WorldWideScience

Sample records for subcellular location patterns

  1. Finding the Subcellular Location of Barley, Wheat, Rice and Maize Proteins: The Compendium of Crop Proteins with Annotated Locations (cropPAL).

    Science.gov (United States)

    Hooper, Cornelia M; Castleden, Ian R; Aryamanesh, Nader; Jacoby, Richard P; Millar, A Harvey

    2016-01-01

    Barley, wheat, rice and maize provide the bulk of human nutrition and have extensive industrial use as agricultural products. The genomes of these crops each contains >40,000 genes encoding proteins; however, the major genome databases for these species lack annotation information of protein subcellular location for >80% of these gene products. We address this gap, by constructing the compendium of crop protein subcellular locations called crop Proteins with Annotated Locations (cropPAL). Subcellular location is most commonly determined by fluorescent protein tagging of live cells or mass spectrometry detection in subcellular purifications, but can also be predicted from amino acid sequence or protein expression patterns. The cropPAL database collates 556 published studies, from >300 research institutes in >30 countries that have been previously published, as well as compiling eight pre-computed subcellular predictions for all Hordeum vulgare, Triticum aestivum, Oryza sativa and Zea mays protein sequences. The data collection including metadata for proteins and published studies can be accessed through a search portal http://crop-PAL.org. The subcellular localization information housed in cropPAL helps to depict plant cells as compartmentalized protein networks that can be investigated for improving crop yield and quality, and developing new biotechnological solutions to agricultural challenges. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  2. Multi-Label Learning via Random Label Selection for Protein Subcellular Multi-Locations Prediction.

    Science.gov (United States)

    Wang, Xiao; Li, Guo-Zheng

    2013-03-12

    Prediction of protein subcellular localization is an important but challenging problem, particularly when proteins may simultaneously exist at, or move between, two or more different subcellular location sites. Most of the existing protein subcellular localization methods are only used to deal with the single-location proteins. In the past few years, only a few methods have been proposed to tackle proteins with multiple locations. However, they only adopt a simple strategy, that is, transforming the multi-location proteins to multiple proteins with single location, which doesn't take correlations among different subcellular locations into account. In this paper, a novel method named RALS (multi-label learning via RAndom Label Selection), is proposed to learn from multi-location proteins in an effective and efficient way. Through five-fold cross validation test on a benchmark dataset, we demonstrate our proposed method with consideration of label correlations obviously outperforms the baseline BR method without consideration of label correlations, indicating correlations among different subcellular locations really exist and contribute to improvement of prediction performance. Experimental results on two benchmark datasets also show that our proposed methods achieve significantly higher performance than some other state-of-the-art methods in predicting subcellular multi-locations of proteins. The prediction web server is available at http://levis.tongji.edu.cn:8080/bioinfo/MLPred-Euk/ for the public usage.

  3. Predicting protein subcellular locations using hierarchical ensemble of Bayesian classifiers based on Markov chains

    Directory of Open Access Journals (Sweden)

    Eils Roland

    2006-06-01

    Full Text Available Abstract Background The subcellular location of a protein is closely related to its function. It would be worthwhile to develop a method to predict the subcellular location for a given protein when only the amino acid sequence of the protein is known. Although many efforts have been made to predict subcellular location from sequence information only, there is the need for further research to improve the accuracy of prediction. Results A novel method called HensBC is introduced to predict protein subcellular location. HensBC is a recursive algorithm which constructs a hierarchical ensemble of classifiers. The classifiers used are Bayesian classifiers based on Markov chain models. We tested our method on six various datasets; among them are Gram-negative bacteria dataset, data for discriminating outer membrane proteins and apoptosis proteins dataset. We observed that our method can predict the subcellular location with high accuracy. Another advantage of the proposed method is that it can improve the accuracy of the prediction of some classes with few sequences in training and is therefore useful for datasets with imbalanced distribution of classes. Conclusion This study introduces an algorithm which uses only the primary sequence of a protein to predict its subcellular location. The proposed recursive scheme represents an interesting methodology for learning and combining classifiers. The method is computationally efficient and competitive with the previously reported approaches in terms of prediction accuracies as empirical results indicate. The code for the software is available upon request.

  4. Organ accumulation and subcellular location of Cicer arietinum ST1 protein.

    Science.gov (United States)

    Albornos, Lucía; Cabrera, Javier; Hernández-Nistal, Josefina; Martín, Ignacio; Labrador, Emilia; Dopico, Berta

    2014-07-01

    The ST (ShooT Specific) proteins are a new family of proteins characterized by a signal peptide, tandem repeats of 25/26 amino acids, and a domain of unknown function (DUF2775), whose presence is limited to a few families of dicotyledonous plants, mainly Fabaceae and Asteraceae. Their function remains unknown, although involvement in plant growth, fruit morphogenesis or in biotic and abiotic interactions have been suggested. This work is focused on ST1, a Cicer arietinum ST protein. We established the protein accumulation in different tissues and organs of chickpea seedlings and plants and its subcellular localization, which could indicate the possible function of ST1. The raising of specific antibodies against ST1 protein revealed that its accumulation in epicotyls and radicles was related to their elongation rate. Its pattern of tissue location in cotyledons during seed formation and early seed germination, as well as its localization in the perivascular fibres of epicotyls and radicles, indicated a possible involvement in seed germination and seedling growth. ST1 protein appears both inside the cell and in the cell wall. This double subcellular localization was found in every organ in which the ST1 protein was detected: seeds, cotyledons and seedling epicotyls and radicles. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. Multi-label learning with fuzzy hypergraph regularization for protein subcellular location prediction.

    Science.gov (United States)

    Chen, Jing; Tang, Yuan Yan; Chen, C L Philip; Fang, Bin; Lin, Yuewei; Shang, Zhaowei

    2014-12-01

    Protein subcellular location prediction aims to predict the location where a protein resides within a cell using computational methods. Considering the main limitations of the existing methods, we propose a hierarchical multi-label learning model FHML for both single-location proteins and multi-location proteins. The latent concepts are extracted through feature space decomposition and label space decomposition under the nonnegative data factorization framework. The extracted latent concepts are used as the codebook to indirectly connect the protein features to their annotations. We construct dual fuzzy hypergraphs to capture the intrinsic high-order relations embedded in not only feature space, but also label space. Finally, the subcellular location annotation information is propagated from the labeled proteins to the unlabeled proteins by performing dual fuzzy hypergraph Laplacian regularization. The experimental results on the six protein benchmark datasets demonstrate the superiority of our proposed method by comparing it with the state-of-the-art methods, and illustrate the benefit of exploiting both feature correlations and label correlations.

  6. Subcellular location of the enzymes of purine breakdown in the yeast Candida famata grown on uric acid

    NARCIS (Netherlands)

    Large, Peter J.; Waterham, Hans R.; Veenhuis, Marten

    1990-01-01

    The subcellular location of the enzymes of purine breakdown in the yeast Candida famata, which grows on uric acid as sole carbon and nitrogen source, has been examined by subcellular fractionation methods. Uricase was confirmed as being peroxisomal, but the other three enzymes, allantoinase,

  7. Analysis of potato virus X replicase and TGBp3 subcellular locations

    International Nuclear Information System (INIS)

    Bamunusinghe, Devinka; Hemenway, Cynthia L.; Nelson, Richard S.; Sanderfoot, Anton A.; Ye, Chang M.; Silva, Muniwarage A.T.; Payton, M.; Verchot-Lubicz, Jeanmarie

    2009-01-01

    Potato virus X (PVX) infection leads to certain cytopathological modifications of the host endomembrane system. The subcellular location of the PVX replicase was previously unknown while the PVX TGBp3 protein was previously reported to reside in the ER. Using PVX infectious clones expressing the green fluorescent protein reporter, and antisera detecting the PVX replicase and host membrane markers, we examined the subcellular distribution of the PVX replicase in relation to the TGBp3. Confocal and electron microscopic observations revealed that the replicase localizes in membrane bound structures that derive from the ER. A subset of TGBp3 resides in the ER at the same location as the replicase. Sucrose gradient fractionation showed that the PVX replicase and TGBp3 proteins co-fractionate with ER marker proteins. This localization represents a region where both proteins may be synthesized and/or function. There is no evidence to indicate that either PVX protein moves into the Golgi apparatus. Cerulenin, a drug that inhibits de novo membrane synthesis, also inhibited PVX replication. These combined data indicate that PVX replication relies on ER-derived membrane recruitment and membrane proliferation.

  8. Multi-location gram-positive and gram-negative bacterial protein subcellular localization using gene ontology and multi-label classifier ensemble.

    Science.gov (United States)

    Wang, Xiao; Zhang, Jun; Li, Guo-Zheng

    2015-01-01

    It has become a very important and full of challenge task to predict bacterial protein subcellular locations using computational methods. Although there exist a lot of prediction methods for bacterial proteins, the majority of these methods can only deal with single-location proteins. But unfortunately many multi-location proteins are located in the bacterial cells. Moreover, multi-location proteins have special biological functions capable of helping the development of new drugs. So it is necessary to develop new computational methods for accurately predicting subcellular locations of multi-location bacterial proteins. In this article, two efficient multi-label predictors, Gpos-ECC-mPLoc and Gneg-ECC-mPLoc, are developed to predict the subcellular locations of multi-label gram-positive and gram-negative bacterial proteins respectively. The two multi-label predictors construct the GO vectors by using the GO terms of homologous proteins of query proteins and then adopt a powerful multi-label ensemble classifier to make the final multi-label prediction. The two multi-label predictors have the following advantages: (1) they improve the prediction performance of multi-label proteins by taking the correlations among different labels into account; (2) they ensemble multiple CC classifiers and further generate better prediction results by ensemble learning; and (3) they construct the GO vectors by using the frequency of occurrences of GO terms in the typical homologous set instead of using 0/1 values. Experimental results show that Gpos-ECC-mPLoc and Gneg-ECC-mPLoc can efficiently predict the subcellular locations of multi-label gram-positive and gram-negative bacterial proteins respectively. Gpos-ECC-mPLoc and Gneg-ECC-mPLoc can efficiently improve prediction accuracy of subcellular localization of multi-location gram-positive and gram-negative bacterial proteins respectively. The online web servers for Gpos-ECC-mPLoc and Gneg-ECC-mPLoc predictors are freely accessible

  9. Mutational analyses of the signals involved in the subcellular location of DSCR1

    Directory of Open Access Journals (Sweden)

    Henrique-Silva Flávio

    2002-09-01

    Full Text Available Abstract Background Down syndrome is the most frequent genetic disorder in humans. Rare cases involving partial trisomy of chromosome 21 allowed a small chromosomal region common to all carriers, called Down Syndrome Critical Region (DSCR, to be determined. The DSCR1 gene was identified in this region and is expressed preferentially in the brain, heart and skeletal muscle. Recent studies have shown that DSCR1 belongs to a family of proteins that binds and inhibits calcineurin, a serine-threonine phosphatase. The work reported on herein consisted of a study of the subcellular location of DSCR1 and DSCR1-mutated forms by fusion with a green fluorescent protein, using various cell lines, including human. Results The protein's location was preferentially nuclear, independently of the isoform, cell line and insertion in the GFP's N- or C-terminal. A segment in the C-terminal, which is important in the location of the protein, was identified by deletion. On the other hand, site-directed mutational analyses have indicated the involvement of some serine and threonine residues in this event. Conclusion In this paper, we discuss the identification of amino acids which can be important for subcellular location of DSCR1. The involvement of residues that are prone to phosphorylation suggests that the location and function of DSCR1 may be regulated by kinases and/or phosphatases.

  10. LocateP: Genome-scale subcellular-location predictor for bacterial proteins

    Directory of Open Access Journals (Sweden)

    Zhou Miaomiao

    2008-03-01

    Full Text Available Abstract Background In the past decades, various protein subcellular-location (SCL predictors have been developed. Most of these predictors, like TMHMM 2.0, SignalP 3.0, PrediSi and Phobius, aim at the identification of one or a few SCLs, whereas others such as CELLO and Psortb.v.2.0 aim at a broader classification. Although these tools and pipelines can achieve a high precision in the accurate prediction of signal peptides and transmembrane helices, they have a much lower accuracy when other sequence characteristics are concerned. For instance, it proved notoriously difficult to identify the fate of proteins carrying a putative type I signal peptidase (SPIase cleavage site, as many of those proteins are retained in the cell membrane as N-terminally anchored membrane proteins. Moreover, most of the SCL classifiers are based on the classification of the Swiss-Prot database and consequently inherited the inconsistency of that SCL classification. As accurate and detailed SCL prediction on a genome scale is highly desired by experimental researchers, we decided to construct a new SCL prediction pipeline: LocateP. Results LocateP combines many of the existing high-precision SCL identifiers with our own newly developed identifiers for specific SCLs. The LocateP pipeline was designed such that it mimics protein targeting and secretion processes. It distinguishes 7 different SCLs within Gram-positive bacteria: intracellular, multi-transmembrane, N-terminally membrane anchored, C-terminally membrane anchored, lipid-anchored, LPxTG-type cell-wall anchored, and secreted/released proteins. Moreover, it distinguishes pathways for Sec- or Tat-dependent secretion and alternative secretion of bacteriocin-like proteins. The pipeline was tested on data sets extracted from literature, including experimental proteomics studies. The tests showed that LocateP performs as well as, or even slightly better than other SCL predictors for some locations and outperforms

  11. Prediction of protein subcellular locations by GO-FunD-PseAA predictor.

    Science.gov (United States)

    Chou, Kuo-Chen; Cai, Yu-Dong

    2004-08-06

    The localization of a protein in a cell is closely correlated with its biological function. With the explosion of protein sequences entering into DataBanks, it is highly desired to develop an automated method that can fast identify their subcellular location. This will expedite the annotation process, providing timely useful information for both basic research and industrial application. In view of this, a powerful predictor has been developed by hybridizing the gene ontology approach [Nat. Genet. 25 (2000) 25], functional domain composition approach [J. Biol. Chem. 277 (2002) 45765], and the pseudo-amino acid composition approach [Proteins Struct. Funct. Genet. 43 (2001) 246; Erratum: ibid. 44 (2001) 60]. As a showcase, the recently constructed dataset [Bioinformatics 19 (2003) 1656] was used for demonstration. The dataset contains 7589 proteins classified into 12 subcellular locations: chloroplast, cytoplasmic, cytoskeleton, endoplasmic reticulum, extracellular, Golgi apparatus, lysosomal, mitochondrial, nuclear, peroxisomal, plasma membrane, and vacuolar. The overall success rate of prediction obtained by the jackknife cross-validation was 92%. This is so far the highest success rate performed on this dataset by following an objective and rigorous cross-validation procedure.

  12. Subcellular Location of PKA Controls Striatal Plasticity: Stochastic Simulations in Spiny Dendrites

    Science.gov (United States)

    Oliveira, Rodrigo F.; Kim, MyungSook; Blackwell, Kim T.

    2012-01-01

    Dopamine release in the striatum has been implicated in various forms of reward dependent learning. Dopamine leads to production of cAMP and activation of protein kinase A (PKA), which are involved in striatal synaptic plasticity and learning. PKA and its protein targets are not diffusely located throughout the neuron, but are confined to various subcellular compartments by anchoring molecules such as A-Kinase Anchoring Proteins (AKAPs). Experiments have shown that blocking the interaction of PKA with AKAPs disrupts its subcellular location and prevents LTP in the hippocampus and striatum; however, these experiments have not revealed whether the critical function of anchoring is to locate PKA near the cAMP that activates it or near its targets, such as AMPA receptors located in the post-synaptic density. We have developed a large scale stochastic reaction-diffusion model of signaling pathways in a medium spiny projection neuron dendrite with spines, based on published biochemical measurements, to investigate this question and to evaluate whether dopamine signaling exhibits spatial specificity post-synaptically. The model was stimulated with dopamine pulses mimicking those recorded in response to reward. Simulations show that PKA colocalization with adenylate cyclase, either in the spine head or in the dendrite, leads to greater phosphorylation of DARPP-32 Thr34 and AMPA receptor GluA1 Ser845 than when PKA is anchored away from adenylate cyclase. Simulations further demonstrate that though cAMP exhibits a strong spatial gradient, diffusible DARPP-32 facilitates the spread of PKA activity, suggesting that additional inactivation mechanisms are required to produce spatial specificity of PKA activity. PMID:22346744

  13. Decoding the Divergent Subcellular Location of Two Highly Similar Paralogous LEA Proteins

    Directory of Open Access Journals (Sweden)

    Marie-Hélène Avelange-Macherel

    2018-05-01

    Full Text Available Many mitochondrial proteins are synthesized as precursors in the cytosol with an N-terminal mitochondrial targeting sequence (MTS which is cleaved off upon import. Although much is known about import mechanisms and MTS structural features, the variability of MTS still hampers robust sub-cellular software predictions. Here, we took advantage of two paralogous late embryogenesis abundant proteins (LEA from Arabidopsis with different subcellular locations to investigate structural determinants of mitochondrial import and gain insight into the evolution of the LEA genes. LEA38 and LEA2 are short proteins of the LEA_3 family, which are very similar along their whole sequence, but LEA38 is targeted to mitochondria while LEA2 is cytosolic. Differences in the N-terminal protein sequences were used to generate a series of mutated LEA2 which were expressed as GFP-fusion proteins in leaf protoplasts. By combining three types of mutation (substitution, charge inversion, and segment replacement, we were able to redirect the mutated LEA2 to mitochondria. Analysis of the effect of the mutations and determination of the LEA38 MTS cleavage site highlighted important structural features within and beyond the MTS. Overall, these results provide an explanation for the likely loss of mitochondrial location after duplication of the ancestral gene.

  14. Rice DB: an Oryza Information Portal linking annotation, subcellular location, function, expression, regulation, and evolutionary information for rice and Arabidopsis.

    Science.gov (United States)

    Narsai, Reena; Devenish, James; Castleden, Ian; Narsai, Kabir; Xu, Lin; Shou, Huixia; Whelan, James

    2013-12-01

    Omics research in Oryza sativa (rice) relies on the use of multiple databases to obtain different types of information to define gene function. We present Rice DB, an Oryza information portal that is a functional genomics database, linking gene loci to comprehensive annotations, expression data and the subcellular location of encoded proteins. Rice DB has been designed to integrate the direct comparison of rice with Arabidopsis (Arabidopsis thaliana), based on orthology or 'expressology', thus using and combining available information from two pre-eminent plant models. To establish Rice DB, gene identifiers (more than 40 types) and annotations from a variety of sources were compiled, functional information based on large-scale and individual studies was manually collated, hundreds of microarrays were analysed to generate expression annotations, and the occurrences of potential functional regulatory motifs in promoter regions were calculated. A range of computational subcellular localization predictions were also run for all putative proteins encoded in the rice genome, and experimentally confirmed protein localizations have been collated, curated and linked to functional studies in rice. A single search box allows anything from gene identifiers (for rice and/or Arabidopsis), motif sequences, subcellular location, to keyword searches to be entered, with the capability of Boolean searches (such as AND/OR). To demonstrate the utility of Rice DB, several examples are presented including a rice mitochondrial proteome, which draws on a variety of sources for subcellular location data within Rice DB. Comparisons of subcellular location, functional annotations, as well as transcript expression in parallel with Arabidopsis reveals examples of conservation between rice and Arabidopsis, using Rice DB (http://ricedb.plantenergy.uwa.edu.au). © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  15. HPSLPred: An Ensemble Multi-Label Classifier for Human Protein Subcellular Location Prediction with Imbalanced Source.

    Science.gov (United States)

    Wan, Shixiang; Duan, Yucong; Zou, Quan

    2017-09-01

    Predicting the subcellular localization of proteins is an important and challenging problem. Traditional experimental approaches are often expensive and time-consuming. Consequently, a growing number of research efforts employ a series of machine learning approaches to predict the subcellular location of proteins. There are two main challenges among the state-of-the-art prediction methods. First, most of the existing techniques are designed to deal with multi-class rather than multi-label classification, which ignores connections between multiple labels. In reality, multiple locations of particular proteins imply that there are vital and unique biological significances that deserve special focus and cannot be ignored. Second, techniques for handling imbalanced data in multi-label classification problems are necessary, but never employed. For solving these two issues, we have developed an ensemble multi-label classifier called HPSLPred, which can be applied for multi-label classification with an imbalanced protein source. For convenience, a user-friendly webserver has been established at http://server.malab.cn/HPSLPred. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Accurate prediction of subcellular location of apoptosis proteins combining Chou’s PseAAC and PsePSSM based on wavelet denoising

    Science.gov (United States)

    Chen, Cheng; Chen, Rui-Xin; Wang, Lei; Wang, Ming-Hui; Zhang, Yan

    2017-01-01

    Apoptosis proteins subcellular localization information are very important for understanding the mechanism of programmed cell death and the development of drugs. The prediction of subcellular localization of an apoptosis protein is still a challenging task because the prediction of apoptosis proteins subcellular localization can help to understand their function and the role of metabolic processes. In this paper, we propose a novel method for protein subcellular localization prediction. Firstly, the features of the protein sequence are extracted by combining Chou's pseudo amino acid composition (PseAAC) and pseudo-position specific scoring matrix (PsePSSM), then the feature information of the extracted is denoised by two-dimensional (2-D) wavelet denoising. Finally, the optimal feature vectors are input to the SVM classifier to predict subcellular location of apoptosis proteins. Quite promising predictions are obtained using the jackknife test on three widely used datasets and compared with other state-of-the-art methods. The results indicate that the method proposed in this paper can remarkably improve the prediction accuracy of apoptosis protein subcellular localization, which will be a supplementary tool for future proteomics research. PMID:29296195

  17. pLoc-mVirus: Predict subcellular localization of multi-location virus proteins via incorporating the optimal GO information into general PseAAC.

    Science.gov (United States)

    Cheng, Xiang; Xiao, Xuan; Chou, Kuo-Chen

    2017-09-10

    Knowledge of subcellular locations of proteins is crucially important for in-depth understanding their functions in a cell. With the explosive growth of protein sequences generated in the postgenomic age, it is highly demanded to develop computational tools for timely annotating their subcellular locations based on the sequence information alone. The current study is focused on virus proteins. Although considerable efforts have been made in this regard, the problem is far from being solved yet. Most existing methods can be used to deal with single-location proteins only. Actually, proteins with multi-locations may have some special biological functions. This kind of multiplex proteins is particularly important for both basic research and drug design. Using the multi-label theory, we present a new predictor called "pLoc-mVirus" by extracting the optimal GO (Gene Ontology) information into the general PseAAC (Pseudo Amino Acid Composition). Rigorous cross-validation on a same stringent benchmark dataset indicated that the proposed pLoc-mVirus predictor is remarkably superior to iLoc-Virus, the state-of-the-art method in predicting virus protein subcellular localization. To maximize the convenience of most experimental scientists, a user-friendly web-server for the new predictor has been established at http://www.jci-bioinfo.cn/pLoc-mVirus/, by which users can easily get their desired results without the need to go through the complicated mathematics involved. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. pLoc-mPlant: predict subcellular localization of multi-location plant proteins by incorporating the optimal GO information into general PseAAC.

    Science.gov (United States)

    Cheng, Xiang; Xiao, Xuan; Chou, Kuo-Chen

    2017-08-22

    One of the fundamental goals in cellular biochemistry is to identify the functions of proteins in the context of compartments that organize them in the cellular environment. To realize this, it is indispensable to develop an automated method for fast and accurate identification of the subcellular locations of uncharacterized proteins. The current study is focused on plant protein subcellular location prediction based on the sequence information alone. Although considerable efforts have been made in this regard, the problem is far from being solved yet. Most of the existing methods can be used to deal with single-location proteins only. Actually, proteins with multi-locations may have some special biological functions. This kind of multiplex protein is particularly important for both basic research and drug design. Using the multi-label theory, we present a new predictor called "pLoc-mPlant" by extracting the optimal GO (Gene Ontology) information into the Chou's general PseAAC (Pseudo Amino Acid Composition). Rigorous cross-validation on the same stringent benchmark dataset indicated that the proposed pLoc-mPlant predictor is remarkably superior to iLoc-Plant, the state-of-the-art method for predicting plant protein subcellular localization. To maximize the convenience of most experimental scientists, a user-friendly web-server for the new predictor has been established at , by which users can easily get their desired results without the need to go through the complicated mathematics involved.

  19. Automated Learning of Subcellular Variation among Punctate Protein Patterns and a Generative Model of Their Relation to Microtubules.

    Directory of Open Access Journals (Sweden)

    Gregory R Johnson

    2015-12-01

    Full Text Available Characterizing the spatial distribution of proteins directly from microscopy images is a difficult problem with numerous applications in cell biology (e.g. identifying motor-related proteins and clinical research (e.g. identification of cancer biomarkers. Here we describe the design of a system that provides automated analysis of punctate protein patterns in microscope images, including quantification of their relationships to microtubules. We constructed the system using confocal immunofluorescence microscopy images from the Human Protein Atlas project for 11 punctate proteins in three cultured cell lines. These proteins have previously been characterized as being primarily located in punctate structures, but their images had all been annotated by visual examination as being simply "vesicular". We were able to show that these patterns could be distinguished from each other with high accuracy, and we were able to assign to one of these subclasses hundreds of proteins whose subcellular localization had not previously been well defined. In addition to providing these novel annotations, we built a generative approach to modeling of punctate distributions that captures the essential characteristics of the distinct patterns. Such models are expected to be valuable for representing and summarizing each pattern and for constructing systems biology simulations of cell behaviors.

  20. pLoc-mHum: predict subcellular localization of multi-location human proteins via general PseAAC to winnow out the crucial GO information.

    Science.gov (United States)

    Cheng, Xiang; Xiao, Xuan; Chou, Kuo-Chen

    2018-05-01

    For in-depth understanding the functions of proteins in a cell, the knowledge of their subcellular localization is indispensable. The current study is focused on human protein subcellular location prediction based on the sequence information alone. Although considerable efforts have been made in this regard, the problem is far from being solved yet. Most existing methods can be used to deal with single-location proteins only. Actually, proteins with multi-locations may have some special biological functions that are particularly important for both basic research and drug design. Using the multi-label theory, we present a new predictor called 'pLoc-mHum' by extracting the crucial GO (Gene Ontology) information into the general PseAAC (Pseudo Amino Acid Composition). Rigorous cross-validations on a same stringent benchmark dataset have indicated that the proposed pLoc-mHum predictor is remarkably superior to iLoc-Hum, the state-of-the-art method in predicting the human protein subcellular localization. To maximize the convenience of most experimental scientists, a user-friendly web-server for the new predictor has been established at http://www.jci-bioinfo.cn/pLoc-mHum/, by which users can easily get their desired results without the need to go through the complicated mathematics involved. xcheng@gordonlifescience.org. Supplementary data are available at Bioinformatics online.

  1. Determining the sub-cellular localization of proteins within Caenorhabditis elegans body wall muscle.

    Science.gov (United States)

    Meissner, Barbara; Rogalski, Teresa; Viveiros, Ryan; Warner, Adam; Plastino, Lorena; Lorch, Adam; Granger, Laure; Segalat, Laurent; Moerman, Donald G

    2011-01-01

    Determining the sub-cellular localization of a protein within a cell is often an essential step towards understanding its function. In Caenorhabditis elegans, the relatively large size of the body wall muscle cells and the exquisite organization of their sarcomeres offer an opportunity to identify the precise position of proteins within cell substructures. Our goal in this study is to generate a comprehensive "localizome" for C. elegans body wall muscle by GFP-tagging proteins expressed in muscle and determining their location within the cell. For this project, we focused on proteins that we know are expressed in muscle and are orthologs or at least homologs of human proteins. To date we have analyzed the expression of about 227 GFP-tagged proteins that show localized expression in the body wall muscle of this nematode (e.g. dense bodies, M-lines, myofilaments, mitochondria, cell membrane, nucleus or nucleolus). For most proteins analyzed in this study no prior data on sub-cellular localization was available. In addition to discrete sub-cellular localization we observe overlapping patterns of localization including the presence of a protein in the dense body and the nucleus, or the dense body and the M-lines. In total we discern more than 14 sub-cellular localization patterns within nematode body wall muscle. The localization of this large set of proteins within a muscle cell will serve as an invaluable resource in our investigation of muscle sarcomere assembly and function.

  2. HybridGO-Loc: mining hybrid features on gene ontology for predicting subcellular localization of multi-location proteins.

    Science.gov (United States)

    Wan, Shibiao; Mak, Man-Wai; Kung, Sun-Yuan

    2014-01-01

    Protein subcellular localization prediction, as an essential step to elucidate the functions in vivo of proteins and identify drugs targets, has been extensively studied in previous decades. Instead of only determining subcellular localization of single-label proteins, recent studies have focused on predicting both single- and multi-location proteins. Computational methods based on Gene Ontology (GO) have been demonstrated to be superior to methods based on other features. However, existing GO-based methods focus on the occurrences of GO terms and disregard their relationships. This paper proposes a multi-label subcellular-localization predictor, namely HybridGO-Loc, that leverages not only the GO term occurrences but also the inter-term relationships. This is achieved by hybridizing the GO frequencies of occurrences and the semantic similarity between GO terms. Given a protein, a set of GO terms are retrieved by searching against the gene ontology database, using the accession numbers of homologous proteins obtained via BLAST search as the keys. The frequency of GO occurrences and semantic similarity (SS) between GO terms are used to formulate frequency vectors and semantic similarity vectors, respectively, which are subsequently hybridized to construct fusion vectors. An adaptive-decision based multi-label support vector machine (SVM) classifier is proposed to classify the fusion vectors. Experimental results based on recent benchmark datasets and a new dataset containing novel proteins show that the proposed hybrid-feature predictor significantly outperforms predictors based on individual GO features as well as other state-of-the-art predictors. For readers' convenience, the HybridGO-Loc server, which is for predicting virus or plant proteins, is available online at http://bioinfo.eie.polyu.edu.hk/HybridGoServer/.

  3. Interaction of HSP20 with a viral RdRp changes its sub-cellular localization and distribution pattern in plants.

    Science.gov (United States)

    Li, Jing; Xiang, Cong-Ying; Yang, Jian; Chen, Jian-Ping; Zhang, Heng-Mu

    2015-09-11

    Small heat shock proteins (sHSPs) perform a fundamental role in protecting cells against a wide array of stresses but their biological function during viral infection remains unknown. Rice stripe virus (RSV) causes a severe disease of rice in Eastern Asia. OsHSP20 and its homologue (NbHSP20) were used as baits in yeast two-hybrid (YTH) assays to screen an RSV cDNA library and were found to interact with the viral RNA-dependent RNA polymerase (RdRp) of RSV. Interactions were confirmed by pull-down and BiFC assays. Further analysis showed that the N-terminus (residues 1-296) of the RdRp was crucial for the interaction between the HSP20s and viral RdRp and responsible for the alteration of the sub-cellular localization and distribution pattern of HSP20s in protoplasts of rice and epidermal cells of Nicotiana benthamiana. This is the first report that a plant virus or a viral protein alters the expression pattern or sub-cellular distribution of sHSPs.

  4. Cell segmentation in time-lapse fluorescence microscopy with temporally varying sub-cellular fusion protein patterns.

    Science.gov (United States)

    Bunyak, Filiz; Palaniappan, Kannappan; Chagin, Vadim; Cardoso, M

    2009-01-01

    Fluorescently tagged proteins such as GFP-PCNA produce rich dynamically varying textural patterns of foci distributed in the nucleus. This enables the behavioral study of sub-cellular structures during different phases of the cell cycle. The varying punctuate patterns of fluorescence, drastic changes in SNR, shape and position during mitosis and abundance of touching cells, however, require more sophisticated algorithms for reliable automatic cell segmentation and lineage analysis. Since the cell nuclei are non-uniform in appearance, a distribution-based modeling of foreground classes is essential. The recently proposed graph partitioning active contours (GPAC) algorithm supports region descriptors and flexible distance metrics. We extend GPAC for fluorescence-based cell segmentation using regional density functions and dramatically improve its efficiency for segmentation from O(N(4)) to O(N(2)), for an image with N(2) pixels, making it practical and scalable for high throughput microscopy imaging studies.

  5. A novel representation for apoptosis protein subcellular localization prediction using support vector machine.

    Science.gov (United States)

    Zhang, Li; Liao, Bo; Li, Dachao; Zhu, Wen

    2009-07-21

    Apoptosis, or programmed cell death, plays an important role in development of an organism. Obtaining information on subcellular location of apoptosis proteins is very helpful to understand the apoptosis mechanism. In this paper, based on the concept that the position distribution information of amino acids is closely related with the structure and function of proteins, we introduce the concept of distance frequency [Matsuda, S., Vert, J.P., Ueda, N., Toh, H., Akutsu, T., 2005. A novel representation of protein sequences for prediction of subcellular location using support vector machines. Protein Sci. 14, 2804-2813] and propose a novel way to calculate distance frequencies. In order to calculate the local features, each protein sequence is separated into p parts with the same length in our paper. Then we use the novel representation of protein sequences and adopt support vector machine to predict subcellular location. The overall prediction accuracy is significantly improved by jackknife test.

  6. Evaluation and comparison of mammalian subcellular localization prediction methods

    Directory of Open Access Journals (Sweden)

    Fink J Lynn

    2006-12-01

    Full Text Available Abstract Background Determination of the subcellular location of a protein is essential to understanding its biochemical function. This information can provide insight into the function of hypothetical or novel proteins. These data are difficult to obtain experimentally but have become especially important since many whole genome sequencing projects have been finished and many resulting protein sequences are still lacking detailed functional information. In order to address this paucity of data, many computational prediction methods have been developed. However, these methods have varying levels of accuracy and perform differently based on the sequences that are presented to the underlying algorithm. It is therefore useful to compare these methods and monitor their performance. Results In order to perform a comprehensive survey of prediction methods, we selected only methods that accepted large batches of protein sequences, were publicly available, and were able to predict localization to at least nine of the major subcellular locations (nucleus, cytosol, mitochondrion, extracellular region, plasma membrane, Golgi apparatus, endoplasmic reticulum (ER, peroxisome, and lysosome. The selected methods were CELLO, MultiLoc, Proteome Analyst, pTarget and WoLF PSORT. These methods were evaluated using 3763 mouse proteins from SwissProt that represent the source of the training sets used in development of the individual methods. In addition, an independent evaluation set of 2145 mouse proteins from LOCATE with a bias towards the subcellular localization underrepresented in SwissProt was used. The sensitivity and specificity were calculated for each method and compared to a theoretical value based on what might be observed by random chance. Conclusion No individual method had a sufficient level of sensitivity across both evaluation sets that would enable reliable application to hypothetical proteins. All methods showed lower performance on the LOCATE

  7. Signaling efficiency of Gαq through its effectors p63RhoGEF and GEFT depends on their subcellular location.

    Science.gov (United States)

    Goedhart, Joachim; van Unen, Jakobus; Adjobo-Hermans, Merel J W; Gadella, Theodorus W J

    2013-01-01

    The p63RhoGEF and GEFT proteins are encoded by the same gene and both members of the Dbl family of guanine nucleotide exchange factors. These proteins can be activated by the heterotrimeric G-protein subunit Gαq. We show that p63RhoGEF is located at the plasma membrane, whereas GEFT is confined to the cytoplasm. Live-cell imaging studies yielded quantitative information on diffusion coefficients, association rates and encounter times of GEFT and p63RhoGEF. Calcium signaling was examined as a measure of the signal transmission, revealing more efficient signaling through the membrane-associated p63RhoGEF. A rapamycin dependent recruitment system was used to dynamically alter the subcellular location and concentration of GEFT, showing efficient signaling through GEFT only upon membrane recruitment. Together, our results show efficient signal transmission through membrane located effectors, and highlight a role for increased concentration rather than increased encounter times due to membrane localization in the Gαq mediated pathways to p63RhoGEF and PLCβ.

  8. Predict subcellular locations of singleplex and multiplex proteins by semi-supervised learning and dimension-reducing general mode of Chou's PseAAC.

    Science.gov (United States)

    Pacharawongsakda, Eakasit; Theeramunkong, Thanaruk

    2013-12-01

    Predicting protein subcellular location is one of major challenges in Bioinformatics area since such knowledge helps us understand protein functions and enables us to select the targeted proteins during drug discovery process. While many computational techniques have been proposed to improve predictive performance for protein subcellular location, they have several shortcomings. In this work, we propose a method to solve three main issues in such techniques; i) manipulation of multiplex proteins which may exist or move between multiple cellular compartments, ii) handling of high dimensionality in input and output spaces and iii) requirement of sufficient labeled data for model training. Towards these issues, this work presents a new computational method for predicting proteins which have either single or multiple locations. The proposed technique, namely iFLAST-CORE, incorporates the dimensionality reduction in the feature and label spaces with co-training paradigm for semi-supervised multi-label classification. For this purpose, the Singular Value Decomposition (SVD) is applied to transform the high-dimensional feature space and label space into the lower-dimensional spaces. After that, due to limitation of labeled data, the co-training regression makes use of unlabeled data by predicting the target values in the lower-dimensional spaces of unlabeled data. In the last step, the component of SVD is used to project labels in the lower-dimensional space back to those in the original space and an adaptive threshold is used to map a numeric value to a binary value for label determination. A set of experiments on viral proteins and gram-negative bacterial proteins evidence that our proposed method improve the classification performance in terms of various evaluation metrics such as Aiming (or Precision), Coverage (or Recall) and macro F-measure, compared to the traditional method that uses only labeled data.

  9. Prediction of protein subcellular localization using support vector machine with the choice of proper kernel

    Directory of Open Access Journals (Sweden)

    Al Mehedi Hasan

    2017-07-01

    Full Text Available The prediction of subcellular locations of proteins can provide useful hints for revealing their functions as well as for understanding the mechanisms of some diseases and, finally, for developing novel drugs. As the number of newly discovered proteins has been growing exponentially, laboratory-based experiments to determine the location of an uncharacterized protein in a living cell have become both expensive and time-consuming. Consequently, to tackle these challenges, computational methods are being developed as an alternative to help biologists in selecting target proteins and designing related experiments. However, the success of protein subcellular localization prediction is still a complicated and challenging problem, particularly when query proteins may have multi-label characteristics, i.e. their simultaneous existence in more than one subcellular location, or if they move between two or more different subcellular locations as well. At this point, to get rid of this problem, several types of subcellular localization prediction methods with different levels of accuracy have been proposed. The support vector machine (SVM has been employed to provide potential solutions for problems connected with the prediction of protein subcellular localization. However, the practicability of SVM is affected by difficulties in selecting its appropriate kernel as well as in selecting the parameters of that selected kernel. The literature survey has shown that most researchers apply the radial basis function (RBF kernel to build a SVM based subcellular localization prediction system. Surprisingly, there are still many other kernel functions which have not yet been applied in the prediction of protein subcellular localization. However, the nature of this classification problem requires the application of different kernels for SVM to ensure an optimal result. From this viewpoint, this paper presents the work to apply different kernels for SVM in protein

  10. A Comprehensive Subcellular Proteomic Survey of Salmonella Grown under Phagosome-Mimicking versus Standard Laboratory Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Roslyn N.; Sanford, James A.; Park, Jea H.; Deatherage, Brooke L.; Champion, Boyd L.; Smith, Richard D.; Heffron, Fred; Adkins, Joshua N.

    2012-06-01

    Towards developing a systems-level pathobiological understanding of Salmonella enterica, we performed a subcellular proteomic analysis of this pathogen grown under standard laboratory and infection-mimicking conditions in vitro. Analysis of proteins from cytoplasmic, inner membrane, periplasmic, and outer membrane fractions yielded coverage of over 30% of the theoretical proteome. Confident subcellular location could be assigned to over 1000 proteins, with good agreement between experimentally observed location and predicted/known protein properties. Comparison of protein location under the different environmental conditions provided insight into dynamic protein localization and possible moonlighting (multiple function) activities. Notable examples of dynamic localization were the response regulators of two-component regulatory systems (e.g., ArcB, PhoQ). The DNA-binding protein Dps that is generally regarded as cytoplasmic was significantly enriched in the outer membrane for all growth conditions examined, suggestive of moonlighting activities. These observations imply the existence of unknown transport mechanisms and novel functions for a subset of Salmonella proteins. Overall, this work provides a catalog of experimentally verified subcellular protein location for Salmonella and a framework for further investigations using computational modeling.

  11. ngLOC: software and web server for predicting protein subcellular localization in prokaryotes and eukaryotes

    Directory of Open Access Journals (Sweden)

    King Brian R

    2012-07-01

    Full Text Available Abstract Background Understanding protein subcellular localization is a necessary component toward understanding the overall function of a protein. Numerous computational methods have been published over the past decade, with varying degrees of success. Despite the large number of published methods in this area, only a small fraction of them are available for researchers to use in their own studies. Of those that are available, many are limited by predicting only a small number of organelles in the cell. Additionally, the majority of methods predict only a single location for a sequence, even though it is known that a large fraction of the proteins in eukaryotic species shuttle between locations to carry out their function. Findings We present a software package and a web server for predicting the subcellular localization of protein sequences based on the ngLOC method. ngLOC is an n-gram-based Bayesian classifier that predicts subcellular localization of proteins both in prokaryotes and eukaryotes. The overall prediction accuracy varies from 89.8% to 91.4% across species. This program can predict 11 distinct locations each in plant and animal species. ngLOC also predicts 4 and 5 distinct locations on gram-positive and gram-negative bacterial datasets, respectively. Conclusions ngLOC is a generic method that can be trained by data from a variety of species or classes for predicting protein subcellular localization. The standalone software is freely available for academic use under GNU GPL, and the ngLOC web server is also accessible at http://ngloc.unmc.edu.

  12. Mining Co-Location Patterns with Clustering Items from Spatial Data Sets

    Science.gov (United States)

    Zhou, G.; Li, Q.; Deng, G.; Yue, T.; Zhou, X.

    2018-05-01

    The explosive growth of spatial data and widespread use of spatial databases emphasize the need for the spatial data mining. Co-location patterns discovery is an important branch in spatial data mining. Spatial co-locations represent the subsets of features which are frequently located together in geographic space. However, the appearance of a spatial feature C is often not determined by a single spatial feature A or B but by the two spatial features A and B, that is to say where A and B appear together, C often appears. We note that this co-location pattern is different from the traditional co-location pattern. Thus, this paper presents a new concept called clustering terms, and this co-location pattern is called co-location patterns with clustering items. And the traditional algorithm cannot mine this co-location pattern, so we introduce the related concept in detail and propose a novel algorithm. This algorithm is extended by join-based approach proposed by Huang. Finally, we evaluate the performance of this algorithm.

  13. Plant-mPLoc: a top-down strategy to augment the power for predicting plant protein subcellular localization.

    Directory of Open Access Journals (Sweden)

    Kuo-Chen Chou

    Full Text Available One of the fundamental goals in proteomics and cell biology is to identify the functions of proteins in various cellular organelles and pathways. Information of subcellular locations of proteins can provide useful insights for revealing their functions and understanding how they interact with each other in cellular network systems. Most of the existing methods in predicting plant protein subcellular localization can only cover three or four location sites, and none of them can be used to deal with multiplex plant proteins that can simultaneously exist at two, or move between, two or more different location sits. Actually, such multiplex proteins might have special biological functions worthy of particular notice. The present study was devoted to improve the existing plant protein subcellular location predictors from the aforementioned two aspects. A new predictor called "Plant-mPLoc" is developed by integrating the gene ontology information, functional domain information, and sequential evolutionary information through three different modes of pseudo amino acid composition. It can be used to identify plant proteins among the following 12 location sites: (1 cell membrane, (2 cell wall, (3 chloroplast, (4 cytoplasm, (5 endoplasmic reticulum, (6 extracellular, (7 Golgi apparatus, (8 mitochondrion, (9 nucleus, (10 peroxisome, (11 plastid, and (12 vacuole. Compared with the existing methods for predicting plant protein subcellular localization, the new predictor is much more powerful and flexible. Particularly, it also has the capacity to deal with multiple-location proteins, which is beyond the reach of any existing predictors specialized for identifying plant protein subcellular localization. As a user-friendly web-server, Plant-mPLoc is freely accessible at http://www.csbio.sjtu.edu.cn/bioinf/plant-multi/. Moreover, for the convenience of the vast majority of experimental scientists, a step-by-step guide is provided on how to use the web-server to

  14. Differential subcellular distribution of ion channels and the diversity of neuronal function.

    Science.gov (United States)

    Nusser, Zoltan

    2012-06-01

    Following the astonishing molecular diversity of voltage-gated ion channels that was revealed in the past few decades, the ion channel repertoire expressed by neurons has been implicated as the major factor governing their functional heterogeneity. Although the molecular structure of ion channels is a key determinant of their biophysical properties, their subcellular distribution and densities on the surface of nerve cells are just as important for fulfilling functional requirements. Recent results obtained with high resolution quantitative localization techniques revealed complex, subcellular compartment-specific distribution patterns of distinct ion channels. Here I suggest that within a given neuron type every ion channel has a unique cell surface distribution pattern, with the functional consequence that this dramatically increases the computational power of nerve cells. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Detrended cross-correlation coefficient: Application to predict apoptosis protein subcellular localization.

    Science.gov (United States)

    Liang, Yunyun; Liu, Sanyang; Zhang, Shengli

    2016-12-01

    Apoptosis, or programed cell death, plays a central role in the development and homeostasis of an organism. Obtaining information on subcellular location of apoptosis proteins is very helpful for understanding the apoptosis mechanism. The prediction of subcellular localization of an apoptosis protein is still a challenging task, and existing methods mainly based on protein primary sequences. In this paper, we introduce a new position-specific scoring matrix (PSSM)-based method by using detrended cross-correlation (DCCA) coefficient of non-overlapping windows. Then a 190-dimensional (190D) feature vector is constructed on two widely used datasets: CL317 and ZD98, and support vector machine is adopted as classifier. To evaluate the proposed method, objective and rigorous jackknife cross-validation tests are performed on the two datasets. The results show that our approach offers a novel and reliable PSSM-based tool for prediction of apoptosis protein subcellular localization. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Proteomic Analysis of Lysine Acetylation Sites in Rat Tissues Reveals Organ Specificity and Subcellular Patterns

    Directory of Open Access Journals (Sweden)

    Alicia Lundby

    2012-08-01

    Full Text Available Lysine acetylation is a major posttranslational modification involved in a broad array of physiological functions. Here, we provide an organ-wide map of lysine acetylation sites from 16 rat tissues analyzed by high-resolution tandem mass spectrometry. We quantify 15,474 modification sites on 4,541 proteins and provide the data set as a web-based database. We demonstrate that lysine acetylation displays site-specific sequence motifs that diverge between cellular compartments, with a significant fraction of nuclear sites conforming to the consensus motifs G-AcK and AcK-P. Our data set reveals that the subcellular acetylation distribution is tissue-type dependent and that acetylation targets tissue-specific pathways involved in fundamental physiological processes. We compare lysine acetylation patterns for rat as well as human skeletal muscle biopsies and demonstrate its general involvement in muscle contraction. Furthermore, we illustrate that acetylation of fructose-bisphosphate aldolase and glycerol-3-phosphate dehydrogenase serves as a cellular mechanism to switch off enzymatic activity.

  17. Lipase genes in Mucor circinelloides: identification, sub-cellular location, phylogenetic analysis and expression profiling during growth and lipid accumulation.

    Science.gov (United States)

    Zan, Xinyi; Tang, Xin; Chu, Linfang; Zhao, Lina; Chen, Haiqin; Chen, Yong Q; Chen, Wei; Song, Yuanda

    2016-10-01

    Lipases or triacylglycerol hydrolases are widely spread in nature and are particularly common in the microbial world. The filamentous fungus Mucor circinelloides is a potential lipase producer, as it grows well in triacylglycerol-contained culture media. So far only one lipase from M. circinelloides has been characterized, while the majority of lipases remain unknown in this fungus. In the present study, 47 potential lipase genes in M. circinelloides WJ11 and 30 potential lipase genes in M. circinelloides CBS 277.49 were identified by extensive bioinformatics analysis. An overview of these lipases is presented, including several characteristics, sub-cellular location, phylogenetic analysis and expression profiling of the lipase genes during growth and lipid accumulation. All of these proteins contained the consensus sequence for a classical lipase (GXSXG motif) and were divided into four types including α/β-hydrolase_1, α/β-hydrolase_3, class_3 and GDSL lipase (GDSL) based on gene annotations. Phylogenetic analyses revealed that class_3 family and α/β-hydrolase_3 family were the conserved lipase family in M. circinelloides. Additionally, some lipases also contained a typical acyltransferase motif of H-(X) 4-D, and these lipases may play a dual role in lipid metabolism, catalyzing both lipid hydrolysis and transacylation reactions. The differential expression of all lipase genes were confirmed by quantitative real-time PCR, and the expression profiling were analyzed to predict the possible biological roles of these lipase genes in lipid metabolism in M. circinelloides. We preliminarily hypothesized that lipases may be involved in triacylglycerol degradation, phospholipid synthesis and beta-oxidation. Moreover, the results of sub-cellular localization, the presence of signal peptide and transcriptional analyses of lipase genes indicated that four lipase in WJ11 most likely belong to extracellular lipases with a signal peptide. These findings provide a platform

  18. Study on Dissemination Patterns in Location-Aware Gossiping Networks

    Science.gov (United States)

    Kami, Nobuharu; Baba, Teruyuki; Yoshikawa, Takashi; Morikawa, Hiroyuki

    We study the properties of information dissemination over location-aware gossiping networks leveraging location-based real-time communication applications. Gossiping is a promising method for quickly disseminating messages in a large-scale system, but in its application to information dissemination for location-aware applications, it is important to consider the network topology and patterns of spatial dissemination over the network in order to achieve effective delivery of messages to potentially interested users. To this end, we propose a continuous-space network model extended from Kleinberg's small-world model applicable to actual location-based applications. Analytical and simulation-based study shows that the proposed network achieves high dissemination efficiency resulting from geographically neutral dissemination patterns as well as selective dissemination to proximate users. We have designed a highly scalable location management method capable of promptly updating the network topology in response to node movement and have implemented a distributed simulator to perform dynamic target pursuit experiments as one example of applications that are the most sensitive to message forwarding delay. The experimental results show that the proposed network surpasses other types of networks in pursuit efficiency and achieves the desirable dissemination patterns.

  19. Subcellular distribution of curium in beagle liver

    International Nuclear Information System (INIS)

    Bruenger, F.W.; Grube, B.J.; Atherton, D.R.; Taylor, G.N.; Stevens, W.

    1976-01-01

    The subcellular distribution of curium ( 243 244 Cm) was studied in canine liver from 2 hr to 47 days after injection of 3 μCi 243 244 Cm/kg of body weight. The pattern of distribution for Cm was similar to other trivalent actinide elements studied previously (Am, Cf). Initially (2 hr), most of the nuclide was found in the cytosol and at least 90 percent was protein bound. About 70 percent of the Cm was bound to ferritin, approximately 5 percent was associated with a protein of MW approximately 200,000, and approximately 25 percent was found in the low-molecular-weight region (approximately 5000). The decrease in the Cm content of cytosol, nuclei, and microsomes coincided with an increase in the amount associated with mitochondria and lysosomes. The concentration of the Cm in the mitochondrial fraction was higher than it was in the lysosomal fraction at each time studied. In the mitochondrial fraction approximately 30 percent of the Cm was bound to membranous or granular material, and 70 percent was found in the soluble fraction. The Cm concentration initially associated with cell nuclei was high but had diminished to 20 percent of the 2 hr concentration by 20 days post injection (PI). The subcellular distribution of Cm in the liver of a dog which had received the same dose and was terminated because of severe liver damage was studied at 384 days PI. The liver weighed 130 g and contained approximately 30 percent of the injected Cm. In contrast, a normal liver weighs 280 g and at 2 hr PI contains approximately 40 percent of the injected dose. The subcellular distribution of Cm in this severely damaged liver differed from the pattern observed at earlier times after injection. The relative concentration of Cm in the cytosol was doubled; it was higher in the nuclei-debris fraction; and it was lower in the mitochondrial and lysosomal fractions when compared to earlier times

  20. Subcellular localization for Gram positive and Gram negative bacterial proteins using linear interpolation smoothing model.

    Science.gov (United States)

    Saini, Harsh; Raicar, Gaurav; Dehzangi, Abdollah; Lal, Sunil; Sharma, Alok

    2015-12-07

    Protein subcellular localization is an important topic in proteomics since it is related to a protein׳s overall function, helps in the understanding of metabolic pathways, and in drug design and discovery. In this paper, a basic approximation technique from natural language processing called the linear interpolation smoothing model is applied for predicting protein subcellular localizations. The proposed approach extracts features from syntactical information in protein sequences to build probabilistic profiles using dependency models, which are used in linear interpolation to determine how likely is a sequence to belong to a particular subcellular location. This technique builds a statistical model based on maximum likelihood. It is able to deal effectively with high dimensionality that hinders other traditional classifiers such as Support Vector Machines or k-Nearest Neighbours without sacrificing performance. This approach has been evaluated by predicting subcellular localizations of Gram positive and Gram negative bacterial proteins. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Location Contexts of User Check-Ins to Model Urban Geo Life-Style Patterns

    Science.gov (United States)

    Hasan, Samiul; Ukkusuri, Satish V.

    2015-01-01

    Geo-location data from social media offers us information, in new ways, to understand people's attitudes and interests through their activity choices. In this paper, we explore the idea of inferring individual life-style patterns from activity-location choices revealed in social media. We present a model to understand life-style patterns using the contextual information (e. g. location categories) of user check-ins. Probabilistic topic models are developed to infer individual geo life-style patterns from two perspectives: i) to characterize the patterns of user interests to different types of places and ii) to characterize the patterns of user visits to different neighborhoods. The method is applied to a dataset of Foursquare check-ins of the users from New York City. The co-existence of several location contexts and the corresponding probabilities in a given pattern provide useful information about user interests and choices. It is found that geo life-style patterns have similar items—either nearby neighborhoods or similar location categories. The semantic and geographic proximity of the items in a pattern reflects the hidden regularity in user preferences and location choice behavior. PMID:25970430

  2. Cellular and Subcellular Immunohistochemical Localization and Quantification of Cadmium Ions in Wheat (Triticum aestivum.

    Directory of Open Access Journals (Sweden)

    Wei Gao

    Full Text Available The distribution of metallic ions in plant tissues is associated with their toxicity and is important for understanding mechanisms of toxicity tolerance. A quantitative histochemical method can help advance knowledge of cellular and subcellular localization and distribution of heavy metals in plant tissues. An immunohistochemical (IHC imaging method for cadmium ions (Cd2+ was developed for the first time for the wheat Triticum aestivum grown in Cd2+-fortified soils. Also, 1-(4-Isothiocyanobenzyl-ethylenediamine-N,N,N,N-tetraacetic acid (ITCB-EDTA was used to chelate the mobile Cd2+. The ITCB-EDTA/Cd2+ complex was fixed with proteins in situ via the isothiocyano group. A new Cd2+-EDTA specific monoclonal antibody, 4F3B6D9A1, was used to locate the Cd2+-EDTA protein complex. After staining, the fluorescence intensities of sections of Cd2+-positive roots were compared with those of Cd2+-negative roots under a laser confocal scanning microscope, and the location of colloidal gold particles was determined with a transmission electron microscope. The results enable quantification of the Cd2+ content in plant tissues and illustrate Cd2+ translocation and cellular and subcellular responses of T. aestivum to Cd2+ stress. Compared to the conventional metal-S coprecipitation histochemical method, this new IHC method is quantitative, more specific and has less background interference. The subcellular location of Cd2+ was also confirmed with energy-dispersive X-ray microanalysis. The IHC method is suitable for locating and quantifying Cd2+ in plant tissues and can be extended to other heavy metallic ions.

  3. Cellular and Subcellular Immunohistochemical Localization and Quantification of Cadmium Ions in Wheat (Triticum aestivum).

    Science.gov (United States)

    Gao, Wei; Nan, Tiegui; Tan, Guiyu; Zhao, Hongwei; Tan, Weiming; Meng, Fanyun; Li, Zhaohu; Li, Qing X; Wang, Baomin

    2015-01-01

    The distribution of metallic ions in plant tissues is associated with their toxicity and is important for understanding mechanisms of toxicity tolerance. A quantitative histochemical method can help advance knowledge of cellular and subcellular localization and distribution of heavy metals in plant tissues. An immunohistochemical (IHC) imaging method for cadmium ions (Cd2+) was developed for the first time for the wheat Triticum aestivum grown in Cd2+-fortified soils. Also, 1-(4-Isothiocyanobenzyl)-ethylenediamine-N,N,N,N-tetraacetic acid (ITCB-EDTA) was used to chelate the mobile Cd2+. The ITCB-EDTA/Cd2+ complex was fixed with proteins in situ via the isothiocyano group. A new Cd2+-EDTA specific monoclonal antibody, 4F3B6D9A1, was used to locate the Cd2+-EDTA protein complex. After staining, the fluorescence intensities of sections of Cd2+-positive roots were compared with those of Cd2+-negative roots under a laser confocal scanning microscope, and the location of colloidal gold particles was determined with a transmission electron microscope. The results enable quantification of the Cd2+ content in plant tissues and illustrate Cd2+ translocation and cellular and subcellular responses of T. aestivum to Cd2+ stress. Compared to the conventional metal-S coprecipitation histochemical method, this new IHC method is quantitative, more specific and has less background interference. The subcellular location of Cd2+ was also confirmed with energy-dispersive X-ray microanalysis. The IHC method is suitable for locating and quantifying Cd2+ in plant tissues and can be extended to other heavy metallic ions.

  4. Subcellular Localization of Cadmium in Chlorella vulgaris Beijerinck Strain Bt-09

    Directory of Open Access Journals (Sweden)

    P.B. Lintongan

    2004-06-01

    Full Text Available Growth response curves of Chlorella vulgaris Beijerinck strain Bt-09 to sublethal concentrations of cadmium were evaluated. The growth responses of this microalgal isolate was determined through analysis of chlorophyll a levels. Cadmium was effectively taken up by the cells as determined by Flame Atomic Absorption Spectrophotometry (F-AAS. Subcellular fractionation was undertaken to locate sites that accumulate cadmium.

  5. Subcellular localization of class I histone deacetylases in the developing Xenopus tectum

    Directory of Open Access Journals (Sweden)

    Xia eGuo

    2016-01-01

    Full Text Available Histone deacetylases (HDACs are thought to localize in the nucleus to regulate gene transcription and play pivotal roles in neurogenesis, apoptosis and plasticity. However, the subcellular distribution of class I HDACs in the developing brain remains unclear. Here, we show that HDAC1 and HDAC2 are located in both the mitochondria and the nucleus in the Xenopus laevis stage 34 tectum and are mainly restricted to the nucleus following further brain development. HDAC3 is widely present in the mitochondria, nucleus and cytoplasm during early tectal development and is mainly distributed in the nucleus in stage 45 tectum. In contrast, HDAC8 is broadly located in the mitochondria, nucleus and cytoplasm during tectal development. These data demonstrate that HDAC1, HDAC2 and HDAC3 are transiently localized in the mitochondria and that the subcellular distribution of class I HDACs in the Xenopus tectum is heterogeneous. Furthermore, we observed that spherical mitochondria accumulate in the cytoplasm at earlier stages, whereas elongated mitochondria are evenly distributed in the tectum at later stages. The activity of histone acetylation (H4K12 remains low in mitochondria during tectal development. Pharmacological blockades of HDACs using a broad spectrum HDAC inhibitor of Trichostatin A (TSA or specific class I HDAC inhibitors of MS-275 and MGCD0103 decrease the number of mitochondria in the tectum at stage 34. These findings highlight a link between the subcellular distribution of class I HDACs and mitochondrial dynamics in the developing optic tectum of Xenopus laevis.

  6. Plant subcellular proteomics: Application for exploring optimal cell function in soybean.

    Science.gov (United States)

    Wang, Xin; Komatsu, Setsuko

    2016-06-30

    Plants have evolved complicated responses to developmental changes and stressful environmental conditions. Subcellular proteomics has the potential to elucidate localized cellular responses and investigate communications among subcellular compartments during plant development and in response to biotic and abiotic stresses. Soybean, which is a valuable legume crop rich in protein and vegetable oil, can grow in several climatic zones; however, the growth and yield of soybean are markedly decreased under stresses. To date, numerous proteomic studies have been performed in soybean to examine the specific protein profiles of cell wall, plasma membrane, nucleus, mitochondrion, chloroplast, and endoplasmic reticulum. In this review, methods for the purification and purity assessment of subcellular organelles from soybean are summarized. In addition, the findings from subcellular proteomic analyses of soybean during development and under stresses, particularly flooding stress, are presented and the proteins regulated among subcellular compartments are discussed. Continued advances in subcellular proteomics are expected to greatly contribute to the understanding of the responses and interactions that occur within and among subcellular compartments during development and under stressful environmental conditions. Subcellular proteomics has the potential to investigate the cellular events and interactions among subcellular compartments in response to development and stresses in plants. Soybean could grow in several climatic zones; however, the growth and yield of soybean are markedly decreased under stresses. Numerous proteomics of cell wall, plasma membrane, nucleus, mitochondrion, chloroplast, and endoplasmic reticulum was carried out to investigate the respecting proteins and their functions in soybean during development or under stresses. In this review, methods of subcellular-organelle enrichment and purity assessment are summarized. In addition, previous findings of

  7. Comparative study of human mitochondrial proteome reveals extensive protein subcellular relocalization after gene duplications

    Directory of Open Access Journals (Sweden)

    Huang Yong

    2009-11-01

    Full Text Available Abstract Background Gene and genome duplication is the principle creative force in evolution. Recently, protein subcellular relocalization, or neolocalization was proposed as one of the mechanisms responsible for the retention of duplicated genes. This hypothesis received support from the analysis of yeast genomes, but has not been tested thoroughly on animal genomes. In order to evaluate the importance of subcellular relocalizations for retention of duplicated genes in animal genomes, we systematically analyzed nuclear encoded mitochondrial proteins in the human genome by reconstructing phylogenies of mitochondrial multigene families. Results The 456 human mitochondrial proteins selected for this study were clustered into 305 gene families including 92 multigene families. Among the multigene families, 59 (64% consisted of both mitochondrial and cytosolic (non-mitochondrial proteins (mt-cy families while the remaining 33 (36% were composed of mitochondrial proteins (mt-mt families. Phylogenetic analyses of mt-cy families revealed three different scenarios of their neolocalization following gene duplication: 1 relocalization from mitochondria to cytosol, 2 from cytosol to mitochondria and 3 multiple subcellular relocalizations. The neolocalizations were most commonly enabled by the gain or loss of N-terminal mitochondrial targeting signals. The majority of detected subcellular relocalization events occurred early in animal evolution, preceding the evolution of tetrapods. Mt-mt protein families showed a somewhat different pattern, where gene duplication occurred more evenly in time. However, for both types of protein families, most duplication events appear to roughly coincide with two rounds of genome duplications early in vertebrate evolution. Finally, we evaluated the effects of inaccurate and incomplete annotation of mitochondrial proteins and found that our conclusion of the importance of subcellular relocalization after gene duplication on

  8. The subcellular compartmentalization of arginine metabolizing enzymes and their role in endothelial dysfunction

    Directory of Open Access Journals (Sweden)

    Feng eChen

    2013-07-01

    Full Text Available The endothelial production of nitric oxide (NO mediates endothelium-dependent vasorelaxation and restrains vascular inflammation, smooth muscle proliferation and platelet aggregation. Impaired production of NO is a hallmark of endothelial dysfunction and promotes the development of cardiovascular disease. In endothelial cells, NO is generated by endothelial nitric oxide synthase (eNOS through the conversion of its substrate, L-arginine to L-citrulline. Reduced access to L-arginine has been proposed as a major mechanism underlying reduced eNOS activity and NO production in cardiovascular disease. The arginases (Arg1 and Arg2 metabolize L-arginine to generate L-ornithine and urea and increased expression of arginase has been proposed as a mechanism of reduced eNOS activity secondary to the depletion of L-arginine. Indeed, supplemental L-arginine and suppression of arginase activity has been shown to improve endothelium-dependent relaxation and ameliorate cardiovascular disease. However, L-arginine concentrations in endothelial cells remain sufficiently high to support NO synthesis suggesting additional mechanisms. The compartmentalization of intracellular L-arginine into poorly interchangeable pools has been proposed to allow for the local depletion of L-arginine. Indeed the subcellular location of L-arginine metabolizing enzymes plays important functional roles. In endothelial cells, eNOS is found in discrete intracellular locations and the capacity to generate NO is heavily influenced by its localtion. Arg1 and Arg2 also reside in different subcellular environments and are thought to differentially influence endothelial function. The plasma membrane solute transporter, CAT-1 and the arginine recycling enzyme, ASL, co-localize with eNOS and facilitate NO release. This review highlights the importance of the subcellular location of eNOS and arginine transporting and metabolizing enzymes to NO release and cardiovascular disease.

  9. Fast subcellular localization by cascaded fusion of signal-based and homology-based methods

    Directory of Open Access Journals (Sweden)

    Wang Wei

    2011-10-01

    Full Text Available Abstract Background The functions of proteins are closely related to their subcellular locations. In the post-genomics era, the amount of gene and protein data grows exponentially, which necessitates the prediction of subcellular localization by computational means. Results This paper proposes mitigating the computation burden of alignment-based approaches to subcellular localization prediction by a cascaded fusion of cleavage site prediction and profile alignment. Specifically, the informative segments of protein sequences are identified by a cleavage site predictor using the information in their N-terminal shorting signals. Then, the sequences are truncated at the cleavage site positions, and the shortened sequences are passed to PSI-BLAST for computing their profiles. Subcellular localization are subsequently predicted by a profile-to-profile alignment support-vector-machine (SVM classifier. To further reduce the training and recognition time of the classifier, the SVM classifier is replaced by a new kernel method based on the perturbational discriminant analysis (PDA. Conclusions Experimental results on a new dataset based on Swiss-Prot Release 57.5 show that the method can make use of the best property of signal- and homology-based approaches and can attain an accuracy comparable to that achieved by using full-length sequences. Analysis of profile-alignment score matrices suggest that both profile creation time and profile alignment time can be reduced without significant reduction in subcellular localization accuracy. It was found that PDA enjoys a short training time as compared to the conventional SVM. We advocate that the method will be important for biologists to conduct large-scale protein annotation or for bioinformaticians to perform preliminary investigations on new algorithms that involve pairwise alignments.

  10. Concentration of 17 Elements in Subcellular Fractions of Beef Heart Tissue Determined by Neutron Activation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wester, P O

    1964-12-15

    Subcellular fractions of beef heart tissue are investigated, by means of neutron activation analysis, with respect to their concentration of 17 different elements. A recently developed ion-exchange technique combined with gamma spectrometry is used. The homogeneity of the subcellular fractions is examined electron microscopically. The following elements are determined: As, Ba, Br, Cas Co, Cs, Cu, Fe, Hg, La, Mo, P, Rb, Se, Sm, W and Zn. The determination of Ag, Au, Cd, Ce, Cr, Sb and Sc is omitted, in view of contamination. Reproducible and characteristic patterns of distribution are obtained for all elements studied.

  11. Concentration of 17 Elements in Subcellular Fractions of Beef Heart Tissue Determined by Neutron Activation Analysis

    International Nuclear Information System (INIS)

    Wester, P.O.

    1964-12-01

    Subcellular fractions of beef heart tissue are investigated, by means of neutron activation analysis, with respect to their concentration of 17 different elements. A recently developed ion-exchange technique combined with gamma spectrometry is used. The homogeneity of the subcellular fractions is examined electron microscopically. The following elements are determined: As, Ba, Br, Cas Co, Cs, Cu, Fe, Hg, La, Mo, P, Rb, Se, Sm, W and Zn. The determination of Ag, Au, Cd, Ce, Cr, Sb and Sc is omitted, in view of contamination. Reproducible and characteristic patterns of distribution are obtained for all elements studied

  12. Subcellular partitioning kinetics, metallothionein response and oxidative damage in the marine mussel Mytilus galloprovincialis exposed to cadmium-based quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, Thiago Lopes [CIMA, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro (Portugal); Gomes, Tânia [CIMA, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro (Portugal); Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349 Oslo (Norway); Durigon, Emerson Giuliani [CIMA, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro (Portugal); Bebianno, Maria João, E-mail: mbebian@ualg.pt [CIMA, Faculty of Science and Technology, University of Algarve, Campus de Gambelas, 8005-139 Faro (Portugal)

    2016-06-01

    The environmental health impact of metal-based nanomaterials is of emerging concern, but their metabolism and detoxification pathways in marine bioindicator species remain unclear. This study investigated the role of subcellular partitioning kinetics, metallothioneins (MTs) response and oxidative damage (lipid peroxidation – LPO) in the marine mussel Mytilus galloprovincialis exposed to CdTe quantum dots (QDs) in comparison with its dissolved counterpart. Mussels were exposed to QDs and dissolved Cd for 21 days at 10 μg Cd L{sup −1} followed by a 50 days depuration. Higher Cd concentrations were detected in fractions containing mitochondria, nucleus and lysosomes, suggesting potential subcellular targets of QDs toxicity in mussel tissues. Tissue specific metabolism patterns were observed in mussels exposed to both Cd forms. Although MT levels were directly associated with Cd in both forms, QDs subcellular partitioning is linked to biologically active metal (BAM), but no increase in LPO occurred, while in the case of dissolved Cd levels are in the biologically detoxified metal (BDM) form, indicating nano-specific effects. Mussel gills showed lower detoxification capability of QDs, while the digestive gland is the major tissue for storage and detoxification of both Cd forms. Both mussel tissues were unable to completely eliminate the Cd accumulated in the QDs form (estimated half-life time > 50 days), highlighting the potential source of Cd and QDs toxicity for human and environmental health. Results indicate tissue specific metabolism patterns and nano-specific effects in marine mussel exposed to QDs. - Highlights: • Subcellular partitioning and MT response are Cd form, tissue and time dependent. • Tissue specific metabolism of Cd-based quantum dots (QDs) in marine mussels. • QDs are slower biologically detoxified when compared to dissolved Cd. • Subcellular partitioning and biomarker responses indicate nano-specific effects. • Subcellular

  13. Optogenetic Tools for Subcellular Applications in Neuroscience.

    Science.gov (United States)

    Rost, Benjamin R; Schneider-Warme, Franziska; Schmitz, Dietmar; Hegemann, Peter

    2017-11-01

    The ability to study cellular physiology using photosensitive, genetically encoded molecules has profoundly transformed neuroscience. The modern optogenetic toolbox includes fluorescent sensors to visualize signaling events in living cells and optogenetic actuators enabling manipulation of numerous cellular activities. Most optogenetic tools are not targeted to specific subcellular compartments but are localized with limited discrimination throughout the cell. Therefore, optogenetic activation often does not reflect context-dependent effects of highly localized intracellular signaling events. Subcellular targeting is required to achieve more specific optogenetic readouts and photomanipulation. Here we first provide a detailed overview of the available optogenetic tools with a focus on optogenetic actuators. Second, we review established strategies for targeting these tools to specific subcellular compartments. Finally, we discuss useful tools and targeting strategies that are currently missing from the optogenetics repertoire and provide suggestions for novel subcellular optogenetic applications. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Time-Location Patterns of a Population Living in an Air Pollution Hotspot

    International Nuclear Information System (INIS)

    Wu, X.M.; Fan, Z.T.; Strickland, P.O.; Wu, X.M.; Fan, Z.T.; Strickland, P.O.

    2010-01-01

    This study characterized the time-location pattern of 107 residents living in air pollution hotspots, the Waterfront South and Cope wood/Davis Streets communities in Camden, NJ. Most residents in the two communities are minority and impoverished individuals. Results showed that employment status played the fundamental role in determining time-location patterns of this study population, and the variations of time-location pattern by season and by day-type were partially attributed to employment status. Compared to the National Human Activity Pattern Survey, the Camden cohort spent significantly more time outdoors (3.8 hours versus 1.8 hours) and less time indoors (19.4 hours versus 20.9 hours) than the general US population, indicating a higher risk of exposure to ambient air pollution for the Camden cohort. The findings of the study are important for understanding exposure routes and sources for the socio economically disadvantaged subgroup and ultimately help develop effective strategies to reduce community exposure to ambient air pollution in hotspots

  15. Imbalanced multi-modal multi-label learning for subcellular localization prediction of human proteins with both single and multiple sites.

    Directory of Open Access Journals (Sweden)

    Jianjun He

    Full Text Available It is well known that an important step toward understanding the functions of a protein is to determine its subcellular location. Although numerous prediction algorithms have been developed, most of them typically focused on the proteins with only one location. In recent years, researchers have begun to pay attention to the subcellular localization prediction of the proteins with multiple sites. However, almost all the existing approaches have failed to take into account the correlations among the locations caused by the proteins with multiple sites, which may be the important information for improving the prediction accuracy of the proteins with multiple sites. In this paper, a new algorithm which can effectively exploit the correlations among the locations is proposed by using gaussian process model. Besides, the algorithm also can realize optimal linear combination of various feature extraction technologies and could be robust to the imbalanced data set. Experimental results on a human protein data set show that the proposed algorithm is valid and can achieve better performance than the existing approaches.

  16. Identifying essential proteins based on sub-network partition and prioritization by integrating subcellular localization information.

    Science.gov (United States)

    Li, Min; Li, Wenkai; Wu, Fang-Xiang; Pan, Yi; Wang, Jianxin

    2018-06-14

    Essential proteins are important participants in various life activities and play a vital role in the survival and reproduction of living organisms. Identification of essential proteins from protein-protein interaction (PPI) networks has great significance to facilitate the study of human complex diseases, the design of drugs and the development of bioinformatics and computational science. Studies have shown that highly connected proteins in a PPI network tend to be essential. A series of computational methods have been proposed to identify essential proteins by analyzing topological structures of PPI networks. However, the high noise in the PPI data can degrade the accuracy of essential protein prediction. Moreover, proteins must be located in the appropriate subcellular localization to perform their functions, and only when the proteins are located in the same subcellular localization, it is possible that they can interact with each other. In this paper, we propose a new network-based essential protein discovery method based on sub-network partition and prioritization by integrating subcellular localization information, named SPP. The proposed method SPP was tested on two different yeast PPI networks obtained from DIP database and BioGRID database. The experimental results show that SPP can effectively reduce the effect of false positives in PPI networks and predict essential proteins more accurately compared with other existing computational methods DC, BC, CC, SC, EC, IC, NC. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Subcellular RNA profiling links splicing and nuclear DICER1 to alternative cleavage and polyadenylation.

    Science.gov (United States)

    Neve, Jonathan; Burger, Kaspar; Li, Wencheng; Hoque, Mainul; Patel, Radhika; Tian, Bin; Gullerova, Monika; Furger, Andre

    2016-01-01

    Alternative cleavage and polyadenylation (APA) plays a crucial role in the regulation of gene expression across eukaryotes. Although APA is extensively studied, its regulation within cellular compartments and its physiological impact remains largely enigmatic. Here, we used a rigorous subcellular fractionation approach to compare APA profiles of cytoplasmic and nuclear RNA fractions from human cell lines. This approach allowed us to extract APA isoforms that are subjected to differential regulation and provided us with a platform to interrogate the molecular regulatory pathways that shape APA profiles in different subcellular locations. Here, we show that APA isoforms with shorter 3' UTRs tend to be overrepresented in the cytoplasm and appear to be cell-type-specific events. Nuclear retention of longer APA isoforms occurs and is partly a result of incomplete splicing contributing to the observed cytoplasmic bias of transcripts with shorter 3' UTRs. We demonstrate that the endoribonuclease III, DICER1, contributes to the establishment of subcellular APA profiles not only by expected cytoplasmic miRNA-mediated destabilization of APA mRNA isoforms, but also by affecting polyadenylation site choice. © 2016 Neve et al.; Published by Cold Spring Harbor Laboratory Press.

  18. Subcellular distribution and chemical forms of cadmium in Phytolacca americana L

    Energy Technology Data Exchange (ETDEWEB)

    Fu Xiaoping; Dou Changming [Ministry of Agriculture Key Laboratory of Non-point Source Pollution Control, Institute of Environmental Science and Technology, Zhejiang University, Hangzhou 310029 (China); Chen Yingxu, E-mail: yingxu_chen@hotmail.com [Ministry of Agriculture Key Laboratory of Non-point Source Pollution Control, Institute of Environmental Science and Technology, Zhejiang University, Hangzhou 310029 (China); Chen Xincai; Shi Jiyan; Yu Mingge; Xu Jie [Ministry of Agriculture Key Laboratory of Non-point Source Pollution Control, Institute of Environmental Science and Technology, Zhejiang University, Hangzhou 310029 (China)

    2011-02-15

    Phytolacca americana L. (pokeweed) is a promising species for Cd phytoextraction with large biomass and fast growth rate. To further understand the mechanisms involved in Cd tolerance and detoxification, the present study investigated subcellular distribution and chemical forms of Cd in pokeweed. Subcellular fractionation of Cd-containing tissues indicated that both in root and leaves, the majority of the element was located in soluble fraction and cell walls. Meanwhile, Cd taken up by pokeweed existed in different chemical forms. Results showed that the greatest amount of Cd was found in the extraction of 80% ethanol in roots, followed by 1 M NaCl, d-H{sub 2}O and 2% HAc, while in leaves and stems, most of the Cd was extracted by 1 M NaCl, and the subdominant amount of Cd was extracted by 80% ethanol. It could be suggested that Cd compartmentation with organo-ligands in vacuole or integrated with pectates and proteins in cell wall might be responsible for the adaptation of pokeweed to Cd stress.

  19. Pattern and location of intracerebral hemorrhage in Enugu, South ...

    African Journals Online (AJOL)

    Introduction: The incidence rates and location of nontraumatic intracerebral hemorrhage (ICH) have been shown to vary between population and races. Knowledge of ICH patterns may give some insight into the etiology of ICH and help reduce its burden particularly among Africans where health infrastructure is poorly ...

  20. CellMap visualizes protein-protein interactions and subcellular localization

    Science.gov (United States)

    Dallago, Christian; Goldberg, Tatyana; Andrade-Navarro, Miguel Angel; Alanis-Lobato, Gregorio; Rost, Burkhard

    2018-01-01

    Many tools visualize protein-protein interaction (PPI) networks. The tool introduced here, CellMap, adds one crucial novelty by visualizing PPI networks in the context of subcellular localization, i.e. the location in the cell or cellular component in which a PPI happens. Users can upload images of cells and define areas of interest against which PPIs for selected proteins are displayed (by default on a cartoon of a cell). Annotations of localization are provided by the user or through our in-house database. The visualizer and server are written in JavaScript, making CellMap easy to customize and to extend by researchers and developers. PMID:29497493

  1. Subcellular Iron Localization Mechanisms in Plants

    Directory of Open Access Journals (Sweden)

    Emre Aksoy

    2017-12-01

    Full Text Available The basic micro-nutrient element iron (Fe is present as a cofactor in the active sites of many metalloproteins with important roles in the plant. On the other hand, since it is excessively reactive, excess accumulation in the cell triggers the production of reactive oxygen species, leading to cell death. Therefore, iron homeostasis in the cell is very important for plant growth. Once uptake into the roots, iron is distributed to the subcellular compartments. Subcellular iron transport and hence cellular iron homeostasis is carried out through synchronous control of different membrane protein families. It has been discovered that expression levels of these membrane proteins increase under iron deficiency. Examination of the tasks and regulations of these carriers is very important in terms of understanding the iron intake and distribution mechanisms in plants. Therefore, in this review, the transporters responsible for the uptake of iron into the cell and its subcellular distribution between organelles will be discussed with an emphasis on the current developments about these transporters.

  2. Subcellular controls of mercury trophic transfer to a marine fish

    Energy Technology Data Exchange (ETDEWEB)

    Dang Fei [Department of Biology, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon (Hong Kong); Wang Wenxiong, E-mail: wwang@ust.hk [Department of Biology, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon (Hong Kong)

    2010-09-15

    Different behaviors of inorganic mercury [Hg(II)] and methylmercury (MeHg) during trophic transfer along the marine food chain have been widely reported, but the mechanisms are not fully understood. The bioavailability of ingested mercury, quantified by assimilation efficiency (AE), was investigated in a marine fish, the grunt Terapon jarbua, based on mercury subcellular partitioning in prey and purified subcellular fractions of prey tissues. The subcellular distribution of Hg(II) differed substantially among prey types, with cellular debris being a major (49-57% in bivalves) or secondary (14-19% in other prey) binding pool. However, MeHg distribution varied little among prey types, with most MeHg (43-79%) in heat-stable protein (HSP) fraction. The greater AEs measured for MeHg (90-94%) than for Hg(II) (23-43%) confirmed the findings of previous studies. Bioavailability of each purified subcellular fraction rather than the proposed trophically available metal (TAM) fraction could better elucidate mercury assimilation difference. Hg(II) associated with insoluble fraction (e.g. cellular debris) was less bioavailable than that in soluble fraction (e.g. HSP). However, subcellular distribution was shown to be less important for MeHg, with each fraction having comparable MeHg bioavailability. Subcellular distribution in prey should be an important consideration in mercury trophic transfer studies.

  3. Subcellular controls of mercury trophic transfer to a marine fish

    International Nuclear Information System (INIS)

    Dang Fei; Wang Wenxiong

    2010-01-01

    Different behaviors of inorganic mercury [Hg(II)] and methylmercury (MeHg) during trophic transfer along the marine food chain have been widely reported, but the mechanisms are not fully understood. The bioavailability of ingested mercury, quantified by assimilation efficiency (AE), was investigated in a marine fish, the grunt Terapon jarbua, based on mercury subcellular partitioning in prey and purified subcellular fractions of prey tissues. The subcellular distribution of Hg(II) differed substantially among prey types, with cellular debris being a major (49-57% in bivalves) or secondary (14-19% in other prey) binding pool. However, MeHg distribution varied little among prey types, with most MeHg (43-79%) in heat-stable protein (HSP) fraction. The greater AEs measured for MeHg (90-94%) than for Hg(II) (23-43%) confirmed the findings of previous studies. Bioavailability of each purified subcellular fraction rather than the proposed trophically available metal (TAM) fraction could better elucidate mercury assimilation difference. Hg(II) associated with insoluble fraction (e.g. cellular debris) was less bioavailable than that in soluble fraction (e.g. HSP). However, subcellular distribution was shown to be less important for MeHg, with each fraction having comparable MeHg bioavailability. Subcellular distribution in prey should be an important consideration in mercury trophic transfer studies.

  4. Latent Feature Models for Uncovering Human Mobility Patterns from Anonymized User Location Traces with Metadata

    KAUST Repository

    Alharbi, Basma Mohammed

    2017-04-10

    In the mobile era, data capturing individuals’ locations have become unprecedentedly available. Data from Location-Based Social Networks is one example of large-scale user-location data. Such data provide a valuable source for understanding patterns governing human mobility, and thus enable a wide range of research. However, mining and utilizing raw user-location data is a challenging task. This is mainly due to the sparsity of data (at the user level), the imbalance of data with power-law users and locations check-ins degree (at the global level), and more importantly the lack of a uniform low-dimensional feature space describing users. Three latent feature models are proposed in this dissertation. Each proposed model takes as an input a collection of user-location check-ins, and outputs a new representation space for users and locations respectively. To avoid invading users privacy, the proposed models are designed to learn from anonymized location data where only IDs - not geophysical positioning or category - of locations are utilized. To enrich the inferred mobility patterns, the proposed models incorporate metadata, often associated with user-location data, into the inference process. In this dissertation, two types of metadata are utilized to enrich the inferred patterns, timestamps and social ties. Time adds context to the inferred patterns, while social ties amplifies incomplete user-location check-ins. The first proposed model incorporates timestamps by learning from collections of users’ locations sharing the same discretized time. The second proposed model also incorporates time into the learning model, yet takes a further step by considering time at different scales (hour of a day, day of a week, month, and so on). This change in modeling time allows for capturing meaningful patterns over different times scales. The last proposed model incorporates social ties into the learning process to compensate for inactive users who contribute a large volume

  5. Tissue and subcellular localizations of 3H-cyclosporine A in mice

    International Nuclear Information System (INIS)

    Baeckman, L.; Brandt, I.; Appelkvist, E.-L.; Dallner, G.

    1988-01-01

    The tissue and subcellular localizations of 3 H-cyclosporine A after administration to mice were determined with whole-body autoradiography and scintillation counting of lipid extracts of tissues and subcellular fractions. The radioactivity was widely distributed in the body and the pattern of distribution after oral or parenteral administration was the same, except that tissue levels were generatlly lower after oral administration. Pretreatment of the animals with a diet containing cyclosporine A for 30 days before the injection of radioactive cyclosporine A did not change the pattern of distribution substantially. No significant radioactivity was found in the central nervous system, except for the choroidal plexus and the area postrema region of the brain. In pregnant mice no passage of radioactivity from the placentas to fetuses was observed after a single injection. 3 H-cyclosporine A and/or its metabolites showed a high affinity for the lympho-myeloid tissues, with a marked long-term retention in bone marrow and lymph nodes. There was massive excretion in the intestinal tract after parenteral administration, and the liver, bile, pancreas and salivary glands contained high levels of radioactivity. In the kidney radioactivity was confined to the outer zone of the outer kidney medulla. In liver homogenates no quantitatively significant binding of 3 H-cyclosporine A and/or its metabolites to cellular molecules such as proteins, DNA, phospho- or neutral lipids was found. After lipid extraction with organic solvents, almost all radioactivity was recovered in the organic phase. (author)

  6. Public Transportation and Industrial Location Patterns in California

    OpenAIRE

    Chatman , Daniel; Xu, Ruoying; Park , Janice; Le, Kim

    2016-01-01

    Public transit investments are a large and growing share of all transportation investments in the state of California, and such critical investments should be evaluated partly on their economic benefits. Taking such benefits into account could alter investment, service, and service restructuring decisions taken by transit agencies in the state. The relationship of public transportation to economic productivity, and spatial patterns of industrial location, is understudied. This project investi...

  7. Where am I? Location archetype keyword extraction from urban mobility patterns.

    Science.gov (United States)

    Kostakos, Vassilis; Juntunen, Tomi; Goncalves, Jorge; Hosio, Simo; Ojala, Timo

    2013-01-01

    Can online behaviour be used as a proxy for studying urban mobility? The increasing availability of digital mobility traces has provided new insights into collective human behaviour. Mobility datasets have been shown to be an accurate proxy for daily behaviour and social patterns, and behavioural data from Twitter has been used to predict real world phenomena such as cinema ticket sale volumes, stock prices, and disease outbreaks. In this paper we correlate city-scale urban traffic patterns with online search trends to uncover keywords describing the pedestrian traffic location. By analysing a 3-year mobility dataset we show that our approach, called Location Archetype Keyword Extraction (LAKE), is capable of uncovering semantically relevant keywords for describing a location. Our findings demonstrate an overarching relationship between online and offline collective behaviour, and allow for advancing analysis of community-level behaviour by using online search keywords as a practical behaviour proxy.

  8. Parasites modify sub-cellular partitioning of metals in the gut of fish

    Energy Technology Data Exchange (ETDEWEB)

    Oyoo-Okoth, Elijah, E-mail: elijaoyoo2009@gmail.com [Division of Environmental Health, School of Environmental Studies, Moi University, P.O. Box 3900, Eldoret (Kenya); Department of Aquatic Ecology and Ecotoxicology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 9424/1090 GE (Netherlands); Admiraal, Wim [Department of Aquatic Ecology and Ecotoxicology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 9424/1090 GE (Netherlands); Osano, Odipo [Division of Environmental Health, School of Environmental Studies, Moi University, P.O. Box 3900, Eldoret (Kenya); Kraak, Michiel H.S. [Department of Aquatic Ecology and Ecotoxicology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 9424/1090 GE (Netherlands); Gichuki, John; Ogwai, Caleb [Kenya Marine and Fisheries Research Institute, P.O. Box 1881, Kisumu (Kenya)

    2012-01-15

    Infestation of fish by parasites may influence metal accumulation patterns in the host. However, the subcellular mechanisms of these processes have rarely been studied. Therefore, this study determined how a cyprinid fish (Rastrineobola argentea) partitioned four metals (Cd, Cr, Zn and Cu) in the subcellular fractions of the gut in presence of an endoparasite (Ligula intestinalis). The fish were sampled along four sites in Lake Victoria, Kenya differing in metal contamination. Accumulation of Cd, Cr and Zn was higher in the whole body and in the gut of parasitized fish compared to non-parasitized fish, while Cu was depleted in parasitized fish. Generally, for both non-parasitized and parasitized fish, Cd, Cr and Zn partitioned in the cytosolic fractions and Cu in the particulate fraction. Metal concentrations in organelles within the particulate fractions of the non-parasitized fish were statistically similar except for Cd in the lysosome, while in the parasitized fish, Cd, Cr and Zn were accumulated more by the lysosome and microsomes. In the cytosolic fractions, the non-parasitized fish accumulated Cd, Cr and Zn in the heat stable proteins (HSP), while in the parasitized fish the metals were accumulated in the heat denatured proteins (HDP). On the contrary, Cu accumulated in the HSP in parasitized fish. The present study revealed specific binding of metals to potentially sensitive sub-cellular fractions in fish in the presence of parasites, suggesting interference with metal detoxification, and potentially affecting the health status of fish hosts in Lake Victoria.

  9. Subcellular Characterization of Porcine Oocytes with Different Glucose-6-phosphate Dehydrogenase Activities

    Directory of Open Access Journals (Sweden)

    Bo Fu

    2015-12-01

    Full Text Available The in vitro maturation (IVM efficiency of porcine embryos is still low because of poor oocyte quality. Although brilliant cresyl blue positive (BCB+ oocytes with low glucose-6-phosphate dehydrogenase (G6PDH activity have shown superior quality than BCB negative (− oocytes with high G6PDH activity, the use of a BCB staining test before IVM is still controversial. This study aimed to shed more light on the subcellular characteristics of porcine oocytes after selection using BCB staining. We assessed germinal vesicle chromatin configuration, cortical granule (CG migration, mitochondrial distribution, the levels of acetylated lysine 9 of histone H3 (AcH3K9 and nuclear apoptosis features to investigate the correlation between G6PDH activity and these developmentally related features. A pattern of chromatin surrounding the nucleoli was seen in 53.0% of BCB+ oocytes and 77.6% of BCB+ oocytes showed peripherally distributed CGs. After IVM, 48.7% of BCB+ oocytes had a diffused mitochondrial distribution pattern. However, there were no significant differences in the levels of AcH3K9 in the nuclei of blastocysts derived from BCB+ and BCB− oocytes; at the same time, we observed a similar incidence of apoptosis in the BCB+ and control groups. Although this study indicated that G6PDH activity in porcine oocytes was correlated with several subcellular characteristics such as germinal vesicle chromatin configuration, CG migration and mitochondrial distribution, other features such as AcH3K9 level and nuclear apoptotic features were not associated with G6PDH activity and did not validate the BCB staining test. In using this test for selecting porcine oocytes, subcellular characteristics such as the AcH3K9 level and apoptotic nuclear features should also be considered. Adding histone deacetylase inhibitors or apoptosis inhibitors into the culture medium used might improve the efficiency of IVM of BCB+ oocytes.

  10. Where am I? Location archetype keyword extraction from urban mobility patterns.

    Directory of Open Access Journals (Sweden)

    Vassilis Kostakos

    Full Text Available Can online behaviour be used as a proxy for studying urban mobility? The increasing availability of digital mobility traces has provided new insights into collective human behaviour. Mobility datasets have been shown to be an accurate proxy for daily behaviour and social patterns, and behavioural data from Twitter has been used to predict real world phenomena such as cinema ticket sale volumes, stock prices, and disease outbreaks. In this paper we correlate city-scale urban traffic patterns with online search trends to uncover keywords describing the pedestrian traffic location. By analysing a 3-year mobility dataset we show that our approach, called Location Archetype Keyword Extraction (LAKE, is capable of uncovering semantically relevant keywords for describing a location. Our findings demonstrate an overarching relationship between online and offline collective behaviour, and allow for advancing analysis of community-level behaviour by using online search keywords as a practical behaviour proxy.

  11. Protein subcellular localization prediction using artificial intelligence technology.

    Science.gov (United States)

    Nair, Rajesh; Rost, Burkhard

    2008-01-01

    Proteins perform many important tasks in living organisms, such as catalysis of biochemical reactions, transport of nutrients, and recognition and transmission of signals. The plethora of aspects of the role of any particular protein is referred to as its "function." One aspect of protein function that has been the target of intensive research by computational biologists is its subcellular localization. Proteins must be localized in the same subcellular compartment to cooperate toward a common physiological function. Aberrant subcellular localization of proteins can result in several diseases, including kidney stones, cancer, and Alzheimer's disease. To date, sequence homology remains the most widely used method for inferring the function of a protein. However, the application of advanced artificial intelligence (AI)-based techniques in recent years has resulted in significant improvements in our ability to predict the subcellular localization of a protein. The prediction accuracy has risen steadily over the years, in large part due to the application of AI-based methods such as hidden Markov models (HMMs), neural networks (NNs), and support vector machines (SVMs), although the availability of larger experimental datasets has also played a role. Automatic methods that mine textual information from the biological literature and molecular biology databases have considerably sped up the process of annotation for proteins for which some information regarding function is available in the literature. State-of-the-art methods based on NNs and HMMs can predict the presence of N-terminal sorting signals extremely accurately. Ab initio methods that predict subcellular localization for any protein sequence using only the native amino acid sequence and features predicted from the native sequence have shown the most remarkable improvements. The prediction accuracy of these methods has increased by over 30% in the past decade. The accuracy of these methods is now on par with

  12. Subcellular distribution of glycogen and decreased tetanic Ca2+ in fatigued single intact mouse muscle fibres

    DEFF Research Database (Denmark)

    Nielsen, Joachim; Cheng, Arthur J; Ørtenblad, Niels

    2014-01-01

    In skeletal muscle fibres, glycogen has been shown to be stored at different subcellular locations: (i) between the myofibrils (intermyofibrillar); (ii) within the myofibrils (intramyofibrillar); and (iii) subsarcolemmal. Of these, intramyofibrillar glycogen has been implied as a critical regulator...... of sarcoplasmic reticulum Ca(2+) release. The aim of the present study was to test directly how the decrease in cytoplasmic free Ca(2+) ([Ca(2+)]i) during repeated tetanic contractions relates to the subcellular glycogen distribution. Single fibres of mouse flexor digitorum brevis muscles were fatigued with 70 Hz...... in tetanic [Ca(2+)]i, and hence force, is accompanied by major reductions in inter- and intramyofibrillar glycogen. The stronger correlation between decreased tetanic [Ca(2+)]i and reduced intramyofibrillar glycogen implies that sarcoplasmic reticulum Ca(2+) release critically depends on energy supply from...

  13. Location, location, location: Assessing the spatial patterning between marijuana licenses, alcohol outlets and neighborhood characteristics within Washington state.

    Science.gov (United States)

    Tabb, Loni Philip; Fillmore, Christina; Melly, Steven

    2018-04-01

    The availability of marijuana products is becoming increasingly prevalent across the United States (US), many states are allowing for the production, processing, and retailing of these products for medical and/or recreational use. The purpose of this study is to: (1) examine the spatial patterning of marijuana licenses, and (2) examine the impact of alcohol outlets in addition to other neighborhood characteristics on marijuana licenses within the state of Washington. This cross-sectional observational study examined 1458 census tracts in Washington state from 2017, using marijuana and alcohol data from the Washington State Liquor and Cannabis Board as well as neighborhood characteristics data from the American Community Survey 2011-2015 5-year estimates. We used exploratory and formal spatial regression methods, including integrated nested Laplace approximation within a Bayesian statistical framework, to address the study aims. Our results indicate there is significant spatial patterning of marijuana producers and processors across the state. We also found that all marijuana licenses are located in poorer census tracts, and marijuana retailers are co-located in census tracts with off-premises alcohol outlets. Our study provides empirical evidence of the relationship between marijuana licenses, alcohol outlets, and neighborhood characteristics, and has important implications for policymakers in other states currently considering legalizing marijuana-products for medical and/or recreational use. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Subcellular site and nature of intracellular cadmium in plants

    International Nuclear Information System (INIS)

    Wagner, G.J.

    1979-01-01

    The mechanisms underlying heavy metal accumulation, toxicity, and tolerance in higher plants are poorly understood. Since subcellular processes are undoubtedly involved in all these phenomena, it is of interest to study the extent, subcellular site and nature of intracellularly accumulated cadmium in higher plants. Whole plants supplied 109 CdCl 2 or 112 CdSO 4 accumulated Cd into roots and aerial tissues. Preparation of protoplasts from aerial tissues followed by subcellular fractionation of the protoplasts to obtain intact vacuoles, chloroplasts and cytosol revealed the presence of Cd in the cytosol but not in vacuoles or chloroplasts. No evidence was obtained for the production of volatile Cd complexes in tobacco

  15. Subcellular location of Arabidopsis thaliana subfamily a1 β-galactosidases and developmental regulation of transcript levels of their coding genes.

    Science.gov (United States)

    Moneo-Sánchez, María; Izquierdo, Lucía; Martín, Ignacio; Labrador, Emilia; Dopico, Berta

    2016-12-01

    The aim of this work is to gain insight into the six members of the a1 subfamily of the β-galactosidases (BGAL) from Arabidopsis thaliana. First, the subcellular location of all these six BGAL proteins from a1 subfamily has been established in the cell wall by the construction of transgenic plants producing the enhanced green fluorescent protein (eGFP) fused to the BGAL proteins. BGAL12 is also located in the endoplasmic reticulum. Our study of the AtBGAL transcript accumulation along plant development indicated that all AtBGAL transcript appeared in initial stages of development, both dark- and light-grown seedlings, being AtBGAL1, AtBGAL2 and AtBGAL3 transcripts the predominant ones in the latter condition, mainly in the aerial part and with levels decreasing with age. The high accumulation of transcript of AtBGAL4 in basal internodes and in leaves at the end of development, and their strong increase after treatment both with BL and H 3 BO 3 point to an involvement of BGAL4 in cell wall changes leading to the cease of elongation and increased rigidity. The changes of AtBGAL transcript accumulation in relation to different stages and conditions of plant development, suggest that each of the different gene products have a plant-specific function and provides support for the proposed function of the subfamily a1 BGAL in plant cell wall remodelling for cell expansion or for cell response to stress conditions. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  16. Finding Hidden Location Patterns of Two Competitive Supermarkets in Thailand

    Science.gov (United States)

    Khumsri, Jinattaporn; Fujihara, Akihiro

    There are two famous supermarkets in Thailand: Big C and Lotus. They are the highest competitive supermarkets whose hold the most market share by lots of promotions and also gather all convenience services including banking, restaurant, and others. In recent years, they gradually expand their stores and they take a similar strategy to determine where to locate a store. It is important for them to consider store allocation to obtain new customers efficiently. To consider this, we gather geographical locations of these supermarkets from Twitter using Twitter API. We gathered tweets having these supermarket names and geotags for seven months. To extract hidden location patterns from gathered data, we introduce location motif which is a directed subgraph whose edges are linked to every pair of the shortest-distance opponent node. We investigate every possible configuration of location motif when they have a small number of nodes and find that the configuration increases exponentially. We also visualize location motifs generated from gathered data on the map of Thailand and count the frequency of observed location motifs. As a result, we find that even if the possible location motifs exponentially increase as the number of nodes grows, limited location motifs can be observed. Using location motif, we successfully find an evidence of biased store allocation in reality.

  17. Sub-cellular force microscopy in single normal and cancer cells.

    Science.gov (United States)

    Babahosseini, H; Carmichael, B; Strobl, J S; Mahmoodi, S N; Agah, M

    2015-08-07

    This work investigates the biomechanical properties of sub-cellular structures of breast cells using atomic force microscopy (AFM). The cells are modeled as a triple-layered structure where the Generalized Maxwell model is applied to experimental data from AFM stress-relaxation tests to extract the elastic modulus, the apparent viscosity, and the relaxation time of sub-cellular structures. The triple-layered modeling results allow for determination and comparison of the biomechanical properties of the three major sub-cellular structures between normal and cancerous cells: the up plasma membrane/actin cortex, the mid cytoplasm/nucleus, and the low nuclear/integrin sub-domains. The results reveal that the sub-domains become stiffer and significantly more viscous with depth, regardless of cell type. In addition, there is a decreasing trend in the average elastic modulus and apparent viscosity of the all corresponding sub-cellular structures from normal to cancerous cells, which becomes most remarkable in the deeper sub-domain. The presented modeling in this work constitutes a unique AFM-based experimental framework to study the biomechanics of sub-cellular structures. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Analyzing and Predicting Micro-Location Patterns of Software Firms

    Directory of Open Access Journals (Sweden)

    Jan Kinne

    2017-12-01

    Full Text Available While the effects of non-geographic aggregation on statistical inference are well studied in economics, research on the effects of geographic aggregation on regression analysis is rather scarce. This knowledge gap, together with the use of aggregated spatial units in previous firm location studies, results in a lack of understanding of firm location determinants at the microgeographic level. Suitable data for microgeographic location analysis has become available only recently through the emergence of Volunteered Geographic Information (VGI, especially the OpenStreetMap (OSM project, and the increasing availability of official (open geodata. In this paper, we use a comprehensive dataset of three million street-level geocoded firm observations to explore the location pattern of software firms in an Exploratory Spatial Data Analysis (ESDA. Based on the ESDA results, we develop a software firm location prediction model using Poisson regression and OSM data. Our findings offer novel insights into the mode of operation of the Modifiable Areal Unit Problem (MAUP in the context of a microgeographic location analysis: We find that non-aggregated data can be used to detect information on location determinants, which are superimposed when aggregated spatial units are analyzed, and that some findings of previous firm location studies are not robust at the microgeographic level. However, we also conclude that the lack of high-resolution geodata on socio-economic population characteristics causes systematic prediction errors, especially in cities with diverse and segregated populations.

  19. Subcellular distribution of calcium-binding proteins and a calcium-ATPase in canine pancreas

    International Nuclear Information System (INIS)

    Nigam, S.K.; Towers, T.

    1990-01-01

    Using a 45Ca blot-overlay assay, we monitored the subcellular fractionation pattern of several Ca binding proteins of apparent molecular masses 94, 61, and 59 kD. These proteins also appeared to stain blue with Stains-All. Additionally, using a monoclonal antiserum raised against canine cardiac sarcoplasmic reticulum Ca-ATPase, we examined the subcellular distribution of a canine pancreatic 110-kD protein recognized by this antiserum. This protein had the same electrophoretic mobility as the cardiac protein against which the antiserum was raised. The three Ca binding proteins and the Ca-ATPase cofractionated into the rough microsomal fraction (RM), previously shown to consist of highly purified RER, in a pattern highly similar to that of the RER marker, ribophorin I. To provide further evidence for an RER localization, native RM were subjected to isopycnic flotation in sucrose gradients. The Ca binding proteins and the Ca-ATPase were found in dense fractions, along with ribophorin I. When RM were stripped of ribosomes with puromycin/high salt, the Ca binding proteins and the Ca-ATPase exhibited a shift to less dense fractions, as did ribophorin I. We conclude that, in pancreas, the Ca binding proteins and Ca-ATPase we detect are localized to the RER (conceivably a subcompartment of the RER) or, possibly, a structure intimately associated with the RER

  20. Imaging Subcellular Structures in the Living Zebrafish Embryo.

    Science.gov (United States)

    Engerer, Peter; Plucinska, Gabriela; Thong, Rachel; Trovò, Laura; Paquet, Dominik; Godinho, Leanne

    2016-04-02

    In vivo imaging provides unprecedented access to the dynamic behavior of cellular and subcellular structures in their natural context. Performing such imaging experiments in higher vertebrates such as mammals generally requires surgical access to the system under study. The optical accessibility of embryonic and larval zebrafish allows such invasive procedures to be circumvented and permits imaging in the intact organism. Indeed the zebrafish is now a well-established model to visualize dynamic cellular behaviors using in vivo microscopy in a wide range of developmental contexts from proliferation to migration and differentiation. A more recent development is the increasing use of zebrafish to study subcellular events including mitochondrial trafficking and centrosome dynamics. The relative ease with which these subcellular structures can be genetically labeled by fluorescent proteins and the use of light microscopy techniques to image them is transforming the zebrafish into an in vivo model of cell biology. Here we describe methods to generate genetic constructs that fluorescently label organelles, highlighting mitochondria and centrosomes as specific examples. We use the bipartite Gal4-UAS system in multiple configurations to restrict expression to specific cell-types and provide protocols to generate transiently expressing and stable transgenic fish. Finally, we provide guidelines for choosing light microscopy methods that are most suitable for imaging subcellular dynamics.

  1. Subcellular boron and fluorine distributions with SIMS ion microscopy in BNCT and cancer research

    Energy Technology Data Exchange (ETDEWEB)

    Subhash Chandra

    2008-05-30

    The development of a secondary ion mass spectrometry (SIMS) based technique of Ion Microscopy in boron neutron capture therapy (BNCT) was the main goal of this project, so that one can study the subcellular location of boron-10 atoms and their partitioning between the normal and cancerous tissue. This information is fundamental for the screening of boronated drugs appropriate for neutron capture therapy of cancer. Our studies at Cornell concentrated mainly on studies of glioblastoma multiforme (GBM). The early years of the grant were dedicated to the development of cryogenic methods and correlative microscopic approaches so that a reliable subcellular analysis of boron-10 atoms can be made with SIMS. In later years SIMS was applied to animal models and human tissues of GBM for studying the efficacy of potential boronated agents in BNCT. Under this grant the SIMS program at Cornell attained a new level of excellence and collaborative SIMS studies were published with leading BNCT researchers in the U.S.

  2. Subcellular boron and fluorine distributions with SIMS ion microscopy in BNCT and cancer research

    International Nuclear Information System (INIS)

    Subhash, Chandra

    2008-01-01

    The development of a secondary ion mass spectrometry (SIMS) based technique of Ion Microscopy in boron neutron capture therapy (BNCT) was the main goal of this project, so that one can study the subcellular location of boron-10 atoms and their partitioning between the normal and cancerous tissue. This information is fundamental for the screening of boronated drugs appropriate for neutron capture therapy of cancer. Our studies at Cornell concentrated mainly on studies of glioblastoma multiforme (GBM). The early years of the grant were dedicated to the development of cryogenic methods and correlative microscopic approaches so that a reliable subcellular analysis of boron-10 atoms can be made with SIMS. In later years SIMS was applied to animal models and human tissues of GBM for studying the efficacy of potential boronated agents in BNCT. Under this grant the SIMS program at Cornell attained a new level of excellence and collaborative SIMS studies were published with leading BNCT researchers in the U.S.

  3. Protein subcellular localization assays using split fluorescent proteins

    Science.gov (United States)

    Waldo, Geoffrey S [Santa Fe, NM; Cabantous, Stephanie [Los Alamos, NM

    2009-09-08

    The invention provides protein subcellular localization assays using split fluorescent protein systems. The assays are conducted in living cells, do not require fixation and washing steps inherent in existing immunostaining and related techniques, and permit rapid, non-invasive, direct visualization of protein localization in living cells. The split fluorescent protein systems used in the practice of the invention generally comprise two or more self-complementing fragments of a fluorescent protein, such as GFP, wherein one or more of the fragments correspond to one or more beta-strand microdomains and are used to "tag" proteins of interest, and a complementary "assay" fragment of the fluorescent protein. Either or both of the fragments may be functionalized with a subcellular targeting sequence enabling it to be expressed in or directed to a particular subcellular compartment (i.e., the nucleus).

  4. Zymogen Activation and Subcellular Activity of Subtilisin Kexin Isozyme 1/Site 1 Protease*

    Science.gov (United States)

    da Palma, Joel Ramos; Burri, Dominique Julien; Oppliger, Joël; Salamina, Marco; Cendron, Laura; de Laureto, Patrizia Polverino; Seidah, Nabil Georges; Kunz, Stefan; Pasquato, Antonella

    2014-01-01

    The proprotein convertase subtilisin kexin isozyme 1 (SKI-1)/site 1 protease (S1P) plays crucial roles in cellular homeostatic functions and is hijacked by pathogenic viruses for the processing of their envelope glycoproteins. Zymogen activation of SKI-1/S1P involves sequential autocatalytic processing of its N-terminal prodomain at sites B′/B followed by the herein newly identified C′/C sites. We found that SKI-1/S1P autoprocessing results in intermediates whose catalytic domain remains associated with prodomain fragments of different lengths. In contrast to other zymogen proprotein convertases, all incompletely matured intermediates of SKI-1/S1P showed full catalytic activity toward cellular substrates, whereas optimal cleavage of viral glycoproteins depended on B′/B processing. Incompletely matured forms of SKI-1/S1P further process cellular and viral substrates in distinct subcellular compartments. Using a cell-based sensor for SKI-1/S1P activity, we found that 9 amino acid residues at the cleavage site (P1–P8) and P1′ are necessary and sufficient to define the subcellular location of processing and to determine to what extent processing of a substrate depends on SKI-1/S1P maturation. In sum, our study reveals novel and unexpected features of SKI-1/S1P zymogen activation and subcellular specificity of activity toward cellular and pathogen-derived substrates. PMID:25378398

  5. Discovery of spatio-temporal patterns from location-based social networks

    Science.gov (United States)

    Béjar, J.; Álvarez, S.; García, D.; Gómez, I.; Oliva, L.; Tejeda, A.; Vázquez-Salceda, J.

    2016-03-01

    Location-based social networks (LBSNs) such as Twitter or Instagram are a good source for user spatio-temporal behaviour. These networks collect data from users in such a way that they can be seen as a set of collective and distributed sensors of a geographical area. A low rate sampling of user's location information can be obtained during large intervals of time that can be used to discover complex patterns, including mobility profiles, points of interest or unusual events. These patterns can be used as the elements of a knowledge base for different applications in different domains such as mobility route planning, touristic recommendation systems or city planning. The aim of this paper is twofold, first to analyse the frequent spatio-temporal patterns that users share when living and visiting a city. This behaviour is studied by means of frequent itemsets algorithms in order to establish some associations among visits that can be interpreted as interesting routes or spatio-temporal connections. Second, to analyse how the spatio-temporal behaviour of a large number of users can be segmented in different profiles. These behavioural profiles are obtained by means of clustering algorithms that show the different patterns of behaviour of visitors and citizens. The data analysed were obtained from the public data feeds of Twitter and Instagram within an area surrounding the cities of Barcelona and Milan for a period of several months. The analysis of these data shows that these kinds of algorithms can be successfully applied to data from any city (or general area) to discover useful patterns that can be interpreted on terms of singular places and areas and their temporal relationships.

  6. Understanding Spatiotemporal Patterns of Human Convergence and Divergence Using Mobile Phone Location Data

    Directory of Open Access Journals (Sweden)

    Xiping Yang

    2016-09-01

    Full Text Available Investigating human mobility patterns can help researchers and agencies understand the driving forces of human movement, with potential benefits for urban planning and traffic management. Recent advances in location-aware technologies have provided many new data sources (e.g., mobile phone and social media data for studying human space-time behavioral regularity. Although existing studies have utilized these new datasets to characterize human mobility patterns from various aspects, such as predicting human mobility and monitoring urban dynamics, few studies have focused on human convergence and divergence patterns within a city. This study aims to explore human spatial convergence and divergence and their evolutions over time using large-scale mobile phone location data. Using a dataset from Shenzhen, China, we developed a method to identify spatiotemporal patterns of human convergence and divergence. Eight distinct patterns were extracted, and the spatial distributions of these patterns are discussed in the context of urban functional regions. Thus, this study investigates urban human convergence and divergence patterns and their relationships with the urban functional environment, which is helpful for urban policy development, urban planning and traffic management.

  7. Correlation of N-myc downstream-regulated gene 1 subcellular localization and lymph node metastases of colorectal neoplasms

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yan [Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014 (China); Lv, Liyang [Department of Health, Jinan Military Area Command, Jinan 250022 (China); Du, Juan; Yue, Longtao [Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014 (China); Cao, Lili, E-mail: cllly22@163.com [Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014 (China)

    2013-09-20

    Highlights: •We clarified NDRG1 subcellular location in colorectal cancer. •We found the changes of NDRG1 distribution during colorectal cancer progression. •We clarified the correlation between NDRG1 distribution and lymph node metastasis. •It is possible that NDRG1 subcellular localization may determine its function. •Maybe NDRG1 is valuable early diagnostic markers for metastasis. -- Abstract: In colorectal neoplasms, N-myc downstream-regulated gene 1 (NDRG1) is a primarily cytoplasmic protein, but it is also expressed on the cell membrane and in the nucleus. NDRG1 is involved in various stages of tumor development in colorectal cancer, and it is possible that the different subcellular localizations may determine the function of NDRG1 protein. Here, we attempt to clarify the characteristics of NDRG1 protein subcellular localization during the progression of colorectal cancer. We examined NDRG1 expression in 49 colorectal cancer patients in cancerous, non-cancerous, and corresponding lymph node tissues. Cytoplasmic and membrane NDRG1 expression was higher in the lymph nodes with metastases than in those without metastases (P < 0.01). Nuclear NDRG1 expression in colorectal neoplasms was significantly higher than in the normal colorectal mucosa, and yet the normal colorectal mucosa showed no nuclear expression. Furthermore, our results showed higher cytoplasmic NDRG1 expression was better for differentiation, and higher membrane NDRG1 expression resulted in a greater possibility of lymph node metastasis. These data indicate that a certain relationship between the cytoplasmic and membrane expression of NDRG1 in lymph nodes exists with lymph node metastasis. NDRG1 expression may translocate from the membrane of the colorectal cancer cells to the nucleus, where it is involved in lymph node metastasis. Combination analysis of NDRG1 subcellular expression and clinical variables will help predict the incidence of lymph node metastasis.

  8. Correlation of N-myc downstream-regulated gene 1 subcellular localization and lymph node metastases of colorectal neoplasms

    International Nuclear Information System (INIS)

    Song, Yan; Lv, Liyang; Du, Juan; Yue, Longtao; Cao, Lili

    2013-01-01

    Highlights: •We clarified NDRG1 subcellular location in colorectal cancer. •We found the changes of NDRG1 distribution during colorectal cancer progression. •We clarified the correlation between NDRG1 distribution and lymph node metastasis. •It is possible that NDRG1 subcellular localization may determine its function. •Maybe NDRG1 is valuable early diagnostic markers for metastasis. -- Abstract: In colorectal neoplasms, N-myc downstream-regulated gene 1 (NDRG1) is a primarily cytoplasmic protein, but it is also expressed on the cell membrane and in the nucleus. NDRG1 is involved in various stages of tumor development in colorectal cancer, and it is possible that the different subcellular localizations may determine the function of NDRG1 protein. Here, we attempt to clarify the characteristics of NDRG1 protein subcellular localization during the progression of colorectal cancer. We examined NDRG1 expression in 49 colorectal cancer patients in cancerous, non-cancerous, and corresponding lymph node tissues. Cytoplasmic and membrane NDRG1 expression was higher in the lymph nodes with metastases than in those without metastases (P < 0.01). Nuclear NDRG1 expression in colorectal neoplasms was significantly higher than in the normal colorectal mucosa, and yet the normal colorectal mucosa showed no nuclear expression. Furthermore, our results showed higher cytoplasmic NDRG1 expression was better for differentiation, and higher membrane NDRG1 expression resulted in a greater possibility of lymph node metastasis. These data indicate that a certain relationship between the cytoplasmic and membrane expression of NDRG1 in lymph nodes exists with lymph node metastasis. NDRG1 expression may translocate from the membrane of the colorectal cancer cells to the nucleus, where it is involved in lymph node metastasis. Combination analysis of NDRG1 subcellular expression and clinical variables will help predict the incidence of lymph node metastasis

  9. Teachers pattern of instruction and location on pupils critical thinking ...

    African Journals Online (AJOL)

    This paper seeks to ascertain the influence of teachers' pattern of instruction and location on pupils' critical thinking in science achievement in Imo State. To achieve this objective, two hypotheses were formulated. Ex-post facto research design was adopted for the study. A total of ninety (90) teachers and one thousand ...

  10. Latent Feature Models for Uncovering Human Mobility Patterns from Anonymized User Location Traces with Metadata

    KAUST Repository

    Alharbi, Basma Mohammed

    2017-01-01

    In the mobile era, data capturing individuals’ locations have become unprecedentedly available. Data from Location-Based Social Networks is one example of large-scale user-location data. Such data provide a valuable source for understanding patterns

  11. Autophagosome Proteins LC3A, LC3B and LC3C Have Distinct Subcellular Distribution Kinetics and Expression in Cancer Cell Lines.

    Directory of Open Access Journals (Sweden)

    Michael I Koukourakis

    Full Text Available LC3s (MAP1-LC3A, B and C are structural proteins of autophagosomal membranes, widely used as biomarkers of autophagy. Whether these three LC3 proteins have a similar biological role in autophagy remains obscure. We examine in parallel the subcellular expression patterns of the three LC3 proteins in a panel of human cancer cell lines, as well as in normal MRC5 fibroblasts and HUVEC, using confocal microscopy and western blot analysis of cell fractions. In the cytoplasm, there was a minimal co-localization between LC3A, B and C staining, suggesting that the relevant autophagosomes are formed by only one out of the three LC3 proteins. LC3A showed a perinuclear and nuclear localization, while LC3B was equally distributed throughout the cytoplasm and localized in the nucleolar regions. LC3C was located in the cytoplasm and strongly in the nuclei (excluding nucleoli, where it extensively co-localized with the LC3A and the Beclin-1 autophagy initiating protein. Beclin 1 is known to contain a nuclear trafficking signal. Blocking nuclear export function by Leptomycin B resulted in nuclear accumulation of all LC3 and Beclin-1 proteins, while Ivermectin that blocks nuclear import showed reduction of accumulation, but not in all cell lines. Since endogenous LC3 proteins are used as major markers of autophagy in clinical studies and cell lines, it is essential to check the specificity of the antibodies used, as the kinetics of these molecules are not identical and may have distinct biological roles. The distinct subcellular expression patterns of LC3s provide a basis for further studies.

  12. Investigation of the effects of cell model and subcellular location of gold nanoparticles on nuclear dose enhancement factors using Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Zhongli; Chattopadhyay, Niladri; Kwon, Yongkyu Luke [Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario M5S 3M2 (Canada); Pignol, Jean-Philippe [Department of Radiation Oncology, University of Toronto, Toronto, Ontario M4N 3M5, Canada and Department of Medical Biophysics, University of Toronto, Toronto, Ontario M4N 3M5 (Canada); Lechtman, Eli [Department of Medical Biophysics, University of Toronto, Toronto, Ontario M4N 3M5 (Canada); Reilly, Raymond M. [Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario M5S 3M2 (Canada); Department of Medical Imaging, University of Toronto, Toronto, Ontario M5S 3E2 (Canada); Toronto General Research Institute, University Health Network, Toronto, Ontario M5G 2C4 (Canada)

    2013-11-15

    Purpose: The authors’ aims were to model how various factors influence radiation dose enhancement by gold nanoparticles (AuNPs) and to propose a new modeling approach to the dose enhancement factor (DEF).Methods: The authors used Monte Carlo N-particle (MCNP 5) computer code to simulate photon and electron transport in cells. The authors modeled human breast cancer cells as a single cell, a monolayer, or a cluster of cells. Different numbers of 5, 30, or 50 nm AuNPs were placed in the extracellular space, on the cell surface, in the cytoplasm, or in the nucleus. Photon sources examined in the simulation included nine monoenergetic x-rays (10–100 keV), an x-ray beam (100 kVp), and {sup 125}I and {sup 103}Pd brachytherapy seeds. Both nuclear and cellular dose enhancement factors (NDEFs, CDEFs) were calculated. The ability of these metrics to predict the experimental DEF based on the clonogenic survival of MDA-MB-361 human breast cancer cells exposed to AuNPs and x-rays were compared.Results: NDEFs show a strong dependence on photon energies with peaks at 15, 30/40, and 90 keV. Cell model and subcellular location of AuNPs influence the peak position and value of NDEF. NDEFs decrease in the order of AuNPs in the nucleus, cytoplasm, cell membrane, and extracellular space. NDEFs also decrease in the order of AuNPs in a cell cluster, monolayer, and single cell if the photon energy is larger than 20 keV. NDEFs depend linearly on the number of AuNPs per cell. Similar trends were observed for CDEFs. NDEFs using the monolayer cell model were more predictive than either single cell or cluster cell models of the DEFs experimentally derived from the clonogenic survival of cells cultured as a monolayer. The amount of AuNPs required to double the prescribed dose in terms of mg Au/g tissue decreases as the size of AuNPs increases, especially when AuNPs are in the nucleus and the cytoplasm. For 40 keV x-rays and a cluster of cells, to double the prescribed x-ray dose (NDEF = 2

  13. Predicting the subcellular localization of viral proteins within a mammalian host cell

    Directory of Open Access Journals (Sweden)

    Thomas DY

    2006-04-01

    Full Text Available Abstract Background The bioinformatic prediction of protein subcellular localization has been extensively studied for prokaryotic and eukaryotic organisms. However, this is not the case for viruses whose proteins are often involved in extensive interactions at various subcellular localizations with host proteins. Results Here, we investigate the extent of utilization of human cellular localization mechanisms by viral proteins and we demonstrate that appropriate eukaryotic subcellular localization predictors can be used to predict viral protein localization within the host cell. Conclusion Such predictions provide a method to rapidly annotate viral proteomes with subcellular localization information. They are likely to have widespread applications both in the study of the functions of viral proteins in the host cell and in the design of antiviral drugs.

  14. Seasonal Differences in Determinants of Time Location Patterns in an Urban Population: A Large Population-Based Study in Korea.

    Science.gov (United States)

    Lee, Sewon; Lee, Kiyoung

    2017-06-22

    Time location patterns are a significant factor for exposure assessment models of air pollutants. Factors associated with time location patterns in urban populations are typically due to high air pollution levels in urban areas. The objective of this study was to determine the seasonal differences in time location patterns in two urban cities. A Time Use Survey of Korean Statistics (KOSTAT) was conducted in the summer, fall, and winter of 2014. Time location data from Seoul and Busan were collected, together with demographic information obtained by diaries and questionnaires. Determinants of the time spent at each location were analyzed by multiple linear regression and the stepwise method. Seoul and Busan participants had similar time location profiles over the three seasons. The time spent at own home, other locations, workplace/school and during walk were similar over the three seasons in both the Seoul and Busan participants. The most significant time location pattern factors were employment status, age, gender, monthly income, and spouse. Season affected the time spent at the workplace/school and other locations in the Seoul participants, but not in the Busan participants. The seasons affected each time location pattern of the urban population slightly differently, but overall there were few differences.

  15. Seasonal Differences in Determinants of Time Location Patterns in an Urban Population: A Large Population-Based Study in Korea

    Directory of Open Access Journals (Sweden)

    Sewon Lee

    2017-06-01

    Full Text Available Time location patterns are a significant factor for exposure assessment models of air pollutants. Factors associated with time location patterns in urban populations are typically due to high air pollution levels in urban areas. The objective of this study was to determine the seasonal differences in time location patterns in two urban cities. A Time Use Survey of Korean Statistics (KOSTAT was conducted in the summer, fall, and winter of 2014. Time location data from Seoul and Busan were collected, together with demographic information obtained by diaries and questionnaires. Determinants of the time spent at each location were analyzed by multiple linear regression and the stepwise method. Seoul and Busan participants had similar time location profiles over the three seasons. The time spent at own home, other locations, workplace/school and during walk were similar over the three seasons in both the Seoul and Busan participants. The most significant time location pattern factors were employment status, age, gender, monthly income, and spouse. Season affected the time spent at the workplace/school and other locations in the Seoul participants, but not in the Busan participants. The seasons affected each time location pattern of the urban population slightly differently, but overall there were few differences.

  16. Sub-cellular force microscopy in single normal and cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Babahosseini, H. [VT MEMS Laboratory, The Bradley Department of Electrical and Computer Engineering, Blacksburg, VA 24061 (United States); Carmichael, B. [Nonlinear Intelligent Structures Laboratory, Department of Mechanical Engineering, University of Alabama, Tuscaloosa, AL 35487-0276 (United States); Strobl, J.S. [VT MEMS Laboratory, The Bradley Department of Electrical and Computer Engineering, Blacksburg, VA 24061 (United States); Mahmoodi, S.N., E-mail: nmahmoodi@eng.ua.edu [Nonlinear Intelligent Structures Laboratory, Department of Mechanical Engineering, University of Alabama, Tuscaloosa, AL 35487-0276 (United States); Agah, M., E-mail: agah@vt.edu [VT MEMS Laboratory, The Bradley Department of Electrical and Computer Engineering, Blacksburg, VA 24061 (United States)

    2015-08-07

    This work investigates the biomechanical properties of sub-cellular structures of breast cells using atomic force microscopy (AFM). The cells are modeled as a triple-layered structure where the Generalized Maxwell model is applied to experimental data from AFM stress-relaxation tests to extract the elastic modulus, the apparent viscosity, and the relaxation time of sub-cellular structures. The triple-layered modeling results allow for determination and comparison of the biomechanical properties of the three major sub-cellular structures between normal and cancerous cells: the up plasma membrane/actin cortex, the mid cytoplasm/nucleus, and the low nuclear/integrin sub-domains. The results reveal that the sub-domains become stiffer and significantly more viscous with depth, regardless of cell type. In addition, there is a decreasing trend in the average elastic modulus and apparent viscosity of the all corresponding sub-cellular structures from normal to cancerous cells, which becomes most remarkable in the deeper sub-domain. The presented modeling in this work constitutes a unique AFM-based experimental framework to study the biomechanics of sub-cellular structures. - Highlights: • The cells are modeled as a triple-layered structure using Generalized Maxwell model. • The sub-domains include membrane/cortex, cytoplasm/nucleus, and nuclear/integrin. • Biomechanics of corresponding sub-domains are compared among normal and cancer cells. • Viscoelasticity of sub-domains show a decreasing trend from normal to cancer cells. • The decreasing trend becomes most significant in the deeper sub-domain.

  17. Sub-cellular force microscopy in single normal and cancer cells

    International Nuclear Information System (INIS)

    Babahosseini, H.; Carmichael, B.; Strobl, J.S.; Mahmoodi, S.N.; Agah, M.

    2015-01-01

    This work investigates the biomechanical properties of sub-cellular structures of breast cells using atomic force microscopy (AFM). The cells are modeled as a triple-layered structure where the Generalized Maxwell model is applied to experimental data from AFM stress-relaxation tests to extract the elastic modulus, the apparent viscosity, and the relaxation time of sub-cellular structures. The triple-layered modeling results allow for determination and comparison of the biomechanical properties of the three major sub-cellular structures between normal and cancerous cells: the up plasma membrane/actin cortex, the mid cytoplasm/nucleus, and the low nuclear/integrin sub-domains. The results reveal that the sub-domains become stiffer and significantly more viscous with depth, regardless of cell type. In addition, there is a decreasing trend in the average elastic modulus and apparent viscosity of the all corresponding sub-cellular structures from normal to cancerous cells, which becomes most remarkable in the deeper sub-domain. The presented modeling in this work constitutes a unique AFM-based experimental framework to study the biomechanics of sub-cellular structures. - Highlights: • The cells are modeled as a triple-layered structure using Generalized Maxwell model. • The sub-domains include membrane/cortex, cytoplasm/nucleus, and nuclear/integrin. • Biomechanics of corresponding sub-domains are compared among normal and cancer cells. • Viscoelasticity of sub-domains show a decreasing trend from normal to cancer cells. • The decreasing trend becomes most significant in the deeper sub-domain

  18. DYNAMIC MATHEMATICAL MODEL OF URBAN SPATIAL PATTERN (RESIDENTIAL CHOICE OF LOCATION: MOBILITY VS EXTERNALITY

    Directory of Open Access Journals (Sweden)

    Rahma Fitriani

    2015-01-01

    Full Text Available Household’s residential choice of location determines urban spatial pattern (e.g sprawl. The static model which assumes that the choice has been affected by distance to the CBD and location specific externality, fails to capture the evoution of the pattern over time. Therefore this study proposes a dynamic version of the model. It analyses the effects of externalities on the optimal solution of development decision as function of time. It also derives the effect of mobility and externality on the rate of change of development pattern through time. When the increasing rate of utility is not as significant as the increasing rate of income, the externalities will delay the change of urban spatial pattern over time. If the mobility costs increase by large amount relative to the increase of income and inflation rate, then the mobility effect dominates the effects of externalities in delaying the urban expansion.

  19. Subcellular analysis by laser ablation electrospray ionization mass spectrometry

    Science.gov (United States)

    Vertes, Akos; Stolee, Jessica A; Shrestha, Bindesh

    2014-12-02

    In various embodiments, a method of laser ablation electrospray ionization mass spectrometry (LAESI-MS) may generally comprise micro-dissecting a cell comprising at least one of a cell wall and a cell membrane to expose at least one subcellular component therein, ablating the at least one subcellular component by an infrared laser pulse to form an ablation plume, intercepting the ablation plume by an electrospray plume to form ions, and detecting the ions by mass spectrometry.

  20. Precision automation of cell type classification and sub-cellular fluorescence quantification from laser scanning confocal images

    Directory of Open Access Journals (Sweden)

    Hardy Craig Hall

    2016-02-01

    Full Text Available While novel whole-plant phenotyping technologies have been successfully implemented into functional genomics and breeding programs, the potential of automated phenotyping with cellular resolution is largely unexploited. Laser scanning confocal microscopy has the potential to close this gap by providing spatially highly resolved images containing anatomic as well as chemical information on a subcellular basis. However, in the absence of automated methods, the assessment of the spatial patterns and abundance of fluorescent markers with subcellular resolution is still largely qualitative and time-consuming. Recent advances in image acquisition and analysis, coupled with improvements in microprocessor performance, have brought such automated methods within reach, so that information from thousands of cells per image for hundreds of images may be derived in an experimentally convenient time-frame. Here, we present a MATLAB-based analytical pipeline to 1 segment radial plant organs into individual cells, 2 classify cells into cell type categories based upon random forest classification, 3 divide each cell into sub-regions, and 4 quantify fluorescence intensity to a subcellular degree of precision for a separate fluorescence channel. In this research advance, we demonstrate the precision of this analytical process for the relatively complex tissues of Arabidopsis hypocotyls at various stages of development. High speed and robustness make our approach suitable for phenotyping of large collections of stem-like material and other tissue types.

  1. mPLR-Loc: an adaptive decision multi-label classifier based on penalized logistic regression for protein subcellular localization prediction.

    Science.gov (United States)

    Wan, Shibiao; Mak, Man-Wai; Kung, Sun-Yuan

    2015-03-15

    Proteins located in appropriate cellular compartments are of paramount importance to exert their biological functions. Prediction of protein subcellular localization by computational methods is required in the post-genomic era. Recent studies have been focusing on predicting not only single-location proteins but also multi-location proteins. However, most of the existing predictors are far from effective for tackling the challenges of multi-label proteins. This article proposes an efficient multi-label predictor, namely mPLR-Loc, based on penalized logistic regression and adaptive decisions for predicting both single- and multi-location proteins. Specifically, for each query protein, mPLR-Loc exploits the information from the Gene Ontology (GO) database by using its accession number (AC) or the ACs of its homologs obtained via BLAST. The frequencies of GO occurrences are used to construct feature vectors, which are then classified by an adaptive decision-based multi-label penalized logistic regression classifier. Experimental results based on two recent stringent benchmark datasets (virus and plant) show that mPLR-Loc remarkably outperforms existing state-of-the-art multi-label predictors. In addition to being able to rapidly and accurately predict subcellular localization of single- and multi-label proteins, mPLR-Loc can also provide probabilistic confidence scores for the prediction decisions. For readers' convenience, the mPLR-Loc server is available online (http://bioinfo.eie.polyu.edu.hk/mPLRLocServer). Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Subcellular site and nature of intracellular cadmium in plants

    International Nuclear Information System (INIS)

    Wagner, G.J.

    1979-01-01

    The mechanisms underlying heavy metal accumulation, toxicity and tolerance in higher plants are poorly understood. Since subcellular processes are undoubtedly involved in all these phenomena, it is of interest to study the extent of, subcellular site of and nature of intracellularly accumulated cadmium in higher plants. Whole plants supplied 109 CdCl 2 or 112 CdSO 4 accumulated Cd into roots and aerial tissues. Preparation of protoplasts from aerial tissue followed by subcellular fractionation of the protoplasts to obtain intact vacuoles, chloroplasts and cytosol revealed the presence of Cd in the cytosol but not in vacuoles or chloroplasts. Particulate materials containing other cell components were also labeled. Of the 109 Cd supplied to plants, 2 to 10% was recovered in both cytosol preparations and in particulate materials. Cytosol contained proteinaceous--Cd complexes, free metal and low molecular weight Cd complexes. Labeling of protoplasts gave similar results. No evidence was obtained for the production of volatile Cd complexes in tobacco

  3. Subcellular location and species specificity of pipecolate degradation

    International Nuclear Information System (INIS)

    Mihalik, S.J.; Rhead, W.J.

    1986-01-01

    Defects in pipecolic acid (PA) catabolism are characteristic of several inherited metabolic diseases including hyperpipecolic acidemia, Zellweger's Syndrome, neonatal-onset adrenoleukodystrophy, and infantile Refsum's disease. In the latter three diseases, peroxisomes are abnormal. The authors have studied the subcelluar distribution of the PA degradation to determine a mammalian model for the normal pathway. Crude light and heavy mitochondrial fractions (including lysosomes and peroxisomes) from kidney cortex or liver were separated on Percoll gradients. Individual fractions were then incubated at 37 0 C with 3H-2,3,4,5,6 L-PA. Using ion exchange chromatography, the production of 3H α-aminoadipic acid (AAA) and 3H-H2O were quantitated. AAA production paralleled the activity of the mitochondrial marker enzyme, glutamate dehydrogenase, in the rabbit, guinea pig, dog, pig, and sheep. 3H-AAA production ranged from 382 to 13,900 pmol/mg prot/h. Guinea pig kidney cortex exhibited highest specific activity. The mitochondrial enzyme was absent from human liver (n=3) and liver and kidney cortex from rat, mouse, and monkey. In these tissues, the activity followed the pattern of the peroxisomal core enzyme, urate oxidase

  4. A Partial Join Approach for Mining Co-Location Patterns: A Summary of Results

    National Research Council Canada - National Science Library

    Yoo, Jin S; Shekhar, Shashi

    2005-01-01

    .... They propose a novel partial-join approach for mining co-location patterns efficiently. It transactionizes continuous spatial data while keeping track of the spatial information not modeled by transactions...

  5. Neptunium 237 behaviour in subcellular fractions of rat kidneys

    International Nuclear Information System (INIS)

    Kreslov, V.V.; Maksutova, A.Ya.; Mushkacheva, G.S.

    1978-01-01

    Subcellular distribution of intravenously injected (1 and 0.5 μCi/rat) neptunium nitrate (5- and 6-valent) in kidneys of rat males and females has been investigated. It has been shown that the radionuclide was unevenly distributed within the cell. As early as 24 hours after administration, about 50 per cent of neptunium were concentrated in the mitochondrial fraction. The data are presented on variations in neptunium behaviour within subcellular fractions of rat kidneys depending on the sex of animals, valency and dose of the isotope

  6. Patterns of retail location and urban form in Amsterdam in the mid-eighteenth century

    NARCIS (Netherlands)

    Lesger, C.

    2011-01-01

    In this article location theory is used to map and analyse the patterns of retail location in Amsterdam in the eighteenth century. In the city centre as well as along the main axes to markets and the city gates the retailing of shopping goods (textiles, consumer durables) was much more prominent

  7. pLoc-mAnimal: predict subcellular localization of animal proteins with both single and multiple sites.

    Science.gov (United States)

    Cheng, Xiang; Zhao, Shu-Guang; Lin, Wei-Zhong; Xiao, Xuan; Chou, Kuo-Chen

    2017-11-15

    Cells are deemed the basic unit of life. However, many important functions of cells as well as their growth and reproduction are performed via the protein molecules located at their different organelles or locations. Facing explosive growth of protein sequences, we are challenged to develop fast and effective method to annotate their subcellular localization. However, this is by no means an easy task. Particularly, mounting evidences have indicated proteins have multi-label feature meaning that they may simultaneously exist at, or move between, two or more different subcellular location sites. Unfortunately, most of the existing computational methods can only be used to deal with the single-label proteins. Although the 'iLoc-Animal' predictor developed recently is quite powerful that can be used to deal with the animal proteins with multiple locations as well, its prediction quality needs to be improved, particularly in enhancing the absolute true rate and reducing the absolute false rate. Here we propose a new predictor called 'pLoc-mAnimal', which is superior to iLoc-Animal as shown by the compelling facts. When tested by the most rigorous cross-validation on the same high-quality benchmark dataset, the absolute true success rate achieved by the new predictor is 37% higher and the absolute false rate is four times lower in comparison with the state-of-the-art predictor. To maximize the convenience of most experimental scientists, a user-friendly web-server for the new predictor has been established at http://www.jci-bioinfo.cn/pLoc-mAnimal/, by which users can easily get their desired results without the need to go through the complicated mathematics involved. xxiao@gordonlifescience.org or kcchou@gordonlifescience.org. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  8. Subcellular sites for bacterial protein export

    NARCIS (Netherlands)

    Campo, Nathalie; Tjalsma, Harold; Buist, Girbe; Stepniak, Dariusz; Meijer, Michel; Veenhuis, Marten; Westermann, Martin; Müller, Jörg P.; Bron, Sierd; Kok, Jan; Kuipers, Oscar P.; Jongbloed, Jan D.H.

    2004-01-01

    Most bacterial proteins destined to leave the cytoplasm are exported to extracellular compartments or imported into the cytoplasmic membrane via the highly conserved SecA-YEG pathway. In the present studies, the subcellular distributions of core components of this pathway, SecA and SecY, and of the

  9. Subcellular sites for bacterial protein export.

    NARCIS (Netherlands)

    Campo, N.; Tjalsma, H.; Buist, G.; Stepniak, D.; Meijer, M.; Veenhuis, M.; Westermann, M.; Muller, J.P.; Bron, S.; Kok, J.; Kuipers, O.P.; Jongbloed, J.D.

    2004-01-01

    Most bacterial proteins destined to leave the cytoplasm are exported to extracellular compartments or imported into the cytoplasmic membrane via the highly conserved SecA-YEG pathway. In the present studies, the subcellular distributions of core components of this pathway, SecA and SecY, and of the

  10. Mapping the subcellular distribution of biomolecules at the ultrastructural level by ion microscopy.

    Science.gov (United States)

    Galle, P; Escaig, F; Dantin, F; Zhang, L

    1996-05-01

    Analytical ion microscopy, a method proposed and developed in 1960 by Casting and Slodzian at the Orsay University (France), makes it possible to obtain easily and rapidly analytical images representing the distribution in a tissue section of elements or isotopes (beginning from the three isotopes of hydrogen until to transuranic elements), even when these elements or isotopes are at a trace concentration of 1 ppm or less. This method has been applied to study the subcellular distribution of different varieties of biomolecules. The subcellular location of these molecules can be easily determined when the molecules contain in their structures a specific atom such as fluorine, iodine, bromine or platinum, what is the case of many pharmaceutical drugs. In this situation, the distribution of these specific atoms can be considered as representative of the distribution of the corresponding molecule. In other cases, the molecules must be labelled with an isotope which may be either radioactive or stable. Recent developments in ion microscopy allow the obtention of their chemical images at ultra structural level. In this paper we present the results obtained with the prototype of a new Scanning Ion Microscope used for the study of the intracellular distribution of different varieties of molecules: glucocorticoids, estrogens, pharmaceutical drugs and pyrimidine analogues.

  11. Monoterpene biosynthesis potential of plant subcellular compartments

    NARCIS (Netherlands)

    Dong, L.; Jongedijk, E.J.; Bouwmeester, H.J.; Krol, van der A.R.

    2016-01-01

    Subcellular monoterpene biosynthesis capacity based on local geranyl diphosphate (GDP) availability or locally boosted GDP production was determined for plastids, cytosol and mitochondria. A geraniol synthase (GES) was targeted to plastids, cytosol, or mitochondria. Transient expression in Nicotiana

  12. Biomechanics of subcellular structures by non-invasive Brillouin microscopy

    Science.gov (United States)

    Antonacci, Giuseppe; Braakman, Sietse

    2016-11-01

    Cellular biomechanics play a pivotal role in the pathophysiology of several diseases. Unfortunately, current methods to measure biomechanical properties are invasive and mostly limited to the surface of a cell. As a result, the mechanical behaviour of subcellular structures and organelles remains poorly characterised. Here, we show three-dimensional biomechanical images of single cells obtained with non-invasive, non-destructive Brillouin microscopy with an unprecedented spatial resolution. Our results quantify the longitudinal elastic modulus of subcellular structures. In particular, we found the nucleoli to be stiffer than both the nuclear envelope (p biomechanics and its role in pathophysiology.

  13. STUDY OF SUBCELLULAR DISTRIBUTION OF CRYSTALLINE MESO-TETRA(3-PYRIDYLBACTERIOCHLORIN NANOPARTICLES

    Directory of Open Access Journals (Sweden)

    Yu. S. Maklygina

    2016-01-01

    Full Text Available The results of the study of subcellular distribution of molecular meso-tetra(3-pyridylbacteriochlorin nanocrystals proposed as therapeutic agents for photodynamic therapy are represented in the article. Investigations and measurement of spectroscopic properties of molecular crystals of near-infrared photosensitizer were conducted using special device complex based on fiber-optic spectrometer. Investigation and analysis of the pattern of subcellular accumulation of meso-tetra(3-pyridylbacteriochlorin in molecular (dimethyl sulfoxide (DMSO as solvent and nanocrystalline forms on different cell lines: human monocytes (THP-1, human cervical cancer cells (HeLa and mouse malignant brain tumor cells (glioma C6. The dynamics of subcellylar accumulation of the agent at concentration of 5 and 10 mg/l was assessed with laser microscope-spectrum analyzer and by confocal microscopy. The study showed that in the course of interaction with cell lines molecular nanocrystals of the agent developed ability to fluorescence. Hence, in the cellular environment meso-tetra(3-pyridyl bacteriochlorin nanoparticles became phototoxic giving opportunities for their use for fluorescence diagnosis and photodynamic therapy. Specific role of meso-tetra(3-pyridylbacteriochlorin in the range of photosensitizers is determined by its spectral characteristics, i.e. absorption and fluorescence in near-infrared band, which allows measuring and affecting on deeper layers of biotissue. Thus, the use of meso-tetra(3-pyridylbacteriochlorin nanoparticles as nanophotosensitizers may improve the efficacy of diagnosis and treatment of deep-seated tumors.

  14. iLoc-Animal: a multi-label learning classifier for predicting subcellular localization of animal proteins.

    Science.gov (United States)

    Lin, Wei-Zhong; Fang, Jian-An; Xiao, Xuan; Chou, Kuo-Chen

    2013-04-05

    Predicting protein subcellular localization is a challenging problem, particularly when query proteins have multi-label features meaning that they may simultaneously exist at, or move between, two or more different subcellular location sites. Most of the existing methods can only be used to deal with the single-label proteins. Actually, multi-label proteins should not be ignored because they usually bear some special function worthy of in-depth studies. By introducing the "multi-label learning" approach, a new predictor, called iLoc-Animal, has been developed that can be used to deal with the systems containing both single- and multi-label animal (metazoan except human) proteins. Meanwhile, to measure the prediction quality of a multi-label system in a rigorous way, five indices were introduced; they are "Absolute-True", "Absolute-False" (or Hamming-Loss"), "Accuracy", "Precision", and "Recall". As a demonstration, the jackknife cross-validation was performed with iLoc-Animal on a benchmark dataset of animal proteins classified into the following 20 location sites: (1) acrosome, (2) cell membrane, (3) centriole, (4) centrosome, (5) cell cortex, (6) cytoplasm, (7) cytoskeleton, (8) endoplasmic reticulum, (9) endosome, (10) extracellular, (11) Golgi apparatus, (12) lysosome, (13) mitochondrion, (14) melanosome, (15) microsome, (16) nucleus, (17) peroxisome, (18) plasma membrane, (19) spindle, and (20) synapse, where many proteins belong to two or more locations. For such a complicated system, the outcomes achieved by iLoc-Animal for all the aforementioned five indices were quite encouraging, indicating that the predictor may become a useful tool in this area. It has not escaped our notice that the multi-label approach and the rigorous measurement metrics can also be used to investigate many other multi-label problems in molecular biology. As a user-friendly web-server, iLoc-Animal is freely accessible to the public at the web-site .

  15. State and location dependence of action potential metabolic cost in cortical pyramidal neurons

    NARCIS (Netherlands)

    Hallermann, Stefan; de Kock, Christiaan P. J.; Stuart, Greg J.; Kole, Maarten H. P.

    2012-01-01

    Action potential generation and conduction requires large quantities of energy to restore Na+ and K+ ion gradients. We investigated the subcellular location and voltage dependence of this metabolic cost in rat neocortical pyramidal neurons. Using Na+/K+ charge overlap as a measure of action

  16. State and location dependence of action potential metabolic cost in cortical pyramidal neurons

    NARCIS (Netherlands)

    Hallermann, S.; de Kock, C.P.J.; Stuart, G.J.; Kole, M.H.

    2012-01-01

    Action potential generation and conduction requires large quantities of energy to restore Na + and K + ion gradients. We investigated the subcellular location and voltage dependence of this metabolic cost in rat neocortical pyramidal neurons. Using Na +K + charge overlap as a measure of action

  17. ClubSub-P: Cluster-based subcellular localization prediction for Gram-negative bacteria and Archaea.

    Directory of Open Access Journals (Sweden)

    Nagarajan eParamasivam

    2011-11-01

    Full Text Available The subcellular localization of proteins provides important clues to their function in a cell. In our efforts to predict useful vaccine targets against Gram-negative bacteria, we noticed that misannotated start codons frequently lead to wrongly assigned subcellular localizations. This and other problems in subcellular localization prediction, such as the relatively high false positive and false negative rates of some tools, can be avoided by applying multiple prediction tools to groups of homologous proteins. Here we present ClubSub-P, an online database that combines existing subcellular localization prediction tools into a consensus pipeline from more than 600 proteomes of fully sequenced microorganisms. On top of the consensus prediction at the level of single sequences, the tool uses clusters of homologous proteins from Gram-negative bacteria and from Archaea to eliminate false positive and false negative predictions. ClubSub-P can assign the subcellular localization of proteins from Gram-negative bacteria and Archaea with high precision. The database is searchable, and can easily be expanded using either new bacterial genomes or new prediction tools as they become available. This will further improve the performance of the subcellular localization prediction, as well as the detection of misannotated start codons and other annotation errors. ClubSub-P is available online at http://toolkit.tuebingen.mpg.de/clubsubp/

  18. Effects of three-dimensional and color patterns on nest location and progeny mortality in alfalfa leafcutting bee (Hymenoptera: Megachilidae).

    Science.gov (United States)

    Guédot, Christelle; Bosch, Jordi; James, Rosalind R; Kemp, William P

    2006-06-01

    ABSTRACT In alfalfa, Medicago sativa L., seed production where high bee densities are released, alfalfa leafcutting bee, Megachile rotundata (F.) (Hymenoptera: Megachilidae), females may enter several nesting holes before locating their nests. Such levels of "wrong hole" visits lead to an increase in the time spent by females locating their own nests, thereby decreasing alfalfa pollination efficiency and possibly healthy brood production. The objectives of this study were to determine the effect of different nesting board configurations in commercial alfalfa leafcutting bee shelters (separating nesting boards, applying a three-dimensional pattern to the boards, applying a color contrast pattern, or applying a combination of three-dimensional and color contrast patterns) on nest location performance, on the incidence of chalkbrood disease, and on the incidence of broodless provisions. Separating the nesting boards inside shelters improved the ability of females to locate their nests. An increase in nest location performance also occurred in boards with the three-dimensional pattern and the combined three-dimensional and color contrast pattern, compared with the uniform board (a standard configuration currently used commercially). The percentage of provisioned cells that were broodless was not statistically different between treatments, but the percentage of larvae infected with chalkbrood decreased by half in the three-dimensional board design, compared with the uniform board.

  19. Subcellular Nanoparticle Distribution from Light Transmission Spectroscopy

    Science.gov (United States)

    Deatsch, Alison; Sun, Nan; Johnson, Jeffrey; Stack, Sharon; Tanner, Carol; Ruggiero, Steven

    We have measured the particle-size distribution (PSD) of subcellular structures in plant and animal cells. We have employed a new technique developed by our group, Light Transmission Spectroscopy-combined with cell fractionation-to accurately measure PSDs over a wide size range: from 10 nm to 3000nm, which includes objects from the size of individual proteins to organelles. To date our experiments have included cultured human oral cells and spinach cells. These results show a power-law dependence of particle density with particle diameter, implying a universality of the packing distribution. We discuss modeling the cell as a self-similar (fractal) body comprised of spheres on all size scales. This goal of this work is to obtain a better understanding of the fundamental nature of particle packing within cells in order to enrich our knowledge of the structure, function, and interactions of sub-cellular nanostructures across cell types.

  20. Time-location patterns of a diverse population of older adults: the Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air).

    Science.gov (United States)

    Spalt, Elizabeth W; Curl, Cynthia L; Allen, Ryan W; Cohen, Martin; Adar, Sara D; Stukovsky, Karen H; Avol, Ed; Castro-Diehl, Cecilia; Nunn, Cathy; Mancera-Cuevas, Karen; Kaufman, Joel D

    2016-06-01

    The primary aim of this analysis was to present and describe questionnaire data characterizing time-location patterns of an older, multiethnic population from six American cities. We evaluated the consistency of results from repeated administration of this questionnaire and between this questionnaire and other questionnaires collected from participants of the Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air). Participants reported spending most of their time inside their homes (average: 121 h/week or 72%). More than 50% of the participants reported spending no time in several of the location options, including at home outdoors, at work/volunteer/school locations indoors or outdoors, or in "other" locations outdoors. We observed consistency between self-reported time-location patterns from repeated administration of the time-location questionnaire and compared with other survey instruments. Comparisons with national cohorts demonstrated the differences in time-location patterns in the MESA Air cohort due to differences in demographics, but the data showed similar trends in patterns by age, gender, season, and employment status. This study was the first to explicitly examine the time-location patterns in an older, multiethnic population and the first to add data on Chinese participants. These data can be used to inform future epidemiological research of MESA Air and other studies that include diverse populations.

  1. Multiplex protein pattern unmixing using a non-linear variable-weighted support vector machine as optimized by a particle swarm optimization algorithm.

    Science.gov (United States)

    Yang, Qin; Zou, Hong-Yan; Zhang, Yan; Tang, Li-Juan; Shen, Guo-Li; Jiang, Jian-Hui; Yu, Ru-Qin

    2016-01-15

    Most of the proteins locate more than one organelle in a cell. Unmixing the localization patterns of proteins is critical for understanding the protein functions and other vital cellular processes. Herein, non-linear machine learning technique is proposed for the first time upon protein pattern unmixing. Variable-weighted support vector machine (VW-SVM) is a demonstrated robust modeling technique with flexible and rational variable selection. As optimized by a global stochastic optimization technique, particle swarm optimization (PSO) algorithm, it makes VW-SVM to be an adaptive parameter-free method for automated unmixing of protein subcellular patterns. Results obtained by pattern unmixing of a set of fluorescence microscope images of cells indicate VW-SVM as optimized by PSO is able to extract useful pattern features by optimally rescaling each variable for non-linear SVM modeling, consequently leading to improved performances in multiplex protein pattern unmixing compared with conventional SVM and other exiting pattern unmixing methods. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Subcellular proteomic characterization of the high-temperature stress response of the cyanobacterium Spirulina platensis

    Directory of Open Access Journals (Sweden)

    Cheevadhanarak Supapon

    2009-09-01

    Full Text Available Abstract The present study examined the changes in protein expression in Spirulina platensis upon exposure to high temperature, with the changes in expression analyzed at the subcellular level. In addition, the transcriptional expression level of some differentially expressed proteins, the expression pattern clustering, and the protein-protein interaction network were analyzed. The results obtained from differential expression analysis revealed up-regulation of proteins involved in two-component response systems, DNA damage and repair systems, molecular chaperones, known stress-related proteins, and proteins involved in other biological processes, such as capsule formation and unsaturated fatty acid biosynthesis. The clustering of all differentially expressed proteins in the three cellular compartments showed: (i the majority of the proteins in all fractions were sustained tolerance proteins, suggesting the roles of these proteins in the tolerance to high temperature stress, (ii the level of resistance proteins in the photosynthetic membrane was 2-fold higher than the level in two other fractions, correlating with the rapid inactivation of the photosynthetic system in response to high temperature. Subcellular communication among the three cellular compartments via protein-protein interactions was clearly shown by the PPI network analysis. Furthermore, this analysis also showed a connection between temperature stress and nitrogen and ammonia assimilation.

  3. Studies on proinsulin and proglucagon biosynthesis and conversion at the subcellular level: I. Fractionation procedure and characterization of the subcellular fractions

    Science.gov (United States)

    Noe, BD; Baste, CA; Bauer, GE

    1977-01-01

    Anglerfish islets were homogenized in 0.25 M sucrose and separated into seven separate subcellular fractions by differential and discontinuous density gradient centrifugation. The objective was to isolate microsomes and secretory granules in a highly purified state. The fractions were characterized by electron microscopy and chemical analyses. Each fraction was assayed for its content of protein, RNA, DNA, immunoreactive insulin (IRI), and immunoreactive glucagon (IRG). Ultrastructural examination showed that two of the seven subcellular fractions contain primarily mitochondria, and that two others consist almost exclusively of secretory granules. A fifth fraction contains rough and smooth microsomal vesicles. The remaining two fractions are the cell supernate and the nuclei and cell debris. The content of DNA and RNA in all fractions is consistent with the observed ultrastructure. More than 82 percent of the total cellular IRI and 89(percent) of the total cellular IRG are found in the fractions of secretory granules. The combined fractions of secretory granules and microsomes consistently yield >93 percent of the total IRG. These results indicate that the fractionation procedure employed yields fractions of microsomes and secretory granules that contain nearly all the immunoassayable insulin and glucagons found in whole islet tissue. These fractions are thus considered suitable for study of proinsulin and proglucagon biosynthesis and their metabolic conversion at the subcellular level. PMID:328517

  4. Tau regulates the subcellular localization of calmodulin

    Energy Technology Data Exchange (ETDEWEB)

    Barreda, Elena Gomez de [Centro de Biologia Molecular ' Severo Ochoa' , CSIC/UAM, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Avila, Jesus, E-mail: javila@cbm.uam.es [Centro de Biologia Molecular ' Severo Ochoa' , CSIC/UAM, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); CIBER de Enfermedades Neurodegenerativas, 28031 Madrid (Spain)

    2011-05-13

    Highlights: {yields} In this work we have tried to explain how a cytoplasmic protein could regulate a cell nuclear function. We have tested the role of a cytoplasmic protein (tau) in regulating the expression of calbindin gene. We found that calmodulin, a tau-binding protein with nuclear and cytoplasmic localization, increases its nuclear localization in the absence of tau. Since nuclear calmodulin regulates calbindin expression, a decrease in nuclear calmodulin, due to the presence of tau that retains it at the cytoplasm, results in a change in calbindin expression. -- Abstract: Lack of tau expression in neuronal cells results in a change in the expression of few genes. However, little is known about how tau regulates gene expression. Here we show that the presence of tau could alter the subcellular localization of calmodulin, a protein that could be located at the cytoplasm or in the nucleus. Nuclear calmodulin binds to co-transcription factors, regulating the expression of genes like calbindin. In this work, we have found that in neurons containing tau, a higher proportion of calmodulin is present in the cytoplasm compared with neurons lacking tau and that an increase in cytoplasmic calmodulin correlates with a higher expression of calbindin.

  5. Tau regulates the subcellular localization of calmodulin

    International Nuclear Information System (INIS)

    Barreda, Elena Gomez de; Avila, Jesus

    2011-01-01

    Highlights: → In this work we have tried to explain how a cytoplasmic protein could regulate a cell nuclear function. We have tested the role of a cytoplasmic protein (tau) in regulating the expression of calbindin gene. We found that calmodulin, a tau-binding protein with nuclear and cytoplasmic localization, increases its nuclear localization in the absence of tau. Since nuclear calmodulin regulates calbindin expression, a decrease in nuclear calmodulin, due to the presence of tau that retains it at the cytoplasm, results in a change in calbindin expression. -- Abstract: Lack of tau expression in neuronal cells results in a change in the expression of few genes. However, little is known about how tau regulates gene expression. Here we show that the presence of tau could alter the subcellular localization of calmodulin, a protein that could be located at the cytoplasm or in the nucleus. Nuclear calmodulin binds to co-transcription factors, regulating the expression of genes like calbindin. In this work, we have found that in neurons containing tau, a higher proportion of calmodulin is present in the cytoplasm compared with neurons lacking tau and that an increase in cytoplasmic calmodulin correlates with a higher expression of calbindin.

  6. Birth Location, Migration and Clustering of Important Composers: Historical Patterns

    DEFF Research Database (Denmark)

    Borowiecki, Karol; O’Hagan, John

    2010-01-01

    and 1899. This information is compiled from the large, Grove Music Online (2009) encyclopedia. There is also some discussion of the biases evident in choosing “significant” composers. The data show a marked level ofmigration of important composers going back many centuries suggesting that the phenomenon......This article examines the 522 most important composers in the last 800 years, as identified by Charles Murray (2003), in terms of their birth location and migration. It also examines detailed patterns of migration and tendencies to cluster in certain cities for those composers born between 1750...

  7. Subcellular localization of cadmium in hyperaccumulator Populus ...

    African Journals Online (AJOL)

    In this study, subcellular localization of cadmium in hyperaccumulator grey poplar (Populus × canescens) was investigated by the transmission electron microscopy (TEM) method. Young Populus × canescens were grown and hydroponic experiments were conducted under four Cd2+ concentrations (10, 30, 50, and 70 μM) ...

  8. Subcellular partitioning of metals in Aporrectodea caliginosa along a gradient of metal exposure in 31 field-contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Beaumelle, Léa [INRA, UR 251 PESSAC, 78026 Versailles Cedex (France); Gimbert, Frédéric [Laboratoire Chrono-Environnement, UMR 6249 University of Franche-Comté/CNRS Usc INRA, 16 route de Gray, 25030 Besançon Cedex (France); Hedde, Mickaël [INRA, UR 251 PESSAC, 78026 Versailles Cedex (France); Guérin, Annie [INRA, US 0010 LAS Laboratoire d' analyses des sols, 273 rue de Cambrai, 62000 Arras (France); Lamy, Isabelle, E-mail: lamy@versailles.inra.fr [INRA, UR 251 PESSAC, 78026 Versailles Cedex (France)

    2015-07-01

    Subcellular fractionation of metals in organisms was proposed as a better way to characterize metal bioaccumulation. Here we report the impact of a laboratory exposure to a wide range of field-metal contaminated soils on the subcellular partitioning of metals in the earthworm Aporrectodea caliginosa. Soils moderately contaminated were chosen to create a gradient of soil metal availability; covering ranges of both soil metal contents and of several soil parameters. Following exposure, Cd, Pb and Zn concentrations were determined both in total earthworm body and in three subcellular compartments: cytosolic, granular and debris fractions. Three distinct proxies of soil metal availability were investigated: CaCl{sub 2}-extractable content dissolved content predicted by a semi-mechanistic model and free ion concentration predicted by a geochemical speciation model. Subcellular partitionings of Cd and Pb were modified along the gradient of metal exposure, while stable Zn partitioning reflected regulation processes. Cd subcellular distribution responded more strongly to increasing soil Cd concentration than the total internal content, when Pb subcellular distribution and total internal content were similarly affected. Free ion concentrations were better descriptors of Cd and Pb subcellular distribution than CaCl{sub 2} extractable and dissolved metal concentrations. However, free ion concentrations and soil total metal contents were equivalent descriptors of the subcellular partitioning of Cd and Pb because they were highly correlated. Considering lowly contaminated soils, our results raise the question of the added value of three proxies of metal availability compared to soil total metal content in the assessment of metal bioavailability to earthworm. - Highlights: • Earthworms were exposed to a wide panel of historically contaminated soils • Subcellular partitioning of Cd, Pb and Zn was investigated in earthworms • Three proxies of soil metal availability were

  9. Quantitative Analysis of Subcellular Distribution of the SUMO Conjugation System by Confocal Microscopy Imaging.

    Science.gov (United States)

    Mas, Abraham; Amenós, Montse; Lois, L Maria

    2016-01-01

    Different studies point to an enrichment in SUMO conjugation in the cell nucleus, although non-nuclear SUMO targets also exist. In general, the study of subcellular localization of proteins is essential for understanding their function within a cell. Fluorescence microscopy is a powerful tool for studying subcellular protein partitioning in living cells, since fluorescent proteins can be fused to proteins of interest to determine their localization. Subcellular distribution of proteins can be influenced by binding to other biomolecules and by posttranslational modifications. Sometimes these changes affect only a portion of the protein pool or have a partial effect, and a quantitative evaluation of fluorescence images is required to identify protein redistribution among subcellular compartments. In order to obtain accurate data about the relative subcellular distribution of SUMO conjugation machinery members, and to identify the molecular determinants involved in their localization, we have applied quantitative confocal microscopy imaging. In this chapter, we will describe the fluorescent protein fusions used in these experiments, and how to measure, evaluate, and compare average fluorescence intensities in cellular compartments by image-based analysis. We show the distribution of some components of the Arabidopsis SUMOylation machinery in epidermal onion cells and how they change their distribution in the presence of interacting partners or even when its activity is affected.

  10. Dosimetric characterization of radionuclides for systemic tumor therapy: Influence of particle range, photon emission, and subcellular distribution

    International Nuclear Information System (INIS)

    Uusijaervi, Helena; Bernhardt, Peter; Ericsson, Thomas; Forssell-Aronsson, Eva

    2006-01-01

    Various radionuclides have been proposed for systemic tumor therapy. However, in most dosimetric analysis of proposed radionuclides the charged particles are taken into consideration while the potential photons are ignored. The photons will cause undesirable irradiation of normal tissue, and increase the probability of toxicity in, e.g., the bone marrow. The aim of this study was to investigate the dosimetric properties according to particle range, photon emission, and subcellular radionuclide distribution, of a selection of radionuclides used or proposed for radionuclide therapy, and to investigate the possibility of dividing radionuclides into groups according to their dosimetric properties. The absorbed dose rate to the tumors divided by the absorbed dose rate to the normal tissue (TND) was estimated for different tumor sizes in a mathematical model of the human body. The body was simulated as a 70-kg ellipsoid and the tumors as spheres of different sizes (1 ng-100 g). The radionuclides were either assumed to be uniformly distributed throughout the entire tumor and normal tissue, or located in the nucleus or the cytoplasm of the tumor cells and on the cell membrane of the normal cells. Fifty-nine radionuclides were studied together with monoenergetic electrons, positrons, and alpha particles. The tumor and normal tissue were assumed to be of water density. The activity concentration ratio between the tumor and normal tissue was assumed to be 25. The radionuclides emitting low-energy electrons combined with a low photon contribution, and the alpha emitters showed high TND values for most tumor sizes. Electrons with higher energy gave reduced TND values for small tumors, while a higher photon contribution reduced the TND values for large tumors. Radionuclides with high photon contributions showed low TND value for all tumor sizes studied. The radionuclides studied could be divided into four main groups according to their TND values: beta emitters, Auger electron

  11. Carotenoids located in human lymphocyte subpopulations and Natural Killer cells by Raman microspectroscopy

    NARCIS (Netherlands)

    Puppels, G.J.; Puppels, G.J.; Garritsen, H.S.P.; Garritsen, H.S.P.; Kummer, J.A.; Greve, Jan

    1993-01-01

    The presence and subcellular location of carotenoids in human lymphocyte sub-populations (CD4+, CD8+, T-cell receptor-γδ+, and CD19+ ) and natural killer cells (CD16+ ) were studied by means of Raman microspectroscopy. In CD4+ lymphocytes a high concentration (10-3M) of carotenoids was found in the

  12. Capillary electrophoretic analysis reveals subcellular binding between individual mitochondria and cytoskeleton

    Science.gov (United States)

    Kostal, Vratislav; Arriaga, Edgar A.

    2011-01-01

    Interactions between the cytoskeleton and mitochondria are essential for normal cellular function. An assessment of such interactions is commonly based on bulk analysis of mitochondrial and cytoskeletal markers present in a given sample, which assumes complete binding between these two organelle types. Such measurements are biased because they rarely account for non-bound ‘free’ subcellular species. Here we report on the use of capillary electrophoresis with dual laser induced fluorescence detection (CE-LIF) to identify, classify, count and quantify properties of individual binding events of mitochondria and cytoskeleton. Mitochondria were fluorescently labeled with DsRed2 while F-actin, a major cytoskeletal component, was fluorescently labeled with Alexa488-phalloidin. In a typical subcellular fraction of L6 myoblasts, 79% of mitochondrial events did not have detectable levels of F-actin, while the rest had on average ~2 zeptomole F-actin, which theoretically represents a ~ 2.5-μm long network of actin filaments per event. Trypsin treatment of L6 subcellular fractions prior to analysis decreased the fraction of mitochondrial events with detectable levels of F-actin, which is expected from digestion of cytoskeletal proteins on the surface of mitochondria. The electrophoretic mobility distributions of the individual events were also used to further distinguish between cytoskeleton-bound from cytoskeleton-free mitochondrial events. The CE-LIF approach described here could be further developed to explore cytoskeleton interactions with other subcellular structures, the effects of cytoskeleton destabilizing drugs, and the progression of viral infections. PMID:21309532

  13. Effect of diameter and axial location on upward gas–liquid two-phase flow patterns in intermediate-scale vertical tubes

    International Nuclear Information System (INIS)

    Ansari, M.R.; Azadi, R.

    2016-01-01

    Highlights: • A vertical two-phase flow system is manufactured to study flow behavior adiabatically. • Two test sections are studied with inner diameters of 40 mm and 70 mm at two locations. • Flow pattern maps are presented for both tubes. • Effects of tube diameter and heights on pattern transition boundaries are investigated. • Three sub-patterns bubbly flow and two types of slug pattern are recognized. - Abstract: In the present research, a two-phase flow system is designed, manufactured, assembled and adjusted to study two-phase flow behavior isothermally. Test sections are tubes standing in vertical position and are made of transparent acrylic with inner diameters of 40 mm and 70 mm. Two axial locations of 1.73 m and 3.22 m are chosen for data acquisition. Flow pattern maps are presented for both tubes. Effects of tube diameter and axial location on pattern transition boundaries are investigated. Air and water are chosen as working fluids. The range of air and water superficial velocities are 0.054–9.654 m/s and 0.015–0.877 m/s for the 40 mm diameter tube, but these values are 0.038–20.44 m/s and 0.036–1.530 m/s for 70 mm diameter tube. The results show that for both tubes, increasing axial location does not affect flow transition boundaries significantly. However, slug pattern region shrinks considerably by changing tube diameter from 40 mm to 70 mm. Using image processing techniques, recorded high speed movies were investigated accurately. As a result, bubbly flow in the 40 mm tube can be divided into three sub-patterns as dispersed, agitated and agglomerated bubbly. Also, two types of slug pattern are also recognized in the same tube diameter which are called small and large slugs. Semi-annular flow is observed as an independent pattern in the 70 mm tube that does not behave as known churn or annular patterns.

  14. Expression and subcellular localization of antiporter regulating ...

    African Journals Online (AJOL)

    We examined the expression and subcellular localization of antiporter regulating protein OsARP in a submergence tolerant rice (Oryza sativa L.) cultivar FR13A. In the public databases, this protein was designated as putative Os02g0465900 protein. The cDNA containing the full-length sequence of OsARP gene was ...

  15. A comparative antibody analysis of Pannexin1 expression in four rat brain regions reveals varying subcellular localizations

    Directory of Open Access Journals (Sweden)

    Angela C Cone

    2013-02-01

    Full Text Available Pannexin1 (Panx1 channels release cytosolic ATP in response to signaling pathways. Panx1 is highly expressed in the central nervous system. We used four antibodies with different Panx1 anti-peptide epitopes to analyze four regions of rat brain. These antibodies labeled the same bands in Western blots and had highly similar patterns of immunofluorescence in tissue culture cells expressing Panx1, but Western blots of brain lysates from Panx1 knockout and control mice showed different banding patterns. Localizations of Panx1 in brain slices were generated using automated wide-field mosaic confocal microscopy for imaging large regions of interest while retaining maximum resolution for examining cell populations and compartments. We compared Panx1 expression over the cerebellum, hippocampus with adjacent cortex, thalamus and olfactory bulb. While Panx1 localizes to the same neuronal cell types, subcellular localizations differ. Two antibodies with epitopes against the intracellular loop and one against the carboxy terminus preferentially labeled cell bodies, while an antibody raised against an N-terminal peptide highlighted neuronal processes more than cell bodies. These labeling patterns may be a reflection of different cellular and subcellular localizations of full-length and/or modified Panx1 channels where each antibody is highlighting unique or differentially accessible Panx1 populations. However, we cannot rule out that one or more of these antibodies have specificity issues. All data associated with experiments from these four antibodies are presented in a manner that allows them to be compared and our claims thoroughly evaluated, rather than eliminating results that were questionable. Each antibody is given a unique identifier through the NIF Antibody Registry that can be used to track usage of individual antibodies across papers and all image and metadata are made available in the public repository, the Cell Centered Database, for on

  16. Subcellular distribution of styrene oxide in rat liver

    International Nuclear Information System (INIS)

    Pacifici, G.M.; Cuoci, L.; Rane, A.

    1984-01-01

    The subcellular distribution of ( 3 H)-styrene-7,8-oxide was studied in the rat liver. The compound was added to liver homogenate to give a final concentration of 2 X 10(-5); 2 X 10(-4) and 2 X 10(-3) M. Subcellular fractions were obtained by differential centrifugation. Most of styrene oxide (59-88%) was associated with the cytosolic fraction. Less than 15 percent of the compound was retrieved in each of the nuclear, mitochondrial and microsomal fractions. A considerable percentage of radioactivity was found unextractable with the organic solvents, suggesting that styrene oxide reacted with the endogenous compounds. The intracellular distribution of this epoxide was also studied in the perfused rat liver. Comparable results with those previously described were obtained. The binding of styrene oxide to the cytosolic protein was investigated by equilibrium dialysis and ultrafiltration. Only a small percentage of the compound was bound to protein

  17. Predicting Subcellular Localization of Proteins by Bioinformatic Algorithms

    DEFF Research Database (Denmark)

    Nielsen, Henrik

    2015-01-01

    was used. Various statistical and machine learning algorithms are used with all three approaches, and various measures and standards are employed when reporting the performances of the developed methods. This chapter presents a number of available methods for prediction of sorting signals and subcellular...

  18. Tip chip : Subcellular sampling from single cancer cells

    NARCIS (Netherlands)

    Quist, Jos; Sarajlic, Edin; Lai, Stanley C.S.; Lemay, Serge G.

    2016-01-01

    To analyze the molecular content of single cells, cell lysis is typically required, yielding a snapshot of cell behavior only. To follow complex molecular profiles over time, subcellular sampling methods potentially can be used, but to date these methods involve laborious offline analysis. Here we

  19. Subcellular interactions of dietary cadmium, copper and zinc in rainbow trout (Oncorhynchus mykiss)

    International Nuclear Information System (INIS)

    Kamunde, Collins; MacPhail, Ruth

    2011-01-01

    Highlights: Interactions of Cu, Cd and Zn were studied at the subcellular level in rainbow trout. Metals accumulated in the liver were predominantly metabolically active. Cd, Cu and Zn exhibited both competitive and cooperative interactions. The metal–metal interactions altered subcellular metals partitioning. - Abstract: Interactions of Cu, Cd and Zn were studied at the subcellular level in juvenile rainbow trout (Oncorhynchus mykiss) fed diets containing (μg/g) 500 Cu, 1000 Zn and 500 Cd singly and as a ternary mixture for 28 days. Livers were harvested and submitted to differential centrifugation to isolate components of metabolically active metal pool (MAP: heat-denaturable proteins (HDP), organelles, nuclei) and metabolically detoxified metal pool (MDP: heat stable proteins (HSP), NaOH-resistant granules). Results indicated that Cd accumulation was enhanced in all the subcellular compartments, albeit at different time points, in fish exposed to the metals mixture relative to those exposed to Cd alone, whereas Cu alone exposure increased Cd partitioning. Exposure to the metals mixture reduced (HDP) and enhanced (HSP, nuclei and granules) Cu accumulation while exposure to Zn alone enhanced Cu concentration in all the fractions analyzed without altering proportional distribution in MAP and MDP. Although subcellular Zn accumulation was less pronounced than that of either Cu or Cd, concentrations of Zn were enhanced in HDP, nuclei and granules from fish exposed to the metals mixture relative to those exposed to Zn alone. Cadmium alone exposure mobilized Zn and Cu from the nuclei and increased Zn accumulation in organelles and Cu in granules, while Cu alone exposure stimulated Zn accumulation in HSP, HDP and organelles. Interestingly, Cd alone exposure increased the partitioning of the three metals in MDP indicative of enhanced detoxification. Generally the accumulated metals were predominantly metabolically active: Cd, 67–83%; Cu, 68–79% and Zn, 60–76

  20. Subcellular interactions of dietary cadmium, copper and zinc in rainbow trout (Oncorhynchus mykiss)

    Energy Technology Data Exchange (ETDEWEB)

    Kamunde, Collins, E-mail: ckamunde@upei.ca [Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, C1A 4P3 (Canada); MacPhail, Ruth [Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, C1A 4P3 (Canada)

    2011-10-15

    Highlights: Interactions of Cu, Cd and Zn were studied at the subcellular level in rainbow trout. Metals accumulated in the liver were predominantly metabolically active. Cd, Cu and Zn exhibited both competitive and cooperative interactions. The metal-metal interactions altered subcellular metals partitioning. - Abstract: Interactions of Cu, Cd and Zn were studied at the subcellular level in juvenile rainbow trout (Oncorhynchus mykiss) fed diets containing ({mu}g/g) 500 Cu, 1000 Zn and 500 Cd singly and as a ternary mixture for 28 days. Livers were harvested and submitted to differential centrifugation to isolate components of metabolically active metal pool (MAP: heat-denaturable proteins (HDP), organelles, nuclei) and metabolically detoxified metal pool (MDP: heat stable proteins (HSP), NaOH-resistant granules). Results indicated that Cd accumulation was enhanced in all the subcellular compartments, albeit at different time points, in fish exposed to the metals mixture relative to those exposed to Cd alone, whereas Cu alone exposure increased Cd partitioning. Exposure to the metals mixture reduced (HDP) and enhanced (HSP, nuclei and granules) Cu accumulation while exposure to Zn alone enhanced Cu concentration in all the fractions analyzed without altering proportional distribution in MAP and MDP. Although subcellular Zn accumulation was less pronounced than that of either Cu or Cd, concentrations of Zn were enhanced in HDP, nuclei and granules from fish exposed to the metals mixture relative to those exposed to Zn alone. Cadmium alone exposure mobilized Zn and Cu from the nuclei and increased Zn accumulation in organelles and Cu in granules, while Cu alone exposure stimulated Zn accumulation in HSP, HDP and organelles. Interestingly, Cd alone exposure increased the partitioning of the three metals in MDP indicative of enhanced detoxification. Generally the accumulated metals were predominantly metabolically active: Cd, 67-83%; Cu, 68-79% and Zn, 60-76%. Taken

  1. Mapping the Subcellular Proteome of Shewanella oneidensis MR-1 using Sarkosyl-based fractionation and LC-MS/MS protein identification

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Roslyn N.; Romine, Margaret F.; Schepmoes, Athena A.; Smith, Richard D.; Lipton, Mary S.

    2010-07-19

    A simple and effective subcellular proteomic method for fractionation and analysis of gram-negative bacterial cytoplasm, periplasm, inner, and outer membranes was applied to Shewanella oneidensis to gain insight into its subcellular architecture. A combination of differential centrifugation, Sarkosyl solubilization, and osmotic lysis was used to prepare subcellular fractions. Global differences in protein fractions were observed by SDS PAGE and heme staining, and tryptic peptides were analyzed using high-resolution LC-MS/MS. Compared to crude cell lysates, the fractionation method achieved a significant enrichment (average ~2-fold) in proteins predicted to be localized to each subcellular fraction. Compared to other detergent, organic solvent, and density-based methods previously reported, Sarkosyl most effectively facilitated separation of the inner and outer membranes and was amenable to mass spectrometry, making this procedure ideal for probing the subcellular proteome of gram-negative bacteria via LC-MS/MS. With 40% of the observable proteome represented, this study has provided extensive information on both subcellular architecture and relative abundance of proteins in S. oneidensis and provides a foundation for future work on subcellular organization and protein-membrane interactions in other gram-negative bacteria.

  2. Feeling is Believing: a location limited channel based on grip pattern biometrics and cryptanalysis

    NARCIS (Netherlands)

    Buhan, I.R.; Doumen, J.M.; Hartel, Pieter H.; Veldhuis, Raymond N.J.

    We use grip pattern based biometrics as a location limited channel to achieve pre-authentication in a protocol that sets up a secure cannel between two handheld devices. The protocol efficiently calculates a shared secret key from biometric data using quantization and cryptanalysis. The protocol is

  3. The subcellular localization of IGFBP5 affects its cell growth and migration functions in breast cancer

    International Nuclear Information System (INIS)

    Akkiprik, Mustafa; Hu, Limei; Sahin, Aysegul; Hao, Xishan; Zhang, Wei

    2009-01-01

    Insulin-like growth factor binding protein 5 (IGFBP5) has been shown to be associated with breast cancer metastasis in clinical marker studies. However, a major difficulty in understanding how IGFBP5 functions in this capacity is the paradoxical observation that ectopic overexpression of IGFBP5 in breast cancer cell lines results in suppressed cellular proliferation. In cancer tissues, IGFBP5 resides mainly in the cytoplasm; however, in transfected cells, IGFBP5 is mainly located in the nucleus. We hypothesized that subcellular localization of IGFBP5 affects its functions in host cells. To test this hypothesis, we generated wild-type and mutant IGFBP5 expression constructs. The mutation occurs within the nuclear localization sequence (NLS) of the protein and is generated by site-directed mutagenesis using the wild-type IGFBP5 expression construct as a template. Next, we transfected each expression construct into MDA-MB-435 breast cancer cells to establish stable clones overexpressing either wild-type or mutant IGFBP5. Functional analysis revealed that cells overexpressing wild-type IGFBP5 had significantly lower cell growth rate and motility than the vector-transfected cells, whereas cells overexpressing mutant IGFBP5 demonstrated a significantly higher ability to proliferate and migrate. To illustrate the subcellular localization of the proteins, we generated wild-type and mutant IGFBP5-pDsRed fluorescence fusion constructs. Fluorescence microscopy imaging revealed that mutation of the NLS in IGFBP5 switched the accumulation of IGFBP5 from the nucleus to the cytoplasm of the protein. Together, these findings imply that the mutant form of IGFBP5 increases proliferation and motility of breast cancer cells and that mutation of the NLS in IGFBP5 results in localization of IGFBP5 in the cytoplasm, suggesting that subcellular localization of IGFBP5 affects its cell growth and migration functions in the breast cancer cells

  4. Subcellular Redox Targeting: Bridging in Vitro and in Vivo Chemical Biology.

    Science.gov (United States)

    Long, Marcus J C; Poganik, Jesse R; Ghosh, Souradyuti; Aye, Yimon

    2017-03-17

    Networks of redox sensor proteins within discrete microdomains regulate the flow of redox signaling. Yet, the inherent reactivity of redox signals complicates the study of specific redox events and pathways by traditional methods. Herein, we review designer chemistries capable of measuring flux and/or mimicking subcellular redox signaling at the cellular and organismal level. Such efforts have begun to decipher the logic underlying organelle-, site-, and target-specific redox signaling in vitro and in vivo. These data highlight chemical biology as a perfect gateway to interrogate how nature choreographs subcellular redox chemistry to drive precision redox biology.

  5. Segmentation and quantification of subcellular structures in fluorescence microscopy images using Squassh.

    Science.gov (United States)

    Rizk, Aurélien; Paul, Grégory; Incardona, Pietro; Bugarski, Milica; Mansouri, Maysam; Niemann, Axel; Ziegler, Urs; Berger, Philipp; Sbalzarini, Ivo F

    2014-03-01

    Detection and quantification of fluorescently labeled molecules in subcellular compartments is a key step in the analysis of many cell biological processes. Pixel-wise colocalization analyses, however, are not always suitable, because they do not provide object-specific information, and they are vulnerable to noise and background fluorescence. Here we present a versatile protocol for a method named 'Squassh' (segmentation and quantification of subcellular shapes), which is used for detecting, delineating and quantifying subcellular structures in fluorescence microscopy images. The workflow is implemented in freely available, user-friendly software. It works on both 2D and 3D images, accounts for the microscope optics and for uneven image background, computes cell masks and provides subpixel accuracy. The Squassh software enables both colocalization and shape analyses. The protocol can be applied in batch, on desktop computers or computer clusters, and it usually requires images, respectively. Basic computer-user skills and some experience with fluorescence microscopy are recommended to successfully use the protocol.

  6. Subcellular localization of glycolytic enzymes and characterization of intermediary metabolism of Trypanosoma rangeli.

    Science.gov (United States)

    Rondón-Mercado, Rocío; Acosta, Héctor; Cáceres, Ana J; Quiñones, Wilfredo; Concepción, Juan Luis

    2017-09-01

    Trypanosoma rangeli is a hemoflagellate protist that infects wild and domestic mammals as well as humans in Central and South America. Although this parasite is not pathogenic for human, it is being studied because it shares with Trypanosoma cruzi, the etiological agent of Chagas' disease, biological characteristics, geographic distribution, vectors and vertebrate hosts. Several metabolic studies have been performed with T. cruzi epimastigotes, however little is known about the metabolism of T. rangeli. In this work we present the subcellular distribution of the T. rangeli enzymes responsible for the conversion of glucose to pyruvate, as determined by epifluorescense immunomicroscopy and subcellular fractionation involving either selective membrane permeabilization with digitonin or differential and isopycnic centrifugation. We found that in T. rangeli epimastigotes the first six enzymes of the glycolytic pathway, involved in the conversion of glucose to 1,3-bisphosphoglycerate are located within glycosomes, while the last four steps occur in the cytosol. In contrast with T. cruzi, where three isoenzymes (one cytosolic and two glycosomal) of phosphoglycerate kinase are expressed simultaneously, only one enzyme with this activity is detected in T. rangeli epimastigotes, in the cytosol. Consistent with this latter result, we found enzymes involved in auxiliary pathways to glycolysis needed to maintain adenine nucleotide and redox balances within glycosomes such as phosphoenolpyruvate carboxykinase, malate dehydrogenase, fumarate reductase, pyruvate phosphate dikinase and glycerol-3-phosphate dehydrogenase. Glucokinase, galactokinase and the first enzyme of the pentose-phosphate pathway, glucose-6-phosphate dehydrogenase, were also located inside glycosomes. Furthermore, we demonstrate that T. rangeli epimastigotes growing in LIT medium only consume glucose and do not excrete ammonium; moreover, they are unable to survive in partially-depleted glucose medium. The

  7. Pharmacologic modulation of protein kinase C isozymes: the role of RACKs and subcellular localisation.

    Science.gov (United States)

    Csukai, M; Mochly-Rosen, D

    1999-04-01

    Protein kinase C (PKC) isozymes are highly homologous kinases and several different isozymes can be present in a cell. Each isozyme is likely to mediate unique functions, but pharmacological tools to explore their isozyme-specific roles have not been available until recently. In this review, we describe the development and application of isozyme-selective inhibitors of PKC. The identification of these inhibitors stems from the observation that PKC isozymes are each localised to unique subcellular locations following activation. Inhibitors of this isozyme-unique localisation have been shown to act as selective inhibitors of the functions of individual isozymes. The identification of isozyme-specific inhibitors should allow the exploration of individual PKC isozyme function in a wide range of cell systems. Copyright 1999 The Italian Pharmacological Society.

  8. Dynamic changes to survivin subcellular localization are initiated by DNA damage

    Directory of Open Access Journals (Sweden)

    Maritess Gay Asumen

    2010-07-01

    Full Text Available Maritess Gay Asumen1, Tochukwu V Ifeacho2, Luke Cockerham3, Christina Pfandl4, Nathan R Wall31Touro University’s College of Osteopathic Medicine, Vallejo, CA, USA; 2University of Southern California, Los Angeles, CA, USA; 3Center for Health Disparities Research and Molecular Medicine, Loma Linda University, CA, USA; 4Green Mountain Antibodies, Burlington, VT, USAAbstract: Subcellular distribution of the apoptosis inhibitor survivin and its ability to relocalize as a result of cell cycle phase or therapeutic insult has led to the hypothesis that these subcellular pools may coincide with different survivin functions. The PIK kinases (ATM, ATR and DNA-PK phosphorylate a variety of effector substrates that propagate DNA damage signals, resulting in various biological outputs. Here we demonstrate that subcellular repartitioning of survivin in MCF-7 cells as a result of UV light-mediated DNA damage is dependent upon DNA damage-sensing proteins as treatment with the pan PIK kinase inhibitor wortmannin repartitioned survivin in the mitochondria and diminished it from the cytosol and nucleus. Mitochondrial redistribution of survivin, such as was recorded after wortmannin treatment, occurred in cells lacking any one of the three DNA damage sensing protein kinases: DNA-PK, ATM or ATR. However, failed survivin redistribution from the mitochondria in response to low-dose UV occurred only in the cells lacking ATM, implying that ATM may be the primary kinase involved in this process. Taken together, this data implicates survivian’s subcellular distribution is a dynamic physiological process that appears responsive to UV light- initiated DNA damage and that its distribution may be responsible for its multifunctionality.Keywords: survivin, PIK kinases, ATM, ATR, DNA-PK

  9. Plasma effects on subcellular structures

    International Nuclear Information System (INIS)

    Gweon, Bomi; Kim, Dan Bee; Jung, Heesoo; Choe, Wonho; Kim, Daeyeon; Shin, Jennifer H.

    2010-01-01

    Atmospheric pressure helium plasma treated human hepatocytes exhibit distinctive zones of necrotic and live cells separated by a void. We propose that plasma induced necrosis is attributed to plasma species such as oxygen radicals, charged particles, metastables and/or severe disruption of charged cytoskeletal proteins. Interestingly, uncharged cytoskeletal intermediate filaments are only minimally disturbed by plasma, elucidating the possibility of plasma induced electrostatic effects selectively destroying charged proteins. These bona fide plasma effects, which inflict alterations in specific subcellular structures leading to necrosis and cellular detachment, were not observed by application of helium flow or electric field alone.

  10. Muscle glycogen and cell function--Location, location, location.

    Science.gov (United States)

    Ørtenblad, N; Nielsen, J

    2015-12-01

    The importance of glycogen, as a fuel during exercise, is a fundamental concept in exercise physiology. The use of electron microscopy has revealed that glycogen is not evenly distributed in skeletal muscle fibers, but rather localized in distinct pools. In this review, we present the available evidence regarding the subcellular localization of glycogen in skeletal muscle and discuss this from the perspective of skeletal muscle fiber function. The distribution of glycogen in the defined pools within the skeletal muscle varies depending on exercise intensity, fiber phenotype, training status, and immobilization. Furthermore, these defined pools may serve specific functions in the cell. Specifically, reduced levels of these pools of glycogen are associated with reduced SR Ca(2+) release, muscle relaxation rate, and membrane excitability. Collectively, the available literature strongly demonstrates that the subcellular localization of glycogen has to be considered to fully understand the role of glycogen metabolism and signaling in skeletal muscle function. Here, we propose that the effect of low muscle glycogen on excitation-contraction coupling may serve as a built-in mechanism, which links the energetic state of the muscle fiber to energy utilization. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Distribution of polycyclic aromatic hydrocarbons in subcellular root tissues of ryegrass (Lolium multiflorum Lam.)

    Science.gov (United States)

    2010-01-01

    Background Because of the increasing quantity and high toxicity to humans of polycyclic aromatic hydrocarbons (PAHs) in the environment, several bioremediation mechanisms and protocols have been investigated to restore PAH-contaminated sites. The transport of organic contaminants among plant cells via tissues and their partition in roots, stalks, and leaves resulting from transpiration and lipid content have been extensively investigated. However, information about PAH distributions in intracellular tissues is lacking, thus limiting the further development of a mechanism-based phytoremediation strategy to improve treatment efficiency. Results Pyrene exhibited higher uptake and was more recalcitrant to metabolism in ryegrass roots than was phenanthrene. The kinetic processes of uptake from ryegrass culture medium revealed that these two PAHs were first adsorbed onto root cell walls, and they then penetrated cell membranes and were distributed in intracellular organelle fractions. At the beginning of uptake (< 50 h), adsorption to cell walls dominated the subcellular partitioning of the PAHs. After 96 h of uptake, the subcellular partition of PAHs approached a stable state in the plant water system, with the proportion of PAH distributed in subcellular fractions being controlled by the lipid contents of each component. Phenanthrene and pyrene primarily accumulated in plant root cell walls and organelles, with about 45% of PAHs in each of these two fractions, and the remainder was retained in the dissolved fraction of the cells. Because of its higher lipophilicity, pyrene displayed greater accumulation factors in subcellular walls and organelle fractions than did phenanthrene. Conclusions Transpiration and the lipid content of root cell fractions are the main drivers of the subcellular partition of PAHs in roots. Initially, PAHs adsorb to plant cell walls, and they then gradually diffuse into subcellular fractions of tissues. The lipid content of intracellular

  12. The incorporation of labelled amino acids into the subcellular fractions of the rabbit brain

    International Nuclear Information System (INIS)

    Ogrodnik, W.

    1980-01-01

    Radioactive amino acids were injected into the fourth ventriculum of adult rabbits. After 3, 6 and 13 hours the animals were killed and tissue subcellular fractions were prepared from their brains. Nucleic acids were extracted and quantitatively determined from nucleic, myelin, mitochondrial, microsomal and cytoplasmic fractions. The radioactivity was determined in the protein and nucleic acid fractions. It was found out that the incorporation of radioactive amino acids increased in relation to time. In the analyzed subcellular fractions a very rapid incorporation of glutamic acid and leucine into cytoplasmic proteins was observed. The chromatographic analysis of the nucleic acids showed that radioactivity in the nucleic acid fractions depended on a radioactive protein contamination. Radioactive aminoacyl-tRNA was not found in the nucleic acid fractions, extracted from different subcellular fractions. (author)

  13. Organelle-targeting surface-enhanced Raman scattering (SERS) nanosensors for subcellular pH sensing.

    Science.gov (United States)

    Shen, Yanting; Liang, Lijia; Zhang, Shuqin; Huang, Dianshuai; Zhang, Jing; Xu, Shuping; Liang, Chongyang; Xu, Weiqing

    2018-01-25

    The pH value of subcellular organelles in living cells is a significant parameter in the physiological activities of cells. Its abnormal fluctuations are commonly believed to be associated with cancers and other diseases. Herein, a series of surface-enhanced Raman scattering (SERS) nanosensors with high sensitivity and targeting function was prepared for the quantification and monitoring of pH values in mitochondria, nucleus, and lysosome. The nanosensors were composed of gold nanorods (AuNRs) functionalized with a pH-responsive molecule (4-mercaptopyridine, MPy) and peptides that could specifically deliver the AuNRs to the targeting subcellular organelles. The localization of our prepared nanoprobes in specific organelles was confirmed by super-high resolution fluorescence imaging and bio-transmission electron microscopy (TEM) methods. By the targeting ability, the pH values of the specific organelles can be determined by monitoring the vibrational spectral changes of MPy with different pH values. Compared to the cases of reported lysosome and cytoplasm SERS pH sensors, more accurate pH values of mitochondria and nucleus, which could be two additional intracellular tracers for subcellular microenvironments, were disclosed by this SERS approach, further improving the accuracy of discrimination of related diseases. Our sensitive SERS strategy can also be employed to explore crucial physiological and biological processes that are related to subcellular pH fluctuations.

  14. Spatial profiling of nuclear receptor transcription patterns over the course of Drosophila development.

    Science.gov (United States)

    Wilk, Ronit; Hu, Jack; Krause, Henry M

    2013-07-08

    Previous work has shown that many of the 18 family members of Drosophila nuclear receptor transcription factors function in a temporal hierarchy to coordinate developmental progression and growth with the rate limiting process of metabolism. To gain further insight into these interactions and processes, we have undertaken a whole-family analysis of nuclear receptor mRNA spatial expression patterns over the entire process of embryogenesis, as well as the 3rd instar wandering larva stage, by using high-resolution fluorescence in situ hybridization. Overall, the patterns of expression are remarkably consistent with previously mapped spatial activity profiles documented during the same time points, with similar hot spots and temporal profiles in endocrine and metabolically important tissues. Among the more remarkable of the findings is that the majority of mRNA expression patterns observed show striking subcellular distributions, indicating potentially critical roles in the control of protein synthesis and subsequent subcellular distributions. These patterns will serve as a useful reference for future studies on the tissue-specific roles and interactions of nuclear receptor proteins, partners, cofactors and ligands.

  15. Subcellular location of astrocytic calcium stores favors extrasynaptic neuron-astrocyte communication.

    Science.gov (United States)

    Patrushev, Ilya; Gavrilov, Nikolay; Turlapov, Vadim; Semyanov, Alexey

    2013-11-01

    Neuron-astrocyte interactions are important for brain computations and synaptic plasticity. Perisynaptic astrocytic processes (PAPs) contain a high density of transporters that are responsible for neurotransmitter clearance. Metabotropic glutamate receptors are thought to trigger Ca(2+) release from Ca(2+) stores in PAPs in response to synaptic activity. Our ultrastructural study revealed that PAPs are actually devoid of Ca(2+) stores and have a high surface-to-volume ratio favorable for uptake. Astrocytic processes containing Ca(2+) stores were located further away from the synapses and could therefore respond to changes in ambient glutamate. Thus, the anatomic data do not support communication involving Ca(2+) stores in tripartite synapses, but rather point to extrasynaptic communication. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. DeepLoc: prediction of protein subcellular localization using deep learning

    DEFF Research Database (Denmark)

    Almagro Armenteros, Jose Juan; Sønderby, Casper Kaae; Sønderby, Søren Kaae

    2017-01-01

    The prediction of eukaryotic protein subcellular localization is a well-studied topic in bioinformatics due to its relevance in proteomics research. Many machine learning methods have been successfully applied in this task, but in most of them, predictions rely on annotation of homologues from...... knowledge databases. For novel proteins where no annotated homologues exist, and for predicting the effects of sequence variants, it is desirable to have methods for predicting protein properties from sequence information only. Here, we present a prediction algorithm using deep neural networks to predict...... current state-of-the-art algorithms, including those relying on homology information. The method is available as a web server at http://www.cbs.dtu.dk/services/DeepLoc . Example code is available at https://github.com/JJAlmagro/subcellular_localization . The dataset is available at http...

  17. Hum-mPLoc 3.0: prediction enhancement of human protein subcellular localization through modeling the hidden correlations of gene ontology and functional domain features.

    Science.gov (United States)

    Zhou, Hang; Yang, Yang; Shen, Hong-Bin

    2017-03-15

    Protein subcellular localization prediction has been an important research topic in computational biology over the last decade. Various automatic methods have been proposed to predict locations for large scale protein datasets, where statistical machine learning algorithms are widely used for model construction. A key step in these predictors is encoding the amino acid sequences into feature vectors. Many studies have shown that features extracted from biological domains, such as gene ontology and functional domains, can be very useful for improving the prediction accuracy. However, domain knowledge usually results in redundant features and high-dimensional feature spaces, which may degenerate the performance of machine learning models. In this paper, we propose a new amino acid sequence-based human protein subcellular location prediction approach Hum-mPLoc 3.0, which covers 12 human subcellular localizations. The sequences are represented by multi-view complementary features, i.e. context vocabulary annotation-based gene ontology (GO) terms, peptide-based functional domains, and residue-based statistical features. To systematically reflect the structural hierarchy of the domain knowledge bases, we propose a novel feature representation protocol denoted as HCM (Hidden Correlation Modeling), which will create more compact and discriminative feature vectors by modeling the hidden correlations between annotation terms. Experimental results on four benchmark datasets show that HCM improves prediction accuracy by 5-11% and F 1 by 8-19% compared with conventional GO-based methods. A large-scale application of Hum-mPLoc 3.0 on the whole human proteome reveals proteins co-localization preferences in the cell. www.csbio.sjtu.edu.cn/bioinf/Hum-mPLoc3/. hbshen@sjtu.edu.cn. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  18. Studies on the turnover and subcellular localization of membrane gangliosides in cultured neuroblastoma cells

    International Nuclear Information System (INIS)

    Clarke, J.T.; Cook, H.W.; Spence, M.W.

    1985-01-01

    To compare the subcellular distribution of endogenously synthesized and exogenous gangliosides, cultured murine neuroblastoma cells (N1E-115) were incubated in suspension for 22 h in the presence of D-[1- 3 H]galactose or [ 3 H]GM1 ganglioside, transferred to culture medium containing no radioisotope for periods of up to 72 hr, and then subjected to subcellular fractionation and analysis of lipid-sialic acid and radiolabeled ganglioside levels. The results indicated that GM2 and GM3 were the principal gangliosides in the cells with only traces of GM1 and small amounts of disialogangliosides present. About 50% of the endogenously synthesized radiolabelled ganglioside in the four major subcellular membrane fractions studied was recovered from plasma membrane and only 10-15% from the crude mitochondrial membrane fraction. In contrast, 45% of the exogenous [ 3 H]GM1 taken up into the same subcellular membrane fractions was recovered from the crude mitochondrial fraction; less than 15% was localized in the plasma membrane fraction. The results are similar to those obtained from previously reported studies on membrane phospholipid turnover. They suggest that exogenous GM1 ganglioside, like exogenous phosphatidylcholine, does not intermix freely with any quantitatively major pool of endogenous membrane lipid

  19. Subcellular localization of an intracellular serine protease of 68 kDa in Leishmania (Leishmania amazonensis promastigotes

    Directory of Open Access Journals (Sweden)

    José Andrés Morgado-Díaz

    2005-07-01

    Full Text Available Here we report the subcellular localization of an intracellular serine protease of 68 kDa in axenic promastigotes of Leishmania (Leishmania amazonensis, using subcellular fractionation, enzymatic assays, immunoblotting, and immunocytochemistry. All fractions were evaluated by transmission electron microscopy and the serine protease activity was measured during the cell fractionation procedure using a-N-r-tosyl-L-arginine methyl ester (L-TAME as substrate, phenylmethylsulphone fluoride (PMSF and L-1-tosylamino-2-phenylethylchloromethylketone (TPCK as specific inhibitors. The enzymatic activity was detected mainly in a membranous vesicular fraction (6.5-fold enrichment relative to the whole homogenate, but also in a crude plasma membrane fraction (2.0-fold. Analysis by SDS-PAGE gelatin under reducing conditions demonstrated that the major proteolytic activity was found in a 68 kDa protein in all fractions studied. A protein with identical molecular weight was also recognized in immunoblots by a polyclonal antibody against serine protease (anti-SP, with higher immunoreactivity in the vesicular fraction. Electron microscopic immunolocalization using the same polyclonal antibody showed the enzyme present at the cell surface, as well as in cytoplasmic membranous compartments of the parasite. Our findings indicate that the internal location of this serine protease in L. amazonensis is mainly restricted to the membranes of intracellular compartments resembling endocytic/exocytic elements.

  20. Nanodiamond Landmarks for Subcellular Multimodal Optical and Electron Imaging

    Science.gov (United States)

    Zurbuchen, Mark A.; Lake, Michael P.; Kohan, Sirus A.; Leung, Belinda; Bouchard, Louis-S.

    2013-01-01

    There is a growing need for biolabels that can be used in both optical and electron microscopies, are non-cytotoxic, and do not photobleach. Such biolabels could enable targeted nanoscale imaging of sub-cellular structures, and help to establish correlations between conjugation-delivered biomolecules and function. Here we demonstrate a sub-cellular multi-modal imaging methodology that enables localization of inert particulate probes, consisting of nanodiamonds having fluorescent nitrogen-vacancy centers. These are functionalized to target specific structures, and are observable by both optical and electron microscopies. Nanodiamonds targeted to the nuclear pore complex are rapidly localized in electron-microscopy diffraction mode to enable “zooming-in” to regions of interest for detailed structural investigations. Optical microscopies reveal nanodiamonds for in-vitro tracking or uptake-confirmation. The approach is general, works down to the single nanodiamond level, and can leverage the unique capabilities of nanodiamonds, such as biocompatibility, sensitive magnetometry, and gene and drug delivery. PMID:24036840

  1. How Game Location Affects Soccer Performance: T-Pattern Analysis of Attack Actions in Home and Away Matches

    Directory of Open Access Journals (Sweden)

    Barbara Diana

    2017-08-01

    Full Text Available The influence of game location on performance has been widely examined in sport contexts. Concerning soccer, game-location affects positively the secondary and tertiary level of performance; however, there are fewer evidences about its effect on game structure (primary level of performance. This study aimed to detect the effect of game location on a primary level of performance in soccer. In particular, the objective was to reveal the hidden structures underlying the attack actions, in both home and away matches played by a top club (Serie A 2012/2013—First Leg. The methodological approach was based on systematic observation, supported by digital recordings and T-pattern analysis. Data were analyzed with THEME 6.0 software. A quantitative analysis, with nonparametric Mann–Whitney test and descriptive statistics, was carried out to test the hypotheses. A qualitative analysis on complex patterns was performed to get in-depth information on the game structure. This study showed that game tactics were significantly different, with home matches characterized by a more structured and varied game than away matches. In particular, a higher number of different patterns, with a higher level of complexity and including more unique behaviors was detected in home matches than in the away ones. No significant differences were found in the number of events coded per game between the two conditions. THEME software, and the corresponding T-pattern detection algorithm, enhance research opportunities by going further than frequency-based analyses, making this method an effective tool in supporting sport performance analysis and training.

  2. How Game Location Affects Soccer Performance: T-Pattern Analysis of Attack Actions in Home and Away Matches.

    Science.gov (United States)

    Diana, Barbara; Zurloni, Valentino; Elia, Massimiliano; Cavalera, Cesare M; Jonsson, Gudberg K; Anguera, M Teresa

    2017-01-01

    The influence of game location on performance has been widely examined in sport contexts. Concerning soccer, game-location affects positively the secondary and tertiary level of performance; however, there are fewer evidences about its effect on game structure (primary level of performance). This study aimed to detect the effect of game location on a primary level of performance in soccer. In particular, the objective was to reveal the hidden structures underlying the attack actions, in both home and away matches played by a top club (Serie A 2012/2013-First Leg). The methodological approach was based on systematic observation, supported by digital recordings and T-pattern analysis. Data were analyzed with THEME 6.0 software. A quantitative analysis, with nonparametric Mann-Whitney test and descriptive statistics, was carried out to test the hypotheses. A qualitative analysis on complex patterns was performed to get in-depth information on the game structure. This study showed that game tactics were significantly different, with home matches characterized by a more structured and varied game than away matches. In particular, a higher number of different patterns, with a higher level of complexity and including more unique behaviors was detected in home matches than in the away ones. No significant differences were found in the number of events coded per game between the two conditions. THEME software, and the corresponding T-pattern detection algorithm, enhance research opportunities by going further than frequency-based analyses, making this method an effective tool in supporting sport performance analysis and training.

  3. Accumulation, subcellular distribution and toxicity of inorganic mercury and methylmercury in marine phytoplankton

    Energy Technology Data Exchange (ETDEWEB)

    Wu Yun [Division of Life Science, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon (Hong Kong); Wang Wenxiong, E-mail: wwang@ust.hk [Division of Life Science, Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon (Hong Kong)

    2011-10-15

    We examined the accumulation, subcellular distribution, and toxicity of Hg(II) and MeHg in three marine phytoplankton (the diatom Thalassiosira pseudonana, the green alga Chlorella autotrophica, and the flagellate Isochrysis galbana). For MeHg, the inter-species toxic difference could be best interpreted by the total cellular or intracellular accumulation. For Hg(II), both I. galbana and T. pseudonana exhibited similar sensitivity, but they each accumulated a different level of Hg(II). A higher percentage of Hg(II) was bound to the cellular debris fraction in T. pseudonana than in I. galbana, implying that the cellular debris may play an important role in Hg(II) detoxification. Furthermore, heat-stable proteins were a major binding pool for MeHg, while the cellular debris was an important binding pool for Hg(II). Elucidating the different subcellular fates of Hg(II) and MeHg may help us understand their toxicity in marine phytoplankton at the bottom of aquatic food chains. - Highlights: > The inter-species toxic difference of methylmercury in marine phytoplankton can be explained by its total cellular or intracellular accumulation. > The inter-species toxic difference of inorganic mercury in marine phytoplankton can be explained by its subcellular distribution. > Heat-stable protein was a major binding pool for MeHg, while the cellular debris was an important binding pool for Hg(II). - The inter-species difference in methylmercury and inorganic mercury toxicity in phytoplankton can be explained by cellular accumulation and subcellular distribution.

  4. Accumulation, subcellular distribution and toxicity of inorganic mercury and methylmercury in marine phytoplankton

    International Nuclear Information System (INIS)

    Wu Yun; Wang Wenxiong

    2011-01-01

    We examined the accumulation, subcellular distribution, and toxicity of Hg(II) and MeHg in three marine phytoplankton (the diatom Thalassiosira pseudonana, the green alga Chlorella autotrophica, and the flagellate Isochrysis galbana). For MeHg, the inter-species toxic difference could be best interpreted by the total cellular or intracellular accumulation. For Hg(II), both I. galbana and T. pseudonana exhibited similar sensitivity, but they each accumulated a different level of Hg(II). A higher percentage of Hg(II) was bound to the cellular debris fraction in T. pseudonana than in I. galbana, implying that the cellular debris may play an important role in Hg(II) detoxification. Furthermore, heat-stable proteins were a major binding pool for MeHg, while the cellular debris was an important binding pool for Hg(II). Elucidating the different subcellular fates of Hg(II) and MeHg may help us understand their toxicity in marine phytoplankton at the bottom of aquatic food chains. - Highlights: → The inter-species toxic difference of methylmercury in marine phytoplankton can be explained by its total cellular or intracellular accumulation. → The inter-species toxic difference of inorganic mercury in marine phytoplankton can be explained by its subcellular distribution. → Heat-stable protein was a major binding pool for MeHg, while the cellular debris was an important binding pool for Hg(II). - The inter-species difference in methylmercury and inorganic mercury toxicity in phytoplankton can be explained by cellular accumulation and subcellular distribution.

  5. Pathways and Subcellular Compartmentation of NAD Biosynthesis in Human Cells

    Science.gov (United States)

    Nikiforov, Andrey; Dölle, Christian; Niere, Marc; Ziegler, Mathias

    2011-01-01

    NAD is a vital redox carrier, and its degradation is a key element of important regulatory pathways. NAD-mediated functions are compartmentalized and have to be fueled by specific biosynthetic routes. However, little is known about the different pathways, their subcellular distribution, and regulation in human cells. In particular, the route(s) to generate mitochondrial NAD, the largest subcellular pool, is still unknown. To visualize organellar NAD changes in cells, we targeted poly(ADP-ribose) polymerase activity into the mitochondrial matrix. This activity synthesized immunodetectable poly(ADP-ribose) depending on mitochondrial NAD availability. Based on this novel detector system, detailed subcellular enzyme localizations, and pharmacological inhibitors, we identified extracellular NAD precursors, their cytosolic conversions, and the pathway of mitochondrial NAD generation. Our results demonstrate that, besides nicotinamide and nicotinic acid, only the corresponding nucleosides readily enter the cells. Nucleotides (e.g. NAD and NMN) undergo extracellular degradation resulting in the formation of permeable precursors. These precursors can all be converted to cytosolic and mitochondrial NAD. For mitochondrial NAD synthesis, precursors are converted to NMN in the cytosol. When taken up into the organelles, NMN (together with ATP) serves as substrate of NMNAT3 to form NAD. NMNAT3 was conclusively localized to the mitochondrial matrix and is the only known enzyme of NAD synthesis residing within these organelles. We thus present a comprehensive dissection of mammalian NAD biosynthesis, the groundwork to understand regulation of NAD-mediated processes, and the organismal homeostasis of this fundamental molecule. PMID:21504897

  6. Enhanced Glycogen Storage of a Subcellular Hot Spot in Human Skeletal Muscle during Early Recovery from Eccentric Contractions

    Science.gov (United States)

    Nielsen, Joachim; Farup, Jean; Rahbek, Stine Klejs; de Paoli, Frank Vincenzo; Vissing, Kristian

    2015-01-01

    Unaccustomed eccentric exercise is accompanied by muscle damage and impaired glucose uptake and glycogen synthesis during subsequent recovery. Recently, it was shown that the role and regulation of glycogen in skeletal muscle are dependent on its subcellular localization, and that glycogen synthesis, as described by the product of glycogen particle size and number, is dependent on the time course of recovery after exercise and carbohydrate availability. In the present study, we investigated the subcellular distribution of glycogen in fibers with high (type I) and low (type II) mitochondrial content during post-exercise recovery from eccentric contractions. Analysis was completed on five male subjects performing an exercise bout consisting of 15 x 10 maximal eccentric contractions. Carbohydrate-rich drinks were subsequently ingested throughout a 48 h recovery period and muscle biopsies for analysis included time points 3, 24 and 48 h post exercise from the exercising leg, whereas biopsies corresponding to prior to and at 48 h after the exercise bout were collected from the non-exercising, control leg. Quantitative imaging by transmission electron microscopy revealed an early (post 3 and 24 h) enhanced storage of intramyofibrillar glycogen (defined as glycogen particles located within the myofibrils) of type I fibers, which was associated with an increase in the number of particles. In contrast, late in recovery (post 48 h), intermyofibrillar, intramyofibrillar and subsarcolemmal glycogen in both type I and II fibers were lower in the exercise leg compared with the control leg, and this was associated with a smaller size of the glycogen particles. We conclude that in the carbohydrate-supplemented state, the effect of eccentric contractions on glycogen metabolism depends on the subcellular localization, muscle fiber’s oxidative capacity, and the time course of recovery. The early enhanced storage of intramyofibrillar glycogen after the eccentric contractions may

  7. Is Field of Study or Location Associated with College Students' Snacking Patterns?

    Directory of Open Access Journals (Sweden)

    Laura H. McArthur

    2012-01-01

    Full Text Available Objective. To compare on- and off-campus snacking patterns among college students pursuing degrees in health-related fields (HRFs and nonhealth-related fields (NHRFs. Materials and Methods. Snack frequency questionnaire, scales measuring barriers, self-efficacy, and stage of change for healthy snacking, and a snack knowledge test (SKT. Participants. 513 students, 46% HRFs, and 54% NHRFs. The students' mean±SD BMI was 24.1±4.3 kg/m2 (range 14.6 to 43.8, and 32.2% were overweight/obese. Results. Softdrinks (on-campus, lowfat milk (off-campus, and sports drinks were popular among HRFs and NHRFs. Cost and availability were barriers to healthy snacking, students felt least confident to choose healthy snacks when emotionally upset, and 75% (65% of HRFs (NHRFs self-classified in the action stage of change for healthy snacking. The HRFs scored higher on the SKT. Conclusions. Neither location nor field of study strongly influenced snacking patterns, which featured few high-fiber foods.

  8. Early subcellular partitioning of cadmium in gill and liver of rainbow trout (Oncorhynchus mykiss) following low-to-near-lethal waterborne cadmium exposure

    Energy Technology Data Exchange (ETDEWEB)

    Kamunde, Collins [Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, C1A 4P3 (Canada)], E-mail: ckamunde@upei.ca

    2009-03-09

    Non-essential metals such as cadmium (Cd) accumulated in animal cells are envisaged to partition into potentially metal-sensitive compartments when detoxification capacity is exceeded. An understanding of intracellular metal partitioning is therefore important in delineation of the toxicologically relevant metal fraction for accurate tissue residue-based assessment of toxicity. In the present study, the early intracellular Cd accumulation was studied to test the prediction that it conforms to the spillover model of metal toxicity. Juvenile rainbow trout (10-15 g) were exposed for 96 h to three doses of cadmium (5, 25 and 50 {mu}g/l) and a control (nominal 0 {mu}g/l Cd) in hard water followed by measurement of the changes in intracellular Cd concentrations in the gill and liver, and carcass calcium (Ca) levels. There were dose-dependent increases in Cd concentration in both organs but the accumulation pattern over time was linear in the liver and biphasic in the gill. The Cd accumulation was associated with carcass Ca loss after 48 h. Comparatively, the gill accumulated 2-4x more Cd than the liver and generally the subcellular compartments reflected the organ-level patterns of accumulation. For the gill the rank of Cd accumulation in subcellular fractions was: heat-stable proteins (HSP) > heat-labile proteins (HLP) > nuclei > microsomes-lysosomes (ML) {>=} mitochondria > resistant fraction while for the liver it was HSP > HLP > ML > mitochondria > nuclei > resistant fraction. Contrary to the spillover hypothesis there was no exposure concentration or internal accumulation at which Cd was not found in potentially metal-sensitive compartments. The proportion of Cd bound to the metabolically active pool (MAP) increased while that bound to the metabolically detoxified pool (MDP) decreased in gills of Cd-exposed fish but remained unchanged in the liver. Because the Cd concentration increased in all subcellular compartments while their contribution to the total increased

  9. Early subcellular partitioning of cadmium in gill and liver of rainbow trout (Oncorhynchus mykiss) following low-to-near-lethal waterborne cadmium exposure

    International Nuclear Information System (INIS)

    Kamunde, Collins

    2009-01-01

    Non-essential metals such as cadmium (Cd) accumulated in animal cells are envisaged to partition into potentially metal-sensitive compartments when detoxification capacity is exceeded. An understanding of intracellular metal partitioning is therefore important in delineation of the toxicologically relevant metal fraction for accurate tissue residue-based assessment of toxicity. In the present study, the early intracellular Cd accumulation was studied to test the prediction that it conforms to the spillover model of metal toxicity. Juvenile rainbow trout (10-15 g) were exposed for 96 h to three doses of cadmium (5, 25 and 50 μg/l) and a control (nominal 0 μg/l Cd) in hard water followed by measurement of the changes in intracellular Cd concentrations in the gill and liver, and carcass calcium (Ca) levels. There were dose-dependent increases in Cd concentration in both organs but the accumulation pattern over time was linear in the liver and biphasic in the gill. The Cd accumulation was associated with carcass Ca loss after 48 h. Comparatively, the gill accumulated 2-4x more Cd than the liver and generally the subcellular compartments reflected the organ-level patterns of accumulation. For the gill the rank of Cd accumulation in subcellular fractions was: heat-stable proteins (HSP) > heat-labile proteins (HLP) > nuclei > microsomes-lysosomes (ML) ≥ mitochondria > resistant fraction while for the liver it was HSP > HLP > ML > mitochondria > nuclei > resistant fraction. Contrary to the spillover hypothesis there was no exposure concentration or internal accumulation at which Cd was not found in potentially metal-sensitive compartments. The proportion of Cd bound to the metabolically active pool (MAP) increased while that bound to the metabolically detoxified pool (MDP) decreased in gills of Cd-exposed fish but remained unchanged in the liver. Because the Cd concentration increased in all subcellular compartments while their contribution to the total increased

  10. Factors influencing time-location patterns and their impact on estimates of exposure: the Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air).

    Science.gov (United States)

    Spalt, Elizabeth W; Curl, Cynthia L; Allen, Ryan W; Cohen, Martin; Williams, Kayleen; Hirsch, Jana A; Adar, Sara D; Kaufman, Joel D

    2016-06-01

    We assessed time-location patterns and the role of individual- and residential-level characteristics on these patterns within the Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air) cohort and also investigated the impact of individual-level time-location patterns on individual-level estimates of exposure to outdoor air pollution. Reported time-location patterns varied significantly by demographic factors such as age, gender, race/ethnicity, income, education, and employment status. On average, Chinese participants reported spending significantly more time indoors and less time outdoors and in transit than White, Black, or Hispanic participants. Using a tiered linear regression approach, we predicted time indoors at home and total time indoors. Our model, developed using forward-selection procedures, explained 43% of the variability in time spent indoors at home, and incorporated demographic, health, lifestyle, and built environment factors. Time-weighted air pollution predictions calculated using recommended time indoors from USEPA overestimated exposures as compared with predictions made with MESA Air participant-specific information. These data fill an important gap in the literature by describing the impact of individual and residential characteristics on time-location patterns and by demonstrating the impact of population-specific data on exposure estimates.

  11. Imaging cells and sub-cellular structures with ultrahigh resolution full-field X-ray microscopy.

    Science.gov (United States)

    Chien, C C; Tseng, P Y; Chen, H H; Hua, T E; Chen, S T; Chen, Y Y; Leng, W H; Wang, C H; Hwu, Y; Yin, G C; Liang, K S; Chen, F R; Chu, Y S; Yeh, H I; Yang, Y C; Yang, C S; Zhang, G L; Je, J H; Margaritondo, G

    2013-01-01

    Our experimental results demonstrate that full-field hard-X-ray microscopy is finally able to investigate the internal structure of cells in tissues. This result was made possible by three main factors: the use of a coherent (synchrotron) source of X-rays, the exploitation of contrast mechanisms based on the real part of the refractive index and the magnification provided by high-resolution Fresnel zone-plate objectives. We specifically obtained high-quality microradiographs of human and mouse cells with 29 nm Rayleigh spatial resolution and verified that tomographic reconstruction could be implemented with a final resolution level suitable for subcellular features. We also demonstrated that a phase retrieval method based on a wave propagation algorithm could yield good subcellular images starting from a series of defocused microradiographs. The concluding discussion compares cellular and subcellular hard-X-ray microradiology with other techniques and evaluates its potential impact on biomedical research. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Decoding Visual Location From Neural Patterns in the Auditory Cortex of the Congenitally Deaf

    Science.gov (United States)

    Almeida, Jorge; He, Dongjun; Chen, Quanjing; Mahon, Bradford Z.; Zhang, Fan; Gonçalves, Óscar F.; Fang, Fang; Bi, Yanchao

    2016-01-01

    Sensory cortices of individuals who are congenitally deprived of a sense can exhibit considerable plasticity and be recruited to process information from the senses that remain intact. Here, we explored whether the auditory cortex of congenitally deaf individuals represents visual field location of a stimulus—a dimension that is represented in early visual areas. We used functional MRI to measure neural activity in auditory and visual cortices of congenitally deaf and hearing humans while they observed stimuli typically used for mapping visual field preferences in visual cortex. We found that the location of a visual stimulus can be successfully decoded from the patterns of neural activity in auditory cortex of congenitally deaf but not hearing individuals. This is particularly true for locations within the horizontal plane and within peripheral vision. These data show that the representations stored within neuroplastically changed auditory cortex can align with dimensions that are typically represented in visual cortex. PMID:26423461

  13. Subcellular localization of ammonium transporters in Dictyostelium discoideum

    Directory of Open Access Journals (Sweden)

    Davis Carter T

    2008-12-01

    Full Text Available Abstract Background With the exception of vertebrates, most organisms have plasma membrane associated ammonium transporters which primarily serve to import a source of nitrogen for nutritional purposes. Dictyostelium discoideum has three ammonium transporters, Amts A, B and C. Our present work used fluorescent fusion proteins to determine the cellular localization of the Amts and tested the hypothesis that the transporters mediate removal of ammonia generated endogenously from the elevated protein catabolism common to many protists. Results Using RFP and YFP fusion constructs driven by the actin 15 promoter, we found that the three ammonium transporters were localized on the plasma membrane and on the membranes of subcellular organelles. AmtA and AmtB were localized on the membranes of endolysosomes and phagosomes, with AmtB further localized on the membranes of contractile vacuoles. AmtC also was localized on subcellular organelles when it was stabilized by coexpression with either the AmtA or AmtB fusion transporter. The three ammonium transporters exported ammonia linearly with regard to time during the first 18 hours of the developmental program as revealed by reduced export in the null strains. The fluorescently tagged transporters rescued export when expressed in the null strains, and thus they were functional transporters. Conclusion Unlike ammonium transporters in most organisms, which import NH3/NH4+ as a nitrogen source, those of Dictyostelium export ammonia/ammonium as a waste product from extensive catabolism of exogenously derived and endogenous proteins. Localization on proteolytic organelles and on the neutral contractile vacuole suggests that Dictyostelium ammonium transporters may have unique subcellular functions and play a role in the maintenance of intracellular ammonium distribution. A lack of correlation between the null strain phenotypes and ammonia excretion properties of the ammonium transporters suggests that it is not

  14. Subcellular SIMS imaging of gadolinium isotopes in human glioblastoma cells treated with a gadolinium containing MRI agent

    Science.gov (United States)

    Smith, Duane R.; Lorey, Daniel R.; Chandra, Subhash

    2004-06-01

    Neutron capture therapy is an experimental binary radiotherapeutic modality for the treatment of brain tumors such as glioblastoma multiforme. Recently, neutron capture therapy with gadolinium-157 has gained attention, and techniques for studying the subcellular distribution of gadolinium-157 are needed. In this preliminary study, we have been able to image the subcellular distribution of gadolinium-157, as well as the other six naturally abundant isotopes of gadolinium, with SIMS ion microscopy. T98G human glioblastoma cells were treated for 24 h with 25 mg/ml of the metal ion complex diethylenetriaminepentaacetic acid Gd(III) dihydrogen salt hydrate (Gd-DTPA). Gd-DTPA is a contrast enhancing agent used for MRI of brain tumors, blood-brain barrier impairment, diseases of the central nervous system, etc. A highly heterogeneous subcellular distribution was observed for gadolinium-157. The nuclei in each cell were distinctly lower in gadolinium-157 than in the cytoplasm. Even within the cytoplasm the gadolinium-157 was heterogeneously distributed. The other six naturally abundant isotopes of gadolinium were imaged from the same cells and exhibited a subcellular distribution consistent with that observed for gadolinium-157. These observations indicate that SIMS ion microscopy may be a viable approach for subcellular studies of gadolinium containing neutron capture therapy drugs and may even play a major role in the development and validation of new gadolinium contrast enhancing agents for diagnostic MRI applications.

  15. ALG-2 oscillates in subcellular localization, unitemporally with calcium oscillations

    DEFF Research Database (Denmark)

    la Cour, Jonas Marstrand; Mollerup, Jens; Berchtold, Martin Werner

    2007-01-01

    discovered that the subcellular distribution of a tagged version of ALG-2 could be directed by physiological external stimuli (including ATP, EGF, prostaglandin, histamine), which provoke intracellular Ca2+ oscillations. Cellular stimulation led to a redistribution of ALG-2 from the cytosol to a punctate...

  16. Longitudinal variability of time-location/activity patterns of population at different ages: a longitudinal study in California

    Directory of Open Access Journals (Sweden)

    Cassady Diana L

    2011-09-01

    Full Text Available Abstract Background Longitudinal time-activity data are important for exposure modeling, since the extent to which short-term time-activity data represent long-term activity patterns is not well understood. This study was designed to evaluate longitudinal variations in human time-activity patterns. Method We report on 24-hour recall diaries and questionnaires collected via the internet from 151 parents of young children (mostly under age 55, and from 55 older adults of ages 55 and older, for both a weekday and a weekend day every three months over an 18-month period. Parents also provided data for their children. The self-administrated diary and questionnaire distinguished ~30 frequently visited microenvironments and ~20 activities which we selected to represent opportunities for exposure to toxic environmental compounds. Due to the non-normal distribution of time-location/activity data, we employed generalized linear mixed-distribution mixed-effect models to examine intra- and inter-individual variations. Here we describe variation in the likelihood of and time spent engaging in an activity or being in a microenvironment by age group, day-type (weekday/weekend, season (warm/cool, sex, employment status, and over the follow-up period. Results As expected, day-type and season influence time spent in many location and activity categories. Longitudinal changes were also observed, e.g., young children slept less with increasing follow-up, transit time increased, and time spent on working and shopping decreased during the study, possibly related to human physiological changes with age and changes in macro-economic factors such as gas prices and the economic recession. Conclusions This study provides valuable new information about time-activity assessed longitudinally in three major age groups and greatly expands our knowledge about intra- and inter-individual variations in time-location/activity patterns. Longitudinal variations beyond weekly and

  17. Analysis of the subcellular localization of the human histone methyltransferase SETDB1

    Energy Technology Data Exchange (ETDEWEB)

    Tachibana, Keisuke, E-mail: nya@phs.osaka-u.ac.jp [Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Gotoh, Eiko; Kawamata, Natsuko [Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Ishimoto, Kenji [Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Laboratory for System Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904 (Japan); Uchihara, Yoshie [Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Iwanari, Hiroko [Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904 (Japan); Sugiyama, Akira; Kawamura, Takeshi [Radioisotope Center, The University of Tokyo, 2-11-16 Yayoi, Bunkyo, Tokyo 113-0032 (Japan); Mochizuki, Yasuhiro [Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904 (Japan); Tanaka, Toshiya [Laboratory for System Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904 (Japan); Sakai, Juro [Division of Metabolic Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904 (Japan); Hamakubo, Takao [Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904 (Japan); Kodama, Tatsuhiko [Laboratory for System Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904 (Japan); and others

    2015-10-02

    SET domain, bifurcated 1 (SETDB1) is a histone methyltransferase that methylates lysine 9 on histone H3. Although it is important to know the localization of proteins to elucidate their physiological function, little is known of the subcellular localization of human SETDB1. In the present study, to investigate the subcellular localization of hSETDB1, we established a human cell line constitutively expressing enhanced green fluorescent protein fused to hSETDB1. We then generated a monoclonal antibody against the hSETDB1 protein. Expression of both exogenous and endogenous hSETDB1 was observed mainly in the cytoplasm of various human cell lines. Combined treatment with the nuclear export inhibitor leptomycin B and the proteasome inhibitor MG132 led to the accumulation of hSETDB1 in the nucleus. These findings suggest that hSETDB1, localized in the nucleus, might undergo degradation by the proteasome and be exported to the cytosol, resulting in its detection mainly in the cytosol. - Highlights: • Endogenous human SETDB1 was localized mainly in the cytoplasm. • Combined treatment with LMB and MG132 led to accumulation of human SETDB1 in the nucleus. • HeLa cells expressing EFGP-hSETDB1 are useful for subcellular localization analyses.

  18. Distribution of physostigmine and metabolites in brain subcellular fractions of the rat

    International Nuclear Information System (INIS)

    King, B.F.; Somani, S.M.

    1987-01-01

    The distribution of 3 H-physostigmine (Phy) has been studied in the rat brain subcellular fractions at various time intervals following i.v. injection. 3 H-Phy or its metabolites rapidly accumulate into the cytoplasm of cells and penetrates the intracellular compartments. Kinetic studies of the subcellular distribution of radioactivity (RA) per gm of rat brain following i.v. injection of 3 H-Phy show peak concentrations at 30 min in all subcellular fractions with the exception of mitochondria. In the mitochondrial fraction the RA levels continue to rise from 4682 +/- 875 DPM/gm at 5 min to 27,474 +/- 2825 DPM/gm at 60 min (P < .05). The cytosol contains the highest RA: 223,341 +/- 21,044 DPM/gm at 30 min which declined to 53,475 +/- 3756 DPM/gm at 60 min. RA in synaptosome, microsomes and myelin increases from 5 to 30 min, and declines at 60 min. In vitro studies did not show a greater uptake of RA by the mitochondrial or synaptosomal fractions. The finding of relatively high concentrations of RA in the mitochondrial fraction at 60 min increases the likelihood that Phy or its metabolites could interfere with the physiological function of the organelle. 21 references, 1 figure, 2 tables

  19. Analysis of the subcellular localization of the human histone methyltransferase SETDB1

    International Nuclear Information System (INIS)

    Tachibana, Keisuke; Gotoh, Eiko; Kawamata, Natsuko; Ishimoto, Kenji; Uchihara, Yoshie; Iwanari, Hiroko; Sugiyama, Akira; Kawamura, Takeshi; Mochizuki, Yasuhiro; Tanaka, Toshiya; Sakai, Juro; Hamakubo, Takao; Kodama, Tatsuhiko

    2015-01-01

    SET domain, bifurcated 1 (SETDB1) is a histone methyltransferase that methylates lysine 9 on histone H3. Although it is important to know the localization of proteins to elucidate their physiological function, little is known of the subcellular localization of human SETDB1. In the present study, to investigate the subcellular localization of hSETDB1, we established a human cell line constitutively expressing enhanced green fluorescent protein fused to hSETDB1. We then generated a monoclonal antibody against the hSETDB1 protein. Expression of both exogenous and endogenous hSETDB1 was observed mainly in the cytoplasm of various human cell lines. Combined treatment with the nuclear export inhibitor leptomycin B and the proteasome inhibitor MG132 led to the accumulation of hSETDB1 in the nucleus. These findings suggest that hSETDB1, localized in the nucleus, might undergo degradation by the proteasome and be exported to the cytosol, resulting in its detection mainly in the cytosol. - Highlights: • Endogenous human SETDB1 was localized mainly in the cytoplasm. • Combined treatment with LMB and MG132 led to accumulation of human SETDB1 in the nucleus. • HeLa cells expressing EFGP-hSETDB1 are useful for subcellular localization analyses.

  20. MultiLoc2: integrating phylogeny and Gene Ontology terms improves subcellular protein localization prediction

    Directory of Open Access Journals (Sweden)

    Kohlbacher Oliver

    2009-09-01

    Full Text Available Abstract Background Knowledge of subcellular localization of proteins is crucial to proteomics, drug target discovery and systems biology since localization and biological function are highly correlated. In recent years, numerous computational prediction methods have been developed. Nevertheless, there is still a need for prediction methods that show more robustness and higher accuracy. Results We extended our previous MultiLoc predictor by incorporating phylogenetic profiles and Gene Ontology terms. Two different datasets were used for training the system, resulting in two versions of this high-accuracy prediction method. One version is specialized for globular proteins and predicts up to five localizations, whereas a second version covers all eleven main eukaryotic subcellular localizations. In a benchmark study with five localizations, MultiLoc2 performs considerably better than other methods for animal and plant proteins and comparably for fungal proteins. Furthermore, MultiLoc2 performs clearly better when using a second dataset that extends the benchmark study to all eleven main eukaryotic subcellular localizations. Conclusion MultiLoc2 is an extensive high-performance subcellular protein localization prediction system. By incorporating phylogenetic profiles and Gene Ontology terms MultiLoc2 yields higher accuracies compared to its previous version. Moreover, it outperforms other prediction systems in two benchmarks studies. MultiLoc2 is available as user-friendly and free web-service, available at: http://www-bs.informatik.uni-tuebingen.de/Services/MultiLoc2.

  1. Gene ontology based transfer learning for protein subcellular localization

    Directory of Open Access Journals (Sweden)

    Zhou Shuigeng

    2011-02-01

    Full Text Available Abstract Background Prediction of protein subcellular localization generally involves many complex factors, and using only one or two aspects of data information may not tell the true story. For this reason, some recent predictive models are deliberately designed to integrate multiple heterogeneous data sources for exploiting multi-aspect protein feature information. Gene ontology, hereinafter referred to as GO, uses a controlled vocabulary to depict biological molecules or gene products in terms of biological process, molecular function and cellular component. With the rapid expansion of annotated protein sequences, gene ontology has become a general protein feature that can be used to construct predictive models in computational biology. Existing models generally either concatenated the GO terms into a flat binary vector or applied majority-vote based ensemble learning for protein subcellular localization, both of which can not estimate the individual discriminative abilities of the three aspects of gene ontology. Results In this paper, we propose a Gene Ontology Based Transfer Learning Model (GO-TLM for large-scale protein subcellular localization. The model transfers the signature-based homologous GO terms to the target proteins, and further constructs a reliable learning system to reduce the adverse affect of the potential false GO terms that are resulted from evolutionary divergence. We derive three GO kernels from the three aspects of gene ontology to measure the GO similarity of two proteins, and derive two other spectrum kernels to measure the similarity of two protein sequences. We use simple non-parametric cross validation to explicitly weigh the discriminative abilities of the five kernels, such that the time & space computational complexities are greatly reduced when compared to the complicated semi-definite programming and semi-indefinite linear programming. The five kernels are then linearly merged into one single kernel for

  2. Subcellular and supracellular mechanical stress prescribes cytoskeleton behavior in Arabidopsis cotyledon pavement cells

    Science.gov (United States)

    Sampathkumar, Arun; Krupinski, Pawel; Wightman, Raymond; Milani, Pascale; Berquand, Alexandre; Boudaoud, Arezki; Hamant, Olivier; Jönsson, Henrik; Meyerowitz, Elliot M

    2014-01-01

    Although it is a central question in biology, how cell shape controls intracellular dynamics largely remains an open question. Here, we show that the shape of Arabidopsis pavement cells creates a stress pattern that controls microtubule orientation, which then guides cell wall reinforcement. Live-imaging, combined with modeling of cell mechanics, shows that microtubules align along the maximal tensile stress direction within the cells, and atomic force microscopy demonstrates that this leads to reinforcement of the cell wall parallel to the microtubules. This feedback loop is regulated: cell-shape derived stresses could be overridden by imposed tissue level stresses, showing how competition between subcellular and supracellular cues control microtubule behavior. Furthermore, at the microtubule level, we identified an amplification mechanism in which mechanical stress promotes the microtubule response to stress by increasing severing activity. These multiscale feedbacks likely contribute to the robustness of microtubule behavior in plant epidermis. DOI: http://dx.doi.org/10.7554/eLife.01967.001 PMID:24740969

  3. Bioaccumulation and subcellular partitioning of zinc in rainbow trout (Oncorhynchus mykiss): Cross-talk between waterborne and dietary uptake

    International Nuclear Information System (INIS)

    Sappal, Ravinder; Burka, John; Dawson, Susan; Kamunde, Collins

    2009-01-01

    Zinc homeostasis was studied at the tissue and gill subcellular levels in rainbow trout (Oncorhynchus mykiss) following waterborne and dietary exposures, singly and in combination. Juvenile rainbow trout were exposed to 150 or 600 μg l -1 waterborne Zn, 1500 or 4500 μg g -1 dietary Zn, and a combination of 150 μg l -1 waterborne and 1500 μg g -1 dietary Zn for 40 days. Accumulation of Zn in tissues and gill subcellular fractions was measured. At the tissue level, the carcass acted as the main Zn depot containing 84-90% of whole body Zn burden whereas the gill held 4-6%. At the subcellular level, the majority of gill Zn was bioavailable with the estimated metabolically active pool being 81-90%. Interestingly, the nuclei-cellular debris fraction bound the highest amount (40%) of the gill Zn burden. There was low partitioning of Zn into the detoxified pool (10-19%) suggesting that sequestration and chelation are not major mechanisms of cellular Zn homeostasis in rainbow trout. Further, the subcellular partitioning of Zn did not conform to the spill-over model of metal toxicity because Zn binding was indiscriminate irrespective of exposure concentration and duration. The contribution of the branchial and gastrointestinal uptake pathways to Zn accumulation depended on the tissue. Specifically, in plasma, blood cells, and gill, uptake from water was dominant whereas both pathways appeared to contribute equally to Zn accumulation in the carcass. Subcellularly, additive uptake from the two pathways was observed in the heat-stable proteins (HSP) fraction. Toxicologically, Zn exposure caused minimal adverse effects manifested by a transitory inhibition of protein synthesis in gills in the waterborne exposure. Overall, subcellular fractionation appears to have value in the quest for a better understanding of Zn homeostasis and interactions between branchial and gastrointestinal uptake pathways

  4. Bioaccumulation and subcellular partitioning of zinc in rainbow trout (Oncorhynchus mykiss): Cross-talk between waterborne and dietary uptake

    Energy Technology Data Exchange (ETDEWEB)

    Sappal, Ravinder; Burka, John; Dawson, Susan [Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3 (Canada); Kamunde, Collins [Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3 (Canada)], E-mail: ckamunde@upei.ca

    2009-03-09

    Zinc homeostasis was studied at the tissue and gill subcellular levels in rainbow trout (Oncorhynchus mykiss) following waterborne and dietary exposures, singly and in combination. Juvenile rainbow trout were exposed to 150 or 600 {mu}g l{sup -1} waterborne Zn, 1500 or 4500 {mu}g g{sup -1} dietary Zn, and a combination of 150 {mu}g l{sup -1} waterborne and 1500 {mu}g g{sup -1} dietary Zn for 40 days. Accumulation of Zn in tissues and gill subcellular fractions was measured. At the tissue level, the carcass acted as the main Zn depot containing 84-90% of whole body Zn burden whereas the gill held 4-6%. At the subcellular level, the majority of gill Zn was bioavailable with the estimated metabolically active pool being 81-90%. Interestingly, the nuclei-cellular debris fraction bound the highest amount (40%) of the gill Zn burden. There was low partitioning of Zn into the detoxified pool (10-19%) suggesting that sequestration and chelation are not major mechanisms of cellular Zn homeostasis in rainbow trout. Further, the subcellular partitioning of Zn did not conform to the spill-over model of metal toxicity because Zn binding was indiscriminate irrespective of exposure concentration and duration. The contribution of the branchial and gastrointestinal uptake pathways to Zn accumulation depended on the tissue. Specifically, in plasma, blood cells, and gill, uptake from water was dominant whereas both pathways appeared to contribute equally to Zn accumulation in the carcass. Subcellularly, additive uptake from the two pathways was observed in the heat-stable proteins (HSP) fraction. Toxicologically, Zn exposure caused minimal adverse effects manifested by a transitory inhibition of protein synthesis in gills in the waterborne exposure. Overall, subcellular fractionation appears to have value in the quest for a better understanding of Zn homeostasis and interactions between branchial and gastrointestinal uptake pathways.

  5. Prion subcellular fractionation reveals infectivity spectrum, with a high titre-low PrPres level disparity

    Directory of Open Access Journals (Sweden)

    Lewis Victoria

    2012-04-01

    Full Text Available Abstract Background Prion disease transmission and pathogenesis are linked to misfolded, typically protease resistant (PrPres conformers of the normal cellular prion protein (PrPC, with the former posited to be the principal constituent of the infectious 'prion'. Unexplained discrepancies observed between detectable PrPres and infectivity levels exemplify the complexity in deciphering the exact biophysical nature of prions and those host cell factors, if any, which contribute to transmission efficiency. In order to improve our understanding of these important issues, this study utilized a bioassay validated cell culture model of prion infection to investigate discordance between PrPres levels and infectivity titres at a subcellular resolution. Findings Subcellular fractions enriched in lipid rafts or endoplasmic reticulum/mitochondrial marker proteins were equally highly efficient at prion transmission, despite lipid raft fractions containing up to eight times the levels of detectable PrPres. Brain homogenate infectivity was not differentially enhanced by subcellular fraction-specific co-factors, and proteinase K pre-treatment of selected fractions modestly, but equally reduced infectivity. Only lipid raft associated infectivity was enhanced by sonication. Conclusions This study authenticates a subcellular disparity in PrPres and infectivity levels, and eliminates simultaneous divergence of prion strains as the explanation for this phenomenon. On balance, the results align best with the concept that transmission efficiency is influenced more by intrinsic characteristics of the infectious prion, rather than cellular microenvironment conditions or absolute PrPres levels.

  6. Locating previously unknown patterns in data-mining results: a dual data- and knowledge-mining method

    Directory of Open Access Journals (Sweden)

    Knaus William A

    2006-03-01

    Full Text Available Abstract Background Data mining can be utilized to automate analysis of substantial amounts of data produced in many organizations. However, data mining produces large numbers of rules and patterns, many of which are not useful. Existing methods for pruning uninteresting patterns have only begun to automate the knowledge acquisition step (which is required for subjective measures of interestingness, hence leaving a serious bottleneck. In this paper we propose a method for automatically acquiring knowledge to shorten the pattern list by locating the novel and interesting ones. Methods The dual-mining method is based on automatically comparing the strength of patterns mined from a database with the strength of equivalent patterns mined from a relevant knowledgebase. When these two estimates of pattern strength do not match, a high "surprise score" is assigned to the pattern, identifying the pattern as potentially interesting. The surprise score captures the degree of novelty or interestingness of the mined pattern. In addition, we show how to compute p values for each surprise score, thus filtering out noise and attaching statistical significance. Results We have implemented the dual-mining method using scripts written in Perl and R. We applied the method to a large patient database and a biomedical literature citation knowledgebase. The system estimated association scores for 50,000 patterns, composed of disease entities and lab results, by querying the database and the knowledgebase. It then computed the surprise scores by comparing the pairs of association scores. Finally, the system estimated statistical significance of the scores. Conclusion The dual-mining method eliminates more than 90% of patterns with strong associations, thus identifying them as uninteresting. We found that the pruning of patterns using the surprise score matched the biomedical evidence in the 100 cases that were examined by hand. The method automates the acquisition of

  7. Protein (multi-)location prediction: utilizing interdependencies via a generative model

    Science.gov (United States)

    Shatkay, Hagit

    2015-01-01

    Motivation: Proteins are responsible for a multitude of vital tasks in all living organisms. Given that a protein’s function and role are strongly related to its subcellular location, protein location prediction is an important research area. While proteins move from one location to another and can localize to multiple locations, most existing location prediction systems assign only a single location per protein. A few recent systems attempt to predict multiple locations for proteins, however, their performance leaves much room for improvement. Moreover, such systems do not capture dependencies among locations and usually consider locations as independent. We hypothesize that a multi-location predictor that captures location inter-dependencies can improve location predictions for proteins. Results: We introduce a probabilistic generative model for protein localization, and develop a system based on it—which we call MDLoc—that utilizes inter-dependencies among locations to predict multiple locations for proteins. The model captures location inter-dependencies using Bayesian networks and represents dependency between features and locations using a mixture model. We use iterative processes for learning model parameters and for estimating protein locations. We evaluate our classifier MDLoc, on a dataset of single- and multi-localized proteins derived from the DBMLoc dataset, which is the most comprehensive protein multi-localization dataset currently available. Our results, obtained by using MDLoc, significantly improve upon results obtained by an initial simpler classifier, as well as on results reported by other top systems. Availability and implementation: MDLoc is available at: http://www.eecis.udel.edu/∼compbio/mdloc. Contact: shatkay@udel.edu. PMID:26072505

  8. Protein (multi-)location prediction: utilizing interdependencies via a generative model.

    Science.gov (United States)

    Simha, Ramanuja; Briesemeister, Sebastian; Kohlbacher, Oliver; Shatkay, Hagit

    2015-06-15

    Proteins are responsible for a multitude of vital tasks in all living organisms. Given that a protein's function and role are strongly related to its subcellular location, protein location prediction is an important research area. While proteins move from one location to another and can localize to multiple locations, most existing location prediction systems assign only a single location per protein. A few recent systems attempt to predict multiple locations for proteins, however, their performance leaves much room for improvement. Moreover, such systems do not capture dependencies among locations and usually consider locations as independent. We hypothesize that a multi-location predictor that captures location inter-dependencies can improve location predictions for proteins. We introduce a probabilistic generative model for protein localization, and develop a system based on it-which we call MDLoc-that utilizes inter-dependencies among locations to predict multiple locations for proteins. The model captures location inter-dependencies using Bayesian networks and represents dependency between features and locations using a mixture model. We use iterative processes for learning model parameters and for estimating protein locations. We evaluate our classifier MDLoc, on a dataset of single- and multi-localized proteins derived from the DBMLoc dataset, which is the most comprehensive protein multi-localization dataset currently available. Our results, obtained by using MDLoc, significantly improve upon results obtained by an initial simpler classifier, as well as on results reported by other top systems. MDLoc is available at: http://www.eecis.udel.edu/∼compbio/mdloc. © The Author 2015. Published by Oxford University Press.

  9. Subcellular localization of pituitary enzymes

    Science.gov (United States)

    Smith, R. E.

    1970-01-01

    A cytochemical procedure is reported for identifying subcellular sites of enzymes hydrolyzing beta-naphthylamine substrates, and to study the sites of reaction product localization in cells of various tissues. Investigations using the substrate Leu 4-methoxy-8-naphthylamine, a capture with hexonium pararosaniline, and the final chelation of osmium have identified the hydrolyzing enzyme of rat liver cells; this enzyme localized on cell membranes with intense deposition in the areas of the parcanaliculi. The study of cells in the anterior pituitary of the rat showed the deposition of reaction product on cell membrane; and on the membranes of secretion granules contained within the cell. The deposition of reaction product on the cell membrane however showed no increase or decrease with changes in the physiological state of the gland and release of secretion granules from specific cells.

  10. Direct speciation analysis of arsenic in sub-cellular compartments using micro-X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Bacquart, Thomas; Deves, Guillaume; Ortega, Richard

    2010-01-01

    Identification of arsenic chemical species at a sub-cellular level is a key to understanding the mechanisms involved in arsenic toxicology and antitumor pharmacology. When performed with a microbeam, X-ray absorption near-edge structure (μ-XANES) enables the direct speciation analysis of arsenic in sub-cellular compartments avoiding cell fractionation and other preparation steps that might modify the chemical species. This methodology couples tracking of cellular organelles in a single cell by confocal or epifluorescence microscopy with local analysis of chemical species by μ-XANES. Here we report the results obtained with a μ-XANES experimental setup based on Kirkpatrick-Baez X-ray focusing optics that maintains high flux of incoming radiation (>10 11 ph/s) at micrometric spatial resolution (1.5x4.0 μm 2 ). This original experimental setup enabled the direct speciation analysis of arsenic in sub-cellular organelles with a 10 -15 g detection limit. μ-XANES shows that inorganic arsenite, As(OH) 3 , is the main form of arsenic in the cytosol, nucleus, and mitochondrial network of cultured cancer cells exposed to As 2 O 3 . On the other hand, a predominance of As(III) species is observed in HepG2 cells exposed to As(OH) 3 with, in some cases, oxidation to a pentavalent form in nuclear structures of HepG2 cells. The observation of intra-nuclear mixed redox states suggests an inter-individual variability in a cell population that can only be evidenced with direct sub-cellular speciation analysis.

  11. Evaluation on subcellular partitioning and biodynamics of pulse copper toxicity in tilapia reveals impacts of a major environmental disturbance.

    Science.gov (United States)

    Ju, Yun-Ru; Yang, Ying-Fei; Tsai, Jeng-Wei; Cheng, Yi-Hsien; Chen, Wei-Yu; Liao, Chung-Min

    2017-07-01

    Fluctuation exposure of trace metal copper (Cu) is ubiquitous in aquatic environments. The purpose of this study was to investigate the impacts of chronically pulsed exposure on biodynamics and subcellular partitioning of Cu in freshwater tilapia (Oreochromis mossambicus). Long-term 28-day pulsed Cu exposure experiments were performed to explore subcellular partitioning and toxicokinetics/toxicodynamics of Cu in tilapia. Subcellular partitioning linking with a metal influx scheme was used to estimate detoxification and elimination rates. A biotic ligand model-based damage assessment model was used to take into account environmental effects and biological mechanisms of Cu toxicity. We demonstrated that the probability causing 50% of susceptibility risk in response to pulse Cu exposure in generic Taiwan aquaculture ponds was ~33% of Cu in adverse physiologically associated, metabolically active pool, implicating no significant susceptibility risk for tilapia. We suggest that our integrated ecotoxicological models linking chronic exposure measurements with subcellular partitioning can facilitate a risk assessment framework that provides a predictive tool for preventive susceptibility reduction strategies for freshwater fish exposed to pulse metal stressors.

  12. Predicting the Location and Time of Mobile Phone Users by Using Sequential Pattern Mining Techniques

    DEFF Research Database (Denmark)

    Ozer, Mert; Keles, Ilkcan; Toroslu, Hakki

    2016-01-01

    In recent years, using cell phone log data to model human mobility patterns became an active research area. This problem is a challenging data mining problem due to huge size and non-uniformity of the log data, which introduces several granularity levels for the specification of temporal...... and spatial dimensions. This paper focuses on the prediction of the location of the next activity of the mobile phone users. There are several versions of this problem. In this work, we have concentrated on the following three problems: predicting the location and the time of the next user activity...... the success of these methods with real data obtained from one of the largest mobile phone operators in Turkey. Our results are very encouraging, since we were able to obtain quite high accuracy results under small prediction sets....

  13. A mathematical model of single target site location by Brownian movement in subcellular compartments.

    Science.gov (United States)

    Kuthan, Hartmut

    2003-03-07

    The location of distinct sites is mandatory for many cellular processes. In the subcompartments of the cell nucleus, only very small numbers of diffusing macromolecules and specific target sites of some types may be present. In this case, we are faced with the Brownian movement of individual macromolecules and their "random search" for single/few specific target sites, rather than bulk-averaged diffusion and multiple sites. In this article, I consider the location of a distant central target site, e.g. a globular protein, by individual macromolecules executing unbiased (i.e. drift-free) random walks in a spherical compartment. For this walk-and-capture model, the closed-form analytic solution of the first passage time probability density function (p.d.f.) has been obtained as well as the first and second moment. In the limit of a large ratio of the radii of the spherical diffusion space and central target, well-known relations for the variance and the first two moments for the exponential p.d.f. were found to hold with high accuracy. These calculations reinforce earlier numerical results and Monte Carlo simulations. A major implication derivable from the model is that non-directed random movement is an effective means for locating single sites in submicron-sized compartments, even when the diffusion coefficients are comparatively small and the diffusing species are present in one copy only. These theoretical conclusions are underscored numerically for effective diffusion constants ranging from 0.5 to 10.0 microm(2) s(-1), which have been reported for a couple of nuclear proteins in their physiological environment. Spherical compartments of submicron size are, for example, the Cajal bodies (size: 0.1-1.0 microm), which are present in 1-5 copies in the cell nucleus. Within a small Cajal body of radius 0.1 microm a single diffusing protein molecule (with D=0.5 microm(2) s(-1)) would encounter a medium-sized protein of radius 2.5 nm within 1 s with a probability near

  14. Biodynamics of copper oxide nanoparticles and copper ions in an oligochaete - Part II: Subcellular distribution following sediment exposure

    Energy Technology Data Exchange (ETDEWEB)

    Thit, Amalie, E-mail: athitj@ruc.dk [U.S. Geological Survey, 345 Middlefield Road, Menlo Park, CA 94025 (United States); Department of Science and Environment, Roskilde University, Universitetsvej 1, Roskilde DK-4000 (Denmark); Ramskov, Tina, E-mail: tramskov@hotmail.com [U.S. Geological Survey, 345 Middlefield Road, Menlo Park, CA 94025 (United States); Department of Science and Environment, Roskilde University, Universitetsvej 1, Roskilde DK-4000 (Denmark); Croteau, Marie-Noële, E-mail: mcroteau@usgs.gov [Department of Science and Environment, Roskilde University, Universitetsvej 1, Roskilde DK-4000 (Denmark); Selck, Henriette [U.S. Geological Survey, 345 Middlefield Road, Menlo Park, CA 94025 (United States); Department of Science and Environment, Roskilde University, Universitetsvej 1, Roskilde DK-4000 (Denmark)

    2016-11-15

    Highlights: • L. variegatus was exposed to sediment spiked with either aqueous Cu or nanoparticulate CuO. • Both aqueous and nanoparticulate Cu were marginally accumulated by L. variegatus. • Elimination of Cu accumulated from both forms was limited. • The subcellular distribution of accumulated Cu varied between Cu forms. • The use of a tracer, greater exposure concentration and duration are recommended. - Abstract: The use and likely incidental release of metal nanoparticles (NPs) is steadily increasing. Despite the increasing amount of published literature on metal NP toxicity in the aquatic environment, very little is known about the biological fate of NPs after sediment exposures. Here, we compare the bioavailability and subcellular distribution of copper oxide (CuO) NPs and aqueous Cu (Cu-Aq) in the sediment-dwelling worm Lumbriculus variegatus. Ten days (d) sediment exposure resulted in marginal Cu bioaccumulation in L. variegatus for both forms of Cu. Bioaccumulation was detected because isotopically enriched {sup 65}Cu was used as a tracer. Neither burrowing behavior or survival was affected by the exposure. Once incorporated into tissue, Cu loss was negligible over 10 d of elimination in clean sediment (Cu elimination rate constants were not different from zero). With the exception of day 10, differences in bioaccumulation and subcellular distribution between Cu forms were either not detectable or marginal. After 10 d of exposure to Cu-Aq, the accumulated Cu was primarily partitioned in the subcellular fraction containing metallothionein-like proteins (MTLP, ≈40%) and cellular debris (CD, ≈30%). Cu concentrations in these fractions were significantly higher than in controls. For worms exposed to CuO NPs for 10 d, most of the accumulated Cu was partitioned in the CD fraction (≈40%), which was the only subcellular fraction where the Cu concentration was significantly higher than for the control group. Our results indicate that L. variegatus

  15. In vivo subcellular localization of Mal de Rio Cuarto virus (MRCV) non-structural proteins in insect cells reveals their putative functions

    Energy Technology Data Exchange (ETDEWEB)

    Maroniche, Guillermo A.; Mongelli, Vanesa C.; Llauger, Gabriela; Alfonso, Victoria; Taboga, Oscar [Instituto de Biotecnologia, CICVyA, Instituto Nacional de Tecnologia Agropecuaria (IB-INTA), Las cabanas y Los Reseros s/n. Hurlingham Cp 1686, Buenos Aires (Argentina); Vas, Mariana del, E-mail: mdelvas@cnia.inta.gov.ar [Instituto de Biotecnologia, CICVyA, Instituto Nacional de Tecnologia Agropecuaria (IB-INTA), Las cabanas y Los Reseros s/n. Hurlingham Cp 1686, Buenos Aires (Argentina)

    2012-09-01

    The in vivo subcellular localization of Mal de Rio Cuarto virus (MRCV, Fijivirus, Reoviridae) non-structural proteins fused to GFP was analyzed by confocal microscopy. P5-1 showed a cytoplasmic vesicular-like distribution that was lost upon deleting its PDZ binding TKF motif, suggesting that P5-1 interacts with cellular PDZ proteins. P5-2 located at the nucleus and its nuclear import was affected by the deletion of its basic C-termini. P7-1 and P7-2 also entered the nucleus and therefore, along with P5-2, could function as regulators of host gene expression. P6 located in the cytoplasm and in perinuclear cloud-like inclusions, was driven to P9-1 viroplasm-like structures and co-localized with P7-2, P10 and {alpha}-tubulin, suggesting its involvement in viroplasm formation and viral intracellular movement. Finally, P9-2 was N-glycosylated and located at the plasma membrane in association with filopodia-like protrusions containing actin, suggesting a possible role in virus cell-to-cell movement and spread.

  16. Locating sensors for detecting source-to-target patterns of special nuclear material smuggling: a spatial information theoretic approach.

    Science.gov (United States)

    Przybyla, Jay; Taylor, Jeffrey; Zhou, Xuesong

    2010-01-01

    In this paper, a spatial information-theoretic model is proposed to locate sensors for detecting source-to-target patterns of special nuclear material (SNM) smuggling. In order to ship the nuclear materials from a source location with SNM production to a target city, the smugglers must employ global and domestic logistics systems. This paper focuses on locating a limited set of fixed and mobile radiation sensors in a transportation network, with the intent to maximize the expected information gain and minimize the estimation error for the subsequent nuclear material detection stage. A Kalman filtering-based framework is adapted to assist the decision-maker in quantifying the network-wide information gain and SNM flow estimation accuracy.

  17. Locating Sensors for Detecting Source-to-Target Patterns of Special Nuclear Material Smuggling: A Spatial Information Theoretic Approach

    Directory of Open Access Journals (Sweden)

    Xuesong Zhou

    2010-08-01

    Full Text Available In this paper, a spatial information-theoretic model is proposed to locate sensors for detecting source-to-target patterns of special nuclear material (SNM smuggling. In order to ship the nuclear materials from a source location with SNM production to a target city, the smugglers must employ global and domestic logistics systems. This paper focuses on locating a limited set of fixed and mobile radiation sensors in a transportation network, with the intent to maximize the expected information gain and minimize the estimation error for the subsequent nuclear material detection stage. A Kalman filtering-based framework is adapted to assist the decision-maker in quantifying the network-wide information gain and SNM flow estimation accuracy.

  18. Apparatus and method for measuring single cell and sub-cellular photosynthetic efficiency

    Science.gov (United States)

    Davis, Ryan Wesley; Singh, Seema; Wu, Huawen

    2013-07-09

    Devices for measuring single cell changes in photosynthetic efficiency in algal aquaculture are disclosed that include a combination of modulated LED trans-illumination of different intensities with synchronized through objective laser illumination and confocal detection. Synchronization and intensity modulation of a dual illumination scheme were provided using a custom microcontroller for a laser beam block and constant current LED driver. Therefore, single whole cell photosynthetic efficiency, and subcellular (diffraction limited) photosynthetic efficiency measurement modes are permitted. Wide field rapid light scanning actinic illumination is provided for both by an intensity modulated 470 nm LED. For the whole cell photosynthetic efficiency measurement, the same LED provides saturating pulses for generating photosynthetic induction curves. For the subcellular photosynthetic efficiency measurement, a switched through objective 488 nm laser provides saturating pulses for generating photosynthetic induction curves. A second near IR LED is employed to generate dark adapted states in the system under study.

  19. Distinct cellular and subcellular distributions of G protein-coupled receptor kinase and arrestin isoforms in the striatum.

    Directory of Open Access Journals (Sweden)

    Evgeny Bychkov

    Full Text Available G protein-coupled receptor kinases (GRKs and arrestins mediate desensitization of G protein-coupled receptors (GPCR. Arrestins also mediate G protein-independent signaling via GPCRs. Since GRK and arrestins demonstrate no strict receptor specificity, their functions in the brain may depend on their cellular complement, expression level, and subcellular targeting. However, cellular expression and subcellular distribution of GRKs and arrestins in the brain is largely unknown. We show that GRK isoforms GRK2 and GRK5 are similarly expressed in direct and indirect pathway neurons in the rat striatum. Arrestin-2 and arrestin-3 are also expressed in neurons of both pathways. Cholinergic interneurons are enriched in GRK2, arrestin-3, and GRK5. Parvalbumin-positive interneurons express more of GRK2 and less of arrestin-2 than medium spiny neurons. The GRK5 subcellular distribution in the human striatal neurons is altered by its phosphorylation: unphosphorylated enzyme preferentially localizes to synaptic membranes, whereas phosphorylated GRK5 is found in plasma membrane and cytosolic fractions. Both GRK isoforms are abundant in the nucleus of human striatal neurons, whereas the proportion of both arrestins in the nucleus was equally low. However, overall higher expression of arrestin-2 yields high enough concentration in the nucleus to mediate nuclear functions. These data suggest cell type- and subcellular compartment-dependent differences in GRK/arrestin-mediated desensitization and signaling.

  20. Modeling future power plant location patterns. Final report

    International Nuclear Information System (INIS)

    Eagles, T.W.; Cohon, J.L.; ReVelle, C.

    1979-04-01

    The locations of future energy facilities must be specified to assess the potential environmental impact of those facilities. A computer model was developed to generate probable locations for the energy facilities needed to meet postulated future energy requirements. The model is designed to cover a very large geographical region. The regional demand for baseload electric generating capacity associated with a postulated demand growth rate over any desired time horizon is specified by the user as an input to the model. The model uses linear programming to select the most probable locations within the region, based on physical and political factors. The linear program is multi-objective, with four objective functions based on transmission, coal supply, population proximity, and water supply considerations. Minimizing each objective function leads to a distinct set of locations. The user can select the objective function or weighted combination of objective functions most appropriate to his interest. Users with disparate interests can use the model to see the locational changes which result from varying weighting of the objective functions. The model has been implemented in a six-state mid-Atlantic region. The year 2000 was chosen as the study year, and a test scenario postulating 2.25% growth in baseload generating capacity between 1977 and 2000 was chosen. The scenario stipulatedthat this capacity be 50% nuclear and 50% coal-fired. Initial utility reaction indicates the objective based on transmission costs is most important for such a large-scale analysis

  1. Osmotic stress changes the expression and subcellular localization of the Batten disease protein CLN3.

    Directory of Open Access Journals (Sweden)

    Amanda Getty

    Full Text Available Juvenile CLN3 disease (formerly known as juvenile neuronal ceroid lipofuscinosis is a fatal childhood neurodegenerative disorder caused by mutations in the CLN3 gene. CLN3 encodes a putative lysosomal transmembrane protein with unknown function. Previous cell culture studies using CLN3-overexpressing vectors and/or anti-CLN3 antibodies with questionable specificity have also localized CLN3 in cellular structures other than lysosomes. Osmoregulation of the mouse Cln3 mRNA level in kidney cells was recently reported. To clarify the subcellular localization of the CLN3 protein and to investigate if human CLN3 expression and localization is affected by osmotic changes we generated a stably transfected BHK (baby hamster kidney cell line that expresses a moderate level of myc-tagged human CLN3 under the control of the human ubiquitin C promoter. Hyperosmolarity (800 mOsm, achieved by either NaCl/urea or sucrose, dramatically increased the mRNA and protein levels of CLN3 as determined by quantitative real-time PCR and Western blotting. Under isotonic conditions (300 mOsm, human CLN3 was found in a punctate vesicular pattern surrounding the nucleus with prominent Golgi and lysosomal localizations. CLN3-positive early endosomes, late endosomes and cholesterol/sphingolipid-enriched plasma membrane microdomain caveolae were also observed. Increasing the osmolarity of the culture medium to 800 mOsm extended CLN3 distribution away from the perinuclear region and enhanced the lysosomal localization of CLN3. Our results reveal that CLN3 has multiple subcellular localizations within the cell, which, together with its expression, prominently change following osmotic stress. These data suggest that CLN3 is involved in the response and adaptation to cellular stress.

  2. Radioimmunoassay of steroids in homogenates and subcellular fractions of testicular tissue

    International Nuclear Information System (INIS)

    Campo, S.; Nicolau, G.; Pellizari, E.; Rivarola, M.A.

    1977-01-01

    Radioimmunoassays for testosterone (T), dihydrotestosterone (DHT) and 5alpha-androstan-3alpha, 17beta-diol (DIOL) in homogenates of whole testis, interstitial tissue and seminiferous tubules as well as subcellular fractions of the latter were developed. Steroids were extracted with acetone, submitted to several solvent partitions and isolated by a celite: propylene glycol: ethylene glycol column chromatography. Anit-T serum was used for the assay of T and DTH, and a specific anti-Diol serum for DIOL. Subcellular fractions were separated by differential centrifugation. The nuclear fraction was purified by centrifugation in a dense sucrose buffer followed by several washings. Losses were corrected according to recovery of DNA. Optimal conditions for purification of acetone extracts at minimal losses were established. Validation of the method was studied testing linear regression of logit-log transformations of standard curves and parallelism with unknowns. T was the steroid present in higher concentrations in all samples studied. It is concluded that the present method for determination of endogenous androgen concentrations in testicular tissue is valid and might be useful in studing testicular function. (orig.) [de

  3. An improved procedure for subcellular spatial alignment during live-cell CLEM.

    Directory of Open Access Journals (Sweden)

    Benjamin S Padman

    Full Text Available Live-cell correlative light and electron microscopy (CLEM offers unique insights into the ultrastructure of dynamic cellular processes. A critical and technically challenging part of CLEM is the 3-dimensional relocation of the intracellular region of interest during sample processing. We have developed a simple CLEM procedure that uses toner particles from a laser printer as orientation marks. This facilitates easy tracking of a region of interest even by eye throughout the whole procedure. Combined with subcellular fluorescence markers for the plasma membrane and nucleus, the toner particles allow for precise subcellular spatial alignment of the optical and electron microscopy data sets. The toner-based reference grid is printed and transferred onto a polymer film using a standard office printer and laminator. We have also designed a polymer film holder that is compatible with most inverted microscopes, and have validated our strategy by following the ultrastructure of mitochondria that were selectively photo-irradiated during live-cell microscopy. In summary, our inexpensive and robust CLEM procedure simplifies optical imaging, without limiting the choice of optical microscope.

  4. Subcellular distribution and mitogenic effect of basic fibroblast growth factor in mesenchymal uncommitted stem cells.

    Science.gov (United States)

    Benavente, Claudia A; Sierralta, Walter D; Conget, Paulette A; Minguell, José J

    2003-06-01

    Uncommitted mesenchymal stem cells (MSC), upon commitment and differentiation give rise to several mature mesenchymal lineages. Although the involvement of specific growth factors, including FGF2, in the development of committed MSC is known, the effect of FGF2 on uncommitted progenitors remains unclear. We have analyzed on a comparative basis, the subcellular distribution and mitogenic effect of FGF2 in committed and uncommitted MSC prepared from human bone marrow. Indirect immunofluorescence studies showed strong nuclear FGF2 staining in both progenitors; however, cytoplasmic staining was only detected in committed cells. Western blot analysis revealed the presence of 22.5 and 21-22 kDa forms of FGF2 in the nucleus of both progenitors; however, their relative content was higher in uncommitted than in committed cells. Exogenous FGF2 stimulated proliferation and sustained quiescence in committed and uncommitted cells, respectively. These results show that both type of progenitors, apart from morphological and proliferative differences, display specific patterns of response to FGF2.

  5. [Cloning, subcellular localization, and heterologous expression of ApNAC1 gene from Andrographis paniculata].

    Science.gov (United States)

    Wang, Jian; Qi, Meng-Die; Guo, Juan; Shen, Ye; Lin, Hui-Xin; Huang, Lu-Qi

    2017-03-01

    Andrographis paniculata is widely used as medicinal herb in China for a long time and andrographolide is its main medicinal constituent. To investigate the underlying andrographolide biosynthesis mechanisms, RNA-seq for A. paniculata leaves with MeJA treatment was performed. In A. paniculata transcriptomic data, the expression pattern of one member of NAC transcription factor family (ApNAC1) matched with andrographolide accumulation. The coding sequence of ApNAC1 was cloned by RT-PCR, and GenBank accession number was KY196416. The analysis of bioinformatics showed that the gene encodes a peptide of 323 amino acids, with a predicted relative molecular weight of 35.9 kDa and isoelectric point of 6.14. To confirm the subcellular localization, ApNAC1-GFP was transiently expressed in A. paniculata protoplast. The results indicated that ApNAC1 is a nucleus-localized protein. The analysis of real-time quantitative PCR revealed that ApNAC1 gene predominantly expresses in leaves. Compared with control sample, its expression abundance sharply increased with methyl jasmonate treatment. Based on its expression pattern, ApNAC1 gene might involve in andrographolide biosynthesis. ApNAC1 was heterologously expressed in Escherichia coli and recombinant protein was purified by Ni-NTA agarose. Further study will help us to understand the function of ApNAC1 in andrographolide biosynthesis. Copyright© by the Chinese Pharmaceutical Association.

  6. Subcellular distribution of histone-degrading enzyme activities from rat liver

    International Nuclear Information System (INIS)

    Heinrich, P.C.; Raydt, G.; Puschendorf, B.; Jusic, M.

    1976-01-01

    Chromatin prepared from liver tissue contains a histone-degrading enzyme activity with a pH optimum of 7.5-8.0, whereas chromatin isolated from purified nuclei is devoid of it. The histone-degrading enzyme activity was assayed with radioactively labelled total histones from Ehrlich ascites tumor cells. Among the different subcellular fractions assayed, only lysosomes and mitochondria exhibited histone-degrading enzymes. A pH optimum around 4.0-5.0 was found for the lysosomal fraction, whereas 7.5-8.0 has been found for mitochondria. Binding studies of frozen and thawed lysosomes or mitochondria to proteinase-free chromatin demonstrate that the proteinase associated with chromatin isolated from frozen tissue originates from damaged mitochondria. The protein degradation patterns obtained after acrylamide gel electrophoresis are similar for the chromatin-associated and the mitochondrial proteinase and different from that obtained after incubation with lysosomes. The chromatin-associated proteinase as well as the mitochondrial proteinase are strongly inhibited by 1.0 mM phenylmethanesulfonyl fluoride. Weak inhibition is found for lysosomal proteinases at pH 5. Kallikrein-trypsin inhibitor, however, inhibits lysosomal proteinase activity and has no effect on either chromatin-associated or mitochondrial proteinases. The higher template activity of chromatin isolated from a total homogenate compared to chromatin prepared from nuclei may be due to the presence of this histone-degrading enzyme activity. (orig.) [de

  7. Metabolism of polybrominated diphenyl ethers and tetrabromobisphenol A by fish liver subcellular fractions in vitro.

    Science.gov (United States)

    Shen, Mengnan; Cheng, Jie; Wu, Ruohan; Zhang, Shenghu; Mao, Liang; Gao, Shixiang

    2012-06-15

    Polybrominated diphenyl ethers (PBDEs) and tetrabromobisphenol A (TBBPA) are two major flame retardants that accumulate in fish tissues and are potentially toxic. Their debrominated and oxidated derivatives were also reported in fish tissues although the sources of theses derivatives were unidentified. Our study was to determine whether PBDEs and TBBPA could be metabolized by fish liver subcellular fractions in vitro and to identify what types of metabolites were formed. Liver microsomes and S9 fractions of crucian carp (Carassius auratus) were exposed to 4,4'-dibromodiphenyl ether (BDE 15), 2,2',4,4'-tetrabromodiphenyl ether (BDE 47) or TBBPA solutions for 4h. Exposure of liver subcellular fractions to BDE 15 resulted in the formation of bromophenol and two monohydroxylated dibromodiphenyl ether metabolites. Neither in microsomes nor in S9 studies has revealed the presence of hydroxylated metabolites with BDE 47 exposure which indicated that the oxidation reactions in vitro were hindered by the increased number of bromine substituents on the PBDEs. TBBPA underwent an oxidative cleavage near the central carbon of the molecule, which led to the production of 2,6-dibromo-4-isopropyl-phenol and three unidentified metabolites. Another metabolite of TBBPA characterized as a hexa-brominated compound with three aromatic rings was also found in the liver subcellular fractions. These results suggest that the biotransformation of BDE 15 and TBBPA in fish liver is mediated by cytochrome P450 (CYP450) enzymes, as revealed by the formation of hydroxylated metabolites and oxidative bond cleavage products. Moreover, further studies on the identification of specific CYP450 isozymes involved in the biotransformation revealed that CYP1A was the major enzyme responsible for the biotransformation of BDE 15 and TBBPA in fish liver subcellular fractions and CYP3A4 also played a major role in metabolism of TBBPA. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Dynamic neuroanatomy at subcellular resolution in the zebrafish.

    Science.gov (United States)

    Faucherre, Adèle; López-Schier, Hernán

    2014-01-01

    Genetic means to visualize and manipulate neuronal circuits in the intact animal have revolutionized neurobiology. "Dynamic neuroanatomy" defines a range of approaches aimed at quantifying the architecture or subcellular organization of neurons over time during their development, regeneration, or degeneration. A general feature of these approaches is their reliance on the optical isolation of defined neurons in toto by genetically expressing markers in one or few cells. Here we use the afferent neurons of the lateral line as an example to describe a simple method for the dynamic neuroanatomical study of axon terminals in the zebrafish by laser-scanning confocal microscopy.

  9. Retention and subcellular distribution of 67Ga in normal organs

    International Nuclear Information System (INIS)

    Ando, A.; Ando, I.; Hiraki, T.

    1986-01-01

    Using normal rats, retention values and subcellular distribution of 67 Ga in each organ were investigated. At 10 min after administration of 67 Ga-citrate the retention value of 67 Ga in blood was 6.77% dose/g, and this value decreased with time. The values for skeletal muscle, lung, pancreas, adrenal, heart muscle, brain, small intestine, large intestine and spinal cord were the highest at 10 min after administration, and they decreased with time. Conversely this value in bone increased until 10 days after injection. But in the liver, kidney, and stomach, these values increased with time after administration and were highest 24 h or 48 h after injection. After that, they decreased with time. The value in spleen reached a plateau 48 h after administration, and hardly varied for 10 days. From the results of subcellular fractionation, it was deduced that lysosome plays quite an important role in the concentration of 67 Ga in small intestine, stomach, lung, kidney and pancreas; a lesser role in its concentration in heart muscle, and hardly any role in the 67 Ga accumulation in skeletal muscle. In spleen, the contents in nuclear, mitochrondrial, microsomal, and supernatant fractions all contributed to the accumulation of 67 Ga. (orig.) [de

  10. Determination of platinum in human subcellular microsamples by inductively coupled plasma mass spectrometry

    DEFF Research Database (Denmark)

    Björn, Erik; Nygren, Yvonne; Nguyen, Tam T. T. N.

    2007-01-01

    A fast and robust method for the determination of platinum in human subcellular microsamples by inductively coupled plasma mass spectrometry was developed, characterized, and validated. Samples of isolated DNA and exosome fractions from human ovarian (2008) and melanoma (T289) cancer cell lines w...

  11. Spatially patterned matrix elasticity directs stem cell fate

    Science.gov (United States)

    Yang, Chun; DelRio, Frank W.; Ma, Hao; Killaars, Anouk R.; Basta, Lena P.; Kyburz, Kyle A.; Anseth, Kristi S.

    2016-08-01

    There is a growing appreciation for the functional role of matrix mechanics in regulating stem cell self-renewal and differentiation processes. However, it is largely unknown how subcellular, spatial mechanical variations in the local extracellular environment mediate intracellular signal transduction and direct cell fate. Here, the effect of spatial distribution, magnitude, and organization of subcellular matrix mechanical properties on human mesenchymal stem cell (hMSCs) function was investigated. Exploiting a photodegradation reaction, a hydrogel cell culture substrate was fabricated with regions of spatially varied and distinct mechanical properties, which were subsequently mapped and quantified by atomic force microscopy (AFM). The variations in the underlying matrix mechanics were found to regulate cellular adhesion and transcriptional events. Highly spread, elongated morphologies and higher Yes-associated protein (YAP) activation were observed in hMSCs seeded on hydrogels with higher concentrations of stiff regions in a dose-dependent manner. However, when the spatial organization of the mechanically stiff regions was altered from a regular to randomized pattern, lower levels of YAP activation with smaller and more rounded cell morphologies were induced in hMSCs. We infer from these results that irregular, disorganized variations in matrix mechanics, compared with regular patterns, appear to disrupt actin organization, and lead to different cell fates; this was verified by observations of lower alkaline phosphatase (ALP) activity and higher expression of CD105, a stem cell marker, in hMSCs in random versus regular patterns of mechanical properties. Collectively, this material platform has allowed innovative experiments to elucidate a novel spatial mechanical dosing mechanism that correlates to both the magnitude and organization of spatial stiffness.

  12. Subcellular distribution of glutathione and cysteine in cyanobacteria.

    Science.gov (United States)

    Zechmann, Bernd; Tomasić, Ana; Horvat, Lucija; Fulgosi, Hrvoje

    2010-10-01

    Glutathione plays numerous important functions in eukaryotic and prokaryotic cells. Whereas it can be found in virtually all eukaryotic cells, its production in prokaryotes is restricted to cyanobacteria and proteobacteria and a few strains of gram-positive bacteria. In bacteria, it is involved in the protection against reactive oxygen species (ROS), osmotic shock, acidic conditions, toxic chemicals, and heavy metals. Glutathione synthesis in bacteria takes place in two steps out of cysteine, glutamate, and glycine. Cysteine is the limiting factor for glutathione biosynthesis which can be especially crucial for cyanobacteria, which rely on both the sufficient sulfur supply from the growth media and on the protection of glutathione against ROS that are produced during photosynthesis. In this study, we report a method that allows detection and visualization of the subcellular distribution of glutathione in Synechocystis sp. This method is based on immunogold cytochemistry with glutathione and cysteine antisera and computer-supported transmission electron microscopy. Labeling of glutathione and cysteine was restricted to the cytosol and interthylakoidal spaces. Glutathione and cysteine could not be detected in carboxysomes, cyanophycin granules, cell walls, intrathylakoidal spaces, periplasm, and vacuoles. The accuracy of the glutathione and cysteine labeling is supported by two observations. First, preadsorption of the antiglutathione and anticysteine antisera with glutathione and cysteine, respectively, reduced the density of the gold particles to background levels. Second, labeling of glutathione and cysteine was strongly decreased by 98.5% and 100%, respectively, in Synechocystis sp. cells grown on media without sulfur. This study indicates a strong similarity of the subcellular distribution of glutathione and cysteine in cyanobacteria and plastids of plants and provides a deeper insight into glutathione metabolism in bacteria.

  13. Subcellular distribution of apolipoprotein E along the lipoprotein synthetic pathway of rat liver

    International Nuclear Information System (INIS)

    Cole, T.G.; Stockhausen, D.C.

    1986-01-01

    Apolipoprotein E (apoE) is synthesized by the liver and is secreted as a component of VLDL. To define the intracellular locations of apoE, liver from 10 nonfasted male rats were removed and subcellular organelles prepared by differential pelleting through sucrose gradients. Mass of apoE was measured by radioimmunoassay. Approximately 10% of total hepatic apoE was recovered in rough endoplasmic reticulum (RER), smooth endoplasmic reticulum (SER) and Golgi fractions. Concentrations of apoE (ng/mg protein) were: homogenate, 302 +/- 59; RER, 653 +/- 251; SER, 1250 +/- 471; Golgi, 11,044 +/- 4291. Total apoE content of each reaction (μg/organelle) was: homogenate (whole liver), 517 +/- 103; RER, 15 +/- 3; SER, 9 +/- 3; Golgi, 28 +/- 8. These data indicate that along the putative pathway of lipoprotein synthesis (RER->SER->Golgi), apoE concentration increases in each successive organelle and that flux of apoE is apparently most rapid through SER. Furthermore, the majority of apoE in the rat liver is apparently not directly associated with the lipoprotein synthetic pathway and may be associated with internalized lipoproteins or may be involved in non-lipoprotein related functions

  14. Development of Model for Pedestrian Gap Based on Land Use Pattern at Midblock Location and Estimation of Delay at Intersections

    Science.gov (United States)

    Ramesh, Adepu; Ashritha, Kilari; Kumar, Molugaram

    2018-04-01

    Walking has always been a prime source of human mobility for short distance travel. Traffic congestion has become a major problem for safe pedestrian crossing in most of the metropolitan cities. This has emphasized for providing a sufficient pedestrian gap for safe crossing on urban road. The present works aims in understanding factors that influence pedestrian crossing behaviour. Four locations were chosen for identification of pedestrian crossing behaviour, gap characteristics, waiting time etc., in Hyderabad city. From the study it was observed that pedestrian behaviour and crossing patterns are different and is influenced by land use pattern. A gap acceptance model was developed from the data for improving pedestrian safety at mid-block location; the model was validated using the existing data. Pedestrian delay was estimated at intersection using Highway Capacity Manual (HCM). It was observed that field delays are less when compared to delay arrived from HCM method.

  15. Cadmium Disrupts Subcellular Organelles, Including Chloroplasts, Resulting in Melatonin Induction in Plants

    Directory of Open Access Journals (Sweden)

    Hyoung-Yool Lee

    2017-10-01

    Full Text Available Cadmium is a well-known elicitor of melatonin synthesis in plants, including rice. However, the mechanisms by which cadmium induces melatonin induction remain elusive. To investigate whether cadmium influences physical integrities in subcellular organelles, we treated tobacco leaves with either CdCl2 or AlCl3 and monitored the structures of subcellular organelles—such as chloroplasts, mitochondria, and the endoplasmic reticulum (ER—using confocal microscopic analysis. Unlike AlCl3 treatment, CdCl2 (0.5 mM treatment significantly disrupted chloroplasts, mitochondria, and ER. In theory, the disruption of chloroplasts enabled chloroplast-expressed serotonin N-acetyltransferase (SNAT to encounter serotonin in the cytoplasm, leading to the synthesis of N-acetylserotonin followed by melatonin synthesis. In fact, the disruption of chloroplasts by cadmium, not by aluminum, gave rise to a huge induction of melatonin in rice leaves, which suggests that cadmium-treated chloroplast disruption plays an important role in inducing melatonin in plants by removing physical barriers, such as chloroplast double membranes, allowing SNAT to gain access to the serotonin substrate enriched in the cytoplasm.

  16. Cortical activation patterns during long-term memory retrieval of visually or haptically encoded objects and locations.

    Science.gov (United States)

    Stock, Oliver; Röder, Brigitte; Burke, Michael; Bien, Siegfried; Rösler, Frank

    2009-01-01

    The present study used functional magnetic resonance imaging to delineate cortical networks that are activated when objects or spatial locations encoded either visually (visual encoding group, n=10) or haptically (haptic encoding group, n=10) had to be retrieved from long-term memory. Participants learned associations between auditorily presented words and either meaningless objects or locations in a 3-D space. During the retrieval phase one day later, participants had to decide whether two auditorily presented words shared an association with a common object or location. Thus, perceptual stimulation during retrieval was always equivalent, whereas either visually or haptically encoded object or location associations had to be reactivated. Moreover, the number of associations fanning out from each word varied systematically, enabling a parametric increase of the number of reactivated representations. Recall of visual objects predominantly activated the left superior frontal gyrus and the intraparietal cortex, whereas visually learned locations activated the superior parietal cortex of both hemispheres. Retrieval of haptically encoded material activated the left medial frontal gyrus and the intraparietal cortex in the object condition, and the bilateral superior parietal cortex in the location condition. A direct test for modality-specific effects showed that visually encoded material activated more vision-related areas (BA 18/19) and haptically encoded material more motor and somatosensory-related areas. A conjunction analysis identified supramodal and material-unspecific activations within the medial and superior frontal gyrus and the superior parietal lobe including the intraparietal sulcus. These activation patterns strongly support the idea that code-specific representations are consolidated and reactivated within anatomically distributed cell assemblies that comprise sensory and motor processing systems.

  17. GOASVM: a subcellular location predictor by incorporating term-frequency gene ontology into the general form of Chou's pseudo-amino acid composition.

    Science.gov (United States)

    Wan, Shibiao; Mak, Man-Wai; Kung, Sun-Yuan

    2013-04-21

    Prediction of protein subcellular localization is an important yet challenging problem. Recently, several computational methods based on Gene Ontology (GO) have been proposed to tackle this problem and have demonstrated superiority over methods based on other features. Existing GO-based methods, however, do not fully use the GO information. This paper proposes an efficient GO method called GOASVM that exploits the information from the GO term frequencies and distant homologs to represent a protein in the general form of Chou's pseudo-amino acid composition. The method first selects a subset of relevant GO terms to form a GO vector space. Then for each protein, the method uses the accession number (AC) of the protein or the ACs of its homologs to find the number of occurrences of the selected GO terms in the Gene Ontology annotation (GOA) database as a means to construct GO vectors for support vector machines (SVMs) classification. With the advantages of GO term frequencies and a new strategy to incorporate useful homologous information, GOASVM can achieve a prediction accuracy of 72.2% on a new independent test set comprising novel proteins that were added to Swiss-Prot six years later than the creation date of the training set. GOASVM and Supplementary materials are available online at http://bioinfo.eie.polyu.edu.hk/mGoaSvmServer/GOASVM.html. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Precise Photodynamic Therapy of Cancer via Subcellular Dynamic Tracing of Dual-loaded Upconversion Nanophotosensitizers

    NARCIS (Netherlands)

    Chang, Y.; Li, X.; Zhang, L.; Xia, L.; Liu, Xiaomin; Li, C.; Zhang, Y.; Tu, L.; Xue, B.; Zhao, H.; Zhang, H.; Kong, X.

    2017-01-01

    Recent advances in upconversion nanophotosensitizers (UCNPs-PS) excited by near-infrared (NIR) light have led to substantial progress in improving photodynamic therapy (PDT) of cancer. For a successful PDT, subcellular organelles are promising therapeutic targets for reaching a satisfactory

  19. A workflow for mathematical modeling of subcellular metabolic pathways in leaf metabolism of Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Thomas eNägele

    2013-12-01

    Full Text Available During the last decade genome sequencing has experienced a rapid technological development resulting in numerous sequencing projects and applications in life science. In plant molecular biology, the availability of sequence data on whole genomes has enabled the reconstruction of metabolic networks. Enzymatic reactions are predicted by the sequence information. Pathways arise due to the participation of chemical compounds as substrates and products in these reactions. Although several of these comprehensive networks have been reconstructed for the genetic model plant Arabidopsis thaliana, the integration of experimental data is still challenging. Particularly the analysis of subcellular organization of plant cells limits the understanding of regulatory instances in these metabolic networks in vivo. In this study, we develop an approach for the functional integration of experimental high-throughput data into such large-scale networks. We present a subcellular metabolic network model comprising 524 metabolic intermediates and 548 metabolic interactions derived from a total of 2769 reactions. We demonstrate how to link the metabolite covariance matrix of different Arabidopsis thaliana accessions with the subcellular metabolic network model for the inverse calculation of the biochemical Jacobian, finally resulting in the calculation of a matrix which satisfies a Lyaponov equation involving a covariance matrix. In this way, differential strategies of metabolite compartmentation and involved reactions were identified in the accessions when exposed to low temperature.

  20. Comparison of expressed human and mouse sodium/iodide sym-porters reveals differences in transport properties and subcellular localization

    Energy Technology Data Exchange (ETDEWEB)

    Dayem, M.; Basquin, C.; Navarro, V.; Carrier, P.; Marsault, R.; Lindenthal, S.; Pourcher, T. [Univ Nice Sophia Antipolis, Sch Med, CEA, DSV, iBEB, SBTN, TIRO, F-06107 Nice (France); Chang, P. [CNRS, UPMC Biol Dev, UMR 7009, F-06230 Villefranche Sur Mer (France); Huc, S.; Darrouzet, E. [CEA Valrho, DSV, iBEB, SBTN, F-30207 Bagnols Sur Ceze (France)

    2008-07-01

    The active transport of iodide from the blood stream into thyroid follicular cells is mediated by the Na{sup +}/I{sup -} sym-porter (NIS). We studied mouse NIS (mNIS) and found that it catalyzes iodide transport into transfected cells more efficiently than human NIS (hNIS). To further characterize this difference,we compared {sup 125}I, uptake in the transiently transfected human embryonic kidney (HEK) 293 cells. We found that the Vmax for mNIS was four times higher than that for hNIS, and that the iodide transport constant (Km) was 2-5-fold lower for hNIS than mNIS. We also performed immuno-cyto-localization studies and observed that the subcellular distribution of the two ortho-logs differed. While the mouse protein was predominantly found at the plasma membrane, its human ortho-log was intracellular in {approx} 40% of the expressing cells. Using cell surface protein-labeling assays, we found that the plasma membrane localization frequency of the mouse protein was only 2-5-fold higher than that of the human protein, and therefore cannot alone account for,x values. We reasoned that the difference in the obtained Vmax the observed difference could also be caused by a higher turnover number for iodide transport in the mouse protein. We then expressed and analyzed chimeric proteins. The data obtained with these constructs suggest that the iodide recognition site could be located in the region extending from the N-terminus to transmembrane domain 8, and that the region between transmembrane domain 5 and the C-terminus could play a role in the subcellular localization of the protein. (authors)

  1. Comparison of expressed human and mouse sodium/iodide sym-porters reveals differences in transport properties and subcellular localization

    International Nuclear Information System (INIS)

    Dayem, M.; Basquin, C.; Navarro, V.; Carrier, P.; Marsault, R.; Lindenthal, S.; Pourcher, T.; Chang, P.; Huc, S.; Darrouzet, E.

    2008-01-01

    The active transport of iodide from the blood stream into thyroid follicular cells is mediated by the Na + /I - sym-porter (NIS). We studied mouse NIS (mNIS) and found that it catalyzes iodide transport into transfected cells more efficiently than human NIS (hNIS). To further characterize this difference,we compared 125 I, uptake in the transiently transfected human embryonic kidney (HEK) 293 cells. We found that the Vmax for mNIS was four times higher than that for hNIS, and that the iodide transport constant (Km) was 2-5-fold lower for hNIS than mNIS. We also performed immuno-cyto-localization studies and observed that the subcellular distribution of the two ortho-logs differed. While the mouse protein was predominantly found at the plasma membrane, its human ortho-log was intracellular in ∼ 40% of the expressing cells. Using cell surface protein-labeling assays, we found that the plasma membrane localization frequency of the mouse protein was only 2-5-fold higher than that of the human protein, and therefore cannot alone account for,x values. We reasoned that the difference in the obtained Vmax the observed difference could also be caused by a higher turnover number for iodide transport in the mouse protein. We then expressed and analyzed chimeric proteins. The data obtained with these constructs suggest that the iodide recognition site could be located in the region extending from the N-terminus to transmembrane domain 8, and that the region between transmembrane domain 5 and the C-terminus could play a role in the subcellular localization of the protein. (authors)

  2. High Accumulation and Subcellular Distribution of Thallium in Green Cabbage (Brassica Oleracea L. Var. Capitata L.).

    Science.gov (United States)

    Ning, Zengping; He, Libin; Xiao, Tangfu; Márton, László

    2015-01-01

    The accumulation of thallium (Tl) in brassicaceous crops is widely known, but both the uptake extents of Tl by the individual cultivars of green cabbage and the distribution of Tl in the tissues of green cabbage are not well understood. Five commonly available cultivars of green cabbage grown in the Tl-spiked pot-culture trials were studied for the uptake extent and subcellular distribution of Tl. The results showed that all the trial cultivars mainly concentrated Tl in the leaves (101∼192 mg/kg, DW) rather than in the roots or stems, with no significant differences among cultivars (p = 0.455). Tl accumulation in the leaves revealed obvious subcellular fractionation: cell cytosol and vacuole > cell wall > cell organelles. The majority (∼ 88%) of leaf-Tl was found to be in the fraction of cytosol and vacuole, which also served as the major storage site for other major elements such as Ca and Mg. This specific subcellular fractionation of Tl appeared to enable green cabbage to avoid Tl damage to its vital organelles and to help green cabbage tolerate and detoxify Tl. This study demonstrated that all the five green cabbage cultivars show a good application potential in the phytoremediation of Tl-contaminated soils.

  3. Internalization and Subcellular Trafficking of Poly-l-lysine Dendrimers Are Impacted by the Site of Fluorophore Conjugation.

    Science.gov (United States)

    Avaritt, Brittany R; Swaan, Peter W

    2015-06-01

    Internalization and intracellular trafficking of dendrimer-drug conjugates play an important role in achieving successful drug delivery. In this study, we aimed to elucidate the endocytosis mechanisms and subcellular localization of poly-l-lysine (PLL) dendrimers in Caco-2 cells. We also investigated the impact of fluorophore conjugation on cytotoxicity, uptake, and transepithelial transport. Oregon green 514 (OG) was conjugated to PLL G3 at either the dendrimer periphery or the core. Chemical inhibitors of clathrin-, caveolin-, cholesterol-, and dynamin-mediated endocytosis pathways and macropinocytosis were employed to establish internalization mechanisms, while colocalization with subcellular markers was used to determine dendrimer trafficking. Cell viability, internalization, and uptake were all influenced by the site of fluorophore conjugation. Uptake was found to be highly dependent on cholesterol- and dynamin-mediated endocytosis as well as macropinocytosis. Dendrimers were trafficked to endosomes and lysosomes, and subcellular localization was impacted by the fluorophore conjugation site. The results of this study indicate that PLL dendrimers exploit multiple pathways for cellular entry, and internalization and trafficking can be impacted by conjugation. Therefore, design of dendrimer-drug conjugates requires careful consideration to achieve successful drug delivery.

  4. The PDZ and band 4.1 containing protein Frmpd1 regulates the subcellular location of activator of G-protein signaling 3 and its interaction with G-proteins.

    Science.gov (United States)

    An, Ningfei; Blumer, Joe B; Bernard, Michael L; Lanier, Stephen M

    2008-09-05

    Activator of G-protein signaling 3 (AGS3) is one of nine mammalian proteins containing one or more G-protein regulatory (GPR) motifs that stabilize the GDP-bound conformation of Galphai. Such proteins have revealed unexpected functional diversity for the "G-switch" in the control of events within the cell independent of the role of heterotrimeric G-proteins as transducers for G-protein-coupled receptors at the cell surface. A key question regarding this class of proteins is what controls their subcellular positioning and interaction with G-proteins. We conducted a series of yeast two-hybrid screens to identify proteins interacting with the tetratricopeptide repeat (TPR) of AGS3, which plays an important role in subcellular positioning of the protein. We report the identification of Frmpd1 (FERM and PDZ domain containing 1) as a regulatory binding partner of AGS3. Frmpd1 binds to the TPR domain of AGS3 and coimmunoprecipitates with AGS3 from cell lysates. Cell fractionation indicated that Frmpd1 stabilizes AGS3 in a membrane fraction. Upon cotransfection of COS7 cells with Frmpd1-GFP and AGS3-mRFP, AGS3-mRFP is observed in regions of the cell cortex and also in membrane extensions or processes where it appears to be colocalized with Frmpd1-GFP based upon the merged fluorescent signals. Frmpd1 knockdown (siRNA) in Cath.a-differentiated neuronal cells decreased the level of endogenous AGS3 in membrane fractions by approximately 50% and enhanced the alpha2-adrenergic receptor-mediated inhibition of forskolin-induced increases in cAMP. The coimmunoprecipitation of Frmpd1 with AGS3 is lost as the amount of Galphai3 in the cell is increased and AGS3 apparently switches its binding partner from Frmpd1 to Galphai3 indicating that the interaction of AGS3 with Frmpd1 and Galphai3 is mutually exclusive. Mechanistically, Frmpd1 may position AGS3 in a membrane environment where it then interacts with Galphai in a regulated manner.

  5. Preliminary study of selenium and mercury distribution in some porcine tissues and their subcellular fractions by NAA and HG-AFS

    International Nuclear Information System (INIS)

    Jiujiang Zhao; Chunying Chen; Peiqun Zhang; Zhifang Chai

    2004-01-01

    Selenium and mercury distribution in porcine tissues and their subcellular fractions from a mercury-polluted area of Guizhou Province and from a not mercury-exposed area of Beijing in China have been studied with neutron activation analysis and hydride generation-atomic fluorescence spectrometry. Both the selenium and mercury levels are higher in Guizhou porcine tissues and their subcellular fractions than those in Beijing. These two elements are highly enriched in kidney and liver of Guizhou pig, while selenium is only enriched in the kidney of Beijing pig. Exposure of mercury may result in redistribution of Se and Hg in vivo. The Hg/Se molar ratio of the subcellular fractions is very low in the case of relatively low mercury level and gradually reaches to a high constant value with increasing level of mercury, which implies that selenium and mercury may form some special complexes in the organisms. (author)

  6. Subcellular distribution of zinc in the benign and malignant human prostate

    International Nuclear Information System (INIS)

    Leake, A.; Chrisholm, G.D.; Busuttil, A.; Habib, F.K

    1984-01-01

    The subcellular distribution of zinc and its interaction with androgens has been examined in the benign and malignant human prostate. Endogenously, most of the zinc was associated with the nuclear fraction but signigicant concentrations were also found in the cytosol. Furthermore, the epithelium contained more zinc than that found in either the stroma or the intact gland. Zinc concentrations were lower in the subcellular fractions of the cancerous tissue when compared to hyperplastic specimens. In vitro uptake of zinc into prostatic homogenates was rapid and at equilibrium the binding was stable for both the 4degC and the 37degC incubations. At low zinc concentrations (<5mM) the uptake was higher in the nucleus, whereas at higher concentraions, the cancerous tissue exhibited a greater capacity for the metal which was predominantly retained by the cytosol. Our data suggest the presence of a saturable zinc retention mechanism in the nucleus. The zinc uptake was found to be independent of any added androgen. In contrast, the total androgen uptake by the prostate was significantly enhanced by the addition of zinc. This effect was not due to increases in the nuclear and cytosolic receptor binding since zinc inhibited the binding of the androgen to these receptors. (author)

  7. Subcellular binding of 239Pu in the liver of selected species of rodents

    International Nuclear Information System (INIS)

    Winter, R.

    1980-01-01

    The subcellular distribution of 239 Pu in the liver of selected rodent species was investigated as well as the relation between 239 Pu and the iron metabolism. The goal of the investigation was to find out why the liver discharge of 239 Pu from the liver varies so much between species. (orig.) [de

  8. Muscle glycogen and cell function - Location, location, location

    DEFF Research Database (Denmark)

    Ørtenblad, N; Nielsen, Joachim

    2015-01-01

    The importance of glycogen, as a fuel during exercise, is a fundamental concept in exercise physiology. The use of electron microscopy has revealed that glycogen is not evenly distributed in skeletal muscle fibers, but rather localized in distinct pools. In this review, we present the available...... evidence regarding the subcellular localization of glycogen in skeletal muscle and discuss this from the perspective of skeletal muscle fiber function. The distribution of glycogen in the defined pools within the skeletal muscle varies depending on exercise intensity, fiber phenotype, training status......, and immobilization. Furthermore, these defined pools may serve specific functions in the cell. Specifically, reduced levels of these pools of glycogen are associated with reduced SR Ca(2+) release, muscle relaxation rate, and membrane excitability. Collectively, the available literature strongly demonstrates...

  9. Optically-controlled platforms for transfection and single- and sub-cellular surgery

    DEFF Research Database (Denmark)

    Villangca, Mark Jayson; Casey, Duncan; Glückstad, Jesper

    2015-01-01

    and specificity of optical trapping in conjunction with other modalities to perform single and sub-cellular surgery. These tools form highly tuneable platforms for the delivery or removal of material from cells of interest, but can simultaneously excite fluorescent probes for imaging purposes or plasmonic...... structures for very local heating. We discuss both the history and recent applications of the field, highlighting the key findings and developments over the last 40 years of biophotonics research....

  10. Differences in metal sequestration between zebra mussels from clean and polluted field locations.

    Science.gov (United States)

    Voets, Judith; Redeker, Erik Steen; Blust, Ronny; Bervoets, Lieven

    2009-06-04

    Organisms are able to detoxify accumulated metals by, e.g. binding them to metallothionein (MT) and/or sequestering them in metal-rich granules (MRG). The different factors involved in determining the capacity or efficiency with which metals are detoxified are not yet known. In this work we studied how the sub-cellular distribution pattern of cadmium, copper and zinc in whole tissue of zebra mussels from clean and polluted surface waters is influenced by the total accumulated metal concentration and by its physiological condition. Additionally we measured the metallothionein concentration in the mussel tissue. Metal concentration increased gradually in the metal-sensitive and detoxified sub-cellular fractions with increasing whole tissue concentrations. However, metal concentrations in the sensitive fractions did not increase to the same extent as metal concentrations in whole tissues. In more polluted mussels the contribution of MRG and MT became more important. Nevertheless, metal detoxification was not sufficient to prevent metal binding to heat-sensitive low molecular weight proteins (HDP fraction). Finally we found an indication that metal detoxification was influenced by the condition of the zebra mussels. MT content could be explained for up to 83% by variations in Zn concentration and physiological condition of the mussels.

  11. Differences in metal sequestration between zebra mussels from clean and polluted field locations

    International Nuclear Information System (INIS)

    Voets, Judith; Redeker, Erik Steen; Blust, Ronny; Bervoets, Lieven

    2009-01-01

    Organisms are able to detoxify accumulated metals by, e.g. binding them to metallothionein (MT) and/or sequestering them in metal-rich granules (MRG). The different factors involved in determining the capacity or efficiency with which metals are detoxified are not yet known. In this work we studied how the sub-cellular distribution pattern of cadmium, copper and zinc in whole tissue of zebra mussels from clean and polluted surface waters is influenced by the total accumulated metal concentration and by its physiological condition. Additionally we measured the metallothionein concentration in the mussel tissue. Metal concentration increased gradually in the metal-sensitive and detoxified sub-cellular fractions with increasing whole tissue concentrations. However, metal concentrations in the sensitive fractions did not increase to the same extent as metal concentrations in whole tissues. In more polluted mussels the contribution of MRG and MT became more important. Nevertheless, metal detoxification was not sufficient to prevent metal binding to heat-sensitive low molecular weight proteins (HDP fraction). Finally we found an indication that metal detoxification was influenced by the condition of the zebra mussels. MT content could be explained for up to 83% by variations in Zn concentration and physiological condition of the mussels.

  12. Differences in metal sequestration between zebra mussels from clean and polluted field locations

    Energy Technology Data Exchange (ETDEWEB)

    Voets, Judith [Laboratory for Ecophysiology, Biochemistry and Toxicology, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium); Redeker, Erik Steen [Laboratory for Ecophysiology, Biochemistry and Toxicology, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium); Institute for Materials Research, Chemistry Division, Hasselt University, Agoralaan Building D G1-36, B 3590 Diepenbeek (Belgium); Blust, Ronny [Laboratory for Ecophysiology, Biochemistry and Toxicology, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium); Bervoets, Lieven, E-mail: Lieven.bervoets@ua.ac.be [Laboratory for Ecophysiology, Biochemistry and Toxicology, Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium)

    2009-06-04

    Organisms are able to detoxify accumulated metals by, e.g. binding them to metallothionein (MT) and/or sequestering them in metal-rich granules (MRG). The different factors involved in determining the capacity or efficiency with which metals are detoxified are not yet known. In this work we studied how the sub-cellular distribution pattern of cadmium, copper and zinc in whole tissue of zebra mussels from clean and polluted surface waters is influenced by the total accumulated metal concentration and by its physiological condition. Additionally we measured the metallothionein concentration in the mussel tissue. Metal concentration increased gradually in the metal-sensitive and detoxified sub-cellular fractions with increasing whole tissue concentrations. However, metal concentrations in the sensitive fractions did not increase to the same extent as metal concentrations in whole tissues. In more polluted mussels the contribution of MRG and MT became more important. Nevertheless, metal detoxification was not sufficient to prevent metal binding to heat-sensitive low molecular weight proteins (HDP fraction). Finally we found an indication that metal detoxification was influenced by the condition of the zebra mussels. MT content could be explained for up to 83% by variations in Zn concentration and physiological condition of the mussels.

  13. Computerized analysis of mammographic parenchymal patterns for assessing breast cancer risk: Effect of ROI size and location

    International Nuclear Information System (INIS)

    Li Hui; Giger, Maryellen L.; Huo Zhimin; Olopade, Olufunmilayo I.; Lan Li; Weber, Barbara L.; Bonta, Ioana

    2004-01-01

    The long-term goal of our research is to develop computerized radiographic markers for assessing breast density and parenchymal patterns that may be used together with clinical measures for determining the risk of breast cancer and assessing the response to preventive treatment. In our earlier studies, we found that women at high risk tended to have dense breasts with mammographic patterns that were coarse and low in contrast. With our method, computerized texture analysis is performed on a region of interest (ROI) within the mammographic image. In our current study, we investigate the effect of ROI size and ROI location on the computerized texture features obtained from 90 subjects (30 BRCA1/BRCA2 gene-mutation carriers and 60 age-matched women deemed to be at low risk for breast cancer). Mammograms were digitized at 0.1 mm pixel size and various ROI sizes were extracted from different breast regions in the craniocaudal (CC) view. Seventeen features, which characterize the density and texture of the parenchymal patterns, were extracted from the ROIs on these digitized mammograms. Stepwise feature selection and linear discriminant analysis were applied to identify features that differentiate between the low-risk women and the BRCA1/BRCA2 gene-mutation carriers. ROC analysis was used to assess the performance of the features in the task of distinguishing between these two groups. Our results show that there was a statistically significant decrease in the performance of the computerized texture features, as the ROI location was varied from the central region behind the nipple. However, we failed to show a statistically significant decrease in the performance of the computerized texture features with decreasing ROI size for the range studied

  14. Prediction of essential proteins based on subcellular localization and gene expression correlation.

    Science.gov (United States)

    Fan, Yetian; Tang, Xiwei; Hu, Xiaohua; Wu, Wei; Ping, Qing

    2017-12-01

    Essential proteins are indispensable to the survival and development process of living organisms. To understand the functional mechanisms of essential proteins, which can be applied to the analysis of disease and design of drugs, it is important to identify essential proteins from a set of proteins first. As traditional experimental methods designed to test out essential proteins are usually expensive and laborious, computational methods, which utilize biological and topological features of proteins, have attracted more attention in recent years. Protein-protein interaction networks, together with other biological data, have been explored to improve the performance of essential protein prediction. The proposed method SCP is evaluated on Saccharomyces cerevisiae datasets and compared with five other methods. The results show that our method SCP outperforms the other five methods in terms of accuracy of essential protein prediction. In this paper, we propose a novel algorithm named SCP, which combines the ranking by a modified PageRank algorithm based on subcellular compartments information, with the ranking by Pearson correlation coefficient (PCC) calculated from gene expression data. Experiments show that subcellular localization information is promising in boosting essential protein prediction.

  15. Comparison of global positioning system (GPS) tracking and parent-report diaries to characterize children's time-location patterns.

    Science.gov (United States)

    Elgethun, Kai; Yost, Michael G; Fitzpatrick, Cole T E; Nyerges, Timothy L; Fenske, Richard A

    2007-03-01

    Respondent error, low resolution, and study participant burden are known limitations of diary timelines used in exposure studies such as the National Human Exposure Assessment Survey (NHEXAS). Recent advances in global positioning system (GPS) technology have produced tracking devices sufficiently portable, functional and affordable to utilize in exposure assessment science. In this study, a differentially corrected GPS (dGPS) tracking device was compared to the NHEXAS diary timeline. The study also explored how GPS can be used to evaluate and improve such diary timelines by determining which location categories and which respondents are least likely to record "correct" time-location responses. A total of 31 children ages 3-5 years old wore a dGPS device for all waking hours on a weekend day while their parents completed the NHEXAS diary timeline to document the child's time-location pattern. Parents misclassified child time-location approximately 48% of the time using the NHEXAS timeline in comparison to dGPS. Overall concordance between methods was marginal (kappa=0.33-0.35). The dGPS device found that on average, children spent 76% of the 24-h study period in the home. The diary underestimated time the child spent in the home by 17%, while overestimating time spent inside other locations, outside at home, outside in other locations, and time spent in transit. Diary data for time spent outside at home and time in transit had the lowest response concordance with dGPS. The diaries of stay-at-home mothers and mothers working unskilled labor jobs had lower concordance with dGPS than did those of the other participants. The ability of dGPS tracking to collect continuous rather than categorical (ordinal) data was also demonstrated. It is concluded that automated GPS tracking measurements can improve the quality and collection efficiency of time-location data in exposure assessment studies, albeit for small cohorts.

  16. Imaging cellular and subcellular structure of human brain tissue using micro computed tomography

    Science.gov (United States)

    Khimchenko, Anna; Bikis, Christos; Schweighauser, Gabriel; Hench, Jürgen; Joita-Pacureanu, Alexandra-Teodora; Thalmann, Peter; Deyhle, Hans; Osmani, Bekim; Chicherova, Natalia; Hieber, Simone E.; Cloetens, Peter; Müller-Gerbl, Magdalena; Schulz, Georg; Müller, Bert

    2017-09-01

    Brain tissues have been an attractive subject for investigations in neuropathology, neuroscience, and neurobiol- ogy. Nevertheless, existing imaging methodologies have intrinsic limitations in three-dimensional (3D) label-free visualisation of extended tissue samples down to (sub)cellular level. For a long time, these morphological features were visualised by electron or light microscopies. In addition to being time-consuming, microscopic investigation includes specimen fixation, embedding, sectioning, staining, and imaging with the associated artefacts. More- over, optical microscopy remains hampered by a fundamental limit in the spatial resolution that is imposed by the diffraction of visible light wavefront. In contrast, various tomography approaches do not require a complex specimen preparation and can now reach a true (sub)cellular resolution. Even laboratory-based micro computed tomography in the absorption-contrast mode of formalin-fixed paraffin-embedded (FFPE) human cerebellum yields an image contrast comparable to conventional histological sections. Data of a superior image quality was obtained by means of synchrotron radiation-based single-distance X-ray phase-contrast tomography enabling the visualisation of non-stained Purkinje cells down to the subcellular level and automated cell counting. The question arises, whether the data quality of the hard X-ray tomography can be superior to optical microscopy. Herein, we discuss the label-free investigation of the human brain ultramorphology be means of synchrotron radiation-based hard X-ray magnified phase-contrast in-line tomography at the nano-imaging beamline ID16A (ESRF, Grenoble, France). As an example, we present images of FFPE human cerebellum block. Hard X-ray tomography can provide detailed information on human tissues in health and disease with a spatial resolution below the optical limit, improving understanding of the neuro-degenerative diseases.

  17. Accumulation of fission fragment 147Pm in subcellular level studied by electron microscopic autoradiography

    International Nuclear Information System (INIS)

    Zhu Shoupeng; Wang Yuanchang

    1990-11-01

    The subcellular localization of fission fragment 147 Pm in tissue cells by electron microscopic autoradiography was investigated. The early harm of internal contaminated accumulation of 147 Pm appeared in blood cells and endothelium cells, obviously in erythrocytes. Then 147 Pm was selectively deposited in ultrastructure of liver cells. Autoradiographic study demonstrated that dense tracks appeared in mitochondria and lysosome of podal cells within renal corpuscle. In nucleus as well as in mitochondria and microbodies of epicyte of kidney near-convoluted tubule, there are numerous radioactive 149 Pm accumulated. With the prolongation of observing time, 149 Pm was selectively and steadily deposited in subcellular level of organic component bone. The radionuclides could be accumulated in nucleus of osteoclasts and osteoblasts. In organelles, the radionuclides was mainly accumulated in rough endoplasmic reticulum and mitochondria. Autoradiographic tracks of 149 Pm was obviously found to be localized in combined point between Golgi complex and transitive vesicle of rough endoplasmic reticulum

  18. Mutations in the C-terminal region affect subcellular localization of crucian carp herpesvirus (CaHV) GPCR.

    Science.gov (United States)

    Wang, Jun; Gui, Lang; Chen, Zong-Yan; Zhang, Qi-Ya

    2016-08-01

    G protein-coupled receptors (GPCRs) are known as seven transmembrane domain receptors and consequently can mediate diverse biological functions via regulation of their subcellular localization. Crucian carp herpesvirus (CaHV) was recently isolated from infected fish with acute gill hemorrhage. CaHV GPCR of 349 amino acids (aa) was identified based on amino acid identity. A series of variants with truncation/deletion/substitution mutation in the C-terminal (aa 315-349) were constructed and expressed in fathead minnow (FHM) cells. The roles of three key C-terminal regions in subcellular localization of CaHV GPCR were determined. Lysine-315 (K-315) directed the aggregation of the protein preferentially at the nuclear side. Predicted N-myristoylation site (GGGWTR, aa 335-340) was responsible for punctate distribution in periplasm or throughout the cytoplasm. Predicted phosphorylation site (SSR, aa 327-329) and GGGWTR together determined the punctate distribution in cytoplasm. Detection of organelles localization by specific markers showed that the protein retaining K-315 colocalized with the Golgi apparatus. These experiments provided first evidence that different mutations of CaHV GPCR C-terminals have different affects on the subcellular localization of fish herpesvirus-encoded GPCRs. The study provided valuable information and new insights into the precise interactions between herpesvirus and fish cells, and could also provide useful targets for antiviral agents in aquaculture.

  19. Single-cell analysis of pyroptosis dynamics reveals conserved GSDMD-mediated subcellular events that precede plasma membrane rupture.

    Science.gov (United States)

    de Vasconcelos, Nathalia M; Van Opdenbosch, Nina; Van Gorp, Hanne; Parthoens, Eef; Lamkanfi, Mohamed

    2018-04-17

    Pyroptosis is rapidly emerging as a mechanism of anti-microbial host defense, and of extracellular release of the inflammasome-dependent cytokines interleukin (IL)-1β and IL-18, which contributes to autoinflammatory pathology. Caspases 1, 4, 5 and 11 trigger this regulated form of necrosis by cleaving the pyroptosis effector gasdermin D (GSDMD), causing its pore-forming amino-terminal domain to oligomerize and perforate the plasma membrane. However, the subcellular events that precede pyroptotic cell lysis are ill defined. In this study, we triggered primary macrophages to undergo pyroptosis from three inflammasome types and recorded their dynamics and morphology using high-resolution live-cell spinning disk confocal laser microscopy. Based on quantitative analysis of single-cell subcellular events, we propose a model of pyroptotic cell disintegration that is initiated by opening of GSDMD-dependent ion channels or pores that are more restrictive than recently proposed GSDMD pores, followed by osmotic cell swelling, commitment of mitochondria and other membrane-bound organelles prior to sudden rupture of the plasma membrane and full permeability to intracellular proteins. This study provides a dynamic framework for understanding cellular changes that occur during pyroptosis, and charts a chronological sequence of GSDMD-mediated subcellular events that define pyroptotic cell death at the single-cell level.

  20. Identification of unique repeated patterns, location of mutation in DNA finger printing using artificial intelligence technique.

    Science.gov (United States)

    Mukunthan, B; Nagaveni, N

    2014-01-01

    In genetic engineering, conventional techniques and algorithms employed by forensic scientists to assist in identification of individuals on the basis of their respective DNA profiles involves more complex computational steps and mathematical formulae, also the identification of location of mutation in a genomic sequence in laboratories is still an exigent task. This novel approach provides ability to solve the problems that do not have an algorithmic solution and the available solutions are also too complex to be found. The perfect blend made of bioinformatics and neural networks technique results in efficient DNA pattern analysis algorithm with utmost prediction accuracy.

  1. Subcellular compartmentalization of Cd and Zn in two bivalves. II. Significance of trophically available metal (TAM)

    Science.gov (United States)

    Wallace, W.G.; Luoma, S.N.

    2003-01-01

    This paper examines how the subcellular partitioning of Cd and Zn in the bivalves Macoma balthica and Potamocorbula amurensis may affect the trophic transfer of metal to predators. Results show that the partitioning of metals to organelles, 'enzymes' and metallothioneins (MT) comprise a subcellular compartment containing trophically available metal (TAM; i.e. metal trophically available to predators), and that because this partitioning varies with species, animal size and metal, TAM is similarly influenced. Clams from San Francisco Bay, California, were exposed for 14 d to 3.5 ??g 1-1 Cd and 20.5 ??g 1-1 Zn, including 109Cd and 65Zn as radiotracers, and were used in feeding experiments with grass shrimp Palaemon macrodatylus, or used to investigate the subcellular partitioning of metal. Grass shrimp fed Cd-contaminated P. amurensis absorbed ???60% of ingested Cd, which was in accordance with the partitioning of Cd to the bivalve's TAM compartment (i.e. Cd associated with organelles, 'enzymes' and MT); a similar relationship was found in previous studies with grass shrimp fed Cd-contaminated oligochaetes. Thus, TAM may be used as a tool to predict the trophic transfer of at least Cd. Subcellular fractionation revealed that ???34% of both the Cd and Zn accumulated by M. balthica was associated with TAM, while partitioning to TAM in P. amurensis was metal-dependent (???60% for TAM-Cd%, ???73% for TAM-Zn%). The greater TAM-Cd% of P. amurensis than M. balthica is due to preferential binding of Cd to MT and 'enzymes', while enhanced TAM-Zn% of P. amurensis results from a greater binding of Zn to organelles. TAM for most species-metal combinations was size-dependent, decreasing with increased clam size. Based on field data, it is estimated that of the 2 bivalves, P. amurensis poses the greater threat of Cd exposure to predators because of higher tissue concentrations and greater partitioning as TAM; exposure of Zn to predators would be similar between these species.

  2. Location of Instability During a Bench Press Alters Movement Patterns and Electromyographical Activity.

    Science.gov (United States)

    Nairn, Brian C; Sutherland, Chad A; Drake, Janessa D M

    2015-11-01

    Instability training devices with the bench press exercise are becoming increasingly popular. Typically, the instability device is placed at the trunk/upper body (e.g., lying on a Swiss ball); however, a recent product called the Attitube has been developed, which places the location of instability at the hands by users lifting a water-filled tube. Therefore, the purpose of this study was to analyze the effects of different instability devices (location of instability) on kinematic and electromyographical patterns during the bench press exercise. Ten healthy males were recruited and performed 1 set of 3 repetitions for 3 different bench press conditions: Olympic bar on a stable bench (BENCH), Olympic bar on a stability ball (BALL), and Attitube on a stable bench (TUBE). The eccentric and concentric phases were analyzed in 10% intervals while electromyography was recorded from 24 electrode sites, and motion capture was used to track elbow flexion angle and 3-dimensional movement trajectories and vertical velocity of the Bar/Attitube. The prime movers tended to show a reduction in muscle activity during the TUBE trials; however, pectoralis major initially showed increased activation during the eccentric phase of the TUBE condition. The trunk muscle activations were greatest during the TUBE and smallest during the BAR. In addition, the TUBE showed decreased range of elbow flexion and increased medial-lateral movement of the Attitube itself. The results further support the notion that instability devices may be more beneficial for trunk muscles rather than prime movers.

  3. Wireless Damage Location Sensing System

    Science.gov (United States)

    Woodard, Stanley E. (Inventor); Taylor, Bryant Douglas (Inventor)

    2012-01-01

    A wireless damage location sensing system uses a geometric-patterned wireless sensor that resonates in the presence of a time-varying magnetic field to generate a harmonic response that will experience a change when the sensor experiences a change in its geometric pattern. The sensing system also includes a magnetic field response recorder for wirelessly transmitting the time-varying magnetic field and for wirelessly detecting the harmonic response. The sensing system compares the actual harmonic response to a plurality of predetermined harmonic responses. Each predetermined harmonic response is associated with a severing of the sensor at a corresponding known location thereof so that a match between the actual harmonic response and one of the predetermined harmonic responses defines the known location of the severing that is associated therewith.

  4. Spatio-temporal manipulation of small GTPase activity at subcellular level and on timescale of seconds in living cells.

    Science.gov (United States)

    DeRose, Robert; Pohlmeyer, Christopher; Umeda, Nobuhiro; Ueno, Tasuku; Nagano, Tetsuo; Kuo, Scot; Inoue, Takanari

    2012-03-09

    Dynamic regulation of the Rho family of small guanosine triphosphatases (GTPases) with great spatiotemporal precision is essential for various cellular functions and events(1, 2). Their spatiotemporally dynamic nature has been revealed by visualization of their activity and localization in real time(3). In order to gain deeper understanding of their roles in diverse cellular functions at the molecular level, the next step should be perturbation of protein activities at a precise subcellular location and timing. To achieve this goal, we have developed a method for light-induced, spatio-temporally controlled activation of small GTPases by combining two techniques: (1) rapamycin-induced FKBP-FRB heterodimerization and (2) a photo-caging method of rapamycin. With the use of rapamycin-mediated FKBP-FRB heterodimerization, we have developed a method for rapidly inducible activation or inactivation of small GTPases including Rac(4), Cdc42(4), RhoA(4) and Ras(5), in which rapamycin induces translocation of FKBP-fused GTPases, or their activators, to the plasma membrane where FRB is anchored. For coupling with this heterodimerization system, we have also developed a photo-caging system of rapamycin analogs. A photo-caged compound is a small molecule whose activity is suppressed with a photocleavable protecting group known as a caging group. To suppress heterodimerization activity completely, we designed a caged rapamycin that is tethered to a macromolecule such that the resulting large complex cannot cross the plasma membrane, leading to virtually no background activity as a chemical dimerizer inside cells(6). Figure 1 illustrates a scheme of our system. With the combination of these two systems, we locally recruited a Rac activator to the plasma membrane on a timescale of seconds and achieved light-induced Rac activation at the subcellular level(6).

  5. Locating proteins in the cell using TargetP, SignalP and related tools

    DEFF Research Database (Denmark)

    Emanuelsson, O.; Brunak, Søren; von Heijne, G.

    2007-01-01

    of methods to predict subcellular localization based on these sorting signals and other sequence properties. We then outline how to use a number of internet-accessible tools to arrive at a reliable subcellular localization prediction for eukaryotic and prokaryotic proteins. In particular, we provide detailed...

  6. Subcellular distribution and chemical forms of thorium in Brassica juncea var. foliosa.

    Science.gov (United States)

    Zhou, Sai; Kai, Hailu; Zha, Zhongyong; Fang, Zhendong; Wang, Dingna; Du, Liang; Zhang, Dong; Feng, Xiaojie; Jin, Yongdong; Xia, Chuanqin

    2016-06-01

    Brassica juncea var. foliosa (B. juncea var. foliosa) is a promising species for thorium (Th) phytoextraction due to its large biomass, fast growth rate and high tolerance toward Th. To further understand the mechanisms of Th tolerance, the present study investigated the subcellular distribution and chemical forms of Th found in B. juncea var. foliosa Our results indicated that in both roots and leaves, Th contents in different parts of the cells follow the order of cell wall > membranes and soluble fraction > organelles. In particular, Transmission Electron Microscope (TEM) analysis showed that Th was abundantly located in cell walls of the roots. Additionally, when plants were exposed to different concentrations of Th, we have found that Th existed in B. juncea var. foliosa with different chemical forms. Much of the Th extracted by 2% acetic acid (HAc), 1 M NaCl and HCl in roots with the percentage distribution varied from 47.2% to 62.5%, while in leaves, most of the Th was in the form of residue and the subdominant amount of Th was extracted by HCl, followed by 2% HAc. This suggested that Th compartmentation in cytosol and integration with phosphate or proteins in cell wall might be responsible for the tolerance of B. juncea var. foliosa to the stress of Th. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Zn subcellular distribution in liver of goldfish (carassius auratus with exposure to zinc oxide nanoparticles and mechanism of hepatic detoxification.

    Directory of Open Access Journals (Sweden)

    Wenhong Fan

    Full Text Available Zinc Oxide Nanoparticles (ZnO NPs have attracted increasing concerns because of their widespread use and toxic potential. In this study, Zn accumulations in different tissues (gills, liver, muscle, and gut of goldfish (Carassius auratus after exposure to ZnO NPs were studied in comparison with bulk ZnO and Zn(2+. And the technique of subcellular partitioning was firstly used on the liver of goldfish to study the hepatic accumulation of ZnO NPs. The results showed that at sublethal Zn concentration (2 mg/L, bioaccumulation in goldfish was tissue-specific and dependent on the exposure materials. Compared with Zn(2+, the particles of bulk ZnO and the ZnO NPs appeared to aggregate in the environmentally contacted tissues (gills and gut, rather than transport to the internal tissues (liver and muscle. The subcellular distributions of liver differed for the three exposure treatments. After ZnO NPs exposure, Zn percentage in metal-rich granule (MRG increased significantly, and after Zn(2+ exposure, it increased significantly in the organelles. Metallothionein-like proteins (MTLP were the main target for Zn(2+, while MRG played dominant role for ZnO NPs. The different results of subcellular distributions revealed that metal detoxification mechanisms of liver for ZnO NPs, bulk ZnO, and Zn(2+ were different. Overall, subcellular partitioning provided an interesting start to better understanding of the toxicity of nano- and conventional materials.

  8. Tissue distribution, subcellular localization and endocrine disruption patterns induced by Cr and Mn in the crab Ucides cordatus

    International Nuclear Information System (INIS)

    Correa, Jose Dias; Ramos da Silva, Miguel; Bastos da Silva, Antonio Carlos; Araujo de Lima, Silene Maria; Malm, Olaf; Allodi, Silvana

    2005-01-01

    The essential trace elements Cr and Mn are toxic at high concentrations and information about low concentration is insufficient in the literature. In polluted mangroves, the crab Ucides cordatus can represent a useful tool to assess information on the potential impact of trace elements like Cr and Mn on the environment, since this species is comestible and thus, commercially negotiated. Therefore, U. cordatus crabs were exposed in vivo to different concentrations of Cr and Mn solved in seawater and had their tissue distribution and subcellular deposits evaluated. The gill, hepatopancreas and muscle concentrations were determined by atomic absorption spectroscopy and the results showed that Cr and Mn presented the highest values in the gills rather than in the hepatopancreas and muscular tissue. Electron microscopy and analytical X-ray microanalysis revealed Cr precipitates on the gill surface, co-localized with epiphyte bacteria. In addition, since Cr and Mn did not equally accumulate in most of the tissues studied, glycemic rate of animals, which received injections of extracts of eyestalks of the contaminated crabs, were measured in order to evaluate whether the studied concentrations of Cr and Mn could produce any metabolic alteration. The results indicated that extracts of the eyestalks of crabs submitted to Cr and Mn salts and injected into normal crabs markedly influenced crustacean hyperglycemic hormone synthesis and/or release. The results are discussed with respect to sensitivity of the employed methods and the possible significance of the concentrations of Cr and Mn in the organisms

  9. Correlation between practice location as a surrogate for UV exposure and practice patterns to prevent corneal haze after photorefractive keratectomy (PRK).

    Science.gov (United States)

    Al-Sharif, Eman M; Stone, Donald U

    2016-01-01

    PRK is a refractive surgery that reshapes the corneal surface by excimer laser photoablation to correct refractive errors. The effect of increased ultraviolet (UV) exposure on promoting post-PRK corneal haze has been reported in the literature; however, information is lacking regarding the effect of ambient UV exposure on physician practice patterns. The aim of this study was to evaluate the effect of ophthalmologists' practice location on their reported practice patterns to prevent post-PRK corneal haze. A cross-sectional observational study was conducted through an online survey sent to ophthalmologists performing PRK. The survey recorded the primary city of practice from which the two independent variables, latitude and average annual sunshine days, were determined. It also measured the frequency of use of postoperative preventive interventions (dependent variables) which are as follows: intraoperative Mitomycin-C, oral vitamin C, sunglasses, topical corticosteroids, topical cyclosporine, oral tetracyclines and amniotic membrane graft. Fifty-one ophthalmologists completed the survey. Practice locations' mean latitude was 36.4 degrees north, and average sunshine days annually accounted for 60% of year days. There was no significant relation between latitude/average annual sunshine days and usual post-PRK prophylactic treatments ( P  > 0.05). The commonest protective maneuvers were sunglasses (78%), prolonged topical corticosteroids (57%), Mitomycin-C (39%) and oral vitamin C (37%). We found no significant difference in ophthalmologists' practice patterns to prevent post-PRK corneal haze in relation to practice location latitude and average sunshine days. Moreover, the results demonstrated that the most widely used postoperative measures to prevent post-PRK haze are sunglasses, Mitomycin-C, topical corticosteroids, and oral Vitamin C.

  10. Protein Subcellular Localization with Gaussian Kernel Discriminant Analysis and Its Kernel Parameter Selection.

    Science.gov (United States)

    Wang, Shunfang; Nie, Bing; Yue, Kun; Fei, Yu; Li, Wenjia; Xu, Dongshu

    2017-12-15

    Kernel discriminant analysis (KDA) is a dimension reduction and classification algorithm based on nonlinear kernel trick, which can be novelly used to treat high-dimensional and complex biological data before undergoing classification processes such as protein subcellular localization. Kernel parameters make a great impact on the performance of the KDA model. Specifically, for KDA with the popular Gaussian kernel, to select the scale parameter is still a challenging problem. Thus, this paper introduces the KDA method and proposes a new method for Gaussian kernel parameter selection depending on the fact that the differences between reconstruction errors of edge normal samples and those of interior normal samples should be maximized for certain suitable kernel parameters. Experiments with various standard data sets of protein subcellular localization show that the overall accuracy of protein classification prediction with KDA is much higher than that without KDA. Meanwhile, the kernel parameter of KDA has a great impact on the efficiency, and the proposed method can produce an optimum parameter, which makes the new algorithm not only perform as effectively as the traditional ones, but also reduce the computational time and thus improve efficiency.

  11. Metabolic Interplay between Peroxisomes and Other Subcellular Organelles Including Mitochondria and the Endoplasmic Reticulum

    Science.gov (United States)

    Wanders, Ronald J. A.; Waterham, Hans R.; Ferdinandusse, Sacha

    2016-01-01

    Peroxisomes are unique subcellular organelles which play an indispensable role in several key metabolic pathways which include: (1.) etherphospholipid biosynthesis; (2.) fatty acid beta-oxidation; (3.) bile acid synthesis; (4.) docosahexaenoic acid (DHA) synthesis; (5.) fatty acid alpha-oxidation; (6.) glyoxylate metabolism; (7.) amino acid degradation, and (8.) ROS/RNS metabolism. The importance of peroxisomes for human health and development is exemplified by the existence of a large number of inborn errors of peroxisome metabolism in which there is an impairment in one or more of the metabolic functions of peroxisomes. Although the clinical signs and symptoms of affected patients differ depending upon the enzyme which is deficient and the extent of the deficiency, the disorders involved are usually (very) severe diseases with neurological dysfunction and early death in many of them. With respect to the role of peroxisomes in metabolism it is clear that peroxisomes are dependent on the functional interplay with other subcellular organelles to sustain their role in metabolism. Indeed, whereas mitochondria can oxidize fatty acids all the way to CO2 and H2O, peroxisomes are only able to chain-shorten fatty acids and the end products of peroxisomal beta-oxidation need to be shuttled to mitochondria for full oxidation to CO2 and H2O. Furthermore, NADH is generated during beta-oxidation in peroxisomes and beta-oxidation can only continue if peroxisomes are equipped with a mechanism to reoxidize NADH back to NAD+, which is now known to be mediated by specific NAD(H)-redox shuttles. In this paper we describe the current state of knowledge about the functional interplay between peroxisomes and other subcellular compartments notably the mitochondria and endoplasmic reticulum for each of the metabolic pathways in which peroxisomes are involved. PMID:26858947

  12. The cellular and subcellular localization of zinc transporter 7 in the mouse spinal cord

    Science.gov (United States)

    The present work addresses the cellular and subcellular localization of the zinc transporter 7 (ZNT7, SLC30a7) protein and the distribution of zinc ions (Zn2+) in the mouse spinal cord. Our results indicated that the ZNT7 immunoreactive neurons were widely distributed in the Rexed’s laminae of the g...

  13. Subcellular partitioning profiles and metallothionein levels in indigenous clams Moerella iridescens from a metal-impacted coastal bay

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zaosheng, E-mail: zswang@iue.ac.cn [Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Boulevard, Xiamen 361021 (China); State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Feng, Chenglian; Ye, Chun [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Wang, Youshao [State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301 (China); Yan, Changzhou, E-mail: czyan@iue.ac.cn [Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Boulevard, Xiamen 361021 (China); Li, Rui; Yan, Yijun; Chi, Qiaoqiao [Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Boulevard, Xiamen 361021 (China)

    2016-07-15

    Highlights: • Subcellular partitioning profile of metals were investigated in biomonitor organism. • Cu, Zn and Cd levels in main fraction of HSP increase along accumulation gradients. • Despite MTs as the major binding pool, detoxification of Cd and Pb was incomplete. • Induced MTs were sequentially correlated with Cu, Zn and Cd levels in HSP fraction. • Intracellular metal fates highlighted the metabolic availability within organism. - Abstract: In this study, the effect of environmental metal exposure on the accumulation and subcellular distribution of metals in the digestive gland of clams with special emphasis on metallothioneins (MTs) was investigated. Specimens of indigenous Moerella iridescens were collected from different natural habitats in Maluan Bay (China), characterized by varying levels of metal contamination. The digestive glands were excised, homogenized and six subcellular fractions were separated by differential centrifugation procedures and analyzed for their Cu, Zn, Cd and Pb contents. MTs were quantified independently by spectrophotometric measurements of thiols. Site-specific differences were observed in total metal concentrations in the tissues, correlating well with variable environmental metal concentrations and reflecting the gradient trends in metal contamination. Concentrations of the non-essential Cd and Pb were more responsive to environmental exposure gradients than were tissue concentrations of the essential metals, Cu and Zn. Subcellular partitioning profiles for Cu, Zn and Cd were relatively similar, with the heat-stable protein (HSP) fraction as the dominant metal-binding compartment, whereas for Pb this fraction was much less important. The variations in proportions and concentrations of metals in this fraction along with the metal bioaccumulation gradients suggested that the induced MTs play an important role in metal homeostasis and detoxification for M. iridescens in the metal-contaminated bay. Nevertheless

  14. Using distant supervised learning to identify protein subcellular localizations from full-text scientific articles.

    Science.gov (United States)

    Zheng, Wu; Blake, Catherine

    2015-10-01

    Databases of curated biomedical knowledge, such as the protein-locations reflected in the UniProtKB database, provide an accurate and useful resource to researchers and decision makers. Our goal is to augment the manual efforts currently used to curate knowledge bases with automated approaches that leverage the increased availability of full-text scientific articles. This paper describes experiments that use distant supervised learning to identify protein subcellular localizations, which are important to understand protein function and to identify candidate drug targets. Experiments consider Swiss-Prot, the manually annotated subset of the UniProtKB protein knowledge base, and 43,000 full-text articles from the Journal of Biological Chemistry that contain just under 11.5 million sentences. The system achieves 0.81 precision and 0.49 recall at sentence level and an accuracy of 57% on held-out instances in a test set. Moreover, the approach identifies 8210 instances that are not in the UniProtKB knowledge base. Manual inspection of the 50 most likely relations showed that 41 (82%) were valid. These results have immediate benefit to researchers interested in protein function, and suggest that distant supervision should be explored to complement other manual data curation efforts. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Skeletal muscle glycogen content and particle size of distinct subcellular localizations in the recovery period after a high-level soccer match

    DEFF Research Database (Denmark)

    Nielsen, Joachim; Krustrup, Peter; Nybo, Lars

    2012-01-01

    Whole muscle glycogen levels remain low for a prolonged period following a soccer match. The present study was conducted to investigate how this relates to glycogen content and particle size in distinct subcellular localizations. Seven high-level male soccer players had a vastus lateralis muscle...... biopsy collected immediately after and 24, 48, 72 and 120 h after a competitive soccer match. Transmission electron microscopy was used to estimate the subcellular distribution of glycogen and individual particle size. During the first day of recovery, glycogen content increased by ~60% in all...

  16. Synthesis, characterization, and subcellular localization studies of amino acid-substituted porphyrinic pigments

    Science.gov (United States)

    van Diggelen, Lisa; Khin, Hnin; Conner, Kip; Shao, Jenny; Sweezy, Margaretta; Jung, Anna H.; Isaac, Meden; Simonis, Ursula

    2009-06-01

    Stopping cancer in its path occurs when photosensitizers (PSs) induce apoptotic cell death after their exposure to light and the subsequent formation of reactive oxygen species. In pursuit of our hypothesis that mitochondrial localizing PSs will enhance the efficacy of the photosensitizing process in photodynamic therapy, since they provoke cell death by inducing apoptosis, we synthesized and characterized tetraphenylporphyrins (TPPs) that are substituted at the paraphenyl positions by two amino acids and two fluoro or hydroxyl groups, respectively. They were prepared according to the Lindsey-modified Adler-Longo methodology using trifluoromethanesulfonylchloride (CF3SO2Cl) as a catalyst instead of trifluoroacetic acid. The use of CF3SO2Cl yielded cleaner products in significantly higher yields. During the synthesis, not only the yields and work-up procedure of the TPPs were improved by using CF3SO2Cl as a catalyst, but also a better means of synthesizing the precursor dipyrromethanes was tested by using indium(III) chloride. Column chromatography, HPLC, and NMR spectroscopy were used to separate and characterize the di-amino acid-dihydroxy, or difluoro-substituted porphyrins and to ascertain their purity before subcellular localization studies were carried out. Studies using androgen-sensitive human prostate adenocarcinoma cells LNCaP revealed that certain amino acid substituted porphyrins that are positively charged in the slightly acidic medium of cancer cells are very useful in shedding light on the targets of TPPs in subcellular organelles of cancer cells. Although some of these compounds have properties of promising photosensitizers by revealing increased water solubility, acidic properties, and innate ability to provoke cell death by apoptosis, the cell killing efficacy of these TPPs is low. This correlates with their subcellular localization. The di-amino acid, di-hydroxy substituted TPPs localize mainly to the lysosomes, whereas the di

  17. Laserspritzer: a simple method for optogenetic investigation with subcellular resolutions.

    Directory of Open Access Journals (Sweden)

    Qian-Quan Sun

    Full Text Available To build a detailed circuit diagram in the brain, one needs to measure functional synaptic connections between specific types of neurons. A high-resolution circuit diagram should provide detailed information at subcellular levels such as soma, distal and basal dendrites. However, a limitation lies in the difficulty of studying long-range connections between brain areas separated by millimeters. Brain slice preparations have been widely used to help understand circuit wiring within specific brain regions. The challenge exists because long-range connections are likely to be cut in a brain slice. The optogenetic approach overcomes these limitations, as channelrhodopsin 2 (ChR2 is efficiently transported to axon terminals that can be stimulated in brain slices. Here, we developed a novel fiber optic based simple method of optogenetic stimulation: the laserspritzer approach. This method facilitates the study of both long-range and local circuits within brain slice preparations. This is a convenient and low cost approach that can be easily integrated with a slice electrophysiology setup, and repeatedly used upon initial validation. Our data with direct ChR2 mediated-current recordings demonstrates that the spatial resolution of the laserspritzer is correlated with the size of the laserspritzer, and the resolution lies within the 30 µm range for the 5 micrometer laserspritzer. Using olfactory cortical slices, we demonstrated that the laserspritzer approach can be applied to selectively activate monosynaptic perisomatic GABAergic basket synapses, or long-range intracortical glutamatergic inputs formed on different subcellular domains within the same cell (e.g. distal and proximal dendrites. We discuss significant advantages of the laserspritzer approach over the widely used collimated LED whole-field illumination method in brain slice electrophysiological research.

  18. Subcellular localization and logistics of integral membrane protein biogenesis in Escherichia coli.

    Science.gov (United States)

    Bogdanov, Mikhail; Aboulwafa, Mohammad; Saier, Milton H

    2013-01-01

    Transporters catalyze entry and exit of molecules into and out of cells and organelles, and protein-lipid interactions influence their activities. The bacterial phosphoenolpyruvate: sugar phosphotransferase system (PTS) catalyzes transport-coupled sugar phosphorylation as well as nonvectorial sugar phosphorylation in the cytoplasm. The vectorial process is much more sensitive to the lipid environment than the nonvectorial process. Moreover, cytoplasmic micellar forms of these enzyme-porters have been identified, and non-PTS permeases have similarly been shown to exist in 'soluble' forms. The latter porters exhibit lipid-dependent activities and can adopt altered topologies by simply changing the lipid composition. Finally, intracellular membranes and vesicles exist in Escherichia coli leading to the following unanswered questions: (1) what determines whether a PTS permease catalyzes vectorial or nonvectorial sugar phosphorylation? (2) How do phospholipids influence relative amounts of the plasma membrane, intracellular membrane, inner membrane-derived vesicles and cytoplasmic micelles? (3) What regulates the route(s) of permease insertion and transfer into and between the different subcellular sites? (4) Do these various membranous forms have distinct physiological functions? (5) What methods should be utilized to study the biogenesis and interconversion of these membranous structures? While research concerning these questions is still in its infancy, answers will greatly enhance our understanding of protein-lipid interactions and how they control the activities, conformations, cellular locations and biogenesis of integral membrane proteins. Copyright © 2013 S. Karger AG, Basel.

  19. Automated classification of immunostaining patterns in breast tissue from the human protein atlas.

    Science.gov (United States)

    Swamidoss, Issac Niwas; Kårsnäs, Andreas; Uhlmann, Virginie; Ponnusamy, Palanisamy; Kampf, Caroline; Simonsson, Martin; Wählby, Carolina; Strand, Robin

    2013-01-01

    The Human Protein Atlas (HPA) is an effort to map the location of all human proteins (http://www.proteinatlas.org/). It contains a large number of histological images of sections from human tissue. Tissue micro arrays (TMA) are imaged by a slide scanning microscope, and each image represents a thin slice of a tissue core with a dark brown antibody specific stain and a blue counter stain. When generating antibodies for protein profiling of the human proteome, an important step in the quality control is to compare staining patterns of different antibodies directed towards the same protein. This comparison is an ultimate control that the antibody recognizes the right protein. In this paper, we propose and evaluate different approaches for classifying sub-cellular antibody staining patterns in breast tissue samples. The proposed methods include the computation of various features including gray level co-occurrence matrix (GLCM) features, complex wavelet co-occurrence matrix (CWCM) features, and weighted neighbor distance using compound hierarchy of algorithms representing morphology (WND-CHARM)-inspired features. The extracted features are used into two different multivariate classifiers (support vector machine (SVM) and linear discriminant analysis (LDA) classifier). Before extracting features, we use color deconvolution to separate different tissue components, such as the brownly stained positive regions and the blue cellular regions, in the immuno-stained TMA images of breast tissue. We present classification results based on combinations of feature measurements. The proposed complex wavelet features and the WND-CHARM features have accuracy similar to that of a human expert. Both human experts and the proposed automated methods have difficulties discriminating between nuclear and cytoplasmic staining patterns. This is to a large extent due to mixed staining of nucleus and cytoplasm. Methods for quantification of staining patterns in histopathology have many

  20. Automated classification of immunostaining patterns in breast tissue from the human protein Atlas

    Directory of Open Access Journals (Sweden)

    Issac Niwas Swamidoss

    2013-01-01

    Full Text Available Background: The Human Protein Atlas (HPA is an effort to map the location of all human proteins (http://www.proteinatlas.org/. It contains a large number of histological images of sections from human tissue. Tissue micro arrays (TMA are imaged by a slide scanning microscope, and each image represents a thin slice of a tissue core with a dark brown antibody specific stain and a blue counter stain. When generating antibodies for protein profiling of the human proteome, an important step in the quality control is to compare staining patterns of different antibodies directed towards the same protein. This comparison is an ultimate control that the antibody recognizes the right protein. In this paper, we propose and evaluate different approaches for classifying sub-cellular antibody staining patterns in breast tissue samples. Materials and Methods: The proposed methods include the computation of various features including gray level co-occurrence matrix (GLCM features, complex wavelet co-occurrence matrix (CWCM features, and weighted neighbor distance using compound hierarchy of algorithms representing morphology (WND-CHARM-inspired features. The extracted features are used into two different multivariate classifiers (support vector machine (SVM and linear discriminant analysis (LDA classifier. Before extracting features, we use color deconvolution to separate different tissue components, such as the brownly stained positive regions and the blue cellular regions, in the immuno-stained TMA images of breast tissue. Results: We present classification results based on combinations of feature measurements. The proposed complex wavelet features and the WND-CHARM features have accuracy similar to that of a human expert. Conclusions: Both human experts and the proposed automated methods have difficulties discriminating between nuclear and cytoplasmic staining patterns. This is to a large extent due to mixed staining of nucleus and cytoplasm. Methods for

  1. Specific primary sequence requirements for Aurora B kinase-mediated phosphorylation and subcellular localization of TMAP during mitosis.

    Science.gov (United States)

    Kim, Hyun-Jun; Kwon, Hye-Rim; Bae, Chang-Dae; Park, Joobae; Hong, Kyung U

    2010-05-15

    During mitosis, regulation of protein structures and functions by phosphorylation plays critical roles in orchestrating a series of complex events essential for the cell division process. Tumor-associated microtubule-associated protein (TMAP), also known as cytoskeleton-associated protein 2 (CKAP2), is a novel player in spindle assembly and chromosome segregation. We have previously reported that TMAP is phosphorylated at multiple residues specifically during mitosis. However, the mechanisms and functional importance of phosphorylation at most of the sites identified are currently unknown. Here, we report that TMAP is a novel substrate of the Aurora B kinase. Ser627 of TMAP was specifically phosphorylated by Aurora B both in vitro and in vivo. Ser627 and neighboring conserved residues were strictly required for efficient phosphorylation of TMAP by Aurora B, as even minor amino acid substitutions of the phosphorylation motif significantly diminished the efficiency of the substrate phosphorylation. Nearly all mutations at the phosphorylation motif had dramatic effects on the subcellular localization of TMAP. Instead of being localized to the chromosome region during late mitosis, the mutants remained associated with microtubules and centrosomes throughout mitosis. However, the changes in the subcellular localization of these mutants could not be completely explained by the phosphorylation status on Ser627. Our findings suggest that the motif surrounding Ser627 ((625) RRSRRL (630)) is a critical part of a functionally important sequence motif which not only governs the kinase-substrate recognition, but also regulates the subcellular localization of TMAP during mitosis.

  2. Analysis of the influence of subcellular localization of the HIV Rev protein on Rev-dependent gene expression by multi-fluorescence live-cell imaging

    International Nuclear Information System (INIS)

    Wolff, Horst; Hadian, Kamyar; Ziegler, Manja; Weierich, Claudia; Kramer-Hammerle, Susanne; Kleinschmidt, Andrea; Erfle, Volker; Brack-Werner, Ruth

    2006-01-01

    The human immunodeficiency virus Rev protein is a post-transcriptional activator of HIV gene expression. Rev is a nucleocytoplasmic shuttle protein that displays characteristic nuclear/nucleolar subcellular localization in various cell lines. Cytoplasmic localization of Rev occurs under various conditions disrupting Rev function. The goal of this study was to investigate the relationship between localization of Rev and its functional activity in living cells. A triple-fluorescent imaging assay, called AQ-FIND, was established for automatic quantitative evaluation of nucleocytoplasmic distribution of fluorescently tagged proteins. This assay was used to screen 500 rev genes generated by error-prone PCR for Rev mutants with different localization phenotypes. Activities of the Rev mutants were determined with a second quantitative, dual-fluorescent reporter assay. In HeLa cells, the majority of nuclear Rev mutants had activities similar to wild-type Rev. The activities of Rev mutants with abnormal cytoplasmic localization ranged from moderately impaired to nonfunctional. There was no linear correlation between subcellular distribution and levels of Rev activity. In astrocytes, nuclear Rev mutants showed similar impaired activities as the cytoplasmic wild-type Rev. Our data suggest that steady-state subcellular localization is not a primary regulator of Rev activity but may change as a secondary consequence of altered Rev function. The methodologies described here have potential for studying the significance of subcellular localization for functions of other regulatory factors

  3. Changing hotel location patterns in Ekurhuleni, South Africa’s industrial workshop

    Directory of Open Access Journals (Sweden)

    Jayne M. Rogerson

    2014-07-01

    Full Text Available The accommodation sector is of central importance to research on urban tourism. A number of studies seek to understand the location of hotels in urban areas. This article contributes to the limited scholarship on hotel location in African cities. Under investigation is hotel development in Ekurhuleni, one of South Africa’s newest metropolitan areas with a strong tradition of mining and industrial activities. This is a non-traditional tourism destination where until recently leisure tourism was not a component of the local economy. In terms of tourism development Ekurhuleni has expanded its share of business tourism as a result of its geographical location in South Africa’s economic heartland. Importantly, business tourism has been driven by the location in Ekurhuleni of OR Tambo Airport, South Africa’s major international gateway airport. Between 1990 and 2010 this investigation shows that the local hotel economy of Ekurhuleni has been transformed. One aspect of restructuring has been the collapse of the low quality liquor dominated hotel which was numerically the major accommodation type of the pre-1990 period. The booming business tourism economy caused new investments and hotel property developments in medium-size and high quality four and five star hotel establishments. Growth has clustered geographically in and around the international airport which is the key contemporary locational influence for hotel location in this investigation.

  4. Quantifying the Sub-Cellular Distributions of Gold Nanospheres Uptaken by Cells through Stepwise, Site-Selective Etching.

    Science.gov (United States)

    Xia, Younan; Huo, Da

    2018-04-10

    A quantitative understanding of the sub-cellular distributions of nanoparticles uptaken by cells is important to the development of nanomedicine. With Au nanospheres as a model system, here we demonstrate, for the first time, how to quantify the numbers of nanoparticles bound to plasma membrane, accumulated in cytosol, and entrapped in lysosomes, respectively, through stepwise, site-selective etching. Our results indicate that the chance for nanoparticles to escape from lysosomes is insensitive to the presence of targeting ligand although ligand-receptor binding has been documented as a critical factor in triggering internalization. Furthermore, the presence of serum proteins is shown to facilitate the binding of nanoparticles to plasma membrane lacking the specific receptor. Collectively, these findings confirm the potential of stepwise etching in quantitatively analyzing the sub-cellular distributions of nanoparticles uptaken by cells in an effort to optimize the therapeutic effect. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Sub-cellular mRNA localization modulates the regulation of gene expression by small RNAs in bacteria

    Science.gov (United States)

    Teimouri, Hamid; Korkmazhan, Elgin; Stavans, Joel; Levine, Erel

    2017-10-01

    Small non-coding RNAs can exert significant regulatory activity on gene expression in bacteria. In recent years, substantial progress has been made in understanding bacterial gene expression by sRNAs. However, recent findings that demonstrate that families of mRNAs show non-trivial sub-cellular distributions raise the question of how localization may affect the regulatory activity of sRNAs. Here we address this question within a simple mathematical model. We show that the non-uniform spatial distributions of mRNA can alter the threshold-linear response that characterizes sRNAs that act stoichiometrically, and modulate the hierarchy among targets co-regulated by the same sRNA. We also identify conditions where the sub-cellular organization of cofactors in the sRNA pathway can induce spatial heterogeneity on sRNA targets. Our results suggest that under certain conditions, interpretation and modeling of natural and synthetic gene regulatory circuits need to take into account the spatial organization of the transcripts of participating genes.

  6. Uptake and disposition of mirex in hepatocytes and subcellular fractions in CD1 mouse liver

    International Nuclear Information System (INIS)

    Charles, A.K.; Rosenbaum, D.P.; Ashok, L.; Abraham, R.

    1985-01-01

    In vivo uptake and disposition of [ 14 C]mirex by CD1 mouse liver subcellular fractions and cells of different nuclear ploidy were examined following single or multiple doses of mirex injected intraperitoneally. Significant amounts of mirex were rapidly taken up by liver (21-29%), suggesting that liver is one of the primary sites of accumulation of the chemical. Among subcellular fractions, mirex was predominantly distributed in mitochondria and microsomes in the irreversibly bound form (about 20%), although its levels fluctuated considerably with time. Mirex was completely dissociated with trichloroacetic acid treatment from both nuclear and plasma membrane fractions, although the total uptake by these fractions was markedly high. The time course of uptake and concentration-dependent disposition of mirex revealed that polyploid hepatocytes selectively accumulated higher amounts of the chemical (two to three times) compared to diploid hepatocytes. The increased affinity of polyploid cells to mirex may indicate a greater susceptibility of this cell type to the chemical insult and also may suggest a possible early involvement of polyploids in the tumorigenic process in rodent livers

  7. Endoplasmic Reticulum Export, Subcellular Distribution, and Fibril Formation by Pmel17 Require an Intact N-terminal Domain Junction*

    Science.gov (United States)

    Leonhardt, Ralf M.; Vigneron, Nathalie; Rahner, Christoph; Van den Eynde, Benoît J.; Cresswell, Peter

    2010-01-01

    Pmel17 is a melanocyte/melanoma-specific protein that subcellularly localizes to melanosomes, where it forms a fibrillar matrix that serves for the sequestration of potentially toxic reaction intermediates of melanin synthesis and deposition of the pigment. As a key factor in melanosomal biogenesis, understanding intracellular trafficking and processing of Pmel17 is of central importance to comprehend how these organelles are formed, how they mature, and how they function in the cell. Using a series of deletion and missense mutants of Pmel17, we are able to show that the integrity of the junction between the N-terminal region and the polycystic kidney disease-like domain is highly crucial for endoplasmic reticulum export, subcellular targeting, and fibril formation by Pmel17 and thus for establishing functional melanosomes. PMID:20231267

  8. Subcellular Trafficking of the Papillomavirus Genome during Initial Infection: The Remarkable Abilities of Minor Capsid Protein L2

    Directory of Open Access Journals (Sweden)

    Samuel K. Campos

    2017-12-01

    Full Text Available Since 2012, our understanding of human papillomavirus (HPV subcellular trafficking has undergone a drastic paradigm shift. Work from multiple laboratories has revealed that HPV has evolved a unique means to deliver its viral genome (vDNA to the cell nucleus, relying on myriad host cell proteins and processes. The major breakthrough finding from these recent endeavors has been the realization of L2-dependent utilization of cellular sorting factors for the retrograde transport of vDNA away from degradative endo/lysosomal compartments to the Golgi, prior to mitosis-dependent nuclear accumulation of L2/vDNA. An overview of current models of HPV entry, subcellular trafficking, and the role of L2 during initial infection is provided below, highlighting unresolved questions and gaps in knowledge.

  9. Charging stations location model based on spatiotemporal electromobility use patterns

    Science.gov (United States)

    Pagany, Raphaela; Marquardt, Anna; Zink, Roland

    2016-04-01

    One of the major challenges for mainstream adoption of electric vehicles is the provision of infrastructure for charging the batteries of the vehicles. The charging stations must not only be located dense enough to allow users to complete their journeys, but the electric energy must also be provided from renewable sources in order to truly offer a transportation with less CO2 emissions. The examination of potential locations for the charging of electric vehicles can facilitate the adaption of electromobility and the integration of electronic vehicles in everyday life. A geographic information system (GIS) based model for optimal location of charging stations in a small and regional scale is presented. This considers parameters such as the forecast of electric vehicle use penetration, the relevant weight of diverse point of interests and the distance between parking area and destination for different vehicle users. In addition to the spatial scale the temporal modelling of the energy demand at the different charging locations has to be considerate. Depending on different user profiles (commuters, short haul drivers etc.) the frequency of charging vary during the day, the week and the year. In consequence, the spatiotemporal variability is a challenge for a reliable energy supply inside a decentralized renewable energy system. The presented model delivers on the one side the most adequate identified locations for charging stations and on the other side the interaction between energy supply and demand for electromobility under the consideration of temporal aspects. Using ESRI ArcGIS Desktop, first results for the case study region of Lower Bavaria are generated. The aim of the concept is to keep the model transferable to other regions and also open to integrate further and more detailed user profiles, derived from social studies about i.e. the daily behavior and the perception of electromobility in a next step.

  10. The role of water flow into subcellular organella in cell death

    International Nuclear Information System (INIS)

    Chiba-Kamoshida, Kaori

    2008-01-01

    Mitochondrion is a subcellular organella producing most of the energy necessary for living cells. The structure consisting of double membrane, inner and outer membranes, has a close relationship with activity and diseases. Its accurate regulation of the membrane permeability plays an important role in the homeostatic energy production. Abnormal membrane permeability has a potential to lead to cell depth. Although, even transportation of water molecule is regulated by a specific membrane protein, aquapoline, there has not been reported any method to monitor the water flow through the membrane. Neutron small-angle scattering allows us to perform measurements with biological materials and subcellular organella such as mitochondria in solution under the experimental condition maintaining the activity of the biological samples. Outstanding advantage of neutron spectroscopy is its ability to distinguish hydrogen spread over biomolecules from deuterium. In order to explore a new method to monitor conformational change inside mitochondria, wide-range neutron small angle scattering data introducing two neutron spectrometers in JAEA JRR-3, SANS-J and PNO covering not only the size for the thickness of the double membrane but also that for isolated whole mitochondria particle, ∼1 μm was employed. Utilizing the excess protein content, 70%, in the inner membrane of mitochondria, a new attempt was began to figure out the structure change in inner membrane caused by the change such as in oxygen and in the substrate concentration, and to examine the relationship between the structure change and water flow through the mitochondria membrane. (author)

  11. Protein kinase C ϵ stabilizes β-catenin and regulates its subcellular localization in podocytes.

    Science.gov (United States)

    Duong, Michelle; Yu, Xuejiao; Teng, Beina; Schroder, Patricia; Haller, Hermann; Eschenburg, Susanne; Schiffer, Mario

    2017-07-21

    Kidney disease has been linked to dysregulated signaling via PKC in kidney cells such as podocytes. PKCα is a conventional isoform of PKC and a well-known binding partner of β-catenin, which promotes its degradation. β-Catenin is the main effector of the canonical Wnt pathway and is critical in cell adhesion. However, whether other PKC isoforms interact with β-catenin has not been studied systematically. Here we demonstrate that PKCϵ-deficient mice, which develop proteinuria and glomerulosclerosis, display lower β-catenin expression compared with PKC wild-type mice, consistent with an altered phenotype of podocytes in culture. Remarkably, β-catenin showed a reversed subcellular localization pattern: Although β-catenin exhibited a perinuclear pattern in undifferentiated wild-type cells, it predominantly localized to the nucleus in PKCϵ knockout cells. Phorbol 12-myristate 13-acetate stimulation of both cell types revealed that PKCϵ positively regulates β-catenin expression and stabilization in a glycogen synthase kinase 3β-independent manner. Further, β-catenin overexpression in PKCϵ-deficient podocytes could restore the wild-type phenotype, similar to rescue with a PKCϵ construct. This effect was mediated by up-regulation of P-cadherin and the β-catenin downstream target fascin1. Zebrafish studies indicated three PKCϵ-specific phosphorylation sites in β-catenin that are required for full β-catenin function. Co-immunoprecipitation and pulldown assays confirmed PKCϵ and β-catenin as binding partners and revealed that ablation of the three PKCϵ phosphorylation sites weakens their interaction. In summary, we identified a novel pathway for regulation of β-catenin levels and define PKCϵ as an important β-catenin interaction partner and signaling opponent of other PKC isoforms in podocytes. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Thyroid states regulate subcellular glucose phosphorylation activity in male mice

    Directory of Open Access Journals (Sweden)

    Flavia Letícia Martins Peçanha

    2017-07-01

    Full Text Available The thyroid hormones (THs, triiodothyronine (T3 and thyroxine (T4, are very important in organism metabolism and regulate glucose utilization. Hexokinase (HK is responsible for the first step of glycolysis, catalyzing the conversion of glucose to glucose 6-phosphate. HK has been found in different cellular compartments, and new functions have been attributed to this enzyme. The effects of hyperthyroidism on subcellular glucose phosphorylation in mouse tissues were examined. Tissues were removed, subcellular fractions were isolated from eu- and hyperthyroid (T3, 0.25 μg/g, i.p. during 21 days mice and HK activity was assayed. Glucose phosphorylation was increased in the particulate fraction in soleus (312.4% ± 67.1, n = 10, gastrocnemius (369.2% ± 112.4, n = 10 and heart (142.2% ± 13.6, n = 10 muscle in the hyperthyroid group compared to the control group. Hexokinase activity was not affected in brain or liver. No relevant changes were observed in HK activity in the soluble fraction for all tissues investigated. Acute T3 administration (single dose of T3, 1.25 μg/g, i.p. did not modulate HK activity. Interestingly, HK mRNA levels remained unchanged and HK bound to mitochondria was increased by T3 treatment, suggesting a posttranscriptional mechanism. Analysis of the AKT pathway showed a 2.5-fold increase in AKT and GSK3B phosphorylation in the gastrocnemius muscle in the hyperthyroid group compared to the euthyroid group. Taken together, we show for the first time that THs modulate HK activity specifically in particulate fractions and that this action seems to be under the control of the AKT and GSK3B pathways.

  13. Utilizing Geographic Information Systems (GIS) to analyze geographic and demographic patterns related to forensic case recovery locations in Florida.

    Science.gov (United States)

    Kolpan, Katharine E; Warren, Michael

    2017-12-01

    This paper highlights how Geographic Information Systems (GIS) can be utilized to analyze biases and patterns related to physical and cultural geography in Florida. Using case recovery locations from the C. Addison Pound Human Identification Laboratory (CAPHIL), results indicate that the majority of CAPHIL cases are recovered from urban areas with medium to low population density and low rates of crime. The results also suggest that more accurate record keeping methods would enhance the data. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Challenges of biological sample preparation for SIMS imaging of elements and molecules at subcellular resolution

    International Nuclear Information System (INIS)

    Chandra, Subhash

    2008-01-01

    Secondary ion mass spectrometry (SIMS) based imaging techniques capable of subcellular resolution characterization of elements and molecules are becoming valuable tools in many areas of biology and medicine. Due to high vacuum requirements of SIMS, the live cells cannot be analyzed directly in the instrument. The sample preparation, therefore, plays a critical role in preserving the native chemical composition for SIMS analysis. This work focuses on the evaluation of frozen-hydrated and frozen freeze-dried sample preparations for SIMS studies of cultured cells with a CAMECA IMS-3f dynamic SIMS ion microscope instrument capable of producing SIMS images with a spatial resolution of 500 nm. The sandwich freeze-fracture method was used for fracturing the cells. The complimentary fracture planes in the plasma membrane were characterized by field-emission secondary electron microscopy (FESEM) in the frozen-hydrated state. The cells fractured at the dorsal surface were used for SIMS analysis. The frozen-hydrated SIMS analysis of individual cells under dynamic primary ion beam (O 2 + ) revealed local secondary ion signal enhancements correlated with the water image signals of 19 (H 3 O) + . A preferential removal of water from the frozen cell matrix in the Z-axis was also observed. These complications render the frozen-hydrated sample type less desirable for subcellular dynamic SIMS studies. The freeze-drying of frozen-hydrated cells, either inside the instrument or externally in a freeze-drier, allowed SIMS imaging of subcellular chemical composition. Morphological evaluations of fractured freeze-dried cells with SEM and confocal laser scanning microscopy (CLSM) revealed well-preserved mitochondria, Golgi apparatus, and stress fibers. SIMS analysis of fractured freeze-dried cells revealed well-preserved chemical composition of even the most highly diffusible ions like K + and Na + in physiologically relevant concentrations. The high K-low Na signature in individual cells

  15. Challenges of biological sample preparation for SIMS imaging of elements and molecules at subcellular resolution

    Science.gov (United States)

    Chandra, Subhash

    2008-12-01

    Secondary ion mass spectrometry (SIMS) based imaging techniques capable of subcellular resolution characterization of elements and molecules are becoming valuable tools in many areas of biology and medicine. Due to high vacuum requirements of SIMS, the live cells cannot be analyzed directly in the instrument. The sample preparation, therefore, plays a critical role in preserving the native chemical composition for SIMS analysis. This work focuses on the evaluation of frozen-hydrated and frozen freeze-dried sample preparations for SIMS studies of cultured cells with a CAMECA IMS-3f dynamic SIMS ion microscope instrument capable of producing SIMS images with a spatial resolution of 500 nm. The sandwich freeze-fracture method was used for fracturing the cells. The complimentary fracture planes in the plasma membrane were characterized by field-emission secondary electron microscopy (FESEM) in the frozen-hydrated state. The cells fractured at the dorsal surface were used for SIMS analysis. The frozen-hydrated SIMS analysis of individual cells under dynamic primary ion beam (O 2+) revealed local secondary ion signal enhancements correlated with the water image signals of 19(H 3O) +. A preferential removal of water from the frozen cell matrix in the Z-axis was also observed. These complications render the frozen-hydrated sample type less desirable for subcellular dynamic SIMS studies. The freeze-drying of frozen-hydrated cells, either inside the instrument or externally in a freeze-drier, allowed SIMS imaging of subcellular chemical composition. Morphological evaluations of fractured freeze-dried cells with SEM and confocal laser scanning microscopy (CLSM) revealed well-preserved mitochondria, Golgi apparatus, and stress fibers. SIMS analysis of fractured freeze-dried cells revealed well-preserved chemical composition of even the most highly diffusible ions like K + and Na + in physiologically relevant concentrations. The high K-low Na signature in individual cells

  16. Cellular and subcellular distribution of BSH in human glioblastoma multiforme

    International Nuclear Information System (INIS)

    Neumann, M.; Gabel, D.

    2000-01-01

    The cellular and subcellular distribution of mercaptoundecahydrododecaborate (BSH) in seven glioblastoma multiforme tissue sections of six patients having received BSH prior to surgery was investigated by light, fluorescence and electron microscopy. With use of specific antibodies against BSH its localization could be found in tissue sections predominantly (approx. 90%) in the cytoplasm of GFAP-positive cells of all but one patient. The latter was significantly younger (33 years in contrast of 46-71 (mean 60) years). In none of the tissue sections BSH could be found to a significant amount in the cell nuclei. In contrast, electron microscopy studies show BSH as well associated with the cell membrane as with the chromatin in the nucleus. (author)

  17. Sarcomeres pattern proprioceptive sensory dendritic endings through Perlecan/UNC-52 in C. elegans

    Science.gov (United States)

    Liang, Xing; Dong, Xintong; Moerman, Donald G.; Shen, Kang; Wang, Xiangming

    2015-01-01

    Sensory dendrites innervate peripheral tissues through cell-cell interactions that are poorly understood. The proprioceptive neuron PVD in C. elegans extends regular terminal dendritic branches between muscle and hypodermis. We found that the PVD branch pattern was instructed by adhesion molecule SAX-7/L1CAM, which formed regularly spaced stripes on the hypodermal cell. The regularity of the SAX-7 pattern originated from the repeated and regularly spaced dense body of the sarcomeres in the muscle. The extracellular proteoglycan, UNC-52/Perlecan, links the dense body to the hemidesmosome on the hypodermal cells, which in turn instructed the SAX-7 stripes and PVD dendrites. Both UNC-52 and hemidesmosome components exhibited highly regular stripes that interdigitated with the SAX-7 stripe and PVD dendrites, reflecting the striking precision of subcellular patterning between muscle, hypodermis and dendrites. Hence, the muscular contractile apparatus provides the instructive cues to pattern proprioceptive dendrites. PMID:25982673

  18. Subcellular localization of the delayed rectifier K(+) channels KCNQ1 and ERG1 in the rat heart

    DEFF Research Database (Denmark)

    Rasmussen, Hanne Borger; Møller, Morten; Knaus, Hans-Günther

    2003-01-01

    In the heart, several K(+) channels are responsible for the repolarization of the cardiac action potential, including transient outward and delayed rectifier K(+) currents. In the present study, the cellular and subcellular localization of the two delayed rectifier K(+) channels, KCNQ1 and ether...

  19. The UL24 protein of herpes simplex virus 1 affects the sub-cellular distribution of viral glycoproteins involved in fusion

    Energy Technology Data Exchange (ETDEWEB)

    Ben Abdeljelil, Nawel; Rochette, Pierre-Alexandre; Pearson, Angela, E-mail: angela.pearson@iaf.inrs.ca

    2013-09-15

    Mutations in UL24 of herpes simplex virus type 1 can lead to a syncytial phenotype. We hypothesized that UL24 affects the sub-cellular distribution of viral glycoproteins involved in fusion. In non-immortalized human foreskin fibroblasts (HFFs) we detected viral glycoproteins B (gB), gD, gH and gL present in extended blotches throughout the cytoplasm with limited nuclear membrane staining; however, in HFFs infected with a UL24-deficient virus (UL24X), staining for the viral glycoproteins appeared as long, thin streaks running across the cell. Interestingly, there was a decrease in co-localized staining of gB and gD with F-actin at late times in UL24X-infected HFFs. Treatment with chemical agents that perturbed the actin cytoskeleton hindered the formation of UL24X-induced syncytia in these cells. These data support a model whereby the UL24 syncytial phenotype results from a mislocalization of viral glycoproteins late in infection. - Highlights: • UL24 affects the sub-cellular distribution of viral glycoproteins required for fusion. • Sub-cellular distribution of viral glycoproteins varies in cell-type dependent manner. • Drugs targeting actin microfilaments affect formation of UL24-related syncytia in HFFs.

  20. Uniquely high turnover of nickel in contaminated oysters Crassostrea hongkongensis: Biokinetics and subcellular distribution.

    Science.gov (United States)

    Yin, Qijun; Wang, Wen-Xiong

    2018-01-01

    Despite the environmental concerns regarding nickel (Ni) especially in China, it has received little attention in aquatic animals due to its comparatively weak toxicity. In the present study, we explored the bioaccumulation, biokinetics, and subcellular distribution of Ni in an estuarine oyster Crassostrea hongkongensis. We demonstrated that Ni represented a new pattern of bioaccumulation in oysters characterized by rapid elimination and low dissolved uptake. The waterborne uptake rate constant and dietary assimilation efficiency were 0.036L/g/h and 28%, respectively, and dissolved uptake was the predominant exposure route. The efflux rate constant was positively related to tissue Ni concentration, with the highest efflux of 0.155d -1 . Such high elimination resulted in a high Ni turnover and steady-state condition reached rapidly, as shown with a 4-week waterborne exposure experiment at different Ni concentrations. Ni in oysters was mainly sequestered in metallothionein-like protein (MTLP), metal-rich granule, and cellular debris. MTLP was the most important binding fraction during accumulation and depuration, and played a dynamic role leading to rapid Ni elimination. Pre-exposure to Ni significantly reduced the dissolved uptake, probably accompanied by depressed filtration activity. Overall, the high turnover and regulation of Ni in oysters were achieved by enhanced efflux, suppressed uptake, and sequestration of most Ni into the detoxified pool. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Signaling efficiency of Galphaq through its effectors p63RhoGEF and GEFT depends on their subcellular location

    NARCIS (Netherlands)

    Goedhart, J.; Unen, J. van; Adjobo-Hermans, M.J.W.; Gadella, T.W.

    2013-01-01

    The p63RhoGEF and GEFT proteins are encoded by the same gene and both members of the Dbl family of guanine nucleotide exchange factors. These proteins can be activated by the heterotrimeric G-protein subunit Galphaq. We show that p63RhoGEF is located at the plasma membrane, whereas GEFT is confined

  2. Molecular Interaction and Cellular Location of RecA and CheW Proteins in Salmonella enterica during SOS Response and Their Implication in Swarming.

    Science.gov (United States)

    Irazoki, Oihane; Aranda, Jesús; Zimmermann, Timo; Campoy, Susana; Barbé, Jordi

    2016-01-01

    In addition to its role in DNA damage repair and recombination, the RecA protein, through its interaction with CheW, is involved in swarming motility, a form of flagella-dependent movement across surfaces. In order to better understand how SOS response modulates swarming, in this work the location of RecA and CheW proteins within the swarming cells has been studied by using super-resolution microscopy. Further, and after in silico docking studies, the specific RecA and CheW regions associated with the RecA-CheW interaction have also been confirmed by site-directed mutagenesis and immunoprecipitation techniques. Our results point out that the CheW distribution changes, from the cell poles to foci distributed in a helical pattern along the cell axis when SOS response is activated or RecA protein is overexpressed. In this situation, the CheW presents the same subcellular location as that of RecA, pointing out that the previously described RecA storage structures may be modulators of swarming motility. Data reported herein not only confirmed that the RecA-CheW pair is essential for swarming motility but it is directly involved in the CheW distribution change associated to SOS response activation. A model explaining not only the mechanism by which DNA damage modulates swarming but also how both the lack and the excess of RecA protein impair this motility is proposed.

  3. Molecular interaction and cellular location of RecA and CheW proteins in Salmonella enterica during SOS response and their implication in swarming

    Directory of Open Access Journals (Sweden)

    Oihane Irazoki

    2016-10-01

    Full Text Available In addition to its role in DNA damage repair and recombination, the RecA protein, through its interaction with CheW, is involved in swarming motility, a form of flagella-dependent movement across surfaces. In order to better understand how SOS response modulates swarming, in this work the location of RecA and CheW proteins within the swarming cells has been studied by using super-resolution microscopy. Further, and after in silico docking studies, the specific RecA and CheW regions associated with the RecA-CheW interaction have also been confirmed by site-directed mutagenesis and immunoprecipitation techniques. Our results point out that the CheW distribution changes, from the cell poles to foci distributed in a helical pattern along the cell axis when SOS response is activated or RecA protein is overexpressed. In this situation, the CheW presents the same subcellular location as that of RecA, pointing out that the previously described RecA storage structures may be modulators of swarming motility. Data reported herein not only confirmed that the RecA-CheW pair is essential for swarming motility but it is directly involved in the CheW distribution change associated to SOS response activation. A model explaining not only the mechanism by which DNA damage modulates swarming but also how both the lack and the excess of RecA protein impair this motility is proposed.

  4. Topography on a subcellular scale modulates cellular adhesions and actin stress fiber dynamics in tumor associated fibroblasts

    Science.gov (United States)

    Azatov, Mikheil; Sun, Xiaoyu; Suberi, Alexandra; Fourkas, John T.; Upadhyaya, Arpita

    2017-12-01

    Cells can sense and adapt to mechanical properties of their environment. The local geometry of the extracellular matrix, such as its topography, has been shown to modulate cell morphology, migration, and proliferation. Here we investigate the effect of micro/nanotopography on the morphology and cytoskeletal dynamics of human pancreatic tumor-associated fibroblast cells (TAFs). We use arrays of parallel nanoridges with variable spacings on a subcellular scale to investigate the response of TAFs to the topography of their environment. We find that cell shape and stress fiber organization both align along the direction of the nanoridges. Our analysis reveals a strong bimodal relationship between the degree of alignment and the spacing of the nanoridges. Furthermore, focal adhesions align along ridges and form preferentially on top of the ridges. Tracking actin stress fiber movement reveals enhanced dynamics of stress fibers on topographically patterned surfaces. We find that components of the actin cytoskeleton move preferentially along the ridges with a significantly higher velocity along the ridges than on a flat surface. Our results suggest that a complex interplay between the actin cytoskeleton and focal adhesions coordinates the cellular response to micro/nanotopography.

  5. The SubCons webserver: A user friendly web interface for state-of-the-art subcellular localization prediction.

    Science.gov (United States)

    Salvatore, M; Shu, N; Elofsson, A

    2018-01-01

    SubCons is a recently developed method that predicts the subcellular localization of a protein. It combines predictions from four predictors using a Random Forest classifier. Here, we present the user-friendly web-interface implementation of SubCons. Starting from a protein sequence, the server rapidly predicts the subcellular localizations of an individual protein. In addition, the server accepts the submission of sets of proteins either by uploading the files or programmatically by using command line WSDL API scripts. This makes SubCons ideal for proteome wide analyses allowing the user to scan a whole proteome in few days. From the web page, it is also possible to download precalculated predictions for several eukaryotic organisms. To evaluate the performance of SubCons we present a benchmark of LocTree3 and SubCons using two recent mass-spectrometry based datasets of mouse and drosophila proteins. The server is available at http://subcons.bioinfo.se/. © 2017 The Protein Society.

  6. Subcellular localization of hepatitis E virus (HEV) replicase

    International Nuclear Information System (INIS)

    Rehman, Shagufta; Kapur, Neeraj; Durgapal, Hemlata; Panda, Subrat Kumar

    2008-01-01

    Hepatitis E virus (HEV) is a hepatotropic virus with a single sense-strand RNA genome of ∼ 7.2 kb in length. Details of the intracellular site of HEV replication can pave further understanding of HEV biology. In-frame fusion construct of functionally active replicase-enhanced green fluorescent protein (EGFP) gene was made in eukaryotic expression vector. The functionality of replicase-EGFP fusion protein was established by its ability to synthesize negative-strand viral RNA in vivo, by strand-specific anchored RT-PCR and molecular beacon binding. Subcellular co-localization was carried out using organelle specific fluorophores and by immuno-electron microscopy. Fluorescence Resonance Energy Transfer (FRET) demonstrated the interaction of this protein with the 3' end of HEV genome. The results show localization of replicase on the endoplasmic reticulum membranes. The protein regions responsible for membrane localization was predicted and identified by use of deletion mutants. Endoplasmic reticulum was identified as the site of replicase localization and possible site of replication

  7. Recurrence of squamous cell carcinoma of the oesophagus after curative surgery: rates and patterns on imaging studies correlated with tumour location and pathological stage

    International Nuclear Information System (INIS)

    Lee, S.J.; Lee, K.S.; Yim, Y.J.; Kim, T.S.; Shim, Y.M.; Kim, K.

    2005-01-01

    Many factors have been related to recurrence after resection of squamous cell carcinoma of the oesophagus. These include age, gender, location and local stage of tumours, cell differentiation, lymph node metastasis and vascular involvement. The recurrence rates of squamous cell carcinoma after curative surgery are high (34-79%). Tumour recurrence is categorized as locoregional or distant. Lymph node recurrence and haematogenous metastasis to solid organs (commonly to the lung) are the usual patterns of recurrence. Awareness of recurrence patterns, particularly on imaging studies, is essential for the diagnosis of recurrent tumours on follow-up examinations

  8. Activation analysis study on subcellular distribution of trace elements in human brain tumor

    International Nuclear Information System (INIS)

    Zheng Jian; Zhuan Guisun; Wang Yongji; Dong Mo; Zhang Fulin

    1992-01-01

    The concentrations of up to 11 elements in subcellular fractions of human brain (normal and malignant tumor) have been determined by a combination of gradient centrifugation and INAA methods. Samples of human brain were homogenized in a glass homogenizer tube, the homogenate was separated into nuclei, mitochondrial, myelin, synaptosome fractions, and these fractions were then analyzed using the INAA method. The discussions of elemental subcelleular distributions in human brain malignant tumor are presented in this paper. (author) 11 refs.; 2 figs.; 4 tabs

  9. Host–virus dynamics and subcellular controls of cell fate in a natural coccolithophore population

    Science.gov (United States)

    Vardi, Assaf; Haramaty, Liti; Van Mooy, Benjamin A. S.; Fredricks, Helen F.; Kimmance, Susan A.; Larsen, Aud; Bidle, Kay D.

    2012-01-01

    Marine viruses are major evolutionary and biogeochemical drivers in marine microbial foodwebs. However, an in-depth understanding of the cellular mechanisms and the signal transduction pathways mediating host–virus interactions during natural bloom dynamics has remained elusive. We used field-based mesocosms to examine the “arms race” between natural populations of the coccolithophore Emiliania huxleyi and its double-stranded DNA-containing coccolithoviruses (EhVs). Specifically, we examined the dynamics of EhV infection and its regulation of cell fate over the course of bloom development and demise using a diverse suite of molecular tools and in situ fluorescent staining to target different levels of subcellular resolution. We demonstrate the concomitant induction of reactive oxygen species, caspase-specific activity, metacaspase expression, and programmed cell death in response to the accumulation of virus-derived glycosphingolipids upon infection of natural E. huxleyi populations. These subcellular responses to viral infection simultaneously resulted in the enhanced production of transparent exopolymer particles, which can facilitate aggregation and stimulate carbon flux. Our results not only corroborate the critical role for glycosphingolipids and programmed cell death in regulating E. huxleyi–EhV interactions, but also elucidate promising molecular biomarkers and lipid-based proxies for phytoplankton host–virus interactions in natural systems. PMID:23134731

  10. Understanding metal homeostasis in primary cultured neurons. Studies using single neuron subcellular and quantitative metallomics.

    Science.gov (United States)

    Colvin, Robert A; Lai, Barry; Holmes, William R; Lee, Daewoo

    2015-07-01

    associated with ferritin cages or transferrin receptor endosomes. The iron content and its distribution in puncta were similar in all neuron types studied including primary dopaminergic neurons. In summary, quantitative measurements of steady state metal levels in single primary cultured neurons made possible by SRXRF analyses provide unique information on the relative levels of each metal in neuronal soma and processes, subcellular location of zinc loads, and have confirmed and extended the characterization of heretofore poorly understood cytoplasmic iron puncta.

  11. Characterization of intact subcellular bodies in whole bacteria by cryo-electron tomography and spectroscopic imaging.

    Science.gov (United States)

    Comolli, L R; Kundmann, M; Downing, K H

    2006-07-01

    We illustrate the combined use of cryo-electron tomography and spectroscopic difference imaging in the study of subcellular structure and subcellular bodies in whole bacteria. We limited our goal and focus to bodies with a distinct elemental composition that was in a sufficiently high concentration to provide the necessary signal-to-noise level at the relatively large sample thicknesses of the intact cell. This combination proved very powerful, as demonstrated by the identification of a phosphorus-rich body in Caulobacter crescentus. We also confirmed the presence of a body rich in carbon, demonstrated that these two types of bodies are readily recognized and distinguished from each other, and provided, for the first time to our knowledge, structural information about them in their intact state. In addition, we also showed the presence of a similar type of phosphorus-rich body in Deinococcus grandis, a member of a completely unrelated bacteria genus. Cryo-electron microscopy and tomography allowed the study of the biogenesis and morphology of these bodies at resolutions better than 10 nm, whereas spectroscopic difference imaging provided a direct identification of their chemical composition.

  12. Subcellular partitioning of cadmium in the freshwater bivalve, Pyganodon grandis, after separate short-term exposures to waterborne or diet-borne metal

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Sophie; Hare, Landis [INRS-Eau, Terre et Environnement, Universite du Quebec, 490 rue de la Couronne, Quebec, QC, G1K 9A9 (Canada); Campbell, Peter G.C., E-mail: peter.campbell@ete.inrs.ca [INRS-Eau, Terre et Environnement, Universite du Quebec, 490 rue de la Couronne, Quebec, QC, G1K 9A9 (Canada)

    2010-11-15

    The dynamics of cadmium uptake and subcellular partitioning were studied in laboratory experiments conducted on Pyganodon grandis, a freshwater unionid bivalve that shows promise as a biomonitor for metal pollution. Bivalves were collected from an uncontaminated lake, allowed to acclimate to laboratory conditions ({>=}25 days), and then either exposed to a low, environmentally relevant, concentration of dissolved Cd (5 nM; 6, 12 and 24 h), or fed Cd-contaminated algae ({approx}70 nmol Cd g{sup -1} dry weight; 4 x 4 h). In this latter case, the bivalves were allowed to depurate for up to 8 days after the end of the feeding phase. As anticipated, the gills were the main target organ during the aqueous Cd exposure whereas the intestine was the initial site of Cd accumulation during the dietary exposure; during the subsequent depuration period, the dietary Cd accumulated in both the digestive gland and in the gills. For the gills, the distribution of Cd among the subcellular fractions (i.e., granules > heat-denatured proteins (HDP) {approx} heat-stable proteins (HSP) > mitochondria {approx} lysosomes + microsomes) was insensitive to the exposure route; both waterborne and diet-borne Cd ended up largely bound to the granule fraction. The subcellular distribution of Cd in the digestive gland differed markedly from that in the gills (HDP > HSP {approx} granules {approx} mitochondria > lysosomes + microsomes), but as in the case of the gills, this distribution was relatively insensitive to the exposure route. For both the gills and the digestive gland, the subcellular distributions of Cd differed from those observed in native bivalves that are chronically exposed to Cd in the field - in the short-term experimental exposures of P. grandis, metal detoxification was less effective than in chronically exposed native bivalves.

  13. Inferring Stop-Locations from WiFi.

    Directory of Open Access Journals (Sweden)

    David Kofoed Wind

    Full Text Available Human mobility patterns are inherently complex. In terms of understanding these patterns, the process of converting raw data into series of stop-locations and transitions is an important first step which greatly reduces the volume of data, thus simplifying the subsequent analyses. Previous research into the mobility of individuals has focused on inferring 'stop locations' (places of stationarity from GPS or CDR data, or on detection of state (static/active. In this paper we bridge the gap between the two approaches: we introduce methods for detecting both mobility state and stop-locations. In addition, our methods are based exclusively on WiFi data. We study two months of WiFi data collected every two minutes by a smartphone, and infer stop-locations in the form of labelled time-intervals. For this purpose, we investigate two algorithms, both of which scale to large datasets: a greedy approach to select the most important routers and one which uses a density-based clustering algorithm to detect router fingerprints. We validate our results using participants' GPS data as well as ground truth data collected during a two month period.

  14. Enhanced Glycogen Storage of a Subcellular Hot Spot in Human Skeletal Muscle during Early Recovery from Eccentric Contractions

    DEFF Research Database (Denmark)

    Nielsen, Joachim; Farup, Jean; Rahbek, Stine Klejs

    2015-01-01

    Unaccustomed eccentric exercise is accompanied by muscle damage and impaired glucose uptake and glycogen synthesis during subsequent recovery. Recently, it was shown that the role and regulation of glycogen in skeletal muscle are dependent on its subcellular localization, and that glycogen synthe...

  15. International Differences in the Location and Use of Arteriovenous Accesses Created for Hemodialysis: Results From the Dialysis Outcomes and Practice Patterns Study (DOPPS).

    Science.gov (United States)

    Pisoni, Ronald L; Zepel, Lindsay; Fluck, Richard; Lok, Charmaine E; Kawanishi, Hideki; Süleymanlar, Gültekin; Wasse, Haimanot; Tentori, Francesca; Zee, Jarcy; Li, Yun; Schaubel, Douglas; Burke, Steven; Robinson, Bruce

    2018-04-01

    Vascular access practice is strongly associated with clinical outcomes. There is substantial international variation in the use of arteriovenous fistulas (AVFs) and grafts (AVGs), as well as AVF maturation time and location. Prospective cohort study. Hemodialysis patients participating in the prospective Dialysis Outcomes and Practice Patterns Study (DOPPS) from the United States, Japan, and Europe/ANZ (Belgium, France, Germany, Italy, Spain, Sweden, United Kingdom, Australia, and New Zealand), including 3,850 patients receiving 4,247 new AVFs and 842 patients receiving 1,129 new AVGs in 2009 to 2015. AVF location trends were based on 38,868 AVFs recorded in DOPPS 1 to 5 cross-sections (1996-2015). Demographics, comorbid conditions, dialysis vintage, body mass index, facility percentage AVF use, median blood flow rate, and AVF location. AVF location; successful AVF/AVG use (≥30 days of continuous use); time-to-first successful AVF/AVG use (maturation). During DOPPS 1 to 5, the percentage of AVFs created in the lower arm was consistently ≥93% in Japan and 65% to 77% in Europe/ANZ, but in the United States, this value declined from 70% (DOPPS 1) to 32% (DOPPS 5). Patient characteristics associated with AVF location differed by region. Successful AVF use was 87% in Japan, 67% in Europe/ANZ, and 64% in the United States, whereas successful AVG use was 86%, 75%, and 78%, respectively. Successful AVF use was greater for upper- versus lower-arm AVFs in the United States, with little difference in Europe/ANZ and the opposite pattern in Japan. Median time until first successful AVF use was 10 days in Japan, 46 days in Europe/ANZ, and 82 days in United States; until first successful AVG use: 6, 24, and 29 days, respectively. Potential measurement error related to chart data abstraction in multiple hemodialysis facilities. Large international differences exist in AVF location, predictors of AVF location, successful use of AVFs, and time to first AVF/AVG use, challenging

  16. Mating changes the subcellular distribution and the functionality of estrogen receptors in the rat oviduct

    Directory of Open Access Journals (Sweden)

    Sierralta Walter

    2009-01-01

    Full Text Available Abstract Background Mating changes the mode of action of 17beta-estradiol (E2 to accelerate oviductal egg transport from a nongenomic to a genomic mode, although in both pathways estrogen receptors (ER are required. This change was designated as intracellular path shifting (IPS. Methods Herein, we examined the subcellular distribution of ESR1 and ESR2 (formerly known as ER-alpha and ER-beta in oviductal epithelial cells of rats on day 1 of cycle (C1 or pregnancy (P1 using immunoelectron microscopy for ESR1 and ESR2. The effect of mating on intraoviductal ESR1 or ESR2 signaling was then explored comparing the expression of E2-target genes c-fos, brain creatine kinase (Ckb and calbindin 9 kDa (s100g in rats on C1 or P1 treated with selective agonists for ESR1 (PPT or ESR2 (DPN. The effect of ER agonists on egg transport was also evaluated on C1 or P1 rats. Results Receptor immunoreactivity was associated with the nucleus, cytoplasm and plasma membrane of the epithelial cells. Mating affected the subcellular distribution of both receptors as well as the response to E2. In C1 and P1 rats, PPT increased Ckb while both agonists increased c-fos. DPN increased Ckb and s100g only in C1 and P1 rats, respectively. PPT accelerated egg transport in both groups and DPN accelerated egg transport only in C1 rats. Conclusion Estrogen receptors present a subcellular distribution compatible with E2 genomic and nongenomic signaling in the oviductal epithelial cells of C1 and P1 although IPS occurs independently of changes in the distribution of ESR1 and ESR2 in the oviductal epithelial cells. Mating affected intraoviductal ER-signaling and induced loss of functional involvement of ESR2 on E2-induced accelerated egg transport. These findings reveal a profound influence on the ER signaling pathways exerted by mating in the oviduct.

  17. Mating changes the subcellular distribution and the functionality of estrogen receptors in the rat oviduct.

    Science.gov (United States)

    Orihuela, Pedro A; Zuñiga, Lidia M; Rios, Mariana; Parada-Bustamante, Alexis; Sierralta, Walter D; Velásquez, Luis A; Croxatto, Horacio B

    2009-11-30

    Mating changes the mode of action of 17beta-estradiol (E2) to accelerate oviductal egg transport from a nongenomic to a genomic mode, although in both pathways estrogen receptors (ER) are required. This change was designated as intracellular path shifting (IPS). Herein, we examined the subcellular distribution of ESR1 and ESR2 (formerly known as ER-alpha and ER-beta) in oviductal epithelial cells of rats on day 1 of cycle (C1) or pregnancy (P1) using immunoelectron microscopy for ESR1 and ESR2. The effect of mating on intraoviductal ESR1 or ESR2 signaling was then explored comparing the expression of E2-target genes c-fos, brain creatine kinase (Ckb) and calbindin 9 kDa (s100g) in rats on C1 or P1 treated with selective agonists for ESR1 (PPT) or ESR2 (DPN). The effect of ER agonists on egg transport was also evaluated on C1 or P1 rats. Receptor immunoreactivity was associated with the nucleus, cytoplasm and plasma membrane of the epithelial cells. Mating affected the subcellular distribution of both receptors as well as the response to E2. In C1 and P1 rats, PPT increased Ckb while both agonists increased c-fos. DPN increased Ckb and s100g only in C1 and P1 rats, respectively. PPT accelerated egg transport in both groups and DPN accelerated egg transport only in C1 rats. Estrogen receptors present a subcellular distribution compatible with E2 genomic and nongenomic signaling in the oviductal epithelial cells of C1 and P1 although IPS occurs independently of changes in the distribution of ESR1 and ESR2 in the oviductal epithelial cells. Mating affected intraoviductal ER-signaling and induced loss of functional involvement of ESR2 on E2-induced accelerated egg transport. These findings reveal a profound influence on the ER signaling pathways exerted by mating in the oviduct.

  18. On English Locative Subjects

    Directory of Open Access Journals (Sweden)

    Gabriela Brůhová

    2017-07-01

    Full Text Available The paper analyses English sentences with thematic locative subjects. These subjects were detected as translation counterparts of Czech sentenceinitial locative adverbials realized by prepositional phrases with the prepositions do (into, na (on, v/ve (in, z/ze (from complemented by a noun. In the corresponding English structure, the initial scene-setting adverbial is reflected in the thematic subject, which results in the locative semantics of the subject. The sentences are analysed from syntactic, semantic and FSP aspects. From the syntactic point of view, we found five syntactic patterns of the English sentences with a locative subject (SV, SVA, SVO, SVpassA and SVCs that correspond to Czech sentences with initial locative adverbials. On the FSP level the paper studies the potential of the sentences to implement the Presentation or Quality Scale. Since it is the “semantic content of the verb that actuates the presentation semantics of the sentence” (Duškova, 2015a: 260, major attention is paid to the syntactic-semantic structure of the verb. The analysis of the semantics of the English sentences results in the identification of two semantic classes of verbs which co-occur with the English locative subject.

  19. Investigation of the subcellular architecture of L7 neurons of Aplysia californica using magnetic resonance microscopy (MRM) at 7.8 microns.

    Science.gov (United States)

    Lee, Choong H; Flint, Jeremy J; Hansen, Brian; Blackband, Stephen J

    2015-06-10

    Magnetic resonance microscopy (MRM) is a non-invasive diagnostic tool which is well-suited to directly resolve cellular structures in ex vivo and in vitro tissues without use of exogenous contrast agents. Recent advances in its capability to visualize mammalian cellular structure in intact tissues have reinvigorated analytical interest in aquatic cell models whose previous findings warrant up-to-date validation of subcellular components. Even if the sensitivity of MRM is less than other microscopic technologies, its strength lies in that it relies on the same image contrast mechanisms as clinical MRI which make it a unique tool for improving our ability to interpret human diagnostic imaging through high resolution studies of well-controlled biological model systems. Here, we investigate the subcellular MR signal characteristics of isolated cells of Aplysia californica at an in-plane resolution of 7.8 μm. In addition, direct correlation and positive identification of subcellular architecture in the cells is achieved through well-established histology. We hope this methodology will serve as the groundwork for studying pathophysiological changes through perturbation studies and allow for development of disease-specific cellular modeling tools. Such an approach promises to reveal the MR contrast changes underlying cellular mechanisms in various human diseases, for example in ischemic stroke.

  20. The Influence of Gene Expression Time Delays on Gierer–Meinhardt Pattern Formation Systems

    KAUST Repository

    Seirin Lee, S.

    2010-03-23

    There are numerous examples of morphogen gradients controlling long range signalling in developmental and cellular systems. The prospect of two such interacting morphogens instigating long range self-organisation in biological systems via a Turing bifurcation has been explored, postulated, or implicated in the context of numerous developmental processes. However, modelling investigations of cellular systems typically neglect the influence of gene expression on such dynamics, even though transcription and translation are observed to be important in morphogenetic systems. In particular, the influence of gene expression on a large class of Turing bifurcation models, namely those with pure kinetics such as the Gierer-Meinhardt system, is unexplored. Our investigations demonstrate that the behaviour of the Gierer-Meinhardt model profoundly changes on the inclusion of gene expression dynamics and is sensitive to the sub-cellular details of gene expression. Features such as concentration blow up, morphogen oscillations and radical sensitivities to the duration of gene expression are observed and, at best, severely restrict the possible parameter spaces for feasible biological behaviour. These results also indicate that the behaviour of Turing pattern formation systems on the inclusion of gene expression time delays may provide a means of distinguishing between possible forms of interaction kinetics. Finally, this study also emphasises that sub-cellular and gene expression dynamics should not be simply neglected in models of long range biological pattern formation via morphogens. © 2010 Society for Mathematical Biology.

  1. ESLpred2: improved method for predicting subcellular localization of eukaryotic proteins

    Directory of Open Access Journals (Sweden)

    Raghava Gajendra PS

    2008-11-01

    Full Text Available Abstract Background The expansion of raw protein sequence databases in the post genomic era and availability of fresh annotated sequences for major localizations particularly motivated us to introduce a new improved version of our previously forged eukaryotic subcellular localizations prediction method namely "ESLpred". Since, subcellular localization of a protein offers essential clues about its functioning, hence, availability of localization predictor would definitely aid and expedite the protein deciphering studies. However, robustness of a predictor is highly dependent on the superiority of dataset and extracted protein attributes; hence, it becomes imperative to improve the performance of presently available method using latest dataset and crucial input features. Results Here, we describe augmentation in the prediction performance obtained for our most popular ESLpred method using new crucial features as an input to Support Vector Machine (SVM. In addition, recently available, highly non-redundant dataset encompassing three kingdoms specific protein sequence sets; 1198 fungi sequences, 2597 from animal and 491 plant sequences were also included in the present study. First, using the evolutionary information in the form of profile composition along with whole and N-terminal sequence composition as an input feature vector of 440 dimensions, overall accuracies of 72.7, 75.8 and 74.5% were achieved respectively after five-fold cross-validation. Further, enhancement in performance was observed when similarity search based results were coupled with whole and N-terminal sequence composition along with profile composition by yielding overall accuracies of 75.9, 80.8, 76.6% respectively; best accuracies reported till date on the same datasets. Conclusion These results provide confidence about the reliability and accurate prediction of SVM modules generated in the present study using sequence and profile compositions along with similarity search

  2. Subcellular localization-dependent decrements in skeletal muscle glycogen and mitochondria content following short-term disuse in young and old men

    DEFF Research Database (Denmark)

    Nielsen, Joachim; Suetta, Charlotte; Hvid, Lars G

    2010-01-01

    of disuse and aging on human skeletal muscle glycogen and mitochondria content in subsarcolemmal (SS), intermyofibrillar (IMF), and intramyofibrillar (intra) localizations. Five young (∼23 yr) and five old (∼66 yr) recreationally active men had their quadriceps muscle immobilized for 2 wk by whole leg...... unchanged. A localization-dependent decrease (P = 0.03) in mitochondria content following immobilization was found in both age groups, where SS mitochondria decreased by 33% (P = 0.02), superficial IMF mitochondria decreased by 20% (P = 0.05), and central IMF mitochondria remained unchanged. In conclusion......Previous studies have shown that skeletal muscle glycogen and mitochondria are distributed in distinct subcellular localizations, but the role and regulation of these subcellular localizations are unclear. In the present study, we used transmission electron microscopy to investigate the effect...

  3. Nuclear functions and subcellular trafficking mechanisms of the epidermal growth factor receptor family

    Science.gov (United States)

    2012-01-01

    Accumulating evidence suggests that various diseases, including many types of cancer, result from alteration of subcellular protein localization and compartmentalization. Therefore, it is worthwhile to expand our knowledge in subcellular trafficking of proteins, such as epidermal growth factor receptor (EGFR) and ErbB-2 of the receptor tyrosine kinases, which are highly expressed and activated in human malignancies and frequently correlated with poor prognosis. The well-characterized trafficking of cell surface EGFR is routed, via endocytosis and endosomal sorting, to either the lysosomes for degradation or back to the plasma membrane for recycling. A novel nuclear mode of EGFR signaling pathway has been gradually deciphered in which EGFR is shuttled from the cell surface to the nucleus after endocytosis, and there, it acts as a transcriptional regulator, transmits signals, and is involved in multiple biological functions, including cell proliferation, tumor progression, DNA repair and replication, and chemo- and radio-resistance. Internalized EGFR can also be transported from the cell surface to several intracellular compartments, such as the Golgi apparatus, the endoplasmic reticulum, and the mitochondria, in addition to the nucleus. In this review, we will summarize the functions of nuclear EGFR family and the potential pathways by which EGFR is trafficked from the cell surface to a variety of cellular organelles. A better understanding of the molecular mechanism of EGFR trafficking will shed light on both the receptor biology and potential therapeutic targets of anti-EGFR therapies for clinical application. PMID:22520625

  4. Sterol composition of yeast organelle membranes and subcellular distribution of enzymes involved in sterol metabolism.

    OpenAIRE

    Zinser, E; Paltauf, F; Daum, G

    1993-01-01

    Organelles of the yeast Saccharomyces cerevisiae were isolated and analyzed for sterol composition and the activity of three enzymes involved in sterol metabolism. The plasma membrane and secretory vesicles, the fractions with the highest sterol contents, contain ergosterol as the major sterol. In other subcellular membranes, which exhibit lower sterol contents, intermediates of the sterol biosynthetic pathway were found at higher percentages. Lipid particles contain, in addition to ergostero...

  5. Systemic distribution, subcellular localization and differential expression of sphingosine-1-phosphate receptors in benign and malignant human tissues.

    Science.gov (United States)

    Wang, Chunyi; Mao, Jinghe; Redfield, Samantha; Mo, Yinyuan; Lage, Janice M; Zhou, Xinchun

    2014-10-01

    Five sphingosine-1-phosphate receptors (S1PR): S1PR1, S1PR2, S1PR3, S1PR4 and S1PR5 (S1PR1-5) have been shown to be involved in the proliferation and progression of various cancers. However, none of the S1PRs have been systemically investigated. In this study, we performed immunohistochemistry (IHC) for S1PR1-S1PR5 on different tissues, in order to simultaneously determine the systemic distribution, subcellular localization and expression level of all five S1PRs. We constructed tissue microarrays (TMAs) from 384 formalin-fixed paraffin-embedded (FFPE) blocks containing 183 benign and 201 malignant tissues from 34 human organs/systems. Then we performed IHC for all five S1PRs simultaneously on these TMA slides. The distribution, subcellular localization and expression of each S1PR were determined for each tissue. The data in benign and malignant tissues from the same organ/tissue were then compared using the Student's t-test. In order to reconfirm the subcellular localization of each S1PR as determined by IHC, immunocytochemistry (ICC) was performed on several malignant cell lines. We found that all five S1PRs are widely distributed in multiple human organs/systems. All S1PRs are expressed in both the cytoplasm and nucleus, except S1PR3, whose IHC signals are only seen in the nucleus. Interestingly, the S1PRs are rarely expressed on cellular membranes. Each S1PR is unique in its organ distribution, subcellular localization and expression level in benign and malignant tissues. Among the five S1PRs, S1PR5 has the highest expression level (in either the nucleus or cytoplasm), with S1PR1, 3, 2 and 4 following in descending order. Strong nuclear expression was seen for S1PR1, S1PR3 and S1PR5, whereas S1PR2 and S1PR4 show only weak staining. Four organs/tissues (adrenal gland, liver, brain and colon) show significant differences in IHC scores for the multiple S1PRs (nuclear and/or cytoplasmic), nine (stomach, lymphoid tissues, lung, ovary, cervix, pancreas, skin, soft

  6. Sub-cellular localisation of a 15N-labelled peptide vector using NanoSIMS imaging

    Science.gov (United States)

    Römer, Winfried; Wu, Ting-Di; Duchambon, Patricia; Amessou, Mohamed; Carrez, Danièle; Johannes, Ludger; Guerquin-Kern, Jean-Luc

    2006-07-01

    Dynamic SIMS imaging is proposed to map sub-cellular distributions of isotopically labelled, exogenous compounds. NanoSIMS imaging allows the characterisation of the intracellular transport pathways of exogenous molecules, including peptide vectors employed in innovative therapies, using stable isotopes as molecular markers to detect the compound of interest. Shiga toxin B-subunit (STxB) was chosen as a representative peptide vector. The recombinant protein ( 15N-STxB) was synthesised in Escherichia coli using 15NH 4Cl as sole nitrogen source resulting in 15N enrichment in the molecule. Using the NanoSIMS 50 ion microprobe (Cameca), different ion species ( 12C 14N -, 12C 15N -, 31P -) originating from the same sputtered micro volume were simultaneously detected. High mass resolving power enabled the discrimination of 12C 15N - from its polyatomic isobars of mass 27. We imaged the membrane binding and internalisation of 15N-STxB in HeLa cells at spatial resolutions of less than 100 nm. Thus, the use of rare stable isotopes like 15N with dynamic SIMS imaging permits sub-cellular detection of isotopically labelled, exogenous molecules and imaging of their transport pathways at high mass and spatial resolution. Application of stable isotopes as markers can replace the large and chemically complex tags used for fluorescence microscopy, without altering the chemical and physical properties of the molecule.

  7. Subcellular distribution and chemical forms of thorium in Brassica juncea var. foliosa

    International Nuclear Information System (INIS)

    Zhou, Sai; Kai, Hailu; Zha, Zhongyong; Fang, Zhendong; Wang, Dingna; Du, Liang; Zhang, Dong; Feng, Xiaojie; Jin, Yongdong; Xia, Chuanqin

    2016-01-01

    Brassica juncea var. foliosa (B. juncea var. foliosa) is a promising species for thorium (Th) phytoextraction due to its large biomass, fast growth rate and high tolerance toward Th. To further understand the mechanisms of Th tolerance, the present study investigated the subcellular distribution and chemical forms of Th found in B. juncea var. foliosa Our results indicated that in both roots and leaves, Th contents in different parts of the cells follow the order of cell wall > membranes and soluble fraction > organelles. In particular, Transmission Electron Microscope (TEM) analysis showed that Th was abundantly located in cell walls of the roots. Additionally, when plants were exposed to different concentrations of Th, we have found that Th existed in B. juncea var. foliosa with different chemical forms. Much of the Th extracted by 2% acetic acid (HAc), 1 M NaCl and HCl in roots with the percentage distribution varied from 47.2% to 62.5%, while in leaves, most of the Th was in the form of residue and the subdominant amount of Th was extracted by HCl, followed by 2% HAc. This suggested that Th compartmentation in cytosol and integration with phosphate or proteins in cell wall might be responsible for the tolerance of B. juncea var. foliosa to the stress of Th. - Highlights: • Brassica juncea var. foliosa can adapt to the stress of Th(<200 μM) under hydroponic condition. • Th was selectively distributed on cell wall, membranes and soluble fraction. • Th mainly existed in low-toxicity forms which were benefit for Th tolerance.

  8. Two-Photon Irradiation of an Intracellular Singlet Oxygen Photosensitizer: Achieving Localized Sub-Cellular Excitation in Spatially-Resolved Experiments

    DEFF Research Database (Denmark)

    Pedersen, Brian Wett; Breitenbach, Thomas; Redmond, Robert W.

    2010-01-01

    The response of a given cell to spatially-resolved sub-cellular irradiation of a singlet oxygen photosensitizer (protoporphyrin IX, PpIX) using a focused laser was assessed. In these experiments, incident light was scattered over a volume greater than that defi ned by the dimensions of the laser...

  9. Incoordination among Subcellular Compartments Is Associated with Depression-Like Behavior Induced by Chronic Mild Stress

    Science.gov (United States)

    Xu, Aiping; Cui, Shan

    2016-01-01

    Background: Major depressive disorder is characterized as persistent low mood. A chronically stressful life in genetically susceptible individuals is presumably the major etiology that leads to dysfunctions of monoamine and hypothalamus-pituitary-adrenal axis. These pathogenic factors cause neuron atrophy in the limbic system for major depressive disorder. Cell-specific pathophysiology is unclear, so we investigated prelimbic cortical GABAergic neurons and their interaction with glutamatergic neurons in depression-like mice. Methods: Mice were treated with chronic unpredictable mild stress for 3 weeks until they expressed depression-like behaviors confirmed by sucrose preference, Y-maze, and forced swimming tests. The structures and functions of GABAergic and glutamatergic units in prelimbic cortices were studied by cell imaging and electrophysiology in chronic unpredictable mild stress-induced depression mice vs controls. Results: In depression-like mice, prelimbic cortical GABAergic neurons show incoordination among the subcellular compartments, such as decreased excitability and synaptic outputs as well as increased reception from excitatory inputs. GABAergic synapses on glutamatergic cells demonstrate decreased presynaptic innervation and increased postsynaptic responsiveness. Conclusions: Chronic unpredictable mild stress-induced incoordination in prelimbic cortical GABAergic and glutamatergic neurons dysregulates their target neurons, which may be the pathological basis for depressive mood. The rebalance of compatibility among subcellular compartments would be an ideal strategy to treat neural disorders. PMID:26506857

  10. Effects of wing locations on wing rock induced by forebody vortices

    Directory of Open Access Journals (Sweden)

    Ma Baofeng

    2016-10-01

    Full Text Available Previous studies have shown that asymmetric vortex wakes over slender bodies exhibit a multi-vortex structure with an alternate arrangement along a body axis at high angle of attack. In this investigation, the effects of wing locations along a body axis on wing rock induced by forebody vortices was studied experimentally at a subcritical Reynolds number based on a body diameter. An artificial perturbation was added onto the nose tip to fix the orientations of forebody vortices. Particle image velocimetry was used to identify flow patterns of forebody vortices in static situations, and time histories of wing rock were obtained using a free-to-roll rig. The results show that the wing locations can affect significantly the motion patterns of wing rock owing to the variation of multi-vortex patterns of forebody vortices. As the wing locations make the forebody vortices a two-vortex pattern, the wing body exhibits regularly divergence and fixed-point motion with azimuthal variations of the tip perturbation. If a three-vortex pattern exists over the wing, however, the wing-rock patterns depend on the impact of the highest vortex and newborn vortex. As the three vortices together influence the wing flow, wing-rock patterns exhibit regularly fixed-points and limit-cycled oscillations. With the wing moving backwards, the newborn vortex becomes stronger, and wing-rock patterns become fixed-points, chaotic oscillations, and limit-cycled oscillations. With further backward movement of wings, the vortices are far away from the upper surface of wings, and the motions exhibit divergence, limit-cycled oscillations and fixed-points. For the rearmost location of the wing, the wing body exhibits stochastic oscillations and fixed-points.

  11. Spatiotemporal visualization of subcellular dynamics of carbon nanotubes

    KAUST Repository

    Serag, Maged F.

    2012-12-12

    To date, there is no consensus on the relationship between the physicochemical characteristics of carbon nanotubes (CNTs) and their biological behavior; however, there is growing evidence that the versatile characteristics make their biological fate largely unpredictable and remain an issue of limited knowledge. Here we introduce an experimental methodology for tracking and visualization of postuptake behavior and the intracellular fate of CNTs based on the spatial distribution of diffusion values throughout the plant cell. By using raster scan image correlation spectroscopy (RICS), we were able to generate highly quantitative spatial maps of CNTs diffusion in different cell compartments. The spatial map of diffusion values revealed that the uptake of CNTs is associated with important subcellular events such as carrier-mediated vacuolar transport and autophagy. These results show that RICS is a useful methodology to elucidate the intracellular behavior mechanisms of carbon nanotubes and potentially other fluorescently labeled nanoparticles, which is of relevance for the important issues related to the environmental impact and health hazards. © 2012 American Chemical Society.

  12. Common and distinctive localization patterns of Crumbs polarity complex proteins in the mammalian eye.

    Science.gov (United States)

    Kim, Jin Young; Song, Ji Yun; Karnam, Santi; Park, Jun Young; Lee, Jamie J H; Kim, Seonhee; Cho, Seo-Hee

    2015-01-01

    Crumbs polarity complex proteins are essential for cellular and tissue polarity, and for adhesion of epithelial cells. In epithelial tissues deletion of any of three core proteins disrupts localization of the other proteins, indicating structural and functional interdependence among core components. Despite previous studies of function and co-localization that illustrated the properties that these proteins share, it is not known whether an individual component of the complex plays a distinct role in a unique cellular and developmental context. In order to investigate this question, we primarily used confocal imaging to determine the expression and subcellular localization of the core Crumbs polarity complex proteins during ocular development. Here we show that in developing ocular tissues core Crumbs polarity complex proteins, Crb, Pals1 and Patj, generally appear in an overlapping pattern with some exceptions. All three core complex proteins localize to the apical junction of the retinal and lens epithelia. Pals1 is also localized in the Golgi of the retinal cells and Patj localizes to the nuclei of the apically located subset of progenitor cells. These findings suggest that core Crumbs polarity complex proteins exert common and independent functions depending on cellular context. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Locative inversion and agreement syntax in Brazilian Portuguese

    Directory of Open Access Journals (Sweden)

    Juanito Ornelas de Avelar

    2009-12-01

    Full Text Available Adopting the Minimalist Program framework (CHOMSKY 2000, 2001, this paper suggests that, in Brazilian Portuguese, sentences with a locative prepositional phrase in preverbal position can be characterized as instances of locative inversion in which prepositional constituents occupy the grammatical subject position. It will be proposed that particularities involving the patterns of locative inversion in Brazilian Portuguese derive from properties of the subject-verb agreement in this language.

  14. Signaling efficiency of Gαq through its effectors p63RhoGEF and GEFT depends on their subcellular location.

    NARCIS (Netherlands)

    Goedhart, J.; van Unen, J.; Adjobo-Hermans, M.J.W.; Gadella (jr.), T.W.J.

    2013-01-01

    The p63RhoGEF and GEFT proteins are encoded by the same gene and both members of the Dbl family of guanine nucleotide exchange factors. These proteins can be activated by the heterotrimeric G-protein subunit Galphaq. We show that p63RhoGEF is located at the plasma membrane, whereas GEFT is confined

  15. Subcellular SIMS imaging of isotopically labeled amino acids in cryogenically prepared cells

    International Nuclear Information System (INIS)

    Chandra, Subhash

    2004-01-01

    Ion microscopy is a potentially powerful technique for localization of isotopically labeled molecules. In this study, L-arginine and phenylalanine amino acids labeled with stable isotopes 13 C and 15 N were localized in cultured cells with the ion microscope at 500 nm spatial resolution. Cells were exposed to the labeled amino acids and cryogenically prepared. SIMS analyses were made in fractured freeze-dried cells. A dynamic distribution was observed from labeled arginine-treated LLC-PK 1 kidney cells at mass 28 ( 13 C 15 N) in negative secondaries, revealing cell-to-cell heterogeneity and preferential accumulation of the amino acid (or its metabolite) in the nucleus and nucleolus of some cells. The smaller nucleolus inside the nucleus was clearly resolved in SIMS images and confirmed by correlative light microscopy. The distribution of labeled phenylalanine contrasted with arginine as it was rather homogeneously distributed in T98G human glioblastoma cells. Images of 39 K, 23 Na and 40 Ca were also recorded to confirm the reliability of sample preparation and authenticity of the observed amino acid distributions. These observations indicate that SIMS techniques can provide a valuable technology for subcellular localization of nitrogen-containing molecules in proteomics since nitrogen does not have a radionuclide tracer isotope. Amino acids labeled with stable isotopes can be used as tracers for studying their transport and metabolism in distinct subcellular compartments with SIMS. Further studies of phenylalanine uptake in human glioblastoma cells may have special significance in boron neutron capture therapy (BNCT) as a boron analogue of phenylalanine, boronophenylalanine is a clinically approved compound for the treatment of brain tumors

  16. Subcellular SIMS imaging of isotopically labeled amino acids in cryogenically prepared cells

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, Subhash

    2004-06-15

    Ion microscopy is a potentially powerful technique for localization of isotopically labeled molecules. In this study, L-arginine and phenylalanine amino acids labeled with stable isotopes {sup 13}C and {sup 15}N were localized in cultured cells with the ion microscope at 500 nm spatial resolution. Cells were exposed to the labeled amino acids and cryogenically prepared. SIMS analyses were made in fractured freeze-dried cells. A dynamic distribution was observed from labeled arginine-treated LLC-PK{sub 1} kidney cells at mass 28 ({sup 13}C{sup 15}N) in negative secondaries, revealing cell-to-cell heterogeneity and preferential accumulation of the amino acid (or its metabolite) in the nucleus and nucleolus of some cells. The smaller nucleolus inside the nucleus was clearly resolved in SIMS images and confirmed by correlative light microscopy. The distribution of labeled phenylalanine contrasted with arginine as it was rather homogeneously distributed in T98G human glioblastoma cells. Images of {sup 39}K, {sup 23}Na and {sup 40}Ca were also recorded to confirm the reliability of sample preparation and authenticity of the observed amino acid distributions. These observations indicate that SIMS techniques can provide a valuable technology for subcellular localization of nitrogen-containing molecules in proteomics since nitrogen does not have a radionuclide tracer isotope. Amino acids labeled with stable isotopes can be used as tracers for studying their transport and metabolism in distinct subcellular compartments with SIMS. Further studies of phenylalanine uptake in human glioblastoma cells may have special significance in boron neutron capture therapy (BNCT) as a boron analogue of phenylalanine, boronophenylalanine is a clinically approved compound for the treatment of brain tumors.

  17. Changes in Subcellular Distribution of n-Octanoyl or n-Decanoyl Ghrelin in Ghrelin-Producing Cells

    OpenAIRE

    Nishi, Yoshihiro; Mifune, Hiroharu; Yabuki, Akira; Tajiri, Yuji; Hirata, Rumiko; Tanaka, Eiichiro; Hosoda, Hiroshi; Kangawa, Kenji; Kojima, Masayasu

    2013-01-01

    Background: The enzyme ghrelin O-acyltransferase (GOAT) catalyzes the acylation of ghrelin. The molecular form of GOAT, together with its reaction in vitro, has been reported previously. However, the sub-cellular processes governing the acylation of ghrelin remain to be elucidated.Methods: Double immunoelectron microscopy was used to examine changes in the relative proportions of secretory granules containing n-octanoyl ghrelin (C8-ghrelin) or n-decanoyl ghrelin (C10-ghrelin) in ghrelin-pro...

  18. The subcellular localization of yeast glycogen synthase is dependent upon glycogen content

    OpenAIRE

    Wilson, Wayne A.; Boyer, Michael P.; Davis, Keri D.; Burke, Michael; Roach, Peter J.

    2010-01-01

    The budding yeast, Saccharomyces cerevisiae, accumulates the storage polysaccharide glycogen in response to nutrient limitation. Glycogen synthase, the major form of which is encoded by the GSY2 gene, catalyzes the key regulated step in glycogen storage. Here, we utilize Gsy2p fusions to green fluorescent protein (GFP) to determine where glycogen synthase is located within cells. We demonstrate that the localization pattern of Gsy2-GFP depends upon the glycogen content of the cell. When glyco...

  19. Visualizing Escherichia coli sub-cellular structure using sparse deconvolution Spatial Light Interference Tomography.

    Directory of Open Access Journals (Sweden)

    Mustafa Mir

    Full Text Available Studying the 3D sub-cellular structure of living cells is essential to our understanding of biological function. However, tomographic imaging of live cells is challenging mainly because they are transparent, i.e., weakly scattering structures. Therefore, this type of imaging has been implemented largely using fluorescence techniques. While confocal fluorescence imaging is a common approach to achieve sectioning, it requires fluorescence probes that are often harmful to the living specimen. On the other hand, by using the intrinsic contrast of the structures it is possible to study living cells in a non-invasive manner. One method that provides high-resolution quantitative information about nanoscale structures is a broadband interferometric technique known as Spatial Light Interference Microscopy (SLIM. In addition to rendering quantitative phase information, when combined with a high numerical aperture objective, SLIM also provides excellent depth sectioning capabilities. However, like in all linear optical systems, SLIM's resolution is limited by diffraction. Here we present a novel 3D field deconvolution algorithm that exploits the sparsity of phase images and renders images with resolution beyond the diffraction limit. We employ this label-free method, called deconvolution Spatial Light Interference Tomography (dSLIT, to visualize coiled sub-cellular structures in E. coli cells which are most likely the cytoskeletal MreB protein and the division site regulating MinCDE proteins. Previously these structures have only been observed using specialized strains and plasmids and fluorescence techniques. Our results indicate that dSLIT can be employed to study such structures in a practical and non-invasive manner.

  20. Subcellular localisation of radionuclides by transmission electronic microscopy in aquatic and terrestrial organisms

    Energy Technology Data Exchange (ETDEWEB)

    Floriani, M.; Grasset, G.; Simon, O.; Morlon, H.; Laroche, L. [CEA Cadarache (DEI/SECRE/LRE), Laboratory of Radioecology and Ecotoxicology, Institute for Radioprotection and Nuclear Safety, 13 - Saint-Paul-lez-Durance (France)

    2004-07-01

    The global framework of this study is to go further in the understanding of the involved mechanisms of uranium and selenium internalisation at the subcellular level and of their toxicity towards several aquatic and terrestrial organisms. In this context, the applications and performances of a Scanning Transmission Electron Microscope (TEM/STEM) equipped with CCD camera and Energy-Dispersive- X-Ray (EDAX) analysis are reported. The principal merit of this equipment is the clear expression of element distribution with nanometer resolution. The sample for TEM analysis were prepared in ultrathin sections of 70-140 nm (thickness) and those for EDAX in sections of 200-500 nm. This method offers the possibility of a direct correlation between histological image and distribution map of trace elements. For each sample, following TEM analysis, EDAX spectra or EDAX mapping were also recorded to confirm the identity of the electron dense material in the scanned sections. Demonstration of the usefulness of this method to understand the bioaccumulation mechanisms and to study the effect of the pollutant uptake at the subcellular level was performed for target organs of a metal (U) and a metalloid (Se) in various biological models: a higher rooted plant (Phaseolus vulgaris)) and a freshwater invertebrate (Orconectes Limosus) and a unicellular green alga (Chlamydomonas reinhardtii)). TEM-EDAX analysis revealed the presence of U-deposits in gills and digestive gland in crayfish, and in vacuoles or in the cytoplasm of different rooted cells bean. In the alga, the accumulation of Se was found in electron-dense granules within cytoplasm associated with ultrastructural changes and starch accumulation. (author)

  1. Subcellular localisation of radionuclides by transmission electronic microscopy in aquatic and terrestrial organisms

    International Nuclear Information System (INIS)

    Floriani, M.; Grasset, G.; Simon, O.; Morlon, H.; Laroche, L.

    2004-01-01

    The global framework of this study is to go further in the understanding of the involved mechanisms of uranium and selenium internalisation at the subcellular level and of their toxicity towards several aquatic and terrestrial organisms. In this context, the applications and performances of a Scanning Transmission Electron Microscope (TEM/STEM) equipped with CCD camera and Energy-Dispersive- X-Ray (EDAX) analysis are reported. The principal merit of this equipment is the clear expression of element distribution with nanometer resolution. The sample for TEM analysis were prepared in ultrathin sections of 70-140 nm (thickness) and those for EDAX in sections of 200-500 nm. This method offers the possibility of a direct correlation between histological image and distribution map of trace elements. For each sample, following TEM analysis, EDAX spectra or EDAX mapping were also recorded to confirm the identity of the electron dense material in the scanned sections. Demonstration of the usefulness of this method to understand the bioaccumulation mechanisms and to study the effect of the pollutant uptake at the subcellular level was performed for target organs of a metal (U) and a metalloid (Se) in various biological models: a higher rooted plant (Phaseolus vulgaris)) and a freshwater invertebrate (Orconectes Limosus) and a unicellular green alga (Chlamydomonas reinhardtii)). TEM-EDAX analysis revealed the presence of U-deposits in gills and digestive gland in crayfish, and in vacuoles or in the cytoplasm of different rooted cells bean. In the alga, the accumulation of Se was found in electron-dense granules within cytoplasm associated with ultrastructural changes and starch accumulation. (author)

  2. Recombination patterns reveal information about centromere location on linkage maps

    DEFF Research Database (Denmark)

    Limborg, Morten T.; McKinney, Garrett J.; Seeb, Lisa W.

    2016-01-01

    . mykiss) characterized by low and unevenly distributed recombination – a general feature of male meiosis in many species. Further, a high frequency of double crossovers along chromosome arms in barley reduced resolution for locating centromeric regions on most linkage groups. Despite these limitations...

  3. Development of a Charged Particle Microbeam for Single-Particle Subcellular Irradiations at the MIT Laboratory for Accelerator Beam Application

    International Nuclear Information System (INIS)

    Yanch, Jacquelyn C.

    2004-01-01

    The development of a charged particle microbeam for single particle, subcellular irradiations at the Massachusetts Institute of Technology Laboratory for Accelerator Beam Applications (MIT LABA) was initiated under this NEER aeard. The Microbeam apparatus makes use of a pre-existing electrostatic accelerator with a horizontal beam tube

  4. Selenium assimilation and loss by an insect predator and its relationship to Se subcellular partitioning in two prey types

    Energy Technology Data Exchange (ETDEWEB)

    Dubois, Maitee [Institut national de la recherche scientifique - Eau, Terre et Environnement, Universite du Quebec, Quebec City, Quebec, G1K 9A9 (Canada); Hare, Landis [Institut national de la recherche scientifique - Eau, Terre et Environnement, Universite du Quebec, Quebec City, Quebec, G1K 9A9 (Canada)], E-mail: landis@ete.inrs.ca

    2009-03-15

    Subcellular selenium (Se) distributions in the oligochaete Tubifex tubifex and in the insect Chironomus riparius did not vary with Se exposure duration, which was consistent with the observations that the duration of prey Se exposure had little influence on either Se assimilation or loss by a predatory insect (the alderfly Sialis velata). However, these two prey types differed in how Se was distributed in their cells. Overall, the predator assimilated a mean of 66% of the Se present in its prey, which was similar to the mean percentage of Se in prey cells (62%) that was theoretically available for uptake (that is, Se in the protein and organelle fractions). Likewise, data for cadmium, nickel and thallium suggest that predictions of trace element transfer between prey and predator are facilitated by considering the subcellular partitioning of these contaminants in prey cells. - Selenium assimilation by a predatory aquatic insect depends on Se availability in the cells of its prey.

  5. Selenium assimilation and loss by an insect predator and its relationship to Se subcellular partitioning in two prey types

    International Nuclear Information System (INIS)

    Dubois, Maitee; Hare, Landis

    2009-01-01

    Subcellular selenium (Se) distributions in the oligochaete Tubifex tubifex and in the insect Chironomus riparius did not vary with Se exposure duration, which was consistent with the observations that the duration of prey Se exposure had little influence on either Se assimilation or loss by a predatory insect (the alderfly Sialis velata). However, these two prey types differed in how Se was distributed in their cells. Overall, the predator assimilated a mean of 66% of the Se present in its prey, which was similar to the mean percentage of Se in prey cells (62%) that was theoretically available for uptake (that is, Se in the protein and organelle fractions). Likewise, data for cadmium, nickel and thallium suggest that predictions of trace element transfer between prey and predator are facilitated by considering the subcellular partitioning of these contaminants in prey cells. - Selenium assimilation by a predatory aquatic insect depends on Se availability in the cells of its prey

  6. Molecular basis of the specific subcellular localization of the C2-like domain of 5-lipoxygenase.

    Science.gov (United States)

    Kulkarni, Shilpa; Das, Sudipto; Funk, Colin D; Murray, Diana; Cho, Wonhwa

    2002-04-12

    The activation of 5-lipoxygenase (5-LO) involves its calcium-dependent translocation to the nuclear envelope, where it catalyzes the two-step transformation of arachidonic acid into leukotriene A(4), leading to the synthesis of various leukotrienes. To understand the mechanism by which 5-LO is specifically targeted to the nuclear envelope, we studied the membrane binding properties of the amino-terminal domain of 5-LO, which has been proposed to have a C2 domain-like structure. The model building, electrostatic potential calculation, and in vitro membrane binding studies of the isolated C2-like domain of 5-LO and selected mutants show that this Ca(2+)-dependent domain selectively binds zwitterionic phosphatidylcholine, which is conferred by tryptophan residues (Trp(13), Trp(75), and Trp(102)) located in the putative Ca(2+)-binding loops. The spatiotemporal dynamics of the enhanced green fluorescence protein-tagged C2-like domain of 5-LO and mutants in living cells also show that the phosphatidylcholine selectivity of the C2-like domain accounts for the specific targeting of 5-LO to the nuclear envelope. Together, these results show that the C2-like domain of 5-LO is a genuine Ca(2+)-dependent membrane-targeting domain and that the subcellular localization of the domain is governed in large part by its membrane binding properties.

  7. The effects of γ-ray irradiation on the cellular and subcellular structures of apical meristem in garlic (Allium sativum) and onion (Allium cepal)

    International Nuclear Information System (INIS)

    Xi Yufang; Qian Dongmei; Bian Qijun; Ying Tiejin

    1993-01-01

    Electronic microscopic study revealed that 2 ∼ 30 krads of γ-ray irradiation to garlic and onion could cause various damages to cellular and subcellular structures of the shoot apical meristem. Among the various oganelles, the vacuoles showed the highest radio-sensitivity while mitochondria and nucleus seemed to be most resistant to irradiation. The irradiated cells did not show any visible structural damages until the dormancy ended, suggesting that metabolism played an important role in the structural damages. The study also suggested that even after the irradiation which caused intensive subcellular structural damages, the tissues could survive. However, the potency of mitosis in the apex was lost, resulting in the inhibition of sprouting

  8. [Location selection for Shenyang urban parks based on GIS and multi-objective location allocation model].

    Science.gov (United States)

    Zhou, Yuan; Shi, Tie-Mao; Hu, Yuan-Man; Gao, Chang; Liu, Miao; Song, Lin-Qi

    2011-12-01

    Based on geographic information system (GIS) technology and multi-objective location-allocation (LA) model, and in considering of four relatively independent objective factors (population density level, air pollution level, urban heat island effect level, and urban land use pattern), an optimized location selection for the urban parks within the Third Ring of Shenyang was conducted, and the selection results were compared with the spatial distribution of existing parks, aimed to evaluate the rationality of the spatial distribution of urban green spaces. In the location selection of urban green spaces in the study area, the factor air pollution was most important, and, compared with single objective factor, the weighted analysis results of multi-objective factors could provide optimized spatial location selection of new urban green spaces. The combination of GIS technology with LA model would be a new approach for the spatial optimizing of urban green spaces.

  9. Effects of carbohydrate supplements on exercise-induced menstrual dysfunction and ovarian subcellular structural changes in rats

    Directory of Open Access Journals (Sweden)

    Can Zhao

    2014-09-01

    Conclusion: Female adult rats with 9-week continuous exercise can cause menstrual dysregulation as a model for EAMD. Post-EAMD intervention with glucose and oligosaccharide intake can normalize the menstrual cycle, restore the follicular subcellular structure, and reverse the exercise-induced reduction of ovary sex hormones. It suggests a positive feedback of hypothalamus–pituitary–ovary axis might be involved in the molecular mechanisms of energy intake in treating EAMD.

  10. Effect of subcellular distribution on nC₆₀ uptake and transfer efficiency from Scenedesmus obliquus to Daphnia magna.

    Science.gov (United States)

    Chen, Qiqing; Hu, Xialin; Yin, Daqiang; Wang, Rui

    2016-06-01

    The potential uptake and trophic transfer ability of nanoparticles (NPs) in aquatic organisms have not been well understood yet. There has been an increasing awareness of the subcellular fate of NPs in organisms, but how the subcellular distribution of NPs subsequently affects the trophic transfer to predator remains to be answered. In the present study, the food chain from Scenedesmus obliquus to Daphnia magna was established to simulate the trophic transfer of fullerene aqueous suspension (nC60). The nC60 contaminated algae were separated into three fractions: cell wall (CW), cell organelle (CO), and cell membrane (CM) fractions, and we investigated the nC60 uptake amounts and trophic transfer efficiency to the predator through dietary exposure to algae or algal subcellular fractions. The nC60 distribution in CW fraction of S. obliquus was the highest, following by CO and CM fractions. nC60 uptake amounts in D. magna were found to be mainly relative to the NPs' distribution in CW fraction and daphnia uptake ability from CW fraction, whereas the nC60 trophic transfer efficiency (TE) were mainly in accordance with the transfer ability of NPs from the CO fraction. CW fed group possessed the highest uptake amount, followed by CO and CM fed groups, but the presence of humic acid (HA) significantly decreased the nC60 uptake from CW fed group. The CO fed groups acquired high TE values for nC60, while CM fed groups had low TE values. Moreover, even though CW fed group had a high TE value; it decreased significantly with the presence of HA. This study contributes to the understanding of fullerene NPs' dietary exposure to aquatic organisms, suggesting that NPs in different food forms are not necessarily equally trophically available to the predator. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Subcellular redistribution of trimeric G-proteins – potential mechanism of desensitization of hormone response: internalisation, solubilization, down-regulation

    Czech Academy of Sciences Publication Activity Database

    Drastichová, Zdeňka; Bouřová, Lenka; Lisý, Václav; Hejnová, L.; Rudajev, Vladimír; Stöhr, Jiří; Durchánková, Dana; Ostašov, Pavel; Teisinger, Jan; Soukup, Tomáš; Novotný, Jiří; Svoboda, Petr

    2008-01-01

    Roč. 57, Suppl.3 (2008), S1-S10 ISSN 0862-8408 R&D Projects: GA MŠk(CZ) LC554; GA ČR(CZ) GA309/06/0121 Institutional research plan: CEZ:AV0Z50110509 Keywords : brain * subcellular fractionation * trimeric G-proteins Subject RIV: CE - Biochemistry Impact factor: 1.653, year: 2008

  12. Subcellular fractionation and localization studies reveal a direct interaction of the Fragile X Mental Retardation Protein (FMRP) with nucleolin

    NARCIS (Netherlands)

    Taha, M.S.; Nouri, K.; Milroy, L.G.; Moll, J.M.; Herrmann, C.; Brunsveld, L.; Piekorz, R.P.; Ahmadian, M.R.

    2014-01-01

    Fragile X mental Retardation Protein (FMRP) is a well-known regulator of local translation of its mRNA targets in neurons. However, despite its ubiquitous expression, the role of FMRP remains ill-defined in other cell types. In this study we investigated the subcellular distribution of FMRP and its

  13. Optical monitoring of spinal cord subcellular damage after acute spinal cord injury

    Science.gov (United States)

    Shadgan, Babak; Manouchehri, Neda; So, Kitty; Shortt, Katelyn; Fong, Allan; Streijger, Femke; Macnab, Andrew; Kwon, Brian K.

    2018-02-01

    Introduction: Sudden physical trauma to the spinal cord results in acute spinal cord injury (SCI), leading to spinal cord (SC) tissue destruction, acute inflammation, increased SC intraparenchymal pressure, and tissue ischemia, hypoxia, and cellular necrosis. The ability to monitor SC tissue viability at subcellular level, using a real-time noninvasive method, would be extremely valuable to clinicians for estimating acute SCI damage, and adjusting and monitoring treatment in the intensive care setting. This study examined the feasibility and sensitivity of a custommade near infrared spectroscopy (NIRS) sensor to monitor the oxidation state of SC mitochondrial cytochrome aa3 (CCO), which reflects the subcellular damage of SC tissue in an animal model of SCI. Methods: Six anesthetized Yorkshire pigs were studied using a custom-made multi-wavelength NIRS system with a miniaturized optical sensor applied directly on the surgically exposed SC at T9. The oxidation states of SC tissue hemoglobin and CCO were monitored before, during and after acute SCI, and during mean arterial pressure alterations. Results: Non-invasive NIRS monitoring reflected changes in SC tissue CCO, simultaneous but independent of changes in hemoglobin saturation following acute SCI. A consistent decrease in SC tissue CCO chromophore concentration (-1.98 +/- 2.1 ab, pElevation of mean arterial pressure can reduce SC tissue damage as suggested by different researchers and observed by significant increase in SC tissue CCO concentration (1.51 +/- 1.7 ab, p<0.05) in this study. Conclusions: This pilot study indicates that a novel miniaturized multi-wave NIRS sensor has the potential to monitor post-SCI changes of SC cytochrome aa3 oxygenation state in real time. Further development of this method may offer new options for improved SCI care.

  14. Subcellular localization of YKL-40 in normal and malignant epithelial cells of the breast

    DEFF Research Database (Denmark)

    Roslind, A.; Balslev, E.; Kruse, H.

    2008-01-01

    . YKL-40 protein expression was redistributed in carcinoma versus normal glandular tissue of the breast. A reduced expression of YKL-40 in relation to intermediate filaments and desmosomes was found in tumor cells. Changes in YKL-40 expression suggest that the function of YKL-40 in cells of epithelial......YKL-40 is a new prognostic biomarker in cancer. The biological function is only poorly understood. This study aimed at determining the subcellular localization of YKL-40, using immunogold labeling, in normal epithelial cells and in malignant tumor cells of the breast by immunoelectron microscopy...

  15. Grazing patterns on signalgrass pasture according to location of cattle feces

    Directory of Open Access Journals (Sweden)

    Manoel Eduardo Rozalino Santos

    2012-04-01

    Full Text Available This study was conducted to evaluate the defoliation patterns on B. decumbens cv. Basilisk (signalgrass tiller as a function of influence of feces deposited naturally by cattle. The signalgrass was managed with an average height of 25 cm, under continuous stocking and variable stocking rate. Interval and intensity of defoliation, grazing efficiency and forage loss were evaluated in two sites on pasture - one close and the other distant from feces. The completely randomized block design with three replications was adopted. The defoliation rate of the pasture site close to feces was 40% lower than at that distant from feces. This response pattern was similar to defoliation intensity of leaf blade. The leaf blade of the tiller close to feces also achieved lower de foliation (1.64 than that in the tiller distant from feces (3.97. The relative number of grazed leaf per tiller in the tillers distant from feces was approximately 185% higher than those close to feces. The grazing efficiency was lower in the local close to feces compared with that distant, unlike forage loss. The natural deposition of feces by cattle modifies the grazing and use patterns of B. decumbens under continuous stocking.

  16. Top Down Proteomics Reveals Mature Proteoforms Expressed in Subcellular Fractions of the Echinococcus granulosus Preadult Stage.

    Science.gov (United States)

    Lorenzatto, Karina R; Kim, Kyunggon; Ntai, Ioanna; Paludo, Gabriela P; Camargo de Lima, Jeferson; Thomas, Paul M; Kelleher, Neil L; Ferreira, Henrique B

    2015-11-06

    Echinococcus granulosus is the causative agent of cystic hydatid disease, a neglected zoonosis responsible for high morbidity and mortality. Several molecular mechanisms underlying parasite biology remain poorly understood. Here, E. granulosus subcellular fractions were analyzed by top down and bottom up proteomics for protein identification and characterization of co-translational and post-translational modifications (CTMs and PTMs, respectively). Nuclear and cytosolic extracts of E. granulosus protoscoleces were fractionated by 10% GELFrEE and proteins under 30 kDa were analyzed by LC-MS/MS. By top down analysis, 186 proteins and 207 proteoforms were identified, of which 122 and 52 proteoforms were exclusively detected in nuclear and cytosolic fractions, respectively. CTMs were evident as 71% of the proteoforms had methionine excised and 47% were N-terminal acetylated. In addition, in silico internal acetylation prediction coupled with top down MS allowed the characterization of 9 proteins differentially acetylated, including histones. Bottom up analysis increased the overall number of identified proteins in nuclear and cytosolic fractions to 154 and 112, respectively. Overall, our results provided the first description of the low mass proteome of E. granulosus subcellular fractions and highlighted proteoforms with CTMs and PTMS whose characterization may lead to another level of understanding about molecular mechanisms controlling parasitic flatworm biology.

  17. Kandelia obovata (S., L.) Yong tolerance mechanisms to Cadmium: Subcellular distribution, chemical forms and thiol pools

    International Nuclear Information System (INIS)

    Weng Bosen; Xie Xiangyu; Weiss, Dominik J.; Liu Jingchun; Lu Haoliang; Yan Chongling

    2012-01-01

    Highlights: ► Cadmium tolerance mechanisms of Kandelia obovata was investigated systematacially. ► Thiol pool can play roles in cadmium detoxification mechanisms. ► Increasing cadmium treatment strength caused proportional increase of cadmium uptake. ► More than half of cadmium was localized in cell walls, and lowest in membranes. ► Sodium chloride and acetic acid extractable fractions were dominant. - Abstract: In order to explore the detoxification mechanisms adopted by mangrove under cadmium (Cd) stress, we investigated the subcellular distribution and chemical forms of Cd, in addition to the change of the thiol pools in Kandelia obovata (S., L.) Yong, which were cultivated in sandy culture medium treated with sequential Cd solution. We found that Cd addition caused a proportional increase of Cd in the organs of K. obovata. The investigation of subcellular distribution verified that most of the Cd was localized in the cell wall, and the lowest was in the membrane. Results showed sodium chloride and acetic acid extractable Cd fractions were dominant. The contents of non-protein thiol compounds, Glutathione and phytochelatins in K. obovata were enhanced by the increasing strength of Cd treatment. Therefore, K. obovata can be defined as Cd tolerant plant, which base on cell wall compartmentalization, as well as protein and organic acids combination.

  18. The Location Dynamics of Firms in Transitional Shanghai, 1978-2005

    Directory of Open Access Journals (Sweden)

    Bo Qin

    2012-01-01

    Full Text Available China’s economic reform started in 1978 has brought in profound changes to firms by transforming the state-owned-enterprises and by encouraging the growth of the non-state sector business. These changes have been accompanied by broader institutional changes and economic restructuring in the cities, especially in the larger ones. This paper focuses on the changing spatial distribution patterns and the underlying location factors of firms in different sectors within Shanghai, one of China’s largest and most dynamic cities. The central research question is raised as do the rapidly changing spatial patterns of corporate activities within Shanghai since the onset of China's economic reform reflect the influence of market forces? Data were collected from Shanghai Administration of Industry and Commerce. Both GIS mapping and statistics (i.e. Moran’s Index, density gradient were used to assess the spatial distribution pattern of firms in Shanghai. An empirical model derived from neo-classical location theory is employed to examine the location factors of firms in different sectors. Findings of the paper indicate that the spatial distribution and location factors of firms in Shanghai demonstrate the city’s unique urban restructuring process, which is closely related to the city’s specific economic stage and unique “transitional” characteristics. However, market forces do play an increasingly import role in firm’s location-choice behavior in Shanghai. This study contributes to the understanding of firm location dynamics in post-socialist cities.

  19. Estrogen levels regulate the subcellular distribution of phosphorylated Akt in hippocampal CA1 dendrites.

    Science.gov (United States)

    Znamensky, Vladimir; Akama, Keith T; McEwen, Bruce S; Milner, Teresa A

    2003-03-15

    In addition to genomic pathways, estrogens may regulate gene expression by activating specific signal transduction pathways, such as that involving phosphatidylinositol 3-kinase (PI3-K) and the subsequent phosphorylation of Akt (protein kinase B). The Akt pathway regulates various cellular events, including the initiation of protein synthesis. Our previous studies showed that synaptogenesis in hippocampal CA1 pyramidal cell dendritic spines is highest when brain estrogen levels are highest. To address the role of Akt in this process, the subcellular distribution of phosphorylated Akt immunoreactivity (pAkt-I) in the hippocampus of female rats across the estrous cycle and male rats was analyzed by light microscopy (LM) and electron microscopy (EM). By LM, the density of pAkt-I in stratum radiatum of CA1 was significantly higher in proestrus rats (or in estrogen-supplemented ovariectomized females) compared with diestrus, estrus, or male rats. By EM, pAkt-I was found throughout the shafts and in select spines of stratum radiatum dendrites. Quantitative ultrastructural analysis identifying pAkt-I with immunogold particles revealed that proestrus rats compared with diestrus, estrus, and male rats contained significantly higher pAkt-I associated with (1) dendritic spines (both cytoplasm and plasmalemma), (2) spine apparati located within 0.1 microm of dendritic spine bases, (3) endoplasmic reticula and polyribosomes in the cytoplasm of dendritic shafts, and (4) the plasmalemma of dendritic shafts. These findings suggest that estrogens may regulate spine formation in CA1 pyramidal neurons via Akt-mediated signaling events.

  20. Analysis of sublethal arsenic toxicity to Ceratophyllum demersum: subcellular distribution of arsenic and inhibition of chlorophyll biosynthesis

    Czech Academy of Sciences Publication Activity Database

    Mishra, S.; Alfred, M.; Sobotka, Roman; Andresen, E.; Falkenberg, G.; Küpper, Hendrik

    2016-01-01

    Roč. 67, č. 15 (2016), s. 4639-4646 ISSN 0022-0957 R&D Projects: GA ČR GBP501/12/G055; GA MŠk(CZ) LO1416 Institutional support: RVO:61388971 ; RVO:60077344 Keywords : arsenic toxicity * chlorophyll biosynthesis * subcellular distribution of arsenic * synchrotron micro-X-ray fluorescence Subject RIV: EE - Microbiology, Virology; CE - Biochemistry (BC-A) Impact factor: 5.830, year: 2016

  1. Subcellular partitioning of cadmium and zinc in mealworm beetle (Tenebrio molitor) larvae exposed to metal-contaminated flour.

    Science.gov (United States)

    Bednarska, Agnieszka J; Świątek, Zuzanna

    2016-11-01

    By studying the internal compartmentalization of metals in different subcellular fractions we are able to better understand the mechanisms of metal accumulation in organisms and the transfer of metals through trophic chains. We investigated the internal compartmentalization of cadmium (Cd) and zinc (Zn) in mealworm beetle (Tenebrio molitor) larvae by breeding them in flour contaminated with either Cd at 100, 300 and 600mgkg(-1), or Zn at 1000 and 2000mgkg(-1). We separated the cellular components of the larvae into 3 fractions: the S1 or cytosolic fraction containing organelles, heat-sensitive and heat-stable proteins, the S2 or cellular debris fraction and the G or metal-rich granule fraction. The concentration of Cd and Zn in each fraction was measured at 0, 7, 14 and 21 days of being fed the flour. The concentration of Cd in the flour affected the concentration of Cd measured in each larval subcellular fraction (p≤0.0001), while the concentration of Zn in the flour only affected the Zn concentration in the S2 and G fractions (p≤0.02). Both Cd and Zn concentrations in mealworms remained relatively constant during the exposure (days 7, 14 and 21) in all three fractions, but the Cd concentrations were much higher than those found in larvae before the exposure (day 0). The concentration of Cd in the flour, however, did not affect the percentage of Cd in the S1 fraction. The contribution of Cd in the G fraction to the total Cd amount was similar (30-40%) in all Cd treatments. The percentage of Zn in all three fractions was not affected by the concentration of Zn in the flour and the relative contributions of each subcellular fraction to the total burden of Zn remained generally constant for both control and treated larvae. In general, larvae sequestered approximately 30% of Cd and Zn in the S1 fraction, which is important for the transport of metals to higher trophic levels in a food web. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Impacts of BDE209 addition on Pb uptake, subcellular partitioning and gene toxicity in earthworm (Eisenia fetida)

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wei, E-mail: wzhang@ecust.edu.cn [State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, Shanghai 200237 (China); School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237 (China); Liu, Kou; Li, Jing; Liang, Jun; Lin, Kuangfei [State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, Shanghai 200237 (China); School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237 (China)

    2015-12-30

    Highlights: • 10 or 100 μg g{sup −1} BDE209 addition caused histological changes in Pb-exposed earthworms’ body wall. • Strong histopathological effects with BDE209 addition confirmed the enhanced Pb bioavailability. • The presence of higher levels of BDE209 altered subcellular partitioning of Pb in earthworm. • Co-exposure to Pb and BDE209 declined SOD and CAT gene transcripts synergistically. • BDE209 addition elicited up-regulation of Hsp90 gene expression compared to Pb exposure alone. - Abstract: Lead (Pb) and decabromodiphenyl ether (BDE209) are the mainly co-existed contaminants at e-waste recycling sites. The potential toxicity of Pb (250 μg g{sup −1}) to earthworm Eisenia fetida in the presence of BDE209 (1, 10 and 100 μg g{sup −1}) was determined during 14-d incubation period. Compared to Pb treatment alone, the co-exposure with 1 μg g{sup −1} BDE209 barely affected Pb uptake, subcellular partitioning and gene expression; however, histopathological changes in earthworms’ body wall (epidermal, circular and longitudinal muscles) demonstrated that 10 and 100 μg g{sup −1} BDE209 additions enhanced Pb uptake and altered its subcellular partitioning, indicating that Pb redistributed from fractions E (cell debris) and D (metal-rich granules) to fraction C (cytosols); Additionally, BDE209 supply significantly inhibited (p < 0.05) the induction of SOD (superoxide dismutase) and CAT (catalase) gene expressions (maximum down-regulation 59% for SOD gene at Pb + 100 μg g{sup −1} BDE209 and 89% for CAT gene at Pb + 10 μg g{sup −1} BDE209), while facilitated (p < 0.05) Hsp90 (heat shock protein 90) gene expression with maximum induction rate of 120% after exposure to Pb + 10 μg g{sup −1} BDE209. These findings illustrate the importance of considering environmental BDE209 co-exposure when assessing Pb bioaccumulation and toxicity in multi-contaminated soil ecosystems.

  3. Impacts of BDE209 addition on Pb uptake, subcellular partitioning and gene toxicity in earthworm (Eisenia fetida)

    International Nuclear Information System (INIS)

    Zhang, Wei; Liu, Kou; Li, Jing; Liang, Jun; Lin, Kuangfei

    2015-01-01

    Highlights: • 10 or 100 μg g −1 BDE209 addition caused histological changes in Pb-exposed earthworms’ body wall. • Strong histopathological effects with BDE209 addition confirmed the enhanced Pb bioavailability. • The presence of higher levels of BDE209 altered subcellular partitioning of Pb in earthworm. • Co-exposure to Pb and BDE209 declined SOD and CAT gene transcripts synergistically. • BDE209 addition elicited up-regulation of Hsp90 gene expression compared to Pb exposure alone. - Abstract: Lead (Pb) and decabromodiphenyl ether (BDE209) are the mainly co-existed contaminants at e-waste recycling sites. The potential toxicity of Pb (250 μg g −1 ) to earthworm Eisenia fetida in the presence of BDE209 (1, 10 and 100 μg g −1 ) was determined during 14-d incubation period. Compared to Pb treatment alone, the co-exposure with 1 μg g −1 BDE209 barely affected Pb uptake, subcellular partitioning and gene expression; however, histopathological changes in earthworms’ body wall (epidermal, circular and longitudinal muscles) demonstrated that 10 and 100 μg g −1 BDE209 additions enhanced Pb uptake and altered its subcellular partitioning, indicating that Pb redistributed from fractions E (cell debris) and D (metal-rich granules) to fraction C (cytosols); Additionally, BDE209 supply significantly inhibited (p < 0.05) the induction of SOD (superoxide dismutase) and CAT (catalase) gene expressions (maximum down-regulation 59% for SOD gene at Pb + 100 μg g −1 BDE209 and 89% for CAT gene at Pb + 10 μg g −1 BDE209), while facilitated (p < 0.05) Hsp90 (heat shock protein 90) gene expression with maximum induction rate of 120% after exposure to Pb + 10 μg g −1 BDE209. These findings illustrate the importance of considering environmental BDE209 co-exposure when assessing Pb bioaccumulation and toxicity in multi-contaminated soil ecosystems.

  4. Effect of gamma irradiation on the activity of alanine and aspartate transaminases in subcellular fractions of the brain and heart in white rats

    Energy Technology Data Exchange (ETDEWEB)

    Plenin, A E

    1973-01-01

    In experiments on rats, the activity of alanine (I) and aspartate transaminases (II) was studied in homogenates and subcellular fractions of the brain and myocardium under normal conditions and for 30 days after ..gamma.. irradiation at 40 rads. The activity of II in brain homogenates increased 1 hour after irradiation but decreased by 20 percent on day 3; it decreased again on days 7 and 15. The activity of brain I increased after 1 hour and 3 days but then returned to normal. The activity of I in heart homogenates increased in all the periods after irradiation. The subcellular fractions exhibited phase changes in the activity of the enzymes. These changes were different in nature from those observed after X and ..gamma.. irradiation at the same dose.

  5. Taurine effects on 45Ca2+ transport in retinal subcellular fractions

    International Nuclear Information System (INIS)

    Pasantes-Morales, H.; Ademe, R.M.; Lopez-Colome, A.M.

    1979-01-01

    The effect of taurine on 45 Ca 2+ transport by subcellular fractions from the chick retina was examined. An inhibitory action of taurine on 45 Ca 2+ uptake was observed in retinal fractions incubated for 1-5 min in a Krebs-bicarbonate medium, pH 7.4. In the crude nuclear fraction, 25 mM taurine produced a decrease of 50% in 45 Ca 2+ uptake; in the crude synaptosomal fraction, taurine reduced 45 Ca 2+ accumulation by 70%; the maximum inhibitory effect of taurine on 45 Ca 2+ uptake (80%) was observed in a fraction containing outer segments and pigment epithelium cells. Taurine effect was specific, dose-dependent and related to osmotically sensitive particles. The results suggest a role of taurine in the regulation of calcium fluxes in the retina. (Auth.)

  6. Physiological aspects of the subcellular localization of glycogen in skeletal muscle

    DEFF Research Database (Denmark)

    Nielsen, Joachim; Ørtenblad, Niels

    2013-01-01

    Glucose is stored in skeletal muscle fibers as glycogen, a branched-chain polymer observed in electron microscopy images as roughly spherical particles (known as β-particles of 10-45 nm in diameter), which are distributed in distinct localizations within the myofibers and are physically associated...... investigated the role and regulation of these distinct deposits of glycogen. In this report, we review the available literature regarding the subcellular localization of glycogen in skeletal muscle as investigated by electron microscopy studies and put this into perspective in terms of the architectural......, topological, and dynamic organization of skeletal muscle fibers. In summary, the distribution of glycogen within skeletal muscle fibers has been shown to depend on the fiber phenotype, individual training status, short-term immobilization, and exercise and to influence both muscle contractility...

  7. AAV exploits subcellular stress associated with inflammation, endoplasmic reticulum expansion, and misfolded proteins in models of cystic fibrosis.

    Directory of Open Access Journals (Sweden)

    Jarrod S Johnson

    2011-05-01

    Full Text Available Barriers to infection act at multiple levels to prevent viruses, bacteria, and parasites from commandeering host cells for their own purposes. An intriguing hypothesis is that if a cell experiences stress, such as that elicited by inflammation, endoplasmic reticulum (ER expansion, or misfolded proteins, then subcellular barriers will be less effective at preventing viral infection. Here we have used models of cystic fibrosis (CF to test whether subcellular stress increases susceptibility to adeno-associated virus (AAV infection. In human airway epithelium cultured at an air/liquid interface, physiological conditions of subcellular stress and ER expansion were mimicked using supernatant from mucopurulent material derived from CF lungs. Using this inflammatory stimulus to recapitulate stress found in diseased airways, we demonstrated that AAV infection was significantly enhanced. Since over 90% of CF cases are associated with a misfolded variant of Cystic Fibrosis Transmembrane Conductance Regulator (ΔF508-CFTR, we then explored whether the presence of misfolded proteins could independently increase susceptibility to AAV infection. In these models, AAV was an order of magnitude more efficient at transducing cells expressing ΔF508-CFTR than in cells expressing wild-type CFTR. Rescue of misfolded ΔF508-CFTR under low temperature conditions restored viral transduction efficiency to that demonstrated in controls, suggesting effects related to protein misfolding were responsible for increasing susceptibility to infection. By testing other CFTR mutants, G551D, D572N, and 1410X, we have shown this phenomenon is common to other misfolded proteins and not related to loss of CFTR activity. The presence of misfolded proteins did not affect cell surface attachment of virus or influence expression levels from promoter transgene cassettes in plasmid transfection studies, indicating exploitation occurs at the level of virion trafficking or processing. Thus

  8. Inferring personal economic status from social network location

    Science.gov (United States)

    Luo, Shaojun; Morone, Flaviano; Sarraute, Carlos; Travizano, Matías; Makse, Hernán A.

    2017-05-01

    It is commonly believed that patterns of social ties affect individuals' economic status. Here we translate this concept into an operational definition at the network level, which allows us to infer the economic well-being of individuals through a measure of their location and influence in the social network. We analyse two large-scale sources: telecommunications and financial data of a whole country's population. Our results show that an individual's location, measured as the optimal collective influence to the structural integrity of the social network, is highly correlated with personal economic status. The observed social network patterns of influence mimic the patterns of economic inequality. For pragmatic use and validation, we carry out a marketing campaign that shows a threefold increase in response rate by targeting individuals identified by our social network metrics as compared to random targeting. Our strategy can also be useful in maximizing the effects of large-scale economic stimulus policies.

  9. Monoterpene biosynthesis potential of plant subcellular compartments.

    Science.gov (United States)

    Dong, Lemeng; Jongedijk, Esmer; Bouwmeester, Harro; Van Der Krol, Alexander

    2016-01-01

    Subcellular monoterpene biosynthesis capacity based on local geranyl diphosphate (GDP) availability or locally boosted GDP production was determined for plastids, cytosol and mitochondria. A geraniol synthase (GES) was targeted to plastids, cytosol, or mitochondria. Transient expression in Nicotiana benthamiana indicated local GDP availability for each compartment but resulted in different product levels. A GDP synthase from Picea abies (PaGDPS1) was shown to boost GDP production. PaGDPS1 was also targeted to plastids, cytosol or mitochondria and PaGDPS1 and GES were coexpressed in all possible combinations. Geraniol and geraniol-derived products were analyzed by GC-MS and LC-MS, respectively. GES product levels were highest for plastid-targeted GES, followed by mitochondrial- and then cytosolic-targeted GES. For each compartment local boosting of GDP biosynthesis increased GES product levels. GDP exchange between compartments is not equal: while no GDP is exchanged from the cytosol to the plastids, 100% of GDP in mitochondria can be exchanged to plastids, while only 7% of GDP from plastids is available for mitochondria. This suggests a direct exchange mechanism for GDP between plastids and mitochondria. Cytosolic PaGDPS1 competes with plastidial GES activity, suggesting an effective drain of isopentenyl diphosphate from the plastids to the cytosol. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  10. Flavonoid accumulation patterns of transparent testa mutants of arabidopsis

    Science.gov (United States)

    Peer, W. A.; Brown, D. E.; Tague, B. W.; Muday, G. K.; Taiz, L.; Murphy, A. S.

    2001-01-01

    Flavonoids have been implicated in the regulation of auxin movements in Arabidopsis. To understand when and where flavonoids may be acting to control auxin movement, the flavonoid accumulation pattern was examined in young seedlings and mature tissues of wild-type Arabidopsis. Using a variety of biochemical and visualization techniques, flavonoid accumulation in mature plants was localized in cauline leaves, pollen, stigmata, and floral primordia, and in the stems of young, actively growing inflorescences. In young Landsberg erecta seedlings, aglycone flavonols accumulated developmentally in three regions, the cotyledonary node, the hypocotyl-root transition zone, and the root tip. Aglycone flavonols accumulated at the hypocotyl-root transition zone in a developmental and tissue-specific manner with kaempferol in the epidermis and quercetin in the cortex. Quercetin localized subcellularly in the nuclear region, plasma membrane, and endomembrane system, whereas kaempferol localized in the nuclear region and plasma membrane. The flavonoid accumulation pattern was also examined in transparent testa mutants blocked at different steps in the flavonoid biosynthesis pathway. The transparent testa mutants were shown to have precursor accumulation patterns similar to those of end product flavonoids in wild-type Landsberg erecta, suggesting that synthesis and end product accumulation occur in the same cells.

  11. Pronounced limb and fibre type differences in subcellular lipid droplet content and distribution in elite skiers before and after exhaustive exercise

    DEFF Research Database (Denmark)

    Koh, Han-Chow E; Nielsen, Joachim; Saltin, Bengt

    2017-01-01

    Although the intramyocellular lipid pool is an important energy store during prolonged exercise, our knowledge concerning its metabolism is still incomplete. Here, quantitative electron microscopy was used to examine subcellular distribution of lipid droplets in type 1 and 2 fibres of the arm...

  12. Subcellular localization and mechanism of secretion of vascular endothelial growth factor in human skeletal muscle

    DEFF Research Database (Denmark)

    Høier, Birgitte; Prats Gavalda, Clara; Qvortrup, Klaus

    2013-01-01

    The subcellular distribution and secretion of vascular endothelial growth factor (VEGF) was examined in skeletal muscle of healthy humans. Skeletal muscle biopsies were obtained from m.v. lateralis before and after a 2 h bout of cycling exercise. VEGF localization was conducted on preparations...... regions and between the contractile elements within the muscle fibers; and in pericytes situated on the skeletal muscle capillaries. Quantitation of the subsarcolemmal density of VEGF vesicles, calculated on top of myonuclei, in the muscle fibers revealed a ∼50% increase (P...

  13. Calculation of neutron radiation energy deposition distribution in subcellular parts of tissue using recombination chamber microdosimetry

    International Nuclear Information System (INIS)

    Golnik, N.; Zielczynski, M.

    1999-01-01

    Recombination chamber microdosimetry was used as an instrument for determination of local neutron radiation energy deposition distribution. The method allows to simulate of subcellular regions of tissue of the order of 70 nm in size. The results obtained qualitatively correspond to relationship between biological efficiency and neutron energy, and show regular differences of distributions achieved by the recombination method and distributions measured using tissue equivalent proportional counters (TEPC), which simulates greater tissue regions of 1 μm in size

  14. Grouping annotations on the subcellular layered interactome demonstrates enhanced autophagy activity in a recurrent experimental autoimmune uveitis T cell line.

    Directory of Open Access Journals (Sweden)

    Xiuzhi Jia

    Full Text Available Human uveitis is a type of T cell-mediated autoimmune disease that often shows relapse-remitting courses affecting multiple biological processes. As a cytoplasmic process, autophagy has been seen as an adaptive response to cell death and survival, yet the link between autophagy and T cell-mediated autoimmunity is not certain. In this study, based on the differentially expressed genes (GSE19652 between the recurrent versus monophasic T cell lines, whose adoptive transfer to susceptible animals may result in respective recurrent or monophasic uveitis, we proposed grouping annotations on a subcellular layered interactome framework to analyze the specific bioprocesses that are linked to the recurrence of T cell autoimmunity. That is, the subcellular layered interactome was established by the Cytoscape and Cerebral plugin based on differential expression, global interactome, and subcellular localization information. Then, the layered interactomes were grouping annotated by the ClueGO plugin based on Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases. The analysis showed that significant bioprocesses with autophagy were orchestrated in the cytoplasmic layered interactome and that mTOR may have a regulatory role in it. Furthermore, by setting up recurrent and monophasic uveitis in Lewis rats, we confirmed by transmission electron microscopy that, in comparison to the monophasic disease, recurrent uveitis in vivo showed significantly increased autophagy activity and extended lymphocyte infiltration to the affected retina. In summary, our framework methodology is a useful tool to disclose specific bioprocesses and molecular targets that can be attributed to a certain disease. Our results indicated that targeted inhibition of autophagy pathways may perturb the recurrence of uveitis.

  15. Seasonal variations in hepatic Cd and Cu concentrations and in the sub-cellular distribution of these metals in juvenile yellow perch (Perca flavescens)

    International Nuclear Information System (INIS)

    Kraemer, Lisa D.; Campbell, Peter G.C.; Hare, Landis

    2006-01-01

    Temporal fluctuations in metal (Cd and Cu) concentrations were monitored over four months (May to August) in the liver of juvenile yellow perch (Perca flavescens) sampled from four lakes situated along a metal concentration gradient in northwestern Quebec: Lake Opasatica (reference lake, low metal concentrations), Lake Vaudray (moderate metal concentrations) and lakes Osisko and Dufault (high metal levels). The objectives of this study were to determine if hepatic metal concentrations and metal-handling strategies at the sub-cellular level varied seasonally. Our results showed that Cd and Cu concentrations varied most, in both absolute and relative values, in fish with the highest hepatic metal concentrations, whereas fish sampled from the reference lake did not show any significant variation. To examine the sub-cellular partitioning of these two metals, we used a differential centrifugation technique that allowed the separation of cellular debris, metal detoxified fractions (heat-stable proteins such as metallothionein) and metal sensitive fractions (heat-denaturable proteins (HDP) and organelles). Whereas Cd concentrations in organelle and HDP fractions were maintained at low concentrations in perch from Lakes Opasatica and Vaudray, concentrations in these sensitive fractions were higher and more variable in perch from Lakes Dufault and Osisko, suggesting that there may be some liver dysfunction in these two fish populations. Similarly, Cu concentrations in these sensitive fractions were higher and more variable in perch from the two most Cu-contaminated lakes (Dufault and Osisko) than in perch from the other two lakes, suggesting a breakdown of homeostatic control over this metal. These results suggest not only that metal concentrations vary seasonally, but also that concentrations vary most in fish from contaminated sites. Furthermore, at the sub-cellular level, homeostatic control of metal concentrations in metal-sensitive fractions is difficult to maintain in

  16. Computer simulation and interpretation of 45Ca efflux profile patterns

    International Nuclear Information System (INIS)

    Borle, A.B.; Uchikawa, T.; Anderson, J.H.

    1982-01-01

    Stimulations or inhibitions by various agents of 45 Ca efflux from prelabeled cells or tissues display distinct and reproducible profile patterns when the results are plotted against time as fractional efflux ratios (FER). FER is the fractional efflux of 45 Ca from stimulated cells divided by the fractional efflux from a control unstimulated group. These profile patterns fall into three categories: peak patterns, exponential patterns, and mixed patterns. Each category can be positive (stimulation) or negative (inhibition). The interpretation of these profiles is difficult because 45 Ca efflux depends on three variables: the rate of calcium transport out of the cell, the specific activity of the cell compartment from which the calcium originates, and the concentration of free calcium in this compartment. A computer model based on data obtained by kinetic analyses of 45 Ca desaturation curves and consisting of two distinct intracellular pools was designed to follow the concentration of the traced substance ( 40 Ca), the tracer ( 45 Ca), and the specific activity of each compartment before, during, and after the stimulation or the inhibition of calcium fluxes at various pool boundaries. The computer model can reproduce all the FER profiles obtained experimentally and bring information which may be helpful to the interpretation of this type of data. Some predictions of the model were tested experimentally, and the results support the views that a peak pattern may reflect a sustained change in calcium transport across the plasma membrane, that an exponential pattern arises from calcium mobilization from an internal subcellular pool, and that a mixed pattern may be caused by a simultaneous change in calcium fluxes at both compartment boundaries

  17. Higher Level Visual Cortex Represents Retinotopic, Not Spatiotopic, Object Location

    Science.gov (United States)

    Kanwisher, Nancy

    2012-01-01

    The crux of vision is to identify objects and determine their locations in the environment. Although initial visual representations are necessarily retinotopic (eye centered), interaction with the real world requires spatiotopic (absolute) location information. We asked whether higher level human visual cortex—important for stable object recognition and action—contains information about retinotopic and/or spatiotopic object position. Using functional magnetic resonance imaging multivariate pattern analysis techniques, we found information about both object category and object location in each of the ventral, dorsal, and early visual regions tested, replicating previous reports. By manipulating fixation position and stimulus position, we then tested whether these location representations were retinotopic or spatiotopic. Crucially, all location information was purely retinotopic. This pattern persisted when location information was irrelevant to the task, and even when spatiotopic (not retinotopic) stimulus position was explicitly emphasized. We also conducted a “searchlight” analysis across our entire scanned volume to explore additional cortex but again found predominantly retinotopic representations. The lack of explicit spatiotopic representations suggests that spatiotopic object position may instead be computed indirectly and continually reconstructed with each eye movement. Thus, despite our subjective impression that visual information is spatiotopic, even in higher level visual cortex, object location continues to be represented in retinotopic coordinates. PMID:22190434

  18. Cadmium sensitivity, uptake, subcellular distribution and thiol induction in a marine diatom: Exposure to cadmium

    International Nuclear Information System (INIS)

    Wang Mengjiao; Wang Wenxiong

    2011-01-01

    The aims of this study were to (1) evaluate the changes in the Cd tolerance of a marine diatom after exposure under different Cd concentrations for various durations and (2) to explore the potential subcellular and biochemical mechanisms underlying these changes. The 72-h toxicity, short-term Cd uptake, subcellular Cd distribution, as well as the synthesis of phytochelatins (PCs) were measured in a marine diatom Thalassiosira nordenskioeldii after exposure to a range of free Cd ion concentrations ([Cd 2+ ], 0.01-84 nM) for 1-15 days. Surprisingly, the diatoms did not acquire higher resistance to Cd after exposure; instead their sensitivity to Cd increased with a higher exposed [Cd 2+ ] and a longer exposure period. The underlying mechanisms could be traced to the responses of Cd cellular accumulation and the intrinsic detoxification ability of the preconditioned diatoms. Generally, exposure to a higher [Cd 2+ ] and for a longer period increased the Cd uptake rate, cellular accumulation, as well as the Cd concentration in metal-sensitive fraction (MSF) in these diatoms. In contrast, although PCs were induced by the environmental Cd stress (with PC 2 being the most affected), the increased intracellular Cd to PC-SH ratio implied that the PCs' detoxification ability had reduced after Cd exposure. All these responses resulted in an elevated Cd sensitivity as exposed [Cd 2+ ] and duration increased. This study shows that the physiological/biochemical and kinetic responses of phytoplankton upon metal exposure deserve further investigation.

  19. State and location dependence of action potential metabolic cost in cortical pyramidal neurons.

    Science.gov (United States)

    Hallermann, Stefan; de Kock, Christiaan P J; Stuart, Greg J; Kole, Maarten H P

    2012-06-03

    Action potential generation and conduction requires large quantities of energy to restore Na(+) and K(+) ion gradients. We investigated the subcellular location and voltage dependence of this metabolic cost in rat neocortical pyramidal neurons. Using Na(+)/K(+) charge overlap as a measure of action potential energy efficiency, we found that action potential initiation in the axon initial segment (AIS) and forward propagation into the axon were energetically inefficient, depending on the resting membrane potential. In contrast, action potential backpropagation into dendrites was efficient. Computer simulations predicted that, although the AIS and nodes of Ranvier had the highest metabolic cost per membrane area, action potential backpropagation into the dendrites and forward propagation into axon collaterals dominated energy consumption in cortical pyramidal neurons. Finally, we found that the high metabolic cost of action potential initiation and propagation down the axon is a trade-off between energy minimization and maximization of the conduction reliability of high-frequency action potentials.

  20. Locating underground uranium deposits

    International Nuclear Information System (INIS)

    Felice, P.E.

    1979-01-01

    Underground uranium deposits are located by placing wires of dosimeters each about 5 to 18 mg/cm 2 thick underground in a grid pattern. Each dosimeter contains a phosphor which is capable of storing the energy of alpha particles. In each pair one dosimeter is shielded from alpha particles with more than 18 mg/cm 2 thick opaque material but not gamma and beta rays and the other dosimeter is shielded with less than 1 mg/cm 2 thick opaque material to exclude dust. After a period underground the dosimeters are heated which releases the stored energy as light. The amount of light produced from the heavily shielded dosimeter is subtracted from the amount of light produced from the thinly shielded dosimeter to give an indication of the location and quantity of uranium underground

  1. Comparison of the subcellular distribution of monomeric 239Pu and 59Fe in the liver of rat, mouse, and Syrian and Chinese hamsters

    International Nuclear Information System (INIS)

    Winter, R.; Seidel, A.

    1982-01-01

    The subcellular distribution of 239 Pu and 59 Fe 10 days after intravenous injection as a citrate complex was investigated by sucrose density gradient centrifugation in the liver of rat, mouse, and Syrian and Chinese hamsters. Lysosomes were separated from other cell constituents by injection of the nonionic detergent Triton WR 1339 4 days before sacrifice. The Triton-induced decrease in the density of the lysosomes was very similar in all four animal species and was followed closely by a corresponding decrease of the median density of the 239 Pu profiles in rat, mouse, and, to a smaller extent, Syrian hamster. However, in Chinese hamster a clear correspondence between lysosomes and 239 Pu was not found 10 days after nuclide injection. It was concluded that lysosomes are the main storage organelles fo 239 Pu in the liver of rat and mouse and that in all four animal species mitochondria and endoplasmic reticulum do not play any significant role in binding the radionuclide. The relevance of pericellular membranes has to be checked. The distribution patterns of 59 Fe and 239 Pu were quite different

  2. Current Gaps in the Understanding of the Subcellular Distribution of Exogenous and Endogenous Protein TorsinA.

    Science.gov (United States)

    Harata, N Charles

    2014-01-01

    An in-frame deletion leading to the loss of a single glutamic acid residue in the protein torsinA (ΔE-torsinA) results in an inherited movement disorder, DYT1 dystonia. This autosomal dominant disease affects the function of the brain without causing neurodegeneration, by a mechanism that remains unknown. We evaluated the literature regarding the subcellular localization of torsinA. Efforts to elucidate the pathophysiological basis of DYT1 dystonia have relied partly on examining the subcellular distribution of the wild-type and mutated proteins. A typical approach is to introduce the human torsinA gene (TOR1A) into host cells and overexpress the protein therein. In both neurons and non-neuronal cells, exogenous wild-type torsinA introduced in this manner has been found to localize mainly to the endoplasmic reticulum, whereas exogenous ΔE-torsinA is predominantly in the nuclear envelope or cytoplasmic inclusions. Although these outcomes are relatively consistent, findings for the localization of endogenous torsinA have been variable, leaving its physiological distribution a matter of debate. As patients' cells do not overexpress torsinA proteins, it is important to understand why the reported distributions of the endogenous proteins are inconsistent. We propose that careful optimization of experimental methods will be critical in addressing the causes of the differences among the distributions of endogenous (non-overexpressed) vs. exogenously introduced (overexpressed) proteins.

  3. Exploring Intracity Taxi Mobility during the Holidays for Location-Based Marketing

    Directory of Open Access Journals (Sweden)

    Wen-jun Wang

    2017-01-01

    Full Text Available Taxi mobility information can be considered as an important source of mobile location-based information for making marketing decisions. So, studying the behavioral patterns of taxis in a Chinese city during the holidays using the global positioning system (GPS can yield remarkable insights into people’s holiday travel patterns, as well as the odd-even day vehicle prohibition system. This paper studies the behavioral patterns of taxis during specific holidays in terms of pick-up and drop-off locations, travel distance, mobile step length, travel direction, and radius of gyration on the basis of GPS data. Our results support the idea of a polycentric city. It is concluded from the reporting results that there are no significant changes in the distribution of pick-up and drop-off locations, travel distance, or travel direction during holidays in comparison to work days. The results suggest that human travel by taxi has a stable regularity. However, the radius of gyration of movement by most of the taxis becomes significantly larger during holidays that indicate more long-distance travels. The current study will be helpful for location-based marketing during the holidays.

  4. Rational Design of Semiconductor Nanostructures for Functional Subcellular Interfaces.

    Science.gov (United States)

    Parameswaran, Ramya; Tian, Bozhi

    2018-05-15

    One of the fundamental questions guiding research in the biological sciences is how cellular systems process complex physical and environmental cues and communicate with each other across multiple length scales. Importantly, aberrant signal processing in these systems can lead to diseases that can have devastating impacts on human lives. Biophysical studies in the past several decades have demonstrated that cells can respond to not only biochemical cues but also mechanical and electrical ones. Thus, the development of new materials that can both sense and modulate all of these pathways is necessary. Semiconducting nanostructures are an emerging class of discovery platforms and tools that can push the limits of our ability to modulate and sense biological behaviors for both fundamental research and clinical applications. These materials are of particular interest for interfacing with cellular systems due to their matched dimension with subcellular components (e.g., cytoskeletal filaments), and easily tunable properties in the electrical, optical and mechanical regimes. Rational design via traditional or new approaches, such as nanocasting and mesoscale chemical lithography, can allow us to control micro- and nanoscale features in nanowires to achieve new biointerfaces. Both processes endogenous to the target cell and properties of the material surface dictate the character of these interfaces. In this Account, we focus on (1) approaches for the rational design of semiconducting nanowires that exhibit unique structures for biointerfaces, (2) recent fundamental discoveries that yield robust biointerfaces at the subcellular level, (3) intracellular electrical and mechanical sensing, and (4) modulation of cellular behaviors through material topography and remote physical stimuli. In the first section, we discuss new approaches for the synthetic control of micro- and nanoscale features of these materials. In the second section, we focus on achieving biointerfaces with

  5. Continuity and Variation in Chinese Patterns of Socialization.

    Science.gov (United States)

    Ho, David Y. F.

    1989-01-01

    Reviews literature on Chinese patterns of socialization. Discusses methodological issues with respect to continuity versus change through time, and variation across geographical locations, systematically considering variables of gender, age, and social class. Concludes that departures from traditional pattern in different locations are evident,…

  6. Integrated optimization of location assignment and sequencing in multi-shuttle automated storage and retrieval systems under modified 2n-command cycle pattern

    Science.gov (United States)

    Yang, Peng; Peng, Yongfei; Ye, Bin; Miao, Lixin

    2017-09-01

    This article explores the integrated optimization problem of location assignment and sequencing in multi-shuttle automated storage/retrieval systems under the modified 2n-command cycle pattern. The decision of storage and retrieval (S/R) location assignment and S/R request sequencing are jointly considered. An integer quadratic programming model is formulated to describe this integrated optimization problem. The optimal travel cycles for multi-shuttle S/R machines can be obtained to process S/R requests in the storage and retrieval request order lists by solving the model. The small-sized instances are optimally solved using CPLEX. For large-sized problems, two tabu search algorithms are proposed, in which the first come, first served and nearest neighbour are used to generate initial solutions. Various numerical experiments are conducted to examine the heuristics' performance and the sensitivity of algorithm parameters. Furthermore, the experimental results are analysed from the viewpoint of practical application, and a parameter list for applying the proposed heuristics is recommended under different real-life scenarios.

  7. Subcellular localization, mobility, and kinetic activity of glucokinase in glucose-responsive insulin-secreting cells.

    Science.gov (United States)

    Stubbs, M; Aiston, S; Agius, L

    2000-12-01

    We investigated the subcellular localization, mobility, and activity of glucokinase in MIN6 cells, a glucose-responsive insulin-secreting beta-cell line. Glucokinase is present in the cytoplasm and a vesicular/granule compartment that is partially colocalized with insulin granules. The granular staining of glucokinase is preserved after permeabilization of the cells with digitonin. There was no evidence for changes in distribution of glucokinase between the cytoplasm and the granule compartment during incubation of the cells with glucose. The rate of release of glucokinase and of phosphoglucoisomerase from digitonin-permeabilized cells was slower when cells were incubated at an elevated glucose concentration (S0.5 approximately 15 mmol/l). This effect of glucose was counteracted by competitive inhibitors of glucokinase (5-thioglucose and mannoheptulose) but was unaffected by fructose analogs and may be due to changes in cell shape or conformation of the cytoskeleton that are secondary to glucose metabolism. Based on the similar release of glucokinase and phosphoglucoisomerase, we found no evidence for specific binding of cytoplasmic digitonin-extractable glucokinase. The affinity of beta-cells for glucose is slightly lower than that in cell extracts and, unlike that in hepatocytes, is unaffected by fructose, tagatose, or a high-K+ medium, which is consistent with the lack of change in glucokinase distribution or release. We conclude that glucokinase is present in two locations, cytoplasm and the granular compartment, and that it does not translocate between them. This conclusion is consistent with the lack of adaptive changes in the glucose phosphorylation affinity. The glucokinase activity associated with the insulin granules may have a role in either direct or indirect coupling between glucose phosphorylation and insulin secretion.

  8. Changes in subcellular elemental distributions accompanying the acrosome reaction in sea urchin sperm

    International Nuclear Information System (INIS)

    Cantino, M.E.; Schackmann, R.W.; Johnson, D.E.

    1983-01-01

    Energy-dispersive x-ray microanalysis was used to analyze changes in the subcellular distributions of Na, Mg, P, S, Cl, K, and Ca associated with the acrosome reaction of sea urchin sperm. Within 5 sec after induction of the acrosome reaction, nuclear Na and mitochondrial Ca increased and nuclear and mitochondrial K decreased. Uptake of mitochondrial P was detected after several minutes, and increases in nuclear Mg were detected only after 5-10 min of incubation following induction of the reaction. The results suggest that sudden permeability changes in the sperm plasma membrane are associated with the acrosome reaction, but that complete breakdown of membrane and cell function does not occur for several minutes

  9. Uptake and subcellular distribution of triclosan in typical hydrophytes under hydroponic conditions.

    Science.gov (United States)

    He, Yupeng; Nie, Enguang; Li, Chengming; Ye, Qingfu; Wang, Haiyan

    2017-01-01

    The increasing discharge of pharmaceuticals and personal care products (PPCPs) into the environment has generated serious public concern. The recent awareness of the environmental impact of this emerging class of pollutants and their potential adverse effects on human health have been documented in many reports. However, information regarding uptake and intracellular distribution of PPCPs in hydrophytes under hydroponic conditions, and potential human exposure is very limited. A laboratory experiment was conducted using 14 C-labeled triclosan (TCS) to investigate uptake and distribution of TCS in six aquatic plants (water spinach, purple perilla, cress, penny grass, cane shoot, and rice), and the subcellular distribution of 14 C-TCS was determined in these plants. The results showed that the uptake and removal rate of TCS from nutrient solution by hydrophytes followed the order of cress (96%) > water spinach (94%) > penny grass (87%) > cane shoot (84%) > purple perilla (78%) > rice (63%) at the end of incubation period (192 h). The range of 14 C-TCS content in the roots was 94.3%-99.0% of the added 14 C-TCS, and the concentrations in roots were 2-3 orders of magnitude greater than those in shoots. Furthermore, the subcellular fraction-concentration factor (3.6 × 10 2 -2.6 × 10 3  mL g -1 ), concentration (0.58-4.47 μg g -1 ), and percentage (30%-61%) of 14 C-TCS in organelles were found predominantly greater than those in cell walls and/or cytoplasm. These results indicate that for these plants, the roots are the primary storage for TCS, and within plant cells organelles are the major domains for TCS accumulation. These findings provide a better understanding of translocation and accumulation of TCS in aquatic plants at the cellular level, which is valuable for environmental and human health assessments of TCS. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Location, location, location: Extracting location value from house prices

    OpenAIRE

    Kolbe, Jens; Schulz, Rainer; Wersing, Martin; Werwatz, Axel

    2012-01-01

    The price for a single-family house depends both on the characteristics of the building and on its location. We propose a novel semiparametric method to extract location values from house prices. After splitting house prices into building and land components, location values are estimated with adaptive weight smoothing. The adaptive estimator requires neither strong smoothness assumptions nor local symmetry. We apply the method to house transactions from Berlin, Germany. The estimated surface...

  11. The Photospheric Flow near the Flare Locations of Active Regions

    Indian Academy of Sciences (India)

    tribpo

    in the active regions along with few locations of upflows. The localised upflows are observed in the light bridges and emerging flux regions with different speeds (Beckers & Schroter 1969). The flow patterns of flare locations in the active regions are observed by using the tower vector magnetograph (TVM) of Marshall.

  12. Distinct domains within the NITROGEN LIMITATION ADAPTATION protein mediate its subcellular localization and function in the nitrate-dependent phosphate homeostasis pathway

    Science.gov (United States)

    The NITROGEN LIMITATION ADAPTATION (NLA) protein is a RING-type E3 ubiquitin ligase that plays an essential role in the regulation of nitrogen and phosphate homeostasis. NLA is localized to two distinct subcellular sites, the plasma membrane and nucleus, and contains four distinct domains: i) a RING...

  13. Disparate subcellular location of putative sortase substrates in Clostridium difficile.

    Science.gov (United States)

    Peltier, Johann; Shaw, Helen A; Wren, Brendan W; Fairweather, Neil F

    2017-08-23

    Clostridium difficile is a gastrointestinal pathogen but how the bacterium colonises this niche is still little understood. Sortase enzymes covalently attach specific bacterial proteins to the peptidoglycan cell wall and are often involved in colonisation by pathogens. Here we show C. difficile proteins CD2537 and CD3392 are functional substrates of sortase SrtB. Through manipulation of the C-terminal regions of these proteins we show the SPKTG motif is essential for covalent attachment to the cell wall. Two additional putative substrates, CD0183 which contains an SPSTG motif, and CD2768 which contains an SPQTG motif, are not cleaved or anchored to the cell wall by sortase. Finally, using an in vivo asymmetric cleavage assay, we show that despite containing a conserved SPKTG motif, in the absence of SrtB these proteins are localised to disparate cellular compartments.

  14. Young adult eating and food-purchasing patterns food store location and residential proximity.

    Science.gov (United States)

    Laska, Melissa Nelson; Graham, Dan J; Moe, Stacey G; Van Riper, David

    2010-11-01

    Young adulthood is a critical age for weight gain, yet scant research has examined modifiable contextual influences on weight that could inform age-appropriate interventions. The aims of this research included describing where young adults eat and purchase food, including distance from home, and estimating the percentage of eating/purchasing locations contained within GIS-generated buffers traditionally used in research. Forty-eight participants (aged 18-23 years, n=27 women) represented diverse lifestyle groups. Participants logged characteristics of all eating/drinking occasions (including location) occurring over 7 days (n=1237) using PDAs. In addition, they recorded addresses for stores where they purchased food to bring home. Using GIS, estimates were made of distances between participants' homes and eating/purchasing locations. Data collection occurred in 2008-2009 and data analysis occurred in 2010. Among participants living independently or with family (n=36), 59.1% of eating occasions were at home. Away-from-home eating locations averaged 6.7 miles from home; food-shopping locations averaged 3.1 miles from home. Only 12% of away-from-home eating occasions fell within -mile residential buffers, versus 17% within 1 mile and 34% within 2 miles. In addition, 12%, 19%, and 58% of shopping trips fell within these buffers, respectively. Results were similar for participants residing in dormitories. Young adults often purchase and eat food outside of commonly used GIS-generated buffers around their homes. This suggests the need for a broader understanding of their food environments. Copyright © 2010 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  15. The in vitro synthesis of β-galactosidase induced in a subcellular structure of Escherichia coli (1961)

    International Nuclear Information System (INIS)

    Nisman, B.; Kayser, A.; Demailly, J.; Genin, C.

    1961-01-01

    Isopropyl-thio-galactoside (IPTG), an inducer of 3-galactosidase, makes it possible to synthesise this enzyme in vitro with the subcellular structure (P 1 ). The enzyme is isolated from the bacteria Escherichia coli K 12 which are inductive but not induced. The incorporation of radioactive amino-acids, which is stimulated by the presence of an inducer, was studied during the course of the enzyme synthesis. Saccharose suppresses the induction of β-galactosidase. The presence of a specific inhibitor in the structure studied is considered. (authors) [fr

  16. Sub-cellular Electrical Heterogeneity Revealed by Loose Patch Recording Reflects Differential Localization of Sarcolemmal Ion Channels in Intact Rat Hearts

    Directory of Open Access Journals (Sweden)

    Igor V. Kubasov

    2018-02-01

    Full Text Available The cardiac action potential (AP is commonly recoded as an integral signal from isolated myocytes or ensembles of myocytes (with intracellular microelectrodes and extracellular macroelectrodes, respectively. These signals, however, do not provide a direct measure of activity of ion channels and transporters located in two major compartments of a cardiac myocyte: surface sarcolemma and the T-tubule system, which differentially contribute to impulse propagation and excitation-contraction (EC coupling. In the present study we investigated electrical properties of myocytes within perfused intact rat heart employing loose patch recording with narrow-tip (2 μm diameter extracellular electrodes. Using this approach, we demonstrated two distinct types of electric signals with distinct waveforms (single peak and multi-peak AP; AP1 and AP2, respectively during intrinsic pacemaker activity. These two types of waveforms depend on the position of the electrode tip on the myocyte surface. Such heterogeneity of electrical signals was lost when electrodes of larger pipette diameter were used (5 or 10 μm, which indicates that the electric signal was assessed from a region of <5 μm. Importantly, both pharmacological and mathematical simulation based on transverse (T-tubular distribution suggested that while the AP1 and the initial peak of AP2 are predominantly attributable to the fast, inward Na+ current in myocyte's surface sarcolemma, the late components of AP2 are likely representative of currents associated with L-type Ca2+ channel and Na+/Ca2+ exchanger (NCX currents which are predominantly located in T-tubules. Thus, loose patch recording with narrow-tip pipette provides a valuable tool for studying cardiac electric activity on the subcellular level in the intact heart.

  17. Determination of ABA-binding proteins contents in subcellular fractions isolated from cotton seedlings using radioimmunoanalysis

    International Nuclear Information System (INIS)

    Tursunkhodjayeva, F.M.

    2004-01-01

    Full text: Knowledge of plants' hormone receptor sites is essential to understanding of the principles of phytohormone action in cells and tissues. The hormone abscisic acid (ABA) takes part in many important physiological processes of plants, including water balance and resistance to salt stress. The detection of salt tolerance in the early stages of ontogenesis is desirable for effective cultivation of cotton. Usually such characteristics are determined visually after genetic analysis of hybrids over several generations. This classic method of genetics requires a long time to grow several generations of cotton plants. In this connection we study ABA-binding protein contents in subcellular fractions isolated from seedlings of several kinds of cotton with different tolerance to salt stress. The contents of ABA-binding protein in nuclei and chloroplasts fractions isolated from cotton seedlings were determined using radioimmunoanalysis. The subcellular fractions were prepared by ultracentrifugation in 0,25 - 2,2 M sucrose gradient. ABA-binding protein was isolated from cotton seedlings by affinity chromatography. The antibodies against ABA-binding protein of cotton were developed in rabbits according standard protocols. Than the antibodies were labelled by radioisotope J 125 according Greenwood et al. It was shown, that the nuclei and chloroplasts fractions isolated from cotton with high tolerance to salt stress contain ABA-binding protein up to 1,5-1,8 times more, than the same fractions from cotton with low tolerance to salt stress. So, the ABA-binding protein contents in cotton seedlings may be considered as a marker for screening of cotton kinds, which may potentially have high tolerance to salt stress

  18. Human skeletal muscle glycogen utilization in exhaustive exercise: role of subcellular localization and fibre type

    Science.gov (United States)

    Nielsen, Joachim; Holmberg, Hans-Christer; Schrøder, Henrik D; Saltin, Bengt; Ørtenblad, Niels

    2011-01-01

    Abstract Although glycogen is known to be heterogeneously distributed within skeletal muscle cells, there is presently little information available about the role of fibre types, utilization and resynthesis during and after exercise with respect to glycogen localization. Here, we tested the hypothesis that utilization of glycogen with different subcellular localizations during exhaustive arm and leg exercise differs and examined the influence of fibre type and carbohydrate availability on its subsequent resynthesis. When 10 elite endurance athletes (22 ± 1 years, = 68 ± 5 ml kg−1 min−1, mean ± SD) performed one hour of exhaustive arm and leg exercise, transmission electron microscopy revealed more pronounced depletion of intramyofibrillar than of intermyofibrillar and subsarcolemmal glycogen. This phenomenon was the same for type I and II fibres, although at rest prior to exercise, the former contained more intramyofibrillar and subsarcolemmal glycogen than the latter. In highly glycogen-depleted fibres, the remaining small intermyofibrillar and subsarcolemmal glycogen particles were often found to cluster in groupings. In the recovery period, when the athletes received either a carbohydrate-rich meal or only water the impaired resynthesis of glycogen with water alone was associated primarily with intramyofibrillar glycogen. In conclusion, after prolonged high-intensity exercise the depletion of glycogen is dependent on subcellular localization. In addition, the localization of glycogen appears to be influenced by fibre type prior to exercise, as well as carbohydrate availability during the subsequent period of recovery. These findings provide insight into the significance of fibre type-specific compartmentalization of glycogen metabolism in skeletal muscle during exercise and subsequent recovery. PMID:21486810

  19. [L-arginine metabolism enzyme activities in rat liver subcellular fractions under condition of protein deprivation].

    Science.gov (United States)

    Kopyl'chuk, G P; Buchkovskaia, I M

    2014-01-01

    The features of arginase and NO-synthase pathways of arginine's metabolism have been studied in rat liver subcellular fractions under condition of protein deprivation. During the experimental period (28 days) albino male rats were kept on semi synthetic casein diet AIN-93. The protein deprivation conditions were designed as total absence of protein in the diet and consumption of the diet partially deprived with 1/2 of the casein amount compared to in the regular diet. Daily diet consumption was regulated according to the pair feeding approach. It has been shown that the changes of enzyme activities, involved in L-arginine metabolism, were characterized by 1.4-1.7 fold decrease in arginase activity, accompanied with unchanged NO-synthase activity in cytosol. In mitochondrial fraction the unchanged arginase activity was accompanied by 3-5 fold increase of NO-synthase activity. At the terminal stages of the experiment the monodirectional dynamics in the studied activities have been observed in the mitochondrial and cytosolfractions in both experimental groups. In the studied subcellular fractions arginase activity decreased (2.4-2.7 fold with no protein in the diet and 1.5 fold with partly supplied protein) and was accompanied by NO-synthase activity increase by 3.8 fold in cytosole fraction, by 7.2 fold in mitochondrial fraction in the group with no protein in the diet and by 2.2 and 3.5 fold in the group partialy supplied with protein respectively. The observed tendency is presumably caused by the switch of L-arginine metabolism from arginase into oxidizing NO-synthase parthway.

  20. Hepatocyte nuclear structure and subcellular distribution of copper in zebrafish Brachydanio rerio and roach Rutilus rutilus (Teleostei, Cyprinidae) exposed to copper sulphate

    Energy Technology Data Exchange (ETDEWEB)

    Paris-Palacios, Severine [Universite de Reims Champagne-Ardenne (URCA), UFR Sciences Exactes et Naturelles, Laboratoire d' Eco-Toxicologie, Institut International de Recherche sur les Ions Metalliques, B.P. 1039-51687 Reims cedex 2 (France)]. E-mail: severine.paris@univ-reims.fr; Biagianti-Risbourg, Sylvie [Universite de Reims Champagne-Ardenne (URCA), UFR Sciences Exactes et Naturelles, Laboratoire d' Eco-Toxicologie, Institut International de Recherche sur les Ions Metalliques, B.P. 1039-51687 Reims cedex 2 (France)]. E-mail: sylvie.biagianti@univ-reims.fr

    2006-05-10

    Copper is a trace element essential to life, but also a heavy metal with toxic effect clearly demonstrated. Cu induced perturbations in fish liver are well documented but the variability of the reported results is large. In this study two cyprinids, zebrafish and roach, were exposed to copper. Reported histocytological changes are either adaptative or degenerative depending on fish species, concentration of metal, and duration of exposure. Hepatic subcellular distribution of copper was determined by X-ray microanalysis in control and Cu-exposed roach and zebrafish. Sublethal copper sulphate contamination induced the development of a particular nucleolar alteration forming a network or honeycomb like structure in liver. This perturbation is observable in almost all the hepatocytes of zebrafish and roach exposed to copper for a minimum of 4 days of exposure. It seemed to concern more precisely the pars fibrosa. X-ray microanalysis showed that the appearance of network nucleolus was in relation to a Cu accumulation. Cu deposit was well located in the network as pars granulosa and nucloplasm showed very lower metal concentrations. The origin and consequence of network structure in nucleolus was discussed.

  1. Hepatocyte nuclear structure and subcellular distribution of copper in zebrafish Brachydanio rerio and roach Rutilus rutilus (Teleostei, Cyprinidae) exposed to copper sulphate

    International Nuclear Information System (INIS)

    Paris-Palacios, Severine; Biagianti-Risbourg, Sylvie

    2006-01-01

    Copper is a trace element essential to life, but also a heavy metal with toxic effect clearly demonstrated. Cu induced perturbations in fish liver are well documented but the variability of the reported results is large. In this study two cyprinids, zebrafish and roach, were exposed to copper. Reported histocytological changes are either adaptative or degenerative depending on fish species, concentration of metal, and duration of exposure. Hepatic subcellular distribution of copper was determined by X-ray microanalysis in control and Cu-exposed roach and zebrafish. Sublethal copper sulphate contamination induced the development of a particular nucleolar alteration forming a network or honeycomb like structure in liver. This perturbation is observable in almost all the hepatocytes of zebrafish and roach exposed to copper for a minimum of 4 days of exposure. It seemed to concern more precisely the pars fibrosa. X-ray microanalysis showed that the appearance of network nucleolus was in relation to a Cu accumulation. Cu deposit was well located in the network as pars granulosa and nucloplasm showed very lower metal concentrations. The origin and consequence of network structure in nucleolus was discussed

  2. Basic amino acid residues located in the N-terminal region of BEND3 are essential for its nuclear localization

    Energy Technology Data Exchange (ETDEWEB)

    Shiheido, Hirokazu, E-mail: shiheido@ak.med.kyoto-u.ac.jp; Shimizu, Jun

    2015-02-20

    BEN domain-containing protein 3 (BEND3) has recently been reported to function as a heterochromatin-associated protein in transcriptional repression in the nucleus. BEND3 should have nuclear localization signals (NLSs) to localize to the nucleus in light of its molecular weight, which is higher than that allowed to pass through nuclear pore complexes. We here analyzed the subcellular localization of deletion/site-directed mutants of human BEND3 by an immunofluorescence assay in an attempt to identify the amino acids essential for its nuclear localization. We found that three basic amino acid residues located in the N-terminal region of BEND3 (BEND3{sub 56–58}, KRK) are essential, suggesting that these residues play a role as a functional NLS. These results provide valuable information for progressing research on BEND3. - Highlights: • BEND3 localizes to the nucleus. • The N-terminal 60 amino acids region of BEND3 contains NLS. • Amino acids located between 56 and 58 of BEND3 (KRK) are part of NLS. • KRK motif is highly conserved among BEND3 homologs.

  3. Current Gaps in the Understanding of the Subcellular Distribution of Exogenous and Endogenous Protein TorsinA

    Directory of Open Access Journals (Sweden)

    N. Charles Harata

    2014-09-01

    Full Text Available Background: An in‐frame deletion leading to the loss of a single glutamic acid residue in the protein torsinA (ΔE‐torsinA results in an inherited movement disorder, DYT1 dystonia. This autosomal dominant disease affects the function of the brain without causing neurodegeneration, by a mechanism that remains unknown.Methods: We evaluated the literature regarding the subcellular localization of torsinA.Results: Efforts to elucidate the pathophysiological basis of DYT1 dystonia have relied partly on examining the subcellular distribution of the wild‐type and mutated proteins. A typical approach is to introduce the human torsinA gene (TOR1A into host cells and overexpress the protein therein. In both neurons and non‐neuronal cells, exogenous wild‐type torsinA introduced in this manner has been found to localize mainly to the endoplasmic reticulum, whereas exogenous ΔE‐torsinA is predominantly in the nuclear envelope or cytoplasmic inclusions. Although these outcomes are relatively consistent, findings for the localization of endogenous torsinA have been variable, leaving its physiological distribution a matter of debate.Discussion: As patients’ cells do not overexpress torsinA proteins, it is important to understand why the reported distributions of the endogenous proteins are inconsistent. We propose that careful optimization of experimental methods will be critical in addressing the causes of the differences among the distributions of endogenous (non‐overexpressed vs. exogenously introduced (overexpressed proteins.

  4. Dietary Patterns and Risk of Colorectal Cancer: Analysis by Tumor Location and Molecular Subtypes.

    Science.gov (United States)

    Mehta, Raaj S; Song, Mingyang; Nishihara, Reiko; Drew, David A; Wu, Kana; Qian, Zhi Rong; Fung, Teresa T; Hamada, Tsuyoshi; Masugi, Yohei; da Silva, Annacarolina; Shi, Yan; Li, Wanwan; Gu, Mancang; Willett, Walter C; Fuchs, Charles S; Giovannucci, Edward L; Ogino, Shuji; Chan, Andrew T

    2017-06-01

    Western and prudent dietary patterns have been associated with higher and lower risks of colorectal cancer (CRC), respectively. However, little is known about the associations between dietary patterns and specific anatomic subsites or molecular subtypes of CRC. We used multivariable Cox proportional hazards models to examine the associations between Western and prudent dietary patterns and CRC risk in the Health Professionals Follow-up Study and Nurses' Health Study. After up to 32 years of follow-up of 137,217 men and women, we documented 3260 cases of CRC. Among individuals from whom subsite data were available, we observed 1264 proximal colon, 866 distal colon, and 670 rectal tumors. Western diet was associated with an increased incidence of CRC (P trend pattern, we observed a RR of 0.86 for overall CRC (95% CI, 0.77-0.95; P trend  = .01), with similar trends at anatomic subsites. However, the trend appeared stronger among men than women. Among 1285 cases (39%) with tissue available for molecular profiling, Western diet appeared to be more strongly associated with some CRC molecular subtypes (no mutations in KRAS [KRAS wildtype] or BRAF [BRAF wildtype], no or a low CpG island methylator phenotype, and microsatellite stability), although formal tests for heterogeneity did not produce statistically significant results. Western dietary patterns are associated with an increased risk of CRC, particularly distal colon and rectal tumors. Western dietary patterns also appear more strongly associated with tumors that are KRAS wildtype, BRAF wildtype, have no or a low CpG island methylator phenotype, and microsatellite stability. In contrast, prudent dietary patterns are associated with a lower risk of CRC that does not vary according to anatomic subsite or molecular subtype. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.

  5. The in vitro sub-cellular localization and in vivo efficacy of novel chitosan/GMO nanostructures containing paclitaxel.

    Science.gov (United States)

    Trickler, W J; Nagvekar, A A; Dash, A K

    2009-08-01

    To determine the in vitro sub-cellular localization and in vivo efficacy of chitosan/GMO nanostructures containing paclitaxel (PTX) compared to a conventional PTX treatment (Taxol). The sub-cellular localization of coumarin-6 labeled chitosan/GMO nanostructures was determined by confocal microscopy in MDA-MB-231 cells. The antitumor efficacy was evaluated in two separate studies using FOX-Chase (CB17) SCID Female-Mice MDA-MB-231 xenograph model. Treatments consisted of intravenous Taxol or chitosan/GMO nanostructures with or without PTX, local intra-tumor bolus of Taxol or chitosan/GMO nanostructures with or without PTX. The tumor diameter and animal weight was monitored at various intervals. Histopathological changes were evaluated in end-point tumors. The tumor diameter increased at a constant rate for all the groups between days 7-14. After a single intratumoral bolus dose of chitosan/GMO containing PTX showed significant reduction in tumor diameter on day 15 when compared to control, placebo and intravenous PTX administration. The tumor diameter reached a maximal decrease (4-fold) by day 18, and the difference was reduced to approximately 2-fold by day 21. Qualitatively similar results were observed in a separate study containing PTX when administered intravenously. Chitosan/GMO nanostructures containing PTX are safe and effective administered locally or intravenously. Partially supported by DOD Award BC045664.

  6. Real-time quantification of subcellular H2O2 and glutathione redox potential in living cardiovascular tissues.

    Science.gov (United States)

    Panieri, Emiliano; Millia, Carlo; Santoro, Massimo M

    2017-08-01

    Detecting and measuring the dynamic redox events that occur in vivo is a prerequisite for understanding the impact of oxidants and redox events in normal and pathological conditions. These aspects are particularly relevant in cardiovascular tissues wherein alterations of the redox balance are associated with stroke, aging, and pharmacological intervention. An ambiguous aspect of redox biology is how redox events occur in subcellular organelles including mitochondria, and nuclei. Genetically-encoded Rogfp2 fluorescent probes have become powerful tools for real-time detection of redox events. These probes detect hydrogen peroxide (H 2 O 2 ) levels and glutathione redox potential (E GSH ), both with high spatiotemporal resolution. By generating novel transgenic (Tg) zebrafish lines that express compartment-specific Rogfp2-Orp1 and Grx1-Rogfp2 sensors we analyzed cytosolic, mitochondrial, and the nuclear redox state of endothelial cells and cardiomyocytes of living zebrafish embryos. We provide evidence for the usefulness of these Tg lines for pharmacological compounds screening by addressing the blocking of pentose phosphate pathways (PPP) and glutathione synthesis, thus altering subcellular redox state in vivo. Rogfp2-based transgenic zebrafish lines represent valuable tools to characterize the impact of redox changes in living tissues and offer new opportunities for studying metabolic driven antioxidant response in biomedical research. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. ICT and the location of call centres: regional and local patterns

    NARCIS (Netherlands)

    Bruinsma, Frank; Rietveld, Piet; Beekman, Michiel

    2004-01-01

    One of the sectors that gained most of the boost in ICT developments is the call centres sector. The focus in this paper is on spatial diffusion patterns of call centres in the Netherlands. The number of call centres has increased rapidly in the last decade and it seems that impacts of call

  8. Expression and subcellular localization of ORC1 in Leishmania major

    International Nuclear Information System (INIS)

    Kumar, Diwakar; Mukherji, Agnideep; Saha, Swati

    2008-01-01

    The mechanism of DNA replication is highly conserved in eukaryotes, with the process being preceded by the ordered assembly of pre-replication complexes (pre-RCs). Pre-RC formation is triggered by the association of the origin replication complex (ORC) with chromatin. Leishmania major appears to have only one ORC ortholog, ORC1. ORC1 in other eukaryotes is the largest of the ORC subunits and is believed to play a significant role in modulating replication initiation. Here we report for the first time, the cloning of ORC1 from L. major, and the analysis of its expression in L. major promastigotes. In human cells ORC1 levels have been found to be upregulated in G1 and subsequently degraded, thus playing a role in controlling replication initiation. We examine the subcellular localization of L. major ORC1 in relation to the different stages of the cell cycle. Our results show that, unlike what is widely believed to be the case with ORC1 in human cells, ORC1 in L. major is nuclear at all stages of the cell cycle

  9. Wingless signalling alters the levels, subcellular distribution and dynamics of Armadillo and E-cadherin in third instar larval wing imaginal discs.

    Directory of Open Access Journals (Sweden)

    Ildiko M L Somorjai

    2008-08-01

    Full Text Available Armadillo, the Drosophila orthologue of vertebrate ss-catenin, plays a dual role as the key effector of Wingless/Wnt1 signalling, and as a bridge between E-Cadherin and the actin cytoskeleton. In the absence of ligand, Armadillo is phosphorylated and targeted to the proteasome. Upon binding of Wg to its receptors, the "degradation complex" is inhibited; Armadillo is stabilised and enters the nucleus to transcribe targets.Although the relationship between signalling and adhesion has been extensively studied, few in vivo data exist concerning how the "transcriptional" and "adhesive" pools of Armadillo are regulated to orchestrate development. We have therefore addressed how the subcellular distribution of Armadillo and its association with E-Cadherin change in larval wing imaginal discs, under wild type conditions and upon signalling. Using confocal microscopy, we show that Armadillo and E-Cadherin are spatio-temporally regulated during development, and that a punctate species becomes concentrated in a subapical compartment in response to Wingless. In order to further dissect this phenomenon, we overexpressed Armadillo mutants exhibiting different levels of activity and stability, but retaining E-Cadherin binding. Arm(S10 displaces endogenous Armadillo from the AJ and the basolateral membrane, while leaving E-Cadherin relatively undisturbed. Surprisingly, DeltaNArm(1-155 caused displacement of both Armadillo and E-Cadherin, results supported by our novel method of quantification. However, only membrane-targeted Myr-DeltaNArm(1-155 produced comparable nuclear accumulation of Armadillo and signalling to Arm(S10. These experiments also highlighted a row of cells at the A/P boundary depleted of E-Cadherin at the AJ, but containing actin.Taken together, our results provide in vivo evidence for a complex non-linear relationship between Armadillo levels, subcellular distribution and Wingless signalling. Moreover, this study highlights the importance of

  10. Targeted nanodiamonds for identification of subcellular protein assemblies in mammalian cells

    Science.gov (United States)

    Lake, Michael P.; Bouchard, Louis-S.

    2017-01-01

    Transmission electron microscopy (TEM) can be used to successfully determine the structures of proteins. However, such studies are typically done ex situ after extraction of the protein from the cellular environment. Here we describe an application for nanodiamonds as targeted intensity contrast labels in biological TEM, using the nuclear pore complex (NPC) as a model macroassembly. We demonstrate that delivery of antibody-conjugated nanodiamonds to live mammalian cells using maltotriose-conjugated polypropylenimine dendrimers results in efficient localization of nanodiamonds to the intended cellular target. We further identify signatures of nanodiamonds under TEM that allow for unambiguous identification of individual nanodiamonds from a resin-embedded, OsO4-stained environment. This is the first demonstration of nanodiamonds as labels for nanoscale TEM-based identification of subcellular protein assemblies. These results, combined with the unique fluorescence properties and biocompatibility of nanodiamonds, represent an important step toward the use of nanodiamonds as markers for correlated optical/electron bioimaging. PMID:28636640

  11. Targeted nanodiamonds for identification of subcellular protein assemblies in mammalian cells.

    Directory of Open Access Journals (Sweden)

    Michael P Lake

    Full Text Available Transmission electron microscopy (TEM can be used to successfully determine the structures of proteins. However, such studies are typically done ex situ after extraction of the protein from the cellular environment. Here we describe an application for nanodiamonds as targeted intensity contrast labels in biological TEM, using the nuclear pore complex (NPC as a model macroassembly. We demonstrate that delivery of antibody-conjugated nanodiamonds to live mammalian cells using maltotriose-conjugated polypropylenimine dendrimers results in efficient localization of nanodiamonds to the intended cellular target. We further identify signatures of nanodiamonds under TEM that allow for unambiguous identification of individual nanodiamonds from a resin-embedded, OsO4-stained environment. This is the first demonstration of nanodiamonds as labels for nanoscale TEM-based identification of subcellular protein assemblies. These results, combined with the unique fluorescence properties and biocompatibility of nanodiamonds, represent an important step toward the use of nanodiamonds as markers for correlated optical/electron bioimaging.

  12. Targeted nanodiamonds for identification of subcellular protein assemblies in mammalian cells.

    Science.gov (United States)

    Lake, Michael P; Bouchard, Louis-S

    2017-01-01

    Transmission electron microscopy (TEM) can be used to successfully determine the structures of proteins. However, such studies are typically done ex situ after extraction of the protein from the cellular environment. Here we describe an application for nanodiamonds as targeted intensity contrast labels in biological TEM, using the nuclear pore complex (NPC) as a model macroassembly. We demonstrate that delivery of antibody-conjugated nanodiamonds to live mammalian cells using maltotriose-conjugated polypropylenimine dendrimers results in efficient localization of nanodiamonds to the intended cellular target. We further identify signatures of nanodiamonds under TEM that allow for unambiguous identification of individual nanodiamonds from a resin-embedded, OsO4-stained environment. This is the first demonstration of nanodiamonds as labels for nanoscale TEM-based identification of subcellular protein assemblies. These results, combined with the unique fluorescence properties and biocompatibility of nanodiamonds, represent an important step toward the use of nanodiamonds as markers for correlated optical/electron bioimaging.

  13. Location recommendations for new businesses using check-in data

    OpenAIRE

    Eravci, Bahaeddin; Bulut, Neslihan; Etemoglu, Cagri; Ferhatosmanoglu, Hakan

    2016-01-01

    Location based social networks (LBSN) and mobile applications generate data useful for location oriented business decisions. Companies can get insights about mobility patterns of potential customers and their daily habits on shopping, dining, etc. to enhance customer satisfaction and increase profitability. We introduce a new problem of identifying neighborhoods with a potential of success in a line of business. After partitioning the city into neighborhoods, based on geographical and social ...

  14. Femtosecond laser nanosurgery of sub-cellular structures in HeLa cells by employing Third Harmonic Generation imaging modality as diagnostic tool.

    Science.gov (United States)

    Tserevelakis, George J; Psycharakis, Stylianos; Resan, Bojan; Brunner, Felix; Gavgiotaki, Evagelia; Weingarten, Kurt; Filippidis, George

    2012-02-01

    Femtosecond laser assisted nanosurgery of microscopic biological specimens is a relatively new technique which allows the selective disruption of sub-cellular structures without causing any undesirable damage to the surrounding regions. The targeted structures have to be stained in order to be clearly visualized for the nanosurgery procedure. However, the validation of the final nanosurgery result is difficult, since the targeted structure could be simply photobleached rather than selectively destroyed. This fact comprises a main drawback of this technique. In our study we employed a multimodal system which integrates non-linear imaging modalities with nanosurgery capabilities, for the selective disruption of sub-cellular structures in HeLa cancer cells. Third Harmonic Generation (THG) imaging modality was used as a tool for the identification of structures that were subjected to nanosurgery experiments. No staining of the biological samples was required, since THG is an intrinsic property of matter. Furthermore, cells' viability after nanosurgery processing was verified via Two Photon Excitation Fluorescence (TPEF) measurements. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Spirally-patterned pinhole arrays for long-term fluorescence cell imaging.

    Science.gov (United States)

    Koo, Bon Ung; Kang, YooNa; Moon, SangJun; Lee, Won Gu

    2015-11-07

    Fluorescence cell imaging using a fluorescence microscope is an extensively used technique to examine the cell nucleus, internal structures, and other cellular molecules with fluorescence response time and intensity. However, it is difficult to perform high resolution cell imaging for a long period of time with this technique due to necrosis and apoptosis depending on the type and subcellular location of the damage caused by phototoxicity. A large number of studies have been performed to resolve this problem, but researchers have struggled to meet the challenge between cellular viability and image resolution. In this study, we employ a specially designed disc to reduce cell damage by controlling total fluorescence exposure time without deterioration of the image resolution. This approach has many advantages such as, the apparatus is simple, cost-effective, and easily integrated into the optical pathway through a conventional fluorescence microscope.

  16. Subcellular localization of skeletal muscle lipid droplets and PLIN family proteins OXPAT and ADRP at rest and following contraction in rat soleus muscle.

    Science.gov (United States)

    MacPherson, Rebecca E K; Herbst, Eric A F; Reynolds, Erica J; Vandenboom, Rene; Roy, Brian D; Peters, Sandra J

    2012-01-01

    Skeletal muscle lipid droplet-associated proteins (PLINs) are thought to regulate lipolysis through protein-protein interactions on the lipid droplet surface. In adipocytes, PLIN2 [adipocyte differentiation-related protein (ADRP)] is found only on lipid droplets, while PLIN5 (OXPAT, expressed only in oxidative tissues) is found both on and off the lipid droplet and may be recruited to lipid droplet membranes when needed. Our purpose was to determine whether PLIN5 is recruited to lipid droplets with contraction and to investigate the myocellular location and colocalization of lipid droplets, PLIN2, and PLIN5. Rat solei were isolated, and following a 30-min equilibration period, they were assigned to one of two groups: 1) 30 min of resting incubation and 2) 30 min of stimulation (n = 10 each). Immunofluorescence microscopy was used to determine subcellular content, distribution, and colocalization of lipid droplets, PLIN2, and PLIN5. There was a main effect for lower lipid and PLIN2 content in stimulated compared with rested muscles (P muscles (P = 0.001, r(2) = 0.99) and linearly in stimulated muscles (slope = -0.0023 ± 0.0006, P muscles (P contraction in isolated skeletal muscle.

  17. Substrate specificity and subcellular localization of the aldehyde-alcohol redox-coupling reaction in carp cones.

    Science.gov (United States)

    Sato, Shinya; Fukagawa, Takashi; Tachibanaki, Shuji; Yamano, Yumiko; Wada, Akimori; Kawamura, Satoru

    2013-12-20

    Our previous study suggested the presence of a novel cone-specific redox reaction that generates 11-cis-retinal from 11-cis-retinol in the carp retina. This reaction is unique in that 1) both 11-cis-retinol and all-trans-retinal were required to produce 11-cis-retinal; 2) together with 11-cis-retinal, all-trans-retinol was produced at a 1:1 ratio; and 3) the addition of enzyme cofactors such as NADP(H) was not necessary. This reaction is probably part of the reactions in a cone-specific retinoid cycle required for cone visual pigment regeneration with the use of 11-cis-retinol supplied from Müller cells. In this study, using purified carp cone membrane preparations, we first confirmed that the reaction is a redox-coupling reaction between retinals and retinols. We further examined the substrate specificity, reaction mechanism, and subcellular localization of this reaction. Oxidation was specific for 11-cis-retinol and 9-cis-retinol. In contrast, reduction showed low specificity: many aldehydes, including all-trans-, 9-cis-, 11-cis-, and 13-cis-retinals and even benzaldehyde, supported the reaction. On the basis of kinetic studies of this reaction (aldehyde-alcohol redox-coupling reaction), we found that formation of a ternary complex of a retinol, an aldehyde, and a postulated enzyme seemed to be necessary, which suggested the presence of both the retinol- and aldehyde-binding sites in this enzyme. A subcellular fractionation study showed that the activity is present almost exclusively in the cone inner segment. These results suggest the presence of an effective production mechanism of 11-cis-retinal in the cone inner segment to regenerate visual pigment.

  18. SMYD3 interacts with HTLV-1 Tax and regulates subcellular localization of Tax.

    Science.gov (United States)

    Yamamoto, Keiyu; Ishida, Takaomi; Nakano, Kazumi; Yamagishi, Makoto; Yamochi, Tadanori; Tanaka, Yuetsu; Furukawa, Yoichi; Nakamura, Yusuke; Watanabe, Toshiki

    2011-01-01

    HTLV-1 Tax deregulates signal transduction pathways, transcription of genes, and cell cycle regulation of host cells, which is mainly mediated by its protein-protein interactions with host cellular factors. We previously reported an interaction of Tax with a histone methyltransferase (HMTase), SUV39H1. As the interaction was mediated by the SUV39H1 SET domain that is shared among HMTases, we examined the possibility of Tax interaction with another HMTase, SMYD3, which methylates histone H3 lysine 4 and activates transcription of genes, and studied the functional effects. Expression of endogenous SMYD3 in T cell lines and primary T cells was confirmed by immunoblotting analysis. Co-immuno-precipitaion assays and in vitro pull-down assay indicated interaction between Tax and SMYD3. The interaction was largely dependent on the C-terminal 180 amino acids of SMYD3, whereas the interacting domain of Tax was not clearly defined, although the N-terminal 108 amino acids were dispensable for the interaction. In the cotransfected cells, colocalization of Tax and SMYD3 was indicated in the cytoplasm or nuclei. Studies using mutants of Tax and SMYD3 suggested that SMYD3 dominates the subcellular localization of Tax. Reporter gene assays showed that nuclear factor-κB activation promoted by cytoplasmic Tax was enhanced by the presence of SMYD3, and attenuated by shRNA-mediated knockdown of SMYD3, suggesting an increased level of Tax localization in the cytoplasm by SMYD3. Our study revealed for the first time Tax-SMYD3 direct interaction, as well as apparent tethering of Tax by SMYD3, influencing the subcellular localization of Tax. Results suggested that SMYD3-mediated nucleocytoplasmic shuttling of Tax provides one base for the pleiotropic effects of Tax, which are mediated by the interaction of cellular proteins localized in the cytoplasm or nucleus. © 2010 Japanese Cancer Association.

  19. Effect of expressing an anti-HIV lectin, Griffithsin, in different plant cellular compartments

    CSIR Research Space (South Africa)

    Stark, T

    2010-08-01

    Full Text Available of subcellular targeting of GRFT in tobacco on expression levels and plant cell viability • Integration vector • Deconstructed viral vector © CSIR 2010 Slide 8 Subcellular location Nucleus Nucleolus Endoplasmic reticulum Vacuole Mitochondria Golgi...

  20. Movies of cellular and sub-cellular motion by digital holographic microscopy

    Directory of Open Access Journals (Sweden)

    Yu Lingfeng

    2006-03-01

    Full Text Available Abstract Background Many biological specimens, such as living cells and their intracellular components, often exhibit very little amplitude contrast, making it difficult for conventional bright field microscopes to distinguish them from their surroundings. To overcome this problem phase contrast techniques such as Zernike, Normarsky and dark-field microscopies have been developed to improve specimen visibility without chemically or physically altering them by the process of staining. These techniques have proven to be invaluable tools for studying living cells and furthering scientific understanding of fundamental cellular processes such as mitosis. However a drawback of these techniques is that direct quantitative phase imaging is not possible. Quantitative phase imaging is important because it enables determination of either the refractive index or optical thickness variations from the measured optical path length with sub-wavelength accuracy. Digital holography is an emergent phase contrast technique that offers an excellent approach in obtaining both qualitative and quantitative phase information from the hologram. A CCD camera is used to record a hologram onto a computer and numerical methods are subsequently applied to reconstruct the hologram to enable direct access to both phase and amplitude information. Another attractive feature of digital holography is the ability to focus on multiple focal planes from a single hologram, emulating the focusing control of a conventional microscope. Methods A modified Mach-Zender off-axis setup in transmission is used to record and reconstruct a number of holographic amplitude and phase images of cellular and sub-cellular features. Results Both cellular and sub-cellular features are imaged with sub-micron, diffraction-limited resolution. Movies of holographic amplitude and phase images of living microbes and cells are created from a series of holograms and reconstructed with numerically adjustable

  1. Toxicity of selenite in the unicellular green alga Chlamydomonas reinhardtii: Comparison between effects at the population and sub-cellular level

    International Nuclear Information System (INIS)

    Morlon, Helene; Fortin, Claude; Floriani, Magali; Adam, Christelle; Garnier-Laplace, Jacqueline; Boudou, Alain

    2005-01-01

    The toxicity of selenium in aquatic ecosystems is mainly linked to its uptake and biotransformation by micro-organisms, and its subsequent transfer upwards into the food chain. Thus, organisms at low trophic level, such as algae, play a crucial role. The aim of our study was to investigate the biological effects of selenite on Chlamydomonas reinhardtii, both at the sub-cellular level (effect on ultrastructure) and at the population level (effect on growth). The cells were grown under batch culture conditions in well-defined media and exposed to waterborne selenite at concentrations up to 500 μM; i.e. up to lethal conditions. Based on the relationship between Se concentration and cell density achieved after a 96 h exposure period, an EC 50 of 80 μM with a 95% confidence interval ranging between 64 and 98 μM was derived. No adaptation mechanisms were observed: the same toxicity was quantified for algae pre-contaminated with Se. The inhibition of growth was linked to impairments observed at the sub-cellular level. The intensity of the ultrastructural damages caused by selenite exposure depended on the level and duration of exposure. Observations by TEM suggested chloroplasts as the first target of selenite cytotoxicity, with effects on the stroma, thylakoids and pyrenoids. At higher concentrations, we could observe an increase in the number and volume of starch grains. For cells collected at 96 h, electron-dense granules were observed. Energy-dispersive X-ray microanalysis revealed that these granules contained selenium and were also rich in calcium and phosphorus. This study confirms that the direct toxicity of selenite on the phytoplankton biomass is not likely to take place at concentrations found in the environment. At higher concentrations, the link between effects at the sub-cellular and population levels, the over-accumulation of starch, and the formation of dense granules containing selenium are reported for the first time in the literature for a

  2. Subcellular compartmentation, interdependency and dynamics of the cyclic AMP-dependent PKA subunits during pathogenic differentiation in rice blast.

    Science.gov (United States)

    Selvaraj, Poonguzhali; Tham, Hong Fai; Ramanujam, Ravikrishna; Naqvi, Naweed I

    2017-08-01

    The cAMP-dependent PKA signalling plays a central role in growth, asexual development and pathogenesis in fungal pathogens. Here, we functionally characterised RPKA, the regulatory subunit of cAMP/PKA and studied the dynamics and organisation of the PKA subunits in the rice blast pathogen Magnaporthe oryzae. The RPKA subunit was essential for proper vegetative growth, asexual sporulation and surface hydrophobicity in M. oryzae. A spontaneous suppressor mutation, SMR19, that restored growth and conidiation in the RPKA deletion mutant was isolated and characterised. SMR19 enhanced conidiation and appressorium formation but failed to suppress the pathogenesis defects in rpkAΔ. The PKA activity was undetectable in the mycelial extracts of SMR19, which showed a single mutation (val242leu) in the highly conserved active site of the catalytic subunit (CPKA) of cAMP/PKA. The two subunits of cAMP/PKA showed different subcellular localisation patterns with RpkA being predominantly nucleocytoplasmic in conidia, while CpkA was largely cytosolic and/or vesicular. The CpkA anchored RpkA in cytoplasmic vesicles, and localisation of PKA in the cytoplasm was governed by CpkA in a cAMP-dependant or independent manner. We show that there exists a tight regulation of PKA subunits at the level of transcription, and the cAMP signalling is differentially compartmentalised in a stage-specific manner in rice blast. © 2017 John Wiley & Sons Ltd.

  3. Subcellular localization of class II HDAs in Arabidopsis thaliana: nucleocytoplasmic shuttling of HDA15 is driven by light.

    Directory of Open Access Journals (Sweden)

    Malona V Alinsug

    Full Text Available Class II histone deacetylases in humans and other model organisms undergo nucleocytoplasmic shuttling. This unique functional regulatory mechanism has been well elucidated in eukaryotic organisms except in plant systems. In this study, we have paved the baseline evidence for the cytoplasmic and nuclear localization of Class II HDAs as well as their mRNA expression patterns. RT-PCR analysis on the different vegetative parts and developmental stages reveal that Class II HDAs are ubiquitously expressed in all tissues with minimal developmental specificity. Moreover, stable and transient expression assays using HDA-YFP/GFP fusion constructs indicate cytoplasmic localization of HDA5, HDA8, and HDA14 further suggesting their potential for nuclear transport and deacetylating organellar and cytoplasmic proteins. Organelle markers and stains confirm HDA14 to abound in the mitochondria and chloroplasts while HDA5 localizes in the ER. HDA15, on the other hand, shuttles in and out of the nucleus upon light exposure. In the absence of light, it is exported out of the nucleus where further re-exposition to light treatments signals its nuclear import. Unlike HDA5 which binds with 14-3-3 proteins, HDA15 fails to interact with these chaperones. Instead, HDA15 relies on its own nuclear localization and export signals to navigate its subcellular compartmentalization classifying it as a Class IIb HDA. Our study indicates that nucleocytoplasmic shuttling is indeed a hallmark for all eukaryotic Class II histone deacetylases.

  4. Human-specific subcellular compartmentalization of P-element induced wimpy testis-like (PIWIL) granules during germ cell development and spermatogenesis.

    Science.gov (United States)

    Gomes Fernandes, Maria; He, Nannan; Wang, Fang; Van Iperen, Liesbeth; Eguizabal, Cristina; Matorras, Roberto; Roelen, Bernard A J; Chuva De Sousa Lopes, Susana M

    2018-02-01

    What is the dynamics of expression of P-element induced wimpy testis-like (PIWIL) proteins in the germline during human fetal development and spermatogenesis? PIWIL1, PIWIL2, PIWIL3 and PIWIL4 were expressed in a sex-specific fashion in human germ cells (GC) during development and adulthood. PIWILs showed a mutually exclusive pattern of subcellular localization. PIWILs were present in the intermitochondrial cement and a single large granule in meiotic GC and their expression was different from that observed in mice, highlighting species-differences. In mice, PIWIL proteins play prominent roles in male infertility. PIWIL mouse mutants show either post-meiotic arrest at the round spermatid stage (PIWIL1) or arrest at the zygotene-pachytene stage of meiosis I (PIWIL2 and PIWIL4) in males, while females remain fertile. Recent studies have reported a robust piRNA pool in human fetal ovary. This is a qualitative analysis of PIWILs expression in paraffin-embedded fetal human male (N = 8), female gonads (N = 6) and adult testes (N = 5), and bioinformatics analysis of online available single-cell transcriptomics data of human fetal germ cells (n = 242). Human fetal gonads from elective abortion without medical indication and adult testes biopsies were donated for research with informed consent. Samples were fixed, paraffin-embedded and analyzed by immunofluorescence to study the temporal and cellular localization of PIWIL1, PIWIL2, PIWIL3 and PIWIL4. PIWIL1, PIWIL2 and PIWIL4 showed a mutually exclusive pattern of subcellular localization, particularly in female oocytes. To our surprise, PIWIL1 immunostaining revealed the presence of a single dense paranuclear body, resembling the chromatoid body of haploid spermatocytes, in meiotic oocytes. Moreover, in contrast to mice, PIWIL4, but not PIWIL2, localized to the intermitochondrial cement. PIWIL3 was not expressed in GC during development. The upregulation of PIWIL transcripts correlated with the transcription of markers

  5. Sub-cellular localisation studies may spuriously detect the Yes-associated protein, YAP, in nucleoli leading to potentially invalid conclusions of its function.

    Science.gov (United States)

    Finch, Megan L; Passman, Adam M; Strauss, Robyn P; Yeoh, George C; Callus, Bernard A

    2015-01-01

    The Yes-associated protein (YAP) is a potent transcriptional co-activator that functions as a nuclear effector of the Hippo signaling pathway. YAP is oncogenic and its activity is linked to its cellular abundance and nuclear localisation. Activation of the Hippo pathway restricts YAP nuclear entry via its phosphorylation by Lats kinases and consequent cytoplasmic retention bound to 14-3-3 proteins. We examined YAP expression in liver progenitor cells (LPCs) and surprisingly found that transformed LPCs did not show an increase in YAP abundance compared to the non-transformed LPCs from which they were derived. We then sought to ascertain whether nuclear YAP was more abundant in transformed LPCs. We used an antibody that we confirmed was specific for YAP by immunoblotting to determine YAP's sub-cellular localisation by immunofluorescence. This antibody showed diffuse staining for YAP within the cytosol and nuclei, but, noticeably, it showed intense staining of the nucleoli of LPCs. This staining was non-specific, as shRNA treatment of cells abolished YAP expression to undetectable levels by Western blot yet the nucleolar staining remained. Similar spurious YAP nucleolar staining was also seen in mouse embryonic fibroblasts and mouse liver tissue, indicating that this antibody is unsuitable for immunological applications to determine YAP sub-cellular localisation in mouse cells or tissues. Interestingly nucleolar staining was not evident in D645 cells suggesting the antibody may be suitable for use in human cells. Given the large body of published work on YAP in recent years, many of which utilise this antibody, this study raises concerns regarding its use for determining sub-cellular localisation. From a broader perspective, it serves as a timely reminder of the need to perform appropriate controls to ensure the validity of published data.

  6. Housing the Mobile Entrepeneur. The location behavior of firms in urban residential neighbourhoods

    NARCIS (Netherlands)

    Risselada, A.H.

    2013-01-01

    Changing economic production processes have opened up new locational demands for firms and have led to an increasingly diverse firm population displaying fragmented location patterns. This research focuses on those spatial configurations that fit the current economic fragmentation and changing

  7. Biosynthesis of platelet activating factor (PAF) via alternate pathways: subcellular distribution of products in HL-60 cells

    International Nuclear Information System (INIS)

    Record, M.; Snyder, F.

    1986-01-01

    Final steps in the biosynthesis of PAF can be catalyzed by two different routes: CDP-choline:1-alkyl-2-acetyl-Gro cholinephosphotransferase [dithiothrietol (DTT)-insensitive] or acetyl-CoA:1-alkyl-2-lyso-GroPCho acetyltransferase. The authors have investigated the conversion of tritium-labeled 1-alkyl-2-acetyl-Gro and 1-alkyl-2-lyso-GroPCho (lyso-PAF) to PAF and other lipid products in HL-60 cells and in subcellular organelles isolated by centrifugation in a Percoll gradient. When cells are incubated with the labeled precursors (2 μM) the total amount of labeled PAF and 1-alkyl-2-acyl-GroPCho formed was similar from both precursors (60 pmol from 1-alkyl-2-acetyl-Gro and 50 pmol from lyso-PAF). However, PAF formed from 1-alkyl-2-acetyl-Gro represented 70% of the total products, whereas with lyso-PAF the major labeled product was 1-alkyl-2-acyl-GroPCho. Formation of PAF from 1-[ 3 H]alkyl-2-acetyl-Gro was linear to at least 30 min at 20 0 C. After a 15-min incubation of this neutral lipid with HL-60 cells, the labeled PAF produced was located exclusively in the plasma membrane fraction as opposed to the label in the 1-alkyl-2-acyl-GroPCho, which was found only in the endoplasmic reticulum; none of the labeled PAF product was released to the media. The authors results suggest PAF might be synthesized by the DTT-insensitive cholinephosphotransferase at the site of the plasma membrane in HL-60 cells

  8. Characterizing the nature of visual conscious access: the distinction between features and locations.

    Science.gov (United States)

    Huang, Liqiang

    2010-08-24

    The difference between the roles of features and locations has been a central topic in the theoretical debates on visual attention. A recent theory proposed that momentary visual awareness is limited to one Boolean map, that is the linkage of one feature per dimension with a set of locations (L. Huang & H. Pashler, 2007). This theory predicts that: (a) access to the features of a set of objects is inefficient whereas access to their locations is efficient; (b) shuffling the locations of objects disrupts access to their features whereas shuffling the features of objects has little impact on access to their locations. Both of these predictions were confirmed in Experiments 1 and 2. Experiments 3 and 4 showed that this feature/location distinction remains when the task involves the detection of changes to old objects rather than the coding of new objects. Experiments 5 and 6 showed that, in a pre-specified set, one missing location can be readily detected, but detecting one missing color is difficult. Taken together, multiple locations seem to be accessed and represented together as a holistic pattern, but features have to be handled as separate labels, one at a time, and do not constitute a pattern in featural space.

  9. A Novel Location-Awareness Method Using CubeSats for Locating the Spot Beam Emitters of Geostationary Communications Satellites

    Directory of Open Access Journals (Sweden)

    Weicai Yang

    2018-01-01

    Full Text Available As more spacecraft are launched into the Geostationary Earth Orbit (GEO belt, the possibility of fatal collisions or unnecessary interference between spacecraft increases. In this paper, a new location-awareness method that uses CubeSats is proposed to assist with radiofrequency (RF domain verification by means of awareness and identification of the positions of the spot beam emitters of communications satellites in geostationary orbit. By flying a CubeSat (or a constellation of CubeSats through the coverage area of a spot beam, the spot beam emitter’s position is identified and the spot beam’s pattern knowledge is characterized. The geometry, the equations of motion of the spacecraft, the measurement process, and the filtering equations in a location system are addressed with respect to the location methods investigated in this study. A realistic scenario in which a CubeSat receives signals from GEO communications satellites is simulated using the Systems Tool Kit (STK. The results of the simulation and the analysis presented in this study provide a thorough verification of the performance of the location-awareness method.

  10. Copper and zinc contamination in oysters: subcellular distribution and detoxification.

    Science.gov (United States)

    Wang, Wen-Xiong; Yang, Yubo; Guo, Xiaoyu; He, Mei; Guo, Feng; Ke, Caihuan

    2011-08-01

    Metal pollution levels in estuarine and coastal environments have been widely reported, but few documented reports exist of severe contamination in specific environments. Here, we report on a metal-contaminated estuary in Fujian Province, China, in which blue oysters (Crassostrea hongkongensis) and green oysters (Crassostrea angulata) were discovered to be contaminated with Cu and other metals. Extraordinarily high metal concentrations were found in the oysters collected from the estuary. Comparison with historical data suggests that the estuary has recently been contaminated with Cr, Cu, Ni, and Zn. Metal concentrations in blue oysters were as high as 1.4 and 2.4% of whole-body tissue dry wt for Cu and Zn, respectively. Cellular debris was the main subcellular fraction binding the metals, but metal-rich granules were important for Cr, Ni, and Pb. With increasing Cu accumulation, its partitioning into the cytosolic proteins decreased. In contrast, metallothionein-like proteins increased their importance in binding with Zn as tissue concentrations of Zn increased. In the most severely contaminated oysters, only a negligible fraction of their Cu and Zn was bound with the metal-sensitive fraction, which may explain the survival of oysters in such contaminated environments. Copyright © 2011 SETAC.

  11. HER2 and β-catenin protein location: importance in the prognosis of breast cancer patients and their correlation when breast cancer cells suffer stressful situations.

    Science.gov (United States)

    Cuello-Carrión, F Darío; Shortrede, Jorge E; Alvarez-Olmedo, Daiana; Cayado-Gutiérrez, Niubys; Castro, Gisela N; Zoppino, Felipe C M; Guerrero, Martín; Martinis, Estefania; Wuilloud, Rodolfo; Gómez, Nidia N; Biaggio, Verónica; Orozco, Javier; Gago, Francisco E; Ciocca, Leonardo A; Fanelli, Mariel A; Ciocca, Daniel R

    2015-02-01

    In human breast cancer, β-catenin localization has been related with disease prognosis. Since HER2-positive patients are an important subgroup, and that in breast cancer cells a direct interaction of β-catenin/HER2 has been reported, in the present study we have explored whether β-catenin location is related with the disease survival. The study was performed in a tumor bank from patients (n = 140) that did not receive specific anti-HER2 therapy. The proteins were detected by immunohistochemistry in serial sections, 47 (33.5%) patients were HER2-positive with a long follow-up. HER2-positive patients that displayed β-catenin at the plasma membrane (completely surrounding the tumour cells) showed a significant better disease-free survival and overall survival than the patients showing the protein on other locations. Then we explored the dynamics of the co-expression of β-catenin and HER2 in human MCF-7 and SKBR3 cells exposed to different stressful situations. In untreated conditions MCF-7 and SKBR3 cells showed very different β-catenin localization. In MCF-7 cells, cadmium administration caused a striking change in β-catenin localization driving it from plasma membrane to cytoplasmic and perinuclear areas and HER2 showed a similar localization patterns. The changes induced by cadmium were compared with heat shock, H2O2 and tamoxifen treatments. In conclusion, this study shows the dynamical associations of HER2 and β-catenin and their changes in subcellular localizations driven by stressful situations. In addition, we report for the first time the correlation between plasma membrane associated β-catenin in HER2-positive breast cancer and survival outcome, and the importance of the protein localization in breast cancer samples.

  12. Optical Pattern Recognition

    Science.gov (United States)

    Yu, Francis T. S.; Jutamulia, Suganda

    2008-10-01

    Contributors; Preface; 1. Pattern recognition with optics Francis T. S. Yu and Don A. Gregory; 2. Hybrid neural networks for nonlinear pattern recognition Taiwei Lu; 3. Wavelets, optics, and pattern recognition Yao Li and Yunglong Sheng; 4. Applications of the fractional Fourier transform to optical pattern recognition David Mendlovic, Zeev Zalesky and Haldum M. Oxaktas; 5. Optical implementation of mathematical morphology Tien-Hsin Chao; 6. Nonlinear optical correlators with improved discrimination capability for object location and recognition Leonid P. Yaroslavsky; 7. Distortion-invariant quadratic filters Gregory Gheen; 8. Composite filter synthesis as applied to pattern recognition Shizhou Yin and Guowen Lu; 9. Iterative procedures in electro-optical pattern recognition Joseph Shamir; 10. Optoelectronic hybrid system for three-dimensional object pattern recognition Guoguang Mu, Mingzhe Lu and Ying Sun; 11. Applications of photrefractive devices in optical pattern recognition Ziangyang Yang; 12. Optical pattern recognition with microlasers Eung-Gi Paek; 13. Optical properties and applications of bacteriorhodopsin Q. Wang Song and Yu-He Zhang; 14. Liquid-crystal spatial light modulators Aris Tanone and Suganda Jutamulia; 15. Representations of fully complex functions on real-time spatial light modulators Robert W. Cohn and Laurence G. Hassbrook; Index.

  13. Abnormal subcellular distribution of GLUT4 protein in obese and insulin-treated diabetic female dogs

    Directory of Open Access Journals (Sweden)

    A.M. Vargas

    2004-07-01

    Full Text Available The GLUT4 transporter plays a key role in insulin-induced glucose uptake, which is impaired in insulin resistance. The objective of the present study was to investigate the tissue content and the subcellular distribution of GLUT4 protein in 4- to 12-year-old control, obese and insulin-treated diabetic mongrel female dogs (4 animals per group. The parametrial white adipose tissue was sampled and processed to obtain both plasma membrane and microsome subcellular fractions for GLUT4 analysis by Western blotting. There was no significant difference in glycemia and insulinemia between control and obese animals. Diabetic dogs showed hyperglycemia (369.9 ± 89.9 mg/dl. Compared to control, the plasma membrane GLUT4, reported per g tissue, was reduced by 55% (P < 0.01 in obese dogs, and increased by 30% (P < 0.05 in diabetic dogs, and the microsomal GLUT4 was increased by ~45% (P < 0.001 in both obese and diabetic animals. Considering the sum of GLUT4 measured in plasma membrane and microsome as total cellular GLUT4, percent GLUT4 present in plasma membrane was reduced by ~65% (P < 0.001 in obese compared to control and diabetic animals. Since insulin stimulates GLUT4 translocation to the plasma membrane, percent GLUT4 in plasma membrane was divided by the insulinemia at the time of tissue removal and was found to be reduced by 75% (P < 0.01 in obese compared to control dogs. We conclude that the insulin-stimulated translocation of GLUT4 to the cell surface is reduced in obese female dogs. This probably contributes to insulin resistance, which plays an important role in glucose homeostasis in dogs.

  14. On Discovery of Gathering Patterns from Trajectories

    DEFF Research Database (Denmark)

    Zheng, Kai; Zheng, Yu; Yuan, Jing

    2013-01-01

    The increasing pervasiveness of location-acquisition technologies has enabled collection of huge amount of trajectories for almost any kind of moving objects. Discovering useful patterns from their movement behaviours can convey valuable knowledge to a variety of critical applications. In this li......The increasing pervasiveness of location-acquisition technologies has enabled collection of huge amount of trajectories for almost any kind of moving objects. Discovering useful patterns from their movement behaviours can convey valuable knowledge to a variety of critical applications...

  15. Pattern of zinc-65 incorporation into soybean seeds by root absorption, stem injection, and foliar application

    International Nuclear Information System (INIS)

    Khan, A.; Weaver, C.M.

    1989-01-01

    The pattern of 65 Zn incorporation into soybean seeds of plants grown hydroponically and intrinsically labeled with 65 Zn by root absorption, stem injection, and foliar application was studied. Stem injection resulted in the greatest (64.5% of dose) accumulation of 65 Zn while incorporation of 65 Zn through root absorption was the least (23.4%) and through foliar application was intermediate (37.5%). Regardless of the labeling techniques, approximately 40-45% of the seed 65 Zn was associated with the subcellular organelles. The pattern of zinc incorporation did not change appreciably as a result of the labeling technique. The major portion of the soluble zinc was not associated with the major proteins (11S and 7S) of soybeans but either was free or was associated with very low molecular weight amino acids, peptides, or their complexes with phytic acid. Zinc in soybean seems to be ionically bound, and this association is affected by the pH of the extracting buffer

  16. Dynamic Subcellular Localization of Iron during Embryo Development in Brassicaceae Seeds

    Directory of Open Access Journals (Sweden)

    Miguel A. Ibeas

    2017-12-01

    Full Text Available Iron is an essential micronutrient for plants. Little is know about how iron is loaded in embryo during seed development. In this article we used Perls/DAB staining in order to reveal iron localization at the cellular and subcellular levels in different Brassicaceae seed species. In dry seeds of Brassica napus, Nasturtium officinale, Lepidium sativum, Camelina sativa, and Brassica oleracea iron localizes in vacuoles of cells surrounding provasculature in cotyledons and hypocotyl. Using B. napus and N. officinale as model plants we determined where iron localizes during seed development. Our results indicate that iron is not detectable by Perls/DAB staining in heart stage embryo cells. Interestingly, at torpedo development stage iron localizes in nuclei of different cells type, including integument, free cell endosperm and almost all embryo cells. Later, iron is detected in cytoplasmic structures in different embryo cell types. Our results indicate that iron accumulates in nuclei in specific stages of embryo maturation before to be localized in vacuoles of cells surrounding provasculature in mature seeds.

  17. Subcellular trafficking of FGF controls tracheal invasion of Drosophila flight muscle.

    Science.gov (United States)

    Peterson, Soren J; Krasnow, Mark A

    2015-01-15

    To meet the extreme oxygen demand of insect flight muscle, tracheal (respiratory) tubes ramify not only on its surface, as in other tissues, but also within T-tubules and ultimately surrounding every mitochondrion. Although this remarkable physiological specialization has long been recognized, its cellular and molecular basis is unknown. Here, we show that Drosophila tracheoles invade flight muscle T-tubules through transient surface openings. Like other tracheal branching events, invasion requires the Branchless FGF pathway. However, localization of the FGF chemoattractant changes from all muscle membranes to T-tubules as invasion begins. Core regulators of epithelial basolateral membrane identity localize to T-tubules, and knockdown of AP-1γ, required for basolateral trafficking, redirects FGF from T-tubules to surface, increasing tracheal surface ramification and preventing invasion. We propose that tracheal invasion is controlled by an AP-1-dependent switch in FGF trafficking. Thus, subcellular targeting of a chemoattractant can direct outgrowth to specific domains, including inside the cell. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Imaging of Caenorhabditis elegans samples and sub-cellular localization of new generation photosensitizers for photodynamic therapy, using non-linear microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Filippidis, G [Institute of Electronic Structure and Laser, Foundation of Research and Technology-Hellas, PO Box 1527, 71110 Heraklion (Greece); Kouloumentas, C [Institute of Electronic Structure and Laser, Foundation of Research and Technology-Hellas, PO Box 1527, 71110 Heraklion (Greece); Kapsokalyvas, D [Institute of Electronic Structure and Laser, Foundation of Research and Technology-Hellas, PO Box 1527, 71110 Heraklion (Greece); Voglis, G [Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology, Heraklion 71110, Crete (Greece); Tavernarakis, N [Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology, Heraklion 71110, Crete (Greece); Papazoglou, T G [Institute of Electronic Structure and Laser, Foundation of Research and Technology-Hellas, PO Box 1527, 71110 Heraklion (Greece)

    2005-08-07

    Two-photon excitation fluorescence (TPEF) and second-harmonic generation (SHG) are relatively new promising tools for the imaging and mapping of biological structures and processes at the microscopic level. The combination of the two image-contrast modes in a single instrument can provide unique and complementary information concerning the structure and the function of tissues and individual cells. The extended application of this novel, innovative technique by the biological community is limited due to the high price of commercial multiphoton microscopes. In this study, a compact, inexpensive and reliable setup utilizing femtosecond pulses for excitation was developed for the TPEF and SHG imaging of biological samples. Specific cell types of the nematode Caenorhabditis elegans were imaged. Detection of the endogenous structural proteins of the worm, which are responsible for observation of SHG signals, was achieved. Additionally, the binding of different photosensitizers in the HL-60 cell line was investigated, using non-linear microscopy. The sub-cellular localization of photosensitizers of a new generation, very promising for photodynamic therapy (PDT) (Hypericum perforatum L. extracts) was achieved. The sub-cellular localization of these novel photosensitizers was linked with their photodynamic action during PDT, and the possible mechanisms for cell killing have been elucidated.

  19. Pronounced limb and fibre type differences in subcellular lipid droplet content and distribution in elite skiers before and after exhaustive exercise.

    Science.gov (United States)

    Koh, Han-Chow E; Nielsen, Joachim; Saltin, Bengt; Holmberg, Hans-Christer; Ørtenblad, Niels

    2017-09-01

    Although lipid droplets in skeletal muscle are an important energy source during endurance exercise, our understanding of lipid metabolism in this context remains incomplete. Using transmission electron microscopy, two distinct subcellular pools of lipid droplets can be observed in skeletal muscle - one beneath the sarcolemma and the other between myofibrils. At rest, well-trained leg muscles of cross-country skiers contain 4- to 6-fold more lipid droplets than equally well-trained arm muscles, with a 3-fold higher content in type 1 than in type 2 fibres. During exhaustive exercise, lipid droplets between the myofibrils but not those beneath the sarcolemma are utilised by both type 1 and 2 fibres. These findings provide insight into compartmentalisation of lipid metabolism within skeletal muscle fibres. Although the intramyocellular lipid pool is an important energy store during prolonged exercise, our knowledge concerning its metabolism is still incomplete. Here, quantitative electron microscopy was used to examine subcellular distribution of lipid droplets in type 1 and 2 fibres of the arm and leg muscles before and after 1 h of exhaustive exercise. Intermyofibrillar lipid droplets accounted for 85-97% of the total volume fraction, while the subsarcolemmal pool made up 3-15%. Before exercise, the volume fractions of intermyofibrillar and subsarcolemmal lipid droplets were 4- to 6-fold higher in leg than in arm muscles (P exercise, intermyofibrillar lipid droplet volume fraction was 53% lower (P = 0.0082) in both fibre types in arm, but not leg muscles. This reduction was positively associated with the corresponding volume fraction prior to exercise (R 2  = 0.84, P exercise-induced change in the subsarcolemmal pool could be detected. These findings indicate clear differences in the subcellular distribution of lipid droplets in the type 1 and 2 fibres of well-trained arm and leg muscles, as well as preferential utilisation of the intermyofibrillar pool

  20. Interferon-inducible p200-family protein IFI16, an innate immune sensor for cytosolic and nuclear double-stranded DNA: regulation of subcellular localization.

    Science.gov (United States)

    Veeranki, Sudhakar; Choubey, Divaker

    2012-01-01

    The interferon (IFN)-inducible p200-protein family includes structurally related murine (for example, p202a, p202b, p204, and Aim2) and human (for example, AIM2 and IFI16) proteins. All proteins in the family share a partially conserved repeat of 200-amino acid residues (also called HIN-200 domain) in the C-terminus. Additionally, most proteins (except the p202a and p202b proteins) also share a protein-protein interaction pyrin domain (PYD) in the N-terminus. The HIN-200 domain contains two consecutive oligosaccharide/oligonucleotide binding folds (OB-folds) to bind double stranded DNA (dsDNA). The PYD domain in proteins allows interactions with the family members and an adaptor protein ASC. Upon sensing cytosolic dsDNA, Aim2, p204, and AIM2 proteins recruit ASC protein to form an inflammasome, resulting in increased production of proinflammatory cytokines. However, IFI16 protein can sense cytosolic as well as nuclear dsDNA. Interestingly, the IFI16 protein contains a nuclear localization signal (NLS). Accordingly, the initial studies had indicated that the endogenous IFI16 protein is detected in the nucleus and within the nucleus in the nucleolus. However, several recent reports suggest that subcellular localization of IFI16 protein in nuclear versus cytoplasmic (or both) compartment depends on cell type. Given that the IFI16 protein can sense cytosolic as well as nuclear dsDNA and can initiate different innate immune responses (production of IFN-β versus proinflammatory cytokines), here we evaluate the experimental evidence for the regulation of subcellular localization of IFI16 protein in various cell types. We conclude that further studies are needed to understand the molecular mechanisms that regulate the subcellular localization of IFI16 protein. Published by Elsevier Ltd.

  1. Effects of cooking and subcellular distribution on the bioaccessibility of trace elements in two marine fish species.

    Science.gov (United States)

    He, Mei; Ke, Cai-Huan; Wang, Wen-Xiong

    2010-03-24

    In current human health risk assessment, the maximum acceptable concentrations of contaminants in food are mostly based on the total concentrations. However, the total concentration of contaminants may not always reflect the available amount. Bioaccessibility determination is thus required to improve the risk assessment of contaminants. This study used an in vitro digestion model to assess the bioaccessibility of several trace elements (As, Cd, Cu, Fe, Se, and Zn) in the muscles of two farmed marine fish species (seabass Lateolabrax japonicus and red seabream Pagrosomus major ) of different body sizes. The total concentrations and subcellular distributions of these trace elements in fish muscles were also determined. Bioaccessibility of these trace elements was generally high (>45%), and the lowest bioaccessibility was observed for Fe. Cooking processes, including boiling, steaming, frying, and grilling, generally decreased the bioaccessibility of these trace elements, especially for Cu and Zn. The influences of frying and grilling were greater than those of boiling and steaming. The relationship of bioaccessibility and total concentration varied with the elements. A positive correlation was found for As and Cu and a negative correlation for Fe, whereas no correlation was found for Cd, Se, and Zn. A significant positive relationship was demonstrated between the bioaccessibility and the elemental partitioning in the heat stable protein fraction and in the trophically available fraction, and a negative correlation was observed between the bioaccessibility and the elemental partitioning in metal-rich granule fraction. Subcellular distribution may thus affect the bioaccessibility of metals and should be considered in the risk assessment for seafood safety.

  2. Extraction protocol and liquid chromatography/tandem mass spectrometry method for determining micelle-entrapped paclitaxel at the cellular and subcellular levels: Application to a cellular uptake and distribution study.

    Science.gov (United States)

    Zheng, Nan; Lian, Bin; Du, Wenwen; Xu, Guobing; Ji, Jiafu

    2018-01-01

    Paclitaxel-loaded polymeric micelles (PTX-PM) are commonly used as tumor-targeted nanocarriers and display outstanding antitumor features in clinic, but its accumulation and distribution in vitro are lack of investigation. It is probably due to the complex micellar system and its low concentration at the cellular or subcellular levels. In this study, we developed an improved extraction method, which was a combination of mechanical disruption and liquid-liquid extraction (LLE), to extract the total PTX from micelles in the cell lysate and subcellular compartments. An ultra-performance liquid chromatography tandem mass spectroscopy (UPLC-MS/MS) method was optimized to detect the low concentration of PTX at cellular and subcellular levels simultaneously, using docetaxel as internal standard (IS). The method was proved to release PTX totally from micelles (≥95.93%) with a consistent and reproducible extraction recovery (≥75.04%). Good linearity was obtained at concentrations ranging from 0.2 to 20ng/mL. The relative error (RE%) for accuracy varied from 0.68 to 7.56%, and the intra- and inter-precision (relative standard deviation, RSD%) was less than 8.64% and 13.14%, respectively. This method was fully validated and successfully applied to the cellular uptake and distribution study of PTX-loaded PLGA-PEG micelles in human breast cancer cells (MCF-7). Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Determinants of Dispensing Location in the TRICARE Senior Pharmacy Program

    Science.gov (United States)

    2005-01-01

    proximity to an MTF on TSRx use and on uti - lization of the different dispensing locations; and the impact of MTF formulary restrictions on use of the...Conclusions and Policy Implications Our analysis of the TSRx program, which focused on describing uti - lization patterns by dispensing location and on...manufacturers do. In the public sector, some Medicaid programs have recently hired physicians and pharmacists to visit doctors’ offices and encourage them to

  4. Detection and subcellular localization of dehydrin-like proteins in quinoa (Chenopodium quinoa Willd.) embryos.

    Science.gov (United States)

    Carjuzaa, P; Castellión, M; Distéfano, A J; del Vas, M; Maldonado, S

    2008-01-01

    The aim of this study was to characterize the dehydrin content in mature embryos of two quinoa cultivars, Sajama and Baer La Unión. Cultivar Sajama grows at 3600-4000 m altitude and is adapted to the very arid conditions characteristic of the salty soils of the Bolivian Altiplano, with less than 250 mm of annual rain and a minimum temperature of -1 degrees C. Cultivar Baer La Unión grows at sea-level regions of central Chile and is adapted to more humid conditions (800 to 1500 mm of annual rain), fertile soils, and temperatures above 5 degrees C. Western blot analysis of embryo tissues from plants growing under controlled greenhouse conditions clearly revealed the presence of several dehydrin bands (at molecular masses of approximately 30, 32, 50, and 55 kDa), which were common to both cultivars, although the amount of the 30 and 32 kDa bands differed. Nevertheless, when grains originated from their respective natural environments, three extra bands (at molecular masses of approximately 34, 38, and 40 kDa), which were hardly visible in Sajama, and another weak band (at a molecular mass of approximately 28 kDa) were evident in Baer La Unión. In situ immunolocalization microscopy detected dehydrin-like proteins in all axis and cotyledon tissues. At the subcellular level, dehydrins were detected in the plasma membrane, cytoplasm and nucleus. In the cytoplasm, dehydrins were found associated with mitochondria, rough endoplasmic reticulum cisternae, and proplastid membranes. The presence of dehydrins was also recognized in the matrix of protein bodies. In the nucleus, dehydrins were associated with the euchromatin. Upon examining dehydrin composition and subcellular localization in two quinoa cultivars belonging to highly contrasting environments, we conclude that most dehydrins detected here were constitutive components of the quinoa seed developmental program, but some of them (specially the 34, 38, and 40 kDa bands) may reflect quantitative molecular differences

  5. Performances of different global positioning system devices for time-location tracking in air pollution epidemiological studies.

    Science.gov (United States)

    Wu, Jun; Jiang, Chengsheng; Liu, Zhen; Houston, Douglas; Jaimes, Guillermo; McConnell, Rob

    2010-11-23

    People's time-location patterns are important in air pollution exposure assessment because pollution levels may vary considerably by location. A growing number of studies are using global positioning systems (GPS) to track people's time-location patterns. Many portable GPS units that archive location are commercially available at a cost that makes their use feasible for epidemiological studies. We evaluated the performance of five portable GPS data loggers and two GPS cell phones by examining positional accuracy in typical locations (indoor, outdoor, in-vehicle) and factors that influence satellite reception (building material, building type), acquisition time (cold and warm start), battery life, and adequacy of memory for data storage. We examined stationary locations (eg, indoor, outdoor) and mobile environments (eg, walking, traveling by vehicle or bus) and compared GPS locations to highly-resolved US Geological Survey (USGS) and Digital Orthophoto Quarter Quadrangle (DOQQ) maps. The battery life of our tested instruments ranged from acquisition of location time after startup ranged from a few seconds to >20 minutes and varied significantly by building structure type and by cold or warm start. No GPS device was found to have consistently superior performance with regard to spatial accuracy and signal loss. At fixed outdoor locations, 65%-95% of GPS points fell within 20-m of the corresponding DOQQ locations for all the devices. At fixed indoor locations, 50%-80% of GPS points fell within 20-m of the corresponding DOQQ locations for all the devices except one. Most of the GPS devices performed well during commuting on a freeway, with >80% of points within 10-m of the DOQQ route, but the performance was significantly impacted by surrounding structures on surface streets in highly urbanized areas. All the tested GPS devices had limitations, but we identified several devices which showed promising performance for tracking subjects' time location patterns in

  6. Spatial patterns of serial murder: an analysis of disposal site location choice.

    Science.gov (United States)

    Lundrigan, S; Canter, D

    2001-01-01

    Although the murders committed by serial killers may not be considered rational, there is growing evidence that the locations in which they commit their crimes may be guided by an implicit, if limited rationality. The hypothesized logic of disposal site choice of serial killers led to predictions that (a) their criminal domains would be around their home base and relate to familiar travel distances, (b) they would have a size that was characteristic of each offender, (c) the distribution would be biased towards other non-criminal activities, and (d) the size of the domains would increase over time. Examination of the geographical distribution of the sites at which 126 US and 29 UK serial killers disposed of their victims' bodies supported all four hypotheses. It was found that rational choice and routine activity models of criminal behavior could explain the spatial choices of serial murderers. It was concluded that the locations at which serial killers dispose of their victims' bodies reflect the inherent logic of the choices that underlie their predatory activities. Copyright 2001 John Wiley & Sons, Ltd.

  7. High-resolution sub-cellular imaging by correlative NanoSIMS and electron microscopy of amiodarone internalisation by lung macrophages as evidence for drug-induced phospholipidosis.

    Science.gov (United States)

    Jiang, Haibo; Passarelli, Melissa K; Munro, Peter M G; Kilburn, Matt R; West, Andrew; Dollery, Colin T; Gilmore, Ian S; Rakowska, Paulina D

    2017-01-26

    Correlative NanoSIMS and EM imaging of amiodarone-treated macrophages shows the internalisation of the drug at a sub-cellular level and reveals its accumulation within the lysosomes, providing direct evidence for amiodarone-induced phospholipidosis. Chemical fixation using tannic acid effectively seals cellular membranes aiding intracellular retention of diffusible drugs.

  8. A GIS approach for predicting prehistoric site locations.

    Energy Technology Data Exchange (ETDEWEB)

    Kuiper, J. A.; Wescott, K. L.

    1999-08-04

    Use of geographic information system (GIS)-based predictive mapping to locate areas of high potential for prehistoric archaeological sites is becoming increasingly popular among archaeologists. Knowledge of the environmental variables influencing activities of original inhabitants is used to produce GIS layers representing the spatial distribution of those variables. The GIS layers are then analyzed to identify locations where combinations of environmental variables match patterns observed at known prehistoric sites. Presented are the results of a study to locate high-potential areas for prehistoric sites in a largely unsurveyed area of 39,000 acres in the Upper Chesapeake Bay region, including details of the analysis process. The project used environmental data from over 500 known sites in other parts of the region and the results corresponded well with known sites in the study area.

  9. CerebralWeb: a Cytoscape.js plug-in to visualize networks stratified by subcellular localization.

    Science.gov (United States)

    Frias, Silvia; Bryan, Kenneth; Brinkman, Fiona S L; Lynn, David J

    2015-01-01

    CerebralWeb is a light-weight JavaScript plug-in that extends Cytoscape.js to enable fast and interactive visualization of molecular interaction networks stratified based on subcellular localization or other user-supplied annotation. The application is designed to be easily integrated into any website and is configurable to support customized network visualization. CerebralWeb also supports the automatic retrieval of Cerebral-compatible localizations for human, mouse and bovine genes via a web service and enables the automated parsing of Cytoscape compatible XGMML network files. CerebralWeb currently supports embedded network visualization on the InnateDB (www.innatedb.com) and Allergy and Asthma Portal (allergen.innatedb.com) database and analysis resources. Database tool URL: http://www.innatedb.com/CerebralWeb © The Author(s) 2015. Published by Oxford University Press.

  10. Subcellular localization of the antidepressant-sensitive norepinephrine transporter

    Directory of Open Access Journals (Sweden)

    Winder Danny G

    2009-06-01

    Full Text Available Abstract Background Reuptake of synaptic norepinephrine (NE via the antidepressant-sensitive NE transporter (NET supports efficient noradrenergic signaling and presynaptic NE homeostasis. Limited, and somewhat contradictory, information currently describes the axonal transport and localization of NET in neurons. Results We elucidate NET localization in brain and superior cervical ganglion (SCG neurons, aided by a new NET monoclonal antibody, subcellular immunoisolation techniques and quantitative immunofluorescence approaches. We present evidence that axonal NET extensively colocalizes with syntaxin 1A, and to a limited degree with SCAMP2 and synaptophysin. Intracellular NET in SCG axons and boutons also quantitatively segregates from the vesicular monoamine transporter 2 (VMAT2, findings corroborated by organelle isolation studies. At the surface of SCG boutons, NET resides in both lipid raft and non-lipid raft subdomains and colocalizes with syntaxin 1A. Conclusion Our findings support the hypothesis that SCG NET is segregated prior to transport from the cell body from proteins comprising large dense core vesicles. Once localized to presynaptic boutons, NET does not recycle via VMAT2-positive, small dense core vesicles. Finally, once NET reaches presynaptic plasma membranes, the transporter localizes to syntaxin 1A-rich plasma membrane domains, with a portion found in cholera toxin-demarcated lipid rafts. Our findings indicate that activity-dependent insertion of NET into the SCG plasma membrane derives from vesicles distinct from those that deliver NE. Moreover, NET is localized in presynaptic membranes in a manner that can take advantage of regulatory processes targeting lipid raft subdomains.

  11. Diversity and subcellular distribution of archaeal secreted proteins

    Directory of Open Access Journals (Sweden)

    Mechthild ePohlschroder

    2012-07-01

    Full Text Available Secreted proteins make up a significant percentage of a prokaryotic proteome and play critical roles in important cellular processes such as polymer degradation, nutrient uptake, signal transduction, cell wall biosynthesis and motility. The majority of archaeal proteins are believed to be secreted either in an unfolded conformation via the universally conserved Sec pathway or in a folded conformation via the Twin arginine transport (Tat pathway. Extensive in vivo and in silico analyses of N-terminal signal peptides that target proteins to these pathways have led to the development of computational tools that not only predict Sec and Tat substrates with high accuracy but also provide information about signal peptide processing and targeting. Predictions therefore include indications as to whether a substrate is a soluble secreted protein, a membrane or cell-wall anchored protein, or a surface structure subunit, and whether it is targeted for post-translational modification such as glycosylation or the addition of a lipid. The use of these in silico tools, in combination with biochemical and genetic analyses of transport pathways and their substrates, has resulted in improved predictions of the subcellular localization of archaeal secreted proteins, allowing for a more accurate annotation of archaeal proteomes, and has led to the identification of potential adaptations to extreme environments, as well as archaeal kingdom-specific pathways. A more comprehensive understanding of the transport pathways and post-translational modifications of secreted archaeal proteins will also generate invaluable insights that will facilitate the identification of commercially valuable archaeal enzymes and the development of heterologous systems in which to efficiently express them.

  12. Diversity and subcellular distribution of archaeal secreted proteins.

    Science.gov (United States)

    Szabo, Zalan; Pohlschroder, Mechthild

    2012-01-01

    Secreted proteins make up a significant percentage of a prokaryotic proteome and play critical roles in important cellular processes such as polymer degradation, nutrient uptake, signal transduction, cell wall biosynthesis, and motility. The majority of archaeal proteins are believed to be secreted either in an unfolded conformation via the universally conserved Sec pathway or in a folded conformation via the Twin arginine transport (Tat) pathway. Extensive in vivo and in silico analyses of N-terminal signal peptides that target proteins to these pathways have led to the development of computational tools that not only predict Sec and Tat substrates with high accuracy but also provide information about signal peptide processing and targeting. Predictions therefore include indications as to whether a substrate is a soluble secreted protein, a membrane or cell wall anchored protein, or a surface structure subunit, and whether it is targeted for post-translational modification such as glycosylation or the addition of a lipid. The use of these in silico tools, in combination with biochemical and genetic analyses of transport pathways and their substrates, has resulted in improved predictions of the subcellular localization of archaeal secreted proteins, allowing for a more accurate annotation of archaeal proteomes, and has led to the identification of potential adaptations to extreme environments, as well as phyla-specific pathways among the archaea. A more comprehensive understanding of the transport pathways used and post-translational modifications of secreted archaeal proteins will also facilitate the identification and heterologous expression of commercially valuable archaeal enzymes.

  13. Effect of surgical stress on nuclear and mitochondrial DNA

    Indian Academy of Sciences (India)

    Surgical resection at any location in the body leads to stress response with cellular and subcellular change, leading to tissue damage. The intestine is extremely sensitive to surgical stress with consequent postoperative complications. It has been suggested that the increase of reactive oxygen species as subcellular ...

  14. Selection for Cd Pollution-Safe Cultivars of Chinese Kale (Brassica alboglabra L. H. Bailey) and Biochemical Mechanisms of the Cultivar-Dependent Cd Accumulation Involving in Cd Subcellular Distribution.

    Science.gov (United States)

    Guo, Jing-Jie; Tan, Xiao; Fu, Hui-Ling; Chen, Jing-Xin; Lin, Xiao-Xia; Ma, Yuan; Yang, Zhong-Yi

    2018-02-28

    Two pot experiments were conducted to compare and verify Cd accumulation capacities of different cultivars under Cd exposures (0.215, 0.543, and 0.925 mg kg -1 in Exp-1 and 0.143, 0.619, and 1.407 mg kg -1 in Exp-2) and Cd subcellular distributions between low- and high-Cd cultivars. Shoot Cd concentrations between the selected low- and high-Cd cultivars were 1.4-fold different and the results were reproducible. The proportions of Cd-in-cell-wall of shoots and roots were all higher in a typical low-Cd cultivar (DX102) than in a typical high-Cd cultivar (HJK), while those of Cd-in-chloroplast or Cd-in-trophoplast and Cd-in-membrane-and-organelle were opposite. The proportions of Cd-in-vacuoles-and-cytoplasm of roots in DX102 were always higher than in HJK under Cd stresses, while there was no clear pattern in those of shoots. These findings may help to reduce health risk of Cd from Chinese kale consumption and explained biochemical mechanisms of cultivar-dependent Cd accumulation among the species.

  15. Subcellular differences in handling Cu excess in three freshwater fish species contributes greatly to their differences in sensitivity to Cu

    International Nuclear Information System (INIS)

    Eyckmans, Marleen; Blust, Ronny; De Boeck, Gudrun

    2012-01-01

    Since changes in metal distribution among tissues and subcellular fractions can provide insights in metal toxicity and tolerance, we investigated this partitioning of Cu in gill and liver tissue of rainbow trout (Oncorhynchus mykiss), common carp (Cyprinus carpio) and gibel carp (Carassius auratus gibelio). These fish species are known to differ in their sensitivity to Cu exposure with gibel carp being the most tolerant and rainbow trout the most sensitive. After an exposure to 50 μg/l (0.79 μM) Cu for 24 h, 3 days, 1 week and 1 month, gills and liver of control and exposed fish were submitted to a differential centrifugation procedure. Interestingly, there was a difference in accumulated Cu in the three fish species, even in control fishes. Where the liver of rainbow trout showed extremely high Cu concentrations under control conditions, the amount of Cu accumulated in their gills was much less than in common and gibel carp. At the subcellular level, the gills of rainbow trout appeared to distribute the additional Cu exclusively in the biologically active metal pool (BAM; contains heat-denaturable fraction and organelle fraction). A similar response could be seen in gill tissue of common carp, although the percentage of Cu in the BAM of common carp was lower compared to rainbow trout. Gill tissue of gibel carp accumulated more Cu in the biologically inactive metal pool (BIM compared to BAM; contains heat-stable fraction and metal-rich granule fraction). The liver of rainbow trout seemed much more adequate in handling the excess Cu (compared to its gills), since the storage of Cu in the BIM increased. Furthermore, the high % of Cu in the metal-rich granule fraction and heat-stable fraction in the liver of common carp and especially gibel carp together with the better Cu handling in gill tissue, pointed out the ability of the carp species to minimize the disadvantages related to Cu stress. The differences in Cu distribution at the subcellular level of gills and

  16. Subcellular differences in handling Cu excess in three freshwater fish species contributes greatly to their differences in sensitivity to Cu

    Energy Technology Data Exchange (ETDEWEB)

    Eyckmans, Marleen, E-mail: marleen.eyckmans@ua.ac.be [Laboratory for Ecophysiology, Biochemistry and Toxicology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium); Blust, Ronny; De Boeck, Gudrun [Laboratory for Ecophysiology, Biochemistry and Toxicology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium)

    2012-08-15

    Since changes in metal distribution among tissues and subcellular fractions can provide insights in metal toxicity and tolerance, we investigated this partitioning of Cu in gill and liver tissue of rainbow trout (Oncorhynchus mykiss), common carp (Cyprinus carpio) and gibel carp (Carassius auratus gibelio). These fish species are known to differ in their sensitivity to Cu exposure with gibel carp being the most tolerant and rainbow trout the most sensitive. After an exposure to 50 {mu}g/l (0.79 {mu}M) Cu for 24 h, 3 days, 1 week and 1 month, gills and liver of control and exposed fish were submitted to a differential centrifugation procedure. Interestingly, there was a difference in accumulated Cu in the three fish species, even in control fishes. Where the liver of rainbow trout showed extremely high Cu concentrations under control conditions, the amount of Cu accumulated in their gills was much less than in common and gibel carp. At the subcellular level, the gills of rainbow trout appeared to distribute the additional Cu exclusively in the biologically active metal pool (BAM; contains heat-denaturable fraction and organelle fraction). A similar response could be seen in gill tissue of common carp, although the percentage of Cu in the BAM of common carp was lower compared to rainbow trout. Gill tissue of gibel carp accumulated more Cu in the biologically inactive metal pool (BIM compared to BAM; contains heat-stable fraction and metal-rich granule fraction). The liver of rainbow trout seemed much more adequate in handling the excess Cu (compared to its gills), since the storage of Cu in the BIM increased. Furthermore, the high % of Cu in the metal-rich granule fraction and heat-stable fraction in the liver of common carp and especially gibel carp together with the better Cu handling in gill tissue, pointed out the ability of the carp species to minimize the disadvantages related to Cu stress. The differences in Cu distribution at the subcellular level of gills

  17. Location, location, location

    NARCIS (Netherlands)

    Anderson, S.P.; Goeree, J.K.; Ramer, R.

    1997-01-01

    We analyze the canonical location-then-price duopoly game with general log- concave consumer densities. A unique pure-strategy equilibrium to the two-stage game exists if the density is not "too asymmetric" and not "too concave." These criteria are satisfied by many commonly used densities.

  18. A basis for customising perimetric locations within the macula in glaucoma.

    Science.gov (United States)

    Alluwimi, Muhammed S; Swanson, William H; Malinovsky, Victor E; King, Brett J

    2018-03-01

    It has been recognised that the 24-2 grid used for perimetry may poorly sample the macula, which has been recently identified as a critical region for diagnosing and managing patients with glaucoma. We compared data derived from patients and controls to investigate the efficacy of a basis for customising perimetric locations within the macula, guided by en face images of retinal nerve fibre layer (RNFL) bundles. We used SD-OCT en face montages (www.heidelbergengineering.com) of the RNFL in 10 patients with glaucoma (ages 56-80 years, median 67.5 years) and 30 age-similar controls (ages 47-77, median 58). These patients were selected because of either the absence of perimetric defect while glaucomatous damage to the RNFL bundles was observed, or because of perimetric defect that did not reflect the extent and locations of the glaucomatous damage that appeared in the RNFL images. We used a customised blob stimulus for perimetric testing (a Gaussian blob with 0.25° standard deviation) at 10-2 grid locations, to assess the correspondence between perimetric defects and damaged RNFL bundles observed on en face images and perimetric defects. Data from the age-similar controls were used to compute total deviation (TD) and pattern deviation (PD) values at each location; a perimetric defect for a location was defined as a TD or PD value of -0.5 log unit or deeper. A McNemar's test was used to compare the proportions of locations with perimetric defects that fell outside the damaged RNFL bundles, with and without accounting for displacement of ganglion cell bodies. All patients but one had perimetric defects that were consistent with the patterns of damaged RNFL bundles observed on the en face images. We found six abnormal perimetric locations of 2040 tested in controls and 132 abnormal perimetric locations of 680 tested in patients. The proportions of abnormal locations that fell outside the damaged RNFL bundles, with and without accounting for displacement of the

  19. Dual-channel (green and red) fluorescence microendoscope with subcellular resolution

    Science.gov (United States)

    de Paula D'Almeida, Camila; Fortunato, Thereza Cury; Teixeira Rosa, Ramon Gabriel; Romano, Renan Arnon; Moriyama, Lilian Tan; Pratavieira, Sebastião.

    2018-02-01

    Usually, tissue images at cellular level need biopsies to be done. Considering this, diagnostic devices, such as microendoscopes, have been developed with the purpose of do not be invasive. This study goal is the development of a dual-channel microendoscope, using two fluorescent labels: proflavine and protoporphyrin IX (PpIX), both approved by Food and Drug Administration. This system, with the potential to perform a microscopic diagnosis and to monitor a photodynamic therapy (PDT) session, uses a halogen lamp and an image fiber bundle to perform subcellular image. Proflavine fluorescence indicates the nuclei of the cell, which is the reference for PpIX localization on image tissue. Preliminary results indicate the efficacy of this optical technique to detect abnormal tissues and to improve the PDT dosimetry. This was the first time, up to our knowledge, that PpIX fluorescence was microscopically observed in vivo, in real time, combined to other fluorescent marker (Proflavine), which allowed to simultaneously observe the spatial localization of the PpIX in the mucosal tissue. We believe this system is very promising tool to monitor PDT in mucosa as it happens. Further experiments have to be performed in order to validate the system for PDT monitoring.

  20. Evaluation of the role of location and distance in recruitment in respondent-driven sampling

    Directory of Open Access Journals (Sweden)

    Hayes Richard J

    2011-10-01

    Full Text Available Abstract Background Respondent-driven sampling(RDS is an increasingly widely used variant of a link tracing design for recruiting hidden populations. The role of the spatial distribution of the target population has not been robustly examined for RDS. We examine patterns of recruitment by location, and how they may have biased an RDS study findings. Methods Total-population data were available on a range of characteristics on a population of 2402 male household-heads from an open cohort of 25 villages in rural Uganda. The locations of households were known a-priori. An RDS survey was carried out in this population, employing current RDS methods of sampling and statistical inference. Results There was little heterogeneity in the population by location. Data suggested more distant contacts were less likely to be reported, and therefore recruited, but if reported more distant contacts were as likely as closer contacts to be recruited. There was no evidence that closer proximity to a village meeting place was associated with probability of being recruited, however it was associated with a higher probability of recruiting a larger number of recruits. People living closer to an interview site were more likely to be recruited. Conclusions Household location affected the overall probability of recruitment, and the probability of recruitment by a specific recruiter. Patterns of recruitment do not appear to have greatly biased estimates in this study. The observed patterns could result in bias in more geographically heterogeneous populations. Care is required in RDS studies when choosing the network size question and interview site location(s.

  1. Quantitative protein localization signatures reveal an association between spatial and functional divergences of proteins.

    Science.gov (United States)

    Loo, Lit-Hsin; Laksameethanasan, Danai; Tung, Yi-Ling

    2014-03-01

    Protein subcellular localization is a major determinant of protein function. However, this important protein feature is often described in terms of discrete and qualitative categories of subcellular compartments, and therefore it has limited applications in quantitative protein function analyses. Here, we present Protein Localization Analysis and Search Tools (PLAST), an automated analysis framework for constructing and comparing quantitative signatures of protein subcellular localization patterns based on microscopy images. PLAST produces human-interpretable protein localization maps that quantitatively describe the similarities in the localization patterns of proteins and major subcellular compartments, without requiring manual assignment or supervised learning of these compartments. Using the budding yeast Saccharomyces cerevisiae as a model system, we show that PLAST is more accurate than existing, qualitative protein localization annotations in identifying known co-localized proteins. Furthermore, we demonstrate that PLAST can reveal protein localization-function relationships that are not obvious from these annotations. First, we identified proteins that have similar localization patterns and participate in closely-related biological processes, but do not necessarily form stable complexes with each other or localize at the same organelles. Second, we found an association between spatial and functional divergences of proteins during evolution. Surprisingly, as proteins with common ancestors evolve, they tend to develop more diverged subcellular localization patterns, but still occupy similar numbers of compartments. This suggests that divergence of protein localization might be more frequently due to the development of more specific localization patterns over ancestral compartments than the occupation of new compartments. PLAST enables systematic and quantitative analyses of protein localization-function relationships, and will be useful to elucidate protein

  2. Inferring human mobility using communication patterns

    Science.gov (United States)

    Palchykov, Vasyl; Mitrović, Marija; Jo, Hang-Hyun; Saramäki, Jari; Pan, Raj Kumar

    2014-08-01

    Understanding the patterns of mobility of individuals is crucial for a number of reasons, from city planning to disaster management. There are two common ways of quantifying the amount of travel between locations: by direct observations that often involve privacy issues, e.g., tracking mobile phone locations, or by estimations from models. Typically, such models build on accurate knowledge of the population size at each location. However, when this information is not readily available, their applicability is rather limited. As mobile phones are ubiquitous, our aim is to investigate if mobility patterns can be inferred from aggregated mobile phone call data alone. Using data released by Orange for Ivory Coast, we show that human mobility is well predicted by a simple model based on the frequency of mobile phone calls between two locations and their geographical distance. We argue that the strength of the model comes from directly incorporating the social dimension of mobility. Furthermore, as only aggregated call data is required, the model helps to avoid potential privacy problems.

  3. A Concept of Location-Based Social Network Marketing

    DEFF Research Database (Denmark)

    Tussyadiah, Iis

    2012-01-01

    A stimulus-response model of location-based social network marketing is conceptualized based on an exploratory investigation. Location-based social network applications are capable of generating marketing stimuli from merchant, competition-based, and connection-based rewards resulted from relevance...... and connectivity. Depending on consumption situations, consumer characteristics, and social network structure, these rewards lead to actual behavior that manifests in variety behavior (i.e., patronage to new places) and loyalty behavior (i.e., increased frequency of patronage to familiar places). This behavior...... implies changes in patterns of mobility, making this marketing approach particularly relevant for tourism and hospitality businesses. Managerial implications and recommendations for further studies are provided....

  4. The subcellular localization of natural 210Po in the hepatopancreas of the rock lobster (Jasus lalandii)

    International Nuclear Information System (INIS)

    Heyraud, M.; Dowdle, E.B.; Cherry, R.D.

    1987-01-01

    The subcellular localization of the naturally occurring nuclide 210 Po in the hepatopancreas of the South African rock lobster, Jasus lalandii, has been studied using centrifugation, ultrafiltration and chromatography. Just over half of the 210 Po was found to be associated with a component in the microsomal pellet. Most of the 210 Po was tightly bound to a component of high molecular mass. Dissociation of the 210 Po from this component required incubation with sulphydryl-reducing reagents, after which the 210 Po appeared to associate with a fraction having a molecular mass of 1500 daltons or less. A search for negatively-charged, hydrophobic, sulphur-containing membrane proteins which bind 210 Po is suggested. (author)

  5. Subcellular localization of natural /sup 210/Po in the hepatopancreas of the rock lobster (Jasus lalandii)

    Energy Technology Data Exchange (ETDEWEB)

    Heyraud, M; Dowdle, E B; Cherry, R D

    1987-01-01

    The subcellular localization of the naturally occurring nuclide /sup 210/Po in the hepatopancreas of the South African rock lobster, Jasus lalandii, has been studied using centrifugation, ultrafiltration and chromatography. Just over half of the /sup 210/Po was found to be associated with a component in the microsomal pellet. Most of the /sup 210/Po was tightly bound to a component of high molecular mass. Dissociation of the /sup 210/Po from this component required incubation with sulphydryl-reducing reagents, after which the /sup 210/Po appeared to associate with a fraction having a molecular mass of 1500 daltons or less. A search for negatively-charged, hydrophobic, sulphur-containing membrane proteins which bind /sup 210/Po is suggested.

  6. Structure and function of yeast glutaredoxin 2 depend on postranslational processing and are related to subcellular distribution.

    Science.gov (United States)

    Porras, Pablo; McDonagh, Brian; Pedrajas, Jose Rafael; Bárcena, J Antonio; Padilla, C Alicia

    2010-04-01

    We have previously shown that glutaredoxin 2 (Grx2) from Saccharomyces cerevisiae localizes at 3 different subcellular compartments, cytosol, mitochondrial matrix and outer membrane, as the result of different postranslational processing of one single gene. Having set the mechanism responsible for this remarkable phenomenon, we have now aimed at defining whether this diversity of subcellular localizations correlates with differences in structure and function of the Grx2 isoforms. We have determined the N-terminal sequence of the soluble mitochondrial matrix Grx2 by mass spectrometry and have determined the exact cleavage site by Mitochondrial Processing Peptidase (MPP). As a consequence of this cleavage, the mitochondrial matrix Grx2 isoform possesses a basic tetrapeptide extension at the N-terminus compared to the cytosolic form. A functional relationship to this structural difference is that mitochondrial Grx2 displays a markedly higher activity in the catalysis of GSSG reduction by the mitochondrial dithiol dihydrolipoamide. We have prepared Grx2 mutants affected on key residues inside the presequence to direct the protein to one single cellular compartment; either the cytosol, the mitochondrial membrane or the matrix and have analyzed their functional phenotypes. Strains expressing Grx2 only in the cytosol are equally sensitive to H(2)O(2) as strains lacking the gene, whereas those expressing Grx2 exclusively in the mitochondrial matrix are more resistant. Mutations on key basic residues drastically affect the cellular fate of the protein, showing that evolutionary diversification of Grx2 structural and functional properties are strictly dependent on the sequence of the targeting signal peptide. Copyright 2009 Elsevier B.V. All rights reserved.

  7. Quantum pattern recognition with multi-neuron interactions

    Science.gov (United States)

    Fard, E. Rezaei; Aghayar, K.; Amniat-Talab, M.

    2018-03-01

    We present a quantum neural network with multi-neuron interactions for pattern recognition tasks by a combination of extended classic Hopfield network and adiabatic quantum computation. This scheme can be used as an associative memory to retrieve partial patterns with any number of unknown bits. Also, we propose a preprocessing approach to classifying the pattern space S to suppress spurious patterns. The results of pattern clustering show that for pattern association, the number of weights (η ) should equal the numbers of unknown bits in the input pattern ( d). It is also remarkable that associative memory function depends on the location of unknown bits apart from the d and load parameter α.

  8. Indoor Location Sensing with Invariant Wi-Fi Received Signal Strength Fingerprinting

    Directory of Open Access Journals (Sweden)

    Mohd Nizam Husen

    2016-11-01

    Full Text Available A method of location fingerprinting based on the Wi-Fi received signal strength (RSS in an indoor environment is presented. The method aims to overcome the RSS instability due to varying channel disturbances in time by introducing the concept of invariant RSS statistics. The invariant RSS statistics represent here the RSS distributions collected at individual calibration locations under minimal random spatiotemporal disturbances in time. The invariant RSS statistics thus collected serve as the reference pattern classes for fingerprinting. Fingerprinting is carried out at an unknown location by identifying the reference pattern class that maximally supports the spontaneous RSS sensed from individual Wi-Fi sources. A design guideline is also presented as a rule of thumb for estimating the number of Wi-Fi signal sources required to be available for any given number of calibration locations under a certain level of random spatiotemporal disturbances. Experimental results show that the proposed method not only provides 17% higher success rate than conventional ones but also removes the need for recalibration. Furthermore, the resolution is shown finer by 40% with the execution time more than an order of magnitude faster than the conventional methods. These results are also backed up by theoretical analysis.

  9. Prenatal alcohol exposure modifies glucocorticoid receptor subcellular distribution in the medial prefrontal cortex and impairs frontal cortex-dependent learning.

    Directory of Open Access Journals (Sweden)

    Andrea M Allan

    Full Text Available Prenatal alcohol exposure (PAE has been shown to impair learning, memory and executive functioning in children. Perseveration, or the failure to respond adaptively to changing contingencies, is a hallmark on neurobehavioral assessment tasks for human fetal alcohol spectrum disorder (FASD. Adaptive responding is predominantly a product of the medial prefrontal cortex (mPFC and is regulated by corticosteroids. In our mouse model of PAE we recently reported deficits in hippocampal formation-dependent learning and memory and a dysregulation of hippocampal formation glucocorticoid receptor (GR subcellular distribution. Here, we examined the effect of PAE on frontal cortical-dependent behavior, as well as mPFC GR subcellular distribution and the levels of regulators of intracellular GR transport. PAE mice displayed significantly reduced response flexibility in a Y-maze reversal learning task. While the levels of total nuclear GR were reduced in PAE mPFC, levels of GR phosphorylated at serines 203, 211 and 226 were not significantly changed. Cytosolic, but not nuclear, MR levels were elevated in the PAE mPFC. The levels of critical GR trafficking proteins, FKBP51, Hsp90, cyclophilin 40, dynamitin and dynein intermediate chain, were altered in PAE mice, in favor of the exclusion of GR from the nucleus, indicating dysregulation of GR trafficking. Our findings suggest that there may be a link between a deficit in GR nuclear localization and frontal cortical learning deficits in prenatal alcohol-exposed mice.

  10. Subcellular localization and regulation of type-1C and type-5 phosphodiesterases

    International Nuclear Information System (INIS)

    Dolci, Susanna; Belmonte, Alessia; Santone, Rocco; Giorgi, Mauro; Pellegrini, Manuela; Carosa, Eleonora; Piccione, Emilio; Lenzi, Andrea; Jannini, Emmanuele A.

    2006-01-01

    We investigated the subcellular localization of PDE5 in in vitro human myometrial cells. We demonstrated for First time that PDE5 is localized in discrete cytoplasmic foci and vesicular compartments corresponding to centrosomes. We also found that PDE5 intracellular localization is not cell- or species-specific, as it is conserved in different animal and human cells. PDE5 protein levels are strongly regulated by the mitotic activity of the smooth muscle cells (SMCs), as they were increased in quiescent, contractile myometrial cultures, and conditions in which proliferation was inhibited. In contrast, PDE1C levels decreased in all conditions that inhibited proliferation. This mirrored the enzymatic activity of both PDE5 and PDE1C. Increasing cGMP intracellular levels by dbcGMP or sildenafil treatments did not block proliferation, while dbcAMP inhibited myometrial cell proliferation. Together, these results suggest that PDE5 regulation of cGMP intracellular levels is not involved in the control of SMC cycle progression, but may represent one of the markers of the contractile phenotype

  11. Subcellular distribution and chemical forms of cadmium in the edible seaweed, Porphyra yezoensis.

    Science.gov (United States)

    Zhao, Yanfang; Wu, Jifa; Shang, Derong; Ning, Jinsong; Zhai, Yuxiu; Sheng, Xiaofeng; Ding, Haiyan

    2015-02-01

    The subcellular distribution and chemical forms of Cd were investigated in the edible seaweed, Porphyra yezoensis. The seaweed was exposed to different Cd concentrations (0.01, 0.05, 0.1, 0.5, 1.0 and 5.0mgl(-1)) for up to 96h. In both the controls (no Cd added) and treatment groups, 41.2-79.2% of Cd was localised in the cell wall, and the proportion of Cd in the cell wall increased with increasing concentrations of Cd and exposure time. In the control groups, 74.8% of Cd was extracted by 1M NaCl, followed by 2% acetic acid, HAC (18.9%). In the treatment groups, most Cd was extracted by 2% HAC. The proportion of Cd extracted by 2% HAC increased with exposure to increasing concentrations of Cd and over time. Cell wall deposition and forming of precipitates with phosphate may be a key strategy to reduce Cd toxicity in P. yezoensis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Subcellular analysis of interaction between breast cancer cells and drug by digital holography

    Science.gov (United States)

    Zhao, Jie; Lin, Qiaowen; Wang, Dayong; Wang, Yunxin; Ouyang, Liting; Guo, Sha; Yao, Qian

    2017-10-01

    Digital holographic microscopy is a promising quantitative phase-contrast imaging technique, which exhibits the advantages of non-destruction, full field of view, quasi-real time, and don't need dye and external marker to the living biological sample. In this paper, the inverted off-axis image-plane digital holography with pre-magnification is built up to study the living MDA-MB-231 breast cancer cells. The lateral resolution of the proposed experimental setup is 0.87μm, which is verified by the standard USAF test target. Then the system is used to visualize the interaction between living breast cancer cells and drug. The blebbing is observed after the cells are treated by paclitaxel drug, and the distribution of the paclitaxel inside the cells is detected, which is near the cytomembrane, or in other words the end of the microtubules. It will stop the mitosis and cause the death of the cells. It is helpful to reveal the anticancer mechanism of paclitaxel in the subcellular scale.

  13. Identification of MHF (massive hydraulic fracturing) fracture planes and flow paths: A correlation of well log data with patterns in locations of induced seismicity

    Energy Technology Data Exchange (ETDEWEB)

    Dreesen, D.; Malzahn, M.; Fehler, M.; Dash, Z.

    1987-01-01

    One of the critical steps in developing a hot dry rock geothermal system is the creation of flow paths through the rock between two wellbores. To date, circulation systems have only been created by drilling one wellbore, hydraulically fracturing the well (which induces microearthquakes), locating the microearthquakes and then drilling a second wellbore through the zone of seismicity. A technique for analyzing the pattern of seismicity to determine where fracture planes are located in the seismically active region has recently been developed. This allows us to distinguish portions of the seismically active volume which are most likely to contain significant flow paths. We applied this technique to seismic data collected during a massive hydraulic fracturing (MHF) treatment and found that the fracture planes determined by the seismic method are confirmed by borehole temperature and caliper logs which indicate where permeable fractures and/or zones of weakness intersect the wellbores. A geometric model based on these planes and well log data has enhanced our understanding of the reservoir flow paths created by fracturing and is consistent with results obtained during production testing of the reservoir.

  14. Chlorin derivatives for potential use in BNCT

    International Nuclear Information System (INIS)

    Osterloh, J.; Neumann, M.; Ruf, S.; Gabel, D.

    2000-01-01

    A series of BSH containing alkyl ether homologues of pytropheophorbide a has been prepared. Cellular uptake studies show that is possible to accumulate 2.2 mg of the heptyl ether after 2 h of incubation with a 0.04 mM solution. That means a boron amount of 330 μg per gram cell mass. Cytotoxicity studies allow radiobiological experiments. The patterns of subcellular localisation visualised by fluorescence microscopy and CLSM show that much of the chlorins is located close to the nucleus and in the nucleus membrane. However, no chlorin was found in the nucleus. (author)

  15. Household location choices: implications for biodiversity conservation.

    Science.gov (United States)

    Peterson, M Nils; Chen, Xiaodong; Liu, Jianguo

    2008-08-01

    Successful conservation efforts require understanding human behaviors that directly affect biodiversity. Choice of household location represents an observable behavior that has direct effects on biodiversity conservation, but no one has examined the sociocultural predictors of this choice relative to its environmental impacts. We conducted a case study of the Teton Valley of Idaho and Wyoming (U.S.A.) that (1) explored relationships between sociodemographic variables, environmental attitudes, and the environmental impact of household location choices, (2) assessed the potential for small household sizes in natural areas to multiply the environmental impacts of household location decisions, and (3) evaluated how length of residency predicted the environmental attitudes of people living in natural areas. We collected sociodemographic data, spatial coordinates, and land-cover information in a survey of 416 households drawn from a random sample of Teton Valley residents (95% compliance rate). Immigrants (respondents not born in the study area) with the lowest education levels and least environmentally oriented attitudes lived in previously established residential areas in disproportionately high numbers, and older and more educated immigrants with the most environmentally oriented attitudes lived in natural areas in disproportionately high numbers. Income was not a significant predictor of household location decisions. Those living in natural areas had more environmental impact per person because of the location and because small households (educated, and potentially growing more environmentally oriented, these patterns are troubling for biodiversity conservation. Our results demonstrate a need for environmentalists to make household location decisions that reflect their environmental attitudes and future research to address how interactions between education level, environmental attitudes, population aging, and household location choices influence biodiversity

  16. Sub-cellular damage by copper in the cnidarian Zoanthus robustus.

    Science.gov (United States)

    Grant, A; Trompf, K; Seung, D; Nivison-Smith, L; Bowcock, H; Kresse, H; Holmes, S; Radford, J; Morrow, P

    2010-09-01

    Sessile organisms may experience chronic exposure to copper that is released into the marine environment from antifoulants and stormwater runoff. We have identified the site of damage caused by copper to the symbiotic cnidarian, Zoanthus robustus (Anthozoa, Hexacorallia). External changes to the zoanthids were apparent when compared with controls. The normally flexible bodies contracted and became rigid. Histological examination of the zoanthid tissue revealed that copper had caused sub-cellular changes to proteins within the extracellular matrix (ECM) of the tubular body. Collagen in the ECM and the internal septa increased in thickness to five and seven times that of controls respectively. The epithelium, which stained for elastin, was also twice as thick and tough to cut, but exposure to copper did not change the total amount of desmosine which is found only in elastin. We conclude that copper stimulated collagen synthesis in the ECM and also caused cross-linking of existing proteins. However, there was no expulsion of the symbiotic algae (Symbiodinium sp.) and no effect on algal pigments or respiration (44, 66 and 110 microg Cu L(-1)). A decrease in net photosynthesis was observed only at the highest copper concentration (156 microg Cu L(-1)). These results show that cnidarians may be more susceptible to damage by copper than their symbiotic algae. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  17. MECHANISMS OF DAMAGING EFFECT OF MANGENESE IN TOXIC CONCENTRATIONS ON CELLULAR AND SUBCELLULAR LEVELS

    Directory of Open Access Journals (Sweden)

    Goncharenko A. V.

    2012-11-01

    Full Text Available Influence of subtoxic concentration of manganese chloride in dose equal to LD 50 on condition of plasmatic membranes (model: erythrocytes and functional activity of cell power (model: the isolated liver mitochondrion of rats was studied. It was established that manganese chloride in fixed concentration caused authentic augmentation of sorption capacity of erythrocytes towards alcian blue, influenced increasing of their spontaneous haemolysis and activation of peroxide oxidation of lipids. In experiment on the isolated mitochondrion it was proved that manganese chloride caused dissociation of an oxidizing phosphorusling and complete inhibition of respiration in concentrations of 3 and 4,5mM. These dependences testify that subtoxic concentration of manganese can damage the cell energy. Thus, this pilot research indicated damaging effect of manganese on cellular (erythrocytes and subcellular (mitochondrion levels which are realized through external functioning of membrane structures and deprived them from restoration.

  18. Tissue distribution and subcellular localizations determine in vivo functional relationship among prostasin, matriptase, HAI-1, and HAI-2 in human skin.

    Science.gov (United States)

    Lee, Shiao-Pieng; Kao, Chen-Yu; Chang, Shun-Cheng; Chiu, Yi-Lin; Chen, Yen-Ju; Chen, Ming-Hsing G; Chang, Chun-Chia; Lin, Yu-Wen; Chiang, Chien-Ping; Wang, Jehng-Kang; Lin, Chen-Yong; Johnson, Michael D

    2018-01-01

    The membrane-bound serine proteases prostasin and matriptase and the Kunitz-type protease inhibitors HAI-1 and HAI-2 are all expressed in human skin and may form a tightly regulated proteolysis network, contributing to skin pathophysiology. Evidence from other systems, however, suggests that the relationship between matriptase and prostasin and between the proteases and the inhibitors can be context-dependent. In this study the in vivo zymogen activation and protease inhibition status of matriptase and prostasin were investigated in the human skin. Immunohistochemistry detected high levels of activated prostasin in the granular layer, but only low levels of activated matriptase restricted to the basal layer. Immunoblot analysis of foreskin lysates confirmed this in vivo zymogen activation status and further revealed that HAI-1 but not HAI-2 is the prominent inhibitor for prostasin and matriptase in skin. The zymogen activation status and location of the proteases does not support a close functional relation between matriptase and prostasin in the human skin. The limited role for HAI-2 in the inhibition of matriptase and prostasin is the result of its primarily intracellular localization in basal and spinous layer keratinocytes, which probably prevents the Kunitz inhibitor from interacting with active prostasin or matriptase. In contrast, the cell surface expression of HAI-1 in all viable epidermal layers renders it an effective regulator for matriptase and prostasin. Collectively, our study suggests the importance of tissue distribution and subcellular localization in the functional relationship between proteases and protease inhibitors.

  19. Decision Tree-Based Contextual Location Prediction from Mobile Device Logs

    Directory of Open Access Journals (Sweden)

    Linyuan Xia

    2018-01-01

    Full Text Available Contextual location prediction is an important topic in the field of personalized location recommendation in LBS (location-based services. With the advancement of mobile positioning techniques and various sensors embedded in smartphones, it is convenient to obtain massive human mobile trajectories and to derive a large amount of valuable information from geospatial big data. Extracting and recognizing personally interesting places and predicting next semantic location become a research hot spot in LBS. In this paper, we proposed an approach to predict next personally semantic place with historical visiting patterns derived from mobile device logs. To address the problems of location imprecision and lack of semantic information, a modified trip-identify method is employed to extract key visit points from GPS trajectories to a more accurate extent while semantic information are added through stay point detection and semantic places recognition. At last, a decision tree model is adopted to explore the spatial, temporal, and sequential features in contextual location prediction. To validate the effectiveness of our approach, experiments were conducted based on a trajectory collection in Guangzhou downtown area. The results verified the feasibility of our approach on contextual location prediction from continuous mobile devices logs.

  20. Automated location detection of injection site for preclinical stereotactic neurosurgery procedure

    Science.gov (United States)

    Abbaszadeh, Shiva; Wu, Hemmings C. H.

    2017-03-01

    Currently, during stereotactic neurosurgery procedures, the manual task of locating the proper area for needle insertion or implantation of electrode/cannula/optic fiber can be time consuming. The requirement of the task is to quickly and accurately find the location for insertion. In this study we investigate an automated method to locate the entry point of region of interest. This method leverages a digital image capture system, pattern recognition, and motorized stages. Template matching of known anatomical identifiable regions is used to find regions of interest (e.g. Bregma) in rodents. For our initial study, we tackle the problem of automatically detecting the entry point.

  1. Location Dynamics of Foreign Banking in Shanghai from 1990 TO 2009

    Science.gov (United States)

    Feng, Xiaobing; Kim, Beom Jun

    This study examined the determinants of foreign bank location decisions in Shanghai markets over the period of 1990 to 2009. The growing foreign presence in Shanghai was found to be related to two different policy regimes: Pudong development area foreign enterprise clustering period after China opened Pudong, and "deposit-loan-match principle" implementing period after China joined WTO. The current location pattern was found to be correlated to deposit potential in each district. It is evident that the foreign bank location decisions were influenced by those of domestic banks while the reverse did not hold. These findings provide a valuable platform for theoretical modeling and further analysis.

  2. Patterns of urban violent injury: a spatio-temporal analysis.

    Directory of Open Access Journals (Sweden)

    Michael Cusimano

    2010-01-01

    Full Text Available Injury related to violent acts is a problem in every society. Although some authors have examined the geography of violent crime, few have focused on the spatio-temporal patterns of violent injury and none have used an ambulance dataset to explore the spatial characteristics of injury. The purpose of this study was to describe the combined spatial and temporal characteristics of violent injury in a large urban centre.Using a geomatics framework and geographic information systems software, we studied 4,587 ambulance dispatches and 10,693 emergency room admissions for violent injury occurrences among adults (aged 18-64 in Toronto, Canada, during 2002 and 2004, using population-based datasets. We created kernel density and choropleth maps for 24-hour periods and four-hour daily time periods and compared location of ambulance dispatches and patient residences with local land use and socioeconomic characteristics. We used multivariate regressions to control for confounding factors. We found the locations of violent injury and the residence locations of those injured were both closely related to each other and clearly clustered in certain parts of the city characterised by high numbers of bars, social housing units, and homeless shelters, as well as lower household incomes. The night and early morning showed a distinctive peak in injuries and a shift in the location of injuries to a "nightlife" district. The locational pattern of patient residences remained unchanged during those times.Our results demonstrate that there is a distinctive spatio-temporal pattern in violent injury reflected in the ambulance data. People injured in this urban centre more commonly live in areas of social deprivation. During the day, locations of injury and locations of residences are similar. However, later at night, the injury location of highest density shifts to a "nightlife" district, whereas the residence locations of those most at risk of injury do not change.

  3. Developmental and Subcellular Organization of Single-Cell C₄ Photosynthesis in Bienertia sinuspersici Determined by Large-Scale Proteomics and cDNA Assembly from 454 DNA Sequencing.

    Science.gov (United States)

    Offermann, Sascha; Friso, Giulia; Doroshenk, Kelly A; Sun, Qi; Sharpe, Richard M; Okita, Thomas W; Wimmer, Diana; Edwards, Gerald E; van Wijk, Klaas J

    2015-05-01

    Kranz C4 species strictly depend on separation of primary and secondary carbon fixation reactions in different cell types. In contrast, the single-cell C4 (SCC4) species Bienertia sinuspersici utilizes intracellular compartmentation including two physiologically and biochemically different chloroplast types; however, information on identity, localization, and induction of proteins required for this SCC4 system is currently very limited. In this study, we determined the distribution of photosynthesis-related proteins and the induction of the C4 system during development by label-free proteomics of subcellular fractions and leaves of different developmental stages. This was enabled by inferring a protein sequence database from 454 sequencing of Bienertia cDNAs. Large-scale proteome rearrangements were observed as C4 photosynthesis developed during leaf maturation. The proteomes of the two chloroplasts are different with differential accumulation of linear and cyclic electron transport components, primary and secondary carbon fixation reactions, and a triose-phosphate shuttle that is shared between the two chloroplast types. This differential protein distribution pattern suggests the presence of a mRNA or protein-sorting mechanism for nuclear-encoded, chloroplast-targeted proteins in SCC4 species. The combined information was used to provide a comprehensive model for NAD-ME type carbon fixation in SCC4 species.

  4. MNK1 expression increases during cellular senescence and modulates the subcellular localization of hnRNP A1

    International Nuclear Information System (INIS)

    Ziaei, Samira; Shimada, Naoko; Kucharavy, Herman; Hubbard, Karen

    2012-01-01

    Heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) is an RNA-binding protein that modulates splice site usage, polyadenylation, and cleavage efficiency. This protein has also been implicated in mRNA stability and transport from the nucleus. We have previously demonstrated that hnRNP A1 had diminished protein levels and showed cytoplasmic accumulation in senescent human diploid fibroblasts. Furthermore, we have shown that inhibition of p38 MAPK, a key regulator of cellular senescence, elevated hnRNP A1 protein levels and inhibited hnRNP A1 cytoplasmic localization. In this study, we have explored the possible involvement of MNK1, one of the downstream effector of p38 MAPK, in the regulation of hnRNP A1. We have demonstrated that pharmacological inhibition of MNK1 by CGP 57380 decreased the phosphorylation levels of hnRNP A1 in young and senescent fibroblast cells and blocked the cytoplasmic accumulation of hnRNP A1 in senescent cells. In addition, MNK1 formed a complex with hnRNP A1 in vivo. The expression levels of MNK1, phospho-MNK1, and phospho-eIF4E proteins were found to be elevated in senescent cells. These data suggest that MNK1 regulates the phosphorylation and the subcellular distribution of hnRNP A1 and that MNK1 may play a role in the induction of senescence. -- Highlights: ► MNK1 and not MAPKAPK2 phosphorylates hnRNP A1. ► MNK1 has elevated levels in senescent cells, this has not been reported previously. ► MNK1 activity induces cytoplasmic accumulation of hnRNP A1 in senescent cells. ► Altered cytoplasmic localization of hnRNP A1 may alter gene expression patterns. ► Our studies may increase our understanding of RNA metabolism during cellular aging.

  5. Sub-cellular distribution and translocation of TRP channels.

    Science.gov (United States)

    Toro, Carlos A; Arias, Luis A; Brauchi, Sebastian

    2011-01-01

    Cellular electrical activity is the result of a highly complex processes that involve the activation of ion channel proteins. Ion channels make pores on cell membranes that rapidly transit between conductive and non-conductive states, allowing different ions to flow down their electrochemical gradients across cell membranes. In the case of neuronal cells, ion channel activity orchestrates action potentials traveling through axons, enabling electrical communication between cells in distant parts of the body. Somatic sensation -our ability to feel touch, temperature and noxious stimuli- require ion channels able to sense and respond to our peripheral environment. Sensory integration involves the summing of various environmental cues and their conversion into electrical signals. Members of the Transient Receptor Potential (TRP) family of ion channels have emerged as important mediators of both cellular sensing and sensory integration. The regulation of the spatial and temporal distribution of membrane receptors is recognized as an important mechanism for controlling the magnitude of the cellular response and the time scale on which cellular signaling occurs. Several studies have shown that this mechanism is also used by TRP channels to modulate cellular response and ultimately fulfill their physiological function as sensors. However, the inner-working of this mode of control for TRP channels remains poorly understood. The question of whether TRPs intrinsically regulate their own vesicular trafficking or weather the dynamic regulation of TRP channel residence on the cell surface is caused by extrinsic changes in the rates of vesicle insertion or retrieval remain open. This review will examine the evidence that sub-cellular redistribution of TRP channels plays an important role in regulating their activity and explore the mechanisms that control the trafficking of vesicles containing TRP channels.

  6. Prequels to Synthetic Biology: From Candidate Gene Identification and Validation to Enzyme Subcellular Localization in Plant and Yeast Cells.

    Science.gov (United States)

    Foureau, E; Carqueijeiro, I; Dugé de Bernonville, T; Melin, C; Lafontaine, F; Besseau, S; Lanoue, A; Papon, N; Oudin, A; Glévarec, G; Clastre, M; St-Pierre, B; Giglioli-Guivarc'h, N; Courdavault, V

    2016-01-01

    Natural compounds extracted from microorganisms or plants constitute an inexhaustible source of valuable molecules whose supply can be potentially challenged by limitations in biological sourcing. The recent progress in synthetic biology combined to the increasing access to extensive transcriptomics and genomics data now provide new alternatives to produce these molecules by transferring their whole biosynthetic pathway in heterologous production platforms such as yeasts or bacteria. While the generation of high titer producing strains remains per se an arduous field of investigation, elucidation of the biosynthetic pathways as well as characterization of their complex subcellular organization are essential prequels to the efficient development of such bioengineering approaches. Using examples from plants and yeasts as a framework, we describe potent methods to rationalize the study of partially characterized pathways, including the basics of computational applications to identify candidate genes in transcriptomics data and the validation of their function by an improved procedure of virus-induced gene silencing mediated by direct DNA transfer to get around possible resistance to Agrobacterium-delivery of viral vectors. To identify potential alterations of biosynthetic fluxes resulting from enzyme mislocalizations in reconstituted pathways, we also detail protocols aiming at characterizing subcellular localizations of protein in plant cells by expression of fluorescent protein fusions through biolistic-mediated transient transformation, and localization of transferred enzymes in yeast using similar fluorescence procedures. Albeit initially developed for the Madagascar periwinkle, these methods may be applied to other plant species or organisms in order to establish synthetic biology platform. © 2016 Elsevier Inc. All rights reserved.

  7. An experimental study of americium-241 biokinetics in the Lobster Homarus Gammarus. Analysis of the accumulation/storage and detoxification processes at the subcellular level

    International Nuclear Information System (INIS)

    Paquet, F.

    1993-01-01

    An experimental study of americium-241 kinetics has been conducted in the lobster Homarus gammmarus. The investigations were conducted at all the levels from the whole body to the subcellular and molecular levels. The animals were contaminated by a single or chronic ingestion of 241 Am labelled mussels. Assessments of accumulation, elimination and distribution of the radionuclide were established on organisms kept in the laboratory; they made it possible to demonstrate the importance of the digestive gland in the radionuclide transfer pathways. The preliminary results led to structural then ultrastructural investigations of the digestive gland in association with radioautographic studies and cellular extractions methods. Four cellular types were demonstrated, only two of them being implied in the radionuclide retention, the former being responsible for americium intake and the latter for its long-term retention. By means of biochemical techniques, subcellular accumulation was studied and the organelles implied in the nuclide retention were specified. Finally, a method of cellular nuclei dissociation was developed; it made it possible to analyse the molecular nature of americium ligands and to demonstrate the function of the protein nuclear matrix in the nuclide retention

  8. Subcellular localization analysis of the closely related Fps/Fes and Fer protein-tyrosine kinases suggests a distinct role for Fps/Fes in vesicular trafficking.

    Science.gov (United States)

    Zirngibl, R; Schulze, D; Mirski, S E; Cole, S P; Greer, P A

    2001-05-15

    The subcellular localizations of the Fps/Fes and closely related Fer cytoplasmic tyrosine kinases were studied using green fluorescent protein (GFP) fusions and confocal fluorescence microscopy. In contrast to previous reports, neither kinase localized to the nucleus. Fer was diffusely cytoplasmic throughout the cell cycle. Fps/Fes also displayed a diffuse cytoplasmic localization, but in addition it showed distinct accumulations in cytoplasmic vesicles as well as in a perinuclear region consistent with the Golgi. This localization was very similar to that of TGN38, a known marker of the trans Golgi. The localization of Fps/Fes and TGN38 were both perturbed by brefeldin A, a fungal metabolite that disrupts the Golgi apparatus. Fps/Fes was also found to colocalize to various extents with several Rab proteins, which are members of the monomeric G-protein superfamily involved in vesicular transport between specific subcellular compartments. Using Rabs that are involved in endocytosis (Rab5B and Rab7) or exocytosis (Rab1A and Rab3A), we showed that Fps/Fes is localized in both pathways. These results suggest that Fps/Fes may play a general role in the regulation of vesicular trafficking. Copyright 2001 Academic Press.

  9. Study on Distribution and location of selenium and other elements in different mitochondrial compartments of human liver by neutron activation analysis

    International Nuclear Information System (INIS)

    Xing Li; Chen Chunying; Li Bai; Yu Hongwei; Chai Zhifang

    2005-01-01

    Mitochondria are membrane-bound organelles and contain many kinds of enzymes and proteins. Mitochondria are the energy factories of the eukaryote cells, which play essential physiological roles in cells and principally produce the bulk of cellular ATP through oxidative metabolism. Mitochondria not only play crucial roles in the process of energy conversion but also take part in other functions, including maintaining ion homeostasis, metabolism and apoptosis. Therefore, it is considered as a key biomonitor of cell apoptosis, which is closely relevant to cell survival or death. As the main place of metabolism and detoxification, liver may contain relatively high levels of many trace elements. Subcellular distribution patterns of some elements in human liver have been analyzed in our previous work. However, the distribution of trace elements in mitochondrial ultrastructure has not been investigated yet. In present study, the distribution patterns of eleven elements in mitochondrial subfractions of normal human liver specimens were studied by applying the separating techniques of chemical treatment and differential centrifugation combined with element-specific detection of instrumental neutron activation analysis (INAA) and hydrid-generation atomic fluorescence spectrometry (HG-AFS). The quality assurance of INAA was checked by the analysis of the reference material of NIST bovine liver (1577a) and the Chinese reference materials of mussel (GBW 08571) and poplar leave (GBW 07604). Because selenium is possible to be lost via volatilization under such a long irradiation of 48 hrs, its content was determined with HG-AFS. We found that 3.3 % of the total mitochondrial protein were located in the outer membrane, 20.4 % in the intermembrane space, 63.8 % in the inner membrane and 12.5 % in the matrix of human liver mitochondria. The concentrations of Ca, Co and Zn were highest in the matrix and Ba, Cr, Fe, Sb, Sc, and Th in the outer membrane, whereas, the highest

  10. Cell-Selective Biological Activity of Rhodium Metalloinsertors Correlates with Subcellular Localization

    Science.gov (United States)

    Komor, Alexis C.; Schneider, Curtis J.; Weidmann, Alyson G.; Barton, Jacqueline K.

    2013-01-01

    Deficiencies in the mismatch repair (MMR) pathway are associated with several types of cancers, as well as resistance to commonly used chemotherapeutics. Rhodium metalloinsertors have been found to bind DNA mismatches with high affinity and specificity in vitro, and also exhibit cell-selective cytotoxicity, targeting MMR-deficient cells over MMR-proficient cells. Ten distinct metalloinsertors with varying lipophilicities have been synthesized and their mismatch binding affinities and biological activities determined. Although DNA photocleavage experiments demonstrate that their binding affinities are quite similar, their cell-selective antiproliferative and cytotoxic activities vary significantly. Inductively coupled plasma mass spectrometry (ICP-MS) experiments have uncovered a relationship between the subcellular distribution of these metalloinsertors and their biological activities. Specifically, we find that all of our metalloinsertors localize in the nucleus at sufficient concentrations for binding to DNA mismatches. However, the metalloinsertors with high rhodium localization in the mitochondria show toxicity that is not selective for MMR-deficient cells, whereas metalloinsertors with less mitochondrial rhodium show activity that is highly selective for MMR-deficient versus proficient cells. This work supports the notion that specific targeting of the metalloinsertors to nuclear DNA gives rise to their cell-selective cytotoxic and antiproliferative activities. The selectivity in cellular targeting depends upon binding to mismatches in genomic DNA. PMID:23137296

  11. Learning and affective responses in location-choice dynamics

    OpenAIRE

    Qi Han; Theo Arentze; Harry J P Timmermans

    2013-01-01

    In this paper we discuss the development of a dynamic agent-based model which simulates how agents search and explore in nonstationary environments and ultimately develop habitual, context-dependent, activity–travel patterns. Conceptually, the creation of a choice set is context dependent. Individuals are assumed to have aspiration levels associated with location attributes that, in combination with evaluation results, determine whether the agent will start exploring or persist in habitual be...

  12. Adélie penguin foraging location predicted by tidal regime switching.

    Science.gov (United States)

    Oliver, Matthew J; Irwin, Andrew; Moline, Mark A; Fraser, William; Patterson, Donna; Schofield, Oscar; Kohut, Josh

    2013-01-01

    Penguin foraging and breeding success depend on broad-scale environmental and local-scale hydrographic features of their habitat. We investigated the effect of local tidal currents on a population of Adélie penguins on Humble Is., Antarctica. We used satellite-tagged penguins, an autonomous underwater vehicle, and historical tidal records to model of penguin foraging locations over ten seasons. The bearing of tidal currents did not oscillate daily, but rather between diurnal and semidiurnal tidal regimes. Adélie penguins foraging locations changed in response to tidal regime switching, and not to daily tidal patterns. The hydrography and foraging patterns of Adélie penguins during these switching tidal regimes suggest that they are responding to changing prey availability, as they are concentrated and dispersed in nearby Palmer Deep by variable tidal forcing on weekly timescales, providing a link between local currents and the ecology of this predator.

  13. Ethnic and locational differences in ecosystem service values

    DEFF Research Database (Denmark)

    Cuni Sanchez, Aida; Pfeifer, Marion; Marchant, Rob

    2016-01-01

    location. Preferred plant species for food, fodder, medicine resources, poles and firewood followed the same pattern. Our results showed that ethnicity and location affect ecosystem services' identification and importance ranking. This should be taken into account by decision-makers, e.g. as restricted......Understanding cultural preferences toward different ecosystem services is of great importance for conservation and development planning. While cultural preferences toward plant species have been long studied in the field of plant utilisation, the effects of ethnicity on ecosystem services...... identification and valuation has received little attention. We assessed the effects of ethnicity toward different ecosystem services at three similar forest islands in northern Kenya inhabited by Samburu and Boran pastoralists. Twelve focus groups were organised in each mountain, to evaluate the ecosystem...

  14. Location, Location, Location: Does Place Provide the Opportunity for Differentiation for Universities?

    Science.gov (United States)

    Winter, Emma; Thompson-Whiteside, Helen

    2017-01-01

    The fiercely competitive HE market has led HEIs to invest significant resources in building a distinct identity. An HEI's location forms an inherent part of its identity and the uniqueness of location offers an opportunity to differentiate. However there has been limited examination of how location is used by HEIs and little consideration of how…

  15. WE-AB-204-12: Dosimetry at the Sub-Cellular Scale of Auger-Electron Emitter 99m-Tc in a Mouse Single Thyroid Follicle Model

    Energy Technology Data Exchange (ETDEWEB)

    Taborda, A; Benabdallah, N; Desbree, A [Institut de Radioprotection et de Surete Nucleaire, Fontenay-aux-roses (France)

    2015-06-15

    Purpose: To perform a dosimetry study at the sub-cellular scale of Auger-electron emitter 99m-Tc using a mouse single thyroid cellular model to investigate the contribution of the 99m-Tc Auger-electrons to the absorbed dose and possible link to the thyroid stunning in in vivo experiments in mice, recently reported in literature. Methods: The simulation of S-values for Auger-electron emitting radionuclides was performed using both the recent MCNP6 software and the Geant4-DNA extension of the Geant4 toolkit. The dosimetric calculations were validated through comparison with results from literature, using a simple model of a single cell consisting of two concentric spheres of unit density water and for six Auger-electron emitting radionuclides. Furthermore, the S-values were calculated using a single thyroid follicle model for uniformly distributed 123-I and 125-I radionuclides and compared with published S-values. After validation, the simulation of the S-values was performed for the 99m-Tc radionuclide within the several mouse thyroid follicle cellular compartments, considering the radiative and non-radiative transitions of the 99m-Tc radiation spectrum. Results: The calculated S-values using MCNP6 are in good agreement with the results from literature, validating its use for the 99m-Tc S-values calculations. The most significant absorbed dose corresponds to the case where the radionuclide is uniformly distributed in the follicular cell’s nucleus, with a S-value of 7.8 mGy/disintegration, due mainly to the absorbed Auger-electrons. The results show that, at a sub-cellular scale, the emitted X-rays and gamma particles do not contribute significantly to the absorbed dose. Conclusion: In this work, MCNP6 was validated for dosimetric studies at the sub-cellular scale. It was shown that the contribution of the Auger-electrons to the absorbed dose is important at this scale compared to the emitted photons’ contribution and can’t be neglected. The obtained S

  16. Interference of apex locator, pulp tester and diathermy on pacemaker function.

    Science.gov (United States)

    Sriman, Narayanan; Prabhakar, V; Bhuvaneswaran, J S; Subha, N

    2015-01-01

    The purpose of this study was to evaluate the effects of three electronic apex locators (EAL), electric pulp tester (EPT) and diathermy on pacemaker function in vitro. Three EALs: Root ZX (J. Morita Co., Tustin, CA, U.S.A.), Propex (Dentsply), Mini Apex locator (SybronEndo, Anaheim, CA, USA), EPT (Parkell pulp vitality tester Farmingdale, NY, USA) and Diathermy (Neomed 250 B) were tested for any interference with one pacemaker (A medtronic kappa KVDD901-serial number: PLE734632S). Directly connecting the pacemaker lead with the EAL/EPT/diathermy operating on a flat bench top, the telemetry wand was held directly over the pacemaker to monitor the pacing pattern for a period of 30 s. Pacemaker activity was continuously recorded on the telemetric programmer and electro gram (EGM) readings examined for pacer inhibition, noise reversion or inappropriate pacemaker pulses. All the three apex locators showed no pacing interference or background noise during its function or at rest. The EGM readings of EPT showed varying levels of background noise in between pacing however, this did not affect the normal pacing pattern and the pacing interval remained constant. EGM readings of diathermy showed an increase in the pacing interval (irregular pacing pattern) followed by complete inhibition of the pacing system. The tested EALs do not interfere with cardiac pacemaker function. The tested EPT showed varying levels of background noise but does not interfere with cardiac pacemaker function. Use of Diathermy interfered with the normal pacing, leading to complete inhibition of the pacing system.

  17. Experimental study of Americium-241 biokinetics in Homarus Gammarus lobster. Analysis of the accumulation and detoxication mechanisms at the sub-cellular level

    International Nuclear Information System (INIS)

    Paquet, F.

    1991-12-01

    The Americium 241 radioelement accumulation and elimination rate and mechanisms in the lobster organism have been experimentally studied; incorporation and detoxification capacities of each organ are evaluated. The existence of various biological compartments is shown; the major role of the digestive gland in accumulation of the radioelement, its distribution towards the various organs, and its resorption is comprehensively described, with an analysis at the subcellular and molecular levels. 401 p., 65 fig., 43 tab., 428 ref

  18. Optimization of ruminococcus albus endoglucanase cel5-cbm6 production in plants by incorporating an elp tag and targeting to different subcellular compartments

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, E.O.; Menassa, R. [Western Ontario Univ., London, ON (Canada). Dept. of Biology; Agriculture and Agri-Food Canada, London, ON (Canada); Kolotilin, I. [Agriculture and Agri-Food Canada, London, ON (Canada)

    2009-07-01

    The production of biomass-based biofuel such as ethanol depends on the deconstruction of a cellulosic matrix and requires a variety of enzymes that hydrolyze glycosidic bonds to release fermentable sugars. Endoglucanases are one of most important groups of natural cellulosic hydrolytic enzymes that act on cellulose. In order to decrease ethanol production costs, the cost of producing cellulases must also be reduced. Genetically engineered transgenic plants are among the most economical systems for large scale production of recombinant proteins because of the large amount of enzymes that can be produced with minimal input. Cellulases present different levels of expression in different subcellular compartments. Cel5-CBM6 is a fused protein containing an endocellulase from Ruminococus albus (Cel5) and a cellulose binding domain (CBD) of Clostridium stercorarium. It accumulates in both the chloroplast and cytoplasm, but severe growth defects occur when expressed in the cytoplasm. Therefore, other subcellular compartments such as endoplasmic reticulum (ER) and vacuole must be evaluated and compared to determine the best co partment for production and activity of cellulases. Since elastin-like polypeptide (ELP) has also been shown to increase recombinant protein accumulation in plants, this study evaluated the effects of incorporating an ELP tag and a retrieval signal peptide on the expression levels of Cel5-CBM6.

  19. In Situ Spatiotemporal Mapping of Flow Fields around Seeded Stem Cells at the Subcellular Length Scale

    Science.gov (United States)

    Song, Min Jae; Dean, David; Knothe Tate, Melissa L.

    2010-01-01

    A major hurdle to understanding and exploiting interactions between the stem cell and its environment is the lack of a tool for precise delivery of mechanical cues concomitant to observing sub-cellular adaptation of structure. These studies demonstrate the use of microscale particle image velocimetry (μ-PIV) for in situ spatiotemporal mapping of flow fields around mesenchymal stem cells, i.e. murine embryonic multipotent cell line C3H10T1/2, at the subcellular length scale, providing a tool for real time observation and analysis of stem cell adaptation to the prevailing mechanical milieu. In the absence of cells, computational fluid dynamics (CFD) predicts flow regimes within 12% of μ-PIV measures, achieving the technical specifications of the chamber and the flow rates necessary to deliver target shear stresses at a particular height from the base of the flow chamber. However, our μ-PIV studies show that the presence of cells per se as well as the density at which cells are seeded significantly influences local flow fields. Furthermore, for any given cell or cell seeding density, flow regimes vary significantly along the vertical profile of the cell. Hence, the mechanical milieu of the stem cell exposed to shape changing shear stresses, induced by fluid drag, varies with respect to proximity of surrounding cells as well as with respect to apical height. The current study addresses a previously unmet need to predict and observe both flow regimes as well as mechanoadaptation of cells in flow chambers designed to deliver precisely controlled mechanical signals to live cells. An understanding of interactions and adaptation in response to forces at the interface between the surface of the cell and its immediate local environment may be key for de novo engineering of functional tissues from stem cell templates as well as for unraveling the mechanisms underlying multiscale development, growth and adaptation of organisms. PMID:20862249

  20. In situ spatiotemporal mapping of flow fields around seeded stem cells at the subcellular length scale.

    Directory of Open Access Journals (Sweden)

    Min Jae Song

    2010-09-01

    Full Text Available A major hurdle to understanding and exploiting interactions between the stem cell and its environment is the lack of a tool for precise delivery of mechanical cues concomitant to observing sub-cellular adaptation of structure. These studies demonstrate the use of microscale particle image velocimetry (μ-PIV for in situ spatiotemporal mapping of flow fields around mesenchymal stem cells, i.e. murine embryonic multipotent cell line C3H10T1/2, at the subcellular length scale, providing a tool for real time observation and analysis of stem cell adaptation to the prevailing mechanical milieu. In the absence of cells, computational fluid dynamics (CFD predicts flow regimes within 12% of μ-PIV measures, achieving the technical specifications of the chamber and the flow rates necessary to deliver target shear stresses at a particular height from the base of the flow chamber. However, our μ-PIV studies show that the presence of cells per se as well as the density at which cells are seeded significantly influences local flow fields. Furthermore, for any given cell or cell seeding density, flow regimes vary significantly along the vertical profile of the cell. Hence, the mechanical milieu of the stem cell exposed to shape changing shear stresses, induced by fluid drag, varies with respect to proximity of surrounding cells as well as with respect to apical height. The current study addresses a previously unmet need to predict and observe both flow regimes as well as mechanoadaptation of cells in flow chambers designed to deliver precisely controlled mechanical signals to live cells. An understanding of interactions and adaptation in response to forces at the interface between the surface of the cell and its immediate local environment may be key for de novo engineering of functional tissues from stem cell templates as well as for unraveling the mechanisms underlying multiscale development, growth and adaptation of organisms.

  1. Subcellular distribution of folate and folate binding protein in renal proximal tubules

    International Nuclear Information System (INIS)

    Sharkey, C.; Hjelle, J.T.; Selhub, J.

    1986-01-01

    High affinity folate binding protein (FBP) found in brush border membranes derived from renal cortices is thought to be involved in the renal conservation of folate. To examine the mechanisms of folate recovery, the subcellular distribution of FBP and 3 H-folate in rabbit renal proximal tubules (PT) was examined using analytical cell fractionation techniques. Tubules contain 3.41 +/- 0.32 picomoles FBP/mg protein (X +/- S.D.; n = 5). Postnuclear supernates (PNS) of PT were layered atop Percoll-sucrose gradients, centrifuged, fractions collected and assayed for various marker enzymes and FBP. Pooled fractions from such gradients were subsequently treated with digitonin and centrifuged in a stoichiometric manner with the activity of the microvillar enzyme, alanylaminopeptidase (AAP); excess FBP distributed with more buoyant particles. Infusion of 3 H-folate into rabbit kidneys followed by tubule isolation and fractionation revealed a time dependent shift in distribution of radiolabel from the AAP-rich gradient fractions to a region containing more buoyant particles; radiolevel was not associated with lysosomal markers. EM-radioautography revealed grains over intracellular vesicles. These results are consistent with the hypothesis that folate is recovered by a process involving receptor-mediated endocytosis or transcytosis

  2. Accurate Classification of Protein Subcellular Localization from High-Throughput Microscopy Images Using Deep Learning

    Directory of Open Access Journals (Sweden)

    Tanel Pärnamaa

    2017-05-01

    Full Text Available High-throughput microscopy of many single cells generates high-dimensional data that are far from straightforward to analyze. One important problem is automatically detecting the cellular compartment where a fluorescently-tagged protein resides, a task relatively simple for an experienced human, but difficult to automate on a computer. Here, we train an 11-layer neural network on data from mapping thousands of yeast proteins, achieving per cell localization classification accuracy of 91%, and per protein accuracy of 99% on held-out images. We confirm that low-level network features correspond to basic image characteristics, while deeper layers separate localization classes. Using this network as a feature calculator, we train standard classifiers that assign proteins to previously unseen compartments after observing only a small number of training examples. Our results are the most accurate subcellular localization classifications to date, and demonstrate the usefulness of deep learning for high-throughput microscopy.

  3. Trehalose Alters Subcellular Trafficking and the Metabolism of the Alzheimer-associated Amyloid Precursor Protein.

    Science.gov (United States)

    Tien, Nguyen T; Karaca, Ilker; Tamboli, Irfan Y; Walter, Jochen

    2016-05-13

    The disaccharide trehalose is commonly considered to stimulate autophagy. Cell treatment with trehalose could decrease cytosolic aggregates of potentially pathogenic proteins, including mutant huntingtin, α-synuclein, and phosphorylated tau that are associated with neurodegenerative diseases. Here, we demonstrate that trehalose also alters the metabolism of the Alzheimer disease-related amyloid precursor protein (APP). Cell treatment with trehalose decreased the degradation of full-length APP and its C-terminal fragments. Trehalose also reduced the secretion of the amyloid-β peptide. Biochemical and cell biological experiments revealed that trehalose alters the subcellular distribution and decreases the degradation of APP C-terminal fragments in endolysosomal compartments. Trehalose also led to strong accumulation of the autophagic marker proteins LC3-II and p62, and decreased the proteolytic activation of the lysosomal hydrolase cathepsin D. The combined data indicate that trehalose decreases the lysosomal metabolism of APP by altering its endocytic vesicular transport. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Accurate Classification of Protein Subcellular Localization from High-Throughput Microscopy Images Using Deep Learning.

    Science.gov (United States)

    Pärnamaa, Tanel; Parts, Leopold

    2017-05-05

    High-throughput microscopy of many single cells generates high-dimensional data that are far from straightforward to analyze. One important problem is automatically detecting the cellular compartment where a fluorescently-tagged protein resides, a task relatively simple for an experienced human, but difficult to automate on a computer. Here, we train an 11-layer neural network on data from mapping thousands of yeast proteins, achieving per cell localization classification accuracy of 91%, and per protein accuracy of 99% on held-out images. We confirm that low-level network features correspond to basic image characteristics, while deeper layers separate localization classes. Using this network as a feature calculator, we train standard classifiers that assign proteins to previously unseen compartments after observing only a small number of training examples. Our results are the most accurate subcellular localization classifications to date, and demonstrate the usefulness of deep learning for high-throughput microscopy. Copyright © 2017 Parnamaa and Parts.

  5. Optimization of Gad Pattern with Geometrical Weight

    International Nuclear Information System (INIS)

    Chang, Do Ik; Woo, Hae Seuk; Choi, Seong Min

    2009-01-01

    The prevailing burnable absorber for domestic nuclear power plants is a gad fuel rod which is used for the partial control of excess reactivity and power peaking. The radial peaking factor, which is one of the critical constraints for the plant safety depends largely on the number of gad bearing rods and the location of gad rods within fuel assembly. Also the concentration of gad, UO 2 enrichment in the gad fuel rod, and fuel lattice type play important roles for the resultant radial power peaking. Since fuel is upgraded periodically and longer fuel cycle management requires more burnable absorbers or higher gad weight percent, it is required frequently to search for the optimized gad patterns, i.e., the distribution of gad fuel rods within assembly, for the various fuel environment and fuel management changes. In this study, the gad pattern optimization algorithm with respect to radial power peaking factor using geometrical weight is proposed for a single gad weight percent, in which the candidates of the optimized gad pattern are determined based on the weighting of the gad rod location and the guide tube. Also the pattern evaluation is performed systematically to determine the optimal gad pattern for the various situation

  6. The impact of lesion location on dysphagia incidence, pattern and complications in acute stroke. Part 2: Oropharyngeal residue, swallow and cough response, and pneumonia.

    Science.gov (United States)

    Suntrup-Krueger, S; Kemmling, A; Warnecke, T; Hamacher, C; Oelenberg, S; Niederstadt, T; Heindel, W; Wiendl, H; Dziewas, R

    2017-06-01

    Dysphagia is a well-known complication of acute stroke. Given the complexity of cerebral swallowing control it is still difficult to predict which patients are likely to develop swallowing dysfunction based on their neuroimaging. In Part 2 of a comprehensive voxel-based imaging study, whether the location of a stroke lesion can be correlated with further dysfunctional swallowing patterns, pulmonary protective reflexes and pneumonia was evaluated. In all, 200 acute stroke cases were investigated applying flexible endoscopic evaluation of swallowing within 96 h from admission. Lesions were mapped using patients' computed tomography/magnetic resonance images and these were registered to a standard space. The percentage of lesioned volume of 137 anatomically defined brain regions was determined on a voxel basis (FSL5.0). Region-specific odds ratios (ORs) were calculated with respect to the presence of oropharyngeal residue, delayed swallow response, insufficient cough reflex and occurrence of pneumonia during hospital stay. Colour-coded lesion location maps of brain regions with significant ORs were created (P pneumonia, but substantial overlap between the last two conditions. This study gives new insights on the cortical representation of single components of swallowing and airway protection behaviours. The lesion model may help to risk-stratify patients for dysphagia and pneumonia based on their brain scan. © 2017 EAN.

  7. A novel optical microscope for imaging large embryos and tissue volumes with sub-cellular resolution throughout.

    Science.gov (United States)

    McConnell, Gail; Trägårdh, Johanna; Amor, Rumelo; Dempster, John; Reid, Es; Amos, William Bradshaw

    2016-09-23

    Current optical microscope objectives of low magnification have low numerical aperture and therefore have too little depth resolution and discrimination to perform well in confocal and nonlinear microscopy. This is a serious limitation in important areas, including the phenotypic screening of human genes in transgenic mice by study of embryos undergoing advanced organogenesis. We have built an optical lens system for 3D imaging of objects up to 6 mm wide and 3 mm thick with depth resolution of only a few microns instead of the tens of microns currently attained, allowing sub-cellular detail to be resolved throughout the volume. We present this lens, called the Mesolens, with performance data and images from biological specimens including confocal images of whole fixed and intact fluorescently-stained 12.5-day old mouse embryos.

  8. Mining Spatiotemporal Patterns of the Elder's Daily Movement

    Science.gov (United States)

    Chen, C. R.; Chen, C. F.; Liu, M. E.; Tsai, S. J.; Son, N. T.; Kinh, L. V.

    2016-06-01

    With rapid developments in wearable device technology, a vast amount of spatiotemporal data, such as people's movement and physical activities, are generated. Information derived from the data reveals important knowledge that can contribute a long-term care and psychological assessment of the elders' living condition especially in long-term care institutions. This study aims to develop a method to investigate the spatial-temporal movement patterns of the elders with their outdoor trajectory information. To achieve the goal, GPS based location data of the elderly subjects from long-term care institutions are collected and analysed with geographic information system (GIS). A GIS statistical model is developed to mine the elderly subjects' spatiotemporal patterns with the location data and represent their daily movement pattern at particular time. The proposed method first finds the meaningful trajectory and extracts the frequent patterns from the time-stamp location data. Then, a density-based clustering method is used to identify the major moving range and the gather/stay hotspot in both spatial and temporal dimensions. The preliminary results indicate that the major moving area of the elderly people encompasses their dorm and has a short moving distance who often stay in the same site. Subjects' outdoor appearance are corresponded to their life routine. The results can be useful for understanding elders' social network construction, risky area identification and medical care monitoring.

  9. Adaptive learning compressive tracking based on Markov location prediction

    Science.gov (United States)

    Zhou, Xingyu; Fu, Dongmei; Yang, Tao; Shi, Yanan

    2017-03-01

    Object tracking is an interdisciplinary research topic in image processing, pattern recognition, and computer vision which has theoretical and practical application value in video surveillance, virtual reality, and automatic navigation. Compressive tracking (CT) has many advantages, such as efficiency and accuracy. However, when there are object occlusion, abrupt motion and blur, similar objects, and scale changing, the CT has the problem of tracking drift. We propose the Markov object location prediction to get the initial position of the object. Then CT is used to locate the object accurately, and the classifier parameter adaptive updating strategy is given based on the confidence map. At the same time according to the object location, extract the scale features, which is able to deal with object scale variations effectively. Experimental results show that the proposed algorithm has better tracking accuracy and robustness than current advanced algorithms and achieves real-time performance.

  10. Spatial Working Memory Capacity Predicts Bias in Estimates of Location

    Science.gov (United States)

    Crawford, L. Elizabeth; Landy, David; Salthouse, Timothy A.

    2016-01-01

    Spatial memory research has attributed systematic bias in location estimates to a combination of a noisy memory trace with a prior structure that people impose on the space. Little is known about intraindividual stability and interindividual variation in these patterns of bias. In the current work, we align recent empirical and theoretical work on…

  11. Spatial Patterns of Inshore Marine Soundscapes.

    Science.gov (United States)

    McWilliam, Jamie

    2016-01-01

    Passive acoustic monitoring was employed to investigate spatial patterns of soundscapes within a marine reserve. High energy level broadband snaps dominated nearly all habitat soundscapes. Snaps, the principal acoustic feature of soundscapes, were primarily responsible for the observed spatial patterns, and soundscapes appeared to retain a level of compositional and configurational stability. In the presence of high-level broadband snaps, soundscape composition was more influenced by geographic location than habitat type. Future research should focus on investigating the spatial patterns of soundscapes across a wider range of coastal and offshore seascapes containing a variety of distinct ecosystems and habitats.

  12. Acute hypotension induced by aortic clamp vs. PTH provokes distinct proximal tubule Na+ transporter redistribution patterns

    DEFF Research Database (Denmark)

    Leong, Patrick K K; Yang, Li E; Lin, Harrison W

    2004-01-01

    . This study aimed to determine the effects of acute hypotension, induced by aortic clamp or by high-dose PTH (100 microg PTH/kg), on renal hemodynamics and proximal tubule Na/H exchanger isoform 3 (NHE3) and type IIa Na-P(i) cotransporter protein (NaPi2) distribution. Subcellular distribution was analyzed...... clearance. There was, however, no significant change in glomerular filtration rate (GFR) or subcellular distribution of NHE3 and NaPi2. In contrast, high-dose PTH rapidly (

  13. Quantitative and subcellular localization analysis of the nuclear isoform dUTP pyrophosphatase in alkylating agent-induced cell responses

    International Nuclear Information System (INIS)

    Hu, Xiaolan; Yu, Yingnian; Li, Qian; Wu, Danxiao; Tan, Zhengning; Wang, Cheng; Wang, Jvping; Wu, Meiping

    2011-01-01

    Highlights: → MNNG-induced appearance of DUT-N in the extracellular fluid has cellular specificity. → MNNG alters the subcellular distribution of DUT-N in human cells in different ways. → DUT-N may be a potential biomarker to assess the risk of alkylating agents exposure. -- Abstract: Our previous proteome analysis showed that the nuclear isoform of dUTP pyrophosphatase (DUT-N) was identified in the culture medium of human amnion FL cells after exposure to the alkylating agent N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). These results suggest that DUT-N may be a potential early biomarker to assess the risk of alkylating agents exposure. DUT-N is one of the two isoforms of deoxyuridine triphosphate nucleotidohydrolase (dUTPase). Our current knowledge of DUT-N expression in human cells is very limited. In the current study, we first investigated the appearance of DUT-N in the culture medium of different human cell lines in response to a low concentration of MNNG exposure. We verified that the MNNG-induced appearance of DUT-N in the extracellular environment is cell-specific. Western blot analysis confirmed that the intracellular DUT-N changes responded to MNNG in a concentration-dependent and cell-specific manner. Furthermore, subcellular fraction experiments showed that 0.25 μM MNNG treatment dramatically increased the DUT-N expression levels in the cytoplasmic extracts prepared from both FL and HepG2 cells, increased DUT-N levels in nuclear extracts prepared from HepG2 cells, and decreased DUT-N levels in nuclear extracts from FL cells. Morphological studies using immunofluorescence showed that a low concentration of MNNG could alter the distribution of DUT-N in FL and HepG2 cells in different ways. Taken together, these studies indicate a role of DUT-N in alkylating agent-induced cell responses.

  14. Engineering metal-binding sites of bacterial CusF to enhance Zn/Cd accumulation and resistance by subcellular targeting

    International Nuclear Information System (INIS)

    Yu, Pengli; Yuan, Jinhong; Zhang, Hui; Deng, Xin; Ma, Mi; Zhang, Haiyan

    2016-01-01

    Highlights: • mCusF is specifically targeted to different subcellular compartments in Arabidopsis. • Plants expressing vacuole-targeted mCusF exhibit strongest Zn resistance. • All transgenic lines accumulate more Zn under Zn exposure. • All transgenic lines enhance root-to-shoot translocation of Cd. • Metal homeostasis is improved in mCusF plants under Cd exposure. - Abstract: The periplasmic protein CusF acts as a metallochaperone to mediate Cu resistance in Escherichia coli. CusF does not contain cysteine residues and barely binds to divalent cations. Here, we addressed effects of cysteine-substitution mutant (named as mCusF) of CusF on zinc/cadmium (Zn/Cd) accumulation and resistance. We targeted mCusF to different subcellular compartments in Arabidopsis. We found that plants expressing vacuole-targeted mCusF were more resistant to excess Zn than WT and plants with cell wall-targeted or cytoplasmic mCusF. Under long-term exposure to excess Zn, all transgenic lines accumulated more Zn (up to 2.3-fold) in shoots than the untransformed plants. Importantly, plants with cytoplasmic mCusF showed higher efficiency of Zn translocation from root to shoot than plants with secretory pathway-targeted-mCusF. Furthermore, the transgenic lines exhibited enhanced resistance to Cd and significant increase in root-to-shoot Cd translocation. We also found all transgenic plants greatly improved manganese (Mn) and iron (Fe) homeostasis under Cd exposure. Our results demonstrate heterologous expression of mCusF could be used to engineer a new phytoremediation strategy for Zn/Cd and our finding also deepen our insights into mechanistic basis for relieving Cd toxicity in plants through proper root/shoot partitioning mechanism and homeostatic accumulation of Mn and Fe.

  15. Engineering metal-binding sites of bacterial CusF to enhance Zn/Cd accumulation and resistance by subcellular targeting

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Pengli; Yuan, Jinhong [Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093 (China); Zhang, Hui [Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093 (China); Deng, Xin [Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637 (United States); Ma, Mi [Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093 (China); Zhang, Haiyan, E-mail: hyz@ibcas.ac.cn [Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093 (China)

    2016-01-25

    Highlights: • mCusF is specifically targeted to different subcellular compartments in Arabidopsis. • Plants expressing vacuole-targeted mCusF exhibit strongest Zn resistance. • All transgenic lines accumulate more Zn under Zn exposure. • All transgenic lines enhance root-to-shoot translocation of Cd. • Metal homeostasis is improved in mCusF plants under Cd exposure. - Abstract: The periplasmic protein CusF acts as a metallochaperone to mediate Cu resistance in Escherichia coli. CusF does not contain cysteine residues and barely binds to divalent cations. Here, we addressed effects of cysteine-substitution mutant (named as mCusF) of CusF on zinc/cadmium (Zn/Cd) accumulation and resistance. We targeted mCusF to different subcellular compartments in Arabidopsis. We found that plants expressing vacuole-targeted mCusF were more resistant to excess Zn than WT and plants with cell wall-targeted or cytoplasmic mCusF. Under long-term exposure to excess Zn, all transgenic lines accumulated more Zn (up to 2.3-fold) in shoots than the untransformed plants. Importantly, plants with cytoplasmic mCusF showed higher efficiency of Zn translocation from root to shoot than plants with secretory pathway-targeted-mCusF. Furthermore, the transgenic lines exhibited enhanced resistance to Cd and significant increase in root-to-shoot Cd translocation. We also found all transgenic plants greatly improved manganese (Mn) and iron (Fe) homeostasis under Cd exposure. Our results demonstrate heterologous expression of mCusF could be used to engineer a new phytoremediation strategy for Zn/Cd and our finding also deepen our insights into mechanistic basis for relieving Cd toxicity in plants through proper root/shoot partitioning mechanism and homeostatic accumulation of Mn and Fe.

  16. Development of a new fluorescent reporter:operator system: location of AraC regulated genes in Escherichia coli K-12.

    Science.gov (United States)

    Sellars, Laura E; Bryant, Jack A; Sánchez-Romero, María-Antonia; Sánchez-Morán, Eugenio; Busby, Stephen J W; Lee, David J

    2017-08-03

    In bacteria, many transcription activator and repressor proteins regulate multiple transcription units that are often distally distributed on the bacterial genome. To investigate the subcellular location of DNA bound proteins in the folded bacterial nucleoid, fluorescent reporters have been developed which can be targeted to specific DNA operator sites. Such Fluorescent Reporter-Operator System (FROS) probes consist of a fluorescent protein fused to a DNA binding protein, which binds to an array of DNA operator sites located within the genome. Here we have developed a new FROS probe using the Escherichia coli MalI transcription factor, fused to mCherry fluorescent protein. We have used this in combination with a LacI repressor::GFP protein based FROS probe to assess the cellular location of commonly regulated transcription units that are distal on the Escherichia coli genome. We developed a new DNA binding fluorescent reporter, consisting of the Escherichia coli MalI protein fused to the mCherry fluorescent protein. This was used in combination with a Lac repressor:green fluorescent protein fusion to examine the spatial positioning and possible co-localisation of target genes, regulated by the Escherichia coli AraC protein. We report that induction of gene expression with arabinose does not result in co-localisation of AraC-regulated transcription units. However, measurable repositioning was observed when gene expression was induced at the AraC-regulated promoter controlling expression of the araFGH genes, located close to the DNA replication terminus on the chromosome. Moreover, in dividing cells, arabinose-induced expression at the araFGH locus enhanced chromosome segregation after replication. Regions of the chromosome regulated by AraC do not colocalise, but transcription events can induce movement of chromosome loci in bacteria and our observations suggest a role for gene expression in chromosome segregation.

  17. Auditory orientation in crickets: Pattern recognition controls reactive steering

    Science.gov (United States)

    Poulet, James F. A.; Hedwig, Berthold

    2005-10-01

    Many groups of insects are specialists in exploiting sensory cues to locate food resources or conspecifics. To achieve orientation, bees and ants analyze the polarization pattern of the sky, male moths orient along the females' odor plume, and cicadas, grasshoppers, and crickets use acoustic signals to locate singing conspecifics. In comparison with olfactory and visual orientation, where learning is involved, auditory processing underlying orientation in insects appears to be more hardwired and genetically determined. In each of these examples, however, orientation requires a recognition process identifying the crucial sensory pattern to interact with a localization process directing the animal's locomotor activity. Here, we characterize this interaction. Using a sensitive trackball system, we show that, during cricket auditory behavior, the recognition process that is tuned toward the species-specific song pattern controls the amplitude of auditory evoked steering responses. Females perform small reactive steering movements toward any sound patterns. Hearing the male's calling song increases the gain of auditory steering within 2-5 s, and the animals even steer toward nonattractive sound patterns inserted into the speciesspecific pattern. This gain control mechanism in the auditory-to-motor pathway allows crickets to pursue species-specific sound patterns temporarily corrupted by environmental factors and may reflect the organization of recognition and localization networks in insects. localization | phonotaxis

  18. Daily physical activity patterns from hip- and wrist-worn accelerometers

    DEFF Research Database (Denmark)

    Shiroma, Eric J; Schepps, M A; Harezlak, J

    2016-01-01

    Accelerometer wear location may influence physical activity estimates. This study investigates this relationship through the examination of activity patterns throughout the day. Participants from the aging research evaluating accelerometry (AREA) study (n men = 37, n women = 47, mean age (SD) = 78...... activity accrual provide support that each location is capable of estimating total physical activity volume. The examination of activity patterns over time may provide a more detailed way to examine differences in wear location and different subpopulations. © 2016 Institute of Physics and Engineering.......9 (5.5) years) were asked to wear accelerometers in a free-living environment for 7 d at three different wear locations; one on each wrist and one on the right hip. During waking hours, wrist-worn accelerometers consistently produced higher median activity counts, about 5 × higher, as well as wider...

  19. Analysis of age, sex, location, size and multiplicity of colonic diverticulosis in Korean

    International Nuclear Information System (INIS)

    Son, Mi Young; Chang, Jae Chun; Kwoen, Hyuk Po; Jung, Kyung Hwa; Byun, Woo Mok; Kim, Sun Yong; Hwang, Mi Soo; Park, Bok Hwan

    1989-01-01

    Recently, colonic diverticulosis in Korea is one of rapidly increased disease in its incidence but it is different from that of western counties in the incidence or developing pattern. So, authors reviewed 1921 cases of double contrast study performed during 20 months, from Jan 1st , 1987 to Aug 30th, 1988 at the Department of Radiology. Yeungnam University Hospital to analyzed current disease pattern of the colonic diverticulosis. The results were as follows; 1. The incidence were 11.8%(226/1921) and predominant in male. 2. The mean age of patients was 48.41 years and older in female, but their incidence was not increased with advancing age over 6th decade. 3. The mean number of diverticular was 7.6 and higher in cases involving several anatomic location than limited to one location. 4. Diverticulosis more commonly involved several anatomic location than one location. 5. Left sided colonic diverticulosis was found in relatively older age group and more frequently involved descending colon than sigmoid colon most commonly seen in western people. 6. Recently, the incidence of colonic diverticulosis is increasing in both the right and left colon, which is thought to be due to various factors and partly to the routine use of double contrast study of the colon

  20. Analysis of age, sex, location, size and multiplicity of colonic diverticulosis in Korean

    Energy Technology Data Exchange (ETDEWEB)

    Son, Mi Young; Chang, Jae Chun; Kwoen, Hyuk Po; Jung, Kyung Hwa; Byun, Woo Mok; Kim, Sun Yong; Hwang, Mi Soo; Park, Bok Hwan [Yeungnam University College of Medicine, Chinju (Korea, Republic of)

    1989-02-15

    Recently, colonic diverticulosis in Korea is one of rapidly increased disease in its incidence but it is different from that of western counties in the incidence or developing pattern. So, authors reviewed 1921 cases of double contrast study performed during 20 months, from Jan 1st , 1987 to Aug 30th, 1988 at the Department of Radiology. Yeungnam University Hospital to analyzed current disease pattern of the colonic diverticulosis. The results were as follows; 1. The incidence were 11.8%(226/1921) and predominant in male. 2. The mean age of patients was 48.41 years and older in female, but their incidence was not increased with advancing age over 6th decade. 3. The mean number of diverticular was 7.6 and higher in cases involving several anatomic location than limited to one location. 4. Diverticulosis more commonly involved several anatomic location than one location. 5. Left sided colonic diverticulosis was found in relatively older age group and more frequently involved descending colon than sigmoid colon most commonly seen in western people. 6. Recently, the incidence of colonic diverticulosis is increasing in both the right and left colon, which is thought to be due to various factors and partly to the routine use of double contrast study of the colon.