a WorldView-2 pan-sharpened image, which is characterised with a 0.5 m spatial resolution and 8 spectral bands. Within each plantation compartment 30 × 30 m plots were established, representing different levels of defoliation. From the centre of each plot, the spatial resolution of the original image was progressively resampled from 1.5 to 8.5 m, with 1 m increments. The minimal variance for each level of defoliation was then established and used as an indicator for quantitatively selecting the optimal spatial resolution. Results indicate that an appropriate spatial resolution was established at 1.25, 1.25, 1.75 and 2.25 m for low, medium, high and severe levels of defoliation, respectively. In addition, an Artificial Neural Network was run to determine the relationship between the appropriate spatial resolution and levels of Gonipterus scutellatus induced defoliation. The model yielded an R2 of 0.80, with an RMSE of 1.28 (2.45% of the mean measured defoliation) based on an independent test dataset. We then compared this model to a model developed using the original 0.5 m image spatial resolution. Our results suggest that optimising the spatial resolution of remotely sensed imagery essentially improves the prediction of vegetation defoliation. In essence, this study provides the foundation for multi-scale defoliation mapping using high spatial resolution imagery.

  3. Impact of the spatial resolution of satellite remote sensing sensors in the quantification of total suspended sediment concentration: A case study in turbid waters of Northern Western Australia.

    Science.gov (United States)

    Dorji, Passang; Fearns, Peter

    2017-01-01

    The impact of anthropogenic activities on coastal waters is a cause of concern because such activities add to the total suspended sediment (TSS) budget of the coastal waters, which have negative impacts on the coastal ecosystem. Satellite remote sensing provides a powerful tool in monitoring TSS concentration at high spatiotemporal resolution, but coastal managers should be mindful that the satellite-derived TSS concentrations are dependent on the satellite sensor's radiometric properties, atmospheric correction approaches, the spatial resolution and the limitations of specific TSS algorithms. In this study, we investigated the impact of different spatial resolutions of satellite sensor on the quantification of TSS concentration in coastal waters of northern Western Australia. We quantified the TSS product derived from MODerate resolution Imaging Spectroradiometer (MODIS)-Aqua, Landsat-8 Operational Land Image (OLI), and WorldView-2 (WV2) at native spatial resolutions of 250 m, 30 m and 2 m respectively and coarser spatial resolution (resampled up to 5 km) to quantify the impact of spatial resolution on the derived TSS product in different turbidity conditions. The results from the study show that in the waters of high turbidity and high spatial variability, the high spatial resolution WV2 sensor reported TSS concentration as high as 160 mg L-1 while the low spatial resolution MODIS-Aqua reported a maximum TSS concentration of 23.6 mg L-1. Degrading the spatial resolution of each satellite sensor for highly spatially variable turbid waters led to variability in the TSS concentrations of 114.46%, 304.68% and 38.2% for WV2, Landsat-8 OLI and MODIS-Aqua respectively. The implications of this work are particularly relevant in the situation of compliance monitoring where operations may be required to restrict TSS concentrations to a pre-defined limit.

  4. Autonomous agricultural remote sensing systems with high spatial and temporal resolutions

    Science.gov (United States)

    Xiang, Haitao

    In this research, two novel agricultural remote sensing (RS) systems, a Stand-alone Infield Crop Monitor RS System (SICMRS) and an autonomous Unmanned Aerial Vehicles (UAV) based RS system have been studied. A high-resolution digital color and multi-spectral camera was used as the image sensor for the SICMRS system. An artificially intelligent (AI) controller based on artificial neural network (ANN) and an adaptive neuro-fuzzy inference system (ANFIS) was developed. Morrow Plots corn field RS images in the 2004 and 2006 growing seasons were collected by the SICMRS system. The field site contained 8 subplots (9.14 m x 9.14 m) that were planted with corn and three different fertilizer treatments were used among those subplots. The raw RS images were geometrically corrected, resampled to 10cm resolution, removed soil background and calibrated to real reflectance. The RS images from two growing seasons were studied and 10 different vegetation indices were derived from each day's image. The result from the image processing demonstrated that the vegetation indices have temporal effects. To achieve high quality RS data, one has to utilize the right indices and capture the images at the right time in the growing season. Maximum variations among the image data set are within the V6-V10 stages, which indicated that these stages are the best period to identify the spatial variability caused by the nutrient stress in the corn field. The derived vegetation indices were also used to build yield prediction models via the linear regression method. At that point, all of the yield prediction models were evaluated by comparing the R2-value and the best index model from each day's image was picked based on the highest R 2-value. It was shown that the green normalized difference vegetation (GNDVI) based model is more sensitive to yield prediction than other indices-based models. During the VT-R4 stages, the GNDVI based models were able to explain more than 95% potential corn yield

  5. Spatial resolution measurements of the advanced radiographic capability x-ray imaging system at energies relevant to Compton radiography

    Science.gov (United States)

    Hall, G. N.; Izumi, N.; Landen, O. L.; Tommasini, R.; Holder, J. P.; Hargrove, D.; Bradley, D. K.; Lumbard, A.; Cruz, J. G.; Piston, K.; Lee, J. J.; Romano, E.; Bell, P. M.; Carpenter, A. C.; Palmer, N. E.; Felker, B.; Rekow, V.; Allen, F. V.

    2016-11-01

    Compton radiography provides a means to measure the integrity, ρR and symmetry of the DT fuel in an inertial confinement fusion implosion near peak compression. Upcoming experiments at the National Ignition Facility will use the ARC (Advanced Radiography Capability) laser to drive backlighter sources for Compton radiography experiments and will use the newly commissioned AXIS (ARC X-ray Imaging System) instrument as the detector. AXIS uses a dual-MCP (micro-channel plate) to provide gating and high DQE at the 40-200 keV x-ray range required for Compton radiography, but introduces many effects that contribute to the spatial resolution. Experiments were performed at energies relevant to Compton radiography to begin characterization of the spatial resolution of the AXIS diagnostic.

  6. Spatial resolution measurements of the advanced radiographic capability x-ray imaging system at energies relevant to Compton radiography

    Energy Technology Data Exchange (ETDEWEB)

    Hall, G. N., E-mail: hall98@llnl.gov; Izumi, N.; Landen, O. L.; Tommasini, R.; Holder, J. P.; Hargrove, D.; Bradley, D. K.; Lumbard, A.; Cruz, J. G.; Piston, K.; Bell, P. M.; Carpenter, A. C.; Palmer, N. E.; Felker, B.; Rekow, V.; Allen, F. V. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States); Lee, J. J.; Romano, E. [National Security Technologies LLC, 161 S Vasco Rd., Livermore, California 94551 (United States)

    2016-11-15

    Compton radiography provides a means to measure the integrity, ρR and symmetry of the DT fuel in an inertial confinement fusion implosion near peak compression. Upcoming experiments at the National Ignition Facility will use the ARC (Advanced Radiography Capability) laser to drive backlighter sources for Compton radiography experiments and will use the newly commissioned AXIS (ARC X-ray Imaging System) instrument as the detector. AXIS uses a dual-MCP (micro-channel plate) to provide gating and high DQE at the 40–200 keV x-ray range required for Compton radiography, but introduces many effects that contribute to the spatial resolution. Experiments were performed at energies relevant to Compton radiography to begin characterization of the spatial resolution of the AXIS diagnostic.

  7. High spatial resolution hard X-ray microscope using X-ray refractive lens and phase contrast imaging experiments

    CERN Document Server

    Kohmura, Y; Takeuchi, A; Takano, H; Suzuki, Y; Ishikawa, T; Ohigashi, T; Yokosuka, H

    2001-01-01

    A high spatial resolution X-ray microscope was constructed using an X-ray refractive lens as an objective. The spatial resolution was tested using 18 keV X-ray. A 0.4 mu m line and 0.4 mu m space tantalum test pattern was successfully resolved. Using the similar setup with the addition of a phase plate, a Zernike type phase-contrast microscopy experiment was carried out for the phase retrieval of the samples. Two-dimensional phase-contrast images were successfully taken for the first time in the hard X-ray region. Images of a gold mesh sample were analyzed and the validity of this method was indicated. An improvement of the lens, however, is required for the precise phase retrieval of the samples.

  8. Ultra-long high-sensitivity Φ-OTDR for high spatial resolution intrusion detection of pipelines.

    Science.gov (United States)

    Peng, Fei; Wu, Han; Jia, Xin-Hong; Rao, Yun-Jiang; Wang, Zi-Nan; Peng, Zheng-Pu

    2014-06-02

    An ultra-long phase-sensitive optical time domain reflectometry (Φ-OTDR) that can achieve high-sensitivity intrusion detection over 131.5km fiber with high spatial resolution of 8m is presented, which is the longest Φ-OTDR reported to date, to the best of our knowledge. It is found that the combination of distributed Raman amplification with heterodyne detection can extend the sensing distance and enhances the sensitivity substantially, leading to the realization of ultra-long Φ-OTDR with high sensitivity and spatial resolution. Furthermore, the feasibility of applying such an ultra-long Φ-OTDR to pipeline security monitoring is demonstrated and the features of intrusion signal can be extracted with improved SNR by using the wavelet detrending/denoising method proposed.

  9. Two color multichannel heterodyne interferometer set up for high spatial resolution electron density profile measurements in TJ-II

    Energy Technology Data Exchange (ETDEWEB)

    Pedreira, P.; Criado, A. R.; Acedo, P. [Department of Electronics Technology, Universidad Carlos III de Madrid, Leganes, Madrid 28911 (Spain); Esteban, L.; Sanchez, M.; Sanchez, J. [Laboratorio Nacional de Fusion por ConfinamientoMagnetico-CIEMAT, Madrid 28040 (Spain)

    2010-10-15

    A high spatial resolution two color [CO{sub 2}, {lambda}=10.6 {mu}m/Nd:YAG (Nd:YAG denotes neodymium-doped yttrium aluminum garnet), and {lambda}=1.064 {mu}m] expanded-beam multichannel heterodyne interferometer has been installed on the TJ-II stellarator. Careful design of the optical system has allowed complete control on the evolution of both Gaussian beams along the interferometer, as well as the evaluation and optimization of the spatial resolution to be expected in the measurements. Five CO{sub 2} (measurement) channels and three Nd:YAG (vibration compensation) channels have been used to illuminate the plasma with a probe beam of 100 mm size. An optimum interpolation method has been applied to recover both interferometric phasefronts prior to mechanical vibration subtraction. The first results of the installed diagnostic are presented in this paper.

  10. Polymeric spatial resolution test patterns for mass spectrometry imaging using nano-thermal analysis with atomic force microscopy.

    Science.gov (United States)

    Tai, Tamin; Kertesz, Vilmos; Lin, Ming-Wei; Srijanto, Bernadeta R; Hensley, Dale K; Xiao, Kai; Van Berkel, Gary J

    2017-07-30

    As the spatial resolution of mass spectrometry imaging technologies has begun to reach into the nanometer regime, finding readily available or easily made resolution reference materials has become particularly challenging for molecular imaging purposes. This paper describes the fabrication, characterization and use of vertical line array polymeric spatial resolution test patterns for nano-thermal analysis/atomic force microscopy/mass spectrometry chemical imaging. Test patterns of varied line width (0.7 or 1.0 μm) and spacing (0.7 or 1.0 μm) were created in an ~1-μm-thick poly(methyl methacrylate) thin film using electron beam lithography. The patterns were characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, atomic force microscopy topography and nano-thermal analysis/mass spectrometry imaging. The efficacy of these polymeric test patterns for the advancement of chemical imaging techniques was illustrated by their use to judge the spatial resolution improvement achieved by heating the ionization interface of the current instrument platform. The spatial resolution of the mass spectral chemical images was estimated to be 1.4 μm, based on the ability to statistically distinguish 0.7-μm-wide lines separated by 0.7-μm-wide spacings in those images when the interface cross was heated to 200°C. This work illustrates that e-beam lithography is a viable method to create spatial resolution test patterns in a thin film of high molecular weight polymer to allow unbiased judgment of intra-laboratory advancement and/or inter-laboratory comparison of instrument advances in nano-thermal analysis/atomic force microscopy/mass spectrometry chemical imaging. Published in 2017. This article is a U.S. Government work and is in the public domain in the USA. Published in 2017. This article is a U.S. Government work and is in the public domain in the USA.

  11. Spatially-resolved in-situ structural study of organic electronic devices with nanoscale resolution: the plasmonic photovoltaic case study.

    Science.gov (United States)

    Paci, B; Bailo, D; Albertini, V Rossi; Wright, J; Ferrero, C; Spyropoulos, G D; Stratakis, E; Kymakis, E

    2013-09-14

    A novel high spatial resolution synchrotron X-ray diffraction stratigraphy technique has been applied in-situ to an integrated plasmonic nanoparticle-based organic photovoltaic device. This original approach allows for the disclosure of structure-property relations linking large scale organic devices to length scales of local nano/hetero structures and interfaces between the different components. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. OSIS: remote sensing code for estimating aerosol optical properties in urban areas from very high spatial resolution images.

    Science.gov (United States)

    Thomas, Colin; Briottet, Xavier; Santer, Richard

    2011-10-01

    The achievement of new satellite or airborne remote sensing instruments enables the more precise study of cities with metric spatial resolutions. For studies such as the radiative characterization of urban features, knowledge of the atmosphere and particularly of aerosols is required to perform first an atmospheric compensation of the remote sensing images. However, to our knowledge, no efficient aerosol characterization technique adapted both to urban areas and to very high spatial resolution images has yet been developed. The goal of this paper is so to present a new code to characterize aerosol optical properties, OSIS, adapted to urban remote sensing images of metric spatial resolution acquired in the visible and near-IR spectral domains. First, a new aerosol characterization method based on the observation of shadow/sun transitions is presented, offering the advantage to avoid the assessment of target reflectances. Its principle and the modeling of the signal used to solve the retrieval equation are then detailed. Finally, a sensitivity study of OSIS from synthetic images simulated by the radiative transfer code AMARTIS v2 is also presented. This study has shown an intrinsic precision of this tool of Δτ(a)=0.1.τ(a) ± (0.02 + 0.4.τ(a)) for retrieval of aerosol optical thicknesses. This study shows that OSIS is a powerful tool for aerosol characterization that has a precision similar to satellite products for the aerosol optical thicknesses retrieval and that can be applied to every very high spatial resolution instrument, multispectral or hyperspectral, airborne or satellite.

  13. Maize and sunflower biomass estimation in southwest France using high spatial and temporal resolution remote sensing data

    OpenAIRE

    Claverie, M.; Demarez, V.; Duchemin, B.; Hagolle, O.; Hagolle, Olivier; Ducrot, D.; Marais Sicre, C.; Dejoux, J.-F.; Huc, M.; P. Keravec; Béziat, P.; R. Fieuzal; Ceschia, E.; Dedieu, G.

    2012-01-01

    The recent availability of high spatial and temporal resolution (HSTR) remote sensing data (Formosat-2, and future missions of Ven mu s and Sentinel-2) offers new opportunities for crop monitoring. In this context, we investigated the perspective offered by coupling a simple algorithm for yield estimate (SAFY) with the Formosat-2 data to estimate crop production over large areas. With a limited number of input parameters, the SAFY model enables the simulation of time series of green area inde...

  14. Exploring Relationships among Tree-Ring Growth, Climate Variability, and Seasonal Leaf Activity on Varying Timescales and Spatial Resolutions

    OpenAIRE

    Upasana Bhuyan; Christian Zang; Sergio M. Vicente-Serrano; Annette Menzel

    2017-01-01

    In the first section of this study, we explored the relationship between ring width index (RWI) and normalized difference vegetation index (NDVI) time series on varying timescales and spatial resolutions, hypothesizing positive associations between RWI and current and previous- year NDVI at 69 forest sites scattered in the Northern Hemisphere. We noted that the relationship between RWI and NDVI varies over space and between tree types (deciduous versus coniferous), bioclimatic zones, cumulati...

  15. Development of a Multi-Spatial Resolution Approach to the Surveillance of Active Fire Lines Using Himawari-8

    OpenAIRE

    Chathura H. Wickramasinghe; Simon Jones; Karin Reinke; Luke Wallace

    2016-01-01

    Satellite remote sensing is regularly used for wildfire detection, fire severity mapping and burnt area mapping. Applications in the surveillance of wildfire using geostationary-based sensors have been limited by low spatial resolutions. With the launch in 2015 of the AHI (Advanced Himawari Imaginer) sensor on board Himawari-8, ten-minute interval imagery is available covering an entire earth hemisphere across East Asia and Australasia. Existing active fire detection algorithms depend on midd...

  16. A functional dissection of PTEN N-terminus : Implications in PTEN subcellular targeting and tumor suppressor activity

    NARCIS (Netherlands)

    Gil, Anabel; Rodríguez-Escudero, Isabel; Stumpf, Miriam; Molina, María; Cid, Víctor J.; Pulido, Rafael

    2015-01-01

    Spatial regulation of the tumor suppressor PTEN is exerted through alternative plasma membrane, cytoplasmic, and nuclear subcellular locations. The N-terminal region of PTEN is important for the control of PTEN subcellular localization and function. It contains both an active nuclear localization

  17. Chemical bioimaging for the subcellular localization of trace elements by high contrast TEM, TEM/X-EDS, and NanoSIMS.

    Science.gov (United States)

    Penen, Florent; Malherbe, Julien; Isaure, Marie-Pierre; Dobritzsch, Dirk; Bertalan, Ivo; Gontier, Etienne; Le Coustumer, Philippe; Schaumlöffel, Dirk

    2016-09-01

    Chemical bioimaging offers an important contribution to the investigation of biochemical functions, biosorption and bioaccumulation processes of trace elements via their localization at the cellular and even at the subcellular level. This paper describes the combined use of high contrast transmission electron microscopy (HC-TEM), energy dispersive X-ray spectroscopy (X-EDS), and nano secondary ion mass spectrometry (NanoSIMS) applied to a model organism, the unicellular green algae Chlamydomonas reinhardtii. HC-TEM providing a lateral resolution of 1nm was used for imaging the ultrastructure of algae cells which have diameters of 5-10μm. TEM coupled to X-EDS (TEM/X-EDS) combined textural (morphology and size) analysis with detection of Ca, P, K, Mg, Fe, and Zn in selected subcellular granules using an X-EDS probe size of approx. 1μm. However, instrumental sensitivity was at the limit for trace element detection. NanoSIMS allowed chemical imaging of macro and trace elements with subcellular resolution (element mapping). Ca, Mg, and P as well as the trace elements Fe, Cu, and Zn present at basal levels were detected in pyrenoids, contractile vacuoles, and granules. Some metals were even localized in small vesicles of about 200nm size. Sensitive subcellular localization of trace metals was possible by the application of a recently developed RF plasma oxygen primary ion source on NanoSIMS which has shown good improvements in terms of lateral resolution (below 50nm), sensitivity, and stability. Furthermore correlative single cell imaging was developed combining the advantages of TEM and NanoSIMS. An advanced sample preparation protocol provided adjacent ultramicrotome sections for parallel TEM and NanoSIMS analyses of the same cell. Thus, the C. reinhardtii cellular ultrastructure could be directly related to the spatial distribution of metals in different cell organelles such as vacuoles and chloroplast. Copyright © 2016 Elsevier GmbH. All rights reserved.

  18. A comprehensive biomass burning emission inventory with high spatial and temporal resolution in China

    Science.gov (United States)

    Zhou, Ying; Xing, Xiaofan; Lang, Jianlei; Chen, Dongsheng; Cheng, Shuiyuan; Wei, Lin; Wei, Xiao; Liu, Chao

    2017-02-01

    . As for the straw burning emission of various crops, corn straw burning has the largest contribution to all of the pollutants considered, except for CH4; rice straw burning has highest contribution to CH4 and the second largest contribution to other pollutants, except for SO2, OC, and Hg; wheat straw burning is the second largest contributor to SO2, OC, and Hg and the third largest contributor to other pollutants. Heilongjiang, Shandong, and Henan provinces located in the north-eastern and central-southern regions of China have higher emissions compared to other provinces in China. Gridded emissions, which were obtained through spatial allocation based on the gridded rural population and fire point data from emission inventories at county resolution, could better represent the actual situation. High biomass burning emissions are concentrated in the areas with more agricultural and rural activity. The months of April, May, June, and October account for 65 % of emissions from in-field crop residue burning, while, regarding EC, the emissions in January, February, October, November, and December are relatively higher than other months due to biomass domestic burning in heating season. There are regional differences in the monthly variations of emissions due to the diversity of main planted crops and climatic conditions. Furthermore, PM2.5 component results showed that OC, Cl-, EC, K+, NH4+, elemental K, and SO42- are the main PM2.5 species, accounting for 80 % of the total emissions. The species with relatively high contribution to NMVOC emission include ethylene, propylene, toluene, mp-xylene, and ethyl benzene, which are key species for the formation of secondary air pollution. The detailed biomass burning emission inventory developed by this study could provide useful information for air-quality modelling and could support the development of appropriate pollution-control strategies.

  19. Simultaneous pixel detection probabilities and spatial resolution estimation of pixelized detectors by means of correlation measurements

    Energy Technology Data Exchange (ETDEWEB)

    Grabski, V. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, A.P. 20-364, 01000 Mexico, DF (Mexico)], E-mail: varlen.grabski@cern.ch

    2008-02-21

    On the basis of the determination of statistical correlations between neighboring detector pixels, a novel method of estimating the simultaneous detection probability of pixels and the spatial resolution of pixelized detectors is proposed. The correlations are determined using noise variance measurement for isolated pixels and for the difference between neighboring pixels. The method is validated using images from two image-acquisition devices, a General Electric Senographe 2000D and a SD mammographic unit. The pixelized detector is irradiated with X-rays over its entire surface. It is shown that the simultaneous pixel detection probabilities can be estimated with an accuracy of 0.001-0.003, with an estimated systematic error of less than 0.005. The two-dimensional pre-sampled point-spread function (PSF{sup 0}) is determined using a single Gaussian approximation and a sum of two Gaussian approximations. The results obtained for the pre-sampled PSF{sup 0} show that the single Gaussian approximation is not appropriate, and the sum of two Gaussian approximations providing the best fit predicts the existence of a large ({approx}50%) narrow component. Support for this observation can be found in the recent simulation study of columnar indirect digital detectors by Badano et al. The sampled two-dimensional PSF is determined using Monte Carlo simulation for the L-shaped, uniformly distributed acceptance function for different fill-factor values. The calculation of the pre-sampled modulation transfer function based on the estimated PSF{sup 0} shows that the observed data can be reproduced only by the single Gaussian approximation, and that when the sum of two Gaussians is used, significantly larger values are apparent in the higher-frequency region for images from both detection devices. The proposed method does not require a precisely, constructed tool. It is insensitive to beam collimation and to system physical size and may be indispensable in cases where thin

  20. Simultaneous pixel detection probabilities and spatial resolution estimation of pixelized detectors by means of correlation measurements

    Science.gov (United States)

    Grabski, V.

    2008-02-01

    On the basis of the determination of statistical correlations between neighboring detector pixels, a novel method of estimating the simultaneous detection probability of pixels and the spatial resolution of pixelized detectors is proposed. The correlations are determined using noise variance measurement for isolated pixels and for the difference between neighboring pixels. The method is validated using images from two image-acquisition devices, a General Electric Senographe 2000D and a SD mammographic unit. The pixelized detector is irradiated with X-rays over its entire surface. It is shown that the simultaneous pixel detection probabilities can be estimated with an accuracy of 0.001-0.003, with an estimated systematic error of less than 0.005. The two-dimensional pre-sampled point-spread function (PSF 0) is determined using a single Gaussian approximation and a sum of two Gaussian approximations. The results obtained for the pre-sampled PSF 0 show that the single Gaussian approximation is not appropriate, and the sum of two Gaussian approximations providing the best fit predicts the existence of a large (˜50%) narrow component. Support for this observation can be found in the recent simulation study of columnar indirect digital detectors by Badano et al. The sampled two-dimensional PSF is determined using Monte Carlo simulation for the L-shaped, uniformly distributed acceptance function for different fill-factor values. The calculation of the pre-sampled modulation transfer function based on the estimated PSF 0 shows that the observed data can be reproduced only by the single Gaussian approximation, and that when the sum of two Gaussians is used, significantly larger values are apparent in the higher-frequency region for images from both detection devices. The proposed method does not require a precisely, constructed tool. It is insensitive to beam collimation and to system physical size and may be indispensable in cases where thin absorption slits or edges are

  1. High Spatial Resolution 40Ar/39Ar Geochronology of Lunar Impact Melt Rocks

    Science.gov (United States)

    Mercer, Cameron Mark

    Impact cratering has played a key role in the evolution of the solid surfaces of Solar System bodies. While much of Earth’s impact record has been erased, its Moon preserves an extensive history of bombardment. Quantifying the timing of lunar impact events is crucial to understanding how impacts have shaped the evolution of early Earth, and provides the basis for estimating the ages of other cratered surfaces in the Solar System. Many lunar impact melt rocks are complex mixtures of glassy and crystalline “melt” materials and inherited clasts of pre-impact minerals and rocks. If analyzed in bulk, these samples can yield complicated incremental release 40Ar/39Ar spectra, making it challenging to uniquely interpret impact ages. Here, I have used a combination of high-spatial resolution 40Ar/39Ar geochronology and thermal-kinetic modeling to gain new insights into the impact histories recorded by such lunar samples. To compare my data to those of previous studies, I developed a software tool to account for differences in the decay, isotopic, and monitor age parameters used for different published 40Ar/39Ar datasets. Using an ultraviolet laser ablation microprobe (UVLAMP) system I selectively dated melt and clast components of impact melt rocks collected during the Apollo 16 and 17 missions. UVLAMP 40Ar/39Ar data for samples 77135, 60315, 61015, and 63355 show evidence of open-system behavior, and provide new insights into how to interpret some complexities of published incremental heating 40Ar/39Ar spectra. Samples 77115, 63525, 63549, and 65015 have relatively simple thermal histories, and UVLAMP 40Ar/39Ar data for the melt components of these rocks indicate the timing of impact events—spanning hundreds of millions of years—that influenced the Apollo 16 and 17 sites. My modeling and UVLAMP 40Ar/39Ar data for sample 73217 indicate that some impact melt rocks can quantitatively retain evidence for multiple melt-producing impact events, and imply that such

  2. Intracranial plaque enhancement in patients with cerebrovascular events on high-spatial-resolution MR images.

    Science.gov (United States)

    Qiao, Ye; Zeiler, Steven R; Mirbagheri, Saeedeh; Leigh, Richard; Urrutia, Victor; Wityk, Robert; Wasserman, Bruce A

    2014-05-01

    To characterize intracranial plaque inflammation in vivo by using three-dimensional (3D) high-spatial-resolution contrast material-enhanced black-blood (BB) magnetic resonance (MR) imaging and to investigate the relationship between intracranial plaque inflammation and cerebrovascular ischemic events. The study was approved by the institutional review board and was HIPAA compliant. Twenty-seven patients (19 men; mean age, 56.8 years ± 12.4 [standard deviation]) with cerebrovascular ischemic events (acute stroke, n = 20; subacute stroke, n = 2; chronic stroke, n = 3; transient ischemic attack, n = 2) underwent 3D time-of-flight MR angiography and contrast-enhanced BB 3-T MR imaging for intracranial atherosclerotic disease. Each identified plaque was classified as either culprit (the only or most stenotic lesion upstream from a stroke), probably culprit (not the most stenotic lesion upstream from a stroke), or nonculprit (not within the vascular territory of a stroke). Plaque contrast enhancement was categorized on BB MR images (grade 0, enhancement less than or equal to that of normal arterial walls seen elsewhere; grade 1, enhancement greater than grade 0 but less than that of the pituitary infundibulum; grade 2, enhancement greater than or equal to that of the pituitary infundibulum), and degree of contrast enhancement was calculated. Associations of the likelihood of being a culprit lesion with both plaque contrast enhancement and plaque thickness were estimated with ordinal logistic regression. Seventy-eight plaques were identified in 20 patients with acute stroke (21 [27%] culprit, 12 [15%] probably culprit, and 45 [58%] nonculprit plaques). In these patients, grade 2 contrast enhancement was associated with culprit plaques (odds ratio 34.6; 95% confidence interval: 4.5, 266.5 compared with grade 0) when adjusted for plaque thickness. Grade 0 was observed in only nonculprit plaques. Culprit plaques had a higher degree of contrast enhancement than did

  3. Defining the Spatial Resolution Requirements for Crop Identification Using Optical Remote Sensing

    Directory of Open Access Journals (Sweden)

    Fabian Löw

    2014-09-01

    Full Text Available The past decades have seen an increasing demand for operational monitoring of crop conditions and food production at local to global scales. To properly use satellite Earth observation for such agricultural monitoring, high temporal revisit frequency over vast geographic areas is necessary. However, this often limits the spatial resolution that can be used. The challenge of discriminating pixels that correspond to a particular crop type, a prerequisite for crop specific agricultural monitoring, remains daunting when the signal encoded in pixels stems from several land uses (mixed pixels, e.g., over heterogeneous landscapes where individual fields are often smaller than individual pixels. The question of determining the optimal pixel sizes for an application such as crop identification is therefore naturally inclined towards finding the coarsest acceptable pixel sizes, so as to potentially benefit from what instruments with coarser pixels can offer. To answer this question, this study builds upon and extends a conceptual framework to quantitatively define pixel size requirements for crop identification via image classification. This tool can be modulated using different parameterizations to explore trade-offs between pixel size and pixel purity when addressing the question of crop identification. Results over contrasting landscapes in Central Asia demonstrate that the task of finding the optimum pixel size does not have a “one-size-fits-all” solution. The resulting values for pixel size and purity that are suitable for crop identification proved to be specific to a given landscape, and for each crop they differed across different landscapes. Over the same time series, different crops were not identifiable simultaneously in the season and these requirements further changed over the years, reflecting the different agro-ecological conditions the crops are growing in. Results indicate that sensors like MODIS (250 m could be suitable for

  4. Large-scale spatial variation in palm fruit abundance across a tropical moist forest estimated from high-resolution aerial photographs

    NARCIS (Netherlands)

    Jansen, Patrick A.; Bohlman, Stephanie A.; Garzon-Lopez, Carol X.; Olff, Han; Muller-Landau, Helene C.; Wright, S. Joseph; Svenning, Jens-Christian

    Fruit abundance is a critical factor in ecological studies of tropical forest animals and plants, but difficult to measure at large spatial scales. We tried to estimate spatial variation in fruit abundance on a relatively large spatial scale using low altitude, high-resolution aerial photography. We

  5. A linearised pixel-swapping method for mapping rural linear land cover features from fine spatial resolution remotely sensed imagery

    Science.gov (United States)

    Thornton, M. W.; Atkinson, P. M.; Holland, D. A.

    2007-10-01

    Accurate maps of rural linear land cover features, such as paths and hedgerows, would be useful to ecologists, conservation managers and land planning agencies. Such information might be used in a variety of applications (e.g., ecological, conservation and land management applications). Based on the phenomenon of spatial dependence, sub-pixel mapping techniques can be used to increase the spatial resolution of land cover maps produced from satellite sensor imagery and map such features with increased accuracy. Aerial photography with a spatial resolution of 0.25 m was acquired of the Christchurch area of Dorset, UK. The imagery was hard classified using a simple Mahalanobis distance classifier and the classification degraded to simulate land cover proportion images with spatial resolutions of 2.5 and 5 m. A simple pixel-swapping algorithm was then applied to each of the proportion images. Sub-pixels within pixels were swapped iteratively until the spatial correlation between neighbouring sub-pixels for the entire image was maximised. Visual inspection of the super-resolved output showed that prediction of the position and dimensions of hedgerows was comparable with the original imagery. The maps displayed an accuracy of 87%. To enhance the prediction of linear features within the super-resolved output, an anisotropic modelling component was added. The direction of the largest sums of proportions was calculated within a moving window at the pixel level. The orthogonal sum of proportions was used in estimating the anisotropy ratio. The direction and anisotropy ratio were then used to modify the pixel-swapping algorithm so as to increase the likelihood of creating linear features in the output map. The new linear pixel-swapping method led to an increase in the accuracy of mapping fine linear features of approximately 5% compared with the conventional pixel-swapping method.

  6. Prospective comparison of high- and low-spatial-resolution dynamic MR imaging with sensitivity encoding (SENSE) for hypervascular hepatocellular carcinoma.

    Science.gov (United States)

    Tsurusaki, Masakatsu; Semelka, Richard C; Uotani, Kensuke; Sugimoto, Koji; Fujii, Masahiko; Sugimura, Kazuro

    2008-10-01

    The purpose of this study was to prospectively evaluate the efficacy of high-spatial-resolution dynamic MRI using sensitivity encoding (SENSE) in detection of hypervascular hepatocellular carcinoma (HCC). Thirty-five patients were included in this prospectively planned study, and 25 patients with 31 HCCs were assigned into three groups and underwent the following sequences: group A (n=11): three-dimensional fast-gradient-echo (3D-FGE) high-spatial-resolution dynamic MRI (HR-MRI) with SENSE; group B (n=10): 3D-FGE low-spatial-resolution dynamic MRI (LR-MRI) with SENSE; and group C (n=14): 3D-FGE/LR-MRI without SENSE. For the quantitative analysis, the lesion-to-liver contrast-to-noise ratio (CNR) between the liver and HCCs was measured. For the qualitative analysis, overall image quality for each group was evaluated with a five-point scale analysis. The sensitivities for detection of HCCs were evaluated. The overall image quality in group A was significantly greater than both groups B and C (P0.05). In our pilot study on a small number of patients, image quality in HR-MRI with SENSE was superior to LR-MRI. A high detection rate was seen with HR-MRI with SENSE in the patients with hypervascular HCCs.

  7. [Examination of upper abdominal region in high spatial resolution diffusion-weighted imaging using 3-Tesla MRI].

    Science.gov (United States)

    Terada, Masaki; Matsushita, Hiroki; Oosugi, Masanori; Inoue, Kazuyasu; Yaegashi, Taku; Anma, Takeshi

    2009-03-20

    The advantage of the higher signal-to-noise ratio (SNR) of 3-Tesla magnetic resonance imaging (3-Tesla) has the possibility of contributing to the improvement of high spatial resolution without causing image deterioration. In this study, we compared SNR and the apparent diffusion coefficient (ADC) value with 3-Tesla as the condition in the diffusion-weighted image (DWI) parameter of the 1.5-Tesla magnetic resonance imaging (1.5-Tesla) and we examined the high spatial resolution images in the imaging method [respiratory-triggering (RT) method and breath free (BF) method] and artifact (motion and zebra) in the upper abdominal region of DWI at 3-Tesla. We have optimized scan parameters based on phantom and in vivo study. As a result, 3-Tesla was able to obtain about 1.5 times SNR in comparison with the 1.5-Tesla, ADC value had few differences. Moreover, the RT method was effective in correcting the influence of respiratory movement in comparison with the BF method, and image improvement by the effective acquisition of SNR and reduction of the artifact were provided. Thus, DWI of upper abdominal region was a useful sequence for the high spatial resolution in 3-Tesla.

  8. Eddy Fluxes and Sensitivity of the Water Cycle to Spatial Resolution in Idealized Regional Aquaplanet Model Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Hagos, Samson M.; Leung, Lai-Yung R.; Gustafson, William I.; Singh, Balwinder

    2014-02-28

    A multi-scale moisture budget analysis is used to identify the mechanisms responsible for the sensitivity of the water cycle to spatial resolution using idealized regional aquaplanet simulations. In the higher resolution simulations, moisture transport by eddies fluxes dry the boundary layer enhancing evaporation and precipitation. This effect of eddies, which is underestimated by the physics parameterizations in the low-resolution simulations, is found to be responsible for the sensitivity of the water cycle both directly, and through its upscale effect, on the mean circulation. Correlations among moisture transport by eddies at adjacent ranges of scales provides the potential for reducing this sensitivity by representing the unresolved eddies by their marginally resolved counterparts.

  9. Evaluation of Landsat-Based METRIC Modeling to Provide High-Spatial Resolution Evapotranspiration Estimates for Amazonian Forests

    Directory of Open Access Journals (Sweden)

    Izaya Numata

    2017-01-01

    Full Text Available While forest evapotranspiration (ET dynamics in the Amazon have been studied both as point estimates using flux towers, as well as spatially coarse surfaces using satellite data, higher resolution (e.g., 30 m resolution ET estimates are necessary to address finer spatial variability associated with forest biophysical characteristics and their changes by natural and human impacts. The objective of this study is to evaluate the potential of the Landsat-based METRIC (Mapping Evapotranspiration at high Resolution with Internalized Calibration model to estimate high-resolution (30 m forest ET by comparing to flux tower ET (FT ET data collected over seasonally dry tropical forests in Rondônia, the southwestern region of the Amazon. Analyses were conducted at daily, monthly and seasonal scales for the dry seasons (June–September for Rondônia of 2000–2002. Overall daily ET comparison between FT ET and METRIC ET across the study site showed r2 = 0.67 with RMSE = 0.81 mm. For seasonal ET comparison, METRIC-derived ET estimates showed an agreement with FT ET measurements during the dry season of r2 >0.70 and %MAE <15%. We also discuss some challenges and potential applications of METRIC for Amazonian forests.

  10. Geo-Parcel Based Crop Identification by Integrating High Spatial-Temporal Resolution Imagery from Multi-Source Satellite Data

    Directory of Open Access Journals (Sweden)

    Yingpin Yang

    2017-12-01

    Full Text Available Geo-parcel based crop identification plays an important role in precision agriculture. It meets the needs of refined farmland management. This study presents an improved identification procedure for geo-parcel based crop identification by combining fine-resolution images and multi-source medium-resolution images. GF-2 images with fine spatial resolution of 0.8 m provided agricultural farming plot boundaries, and GF-1 (16 m and Landsat 8 OLI data were used to transform the geo-parcel based enhanced vegetation index (EVI time-series. In this study, we propose a piecewise EVI time-series smoothing method to fit irregular time profiles, especially for crop rotation situations. Global EVI time-series were divided into several temporal segments, from which phenological metrics could be derived. This method was applied to Lixian, where crop rotation was the common practice of growing different types of crops, in the same plot, in sequenced seasons. After collection of phenological features and multi-temporal spectral information, Random Forest (RF was performed to classify crop types, and the overall accuracy was 93.27%. Moreover, an analysis of feature significance showed that phenological features were of greater importance for distinguishing agricultural land cover compared to temporal spectral information. The identification results indicated that the integration of high spatial-temporal resolution imagery is promising for geo-parcel based crop identification and that the newly proposed smoothing method is effective.

  11. Spatial downscaling algorithm of TRMM precipitation based on multiple high-resolution satellite data for Inner Mongolia, China

    Science.gov (United States)

    Duan, Limin; Fan, Keke; Li, Wei; Liu, Tingxi

    2017-12-01

    Daily precipitation data from 42 stations in Inner Mongolia, China for the 10 years period from 1 January 2001 to 31 December 2010 was utilized along with downscaled data from the Tropical Rainfall Measuring Mission (TRMM) with a spatial resolution of 0.25° × 0.25° for the same period based on the statistical relationships between the normalized difference vegetation index (NDVI), meteorological variables, and digital elevation models (https://en.wikipedia.org/wiki/Digital_elevation_model) (DEM) using the leave-one-out (LOO) cross validation method and multivariate step regression. The results indicate that (1) TRMM data can indeed be used to estimate annual precipitation in Inner Mongolia and there is a linear relationship between annual TRMM and observed precipitation; (2) there is a significant relationship between TRMM-based precipitation and predicted precipitation, with a spatial resolution of 0.50° × 0.50°; (3) NDVI and temperature are important factors influencing the downscaling of TRMM precipitation data for DEM and the slope is not the most significant factor affecting the downscaled TRMM data; and (4) the downscaled TRMM data reflects spatial patterns in annual precipitation reasonably well, showing less precipitation falling in west Inner Mongolia and more in the south and southeast. The new approach proposed here provides a useful alternative for evaluating spatial patterns in precipitation and can thus be applied to generate a more accurate precipitation dataset to support both irrigation management and the conservation of this fragile grassland ecosystem.

  12. Performance evaluation of a sub-millimeter spatial resolution PET detector module using a digital silicon photomultiplier coupled LGSO array

    Science.gov (United States)

    Leem, Hyun Tae; Choi, Yong; Kim, Kyu Bom; Lee, Sangwon; Yamamoto, Seiichi; Yeom, Jung-Yeol

    2017-02-01

    In positron emission tomography (PET) for breast, brain and small animal imaging, the spatial resolution of a PET detector is crucial to obtain high quality PET images. In this study, a PET detector for sub-millimeter spatial resolution imaging purpose was assembled using 4×4 pixels of a digital silicon photomultiplier (dSiPM, DPC-3200-22-44, Philips) coupled with a 15×15 LGSO array with BaSO4 reflector, and a 1 mm thick acrylic light guide for light distribution between the dSiPM pixels. The active area of each dSiPM pixel was 3.2×3.9 mm2 and the size of each LGSO scintillator element was 0.7×0.7×6 mm3. In this paper, we experimentally demonstrated the performance of the PET detector by measuring the energy resolution, 2D flood map, peak to valley (P/V) ratio, and coincidence resolving time (CRT). All measurements were performed at a temperature of 10±1 ℃. The average energy resolution was 15.6% (without correcting for saturation effects) at 511 keV and the best CRT was 242±5 ps. The 2D flood map obtained with an energy window of 400-600 keV demonstrated clear identification of all pixels, and the average P/V ratio of the X- and Y-directions were 7.31 and 7.81, respectively. This study demonstrated that the PET detector could be suitable for application in high resolution PET while achieving good timing resolution.

  13. Modeling Change of Topographic Spatial Structures with DEM Resolution Using Semi-Variogram Analysis and Filter Bank

    Directory of Open Access Journals (Sweden)

    Chunmei Wang

    2016-06-01

    Full Text Available In this paper, the way topographic spatial information changes with resolution was investigated using semi-variograms and an Independent Structures Model (ISM to identify the mechanisms involved in changes of topographic parameters as resolution becomes coarser or finer. A typical Loess Hilly area in the Loess Plateau of China was taken as the study area. DEMs with resolutions of 2.5 m and 25 m were derived from topographic maps with map scales of 1:10,000 using ANUDEM software. The ISM, in which the semi-variogram was modeled as the sum of component semi-variograms, was used to model the measured semi-variogram of the elevation surface. Components were modeled using an analytic ISM model and corresponding landscape components identified using Kriging and filter bank analyses. The change in the spatial components as resolution became coarser was investigated by modeling upscaling as a low pass linear filter and applying a general result to obtain an analytic model for the scaling process in terms of semi-variance. This investigation demonstrated how topographic structures could be effectively characterised over varying scales using the ISM model for the semi-variogram. The loss of information in the short range components with resolution is a major driver for the observed change in derived topographic parameters such as slope. This paper has helped to quantify how information is distributed among scale components and how it is lost in natural terrain surfaces as resolution becomes coarser. It is a basis for further applications in the field of geomorphometry.

  14. Performance evaluation of a sub-millimeter spatial resolution PET detector module using a digital silicon photomultiplier coupled LGSO array

    Energy Technology Data Exchange (ETDEWEB)

    Leem, Hyun Tae [Molecular Imaging Research & Education (MiRe) Laboratory, Department of Electronic Engineering, Sogang University, Seoul (Korea, Republic of); Choi, Yong, E-mail: ychoi@sogang.ac.kr [Molecular Imaging Research & Education (MiRe) Laboratory, Department of Electronic Engineering, Sogang University, Seoul (Korea, Republic of); Kim, Kyu Bom; Lee, Sangwon [Molecular Imaging Research & Education (MiRe) Laboratory, Department of Electronic Engineering, Sogang University, Seoul (Korea, Republic of); Yamamoto, Seiichi [Department of Medical Technology, Nagoya University Graduate School of Medicine, Nagoya (Japan); Yeom, Jung-Yeol, E-mail: jungyeol@korea.ac.kr [School of Biomedical Engineering, Korea University, Seoul (Korea, Republic of)

    2017-02-21

    In positron emission tomography (PET) for breast, brain and small animal imaging, the spatial resolution of a PET detector is crucial to obtain high quality PET images. In this study, a PET detector for sub-millimeter spatial resolution imaging purpose was assembled using 4×4 pixels of a digital silicon photomultiplier (dSiPM, DPC-3200-22-44, Philips) coupled with a 15×15 LGSO array with BaSO{sub 4} reflector, and a 1 mm thick acrylic light guide for light distribution between the dSiPM pixels. The active area of each dSiPM pixel was 3.2×3.9 mm{sup 2} and the size of each LGSO scintillator element was 0.7×0.7×6 mm{sup 3}. In this paper, we experimentally demonstrated the performance of the PET detector by measuring the energy resolution, 2D flood map, peak to valley (P/V) ratio, and coincidence resolving time (CRT). All measurements were performed at a temperature of 10±1 ℃. The average energy resolution was 15.6% (without correcting for saturation effects) at 511 keV and the best CRT was 242±5 ps. The 2D flood map obtained with an energy window of 400–600 keV demonstrated clear identification of all pixels, and the average P/V ratio of the X- and Y-directions were 7.31 and 7.81, respectively. This study demonstrated that the PET detector could be suitable for application in high resolution PET while achieving good timing resolution.

  15. Resolution enhancement of pump-probe microscopy with an inverse-annular spatial filter

    Science.gov (United States)

    Kobayashi, T.; Kawasumi, K.; Miyazaki, J.; Nakata, K.

    2016-12-01

    We have introduced a pupil filter, an inverse-annular pupil filter in a pump-probe photothermal microscope, which provides resolution enhancement in three dimensions. The resolution is probed to be improved in lateral and axial resolution by imaging experiment using 20 nm gold nanoparticles. The improvement in X (perpendicular to the common pump and probe polarization direction), Y (parallel to the polarization direction), and Z (axial direction) are by 15±6, 8±8, and 21±2 % from the resolution without a pupil filter. The resolution enhancement is even better than the calculation using vector field, which predicts the corresponding enhancement of 11, 8, and 6 %. The discussion is made to explain the unexpected results. We also demonstrate the photothermal imaging of thick biological samples (cells from rabbit intestine and kidney) stained with hematoxylin and eosin dye with the inverse-annular filter.

  16. Improvement of Allocentric Spatial Memory Resolution in Children from 2 to 4 Years of Age

    Science.gov (United States)

    Lambert, Farfalla Ribordy; Lavenex, Pierre; Lavenex, Pamela Banta

    2015-01-01

    Allocentric spatial memory, the memory for locations coded in relation to objects comprising our environment, is a fundamental component of episodic memory and is dependent on the integrity of the hippocampal formation in adulthood. Previous research from different laboratories reported that basic allocentric spatial memory abilities are reliably…

  17. Influence of Spatial Resolution in Three-dimensional Cine Phase Contrast Magnetic Resonance Imaging on the Accuracy of Hemodynamic Analysis.

    Science.gov (United States)

    Fukuyama, Atsushi; Isoda, Haruo; Morita, Kento; Mori, Marika; Watanabe, Tomoya; Ishiguro, Kenta; Komori, Yoshiaki; Kosugi, Takafumi

    2017-10-10

    We aim to elucidate the effect of spatial resolution of three-dimensional cine phase contrast magnetic resonance (3D cine PC MR) imaging on the accuracy of the blood flow analysis, and examine the optimal setting for spatial resolution using flow phantoms. The flow phantom has five types of acrylic pipes that represent human blood vessels (inner diameters: 15, 12, 9, 6, and 3 mm). The pipes were fixed with 1% agarose containing 0.025 mol/L gadolinium contrast agent. A blood-mimicking fluid with human blood property values was circulated through the pipes at a steady flow. Magnetic resonance (MR) images (three-directional phase images with speed information and magnitude images for information of shape) were acquired using the 3-Tesla MR system and receiving coil. Temporal changes in spatially-averaged velocity and maximum velocity were calculated using hemodynamic analysis software. We calculated the error rates of the flow velocities based on the volume flow rates measured with a flowmeter and examined measurement accuracy. When the acrylic pipe was the size of the thoracicoabdominal or cervical artery and the ratio of pixel size for the pipe was set at 30% or lower, spatially-averaged velocity measurements were highly accurate. When the pixel size ratio was set at 10% or lower, maximum velocity could be measured with high accuracy. It was difficult to accurately measure maximum velocity of the 3-mm pipe, which was the size of an intracranial major artery, but the error for spatially-averaged velocity was 20% or less. Flow velocity measurement accuracy of 3D cine PC MR imaging for pipes with inner sizes equivalent to vessels in the cervical and thoracicoabdominal arteries is good. The flow velocity accuracy for the pipe with a 3-mm-diameter that is equivalent to major intracranial arteries is poor for maximum velocity, but it is relatively good for spatially-averaged velocity.

  18. A KERNEL METHOD BASED ON TOPIC MODEL FOR VERY HIGH SPATIAL RESOLUTION (VHSR REMOTE SENSING IMAGE CLASSIFICATION

    Directory of Open Access Journals (Sweden)

    L. Wu

    2016-06-01

    Full Text Available A kernel-based method for very high spatial resolution remote sensing image classification is proposed in this article. The new kernel method is based on spectral-spatial information and structure information as well, which is acquired from topic model, Latent Dirichlet Allocation model. The final kernel function is defined as K = u1Kspec + u2Kspat + u3Kstru, in which Kspec, Kspat, Kstru are radial basis function (RBF and u1 + u2 + u3 = 1. In the experiment, comparison with three other kernel methods, including the spectral-based, the spectral- and spatial-based and the spectral- and structure-based method, is provided for a panchromatic QuickBird image of a suburban area with a size of 900 × 900 pixels and spatial resolution of 0.6 m. The result shows that the overall accuracy of the spectral- and structure-based kernel method is 80 %, which is higher than the spectral-based kernel method, as well as the spectral- and spatial-based which accuracy respectively is 67 % and 74 %. What's more, the accuracy of the proposed composite kernel method that jointly uses the spectral, spatial, and structure information is highest among the four methods which is increased to 83 %. On the other hand, the result of the experiment also verifies the validity of the expression of structure information about the remote sensing image.

  19. Learning from Heterogeneous Data Sources: An Application in Spatial Proteomics.

    Directory of Open Access Journals (Sweden)

    Lisa M Breckels

    2016-05-01

    Full Text Available Sub-cellular localisation of proteins is an essential post-translational regulatory mechanism that can be assayed using high-throughput mass spectrometry (MS. These MS-based spatial proteomics experiments enable us to pinpoint the sub-cellular distribution of thousands of proteins in a specific system under controlled conditions. Recent advances in high-throughput MS methods have yielded a plethora of experimental spatial proteomics data for the cell biology community. Yet, there are many third-party data sources, such as immunofluorescence microscopy or protein annotations and sequences, which represent a rich and vast source of complementary information. We present a unique transfer learning classification framework that utilises a nearest-neighbour or support vector machine system, to integrate heterogeneous data sources to considerably improve on the quantity and quality of sub-cellular protein assignment. We demonstrate the utility of our algorithms through evaluation of five experimental datasets, from four different species in conjunction with four different auxiliary data sources to classify proteins to tens of sub-cellular compartments with high generalisation accuracy. We further apply the method to an experiment on pluripotent mouse embryonic stem cells to classify a set of previously unknown proteins, and validate our findings against a recent high resolution map of the mouse stem cell proteome. The methodology is distributed as part of the open-source Bioconductor pRoloc suite for spatial proteomics data analysis.

  20. Stopping power accuracy and achievable spatial resolution of helium ion imaging using a prototype particle CT detector system

    Directory of Open Access Journals (Sweden)

    Volz Lennart

    2017-09-01

    Full Text Available A precise relative stopping power map of the patient is crucial for accurate particle therapy. Charged particle imaging determines the stopping power either tomographically – particle computed tomography (pCT – or by combining prior knowledge from particle radiography (pRad and x-ray CT. Generally, multiple Coulomb scattering limits the spatial resolution. Compared to protons, heavier particles scatter less due to their lower charge/mass ratio. A theoretical framework to predict the most likely trajectory of particles in matter was developed for light ions up to carbon and was found to be the most accurate for helium comparing for fixed initial velocity. To further investigate the potential of helium in particle imaging, helium computed tomography (HeCT and radiography (HeRad were studied at the Heidel-berg Ion-Beam Therapy Centre (HIT using a prototype pCT detector system registering individual particles, originally developed by the U.S. pCT collaboration. Several phantoms were investigated: modules of the Catphan QA phantom for analysis of spatial resolution and achievable stopping power accuracy, a paediatric head phantom (CIRS and a custom-made phantom comprised of animal meat enclosed in a 2 % agarose mixture representing human tissue. The pCT images were reconstructed applying the CARP iterative reconstruction algorithm. The MTF10% was investigated using a sharp edge gradient technique. HeRad provides a spatial resolution above that of protons (MTF1010%=6.07 lp/cm for HeRad versus MTF10%=3.35 lp/cm for proton radiography. For HeCT, the spatial resolution was limited by the number of projections acquired (90 projections for a full scan. The RSP accuracy for all inserts of the Catphan CTP404 module was found to be 2.5% or better and is subject to further optimisation. In conclusion, helium imaging appears to offer higher spatial resolution compared to proton imaging. In future studies, the advantage of helium imaging compared to other

  1. Open issues in hyperspectral imaging for diagnostics on paintings: when high-spectral and spatial resolution turns into data redundancy

    Science.gov (United States)

    Cucci, Costanza; Casini, Andrea; Picollo, Marcello; Poggesi, Marco; Stefani, Lorenzo

    2011-06-01

    Hyper-Spectral Imaging (HSI) has emerged in the last decade as one of the most promising technologies for diagnostics and documentation of polychrome surfaces. Despite the fact that presently HSI is a well-established technique for non-invasive investigations on paintings, a number of technological issues remain open and are still topics for on-going studies. In particular, it is known that high spatial resolution is a crucial parameter for obtaining high quality images, whereas the possibility to identify pictorial materials strictly depends on the spectral resolution and on the extent of the spectral region investigated. At the same time, by increasing the sampling rates in both the spatial and spectral dimensions, the size of the data-set will be enlarged and the acquisition times will be lengthened. As a consequence, a good compromise between the acquisition of highquality data and their application should always be reached, taking into account the specific purposes of the HSI application. The above questions are discussed in the present work, which illustrates two applications of the latest version of a hyperspectral scanner designed at IFAC-CNR for the digitization of artworks. The prototype has recently been upgraded, with new visualization software as well as mechanical and optical improvements. This high performance system operates in the 400-1000nm spectral range, with a spectral resolution of about 2-3 nm and a spatial sampling of 0.1 mm over areas of about 1 m2. Three case-studies are presented, which highlight the importance of both high spatial and high spectral sampling rate in hyperspectral imaging. Two of the examples reported focus on the full exploitation of the spatial resolution: the first one is a study performed on a small painting, dated from the eighteenth century and belonging to the Uffizi Gallery in Florence; the second case-study refers to the valuable "Carrand diptych" (14th century) from the Bargello Museum in Florence. The last

  2. High spatial resolution magnetic resonance imaging of experimental cerebral venous thrombosis with a blood pool contrast agent.

    Science.gov (United States)

    Spuentrup, E; Wiethoff, A J; Parsons, E C; Spangenberg, P; Stracke, C P

    2010-06-01

    The purpose of this study was to investigate the feasibility of clot visualization in small sinus and cortical veins with contrast enhanced MRA in a cerebral venous thrombosis animal model using a blood pool contrast agent, Gadofosveset, and high spatial resolution imaging. For induction of cerebral venous thrombosis a recently developed combined interventional and microsurgical model was used. Cerebral sinus and cortical vein thrombosis was induced in six pigs. Two further pigs died during the procedure. Standard structural, time-of-flight- and phase contrast-angiograms were followed by fast time resolved high resolution 3D MRA (4D MRA) and subsequent high spatial resolution 3D MRA in the equilibrium phase with and without addition of parallel imaging. Visualization of the clots using the different sequences was subjectively compared and contrast-to-noise ratio (CNR) was assessed. In the remaining six animals the procedure and MR-imaging protocol including administration of Gadofosveset was successfully completed. The 3D high resolution MRA in the equilibrium phase without the addition of parallel imaging was superior to all the other applied MR measurement techniques in terms of visualization of the clots. Only applying this sequence bridging vein thromboses were also seen as a small filling defect with a high CNR of >18. Only the non-accelerated high spatial resolution 3D MRA in the equilibrium in conjunction with the blood pool agent Gadofosveset allows for high-contrast visualization of very small clots in the cerebral sinus and cortical veins. STATEMENT CLINICAL IMPACT: Detection of cortical vein thrombosis is of high clinical impact. Conventional MRI sequences often fail to visualize the clot. We could demonstrate that, in contrast to conventional sequences, with high spatial resolution 3D MRA in the equilibrium in conjunction with the blood pool agent Gadofosveset very small clots in the cerebral sinus and cortical veins could be successfully visualized. We

  3. Species classification using Unmanned Aerial Vehicle (UAV)-acquired high spatial resolution imagery in a heterogeneous grassland

    Science.gov (United States)

    Lu, Bing; He, Yuhong

    2017-06-01

    Investigating spatio-temporal variations of species composition in grassland is an essential step in evaluating grassland health conditions, understanding the evolutionary processes of the local ecosystem, and developing grassland management strategies. Space-borne remote sensing images (e.g., MODIS, Landsat, and Quickbird) with spatial resolutions varying from less than 1 m to 500 m have been widely applied for vegetation species classification at spatial scales from community to regional levels. However, the spatial resolutions of these images are not fine enough to investigate grassland species composition, since grass species are generally small in size and highly mixed, and vegetation cover is greatly heterogeneous. Unmanned Aerial Vehicle (UAV) as an emerging remote sensing platform offers a unique ability to acquire imagery at very high spatial resolution (centimetres). Compared to satellites or airplanes, UAVs can be deployed quickly and repeatedly, and are less limited by weather conditions, facilitating advantageous temporal studies. In this study, we utilize an octocopter, on which we mounted a modified digital camera (with near-infrared (NIR), green, and blue bands), to investigate species composition in a tall grassland in Ontario, Canada. Seven flight missions were conducted during the growing season (April to December) in 2015 to detect seasonal variations, and four of them were selected in this study to investigate the spatio-temporal variations of species composition. To quantitatively compare images acquired at different times, we establish a processing flow of UAV-acquired imagery, focusing on imagery quality evaluation and radiometric correction. The corrected imagery is then applied to an object-based species classification. Maps of species distribution are subsequently used for a spatio-temporal change analysis. Results indicate that UAV-acquired imagery is an incomparable data source for studying fine-scale grassland species composition

  4. Sensitivity of marine-reserve design to the spatial resolution of socioeconomic data.

    Science.gov (United States)

    Richardson, Elizabeth A; Kaiser, Michel J; Edwards-Jones, Gareth; Possingham, Hugh P

    2006-08-01

    Socioeconomic considerations should have an important place in reserve design. Systematic reserve-selection tools allow simultaneous optimization for ecological objectives while minimizing costs but are seldom used to incorporate socioeconomic costs in the reserve-design process. The sensitivity of this process to biodiversity data resolution has been studied widely but the issue of socioeconomic data resolution has not previously been considered. We therefore designed marine reserves for biodiversity conservation with the constraint of minimizing commercial fishing revenue losses and investigated how economic data resolution affected the results. Incorporating coarse-resolution economic data from official statistics generated reserves that were only marginally less costly to the fishery than those designed with no attempt to minimize economic impacts. An intensive survey yielded fine-resolution data that, when incorporated in the design process, substantially reduced predicted fishery losses. Such an approach could help minimize fisher displacement because the least profitable grounds are selected for the reserve. Other work has shown that low-resolution biodiversity data can lead to underestimation of the conservation value of some sites, and a risk of overlooking the most valuable areas, and we have similarly shown that low-resolution economic data can cause underestimation of the profitability of some sites and a risk of inadvertently including these in the reserve. Detailed socioeconomic data are therefore an essential input for the design of cost-effective reserve networks.

  5. Ribbon scanning confocal for high-speed high-resolution volume imaging of brain.

    Directory of Open Access Journals (Sweden)

    Alan M Watson

    Full Text Available Whole-brain imaging is becoming a fundamental means of experimental insight; however, achieving subcellular resolution imagery in a reasonable time window has not been possible. We describe the first application of multicolor ribbon scanning confocal methods to collect high-resolution volume images of chemically cleared brains. We demonstrate that ribbon scanning collects images over ten times faster than conventional high speed confocal systems but with equivalent spectral and spatial resolution. Further, using this technology, we reconstruct large volumes of mouse brain infected with encephalitic alphaviruses and demonstrate that regions of the brain with abundant viral replication were inaccessible to vascular perfusion. This reveals that the destruction or collapse of large regions of brain micro vasculature may contribute to the severe disease caused by Venezuelan equine encephalitis virus. Visualization of this fundamental impact of infection would not be possible without sampling at subcellular resolution within large brain volumes.

  6. Development and applications of coherent imaging with improved temporal and spatial resolution; Developpement et applications de l'imagerie coherente aux rayons X a tres haute resolution spatiale et temporelle

    Energy Technology Data Exchange (ETDEWEB)

    Mokso, Rajmund

    2006-07-01

    This work has 2 purposes: the improvement of both temporal and spatial resolution of X-ray tomography. The first part is devoted to the technical aspects of the tomographic technique, particularly at the ESRF (European Synchrotron Radiation Facility) beamline ID19, and the application of the new acquisition scheme to the imaging of liquid foams. We have improved the temporal resolution and field of view of the setup, which allowed to obtain for the first time experimental data with good statistics on three dimensional liquid foams. In the second part of the thesis we have described the Kirkpatrick-Baez focusing system and its first applications. In terms of stability and image quality the developments presented in this part of the thesis provide valuable evidence for the feasibility of phase contrast tomography in magnifying geometry. Since the ultimate goal of this research is to improve the spatial resolution in tomography for applications, four different contributions are important for the characterization of the imaging system: 1) the thermal stability and mechanical imperfections, 2) effects of distortion induced by mirror imperfections, 3) effects of refraction on sample borders, and 4) phase propagation effects with the influence of the magnification. Each of these factors has been studied.

  7. High spatial resolution myocardial perfusion imaging during high dose dobutamine/atropine stress magnetic resonance using k-t SENSE.

    Science.gov (United States)

    Gebker, R; Jahnke, C; Manka, R; Frick, M; Hucko, T; Kozerke, S; Schnackenburg, B; Fleck, E; Paetsch, I

    2012-07-26

    To prospectively evaluate the feasibility and diagnostic accuracy of high spatial resolution myocardial perfusion imaging during high dose dobutamine/atropine stress magnetic resonance (DSMR) for the detection of coronary artery disease (CAD). DSMR-wall motion was combined with perfusion imaging (DSMR-perfusion) in 78 patients prior to clinically indicated invasive coronary angiography. For DSMR-perfusion an in-plane spatial resolution of 1.5 × 1.5mm(2) was attained by using 8 × k-space and time sensitivity encoding (k-t SENSE). Image quality and extent of artifacts during perfusion imaging were evaluated. Wall motion and perfusion data were interpreted sequentially. Significant CAD (stenosis ≥ 70%) was present in 52 patients and involved 86 coronary territories. One patient did not reach target heart rate despite maximum infusion of dobutamine/atropine. Two studies (3%) were non-diagnostic due k-t SENSE related artifacts resulting from insufficient breathhold capability. Overall image quality was good. Dark-rim artifacts were limited to the endocardial border at a mean width of 1.8mm. The addition of DSMR-perfusion to DSMR-wall motion data improved sensitivity for the detection of CAD (92% vs. 81%, P=0.03) and accurate determination of disease extent (85% vs. 66% of territories, Pspatial resolution DSMR-perfusion imaging at maximum stress level was feasible, improved sensitivity over DSMR-wall motion for the detection of CAD and allowed an accurate determination of disease extent. Specificity of DSMR-perfusion with k-t SENSE improved compared to prior studies using lower spatial resolution. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  8. Sensitivity of drainage morphometry based hydrological response (GIUH) of a river basin to the spatial resolution of DEM data

    Science.gov (United States)

    Sahoo, Ramendra; Jain, Vikrant

    2018-02-01

    Drainage network pattern and its associated morphometric ratios are some of the important plan form attributes of a drainage basin. Extraction of these attributes for any basin is usually done by spatial analysis of the elevation data of that basin. These planform attributes are further used as input data for studying numerous process-response interactions inside the physical premise of the basin. One of the important uses of the morphometric ratios is its usage in the derivation of hydrologic response of a basin using GIUH concept. Hence, accuracy of the basin hydrological response to any storm event depends upon the accuracy with which, the morphometric ratios can be estimated. This in turn, is affected by the spatial resolution of the source data, i.e. the digital elevation model (DEM). We have estimated the sensitivity of the morphometric ratios and the GIUH derived hydrograph parameters, to the resolution of source data using a 30 meter and a 90 meter DEM. The analysis has been carried out for 50 drainage basins in a mountainous catchment. A simple and comprehensive algorithm has been developed for estimation of the morphometric indices from a stream network. We have calculated all the morphometric parameters and the hydrograph parameters for each of these basins extracted from two different DEMs, with different spatial resolutions. Paired t-test and Sign test were used for the comparison. Our results didn't show any statistically significant difference among any of the parameters calculated from the two source data. Along with the comparative study, a first-hand empirical analysis about the frequency distribution of the morphometric and hydrologic response parameters has also been communicated. Further, a comparison with other hydrological models suggests that plan form morphometry based GIUH model is more consistent with resolution variability in comparison to topographic based hydrological model.

  9. Performance assessment of the single photon emission microscope: high spatial resolution SPECT imaging of small animal organs

    Energy Technology Data Exchange (ETDEWEB)

    Mejia, J. [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil); Reis, M.A. [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil); Laboratório Interdisciplinar de Neurociências Clínicas, Departamento de Psiquiatria, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Miranda, A.C.C. [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil); Batista, I.R. [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil); Laboratório Interdisciplinar de Neurociências Clínicas, Departamento de Psiquiatria, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Barboza, M.R.F.; Shih, M.C. [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil); Fu, G. [GE Global Research, Schenectady, NY (United States); Chen, C.T. [Department of Radiology, University of Chicago, Chicago, IL (United States); Meng, L.J. [Department of Nuclear, Plasma and Radiological Engineering, University of Illinois, Urbana-Champaign, IL (United States); Bressan, R.A. [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil); Laboratório Interdisciplinar de Neurociências Clínicas, Departamento de Psiquiatria, Universidade Federal de São Paulo, São Paulo, SP (Brazil); Amaro, E. Jr [Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, SP (Brazil)

    2013-11-06

    The single photon emission microscope (SPEM) is an instrument developed to obtain high spatial resolution single photon emission computed tomography (SPECT) images of small structures inside the mouse brain. SPEM consists of two independent imaging devices, which combine a multipinhole collimator, a high-resolution, thallium-doped cesium iodide [CsI(Tl)] columnar scintillator, a demagnifying/intensifier tube, and an electron-multiplying charge-coupling device (CCD). Collimators have 300- and 450-µm diameter pinholes on tungsten slabs, in hexagonal arrays of 19 and 7 holes. Projection data are acquired in a photon-counting strategy, where CCD frames are stored at 50 frames per second, with a radius of rotation of 35 mm and magnification factor of one. The image reconstruction software tool is based on the maximum likelihood algorithm. Our aim was to evaluate the spatial resolution and sensitivity attainable with the seven-pinhole imaging device, together with the linearity for quantification on the tomographic images, and to test the instrument in obtaining tomographic images of different mouse organs. A spatial resolution better than 500 µm and a sensitivity of 21.6 counts·s{sup -1}·MBq{sup -1} were reached, as well as a correlation coefficient between activity and intensity better than 0.99, when imaging {sup 99m}Tc sources. Images of the thyroid, heart, lungs, and bones of mice were registered using {sup 99m}Tc-labeled radiopharmaceuticals in times appropriate for routine preclinical experimentation of <1 h per projection data set. Detailed experimental protocols and images of the aforementioned organs are shown. We plan to extend the instrument's field of view to fix larger animals and to combine data from both detectors to reduce the acquisition time or applied activity.

  10. Sensitivity of modeled estuarine circulation to spatial and temporal resolution of input meteorological forcing of a cold frontal passage

    Science.gov (United States)

    Weaver, Robert J.; Taeb, Peyman; Lazarus, Steven; Splitt, Michael; Holman, Bryan P.; Colvin, Jeffrey

    2016-12-01

    In this study, a four member ensemble of meteorological forcing is generated using the Weather Research and Forecasting (WRF) model in order to simulate a frontal passage event that impacted the Indian River Lagoon (IRL) during March 2015. The WRF model is run to provide high and low, spatial (0.005° and 0.1°) and temporal (30 min and 6 h) input wind and pressure fields. The four member ensemble is used to force the Advanced Circulation model (ADCIRC) coupled with Simulating Waves Nearshore (SWAN) and compute the hydrodynamic and wave response. Results indicate that increasing the spatial resolution of the meteorological forcing has a greater impact on the results than increasing the temporal resolution in coastal systems like the IRL where the length scales are smaller than the resolution of the operational meteorological model being used to generate the forecast. Changes in predicted water elevations are due in part to the upwind and downwind behavior of the input wind forcing. The significant wave height is more sensitive to the meteorological forcing, exhibited by greater ensemble spread throughout the simulation. It is important that the land mask, seen by the meteorological model, is representative of the geography of the coastal estuary as resolved by the hydrodynamic model. As long as the temporal resolution of the wind field captures the bulk characteristics of the frontal passage, computational resources should be focused so as to ensure that the meteorological model resolves the spatial complexities, such as the land-water interface, that drive the land use responsible for dynamic downscaling of the winds.

  11. Performance assessment of the single photon emission microscope: high spatial resolution SPECT imaging of small animal organs

    Directory of Open Access Journals (Sweden)

    J. Mejia

    2013-11-01

    Full Text Available The single photon emission microscope (SPEM is an instrument developed to obtain high spatial resolution single photon emission computed tomography (SPECT images of small structures inside the mouse brain. SPEM consists of two independent imaging devices, which combine a multipinhole collimator, a high-resolution, thallium-doped cesium iodide [CsI(Tl] columnar scintillator, a demagnifying/intensifier tube, and an electron-multiplying charge-coupling device (CCD. Collimators have 300- and 450-µm diameter pinholes on tungsten slabs, in hexagonal arrays of 19 and 7 holes. Projection data are acquired in a photon-counting strategy, where CCD frames are stored at 50 frames per second, with a radius of rotation of 35 mm and magnification factor of one. The image reconstruction software tool is based on the maximum likelihood algorithm. Our aim was to evaluate the spatial resolution and sensitivity attainable with the seven-pinhole imaging device, together with the linearity for quantification on the tomographic images, and to test the instrument in obtaining tomographic images of different mouse organs. A spatial resolution better than 500 µm and a sensitivity of 21.6 counts·s-1·MBq-1 were reached, as well as a correlation coefficient between activity and intensity better than 0.99, when imaging 99mTc sources. Images of the thyroid, heart, lungs, and bones of mice were registered using 99mTc-labeled radiopharmaceuticals in times appropriate for routine preclinical experimentation of <1 h per projection data set. Detailed experimental protocols and images of the aforementioned organs are shown. We plan to extend the instrument's field of view to fix larger animals and to combine data from both detectors to reduce the acquisition time or applied activity.

  12. Spectro-spatial relationship between UAV derived high resolution DEM and SWIR hyperspectral data: application to an ombrotrophic peatland

    Science.gov (United States)

    Arroyo-Mora, J. Pablo; Kalacska, Margaret; Lucanus, Oliver; Soffer, Raymond; Leblanc, George

    2017-10-01

    Peatlands cover 3% of the globe and are key ecosystems for climate regulation. To better understand the potential effects of climate change in peatlands, a major challenge is to determine the complex relationship between hydrology, microtopography, vegetation patterns, and gas exchange. Here we study the spectral and spatial relationship of microtopographic features (e.g. hollows and hummocks) and near-surface water through narrow-band spectral indices derived from hyperspectral imagery. We used a very high resolution digital elevation model (2.5 cm horizontal, 2.2 cm vertical resolution) derived from an UAV based Structure from Motion photogrammetry to map hollows and hummocks in the peatland area. We also created a 2 cm spatial resolution orthophoto mosaic to enhance the visual identification of these hollows and hummocks. Furthermore, we collected SWIR airborne hyperspectral (880-2450 nm) imagery at 1 m pixel resolution over four time periods, from April to June 2016 (phenological gradient: vegetation greening). Our results revealed an increase in the water indices values (NDWI1640 and NDWI2130) and a decrease in the moisture stress index (MSI) between April and June. In addition, for the same period the NDWI2130 shows a bimodal distribution indicating potential to quantitatively assess moisture differences between mosses and vascular plants. Our results, using the digital surface model to extract NDWI2130 values, showed significant differences between hollows and hummocks for each time period, with higher moisture values for hollows (i.e. moss dominated). However, for June, the water index for hummocks approximated the values found in hollows. Our study shows the advantages of using fine spatial and spectral scales to detect temporal trends in near surface water in a peatland.

  13. Stability of Spatially Distributed, Intersecting Aircraft Flows Under Sequential Conflict Resolution Schemes

    Data.gov (United States)

    National Aeronautics and Space Administration — This paper discusses the effect of sequential conflict resolution maneuvers of an infinite aircraft flow through a finite control volume. Aircraft flow models are...

  14. Health impact assessment of particulate pollution in Tallinn using fine spatial resolution and modeling techniques.

    Science.gov (United States)

    Orru, Hans; Teinemaa, Erik; Lai, Taavi; Tamm, Tanel; Kaasik, Marko; Kimmel, Veljo; Kangur, Kati; Merisalu, Eda; Forsberg, Bertil

    2009-03-03

    Health impact assessments (HIA) use information on exposure, baseline mortality/morbidity and exposure-response functions from epidemiological studies in order to quantify the health impacts of existing situations and/or alternative scenarios. The aim of this study was to improve HIA methods for air pollution studies in situations where exposures can be estimated using GIS with high spatial resolution and dispersion modeling approaches. Tallinn was divided into 84 sections according to neighborhoods, with a total population of approx. 390,000 persons. Actual baseline rates for total mortality and hospitalization with cardiovascular and respiratory diagnosis were identified. The exposure to fine particles (PM2.5) from local emissions was defined as the modeled annual levels. The model validation and morbidity assessment were based on 2006 PM10 or PM2.5 levels at 3 monitoring stations. The exposure-response coefficients used were for total mortality 6.2% (95% CI 1.6-11%) per 10 microg/m3 increase of annual mean PM2.5 concentration and for the assessment of respiratory and cardiovascular hospitalizations 1.14% (95% CI 0.62-1.67%) and 0.73% (95% CI 0.47-0.93%) per 10 microg/m3 increase of PM10. The direct costs related to morbidity were calculated according to hospital treatment expenses in 2005 and the cost of premature deaths using the concept of Value of Life Year (VOLY). The annual population-weighted-modeled exposure to locally emitted PM2.5 in Tallinn was 11.6 microg/m3. Our analysis showed that it corresponds to 296 (95% CI 76528) premature deaths resulting in 3859 (95% CI 10236636) Years of Life Lost (YLL) per year. The average decrease in life-expectancy at birth per resident of Tallinn was estimated to be 0.64 (95% CI 0.17-1.10) years. While in the polluted city centre this may reach 1.17 years, in the least polluted neighborhoods it remains between 0.1 and 0.3 years. When dividing the YLL by the number of premature deaths, the decrease in life expectancy

  15. Health impact assessment of particulate pollution in Tallinn using fine spatial resolution and modeling techniques

    Directory of Open Access Journals (Sweden)

    Kimmel Veljo

    2009-03-01

    Full Text Available Abstract Background Health impact assessments (HIA use information on exposure, baseline mortality/morbidity and exposure-response functions from epidemiological studies in order to quantify the health impacts of existing situations and/or alternative scenarios. The aim of this study was to improve HIA methods for air pollution studies in situations where exposures can be estimated using GIS with high spatial resolution and dispersion modeling approaches. Methods Tallinn was divided into 84 sections according to neighborhoods, with a total population of approx. 390 000 persons. Actual baseline rates for total mortality and hospitalization with cardiovascular and respiratory diagnosis were identified. The exposure to fine particles (PM2.5 from local emissions was defined as the modeled annual levels. The model validation and morbidity assessment were based on 2006 PM10 or PM2.5 levels at 3 monitoring stations. The exposure-response coefficients used were for total mortality 6.2% (95% CI 1.6–11% per 10 μg/m3 increase of annual mean PM2.5 concentration and for the assessment of respiratory and cardiovascular hospitalizations 1.14% (95% CI 0.62–1.67% and 0.73% (95% CI 0.47–0.93% per 10 μg/m3 increase of PM10. The direct costs related to morbidity were calculated according to hospital treatment expenses in 2005 and the cost of premature deaths using the concept of Value of Life Year (VOLY. Results The annual population-weighted-modeled exposure to locally emitted PM2.5 in Tallinn was 11.6 μg/m3. Our analysis showed that it corresponds to 296 (95% CI 76528 premature deaths resulting in 3859 (95% CI 10236636 Years of Life Lost (YLL per year. The average decrease in life-expectancy at birth per resident of Tallinn was estimated to be 0.64 (95% CI 0.17–1.10 years. While in the polluted city centre this may reach 1.17 years, in the least polluted neighborhoods it remains between 0.1 and 0.3 years. When dividing the YLL by the number of

  16. On the sensitivity of urban hydrodynamic modelling to rainfall spatial and temporal resolution

    NARCIS (Netherlands)

    Bruni, G.; Reinoso Rondinel, R.R.; Van de Giesen, N.C.; Clemens, F.H.L.R.; Ten Veldhuis, J.A.E.

    2014-01-01

    Cities are increasingly vulnerable to floods generated by intense rainfall, because of their high degree of imperviousness, implementation of infrastructures, and changes in precipitation patterns due to climate change. Accurate information of convective storm characteristics at high spatial and

  17. OBJECT BASED IMAGE ANALYSIS COMBINING HIGH SPATIAL RESOLUTION IMAGERY AND LASER POINT CLOUDS FOR URBAN LAND COVER

    Directory of Open Access Journals (Sweden)

    X. Zou

    2016-06-01

    Full Text Available With the rapid developments of the sensor technology, high spatial resolution imagery and airborne Lidar point clouds can be captured nowadays, which make classification, extraction, evaluation and analysis of a broad range of object features available. High resolution imagery, Lidar dataset and parcel map can be widely used for classification as information carriers. Therefore, refinement of objects classification is made possible for the urban land cover. The paper presents an approach to object based image analysis (OBIA combing high spatial resolution imagery and airborne Lidar point clouds. The advanced workflow for urban land cover is designed with four components. Firstly, colour-infrared TrueOrtho photo and laser point clouds were pre-processed to derive the parcel map of water bodies and nDSM respectively. Secondly, image objects are created via multi-resolution image segmentation integrating scale parameter, the colour and shape properties with compactness criterion. Image can be subdivided into separate object regions. Thirdly, image objects classification is performed on the basis of segmentation and a rule set of knowledge decision tree. These objects imagery are classified into six classes such as water bodies, low vegetation/grass, tree, low building, high building and road. Finally, in order to assess the validity of the classification results for six classes, accuracy assessment is performed through comparing randomly distributed reference points of TrueOrtho imagery with the classification results, forming the confusion matrix and calculating overall accuracy and Kappa coefficient. The study area focuses on test site Vaihingen/Enz and a patch of test datasets comes from the benchmark of ISPRS WG III/4 test project. The classification results show higher overall accuracy for most types of urban land cover. Overall accuracy is 89.5% and Kappa coefficient equals to 0.865. The OBIA approach provides an effective and convenient way

  18. High-resolution mapping of the NO2 spatial distribution over Belgian urban areas based on airborne APEX remote sensing

    Science.gov (United States)

    Tack, Frederik; Merlaud, Alexis; Iordache, Marian-Daniel; Danckaert, Thomas; Yu, Huan; Fayt, Caroline; Meuleman, Koen; Deutsch, Felix; Fierens, Frans; Van Roozendael, Michel

    2017-05-01

    We present retrieval results of tropospheric nitrogen dioxide (NO2) vertical column densities (VCDs), mapped at high spatial resolution over three Belgian cities, based on the DOAS analysis of Airborne Prism EXperiment (APEX) observations. APEX, developed by a Swiss-Belgian consortium on behalf of ESA (European Space Agency), is a pushbroom hyperspectral imager characterised by a high spatial resolution and high spectral performance. APEX data have been acquired under clear-sky conditions over the two largest and most heavily polluted Belgian cities, i.e. Antwerp and Brussels on 15 April and 30 June 2015. Additionally, a number of background sites have been covered for the reference spectra. The APEX instrument was mounted in a Dornier DO-228 aeroplane, operated by Deutsches Zentrum für Luft- und Raumfahrt (DLR). NO2 VCDs were retrieved from spatially aggregated radiance spectra allowing urban plumes to be resolved at the resolution of 60 × 80 m2. The main sources in the Antwerp area appear to be related to the (petro)chemical industry while traffic-related emissions dominate in Brussels. The NO2 levels observed in Antwerp range between 3 and 35 × 1015 molec cm-2, with a mean VCD of 17.4 ± 3.7 × 1015 molec cm-2. In the Brussels area, smaller levels are found, ranging between 1 and 20 × 1015 molec cm-2 and a mean VCD of 7.7 ± 2.1 × 1015 molec cm-2. The overall errors on the retrieved NO2 VCDs are on average 21 and 28 % for the Antwerp and Brussels data sets. Low VCD retrievals are mainly limited by noise (1σ slant error), while high retrievals are mainly limited by systematic errors. Compared to coincident car mobile-DOAS measurements taken in Antwerp and Brussels, both data sets are in good agreement with correlation coefficients around 0.85 and slopes close to unity. APEX retrievals tend to be, on average, 12 and 6 % higher for Antwerp and Brussels, respectively. Results demonstrate that the NO2 distribution in an urban environment, and its fine

  19. Quantifying Surface Water Dynamics at 30 Meter Spatial Resolution in the North American High Northern Latitudes 1991-2011

    Science.gov (United States)

    Carroll, Mark; Wooten, Margaret; DiMiceli, Charlene; Sohlberg, Robert; Kelly, Maureen

    2016-01-01

    The availability of a dense time series of satellite observations at moderate (30 m) spatial resolution is enabling unprecedented opportunities for understanding ecosystems around the world. A time series of data from Landsat was used to generate a series of three maps at decadal time step to show how surface water has changed from 1991 to 2011 in the high northern latitudes of North America. Previous attempts to characterize the change in surface water in this region have been limited in either spatial or temporal resolution, or both. This series of maps was generated for the NASA Arctic and Boreal Vulnerability Experiment (ABoVE), which began in fall 2015. These maps show a nominal extent of surface water by using multiple observations to make a single map for each time step. This increases the confidence that any detected changes are related to climate or ecosystem changes not simply caused by short duration weather events such as flood or drought. The methods and comparison to other contemporary maps of the region are presented here. Initial verification results indicate 96% producer accuracy and 54% user accuracy when compared to 2-m resolution World View-2 data. All water bodies that were omitted were one Landsat pixel or smaller, hence below detection limits of the instrument.

  20. A novel airport extraction model based on saliency region detection for high spatial resolution remote sensing images

    Science.gov (United States)

    Lv, Wen; Zhang, Libao; Zhu, Yongchun

    2017-06-01

    The airport is one of the most crucial traffic facilities in military and civil fields. Automatic airport extraction in high spatial resolution remote sensing images has many applications such as regional planning and military reconnaissance. Traditional airport extraction strategies usually base on prior knowledge and locate the airport target by template matching and classification, which will cause high computation complexity and large costs of computing resources for high spatial resolution remote sensing images. In this paper, we propose a novel automatic airport extraction model based on saliency region detection, airport runway extraction and adaptive threshold segmentation. In saliency region detection, we choose frequency-tuned (FT) model for computing airport saliency using low level features of color and luminance that is easy and fast to implement and can provide full-resolution saliency maps. In airport runway extraction, Hough transform is adopted to count the number of parallel line segments. In adaptive threshold segmentation, the Otsu threshold segmentation algorithm is proposed to obtain more accurate airport regions. The experimental results demonstrate that the proposed model outperforms existing saliency analysis models and