Imaging trace element distributions in single organelles and subcellular features
Kashiv, Yoav; Austin, Jotham R.; Lai, Barry; Rose, Volker; Vogt, Stefan; El-Muayed, Malek
2016-02-01
The distributions of chemical elements within cells are of prime importance in a wide range of basic and applied biochemical research. An example is the role of the subcellular Zn distribution in Zn homeostasis in insulin producing pancreatic beta cells and the development of type 2 diabetes mellitus. We combined transmission electron microscopy with micro- and nano-synchrotron X-ray fluorescence to image unequivocally for the first time, to the best of our knowledge, the natural elemental distributions, including those of trace elements, in single organelles and other subcellular features. Detected elements include Cl, K, Ca, Co, Ni, Cu, Zn and Cd (which some cells were supplemented with). Cell samples were prepared by a technique that minimally affects the natural elemental concentrations and distributions, and without using fluorescent indicators. It could likely be applied to all cell types and provide new biochemical insights at the single organelle level not available from organelle population level studies.
A sub-cellular viscoelastic model for cell population mechanics.
Directory of Open Access Journals (Sweden)
Yousef Jamali
Full Text Available Understanding the biomechanical properties and the effect of biomechanical force on epithelial cells is key to understanding how epithelial cells form uniquely shaped structures in two or three-dimensional space. Nevertheless, with the limitations and challenges posed by biological experiments at this scale, it becomes advantageous to use mathematical and 'in silico' (computational models as an alternate solution. This paper introduces a single-cell-based model representing the cross section of a typical tissue. Each cell in this model is an individual unit containing several sub-cellular elements, such as the elastic plasma membrane, enclosed viscoelastic elements that play the role of cytoskeleton, and the viscoelastic elements of the cell nucleus. The cell membrane is divided into segments where each segment (or point incorporates the cell's interaction and communication with other cells and its environment. The model is capable of simulating how cells cooperate and contribute to the overall structure and function of a particular tissue; it mimics many aspects of cellular behavior such as cell growth, division, apoptosis and polarization. The model allows for investigation of the biomechanical properties of cells, cell-cell interactions, effect of environment on cellular clusters, and how individual cells work together and contribute to the structure and function of a particular tissue. To evaluate the current approach in modeling different topologies of growing tissues in distinct biochemical conditions of the surrounding media, we model several key cellular phenomena, namely monolayer cell culture, effects of adhesion intensity, growth of epithelial cell through interaction with extra-cellular matrix (ECM, effects of a gap in the ECM, tensegrity and tissue morphogenesis and formation of hollow epithelial acini. The proposed computational model enables one to isolate the effects of biomechanical properties of individual cells and the
Chandra, Subhash
2008-12-01
Secondary ion mass spectrometry (SIMS) based imaging techniques capable of subcellular resolution characterization of elements and molecules are becoming valuable tools in many areas of biology and medicine. Due to high vacuum requirements of SIMS, the live cells cannot be analyzed directly in the instrument. The sample preparation, therefore, plays a critical role in preserving the native chemical composition for SIMS analysis. This work focuses on the evaluation of frozen-hydrated and frozen freeze-dried sample preparations for SIMS studies of cultured cells with a CAMECA IMS-3f dynamic SIMS ion microscope instrument capable of producing SIMS images with a spatial resolution of 500 nm. The sandwich freeze-fracture method was used for fracturing the cells. The complimentary fracture planes in the plasma membrane were characterized by field-emission secondary electron microscopy (FESEM) in the frozen-hydrated state. The cells fractured at the dorsal surface were used for SIMS analysis. The frozen-hydrated SIMS analysis of individual cells under dynamic primary ion beam (O 2+) revealed local secondary ion signal enhancements correlated with the water image signals of 19(H 3O) +. A preferential removal of water from the frozen cell matrix in the Z-axis was also observed. These complications render the frozen-hydrated sample type less desirable for subcellular dynamic SIMS studies. The freeze-drying of frozen-hydrated cells, either inside the instrument or externally in a freeze-drier, allowed SIMS imaging of subcellular chemical composition. Morphological evaluations of fractured freeze-dried cells with SEM and confocal laser scanning microscopy (CLSM) revealed well-preserved mitochondria, Golgi apparatus, and stress fibers. SIMS analysis of fractured freeze-dried cells revealed well-preserved chemical composition of even the most highly diffusible ions like K + and Na + in physiologically relevant concentrations. The high K-low Na signature in individual cells
Energy Technology Data Exchange (ETDEWEB)
Chandra, Subhash [Cornell SIMS Laboratory, Department of Earth and Atmospheric Sciences, Snee Hall, Cornell University, Ithaca, NY 14853 (United States)], E-mail: sc40@cornell.edu
2008-12-15
Secondary ion mass spectrometry (SIMS) based imaging techniques capable of subcellular resolution characterization of elements and molecules are becoming valuable tools in many areas of biology and medicine. Due to high vacuum requirements of SIMS, the live cells cannot be analyzed directly in the instrument. The sample preparation, therefore, plays a critical role in preserving the native chemical composition for SIMS analysis. This work focuses on the evaluation of frozen-hydrated and frozen freeze-dried sample preparations for SIMS studies of cultured cells with a CAMECA IMS-3f dynamic SIMS ion microscope instrument capable of producing SIMS images with a spatial resolution of 500 nm. The sandwich freeze-fracture method was used for fracturing the cells. The complimentary fracture planes in the plasma membrane were characterized by field-emission secondary electron microscopy (FESEM) in the frozen-hydrated state. The cells fractured at the dorsal surface were used for SIMS analysis. The frozen-hydrated SIMS analysis of individual cells under dynamic primary ion beam (O{sub 2}{sup +}) revealed local secondary ion signal enhancements correlated with the water image signals of {sup 19}(H{sub 3}O){sup +}. A preferential removal of water from the frozen cell matrix in the Z-axis was also observed. These complications render the frozen-hydrated sample type less desirable for subcellular dynamic SIMS studies. The freeze-drying of frozen-hydrated cells, either inside the instrument or externally in a freeze-drier, allowed SIMS imaging of subcellular chemical composition. Morphological evaluations of fractured freeze-dried cells with SEM and confocal laser scanning microscopy (CLSM) revealed well-preserved mitochondria, Golgi apparatus, and stress fibers. SIMS analysis of fractured freeze-dried cells revealed well-preserved chemical composition of even the most highly diffusible ions like K{sup +} and Na{sup +} in physiologically relevant concentrations. The high K
Penen, Florent; Malherbe, Julien; Isaure, Marie-Pierre; Dobritzsch, Dirk; Bertalan, Ivo; Gontier, Etienne; Le Coustumer, Philippe; Schaumlöffel, Dirk
2016-09-01
Chemical bioimaging offers an important contribution to the investigation of biochemical functions, biosorption and bioaccumulation processes of trace elements via their localization at the cellular and even at the subcellular level. This paper describes the combined use of high contrast transmission electron microscopy (HC-TEM), energy dispersive X-ray spectroscopy (X-EDS), and nano secondary ion mass spectrometry (NanoSIMS) applied to a model organism, the unicellular green algae Chlamydomonas reinhardtii. HC-TEM providing a lateral resolution of 1nm was used for imaging the ultrastructure of algae cells which have diameters of 5-10μm. TEM coupled to X-EDS (TEM/X-EDS) combined textural (morphology and size) analysis with detection of Ca, P, K, Mg, Fe, and Zn in selected subcellular granules using an X-EDS probe size of approx. 1μm. However, instrumental sensitivity was at the limit for trace element detection. NanoSIMS allowed chemical imaging of macro and trace elements with subcellular resolution (element mapping). Ca, Mg, and P as well as the trace elements Fe, Cu, and Zn present at basal levels were detected in pyrenoids, contractile vacuoles, and granules. Some metals were even localized in small vesicles of about 200nm size. Sensitive subcellular localization of trace metals was possible by the application of a recently developed RF plasma oxygen primary ion source on NanoSIMS which has shown good improvements in terms of lateral resolution (below 50nm), sensitivity, and stability. Furthermore correlative single cell imaging was developed combining the advantages of TEM and NanoSIMS. An advanced sample preparation protocol provided adjacent ultramicrotome sections for parallel TEM and NanoSIMS analyses of the same cell. Thus, the C. reinhardtii cellular ultrastructure could be directly related to the spatial distribution of metals in different cell organelles such as vacuoles and chloroplast. Copyright © 2016 Elsevier GmbH. All rights reserved.
Directory of Open Access Journals (Sweden)
Mohit Kumar Jolly
Full Text Available Planar Cell Polarity (PCP is an evolutionarily conserved characteristic of animal tissues marked by coordinated polarization of cells or structures in the plane of a tissue. In insect wing epithelium, for instance, PCP is characterized by en masse orientation of hairs orthogonal to its apical-basal axis and pointing along the proximal-distal axis of the organ. Directional cue for PCP has been proposed to be generated by complex sets of interactions amongst three proteins - Fat (Ft, Dachsous (Ds and Four-jointed (Fj. Ft and Ds are two atypical cadherins, which are phosphorylated by Fj, a Golgi kinase. Ft and Ds from adjacent cells bind heterophilically via their tandem cadherin repeats, and their binding affinities are regulated by Fj. Further, in the wing epithelium, sub-cellular levels of Ft-Ds heterodimers are seen to be elevated at the distal edges of individual cells, prefiguring their PCP. Mechanisms generating this sub-cellular asymmetry of Ft-Ds heterodimer in proximal and distal edges of cells, however, have not been resolved yet. Using a mathematical modeling approach, here we provide a framework for generation of this sub-cellular asymmetry of Ft-Ds heterodimer. First, we explain how the known interactions within Ft-Ds-Fj system translate into sub-cellular asymmetry of Ft-Ds heterodimer. Second, we show that this asymmetric localization of Ft-Ds heterodimer is lost when tissue-level gradient of Fj is flattened, or when phosphorylation of Ft by Fj is abolished, but not when tissue-level gradient of Ds is flattened or when phosphorylation of Ds is abrogated. Finally, we show that distal enrichment of Ds also amplifies Ft-Ds asymmetry. These observations reveal that gradient of Fj expression, phosphorylation of Ft by Fj and sub-cellular distal accumulation of Ds are three critical elements required for generating sub-cellular asymmetry of Ft-Ds heterodimer. Our model integrates the known experimental data and presents testable predictions
Ye, Dong; Anguissola, Sergio; O'Neill, Tiina; Dawson, Kenneth A.
2015-05-01
Subcellular location of nanoparticles has been widely investigated with fluorescence microscopy, via fluorescently labeled antibodies to visualise target antigens in cells. However, fluorescence microscopy, such as confocal or live cell imaging, has generally limited 3D spatial resolution. Conventional electron microscopy can be useful in bridging resolution gap, but still not ideal in resolving subcellular organelle identities. Using the pre-embedding immunogold electron microscopic imaging, we performed accurate examination of the intracellular trafficking and gathered further evidence of transport mechanisms of silica nanoparticles across a human in vitro blood-brain barrier model. Our approach can effectively immunolocalise a variety of intracellular compartments and provide new insights into the uptake and subcellular transport of nanoparticles.Subcellular location of nanoparticles has been widely investigated with fluorescence microscopy, via fluorescently labeled antibodies to visualise target antigens in cells. However, fluorescence microscopy, such as confocal or live cell imaging, has generally limited 3D spatial resolution. Conventional electron microscopy can be useful in bridging resolution gap, but still not ideal in resolving subcellular organelle identities. Using the pre-embedding immunogold electron microscopic imaging, we performed accurate examination of the intracellular trafficking and gathered further evidence of transport mechanisms of silica nanoparticles across a human in vitro blood-brain barrier model. Our approach can effectively immunolocalise a variety of intracellular compartments and provide new insights into the uptake and subcellular transport of nanoparticles. Electronic supplementary information (ESI) available: Nanoparticle characterisation data, preservation of cellular structures, staining controls, optimisation of size amplification via the silver enhancement, and more imaging results from anti-clathrin and anti-caveolin 1
Directory of Open Access Journals (Sweden)
Pei-Chi Yang
2016-07-01
Full Text Available Subcellular compartmentation of the ubiquitous second messenger cAMP has been widely proposed as a mechanism to explain unique receptor-dependent functional responses. How exactly compartmentation is achieved, however, has remained a mystery for more than 40 years. In this study, we developed computational and mathematical models to represent a subcellular sarcomeric space in a cardiac myocyte with varying detail. We then used these models to predict the contributions of various mechanisms that establish subcellular cAMP microdomains. We used the models to test the hypothesis that phosphodiesterases act as functional barriers to diffusion, creating discrete cAMP signaling domains. We also used the models to predict the effect of a range of experimentally measured diffusion rates on cAMP compartmentation. Finally, we modeled the anatomical structures in a cardiac myocyte diad, to predict the effects of anatomical diffusion barriers on cAMP compartmentation. When we incorporated experimentally informed model parameters to reconstruct an in silico subcellular sarcomeric space with spatially distinct cAMP production sites linked to caveloar domains, the models predict that under realistic conditions phosphodiesterases alone were insufficient to generate significant cAMP gradients. This prediction persisted even when combined with slow cAMP diffusion. When we additionally considered the effects of anatomic barriers to diffusion that are expected in the cardiac myocyte dyadic space, cAMP compartmentation did occur, but only when diffusion was slow. Our model simulations suggest that additional mechanisms likely contribute to cAMP gradients occurring in submicroscopic domains. The difference between the physiological and pathological effects resulting from the production of cAMP may be a function of appropriate compartmentation of cAMP signaling. Therefore, understanding the contribution of factors that are responsible for coordinating the spatial and
Wang, Zhimeng; Jiang, Lin; Li, Menglong; Sun, Lina; Lin, Rongying
2007-09-01
There are approximately 10(9) proteins in a cell. A hotspot in bioinformatics is how to identify a protein subcellular localization, if its sequence is known. In this paper, a method using fast Fourier transform-based support vector machine is developed to predict the subcellular localization of proteins from their physicochemical properties and structural parameters. The prediction accuracies reached 83% in prokaryotic organisms and 84% in eukaryotic organisms with the substitution model of the c-p-v matrix (c, composition; p, polarity; and v, molecular volume). The overall prediction accuracy was also evaluated using the "leave-one-out" jackknife procedure. The influence of the substitution model on prediction accuracy has also been discussed in the work. The source code of the new program is available on request from the authors.
A subcellular model of glucose-stimulated pancreatic insulin secretion.
Pedersen, Morten Gram; Corradin, Alberto; Toffolo, Gianna M; Cobelli, Claudio
2008-10-13
When glucose is raised from a basal to stimulating level, the pancreatic islets respond with a typical biphasic insulin secretion pattern. Moreover, the pancreas is able to recognize the rate of change of the glucose concentration. We present a relatively simple model of insulin secretion from pancreatic beta-cells, yet founded on solid physiological grounds and capable of reproducing a series of secretion patterns from perfused pancreases as well as from stimulated islets. The model includes the notion of distinct pools of granules as well as mechanisms such as mobilization, priming, exocytosis and kiss-and-run. Based on experimental data, we suggest that the individual beta-cells activate at different glucose concentrations. The model reproduces most of the data it was tested against very well, and can therefore serve as a general model of glucose-stimulated insulin secretion. Simulations predict that the effect of an increased frequency of kiss-and-run exocytotic events is a reduction in insulin secretion without modification of the qualitative pattern. Our model also appears to be the first physiology-based one to reproduce the staircase experiment, which underlies 'derivative control', i.e. the pancreatic capacity of measuring the rate of change of the glucose concentration.
Directory of Open Access Journals (Sweden)
Thomas eNägele
2013-12-01
Full Text Available During the last decade genome sequencing has experienced a rapid technological development resulting in numerous sequencing projects and applications in life science. In plant molecular biology, the availability of sequence data on whole genomes has enabled the reconstruction of metabolic networks. Enzymatic reactions are predicted by the sequence information. Pathways arise due to the participation of chemical compounds as substrates and products in these reactions. Although several of these comprehensive networks have been reconstructed for the genetic model plant Arabidopsis thaliana, the integration of experimental data is still challenging. Particularly the analysis of subcellular organization of plant cells limits the understanding of regulatory instances in these metabolic networks in vivo. In this study, we develop an approach for the functional integration of experimental high-throughput data into such large-scale networks. We present a subcellular metabolic network model comprising 524 metabolic intermediates and 548 metabolic interactions derived from a total of 2769 reactions. We demonstrate how to link the metabolite covariance matrix of different Arabidopsis thaliana accessions with the subcellular metabolic network model for the inverse calculation of the biochemical Jacobian, finally resulting in the calculation of a matrix which satisfies a Lyaponov equation involving a covariance matrix. In this way, differential strategies of metabolite compartmentation and involved reactions were identified in the accessions when exposed to low temperature.
Analytical model of ionization and energy deposition by proton beams in subcellular compartments
de Vera, Pablo; Surdutovich, Eugene; Abril, Isabel; Garcia-Molina, Rafael; Solov'yov, Andrey V.
2014-04-01
We present an analytical model to evaluate in a fast, simple and effective manner the energy delivered by proton beams moving through a cell model made of nucleus and cytoplasm, taking into account the energy carried by the secondary electrons generated along the proton tracks. The electronic excitation spectra of these subcellular compartments have been modelled by means of an empirical parameterization of their dielectric properties. The energy loss rate and target ionization probability induced by swift protons are evaluated by means of the dielectric formalism. With the present model we have quantified the energy delivered, the specific energy, and the number of ionizations produced per incoming ion in a typical human cell by a typical hadrontherapy proton beam having energies usually reached around the Bragg peak (below 20 MeV). We find that the specific energy per incoming ion delivered in the nucleus and in the cytoplasm are rather similar for all the proton energy range analyzed.
Li, Jieyue; Xiong, Liang; Schneider, Jeff; Murphy, Robert F
2012-06-15
Knowledge of the subcellular location of a protein is crucial for understanding its functions. The subcellular pattern of a protein is typically represented as the set of cellular components in which it is located, and an important task is to determine this set from microscope images. In this article, we address this classification problem using confocal immunofluorescence images from the Human Protein Atlas (HPA) project. The HPA contains images of cells stained for many proteins; each is also stained for three reference components, but there are many other components that are invisible. Given one such cell, the task is to classify the pattern type of the stained protein. We first randomly select local image regions within the cells, and then extract various carefully designed features from these regions. This region-based approach enables us to explicitly study the relationship between proteins and different cell components, as well as the interactions between these components. To achieve these two goals, we propose two discriminative models that extend logistic regression with structured latent variables. The first model allows the same protein pattern class to be expressed differently according to the underlying components in different regions. The second model further captures the spatial dependencies between the components within the same cell so that we can better infer these components. To learn these models, we propose a fast approximate algorithm for inference, and then use gradient-based methods to maximize the data likelihood. In the experiments, we show that the proposed models help improve the classification accuracies on synthetic data and real cellular images. The best overall accuracy we report in this article for classifying 942 proteins into 13 classes of patterns is about 84.6%, which to our knowledge is the best so far. In addition, the dependencies learned are consistent with prior knowledge of cell organization. http://murphylab.web.cmu.edu/software/.
Shao, Wei; Liu, Mingxia; Zhang, Daoqiang
2016-01-01
The systematic study of subcellular location pattern is very important for fully characterizing the human proteome. Nowadays, with the great advances in automated microscopic imaging, accurate bioimage-based classification methods to predict protein subcellular locations are highly desired. All existing models were constructed on the independent parallel hypothesis, where the cellular component classes are positioned independently in a multi-class classification engine. The important structural information of cellular compartments is missed. To deal with this problem for developing more accurate models, we proposed a novel cell structure-driven classifier construction approach (SC-PSorter) by employing the prior biological structural information in the learning model. Specifically, the structural relationship among the cellular components is reflected by a new codeword matrix under the error correcting output coding framework. Then, we construct multiple SC-PSorter-based classifiers corresponding to the columns of the error correcting output coding codeword matrix using a multi-kernel support vector machine classification approach. Finally, we perform the classifier ensemble by combining those multiple SC-PSorter-based classifiers via majority voting. We evaluate our method on a collection of 1636 immunohistochemistry images from the Human Protein Atlas database. The experimental results show that our method achieves an overall accuracy of 89.0%, which is 6.4% higher than the state-of-the-art method. The dataset and code can be downloaded from https://github.com/shaoweinuaa/. dqzhang@nuaa.edu.cn Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Directory of Open Access Journals (Sweden)
Shaoliang Chen
2014-04-01
Full Text Available Energy-dispersive X-ray microanalysis (EDX is a technique for determining the distribution of elements in various materials. Here, we report a protocol for high-spatial-resolution X-ray elemental imaging and quantification in plant tissues at subcellular levels with a scanning transmission electron microscope (STEM. Calibration standards were established by producing agar blocks loaded with increasing KCl or NaCl concentrations. TEM-EDX images showed that the salts were evenly distributed in the agar matrix, but tended to aggregate at high concentrations. The mean intensities of K+, Cl−, and Na+ derived from elemental images were linearly correlated to the concentrations of these elements in the agar, over the entire concentration range tested (R > 0.916. We applied this method to plant root tissues. X-ray images were acquired at an actual resolution of 50 nm ´ 50 nm to 100 nm ´ 100 nm. We found that cell walls exhibited higher elemental concentrations than vacuoles. Plants exposed to salt stress showed dramatic accumulation of Na+ and Cl− in the transport tissues, and reached levels similar to those applied in the external solution (300 mM. The advantage of TEM-EDX mapping was the high-spatial-resolution achieved for imaging elemental distributions in a particular area with simultaneous quantitative analyses of multiple target elements.
DEFF Research Database (Denmark)
Heiselberg, Per; Nielsen, Peter V.
Air distribution in ventilated rooms is a flow process that can be divided into different elements such as supply air jets, exhaust flows, thermal plumes, boundary layer flows, infiltration and gravity currents. These flow elements are isolated volumes where the air movement is controlled...... by a restricted number of parameters, and the air movement is fairly independent of the general flow in the enclosure. In many practical situations, the most convenient· method is to design the air distribution system using flow element theory....
Directory of Open Access Journals (Sweden)
Giovanni Dalmasso
amplifying, cell-to-cell variability of mitochondrial morphology and energetic stress states. Overall, our modeling approach integrates biochemical and imaging knowledge, and presents a novel open-modeling approach to investigate how spatial and temporal mitochondrial dynamics contribute to functional homeostasis, and how subcellular organelle heterogeneity contributes to the emergence of cell heterogeneity.
Lu, Paul; Szafron, Duane; Greiner, Russell; Wishart, David S.; Fyshe, Alona; Pearcy, Brandon; Poulin, Brett; Eisner, Roman; Ngo, Danny; Lamb, Nicholas
2004-01-01
PA-GOSUB (Proteome Analyst: Gene Ontology Molecular Function and Subcellular Localization) is a publicly available, web-based, searchable and downloadable database that contains the sequences, predicted GO molecular functions and predicted subcellular localizations of more than 107 000 proteins from 10 model organisms (and growing), covering the major kingdoms and phyla for which annotated proteomes exist (http://www.cs.ualberta.ca/~bioinfo/PA/GOSUB). The PA-GOSUB database effectively expands...
Directory of Open Access Journals (Sweden)
Jarrod S Johnson
2011-05-01
Full Text Available Barriers to infection act at multiple levels to prevent viruses, bacteria, and parasites from commandeering host cells for their own purposes. An intriguing hypothesis is that if a cell experiences stress, such as that elicited by inflammation, endoplasmic reticulum (ER expansion, or misfolded proteins, then subcellular barriers will be less effective at preventing viral infection. Here we have used models of cystic fibrosis (CF to test whether subcellular stress increases susceptibility to adeno-associated virus (AAV infection. In human airway epithelium cultured at an air/liquid interface, physiological conditions of subcellular stress and ER expansion were mimicked using supernatant from mucopurulent material derived from CF lungs. Using this inflammatory stimulus to recapitulate stress found in diseased airways, we demonstrated that AAV infection was significantly enhanced. Since over 90% of CF cases are associated with a misfolded variant of Cystic Fibrosis Transmembrane Conductance Regulator (ΔF508-CFTR, we then explored whether the presence of misfolded proteins could independently increase susceptibility to AAV infection. In these models, AAV was an order of magnitude more efficient at transducing cells expressing ΔF508-CFTR than in cells expressing wild-type CFTR. Rescue of misfolded ΔF508-CFTR under low temperature conditions restored viral transduction efficiency to that demonstrated in controls, suggesting effects related to protein misfolding were responsible for increasing susceptibility to infection. By testing other CFTR mutants, G551D, D572N, and 1410X, we have shown this phenomenon is common to other misfolded proteins and not related to loss of CFTR activity. The presence of misfolded proteins did not affect cell surface attachment of virus or influence expression levels from promoter transgene cassettes in plasmid transfection studies, indicating exploitation occurs at the level of virion trafficking or processing. Thus
Seven, Jasmin; Polle, Andrea
2014-01-01
Mycorrhizas are the chief organ for plant mineral nutrient acquisition. In temperate, mixed forests, ash roots (Fraxinus excelsior) are colonized by arbuscular mycorrhizal fungi (AM) and beech roots (Fagus sylvatica) by ectomycorrhizal fungi (EcM). Knowledge on the functions of different mycorrhizal species that coexist in the same environment is scarce. The concentrations of nutrient elements in plant and fungal cells can inform on nutrient accessibility and interspecific differences of mycorrhizal life forms. Here, we hypothesized that mycorrhizal fungal species exhibit interspecific differences in mineral nutrient concentrations and that the differences correlate with the mineral nutrient concentrations of their associated root cells. Abundant mycorrhizal fungal species of mature beech and ash trees in a long-term undisturbed forest ecosystem were the EcM Lactarius subdulcis, Clavulina cristata and Cenococcum geophilum and the AM Glomus sp. Mineral nutrient subcellular localization and quantities of the mycorrhizas were analysed after non-aqueous sample preparation by electron dispersive X-ray transmission electron microscopy. Cenococcum geophilum contained the highest sulphur, Clavulina cristata the highest calcium levels, and Glomus, in which cations and P were generally high, exhibited the highest potassium levels. Lactarius subdulcis-associated root cells contained the highest phosphorus levels. The root cell concentrations of K, Mg and P were unrelated to those of the associated fungal structures, whereas S and Ca showed significant correlations between fungal and plant concentrations of those elements. Our results support profound interspecific differences for mineral nutrient acquisition among mycorrhizas formed by different fungal taxa. The lack of correlation between some plant and fungal nutrient element concentrations may reflect different retention of mineral nutrients in the fungal part of the symbiosis. High mineral concentrations, especially of
Directory of Open Access Journals (Sweden)
Jasmin Seven
Full Text Available Mycorrhizas are the chief organ for plant mineral nutrient acquisition. In temperate, mixed forests, ash roots (Fraxinus excelsior are colonized by arbuscular mycorrhizal fungi (AM and beech roots (Fagus sylvatica by ectomycorrhizal fungi (EcM. Knowledge on the functions of different mycorrhizal species that coexist in the same environment is scarce. The concentrations of nutrient elements in plant and fungal cells can inform on nutrient accessibility and interspecific differences of mycorrhizal life forms. Here, we hypothesized that mycorrhizal fungal species exhibit interspecific differences in mineral nutrient concentrations and that the differences correlate with the mineral nutrient concentrations of their associated root cells. Abundant mycorrhizal fungal species of mature beech and ash trees in a long-term undisturbed forest ecosystem were the EcM Lactarius subdulcis, Clavulina cristata and Cenococcum geophilum and the AM Glomus sp. Mineral nutrient subcellular localization and quantities of the mycorrhizas were analysed after non-aqueous sample preparation by electron dispersive X-ray transmission electron microscopy. Cenococcum geophilum contained the highest sulphur, Clavulina cristata the highest calcium levels, and Glomus, in which cations and P were generally high, exhibited the highest potassium levels. Lactarius subdulcis-associated root cells contained the highest phosphorus levels. The root cell concentrations of K, Mg and P were unrelated to those of the associated fungal structures, whereas S and Ca showed significant correlations between fungal and plant concentrations of those elements. Our results support profound interspecific differences for mineral nutrient acquisition among mycorrhizas formed by different fungal taxa. The lack of correlation between some plant and fungal nutrient element concentrations may reflect different retention of mineral nutrients in the fungal part of the symbiosis. High mineral concentrations
Energy Technology Data Exchange (ETDEWEB)
Kunito, Takashi; Nakamura, Shinji; Ikemoto, Tokutaka; Anan, Yasumi; Kubota, Reiji; Tanabe, Shinsuke; Rosas, Fernando C.W.; Fillmann, Gilberto; Readman, James W
2004-10-01
Concentrations of trace elements (V, Cr, Mn, Fe, Co, Cu, Zn, Ga, As, Se, Rb, Sr, Mo, Ag, Cd, Sb, Cs, Ba, T-Hg, Org-Hg, Tl and Pb) were determined in liver samples of estuarine dolphin (Sotalia guianensis; n=20), Franciscana dolphin (Pontoporia blainvillei; n=23), Atlantic spotted dolphin (Stenella frontalis; n=2), common dolphin (Delphinus capensis; n=1) and striped dolphin (Stenella coeruleoalba; n=1) incidentally caught along the coast of Sao Paulo State and Parana State, Brazil, from 1997 to 1999. The hepatic concentrations of trace elements in the Brazilian cetaceans were comparable to the data available in literature on marine mammals from Northern Hemisphere. Concentrations of V, Se, Mo, Cd, T-Hg and Org-Hg increased with increasing age in liver of both estuarine and Franciscana dolphins. Very high concentrations of Cu (range, 262-1970 {mu}g/g dry wt.) and Zn (range, 242-369 {mu}g/g dry wt.) were observed in liver of sucklings of estuarine dolphin. Hepatic concentrations of V, Se, T-Hg, Org-Hg and Pb were significantly higher in estuarine dolphin, whereas Franciscana dolphin showed higher concentrations of Mn, Co, As and Rb. Ratio of Org-Hg to T-Hg in liver was significantly higher in Franciscana dolphin than estuarine dolphin, suggesting that demethylation ability of methyl Hg might be lower in liver of Franciscana than estuarine dolphins. High hepatic concentrations of Ag were found in some specimens of Franciscana dolphin (maximum, 20 {mu}g/g dry wt.), and 17% of Franciscana showed higher concentrations of Ag than Hg. These samples with high Ag concentration also exhibited elevated hepatic Se concentration, implying that Ag might be detoxified by Se in the liver. Higher correlation coefficient between (Hg + 0.5 Ag) and Se than between Hg and Se and the large distribution of Ag in non-soluble fraction in nuclear and mitochondrial fraction of the liver also suggests that Ag might be detoxified by Se via formation of Ag{sub 2}Se in the liver of Franciscana
Directory of Open Access Journals (Sweden)
Murphy Robert F
2006-02-01
Full Text Available Abstract Background Knowledge of the subcellular location of a protein is critical to understanding how that protein works in a cell. This location is frequently determined by the interpretation of fluorescence microscope images. In recent years, automated systems have been developed for consistent and objective interpretation of such images so that the protein pattern in a single cell can be assigned to a known location category. While these systems perform with nearly perfect accuracy for single cell images of all major subcellular structures, their ability to distinguish subpatterns of an organelle (such as two Golgi proteins is not perfect. Our goal in the work described here was to improve the ability of an automated system to decide which of two similar patterns is present in a field of cells by considering more than one cell at a time. Since cells displaying the same location pattern are often clustered together, considering multiple cells may be expected to improve discrimination between similar patterns. Results We describe how to take advantage of information on experimental conditions to construct a graphical representation for multiple cells in a field. Assuming that a field is composed of a small number of classes, the classification accuracy can be improved by allowing the computed probability of each pattern for each cell to be influenced by the probabilities of its neighboring cells in the model. We describe a novel way to allow this influence to occur, in which we adjust the prior probabilities of each class to reflect the patterns that are present. When this graphical model approach is used on synthetic multi-cell images in which the true class of each cell is known, we observe that the ability to distinguish similar classes is improved without suffering any degradation in ability to distinguish dissimilar classes. The computational complexity of the method is sufficiently low that improved assignments of classes can be
Gomes Fernandes, Maria; He, Nannan; Wang, Fang; Van Iperen, Liesbeth; Eguizabal, Cristina; Matorras, Roberto; Roelen, Bernard A J; Chuva De Sousa Lopes, Susana M
2018-02-01
What is the dynamics of expression of P-element induced wimpy testis-like (PIWIL) proteins in the germline during human fetal development and spermatogenesis? PIWIL1, PIWIL2, PIWIL3 and PIWIL4 were expressed in a sex-specific fashion in human germ cells (GC) during development and adulthood. PIWILs showed a mutually exclusive pattern of subcellular localization. PIWILs were present in the intermitochondrial cement and a single large granule in meiotic GC and their expression was different from that observed in mice, highlighting species-differences. In mice, PIWIL proteins play prominent roles in male infertility. PIWIL mouse mutants show either post-meiotic arrest at the round spermatid stage (PIWIL1) or arrest at the zygotene-pachytene stage of meiosis I (PIWIL2 and PIWIL4) in males, while females remain fertile. Recent studies have reported a robust piRNA pool in human fetal ovary. This is a qualitative analysis of PIWILs expression in paraffin-embedded fetal human male (N = 8), female gonads (N = 6) and adult testes (N = 5), and bioinformatics analysis of online available single-cell transcriptomics data of human fetal germ cells (n = 242). Human fetal gonads from elective abortion without medical indication and adult testes biopsies were donated for research with informed consent. Samples were fixed, paraffin-embedded and analyzed by immunofluorescence to study the temporal and cellular localization of PIWIL1, PIWIL2, PIWIL3 and PIWIL4. PIWIL1, PIWIL2 and PIWIL4 showed a mutually exclusive pattern of subcellular localization, particularly in female oocytes. To our surprise, PIWIL1 immunostaining revealed the presence of a single dense paranuclear body, resembling the chromatoid body of haploid spermatocytes, in meiotic oocytes. Moreover, in contrast to mice, PIWIL4, but not PIWIL2, localized to the intermitochondrial cement. PIWIL3 was not expressed in GC during development. The upregulation of PIWIL transcripts correlated with the transcription of markers
Directory of Open Access Journals (Sweden)
Gregory R Johnson
2015-12-01
Full Text Available Characterizing the spatial distribution of proteins directly from microscopy images is a difficult problem with numerous applications in cell biology (e.g. identifying motor-related proteins and clinical research (e.g. identification of cancer biomarkers. Here we describe the design of a system that provides automated analysis of punctate protein patterns in microscope images, including quantification of their relationships to microtubules. We constructed the system using confocal immunofluorescence microscopy images from the Human Protein Atlas project for 11 punctate proteins in three cultured cell lines. These proteins have previously been characterized as being primarily located in punctate structures, but their images had all been annotated by visual examination as being simply "vesicular". We were able to show that these patterns could be distinguished from each other with high accuracy, and we were able to assign to one of these subclasses hundreds of proteins whose subcellular localization had not previously been well defined. In addition to providing these novel annotations, we built a generative approach to modeling of punctate distributions that captures the essential characteristics of the distinct patterns. Such models are expected to be valuable for representing and summarizing each pattern and for constructing systems biology simulations of cell behaviors.
Multimodal transportation best practices and model element.
2014-06-01
This report provides guidance in developing a multimodal transportation element of a local government comprehensive : plan. Two model elements were developed to address differences in statutory requirements for communities of different : sizes and pl...
Kovacheva, Violeta N; Rajpoot, Nasir M
2016-10-22
New bioimaging techniques capable of visualising the co-location of numerous proteins within individual cells have been proposed to study tumour heterogeneity of neighbouring cells within the same tissue specimen. These techniques have highlighted the need to better understand the interplay between proteins in terms of their colocalisation. We recently proposed a cellular-level model of the healthy and cancerous colonic crypt microenvironments. Here, we extend the model to include detailed models of protein expression to generate synthetic multiplex fluorescence data. As a first step, we present models for various cell organelles learned from real immunofluorescence data from the Human Protein Atlas. Comparison between the distribution of various features obtained from the real and synthetic organelles has shown very good agreement. This has included both features that have been used as part of the model input and ones that have not been explicitly considered. We then develop models for six proteins which are important colorectal cancer biomarkers and are associated with microsatellite instability, namely MLH1, PMS2, MSH2, MSH6, P53 and PTEN. The protein models include their complex expression patterns and which cell phenotypes express them. The models have been validated by comparing distributions of real and synthesised parameters and by application of frameworks for analysing multiplex immunofluorescence image data. The six proteins have been chosen as a case study to illustrate how the model can be used to generate synthetic multiplex immunofluorescence data. Further proteins could be included within the model in a similar manner to enable the study of a larger set of proteins of interest and their interactions. To the best of our knowledge, this is the first model for expression of multiple proteins in anatomically intact tissue, rather than within cells in culture.
Polymerization and oscillation stuttering in a filamentous model of the subcellular Min oscillation
Rutenberg, Andrew; Sengupta, Supratim; Sain, Anirban; Derr, Julien
2011-03-01
We present a computational model of the E. coli Min oscillation that involves polymerization of MinD filaments followed by depolymerization stimulated by filament-end zones of MinE. Our stochastic model is fully three-dimensional, and tracks the diffusion and interactions of every MinD and MinE molecule. We recover self-organized Min oscillations. We investigate the experimental phenomenon of oscillation stuttering, which we relate to the disruption of MinE tip-binding at the filament scale.
Finite element modeling of the human pelvis
Energy Technology Data Exchange (ETDEWEB)
Carlson, B.
1995-11-01
A finite element model of the human pelvis was created using a commercial wire frame image as a template. To test the final mesh, the model`s mechanical behavior was analyzed through finite element analysis and the results were displayed graphically as stress concentrations. In the future, this grid of the pelvis will be integrated with a full leg model and used in side-impact car collision simulations.
Non-linear finite element modeling
DEFF Research Database (Denmark)
Mikkelsen, Lars Pilgaard
The note is written for courses in "Non-linear finite element method". The note has been used by the author teaching non-linear finite element modeling at Civil Engineering at Aalborg University, Computational Mechanics at Aalborg University Esbjerg, Structural Engineering at the University...
Finite Element Modeling on Scalable Parallel Computers
Cwik, T.; Zuffada, C.; Jamnejad, V.; Katz, D.
1995-01-01
A coupled finite element-integral equation was developed to model fields scattered from inhomogenous, three-dimensional objects of arbitrary shape. This paper outlines how to implement the software on a scalable parallel processor.
Finite Element Modeling of Cracks and Joints
Directory of Open Access Journals (Sweden)
Jozef Čížik
2006-12-01
Full Text Available The application of finite element method to the analysis of discontinuous structural systems has received a considerable interest in recent years. Examples of problems in which discontinuities play a prominent role in the physical behaviour of a system are numerous and include various types of contact problems and layered or jointed systems. This paper gives a state-of-the-art report on the different methods developed to date for the finite element modelling of cracks and joints in discontinuous systems. Particular attention, however, has been given to the use of joint/interface elements, since their application is considered to be most appropriate for modelling of all kinds of discontinuities that may present in a structural system. A chronology of development of the main types of joint elements, including their pertinent characteristics, is also given. Advantages and disadvantages of the individual methods and types of joint elements presented are briefly discussed, together with various applications of interest.
Business model elements impacting cloud computing adoption
DEFF Research Database (Denmark)
Bogataj, Kristina; Pucihar, Andreja; Sudzina, Frantisek
The paper presents a proposed research framework for identification of business model elements impacting Cloud Computing Adoption. We provide a definition of main Cloud Computing characteristics, discuss previous findings on factors impacting Cloud Computing Adoption, and investigate technology...... adoption theories, such as Diffusion of Innovations, Technology Acceptance Model, Unified Theory of Acceptance and Use of Technology. Further on, at research model for identification of Cloud Computing Adoption factors from a business model perspective is presented. The following business model building...
National Research Council Canada - National Science Library
Gord, Alexander; Holmes, William R; Dai, Xing; Nie, Qing
2014-01-01
.... Using a new stochastic, multi-scale computational modelling framework, the anisotropic subcellular element method, we investigate the role of cell morphology and biophysical cell-cell interactions...
Wood, Scott T; Dean, Brian C; Dean, Delphine
2013-04-01
This paper presents a novel computer vision algorithm to analyze 3D stacks of confocal images of fluorescently stained single cells. The goal of the algorithm is to create representative in silico model structures that can be imported into finite element analysis software for mechanical characterization. Segmentation of cell and nucleus boundaries is accomplished via standard thresholding methods. Using novel linear programming methods, a representative actin stress fiber network is generated by computing a linear superposition of fibers having minimum discrepancy compared with an experimental 3D confocal image. Qualitative validation is performed through analysis of seven 3D confocal image stacks of adherent vascular smooth muscle cells (VSMCs) grown in 2D culture. The presented method is able to automatically generate 3D geometries of the cell's boundary, nucleus, and representative F-actin network based on standard cell microscopy data. These geometries can be used for direct importation and implementation in structural finite element models for analysis of the mechanics of a single cell to potentially speed discoveries in the fields of regenerative medicine, mechanobiology, and drug discovery. Copyright © 2012 Elsevier B.V. All rights reserved.
Element-by-element parallel spectral-element methods for 3-D teleseismic wave modeling
Liu, Shaolin
2017-09-28
The development of an efficient algorithm for teleseismic wave field modeling is valuable for calculating the gradients of the misfit function (termed misfit gradients) or Fréchet derivatives when the teleseismic waveform is used for adjoint tomography. Here, we introduce an element-by-element parallel spectral-element method (EBE-SEM) for the efficient modeling of teleseismic wave field propagation in a reduced geology model. Under the plane-wave assumption, the frequency-wavenumber (FK) technique is implemented to compute the boundary wave field used to construct the boundary condition of the teleseismic wave incidence. To reduce the memory required for the storage of the boundary wave field for the incidence boundary condition, a strategy is introduced to efficiently store the boundary wave field on the model boundary. The perfectly matched layers absorbing boundary condition (PML ABC) is formulated using the EBE-SEM to absorb the scattered wave field from the model interior. The misfit gradient can easily be constructed in each time step during the calculation of the adjoint wave field. Three synthetic examples demonstrate the validity of the EBE-SEM for use in teleseismic wave field modeling and the misfit gradient calculation.
FINITE ELEMENT MODEL FOR PREDICTING RESIDUAL ...
African Journals Online (AJOL)
This paper investigates the prediction of residual stresses developed in shielded manual metal arc welding of mild steel plates through Finite Element Model simulation and experiments. The existence of residual stresses that cause fatigue and distortion in welded structures has been responsible for failure of machine parts ...
Finite element modeling of corneal strip extensometry
CSIR Research Space (South Africa)
Botha, N
2012-12-01
Full Text Available symmetric conicoid [19]: (x xo) 2+(y yo) 2+(1+Q)(z zo) 2 2R(z zo) 2 = 0; (2) c SACAM 2012 25 Top view Isometric view Initial corneal curvature z y x x y z Fig. 3: Finite element model of the vertical corneal strip, including the orthogonal...
The Elements: A Model of Mindful Supervision
Sturm, Deborah C.; Presbury, Jack; Echterling, Lennis G.
2012-01-01
Mindfulness, based on an ancient spiritual practice, is a core quality and way of being that can deepen and enrich the supervision of counselors. This model of mindful supervision incorporates Buddhist and Hindu conceptualizations of the roles of the five elements--space, earth, water, fire, air--as they relate to adhikara or studentship, the…
Finite element model of needle electrode sensitivity
Høyum, P.; Kalvøy, H.; Martinsen, Ø. G.; Grimnes, S.
2010-04-01
We used the Finite Element (FE) Method to estimate the sensitivity of a needle electrode for bioimpedance measurement. This current conducting needle with insulated shaft was inserted in a saline solution and current was measured at the neutral electrode. FE model resistance and reactance were calculated and successfully compared with measurements on a laboratory model. The sensitivity field was described graphically based on these FE simulations.
Coupled finite element modeling of piezothermoelastic materials
Senousy, M. S.; Rajapakse, R. K. N. D.; Gadala, M.
2007-04-01
The governing equations of piezo-thermoelastic materials show full coupling between mechanical, electric, and temperature fields. It is often assumed in the literature that in high-frequency oscillations, the coupling between the temperature and mechanical displacement and electric field is small and, therefore, can be neglected. A solution for the temperature field is then determined from an uncoupled equation. A finite element (FE) model that accounts for full coupling between the mechanical, electric, and thermal fields, nonlinear constitutive behavior and heat generation resulting from dielectric losses under alternating driving fields is under development. This paper presents a linear fully coupled model as an early development of the fully coupled nonlinear FE model. In the linear model, a solution for all field variables is obtained simultaneously and compared with the uncoupled solution. The finite element model is based on the weighted-residual principle and uses 2-D four-node isoparametric finite elements with four degrees of freedom per node. A thin piezoelectric square disk is modeled to obtain some preliminary understanding of the coupled fields in a piezoelectric stack actuator.
Ecosystem element transport model for Lake Eckarfjaerden
Energy Technology Data Exchange (ETDEWEB)
Konovalenko, L.; Bradshaw, C. [The Department of Ecology, Environment and Plant Sciences, Stockholm University (Sweden); Andersson, E.; Kautsky, U. [Swedish Nuclear Fuel and Waste Management Co. - SKB (Sweden)
2014-07-01
The ecosystem transport model of elements was developed for Lake Eckarfjaerden located in the Forsmark area in Sweden. Forsmark has currently a low level repository (SFR) and a repository for spent fuel is planned. A large number of data collected during site-investigation program 2002-2009 for planning the repository were available for the creation of the compartment model based on carbon circulation, physical and biological processes (e.g. primary production, consumption, respiration). The model is site-specific in the sense that the food web model is adapted to the actual food web at the site, and most estimates of biomass and metabolic rates for the organisms and meteorological data originate from site data. The functional organism groups of Lake Eckarfjaerden were considered as separate compartments: bacterio-plankton, benthic bacteria, macro-algae, phytoplankton, zooplankton, fish, benthic fauna. Two functional groups of bacteria were taken into account for the reason that they have the highest biomass of all functional groups during the winter, comprising 36% of the total biomass. Effects of ecological parameters, such as bacteria and algae biomass, on redistribution of a hypothetical radionuclide release in the lake were examined. The ecosystem model was used to estimate the environmental transfer of several elements (U, Th, Ra) and their isotopes (U-238, U-234,Th-232, Ra-226) to various aquatic organisms in the lake, using element-specific distribution coefficients for suspended particle and sediment. Results of chemical analyses of the water, sediment and biota were used for model validation. The model gives estimates of concentration factors for fish based on modelling rather on in situ measurement, which reduces the uncertainties for many radionuclides with scarce of data. Document available in abstract form only. (authors)
FINITE-ELEMENT MODELING OF SALT TECTONICS
Directory of Open Access Journals (Sweden)
Natalia Bakhova
2012-09-01
Full Text Available The two-dimensional thermal model of graben structure in the presence of salt tectonics on the basis of a finite elements method is constructed. The analysis of the thermal field is based on the solution of stationary equation of heat conductivity with variable boundary conditions. The high precision of temperatures distribution and heat flows is received. The decision accuracy is no more than 0,6 %.
Finite element modeling of lipid bilayer membranes
Feng, Feng; Klug, William S.
2006-12-01
A numerical simulation framework is presented for the study of biological membranes composed of lipid bilayers based on the finite element method. The classic model for these membranes employs a two-dimensional-fluid-like elastic constitutive law which is sensitive to curvature, and subjects vesicles to physically imposed constraints on surface area and volume. This model is implemented numerically via the use of C1-conforming triangular Loop subdivision finite elements. The validity of the framework is tested by computing equilibrium shapes from previously-determined axisymmetric shape-phase diagram of lipid bilayer vesicles with homogeneous material properties. Some of the benefits and challenges of finite element modeling of lipid bilayer systems are discussed, and it is indicated how this framework is natural for future investigation of biologically realistic bilayer structures involving nonaxisymmetric geometries, binding and adhesive interactions, heterogeneous mechanical properties, cytoskeletal interactions, and complex loading arrangements. These biologically relevant features have important consequences for the shape mechanics of nonidealized vesicles and cells, and their study requires not simply advances in theory, but also advances in numerical simulation techniques, such as those presented here.
An advanced finite element model of IPMC
Pugal, D.; Kasemägi, H.; Kruusmaa, M.; Aabloo, A.
2008-03-01
This paper presents an electro-mechanical Finite Element Model of an ionic polymer-metal composite (IPMC) material. Mobile counter ions inside the polymer are drifted by an applied electric field, causing mass imbalance inside the material. This is the main cause of the bending motion of this kind of materials. All foregoing physical effects have been considered as time dependent and modeled with FEM. Time dependent mechanics is modeled with continuum mechanics equations. The model also considers the fact that there is a surface of platinum on both sides of the polymer backbone. The described basic model has been under developement for a while and has been improved over the time. Simulation comparisons with experimental data have shown good harmony. Our previous paper described most of the basic model. Additionally, the model was coupled with equations, which described self-oscillatory behavior of the IPMC material. It included describing electrochemical processes with additional four differential equations. The Finite Element Method turned out to be very reasonable for coupling together and solving all equations as a single package. We were able to achieve reasonably precise model to describe this complicated phenomenon. Our most recent goal has been improving the basic model. Studies have shown that some electrical parameters of an IPMC, such as surface resistance and voltage drop are dependent on the curvature of the IPMC. Therefore the new model takes surface resistance into account to some extent. It has added an extra level of complexity to the model, because now all simulations are done in three dimensional domain. However, the result is advanced visual and numerical behavior of an IPMC with different surface characteristics.
Directory of Open Access Journals (Sweden)
Tam Michael WC
2010-03-01
Full Text Available Abstract Background Puf proteins have important roles in controlling gene expression at the post-transcriptional level by promoting RNA decay and repressing translation. The Pumilio homology domain (PUM-HD is a conserved region within Puf proteins that binds to RNA with sequence specificity. Although Puf proteins have been well characterized in animal and fungal systems, little is known about the structural and functional characteristics of Puf-like proteins in plants. Results The Arabidopsis and rice genomes code for 26 and 19 Puf-like proteins, respectively, each possessing eight or fewer Puf repeats in their PUM-HD. Key amino acids in the PUM-HD of several of these proteins are conserved with those of animal and fungal homologs, whereas other plant Puf proteins demonstrate extensive variability in these amino acids. Three-dimensional modeling revealed that the predicted structure of this domain in plant Puf proteins provides a suitable surface for binding RNA. Electrophoretic gel mobility shift experiments showed that the Arabidopsis AtPum2 PUM-HD binds with high affinity to BoxB of the Drosophila Nanos Response Element I (NRE1 RNA, whereas a point mutation in the core of the NRE1 resulted in a significant reduction in binding affinity. Transient expression of several of the Arabidopsis Puf proteins as fluorescent protein fusions revealed a dynamic, punctate cytoplasmic pattern of localization for most of these proteins. The presence of predicted nuclear export signals and accumulation of AtPuf proteins in the nucleus after treatment of cells with leptomycin B demonstrated that shuttling of these proteins between the cytosol and nucleus is common among these proteins. In addition to the cytoplasmically enriched AtPum proteins, two AtPum proteins showed nuclear targeting with enrichment in the nucleolus. Conclusions The Puf family of RNA-binding proteins in plants consists of a greater number of members than any other model species studied to
Finite element modeling methods for photonics
Rahman, B M Azizur
2013-01-01
The term photonics can be used loosely to refer to a vast array of components, devices, and technologies that in some way involve manipulation of light. One of the most powerful numerical approaches available to engineers developing photonic components and devices is the Finite Element Method (FEM), which can be used to model and simulate such components/devices and analyze how they will behave in response to various outside influences. This resource provides a comprehensive description of the formulation and applications of FEM in photonics applications ranging from telecommunications, astron
Finite element modelling of X-band RF flanges
Kortelainen, Laurie; Riddone, Germana
A finite element model of different versions of RF flange used in Compact Linear Collider modules was created in ANSYS Workbench software. A 2D idealisation of the assembly was modelled using both plane stress and plane strain elements. Three of the versions were also modelled using 3D elements. A detailed description of finite element models and theoretical background accompanying the models are presented in this thesis.
Finite-Element Modelling of Biotransistors
Directory of Open Access Journals (Sweden)
Selvaganapathy PR
2010-01-01
Full Text Available Abstract Current research efforts in biosensor design attempt to integrate biochemical assays with semiconductor substrates and microfluidic assemblies to realize fully integrated lab-on-chip devices. The DNA biotransistor (BioFET is an example of such a device. The process of chemical modification of the FET and attachment of linker and probe molecules is a statistical process that can result in variations in the sensed signal between different BioFET cells in an array. In order to quantify these and other variations and assess their importance in the design, complete physical simulation of the device is necessary. Here, we perform a mean-field finite-element modelling of a short channel, two-dimensional BioFET device. We compare the results of this model with one-dimensional calculation results to show important differences, illustrating the importance of the molecular structure, placement and conformation of DNA in determining the output signal.
Finite element modeling for materials engineers using Matlab
Oluwole, Oluleke
2014-01-01
Finite Element Modeling for Materials Engineers Using MATLAB® combines the finite element method with MATLAB to offer materials engineers a fast and code-free way of modeling for many materials processes.
Clinical element models in the SHARPn consortium.
Oniki, Thomas A; Zhuo, Ning; Beebe, Calvin E; Liu, Hongfang; Coyle, Joseph F; Parker, Craig G; Solbrig, Harold R; Marchant, Kyle; Kaggal, Vinod C; Chute, Christopher G; Huff, Stanley M
2016-03-01
The objective of the Strategic Health IT Advanced Research Project area four (SHARPn) was to develop open-source tools that could be used for the normalization of electronic health record (EHR) data for secondary use--specifically, for high throughput phenotyping. We describe the role of Intermountain Healthcare's Clinical Element Models ([CEMs] Intermountain Healthcare Health Services, Inc, Salt Lake City, Utah) as normalization "targets" within the project. Intermountain's CEMs were either repurposed or created for the SHARPn project. A CEM describes "valid" structure and semantics for a particular kind of clinical data. CEMs are expressed in a computable syntax that can be compiled into implementation artifacts. The modeling team and SHARPn colleagues agilely gathered requirements and developed and refined models. Twenty-eight "statement" models (analogous to "classes") and numerous "component" CEMs and their associated terminology were repurposed or developed to satisfy SHARPn high throughput phenotyping requirements. Model (structural) mappings and terminology (semantic) mappings were also created. Source data instances were normalized to CEM-conformant data and stored in CEM instance databases. A model browser and request site were built to facilitate the development. The modeling efforts demonstrated the need to address context differences and granularity choices and highlighted the inevitability of iso-semantic models. The need for content expertise and "intelligent" content tooling was also underscored. We discuss scalability and sustainability expectations for a CEM-based approach and describe the place of CEMs relative to other current efforts. The SHARPn effort demonstrated the normalization and secondary use of EHR data. CEMs proved capable of capturing data originating from a variety of sources within the normalization pipeline and serving as suitable normalization targets. © The Author 2015. Published by Oxford University Press on behalf of the
Discrete Element Modeling for Mobility and Excavation
Knuth, M. A.; Hopkins, M. A.
2011-12-01
The planning and completion of mobility and excavation efforts on the moon requires a thorough understanding of the planetary regolith. In this work, a discrete element method (DEM) model is created to replicate those activities in the laboratory and for planning mission activities in the future. The crux of this work is developing a particle bed that best replicates the regolith tool/wheel interaction seen in the laboratory. To do this, a DEM geotechnical triaxial strength cell was created allowing for comparison of laboratory JSC-1a triaxial tests to DEM simulated soils. This model relies on a triangular lattice membrane covered triaxial cell for determining the macroscopic properties of the modeled granular material as well as a fast and efficient contact detection algorithm for a variety of grain shapes. Multiple grain shapes with increasing complexity (ellipsoid, poly-ellipsoid and polyhedra) have been developed and tested. This comparison gives us a basis to begin scaling DEM grain size and shape to practical values for mobility and excavation modeling. Next steps include development of a DEM scoop for percussive excavation testing as well as continued analysis of rover wheel interactions using a wide assortment of grain shape and size distributions.
Finite element modelling of helmeted head impact under frontal ...
Indian Academy of Sciences (India)
Abstract. Finite element models of the head and helmet were used to study contact forces during frontal impact of the head with a rigid surface. The finite element model of the head consists of skin, skull, cerebro-spinal fluid (CSF), brain, tentorium and falx. The finite element model of the helmet consists of shell and foam.
finite element model for predicting residual stresses in shielded
African Journals Online (AJOL)
eobe
steel plates through Finite Element Model simulation and experiments. The existence of residual stresses that cause ... From the Finite Element Model Simulation, the transverse residual stress in the x. From the Finite Element Model ... cracking (SCC) and hydrogen initiated cracking (HIC). Nigerian Journal of Technology ...
Finite element modelling of helmeted head impact under frontal ...
Indian Academy of Sciences (India)
Finite element models of the head and helmet were used to study contact forces during frontal impact of the head with a rigid surface. The ﬁnite element model of the head consists of skin, skull, cerebro-spinal ﬂuid (CSF), brain, tentorium and falx. The ﬁnite element model of the helmet consists of shell and foam liner.
FINITE ELEMENT MODELING OF DELAMINATION PROCESS ON COMPOSITE LAMINATE USING COHESIVE ELEMENTS
Directory of Open Access Journals (Sweden)
S. Huzn
2013-06-01
Full Text Available The implementation of cohesive elements for studying the delamination process in composite laminates is presented in this paper. The commercially available finite element software ABAQUS provides the cohesive element model used in this study. Cohesive elements with traction-separation laws consist of an initial linear elastic phase, followed by a linear softening that simulates the debonding of the interface after damage initiation is inserted at the interfaces between the laminas. Simulation results from two types of composite laminate specimen, i.e., a double cantilever beam and an L-shape, show that the delamination process on laminated composites begin with debonding phenomena. These results indicate that the implementation of cohesive elements in modeling the process of delamination in laminated composite materials, using the finite element method, has been successful. Cohesive elements are able to model the phenomenon of delamination in the specimens used in this study.
Finite element modelling of composite castellated beam
Directory of Open Access Journals (Sweden)
Frans Richard
2017-01-01
Full Text Available Nowadays, castellated beam becomes popular in building structural as beam members. This is due to several advantages of castellated beam such as increased depth without any additional mass, passing the underfloor service ducts without changing of story elevation. However, the presence of holes can develop various local effects such as local buckling, lateral torsional buckling caused by compression force at the flange section of the steel beam. Many studies have investigated the failure mechanism of castellated beam and one technique which can prevent the beam fall into local failure is the use of reinforced concrete slab as lateral support on castellated beam, so called composite castellated beam. Besides of preventing the local failure of castellated beam, the concrete slab can increase the plasticity moment of the composite castellated beam section which can deliver into increasing the ultimate load of the beam. The aim of this numerical studies of composite castellated beam on certain loading condition (monotonic quasi-static loading. ABAQUS was used for finite element modelling purpose and compared with the experimental test for checking the reliability of the model. The result shows that the ultimate load of the composite castellated beam reached 6.24 times than the ultimate load of the solid I beam and 1.2 times compared the composite beam.
Validating Finite Element Models of Assembled Shell Structures
Hoff, Claus
2006-01-01
The validation of finite element models of assembled shell elements is presented. The topics include: 1) Problems with membrane rotations in assembled shell models; 2) Penalty stiffness for membrane rotations; 3) Physical stiffness for membrane rotations using shell elements with 6 dof per node; and 4) Connections avoiding rotations.
Parallel direct solver for finite element modeling of manufacturing processes
DEFF Research Database (Denmark)
Nielsen, Chris Valentin; Martins, P.A.F.
2017-01-01
The central processing unit (CPU) time is of paramount importance in finite element modeling of manufacturing processes. Because the most significant part of the CPU time is consumed in solving the main system of equations resulting from finite element assemblies, different approaches have been...... developed to optimize solutions and reduce the overall computational costs of large finite element models....
Patient-specific finite element modeling of bones.
Poelert, Sander; Valstar, Edward; Weinans, Harrie; Zadpoor, Amir A
2013-04-01
Finite element modeling is an engineering tool for structural analysis that has been used for many years to assess the relationship between load transfer and bone morphology and to optimize the design and fixation of orthopedic implants. Due to recent developments in finite element model generation, for example, improved computed tomography imaging quality, improved segmentation algorithms, and faster computers, the accuracy of finite element modeling has increased vastly and finite element models simulating the anatomy and properties of an individual patient can be constructed. Such so-called patient-specific finite element models are potentially valuable tools for orthopedic surgeons in fracture risk assessment or pre- and intraoperative planning of implant placement. The aim of this article is to provide a critical overview of current themes in patient-specific finite element modeling of bones. In addition, the state-of-the-art in patient-specific modeling of bones is compared with the requirements for a clinically applicable patient-specific finite element method, and judgment is passed on the feasibility of application of patient-specific finite element modeling as a part of clinical orthopedic routine. It is concluded that further development in certain aspects of patient-specific finite element modeling are needed before finite element modeling can be used as a routine clinical tool.
Directory of Open Access Journals (Sweden)
Julhiany de Fatima da Silva
Full Text Available Paracoccidoides brasiliensis adhesion to lung epithelial cells is considered an essential event for the establishment of infection and different proteins participate in this process. One of these proteins is a 30 kDa adhesin, pI 4.9 that was described as a laminin ligand in previous studies, and it was more highly expressed in more virulent P. brasiliensis isolates. This protein may contribute to the virulence of this important fungal pathogen. Using Edman degradation and mass spectrometry analysis, this 30 kDa adhesin was identified as a 14-3-3 protein. These proteins are a conserved group of small acidic proteins involved in a variety of processes in eukaryotic organisms. However, the exact function of these proteins in some processes remains unknown. Thus, the goal of the present study was to characterize the role of this protein during the interaction between the fungus and its host. To achieve this goal, we cloned, expressed the 14-3-3 protein in a heterologous system and determined its subcellular localization in in vitro and in vivo infection models. Immunocytochemical analysis revealed the ubiquitous distribution of this protein in the yeast form of P. brasiliensis, with some concentration in the cytoplasm. Additionally, this 14-3-3 protein was also present in P. brasiliensis cells at the sites of infection in C57BL/6 mice intratracheally infected with P. brasiliensis yeast cells for 72 h (acute infections and 30 days (chronic infection. An apparent increase in the levels of the 14-3-3 protein in the cell wall of the fungus was also noted during the interaction between P. brasiliensis and A549 cells, suggesting that this protein may be involved in host-parasite interactions, since inhibition assays with the protein and this antibody decreased P. brasiliensis adhesion to A549 epithelial cells. Our data may lead to a better understanding of P. brasiliensis interactions with host tissues and paracoccidioidomycosis pathogenesis.
Modelling the prestress transfer in pre-tensioned concrete elements
Abdelatif, A.O.; Owen, J.S.; Hussein, M.F.M.
2015-01-01
Three models were developed to simulate the transfer of prestress force from steel to concrete in pre-tensioned concrete elements. The first is an analytical model based on the thick-walled cylinder theory and considers linear material properties for both steel and concrete. The second is an axi-symmetric finite element (FE) model with linear material properties; it is used to verify the analytical model. The third model is a three dimensional nonlinear FE model. This model considers the post...
Discrete Element Modeling of Complex Granular Flows
Movshovitz, N.; Asphaug, E. I.
2010-12-01
Granular materials occur almost everywhere in nature, and are actively studied in many fields of research, from food industry to planetary science. One approach to the study of granular media, the continuum approach, attempts to find a constitutive law that determines the material's flow, or strain, under applied stress. The main difficulty with this approach is that granular systems exhibit different behavior under different conditions, behaving at times as an elastic solid (e.g. pile of sand), at times as a viscous fluid (e.g. when poured), or even as a gas (e.g. when shaken). Even if all these physics are accounted for, numerical implementation is made difficult by the wide and often discontinuous ranges in continuum density and sound speed. A different approach is Discrete Element Modeling (DEM). Here the goal is to directly model every grain in the system as a rigid body subject to various body and surface forces. The advantage of this method is that it treats all of the above regimes in the same way, and can easily deal with a system moving back and forth between regimes. But as a granular system typically contains a multitude of individual grains, the direct integration of the system can be very computationally expensive. For this reason most DEM codes are limited to spherical grains of uniform size. However, spherical grains often cannot replicate the behavior of real world granular systems. A simple pile of spherical grains, for example, relies on static friction alone to keep its shape, while in reality a pile of irregular grains can maintain a much steeper angle by interlocking force chains. In the present study we employ a commercial DEM, nVidia's PhysX Engine, originally designed for the game and animation industry, to simulate complex granular flows with irregular, non-spherical grains. This engine runs as a multi threaded process and can be GPU accelerated. We demonstrate the code's ability to physically model granular materials in the three regimes
Mesh considerations for finite element blast modelling in biomechanics.
Panzer, Matthew B; Myers, Barry S; Bass, Cameron R
2013-01-01
Finite element (FE) modelling is a popular tool for studying human body response to blast exposure. However, blast modelling is a complex problem owing to more numerous fluid-structure interactions (FSIs) and the high-frequency loading that accompanies blast exposures. This study investigates FE mesh design for blast modelling using a sphere in a closed-ended shock tube meshed with varying element sizes using both tetrahedral and hexahedral elements. FSI was consistent for sphere-to-fluid element ratios between 0.25 and 4, and acceleration response was similar for both element types (R(2) = 0.997). Tetrahedral elements were found to become increasingly volatile following shock loading, causing higher pressures and stresses than predicted with the hexahedral elements. Deviatoric stress response was dependent on the sphere mesh size (p tube mesh size (p blast models.
Multitask learning for protein subcellular location prediction.
Xu, Qian; Pan, Sinno Jialin; Xue, Hannah Hong; Yang, Qiang
2011-01-01
Protein subcellular localization is concerned with predicting the location of a protein within a cell using computational methods. The location information can indicate key functionalities of proteins. Thus, accurate prediction of subcellular localizations of proteins can help the prediction of protein functions and genome annotations, as well as the identification of drug targets. Machine learning methods such as Support Vector Machines (SVMs) have been used in the past for the problem of protein subcellular localization, but have been shown to suffer from a lack of annotated training data in each species under study. To overcome this data sparsity problem, we observe that because some of the organisms may be related to each other, there may be some commonalities across different organisms that can be discovered and used to help boost the data in each localization task. In this paper, we formulate protein subcellular localization problem as one of multitask learning across different organisms. We adapt and compare two specializations of the multitask learning algorithms on 20 different organisms. Our experimental results show that multitask learning performs much better than the traditional single-task methods. Among the different multitask learning methods, we found that the multitask kernels and supertype kernels under multitask learning that share parameters perform slightly better than multitask learning by sharing latent features. The most significant improvement in terms of localization accuracy is about 25 percent. We find that if the organisms are very different or are remotely related from a biological point of view, then jointly training the multiple models cannot lead to significant improvement. However, if they are closely related biologically, the multitask learning can do much better than individual learning.
Discrete element modeling of subglacial sediment deformation
DEFF Research Database (Denmark)
Damsgaard, Anders; Egholm, David L.; Piotrowski, Jan A.
2013-01-01
The Discrete Element Method (DEM) is used in this study to explore the highly nonlinear dynamics of a granular bed when exposed to stress conditions comparable to those at the bed of warm-based glaciers. Complementary to analog experiments, the numerical approach allows a detailed analysis...
DISCRETE ELEMENT MODELLING OF THE COMPRESSIVE ...
African Journals Online (AJOL)
Having developed and validated a code based on the Discrete Element Method principle with physical experiments the code was used to study and predict the behaviour (parametric changes) during compression of four bulk systems of particulates with the properties of canola seed, palm kernel and soyabean. The porosity ...
Finite element modelling of solidification phenomena
Indian Academy of Sciences (India)
The process of solidification process is complex in nature and the simulation of such process is required in industry before it is actually undertaken. Finite element method is used to simulate the heat transfer process accompanying the solidification process. The metal and the mould along with the air gap formation is ...
Performance Modelling of Timber Facade Elements
Surmeli-Anac, A.N.
2013-01-01
Windows and doors are essential elements of buildings. These seemingly simple components have become increasingly complex over the last decades. They have to fulfil an increased number of functions which ask for contradictory solutions and need to comply with more and more severe requirements.
CONTRIBUTIONS TO THE FINITE ELEMENT MODELING OF LINEAR ULTRASONIC MOTORS
Directory of Open Access Journals (Sweden)
Oana CHIVU
2013-05-01
Full Text Available The present paper is concerned with the main modeling elements as produced by means of thefinite element method of linear ultrasonic motors. Hence, first the model is designed and then a modaland harmonic analysis are carried out in view of outlining the main outcomes
A cohesive finite element formulation for modelling fracture and ...
Indian Academy of Sciences (India)
Abstract. In recent years, cohesive zone models have been employed to simulate fracture and delamination in solids. This paper presents in detail the formulation for incorporating cohesive zone models within the framework of a large deformation finite element procedure. A special Ritz-finite element technique is employed ...
A cohesive finite element formulation for modelling fracture and ...
Indian Academy of Sciences (India)
In recent years, cohesive zone models have been employed to simulate fracture and delamination in solids. This paper presents in detail the formulation for incorporating cohesive zone models within the framework of a large deformation finite element procedure. A special Ritz-finite element technique is employed to control ...
Evaluation of a bridge using simplified element modeling
Energy Technology Data Exchange (ETDEWEB)
Farrar, C.R. [Los Alamos National Lab., NM (United States); Duffey, T.A. [New Mexico Highlands Univ., Las Vegas, NM (United States)
1995-02-01
An experimental-numerical comparison of the forced and ambient vibrations Of a multi-span composite plate-girder bridge was performed. The bridge was modeled using a finite element program at three levels of complexity, including a simple 250 DOF model that utilizes a single beam element to represent the entire bridge cross section. Difficulties encountered in the development of the simple model are discussed. The dynamic properties predicted by the simple model were consistent with these measured on the bridge and computed using more detailed finite element models.
Finite element model updating using bayesian framework and modal properties
CSIR Research Space (South Africa)
Marwala, T
2005-01-01
Full Text Available Finite element (FE) models are widely used to predict the dynamic characteristics of aerospace structures. These models often give results that differ from measured results and therefore need to be updated to match measured results. Some...
Mixed finite elements for global tide models.
Cotter, Colin J; Kirby, Robert C
2016-01-01
We study mixed finite element methods for the linearized rotating shallow water equations with linear drag and forcing terms. By means of a strong energy estimate for an equivalent second-order formulation for the linearized momentum, we prove long-time stability of the system without energy accumulation-the geotryptic state. A priori error estimates for the linearized momentum and free surface elevation are given in [Formula: see text] as well as for the time derivative and divergence of the linearized momentum. Numerical results confirm the theoretical results regarding both energy damping and convergence rates.
Discrete element modeling of subglacial sediment deformation
DEFF Research Database (Denmark)
Damsgaard, Anders; Egholm, David L.; Piotrowski, Jan A.
arithmetic potential of modern general-purpose GPUs. Using the Nvidia CUDA C toolkit, the algorithm is formulated for spherical particles in three dimensions with a linear-elastic soft-body contact model. We have coupled the DEM model to a model for porewater flow, and we present early results of particle...
Modelling Micro-Vibrations By Finite Element Model Approach
Soula, Laurent; Laduree, Gregory
2012-07-01
With payloads requiring more and more severe environment stability and spacecrafts becoming more and more sensitive to internal mechanical disturbances, micro-vibrations are a key contributor to the performance of new missions. To help predict such behaviour by analyses and verify it by testing, a “METhodology for Analysis of structure-borne MICro- vibrations” is being defined in the frame of the above- named ESA R&D study (METAMIC). This methodology is soon to be validated by a full-test campaign. Meanwhile, this paper proposes a description of the current processes using the Finite Element Models, which start from the perturbation source. Based on ASTRIUM experience, a classification of disturbance sources is proposed. Three different types are selected to illustrate the modelling and the micro- vibrations characterization performed by tests: momentum wheels, cryo-coolers, and stepper motor mechanisms. The perturbation is then to be implemented into system modelling in order to predict its propagation and effect on overall performance. The main assumptions made on structure modelling have to be identified as well as the level of coupling with the disturbance sources has to be anticipated. Most of the questions a project should ask to deal with micro- vibrations are tackled, with the objective to identify all uncertainties, limitations, and validity domains for micro-vibrations prediction.
Finite elements modeling of delaminations in composite laminates
DEFF Research Database (Denmark)
Gaiotti, m.; Rizzo, C.M.; Branner, Kim
2011-01-01
The application of composite materials in many structures poses to engineers the problem to create reliable and relatively simple methods, able to estimate the strength of multilayer composite structures. Multilayer composites, like other laminated materials, suffer from layer separation, i.e., d...... by finite elements using different techniques. Results obtained with different finite element models are compared and discussed....
Calibration of a finite element composite delamination model by experiments
DEFF Research Database (Denmark)
Gaiotti, M.; Rizzo, C.M.; Branner, Kim
2013-01-01
distinct sub-laminates. The work focuses on experimental validation of a finite element model built using the 9-noded MITC9 shell elements, which prevent locking effects and aiming to capture the highly non linear buckling features involved in the problem. The geometry has been numerically defined...
Finite Element Modeling of Airflow During Phonation
Directory of Open Access Journals (Sweden)
Šidlof P.
2010-07-01
Full Text Available In the paper a mathematical model of airflow in human vocal folds is presented. The geometry of the glottal channel is based on measurements of excised human larynges. The airflow is modeled by nonstationary incompressible Navier-Stokes equations in a 2D computational domain, which is deformed in time due to vocal fold vibration. The paper presents numerical results and focuses on flow separation in glottis. Quantitative data from numerical simulations are compared to results of measurements by Particle Image Velocimetry (PIV, performed on a scaled self-oscillating physical model of vocal folds.
Boundary element model for uniform flow
DEFF Research Database (Denmark)
Juhl, Peter Møller
1998-01-01
A BEM model covering the frequency range up to dimensionless frequency 40 but restricted to axial symmetry has been developed. A brief account of the theory is given, and various test cases for validation are described....
Subcellular compartmentation of glutathione in dicotyledonous plants
Müller, Maria
2010-01-01
This study describes the subcellular distribution of glutathione in roots and leaves of different plant species (Arabidopsis, Cucurbita, and Nicotiana). Glutathione is an important antioxidant and redox buffer which is involved in many metabolic processes including plant defense. Thus information on the subcellular distribution in these model plants especially during stress situations provides a deeper insight into compartment specific defense reactions and reflects the occurrence of compartment specific oxidative stress. With immunogold cytochemistry and computer-supported transmission electron microscopy glutathione could be localized in highest contents in mitochondria, followed by nuclei, peroxisomes, the cytosol, and plastids. Within chloroplasts and mitochondria, glutathione was restricted to the stroma and matrix, respectively, and did not occur in the lumen of cristae and thylakoids. Glutathione was also found at the membrane and in the lumen of the endoplasmic reticulum. It was also associated with the trans and cis side of dictyosomes. None or only very little glutathione was detected in vacuoles and the apoplast of mesophyll and root cells. Additionally, glutathione was found in all cell compartments of phloem vessels, vascular parenchyma cells (including vacuoles) but was absent in xylem vessels. The specificity of this method was supported by the reduction of glutathione labeling in all cell compartments (up to 98%) of the glutathione-deficient Arabidopsis thaliana rml1 mutant. Additionally, we found a similar distribution of glutathione in samples after conventional fixation and rapid microwave-supported fixation. Thus, indicating that a redistribution of glutathione does not occur during sample preparation. Summing up, this study gives a detailed insight into the subcellular distribution of glutathione in plants and presents solid evidence for the accuracy and specificity of the applied method. PMID:20186447
Mixing Formal and Informal Model Elements for Tracing Requirements
DEFF Research Database (Denmark)
Jastram, Michael; Hallerstede, Stefan; Ladenberger, Lukas
2011-01-01
Tracing between informal requirements and formal models is challenging. A method for such tracing should permit to deal efficiently with changes to both the requirements and the model. A particular challenge is posed by the persisting interplay of formal and informal elements. In this paper, we...... a system for traceability with a state-based formal method that supports refinement. We do not require all specification elements to be modelled formally and support incremental incorporation of new specification elements into the formal model. Refinement is used to deal with larger amounts of requirements...... describe an incremental approach to requirements validation and systems modelling. Formal modelling facilitates a high degree of automation: it serves for validation and traceability. The foundation for our approach are requirements that are structured according to the WRSPM reference model. We provide...
Modelling of fabric draping: Finite elements versus a geometrical method
Lamers, E.A.D.; Wijskamp, Sebastiaan; Akkerman, Remko
2001-01-01
Thermoplastic composite materials can be processed by Rubber Press Forming at elevated temperatures. Process specific boundary conditions are difficult to incorporate in the classical geometric drape simulation methods. Therefore, a fabric reinforced fluid model was implemented in the Finite Element
Finite Element Models for Electron Beam Freeform Fabrication Process Project
National Aeronautics and Space Administration — This Small Business Innovation Research proposal offers to develop the most accurate, comprehensive and efficient finite element models to date for simulation of the...
Discrete Element Modeling of Dike-induced Deformation
Wyrick, D. Y.; Smart, K. J.
2009-03-01
Discrete element models of dike-induced deformation suggest the most distinctive topographic signature of an underlying dike are parallel ridges formed by contractional folding bounding a trough rather than an extensional fault-bounded graben.
Predicting target displacements using ultrasound elastography and finite element modeling
Buijs, J.O. den; Hansen, H.H.G.; Lopata, R.G.P.; Korte, C.L. de; Misra, S.
2011-01-01
Soft tissue displacements during minimally invasive surgical procedures may cause target motion and subsequent misplacement of the surgical tool. A technique is presented to predict target displacements using a combination of ultrasound elastography and finite element (FE) modeling. A cubic
Predicting target displacements using ultrasound elastography and finite element modeling
op den Buijs, J.; Hansen, Hendrik H.G.; Lopata, Richard G.P.; de Korte, Chris L.; Misra, Sarthak
Soft tissue displacements during minimally invasive surgical procedures may cause target motion and subsequent misplacement of the surgical tool. A technique is presented to predict target displacements using a combination of ultrasound elastography and finite element (FE) modeling. A cubic
Elements of matrix modeling and computing with Matlab
White, Robert E
2006-01-01
As discrete models and computing have become more common, there is a need to study matrix computation and numerical linear algebra. Encompassing a diverse mathematical core, Elements of Matrix Modeling and Computing with MATLAB examines a variety of applications and their modeling processes, showing you how to develop matrix models and solve algebraic systems. Emphasizing practical skills, it creates a bridge from problems with two and three variables to more realistic problems that have additional variables. Elements of Matrix Modeling and Computing with MATLAB focuses on seven basic applicat
Hasarderet element i model for bankunion
DEFF Research Database (Denmark)
Østrup, Finn
2015-01-01
Planerne for bankunionen indebærer, at nødlidende bankers gæld skal nedskrives. Men den model har man særdeles dårlige erfaringer med fra finanskrisen. Danske finansielle institutioner risikerer at stå svagere i den nordiske konkurrence, idet Sverige og Norge som ikke-medlemmer af unionen vil bev...
DISCRETE ELEMENT MODELLING OF THE COMPRESSIVE ...
African Journals Online (AJOL)
The porosity predicted with the new code were compared with the original code without modifications; the new code which incorporated real system models for agricultural particulate gave lower porosity. Simulation results of other parameters showed variation in the bulk behaviour closer to what operate in the real system ...
Modeling 3D PCMI using the Extended Finite Element Method with higher order elements
Energy Technology Data Exchange (ETDEWEB)
Jiang, W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Spencer, Benjamin W. [Idaho National Lab. (INL), Idaho Falls, ID (United States)
2017-03-31
This report documents the recent development to enable XFEM to work with higher order elements. It also demonstrates the application of higher order (quadratic) elements to both 2D and 3D models of PCMI problems, where discrete fractures in the fuel are represented using XFEM. The modeling results demonstrate the ability of the higher order XFEM to accurately capture the effects of a crack on the response in the vicinity of the intersecting surfaces of cracked fuel and cladding, as well as represent smooth responses in the regions away from the crack.
Automatic terrain modeling using transfinite element analysis
Collier, Nathan
2010-05-31
An automatic procedure for modeling terrain is developed based on L2 projection-based interpolation of discrete terrain data onto transfinite function spaces. The function space is refined automatically by the use of image processing techniques to detect regions of high error and the flexibility of the transfinite interpolation to add degrees of freedom to these areas. Examples are shown of a section of the Palo Duro Canyon in northern Texas.
Finite element modeling and simulation with ANSYS workbench
Chen, Xiaolin
2014-01-01
IntroductionSome Basic ConceptsAn Example in FEA: Spring SystemOverview of ANSYS WorkbenchSummaryProblemsBars and TrussesIntroductionReview of the 1-D Elasticity TheoryModeling of TrussesFormulation of the Bar ElementExamples with Bar ElementsCase Study with ANSYS WorkbenchSummaryProblemsBeams and FramesIntroductionReview of the Beam TheoryModeling of Beams and FramesFormulation of the Beam ElementExamples with Beam ElementsCase Study with ANSYS WorkbenchSummaryProblemsTwo-Dimensional ElasticityIntroductionReview of 2-D Elasticity TheoryModeling of 2-D Elasticity ProblemsFormulation of the Pla
Finite element model of the bed
Directory of Open Access Journals (Sweden)
Petr Koňas
2006-01-01
Full Text Available Analysis of response of bed construction on mentioned mechanical loading with geometry derived from design documentation and selected material combination was realized. In terms of discussed results can be say that chosen geometry (combination of material models is not appropriate. It can be assumed, that stress will exceed strength values in bed side-rail and some failure of cracks can occur. According to the fact that the task does not include free constraints of bed grid and this way probably increases the whole stiffness of construction some solutions present itself for decreasing of carrying-capacity in form of bed side-rail change or adding of supplemental supports to the current construction.As we mentioned above, parametric model is sufficiently complex for realization of optimization analysis of geometry. However, before this analysis extended investigation of verification of mechanical material properties, which are taking into account for installation of construction, definition of complex way of loading and derivation of appropriate failure criterions for wood construction parts should be considered.
Unstructured Spectral Element Model for Dispersive and Nonlinear Wave Propagation
DEFF Research Database (Denmark)
Engsig-Karup, Allan Peter; Eskilsson, Claes; Bigoni, Daniele
2016-01-01
). In the present paper we use a single layer of quadratic (in 2D) and prismatic (in 3D) elements. The model has been stabilized through a combination of over-integration of the Galerkin projections and a mild modal filter. We present numerical tests of nonlinear waves serving as a proof-of-concept validation......We introduce a new stabilized high-order and unstructured numerical model for modeling fully nonlinear and dispersive water waves. The model is based on a nodal spectral element method of arbitrary order in space and a -transformed formulation due to Cai, Langtangen, Nielsen and Tveito (1998...
Lumped Mass Modeling for Local-Mode-Suppressed Element Connectivity
DEFF Research Database (Denmark)
Joung, Young Soo; Yoon, Gil Ho; Kim, Yoon Young
2005-01-01
For successful topology design optimization of crashworthy “continuum” structures, unstable element-free and local vibration mode-free transient analyses should be ensured. Among these two issues, element instability was shown to be overcome if a recently-developed formulation, the element...... for the standard element density method. Local modes are artificial, numerical modes resulting from the intrinsic modeling technique of the topology optimization method. Even with existing local mode controlling techniques, the convergence of the topology optimization of vibrating structures, especially...... experiencing large structural changes, appears to be still poor. In ECP, the nodes of the domain-discretizing elements are connected by zero-length one-dimensional elastic links having varying stiffness. For computational efficiency, every elastic link is now assumed to have two lumped masses at its ends...
Modelling and performance analysis of four and eight element TCAS
Sampath, K. S.; Rojas, R. G.; Burnside, W. D.
1990-01-01
This semi-annual report describes the work performed during the period September 1989 through March 1990. The first section presents a description of the effect of the engines of the Boeing 737-200 on the performance of a bottom mounted eight-element traffic alert and collision avoidance system (TCAS). The second section deals exclusively with a four element TCAS antenna. The model obtained to simulate the four element TCAS and new algorithms developed for studying its performance are described. The effect of location on its performance when mounted on top of a Boeing 737-200 operating at 1060 MHz is discussed. It was found that the four element TCAS generally does not perform as well as the eight element TCAS III.
Finite-element modelling of multilayer X-ray optics.
Cheng, Xianchao; Zhang, Lin
2017-05-01
Multilayer optical elements for hard X-rays are an attractive alternative to crystals whenever high photon flux and moderate energy resolution are required. Prediction of the temperature, strain and stress distribution in the multilayer optics is essential in designing the cooling scheme and optimizing geometrical parameters for multilayer optics. The finite-element analysis (FEA) model of the multilayer optics is a well established tool for doing so. Multilayers used in X-ray optics typically consist of hundreds of periods of two types of materials. The thickness of one period is a few nanometers. Most multilayers are coated on silicon substrates of typical size 60 mm × 60 mm × 100-300 mm. The high aspect ratio between the size of the optics and the thickness of the multilayer (10 7 ) can lead to a huge number of elements for the finite-element model. For instance, meshing by the size of the layers will require more than 10 16 elements, which is an impossible task for present-day computers. Conversely, meshing by the size of the substrate will produce a too high element shape ratio (element geometry width/height > 10 6 ), which causes low solution accuracy; and the number of elements is still very large (10 6 ). In this work, by use of ANSYS layer-functioned elements, a thermal-structural FEA model has been implemented for multilayer X-ray optics. The possible number of layers that can be computed by presently available computers is increased considerably.
Finite-element modelling of multilayer X-ray optics
Energy Technology Data Exchange (ETDEWEB)
Cheng, Xianchao; Zhang, Lin
2017-04-11
Multilayer optical elements for hard X-rays are an attractive alternative to crystals whenever high photon flux and moderate energy resolution are required. Prediction of the temperature, strain and stress distribution in the multilayer optics is essential in designing the cooling scheme and optimizing geometrical parameters for multilayer optics. The finite-element analysis (FEA) model of the multilayer optics is a well established tool for doing so. Multilayers used in X-ray optics typically consist of hundreds of periods of two types of materials. The thickness of one period is a few nanometers. Most multilayers are coated on silicon substrates of typical size 60 mm × 60 mm × 100–300 mm. The high aspect ratio between the size of the optics and the thickness of the multilayer (10^{7}) can lead to a huge number of elements for the finite-element model. For instance, meshing by the size of the layers will require more than 10^{16}elements, which is an impossible task for present-day computers. Conversely, meshing by the size of the substrate will produce a too high element shape ratio (element geometry width/height > 10^{6}), which causes low solution accuracy; and the number of elements is still very large (10^{6}). In this work, by use of ANSYS layer-functioned elements, a thermal-structural FEA model has been implemented for multilayer X-ray optics. The possible number of layers that can be computed by presently available computers is increased considerably.
[Three dimensional mathematical model of tooth for finite element analysis].
Puskar, Tatjana; Vasiljević, Darko; Marković, Dubravka; Jevremović, Danimir; Pantelić, Dejan; Savić-Sević, Svetlana; Murić, Branka
2010-01-01
The mathematical model of the abutment tooth is the starting point of the finite element analysis of stress and deformation of dental structures. The simplest and easiest way is to form a model according to the literature data of dimensions and morphological characteristics of teeth. Our method is based on forming 3D models using standard geometrical forms (objects) in programmes for solid modeling. Forming the mathematical model of abutment of the second upper premolar for finite element analysis of stress and deformation of dental structures. The abutment tooth has a form of a complex geometric object. It is suitable for modeling in programs for solid modeling SolidWorks. After analysing the literature data about the morphological characteristics of teeth, we started the modeling dividing the tooth (complex geometric body) into simple geometric bodies (cylinder, cone, pyramid,...). Connecting simple geometric bodies together or substricting bodies from the basic body, we formed complex geometric body, tooth. The model is then transferred into Abaqus, a computational programme for finite element analysis. Transferring the data was done by standard file format for transferring 3D models ACIS SAT. Using the programme for solid modeling SolidWorks, we developed three models of abutment of the second maxillary premolar: the model of the intact abutment, the model of the endodontically treated tooth with two remaining cavity walls and the model of the endodontically treated tooth with two remaining walls and inserted post. Mathematical models of the abutment made according to the literature data are very similar with the real abutment and the simplifications are minimal. These models enable calculations of stress and deformation of the dental structures. The finite element analysis provides useful information in understanding biomechanical problems and gives guidance for clinical research.
Three dimensional mathematical model of tooth for finite element analysis
Directory of Open Access Journals (Sweden)
Puškar Tatjana
2010-01-01
Full Text Available Introduction. The mathematical model of the abutment tooth is the starting point of the finite element analysis of stress and deformation of dental structures. The simplest and easiest way is to form a model according to the literature data of dimensions and morphological characteristics of teeth. Our method is based on forming 3D models using standard geometrical forms (objects in programmes for solid modeling. Objective. Forming the mathematical model of abutment of the second upper premolar for finite element analysis of stress and deformation of dental structures. Methods. The abutment tooth has a form of a complex geometric object. It is suitable for modeling in programs for solid modeling SolidWorks. After analyzing the literature data about the morphological characteristics of teeth, we started the modeling dividing the tooth (complex geometric body into simple geometric bodies (cylinder, cone, pyramid,.... Connecting simple geometric bodies together or substricting bodies from the basic body, we formed complex geometric body, tooth. The model is then transferred into Abaqus, a computational programme for finite element analysis. Transferring the data was done by standard file format for transferring 3D models ACIS SAT. Results. Using the programme for solid modeling SolidWorks, we developed three models of abutment of the second maxillary premolar: the model of the intact abutment, the model of the endodontically treated tooth with two remaining cavity walls and the model of the endodontically treated tooth with two remaining walls and inserted post. Conclusion Mathematical models of the abutment made according to the literature data are very similar with the real abutment and the simplifications are minimal. These models enable calculations of stress and deformation of the dental structures. The finite element analysis provides useful information in understanding biomechanical problems and gives guidance for clinical research.
Model Reduction in Dynamic Finite Element Analysis of Lightweight Structures
DEFF Research Database (Denmark)
Flodén, Ola; Persson, Kent; Sjöström, Anders
2012-01-01
models may be created by assembling models of floor and wall structures into large models of complete buildings. When assembling the floor and wall models, the number of degrees of freedom quickly increases to exceed the limits of computer capacity, at least in a reasonable amount of computational time....... The objective of the analyses presented in this paper is to evaluate methods for model reduction of detailed finite element models of floor and wall structures and to investigate the influence of reducing the number of degrees of freedom and computational cost on the dynamic response of the models in terms....... The drawback of component mode synthesis compared to modelling with structural elements is the increased computational cost, although the number of degrees of freedom is small in comparison, as a result of the large bandwidth of the system matrices....
A Revision on Cost Elements of the EOQ Model
Directory of Open Access Journals (Sweden)
Asadabadi Mehdi Rajabi
2016-04-01
Full Text Available The overall objective of this paper is to investigate the fundamental cost elements of the traditional EOQ model and develop the model by expiring some of its unrealistic assumptions. Over the last few decades, there have been numerous studies developing the EOQ model, but the basic cost elements of the EOQ model have not been investigated efficiently. On the other hand, the capital cost of buying inventories seems to be important to be investigated separately as well as holding cost and ordering cost in the model. In this paper, the capital cost of the inventory and possible stepwise increases in holding and setup cost are taken into account to make a revised formula to compute the economic order quantity. The proposed model involves explicitly the capital cost of buying the inventories in the EOQ model to ensure the decision makers that their financial concerns are considered in the revised model and the new order quantity results the minimum total cost.
The Finite Element Numerical Modelling of 3D Magnetotelluric
Directory of Open Access Journals (Sweden)
Ligang Cao
2014-01-01
Full Text Available The ideal numerical simulation of 3D magnetotelluric was restricted by the methodology complexity and the time-consuming calculation. Boundary values, the variation of weighted residual equation, and the hexahedral mesh generation method of finite element are three major causes. A finite element method for 3D magnetotelluric numerical modeling is presented in this paper as a solution for the problem mentioned above. In this algorithm, a hexahedral element coefficient matrix for magnetoelluric finite method is developed, which solves large-scale equations using preconditioned conjugate gradient of the first-type boundary conditions. This algorithm is verified using the homogeneous model, and the positive landform model, as well as the low resistance anomaly model.
Ground water modeling applications using the analytic element method.
Hunt, Randall J
2006-01-01
Though powerful and easy to use, applications of the analytic element method are not as widespread as finite-difference or finite-element models due in part to their relative youth. Although reviews that focus primarily on the mathematical development of the method have appeared in the literature, a systematic review of applications of the method is not available. An overview of the general types of applications of analytic elements in ground water modeling is provided in this paper. While not fully encompassing, the applications described here cover areas where the method has been historically applied (regional, two-dimensional steady-state models, analyses of ground water-surface water interaction, quick analyses and screening models, wellhead protection studies) as well as more recent applications (grid sensitivity analyses, estimating effective conductivity and dispersion in highly heterogeneous systems). The review of applications also illustrates areas where more method development is needed (three-dimensional and transient simulations).
FINITE ELEMENT MODELING OF THIN CIRCULAR SANDWICH PLATES DEFLECTION
Directory of Open Access Journals (Sweden)
K. S. Kurachka
2014-01-01
Full Text Available A mathematical model of a thin circular sandwich plate being under the vertical load is proposed. The model employs the finite element method and takes advantage of an axisymmetric finite element that leads to the small dimension of the resulting stiffness matrix and sufficient accuracy for practical calculations. The analytical expressions for computing local stiffness matrices are found, which can significantly speed up the process of forming the global stiffness matrix and increase the accuracy of calculations. A software is under development and verification. The discrepancy between the results of the mathematical model and those of analytical formulas for homogeneous thin circularsandwich plates does not exceed 7%.
Finite element modeling of the filament winding process using ABAQUS
Miltenberger, Louis C.
1992-01-01
A comprehensive stress model of the filament winding fabrication process, previously implemented in the finite element program, WACSAFE, was implemented using the ABAQUS finite element software package. This new implementation, referred to as the ABWACSAFE procedure, consists of the ABAQUS software and a pre/postprocessing routine that was developed to prepare necessary ABAQUS input files and process ABAQUS displacement results for stress and strain computation. The ABWACSAF...
Finite element modelling of fibre-reinforced brittle materials
Kullaa, J.
1997-01-01
The tensile constitutive behaviour of fibre-reinforced brittle materials can be extended to two or three dimensions by using the finite element method with crack models. The three approaches in this study include the smeared and discrete crack concepts and a multi-surface plasticity model. The
Finite Element Modelling Of Solidification Of Zinc Alloy | Osinkolu ...
African Journals Online (AJOL)
The solidification process of Zinc alloy is modelled by solving heat transfer equations with the aid of finite element method (FEM) using appropriate boundary conditions at the mould walls. The commercial software, Matlab, has been used to model the solidification process. The temperature profiles for each casting condition ...
MODELS OF THE USE OF DISTANCE LEARNING ELEMENTS IN SCHOOL
Directory of Open Access Journals (Sweden)
Vasyl I. Kovalchuk
2017-09-01
Full Text Available The article presents three models of the use of elements of distance learning at school. All models partially or fully implement the training, interaction and collaboration of the participants in the educational process. The first model is determined by the use of open cloud services and Web 2.0 for the implementation of certain educational and managerial tasks of the school. The second model uses support for learning management and content creation. The introduction of the second model is possible with the development of the IT infrastructure of the school, the training of teachers for the use of distance learning technologies, the creation of electronic educational resources. The third model combines the use of Web 2.0 technologies and training and content management systems. Models of the use of elements of distance learning are presented of the results of regional research experimental work of schools.
Energy Technology Data Exchange (ETDEWEB)
Taborda, A; Benabdallah, N; Desbree, A [Institut de Radioprotection et de Surete Nucleaire, Fontenay-aux-roses (France)
2015-06-15
Purpose: To perform a dosimetry study at the sub-cellular scale of Auger-electron emitter 99m-Tc using a mouse single thyroid cellular model to investigate the contribution of the 99m-Tc Auger-electrons to the absorbed dose and possible link to the thyroid stunning in in vivo experiments in mice, recently reported in literature. Methods: The simulation of S-values for Auger-electron emitting radionuclides was performed using both the recent MCNP6 software and the Geant4-DNA extension of the Geant4 toolkit. The dosimetric calculations were validated through comparison with results from literature, using a simple model of a single cell consisting of two concentric spheres of unit density water and for six Auger-electron emitting radionuclides. Furthermore, the S-values were calculated using a single thyroid follicle model for uniformly distributed 123-I and 125-I radionuclides and compared with published S-values. After validation, the simulation of the S-values was performed for the 99m-Tc radionuclide within the several mouse thyroid follicle cellular compartments, considering the radiative and non-radiative transitions of the 99m-Tc radiation spectrum. Results: The calculated S-values using MCNP6 are in good agreement with the results from literature, validating its use for the 99m-Tc S-values calculations. The most significant absorbed dose corresponds to the case where the radionuclide is uniformly distributed in the follicular cell’s nucleus, with a S-value of 7.8 mGy/disintegration, due mainly to the absorbed Auger-electrons. The results show that, at a sub-cellular scale, the emitted X-rays and gamma particles do not contribute significantly to the absorbed dose. Conclusion: In this work, MCNP6 was validated for dosimetric studies at the sub-cellular scale. It was shown that the contribution of the Auger-electrons to the absorbed dose is important at this scale compared to the emitted photons’ contribution and can’t be neglected. The obtained S
Mathematical modelling of fractional order circuit elements and bioimpedance applications
Moreles, Miguel Angel; Lainez, Rafael
2017-05-01
In this work a classical derivation of fractional order circuits models is presented. Generalised constitutive equations in terms of fractional Riemann-Liouville derivatives are introduced in the Maxwell's equations for each circuit element. Next the Kirchhoff voltage law is applied in a RCL circuit configuration. It is shown that from basic properties of Fractional Calculus, a fractional differential equation model with Caputo derivatives is obtained. Thus standard initial conditions apply. Finally, models for bioimpedance are revisited.
Numerical modeling of the strain of elastic rubber elements
Moskvichev, E. N.; Porokhin, A. V.; Shcherbakov, I. V.
2017-11-01
A comparative analysis of the results of experimental investigation of mechanical behavior of the rubber sample during biaxial compression testing and numerical simulation results obtained by the finite element method was carried out to determine the correctness of the model applied in the engineering calculations of elastic structural elements made of the rubber. The governing equation represents the five-parameter Mooney-Rivlin model with the constants determined from experimental data. The investigation results showed that these constants reliably describe the mechanical behavior of the material under consideration. The divergence of experimental and numerical results does not exceed 15%.
Finite-element model of the active organ of Corti
Elliott, Stephen J.; Baumgart, Johannes
2016-01-01
The cochlear amplifier that provides our hearing with its extraordinary sensitivity and selectivity is thought to be the result of an active biomechanical process within the sensory auditory organ, the organ of Corti. Although imaging techniques are developing rapidly, it is not currently possible, in a fully active cochlea, to obtain detailed measurements of the motion of individual elements within a cross section of the organ of Corti. This motion is predicted using a two-dimensional finite-element model. The various solid components are modelled using elastic elements, the outer hair cells (OHCs) as piezoelectric elements and the perilymph and endolymph as viscous and nearly incompressible fluid elements. The model is validated by comparison with existing measurements of the motions within the passive organ of Corti, calculated when it is driven either acoustically, by the fluid pressure or electrically, by excitation of the OHCs. The transverse basilar membrane (BM) motion and the shearing motion between the tectorial membrane and the reticular lamina are calculated for these two excitation modes. The fully active response of the BM to acoustic excitation is predicted using a linear superposition of the calculated responses and an assumed frequency response for the OHC feedback. PMID:26888950
Modeling of high entropy alloys of refractory elements
Energy Technology Data Exchange (ETDEWEB)
Grosso, M.F. del, E-mail: delgrosso@tandar.cnea.gov.ar [Gcia. Investigacion y Aplicaciones, CNEA, Av. Gral Paz 1499, (B1650KNA), San Martin (Argentina); GCMM, UTN, FRG Pacheco, Av. H. Yrigoyen 288, Gral. Pacheco (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas, CONICET (Argentina); Bozzolo, G. [Loyola University Maryland, 4501 N. Charles St., Baltimore, MD 21210 (United States); Mosca, H.O. [Gcia. Investigacion y Aplicaciones, CNEA, Av. Gral Paz 1499, (B1650KNA), San Martin (Argentina); GCMM, UTN, FRG Pacheco, Av. H. Yrigoyen 288, Gral. Pacheco (Argentina)
2012-08-15
Reverting the traditional process of developing new alloys based on one or two single elements with minority additions, the study of high entropy alloys (HEA) (equimolar combinations of many elements) has become a relevant and interesting new field of research due to their tendency to form solid solutions with particular properties in the absence of intermetallic phases. Theoretical or modeling studies at the atomic level on specific HEA, describing the formation, structure, and properties of these alloys are limited due to the large number of constituents involved. In this work we focus on HEA with refractory elements showing atomistic modeling results for W-Nb-Mo-Ta and W-Nb-Mo-Ta-V HEA, for which experimental background exists. An atomistic modeling approach is applied for the determination of the role of each element and identification of the interactions and features responsible for the transition to the high entropy regime. Results for equimolar alloys of 4 and 5 refractory elements, for which experimental results exist, are shown. A straightforward algorithm is introduced to interpret the transition to the high entropy regime.
Analytical and finite element modeling of grounding systems
Energy Technology Data Exchange (ETDEWEB)
Luz, Mauricio Valencia Ferreira da [University of Santa Catarina (UFSC), Florianopolis, SC (Brazil)], E-mail: mauricio@grucad.ufsc.br; Dular, Patrick [University of Liege (Belgium). Institut Montefiore], E-mail: Patrick.Dular@ulg.ac.be
2007-07-01
Grounding is the art of making an electrical connection to the earth. This paper deals with the analytical and finite element modeling of grounding systems. An electrokinetic formulation using a scalar potential can benefit from floating potentials to define global quantities such as electric voltages and currents. The application concerns a single vertical grounding with one, two and three-layer soil, where the superior extremity stays in the surface of the soil. This problem has been modeled using a 2D axi-symmetric electrokinetic formulation. The grounding resistance obtained by finite element method is compared with the analytical one for one-layer soil. With the results of this paper it is possible to show that finite element method is a powerful tool in the analysis of the grounding systems in low frequencies. (author)
Subcellular Organization of GPCR Signaling.
Eichel, Kelsie; von Zastrow, Mark
2018-02-01
G protein-coupled receptors (GPCRs) comprise a large and diverse class of signal-transducing receptors that undergo dynamic and isoform-specific membrane trafficking. GPCRs thus have an inherent potential to initiate or regulate signaling reactions from multiple membrane locations. This review discusses emerging insights into the subcellular organization of GPCR function in mammalian cells, focusing on signaling transduced by heterotrimeric G proteins and β-arrestins. We summarize recent evidence indicating that GPCR-mediated activation of G proteins occurs not only from the plasma membrane (PM) but also from endosomes and Golgi membranes and that β-arrestin-dependent signaling can be transduced from the PM by β-arrestin trafficking to clathrin-coated pits (CCPs) after dissociation from a ligand-activated GPCR. Copyright © 2017 Elsevier Ltd. All rights reserved.
Elements of effective palliative care models: a rapid review
2014-01-01
Background Population ageing, changes to the profiles of life-limiting illnesses and evolving societal attitudes prompt a critical evaluation of models of palliative care. We set out to identify evidence-based models of palliative care to inform policy reform in Australia. Method A rapid review of electronic databases and the grey literature was undertaken over an eight week period in April-June 2012. We included policy documents and comparative studies from countries within the Organisation for Economic Co-operation and Development (OECD) published in English since 2001. Meta-analysis was planned where >1 study met criteria; otherwise, synthesis was narrative using methods described by Popay et al. (2006). Results Of 1,959 peer-reviewed articles, 23 reported systematic reviews, 9 additional RCTs and 34 non-randomised comparative studies. Variation in the content of models, contexts in which these were implemented and lack of detailed reporting meant that elements of models constituted a more meaningful unit of analysis than models themselves. Case management was the element most consistently reported in models for which comparative studies provided evidence for effectiveness. Essential attributes of population-based palliative care models identified by policy and addressed by more than one element were communication and coordination between providers (including primary care), skill enhancement, and capacity to respond rapidly to individuals’ changing needs and preferences over time. Conclusion Models of palliative care should integrate specialist expertise with primary and community care services and enable transitions across settings, including residential aged care. The increasing complexity of care needs, services, interventions and contextual drivers warrants future research aimed at elucidating the interactions between different components and the roles played by patient, provider and health system factors. The findings of this review are limited by its
finite element model for predicting residual stresses in shielded
African Journals Online (AJOL)
eobe
*Corresponding author, Tel: +234-803-563-5419. FINITE ELEMENT MODEL FOR PREDICTING RESIDUAL STRESSES IN. SHIELDED MANUAL METAL ARC WELDING OF MILD STEEL PLATES. SHIELDED MANUAL METAL ARC WELDING OF MILD STEEL PLATES. I. U. Musa1,*, M. O. Afolayan. O. Afolayan2 and I. M. ...
Efficient tetrahedral remeshing of feature models for finite element analysis
Sypkens Smit, M.; Bronsvoort, W.F.
2009-01-01
Finite element analysis is nowadays widely used for product testing. At various moments during the design phase, aspects of the physical behaviour of the product are simulated by performing an analysis of the model. For each analysis, a mesh needs to be created that represents the geometry of the
Lower bound plane stress element for modelling 3D structures
DEFF Research Database (Denmark)
Herfelt, Morten Andersen; Poulsen, Peter Noe; Hoang, Linh Cao
2017-01-01
In-plane action is often the primary load-carrying mechanism of reinforced concrete structures. The plate bending action will be secondary, and the behaviour of the structure can be modelled with a reasonable accuracy using a generalised three-dimensional plane stress element. In this paper...
Finite element modelling of elastic intraplate stresses due to ...
Indian Academy of Sciences (India)
Finite element modelling of elastic intraplate stresses due to heterogeneities in crustal density and mechanical properties for the Jabalpur earthquake region, central India. A Manglik1,∗. , S Thiagarajan. 1. , A V Mikhailova. 2 and Yu Rebetsky. 2. 1. National Geophysical Research Institute, Uppal Road, Hyderabad 500 007, ...
Modelling of Granular Materials Using the Discrete Element Method
DEFF Research Database (Denmark)
Ullidtz, Per
1997-01-01
With the Discrete Element Method it is possible to model materials that consists of individual particles where a particle may role or slide on other particles. This is interesting because most of the deformation in granular materials is due to rolling or sliding rather that compression of the gra...
Model Reduction in Dynamic Finite Element Analysis of Lightweight Structures
DEFF Research Database (Denmark)
Flodén, Ola; Persson, Kent; Sjöström, Anders
2012-01-01
. The objective of the analyses presented in this paper is to evaluate methods for model reduction of detailed finite element models of floor and wall structures and to investigate the influence of reducing the number of degrees of freedom and computational cost on the dynamic response of the models in terms....... The drawback of component mode synthesis compared to modelling with structural elements is the increased computational cost, although the number of degrees of freedom is small in comparison, as a result of the large bandwidth of the system matrices.......The application of wood as a construction material when building multi-storey buildings has many advantages, e.g., light weight, sustainability and low energy consumption during the construction and lifecycle of the building. However, compared to heavy structures, it is a greater challenge to build...
Automatic Generation of Matrix Element Derivatives for Tight Binding Models
Alin M. Elena; Meister, Matthias
2005-01-01
Tight binding (TB) models are one approach to the quantum mechanical many particle problem. An important role in TB models is played by hopping and overlap matrix elements between the orbitals on two atoms, which of course depend on the relative positions of the atoms involved. This dependence can be expressed with the help of Slater-Koster parameters, which are usually taken from tables. Recently, a way to generate these tables automatically was published. If TB approaches are applied to sim...
Customized finite element modelling of the human cornea
Irene Simonini; Anna Pandolfi
2015-01-01
Aim To construct patient-specific solid models of human cornea from ocular topographer data, to increase the accuracy of the biomechanical and optical estimate of the changes in refractive power and stress caused by photorefractive keratectomy (PRK). Method Corneal elevation maps of five human eyes were taken with a rotating Scheimpflug camera combined with a Placido disk before and after refractive surgery. Patient-specific solid models were created and discretized in finite elements to esti...
Model order reduction techniques with applications in finite element analysis
Qu, Zu-Qing
2004-01-01
Despite the continued rapid advance in computing speed and memory the increase in the complexity of models used by engineers persists in outpacing them. Even where there is access to the latest hardware, simulations are often extremely computationally intensive and time-consuming when full-blown models are under consideration. The need to reduce the computational cost involved when dealing with high-order/many-degree-of-freedom models can be offset by adroit computation. In this light, model-reduction methods have become a major goal of simulation and modeling research. Model reduction can also ameliorate problems in the correlation of widely used finite-element analyses and test analysis models produced by excessive system complexity. Model Order Reduction Techniques explains and compares such methods focusing mainly on recent work in dynamic condensation techniques: - Compares the effectiveness of static, exact, dynamic, SEREP and iterative-dynamic condensation techniques in producing valid reduced-order mo...
Ruiz-Baier, Ricardo; Lunati, Ivan
2016-10-01
We present a novel discretization scheme tailored to a class of multiphase models that regard the physical system as consisting of multiple interacting continua. In the framework of mixture theory, we consider a general mathematical model that entails solving a system of mass and momentum equations for both the mixture and one of the phases. The model results in a strongly coupled and nonlinear system of partial differential equations that are written in terms of phase and mixture (barycentric) velocities, phase pressure, and saturation. We construct an accurate, robust and reliable hybrid method that combines a mixed finite element discretization of the momentum equations with a primal discontinuous finite volume-element discretization of the mass (or transport) equations. The scheme is devised for unstructured meshes and relies on mixed Brezzi-Douglas-Marini approximations of phase and total velocities, on piecewise constant elements for the approximation of phase or total pressures, as well as on a primal formulation that employs discontinuous finite volume elements defined on a dual diamond mesh to approximate scalar fields of interest (such as volume fraction, total density, saturation, etc.). As the discretization scheme is derived for a general formulation of multicontinuum physical systems, it can be readily applied to a large class of simplified multiphase models; on the other, the approach can be seen as a generalization of these models that are commonly encountered in the literature and employed when the latter are not sufficiently accurate. An extensive set of numerical test cases involving two- and three-dimensional porous media are presented to demonstrate the accuracy of the method (displaying an optimal convergence rate), the physics-preserving properties of the mixed-primal scheme, as well as the robustness of the method (which is successfully used to simulate diverse physical phenomena such as density fingering, Terzaghi's consolidation
Modeling of rolling element bearing mechanics. Computer program user's manual
Greenhill, Lyn M.; Merchant, David H.
1994-10-01
This report provides the user's manual for the Rolling Element Bearing Analysis System (REBANS) analysis code which determines the quasistatic response to external loads or displacement of three types of high-speed rolling element bearings: angular contact ball bearings, duplex angular contact ball bearings, and cylindrical roller bearings. The model includes the defects of bearing ring and support structure flexibility. It is comprised of two main programs: the Preprocessor for Bearing Analysis (PREBAN) which creates the input files for the main analysis program, and Flexibility Enhanced Rolling Element Bearing Analysis (FEREBA), the main analysis program. This report addresses input instructions for and features of the computer codes. A companion report addresses the theoretical basis for the computer codes. REBANS extends the capabilities of the SHABERTH (Shaft and Bearing Thermal Analysis) code to include race and housing flexibility, including such effects as dead band and preload springs.
Modeling of rolling element bearing mechanics. Theoretical manual
Merchant, David H.; Greenhill, Lyn M.
1994-10-01
This report documents the theoretical basis for the Rolling Element Bearing Analysis System (REBANS) analysis code which determines the quasistatic response to external loads or displacement of three types of high-speed rolling element bearings: angular contact ball bearings; duplex angular contact ball bearings; and cylindrical roller bearings. The model includes the effects of bearing ring and support structure flexibility. It is comprised of two main programs: the Preprocessor for Bearing Analysis (PREBAN) which creates the input files for the main analysis program; and Flexibility Enhanced Rolling Element Bearing Analysis (FEREBA), the main analysis program. A companion report addresses the input instructions for and features of the computer codes. REBANS extends the capabilities of the SHABERTH (Shaft and Bearing Thermal Analysis) code to include race and housing flexibility, including such effects as dead band and preload springs.
A finite element model of ferroelectric/ferroelastic polycrystals
Energy Technology Data Exchange (ETDEWEB)
HWANG,STEPHEN C.; MCMEEKING,ROBERT M.
2000-02-17
A finite element model of polarization switching in a polycrystalline ferroelectric/ferroelastic ceramic is developed. It is assumed that a crystallite switches if the reduction in potential energy of the polycrystal exceeds a critical energy barrier per unit volume of switching material. Each crystallite is represented by a finite element with the possible dipole directions assigned randomly subject to crystallographic constraints. The model accounts for both electric field induced (i.e. ferroelectric) switching and stress induced (i.e. ferroelastic) switching with piezoelectric interactions. Experimentally measured elastic, dielectric, and piezoelectric constants are used consistently, but different effective critical energy barriers are selected phenomenologically. Electric displacement versus electric field, strain versus electric field, stress versus strain, and stress versus electric displacement loops of a ceramic lead lanthanum zirconate titanate (PLZT) are modeled well below the Curie temperature.
Curved Thermopiezoelectric Shell Structures Modeled by Finite Element Analysis
Lee, Ho-Jun
2000-01-01
"Smart" structures composed of piezoelectric materials may significantly improve the performance of aeropropulsion systems through a variety of vibration, noise, and shape-control applications. The development of analytical models for piezoelectric smart structures is an ongoing, in-house activity at the NASA Glenn Research Center at Lewis Field focused toward the experimental characterization of these materials. Research efforts have been directed toward developing analytical models that account for the coupled mechanical, electrical, and thermal response of piezoelectric composite materials. Current work revolves around implementing thermal effects into a curvilinear-shell finite element code. This enhances capabilities to analyze curved structures and to account for coupling effects arising from thermal effects and the curved geometry. The current analytical model implements a unique mixed multi-field laminate theory to improve computational efficiency without sacrificing accuracy. The mechanics can model both the sensory and active behavior of piezoelectric composite shell structures. Finite element equations are being implemented for an eight-node curvilinear shell element, and numerical studies are being conducted to demonstrate capabilities to model the response of curved piezoelectric composite structures (see the figure).
Finite Element Modeling of the Skew Rolling Process
He, Ming; Sawamiphakdi, Krich; Perez, Anthony J.; Daiger, Kevin P.
2004-06-01
A helical skew rolling process is a continuous hot forming process that produces near net-shape parts from tubing for hard turning or machining to the finished parts. The process can challenge forging processes in a number of applications by its high production rate and ability of forming intricate geometry. Because of its technical complexity, a number of tests have to be performed to improve and validate the design before a part can be put into production. To reduce the design lead-time and cost as well as improving the production quality, developing and implementing the finite element analysis procedures in design is an inevitable step. In literature, it has not been seen that the numerical simulation is applied to the skew rolling process so far. Simulation of the skew rolling is in a complicated three-dimensional metal large-deformation category, characterized by its severe mesh distortion and consistent contact and separation between the workpiece and dies. This paper describes the new development in finite element modeling of the skew rolling process and demonstrates the application of finite element modeling to aid the design of tooling and process parameters. By the use of the DEFORM-3D finite element program, the simulations can predict the geometry and some defects in parts reasonably well agreed with the actual products. However, one of the key issues is simulation time due to the nature of the nonlinear finite element method and the Lagrangian formulation adopted in the DEFORM-3D program. Solving nonlinear algebraic equations in each time step combined with iterative procedures is very computationally demanding and time consuming. Repeatedly reduction in time step size to satisfy the contact criterion prolongs the simulation significantly. Therefore, the improvement in the finite element theories and solving methods is necessary before the simulation can achieve reasonable timing.
Modelling interfacial cracking with non-matching cohesive interface elements
Nguyen, Vinh Phu; Nguyen, Chi Thanh; Bordas, Stéphane; Heidarpour, Amin
2016-11-01
Interfacial cracking occurs in many engineering problems such as delamination in composite laminates, matrix/interface debonding in fibre reinforced composites etc. Computational modelling of these interfacial cracks usually employs compatible or matching cohesive interface elements. In this paper, incompatible or non-matching cohesive interface elements are proposed for interfacial fracture mechanics problems. They allow non-matching finite element discretisations of the opposite crack faces thus lifting the constraint on the compatible discretisation of the domains sharing the interface. The formulation is based on a discontinuous Galerkin method and works with both initially elastic and rigid cohesive laws. The proposed formulation has the following advantages compared to classical interface elements: (i) non-matching discretisations of the domains and (ii) no high dummy stiffness. Two and three dimensional quasi-static fracture simulations are conducted to demonstrate the method. Our method not only simplifies the meshing process but also it requires less computational demands, compared with standard interface elements, for problems that involve materials/solids having a large mismatch in stiffnesses.
A coupling procedure for modeling acoustic problems using finite elements and boundary elements
Coyette, J.; Vanderborck, G.; Steichen, W.
1994-01-01
Finite element (FEM) and boundary element (BEM) methods have been used for a long time for the numerical simulation of acoustic problems. The development presented in this paper deals with a general procedure for coupling acoustic finite elements with acoustic boundary elements in order to solve efficiently acoustic problems involving non homogeneous fluids. Emphasis is made on problems where finite elements are used for a confined (bounded) fluid while boundary elements are selected for an e...
Local Refinement of the Super Element Model of Oil Reservoir
Directory of Open Access Journals (Sweden)
A.B. Mazo
2017-12-01
Full Text Available In this paper, we propose a two-stage method for petroleum reservoir simulation. The method uses two models with different degrees of detailing to describe hydrodynamic processes of different space-time scales. At the first stage, the global dynamics of the energy state of the deposit and reserves is modeled (characteristic scale of such changes is km / year. The two-phase flow equations in the model of global dynamics operate with smooth averaged pressure and saturation fields, and they are solved numerically on a large computational grid of super-elements with a characteristic cell size of 200-500 m. The tensor coefficients of the super-element model are calculated using special procedures of upscaling of absolute and relative phase permeabilities. At the second stage, a local refinement of the super-element model is constructed for calculating small-scale processes (with a scale of m / day, which take place, for example, during various geological and technical measures aimed at increasing the oil recovery of a reservoir. Then we solve the two-phase flow problem in the selected area of the measure exposure on a detailed three-dimensional grid, which resolves the geological structure of the reservoir, and with a time step sufficient for describing fast-flowing processes. The initial and boundary conditions of the local problem are formulated on the basis of the super-element solution. This approach allows us to reduce the computational costs in order to solve the problems of designing and monitoring the oil reservoir. To demonstrate the proposed approach, we give an example of the two-stage modeling of the development of a layered reservoir with a local refinement of the model during the isolation of a water-saturated high-permeability interlayer. We show a good compliance between the locally refined solution of the super-element model in the area of measure exposure and the results of numerical modeling of the whole history of reservoir
2D Finite Element Model of a CIGS Module
Energy Technology Data Exchange (ETDEWEB)
Janssen, G.J.M.; Slooff, L.H.; Bende, E.E. [ECN Solar Energy, P.O.Box 1, NL-1755 ZG Petten (Netherlands)
2012-06-15
The performance of thin-film CIGS (Copper indium gallium selenide) modules is often limited due to inhomogeneities in CIGS layers. A 2-dimensional Finite Element Model for CIGS modules is presented that predicts the impact of such inhomogeneities on the module performance. Results are presented of a module with a region of poor diode characteristics. It is concluded that according to this model the effects of poor diodes depend strongly on their location in the module and on their dispersion over the module surface. Due to its generic character the model can also be applied to other series connections of photovoltaic cells.
Finite element analysis of three dimensional crack growth by the use of a boundary element sub model
DEFF Research Database (Denmark)
Lucht, Tore
2009-01-01
A new automated method to model non-planar three dimensional crack growth is proposed which combines the advantages of both the boundary element method and the finite element method. The proposed method links the two methods by a submodelling strategy in which the solution of a global finite...... element model containing an approximation of the crack is interpolated to a much smaller boundary element model containing a fine discretization of the real crack. The method is validated through several numerical comparisons and by comparison to crack growth measured in a test specimen for an engineering...
Elements of a collaborative systems model within the aerospace industry
Westphalen, Bailee R.
2000-10-01
Scope and method of study. The purpose of this study was to determine the components of current aerospace collaborative efforts. There were 44 participants from two selected groups surveyed for this study. Nineteen were from the Oklahoma Air National Guard based in Oklahoma City representing the aviation group. Twenty-five participants were from the NASA Johnson Space Center in Houston representing the aerospace group. The surveys for the aviation group were completed in reference to planning missions necessary to their operations. The surveys for the aerospace group were completed in reference to a well-defined and focused goal from a current mission. A questionnaire was developed to survey active participants of collaborative systems in order to consider various components found within the literature. Results were analyzed and aggregated through a database along with content analysis of open-ended question comments from respondents. Findings and conclusions. This study found and determined elements of a collaborative systems model in the aerospace industry. The elements were (1) purpose or mission for the group or team; (2) commitment or dedication to the challenge; (3) group or team meetings and discussions; (4) constraints of deadlines and budgets; (5) tools and resources for project and simulations; (6) significant contributors to the collaboration; (7) decision-making formats; (8) reviews of project; (9) participants education and employment longevity; (10) cross functionality of team or group members; (11) training on the job plus teambuilding; (12) other key elements identified relevant by the respondents but not included in the model such as communication and teamwork; (13) individual and group accountability; (14) conflict, learning, and performance; along with (15) intraorganizational coordination. These elements supported and allowed multiple individuals working together to solve a common problem or to develop innovation that could not have been
A vortex model for Darrieus turbine using finite element techniques
Energy Technology Data Exchange (ETDEWEB)
Ponta, Fernando L. [Universidad de Buenos Aires, Dept. de Electrotecnia, Grupo ISEP, Buenos Aires (Argentina); Jacovkis, Pablo M. [Universidad de Buenos Aires, Dept. de Computacion and Inst. de Calculo, Buenos Aires (Argentina)
2001-09-01
Since 1970 several aerodynamic prediction models have been formulated for the Darrieus turbine. We can identify two families of models: stream-tube and vortex. The former needs much less computation time but the latter is more accurate. The purpose of this paper is to show a new option for modelling the aerodynamic behaviour of Darrieus turbines. The idea is to combine a classic free vortex model with a finite element analysis of the flow in the surroundings of the blades. This avoids some of the remaining deficiencies in classic vortex models. The agreement between analysis and experiment when predicting instantaneous blade forces and near wake flow behind the rotor is better than the one obtained in previous models. (Author)
Modeling of the condyle elements within a biomechanical knee model
DEFF Research Database (Denmark)
Ribeiro, Ana; Rasmussen, John; Flores, Paulo
2012-01-01
and anatomic properties of the real bones. The biomechanical model characterization is developed under the framework of multibody systems methodologies using Cartesian coordinates. The type of approach used in the proposed knee model is the joint surface contact conditions between ellipsoids, representing...... for this fact is the elastic component of the secondary motions created by the combination of joint forces and soft tissue deformations. The proposed knee model is, therefore, used to investigate whether this observed behavior can be explained by reasonable elastic deformations of the points representing......The development of a computational multibody knee model able to capture some of the fundamental properties of the human knee articulation is presented. This desideratum is reached by including the kinetics of the real knee articulation. The research question is whether an accurate modeling...
Tensegrity finite element models of mechanical tests of individual cells.
Bursa, Jiri; Lebis, Radek; Holata, Jakub
2012-01-01
A three-dimensional finite element model of a vascular smooth muscle cell is based on models published recently; it comprehends elements representing cell membrane, cytoplasm and nucleus, and a complex tensegrity structure representing the cytoskeleton. In contrast to previous models of eucaryotic cells, this tensegrity structure consists of several parts. Its external and internal parts number 30 struts, 60 cables each, and their nodes are interconnected by 30 radial members; these parts represent cortical, nuclear and deep cytoskeletons, respectively. This arrangement enables us to simulate load transmission from the extracellular space to the nucleus or centrosome via membrane receptors (focal adhesions); the ability of the model was tested by simulation of some mechanical tests with isolated vascular smooth muscle cells. Although material properties of components defined on the basis of the mechanical tests are ambiguous, modelling of different types of tests has shown the ability of the model to simulate substantial global features of cell behaviour, e.g. "action at a distance effect" or the global load-deformation response of the cell under various types of loading. Based on computational simulations, the authors offer a hypothesis explaining the scatter of experimental results of indentation tests. © 2012 – IOS Press and the authors. All rights reserved
Using optimisation for calibrating finite element models for adobe walls
Directory of Open Access Journals (Sweden)
Wilson Rodríguez Calderón
2010-07-01
Full Text Available This paper presents a proposal for applying optimisation schemes to calibrating 3D linear and non-linear finite element models for analysing structural walls made out of adobe. The calibration was based on laboratory data and that from previous research. Simulation and calibration involves a deep study of the conceptual model of adobe’s structural behaviour, mathematical and nu- merical models and the interrelationship with optimisation schemes arising from minimising an objective function. This is defined in terms of design variables and is restricted by the values of state variables. Both were obtained from the finite element model developed at ANSYS. The optimisation scheme with which the model was automatically calibrated required a macro to be pro- grammed using an APDL language package. This research was aimed at implementing nonlinear computational models for the structural analysis of walls based on experimental data; this provided a tool for assessing the behaviour of adobe walls with grea- ter security so that decisions can be made to make structural rehabilitation feasible and efficient.
Monoterpene biosynthesis potential of plant subcellular compartments
Dong, L.; Jongedijk, E.J.; Bouwmeester, H.J.; Krol, van der A.R.
2016-01-01
Subcellular monoterpene biosynthesis capacity based on local geranyl diphosphate (GDP) availability or locally boosted GDP production was determined for plastids, cytosol and mitochondria. A geraniol synthase (GES) was targeted to plastids, cytosol, or mitochondria. Transient expression in Nicotiana
Expression and subcellular localization of antiporter regulating ...
African Journals Online (AJOL)
Expression and subcellular localization of antiporter regulating protein OsARP in rice induced by submergence, salt and drought stresses. Md Imtiaz Uddin, Maki Kihara, Lina Yin, Mst Farida Perveen, Kiyoshi Tanaka ...
Optogenetic Tools for Subcellular Applications in Neuroscience.
Rost, Benjamin R; Schneider-Warme, Franziska; Schmitz, Dietmar; Hegemann, Peter
2017-11-01
The ability to study cellular physiology using photosensitive, genetically encoded molecules has profoundly transformed neuroscience. The modern optogenetic toolbox includes fluorescent sensors to visualize signaling events in living cells and optogenetic actuators enabling manipulation of numerous cellular activities. Most optogenetic tools are not targeted to specific subcellular compartments but are localized with limited discrimination throughout the cell. Therefore, optogenetic activation often does not reflect context-dependent effects of highly localized intracellular signaling events. Subcellular targeting is required to achieve more specific optogenetic readouts and photomanipulation. Here we first provide a detailed overview of the available optogenetic tools with a focus on optogenetic actuators. Second, we review established strategies for targeting these tools to specific subcellular compartments. Finally, we discuss useful tools and targeting strategies that are currently missing from the optogenetics repertoire and provide suggestions for novel subcellular optogenetic applications. Copyright © 2017 Elsevier Inc. All rights reserved.
Elements of a dynamic systems model of canopy photosynthesis.
Zhu, Xin-Guang; Song, Qingfeng; Ort, Donald R
2012-06-01
Improving photosynthesis throughout the full canopy rather than photosynthesis of only the top leaves of the canopy is central to improving crop yields. Many canopy photosynthesis models have been developed from physiological and ecological perspectives, however most do not consider heterogeneities of microclimatic factors inside a canopy, canopy dynamics and associated energetics, or competition among different plants, and most models lack a direct linkage to molecular processes. Here we described the rationale, elements, and approaches necessary to build a dynamic systems model of canopy photosynthesis. A systems model should integrate metabolic processes including photosynthesis, respiration, nitrogen metabolism, resource re-mobilization and photosynthate partitioning with canopy level light, CO(2), water vapor distributions and heat exchange processes. In so doing a systems-based canopy photosynthesis model will enable studies of molecular ecology and dramatically improve our insight into engineering crops for improved canopy photosynthetic CO(2) uptake, resource use efficiencies and yields. Copyright © 2012 Elsevier Ltd. All rights reserved.
Quantitative Modelling of Trace Elements in Hard Coal.
Smoliński, Adam; Howaniec, Natalia
2016-01-01
The significance of coal in the world economy remains unquestionable for decades. It is also expected to be the dominant fossil fuel in the foreseeable future. The increased awareness of sustainable development reflected in the relevant regulations implies, however, the need for the development and implementation of clean coal technologies on the one hand, and adequate analytical tools on the other. The paper presents the application of the quantitative Partial Least Squares method in modeling the concentrations of trace elements (As, Ba, Cd, Co, Cr, Cu, Mn, Ni, Pb, Rb, Sr, V and Zn) in hard coal based on the physical and chemical parameters of coal, and coal ash components. The study was focused on trace elements potentially hazardous to the environment when emitted from coal processing systems. The studied data included 24 parameters determined for 132 coal samples provided by 17 coal mines of the Upper Silesian Coal Basin, Poland. Since the data set contained outliers, the construction of robust Partial Least Squares models for contaminated data set and the correct identification of outlying objects based on the robust scales were required. These enabled the development of the correct Partial Least Squares models, characterized by good fit and prediction abilities. The root mean square error was below 10% for all except for one the final Partial Least Squares models constructed, and the prediction error (root mean square error of cross-validation) exceeded 10% only for three models constructed. The study is of both cognitive and applicative importance. It presents the unique application of the chemometric methods of data exploration in modeling the content of trace elements in coal. In this way it contributes to the development of useful tools of coal quality assessment.
Patient-specific modeling of human cardiovascular system elements
Kossovich, Leonid Yu.; Kirillova, Irina V.; Golyadkina, Anastasiya A.; Polienko, Asel V.; Chelnokova, Natalia O.; Ivanov, Dmitriy V.; Murylev, Vladimir V.
2016-03-01
Object of study: The research is aimed at development of personalized medical treatment. Algorithm was developed for patient-specific surgical interventions of the cardiovascular system pathologies. Methods: Geometrical models of the biological objects and initial and boundary conditions were realized by medical diagnostic data of the specific patient. Mechanical and histomorphological parameters were obtained with the help mechanical experiments on universal testing machine. Computer modeling of the studied processes was conducted with the help of the finite element method. Results: Results of the numerical simulation allowed evaluating the physiological processes in the studied object in normal state, in presence of different pathologies and after different types of surgical procedures.
Finite element and analytical models for twisted and coiled actuator
Tang, Xintian; Liu, Yingxiang; Li, Kai; Chen, Weishan; Zhao, Jianguo
2018-01-01
Twisted and coiled actuator (TCA) is a class of recently discovered artificial muscle, which is usually made by twisting and coiling polymer fibers into spring-like structures. It has been widely studied since discovery due to its impressive output characteristics and bright prospects. However, its mathematical models describing the actuation in response to the temperature are still not fully developed. It is known that the large tensile stroke is resulted from the untwisting of the twisted fiber when heated. Thus, the recovered torque during untwisting is a key parameter in the mathematical model. This paper presents a simplified model for the recovered torque of TCA. Finite element method is used for evaluating the thermal stress of the twisted fiber. Based on the results of the finite element analyses, the constitutive equations of twisted fibers are simplified to develop an analytic model of the recovered torque. Finally, the model of the recovered torque is used to predict the deformation of TCA under varying temperatures and validated against experimental results. This work will enhance our understanding of the deformation mechanism of TCAs, which will pave the way for the closed-loop position control.
Statistical osteoporosis models using composite finite elements: a parameter study.
Wolfram, Uwe; Schwen, Lars Ole; Simon, Ulrich; Rumpf, Martin; Wilke, Hans-Joachim
2009-09-18
Osteoporosis is a widely spread disease with severe consequences for patients and high costs for health care systems. The disease is characterised by a loss of bone mass which induces a loss of mechanical performance and structural integrity. It was found that transverse trabeculae are thinned and perforated while vertical trabeculae stay intact. For understanding these phenomena and the mechanisms leading to fractures of trabecular bone due to osteoporosis, numerous researchers employ micro-finite element models. To avoid disadvantages in setting up classical finite element models, composite finite elements (CFE) can be used. The aim of the study is to test the potential of CFE. For that, a parameter study on numerical lattice samples with statistically simulated, simplified osteoporosis is performed. These samples are subjected to compression and shear loading. Results show that the biggest drop of compressive stiffness is reached for transverse isotropic structures losing 32% of the trabeculae (minus 89.8% stiffness). The biggest drop in shear stiffness is found for an isotropic structure also losing 32% of the trabeculae (minus 67.3% stiffness). The study indicates that losing trabeculae leads to a worse drop of macroscopic stiffness than thinning of trabeculae. The results further demonstrate the advantages of CFEs for simulating micro-structured samples.
Modeling Reader's Emotional State Response on Document's Typographic Elements
Directory of Open Access Journals (Sweden)
Dimitrios Tsonos
2011-01-01
Full Text Available We present the results of an experimental study towards modeling the reader's emotional state variations induced by the typographic elements in electronic documents. Based on the dimensional theory of emotions we investigate how typographic elements, like font style (bold, italics, bold-italics and font (type, size, color and background color, affect the reader's emotional states, namely, Pleasure, Arousal, and Dominance (PAD. An experimental procedure was implemented conforming to International Affective Picture System guidelines and incorporating the Self-Assessment Manikin test. Thirty students participated in the experiment. The stimulus was a short paragraph of text for which any content, emotion, and/or domain dependent information was excluded. The Analysis of Variance revealed the dependency of (a all the three emotional dimensions on font size and font/background color combinations and (b the Pleasure dimension on font type and font style. We introduce a set of mapping rules showing how PAD vary on the discrete values of font style and font type elements. Moreover, we introduce a set of equations describing the PAD dimensions' dependency on font size. This novel model can contribute to the automated reader's emotional state extraction in order, for example, to enhance the acoustic rendition of the documents, utilizing text-to-speech synthesis.
A phenomenological finite element model of stereolithography processing
Energy Technology Data Exchange (ETDEWEB)
Chambers, R.S.; Guess, T.R.; Hinnerichs, T.D.
1996-03-01
In the stereolithography process, three dimensional parts are built layer by layer using a laser to selectively cure slices of a photocurable resin, one on top of another. As the laser spot passes over the surface of the resin, the ensuing chemical reaction causes the resin to shrink and stiffen during solidification. When laser paths cross or when new layers are cured on top of existing layers, residual stresses are generated as the cure shrinkage of the freshly gelled resin is constrained by the adjoining previously-cured material. These internal stresses can cause curling in the compliant material. A capability for performing finite element analyses of the stereolithography process has been developed. Although no attempt has been made to incorporate all the physics of the process, a numerical platform suitable for such development has been established. A methodology and code architecture have been structured to allow finite elements to be birthed (activated) according to a prescribed order mimicking the procedure by which a laser is used to cure and build-up surface layers of resin to construct a three dimensional geometry. In its present form, the finite element code incorporates a simple phenomenological viscoelastic material model of solidification that is based on the shrinkage and relaxation observed following isolated, uncoupled laser exposures. The phenomenological material model has been used to analyze the curl in a simple cantilever beam and to make qualitative distinctions between two contrived build styles.
Induction Heating Model of Cermet Fuel Element Environmental Test (CFEET)
Gomez, Carlos F.; Bradley, D. E.; Cavender, D. P.; Mireles, O. R.; Hickman, R. R.; Trent, D.; Stewart, E.
2013-01-01
Deep space missions with large payloads require high specific impulse and relatively high thrust to achieve mission goals in reasonable time frames. Nuclear Thermal Rockets (NTR) are capable of producing a high specific impulse by employing heat produced by a fission reactor to heat and therefore accelerate hydrogen through a rocket nozzle providing thrust. Fuel element temperatures are very high (up to 3000 K) and hydrogen is highly reactive with most materials at high temperatures. Data covering the effects of high-temperature hydrogen exposure on fuel elements are limited. The primary concern is the mechanical failure of fuel elements due to large thermal gradients; therefore, high-melting-point ceramics-metallic matrix composites (cermets) are one of the fuels under consideration as part of the Nuclear Cryogenic Propulsion Stage (NCPS) Advance Exploration System (AES) technology project at the Marshall Space Flight Center. The purpose of testing and analytical modeling is to determine their ability to survive and maintain thermal performance in a prototypical NTR reactor environment of exposure to hydrogen at very high temperatures and obtain data to assess the properties of the non-nuclear support materials. The fission process and the resulting heating performance are well known and do not require that active fissile material to be integrated in this testing. A small-scale test bed; Compact Fuel Element Environmental Tester (CFEET), designed to heat fuel element samples via induction heating and expose samples to hydrogen is being developed at MSFC to assist in optimal material and manufacturing process selection without utilizing fissile material. This paper details the analytical approach to help design and optimize the test bed using COMSOL Multiphysics for predicting thermal gradients induced by electromagnetic heating (Induction heating) and Thermal Desktop for radiation calculations.
A hybrid finite-difference and analytic element groundwater model
Haitjema, Henk M.; Feinstein, Daniel T.; Hunt, Randall J.; Gusyev, Maksym
2010-01-01
Regional finite-difference models tend to have large cell sizes, often on the order of 1–2 km on a side. Although the regional flow patterns in deeper formations may be adequately represented by such a model, the intricate surface water and groundwater interactions in the shallower layers are not. Several stream reaches and nearby wells may occur in a single cell, precluding any meaningful modeling of the surface water and groundwater interactions between the individual features. We propose to replace the upper MODFLOW layer or layers, in which the surface water and groundwater interactions occur, by an analytic element model (GFLOW) that does not employ a model grid; instead, it represents wells and surface waters directly by the use of point-sinks and line-sinks. For many practical cases it suffices to provide GFLOW with the vertical leakage rates calculated in the original coarse MODFLOW model in order to obtain a good representation of surface water and groundwater interactions. However, when the combined transmissivities in the deeper (MODFLOW) layers dominate, the accuracy of the GFLOW solution diminishes. For those cases, an iterative coupling procedure, whereby the leakages between the GFLOW and MODFLOW model are updated, appreciably improves the overall solution, albeit at considerable computational cost. The coupled GFLOW–MODFLOW model is applicable to relatively large areas, in many cases to the entire model domain, thus forming an attractive alternative to local grid refinement or inset models.
OXYGEN PRESSURE REGULATOR DESIGN AND ANALYSIS THROUGH FINITE ELEMENT MODELING
Directory of Open Access Journals (Sweden)
Asterios KOSMARAS
2017-05-01
Full Text Available Oxygen production centers produce oxygen in high pressure that needs to be defused. A regulator is designed and analyzed in the current paper for medical use in oxygen production centers. This study aims to design a new oxygen pressure regulator and perform an analysis using Finite Element Modeling in order to evaluate its working principle. In the design procedure,the main elements and the operating principles of a pressure regulator are taking into account. The regulator is designed and simulations take place in order to assessthe proposed design. Stress analysis results are presented for the main body of the regulator, as well as, flow analysis to determine some important flow characteristics in the inlet and outlet of the regulator.
A nonlinear dynamic corotational finite element model for submerged pipes
de Vries, F. H.; Geijselaers, H. J. M.; van den Boogaard, A. H.; Huisman, A.
2017-12-01
A three dimensional finite element model is built to compute the motions of a pipe that is being laid on the seabed. This process is geometrically nonlinear, therefore co-rotational beam elements are used. The pipe is subject to static and dynamic forces. Static forces are due to gravity, current and buoyancy. The dynamic forces exerted by the water are incorporated using Morison’s equation. The dynamic motions are computed using implicit time integration. For this the Hilber-Hughes-Taylor method is selected. The Newton-Raphson iteration scheme is used to solve the equations in every time step. During laying, the pipe is connected to the pipe laying vessel, which is subject to wave motion. Response amplitude operators are used to determine the motions of the ship and thus the motions of the top end of the pipe.
Modeling colliding beams with an element by element representation of the storage ring guide field
Directory of Open Access Journals (Sweden)
D. L. Rubin
2006-01-01
Full Text Available A detailed model of the Cornell Electron Storage Ring (CESR guide field, including beam-beam interaction computed in the weak-strong regime, is the basis for a multiturn simulation of luminosity. The simulation reproduces the dependence of luminosity on bunch current that is measured in the storage ring, at both high-energy (5.3 GeV/beam and in the wiggler-dominated low energy (CESR-c configuration (1.9 GeV/beam. Dynamics are determined entirely by the physics of propagation through the individual guide field elements with no free parameters. Energy dependence of the compensation of the transverse coupling introduced by the experimental solenoid is found to significantly degrade specific luminosity. The simulation also indicates a strong dependence of limiting beam-beam tune shift parameter on the geometric mean of synchrotron tune and bunch length.
Modelling of Shaft Orbiting with 3-D Solid Finite Elements
Directory of Open Access Journals (Sweden)
J. Yu
1999-01-01
Full Text Available A 3-D solid finite element model which can include bending, torsional, axial and other motions is proposed to analyse dynamic responses of shafts. For uniform shafts, this model shows consistency with beam theories when bending vibration is examined. For non-uniform shafts such as tapered ones, however, this model gives much more reliable and accurate results than beam theories which use an assumption that plane sections remain plane. Reduction procedures can be applied which involve only small matrix operations for such a system with a large number of degrees of freedom. The equations of motion have been consistently derived in a rotating frame. Shaft orbiting motion is then defined in this frame, giving a clear view of its trajectories. Forced responses due to excitation in the rotating frame have been examined to find some characteristics of the orbiting shaft. Resonant orbiting frequencies, i.e., natural frequencies of rotating shafts, can be determined in terms of the rotating or fixed frame. Trajectories of transverse displacements have been found to be varying with the forcing frequencies. At resonance, a uniform shaft will only have forward or backward orbiting motion with circular orbits. For other forcing frequencies, however, even a uniform shaft could present both forward and backward orbiting motions with non-circular orbits at different locations along its length. It is anticipated that modelling of shaft orbiting in the rotating frame with the proposed 3-D solid finite elements will lead to accurate dynamic stress evaluation.
Fast Gravitational Field Model Using Adaptive Orthogonal Finite Element Approximation
Younes, A.; Macomber, B.; Woollands, R.; Probe, A.; Bai, X.; Junkins, J.
2013-09-01
Recent research has addressed the issue that high degree and order gravity expansions involve tens of thousands of terms in a theoretically infinite order spherical harmonic expansion (some gravity models extend to degree and order 200 with over 30,000 terms) which in principle must be computed at every integration step to obtain the acceleration consistent with the gravity model. We propose to evaluate these gravity model interpolation models and use them in conjunction with the modified Picard path approximation methods. It was decided to consider analogous orthogonal approximation methods to interpolate, an FEM model, high (degree, order) gravity fields, by replacing the global spherical harmonic series by a family of locally precise orthogonal polynomial approximations for efficient computation. Our preliminary results showed that time to compute the state of the art (degree and order 200) spherical harmonic gravity is reduced by 4 to 5 orders of magnitude while maintaining > 9 digits of accuracy. Most of the gain is due to adopting the orthogonal FEM approach, but radial adaptation of the approximation degree gains an additional order of magnitude speedup. The efficient data base storage/access of the local coefficients is studied, which utilizes porting the algorithm to the NVIDIA GPU. This paper will address the accuracy and efficiency in both a C++ serial PC architecture as well as a PC/GPU architecture. The Adaptive Orthogonal Finite Element Gravity Model (AOFEGM) is expected to have broad potential for speeding the trajectory propagation algorithms; for example, used in conjunction with orthogonal Finite Element Model (FEM) gravity approximations, the Chebyshev-Picard path approximation enables truly revolutionary speedups in orbit propagation without accuracy loss.
Subcellular Localization of HIV-1 gag-pol mRNAs Regulates Sites of Virion Assembly.
Becker, Jordan T; Sherer, Nathan M
2017-03-15
Full-length unspliced human immunodeficiency virus type 1 (HIV-1) RNAs serve dual roles in the cytoplasm as mRNAs encoding the Gag and Gag-Pol capsid proteins as well as genomic RNAs (gRNAs) packaged by Gag into virions undergoing assembly at the plasma membrane (PM). Because Gag is sufficient to drive the assembly of virus-like particles even in the absence of gRNA binding, whether viral RNA trafficking plays an active role in the native assembly pathway is unknown. In this study, we tested the effects of modulating the cytoplasmic abundance or distribution of full-length viral RNAs on Gag trafficking and assembly in the context of single cells. Increasing full-length viral RNA abundance or distribution had little-to-no net effect on Gag assembly competency when provided in trans In contrast, artificially tethering full-length viral RNAs or surrogate gag-pol mRNAs competent for Gag synthesis to non-PM membranes or the actin cytoskeleton severely reduced net virus particle production. These effects were explained, in large part, by RNA-directed changes to Gag's distribution in the cytoplasm, yielding aberrant subcellular sites of virion assembly. Interestingly, RNA-dependent disruption of Gag trafficking required either of two cis-acting RNA regulatory elements: the 5' packaging signal (Psi) bound by Gag during genome encapsidation or, unexpectedly, the Rev response element (RRE), which regulates the nuclear export of gRNAs and other intron-retaining viral RNAs. Taken together, these data support a model for native infection wherein structural features of the gag-pol mRNA actively compartmentalize Gag to preferred sites within the cytoplasm and/or PM.IMPORTANCE The spatial distribution of viral mRNAs within the cytoplasm can be a crucial determinant of efficient translation and successful virion production. Here we provide direct evidence that mRNA subcellular trafficking plays an important role in regulating the assembly of human immunodeficiency virus type 1 (HIV
Lower extremity finite element model for crash simulation
Energy Technology Data Exchange (ETDEWEB)
Schauer, D.A.; Perfect, S.A.
1996-03-01
A lower extremity model has been developed to study occupant injury mechanisms of the major bones and ligamentous soft tissues resulting from vehicle collisions. The model is based on anatomically correct digitized bone surfaces of the pelvis, femur, patella and the tibia. Many muscles, tendons and ligaments were incrementally added to the basic bone model. We have simulated two types of occupant loading that occur in a crash environment using a non-linear large deformation finite element code. The modeling approach assumed that the leg was passive during its response to the excitation, that is, no active muscular contraction and therefore no active change in limb stiffness. The approach recognized that the most important contributions of the muscles to the lower extremity response are their ability to define and modify the impedance of the limb. When nonlinear material behavior in a component of the leg model was deemed important to response, a nonlinear constitutive model was incorporated. The accuracy of these assumptions can be verified only through a review of analysis results and careful comparison with test data. As currently defined, the model meets the objective for which it was created. Much work remains to be done, both from modeling and analysis perspectives, before the model can be considered complete. The model implements a modeling philosophy that can accurately capture both kinematic and kinetic response of the lower limb. We have demonstrated that the lower extremity model is a valuable tool for understanding the injury processes and mechanisms. We are now in a position to extend the computer simulation to investigate the clinical fracture patterns observed in actual crashes. Additional experience with this model will enable us to make a statement on what measures are needed to significantly reduce lower extremity injuries in vehicle crashes. 6 refs.
Protein subcellular localization prediction using artificial intelligence technology.
Nair, Rajesh; Rost, Burkhard
2008-01-01
Proteins perform many important tasks in living organisms, such as catalysis of biochemical reactions, transport of nutrients, and recognition and transmission of signals. The plethora of aspects of the role of any particular protein is referred to as its "function." One aspect of protein function that has been the target of intensive research by computational biologists is its subcellular localization. Proteins must be localized in the same subcellular compartment to cooperate toward a common physiological function. Aberrant subcellular localization of proteins can result in several diseases, including kidney stones, cancer, and Alzheimer's disease. To date, sequence homology remains the most widely used method for inferring the function of a protein. However, the application of advanced artificial intelligence (AI)-based techniques in recent years has resulted in significant improvements in our ability to predict the subcellular localization of a protein. The prediction accuracy has risen steadily over the years, in large part due to the application of AI-based methods such as hidden Markov models (HMMs), neural networks (NNs), and support vector machines (SVMs), although the availability of larger experimental datasets has also played a role. Automatic methods that mine textual information from the biological literature and molecular biology databases have considerably sped up the process of annotation for proteins for which some information regarding function is available in the literature. State-of-the-art methods based on NNs and HMMs can predict the presence of N-terminal sorting signals extremely accurately. Ab initio methods that predict subcellular localization for any protein sequence using only the native amino acid sequence and features predicted from the native sequence have shown the most remarkable improvements. The prediction accuracy of these methods has increased by over 30% in the past decade. The accuracy of these methods is now on par with
Finite element modeling of nanotube structures linear and non-linear models
Awang, Mokhtar; Muhammad, Ibrahim Dauda
2016-01-01
This book presents a new approach to modeling carbon structures such as graphene and carbon nanotubes using finite element methods, and addresses the latest advances in numerical studies for these materials. Based on the available findings, the book develops an effective finite element approach for modeling the structure and the deformation of grapheme-based materials. Further, modeling processing for single-walled and multi-walled carbon nanotubes is demonstrated in detail.
FEWA: a Finite Element model of Water flow through Aquifers
Energy Technology Data Exchange (ETDEWEB)
Yeh, G.T.; Huff, D.D.
1983-11-01
This report documents the implementation and demonstration of a Finite Element model of Water flow through Aquifers (FEWA). The particular features of FEWA are its versatility and flexibility to deal with as many real-world problems as possible. Point as well as distributed sources/sinks are included to represent recharges/pumpings and rainfall infiltrations. All sources/sinks can be transient or steady state. Prescribed hydraulic head on the Dirichlet boundaries and fluxes on Neumann or Cauchy boundaries can be time-dependent or constant. Source/sink strength over each element and node, hydraulic head at each Dirichlet boundary node, and flux at each boundary segment can vary independently of each other. Either completely confined or completely unconfined aquifers, or partially confined and partially unconfined aquifers can be dealt with effectively. Discretization of a compound region with very irregular curved boundaries is made easy by including both quadrilateral and triangular elements in the formulation. Large-field problems can be solved efficiently by including a pointwise iterative solution strategy as an optional alternative to the direct elimination solution method for the matrix equation approximating the partial differential equation of groundwater flow. FEWA also includes transient flow through confining leaky aquifers lying above and/or below the aquifer of interest. The model is verified against three simple cases to which analytical solutions are available. It is then demonstrated by two examples of how the model can be applied to heterogeneous and anisotropic aquifers with transient boundary conditions, time-dependent sources/sinks, and confining aquitards for a confined aquifer of variable thickness and for a free surface problem in an unconfined aquifer, respectively. 20 references, 25 figures, 8 tables.
Energy Technology Data Exchange (ETDEWEB)
Beaumelle, Léa [INRA, UR 251 PESSAC, 78026 Versailles Cedex (France); Gimbert, Frédéric [Laboratoire Chrono-Environnement, UMR 6249 University of Franche-Comté/CNRS Usc INRA, 16 route de Gray, 25030 Besançon Cedex (France); Hedde, Mickaël [INRA, UR 251 PESSAC, 78026 Versailles Cedex (France); Guérin, Annie [INRA, US 0010 LAS Laboratoire d' analyses des sols, 273 rue de Cambrai, 62000 Arras (France); Lamy, Isabelle, E-mail: lamy@versailles.inra.fr [INRA, UR 251 PESSAC, 78026 Versailles Cedex (France)
2015-07-01
Subcellular fractionation of metals in organisms was proposed as a better way to characterize metal bioaccumulation. Here we report the impact of a laboratory exposure to a wide range of field-metal contaminated soils on the subcellular partitioning of metals in the earthworm Aporrectodea caliginosa. Soils moderately contaminated were chosen to create a gradient of soil metal availability; covering ranges of both soil metal contents and of several soil parameters. Following exposure, Cd, Pb and Zn concentrations were determined both in total earthworm body and in three subcellular compartments: cytosolic, granular and debris fractions. Three distinct proxies of soil metal availability were investigated: CaCl{sub 2}-extractable content dissolved content predicted by a semi-mechanistic model and free ion concentration predicted by a geochemical speciation model. Subcellular partitionings of Cd and Pb were modified along the gradient of metal exposure, while stable Zn partitioning reflected regulation processes. Cd subcellular distribution responded more strongly to increasing soil Cd concentration than the total internal content, when Pb subcellular distribution and total internal content were similarly affected. Free ion concentrations were better descriptors of Cd and Pb subcellular distribution than CaCl{sub 2} extractable and dissolved metal concentrations. However, free ion concentrations and soil total metal contents were equivalent descriptors of the subcellular partitioning of Cd and Pb because they were highly correlated. Considering lowly contaminated soils, our results raise the question of the added value of three proxies of metal availability compared to soil total metal content in the assessment of metal bioavailability to earthworm. - Highlights: • Earthworms were exposed to a wide panel of historically contaminated soils • Subcellular partitioning of Cd, Pb and Zn was investigated in earthworms • Three proxies of soil metal availability were
A finite element model for ultrafast laser-lamellar keratoplasty.
Fernández, D Cabrera; Niazy, A M; Kurtz, R M; Djotyan, G P; Juhasz, T
2006-01-01
A biomechanical model of the human cornea is employed in a finite element formulation for simulating the effects of Ultrafast Laser-Lamellar Keratoplasty. Several computer simulations were conducted to study curvature changes of the central corneal zone under various physiological and surgical factors. These factors included the combined effect of corneal flap and residual stromal bed thickness on corneal curvature; the effect of the shape of the lenticle on the surgical procedure outcomes and the effect of flap thickness on stress distribution in the cornea. The results were validated by comparing computed refractive power changes with clinical results. The effect of flap thickness on the amount of central flattening indicates that for flap thickness values 28% over the corneal thickness, central corneal flattening decreases. Moreover, the change in corneal curvature induced by subtraction of a plano-convex lenticle under a uniform flap, naturally imply a smaller change in the structure of the anterior layers of the cornea, but a bigger deformation in the structure of the posterior layers that are left behind the resection of the lenticle. In addition, the model also verified that the corneal curvature increased peripherally with simultaneous thinning centrally after subtraction of corneal tissue. This result shows that not only the treated zone is affected by the surgery, indicating the important role of the biomechanical response of the corneal tissue to refractive surgery, which is unaccounted for in current ablation algorithms. The results illustrate the potentialities of finite element modeling as an aid to the surgeon in evaluating variables.
Building Finite Element Models to Investigate Zebrafish Jaw Biomechanics.
Brunt, Lucy H; Roddy, Karen A; Rayfield, Emily J; Hammond, Chrissy L
2016-12-03
Skeletal morphogenesis occurs through tightly regulated cell behaviors during development; many cell types alter their behavior in response to mechanical strain. Skeletal joints are subjected to dynamic mechanical loading. Finite element analysis (FEA) is a computational method, frequently used in engineering that can predict how a material or structure will respond to mechanical input. By dividing a whole system (in this case the zebrafish jaw skeleton) into a mesh of smaller 'finite elements', FEA can be used to calculate the mechanical response of the structure to external loads. The results can be visualized in many ways including as a 'heat map' showing the position of maximum and minimum principal strains (a positive principal strain indicates tension while a negative indicates compression. The maximum and minimum refer the largest and smallest strain). These can be used to identify which regions of the jaw and therefore which cells are likely to be under particularly high tensional or compressional loads during jaw movement and can therefore be used to identify relationships between mechanical strain and cell behavior. This protocol describes the steps to generate Finite Element models from confocal image data on the musculoskeletal system, using the zebrafish lower jaw as a practical example. The protocol leads the reader through a series of steps: 1) staining of the musculoskeletal components, 2) imaging the musculoskeletal components, 3) building a 3 dimensional (3D) surface, 4) generating a mesh of Finite Elements, 5) solving the FEA and finally 6) validating the results by comparison to real displacements seen in movements of the fish jaw.
Design Through Manufacturing: The Solid Model - Finite Element Analysis Interface
Rubin, Carol
2003-01-01
State-of-the-art computer aided design (CAD) presently affords engineers the opportunity to create solid models of machine parts which reflect every detail of the finished product. Ideally, these models should fulfill two very important functions: (1) they must provide numerical control information for automated manufacturing of precision parts, and (2) they must enable analysts to easily evaluate the stress levels (using finite element analysis - FEA) for all structurally significant parts used in space missions. Today's state-of-the-art CAD programs perform function (1) very well, providing an excellent model for precision manufacturing. But they do not provide a straightforward and simple means of automating the translation from CAD to FEA models, especially for aircraft-type structures. The research performed during the fellowship period investigated the transition process from the solid CAD model to the FEA stress analysis model with the final goal of creating an automatic interface between the two. During the period of the fellowship a detailed multi-year program for the development of such an interface was created. The ultimate goal of this program will be the development of a fully parameterized automatic ProE/FEA translator for parts and assemblies, with the incorporation of data base management into the solution, and ultimately including computational fluid dynamics and thermal modeling in the interface.
Finite Elements Modeling in Diagnostics of Small Closed Pneumothorax.
Lorkowski, J; Mrzygłód, M; Grzegorowska, O
2015-01-01
Posttraumatic pneumothorax still remains to be a serious clinical problem and requires a comprehensive diagnostic and monitoring during treatment. The aim of this paper is to present a computer method of modeling of small closed pneumothorax. Radiological images of 34 patients of both sexes with small closed pneumothorax were taken into consideration. The control group consisted of X-rays of 22 patients treated because of tension pneumothorax. In every single case the model was correlated with the clinical manifestations. The procedure of computational rapid analysis (CRA) for in silico analysis of surgical intervention was introduced. It included implementation of computerize tomography images and their automatic conversion into 3D finite elements model (FEM). In order to segmentize the 3D model, an intelligent procedure of domain recognition was used. In the final step, a computer simulation project of fluid-structure interaction was built, using the ANSYS\\Workbench environment of multi-physics analysis. The FEM model and computer simulation project were employed in the analysis in order to optimize surgical intervention. The model worked out well and was compatible with the clinical manifestations of pneumothorax. We conclude that the created FEM model is a promising tool for facilitation of diagnostic procedures and prognosis of treatment in the case of small closed pneumothorax.
Validation of a parametric finite element human femur model.
Klein, Katelyn F; Hu, Jingwen; Reed, Matthew P; Schneider, Lawrence W; Rupp, Jonathan D
2017-05-19
Finite element (FE) models with geometry and material properties that are parametric with subject descriptors, such as age and body shape/size, are being developed to incorporate population variability into crash simulations. However, the validation methods currently being used with these parametric models do not assess whether model predictions are reasonable in the space over which the model is intended to be used. This study presents a parametric model of the femur and applies a unique validation paradigm to this parametric femur model that characterizes whether model predictions reproduce experimentally observed trends. FE models of male and female femurs with geometries that are parametric with age, femur length, and body mass index (BMI) were developed based on existing statistical models that predict femur geometry. These parametric FE femur models were validated by comparing responses from combined loading tests of femoral shafts to simulation results from FE models of the corresponding femoral shafts whose geometry was predicted using the associated age, femur length, and BMI. The effects of subject variables on model responses were also compared with trends in the experimental data set by fitting similarly parameterized statistical models to both the results of the experimental data and the corresponding FE model results and then comparing fitted model coefficients for the experimental and predicted data sets. The average error in impact force at experimental failure for the parametric models was 5%. The coefficients of a statistical model fit to simulation data were within one standard error of the coefficients of a similarly parameterized model of the experimental data except for the age parameter, likely because material properties used in simulations were not varied with specimen age. In simulations to explore the effects of femur length, BMI, and age on impact response, only BMI significantly affected response for both men and women, with increasing
A formal ontology of subcellular neuroanatomy
Directory of Open Access Journals (Sweden)
Stephen D Larson
2007-11-01
Full Text Available The complexity of the nervous system requires high-resolution microscopy to resolve the detailed 3D structure of nerve cells and supracellular domains. The analysis of such imaging data to extract cellular surfaces and cell components often requires the combination of expert human knowledge with carefully engineered software tools. In an effort to make better tools to assist humans in this endeavor, create a more accessible and permanent record of their data, and to aid the process of constructing complex and detailed computational models, we have created a core of formalized knowledge about the structure of the nervous system and have integrated that core into several software applications. In this paper, we describe the structure and content of a formal ontology whose scope is the subcellular anatomy of the nervous system (SAO, covering nerve cells, their parts, and interactions between these parts. Many applications of this ontology to image annotation, content-based retrieval of structural data, and integration of shared data across scales and researchers are also described.
Subcellular drug targeting, pharmacokinetics and bioavailability.
Leucuta, Sorin Emilian
2014-02-01
Effective treatment of diseases at the molecular level is possible by directing the drug substance (micromolecular, protein or peptide drugs, DNA, oligonucleotides, siRNA) with the aid of a specialized nanoparticulate carrier, for safe and effective transport to the specific site of action in the cytosol and its organelles including nuclear targeting. To achieve efficient cytosolic delivery of therapeutics or nuclear targeting, different drug delivery systems (DDS) have been developed (macromolecular drug conjugates, chemically or genetically modified proteins, and particulate drug carriers) capable of subcellular internalization overcoming the biological barriers, by passive targeting and especially by active targeting (receptor-targeted delivery). The success depends on the physicochemical nature of DDS, intracellular barriers that these systems need to overcome, the bioavailability of the bioactive drug, biodistribution, the intracellular pharmacokinetics and its influence on the pharmacodynamic effect. Models necessary for this purpose exist but they need to be more developed especially with quantitative treatments, after the development of the means of highlighting the evolution of the drug substance in biophase or at the level of the target cellular organelle by quantitative assays. It is expected that intracellularly targeted drug delivery approaches will be clinically useful using specialized DDSs belonging to the pharmaceutical nanotechnologies.
Generalized Potential Energy Finite Elements for Modeling Molecular Nanostructures.
Chatzieleftheriou, Stavros; Adendorff, Matthew R; Lagaros, Nikos D
2016-10-24
The potential energy of molecules and nanostructures is commonly calculated in the molecular mechanics formalism by superimposing bonded and nonbonded atomic energy terms, i.e. bonds between two atoms, bond angles involving three atoms, dihedral angles involving four atoms, nonbonded terms expressing the Coulomb and Lennard-Jones interactions, etc. In this work a new, generalized numerical simulation is presented for studying the mechanical behavior of three-dimensional nanostructures at the atomic scale. The energy gradient and Hessian matrix of such assemblies are usually computed numerically; a potential energy finite element model is proposed herein where these two components are expressed analytically. In particular, generalized finite elements are developed that express the interactions among atoms in a manner equivalent to that invoked in simulations performed based on the molecular dynamics method. Thus, the global tangent stiffness matrix for any nanostructure is formed as an assembly of the generalized finite elements and is directly equivalent to the Hessian matrix of the potential energy. The advantages of the proposed model are identified in terms of both accuracy and computational efficiency. In the case of popular force fields (e.g., CHARMM), the computation of the Hessian matrix by implementing the proposed method is of the same order as that of the gradient. This analysis can be used to minimize the potential energy of molecular systems under nodal loads in order to derive constitutive laws for molecular systems where the entropy and solvent effects are neglected and can be approximated as solids, such as double stranded DNA nanostructures. In this context, the sequence dependent stretch modulus for some typical base pairs step is calculated.
Flexural Modeling of the Andean System Using Finite Element Method
Sacek, V.; Ussami, N.
2007-05-01
The general equation of flexure of the lithosphere in cartesian coordinates is solved using a numerical Finite Element Method (FEM) with triangular elements in non-structured meshes. This alternative way to model bending of thin elastic plates lying over an inviscid fluid allows taking into account lateral variation of rigidity, plate discontinuities and full 3-D representation of loads. The numerical solution was initially compared with the analytical solution of bending of an elastic plate loaded by an uniformally distributed load. The method was applied to model flexure of a plate due to curved orogenic belts and the results were compared with solutions obtained if a 2-D approximation of plates and loads was considered. The proposed numerical method was applied to study flexural deformation of the western edge of the South American lithospheric plate due to the loads of the Andean mountains, using Te =75 km for both continuous and broken plates. The predicted forebulges agree with the observed distribution of positive gravity anomalies paralleling the negative gravity anomalies associated with the high topography of the Andes. Maximum amplitudes of forebulges correlate with Purus Arch in Solimões basin (W Brazil) and the Chaco Pampeana plain (Argentina), and between these two regions, a saddle point occurs over the Pantanal wetland (SW Brazil).
Modeling elements of energy systems for thermal energy transportation
Directory of Open Access Journals (Sweden)
Shurygin A. M.
2016-12-01
Full Text Available Heating industrial facilities and the residential sector in recent years is the economic and technical challenge. It has been noted that the efficiency of the heat generating equipment depends not only on its sophistication, fuel type, but also on work of the distributing network taking into account the thermal, hydraulic losses, characteristics and modes of use of heating objects – buildings and technological processes. Possibility of supplying maximum heat flow from the heating system considering mismatch of highs and types of resources consumed from individual consumers should be provided by the right choice of energy equipment set, as well as bandwidth of transport systems and possibility of its regulation. It is important not just to configure the system to work effectively in the current mode (usually at the maximum load, but in the entire load range, as the calculated mode often takes a relatively small portion of the operating time. Thus, the efficiency of heating systems is largely determined by the method used for its control, including the possibility of regulating the main units and elements of the system. The paper considers the factors affecting the system efficiency. Mathematical models of the system elements allowing adjust the amount of released heat energy for consumers have been presented. Separately the mathematical model of the control system of electric drive vehicles used in the system has been considered and implemented.
Energy Technology Data Exchange (ETDEWEB)
Floriani, M.; Grasset, G.; Simon, O.; Morlon, H.; Laroche, L. [CEA Cadarache (DEI/SECRE/LRE), Laboratory of Radioecology and Ecotoxicology, Institute for Radioprotection and Nuclear Safety, 13 - Saint-Paul-lez-Durance (France)
2004-07-01
The global framework of this study is to go further in the understanding of the involved mechanisms of uranium and selenium internalisation at the subcellular level and of their toxicity towards several aquatic and terrestrial organisms. In this context, the applications and performances of a Scanning Transmission Electron Microscope (TEM/STEM) equipped with CCD camera and Energy-Dispersive- X-Ray (EDAX) analysis are reported. The principal merit of this equipment is the clear expression of element distribution with nanometer resolution. The sample for TEM analysis were prepared in ultrathin sections of 70-140 nm (thickness) and those for EDAX in sections of 200-500 nm. This method offers the possibility of a direct correlation between histological image and distribution map of trace elements. For each sample, following TEM analysis, EDAX spectra or EDAX mapping were also recorded to confirm the identity of the electron dense material in the scanned sections. Demonstration of the usefulness of this method to understand the bioaccumulation mechanisms and to study the effect of the pollutant uptake at the subcellular level was performed for target organs of a metal (U) and a metalloid (Se) in various biological models: a higher rooted plant (Phaseolus vulgaris)) and a freshwater invertebrate (Orconectes Limosus) and a unicellular green alga (Chlamydomonas reinhardtii)). TEM-EDAX analysis revealed the presence of U-deposits in gills and digestive gland in crayfish, and in vacuoles or in the cytoplasm of different rooted cells bean. In the alga, the accumulation of Se was found in electron-dense granules within cytoplasm associated with ultrastructural changes and starch accumulation. (author)
MATERIAL ELEMENT MODEL FOR EXTRINSIC SEMICONDUCTORS WITH DEFECTS OF DISLOCATION
Directory of Open Access Journals (Sweden)
Maria Paola Mazzeo
2011-07-01
Full Text Available In a previous paper we outlined a geometric model for the thermodynamic description of extrinsic semiconductors with defects of dislocation.Applying a geometrization technique, within the rationalextended irreversible thermodynamics with internal variables, the dynamical system for simple material elements of these media, the expressions of the entropy function and the entropy 1-form were obtained. In this contribution we deepen the study of this geometric model. We give a detailed description of the defective media under consideration and of the dislocation core tensor, we introduce the transformation induced by the process and, applying the closure conditions for the entropy 1-form, we derive the necessary conditions for the existence of the entropy function. These and other results are new in the paper.The derivation of the relevant entropy 1-form is the starting point to introduce an extended thermodynamical phase space.
Elements of Constitutive Modelling and Numerical Analysis of Frictional Soils
DEFF Research Database (Denmark)
Jakobsen, Kim Parsberg
of a constitutive model for soil is based on a profound knowledge of the soil behaviour upon loading. In the present study it is attempted to get a better understanding of the soil behaviour bv performing a number of triaxial compression tests on sand. The stress-strain behaviour of sand depends strongly......This thesis deals with elements of elasto-plastic constitutive modelling and numerical analysis of frictional soils. The thesis is based on a number of scientific papers and reports in which central characteristics of soil behaviour and applied numerical techniques are considered. The development...... and subsequently dilates during shear. The change in the volumetric behaviour of the soil skeleton is commonly referred to as the characteristic state. The stress ratio corresponding to the characteristic state is independent of the mean normal effective stress and the relative density, but depends on the stress...
NON-LINEAR FINITE ELEMENT MODELING OF DEEP DRAWING PROCESS
Directory of Open Access Journals (Sweden)
Hasan YILDIZ
2004-03-01
Full Text Available Deep drawing process is one of the main procedures used in different branches of industry. Finding numerical solutions for determination of the mechanical behaviour of this process will save time and money. In die surfaces, which have complex geometries, it is hard to determine the effects of parameters of sheet metal forming. Some of these parameters are wrinkling, tearing, and determination of the flow of the thin sheet metal in the die and thickness change. However, the most difficult one is determination of material properties during plastic deformation. In this study, the effects of all these parameters are analyzed before producing the dies. The explicit non-linear finite element method is chosen to be used in the analysis. The numerical results obtained for non-linear material and contact models are also compared with the experiments. A good agreement between the numerical and the experimental results is obtained. The results obtained for the models are given in detail.
Finite Element and Plate Theory Modeling of Acoustic Emission Waveforms
Prosser, W. H.; Hamstad, M. A.; Gary, J.; OGallagher, A.
1998-01-01
A comparison was made between two approaches to predict acoustic emission waveforms in thin plates. A normal mode solution method for Mindlin plate theory was used to predict the response of the flexural plate mode to a point source, step-function load, applied on the plate surface. The second approach used a dynamic finite element method to model the problem using equations of motion based on exact linear elasticity. Calculations were made using properties for both isotropic (aluminum) and anisotropic (unidirectional graphite/epoxy composite) materials. For simulations of anisotropic plates, propagation along multiple directions was evaluated. In general, agreement between the two theoretical approaches was good. Discrepancies in the waveforms at longer times were caused by differences in reflections from the lateral plate boundaries. These differences resulted from the fact that the two methods used different boundary conditions. At shorter times in the signals, before reflections, the slight discrepancies in the waveforms were attributed to limitations of Mindlin plate theory, which is an approximate plate theory. The advantages of the finite element method are that it used the exact linear elasticity solutions, and that it can be used to model real source conditions and complicated, finite specimen geometries as well as thick plates. These advantages come at a cost of increased computational difficulty, requiring lengthy calculations on workstations or supercomputers. The Mindlin plate theory solutions, meanwhile, can be quickly generated on personal computers. Specimens with finite geometry can also be modeled. However, only limited simple geometries such as circular or rectangular plates can easily be accommodated with the normal mode solution technique. Likewise, very limited source configurations can be modeled and plate theory is applicable only to thin plates.
Calibration under uncertainty for finite element models of masonry monuments
Energy Technology Data Exchange (ETDEWEB)
Atamturktur, Sezer,; Hemez, Francois,; Unal, Cetin
2010-02-01
Historical unreinforced masonry buildings often include features such as load bearing unreinforced masonry vaults and their supporting framework of piers, fill, buttresses, and walls. The masonry vaults of such buildings are among the most vulnerable structural components and certainly among the most challenging to analyze. The versatility of finite element (FE) analyses in incorporating various constitutive laws, as well as practically all geometric configurations, has resulted in the widespread use of the FE method for the analysis of complex unreinforced masonry structures over the last three decades. However, an FE model is only as accurate as its input parameters, and there are two fundamental challenges while defining FE model input parameters: (1) material properties and (2) support conditions. The difficulties in defining these two aspects of the FE model arise from the lack of knowledge in the common engineering understanding of masonry behavior. As a result, engineers are unable to define these FE model input parameters with certainty, and, inevitably, uncertainties are introduced to the FE model.
Modelling cell motility and chemotaxis with evolving surface finite elements.
Elliott, Charles M; Stinner, Björn; Venkataraman, Chandrasekhar
2012-11-07
We present a mathematical and a computational framework for the modelling of cell motility. The cell membrane is represented by an evolving surface, with the movement of the cell determined by the interaction of various forces that act normal to the surface. We consider external forces such as those that may arise owing to inhomogeneities in the medium and a pressure that constrains the enclosed volume, as well as internal forces that arise from the reaction of the cells' surface to stretching and bending. We also consider a protrusive force associated with a reaction-diffusion system (RDS) posed on the cell membrane, with cell polarization modelled by this surface RDS. The computational method is based on an evolving surface finite-element method. The general method can account for the large deformations that arise in cell motility and allows the simulation of cell migration in three dimensions. We illustrate applications of the proposed modelling framework and numerical method by reporting on numerical simulations of a model for eukaryotic chemotaxis and a model for the persistent movement of keratocytes in two and three space dimensions. Movies of the simulated cells can be obtained from http://homepages.warwick.ac.uk/∼maskae/CV_Warwick/Chemotaxis.html.
Customized Finite Element Modelling of the Human Cornea
Simonini, Irene; Pandolfi, Anna
2015-01-01
Aim To construct patient-specific solid models of human cornea from ocular topographer data, to increase the accuracy of the biomechanical and optical estimate of the changes in refractive power and stress caused by photorefractive keratectomy (PRK). Method Corneal elevation maps of five human eyes were taken with a rotating Scheimpflug camera combined with a Placido disk before and after refractive surgery. Patient-specific solid models were created and discretized in finite elements to estimate the corneal strain and stress fields in preoperative and postoperative configurations and derive the refractive parameters of the cornea. Results Patient-specific geometrical models of the cornea allow for the creation of personalized refractive maps at different levels of IOP. Thinned postoperative corneas show a higher stress gradient across the thickness and higher sensitivity of all geometrical and refractive parameters to the fluctuation of the IOP. Conclusion Patient-specific numerical models of the cornea can provide accurate quantitative information on the refractive properties of the cornea under different levels of IOP and describe the change of the stress state of the cornea due to refractive surgery (PRK). Patient-specific models can be used as indicators of feasibility before performing the surgery. PMID:26098104
Customized Finite Element Modelling of the Human Cornea.
Directory of Open Access Journals (Sweden)
Irene Simonini
Full Text Available To construct patient-specific solid models of human cornea from ocular topographer data, to increase the accuracy of the biomechanical and optical estimate of the changes in refractive power and stress caused by photorefractive keratectomy (PRK.Corneal elevation maps of five human eyes were taken with a rotating Scheimpflug camera combined with a Placido disk before and after refractive surgery. Patient-specific solid models were created and discretized in finite elements to estimate the corneal strain and stress fields in preoperative and postoperative configurations and derive the refractive parameters of the cornea.Patient-specific geometrical models of the cornea allow for the creation of personalized refractive maps at different levels of IOP. Thinned postoperative corneas show a higher stress gradient across the thickness and higher sensitivity of all geometrical and refractive parameters to the fluctuation of the IOP.Patient-specific numerical models of the cornea can provide accurate quantitative information on the refractive properties of the cornea under different levels of IOP and describe the change of the stress state of the cornea due to refractive surgery (PRK. Patient-specific models can be used as indicators of feasibility before performing the surgery.
Customized Finite Element Modelling of the Human Cornea.
Simonini, Irene; Pandolfi, Anna
2015-01-01
To construct patient-specific solid models of human cornea from ocular topographer data, to increase the accuracy of the biomechanical and optical estimate of the changes in refractive power and stress caused by photorefractive keratectomy (PRK). Corneal elevation maps of five human eyes were taken with a rotating Scheimpflug camera combined with a Placido disk before and after refractive surgery. Patient-specific solid models were created and discretized in finite elements to estimate the corneal strain and stress fields in preoperative and postoperative configurations and derive the refractive parameters of the cornea. Patient-specific geometrical models of the cornea allow for the creation of personalized refractive maps at different levels of IOP. Thinned postoperative corneas show a higher stress gradient across the thickness and higher sensitivity of all geometrical and refractive parameters to the fluctuation of the IOP. Patient-specific numerical models of the cornea can provide accurate quantitative information on the refractive properties of the cornea under different levels of IOP and describe the change of the stress state of the cornea due to refractive surgery (PRK). Patient-specific models can be used as indicators of feasibility before performing the surgery.
Discrete Element Model for Suppression of Coffee-Ring Effect
Xu, Ting; Lam, Miu Ling; Chen, Ting-Hsuan
2017-02-01
When a sessile droplet evaporates, coffee-ring effect drives the suspended particulate matters to the droplet edge, eventually forming a ring-shaped deposition. Because it causes a non-uniform distribution of solid contents, which is undesired in many applications, attempts have been made to eliminate the coffee-ring effect. Recent reports indicated that the coffee-ring effect can be suppressed by a mixture of spherical and non-spherical particles with enhanced particle-particle interaction at air-water interface. However, a model to comprehend the inter-particulate activities has been lacking. Here, we report a discrete element model (particle system) to investigate the phenomenon. The modeled dynamics included particle traveling following the capillary flow with Brownian motion, and its resultant 3D hexagonal close packing of particles along the contact line. For particles being adsorbed by air-water interface, we modeled cluster growth, cluster deformation, and cluster combination. We found that the suppression of coffee-ring effect does not require a circulatory flow driven by an inward Marangoni flow at air-water interface. Instead, the number of new cluster formation, which can be enhanced by increasing the ratio of non-spherical particles and the overall number of microspheres, is more dominant in the suppression process. Together, this model provides a useful platform elucidating insights for suppressing coffee-ring effect for practical applications in the future.
Finite Element Model and Validation of Nasal Tip Deformation.
Manuel, Cyrus T; Harb, Rani; Badran, Alan; Ho, David; Wong, Brian J F
2017-03-01
Nasal tip mechanical stability is important for functional and cosmetic nasal airway surgery. Palpation of the nasal tip provides information on tip strength to the surgeon, though it is a purely subjective assessment. Providing a means to simulate nasal tip deformation with a validated model can offer a more objective approach in understanding the mechanics and nuances of the nasal tip support and eventual nasal mechanics as a whole. Herein we present validation of a finite element (FE) model of the nose using physical measurements recorded using an ABS plastic-silicone nasal phantom. Three-dimensional photogrammetry was used to capture the geometry of the phantom at rest and while under steady state load. The silicone used to make the phantom was mechanically tested and characterized using a linear elastic constitutive model. Surface point clouds of the silicone and FE model were compared for both the loaded and unloaded state. The average Hausdorff distance between actual measurements and FE simulations across the nose were 0.39 ± 1.04 mm and deviated up to 2 mm at the outermost boundaries of the model. FE simulation and measurements were in near complete agreement in the immediate vicinity of the nasal tip with millimeter accuracy. We have demonstrated validation of a two-component nasal FE model, which could be used to model more complex modes of deformation where direct measurement may be challenging. This is the first step in developing a nasal model to simulate nasal mechanics and ultimately the interaction between geometry and airflow.
Finite Element Models for Electron Beam Freeform Fabrication Process
Chandra, Umesh
2012-01-01
Electron beam freeform fabrication (EBF3) is a member of an emerging class of direct manufacturing processes known as solid freeform fabrication (SFF); another member of the class is the laser deposition process. Successful application of the EBF3 process requires precise control of a number of process parameters such as the EB power, speed, and metal feed rate in order to ensure thermal management; good fusion between the substrate and the first layer and between successive layers; minimize part distortion and residual stresses; and control the microstructure of the finished product. This is the only effort thus far that has addressed computer simulation of the EBF3 process. The models developed in this effort can assist in reducing the number of trials in the laboratory or on the shop floor while making high-quality parts. With some modifications, their use can be further extended to the simulation of laser, TIG (tungsten inert gas), and other deposition processes. A solid mechanics-based finite element code, ABAQUS, was chosen as the primary engine in developing these models whereas a computational fluid dynamics (CFD) code, Fluent, was used in a support role. Several innovative concepts were developed, some of which are highlighted below. These concepts were implemented in a number of new computer models either in the form of stand-alone programs or as user subroutines for ABAQUS and Fluent codes. A database of thermo-physical, mechanical, fluid, and metallurgical properties of stainless steel 304 was developed. Computing models for Gaussian and raster modes of the electron beam heat input were developed. Also, new schemes were devised to account for the heat sink effect during the deposition process. These innovations, and others, lead to improved models for thermal management and prediction of transient/residual stresses and distortions. Two approaches for the prediction of microstructure were pursued. The first was an empirical approach involving the
Directory of Open Access Journals (Sweden)
V. A. Zverev
2016-01-01
Full Text Available The article objective is to justify the rationale for selecting the multilayer finite element model parameters of the bearing structure of a general-purpose launch complex unit.A typical design element of the launch complex unit, i.e. a mount of the hydraulic or pneumatic cylinder, block, etc. is under consideration. The mount represents a set of the cantilevered axis and external structural cage. The most loaded element of the cage is disk to which a moment is transferred from the cantilevered axis due to actuator effort acting on it.To calculate the stress-strain state of disk was used a finite element method. Five models of disk mount were created. The only difference in models was the number of layers of the finite elements through the thickness of disk. There were models, which had one, three, five, eight, and fourteen layers of finite elements through the thickness of disk. For each model, we calculated the equivalent stresses arising from the action of the test load. Disk models were formed and calculated using the MSC Nastran complex software.The article presents results in the table to show data of equivalent stresses in each of the multi-layered models and graphically to illustrate the changing equivalent stresses through the thickness of disk.Based on these results we have given advice on selecting the proper number of layers in the model allowing a desirable accuracy of results with the lowest run time. In addition, it is concluded that there is a need to use the multi-layer models in assessing the performance of structural elements in case the stress exceeds the allowable one in their surface layers.
Distinct Element Modelling of Landslides in Mechanical Multilayers on Mars
Sims, D. W.; Smart, K. J.; Hooper, D. M.
2008-12-01
Mass wasting events such as landslides are an important component of the processes that have shaped the surface of Mars. Landslides are interpreted to have been active during much of the geologic history of Mars including the very recent past. The main scarp and displaced materials of landslides can tell us much about the mechanical nature of the surface and shallow subsurface of Mars. We use vertical two-dimensional distinct element models parallel with the slide direction to examine the effects of mechanical layering upon the morphology of slip surfaces and scarps that form as a result of slope failure on Mars. Bulk layer mechanical properties incorporated into the models and scaled to values likely be present on Mars include density, tensile strength, Young's modulus, Poisson's ratio, internal friction angle, cohesive strength, and unconfined compressive strength. Here we model horizontal layers with thickness range of 100 m to 500 m for a total thickness of 2500 m. Initial geometry is a 5 km long rectangle under conditions of Mars gravity where the top surface and one lateral boundary are free surfaces, and the horizontal base and opposing lateral boundary are rigid surfaces with friction coefficient of 0.5. Each layer represents one of five rock strengths, with strongest (strong basalt) to weakest (unconsolidated deposits) unconfined compressive strengths of 83, 44, 25, 8, and 2 MPa, respectively. Our models show that an initial slip surface forms some distance from the lateral free surface and subsequently migrates away from the free surface in discrete increments with concomitant decreasing slope of successive failure surfaces. Relative and absolute layer strength, thickness, and order control the morphology of the failure surfaces, the location and shape of the initial failure surface, and the kinematics of displaced material. In general, the size of coherent blocks and tendency towards sliding and spreading of displaced blocks increases with layer strength
Finite Element Analysis of Patella Alta: A Patellofemoral Instability Model
Duchman, Kyle R.; Grosland, Nicole M.; Bollier, Matthew J.
2017-01-01
Abstract Background: This study aims to provide biomechanical data on the effect of patella height in the setting of medial patellofemoral ligament (MPFL) reconstruction using finite element analysis. The study will also examine patellofemoral joint biomechanics using variable femoral insertion sites for MPFL reconstruction. Methods: A previously validated finite element knee model was modified to study patella alta and baja by translating the patella a given distance to achieve each patella height ratio. Additionally, the models were modified to study various femoral insertion sites of the MPFL (anatomic, anterior, proximal, and distal) for each patella height model, resulting in 32 unique scenarios available for investigation. Results: In the setting of patella alta, the patellofemoral contact area decreased, resulting in a subsequent increase in maximum patellofemoral contact pressures as compared to the scenarios with normal patellar height. Additionally, patella alta resulted in decreased lateral restraining forces in the native knee scenario as well as following MPFL reconstruction. Changing femoral insertion sites had a variable effect on patellofemoral contact pressures; however, distal and anterior femoral tunnel malpositioning in the setting of patella alta resulted in grossly elevated maximum patellofemoral contact pressures as compared to other scenarios. Conclusions: Patella alta after MPFL reconstruction results in decreased lateral restraining forces and patellofemoral contact area and increased maximum patellofemoral contact pressures. When the femoral MPFL tunnel is malpositioned anteriorly or distally on the femur, the maximum patellofemoral contact pressures increase with severity of patella alta. Clinical Relevance: When evaluating patients with patellofemoral instability, it is important to recognize patella alta as a potential aggravating factor. Failure to address patella alta in the setting of MPFL femoral tunnel malposition may result in
Discrete element crowd model for pedestrian evacuation through an exit
Peng, Lin; Jian, Ma; Siuming, Lo
2016-03-01
A series of accidents caused by crowds within the last decades evoked a lot of scientific interest in modeling the movement of pedestrian crowds. Based on the discrete element method, a granular dynamic model, in which the human body is simplified as a self-driven sphere, is proposed to simulate the characteristics of crowd flow through an exit. In this model, the repulsive force among people is considered to have an anisotropic feature, and the physical contact force due to body deformation is quantified by the Hertz contact model. The movement of the human body is simulated by applying the second Newton’s law. The crowd flow through an exit at different desired velocities is studied and simulation results indicated that crowd flow exhibits three distinct states, i.e., smooth state, transition state and phase separation state. In the simulation, the clogging phenomenon occurs more easily when the desired velocity is high and the exit may as a result be totally blocked at a desired velocity of 1.6 m/s or above, leading to faster-to-frozen effect. Project supported by the National Natural Science Foundation of China (Grant Nos. 71473207, 51178445, and 71103148), the Research Grant Council, Government of Hong Kong, China (Grant No. CityU119011), and the Fundamental Research Funds for the Central Universities, China (Grant Nos. 2682014CX103 and 2682014RC05).
Development of thermal models of footwear using finite element analysis.
Covill, D; Guan, Z W; Bailey, M; Raval, H
2011-03-01
Thermal comfort is increasingly becoming a crucial factor to be considered in footwear design. The climate inside a shoe is controlled by thermal and moisture conditions and is crucial to attain comfort. Research undertaken has shown that thermal conditions play a dominant role in shoe climate. Development of thermal models that are capable of predicting in-shoe temperature distributions is an effective way forward to undertake extensive parametric studies to assist optimized design. In this paper, two-dimensional and three-dimensional thermal models of in-shoe climate were developed using finite element analysis through commercial code Abaqus. The thermal material properties of the upper shoe, sole, and air were considered. Dry heat flux from the foot was calculated on the basis of typical blood flow in the arteries on the foot. Using the thermal models developed, in-shoe temperatures were predicted to cover various locations for controlled ambient temperatures of 15, 25, and 35 degrees C respectively. The predicted temperatures were compared with multipoint measured temperatures through microsensor technology. Reasonably good correlation was obtained, with averaged errors of 6, 2, and 1.5 per cent, based on the averaged in-shoe temperature for the above three ambient temperatures. The models can be further used to help design shoes with optimized thermal comfort.
Comprehensive model for predicting elemental composition of coal pyrolysis products
Energy Technology Data Exchange (ETDEWEB)
Ricahrds, Andrew P. [Brigham Young Univ., Provo, UT (United States); Shutt, Tim [Brigham Young Univ., Provo, UT (United States); Fletcher, Thomas H. [Brigham Young Univ., Provo, UT (United States)
2017-04-23
Large-scale coal combustion simulations depend highly on the accuracy and utility of the physical submodels used to describe the various physical behaviors of the system. Coal combustion simulations depend on the particle physics to predict product compositions, temperatures, energy outputs, and other useful information. The focus of this paper is to improve the accuracy of devolatilization submodels, to be used in conjunction with other particle physics models. Many large simulations today rely on inaccurate assumptions about particle compositions, including that the volatiles that are released during pyrolysis are of the same elemental composition as the char particle. Another common assumption is that the char particle can be approximated by pure carbon. These assumptions will lead to inaccuracies in the overall simulation. There are many factors that influence pyrolysis product composition, including parent coal composition, pyrolysis conditions (including particle temperature history and heating rate), and others. All of these factors are incorporated into the correlations to predict the elemental composition of the major pyrolysis products, including coal tar, char, and light gases.
Implementation of geometrically exact beam element for nonlinear dynamics modeling
Energy Technology Data Exchange (ETDEWEB)
Wang, Jielong, E-mail: jelon.wang@gmail.com [Commercial Aircraft Corporation of China, Ltd., Beijing Aeronautical Science & Technology Research Institute (China)
2015-12-15
The paper develops a new type of geometrically exact beam element featuring large displacements and rotations together with small warping. The dimension reduction approach based on variational asymptotic method has been explored, and a linear two-dimensional finite element procedure has been implemented to predict the cross-sectional stiffness and recover the cross-sectional strain fields of the beam. The total and incremental variables mixed formula of governing equations of motion is presented, in which the Wiener–Milenković parameters are selected to vectorize the finite rotation. The dynamic problem of geometrically exact beam has been solved by the implicit Radau IIA algorithms, the time histories of large translations and rotations with small three-dimensional warping have been integrated. Numerical simulations have been performed and the results have been compared to those of commercial software LS-DYNA. It can be concluded that the current modeling approach features high accuracy and that the new geometrically exact beam with warping is robust enough to predict large deformations with small strain.
Finite Element Modeling of the Posterior Eye in Microgravity
Feola, Andrew; Raykin, Julia; Mulugeta, Lealem; Gleason, Rudolph; Myers, Jerry G.; Nelson, Emily S.; Samuels, Brian; Ethier, C. Ross
2015-01-01
Microgravity experienced during spaceflight affects astronauts in various ways, including weakened muscles and loss of bone density. Recently, visual impairment and intracranial pressure (VIIP) syndrome has become a major concern for space missions lasting longer than 30 days. Astronauts suffering from VIIP syndrome have changes in ocular anatomical and visual impairment that persist after returning to earth. It is hypothesized that a cephalad fluid shift in microgravity may increase the intracranial pressure (ICP), which leads to an altered biomechanical environment of the posterior globe and optic nerve sheath (ONS).Currently, there is a lack of knowledge of how elevated ICP may lead to vision impairment and connective tissue changes in VIIP. Our goal was to develop a finite element model to simulate the acute effects of elevated ICP on the posterior eye and optic nerve sheath. We used a finite element (FE) analysis approach to understand the response of the lamina cribrosa and optic nerve to the elevations in ICP thought to occur in microgravity and to identify which tissue components have the greatest impact on strain experienced by optic nerve head tissues.
The Subcellular Distribution of Small Molecules: from Pharmacokinetics to Synthetic Biology
Zheng, Nan; Tsai, Hobart Ng; Zhang, Xinyuan; Rosania, Gus R.
2011-01-01
The systemic pharmacokinetics and pharmacodynamics of small molecules are determined by subcellular transport phenomena. Although approaches used to study the subcellular distribution of small molecules have gradually evolved over the past several decades, experimental analysis and prediction of cellular pharmacokinetics remains a challenge. In this article, we surveyed the progress of subcellular distribution research since the 1960s, with a focus on the advantages, disadvantages and limitations of the various experimental techniques. Critical review of the existing body of knowledge pointed to many opportunities to advance the rational design of organelle-targeted chemical agents. These opportunities include: 1) development of quantitative, nonfluorescence-based, whole cell methods and techniques to measure the subcellular distribution of chemical agents in multiple compartments; 2) exploratory experimentation with nonspecific transport probes that have not been enriched with putative, organelle-targeting features; 3) elaboration of hypothesis-driven, mechanistic and modeling-based approaches to guide experiments aimed at elucidating subcellular distribution and transport; and 4) introduction of revolutionary conceptual approaches borrowed from the field of synthetic biology combined with cutting edge experimental strategies. In our laboratory, state-of-the-art subcellular transport studies are now being aimed at understanding the formation of new intracellular membrane structures in response to drug therapy, exploring the function of drug-membrane complexes as intracellular drug depots, and synthesizing new organelles with extraordinary physical and chemical properties. PMID:21805990
Song, Huimin
In the aerospace and automotive industries, many finite element analyses use lower-dimensional finite elements such as beams, plates and shells, to simplify the modeling. These simplified models can greatly reduce the computation time and cost; however, reduced-dimensional models may introduce inaccuracies, particularly near boundaries and near portions of the structure where reduced-dimensional models may not apply. Another factor in creation of such models is that beam-like structures frequently have complex geometry, boundaries and loading conditions, which may make them unsuitable for modeling with single type of element. The goal of this dissertation is to develop a method that can accurately and efficiently capture the response of a structure by rigorous combination of a reduced-dimensional beam finite element model with a model based on full two-dimensional (2D) or three-dimensional (3D) finite elements. The first chapter of the thesis gives the background of the present work and some related previous work. The second chapter is focused on formulating a system of equations that govern the joining of a 2D model with a beam model for planar deformation. The essential aspect of this formulation is to find the transformation matrices to achieve deflection and load continuity on the interface. Three approaches are provided to obtain the transformation matrices. An example based on joining a beam to a 2D finite element model is examined, and the accuracy of the analysis is studied by comparing joint results with the full 2D analysis. The third chapter is focused on formulating the system of equations for joining a beam to a 3D finite element model for static and free-vibration problems. The transition between the 3D elements and beam elements is achieved by use of the stress recovery technique of the variational-asymptotic method as implemented in VABS (the Variational Asymptotic Beam Section analysis). The formulations for an interface transformation matrix and
Finite element modelling of cornea mechanics: a review.
Nejad, Talisa Mohammad; Foster, Craig; Gongal, Dipika
2014-01-01
The cornea is a transparent tissue in front of the eye that refracts light and facilitates vision. A slight change in the geometry of the cornea remarkably affects the optical power. Because of this sensitivity, biomechanical study of the cornea can reveal much about its performance and function. In vivo and in vitro studies have been conducted to investigate the mechanics of the cornea and determine its characteristics. Numerical techniques such as the finite element method (FEM) have been extensively implemented as effective and noninvasive methods for analyzing corneal mechanics and possible disorders. This article reviews the use of FEM for assessing the mechanical behavior of the cornea. Different applications of FEM in corneal disease studies, surgical predictions, impact simulations, and clinical applications have been reviewed. Some suggestions for the future of this type of modeling in the area of corneal mechanics are also discussed.
Element-specific density profiles in interacting biomembrane models
Schneck, Emanuel; Rodriguez-Loureiro, Ignacio; Bertinetti, Luca; Marin, Egor; Novikov, Dmitri; Konovalov, Oleg; Gochev, Georgi
2017-03-01
Surface interactions involving biomembranes, such as cell-cell interactions or membrane contacts inside cells play important roles in numerous biological processes. Structural insight into the interacting surfaces is a prerequisite to understand the interaction characteristics as well as the underlying physical mechanisms. Here, we work with simplified planar experimental models of membrane surfaces, composed of lipids and lipopolymers. Their interaction is quantified in terms of pressure-distance curves using ellipsometry at controlled dehydrating (interaction) pressures. For selected pressures, their internal structure is investigated by standing-wave x-ray fluorescence (SWXF). This technique yields specific density profiles of the chemical elements P and S belonging to lipid headgroups and polymer chains, as well as counter-ion profiles for charged surfaces.
Modelling the Implications of Quality Management Elements on Strategic Flexibility
Directory of Open Access Journals (Sweden)
Ana Belén Escrig-Tena
2011-01-01
Full Text Available This paper presents a theoretical and empirical analysis of the implications of a quality management (QM initiative on strategic flexibility. Our study defines flexibility from a strategic approach and examines the extent to which, why, and how the triggering factors of strategic flexibility are related to QM elements. The hypotheses put forward are tested in an empirical study carried out on a sample of Spanish firms, using structural equation models. The results demonstrate the positive effect of adopting an integral QM initiative on enhancing strategic flexibility. QM enhances strategic flexibility more effectively when it is introduced comprehensively rather than in a piecemeal fashion. A series of practices linked to the application of a QM initiative are outlined, which managers can use to improve strategic flexibility. The approach used in the study can be applied to analyse other antecedents of flexibility and to propose possible studies that consider QM as an antecedent of other organisational variables.
Finite element modelling of cornea mechanics: a review
Directory of Open Access Journals (Sweden)
Talisa Mohammad Nejad
2014-01-01
Full Text Available The cornea is a transparent tissue in front of the eye that refracts light and facilitates vision. A slight change in the geometry of the cornea remarkably affects the optical power. Because of this sensitivity, biomechanical study of the cornea can reveal much about its performance and function. In vivo and in vitro studies have been conducted to investigate the mechanics of the cornea and determine its characteristics. Numerical techniques such as the finite element method (FEM have been extensively implemented as effective and noninvasive methods for analyzing corneal mechanics and possible disorders. This article reviews the use of FEM for assessing the mechanical behavior of the cornea. Different applications of FEM in corneal disease studies, surgical predictions, impact simulations, and clinical applications have been reviewed. Some suggestions for the future of this type of modeling in the area of corneal mechanics are also discussed.
Finite-Element Modeling of Timber Joints with Punched Metal Plate Fasteners
DEFF Research Database (Denmark)
Ellegaard, Peter
2006-01-01
The focus of this paper is to describe the idea and the theory behind a finite-element model developed for analysis of timber trusses with punched metal plate fasteners (nail plates). The finite-element model includes the semirigid and nonlinear behavior of the joints (nonlinear nail and plate...... area over the joint lines. The finite-element model is based on the Foschi model, but with further improvements. After the theory of the model is described, results from experimental tests with two types of nail plate joints are compared with predictions given by the model. The model estimates...... elements) and contact between timber beams, if any (bilinear contact elements). The timber beams have linear-elastic properties. The section forces needed for design of the joints are given directly by the finite-element model, since special elements are used to model the nail groups and the nail plate...
Virtual Mie particle model of laser damage to optical elements
Directory of Open Access Journals (Sweden)
Kazuya Hirata
2011-12-01
Full Text Available In recent years, devices being developed for application systems have used laser beams that have high average power, high peak power, short pulse width, and short wavelength. Therefore, optical elements using such application systems require a high laser damage threshold. The laser damage threshold is provided by International Organization for Standardization 11254 (ISO11254. One of the measurement methods of the laser damage threshold provided by ISO11254 is an online method to measure the intensity of light scattering due to a laser damage trace. In this paper, we propose a measurement method for the laser damage threshold that realizes high sensitivity and high accuracy by using polarized light and lock-in detection. Since the scattering light with laser damage is modeled on the asperity of the optical element-surface as Mie particles (virtual Mie particles, we consider the intensity change of scattering light as a change in the radius of a virtual Mie particle. To evaluate this model, the laser damage trace on the optical element-surface was observed by an atomic force microscopy (AFM. Based on the observed AFM image, we analyzed the frequency domain by the Fourier transform, and estimated the dominant virtual Mie particle radius in the AFM measurement area. In addition, we measured the laser damage threshold. The light source was the fifth generation of a Nd:YAG laser (λ =213nm. The specifications of the laser were: repetition frequency 10Hz, pulse width 4ns, linear type polarization, laser pulse energy 4mJ, and laser transverse mode TEM00. The laser specifications were a repetition frequency, pulse width, pulse energy and beam diameter of 10Hz, 4ns, 4mJ and 13mm, respectively. The laser damage thresholds of an aluminum coated mirror and a dielectric multi-layer mirror designed at a wavelength of 213nm as measured by this method were 0.684 J/cm2 and 0.998J/cm2, respectively. These laser damage thresholds were 1/4 the laser damage
Adaptive Smoothed Finite Elements (ASFEM) for history dependent material models
Quak, W.; van den Boogaard, Antonius H.; Menary, Gary
2011-01-01
A successful simulation of a bulk forming process with finite elements can be difficult due to distortion of the finite elements. Nodal smoothed Finite Elements (NSFEM) are an interesting option for such a process since they show good distortion insensitivity and moreover have locking-free behavior
Directory of Open Access Journals (Sweden)
Suvanjumrat Chakrit
2017-01-01
Full Text Available Finite element model of tire rolling resistance test on the drum was developed using 3D steady state rolling analysis coupling with pre-inflation of 2D axisymmetric tire analysis. The complex components of the radial tires composing tread, sidewall, ply layers, steel belts, and lead wires were modeled using rebar elements which were embed into the rubber element using the tying equation. The Mooney-Rivlin hyperelastic constitutive model was employed to describe the large deformation behavior of tread and sidewall, while other components such as plies, steel belts and bead wires were assigned the linear isotropic material. The tire rolling resistance system was modeled by inflation of slick tire and compression on the drum for the footprint analysis regarding the rolling resistance test. The tire’s steady state characteristics such as footprint contact pressure, rolling resistance force, and time response characteristic of tires were predicted instead the experiment of the prototype.
Problems in Trace Element EPMA: Modeling Secondary Fluorescence with PENEPMA
Fournelle, J.
2007-12-01
In EPMA the incident electron beam scatters, producing the "electron interaction volume". However, X-rays produced within that volume may spread tens to hundreds of microns and produce secondary fluorescence in other materials. This can be ignored in many/most cases where major element compositions are being measured. However, when minor or especially trace elements are being measured by EPMA, secondary fluorescence needs to be considered. In some cases it can be eliminated by separating the materials and mounting them by themselves, or by reducing the kV to minimize fluorescence. However, in many cases these efforts are not possible. In those cases, modeling the EPMA experience by Monte Carlo simulation is useful. PENEPMA is a Fortran program based upon the PENELOPE radiation transport model of Salvat et al (2006). It differs from other MC electron interaction programs in that it follows each electron and photon and records all interactions at each point in the "particle's path". It also permits complicated geometries with many materials. Both continuum and characteristic secondary fluorescence can be tracked, and at the end of a run, compared to x-rays produced only from primary electrons. This has important applications in geology and petrology. Llovet and Galan (2003) used it to correct calculations for olivine-cpx thermobarometry. Recent attention has been given to Ti in zircon as a geothermometer. PENEPMA has now been used to model 2 different situations: (1) rutiles present on or near zircon, (2) ilmenite present near zircon. In the first case, several geometries are modeled: a 30 micron diameter zircon (Ti-free) is surrounded by Ti-bearing silicate glass (yielding an apparent 452 ppm Ti in zircon core); with five 30 um surrounding rutiles at 15 micron distance (yielding an apparent 948 ppm Ti in zircon core); if the silicate glass were replaced by epoxy, the apparent Ti would increase to 1179 ppm. In a second case, the effect of zircon with nearby ilmenite
Physical Constraint Finite Element Model for Medical Image Registration.
Zhang, Jingya; Wang, Jiajun; Wang, Xiuying; Gao, Xin; Feng, Dagan
2015-01-01
Due to being derived from linear assumption, most elastic body based non-rigid image registration algorithms are facing challenges for soft tissues with complex nonlinear behavior and with large deformations. To take into account the geometric nonlinearity of soft tissues, we propose a registration algorithm on the basis of Newtonian differential equation. The material behavior of soft tissues is modeled as St. Venant-Kirchhoff elasticity, and the nonlinearity of the continuum represents the quadratic term of the deformation gradient under the Green- St.Venant strain. In our algorithm, the elastic force is formulated as the derivative of the deformation energy with respect to the nodal displacement vectors of the finite element; the external force is determined by the registration similarity gradient flow which drives the floating image deforming to the equilibrium condition. We compared our approach to three other models: 1) the conventional linear elastic finite element model (FEM); 2) the dynamic elastic FEM; 3) the robust block matching (RBM) method. The registration accuracy was measured using three similarities: MSD (Mean Square Difference), NC (Normalized Correlation) and NMI (Normalized Mutual Information), and was also measured using the mean and max distance between the ground seeds and corresponding ones after registration. We validated our method on 60 image pairs including 30 medical image pairs with artificial deformation and 30 clinical image pairs for both the chest chemotherapy treatment in different periods and brain MRI normalization. Our method achieved a distance error of 0.320±0.138 mm in x direction and 0.326±0.111 mm in y direction, MSD of 41.96±13.74, NC of 0.9958±0.0019, NMI of 1.2962±0.0114 for images with large artificial deformations; and average NC of 0.9622±0.008 and NMI of 1.2764±0.0089 for the real clinical cases. Student's t-test demonstrated that our model statistically outperformed the other methods in comparison (p
Physical Constraint Finite Element Model for Medical Image Registration.
Directory of Open Access Journals (Sweden)
Jingya Zhang
Full Text Available Due to being derived from linear assumption, most elastic body based non-rigid image registration algorithms are facing challenges for soft tissues with complex nonlinear behavior and with large deformations. To take into account the geometric nonlinearity of soft tissues, we propose a registration algorithm on the basis of Newtonian differential equation. The material behavior of soft tissues is modeled as St. Venant-Kirchhoff elasticity, and the nonlinearity of the continuum represents the quadratic term of the deformation gradient under the Green- St.Venant strain. In our algorithm, the elastic force is formulated as the derivative of the deformation energy with respect to the nodal displacement vectors of the finite element; the external force is determined by the registration similarity gradient flow which drives the floating image deforming to the equilibrium condition. We compared our approach to three other models: 1 the conventional linear elastic finite element model (FEM; 2 the dynamic elastic FEM; 3 the robust block matching (RBM method. The registration accuracy was measured using three similarities: MSD (Mean Square Difference, NC (Normalized Correlation and NMI (Normalized Mutual Information, and was also measured using the mean and max distance between the ground seeds and corresponding ones after registration. We validated our method on 60 image pairs including 30 medical image pairs with artificial deformation and 30 clinical image pairs for both the chest chemotherapy treatment in different periods and brain MRI normalization. Our method achieved a distance error of 0.320±0.138 mm in x direction and 0.326±0.111 mm in y direction, MSD of 41.96±13.74, NC of 0.9958±0.0019, NMI of 1.2962±0.0114 for images with large artificial deformations; and average NC of 0.9622±0.008 and NMI of 1.2764±0.0089 for the real clinical cases. Student's t-test demonstrated that our model statistically outperformed the other methods in
The Blended Finite Element Method for Multi-fluid Plasma Modeling
2016-07-01
Briefing Charts 3. DATES COVERED (From - To) 07 June 2016 - 01 July 2016 4. TITLE AND SUBTITLE The Blended Finite Element Method for Multi-fluid Plasma...BLENDED FINITE ELEMENT METHOD FOR MULTI-FLUID PLASMA MODELING Éder M. Sousa1, Uri Shumlak2 1ERC INC., IN-SPACE PROPULSION BRANCH (RQRS) AIR FORCE RESEARCH...MULTI-FLUID PLASMA MODEL 2 BLENDED FINITE ELEMENT METHOD Blended Finite Element Method Nodal Continuous Galerkin Modal Discontinuous Galerkin Model
Expression and subcellular localization of antiporter regulating ...
African Journals Online (AJOL)
Md. Imtiaz Uddin
2012-02-14
Feb 14, 2012 ... We examined the expression and subcellular localization of antiporter regulating protein OsARP in a submergence tolerant rice (Oryza sativa L.) cultivar FR13A. In the public databases, this protein was designated as putative Os02g0465900 protein. The cDNA containing the full-length sequence of OsARP.
Domains involved in TAF15 subcellular localisation
DEFF Research Database (Denmark)
Marko, Marija; Vlassis, Arsenios; Guialis, Apostolia
2012-01-01
to play important roles in the onset of specific tumours, certain forms of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). In this study we identified the domains of TAF15 responsible for its subcellular localisation in human (HeLa) cells and experimentally confirmed...
Lipidomics in tissues, cells and subcellular compartments
National Research Council Canada - National Science Library
Horn, Patrick J; Chapman, Kent D
2012-01-01
...‐infusion MS, localization of lipids in tissues and cells by laser desorption/ionization MS, and even profiling of lipids in individual subcellular compartments by direct‐organelle MS. Applications of these approaches to achieve improved understanding of plant lipid metabolism, compartmentation and function are discussed.
A finite element model for protein transport in vivo
Directory of Open Access Journals (Sweden)
Montas Hubert J
2007-06-01
Full Text Available Abstract Background Biological mass transport processes determine the behavior and function of cells, regulate interactions between synthetic agents and recipient targets, and are key elements in the design and use of biosensors. Accurately predicting the outcomes of such processes is crucial to both enhancing our understanding of how these systems function, enabling the design of effective strategies to control their function, and verifying that engineered solutions perform according to plan. Methods A Galerkin-based finite element model was developed and implemented to solve a system of two coupled partial differential equations governing biomolecule transport and reaction in live cells. The simulator was coupled, in the framework of an inverse modeling strategy, with an optimization algorithm and an experimental time series, obtained by the Fluorescence Recovery after Photobleaching (FRAP technique, to estimate biomolecule mass transport and reaction rate parameters. In the inverse algorithm, an adaptive method was implemented to calculate sensitivity matrix. A multi-criteria termination rule was developed to stop the inverse code at the solution. The applicability of the model was illustrated by simulating the mobility and binding of GFP-tagged glucocorticoid receptor in the nucleoplasm of mouse adenocarcinoma. Results The numerical simulator shows excellent agreement with the analytic solutions and experimental FRAP data. Detailed residual analysis indicates that residuals have zero mean and constant variance and are normally distributed and uncorrelated. Therefore, the necessary and sufficient criteria for least square parameter optimization, which was used in this study, were met. Conclusion The developed strategy is an efficient approach to extract as much physiochemical information from the FRAP protocol as possible. Well-posedness analysis of the inverse problem, however, indicates that the FRAP protocol provides insufficient
Finite element analysis of osteoporosis models based on synchrotron radiation
Xu, W.; Xu, J.; Zhao, J.; Sun, J.
2016-04-01
With growing pressure of social aging, China has to face the increasing population of osteoporosis patients as well as the whole world. Recently synchrotron radiation has become an essential tool for biomedical exploration with advantage of high resolution and high stability. In order to study characteristic changes in different stages of primary osteoporosis, this research focused on the different periods of osteoporosis of rats based on synchrotron radiation. Both bone histomorphometry analysis and finite element analysis were then carried on according to the reconstructed three dimensional models. Finally, the changes of bone tissue in different periods were compared quantitatively. Histomorphometry analysis showed that the structure of the trabecular in osteoporosis degraded as the bone volume decreased. For femurs, the bone volume fraction (Bone volume/ Total volume, BV/TV) decreased from 69% to 43%. That led to the increase of the thickness of trabecular separation (from 45.05μ m to 97.09μ m) and the reduction of the number of trabecular (from 7.99 mm-1 to 5.97mm-1). Simulation of various mechanical tests with finite element analysis (FEA) indicated that, with the exacerbation of osteoporosis, the bones' ability of resistance to compression, bending and torsion gradually became weaker. The compression stiffness of femurs decreased from 1770.96 Fμ m-1 to 697.41 Fμ m-1, the bending and torsion stiffness were from 1390.80 Fμ m-1 to 566.11 Fμ m-1 and from 2957.28N.m/o to 691.31 N.m/o respectively, indicated the decrease of bone strength, and it matched the histomorphometry analysis. This study suggested that FEA and synchrotron radiation were excellent methods for analysing bone strength conbined with histomorphometry analysis.
FEMA: a Finite Element Model of Material Transport through Aquifers
Energy Technology Data Exchange (ETDEWEB)
Yeh, G.T.; Huff, D.D.
1985-01-01
This report documents the construction, verification, and demonstration of a Finite Element Model of Material Transport through Aquifers (FEMA). The particular features of FEMA are its versatility and flexibility to deal with as many real-world problems as possible. Mechanisms included in FEMA are: carrier fluid advection, hydrodynamic dispersion and molecular diffusion, radioactive decay, sorption, source/sinks, and degradation due to biological, chemical as well as physical processes. Three optional sorption models are embodied in FEMA. These are linear isotherm and Freundlich and Langmuir nonlinear isotherms. Point as well as distributed source/sinks are included to represent artificial injection/withdrawals and natural infiltration of precipitation. All source/sinks can be transient or steady state. Prescribed concentration on the Dirichlet boundary, given gradient on the Neumann boundary segment, and flux at each Cauchy boundary segment can vary independently of each other. The aquifer may consist of as many formations as desired. Either completely confined or completely unconfined or partially confined and partially unconfined aquifers can be dealt with effectively. FEMA also includes transient leakage to or from the aquifer of interest through confining beds from or to aquifers lying below and/or above.
Finite Element Modeling of Reheat Stretch Blow Molding of PET
Krishnan, Dwarak; Dupaix, Rebecca B.
2004-06-01
Poly (ethylene terephthalate) or PET is a polymer used as a packaging material for consumer products such as beverages, food or other liquids, and in other applications including drawn fibers and stretched films. Key features that make it widely used are its transparency, dimensional stability, gas impermeability, impact resistance, and high stiffness and strength in certain preferential directions. These commercially useful properties arise from the fact that PET crystallizes upon deformation above the glass transition temperature. Additionally, this strain-induced crystallization causes the deformation behavior of PET to be highly sensitive to processing conditions. It is thus crucial for engineers to be able to predict its performance at various process temperatures, strain rates and strain states so as to optimize the manufacturing process. In addressing these issues; a finite element analysis of the reheat blow molding process with PET has been carried out using ABAQUS. The simulation employed a constitutive model for PET developed by Dupaix and Boyce et al.. The model includes the combined effects of molecular orientation and strain-induced crystallization on strain hardening when the material is deformed above the glass transition temperature. The simulated bottles were also compared with actual blow molded bottles to evaluate the validity of the simulation.
Multiscale Finite-Element Modeling of Sandwich Honeycomb Composite Structures
Directory of Open Access Journals (Sweden)
Yu. I. Dimitrienko
2014-01-01
Full Text Available The paper presents a developed multi-scale model of sandwich honeycomb structures. The model allows us both to calculate effective elastic-strength characteristics of honeycomb and forced covering of sandwich, and to find a 3D stress-strain state of structures using the threedimensional elastic theory for non- homogeneous media. On the basis of finite element analysis it is shown, that under four-point bending the maximal value of bending and shear stresses in the sandwich honeycomb structures are realized in the zone of applied force and plate support. Here the local stress maxima approximately 2-3 times exceed the “engineering” theoretical plate values of bending and shear stresses in the middle of panel. It is established that at tests for fourpoint bending there is a failure of the honeycomb sandwich panels because of the local adhesion failure rather than because of the covering exfoliation off the honeycomb core in the middle of panel.
Sub-cellular force microscopy in single normal and cancer cells.
Babahosseini, H; Carmichael, B; Strobl, J S; Mahmoodi, S N; Agah, M
2015-08-07
This work investigates the biomechanical properties of sub-cellular structures of breast cells using atomic force microscopy (AFM). The cells are modeled as a triple-layered structure where the Generalized Maxwell model is applied to experimental data from AFM stress-relaxation tests to extract the elastic modulus, the apparent viscosity, and the relaxation time of sub-cellular structures. The triple-layered modeling results allow for determination and comparison of the biomechanical properties of the three major sub-cellular structures between normal and cancerous cells: the up plasma membrane/actin cortex, the mid cytoplasm/nucleus, and the low nuclear/integrin sub-domains. The results reveal that the sub-domains become stiffer and significantly more viscous with depth, regardless of cell type. In addition, there is a decreasing trend in the average elastic modulus and apparent viscosity of the all corresponding sub-cellular structures from normal to cancerous cells, which becomes most remarkable in the deeper sub-domain. The presented modeling in this work constitutes a unique AFM-based experimental framework to study the biomechanics of sub-cellular structures. Copyright © 2015 Elsevier Inc. All rights reserved.
Distinct Element modeling of geophysical signatures during sinkhole collapse
Al-Halbouni, Djamil; Holohan, Eoghan P.; Taheri, Abbas; Dahm, Torsten
2017-04-01
A sinkhole forms due to the collapse of rocks or soil near the Earth's surface into an underground cavity. Such cavities represent large secondary pore spaces derived by dissolution and subrosion in the underground. By changing the stress field in the surrounding material, the growth of cavities can lead to a positive feedback, in which expansion and mechanical instability in the surrounding material increases or generates new secondary pore space (e.g. by fracturing), which in turn increases the cavity size, etc. A sinkhole forms due to the eventual subsidence or collapse of the overburden that becomes destabilized and fails all the way to the Earth's surface. Both natural processes like (sub)surface water movement and earthquakes, and human activities, such as mining, construction and groundwater extraction, intensify such feedbacks. The development of models for the mechanical interaction of a growing cavity and fracturing of its surrounding material, thus capturing related precursory geophysical signatures, has been limited, however. Here we report on the advances of a general, simplified approach to simulating cavity growth and sinkhole formation by using 2D Distinct Element Modeling (DEM) PFC5.0 software and thereby constraining pre-, syn- and post-collapse geophysical and geodetic signatures. This physically realistic approach allows for spontaneous cavity development and dislocation of rock mass to be simulated by bonded particle formulation of DEM. First, we present calibration and validation of our model. Surface subsidence above an instantaneously excavated circular cavity is tracked and compared with an incrementally increasing dissolution zone both for purely elastic and non-elastic material.This validation is important for the optimal choice of model dimensions and particles size with respect to simulation time. Second, a cavity growth approach is presented and compared to a well-documented case study, the deliberately intensified sinkhole collapse at
Elements of a critique of neoliberal model of transition
Directory of Open Access Journals (Sweden)
Golubović Zagorka T.
2004-01-01
Full Text Available With the fall of former socialism a period of transition has come into being in Eastern and South-Eastern Europe, however without the articulation of a vision and strategy of the development on the road to society's democratic transformation. So far the strategy of the dissidents' movements had been directed towards the changing of the system of "real socialism" with the abstract proclamations about human and civil rights and democracy as a rule of law, as against the totalitarian regime. One may say that these countries met transition unprepared, without a clear perspective of where to go further. Being that the pattern of "Western democracy" has been idealized without a necessary differentiation between the variety of democratic models within Europe and in USA, the basic orientation has been: "back to capitalism"; while democracy has been identified primarily, if not exclusively, with the market economy and a rigid version of "market fundamentalism". Therefore, the following questions will be discussed in the paper: ● Has the jump to capitalism been necessarily and rationally tied to a "wild capitalism" which is linked with a primordial accumulation of capital and a very sharpening social differentiation; ● has it been rational in the countries with underdeveloped economy and lack of modern political institutions to accelerate reductive functions of the state in the name of the elemental operations of the market economy, for which there haven't existed the basic preconditions (see: J.Stiglitz, Contradictions of Globalization - the critique of transition in Eastern Europe, ● has the accelerated liberalization of economy with the elements of shock-therapy been appropriate to the underdeveloped political system inherited from the past, as well as the law standard of living; ● has the maximisation of a "profit-orientation" under such conditions opened doors to the penetration of illegal capital, as well as mafia and organized crime; has it
Gene ontology based transfer learning for protein subcellular localization
Directory of Open Access Journals (Sweden)
Zhou Shuigeng
2011-02-01
Full Text Available Abstract Background Prediction of protein subcellular localization generally involves many complex factors, and using only one or two aspects of data information may not tell the true story. For this reason, some recent predictive models are deliberately designed to integrate multiple heterogeneous data sources for exploiting multi-aspect protein feature information. Gene ontology, hereinafter referred to as GO, uses a controlled vocabulary to depict biological molecules or gene products in terms of biological process, molecular function and cellular component. With the rapid expansion of annotated protein sequences, gene ontology has become a general protein feature that can be used to construct predictive models in computational biology. Existing models generally either concatenated the GO terms into a flat binary vector or applied majority-vote based ensemble learning for protein subcellular localization, both of which can not estimate the individual discriminative abilities of the three aspects of gene ontology. Results In this paper, we propose a Gene Ontology Based Transfer Learning Model (GO-TLM for large-scale protein subcellular localization. The model transfers the signature-based homologous GO terms to the target proteins, and further constructs a reliable learning system to reduce the adverse affect of the potential false GO terms that are resulted from evolutionary divergence. We derive three GO kernels from the three aspects of gene ontology to measure the GO similarity of two proteins, and derive two other spectrum kernels to measure the similarity of two protein sequences. We use simple non-parametric cross validation to explicitly weigh the discriminative abilities of the five kernels, such that the time & space computational complexities are greatly reduced when compared to the complicated semi-definite programming and semi-indefinite linear programming. The five kernels are then linearly merged into one single kernel for
Directory of Open Access Journals (Sweden)
Sijana H Dzinic
Full Text Available Maspin, a multifaceted tumor suppressor, belongs to the serine protease inhibitor superfamily, but only inhibits serine protease-like enzymes such as histone deacetylase 1 (HDAC1. Maspin is specifically expressed in epithelial cells and it is differentially regulated during tumor progression. A new emerging consensus suggests that a shift in maspin subcellular localization from the nucleus to the cytoplasm stratifies with poor cancer prognosis. In the current study, we employed a rational mutagenesis approach and showed that maspin reactive center loop (RCL and its neighboring sequence are critical for maspin stability. Further, when expressed in multiple tumor cell lines, single point mutation of Aspartate(346 (D(346 to Glutamate (E(346, maspin(D346E, was predominantly nuclear, whereas wild type maspin (maspin(WT was both cytoplasmic and nuclear. Evidence from cellular fractionation followed by immunological and proteomic protein identification, combined with the evidence from fluorescent imaging of endogenous proteins, fluorescent protein fusion constructs, as well as bimolecular fluorescence complementation (BiFC showed that the increased nuclear enrichment of maspin(D346E was, at least in part, due to its increased affinity to HDAC1. Maspin(D346E was also more potent than maspin(WT as an HDAC inhibitor. Taken together, our evidence demonstrates that D(346 is a critical cis-element in maspin sequence that determines the molecular context and subcellular localization of maspin. A mechanistic model derived from our evidence suggests a new window of opportunity for the development of maspin-based biologically competent HDAC inhibitors for cancer treatment.
Finite Element Modeling of scattered electromagnetic waves for stroke analysis.
Priyadarshini, N; Rajkumar, E R
2013-01-01
Stroke has become one of the leading causes of mortality worldwide and about 800 in every 100,000 people suffer from stroke each year. The occurrence of stroke is ranked third among the causes of acute death and first among the causes for neurological dysfunction. Currently, Neurological examinations followed by medical imaging with CT, MRI or Angiography are used to provide better identification of the location and the type of the stroke, however they are neither fast, cost-effective nor portable. Microwave technology has emerged to complement these modalities to diagnose stroke as it is sensitive to the differences between the distinct dielectric properties of the brain tissues and blood. This paper investigates the possibility of diagnosing the type of stroke using Finite Element Analysis (FEA). The object of interest is a simulated head phantom with stroke, created with its specifying material characteristics like electrical conductivity and relative permittivity. The phantom is then placed in an electromagnetic field generated by a dipole antenna radiating at 1 GHz. The FEM forward model solver computes the scattered electromagnetic field by finding the solution for the Maxwell's wave equation in the head volume. Subsequently the inverse scattering problem is solved using the Contrast Source Inversion (CSI) method to reconstruct the dielectric profile of the head phantom.
Rotary ATPases: models, machine elements and technical specifications.
Stewart, Alastair G; Sobti, Meghna; Harvey, Richard P; Stock, Daniela
2013-01-01
Rotary ATPases are molecular rotary motors involved in biological energy conversion. They either synthesize or hydrolyze the universal biological energy carrier adenosine triphosphate. Recent work has elucidated the general architecture and subunit compositions of all three sub-types of rotary ATPases. Composite models of the intact F-, V- and A-type ATPases have been constructed by fitting high-resolution X-ray structures of individual subunits or sub-complexes into low-resolution electron densities of the intact enzymes derived from electron cryo-microscopy. Electron cryo-tomography has provided new insights into the supra-molecular arrangement of eukaryotic ATP synthases within mitochondria and mass-spectrometry has started to identify specifically bound lipids presumed to be essential for function. Taken together these molecular snapshots show that nano-scale rotary engines have much in common with basic design principles of man made machines from the function of individual "machine elements" to the requirement of the right "fuel" and "oil" for different types of motors.
Modelling Convergence of Finite Element Analysis of Cantilever Beam
African Journals Online (AJOL)
Convergence studies are carried out by investigating the convergence of numerical results as the number of elements is increased. If convergence is not obtained, the engineer using the finite element method has absolutely no indication whether the results are indicative of a meaningful approximation to the correct solution ...
An implicit discontinuous Galerkin finite element model for water waves
van der Vegt, Jacobus J.W.; Ambati, V.R.; Bokhove, Onno
2005-01-01
We discuss a new higher order accurate discontinuous Galerkin finite element method for non-linear free surface gravity waves. The algorithm is based on an arbitrary Lagrangian Eulerian description of the flow field using deforming elements and a moving mesh, which makes it possible to represent
Modelling the spatial distribution of linear landscape elements in Europe
Zanden, van der E.H.; Verburg, P.H.; Mücher, C.A.
2013-01-01
Linear landscape elements, such as ditches, hedgerows, lines of trees and field margins, provide important habitats and ecosystem services and function as ecological infrastructure for species within agricultural landscapes. Spatial maps of the distribution of these elements are needed to better
Probabilistic models for access strategies to dynamic information elements
DEFF Research Database (Denmark)
Hansen, Martin Bøgsted; Olsen, Rasmus L.; Schwefel, Hans-Peter
In various network services (e.g., routing and instances of context-sensitive networking) remote access to dynamically changing information elements is a required functionality. Three fundamentally different strategies for such access are investigated in this paper: (1) a reactive approach...... initiated by the requesting entity, and two versions of proactive approaches in which the entity that contains the information element actively propagates its changes to potential requesters, either (2) periodically or (3) triggered by changes of the information element. This paper develops probabilistic...... for information elements spread over a large number of network nodes are provided, which allow to draw conclusions on scalability properties. The impact of different distribution types for the network delays as well as for the time between changes of the information element on the mismatch probability...
Discrete element modelling of pebble packing in pebble bed reactors
Energy Technology Data Exchange (ETDEWEB)
Suikkanen, Heikki, E-mail: heikki.suikkanen@lut.fi; Ritvanen, Jouni, E-mail: jouni.ritvanen@lut.fi; Jalali, Payman, E-mail: payman.jalali@lut.fi; Kyrki-Rajamäki, Riitta, E-mail: riitta.kyrki-rajamaki@lut.fi
2014-07-01
Highlights: • A discrete element method code is developed for pebble bed reactor analyses. • Methods are established to extract packing information at various spatial scales. • Packing simulations inside annular core geometry are done varying input parameters. • The restitution coefficient has the strongest effect on the resulting packing density. • Detailed analyses reveal local densification especially near the walls. - Abstract: It is important to understand the packing characteristics and behaviour of the randomly packed pebble bed to further analyse the reactor physical and thermal-hydraulic behaviour and to design a safe and economically feasible pebble bed reactor. The objective of this work was to establish methods to model and analyse the pebble packing in detail to provide useful tools and data for further analyses. Discrete element method (DEM) is a well acknowledged method for analysing granular materials, such as the fuel pebbles in a pebble bed reactor. In this work, a DEM computer code was written specifically for pebble bed analyses. Analysis methods were established to extract data at various spatial scales from the pebble beds resulting from the DEM simulations. A comparison with available experimental data was performed to validate the DEM implementation. To test the code implementation in full-scale reactor calculations, DEM packing simulations were done in annular geometry with 450,000 pebbles. Effects of the initial packing configuration, friction and restitution coefficients and pebble size distribution to the resulting pebble bed were investigated. The packing simulations revealed that from the investigated parameters the restitution coefficient had the largest effect on the resulting average packing density while other parameters had smaller effects. Detailed local packing density analysis of pebble beds with different average densities revealed local variations especially strong in the regions near the walls. The implemented DEM
Thomas J. Urbanik; Edmond P. Saliklis
2002-01-01
Conventional compression strength formulas for corrugated fiberboard boxes are limited to geometry and material that produce an elastic postbuckling failure. Inelastic postbuckling can occur in squatty boxes and trays, but a mechanistic rationale for unifying observed strength data is lacking. This study employs a finite element model, instead of actual experiments, to...
Liang, Yunyun; Liu, Sanyang; Zhang, Shengli
2017-02-01
Apoptosis is a fundamental process controlling normal tissue homeostasis by regulating a balance between cell proliferation and death. Predicting subcellular location of apoptosis proteins is very helpful for understanding its mechanism of programmed cell death. Prediction of apoptosis protein subcellular location is still a challenging and complicated task, and existing methods mainly based on protein primary sequences. In this paper, we propose a new position-specific scoring matrix (PSSM)-based model by using Geary autocorrelation function and detrended cross-correlation coefficient (DCCA coefficient). Then a 270-dimensional (270D) feature vector is constructed on three widely used datasets: ZD98, ZW225 and CL317, and support vector machine is adopted as classifier. The overall prediction accuracies are significantly improved by rigorous jackknife test. The results show that our model offers a reliable and effective PSSM-based tool for prediction of apoptosis protein subcellular localization.
Finite Element Models for Electron Beam Freeform Fabrication Process Project
National Aeronautics and Space Administration — This Small Business Innovation Research Phase II proposal offers to develop a comprehensive computer simulation methodology based on the finite element method for...
Ship Impact Study: Analytical Approaches and Finite Element Modeling
Directory of Open Access Journals (Sweden)
Pawel Woelke
2012-01-01
Full Text Available The current paper presents the results of a ship impact study conducted using various analytical approaches available in the literature with the results obtained from detailed finite element analysis. Considering a typical container vessel impacting a rigid wall with an initial speed of 10 knots, the study investigates the forces imparted on the struck obstacle, the energy dissipated through inelastic deformation, penetration, local deformation patterns, and local failure of the ship elements. The main objective of the paper is to study the accuracy and generality of the predictions of the vessel collision forces, obtained by means of analytical closed-form solutions, in reference to detailed finite element analyses. The results show that significant discrepancies between simplified analytical approaches and detailed finite element analyses can occur, depending on the specific impact scenarios under consideration.
Kobayashi, Naoki; Hozumi, Yasukazu; Ito, Tsukasa; Hosoya, Takaaki; Kondo, Hisatake; Goto, Kaoru
2007-08-01
Diacylglycerol kinase (DGK) plays a pivotal role in cellular signal transduction through regulating levels of the second messenger diacylglycerol (DG). Previous studies have revealed that DGK is composed of a family of isozymes that show remarkable heterogeneity in terms of molecular structure, functional domains, tissue and cellular gene expression. Recently, it has been shown that DG is produced in various subcellular compartments including the plasma membrane, internal membranes, cytoskeleton, and nucleus. However, it remains unclear how DG is regulated at distinct subcellular sites. To address this point, we have used an epitope-tag expression system in cultured cells and investigated the subcellular localization of DGK isozymes under the same experimental conditions. We show here that DGK isozymes are targeted differentially to unique subcellular sites in transfected COS7 cells, including the cytoplasm, actin stress fibers, Golgi complex, endoplasmic reticulum, and nucleus. It is also shown that among the isozymes overexpression of DGKbeta causes fragmentation of actin stress fibers while a kinase-dead mutant of DGKbeta abolishes its colocalization with actin stress fibers. These data strongly suggest that each isozyme may be responsible for the metabolism of DG that is produced upon stimulation at a different and specific subcellular site and that DGKbeta activity might have effects on the reorganization of actin stress fibers in transfected COS7 cells.
Gleadall, Andrew; Pan, Jingzhe; Ding, Lifeng; Kruft, Marc-Anton; Curcó, David
2015-11-01
Molecular dynamics (MD) simulations are widely used to analyse materials at the atomic scale. However, MD has high computational demands, which may inhibit its use for simulations of structures involving large numbers of atoms such as amorphous polymer structures. An atomic-scale finite element method (AFEM) is presented in this study with significantly lower computational demands than MD. Due to the reduced computational demands, AFEM is suitable for the analysis of Young's modulus of amorphous polymer structures. This is of particular interest when studying the degradation of bioresorbable polymers, which is the topic of an accompanying paper. AFEM is derived from the inter-atomic potential energy functions of an MD force field. The nonlinear MD functions were adapted to enable static linear analysis. Finite element formulations were derived to represent interatomic potential energy functions between two, three and four atoms. Validation of the AFEM was conducted through its application to atomic structures for crystalline and amorphous poly(lactide). Copyright © 2015 Elsevier Ltd. All rights reserved.
Finite Element Modeling of Scattering from Underwater Proud and Buried Military Munitions
2017-02-28
FINAL REPORT Finite Element Modeling of Scattering from Underwater Proud and Buried Military Munitions SERDP Project MR-2408 JULY 2017...solution and the red dash-dot line repre- sents the coupled finite -boundary element solution. . . . . . . . . . . . . . . . . . 11 3 The scattering...dot line represents the coupled finite -boundary element solution. . . . . . . . 11 i 4 The scattering amplitude as a function of the receiver angle for
Directory of Open Access Journals (Sweden)
Dick Jeffrey M
2009-07-01
Full Text Available Abstract Background Protein subcellular localization and differences in oxidation state between subcellular compartments are two well-studied features of the the cellular organization of S. cerevisiae (yeast. Theories about the origin of subcellular organization are assisted by computational models that can integrate data from observations of compositional and chemical properties of the system. Presentation and implications of the hypothesis I adopt the hypothesis that the state of yeast subcellular organization is in a local energy minimum. This hypothesis implies that equilibrium thermodynamic models can yield predictions about the interdependence between populations of proteins and their subcellular chemical environments. Testing the hypothesis Three types of tests are proposed. First, there should be correlations between modeled and observed oxidation states for different compartments. Second, there should be a correspondence between the energy requirements of protein formation and the order the appearance of organelles during cellular development. Third, there should be correlations between the predicted and observed relative abundances of interacting proteins within compartments. Results The relative metastability fields of subcellular homologs of glutaredoxin and thioredoxin indicate a trend from less to more oxidizing as mitochondrion – cytoplasm – nucleus. Representing the overall amino acid compositions of proteins in 23 different compartments each with a single reference model protein suggests that the formation reactions for proteins in the vacuole (in relatively oxidizing conditions, ER and early Golgi (in relatively reducing conditions are relatively highly favored, while that for the microtubule is the most costly. The relative abundances of model proteins for each compartment inferred from experimental data were found in some cases to correlate with the predicted abundances, and both positive and negative correlations were
A Kriging Model Based Finite Element Model Updating Method for Damage Detection
Directory of Open Access Journals (Sweden)
Xiuming Yang
2017-10-01
Full Text Available Model updating is an effective means of damage identification and surrogate modeling has attracted considerable attention for saving computational cost in finite element (FE model updating, especially for large-scale structures. In this context, a surrogate model of frequency is normally constructed for damage identification, while the frequency response function (FRF is rarely used as it usually changes dramatically with updating parameters. This paper presents a new surrogate model based model updating method taking advantage of the measured FRFs. The Frequency Domain Assurance Criterion (FDAC is used to build the objective function, whose nonlinear response surface is constructed by the Kriging model. Then, the efficient global optimization (EGO algorithm is introduced to get the model updating results. The proposed method has good accuracy and robustness, which have been verified by a numerical simulation of a cantilever and experimental test data of a laboratory three-story structure.
Validating subcellular localization prediction tools with mycobacterial proteins
Directory of Open Access Journals (Sweden)
Niño Luis F
2009-05-01
Full Text Available Abstract Background The computational prediction of mycobacterial proteins' subcellular localization is of key importance for proteome annotation and for the identification of new drug targets and vaccine candidates. Several subcellular localization classifiers have been developed over the past few years, which have comprised both general localization and feature-based classifiers. Here, we have validated the ability of different bioinformatics approaches, through the use of SignalP 2.0, TatP 1.0, LipoP 1.0, Phobius, PA-SUB 2.5, PSORTb v.2.0.4 and Gpos-PLoc, to predict secreted bacterial proteins. These computational tools were compared in terms of sensitivity, specificity and Matthew's correlation coefficient (MCC using a set of mycobacterial proteins having less than 40% identity, none of which are included in the training data sets of the validated tools and whose subcellular localization have been experimentally confirmed. These proteins belong to the TBpred training data set, a computational tool specifically designed to predict mycobacterial proteins. Results A final validation set of 272 mycobacterial proteins was obtained from the initial set of 852 mycobacterial proteins. According to the results of the validation metrics, all tools presented specificity above 0.90, while dispersion sensitivity and MCC values were above 0.22. PA-SUB 2.5 presented the highest values; however, these results might be biased due to the methodology used by this tool. PSORTb v.2.0.4 left 56 proteins out of the classification, while Gpos-PLoc left just one protein out. Conclusion Both subcellular localization approaches had high predictive specificity and high recognition of true negatives for the tested data set. Among those tools whose predictions are not based on homology searches against SWISS-PROT, Gpos-PLoc was the general localization tool with the best predictive performance, while SignalP 2.0 was the best tool among the ones using a feature
Validating subcellular localization prediction tools with mycobacterial proteins
Restrepo-Montoya, Daniel; Vizcaíno, Carolina; Niño, Luis F; Ocampo, Marisol; Patarroyo, Manuel E; Patarroyo, Manuel A
2009-01-01
Background The computational prediction of mycobacterial proteins' subcellular localization is of key importance for proteome annotation and for the identification of new drug targets and vaccine candidates. Several subcellular localization classifiers have been developed over the past few years, which have comprised both general localization and feature-based classifiers. Here, we have validated the ability of different bioinformatics approaches, through the use of SignalP 2.0, TatP 1.0, LipoP 1.0, Phobius, PA-SUB 2.5, PSORTb v.2.0.4 and Gpos-PLoc, to predict secreted bacterial proteins. These computational tools were compared in terms of sensitivity, specificity and Matthew's correlation coefficient (MCC) using a set of mycobacterial proteins having less than 40% identity, none of which are included in the training data sets of the validated tools and whose subcellular localization have been experimentally confirmed. These proteins belong to the TBpred training data set, a computational tool specifically designed to predict mycobacterial proteins. Results A final validation set of 272 mycobacterial proteins was obtained from the initial set of 852 mycobacterial proteins. According to the results of the validation metrics, all tools presented specificity above 0.90, while dispersion sensitivity and MCC values were above 0.22. PA-SUB 2.5 presented the highest values; however, these results might be biased due to the methodology used by this tool. PSORTb v.2.0.4 left 56 proteins out of the classification, while Gpos-PLoc left just one protein out. Conclusion Both subcellular localization approaches had high predictive specificity and high recognition of true negatives for the tested data set. Among those tools whose predictions are not based on homology searches against SWISS-PROT, Gpos-PLoc was the general localization tool with the best predictive performance, while SignalP 2.0 was the best tool among the ones using a feature-based approach. Even though PA-SUB 2
Finite Element Modelling of Cold Formed Stainless Steel Columns
Directory of Open Access Journals (Sweden)
M. Macdonald
2005-01-01
Full Text Available This paper describes the results obtained from a finite element investigation into the load capacity of column members of lipped channel cross-section, cold formed from Type 304 stainless steel, subjected to concentric and eccentric compression loading. The main aims of this investigation were to determine the effects which the non-linearity of the stress-strain behaviour of the material would have on the column behaviour under concentric or eccentric loading. Stress-strain curves derived from tests and design codes are incorporated into non-linear finite element analyses of eccentrically loaded columns and the results obtained are compared with those obtained on the basis of experiments on stainless steel channel columns with the same properties and dimensions. Comparisons of the finite element results and the test results are also made with existing design specifications and conclusions are drawn on the basis of the comparisons.
Discrete element modeling of deformable particles in YADE
Directory of Open Access Journals (Sweden)
Martin Haustein
2017-01-01
Full Text Available In this paper we describe the open-source discrete element framework YADE and the implementation of a new deformation engine. YADE is a highly expandable software package that allows the simulation of current industrial problems in the field of granular materials using particle-based numerical methods. The description of the compaction of powders and granular material like metal pellets is now possible with a pure and simple discrete element approach in a modern DEM-framework. The deformation is realized by expanding the radius of the spherical particles, depending on their overlap, so that the volume of the material is kept constant.
Global targeting of subcellular heat shock protein-90 networks for therapy of glioblastoma.
Siegelin, Markus D; Plescia, Janet; Raskett, Christopher M; Gilbert, Candace A; Ross, Alonzo H; Altieri, Dario C
2010-06-01
Drug discovery for complex and heterogeneous tumors now aims at dismantling global networks of disease maintenance, but the subcellular requirements of this approach are not understood. Here, we simultaneously targeted the multiple subcellular compartments of the molecular chaperone heat shock protein-90 (Hsp90) in a model of glioblastoma, a highly lethal human malignancy in urgent need of fresh therapeutic strategies. Treatment of cultured or patient-derived glioblastoma cells with Shepherdin, a dual peptidomimetic inhibitor of mitochondrial and cytosolic Hsp90, caused irreversible collapse of mitochondria, degradation of Hsp90 client proteins in the cytosol, and tumor cell killing by apoptosis and autophagy. Stereotactic or systemic delivery of Shepherdin was well tolerated and suppressed intracranial glioma growth via inhibition of cell proliferation, induction of apoptosis, and reduction of angiogenesis in vivo. These data show that disabling Hsp90 cancer networks in their multiple subcellular compartments improves strategies for drug discovery and may provide novel molecular therapy for highly recalcitrant human tumors.
Techniques for modeling muscle-induced forces in finite element models of skeletal structures.
Grosse, Ian R; Dumont, Elizabeth R; Coletta, Chris; Tolleson, Alex
2007-09-01
This work introduces two mechanics-based approaches to modeling muscle forces exerted on curvilinear bone structures and compares the results with two traditional ad hoc methods of muscle loading. These new models use a combination of tensile, tangential, and normal traction loads to account for muscle fibers wrapped around curved bone surfaces. A computer program was written to interface with a commercial finite element analysis tool to automatically apply traction loads to surface faces of elements in muscle attachment regions according to the various muscle modeling methods. We modeled a highly complex skeletal structure, the skull of a Jamaican fruit bat (Artibeus jamaicensis), to compare the four muscle-loading methods. While reasonable qualitative agreement was found in the states of stress of the skull between the four muscle load modeling methods, there were substantial quantitative differences predicted in the stress states in some high stressed regions of the skull. Furthermore, our mechanics-based models required significantly less total applied muscle force to generate a bite-point reaction force identical to those produced by the ad hoc muscle loading models. Although the methods are not validated by in vivo data, we submit that muscle-load modeling methods that account for the underlying physics of muscle wrapping on curved bone surfaces are likely to provide more realistic results than ad hoc approaches that do not. We also note that, due to the geometric complexity of many bone structures--such as the skull analyzed here--load transmission paths are difficult to conceptualize a priori. Consequently, it is difficult to predict spatially where the results of finite element analyses are likely to be compromised by using ad hoc muscle modeling methods. For these reasons, it is recommended that a mechanics-based method be adopted for determination of the proper traction loads to be applied to skeletal structures due to muscular activity. Copyright 2007
An Eulerean Finite element Model for Penetration in Layered Soil
van den Berg, Peter; de Borst, Rene; Huetink, Han
1996-01-01
An Eulerean large-strain finite element formulation is presented to simulate static soil penetration. The method is an extension of the Updated Lagrangean description to an Eulerean formulation taking into account convection of deformation-history-dependent properties as well as material properties.
Feasibility Study of a Knowledge Based Finite Element Modeling Assistant.
1988-02-01
computer graphics, computer-aided design, computer vision , etc. and in- terest. in representing and reasoning about shapes and spatial relations is...descriptions. Arificial Intelligence 14:1-39, 1980. [Taig 86] Ian C. Taig. Expert Aids to Finite Element System Applications. In D. Srram and R. Adey
Elements of Information Inquiry, Evolution of Models & Measured Reflection
Callison, Daniel; Baker, Katie
2014-01-01
In 2003 Paula Montgomery, founding editor of School Library Media Activities Monthly and former branch chief of school media services for the Maryland State Department of Education, published a guide to teaching information inquiry. Her staff also illustrated the elements of information inquiry as a recursive cycle with interaction among the…
Modeling of parasitic elements in high voltage multiplier modules
Wang, J.
2014-01-01
It is an inevitable trend that the power conversion module will have higher switching frequency and smaller volume in the future. Bandgap devices, such as SiC and GaN devices, accelerate the process. With this process, the parasitic elements in the module will probably have stronger influence on
Naghibi Beidokhti, Hamid; Janssen, Dennis; van de Groes, Sebastiaan; Hazrati, Javad; Van den Boogaard, Ton; Verdonschot, Nico
2017-01-01
In finite element (FE) models knee ligaments can represented either by a group of one-dimensional springs, or by three-dimensional continuum elements based on segmentations. Continuum models closer approximate the anatomy, and facilitate ligament wrapping, while spring models are computationally
Zhou, Xunfei; Hsieh, Sheng-Jen
2017-05-01
After years of development, Fused Deposition Modeling (FDM) has become the most popular technique in commercial 3D printing due to its cost effectiveness and easy-to-operate fabrication process. Mechanical strength and dimensional accuracy are two of the most important factors for reliability of FDM products. However, the solid-liquid-solid state changes of material in the FDM process make it difficult to monitor and model. In this paper, an experimental model was developed to apply cost-effective infrared thermography imaging method to acquire temperature history of filaments at the interface and their corresponding cooling mechanism. A three-dimensional finite element model was constructed to simulate the same process using element "birth and death" feature and validated with the thermal response from the experimental model. In 6 of 9 experimental conditions, a maximum of 13% difference existed between the experimental and numerical models. This work suggests that numerical modeling of FDM process is reliable and can facilitate better understanding of bead spreading and road-to-road bonding mechanics during fabrication.
Brigham, John C.; Aquino, Wilkins; Aguilo, Miguel A.; Diamessis, Peter J.
2010-01-01
An approach for efficient and accurate finite element analysis of harmonically excited soft solids using high-order spectral finite elements is presented and evaluated. The Helmholtz-type equations used to model such systems suffer from additional numerical error known as pollution when excitation frequency becomes high relative to stiffness (i.e. high wave number), which is the case, for example, for soft tissues subject to ultrasound excitations. The use of high-order polynomial elements allows for a reduction in this pollution error, but requires additional consideration to counteract Runge's phenomenon and/or poor linear system conditioning, which has led to the use of spectral element approaches. This work examines in detail the computational benefits and practical applicability of high-order spectral elements for such problems. The spectral elements examined are tensor product elements (i.e. quad or brick elements) of high-order Lagrangian polynomials with non-uniformly distributed Gauss-Lobatto-Legendre nodal points. A shear plane wave example is presented to show the dependence of the accuracy and computational expense of high-order elements on wave number. Then, a convergence study for a viscoelastic acoustic-structure interaction finite element model of an actual ultrasound driven vibroacoustic experiment is shown. The number of degrees of freedom required for a given accuracy level was found to consistently decrease with increasing element order. However, the computationally optimal element order was found to strongly depend on the wave number. PMID:21461402
Seismic analysis of the APR1400 nuclear reactor system using a verified beam element model
Energy Technology Data Exchange (ETDEWEB)
Park, Jong-beom [Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722 (Korea, Republic of); Park, No-Cheol, E-mail: pnch@yonsei.ac.kr [Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722 (Korea, Republic of); Lee, Sang-Jeong; Park, Young-Pil [Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722 (Korea, Republic of); Choi, Youngin [Korea Institute of Nuclear Safety, 62 Gwahak-ro, Yuseong-gu, Daejeon 34142 (Korea, Republic of)
2017-03-15
Highlights: • A simplified beam element model is constructed based on the real dynamic characteristics of the APR1400. • Time history analysis is performed to calculate the seismic responses of the structures. • Large deformations can be observed at the in-phase mode of reactor vessel and core support barrel. - Abstract: Structural integrity is the first priority in the design of nuclear reactor internal structures. In particular, nuclear reactor internals should be designed to endure external forces, such as those due to earthquakes. Many researchers have performed finite element analyses to meet these design requirements. Generally, a seismic analysis model should reflect the dynamic characteristics of the target system. However, seismic analysis based on the finite element method requires long computation times as well as huge storage space. In this research, a beam element model was developed and confirmed based on the real dynamic characteristics of an advanced pressurized water nuclear reactor 1400 (APR1400) system. That verification process enhances the accuracy of the finite element analysis using the beam elements, remarkably. Also, the beam element model reduces seismic analysis costs. Therefore, the beam element model was used to perform the seismic analysis. Then, the safety of the APR1400 was assessed based on a seismic analysis of the time history responses of its structures. Thus, efficient, accurate seismic analysis was demonstrated using the proposed beam element model.
Material model for non-linear finite element analyses of large concrete structures
Engen, Morten; Hendriks, M.A.N.; Øverli, Jan Arve; Åldstedt, Erik; Beushausen, H.
2016-01-01
A fully triaxial material model for concrete was implemented in a commercial finite element code. The only required input parameter was the cylinder compressive strength. The material model was suitable for non-linear finite element analyses of large concrete structures. The importance of including
DEFF Research Database (Denmark)
Andersen, Lars Vabbersgaard; Kirkegaard, Poul Henning; Persson, K.
2012-01-01
The paper concerns the development of a modular parametric finite-element model that can be applied to the analysis of vibro-acoustic problems in relation to multistory lightweight structures. Floors and walls can be modelled as structural elements, or substructures may be utilised for each type...
A circular finite-element model reconstruction in electrical impedance tomography
DEFF Research Database (Denmark)
Møsner, Lars Nordahl; Andersen, Ole Trier; Dawids, Steen
1989-01-01
A circular finite-element model utilizing triangular picture elements is constructed using a previously published reconstruction method. The model is applied to examples of simulated reconstructed pictures to illustrate its properties with regard to sensitivity, contrast and shape of the object...
DEFF Research Database (Denmark)
Rask, Morten
2014-01-01
Internationalization through business model innovation involves the creation, or reinvention, of the business itself. This paper aims to integrate basic insight from the literature on business model innovation, internationalization of the firm, international entrepreneurship and global marketing ...... resource allocation for dealing with differences across geographical locations and entry mode elements. We address the interrelation of these dimensions and elements in firms’ international activities....
Multivariate Hawkes process models of the occurrence of regulatory elements
DEFF Research Database (Denmark)
Carstensen, L; Sandelin, A; Winther, Ole
2010-01-01
by the occurrences of others, and we can test a range of natural hypotheses about the dependencies among the TRE occurrences. In contrast to earlier efforts, pre-processing steps such as clustering or binning are not needed, and we thus retain information about the dependencies among the TREs that is otherwise lost......BACKGROUND: A central question in molecular biology is how transcriptional regulatory elements (TREs) act in combination. Recent high-throughput data provide us with the location of multiple regulatory regions for multiple regulators, and thus with the possibility of analyzing the multivariate...... occurrences of multiple TREs along the genome that is capable of providing new insights into dependencies among elements involved in transcriptional regulation. The method is available as an R package from http://www.math.ku.dk/~richard/ppstat/....
Finite element modelling and updating of friction stir welding (FSW joint for vibration analysis
Directory of Open Access Journals (Sweden)
Zahari Siti Norazila
2017-01-01
Full Text Available Friction stir welding of aluminium alloys widely used in automotive and aerospace application due to its advanced and lightweight properties. The behaviour of FSW joints plays a significant role in the dynamic characteristic of the structure due to its complexities and uncertainties therefore the representation of an accurate finite element model of these joints become a research issue. In this paper, various finite elements (FE modelling technique for prediction of dynamic properties of sheet metal jointed by friction stir welding will be presented. Firstly, nine set of flat plate with different series of aluminium alloy; AA7075 and AA6061 joined by FSW are used. Nine set of specimen was fabricated using various types of welding parameters. In order to find the most optimum set of FSW plate, the finite element model using equivalence technique was developed and the model validated using experimental modal analysis (EMA on nine set of specimen and finite element analysis (FEA. Three types of modelling were engaged in this study; rigid body element Type 2 (RBE2, bar element (CBAR and spot weld element connector (CWELD. CBAR element was chosen to represent weld model for FSW joints due to its accurate prediction of mode shapes and contains an updating parameter for weld modelling compare to other weld modelling. Model updating was performed to improve correlation between EMA and FEA and before proceeds to updating, sensitivity analysis was done to select the most sensitive updating parameter. After perform model updating, total error of the natural frequencies for CBAR model is improved significantly. Therefore, CBAR element was selected as the most reliable element in FE to represent FSW weld joint.
2001-05-01
Linear and non-linear finite element method models were developed for a reinforced concrete bridge that had been strengthened with fiber reinforced polymer composites. ANSYS and SAP2000 modeling software were used; however, most of the development ef...
A Finite Element Model of the THOR-K Dummy for Aerospace and Aircraft Impact Simulations
Putnam, Jacob; Untaroiu, Costin D.; Somers, Jeffrey T.; Pellettiere, Joseph
2013-01-01
1) Update and Improve the THOR Finite Element (FE) model to specifications of the latest mod kit (THOR-K). 2) Evaluate the kinematic and kinetic response of the FE model in frontal, spinal, and lateral impact loading conditions.
Blade element momentum modeling of inflow with shear in comparison with advanced model results
DEFF Research Database (Denmark)
Aagaard Madsen, Helge; Riziotis, V.; Zahle, Frederik
2012-01-01
There seems to be a significant uncertainty in aerodynamic and aeroelastic simulations on megawatt turbines operating in inflow with considerable shear, in particular with the engineering blade element momentum (BEM) model, commonly implemented in the aeroelastic design codes used by industry....... Computations with advanced vortex and computational fluid dynamics models are used to provide improved insight into the complex flow phenomena and rotor aerodynamics caused by the sheared inflow. One consistent result from the advanced models is the variation of induced velocity as a function of azimuth when...... shear is present in the inflow. This gives guidance to how the BEM modeling of shear should be implemented. Another result from the advanced vortex model computations is a clear indication of influence of the ground, and the general tendency is a speed up effect of the flow through the rotor giving...
Dynamic condition assessment of a cracked beam with the composite element model
Lu, Z. R.; Law, S. S.
2009-02-01
Existing models of local damage in a beam element are usually formulated as a damage in a single element, and the coupling effect between adjacent damages is simply ignored. This coupling effect is larger in the case of a fine mesh of finite elements or when there is a high density of damage in the structure. This paper studies such effect from multiple cracks in a finite element in the dynamic analysis and local damage identification. The finite beam element is formulated using the composite element method [P. Zeng, Composite element method for vibration analysis of structure, Journal of Sound and Vibration 218 (1998) 619-696] with a one-member-one-element configuration with cracks where the interaction effect between cracks in the same element is automatically included. The accuracy and convergence speed of the proposed model in computation are compared with existing models and experimental results. The parameter of the Christides and Barr [One dimensional theory of cracked Bernoulli-Euler beams, International Journal of Mechanical Science 26 (1984) 639-648] crack model is found needing adjustment with the use of the proposed model. The response sensitivity-based approach of damage identification is then applied in the identification of single and multiple crack damages with both simulated and experimental data. Results obtained are found very accurate even under noisy environment.
Establishing the 3-D finite element solid model of femurs in partial by volume rendering.
Zhang, Yinwang; Zhong, Wuxue; Zhu, Haibo; Chen, Yun; Xu, Lingjun; Zhu, Jianmin
2013-01-01
It remains rare to report three-dimensional (3-D) finite element solid model of femurs in partial by volume rendering method, though several methods of femoral 3-D finite element modeling are already available. We aim to analyze the advantages of the modeling method by establishing the 3-D finite element solid model of femurs in partial by volume rendering. A 3-D finite element model of the normal human femurs, made up of three anatomic structures: cortical bone, cancellous bone and pulp cavity, was constructed followed by pretreatment of the CT original image. Moreover, the finite-element analysis was carried on different material properties, three types of materials given for cortical bone, six assigned for cancellous bone, and single for pulp cavity. The established 3-D finite element of femurs contains three anatomical structures: cortical bone, cancellous bone, and pulp cavity. The compressive stress primarily concentrated in the medial surfaces of femur, especially in the calcar femorale. Compared with whole modeling by volume rendering method, the 3-D finite element solid model created in partial is more real and fit for finite element analysis. Copyright © 2013 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.
Finite element modeling of a 3D coupled foot-boot model.
Qiu, Tian-Xia; Teo, Ee-Chon; Yan, Ya-Bo; Lei, Wei
2011-12-01
Increasingly, musculoskeletal models of the human body are used as powerful tools to study biological structures. The lower limb, and in particular the foot, is of interest because it is the primary physical interaction between the body and the environment during locomotion. The goal of this paper is to adopt the finite element (FE) modeling and analysis approaches to create a state-of-the-art 3D coupled foot-boot model for future studies on biomechanical investigation of stress injury mechanism, foot wear design and parachute landing fall simulation. In the modeling process, the foot-ankle model with lower leg was developed based on Computed Tomography (CT) images using ScanIP, Surfacer and ANSYS. Then, the boot was represented by assembling the FE models of upper, insole, midsole and outsole built based on the FE model of the foot-ankle, and finally the coupled foot-boot model was generated by putting together the models of the lower limb and boot. In this study, the FE model of foot and ankle was validated during balance standing. There was a good agreement in the overall patterns of predicted and measured plantar pressure distribution published in literature. The coupled foot-boot model will be fully validated in the subsequent works under both static and dynamic loading conditions for further studies on injuries investigation in military and sports, foot wear design and characteristics of parachute landing impact in military. Copyright © 2011 IPEM. Published by Elsevier Ltd. All rights reserved.
Sub-cellular force microscopy in single normal and cancer cells
Energy Technology Data Exchange (ETDEWEB)
Babahosseini, H. [VT MEMS Laboratory, The Bradley Department of Electrical and Computer Engineering, Blacksburg, VA 24061 (United States); Carmichael, B. [Nonlinear Intelligent Structures Laboratory, Department of Mechanical Engineering, University of Alabama, Tuscaloosa, AL 35487-0276 (United States); Strobl, J.S. [VT MEMS Laboratory, The Bradley Department of Electrical and Computer Engineering, Blacksburg, VA 24061 (United States); Mahmoodi, S.N., E-mail: nmahmoodi@eng.ua.edu [Nonlinear Intelligent Structures Laboratory, Department of Mechanical Engineering, University of Alabama, Tuscaloosa, AL 35487-0276 (United States); Agah, M., E-mail: agah@vt.edu [VT MEMS Laboratory, The Bradley Department of Electrical and Computer Engineering, Blacksburg, VA 24061 (United States)
2015-08-07
This work investigates the biomechanical properties of sub-cellular structures of breast cells using atomic force microscopy (AFM). The cells are modeled as a triple-layered structure where the Generalized Maxwell model is applied to experimental data from AFM stress-relaxation tests to extract the elastic modulus, the apparent viscosity, and the relaxation time of sub-cellular structures. The triple-layered modeling results allow for determination and comparison of the biomechanical properties of the three major sub-cellular structures between normal and cancerous cells: the up plasma membrane/actin cortex, the mid cytoplasm/nucleus, and the low nuclear/integrin sub-domains. The results reveal that the sub-domains become stiffer and significantly more viscous with depth, regardless of cell type. In addition, there is a decreasing trend in the average elastic modulus and apparent viscosity of the all corresponding sub-cellular structures from normal to cancerous cells, which becomes most remarkable in the deeper sub-domain. The presented modeling in this work constitutes a unique AFM-based experimental framework to study the biomechanics of sub-cellular structures. - Highlights: • The cells are modeled as a triple-layered structure using Generalized Maxwell model. • The sub-domains include membrane/cortex, cytoplasm/nucleus, and nuclear/integrin. • Biomechanics of corresponding sub-domains are compared among normal and cancer cells. • Viscoelasticity of sub-domains show a decreasing trend from normal to cancer cells. • The decreasing trend becomes most significant in the deeper sub-domain.
Finotello, Alice; Morganti, Simone; Auricchio, Ferdinando
2017-09-01
In the last few years, several studies, each with different aim and modeling detail, have been proposed to investigate transcatheter aortic valve implantation (TAVI) with finite elements. The present work focuses on the patient-specific finite element modeling of the aortic valve complex. In particular, we aim at investigating how different modeling strategies in terms of material models/properties and discretization procedures can impact analysis results. Four different choices both for the mesh size (from 20 k elements to 200 k elements) and for the material model (from rigid to hyperelastic anisotropic) are considered. Different approaches for modeling calcifications are also taken into account. Post-operative CT data of the real implant are used as reference solution with the aim of outlining a trade-off between computational model complexity and reliability of the results. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.
Modeling Concrete Material Structure: A Two-Phase Meso Finite Element Model
Bonifaz, E. A.; Baus, Juan; Lantsoght, Eva O. L.
Concrete is a compound material where aggregates are randomly placed within the cement paste. To describe the behavior of concrete structures at the ultimate, it is necessary to use nonlinear finite element models, which for shear and torsion problems do not always give satisfactory results. The current study aims at improving the modeling of concrete at the meso-level, which eventually can result in an improved assessment of existing structures. Concrete as a heterogeneous material is modeled consisting of hydrated cement paste and aggregates. The stress-strain curves of the hydrated cement paste and aggregates are described with results from the literature. A three-dimensional (3D) finite element model was developed to determine the influence of individual phases on the inelastic stress-strain distribution of concrete structures. A random distribution and morphology of the cement and aggregate fractions are achieved by using DREAM.3D. Two affordable computational dual-phase representative volume elements (RVEs) are imported to ABAQUS to be studied in compression and tension. The virtual specimens (concrete mesh) subjected to continuous monotonic strain loading conditions were constrained with 3D boundary conditions. Results demonstrate differences in stress-strain mechanical behavior in both compression and tension test simulations. A strong dependency of flow stress and plastic strain on phase type, aggregate (andesite) size, shape and distribution upon the composite local response are clearly observed. It is noted that the resistance to flow is higher in concrete meshes composed of finer and homogeneous aggregate particles because the Misses stresses and effective plastic strains are better distributed. This study shows that at the meso-level, concrete can be modeled consisting of aggregates and hydrated cement paste.
Subcellular localization prediction through boosting association rules.
Yoon, Yongwook; Lee, Gary Geunbae
2012-01-01
Computational methods for predicting protein subcellular localization have used various types of features, including N-terminal sorting signals, amino acid compositions, and text annotations from protein databases. Our approach does not use biological knowledge such as the sorting signals or homologues, but use just protein sequence information. The method divides a protein sequence into short $k$-mer sequence fragments which can be mapped to word features in document classification. A large number of class association rules are mined from the protein sequence examples that range from the N-terminus to the C-terminus. Then, a boosting algorithm is applied to those rules to build up a final classifier. Experimental results using benchmark datasets show our method is excellent in terms of both the classification performance and the test coverage. The result also implies that the $k$-mer sequence features which determine subcellular locations do not necessarily exist in specific positions of a protein sequence. Online prediction service implementing our method is available at http://isoft.postech.ac.kr/research/BCAR/subcell.
Finite element based micro-mechanics modeling of textile composites
Glaessgen, E. H.; Griffin, O. H., Jr.
1995-01-01
Textile composites have the advantage over laminated composites of a significantly greater damage tolerance and resistance to delamination. Currently, a disadvantage of textile composites is the inability to examine the details of the internal response of these materials under load. Traditional approaches to the study fo textile based composite materials neglect many of the geometric details that affect the performance of the material. The present three dimensional analysis, based on the representative volume element (RVE) of a plain weave, allows prediction of the internal details of displacement, strain, stress, and failure quantities. Through this analysis, the effect of geometric and material parameters on the aforementioned quantities are studied.
Modeling of coal stockpiles using a finite elements method
Energy Technology Data Exchange (ETDEWEB)
Ozdeniz, A.H.; Sensogut, C. [Dumlupinar University, Kutahya (Turkey)
2008-07-01
In the case of coal stockpiles finding suitable environmental conditions, spontaneous combustion phenomenon will be unavoidable. In this study, an industrial-sized stockpile having a shape of triangle prism was constituted in a coal stockyard of Western Lignite Corporation (WLC), Turkey. The parameters of time, humidity and temperature of air, atmospheric pressure, velocity and direction of wind values that are effective on coal stockpile were measured in a continuous manner. These experimental works were transferred into a computer media in order to obtain similar outcomes by carrying out 2-dimensional analysis of the stockpile with Finite Elements Method (FEM). The performed experimental studies and obtained results were then compared.
Finite Element Modeling Techniques for Analysis of VIIP
Feola, Andrew J.; Raykin, J.; Gleason, R.; Mulugeta, Lealem; Myers, Jerry G.; Nelson, Emily S.; Samuels, Brian C.; Ethier, C. Ross
2015-01-01
Visual Impairment and Intracranial Pressure (VIIP) syndrome is a major health concern for long-duration space missions. Currently, it is thought that a cephalad fluid shift in microgravity causes elevated intracranial pressure (ICP) that is transmitted along the optic nerve sheath (ONS). We hypothesize that this in turn leads to alteration and remodeling of connective tissue in the posterior eye which impacts vision. Finite element (FE) analysis is a powerful tool for examining the effects of mechanical loads in complex geometries. Our goal is to build a FE analysis framework to understand the response of the lamina cribrosa and optic nerve head to elevations in ICP in VIIP.
DeepLoc: prediction of protein subcellular localization using deep learning.
Almagro Armenteros, José Juan; Sønderby, Casper Kaae; Sønderby, Søren Kaae; Nielsen, Henrik; Winther, Ole
2017-11-01
The prediction of eukaryotic protein subcellular localization is a well-studied topic in bioinformatics due to its relevance in proteomics research. Many machine learning methods have been successfully applied in this task, but in most of them, predictions rely on annotation of homologues from knowledge databases. For novel proteins where no annotated homologues exist, and for predicting the effects of sequence variants, it is desirable to have methods for predicting protein properties from sequence information only. Here, we present a prediction algorithm using deep neural networks to predict protein subcellular localization relying only on sequence information. At its core, the prediction model uses a recurrent neural network that processes the entire protein sequence and an attention mechanism identifying protein regions important for the subcellular localization. The model was trained and tested on a protein dataset extracted from one of the latest UniProt releases, in which experimentally annotated proteins follow more stringent criteria than previously. We demonstrate that our model achieves a good accuracy (78% for 10 categories; 92% for membrane-bound or soluble), outperforming current state-of-the-art algorithms, including those relying on homology information. The method is available as a web server at http://www.cbs.dtu.dk/services/DeepLoc. Example code is available at https://github.com/JJAlmagro/subcellular_localization. The dataset is available at http://www.cbs.dtu.dk/services/DeepLoc/data.php. jjalma@dtu.dk.
Advancements in the behavioral modeling of fuel elements and related structures
Energy Technology Data Exchange (ETDEWEB)
Billone, M.C.; Montgomery, R.O.; Rashid, Y.R.; Head, J.L. (Argonne National Lab., IL (USA); ANATECH Research Corp., San Diego, CA (USA); Royal Naval Coll., Greenwich (UK))
1989-01-01
An important aspect of the design and analysis of nuclear reactors is the ability to predict the behavior of fuel elements in the adverse environment of a reactor system. By understanding the thermomechanical behavior of the different materials which constitute a nuclear fuel element, analysis and predictions can be made regarding the integrity and reliability of fuel element designs. The SMiRT conference series, through the division on fuel elements and the post-conference seminars on fuel element modeling, provided technical forums for the international participation in the exchange of knowledge concerning the thermomechanical modeling of fuel elements. This paper discusses the technical advances in the behavioral modeling of fuel elements presented at the SMiRT conference series since its inception in 1971. Progress in the areas of material properties and constitutive relationships, modeling methodologies, and integral modeling approaches was reviewed and is summarized in light of their impact on the thermomechanical modeling of nuclear fuel elements. 34 refs., 5 tabs.
Finite element modeling of concrete structures strengthened with FRP laminates
2001-05-01
Linear and non-linear method models were developed for a reinforced concrete bridge that had been strengthened with fiber reinforced polymer (FRP) composites. ANSYS and SAP2000 modeling software were used; however, most of the development effort used...
Finite element model updating of concrete structures based on imprecise probability
Biswal, S.; Ramaswamy, A.
2017-09-01
Imprecise probability based methods are developed in this study for the parameter estimation, in finite element model updating for concrete structures, when the measurements are imprecisely defined. Bayesian analysis using Metropolis Hastings algorithm for parameter estimation is generalized to incorporate the imprecision present in the prior distribution, in the likelihood function, and in the measured responses. Three different cases are considered (i) imprecision is present in the prior distribution and in the measurements only, (ii) imprecision is present in the parameters of the finite element model and in the measurement only, and (iii) imprecision is present in the prior distribution, in the parameters of the finite element model, and in the measurements. Procedures are also developed for integrating the imprecision in the parameters of the finite element model, in the finite element software Abaqus. The proposed methods are then verified against reinforced concrete beams and prestressed concrete beams tested in our laboratory as part of this study.
On the Convergence of Nonlinear Modes of a Finite Element Model
Directory of Open Access Journals (Sweden)
Ramesh Balagangadhar
2008-01-01
Full Text Available Convergence of finite element models is generally realized via observation of mesh independence. In linear systems invariance of linear modes to further mesh refinement is often used to assess mesh independence. These linear models are, however, often coupled with nonlinear elements such as CFD models, nonlinear control systems, or joint dynamics. The introduction of a single nonlinear element can significantly alter the degree of mesh refinement necessary for sufficient model accuracy. Application of nonlinear modal analysis [1,2] illustrates that using linear modal convergence as a measure of mesh quality in the presence of nonlinearities is inadequate. The convergence of the nonlinear normal modes of a simply supported beam modeled using finite elements is examined. A comparison is made to the solution of Boivin, Pierre, and Shaw [3]. Both methods suffer from the need for convergence in power series approximations. However, the finite element modeling method introduces the additional concern of mesh independence, even when the meshing the linear part of the model unless p-type elements are used [4]. The importance of moving to a finite element approach for nonlinear modal analysis is the ability to solve problems of a more complex geometry for which no closed form solution exists. This case study demonstrates that a finite element model solution converges nearly as well as a continuous solution, and presents rough guidelines for the number of expansion terms and elements needed for various levels of solution accuracy. It also demonstrates that modal convergence occurs significantly more slowly in the nonlinear model than in the corresponding linear model. This illustrates that convergence of linear modes may be an inadequate measure of mesh independence when even a small part of a model is nonlinear.
Trace element trophic transfer in aquatic organisms: A critique of the kinetic model approach
Reinfelder, J.R.; Fisher, N.S.; Luoma, S. N.; Nichols, J.W.; Wang, W.-X.
1998-01-01
The bioaccumulation of trace elements in aquatic organisms can be described with a kinetic model that includes linear expressions for uptake and elimination from dissolved and dietary sources. Within this model, trace element trophic transfer is described by four parameters: the weight-specific ingestion rate (IR); the assimilation efficiency (AE); the physiological loss rate constant (ke); and the weight-specific growth rate (g). These four parameters define the trace element trophic transfer potential (TTP=IR·AE/[ke+g]) which is equal to the ratio of the steady-state trace element concentration in a consumer due to trophic accumulation to that in its prey. Recent work devoted to the quantification of AE and ke for a variety of trace elements in aquatic invertebrates has provided the data needed for comparative studies of trace element trophic transfer among different species and trophic levels and, in at least one group of aquatic consumers (marine bivalves), sensitivity analyses and field tests of kinetic bioaccumulation models. Analysis of the trophic transfer potentials of trace elements for which data are available in zooplankton, bivalves, and fish, suggests that slight variations in assimilation efficiency or elimination rate constant may determine whether or not some trace elements (Cd, Se, and Zn) are biomagnified. A linear, single-compartment model may not be appropriate for fish which, unlike many aquatic invertebrates, have a large mass of tissue in which the concentrations of most trace elements are subject to feedback regulation.
An Automated Method for Landmark Identification and Finite-Element Modeling of the Lumbar Spine.
Campbell, Julius Quinn; Petrella, Anthony J
2015-11-01
The purpose of this study was to develop a method for the automated creation of finite-element models of the lumbar spine. Custom scripts were written to extract bone landmarks of lumbar vertebrae and assemble L1-L5 finite-element models. End-plate borders, ligament attachment points, and facet surfaces were identified. Landmarks were identified to maintain mesh correspondence between meshes for later use in statistical shape modeling. 90 lumbar vertebrae were processed creating 18 subject-specific finite-element models. Finite-element model surfaces and ligament attachment points were reproduced within 1e-5 mm of the bone surface, including the critical contact surfaces of the facets. Element quality exceeded specifications in 97% of elements for the 18 models created. The current method is capable of producing subject-specific finite-element models of the lumbar spine with good accuracy, quality, and robustness. The automated methods developed represent advancement in the state of the art of subject-specific lumbar spine modeling to a scale not possible with prior manual and semiautomated methods.
Directory of Open Access Journals (Sweden)
Jelena Jovanović
2010-03-01
Full Text Available The research is oriented on improvement of environmental management system (EMS using BSC (Balanced Scorecard model that presents strategic model of measurem ents and improvement of organisational performance. The research will present approach of objectives and environmental management me trics involvement (proposed by literature review in conventional BSC in "Ad Barska plovi dba" organisation. Further we will test creation of ECO-BSC model based on business activities of non-profit organisations in order to improve envir onmental management system in parallel with other systems of management. Using this approach we may obtain 4 models of BSC that includ es elements of environmen tal management system for AD "Barska plovidba". Taking into acc ount that implementation and evaluation need long period of time in AD "Barska plovidba", the final choice will be based on 14598 (Information technology - Software product evaluation and ISO 9126 (Software engineering - Product quality using AHP method. Those standards are usually used for evaluation of quality software product and computer programs that serve in organisation as support and factors for development. So, AHP model will be bas ed on evolution criteria based on suggestion of ISO 9126 standards and types of evaluation from two evaluation teams. Members of team & will be experts in BSC and environmental management system that are not em ployed in AD "Barska Plovidba" organisation. The members of team 2 will be managers of AD "Barska Plovidba" organisation (including manage rs from environmental department. Merging results based on previously cr eated two AHP models, one can obtain the most appropriate BSC that includes elements of environmental management system. The chosen model will present at the same time suggestion for approach choice including ecological metrics in conventional BSC model for firm that has at least one ECO strategic orientation.
Hong, C. P.; Umeda, T.; Kimura, Y.
1984-01-01
A new numerical model, which is based on the boundary element method, was proposed for the simulation of solidification problems, and its application was demonstrated for solidification of metals in metal and sand molds. Comparisons were made between results from this model and those from the explicit finite difference method. Temperature recovery method was successfully adopted to estimate the liberation of latent heat of freezing in the boundary element method. A coupling method was proposed for problems in which the boundary condition of the interface consisting of inhomogeneous bodies is governed by Newton’s law of cooling in the boundary element method. It was concluded that the boundary element method which has several advantages, such as the wide variety of element shapes, simplicity of data preparation, and small CPU times, will find wide application as an alternative for finite difference or finite element methods, in the fields of solidification problems, especially for complex, three-dimensional geometries.
UNIFIED MODELS OF ELEMENTS OF POWER SUPPLY SYSTEMS BASED ON EQUATIONS IN PHASE COORDINATES
Directory of Open Access Journals (Sweden)
Yu.N. Vepryk
2015-12-01
Full Text Available Purpose. The models of electrical machines in the phase coordinates, the universal algorithm for the simulation of separate elements in a d-q coordinates system and in a phase-coordinates system are proposed. Methodology. Computer methods of investigation of transients in electrical systems are based on a compilation of systems of differential equations and their numerical integration solution methods. To solve differential equations an implicit method of numerical integration was chosen. Because it provides to complete structural simulation possibility: firstly developing models of separate elements and then forming a model of the complex system. For the mathematical simulation of electromagnetic transients in the elements of the electrical systems has been accepted the implicit Euler-Cauchy method, because it provides a higher precision and stability of the computing processes. Results. In developing the model elements identified two groups of elements: - Static elements and electrical machines in the d-q coordinates; - Rotating electrical machines in phase coordinates. As an example, the paper provides a model of synchronous and asynchronous electric machines in the d-q coordinates system and the phase coordinate system. The generalization algorithm and the unified notation form of equations of elements of an electrical system are obtained. It provides the possibility of using structural methods to develop a mathematical model of power systems under transient conditions. Practical value. In addition, the using of a computer model allows to implement multivariant calculations for research and study of factors affecting the quantitative characteristics of the transients.
Neutrinoless double beta nuclear matrix elements around mass 80 in the nuclear shell-model
Directory of Open Access Journals (Sweden)
Yoshinaga N.
2015-01-01
Full Text Available The observation of the neutrinoless double-beta decay can determine whether the neutrino is a Majorana particle or not. For theoretical nuclear physics it is particularly important to estimate three types of matrix elements, namely Fermi (F, Gamow-Teller (GT, and tensor (T matrix elements. In this paper, we carry out shell-model calculations and also pair-truncated shell-model calculations to check the model dependence in the case of mass A=82 nuclei.
A Multiphysics Finite Element and Peridynamics Model of Dielectric Breakdown
2017-09-01
Composite parallel plate capacitor model with mesh ....................... 22 Fig. 14 Magnitude of the electric field for the composite capacitor model at...of hardened electron- ics to electromagnetic pulse attack, and so forth. Indeed, the multiphysics approach used here is especially useful for...meshed and an average ele- ment edge length of 50 µm was used. The gold regions represent perfect conduc- tors and are boundary conditions in the model. A
Triedman, John K.; Jolley, Matthew; Stinstra, Jeroen; Brooks, Dana H.; MacLeod, Rob
2008-01-01
ICD implants may be complicated by body size and anatomy. One approach to this problem has been the adoption of creative, extracardiac implant strategies using standard ICD components. Because data on safety or efficacy of such ad hoc implant strategies is lacking, we have developed image-based finite element models (FEMs) to compare electric fields and expected defibrillation thresholds (DFTs) using standard and novel electrode locations. In this paper, we review recently published studies by our group using such models, and progress in meshing strategies to improve efficiency and visualization. Our preliminary observations predict that they may be large changes in DFTs with clinically relevant variations of electrode placement. Extracardiac ICDs of various lead configurations are predicted to be effective in both children and adults. This approach may aid both ICD development and patient-specific optimization of electrode placement, but the simplified nature of current models dictates further development and validation prior to clinical or industrial utilization. PMID:18817926
Key Elements of the Tutorial Support Management Model
Lynch, Grace; Paasuke, Philip
2011-01-01
In response to an exponential growth in enrolments the "Tutorial Support Management" (TSM) model has been adopted by Open Universities Australia (OUA) after a two-year project on the provision of online tutor support in first year, online undergraduate units. The essential focus of the TSM model was the development of a systemic approach…
Finite Elements Contact Modelling of Planetary Gear Trains
Stoyanov, Svetlin; Dobrev, Vasko; Dobreva, Antoaneta
2017-10-01
The paper presents the application aspects of computer technologies concerning the process of creating theoretical contact models of planetary gear trains using Abaqus/Explicit. The necessary assumptions, constrains and specific features of these gear drives are discussed in details. The models created are appropriate and useful tools for computer simulation research of the dynamic behaviour of planetary gear trains.
Construction and validation of a three-dimensional finite element model of degenerative scoliosis.
Zheng, Jie; Yang, Yonghong; Lou, Shuliang; Zhang, Dongsheng; Liao, Shenghui
2015-12-24
With the aging of the population, degenerative scoliosis (DS) incidence rate is increasing. In recent years, increasing research on this topic has been carried out, yet biomechanical research on the subject is seldom seen and in vitro biomechanical model of DS nearly cannot be available. The objective of this study was to develop and validate a complete three-dimensional finite element model of DS in order to build the digital platform for further biomechanical study. A 55-year-old female DS patient (Suer Pan, ID number was P141986) was selected for this study. This study was performed in accordance with the ethical standards of Declaration of Helsinki and its amendments and was approved by the local ethics committee (117 hospital of PLA ethics committee). Spiral computed tomography (CT) scanning was conducted on the patient's lumbar spine from the T12 to S1. CT images were then imported into a finite element modeling system. A three-dimensional solid model was then formed from segmentation of the CT scan. The three-dimensional model of each vertebra was then meshed, and material properties were assigned to each element according to the pathological characteristics of DS. Loads and boundary conditions were then applied in such a manner as to simulate in vitro biomechanical experiments conducted on lumbar segments. The results of the model were then compared with experimental results in order to validate the model. An integral three-dimensional finite element model of DS was built successfully, consisting of 113,682 solid elements, 686 cable elements, 33,329 shell elements, 4968 target elements, 4968 contact elements, totaling 157,635 elements, and 197,374 nodes. The model accurately described the physical features of DS and was geometrically similar to the object of study. The results of analysis with the finite element model agreed closely with in vitro experiments, validating the accuracy of the model. The three-dimensional finite element model of DS built in
Hua, Xijin; Wang, Ling; Al-Hajjar, Mazen; Jin, Zhongmin; Wilcox, Ruth K; Fisher, John
2014-07-01
Finite element models are becoming increasingly useful tools to conduct parametric analysis, design optimisation and pre-clinical testing for hip joint replacements. However, the verification of the finite element model is critically important. The purposes of this study were to develop a three-dimensional anatomic finite element model for a modular metal-on-polyethylene total hip replacement for predicting its contact mechanics and to conduct experimental validation for a simple finite element model which was simplified from the anatomic finite element model. An anatomic modular metal-on-polyethylene total hip replacement model (anatomic model) was first developed and then simplified with reasonable accuracy to a simple modular total hip replacement model (simplified model) for validation. The contact areas on the articulating surface of three polyethylene liners of modular metal-on-polyethylene total hip replacement bearings with different clearances were measured experimentally in the Leeds ProSim hip joint simulator under a series of loading conditions and different cup inclination angles. The contact areas predicted from the simplified model were then compared with that measured experimentally under the same conditions. The results showed that the simplification made for the anatomic model did not change the predictions of contact mechanics of the modular metal-on-polyethylene total hip replacement substantially (less than 12% for contact stresses and contact areas). Good agreements of contact areas between the finite element predictions from the simplified model and experimental measurements were obtained, with maximum difference of 14% across all conditions considered. This indicated that the simplification and assumptions made in the anatomic model were reasonable and the finite element predictions from the simplified model were valid. © IMechE 2014.
Material Models and Properties in the Finite Element Analysis of Knee Ligaments: A Literature Review
Galbusera, Fabio; Freutel, Maren; Dürselen, Lutz; D’Aiuto, Marta; Croce, Davide; Villa, Tomaso; Sansone, Valerio; Innocenti, Bernardo
2014-01-01
Knee ligaments are elastic bands of soft tissue with a complex microstructure and biomechanics, which are critical to determine the kinematics as well as the stress bearing behavior of the knee joint. Their correct implementation in terms of material models and properties is therefore necessary in the development of finite element models of the knee, which has been performed for decades for the investigation of both its basic biomechanics and the development of replacement implants and repair strategies for degenerative and traumatic pathologies. Indeed, a wide range of element types and material models has been used to represent knee ligaments, ranging from elastic unidimensional elements to complex hyperelastic three-dimensional structures with anatomically realistic shapes. This paper systematically reviews literature studies, which described finite element models of the knee, and summarizes the approaches, which have been used to model the ligaments highlighting their strengths and weaknesses. PMID:25478560
Directory of Open Access Journals (Sweden)
Dina V. Lazareva
2015-06-01
Full Text Available A new mathematical model of asymmetric support structure frame type is built on the basis of numerical-analytical boundary elements method (BEM. To describe the design scheme used is the graph theory. Building the model taken into account is the effect of frame members restrained torsion, which presence is due to the fact that these elements are thin-walled. The built model represents a real object as a two-axle semi-trailer platform. To implement the BEM algorithm obtained are analytical expressions of the fundamental functions and vector load components. The effected calculations are based on the semi-trailer two different models, using finite elements and boundary elements methods. The analysis showed that the error between the results obtained on the basis of two numerical methods and experimental data is about 4%, that indicates the adequacy of the proposed mathematical model.
Some aspects to improve sound insulation prediction models for lightweight elements
Gerretsen, E.
2007-01-01
The best approach to include lightweight building elements in prediction models for airborne and impact sound insulation between rooms, as in EN 12354, is not yet completely clear. Two aspects are at least of importance, i.e. to derive the sound reduction index R for lightweight elements for
Model Experiments on Chemical Properties of Superheavy Elements in Aqueous Solutions
Szeglowski, Z
2003-01-01
This paper presents a brief review of model experiments on investigation of chemical properties of transactinide elements, ranging from 104 to 116. The possibilities of isolation of the nuclei of these elements from nuclear reaction products, using the ion-exchange method, are also considered.
Towards GLUE 2: evolution of the computing element information model
Andreozzi, S.; Burke, S.; Field, L.; Kónya, B.
2008-07-01
A key advantage of Grid systems is the ability to share heterogeneous resources and services between traditional administrative and organizational domains. This ability enables virtual pools of resources to be created and assigned to groups of users. Resource awareness, the capability of users or user agents to have knowledge about the existence and state of resources, is required in order utilize the resource. This awareness requires a description of the services and resources typically defined via a community-agreed information model. One of the most popular information models, used by a number of Grid infrastructures, is the GLUE Schema, which provides a common language for describing Grid resources. Other approaches exist, however they follow different modeling strategies. The presence of different flavors of information models for Grid resources is a barrier for enabling inter-Grid interoperability. In order to solve this problem, the GLUE Working Group in the context of the Open Grid Forum was started. The purpose of the group is to oversee a major redesign of the GLUE Schema which should consider the successful modeling choices and flaws that have emerged from practical experience and modeling choices from other initiatives. In this paper, we present the status of the new model for describing computing resources as the first output from the working group with the aim of dissemination and soliciting feedback from the community.
Towards GLUE2 evolution of the computing element information model
Andreozzi, S; Field, L; Kónya, B
2008-01-01
A key advantage of Grid systems is the ability to share heterogeneous resources and services between traditional administrative and organizational domains. This ability enables virtual pools of resources to be created and assigned to groups of users. Resource awareness, the capability of users or user agents to have knowledge about the existence and state of resources, is required in order utilize the resource. This awareness requires a description of the services and resources typically defined via a community-agreed information model. One of the most popular information models, used by a number of Grid infrastructures, is the GLUE Schema, which provides a common language for describing Grid resources. Other approaches exist, however they follow different modeling strategies. The presence of different flavors of information models for Grid resources is a barrier for enabling inter-Grid interoperability. In order to solve this problem, the GLUE Working Group in the context of the Open Grid Forum was started. ...
Modeling impact damper in building frames using GAP element
Directory of Open Access Journals (Sweden)
Seyed Mehdi Zahrai
2017-05-01
Full Text Available Main effective factor in impact dampers to control vibration is to create disruption in structural oscillation amplitude using small forces induced by auxiliary masses to reduce strong vibrations. So far, modeling of the impact damper has been conducted solely through MATLAB software. Naturally, the functional aspects of this software are limited in research and development aspects compared to the common programs such as SAP2000 and ETABS. In this paper, a Single Degree of Freedom System, SDOF, is first modeled under harmonic loading with maximum amplitude of 0.4g in SAP2000 program. Then, the results are compared with numerical model. In this way, the proposed model is validated and the SDOF system equipped with an impact damper is investigated under the Kobe and Northridge earthquake records using SAP2000 model. Based on obtained results, the system equipped with an impact damper under the Kobe and Northridge earthquakes for structures considered in this study would have better seismic performance in which maximum displacements are reduced 6% and 33% respectively. Finally, impact dampers are modeled in a 4-story building structure with concentric bracing leading to 12% reduction in story drifts.
Turnbull, Heather; Omenzetter, Piotr
2017-04-01
The recent shift towards development of clean, sustainable energy sources has provided a new challenge in terms of structural safety and reliability: with aging, manufacturing defects, harsh environmental and operational conditions, and extreme events such as lightning strikes wind turbines can become damaged resulting in production losses and environmental degradation. To monitor the current structural state of the turbine, structural health monitoring (SHM) techniques would be beneficial. Physics based SHM in the form of calibration of a finite element model (FEMs) by inverse techniques is adopted in this research. Fuzzy finite element model updating (FFEMU) techniques for damage severity assessment of a small-scale wind turbine blade are discussed and implemented. The main advantage is the ability of FFEMU to account in a simple way for uncertainty within the problem of model updating. Uncertainty quantification techniques, such as fuzzy sets, enable a convenient mathematical representation of the various uncertainties. Experimental frequencies obtained from modal analysis on a small-scale wind turbine blade were described by fuzzy numbers to model measurement uncertainty. During this investigation, damage severity estimation was investigated through addition of small masses of varying magnitude to the trailing edge of the structure. This structural modification, intended to be in lieu of damage, enabled non-destructive experimental simulation of structural change. A numerical model was constructed with multiple variable additional masses simulated upon the blades trailing edge and used as updating parameters. Objective functions for updating were constructed and minimized using both particle swarm optimization algorithm and firefly algorithm. FFEMU was able to obtain a prediction of baseline material properties of the blade whilst also successfully predicting, with sufficient accuracy, a larger magnitude of structural alteration and its location.
Quantification of colloidal and aqueous element transfer in soils: The dual-phase mass balance model
Bern, Carleton R.; Thompson, Aaron; Chadwick, Oliver A.
2015-01-01
Mass balance models have become standard tools for characterizing element gains and losses and volumetric change during weathering and soil development. However, they rely on the assumption of complete immobility for an index element such as Ti or Zr. Here we describe a dual-phase mass balance model that eliminates the need for an assumption of immobility and in the process quantifies the contribution of aqueous versus colloidal element transfer. In the model, the high field strength elements Ti and Zr are assumed to be mobile only as suspended solids (colloids) and can therefore be used to distinguish elemental redistribution via colloids from redistribution via dissolved aqueous solutes. Calculations are based upon element concentrations in soil, parent material, and colloids dispersed from soil in the laboratory. We illustrate the utility of this model using a catena in South Africa. Traditional mass balance models systematically distort elemental gains and losses and changes in soil volume in this catena due to significant redistribution of Zr-bearing colloids. Applying the dual-phase model accounts for this colloidal redistribution and we find that the process accounts for a substantial portion of the major element (e.g., Al, Fe and Si) loss from eluvial soil. In addition, we find that in illuvial soils along this catena, gains of colloidal material significantly offset aqueous elemental loss. In other settings, processes such as accumulation of exogenous dust can mimic the geochemical effects of colloid redistribution and we suggest strategies for distinguishing between the two. The movement of clays and colloidal material is a major process in weathering and pedogenesis; the mass balance model presented here is a tool for quantifying effects of that process over time scales of soil development.
A finite element head and neck model as a supportive tool for deformable image registration.
Kim, Jihun; Saitou, Kazuhiro; Matuszak, Martha M; Balter, James M
2016-07-01
A finite element (FE) head and neck model was developed as a tool to aid investigations and development of deformable image registration and patient modeling in radiation oncology. Useful aspects of a FE model for these purposes include ability to produce realistic deformations (similar to those seen in patients over the course of treatment) and a rational means of generating new configurations, e.g., via the application of force and/or displacement boundary conditions. The model was constructed based on a cone-beam computed tomography image of a head and neck cancer patient. The three-node triangular surface meshes created for the bony elements (skull, mandible, and cervical spine) and joint elements were integrated into a skeletal system and combined with the exterior surface. Nodes were additionally created inside the surface structures which were composed of the three-node triangular surface meshes, so that four-node tetrahedral FE elements were created over the whole region of the model. The bony elements were modeled as a homogeneous linear elastic material connected by intervertebral disks. The surrounding tissues were modeled as a homogeneous linear elastic material. Under force or displacement boundary conditions, FE analysis on the model calculates approximate solutions of the displacement vector field. A FE head and neck model was constructed that skull, mandible, and cervical vertebrae were mechanically connected by disks. The developed FE model is capable of generating realistic deformations that are strain-free for the bony elements and of creating new configurations of the skeletal system with the surrounding tissues reasonably deformed. The FE model can generate realistic deformations for skeletal elements. In addition, the model provides a way of evaluating the accuracy of image alignment methods by producing a ground truth deformation and correspondingly simulated images. The ability to combine force and displacement conditions provides
Quick Method for Aeroelastic and Finite Element Modeling of Wind Turbine Blades
DEFF Research Database (Denmark)
Bennett, Jeffrey; Bitsche, Robert; Branner, Kim
2014-01-01
In this paper a quick method for modeling composite wind turbine blades is developed for aeroelastic simulations and finite element analyses. The method reduces the time to model a wind turbine blade by automating the creation of a shell finite element model and running it through a cross...... the user has two models of the same blade, one for performing a structural finite element model analysis and one for aeroelastic simulations. Here, the method is implemented and applied to reverse engineer a structural layup for the NREL 5MW reference blade. The model is verified by comparing natural......-sectional analysis tool in order to obtain cross-sectional properties for the aeroelastic simulations. The method utilizes detailed user inputs of the structural layup and aerodynamic profile including ply thickness, orientation, material properties and airfoils to create the models. After the process is complete...
Finite element modeling of steel concrete beam considering double composite action
National Research Council Canada - National Science Library
Mahmoud, Ashraf Mohamed
2016-01-01
.... Ansys 11 computer program has been used to develop a three-dimensional nonlinear finite element model in order to investigate the fracture behaviors of continuous double steel-concrete composite...
Nasedkin, A. V.
2017-01-01
This research presents the new size-dependent models of piezoelectric materials oriented to finite element applications. The proposed models include the facilities of taking into account different mechanisms of damping for mechanical and electric fields. The coupled models also incorporate the equations of the theory of acoustics for viscous fluids. In particular cases, these models permit to use the mode superposition method with full separation of the finite element systems into independent equations for the independent modes for transient and harmonic problems. The main boundary conditions were supplemented with the facilities of taking into account the coupled surface effects, allowing to explore the nanoscale piezoelectric materials in the framework of theories of continuous media with surface stresses and their generalizations. For the considered problems we have implemented the finite element technologies and various numerical algorithms to maintain a symmetrical structure of the finite element quasi-definite matrices (matrix structure for the problems with a saddle point).
Research regarding coal-bed wellbore stability based on a discrete element model
National Research Council Canada - National Science Library
Zhu Xiaohua Liu Weiji Jiang Jun
2014-01-01
.... In order to perform thorough and systematic research regarding coal-bed wellbore stability problems, a new discrete element model which fully considers the features of cleat coal-beds is established...
Discrete element modelling of screw conveyor-mixers
Directory of Open Access Journals (Sweden)
Jovanović Aca
2015-01-01
Full Text Available Screw conveyors are used extensively in food, plastics, mineral processing, agriculture and processing industries for elevating and/or transporting bulk materials over short to medium distances. Despite their apparent simplicity in design, the transportation action is very complex for design and constructors have tended to rely heavily on empirical performance data. Screw conveyor performance is affected by its operating conditions (such as: the rotational speed of the screw, the inclination of the screw conveyor, and its volumetric fill level. In this paper, horizontal, several single-pitch screw conveyors with some geometry variations in screw blade was investigated for mixing action during transport, using Discrete Element Method (DEM. The influence of geometry modifications on the performance of screw conveyor was examined, different screw designs were compared, and the effects of geometrical variations on mixing performances during transport were explored. During the transport, the particle tumbles down from the top of the helix to the next free surface and that segment of the path was used for auxiliary mixing action. The particle path is dramatically increased with the addition of three complementary helices oriented in the same direction as screw blades (1458.2 mm compared to 397.6 mm in case of single flight screw conveyor Transport route enlarges to 1764.4 mm, when installing helices oriented in the opposite direction from screw blades. By addition of straight line blade to single flight screw conveyor, the longest particle path is being reached: 2061.6 mm [Projekat Ministarstva nauke Republike Srbije, br. TR-31055
Plant uptake of elements in soil and pore water: field observations versus model assumptions.
Raguž, Veronika; Jarsjö, Jerker; Grolander, Sara; Lindborg, Regina; Avila, Rodolfo
2013-09-15
Contaminant concentrations in various edible plant parts transfer hazardous substances from polluted areas to animals and humans. Thus, the accurate prediction of plant uptake of elements is of significant importance. The processes involved contain many interacting factors and are, as such, complex. In contrast, the most common way to currently quantify element transfer from soils into plants is relatively simple, using an empirical soil-to-plant transfer factor (TF). This practice is based on theoretical assumptions that have been previously shown to not generally be valid. Using field data on concentrations of 61 basic elements in spring barley, soil and pore water at four agricultural sites in mid-eastern Sweden, we quantify element-specific TFs. Our aim is to investigate to which extent observed element-specific uptake is consistent with TF model assumptions and to which extent TF's can be used to predict observed differences in concentrations between different plant parts (root, stem and ear). Results show that for most elements, plant-ear concentrations are not linearly related to bulk soil concentrations, which is congruent with previous studies. This behaviour violates a basic TF model assumption of linearity. However, substantially better linear correlations are found when weighted average element concentrations in whole plants are used for TF estimation. The highest number of linearly-behaving elements was found when relating average plant concentrations to soil pore-water concentrations. In contrast to other elements, essential elements (micronutrients and macronutrients) exhibited relatively small differences in concentration between different plant parts. Generally, the TF model was shown to work reasonably well for micronutrients, whereas it did not for macronutrients. The results also suggest that plant uptake of elements from sources other than the soil compartment (e.g. from air) may be non-negligible. Copyright © 2013 Elsevier Ltd. All rights
Reinforced Concrete Finite Element Modeling based on the Discrete Crack Approach
Directory of Open Access Journals (Sweden)
Sri Tudjono
2016-09-01
Full Text Available The behavior of reinforced concrete elements is complex due to the nature of the concrete that is weak in tension. Among these complex issues are the initial cracking and crack propagation of concrete, and the bond-slip phenomenon between the concrete and reinforcing steel. Laboratory tested specimens are not only costly, but are limited in number. Therefore a finite element analysis is favored in combination to experimental data. The finite element technique involving the cracks inserting is one of the approaches to study the behavior of reinforced concrete structures through numerical simulation. In finite element modeling, the cracks can be represented by either smeared or discrete crack. The discrete crack method has its potential to include strain discontinuity within the structure. A finite element model (FEM including the concrete cracking and the bond-slip was developed to simulate the nonlinear response of reinforced concrete structures.
Finite element modelling of elastic intraplate stresses due to ...
Indian Academy of Sciences (India)
Keywords. Elastic stresses; continental crust; intraplate seismicity; rheology; geodynamics; modelling; seismology. Abstract. Deep lower crustal intraplate earthquakes are infrequent and the mechanism of their occurrence is not well understood. The Narmada–Son-lineament region in central India has experienced two such ...
Methodology of modeling fiber reinforcement in concrete elements
Stroeven, P.
2010-01-01
This paper’s focus is on the modeling methodology of (steel) fiber reinforcement in concrete. The orthogonal values of fiber efficiency are presented. Bulk as well as boundary situations are covered. Fiber structure is assumed due to external compaction by vibration to display a partially linear
DISCRETE VOLUME-ELEMENT METHOD FOR NETWORK WATER- QUALITY MODELS
An explicit dynamic water-quality modeling algorithm is developed for tracking dissolved substances in water-distribution networks. The algorithm is based on a mass-balance relation within pipes that considers both advective transport and reaction kinetics. Complete mixing of m...
Finite element model to study calcium distribution in oocytes ...
African Journals Online (AJOL)
Parvaiz Ahmad Naik
2015-03-20
Mar 20, 2015 ... ing species studied to date from plants to humans.4,6 The fer- tilization ... mathematical model of simulation of spontaneous Ca2+ oscil- lations in ..... Membrane potential. А0:05 V. zCa. Valency of calcium. 2. VOocyte. Volume of oocyte cytosol. 5:48 В 10А11 l. F. Faraday's constant. 96487 C=mole. R.
Energy Technology Data Exchange (ETDEWEB)
Patra, Anirban [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wen, Wei [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Martinez Saez, Enrique [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tome, Carlos [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-05-31
This report describes the implementation of a crystal plasticity framework (VPSC) for irradiation hardening and plastic deformation in the finite element code, MOOSE. Constitutive models for irradiation hardening and the crystal plasticity framework are described in a previous report [1]. Here we describe these models briefly and then describe an algorithm for interfacing VPSC with finite elements. Example applications of tensile deformation of a dog bone specimen and a 3D pre-irradiated bar specimen performed using MOOSE are demonstrated.
Stochastic Finite Element Analysis of Non-Linear Structures Modelled by Plasticity Theory
DEFF Research Database (Denmark)
Frier, Christian; Sørensen, John Dalsgaard
2003-01-01
A Finite Element Reliability Method (FERM) is introduced to perform reliability analyses on two-dimensional structures in plane stress, modeled by non-linear plasticity theory. FERM is a coupling between the First Order Reliability Method (FORM) and the Finite Element Method (FEM). FERM can be used...... Method (DDM), here adapted to work with a generally formulated plasticity based constitutive model. The approach is exemplified with a steel plate with a hole in bending subjected to a displacement based limit state function....
Modelling the elements of country vulnerability to earthquake disasters.
Asef, M R
2008-09-01
Earthquakes have probably been the most deadly form of natural disaster in the past century. Diversity of earthquake specifications in terms of magnitude, intensity and frequency at the semicontinental scale has initiated various kinds of disasters at a regional scale. Additionally, diverse characteristics of countries in terms of population size, disaster preparedness, economic strength and building construction development often causes an earthquake of a certain characteristic to have different impacts on the affected region. This research focuses on the appropriate criteria for identifying the severity of major earthquake disasters based on some key observed symptoms. Accordingly, the article presents a methodology for identification and relative quantification of severity of earthquake disasters. This has led to an earthquake disaster vulnerability model at the country scale. Data analysis based on this model suggested a quantitative, comparative and meaningful interpretation of the vulnerability of concerned countries, and successfully explained which countries are more vulnerable to major disasters.
National Aeronautics and Space Administration — The current state-of-the-art in DEM modeling has two major limitations which must be overcome to ensure that the technique can be useful to NASA engineers and the...
Methanol Oxidation on Model Elemental and Bimetallic Transition Metal Surfaces
DEFF Research Database (Denmark)
Tritsaris, G. A.; Rossmeisl, J.
2012-01-01
Direct methanol fuel cells are a key enabling technology for clean energy conversion. Using density functional theory calculations, we study the methanol oxidation reaction on model electrodes. We discuss trends in reactivity for a set of monometallic and bimetallic transition metal surfaces, flat...... sites on the surface and to screen for novel bimetallic surfaces of enhanced activity. We suggest platinum copper surfaces as promising anode catalysts for direct methanol fuel cells....
Elements of an improved model of debris-flow motion
Iverson, R.M.
2009-01-01
A new depth-averaged model of debris-flow motion describes simultaneous evolution of flow velocity and depth, solid and fluid volume fractions, and pore-fluid pressure. Non-hydrostatic pore-fluid pressure is produced by dilatancy, a state-dependent property that links the depth-averaged shear rate and volumetric strain rate of the granular phase. Pore-pressure changes caused by shearing allow the model to exhibit rate-dependent flow resistance, despite the fact that the basal shear traction involves only rate-independent Coulomb friction. An analytical solution of simplified model equations shows that the onset of downslope motion can be accelerated or retarded by pore-pressure change, contingent on whether dilatancy is positive or negative. A different analytical solution shows that such effects will likely be muted if downslope motion continues long enough, because dilatancy then evolves toward zero, and volume fractions and pore pressure concurrently evolve toward steady states. ?? 2009 American Institute of Physics.
A voxel-based finite element model for the prediction of bladder deformation
Chai, Xiangfei; van Herk, Marcel; Hulshof, Maarten C. C. M.; Bel, Arjan
2012-01-01
Purpose: A finite element (FE) bladder model was previously developed to predict bladder deformation caused by bladder filling change. However, two factors prevent a wide application of FE models: (1) the labor required to construct a FE model with high quality mesh and (2) long computation time
Spectral element modelling of floating bodies in a Boussinesq framework
DEFF Research Database (Denmark)
Engsig-Karup, Allan Peter; Eskilsson, Claes; Ricchiuto, Mario
-RANS simulations of point-absorbers close to resonance have indicated that there might be significant differences between the power production using linear hydrodynamics and VOF-RANS. At present VOF-RANS simulations are too computational expensive to be used in the design cycle. In shallow and intermediate waters......The wave energy sector relies heavily on the use of linear hydrodynamic models for the assessment of motions, loads and power production. The linear codes are computationally efficient and produce good results if applied within their application window. However, recent studies using two-phase VOF...
Computer modeling of batteries from nonlinear circuit elements
Waaben, S.; Moskowitz, I.; Federico, J.; Dyer, C. K.
1985-06-01
Circuit analogs for a single battery cell have previously been composed of resistors, capacitors, and inductors. This work introduces a nonlinear circuit model for cell behavior. The circuit is configured around the PIN junction diode, whose charge-storage behavior has features similar to those of electrochemical cells. A user-friendly integrated circuit simulation computer program has reproduced a variety of complex cell responses including electrical isolation effects causing capacity loss, as well as potentiodynamic peaks and discharge phenomena hitherto thought to be thermodynamic in origin. However, in this work, they are shown to be simply due to spatial distribution of stored charge within a practical electrode.
Computer modeling of batteries from non-linear circuit elements
Waaben, S.; Federico, J.; Moskowitz, I.
1983-08-01
A simple non-linear circuit model for battery behavior is given. It is based on time-dependent features of the well-known PIN change storage diode, whose behavior is described by equations similar to those associated with electrochemical cells. The circuit simulation computer program ADVICE was used to predict non-linear response from a topological description of the battery analog built from advice components. By a reasonable choice of one set of parameters, the circuit accurately simulates a wide spectrum of measured non-linear battery responses to within a few millivolts.
Finite Element Modeling of Acoustic Shielding via Phononic Crystal structures
Lipp, Clémentine Sophie Sarah; Lozzi, Andrea
2016-01-01
Quality factor of Contour Mode Resonators (CMR) are mainly affected by energy losses due to acoustic waves leaving the resonator through the anchors. An engineering of the anchors in order to create a periodic variation in the acoustic impedance of the material, structures known as Phononic Crystals (PnCs), can help improve the Q factor by reflecting part of the acoustic waves. During this project, FEM models have been validated for both 1D and 2D PnCs. The behavior of the band diagram and qu...
Finite element model updating of natural fibre reinforced composite structure in structural dynamics
Directory of Open Access Journals (Sweden)
Sani M.S.M.
2016-01-01
Full Text Available Model updating is a process of making adjustment of certain parameters of finite element model in order to reduce discrepancy between analytical predictions of finite element (FE and experimental results. Finite element model updating is considered as an important field of study as practical application of finite element method often shows discrepancy to the test result. The aim of this research is to perform model updating procedure on a composite structure as well as trying improving the presumed geometrical and material properties of tested composite structure in finite element prediction. The composite structure concerned in this study is a plate of reinforced kenaf fiber with epoxy. Modal properties (natural frequency, mode shapes, and damping ratio of the kenaf fiber structure will be determined using both experimental modal analysis (EMA and finite element analysis (FEA. In EMA, modal testing will be carried out using impact hammer test while normal mode analysis using FEA will be carried out using MSC. Nastran/Patran software. Correlation of the data will be carried out before optimizing the data from FEA. Several parameters will be considered and selected for the model updating procedure.
Structural elements regulating amyloidogenesis: a cholinesterase model system.
Directory of Open Access Journals (Sweden)
Létitia Jean
2008-03-01
Full Text Available Polymerization into amyloid fibrils is a crucial step in the pathogenesis of neurodegenerative syndromes. Amyloid assembly is governed by properties of the sequence backbone and specific side-chain interactions, since fibrils from unrelated sequences possess similar structures and morphologies. Therefore, characterization of the structural determinants driving amyloid aggregation is of fundamental importance. We investigated the forces involved in the amyloid assembly of a model peptide derived from the oligomerization domain of acetylcholinesterase (AChE, AChE(586-599, through the effect of single point mutations on beta-sheet propensity, conformation, fibrilization, surfactant activity, oligomerization and fibril morphology. AChE(586-599 was chosen due to its fibrilization tractability and AChE involvement in Alzheimer's disease. The results revealed how specific regions and residues can control AChE(586-599 assembly. Hydrophobic and/or aromatic residues were crucial for maintaining a high beta-strand propensity, for the conformational transition to beta-sheet, and for the first stage of aggregation. We also demonstrated that positively charged side-chains might be involved in electrostatic interactions, which could control the transition to beta-sheet, the oligomerization and assembly stability. Further interactions were also found to participate in the assembly. We showed that some residues were important for AChE(586-599 surfactant activity and that amyloid assembly might preferentially occur at an air-water interface. Consistently with the experimental observations and assembly models for other amyloid systems, we propose a model for AChE(586-599 assembly in which a steric-zipper formed through specific interactions (hydrophobic, electrostatic, cation-pi, SH-aromatic, metal chelation and polar-polar would maintain the beta-sheets together. We also propose that the stacking between the strands in the beta-sheets along the fiber axis could
Yu, Dongjun; Wu, Xiaowei; Shen, Hongbin; Yang, Jian; Tang, Zhenmin; Qi, Yong; Yang, Jingyu
2012-12-01
Membrane proteins are encoded by ~ 30% in the genome and function importantly in the living organisms. Previous studies have revealed that membrane proteins' structures and functions show obvious cell organelle-specific properties. Hence, it is highly desired to predict membrane protein's subcellular location from the primary sequence considering the extreme difficulties of membrane protein wet-lab studies. Although many models have been developed for predicting protein subcellular locations, only a few are specific to membrane proteins. Existing prediction approaches were constructed based on statistical machine learning algorithms with serial combination of multi-view features, i.e., different feature vectors are simply serially combined to form a super feature vector. However, such simple combination of features will simultaneously increase the information redundancy that could, in turn, deteriorate the final prediction accuracy. That's why it was often found that prediction success rates in the serial super space were even lower than those in a single-view space. The purpose of this paper is investigation of a proper method for fusing multiple multi-view protein sequential features for subcellular location predictions. Instead of serial strategy, we propose a novel parallel framework for fusing multiple membrane protein multi-view attributes that will represent protein samples in complex spaces. We also proposed generalized principle component analysis (GPCA) for feature reduction purpose in the complex geometry. All the experimental results through different machine learning algorithms on benchmark membrane protein subcellular localization datasets demonstrate that the newly proposed parallel strategy outperforms the traditional serial approach. We also demonstrate the efficacy of the parallel strategy on a soluble protein subcellular localization dataset indicating the parallel technique is flexible to suite for other computational biology problems. The
Elements of complexity in subsurface modeling, exemplified with three case studies
Energy Technology Data Exchange (ETDEWEB)
Freedman, Vicky L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Truex, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rockhold, Mark [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bacon, Diana H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Freshley, Mark D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wellman, Dawn M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
2017-04-03
There are complexity elements to consider when applying subsurface flow and transport models to support environmental analyses. Modelers balance the benefits and costs of modeling along the spectrum of complexity, taking into account the attributes of more simple models (e.g., lower cost, faster execution, easier to explain, less mechanistic) and the attributes of more complex models (higher cost, slower execution, harder to explain, more mechanistic and technically defensible). In this paper, modeling complexity is examined with respect to considering this balance. The discussion of modeling complexity is organized into three primary elements: 1) modeling approach, 2) description of process, and 3) description of heterogeneity. Three examples are used to examine these complexity elements. Two of the examples use simulations generated from a complex model to develop simpler models for efficient use in model applications. The first example is designed to support performance evaluation of soil vapor extraction remediation in terms of groundwater protection. The second example investigates the importance of simulating different categories of geochemical reactions for carbon sequestration and selecting appropriate simplifications for use in evaluating sequestration scenarios. In the third example, the modeling history for a uranium-contaminated site demonstrates that conservative parameter estimates were inadequate surrogates for complex, critical processes and there is discussion on the selection of more appropriate model complexity for this application. All three examples highlight how complexity considerations are essential to create scientifically defensible models that achieve a balance between model simplification and complexity.
Elements of complexity in subsurface modeling, exemplified with three case studies
Freedman, Vicky L.; Truex, Michael J.; Rockhold, Mark L.; Bacon, Diana H.; Freshley, Mark D.; Wellman, Dawn M.
2017-09-01
There are complexity elements to consider when applying subsurface flow and transport models to support environmental analyses. Modelers balance the benefits and costs of modeling along the spectrum of complexity, taking into account the attributes of more simple models (e.g., lower cost, faster execution, easier to explain, less mechanistic) and the attributes of more complex models (higher cost, slower execution, harder to explain, more mechanistic and technically defensible). In this report, modeling complexity is examined with respect to considering this balance. The discussion of modeling complexity is organized into three primary elements: (1) modeling approach, (2) description of process, and (3) description of heterogeneity. Three examples are used to examine these complexity elements. Two of the examples use simulations generated from a complex model to develop simpler models for efficient use in model applications. The first example is designed to support performance evaluation of soil-vapor-extraction remediation in terms of groundwater protection. The second example investigates the importance of simulating different categories of geochemical reactions for carbon sequestration and selecting appropriate simplifications for use in evaluating sequestration scenarios. In the third example, the modeling history for a uranium-contaminated site demonstrates that conservative parameter estimates were inadequate surrogates for complex, critical processes and there is discussion on the selection of more appropriate model complexity for this application. All three examples highlight how complexity considerations are essential to create scientifically defensible models that achieve a balance between model simplification and complexity.
Directory of Open Access Journals (Sweden)
Mario Bermejo
2017-01-01
Full Text Available This paper describes two practical methodologies for modeling the collapse of reinforced concrete structures. They are validated with a real scale test of a two-floor structure which loses a bearing column. The objective is to achieve accurate simulations of collapse phenomena with moderate computational cost. Explicit finite element models are used with Lagrangian meshes, modeling concrete, and steel in a segregated manner. The first model uses 3D continuum finite elements for concrete and beams for steel bars, connected for displacement compatibility using a penalty method. The second model uses structural finite elements, shells for concrete, and beams for steel, connected in common nodes with an eccentricity formulation. Both are capable of simulating correctly the global behavior of the structural collapse. The continuum finite element model is more accurate for interpreting local failure but has an excessive computational cost for a complete building. The structural finite element model proposed has a moderate computational cost, yields sufficiently accurate results, and as a result is the recommended methodology.
Finite element modelling of aluminum alloy 2024-T3 under transverse impact loading
Abdullah, Ahmad Sufian; Kuntjoro, Wahyu; Yamin, A. F. M.
2017-12-01
Fiber metal laminate named GLARE is a new aerospace material which has great potential to be widely used in future lightweight aircraft. It consists of aluminum alloy 2024-T3 and glass-fiber reinforced laminate. In order to produce reliable finite element model of impact response or crashworthiness of structure made of GLARE, one can initially model and validate the finite element model of the impact response of its constituents separately. The objective of this study was to develop a reliable finite element model of aluminum alloy 2024-T3 under low velocity transverse impact loading using commercial software ABAQUS. Johnson-Cook plasticity and damage models were used to predict the alloy's material properties and impact behavior. The results of the finite element analysis were compared to the experiment that has similar material and impact conditions. Results showed good correlations in terms of impact forces, deformation and failure progressions which concluded that the finite element model of 2024-T3 aluminum alloy under low velocity transverse impact condition using Johnson-Cook plastic and damage models was reliable.
Efficient Analysis of Structures with Rotatable Elements Using Model Order Reduction
Directory of Open Access Journals (Sweden)
G. Fotyga
2016-04-01
Full Text Available This paper presents a novel full-wave technique which allows for a fast 3D finite element analysis of waveguide structures containing rotatable tuning elements of arbitrary shapes. Rotation of these elements changes the resonant frequencies of the structure, which can be used in the tuning process to obtain the S-characteristics desired for the device. For fast commutations of the response as the tuning elements are rotated, the 3D finite element method is supported by multilevel model-order reduction, orthogonal projection at the boundaries of macromodels and the operation called macromodels cloning. All the time-consuming steps are performed only once in the preparatory stage. In the tuning stage, only small parts of the domain are updated, by means of a special meshing technique. In effect, the tuning process is performed extremely rapidly. The results of the numerical experiments confirm the efficiency and validity of the proposed method.
Inducible control of subcellular RNA localization using a synthetic protein-RNA aptamer interaction.
Directory of Open Access Journals (Sweden)
Brian J Belmont
Full Text Available Evidence is accumulating in support of the functional importance of subcellular RNA localization in diverse biological contexts. In different cell types, distinct RNA localization patterns are frequently observed, and the available data indicate that this is achieved through a series of highly coordinated events. Classically, cis-elements within the RNA to be localized are recognized by RNA-binding proteins (RBPs, which then direct specific localization of a target RNA. Until now, the precise control of the spatiotemporal parameters inherent to regulating RNA localization has not been experimentally possible. Here, we demonstrate the development and use of a chemically-inducible RNA-protein interaction to regulate subcellular RNA localization. Our system is composed primarily of two parts: (i the Tet Repressor protein (TetR genetically fused to proteins natively involved in localizing endogenous transcripts; and (ii a target transcript containing genetically encoded TetR-binding RNA aptamers. TetR-fusion protein binding to the target RNA and subsequent localization of the latter are directly regulated by doxycycline. Using this platform, we demonstrate that enhanced and controlled subcellular localization of engineered transcripts are achievable. We also analyze rules for forward engineering this RNA localization system in an effort to facilitate its straightforward application to studying RNA localization more generally.
Wang, Q; Yang, Y; Fei, Q; Li, D; Li, J J; Meng, H; Su, N; Fan, Z H; Wang, B Q
2017-06-06
Objective: To build a three-dimensional finite element models of a modified posterior cervical single open-door laminoplasty with short-segmental lateral mass screws fusion. Methods: The C(2)-C(7) segmental data were obtained from computed tomography (CT) scans of a male patient with cervical spondylotic myelopathy and spinal stenosis.Three-dimensional finite element models of a modified cervical single open-door laminoplasty (before and after surgery) were constructed by the combination of software package MIMICS, Geomagic and ABAQUS.The models were composed of bony vertebrae, articulating facets, intervertebral disc and associated ligaments.The loads of moments 1.5Nm at different directions (flexion, extension, lateral bending and axial rotation)were applied at preoperative model to calculate intersegmental ranges of motion.The results were compared with the previous studies to verify the validation of the models. Results: Three-dimensional finite element models of the modified cervical single open- door laminoplasty had 102258 elements (preoperative model) and 161 892 elements (postoperative model) respectively, including C(2-7) six bony vertebraes, C(2-3)-C(6-7) five intervertebral disc, main ligaments and lateral mass screws.The intersegmental responses at the preoperative model under the loads of moments 1.5 Nm at different directions were similar to the previous published data. Conclusion: Three-dimensional finite element models of the modified cervical single open- door laminoplasty were successfully established and had a good biological fidelity, which can be used for further study.
Nakamura, Keiko; Tajima, Kiyoshi; Chen, Ker-Kong; Nagamatsu, Yuki; Kakigawa, Hiroshi; Masumi, Shin-ich
2013-12-01
This study focused on the application of novel finite-element analysis software for constructing a finite-element model from the computed tomography data of a human dentulous mandible. The finite-element model is necessary for evaluating the mechanical response of the alveolar part of the mandible, resulting from occlusal force applied to the teeth during biting. Commercially available patient-specific general computed tomography-based finite-element analysis software was solely applied to the finite-element analysis for the extraction of computed tomography data. The mandibular bone with teeth was extracted from the original images. Both the enamel and the dentin were extracted after image processing, and the periodontal ligament was created from the segmented dentin. The constructed finite-element model was reasonably accurate using a total of 234,644 nodes and 1,268,784 tetrahedral and 40,665 shell elements. The elastic moduli of the heterogeneous mandibular bone were determined from the bone density data of the computed tomography images. The results suggested that the software applied in this study is both useful and powerful for creating a more accurate three-dimensional finite-element model of a dentulous mandible from the computed tomography data without the need for any other software.
Modeling the mechanics of axonal fiber tracts using the embedded finite element method.
Garimella, Harsha T; Kraft, Reuben H
2017-05-01
A subject-specific human head finite element model with embedded axonal fiber tractography obtained from diffusion tensor imaging was developed. The axonal fiber tractography finite element model was coupled with the volumetric elements in the head model using the embedded element method. This technique enables the calculation of axonal strains and real-time tracking of the mechanical response of the axonal fiber tracts. The coupled model was then verified using pressure and relative displacement-based (between skull and brain) experimental studies and was employed to analyze a head impact, demonstrating the applicability of this method in studying axonal injury. Following this, a comparison study of different injury criteria was performed. This model was used to determine the influence of impact direction on the extent of the axonal injury. The results suggested that the lateral impact loading is more dangerous compared to loading in the sagittal plane, a finding in agreement with previous studies. Through this analysis, we demonstrated the viability of the embedded element method as an alternative numerical approach for studying axonal injury in patient-specific human head models. Copyright © 2016 John Wiley & Sons, Ltd.
Calvert, S.C.; Taale, H.; Hoogendoorn, S.P.
2014-01-01
In this contribution the Core Probability Framework (CPF) is introduced with the application of the Discrete-Element Core Probability Model (DE-CPM) as a new DNL for dynamic macroscopic modelling of stochastic traffic flow. The model is demonstrated for validation in a test case and for
Characterization of RanBPM Molecular Determinants that Control Its Subcellular Localization
Salemi, Louisa M.; Loureiro, Sandra O.; Schild-Poulter, Caroline
2015-01-01
RanBPM/RanBP9 is a ubiquitous, nucleocytoplasmic protein that is part of an evolutionary conserved E3 ubiquitin ligase complex whose function and targets in mammals are still unknown. RanBPM itself has been implicated in various cellular processes that involve both nuclear and cytoplasmic functions. However, to date, little is known about how RanBPM subcellular localization is regulated. We have conducted a systematic analysis of RanBPM regions that control its subcellular localization using RanBPM shRNA cells to examine ectopic RanBPM mutant subcellular localization without interference from the endogenously expressed protein. We show that several domains and motifs regulate RanBPM nuclear and cytoplasmic localization. In particular, RanBPM comprises two motifs that can confer nuclear localization, one proline/glutamine-rich motif in the extreme N-terminus which has a dominant effect on RanBPM localization, and a second motif in the C-terminus which minimally contributes to RanBPM nuclear targeting. We also identified a nuclear export signal (NES) which mutation prevented RanBPM accumulation in the cytoplasm. Likewise, deletion of the central RanBPM conserved domains (SPRY and LisH/CTLH) resulted in the relocalization of RanBPM to the nucleus, suggesting that RanBPM cytoplasmic localization is also conferred by protein-protein interactions that promote its cytoplasmic retention. Indeed we found that in the cytoplasm, RanBPM partially colocalizes with microtubules and associates with α-tubulin. Finally, in the nucleus, a significant fraction of RanBPM is associated with chromatin. Altogether, these analyses reveal that RanBPM subcellular localization results from the combined effects of several elements that either confer direct transport through the nucleocytoplasmic transport machinery or regulate it indirectly, likely through interactions with other proteins and by intramolecular folding. PMID:25659156
Elemental Content of Calcium Oxalate Stones from a Canine Model of Urinary Stone Disease.
Directory of Open Access Journals (Sweden)
David W Killilea
Full Text Available One of the most common types of urinary stones formed in humans and some other mammals is composed of calcium oxalate in ordered hydrated crystals. Many studies have reported a range of metals other than calcium in human stones, but few have looked at stones from animal models such as the dog. Therefore, we determined the elemental profile of canine calcium oxalate urinary stones and compared it to reported values from human stones. The content of 19 elements spanning 7-orders of magnitude was quantified in calcium oxalate stones from 53 dogs. The elemental profile of the canine stones was highly overlapping with human stones, indicating similar inorganic composition. Correlation and cluster analysis was then performed on the elemental profile from canine stones to evaluate associations between the elements and test for potential subgrouping based on elemental content. No correlations were observed with the most abundant metal calcium. However, magnesium and sulfur content correlated with the mineral hydration form, while phosphorous and zinc content correlated with the neuter status of the dog. Inter-elemental correlation analysis indicated strong associations between barium, phosphorous, and zinc content. Additionally, cluster analysis revealed subgroups within the stones that were also based primarily on barium, phosphorous, and zinc. These data support the use of the dog as a model to study the effects of trace metal homeostasis in urinary stone disease.
cAMP signaling in subcellular compartments.
Lefkimmiatis, Konstantinos; Zaccolo, Manuela
2014-09-01
In the complex microcosm of a cell, information security and its faithful transmission are critical for maintaining internal stability. To achieve a coordinated response of all its parts to any stimulus the cell must protect the information received from potentially confounding signals. Physical segregation of the information transmission chain ensures that only the entities able to perform the encoded task have access to the relevant information. The cAMP intracellular signaling pathway is an important system for signal transmission responsible for the ancestral 'flight or fight' response and involved in the control of critical functions including frequency and strength of heart contraction, energy metabolism and gene transcription. It is becoming increasingly apparent that the cAMP signaling pathway uses compartmentalization as a strategy for coordinating the large number of key cellular functions under its control. Spatial confinement allows the formation of cAMP signaling "hot spots" at discrete subcellular domains in response to specific stimuli, bringing the information in proximity to the relevant effectors and their recipients, thus achieving specificity of action. In this report we discuss how the different constituents of the cAMP pathway are targeted and participate in the formation of cAMP compartmentalized signaling events. We illustrate a few examples of localized cAMP signaling, with a particular focus on the nucleus, the sarcoplasmic reticulum and the mitochondria. Finally, we discuss the therapeutic potential of interventions designed to perturb specific cAMP cascades locally. Copyright © 2014 Elsevier Inc. All rights reserved.
Tau regulates the subcellular localization of calmodulin
Energy Technology Data Exchange (ETDEWEB)
Barreda, Elena Gomez de [Centro de Biologia Molecular ' Severo Ochoa' , CSIC/UAM, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Avila, Jesus, E-mail: javila@cbm.uam.es [Centro de Biologia Molecular ' Severo Ochoa' , CSIC/UAM, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); CIBER de Enfermedades Neurodegenerativas, 28031 Madrid (Spain)
2011-05-13
Highlights: {yields} In this work we have tried to explain how a cytoplasmic protein could regulate a cell nuclear function. We have tested the role of a cytoplasmic protein (tau) in regulating the expression of calbindin gene. We found that calmodulin, a tau-binding protein with nuclear and cytoplasmic localization, increases its nuclear localization in the absence of tau. Since nuclear calmodulin regulates calbindin expression, a decrease in nuclear calmodulin, due to the presence of tau that retains it at the cytoplasm, results in a change in calbindin expression. -- Abstract: Lack of tau expression in neuronal cells results in a change in the expression of few genes. However, little is known about how tau regulates gene expression. Here we show that the presence of tau could alter the subcellular localization of calmodulin, a protein that could be located at the cytoplasm or in the nucleus. Nuclear calmodulin binds to co-transcription factors, regulating the expression of genes like calbindin. In this work, we have found that in neurons containing tau, a higher proportion of calmodulin is present in the cytoplasm compared with neurons lacking tau and that an increase in cytoplasmic calmodulin correlates with a higher expression of calbindin.
Multimodal subcellular imaging with microcavity photoacoustic transducer.
Tan, Zhiliang; Tang, Zhilie; Wu, Yongbo; Liao, Yanfei; Dong, Wei; Guo, Lina
2011-01-31
Photoacoustic microscopy (PAM) is dominantly sensitive to the endogenous optical absorption compared with the confocal microscopy which images with scattering photons. PAM has similar structure such as optical transportation system, the optical scanning, and light source with the laser scanning confocal microscopy (LSCM). In order to match the PAM with LSCM, a special design microcavity photoacoustic (PA) transducer with high sensitivity is developed to detect the photoacoustic signals induced by modulated continuous wave (CW) laser. By employing a microcavity PA transducer, a PAM can be integrated with LSCM. Thus a simultaneous multimodal imaging can be obtained with the same laser source and optical system. The lateral resolutions of the PAM and the LSCM are both tested to be better than 1.25 μm. Then subcellular multimodal imaging can be achieved. Images from the two modes are corresponding with each other but functionally complementary. Combining PAM and LSCM provides more comprehensive information for the cytological test. This technique is demonstrated for imaging red-blood cells and meristematic cells.
Nazari, Mohammad Ali; Perrier, Pascal; Payan, Yohan
2013-01-01
Purpose: The authors aimed to design a distributed lambda model (DLM), which is well adapted to implement three-dimensional (3-D), finite-element descriptions of muscles. Method: A muscle element model was designed. Its stress-strain relationships included the active force-length characteristics of the ? model along the muscle fibers, together…
A review on application of finite element modelling in bone biomechanics
Directory of Open Access Journals (Sweden)
Sandeep Kumar Parashar
2016-09-01
Full Text Available In the past few decades the finite element modelling has been developed as an effective tool for modelling and simulation of the biomedical engineering system. Finite element modelling (FEM is a computational technique which can be used to solve the biomedical engineering problems based on the theories of continuum mechanics. This paper presents the state of art review on finite element modelling application in the four areas of bone biomechanics, i.e., analysis of stress and strain, determination of mechanical properties, fracture fixation design (implants, and fracture load prediction. The aim of this review is to provide a comprehensive detail about the development in the area of application of FEM in bone biomechanics during the last decades. It will help the researchers and the clinicians alike for the better treatment of patients and future development of new fixation designs.
Cohesive Modeling of Transverse Cracking in Laminates with a Single Layer of Elements per Ply
VanDerMeer, Frans P.; Davila, Carlos G.
2013-01-01
This study aims to bridge the gap between classical understanding of transverse cracking in cross-ply laminates and recent computational methods for the modeling of progressive laminate failure. Specifically, the study investigates under what conditions a finite element model with cohesive X-FEM cracks can reproduce the in situ effect for the ply strength. It is shown that it is possible to do so with a single element across the thickness of the ply, provided that the interface stiffness is properly selected. The optimal value for this interface stiffness is derived with an analytical shear lag model. It is also shown that, when the appropriate statistical variation of properties has been applied, models with a single element through the thickness of a ply can predict the density of transverse matrix cracks
Energy Technology Data Exchange (ETDEWEB)
Puckett, Anthony D. [Colorado State Univ., Fort Collins, CO (United States)
2000-09-01
The ability to model wave propagation in circular cylindrical bars of finite length numerically or analytically has many applications. In this thesis the capability of an explicit finite element method to model longitudinal waves in cylindrical rods with circular cross-sections is explored. Dispersion curves for the first four modes are compared to the analytical solution to determine the accuracy of various element sizes and time steps. Values for the time step and element size are determined that retain accuracy while minimizing computational time. The modeling parameters are validated by calculating a signal propagated with a broadband input force. Limitations on the applicability are considered along with modeling parameters that should be applicable to more general geometries.
Application of a data base management system to a finite element model
Rogers, J. L., Jr.
1980-01-01
In today's software market, much effort is being expended on the development of data base management systems (DBMS). Most commercially available DBMS were designed for business use. However, the need for such systems within the engineering and scientific communities is becoming apparent. A potential DBMS application that appears attractive is the handling of data for finite element engineering models. The applications of a commercially available, business-oriented DBMS to a structural engineering, finite element model is explored. The model, DBMS, an approach to using the DBMS, advantages and disadvantages are described. Plans for research on a scientific and engineering DBMS are discussed.
Modal testing and finite element model updating of laser spot welds
Abu Husain, N.; Haddad Khodaparast, H.; Snaylam, A.; James, S.; Sharp, M.; Dearden, G.; Ouyang, H.
2009-08-01
Spot welds are used extensively in automotive engineering. One of the latest manufacturing techniques for producing spot welds is Laser Welding. Finite element (FE) modelling of laser welds for dynamic analysis is a research issue because of the complexity and uncertainty of the welds and thus formed structures. In this work, FE model of the welds is developed by employing CWELD element in NASTRAN and its feasibility for representing laser spot welds is investigated. The FE model is updated based on the measured modal data of hat-plate structures and cast as a structural minimisation problem by the application of NASTRAN codes.
Sohaib, Muhammad
2011-01-01
This master thesis work presents the development of a parameterized automated generic model for the structural design of an aircraft wing. Furthermore, in order to perform finite element analysis on the aircraft wing geometry, the process of finite element mesh generation is automated. Aircraft conceptual design is inherently a multi-disciplinary design process which involves a large number of disciplines and expertise. In this thesis work, it is investigated how high-end CAD software‟s can b...
Finite element modelling of creep process - steady state stresses and strains
Directory of Open Access Journals (Sweden)
Sedmak Aleksandar S.
2014-01-01
Full Text Available Finite element modelling of steady state creep process has been described. Using an analogy of visco-plastic problem with a described procedure, the finite element method has been used to calculate steady state stresses and strains in 2D problems. An example of application of such a procedure have been presented, using real life problem - cylindrical pipe with longitudinal crack at high temperature, under internal pressure, and estimating its residual life, based on the C*integral evaluation.
Application of the Single Hardening Model in the Finite Element Program ABAQUS
DEFF Research Database (Denmark)
Jakobsen, Kim Parsberg
that several conceptual models, describing the non-linear and irreversible behaviour of soil, have been developed over the last three decades few of them are accessible in commercial finite element programs. In the present study the Single Hardening Model, that is a time independent elastoplastic constitutive...
A spherical wave expansion model of sequentially rotated phased arrays with arbitrary elements
DEFF Research Database (Denmark)
Larsen, Niels Vesterdal; Breinbjerg, Olav
2007-01-01
An analytical model of sequentially rotated phased arrays with arbitrary antenna elements is presented. It is applied to different arrays and the improvements of axial ratio bandwidth and copolar directivity are investigated. It is compared to a numerical method of auxiliary Sources model to asce...... to ascertain the accuracy and limitations. © 2007 Wiley Periodicals, Inc....
Finite element based bladder modeling for image guided radiotherapy of bladder cancer
Chai, Xiangfei; van Herk, Marcel; van de Kamer, Jeroen; Hulshof, Maarten; Remeijer, Peter; Lotz, Heidi; Bel, Arjan
Purpose: A biomechanical model was constructed to give insight into pelvic organ motion as a result of bladder filling changes. Methods: The authors used finite element (FE) modeling to simulate bladder wall deformation caused by urine inflow. For ten volunteers, a series of MRI scans of the pelvic
DEFF Research Database (Denmark)
Rohde, John; Toftegaard, Thomas Skjødeberg
2012-01-01
Novel parametric finite-element models are provided for discrete SMD capacitors and inductors in the frequency range 100 MHz to 4 GHz. The aim of the models is to facilitate performance optimization and analysis of RF PCB designs integrating these SMD components with layout geometries such as ant...
Local buckling of aluminium structures exposed to fire. Part 2: Finite element models
Maljaars, J.; Soetens, F.
2009-01-01
A test series was carried out and reported in a corresponding paper on slender aluminium alloy sections, loaded in compression at elevated temperature. This paper gives the results of simulations of these tests with a finite element model. For this purpose, a novel constitutive model for fire
Development of a finite element model of the Thor crash test dummy
2000-03-06
The paper describes the development of a detailed finite element model of the new advanced frontal crash test dummy, Thor. The Volpe Center is developing the model for LS-DYNA in collaboration with GESAC, the dummy hardware developer, under the direc...
Real-time volumetric deformable models for surgery simulation using finite elements and condensation
DEFF Research Database (Denmark)
Bro-Nielsen, Morten; Cotin, S.
1996-01-01
This paper discusses the application of SD solid volumetric Finite Element models to surgery simulation. In particular it introduces three new ideas for solving the problem of achieving real-time performance for these models. The simulation system we have developed is described and we demonstrate...
Creating a Test-Validated Finite-Element Model of the X-56A Aircraft Structure
Pak, Chan-Gi; Truong, Samson
2014-01-01
Small modeling errors in a finite-element model will eventually induce errors in the structural flexibility and mass, thus propagating into unpredictable errors in the unsteady aerodynamics and the control law design. One of the primary objectives of the X-56A Multi-Utility Technology Testbed aircraft is the flight demonstration of active flutter suppression and, therefore, in this study, the identification of the primary and secondary modes for the structural model tuning based on the flutter analysis of the X-56A aircraft. The ground-vibration test-validated structural dynamic finite-element model of the X-56A aircraft is created in this study. The structural dynamic finite-element model of the X-56A aircraft is improved using a model-tuning tool. In this study, two different weight configurations of the X-56A aircraft have been improved in a single optimization run. Frequency and the cross-orthogonality (mode shape) matrix were the primary focus for improvement, whereas other properties such as c.g. location, total weight, and off-diagonal terms of the mass orthogonality matrix were used as constraints. The end result was an improved structural dynamic finite-element model configuration for the X-56A aircraft. Improved frequencies and mode shapes in this study increased average flutter speeds of the X-56A aircraft by 7.6% compared to the baseline model.
Creating a Test Validated Structural Dynamic Finite Element Model of the X-56A Aircraft
Pak, Chan-Gi; Truong, Samson
2014-01-01
Small modeling errors in the finite element model will eventually induce errors in the structural flexibility and mass, thus propagating into unpredictable errors in the unsteady aerodynamics and the control law design. One of the primary objectives of the Multi Utility Technology Test-bed, X-56A aircraft, is the flight demonstration of active flutter suppression, and therefore in this study, the identification of the primary and secondary modes for the structural model tuning based on the flutter analysis of the X-56A aircraft. The ground vibration test-validated structural dynamic finite element model of the X-56A aircraft is created in this study. The structural dynamic finite element model of the X-56A aircraft is improved using a model tuning tool. In this study, two different weight configurations of the X-56A aircraft have been improved in a single optimization run. Frequency and the cross-orthogonality (mode shape) matrix were the primary focus for improvement, while other properties such as center of gravity location, total weight, and offdiagonal terms of the mass orthogonality matrix were used as constraints. The end result was a more improved and desirable structural dynamic finite element model configuration for the X-56A aircraft. Improved frequencies and mode shapes in this study increased average flutter speeds of the X-56A aircraft by 7.6% compared to the baseline model.
Vermolen, F.J.; Javierre, E.
2011-01-01
A simplified finite-element model for wound healing is proposed. The model takes into account the sequential steps of dermal regeneration, wound contraction, angiogenesis and wound closure. An innovation in the present study is the combination of the aforementioned partially overlapping processes,
HECTAR: a method to predict subcellular targeting in heterokonts
National Research Council Canada - National Science Library
Gschloessl, Bernhard; Guermeur, Yann; Cock, J Mark
2008-01-01
.... To understand the biology of these organisms, it is necessary to be able to predict the subcellular localisation of their proteins but this is not straightforward, particularly in photosynthetic...
A high performance finite element model for wind farm modeling in forested areas
Owen, Herbert; Avila, Matias; Folch, Arnau; Cosculluela, Luis; Prieto, Luis
2015-04-01
Wind energy has grown significantly during the past decade and is expected to continue growing in the fight against climate change. In the search for new land where the impact of the wind turbines is small several wind farms are currently being installed in forested areas. In order to optimize the distribution of the wind turbines within the wind farm the Reynolds Averaged Navier Stokes equations are solved over the domain of interest using either commercial or in house codes. The existence of a canopy alters the Atmospheric Boundary Layer wind profile close to the ground. Therefore in order to obtain a more accurate representation of the flow in forested areas modification to both the Navier Stokes and turbulence variables equations need to be introduced. Several existing canopy models have been tested in an academic problem showing that the one proposed by Sogachev et. al gives the best results. This model has been implemented in an in house CFD solver named Alya. It is a high performance unstructured finite element code that has been designed from scratch to be able to run in the world's biggest supercomputers. Its scalabililty has recently been tested up to 100000 processors in both American and European supercomputers. During the past three years the code has been tuned and tested for wind energy problems. Recent efforts have focused on the canopy model following industry needs. In this work we shall benchmark our results in a wind farm that is currently being designed by Scottish Power and Iberdrola in Scotland. This is a very interesting real case with extensive experimental data from five different masts with anemometers at several heights. It is used to benchmark both the wind profiles and the speed up obtained between different masts. Sixteen different wind directions are simulated. The numerical model provides very satisfactory results for both the masts that are affected by the canopy and those that are not influenced by it.
Subcellular targeting strategies for drug design and delivery.
Rajendran, Lawrence; Knölker, Hans-Joachim; Simons, Kai
2010-01-01
Many drug targets are localized to particular subcellular compartments, yet current drug design strategies are focused on bioavailability and tissue targeting and rarely address drug delivery to specific intracellular compartments. Insights into how the cell traffics its constituents to these different cellular locations could improve drug design. In this Review, we explore the fundamentals of membrane trafficking and subcellular organization, as well as strategies used by pathogens to appropriate these mechanisms and the implications for drug design and delivery.
Subcellular analysis by laser ablation electrospray ionization mass spectrometry
Vertes, Akos; Stolee, Jessica A; Shrestha, Bindesh
2014-12-02
In various embodiments, a method of laser ablation electrospray ionization mass spectrometry (LAESI-MS) may generally comprise micro-dissecting a cell comprising at least one of a cell wall and a cell membrane to expose at least one subcellular component therein, ablating the at least one subcellular component by an infrared laser pulse to form an ablation plume, intercepting the ablation plume by an electrospray plume to form ions, and detecting the ions by mass spectrometry.
Reducing Data Size Inequality during Finite Element Model Separation into Superelements
Directory of Open Access Journals (Sweden)
Yu. V. Berchun
2015-01-01
Full Text Available The work considers two methods of automatic separation of final element model into super-elements to decrease computing resource demand when solving the linearly - elastic problems of solid mechanics. The first method represents an algorithm to separate a final element grid into simply connected sub-regions according to the set specific number of nodes in the super-element. The second method is based on the generation of a super-element with the set specific data size of the coefficient matrix of the system of equations of the internal nodes balance, which are eliminated during super-element transformation. Both methods are based on the theory of graphs. The data size of a matrix of coefficients is assessed on the assumption that the further solution of a task will use Holetsky’s method. Before assessment of data size, a KatkhillaMackey's (Cuthill-McKee algorithm renumbers the internal nodes of a super-element both to decrease a profile width of the appropriate matrix of the system of equations of balance and to reduce the number of nonzero elements. Test examples show work results of abovementioned methods compared in terms of inequality of generated super-element separation according to the number of nodes and data size of the coefficient matrix of the system of equations of the internal nodes balance. It is shown that the offered approach provides smaller inequality of data size of super-element matrixes, with slightly increasing inequality by the number of tops.
2D spectral element modeling of GPR wave propagation in inhomogeneous media
Zarei, Sajad; Oskooi, Behrooz; Amini, Navid; Dalkhani, Amin Rahimi
2016-10-01
We present a spectral element method, for simulation of ground-penetrating radar (GPR) in two dimensions. The technique is based upon a weak formulation of the equations of Maxwell and combines the flexibility of the elemental-based methods with the accuracy of the spectral based methods. The wave field on the elements is discretized using high-degree Lagrange interpolation and integration over an element is accomplished based upon the Gauss-Lobatto-Legendre integration rule. As a result, the mass matrix and the damping matrix are always diagonal, which drastically reduces the computational cost. We first develop the formulation of 2D spectral element method (SEM) in the time-domain based on Maxwell's equations. The presented formulation is with matrix notation that simplifies the implementation of the relations in computer programs, especially in MATLAB application. We discuss the differences between spectral element method and finite-element method in the time-domain. Also, we show that the SEM numerical dispersion is much lower than FEM. To absorb waves at the edges of the modeling domain, we implement first order Clayton and Engquist absorbing boundary conditions (CE-ABC) introduced in numerical finite-difference modeling of seismic wave propagation. We used the SEM to simulate a complex model to show its abilities and limitations. As well as, one distinct advantage of SEM is that we can easily define our model features in nodal points, because the integration points and the interpolation points are similar that makes it very flexible in simulation of complex models.
Research on quasi-dynamic calibration model of plastic sensitive element based on neural networks
Wang, Fang; Kong, Deren; Yang, Lixia; Zhang, Zouzou
2017-08-01
Quasi-dynamic calibration accuracy of the plastic sensitive element depends on the accuracy of the fitting model between pressure and deformation. By using the excellent nonlinear mapping ability of RBF (Radial Basis Function) neural network, a calibration model is established which use the peak pressure as the input and use the deformation of the plastic sensitive element as the output in this paper. The calibration experiments of a batch of copper cylinders are carried out on the quasi-dynamic pressure calibration device, which pressure range is within the range of 200MPa to 700MPa. The experiment data are acquired according to the standard pressure monitoring system. The network train and study are done to quasi dynamic calibration model based on neural network by using MATLAB neural network toolbox. Taking the testing samples as the research object, the prediction accuracy of neural network model is compared with the exponential fitting model and the second-order polynomial fitting model. The results show that prediction of the neural network model is most close to the testing samples, and the accuracy of prediction model based on neural network is better than 0.5%, respectively one order higher than the second-order polynomial fitting model and two orders higher than the exponential fitting model. The quasi-dynamic calibration model between pressure peak and deformation of plastic sensitive element, which is based on neural network, provides important basis for creating higher accuracy quasi-dynamic calibration table.
Dai, Qingli; Sadd, Martin H.; You, Zhanping
2006-09-01
This study presents a finite element (FE) micromechanical modelling approach for the simulation of linear and damage-coupled viscoelastic behaviour of asphalt mixture. Asphalt mixture is a composite material of graded aggregates bound with mastic (asphalt and fine aggregates). The microstructural model of asphalt mixture incorporates an equivalent lattice network structure whereby intergranular load transfer is simulated through an effective asphalt mastic zone. The finite element model integrates the ABAQUS user material subroutine with continuum elements for the effective asphalt mastic and rigid body elements for each aggregate. A unified approach is proposed using Schapery non-linear viscoelastic model for the rate-independent and rate-dependent damage behaviour. A finite element incremental algorithm with a recursive relationship for three-dimensional (3D) linear and damage-coupled viscoelastic behaviour is developed. This algorithm is used in a 3D user-defined material model for the asphalt mastic to predict global linear and damage-coupled viscoelastic behaviour of asphalt mixture.For linear viscoelastic study, the creep stiffnesses of mastic and asphalt mixture at different temperatures are measured in laboratory. A regression-fitting method is employed to calibrate generalized Maxwell models with Prony series and generate master stiffness curves for mastic and asphalt mixture. A computational model is developed with image analysis of sectioned surface of a test specimen. The viscoelastic prediction of mixture creep stiffness with the calibrated mastic material parameters is compared with mixture master stiffness curve over a reduced time period.In regard to damage-coupled viscoelastic behaviour, cyclic loading responses of linear and rate-independent damage-coupled viscoelastic materials are compared. Effects of particular microstructure parameters on the rate-independent damage-coupled viscoelastic behaviour are also investigated with finite element
Chabanas, Matthieu; Luboz, Vincent; Payan, Yohan
2003-06-01
This paper addresses the prediction of face soft tissue deformations resulting from bone repositioning in maxillofacial surgery. A generic 3D Finite Element model of the face soft tissues was developed. Face muscles are defined in the mesh as embedded structures, with different mechanical properties (transverse isotropy, stiffness depending on muscle contraction). Simulations of face deformations under muscle actions can thus be performed. In the context of maxillofacial surgery, this generic soft-tissue model is automatically conformed to patient morphology by elastic registration, using skin and skull surfaces segmented from a CT scan. Some elements of the patient mesh could be geometrically distorted during the registration, which disables Finite Element analysis. Irregular elements are thus detected and automatically regularized. This semi-automatic patient model generation is robust, fast and easy to use. Therefore it seems compatible with clinical use. Six patient models were successfully built, and simulations of soft tissue deformations resulting from bone displacements performed on two patient models. Both the adequation of the models to the patient morphologies and the simulations of post-operative aspects were qualitatively validated by five surgeons. Their conclusions are that the models fit the morphologies of the patients, and that the predicted soft tissue modifications are coherent with what they would expect.
Validation Assessment of a Glass-to-Metal Seal Finite-Element Model
Energy Technology Data Exchange (ETDEWEB)
Jamison, Ryan Dale [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Buchheit, Thomas E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Emery, John M [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Romero, Vicente J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stavig, Mark E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Newton, Clay S. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brown, Arthur [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2017-10-01
Sealing glasses are ubiquitous in high pressure and temperature engineering applications, such as hermetic feed-through electrical connectors. A common connector technology are glass-to-metal seals where a metal shell compresses a sealing glass to create a hermetic seal. Though finite-element analysis has been used to understand and design glass-to-metal seals for many years, there has been little validation of these models. An indentation technique was employed to measure the residual stress on the surface of a simple glass-to-metal seal. Recently developed rate- dependent material models of both Schott 8061 and 304L VAR stainless steel have been applied to a finite-element model of the simple glass-to-metal seal. Model predictions of residual stress based on the evolution of material models are shown. These model predictions are compared to measured data. Validity of the finite- element predictions is discussed. It will be shown that the finite-element model of the glass-to-metal seal accurately predicts the mean residual stress in the glass near the glass-to-metal interface and is valid for this quantity of interest.
Finite element modeling of hyper-viscoelasticity of peripheral nerve ultrastructures.
Chang, Cheng-Tao; Chen, Yu-Hsing; Lin, Chou-Ching K; Ju, Ming-Shaung
2015-07-16
The mechanical characteristics of ultrastructures of rat sciatic nerves were investigated through animal experiments and finite element analyses. A custom-designed dynamic testing apparatus was used to conduct in vitro transverse compression experiments on the nerves. The optical coherence tomography (OCT) was utilized to record the cross-sectional images of nerve during the dynamic testing. Two-dimensional finite element models of the nerves were built based on their OCT images. A hyper-viscoelastic model was employed to describe the elastic and stress relaxation response of each ultrastructure of the nerve, namely the endoneurium, the perineurium and the epineurium. The first-order Ogden model was employed to describe the elasticity of each ultrastructure and a generalized Maxwell model for the relaxation. The inverse finite element analysis was used to estimate the material parameters of the ultrastructures. The results show the instantaneous shear modulus of the ultrastructures in decreasing order is perineurium, endoneurium, and epineurium. The FE model combined with the first-order Ogden model and the second-order Prony series is good enough for describing the compress-and-hold response of the nerve ultrastructures. The integration of OCT and the nonlinear finite element modeling may be applicable to study the viscoelasticity of peripheral nerve down to the ultrastructural level. Copyright © 2015 Elsevier Ltd. All rights reserved.
Transport and dispersion of pollutants in surface impoundments: a finite element model
Energy Technology Data Exchange (ETDEWEB)
Yeh, G.T.
1980-07-01
A surface impoundment model in finite element (SIMFE) is presented to enable the simulation of flow circulations and pollutant transport and dispersion in natural or artificial lakes, reservoirs or ponds with any number of islands. This surface impoundment model consists of two sub-models: hydrodynamic and pollutant transport models. Both submodels are simulated by the finite element method. While the hydrodynamic model is solved by the standard Galerkin finite element scheme, the pollutant transport model can be solved by any of the twelve optional finite element schemes built in the program. Theoretical approximations and the numerical algorithm of SIMFE are described. Detail instruction of the application are given and listing of FORTRAN IV source program are provided. Two sample problems are given. One is for an idealized system with a known solution to show the accuracy and partial validation of the models. The other is applied to Prairie Island for a set of hypothetical input data, typifying a class of problems to which SIMFE may be applied.
3-d finite element model development for biomechanics: a software demonstration
Energy Technology Data Exchange (ETDEWEB)
Hollerbach, K.; Hollister, A.M.; Ashby, E.
1997-03-01
Finite element analysis is becoming an increasingly important part of biomechanics and orthopedic research, as computational resources become more powerful, and data handling algorithms become more sophisticated. Until recently, tools with sufficient power did not exist or were not accessible to adequately model complicated, three-dimensional, nonlinear biomechanical systems. In the past, finite element analyses in biomechanics have often been limited to two-dimensional approaches, linear analyses, or simulations of single tissue types. Today, we have the resources to model fully three-dimensional, nonlinear, multi-tissue, and even multi-joint systems. The authors will present the process of developing these kinds of finite element models, using human hand and knee examples, and will demonstrate their software tools.
European column buckling curves and finite element modelling including high strength steels
DEFF Research Database (Denmark)
Jönsson, Jeppe; Stan, Tudor-Cristian
2017-01-01
Eurocode allows for finite element modelling of plated steel structures, however the information in the code on how to perform the analysis or what assumptions to make is quite sparse. The present paper investigates the deterministic modelling of flexural column buckling using plane shell elements...... in advanced non-linear finite element analysis (GMNIA) with the goal of being able to reestablish the European buckling curves. A short comprehensive historical review is given on the development of the European buckling curves and the related assumptions made with respect to deterministic modelling of column...... deterministic analysis can be performed based on given magnitudes of characteristic yield stress, material stress–strain relationship, and given characteristic values for imperfections and residual stresses. The magnitude of imperfections and residual stresses are discussed as well as how the use of equivalent...
Krueger, Stephan; Steinhauser, Dirk; Lisec, Jan; Giavalisco, Patrick
2014-01-01
Every biological organism relies for its proper function on interactions between a multitude of molecular entities like RNA, proteins, and metabolites. The comprehensive measurement and the analysis of all these entities would therefore provide the basis for our functional and mechanistic understanding of most biological processes. Next to their amount and identity, it is most crucial to also gain information about the subcellular distribution and the flux of the measured compounds between the cellular compartments. That is, we want to understand not only the individual functions of cellular components but also their functional implications within the whole organism. While the analysis of macromolecules like DNA, RNA, and proteins is quite established and robust, analytical techniques for small metabolites, which are prone to diffusion and degradation processes, provide a host of unsolved challenges. The major limitations here are the metabolite conversion and relocation processes. In this protocol we describe a methodological workflow which includes a nonaqueous fractionation method, a fractionated two-phase liquid/liquid extraction protocol, and a software package, which together allow extracting and analyzing starch, proteins, and especially polar and lipophilic metabolites from a single sample towards the estimation of their subcellular distributions.
Abouhossein, Alireza; Weisse, Bernhard; Ferguson, Stephen J
2011-06-01
The human spinal segment is an inherently complex structure, a combination of flexible and semi-rigid articulating elements stabilised by seven principal ligaments. An understanding of how mechanical loading is shared among these passive elements of the segment is required to estimate tissue failure stresses. A 3D rigid body model of the complete lumbar spine has been developed to facilitate the prediction of load sharing across the passive elements. In contrast to previous multibody models, this model includes a non-linear, six degrees of freedom intervertebral disc, facet bony articulations and all spinal ligaments. Predictions of segmental kinematics and facet joint forces, in response to pure moment loading (flexion-extension), were compared to published in vitro data. On inclusion of detailed representation of the disc and facets, the multibody model fully captures the non-linear flexibility response of the spinal segment, i.e. coupled motions and a mobile instantaneous centre of rotation. Predicted facet joint forces corresponded well with reported values. For the loading case considered, the model predicted that the ligaments are the main stabilising elements within the physiological motion range; however, the disc resists a greater proportion of the applied load as the spine is fully flexed. In extension, the facets and capsular ligaments provide the principal resistance. Overall patterns of load distribution to the spinal ligaments are in agreement with previous predictions; however, the current model highlights the important role of the intraspinous ligament in flexion and the potentially high risk of failure. Several important refinements to the multibody modelling of the passive elements of the spine have been described, and such an enhanced passive model can be easily integrated into a full musculoskeletal model for the prediction of spinal loading for a variety of daily activities.
A three-dimensional spectral element model for the solution of the hydrostatic primitive equations
Iskandarani, M; Levin, J C
2003-01-01
We present a spectral element model to solve the hydrostatic primitive equations governing large-scale geophysical flows. The highlights of this new model include unstructured grids, dual h-p paths to convergence, and good scalability characteristics on present day parallel computers including Beowulf-class systems. The behavior of the model is assessed on three process-oriented test problems involving wave propagation, gravitational adjustment, and nonlinear flow rectification, respectively. The first of these test problems is a study of the convergence properties of the model when simulating the linear propagation of baroclinic Kelvin waves. The second is an intercomparison of spectral element and finite-difference model solutions to the adjustment of a density front in a straight channel. Finally, the third problem considers the comparison of model results to measurements obtained from a laboratory simulation of flow around a submarine canyon. The aforementioned tests demonstrate the good performance of th...
Dispersion analysis of the Pn -Pn-1DG mixed finite element pair for atmospheric modelling
Melvin, Thomas
2018-02-01
Mixed finite element methods provide a generalisation of staggered grid finite difference methods with a framework to extend the method to high orders. The ability to generate a high order method is appealing for applications on the kind of quasi-uniform grids that are popular for atmospheric modelling, so that the method retains an acceptable level of accuracy even around special points in the grid. The dispersion properties of such schemes are important to study as they provide insight into the numerical adjustment to imbalance that is an important component in atmospheric modelling. This paper extends the recent analysis of the P2 - P1DG pair, that is a quadratic continuous and linear discontinuous finite element pair, to higher polynomial orders and also spectral element type pairs. In common with the previously studied element pair, and also with other schemes such as the spectral element and discontinuous Galerkin methods, increasing the polynomial order is found to provide a more accurate dispersion relation for the well resolved part of the spectrum but at the cost of a number of unphysical spectral gaps. The effects of these spectral gaps are investigated and shown to have a varying impact depending upon the width of the gap. Finally, the tensor product nature of the finite element spaces is exploited to extend the dispersion analysis into two-dimensions.
Relevant models and elements of integrated care for multi-morbidity: Results of a scoping review.
Struckmann, Verena; Leijten, Fenna R M; van Ginneken, Ewout; Kraus, Markus; Reiss, Miriam; Spranger, Anne; Boland, Melinde R S; Czypionka, Thomas; Busse, Reinhard; Rutten-van Mölken, Maureen
2017-10-06
In order to provide adequate care for the growing group of persons with multi-morbidity, innovative integrated care programmes are appearing. The aims of the current scoping review were to i) identify relevant models and elements of integrated care for multi-morbidity and ii) to subsequently identify which of these models and elements are applied in integrated care programmes for multi-morbidity. A scoping review was conducted in the following scientific databases: Cochrane, Embase, PubMed, PsycInfo, Scopus, Sociological Abstracts, Social Services Abstracts, and Web of Science. A search strategy encompassing a) models, elements and programmes, b) integrated care, and c) multi-morbidity was used to identify both models and elements (aim 1) and implemented programmes of integrated care for multi-morbidity (aim 2). Data extraction was done by two independent reviewers. Besides general information on publications (e.g. publication year, geographical region, study design, and target group), data was extracted on models and elements that publications refer to, as well as which models and elements are applied in recently implemented programmes in the EU and US. In the review 11,641 articles were identified. After title and abstract screening, 272 articles remained. Full text screening resulted in the inclusion of 92 articles on models and elements, and 50 articles on programmes, of which 16 were unique programmes in the EU (n=11) and US (n=5). Wagner's Chronic Care Model (CCM) and the Guided Care Model (GCM) were most often referred to (CCM n=31; GCM n=6); the majority of the other models found were only referred to once (aim 1). Both the CCM and GCM focus on integrated care in general and do not explicitly focus on multi-morbidity. Identified elements of integrated care were clustered according to the WHO health system building blocks. Most elements pertained to 'service delivery'. Across all components, the five elements referred to most often are person-centred care
Empirical Modeling of Heating Element Power for the Czochralski Crystallization Process
Directory of Open Access Journals (Sweden)
Magnus Komperød
2010-01-01
Full Text Available The Czochralski (CZ crystallization process is used to produce monocrystalline silicon. Monocrystalline silicon is used in solar cell wafers and in computers and electronics. The CZ process is a batch process, where multicrystalline silicon is melted in a crucible and later solidifies on a monocrystalline seed crystal. The crucible is heated using a heating element where the power is manipulated using a triode for alternating current (TRIAC. As the electric resistance of the heating element increases by increased temperature, there are significant dynamics from the TRIAC input signal (control system output to the actual (measured heating element power. The present paper focuses on empirical modeling of these dynamics. The modeling is based on a dataset logged from a real-life CZ process. Initially the dataset is preprocessed by detrending and handling outliers. Next, linear ARX, ARMAX, and output error (OE models are identfied. As the linear models do not fully explain the process' behavior, nonlinear system identification is applied. The Hammerstein-Wiener (HW model structure is chosen. The final model identified is a Hammerstein model, i.e. a HW model with nonlinearity at the input, but not at the output. This model has only one more identified parameter than the linear OE model, but still improves the optimization criterion (mean squared ballistic simulation errors by a factor of six. As there is no nonlinearity at the output, the dynamics from the prediction error to the model output are linear, which allows a noise model to be added. Comparison of a Hammerstein model with noise model and the linear ARMAX model, both optimized for mean squared one-step-ahead prediction errors, shows that this optimization criterion is 42% lower for the Hammerstein model. Minimizing the number of parameters to be identified has been an important consideration throughout the modeling work.
Chen, G; Wu, F Y; Liu, Z C; Yang, K; Cui, F
2015-08-01
Subject-specific finite element (FE) models can be generated from computed tomography (CT) datasets of a bone. A key step is assigning material properties automatically onto finite element models, which remains a great challenge. This paper proposes a node-based assignment approach and also compares it with the element-based approach in the literature. Both approaches were implemented using ABAQUS. The assignment procedure is divided into two steps: generating the data file of the image intensity of a bone in a MATLAB program and reading the data file into ABAQUS via user subroutines. The node-based approach assigns the material properties to each node of the finite element mesh, while the element-based approach assigns the material properties directly to each integration point of an element. Both approaches are independent from the type of elements. A number of FE meshes are tested and both give accurate solutions; comparatively the node-based approach involves less programming effort. The node-based approach is also independent from the type of analyses; it has been tested on the nonlinear analysis of a Sawbone femur. The node-based approach substantially improves the level of automation of the assignment procedure of bone material properties. It is the simplest and most powerful approach that is applicable to many types of analyses and elements. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.
The Effect of Ligament Modeling Technique on Knee Joint Kinematics: A Finite Element Study
Kiapour, Ata M.; Kaul, Vikas; Kiapour, Ali; Quatman, Carmen E.; Wordeman, Samuel C.; Hewett, Timothy E.; Demetropoulos, Constantine K.; Goel, Vijay K.
2014-01-01
Finite element (FE) analysis has become an increasingly popular technique in the study of human joint biomechanics, as it allows for detailed analysis of the joint/tissue behavior under complex, clinically relevant loading conditions. A wide variety of modeling techniques have been utilized to model knee joint ligaments. However, the effect of a selected constitutive model to simulate the ligaments on knee kinematics remains unclear. The purpose of the current study was to determine the effec...
Implementation of the Modified Hoek-Brown Model into the Finite Element Method
DEFF Research Database (Denmark)
Sørensen, Emil Smed; Clausen, Johan Christian; Merifield, Richard S.
2015-01-01
The Hoek-Brown model for near-homogeneous rock masses will, in some cases, overpredict the tensile strength of the material. In some cases this can lead to unsafe design of structures. Therefore, a tension cut-off is introduced and the model is implemented into an elasto-plastic framework for use...... with the finite element method. The use of the model is illustrated with a computational example calculating the safety of mining tunnel roof....
Modeling dynamically coupled fluid-duct systems with finite line elements
Saxon, J. B.
1994-01-01
Structural analysis of piping systems, especially dynamic analysis, typically considers the duct structure and the contained fluid column separately. Coupling of these two systems, however, forms a new dynamic system with characteristics not necessarily described by the superposition of the two component system's characteristics. Methods for modeling the two coupled components simultaneously using finite line elements are presented. Techniques for general duct intersections, area or direction changes, long radius bends, hydraulic losses, and hydraulic impedances are discussed. An example problem and results involving time transients are presented. Additionally, a program to enhance post-processing of line element models is discussed.
Finite Element Modelling for Static and Free Vibration Response of Functionally Graded Beam
Khan, Ateeb Ahmad; Naushad Alam, M.; Rahman, Najeeb ur; Wajid, Mustafa
2016-01-01
Abstract A 1D Finite Element model for static response and free vibration analysis of functionally graded material (FGM) beam is presented in this work. The FE model is based on efficient zig-zag theory (ZIGT) with two noded beam element having four degrees of freedom at each node. Linear interpolation is used for the axial displacement and cubic hermite interpolation is used for the deflection. Out of a large variety of FGM systems available, Al/SiC and Ni/Al2O3 metal/ceramic FGM system has ...
The next step in coastal numerical models: spectral/hp element methods?
DEFF Research Database (Denmark)
Eskilsson, Claes; Engsig-Karup, Allan Peter; Sherwin, Spencer J.
2005-01-01
In this paper we outline the application of spectral/hp element methods for modelling nonlinear and dispersive waves. We present one- and two-dimensional test cases for the shallow water equations and Boussinesqtype equations – including highly dispersive Boussinesq-type equations.......In this paper we outline the application of spectral/hp element methods for modelling nonlinear and dispersive waves. We present one- and two-dimensional test cases for the shallow water equations and Boussinesqtype equations – including highly dispersive Boussinesq-type equations....
Wang, Zheng-zhi; Xu, Yun; Gu, Ping
2012-04-01
A polypropylene nanofibrillar array was successfully fabricated by template-assisted nanofabrication strategy. Adhesion properties of this gecko-inspired structure were studied through two parallel and independent approaches: experiments and finite element simulations. Experimental results show relatively good normal adhesion, but accompanied by high preloads. The interfacial adhesion was modelled by effective spring elements with piecewise-linear constitution. The effective elasticity of the fibre-array system was originally calculated from our measured elasticity of single nanowire. Comparisons of the experimental and simulative results reveal quantitative agreement except for some explainable deviations, which suggests the potential applicability of the present models and applied theories.
DEFF Research Database (Denmark)
Cai, Hongzhu; Hu, Xiangyun; Xiong, Bin
2017-01-01
We implemented an edge-based finite element time domain (FETD) modeling algorithm for simulating controlled-source electromagnetic (CSEM) data. The modeling domain is discretized using unstructured tetrahedral mesh and we consider a finite difference discretization of time using the backward Euler...... method which is unconditionally stable. We solve the diffusion equation for the electric field with a total field formulation. The finite element system of equation is solved using the direct method. The solutions of electric field, at different time, can be obtained using the effective time stepping...
Directory of Open Access Journals (Sweden)
Zhouhong Zong
2015-08-01
Full Text Available In the engineering practice, merging statistical analysis into structural evaluation and assessment is a tendency in the future. As a combination of mathematical and statistical techniques, response surface (RS methodology has been successfully applied to design optimization, response prediction and model validation. With the aid of RS methodology, these two serial papers present a finite element (FE model updating and validation method for bridge structures based on structural health monitoring. The key issues to implement such a model updating are discussed in this paper, such as design of experiment, parameter screening, construction of high-order polynomial response surface model, optimization methods and precision inspection of RS model. The proposed procedure is illustrated by a prestressed concrete continuous rigid-frame bridge monitored under operational conditions. The results from the updated FE model have been compared with those obtained from online health monitoring system. The real application to a full-size bridge has demonstrated that the FE model updating process is efficient and convenient. The updated FE model can relatively reflect the actual condition of Xiabaishi Bridge in the design space of parameters and can be further applied to FE model validation and damage identification.
Massa, F.; Turpin, I.; Tison, T.
2017-11-01
The paper focuses on the definition of a reduced order model for linear modal analysis. The aim is to supply a suitable mathematical alternative tool compatible for multiparametric analysis of large finite element model considering numerous variable parameters, numerous mode shapes and significant levels of variation. The initial full eigenvalue problem is so replaced by a reduced one considering an efficient projection basis. To build it, we propose to combine homotopy transformation and perturbation technique for each parameter direction to define a reduced order model compatible with the design space. Finally, a complete finite element application highlights the capabilities of the proposal in terms of precision and computational time.
Duprey, Sonia; Bruyere, Karine; Verriest, Jean-Pierre
2010-01-01
Human body numerical models can help to develop protection devices against effects of road crashes. In the context of a side impact, a shoulder model able to predict shoulder injuries and more especially clavicle fracture would be helpful. A shoulder model derived from an existing finite element model of the human body representing an average male (50th percentile), HUMOS1, has been upgraded. An isolated clavicle model was assessed thanks to experimental corridors derived from dynamic tests up to failure. Then, the whole upgraded shoulder model was evaluated by comparison with results from experimental side impact tests on the shoulder. Eventually, the upgraded model was geometrically personalized toward the anthropometry of the subjects and its ability to simulate fractures was assessed. The isolated clavicle model was assessed as validated. The upgraded 50th percentile shoulder model provided accurate results in the subinjurious domain. At higher velocities, the personalized models produced realistic shoulder injuries: clavicle fracture was accurately predicted in four cases of six, the model was conservative for the two other cases. The upgraded shoulder model presented here was successfully submitted to a rigorous assessment process. Once geometrically personalized, it provided positive results for clavicle fracture prediction. As clavicle fracture is the major shoulder injury, this model could help the design of safety devices for shoulder protection. Furthermore, this study enhances the need for geometrical personalization methods when using finite element model for injury risk prediction.
Development of a surrogate model for elemental analysis using a natural gamma ray spectroscopy tool.
Zhang, Qiong
2015-10-01
A systematic computational method for obtaining accurate elemental standards efficiently for varying borehole conditions was developed based on Monte Carlo simulations, surrogate modeling, and data assimilation. Elemental standards are essential for spectral unfolding in formation evaluation applications commonly used for nuclear well logging tools. Typically, elemental standards are obtained by standardized measurements, but these experiments are expensive and lack the flexibility to address different logging conditions. In contrast, computer-based Monte Carlo simulations provide an accurate and more flexible approach to obtaining elemental standards for formation evaluation. The presented computational method recognizes that in contrast to typical neutron-photon simulations, where the source is typically artificial and well characterized (Galford, 2009), an accurate knowledge of the source is essential for matching the obtained Monte Carlo elemental standards with their experimental counterparts. Therefore, source distributions are adjusted to minimize the L2 difference of the Monte Carlo computed and experimental standards. Subsequently, an accurate surrogate model is developed accounting for different casing and cement thicknesses, and tool positions within the borehole. The adjusted source distributions are then utilized to generate and validate spectra for varying borehole conditions: tool position, casing and cement thickness. The effect of these conditions on the spectra are investigated and discussed in this work. Given that Monte Carlo modeling provides much lower cost and more flexibility, employing Monte Carlo could enhance the processing of nuclear tool logging data computed standards. Copyright © 2015 Elsevier Ltd. All rights reserved.
CAM-SE: A scalable spectral element dynamical core for the Community Atmosphere Model.
Energy Technology Data Exchange (ETDEWEB)
Dennis, John [National Center for Atmospheric Research (NCAR); Edwards, Jim [IBM and National Center for Atmospheric Research; Evans, Kate J [ORNL; Guba, O [Sandia National Laboratories (SNL); Lauritzen, Peter [National Center for Atmospheric Research (NCAR); Mirin, Art [Lawrence Livermore National Laboratory (LLNL); St.-Cyr, Amik [National Center for Atmospheric Research (NCAR); Taylor, Mark [Sandia National Laboratories (SNL); Worley, Patrick H [ORNL
2012-01-01
The Community Atmosphere Model (CAM) version 5 includes a spectral element dynamical core option from NCAR's High-Order Method Modeling Environment. It is a continuous Galerkin spectral finite element method designed for fully unstructured quadrilateral meshes. The current configurations in CAM are based on the cubed-sphere grid. The main motivation for including a spectral element dynamical core is to improve the scalability of CAM by allowing quasi-uniform grids for the sphere that do not require polar filters. In addition, the approach provides other state-of-the-art capabilities such as improved conservation properties. Spectral elements are used for the horizontal discretization, while most other aspects of the dynamical core are a hybrid of well tested techniques from CAM's finite volume and global spectral dynamical core options. Here we first give a overview of the spectral element dynamical core as used in CAM. We then give scalability and performance results from CAM running with three different dynamical core options within the Community Earth System Model, using a pre-industrial time-slice configuration. We focus on high resolution simulations of 1/4 degree, 1/8 degree, and T340 spectral truncation.
Chen, Jing; Xu, Huimin; He, Ping-An; Dai, Qi; Yao, Yuhua
2016-01-01
Subcellular localization prediction of bacterial protein is an important component of bioinformatics, which has great importance for drug design and other applications. For the prediction of protein subcellular localization, as we all know, lots of computational tools have been developed in the recent decades. In this study, we firstly introduce three kinds of protein sequences encoding schemes: physicochemical-based, evolutionary-based, and GO-based. The original and consensus sequences were combined with physicochemical properties. And elements information of different rows and columns in position-specific scoring matrix were taken into consideration simultaneously for more core and essence information. Computational methods based on gene ontology (GO) have been demonstrated to be superior to methods based on other features. Then principal component analysis (PCA) is applied for feature selection and reduced vectors are input to a support vector machine (SVM) to predict protein subcellular localization. The proposed method can achieve a prediction accuracy of 98.28% and 97.87% on a stringent Gram-positive (Gpos) and Gram-negative (Gneg) dataset with Jackknife test, respectively. At last, we calculate "absolute true overall accuracy (ATOA)", which is stricter than overall accuracy. The ATOA obtained from the proposed method is also up to 97.32% and 93.06% for Gpos and Gneg. From both the rationality of testing procedure and the success rates of test results, the current method can improve the prediction quality of protein subcellular localization. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Righter, K.; Danielson, L.; Pando, K.; Shofner, G.; Lee, C. -T.
2013-01-01
Siderophile elements have been used to constrain conditions of core formation and differentiation for the Earth, Mars and other differentiated bodies [1]. Recent models for the Earth have concluded that the mantle and core did not fully equilibrate and the siderophile element contents of the mantle can only be explained under conditions where the oxygen fugacity changes from low to high during accretion and the mantle and core do not fully equilibrate [2,3]. However these conclusions go against several physical and chemical constraints. First, calculations suggest that even with the composition of accreting material changing from reduced to oxidized over time, the fO2 defined by metal-silicate equilibrium does not change substantially, only by approximately 1 logfO2 unit [4]. An increase of more than 2 logfO2 units in mantle oxidation are required in models of [2,3]. Secondly, calculations also show that metallic impacting material will become deformed and sheared during accretion to a large body, such that it becomes emulsified to a fine scale that allows equilibrium at nearly all conditions except for possibly the length scale for giant impacts [5] (contrary to conclusions of [6]). Using new data for D(Mo) metal/silicate at high pressures, together with updated partitioning expressions for many other elements, we will show that metal-silicate equilibrium across a long span of Earth s accretion history may explain the concentrations of many siderophile elements in Earth's mantle. The modeling includes refractory elements Ni, Co, Mo, and W, as well as highly siderophile elements Au, Pd and Pt, and volatile elements Cd, In, Bi, Sb, Ge and As.
DEFF Research Database (Denmark)
Feng, Huan; Pettinari, Matteo; Stang, Henrik
2016-01-01
In this paper the viscoelastic behavior of asphalt mixture was investigated by employing a three-dimensional discrete element method. Combined with Burger's model, three contact models were used for the construction of constitutive asphalt mixture model with viscoelastic properties in the commerc...... and the laboratory test values for the complex modulus shows that DEM can be used to reliably predict the viscoelastic properties of asphalt mixtures.......In this paper the viscoelastic behavior of asphalt mixture was investigated by employing a three-dimensional discrete element method. Combined with Burger's model, three contact models were used for the construction of constitutive asphalt mixture model with viscoelastic properties...... modulus. Three different approaches have been used and compared for calibrating the Burger's contact model. Values of the dynamic modulus and phase angle of asphalt mixtures were predicted by conducting DE simulation under dynamic strain control loading. The excellent agreement between the predicted...
Subcellular boron and fluorine distributions with SIMS ion microscopy in BNCT and cancer research
Energy Technology Data Exchange (ETDEWEB)
Subhash Chandra
2008-05-30
The development of a secondary ion mass spectrometry (SIMS) based technique of Ion Microscopy in boron neutron capture therapy (BNCT) was the main goal of this project, so that one can study the subcellular location of boron-10 atoms and their partitioning between the normal and cancerous tissue. This information is fundamental for the screening of boronated drugs appropriate for neutron capture therapy of cancer. Our studies at Cornell concentrated mainly on studies of glioblastoma multiforme (GBM). The early years of the grant were dedicated to the development of cryogenic methods and correlative microscopic approaches so that a reliable subcellular analysis of boron-10 atoms can be made with SIMS. In later years SIMS was applied to animal models and human tissues of GBM for studying the efficacy of potential boronated agents in BNCT. Under this grant the SIMS program at Cornell attained a new level of excellence and collaborative SIMS studies were published with leading BNCT researchers in the U.S.
ELASTO-KINEMATIC COMPUTATIONAL MODEL OF SUSPENSION WITH FLEXIBLE SUPPORTING ELEMENTS
Directory of Open Access Journals (Sweden)
Tomáš Vrána
2016-04-01
Full Text Available This paper analyzes the impact of flexibility of individual supporting elements of independent suspension on its elasto-kinematic characteristics. The toe and camber angle are the geometric parameters of the suspension, which waveforms and their changes under the action of vertical, longitudinal and transverse forces affect the stability of the vehicle. To study these dependencies, the computational multibody system (MBS model of axle suspension in the system HyperWorks is created. There are implemented Finite-Element-Method (FEM models reflecting the flexibility of the main supporting elements. These are subframe, the longitudinal arms, transverse arms and knuckle. Flexible models are developed using Component Mode Synthesis (CMS by Craig-Bampton. The model further comprises force elements, such as helical springs, shock absorbers with a stop of the wheel and the anti-roll bar. Rubber-metal bushings are modeled flexibly, using nonlinear deformation characteristics. Simulation results are validated by experimental measurements of geometric parameters of real suspension.
Zhan, Yijian; Meschke, Günther
2017-07-08
The effective analysis of the nonlinear behavior of cement-based engineering structures not only demands physically-reliable models, but also computationally-efficient algorithms. Based on a continuum interface element formulation that is suitable to capture complex cracking phenomena in concrete materials and structures, an adaptive mesh processing technique is proposed for computational simulations of plain and fiber-reinforced concrete structures to progressively disintegrate the initial finite element mesh and to add degenerated solid elements into the interfacial gaps. In comparison with the implementation where the entire mesh is processed prior to the computation, the proposed adaptive cracking model allows simulating the failure behavior of plain and fiber-reinforced concrete structures with remarkably reduced computational expense.
Mixed finite element models for free vibrations of thin-walled beams
Noor, Ahmed K.; Peters, Jeanne M.; Min, Byung-Jin
1989-01-01
Simple, mixed finite element models are developed for the free vibration analysis of curved thin-walled beams with arbitrary open cross section. The analytical formulation is based on a Vlasov's type thin-walled beam theory with the effects of flexural-torsional coupling, transverse shear deformation and rotary inertia included. The fundamental unknowns consist of seven internal forces and seven generalized displacements of the beam. The element characteristic arrays are obtained by using a perturbed Lagrangian-mixed variational principle. Only C(sup o) continuity is required for the generalized displacements. The internal forces and the Lagrange multiplier are allowed to be discontinuous at interelement boundaries. Numerical results are presented to demonstrate the high accuracy and effectiveness of the elements developed. The standard of comparison is taken to be the solutions obtained by using 2-D plate/shell models for the beams.
Zhan, Yijian
2017-01-01
The effective analysis of the nonlinear behavior of cement-based engineering structures not only demands physically-reliable models, but also computationally-efficient algorithms. Based on a continuum interface element formulation that is suitable to capture complex cracking phenomena in concrete materials and structures, an adaptive mesh processing technique is proposed for computational simulations of plain and fiber-reinforced concrete structures to progressively disintegrate the initial finite element mesh and to add degenerated solid elements into the interfacial gaps. In comparison with the implementation where the entire mesh is processed prior to the computation, the proposed adaptive cracking model allows simulating the failure behavior of plain and fiber-reinforced concrete structures with remarkably reduced computational expense. PMID:28773130
Pendrin gene ablation alters ENaC subcellular distribution and open probability.
Pech, Vladimir; Wall, Susan M; Nanami, Masayoshi; Bao, Hui-Fang; Kim, Young Hee; Lazo-Fernandez, Yoskaly; Yue, Qiang; Pham, Truyen D; Eaton, Douglas C; Verlander, Jill W
2015-07-15
The present study explored whether the intercalated cell Cl(-)/HCO3(-) exchanger pendrin modulates epithelial Na(+) channel (ENaC) function by changing channel open probability and/or channel density. To do so, we measured ENaC subunit subcellular distribution by immunohistochemistry, single channel recordings in split open cortical collecting ducts (CCDs), as well as transepithelial voltage and Na(+) absorption in CCDs from aldosterone-treated wild-type and pendrin-null mice. Because pendrin gene ablation reduced 70-kDa more than 85-kDa γ-ENaC band density, we asked if pendrin gene ablation interferes with ENaC cleavage. We observed that ENaC-cleaving protease application (trypsin) increased the lumen-negative transepithelial voltage in pendrin-null mice but not in wild-type mice, which raised the possibility that pendrin gene ablation blunts ENaC cleavage, thereby reducing open probability. In mice harboring wild-type ENaC, pendrin gene ablation reduced ENaC-mediated Na(+) absorption by reducing channel open probability as well as by reducing channel density through changes in subunit total protein abundance and subcellular distribution. Further experiments used mice with blunted ENaC endocytosis and degradation (Liddle's syndrome) to explore the significance of pendrin-dependent changes in ENaC open probability. In mouse models of Liddle's syndrome, pendrin gene ablation did not change ENaC subunit total protein abundance, subcellular distribution, or channel density, but markedly reduced channel open probability. We conclude that in mice harboring wild-type ENaC, pendrin modulates ENaC function through changes in subunit abundance, subcellular distribution, and channel open probability. In a mouse model of Liddle's syndrome, however, pendrin gene ablation reduces channel activity mainly through changes in open probability. Copyright © 2015 the American Physiological Society.
Multiphysics Modeling of a Single Channel in a Nuclear Thermal Propulsion Grooved Ring Fuel Element
Kim, Tony; Emrich, William J., Jr.; Barkett, Laura A.; Mathias, Adam D.; Cassibry, Jason T.
2013-01-01
In the past, fuel rods have been used in nuclear propulsion applications. A new fuel element concept that reduces weight and increases efficiency uses a stack of grooved discs. Each fuel element is a flat disc with a hole on the interior and grooves across the top. Many grooved ring fuel elements for use in nuclear thermal propulsion systems have been modeled, and a single flow channel for each design has been analyzed. For increased efficiency, a fuel element with a higher surface-area-to-volume ratio is ideal. When grooves are shallower, i.e., they have a lower surface area, the results show that the exit temperature is higher. By coupling the physics of turbulence with those of heat transfer, the effects on the cooler gas flowing through the grooves of the thermally excited solid can be predicted. Parametric studies were done to show how a pressure drop across the axial length of the channels will affect the exit temperatures of the gas. Geometric optimization was done to show the behaviors that result from the manipulation of various parameters. Temperature profiles of the solid and gas showed that more structural optimization is needed to produce the desired results. Keywords: Nuclear Thermal Propulsion, Fuel Element, Heat Transfer, Computational Fluid Dynamics, Coupled Physics Computations, Finite Element Analysis
Nonlinear dynamic modeling of surface defects in rolling element bearing systems
Rafsanjani, Ahmad; Abbasion, Saeed; Farshidianfar, Anoushiravan; Moeenfard, Hamid
2009-01-01
In this paper an analytical model is proposed to study the nonlinear dynamic behavior of rolling element bearing systems including surface defects. Various surface defects due to local imperfections on raceways and rolling elements are introduced to the proposed model. The contact force of each rolling element described according to nonlinear Hertzian contact deformation and the effect of internal radial clearance has been taken into account. Mathematical expressions were derived for inner race, outer race and rolling element local defects. To overcome the strong nonlinearity of the governing equations of motion, a modified Newmark time integration technique was used to solve the equations of motion numerically. The results were obtained in the form of time series, frequency responses and phase trajectories. The validity of the proposed model verified by comparison of frequency components of the system response with those obtained from experiments. The classical Floquet theory has been applied to the proposed model to investigate the linear stability of the defective bearing rotor systems as the parameters of the system changes. The peak-to-peak frequency response of the system for each case is obtained and the basic routes to periodic, quasi-periodic and chaotic motions for different internal radial clearances are determined. The current study provides a powerful tool for design and health monitoring of machine systems.
2017-11-13
IV. Boundary-Layer Flows in a C-D Nozzle ...............................................................................................4 V ...3) at an adiabatic wall condition. Taw is the adiabatic temperature on the wall, and Cp is the specific heat capacity. The...so in an isotropic mesh. V . Conclusions The equilibrium wall model is implemented in our in-house finite element flow solver JENRE to simulate
Cheng Piao; Todd F. Shupe; R.C. Tang; Chung Y. Hse
2008-01-01
Tapered composite poles with biomimicry features as in bamboo are a new generation of wood laminated composite poles that may some day be considered as an alternative to solid wood poles that are widely used in the transmission and telecommunication fields. Five finite element models were developed with ANSYS to predict and assess the performance of five types of...
A Finite Element Model for the Analysis of Bridge Decks | Onyia ...
African Journals Online (AJOL)
Also, reading the charts and interpolating between curves can be very tiresome and can easily introduce errors in the analysis. This paper therefore proposes and develops a finite element model as a more versatile alternative for the analysis of bridge decks for all support conditions. The results show that the proposed ...
Measurement of Temperature and Soil Properties for Finite Element Model Verification
2012-08-01
In recent years, ADOT&PF personnel have used TEMP/W, a commercially available two-dimensional finite element program, to conduct thermal modeling of various : embankment configurations in an effort to reduce the thawing of ice-rich permafrost through...
Iqbal, Taimoor; Shi, Lei; Wang, Ling; Liu, Yaxiong; Li, Dichen; Qin, Mian; Jin, Zhongmin
2017-06-01
The aim of this study was to design a hemi-pelvic prosthesis for a patient affected by pelvic sarcoma. To investigate the biomechanical functionality of the pelvis reconstructed with designed custom-made prosthesis, a patient-specific finite element model of whole pelvis with primary ligaments inclusive was constructed based on the computed tomography images of the patient. Then, a finite element analysis was performed to calculate and compare the stress distribution between the normal and implanted pelvis models when undergoing three different static conditions-both-leg standing, single-leg standing for the healthy and the affected one. No significant differences were observed in the stresses between the normal and reconstructed pelvis for both-leg standing, but 20%-40% larger stresses were predicted for the peak stress of the single-leg standing (affected side). Moreover, two- to threefold of peak stresses were predicted within the prostheses compared to that of the normal pelvis especially for single-leg standing case, however, still below the allowable fatigue limitation. The study on the load transmission functionality of prosthesis indicated that it is crucial to carry out finite element analysis for functional evaluation of the designed customized prostheses before three-dimensional printing manufacturing, allowing better understanding of the possible peak stresses within the bone as well as the implants for safety precaution. The finite element model can be equally applicable to other bone tumor model for biomechanical studying.
Automated volumetric grid generation for finite element modeling of human hand joints
Energy Technology Data Exchange (ETDEWEB)
Hollerbach, K.; Underhill, K. [Lawrence Livermore National Lab., CA (United States); Rainsberger, R. [XYZ Scientific Applications, Inc., Livermore, CA (United States)
1995-02-01
We are developing techniques for finite element analysis of human joints. These techniques need to provide high quality results rapidly in order to be useful to a physician. The research presented here increases model quality and decreases user input time by automating the volumetric mesh generation step.
A nonconforming finite element method for the Biot’s consolidation model in poroelasticity
X. Hu (Xiaozhe); C. Rodrigo (Carmen); F.J. Gaspar Lorenz (Franscisco); C.W. Oosterlee (Cornelis)
2017-01-01
textabstractA stable finite element scheme that avoids pressure oscillations for a three-field Biot’s model in poroelasticity is considered. The involved variables are the displacements, fluid flux (Darcy velocity), and the pore pressure, and they are discretized by using the lowest possible
Finite Element Modelling of Bends and Creases during Folding Ultra Thin Stainless Steel Foils
Datta, K.; Akagi, H.; Geijselaers, Hubertus J.M.; Huetink, Han
2003-01-01
Finite Element Modelling of an ultra thin foil of SUS 304 stainless steel is carried out. These foils are 20 mm and below in thickness. The development of stresses and strains during folding of these foils is studied. The objective of this study is to induce qualities of paper in the foils of
Blumenstein, Valeriy Yu; Mahalov, Maksim S.; Shirokolobova, Anastasia G.
2017-10-01
New designs of deforming tools with a complex working profile, based on the mechanics of technological inheritance, have been developed. The finite element method modeling of the surface plastic deformation process by a multiradius roller was performed and possibility to accumulate large values of deformation without destroying the metal of the surface layer was shown.
Mereghetti, A; Cerutti, F; Versaci, R; Vlachoudis, V
2012-01-01
Extended FLUKA models of accelerator beam lines can be extremely complex: heavy to manipulate, poorly versatile and prone to mismatched positioning. We developed a framework capable of creating the FLUKA model of an arbitrary portion of a given accelerator, starting from the optics configuration and a few other information provided by the user. The framework includes a builder (LineBuilder), an element database and a series of configuration and analysis scripts. The LineBuilder is a Python program aimed at dynamically assembling complex FLUKA models of accelerator beam lines: positions, magnetic fields and scorings are automatically set up, and geometry details such as apertures of collimators, tilting and misalignment of elements, beam pipes and tunnel geometries can be entered at user’s will. The element database (FEDB) is a collection of detailed FLUKA geometry models of machine elements. This framework has been widely used for recent LHC and SPS beam-machine interaction studies at CERN, and led to a dra...
Fluid-conveying flexible pipes modeled by large-deflection finite elements in multibody systems
Meijaard, Jacob Philippus
2013-01-01
The modeling and simulation of flexible multibody systems containing fluid-conveying pipes are considered. It is assumed that the mass-flow rate is prescribed and constant and the pipe cross section is piecewise uniform. An existing beam element capable of handling large motions is modified to
A finite element model for independent wire rope core with double ...
Indian Academy of Sciences (India)
In this paper, a more realistic three-dimensional modelling approach and ﬁnite element analysis of wire ropes are explained. ... Istanbul Technical University, Institute of Informatics, Computational Science and Engineering Program, 34469 Maslak, Istanbul, Turkey; Istanbul Technical University, Faculty of Mechanical ...
Multiscale Model Reduction with Generalized Multiscale Finite Element Methods in Geomathematics
Efendiev, Yalchin R.
2015-09-02
In this chapter, we discuss multiscale model reduction using Generalized Multiscale Finite Element Methods (GMsFEM) in a number of geomathematical applications. GMsFEM has been recently introduced (Efendiev et al. 2012) and applied to various problems. In the current chapter, we consider some of these applications and outline the basic methodological concepts.
Finite element modeling of camber evolution during sintering of bi-layers
DEFF Research Database (Denmark)
Tadesse Molla, Tesfaye; Ni, De Wei; Bulatova, Regina
2014-01-01
developments during sintering of bilayers composed of La0.85Sr0.15MnO3 and Ce0.9Gd0.1O1.95 tapes. Free shrinkage kinetics of both tapes were used to estimate the parameters necessary for the finite element models. Systematic investigations of the factors affecting the kinetics of distortions such as gravity...
Fatigue assessment of an existing steel bridge by finite element modelling and field measurements
Kwad, J.; Alencar, G.; Correia, J.; Jesus, A.; Calçada, R.; Kripakaran, P.
2017-05-01
The evaluation of fatigue life of structural details in metallic bridges is a major challenge for bridge engineers. A reliable and cost-effective approach is essential to ensure appropriate maintenance and management of these structures. Typically, local stresses predicted by a finite element model of the bridge are employed to assess the fatigue life of fatigue-prone details. This paper illustrates an approach for fatigue assessment based on measured data for a connection in an old bascule steel bridge located in Exeter (UK). A finite element model is first developed from the design information. The finite element model of the bridge is calibrated using measured responses from an ambient vibration test. The stress time histories are calculated through dynamic analysis of the updated finite element model. Stress cycles are computed through the rainflow counting algorithm, and the fatigue prone details are evaluated using the standard SN curves approach and the Miner’s rule. Results show that the proposed approach can estimate the fatigue damage of a fatigue prone detail in a structure using measured strain data.
Polarizability extraction of complementary metamaterial elements in waveguides for aperture modeling
Pulido-Mancera, Laura; Bowen, Patrick T.; Imani, Mohammadreza F.; Kundtz, Nathan; Smith, David
2017-12-01
We consider the design and modeling of metasurfaces that couple energy from guided waves to propagating wave fronts. To this purpose, we develop a comprehensive, multiscale dipolar interpretation for large arrays of complementary metamaterial elements embedded in a waveguide structure. Within this modeling technique, the detailed electromagnetic response of each metamaterial element is replaced by a polarizable dipole, described by means of an effective polarizability. In this paper, we present two methods to extract this effective polarizability. The first method invokes surface equivalence principles, averaging over the effective surface currents and charges induced in the element's surface in order to obtain the effective dipole moments, from which the effective polarizability can be inferred. The second method is based in the coupled-mode theory, from which a direct relationship between the effective polarizability and the amplitude coefficients of the scattered waves can be deduced. We demonstrate these methods on several variants of waveguide-fed metasurface elements (both one- and two-dimensional waveguides), finding excellent agreement between the two, as well as with the analytical expressions derived for circular and elliptical irises. With the effective polarizabilities of the metamaterial elements accurately determined, the radiated fields generated by a waveguide-fed metasurface can be found self-consistently by including the interactions between polarizable dipoles. The dipole description provides an effective perspective and computational framework for engineering metasurface structures such as holograms, lenses, and beam-forming arrays, among others.
Vertical discretization with finite elements for a global hydrostatic model on the cubed sphere
Yi, Tae-Hyeong; Park, Ja-Rin
2017-06-01
A formulation of Galerkin finite element with basis-spline functions on a hybrid sigma-pressure coordinate is presented to discretize the vertical terms of global Eulerian hydrostatic equations employed in a numerical weather prediction system, which is horizontally discretized with high-order spectral elements on a cubed sphere grid. This replaces the vertical discretization of conventional central finite difference that is first-order accurate in non-uniform grids and causes numerical instability in advection-dominant flows. Therefore, a model remains in the framework of Galerkin finite elements for both the horizontal and vertical spatial terms. The basis-spline functions, obtained from the de-Boor algorithm, are employed to derive both the vertical derivative and integral operators, since Eulerian advection terms are involved. These operators are used to discretize the vertical terms of the prognostic and diagnostic equations. To verify the vertical discretization schemes and compare their performance, various two- and three-dimensional idealized cases and a hindcast case with full physics are performed in terms of accuracy and stability. It was shown that the vertical finite element with the cubic basis-spline function is more accurate and stable than that of the vertical finite difference, as indicated by faster residual convergence, fewer statistical errors, and reduction in computational mode. This leads to the general conclusion that the overall performance of a global hydrostatic model might be significantly improved with the vertical finite element.
Optimization of the Heating Element in a Gas-Gas Heater Using an Integrated Analysis Model
Directory of Open Access Journals (Sweden)
Young Mun Lee
2017-11-01
Full Text Available Gas-gas heaters (GGHs are used to reheat gases through desulfurization in coal-fired power plants to reduce low-temperature corrosion and white smoke. Wrinkled heating elements are installed inside the GGH to perform effective heat exchange. An optimization study of the heating element shape was conducted to reduce the differential pressure effectively and improve performance. An integrated analysis model was applied. Based on actual operational data, a computational fluid dynamic analysis was conducted on the L-type heating element and GGH system. The experiments applied the optimal latin hypercube sampling method, and numerical analysis was performed for each sample. Based on the response surface, the result of the sample was optimized through the pointer algorithm. For the integrated analysis model, validation was performed by comparison with the actual operational data, and the thermal-fluid characteristics of the heating element and GGH system were analyzed to set three parameters: plate angle, undulated angle, and pitch 1. From the optimization result, increases in the undulated angle and pitch 1 reduce the pressure drop by widening the heating element cross section. By increasing the plate angle, the heat transfer area is secured and the reduced heat transfer coefficient is compensated, improving the GGH performance.
Study of the Internal Mechanical response of an asphalt mixture by 3-D Discrete Element Modeling
DEFF Research Database (Denmark)
Feng, Huan; Pettinari, Matteo; Hofko, Bernhard
2015-01-01
for all the distinct elements. The dynamic modulus and phase angle from uniaxial complex modulus tests of the asphalt mixtures in the laboratory have been collected. A macro-scale Burger’s model was first established and the input parameters of Burger’s contact model were calibrated by fitting....... The ball density effect on the internal stress distribution of the asphalt mixture model has been studied when using this method. Furthermore, the internal stresses under dynamic loading have been studied. The agreement between the predicted and the laboratory test results of the complex modulus shows......In this paper the viscoelastic behavior of asphalt mixture was investigated by employing a three-dimensional Discrete Element Method (DEM). The cylinder model was filled with cubic array of spheres with a specified radius, and was considered as a whole mixture with uniform contact properties...
Finite element modelling of crash response of composite aerospace sub-floor structures
McCarthy, M. A.; Harte, C. G.; Wiggenraad, J. F. M.; Michielsen, A. L. P. J.; Kohlgrüber, D.; Kamoulakos, A.
Composite energy-absorbing structures for use in aircraft are being studied within a European Commission research programme (CRASURV - Design for Crash Survivability). One of the aims of the project is to evaluate the current capabilities of crashworthiness simulation codes for composites modelling. This paper focuses on the computational analysis using explicit finite element analysis, of a number of quasi-static and dynamic tests carried out within the programme. It describes the design of the structures, the analysis techniques used, and the results of the analyses in comparison to the experimental test results. It has been found that current multi-ply shell models are capable of modelling the main energy-absorbing processes at work in such structures. However some deficiencies exist, particularly in modelling fabric composites. Developments within the finite element code are taking place as a result of this work which will enable better representation of composite fabrics.
Tissue Modeling and Analyzing with Finite Element Method: A Review for Cranium Brain Imaging
Yue, Xianfang; Wang, Li; Wang, Ruonan
2013-01-01
For the structure mechanics of human body, it is almost impossible to conduct mechanical experiments. Then the finite element model to simulate mechanical experiments has become an effective tool. By introducing several common methods for constructing a 3D model of cranial cavity, this paper carries out systematically the research on the influence law of cranial cavity deformation. By introducing the new concepts and theory to develop the 3D cranial cavity model with the finite-element method, the cranial cavity deformation process with the changing ICP can be made the proper description and reasonable explanation. It can provide reference for getting cranium biomechanical model quickly and efficiently and lay the foundation for further biomechanical experiments and clinical applications. PMID:23476630
Finite Element Model for Failure Study of Two-Dimensional Triaxially Braided Composite
Li, Xuetao; Binienda, Wieslaw K.; Goldberg, Robert K.
2010-01-01
A new three-dimensional finite element model of two-dimensional triaxially braided composites is presented in this paper. This meso-scale modeling technique is used to examine and predict the deformation and damage observed in tests of straight sided specimens. A unit cell based approach is used to take into account the braiding architecture as well as the mechanical properties of the fiber tows, the matrix and the fiber tow-matrix interface. A 0 deg / plus or minus 60 deg. braiding configuration has been investigated by conducting static finite element analyses. Failure initiation and progressive degradation has been simulated in the fiber tows by use of the Hashin failure criteria and a damage evolution law. The fiber tow-matrix interface was modeled by using a cohesive zone approach to capture any fiber-matrix debonding. By comparing the analytical results to those obtained experimentally, the applicability of the developed model was assessed and the failure process was investigated.
A discrete element model for soil-sweep interaction in three different soils
DEFF Research Database (Denmark)
Chen, Y; Munkholm, Lars Juhl; Nyord, Tavs
2013-01-01
Soil–tool interactions are at the centre of many agricultural field operations, including slurry injection. Understanding of soil–tool interaction behaviours (soil cutting forces and soil disturbance) is important for designing high performance injection tools. A discrete element model was develo......Soil–tool interactions are at the centre of many agricultural field operations, including slurry injection. Understanding of soil–tool interaction behaviours (soil cutting forces and soil disturbance) is important for designing high performance injection tools. A discrete element model...... was developed to simulate a slurry injection tool (a sweep) and its interaction with soil using Particle Flow Code in Three Dimensions (PFC3D). In the model, spherical particles with bonds and viscous damping between particles were used to simulate agricultural soil aggregates and their cohesive behaviours....... The calibrated model was validated using the soil disturbance characteristics measured in those three soils. The simulations agreed well with the measurements with relative errors below 10% in most cases....
Finite element speaker-specific face model generation for the study of speech production.
Bucki, Marek; Nazari, Mohammad Ali; Payan, Yohan
2010-08-01
In situations where automatic mesh generation is unsuitable, the finite element (FE) mesh registration technique known as mesh-match-and-repair (MMRep) is an interesting option for quickly creating a subject-specific FE model by fitting a predefined template mesh onto the target organ. The irregular or poor quality elements produced by the elastic deformation are corrected by a 'mesh reparation' procedure ensuring that the desired regularity and quality standards are met. Here, we further extend the MMRep capabilities and demonstrate the possibility of taking into account additional relevant anatomical features. We illustrate this approach with an example of biomechanical model generation of a speaker's face comprising face muscle insertions. While taking advantage of the a priori knowledge about tissues conveyed by the template model, this novel, fast and automatic mesh registration technique makes it possible to achieve greater modelling realism by accurately representing the organ surface as well as inner anatomical or functional structures of interest.
Tissue Modeling and Analyzing with Finite Element Method: A Review for Cranium Brain Imaging
Directory of Open Access Journals (Sweden)
Xianfang Yue
2013-01-01
Full Text Available For the structure mechanics of human body, it is almost impossible to conduct mechanical experiments. Then the finite element model to simulate mechanical experiments has become an effective tool. By introducing several common methods for constructing a 3D model of cranial cavity, this paper carries out systematically the research on the influence law of cranial cavity deformation. By introducing the new concepts and theory to develop the 3D cranial cavity model with the finite-element method, the cranial cavity deformation process with the changing ICP can be made the proper description and reasonable explanation. It can provide reference for getting cranium biomechanical model quickly and efficiently and lay the foundation for further biomechanical experiments and clinical applications.
Chortis, Dimitris I
2013-01-01
This book concerns the development of novel finite elements for the structural analysis of composite beams and blades. The introduction of material damping is also an important aspect of composite structures and it is presented here in terms of their static and dynamic behavior. The book thoroughly presents a new shear beam finite element, which entails new blade section mechanics, capable of predicting structural blade coupling due to composite coupling and/or internal section geometry. Theoretical background is further expanded towards the inclusion of nonlinear structural blade models and damping mechanics for composite structures. The models effectively include geometrically nonlinear terms due to large displacements and rotations, improve the modeling accuracy of very large flexible blades, and enable the modeling of rotational stiffening and buckling, as well as, nonlinear structural coupling. Validation simulations on specimen level study the geometric nonlinearities effect on the modal frequencies and...
Kim, H. Alicia; Hardie, Robert; Yamakov, Vesselin; Park, Cheol
2015-01-01
This paper is the second part of a two-part series where the first part presents a molecular dynamics model of a single Boron Nitride Nanotube (BNNT) and this paper scales up to multiple BNNTs in a polymer matrix. This paper presents finite element (FE) models to investigate the effective elastic and piezoelectric properties of (BNNT) nanocomposites. The nanocomposites studied in this paper are thin films of polymer matrix with aligned co-planar BNNTs. The FE modelling approach provides a computationally efficient way to gain an understanding of the material properties. We examine several FE models to identify the most suitable models and investigate the effective properties with respect to the BNNT volume fraction and the number of nanotube walls. The FE models are constructed to represent aligned and randomly distributed BNNTs in a matrix of resin using 2D and 3D hollow and 3D filled cylinders. The homogenisation approach is employed to determine the overall elastic and piezoelectric constants for a range of volume fractions. These models are compared with an analytical model based on Mori-Tanaka formulation suitable for finite length cylindrical inclusions. The model applies to primarily single-wall BNNTs but is also extended to multi-wall BNNTs, for which preliminary results will be presented. Results from the Part 1 of this series can help to establish a constitutive relationship for input into the finite element model to enable the modeling of multiple BNNTs in a polymer matrix.
Rupture Cascades in a Discrete Element Model of a Porous Sedimentary Rock
Kun Ferenc (1966-) (fizikus); Varga Imre; Lennartz-Sassinek, Sabine; Main, Ian G.
2014-01-01
We investigate the scaling properties of the sources of crackling noise in a fully-dynamic numerical model of sedimentary rocks subject to uniaxial compression. The model is initiated by filling a cylindrical container with randomly-sized spherical particles which are then connected by breakable beams. Loading at a constant strain rate the cohesive elements fail and the resulting stress transfer produces sudden bursts of correlated failures, directly analogous to the sources of acoustic emiss...
Finite Element Analysis of Damage in Fibrous Composites Using a Micromechanical Model
1993-12-01
COMPOSITES USING A MICROMECHANICAL MODEL by Joseph Michael Bemer December, 1993 Thesis Advisor: Young W. Kwon Approved for public release; distribution is...SUBTITLE FINITE ELEMENT ANALYSIS OF 5. FUNDING NUMBERS DAMAGE IN FIBROUS COMPOSITES USING A MICROMECHANICAL MODEL 6. AUTHOR(S) Joseph Michael Bemer 7...used for this study. 28 C. MATRIX STIFFNESS REDUCTION CORRELATION Kwon and Bemer [Ref. 31] proposed the following method to account for the effect of
Urzhumtsev, Alexandre; Afonine, Pavel V; Van Benschoten, Andrew H; Fraser, James S; Adams, Paul D
2016-09-01
Researcher feedback has indicated that in Urzhumtsev et al. [(2015) Acta Cryst. D71, 1668-1683] clarification of key parts of the algorithm for interpretation of TLS matrices in terms of elemental atomic motions and corresponding ensembles of atomic models is required. Also, it has been brought to the attention of the authors that the incorrect PDB code was reported for one of test models. These issues are addressed in this article.
Finite element modelling of fibre Bragg grating strain sensors and experimental validation
Malik, Shoaib A.; Mahendran, Ramani S.; Harris, Dee; Paget, Mark; Pandita, Surya D.; Machavaram, Venkata R.; Collins, David; Burns, Jonathan M.; Wang, Liwei; Fernando, Gerard F.
2009-03-01
Fibre Bragg grating (FBG) sensors continue to be used extensively for monitoring strain and temperature in and on engineering materials and structures. Previous researchers have also developed analytical models to predict the loadtransfer characteristics of FBG sensors as a function of applied strain. The general properties of the coating or adhesive that is used to surface-bond the FBG sensor to the substrate has also been modelled using finite element analysis. In this current paper, a technique was developed to surface-mount FBG sensors with a known volume and thickness of adhesive. The substrates used were aluminium dog-bone tensile test specimens. The FBG sensors were tensile tested in a series of ramp-hold sequences until failure. The reflected FBG spectra were recorded using a commercial instrument. Finite element analysis was performed to model the response of the surface-mounted FBG sensors. In the first instance, the effect of the mechanical properties of the adhesive and substrate were modelled. This was followed by modelling the volume of adhesive used to bond the FBG sensor to the substrate. Finally, the predicted values obtained via finite element modelling were correlated to the experimental results. In addition to the FBG sensors, the tensile test specimens were instrumented with surface-mounted electrical resistance strain gauges.
Cai, Hongzhu; Hu, Xiangyun; Xiong, Bin; Auken, Esben; Han, Muran; Li, Jianhui
2017-10-01
We implemented an edge-based finite element time domain (FETD) modeling algorithm for simulating controlled-source electromagnetic (CSEM) data. The modeling domain is discretized using unstructured tetrahedral mesh and we consider a finite difference discretization of time using the backward Euler method which is unconditionally stable. We solve the diffusion equation for the electric field with a total field formulation. The finite element system of equation is solved using the direct method. The solutions of electric field, at different time, can be obtained using the effective time stepping method with trivial computation cost once the matrix is factorized. We try to keep the same time step size for a fixed number of steps using an adaptive time step doubling (ATSD) method. The finite element modeling domain is also truncated using a semi-adaptive method. We proposed a new boundary condition based on approximating the total field on the modeling boundary using the primary field corresponding to a layered background model. We validate our algorithm using several synthetic model studies.
Leser, Patrick E.; Hochhalter, Jacob D.; Newman, John A.; Leser, William P.; Warner, James E.; Wawrzynek, Paul A.; Yuan, Fuh-Gwo
2015-01-01
Utilizing inverse uncertainty quantification techniques, structural health monitoring can be integrated with damage progression models to form probabilistic predictions of a structure's remaining useful life. However, damage evolution in realistic structures is physically complex. Accurately representing this behavior requires high-fidelity models which are typically computationally prohibitive. In the present work, a high-fidelity finite element model is represented by a surrogate model, reducing computation times. The new approach is used with damage diagnosis data to form a probabilistic prediction of remaining useful life for a test specimen under mixed-mode conditions.
DEFF Research Database (Denmark)
Nielsen, Bo Bjerregaard; Nielsen, Martin S.; Santos, Ilmar
2017-01-01
) is presented. The developed element is based on a purely mechanical eight-node isoparametric layered element for a double curved shell, utilizing first-order shear deformation theory. The electromechanical coupling of piezoelectric material is added to all elements, but can also be excluded by setting...... range. Discrepancies and insights into optimal modeling frequency range and non-linear behavior are discussed....
Accurate Modeling of a Transverse Flux Permanent Magnet Generator Using 3D Finite Element Analysis
DEFF Research Database (Denmark)
Hosseini, Seyedmohsen; Moghani, Javad Shokrollahi; Jensen, Bogi Bech
2011-01-01
This paper presents an accurate modeling method that is applied to a single-sided outer-rotor transverse flux permanent magnet generator. The inductances and the induced electromotive force for a typical generator are calculated using the magnetostatic three-dimensional finite element method. A new...... method is then proposed that reveals the behavior of the generator under any load. Finally, torque calculations are carried out using three dimensional finite element analyses. It is shown that although in the single-phase generator the cogging torque is very high, this can be improved significantly...... by combining three single-phase modules into a three-phase generator....
Unit of Learning Model for LMS/LCMS Integrating Psycho-pedagogical Elements
Wang, Kai-Li; Trigano, Philippe
In order to make Learning Management System (LMS) and Learning Content Management System (LCMS) more adaptable, this paper provides a way of integrating psychological and pedagogical elements in the online course structure generation process, based on platform of netUniversité. The elements are integrated in an interactive user questionnaire, which is based on the results of quantitative research. As a part of user model and the preface of learning design, this questionnaire was presented in an ontology, to solve the problem of combinatorial explosion.
Applications of a global nuclear-structure model to studies of the heaviest elements
Energy Technology Data Exchange (ETDEWEB)
Moeller, P.; Nix, J.R.
1993-10-01
We present some new results on heavy-element nuclear-structure properties calculated on the basis of the finite-range droplet model and folded-Yukawa single-particle potential. Specifically, we discuss calculations of nuclear ground-state masses and microscopic corrections, {alpha}-decay properties, {beta}-decay properties, fission potential-energy surfaces, and spontaneous-fission half-lives. These results, obtained in a global nuclear-structure approach, are particularly reliable for describing the stability properties of the heaviest elements.
Finite-element modeling of loading of spring from an orthotropic material
Veremeenko, Andrey; Chepurnenko, Anton; Shvetsov, Pavel; Zorchenko, Lidiia; Yazyev, Serdar
2017-10-01
In the paper, the stress-strain state of the springs from carbon fiber reinforced plastic was analyzed at its loading by a vertical load. The orthotropy of the material was taken into account. The solution was implemented in the software complexes Lira, ANSYS, and also using the program specially developed by the authors in the Matlab package. In the first case, the part was modeled by three-dimensional finite elements in the form of tetrahedral. In Lira and Matlab we used the plane finite elements of the plates. Comparison of the results obtained in three software complexes is given.
2015-08-01
Experimental Validation of the Butyl- Rubber Finite Element (FE) Material Model for the Blast-Mitigating Floor Mat by Masayuki Sakamoto...MD 20783-1138 ARL-SR-0329 August 2015 Experimental Validation of the Butyl- Rubber Finite Element (FE) Material Model for the Blast...SUBTITLE Experimental Validation of the Butyl- Rubber Finite Element (FE) Material Model for the Blast-Mitigating Floor Mat 5a. CONTRACT NUMBER 5b
Proteome-wide Subcellular Topologies of E. coli Polypeptides Database (STEPdb)*
Orfanoudaki, Georgia; Economou, Anastassios
2014-01-01
Cell compartmentalization serves both the isolation and the specialization of cell functions. After synthesis in the cytoplasm, over a third of all proteins are targeted to other subcellular compartments. Knowing how proteins are distributed within the cell and how they interact is a prerequisite for understanding it as a whole. Surface and secreted proteins are important pathogenicity determinants. Here we present the STEP database (STEPdb) that contains a comprehensive characterization of subcellular localization and topology of the complete proteome of Escherichia coli. Two widely used E. coli proteomes (K-12 and BL21) are presented organized into thirteen subcellular classes. STEPdb exploits the wealth of genetic, proteomic, biochemical, and functional information on protein localization, secretion, and targeting in E. coli, one of the best understood model organisms. Subcellular annotations were derived from a combination of bioinformatics prediction, proteomic, biochemical, functional, topological data and extensive literature re-examination that were refined through manual curation. Strong experimental support for the location of 1553 out of 4303 proteins was based on 426 articles and some experimental indications for another 526. Annotations were provided for another 320 proteins based on firm bioinformatic predictions. STEPdb is the first database that contains an extensive set of peripheral IM proteins (PIM proteins) and includes their graphical visualization into complexes, cellular functions, and interactions. It also summarizes all currently known protein export machineries of E. coli K-12 and pairs them, where available, with the secretory proteins that use them. It catalogs the Sec- and TAT-utilizing secretomes and summarizes their topological features such as signal peptides and transmembrane regions, transmembrane topologies and orientations. It also catalogs physicochemical and structural features that influence topology such as abundance
Directory of Open Access Journals (Sweden)
Hemangi Patil
2012-02-01
Mutations affecting the retinitis pigmentosa GTPase regulator-interacting protein 1 (RPGRIP1 interactome cause syndromic retinal dystrophies. RPGRIP1 interacts with the retinitis pigmentosa GTPase regulator (RPGR through a domain homologous to RCC1 (RHD, a nucleotide exchange factor of Ran GTPase. However, functional relationships between RPGR and RPGRIP1 and their subcellular roles are lacking. We show by molecular modeling and analyses of RPGR disease-mutations that the RPGR-interacting domain (RID of RPGRIP1 embraces multivalently the shared RHD of RPGR1–19 and RPGRORF15 isoforms and the mutations are non-overlapping with the interface found between RCC1 and Ran GTPase. RPGR disease-mutations grouped into six classes based on their structural locations and differential impairment with RPGRIP1 interaction. RPGRIP1α1 expression alone causes its profuse self-aggregation, an effect suppressed by co-expression of either RPGR isoform before and after RPGRIP1α1 self-aggregation ensue. RPGR1–19 localizes to the endoplasmic reticulum, whereas RPGRORF15 presents cytosolic distribution and they determine uniquely the subcellular co-localization of RPGRIP1α1. Disease mutations in RPGR1–19, RPGRORF15, or RID of RPGRIP1α1, singly or in combination, exert distinct effects on the subcellular targeting, co-localization or tethering of RPGRIP1α1 with RPGR1–19 or RPGRORF15 in kidney, photoreceptor and hepatocyte cell lines. Additionally, RPGRORF15, but not RPGR1–19, protects the RID of RPGRIP1α1 from limited proteolysis. These studies define RPGR- and cell-type-dependent targeting pathways with structural and functional plasticity modulating the expression of mutations in RPGR and RPGRIP1. Further, RPGR isoforms distinctively determine the subcellular targeting of RPGRIP1α1, with deficits in RPGRORF15-dependent intracellular localization of RPGRIP1α1 contributing to pathomechanisms shared by etiologically distinct syndromic retinal dystrophies.
Staudt, Emanuel; Ramasamy, Pathmanaban; Plattner, Helmut; Simon, Martin
2016-12-01
Phospholipase C (PLC) is an important enzyme of signal transduction pathways by generation of second messengers from membrane lipids. PLCs are also indicated to cleave glycosylphosphatidylinositol (GPI)-anchors of surface proteins thus releasing these into the environment. However, it remains unknown whether this enzymatic activity on the surface is due to distinct PLC isoforms in higher eukaryotes. Ciliates have, in contrast to other unicellular eukaryotes, multiple PLC isoforms as mammals do. Thus, Paramecium represents a perfect model to study subcellular distribution and potential surface activity of PLC isoforms. We have identified distinct subcellular localizations of four PLC isoforms indicating functional specialization. The association with different calcium release channels (CRCs) argues for distinct subcellular functions. They may serve as PI-PLCs in microdomains for local second messenger responses rather than free floating IP3. In addition, all isoforms can be found on the cell surface and they are found together with GPI-cleaved surface proteins in salt/ethanol washes of cells. We can moreover show them in medium supernatants of living cells where they have access to GPI-anchored surface proteins. Among the isoforms we cannot assign GPI-PLC activity to specific PLC isoforms; rather each PLC is potentially responsible for the release of GPI-anchored proteins from the surface. Copyright © 2016 Elsevier B.V. All rights reserved.
A 4-Mid-Node Plane Model of Base Force Element Method on Complementary Energy Principle
Directory of Open Access Journals (Sweden)
Yinghua Liu
2013-01-01
Full Text Available Using the base forces as fundamental variables to describe the stress state and the displacement gradients that are the conjugate variables of the base forces to describe the deformation state for the two-dimensional elasticity problems, a 4-mid-node plane model of base force element method (BFEM based on complementary energy principle is proposed. In this paper, the complementary energy of an element of the BFEM is constructed by using the base forces. The equilibrium conditions are released by the Lagrange multiplier method, and a modified complementary energy principle described by the base forces is obtained. The formulation of the 4-mid-node plane element of the BFEM is derived by assuming that the stress is uniformly distributed on each edge of the plane elements. A procedure of the BFEM on complementary energy principle is developed using MATLAB language. The numerical results of examples show that this model of the BFEM has high precision and is free from mesh sensitivity. This model shows good performances.
Energy Technology Data Exchange (ETDEWEB)
Panescu, D. (EP Technologies, Inc., Sunnyvale, CA (United States)); Webster, J.G.; Tompkins, W.J. (Univ. of Wisconsin, Madison, WI (United States)); Stratbucker, R.A. (Radiation Health Center of the State of Nebraska, Omaha, NE (United States))
1995-02-01
The goal of this study was to determine the optimal electrode placement and size to minimize myocardial damage during defibrillation while rendering refractory a critical mass of cardiac tissue of 100%. For this purpose, we developed a 3-D finite element model with 55 388 nodes, 50 913 hexahedral elements, and simulated 16 different organs and tissues, as well as the properties of the electrolyte. The model used a nonuniform mesh with an average spatial resolution of 0.8 cm in all three dimensions. To validate this model, we measured the voltage across 3-cm[sup 2] Ag-AgCl electrodes when currents of 5 mA at 50 kHz were injected into a human subject's thorax through the same electrodes. For the same electrode placements and sizes and the same injected current, the finite element analysis produced results in good agreement with the experimental data. For the optimization of defibrillation, we tested 12 different electrode placements and seven different electrode sizes. The finite element analyses showed that the anterior-posterior electrode placement and an electrode size of about 90 cm[sup 2] offered the least chance of potential myocardial damage and required a shock energy of less than 350 J for 5-ms defibrillation pulses to achieve 100% critical mass. 47 refs., 8 figs., 4 tabs.
Yang, Sam
The dissertation presents the mathematical formulation, experimental validation, and application of a volume element model (VEM) devised for modeling, simulation, and optimization of energy systems in their early design stages. The proposed model combines existing modeling techniques and experimental adjustment to formulate a reduced-order model, while retaining sufficient accuracy to serve as a practical system-level design analysis and optimization tool. In the VEM, the physical domain under consideration is discretized in space using lumped hexahedral elements (i.e., volume elements), and the governing equations for the variable of interest are applied to each element to quantify diverse types of flows that cross it. Subsequently, a system of algebraic and ordinary differential equations is solved with respect to time and scalar (e.g., temperature, relative humidity, etc.) fields are obtained in both spatial and temporal domains. The VEM is capable of capturing and predicting dynamic physical behaviors in the entire system domain (i.e., at system level), including mutual interactions among system constituents, as well as with their respective surroundings and cooling systems, if any. The VEM is also generalizable; that is, the model can be easily adapted to simulate and optimize diverse systems of different scales and complexity and attain numerical convergence with sufficient accuracy. Both the capability and generalizability of the VEM are demonstrated in the dissertation via thermal modeling and simulation of an Off-Grid Zero Emissions Building, an all-electric ship, and a vapor compression refrigeration (VCR) system. Furthermore, the potential of the VEM as an optimization tool is presented through the integrative thermodynamic optimization of a VCR system, whose results are used to evaluate the trade-offs between various objective functions, namely, coefficient of performance, second law efficiency, pull-down time, and refrigerated space temperature, in
Vertical slice modelling of nonlinear Eady waves using a compatible finite element method
Yamazaki, Hiroe; Shipton, Jemma; Cullen, Michael J. P.; Mitchell, Lawrence; Cotter, Colin J.
2017-08-01
A vertical slice model is developed for the Euler-Boussinesq equations with a constant temperature gradient in the direction normal to the slice (the Eady-Boussinesq model). The model is a solution of the full three-dimensional equations with no variation normal to the slice, which is an idealised problem used to study the formation and subsequent evolution of weather fronts. A compatible finite element method is used to discretise the governing equations. To extend the Charney-Phillips grid staggering in the compatible finite element framework, we use the same node locations for buoyancy as the vertical part of velocity and apply a transport scheme for a partially continuous finite element space. For the time discretisation, we solve the semi-implicit equations together with an explicit strong-stability-preserving Runge-Kutta scheme to all of the advection terms. The model reproduces several quasi-periodic lifecycles of fronts despite the presence of strong discontinuities. An asymptotic limit analysis based on the semi-geostrophic theory shows that the model solutions are converging to a solution in cross-front geostrophic balance. The results are consistent with the previous results using finite difference methods, indicating that the compatible finite element method is performing as well as finite difference methods for this test problem. We observe dissipation of kinetic energy of the cross-front velocity in the model due to the lack of resolution at the fronts, even though the energy loss is not likely to account for the large gap on the strength of the fronts between the model result and the semi-geostrophic limit solution.
3D Discrete Element Model with 1 Million Particles: an Example of Hydro-fracturing
Liu, C.; Pollard, D. D.
2013-12-01
The Discrete Element Method (DEM) permits large relative motion and breakage of elements, and does not require re-meshing, for example as would the Finite Element Method. DEM has a wide range of applications in the fields of solid-earth geophysics, geomechanics, mining engineering, and structural geology. However, due to the computational cost, particle numbers of discrete element models are generally less than a few tens of thousands, which limits the applications. A new 3D DEM system 'MatDEM' can complete dynamic simulations of one million particles. The conversion formulas between particle parameters and model mechanical properties were derived, and the conversion of energy in DEM can be simulated. In a recent paper (Liu et al., 2013, JGR), the analytical solutions of elastic properties and failure modes of a 2D close-packed discrete element model were proposed. Based on these theoretical results, it is easy to create materials using DEM, which have similar mechanical properties to rock. Given the mechanical properties and state of stress, geologists and engineers can investigate the characteristics of rock deformation and failure under different conditions. MatDEM provides an alternative way to study the micro-macro relationships of rock and soil, and the evolution of geologic structures. As an example, MatDEM was used to investigate the generation and development of fluid driven fractures around a micro pore. The simulation result of fractures of an anisotropic 3D model, which includes 1 million particles, is demonstrated. Via parallel computing technology, MatDEM may handle tens of millions of particles in near future. Left: Fluid pressure is applied in the pore to generate fractures. Right: Simulation results (black segments represent fractures).
A mutation degree model for the identification of transcriptional regulatory elements
Directory of Open Access Journals (Sweden)
Wang Jin
2011-06-01
Full Text Available Abstract Background Current approaches for identifying transcriptional regulatory elements are mainly via the combination of two properties, the evolutionary conservation and the overrepresentation of functional elements in the promoters of co-regulated genes. Despite the development of many motif detection algorithms, the discovery of conserved motifs in a wide range of phylogenetically related promoters is still a challenge, especially for the short motifs embedded in distantly related gene promoters or very closely related promoters, or in the situation that there are not enough orthologous genes available. Results A mutation degree model is proposed and a new word counting method is developed for the identification of transcriptional regulatory elements from a set of co-expressed genes. The new method comprises two parts: 1 identifying overrepresented oligo-nucleotides in promoters of co-expressed genes, 2 estimating the conservation of the oligo-nucleotides in promoters of phylogenetically related genes by the mutation degree model. Compared with the performance of other algorithms, our method shows the advantages of low false positive rate and higher specificity, especially the robustness to noisy data. Applying the method to co-expressed gene sets from Arabidopsis, most of known cis-elements were successfully detected. The tool and example are available at http://mcube.nju.edu.cn/jwang/lab/soft/ocw/OCW.html. Conclusions The mutation degree model proposed in this paper is adapted to phylogenetic data of different qualities, and to a wide range of evolutionary distances. The new word-counting method based on this model has the advantage of better performance in detecting short sequence of cis-elements from co-expressed genes of eukaryotes and is robust to less complete phylogenetic data.
A Floating Node Method for the Modelling of Discontinuities Within a Finite Element
Pinho, Silvestre T.; Chen, B. Y.; DeCarvalho, Nelson V.; Baiz, P. M.; Tay, T. E.
2013-01-01
This paper focuses on the accurate numerical representation of complex networks of evolving discontinuities in solids, with particular emphasis on cracks. The limitation of the standard finite element method (FEM) in approximating discontinuous solutions has motivated the development of re-meshing, smeared crack models, the eXtended Finite Element Method (XFEM) and the Phantom Node Method (PNM). We propose a new method which has some similarities to the PNM, but crucially: (i) does not introduce an error on the crack geometry when mapping to natural coordinates; (ii) does not require numerical integration over only part of a domain; (iii) can incorporate weak discontinuities and cohesive cracks more readily; (iv) is ideally suited for the representation of multiple and complex networks of (weak, strong and cohesive) discontinuities; (v) leads to the same solution as a finite element mesh where the discontinuity is represented explicitly; and (vi) is conceptually simpler than the PNM.
Ju, Yun-Ru; Yang, Ying-Fei; Tsai, Jeng-Wei; Cheng, Yi-Hsien; Chen, Wei-Yu; Liao, Chung-Min
2017-07-01
Fluctuation exposure of trace metal copper (Cu) is ubiquitous in aquatic environments. The purpose of this study was to investigate the impacts of chronically pulsed exposure on biodynamics and subcellular partitioning of Cu in freshwater tilapia (Oreochromis mossambicus). Long-term 28-day pulsed Cu exposure experiments were performed to explore subcellular partitioning and toxicokinetics/toxicodynamics of Cu in tilapia. Subcellular partitioning linking with a metal influx scheme was used to estimate detoxification and elimination rates. A biotic ligand model-based damage assessment model was used to take into account environmental effects and biological mechanisms of Cu toxicity. We demonstrated that the probability causing 50% of susceptibility risk in response to pulse Cu exposure in generic Taiwan aquaculture ponds was ~33% of Cu in adverse physiologically associated, metabolically active pool, implicating no significant susceptibility risk for tilapia. We suggest that our integrated ecotoxicological models linking chronic exposure measurements with subcellular partitioning can facilitate a risk assessment framework that provides a predictive tool for preventive susceptibility reduction strategies for freshwater fish exposed to pulse metal stressors.
Mangado, Nerea; Piella, Gemma; Noailly, Jérôme; Pons-Prats, Jordi; Ballester, Miguel Ángel González
2016-01-01
Computational modeling has become a powerful tool in biomedical engineering thanks to its potential to simulate coupled systems. However, real parameters are usually not accurately known, and variability is inherent in living organisms. To cope with this, probabilistic tools, statistical analysis and stochastic approaches have been used. This article aims to review the analysis of uncertainty and variability in the context of finite element modeling in biomedical engineering. Characterization techniques and propagation methods are presented, as well as examples of their applications in biomedical finite element simulations. Uncertainty propagation methods, both non-intrusive and intrusive, are described. Finally, pros and cons of the different approaches and their use in the scientific community are presented. This leads us to identify future directions for research and methodological development of uncertainty modeling in biomedical engineering.
Marwala, Tshilidzi
2010-01-01
Finite element models (FEMs) are widely used to understand the dynamic behaviour of various systems. FEM updating allows FEMs to be tuned better to reflect measured data and may be conducted using two different statistical frameworks: the maximum likelihood approach and Bayesian approaches. Finite Element Model Updating Using Computational Intelligence Techniques applies both strategies to the field of structural mechanics, an area vital for aerospace, civil and mechanical engineering. Vibration data is used for the updating process. Following an introduction a number of computational intelligence techniques to facilitate the updating process are proposed; they include: • multi-layer perceptron neural networks for real-time FEM updating; • particle swarm and genetic-algorithm-based optimization methods to accommodate the demands of global versus local optimization models; • simulated annealing to put the methodologies into a sound statistical basis; and • response surface methods and expectation m...
To generate a finite element model of human thorax using the VCH dataset
Shi, Hui; Liu, Qian
2009-10-01
Purpose: To generate a three-dimensional (3D) finite element (FE) model of human thorax which may provide the basis of biomechanics simulation for the study of design effect and mechanism of safety belt when vehicle collision. Methods: Using manually or semi-manually segmented method, the interested area can be segmented from the VCH (Visible Chinese Human) dataset. The 3D surface model of thorax is visualized by using VTK (Visualization Toolkit) and further translated into (Stereo Lithography) STL format, which approximates the geometry of solid model by representing the boundaries with triangular facets. The data in STL format need to be normalized into NURBS surfaces and IGES format using software such as Geomagic Studio to provide archetype for reverse engineering. The 3D FE model was established using Ansys software. Results: The generated 3D FE model was an integrated thorax model which could reproduce human's complicated structure morphology including clavicle, ribs, spine and sternum. It was consisted of 1 044 179 elements in total. Conclusions: Compared with the previous thorax model, this FE model enhanced the authenticity and precision of results analysis obviously, which can provide a sound basis for analysis of human thorax biomechanical research. Furthermore, using the method above, we can also establish 3D FE models of some other organizes and tissues utilizing the VCH dataset.
Automatic prediction of tongue muscle activations using a finite element model.
Stavness, Ian; Lloyd, John E; Fels, Sidney
2012-11-15
Computational modeling has improved our understanding of how muscle forces are coordinated to generate movement in musculoskeletal systems. Muscular-hydrostat systems, such as the human tongue, involve very different biomechanics than musculoskeletal systems, and modeling efforts to date have been limited by the high computational complexity of representing continuum-mechanics. In this study, we developed a computationally efficient tracking-based algorithm for prediction of muscle activations during dynamic 3D finite element simulations. The formulation uses a local quadratic-programming problem at each simulation time-step to find a set of muscle activations that generated target deformations and movements in finite element muscular-hydrostat models. We applied the technique to a 3D finite element tongue model for protrusive and bending movements. Predicted muscle activations were consistent with experimental recordings of tongue strain and electromyography. Upward tongue bending was achieved by recruitment of the superior longitudinal sheath muscle, which is consistent with muscular-hydrostat theory. Lateral tongue bending, however, required recruitment of contralateral transverse and vertical muscles in addition to the ipsilateral margins of the superior longitudinal muscle, which is a new proposition for tongue muscle coordination. Our simulation framework provides a new computational tool for systematic analysis of muscle forces in continuum-mechanics models that is complementary to experimental data and shows promise for eliciting a deeper understanding of human tongue function. Copyright © 2012 Elsevier Ltd. All rights reserved.
Hauch, Randall M.
1995-05-01
A finite element modeling technique has been developed to accurately predict both the static and dynamic response of a structure containing embedded piezoelectric actuators. This process utilizes a commercially available and benchmarked finite element program and can be used with shell or solid elements in any static analysis, time-domain or frequency-domain dynamic analysis. It is possible to apply the piezoelectric loads while simultaneously applying other mechanical or thermal loads even though the induced strain of the piezoelectric actuators is modeled using thermal expansion. The technique uses superelements to apply the thermal loads at any frequency and magnitude and to incorporate a fine mesh near the actuator even if a course mesh is used over the remaining portions of the structure. The technique's generic and modular nature allows a complex actuator superelement to be used multiple times in multiple smart structure models. Experiments conducted on composite coupons with embedded actuators validate the current modeling technique and demonstrate the method's successful prediction of the dynamic response of the specimens. This process is one of several smart structure modeling techniques being developed under the Synthesis and Processing of Intelligent Cost Effective Structures program sponsored by the Advanced Research Projects Agency.
Protein subcellular localization assays using split fluorescent proteins
Waldo, Geoffrey S [Santa Fe, NM; Cabantous, Stephanie [Los Alamos, NM
2009-09-08
The invention provides protein subcellular localization assays using split fluorescent protein systems. The assays are conducted in living cells, do not require fixation and washing steps inherent in existing immunostaining and related techniques, and permit rapid, non-invasive, direct visualization of protein localization in living cells. The split fluorescent protein systems used in the practice of the invention generally comprise two or more self-complementing fragments of a fluorescent protein, such as GFP, wherein one or more of the fragments correspond to one or more beta-strand microdomains and are used to "tag" proteins of interest, and a complementary "assay" fragment of the fluorescent protein. Either or both of the fragments may be functionalized with a subcellular targeting sequence enabling it to be expressed in or directed to a particular subcellular compartment (i.e., the nucleus).
Vande Geest, Jonathan P; Simon, B R; Rigby, Paul H; Newberg, Tyler P
2011-04-01
Finite element models (FEMs) including characteristic large deformations in highly nonlinear materials (hyperelasticity and coupled diffusive/convective transport of neutral mobile species) will allow quantitative study of in vivo tissues. Such FEMs will provide basic understanding of normal and pathological tissue responses and lead to optimization of local drug delivery strategies. We present a coupled porohyperelastic mass transport (PHEXPT) finite element approach developed using a commercially available ABAQUS finite element software. The PHEXPT transient simulations are based on sequential solution of the porohyperelastic (PHE) and mass transport (XPT) problems where an Eulerian PHE FEM is coupled to a Lagrangian XPT FEM using a custom-written FORTRAN program. The PHEXPT theoretical background is derived in the context of porous media transport theory and extended to ABAQUS finite element formulations. The essential assumptions needed in order to use ABAQUS are clearly identified in the derivation. Representative benchmark finite element simulations are provided along with analytical solutions (when appropriate). These simulations demonstrate the differences in transient and steady state responses including finite deformations, total stress, fluid pressure, relative fluid, and mobile species flux. A detailed description of important model considerations (e.g., material property functions and jump discontinuities at material interfaces) is also presented in the context of finite deformations. The ABAQUS-based PHEXPT approach enables the use of the available ABAQUS capabilities (interactive FEM mesh generation, finite element libraries, nonlinear material laws, pre- and postprocessing, etc.). PHEXPT FEMs can be used to simulate the transport of a relatively large neutral species (negligible osmotic fluid flux) in highly deformable hydrated soft tissues and tissue-engineered materials.
Ouellet, D; Norback, J P
1993-11-01
Continuous quality improvement is the new requirement of the Joint Commission on Accreditation of Healthcare Organizations. This means that meeting quality standards will not be enough. Dietitians will need to improve those standards and the way they are selected. Because quality is defined in terms of the customers, all quality improvement projects must start by defining what customers want. Using a salad bar as an example, this article presents and illustrates a technique developed in Japan to identify which elements in a product or service will satisfy or dissatisfy consumers. Using a model and a questionnaire format developed by Kano and coworkers, 273 students were surveyed to classify six quality elements of a salad bar. Four elements showed a dominant "must-be" characteristic: food freshness, labeling of the dressings, no spills in the food, and no spills on the salad bar. The two other elements (food easy to reach and food variety) showed a dominant one-dimensional characteristic. By better understanding consumer perceptions of quality elements, foodservice managers can select quality standards that focus on what really matters to their consumers.
Discrete/Finite Element Modelling of Rock Cutting with a TBM Disc Cutter
Labra, Carlos; Rojek, Jerzy; Oñate, Eugenio
2017-03-01
This paper presents advanced computer simulation of rock cutting process typical for excavation works in civil engineering. Theoretical formulation of the hybrid discrete/finite element model has been presented. The discrete and finite element methods have been used in different subdomains of a rock sample according to expected material behaviour, the part which is fractured and damaged during cutting is discretized with the discrete elements while the other part is treated as a continuous body and it is modelled using the finite element method. In this way, an optimum model is created, enabling a proper representation of the physical phenomena during cutting and efficient numerical computation. The model has been applied to simulation of the laboratory test of rock cutting with a single TBM (tunnel boring machine) disc cutter. The micromechanical parameters have been determined using the dimensionless relationships between micro- and macroscopic parameters. A number of numerical simulations of the LCM test in the unrelieved and relieved cutting modes have been performed. Numerical results have been compared with available data from in-situ measurements in a real TBM as well as with the theoretical predictions showing quite a good agreement. The numerical model has provided a new insight into the cutting mechanism enabling us to investigate the stress and pressure distribution at the tool-rock interaction. Sensitivity analysis of rock cutting performed for different parameters including disc geometry, cutting velocity, disc penetration and spacing has shown that the presented numerical model is a suitable tool for the design and optimization of rock cutting process.
Energy Technology Data Exchange (ETDEWEB)
Cwik, T.; Jamnejad, V.; Zuffada, C. [California Institute of Technology, Pasadena, CA (United States)
1994-12-31
The usefulness of finite element modeling follows from the ability to accurately simulate the geometry and three-dimensional fields on the scale of a fraction of a wavelength. To make this modeling practical for engineering design, it is necessary to integrate the stages of geometry modeling and mesh generation, numerical solution of the fields-a stage heavily dependent on the efficient use of a sparse matrix equation solver, and display of field information. The stages of geometry modeling, mesh generation, and field display are commonly completed using commercially available software packages. Algorithms for the numerical solution of the fields need to be written for the specific class of problems considered. Interior problems, i.e. simulating fields in waveguides and cavities, have been successfully solved using finite element methods. Exterior problems, i.e. simulating fields scattered or radiated from structures, are more difficult to model because of the need to numerically truncate the finite element mesh. To practically compute a solution to exterior problems, the domain must be truncated at some finite surface where the Sommerfeld radiation condition is enforced, either approximately or exactly. Approximate methods attempt to truncate the mesh using only local field information at each grid point, whereas exact methods are global, needing information from the entire mesh boundary. In this work, a method that couples three-dimensional finite element (FE) solutions interior to the bounding surface, with an efficient integral equation (IE) solution that exactly enforces the Sommerfeld radiation condition is developed. The bounding surface is taken to be a surface of revolution (SOR) to greatly reduce computational expense in the IE portion of the modeling.
Modeling Overlapping Laminations in Magnetic Core Materials Using 2-D Finite-Element Analysis
DEFF Research Database (Denmark)
Jensen, Bogi Bech; Guest, Emerson David; Mecrow, Barrie C.
2015-01-01
This paper describes a technique for modeling overlapping laminations in magnetic core materials using two-dimensional finite-element (2-D FE) analysis. The magnetizing characteristic of the overlapping region is captured using a simple 2-D FE model of the periodic overlapping geometry...... and a composite material is created, which has the same magnetization characteristic. The benefit of this technique is that it allows a designer to perform design and optimization of magnetic cores with overlapped laminations using a 2-D FE model rather than a 3-D FE model, which saves modeling and simulation...... time. The modeling technique is verified experimentally by creating a composite material of a lap joint with a 3-mm overlapping region and using it in a 2-D FE model of a ring sample made up of a stack of 20 laminations. The B-H curve of the simulated ring sample is compared with the B-H curve obtained...
3D modeling of high-Tc superconductors by finite element software
Zhang, Min; Coombs, T. A.
2012-01-01
A three-dimensional (3D) numerical model is proposed to solve the electromagnetic problems involving transport current and background field of a high-Tc superconducting (HTS) system. The model is characterized by the E-J power law and H-formulation, and is successfully implemented using finite element software. We first discuss the model in detail, including the mesh methods, boundary conditions and computing time. To validate the 3D model, we calculate the ac loss and trapped field solution for a bulk material and compare the results with the previously verified 2D solutions and an analytical solution. We then apply our model to test some typical problems such as superconducting bulk array and twisted conductors, which cannot be tackled by the 2D models. The new 3D model could be a powerful tool for researchers and engineers to investigate problems with a greater level of complicity.
Elements for measuring the complexity of 3D structural models: Connectivity and geometry
Pellerin, Jeanne; Caumon, Guillaume; Julio, Charline; Mejia-Herrera, Pablo; Botella, Arnaud
2015-03-01
The reliable modeling of three-dimensional complex geological structures can have a major impact on forecasting and managing natural resources and on predicting seismic and geomechanical hazards. However, the qualification of a model as structurally complex is often qualitative and subjective making the comparison of the capabilities and performances of various geomodeling methods or software difficult. In this paper, we consider the notion of structural complexity from a geometrical point of view and argue that it can be characterized using general metrics computed on three-dimensional sealed structural models. We propose global and local measures of the connectivity and of the geometry of the model components and show how they permit to classify nine 3D synthetic structural models. Depending on the complexity elements favored, the classification varies. The models we introduce could be used as benchmark models for geomodeling algorithms.
HECTAR: a method to predict subcellular targeting in heterokonts.
Gschloessl, Bernhard; Guermeur, Yann; Cock, J Mark
2008-09-23
The heterokonts are a particularly interesting group of eukaryotic organisms; they include many key species of planktonic and coastal algae and several important pathogens. To understand the biology of these organisms, it is necessary to be able to predict the subcellular localisation of their proteins but this is not straightforward, particularly in photosynthetic heterokonts which possess a complex chloroplast, acquired as the result of a secondary endosymbiosis. This is because the bipartite target peptides that deliver proteins to these chloroplasts can be easily confused with the signal peptides of secreted proteins, causing currently available algorithms to make erroneous predictions. HECTAR, a subcellular targeting prediction method which takes into account the specific properties of heterokont proteins, has been developed to address this problem. HECTAR is a statistical prediction method designed to assign proteins to five different categories of subcellular targeting: Signal peptides, type II signal anchors, chloroplast transit peptides, mitochondrion transit peptides and proteins which do not possess any N-terminal target peptide. The recognition rate of HECTAR is 96.3%, with Matthews correlation coefficients ranging from 0.67 to 0.95. The method is based on a hierarchical architecture which implements the divide and conquer approach to identify the different possible target peptides one at a time. At each node of the hierarchy, the most relevant outputs of various existing subcellular prediction methods are combined by a Support Vector Machine. The HECTAR method is able to predict the subcellular localisation of heterokont proteins with high accuracy. It also efficiently predicts the subcellular localisation of proteins from cryptophytes, a group that is phylogenetically close to the heterokonts. A variant of HECTAR, called HECTARSEC, can be used to identify signal peptide and type II signal anchor sequences in proteins from any eukaryotic organism. Both
HECTAR: A method to predict subcellular targeting in heterokonts
Directory of Open Access Journals (Sweden)
Guermeur Yann
2008-09-01
Full Text Available Abstract Background The heterokonts are a particularly interesting group of eukaryotic organisms; they include many key species of planktonic and coastal algae and several important pathogens. To understand the biology of these organisms, it is necessary to be able to predict the subcellular localisation of their proteins but this is not straightforward, particularly in photosynthetic heterokonts which possess a complex chloroplast, acquired as the result of a secondary endosymbiosis. This is because the bipartite target peptides that deliver proteins to these chloroplasts can be easily confused with the signal peptides of secreted proteins, causing currently available algorithms to make erroneous predictions. HECTAR, a subcellular targeting prediction method which takes into account the specific properties of heterokont proteins, has been developed to address this problem. Results HECTAR is a statistical prediction method designed to assign proteins to five different categories of subcellular targeting: Signal peptides, type II signal anchors, chloroplast transit peptides, mitochondrion transit peptides and proteins which do not possess any N-terminal target peptide. The recognition rate of HECTAR is 96.3%, with Matthews correlation coefficients ranging from 0.67 to 0.95. The method is based on a hierarchical architecture which implements the divide and conquer approach to identify the different possible target peptides one at a time. At each node of the hierarchy, the most relevant outputs of various existing subcellular prediction methods are combined by a Support Vector Machine. Conclusion The HECTAR method is able to predict the subcellular localisation of heterokont proteins with high accuracy. It also efficiently predicts the subcellular localisation of proteins from cryptophytes, a group that is phylogenetically close to the heterokonts. A variant of HECTAR, called HECTARSEC, can be used to identify signal peptide and type II signal
Programmed subcellular release to study the dynamics of cell detachment
Wildt, Bridget
Cell detachment is central to a broad range of physio-pathological changes however there are no quantitative methods to study this process. Here we report programmed subcellular release, a method for spatially and temporally controlled cellular detachment and present the first quantitative results of the detachment dynamics of 3T3 fibroblasts at the subcellular level. Programmed subcellular release is an in vitro technique designed to trigger the detachment of distinct parts of a single cell from a patterned substrate with both spatial and temporal control. Subcellular release is achieved by plating cells on an array of patterned gold electrodes created by standard microfabrication techniques. The electrodes are biochemically functionalized with an adhesion-promoting RGD peptide sequence that is attached to the gold electrode via a thiol linkage. Each electrode is electrically isolated so that a subcellular section of a single cell spanning multiple electrodes can be released independently. Upon application of a voltage pulse to a single electrode, RGD-thiol molecules on an individual electrode undergo rapid electrochemical desorption that leads to subsequent cell contraction. The dynamics of cell contraction are found to have characteristic induction and contraction times. This thesis presents the first molecular inhibition studies conducted using programmed subcellular release verifying that this technique can be used to study complex signaling pathways critical to cell motility. Molecular level dynamics of focal adhesion proteins and actin stress fibers provide some insight into the complexities associated with triggered cell detachment. In addition to subcellular release, the programmed release of alkanethiols provides a tool for to study the spatially and temporally controlled release of small molecules or particles from individually addressable gold electrodes. Here we report on experiments which determine the dynamics of programmed release using fluorophore
Biomechanics of subcellular structures by non-invasive Brillouin microscopy
Antonacci, Giuseppe; Braakman, Sietse
2016-11-01
Cellular biomechanics play a pivotal role in the pathophysiology of several diseases. Unfortunately, current methods to measure biomechanical properties are invasive and mostly limited to the surface of a cell. As a result, the mechanical behaviour of subcellular structures and organelles remains poorly characterised. Here, we show three-dimensional biomechanical images of single cells obtained with non-invasive, non-destructive Brillouin microscopy with an unprecedented spatial resolution. Our results quantify the longitudinal elastic modulus of subcellular structures. In particular, we found the nucleoli to be stiffer than both the nuclear envelope (p biomechanics and its role in pathophysiology.
A three-dimensional finite element model for biomechanical analysis of the hip.
Chen, Guang-Xing; Yang, Liu; Li, Kai; He, Rui; Yang, Bin; Zhan, Yan; Wang, Zhi-Jun; Yu, Bing-Nin; Jian, Zhe
2013-11-01
The objective of this study was to construct a three-dimensional (3D) finite element model of the hip. The images of the hip were obtained from Chinese visible human dataset. The hip model includes acetabular bone, cartilage, labrum, and bone. The cartilage of femoral head was constructed using the AutoCAD and Solidworks software. The hip model was imported into ABAQUS analysis system. The contact surface of the hip joint was meshed. To verify the model, the single leg peak force was loaded, and contact area of the cartilage and labrum of the hip and pressure distribution in these structures were observed. The constructed 3D hip model reflected the real hip anatomy. Further, this model reflected biomechanical behavior similar to previous studies. In conclusion, this 3D finite element hip model avoids the disadvantages of other construction methods, such as imprecision of cartilage construction and the absence of labrum. Further, it provides basic data critical for accurately modeling normal and abnormal loads, and the effects of abnormal loads on the hip.
Finite element modeling of 129Xe diffusive gas exchange NMR in the human alveoli
Stewart, Neil J.; Parra-Robles, Juan; Wild, Jim M.
2016-10-01
Existing models of 129Xe diffusive exchange for lung microstructural modeling with time-resolved MR spectroscopy data have considered analytical solutions to one-dimensional, homogeneous models of the lungs with specific assumptions about the alveolar geometry. In order to establish a model system for simulating the effects of physiologically-realistic changes in physical and microstructural parameters on 129Xe exchange NMR, we have developed a 3D alveolar capillary model for finite element analysis. To account for the heterogeneity of the alveolar geometry across the lungs, we have derived realistic geometries for finite element analysis based on 2D histological samples and 3D micro-CT image volumes obtained from ex vivo biopsies of lung tissue from normal subjects and patients with interstitial lung disease. The 3D alveolar capillary model permits investigation of the impact of alveolar geometrical parameters and diffusion and perfusion coefficients on the in vivo measured 129Xe CSSR signal response. The heterogeneity of alveolar microstructure that is accounted for in image-based models resulted in considerable alterations to the shape of the 129Xe diffusive uptake curve when compared to 1D models. Our findings have important implications for the future design and optimization of 129Xe MR experiments and in the interpretation of lung microstructural changes from this data.
A progress report on estuary modeling by the finite-element method
Gray, William G.
1978-01-01
Various schemes are investigated for finite-element modeling of two-dimensional surface-water flows. The first schemes investigated combine finite-element spatial discretization with split-step time stepping schemes that have been found useful in finite-difference computations. Because of the large number of numerical integrations performed in space and the large sparse matrices solved, these finite-element schemes were found to be economically uncompetitive with finite-difference schemes. A very promising leapfrog scheme is proposed which, when combined with a novel very fast spatial integration procedure, eliminates the need to solve any matrices at all. Additional problems attacked included proper propagation of waves and proper specification of the normal flow-boundary condition. This report indicates work in progress and does not come to a definitive conclusion as to the best approach for finite-element modeling of surface-water problems. The results presented represent findings obtained between September 1973 and July 1976. (Woodard-USGS)
Development of a finite element model of the ligamentous cervical vertebral column of a Great Dane.
Bonelli, Marília de Albuquerque; Shah, Anoli; Goel, Vijay; Costa, Fabiano Séllos; da Costa, Ronaldo Casimiro
2018-01-29
Cervical spondylomyelopathy (CSM), also known as wobbler syndrome, affects mainly large and giant-breed dogs, causing compression of the cervical spinal cord and/or nerve roots. Structural and dynamic components seem to play a role in the development of CSM; however, pathogenesis is not yet fully understood. Finite element models have been used for years in human medicine to study the dynamic behavior of structures, but it has been mostly overlooked in veterinary studies. To our knowledge, no specific ligamentous spine models have been developed to investigate naturally occurring canine myelopathies and possible surgical treatments. The goal of this study was to develop a finite element model (FEM) of the C 2 -C 7 segment of the ligamentous cervical vertebral column of a neurologically normal Great Dane without imaging changes. The FEM of the intact C 2 -C 7 cervical vertebral column had a total of 188,906 elements (175,715 tetra elements and 12,740 hexa elements). The range of motion (in degrees) for the FEM subjected to a moment of 2Nm was approximately 27.94 in flexion, 25.86 in extension, 24.14 in left lateral bending, 25.27 in right lateral bending, 17.44 in left axial rotation, and 16.72 in right axial rotation. We constructed a ligamentous FEM of the C 2 -C 7 vertebral column of a Great Dane dog, which can serve as a platform to be modified and adapted for studies related to biomechanics of the cervical vertebral column and to further improve studies on osseous-associated cervical spondylomyelopathy. Copyright © 2018 Elsevier Ltd. All rights reserved.
Calibrated Blade-Element/Momentum Theory Aerodynamic Model of the MARIN Stock Wind Turbine: Preprint
Energy Technology Data Exchange (ETDEWEB)
Goupee, A.; Kimball, R.; de Ridder, E. J.; Helder, J.; Robertson, A.; Jonkman, J.
2015-04-02
In this paper, a calibrated blade-element/momentum theory aerodynamic model of the MARIN stock wind turbine is developed and documented. The model is created using open-source software and calibrated to closely emulate experimental data obtained by the DeepCwind Consortium using a genetic algorithm optimization routine. The provided model will be useful for those interested in validating interested in validating floating wind turbine numerical simulators that rely on experiments utilizing the MARIN stock wind turbine—for example, the International Energy Agency Wind Task 30’s Offshore Code Comparison Collaboration Continued, with Correlation project.
Energy Technology Data Exchange (ETDEWEB)
Gamble, K., E-mail: Kyle.Gamble@rmc.ca [Royal Military College of Ontario, Kingston, Ontario (Canada); Williams, A. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Chan, P.K. [Royal Military College of Ontario, Kingston, Ontario (Canada)
2013-07-01
The first phase of the feasibility study of using a Multiphysics Object-Oriented Simulation Environment (MOOSE) for modeling a CANDU fuel element is presented. A two-dimensional model of a fuel pellet sheath was created to examine the contact algorithm within MOOSE. The results obtained show the expected behaviour of contact pressure and penetration in 2D. Preliminary results for a 3D model of a quarter fuel pellet and sheath are provided but at present contain anomalies currently being investigated. The next steps in the feasibility study are outlined. (author)
La Follett, Jon R; Williams, Kevin L; Marston, Philip L
2011-08-01
Backscattering of sound by a solid aluminum cylinder was measured in the free field and with the cylinder near a flat surface. The target was suspended just below the surface of a water tank to simulate some aspects of backscattering when resting on the seabed. Measurements were compared with predictions made by an approximate hybrid approach based on multiple two-dimensional finite element calculations and the use of images. Many of the spectral features present in the tank data were present in the model. Comparing numerical model predictions with experimental data serves to build credibility for the modeling approach and can assist in developing insight into the underlying physical processes.
A comparison of numerical methods used for finite element modelling of soft tissue deformation
Pathmanathan, P
2009-05-01
Soft tissue deformation is often modelled using incompressible non-linear elasticity, with solutions computed using the finite element method. There are a range of options available when using the finite element method, in particular the polynomial degree of the basis functions used for interpolating position and pressure, and the type of element making up the mesh. The effect of these choices on the accuracy of the computed solution is investigated, using a selection of model problems motivated by typical deformations seen in soft tissue modelling. Model problems are set up with discontinuous material properties (as is the case for the breast), steeply changing gradients in the body force (as found in contracting cardiac tissue), and discontinuous first derivatives in the solution at the boundary, caused by a discontinuous applied force (as in the breast during mammography). It was found that the choice of pressure basis functions is vital in the presence of a material interface, higher-order schemes do not perform as well as may be expected when there are sharp gradients, and in general it is important to take the expected regularity of the solution into account when choosing a numerical scheme. © IMechE 2009.
Modeling stability of flap-enabled HAWT blades using spinning finite elements
Velazquez, A.; Swartz, R. Andrew; Dai, Qingli; Sun, Xiao
2014-04-01
Horizontal-axis wind turbines (HAWTs) are growing in size and popularity for the generation of renewable energy to meet the world's ever increasing demand. Long-term safety and stability are major concerns related to the construction and use-phase of these structures. Braking and active pitch control are important tools to help maintain safe and stable operation, however variable cross-section control represents another possible tool as well. To properly evaluate the usefulness of this approach, modeling tools capable of representing the dynamic behavior of blades with conformable cross sections are necessary. In this study, a modeling method for representing turbine blades as a series of interconnected spinning finite elements (SPEs) is presented where the aerodynamic properties of individual elements may be altered to represent changes in the cross section due to conformability (e.g., use of a mechanical flap or a "smart" conformable surface). Such a model is expected to be highly valuable in design of control rules for HAWT blades with conformable elements. Sensitivity and stability of the modeling approach are explored.
DEFF Research Database (Denmark)
Cai, Hongzhu; Čuma, Martin; Zhdanov, Michael
2015-01-01
This paper presents a parallelized version of the edge-based finite element method with a novel post-processing approach for numerical modeling of an electromagnetic field in complex media. The method uses an unstructured tetrahedral mesh which can reduce the number of degrees of freedom signific...... seafloor bathymetry. The numerical study demonstrates that the modeling algorithm is capable of simulating the complex topography and bathymetry that is commonly encountered in controlled source electromagnetic problems.......This paper presents a parallelized version of the edge-based finite element method with a novel post-processing approach for numerical modeling of an electromagnetic field in complex media. The method uses an unstructured tetrahedral mesh which can reduce the number of degrees of freedom...... significantly. The linear system of finite element equations is solved using parallel direct solvers which are robust for ill-conditioned systems and efficient for multiple source electromagnetic (EM) modeling. We also introduce a novel approach to compute the scalar components of the electric field from...
Pidaparti, R M; Beatty, M W
1995-03-01
This study assessed the effectiveness of finite element analysis in predicting the stress intensity factor (KIC) for three types of dental materials: a glass ionomer, a dental amalgam, and a composite resin. Laboratory tests were conducted on small single-edge notch specimens loaded in three-point bending to determine values for fracture toughness (KQ). Using the dimensions measured for each laboratory specimen, a J integral approach was employed to calculate KIC using finite element analysis. Both two-dimensional plane strain and three-dimensional models were used in determining KIC for each specimen, and these values were compared to the KQ values obtained from laboratory tests. The results indicated that no significant differences existed between laboratory results and those obtained from both two- and three-dimensional finite element models (P > .85). For the three-dimensional model, values for KIC were found to vary across the specimen thickness, with the values at the center of the specimen closely paralleling those obtained from the two-dimensional plane strain model. It was concluded that the two-dimensional plane strain J integral technique was as effective as the three-dimensional technique in calculating values for KIC.
Energy Technology Data Exchange (ETDEWEB)
Schunk, Peter Randall; Cairncross, Richard A. (Drexel University, Philadelphia, PA); Madasu, S. (Drexel University, Philadelphia, PA)
2004-03-01
This report summarizes research advances pursued with award funding issued by the DOE to Drexel University through the Presidential Early Career Award (PECASE) program. Professor Rich Cairncross was the recipient of this award in 1997. With it he pursued two related research topics under Sandia's guidance that address the outstanding issue of fluid-structural interactions of liquids with deformable solid materials, focusing mainly on the ubiquitous dynamic wetting problem. The project focus in the first four years was aimed at deriving a predictive numerical modeling approach for the motion of the dynamic contact line on a deformable substrate. A formulation of physical model equations was derived in the context of the Galerkin finite element method in an arbitrary Lagrangian/Eulerian (ALE) frame of reference. The formulation was successfully integrated in Sandia's Goma finite element code and tested on several technologically important thin-film coating problems. The model equations, the finite-element implementation, and results from several applications are given in this report. In the last year of the five-year project the same physical concepts were extended towards the problem of capillary imbibition in deformable porous media. A synopsis of this preliminary modeling and experimental effort is also discussed.
Directory of Open Access Journals (Sweden)
Kunichika Tsumoto
Full Text Available Cardiomyocytes located at the ischemic border zone of infarcted ventricle are accompanied by redistribution of gap junctions, which mediate electrical transmission between cardiomyocytes. This ischemic border zone provides an arrhythmogenic substrate. It was also shown that sodium (Na+ channels are redistributed within myocytes located in the ischemic border zone. However, the roles of the subcellular redistribution of Na+ channels in the arrhythmogenicity under ischemia remain unclear.Computer simulations of excitation conduction were performed in a myofiber model incorporating both subcellular Na+ channel redistribution and the electric field mechanism, taking into account the intercellular cleft potentials.We found in the myofiber model that the subcellular redistribution of the Na+ channels under myocardial ischemia, decreasing in Na+ channel expression of the lateral cell membrane of each myocyte, decreased the tissue excitability, resulting in conduction slowing even without any ischemia-related electrophysiological change. The conventional model (i.e., without the electric field mechanism did not reproduce the conduction slowing caused by the subcellular Na+ channel redistribution. Furthermore, Na+ channel blockade with the coexistence of a non-ischemic zone with an ischemic border zone expanded the vulnerable period for reentrant tachyarrhythmias compared to the model without the ischemic border zone. Na+ channel blockade tended to cause unidirectional conduction block at sites near the ischemic border zone. Thus, such a unidirectional conduction block induced by a premature stimulus at sites near the ischemic border zone is associated with the initiation of reentrant tachyarrhythmias.Proarrhythmia of Na+ channel blockade in patients with old myocardial infarction might be partly attributable to the ischemia-related subcellular Na+ channel redistribution.
Element cycling in forest soils - modelling the effects of a changing environment
Energy Technology Data Exchange (ETDEWEB)
Walse, C.
1998-11-01
Element cycling and nutrient supply in forest ecosystems are of vital importance for short-term productivity and for longer-term land management in terms of nutrient leaching and CO{sub 2} fixation. This thesis includes a series of studies with the objective of modelling some aspects of the effect of acidification and climate change on element cycling and nutrient supply in forest soil. A reconstruction model of atmospheric deposition and nutrient uptake and cycling, MAKEDEP, was developed. An existing model of soil chemistry, SAFE, was analyzed and applied. SAFE+MAKEDEP were then applied in combination with the RAINS model to perform scenario analyses of soil acidification/recovery for six European forest sites. A decomposition model intended to run in conjunction with the SAFE model was developed. Key elements were N, Ca, K, Mg, S and Al. In the decomposition model, only carbon release was included to date.The results show, that understanding the history of soil geochemistry is important for modelling the system and for projecting the future impact of acidification on nutrient supply in forest soils. The applied reconstruction models of acid deposition (MAKEDEP, RAINS) seem to generate reasonable and consistent estimates of historic acid deposition, so that present day conditions can be simulated starting from pre-acidification conditions. From applications of the SAFE model to large-scale forest manipulation experiments, we conclude that the geochemical processes and the degree of detail in process descriptions included in SAFE are adequate to capture the most important aspects of soil solution dynamics of forest soils in northern and central Europe. Therefore, SAFE is appropriate for the simulation of acidification and recovery scenarios for these soils. The precision in model prediction on a more general scale is often limited by factors other than model formulation, such as consistency and representativity of input data. It is shown that the physical
Development of a computationally efficient full human body finite element model.
Schwartz, Doron; Guleyupoglu, Berkan; Koya, Bharath; Stitzel, Joel D; Gayzik, F Scott
2015-01-01
A simplified and computationally efficient human body finite element model is presented. The model complements the Global Human Body Models Consortium (GHBMC) detailed 50th percentile occupant (M50-O) by providing kinematic and kinetic data with a significantly reduced run time using the same body habitus. The simplified occupant model (M50-OS) was developed using the same source geometry as the M50-O. Though some meshed components were preserved, the total element count was reduced by remeshing, homogenizing, or in some cases omitting structures that are explicitly contained in the M50-O. Bones are included as rigid bodies, with the exception of the ribs, which are deformable but were remeshed to a coarser element density than the M50-O. Material models for all deformable components were drawn from the biomechanics literature. Kinematic joints were implemented at major articulations (shoulder, elbow, wrist, hip, knee, and ankle) with moment vs. angle relationships from the literature included for the knee and ankle. The brain of the detailed model was inserted within the skull of the simplified model, and kinematics and strain patterns are compared. The M50-OS model has 11 contacts and 354,000 elements; in contrast, the M50-O model has 447 contacts and 2.2 million elements. The model can be repositioned without requiring simulation. Thirteen validation and robustness simulations were completed. This included denuded rib compression at 7 discrete sites, 5 rigid body impacts, and one sled simulation. Denuded tests showed a good match to the experimental data of force vs. deflection slopes. The frontal rigid chest impact simulation produced a peak force and deflection within the corridor of 4.63 kN and 31.2%, respectively. Similar results vs. experimental data (peak forces of 5.19 and 8.71 kN) were found for an abdominal bar impact and lateral sled test, respectively. A lateral plate impact at 12 m/s exhibited a peak of roughly 20 kN (due to stiff foam used around
Comparing finite elements and finite differences for developing diffusive models of glioma growth.
Roniotis, Alexandros; Marias, Kostas; Sakkalis, Vangelis; Stamatakos, Georgios; Zervakis, Michalis
2010-01-01
Glioma is the most aggressive type of brain tumor. Several mathematical models have been developed during the last two decades, towards simulating the mechanisms that govern the development of glioma. The most common models use the diffusion-reaction equation (DRE) for simulating the spatiotemporal variation of tumor cell concentration. The proposed diffusive models have mainly used finite differences (FDs) or finite elements (FEs) for the approximation of the solution of the partial differential DRE. This paper presents experimental results on the comparison of the FEs and FDs, especially focused on the glioma model case. It is studied how the different meshes of brain can affect computational consistency, simulation time and efficiency of the model. The experiments have been studied on a test case, for which there is a known algebraic expression of the solution. Thus, it is possible to calculate the error that the different models yield.
Li, Zuoping; Alonso, Jorge E; Kim, Jong-Eun; Davidson, James S; Etheridge, Brandon S; Eberhardt, Alan W
2006-09-01
Three-dimensional finite element (FE) models of human pubic symphyses were constructed from computed tomography image data of one male and one female cadaver pelvis. The pubic bones, interpubic fibrocartilaginous disc and four pubic ligaments were segmented semi-automatically and meshed with hexahedral elements using automatic mesh generation schemes. A two-term viscoelastic Prony series, determined by curve fitting results of compressive creep experiments, was used to model the rate-dependent effects of the interpubic disc and the pubic ligaments. Three-parameter Mooney-Rivlin material coefficients were calculated for the discs using a heuristic FE approach based on average experimental joint compression data. Similarly, a transversely isotropic hyperelastic material model was applied to the ligaments to capture average tensile responses. Linear elastic isotropic properties were assigned to bone. The applicability of the resulting models was tested in bending simulations in four directions and in tensile tests of varying load rates. The model-predicted results correlated reasonably with the joint bending stiffnesses and rate-dependent tensile responses measured in experiments, supporting the validity of the estimated material coefficients and overall modeling approach. This study represents an important and necessary step in the eventual development of biofidelic pelvis models to investigate symphysis response under high-energy impact conditions, such as motor vehicle collisions.
Free vibration analysis of delaminated beams using mixed finite element model
Ramtekkar, G. S.
2009-12-01
Free vibration analysis of laminated beams with delamination has been presented in this paper. A 2-D plane stress mixed finite element model developed by the authors [G.S. Ramtekkar, Y.M. Desai, A.H. Shah, Natural vibrations of laminated composite beams by using mixed finite element modeling, Journal of Sound and Vibration 257(4) (2002) 635-641.] has been employed. Two models, namely the unconstrained-interface model and the contact-interface model have been proposed for the computation of frequencies and the mode shapes of delaminated beams. Laminated beams with mid-plane delamination as well as off-mid-plane delamination have been considered and the results have been compared with various theoretical and experimental results available in the literature. It has been concluded that the contact-interface model presents a realistic behaviour of the dynamics of delaminated beams whereas the unconstrained-interface model under-predicts the frequencies, particularly at the higher modes
A new prediction model of daily weather elements in Hainan province under the typhoon weather
Zhou, Ruixu; Gao, Wensheng; Zhang, Bowen; Chen, Qinzhu; Liang, Yafeng; Yao, Dong; Han, Laijun; Liao, Xinzheng; Li, Ruihai
2017-11-01
This paper proposes a new prediction model for severe natural disasters, especially typhoon using daily weather analysis. Hainan province in China is selected to be a typical application region, where natural disasters, especially typhoons take place frequently. These disasters have great impacts on the life and property safety of the residents, and therefore are in specific need of accurate prediction. A new prediction model of daily weather in Hainan province under the typhoon weather is proposed in this paper based on the best track datasets of typhoons and the corresponding daily weather data. This model utilizes the statistical methods and data mining technology in combination with the dynamic migration information of tropical cyclones and can provide the dynamic prediction of daily weather elements in any designated location. Three surface meteorological observation stations of Hainan province during the years 1951-1920 are used to test the model. Test results show that the prediction equations established for the vast majority of daily weather elements have passed the significant test. Besides, Typhoon Damrey is used as a case to illustrate the whole daily weather prediction model in detail and comparisons between the model and other official forecast (such as JTWC, UKMO and CMA) are performed thoroughly. It is worth noting that the model proposed in this paper is not limited to Hainan province and can be generalized to other areas in the world.
Helioseismic models of the sun with a low heavy element abundance
Ayukov, S. V.; Baturin, V. A.
2017-10-01
Helioseismology and neutrino experiments probing the internal structure of the Sun have yieldedmuch information, such as the adiabatic elasticity index, density, and sound speed in the convective and radiative zones, the depth of the convective zone, and the flux of neutrinos from the core. The standard model of the Sun does not adequately reproduce these characteristics, with models with low heavy element contents (mass fraction of metals Z = 0.013 in the convective zone) deviating from the helioseismic data appreciably more strongly than models with high heavy element contents ( Z = 0.018). However, a spectroscopic low Z value is supported by studies reconstructing the Γ 1 profile in the adiabatic part of the convective zone based on the oscillation frequencies. Models of the convective zone show a good agreement precisely for low Z values. This study attempts to construct a model for the Sun with low Z that satisfies the helioseismic constraints. This model requires changes in the p + p reaction cross section and the opacities in the radiative zone. In our view, the helioseismic result for the mass concentrated in the convective zone testifies that the p + p reaction cross section or the electron-screening coefficient in the solar core must be increased by several percent over the current values. This requires a comparatively small correction to the opacities (by less than 5%), in order to obtain a solar model with low Z that is in agreement with the results of helioseismology and the observed solar neutrino fluxes.
Pierrat, B; Murphy, J G; MacManus, D B; Gilchrist, M D
2016-01-01
Modelling transversely isotropic materials in finite strain problems is a complex task in biomechanics, and is usually addressed by using finite element (FE) simulations. The standard method developed to account for the quasi-incompressible nature of soft tissues is to decompose the strain energy function (SEF) into volumetric and deviatoric parts. However, this decomposition is only valid for fully incompressible materials, and its use for slightly compressible materials yields an unphysical response during the simulation of hydrostatic tension/compression of a transversely isotropic material. This paper presents the FE implementation as subroutines of a new volumetric model solving this deficiency in two FE codes: Abaqus and FEBio. This model also has the specificity of restoring the compatibility with small strain theory. The stress and elasticity tensors are first derived for a general SEF. This is followed by a successful convergence check using a particular SEF and a suite of single-element tests showing that this new model does not only correct the hydrostatic deficiency but may also affect stresses during shear tests (Poynting effect) and lateral stretches during uniaxial tests (Poisson's effect). These FE subroutines have numerous applications including the modelling of tendons, ligaments, heart tissue, etc. The biomechanics community should be aware of specificities of the standard model, and the new model should be used when accurate FE results are desired in the case of compressible materials.
Belen'kaia, T Iu; Biriukova, I V; Georgiev, P G
1999-01-01
Patterns of excision of a single P element were studied in a model system of the yellow locus. The data obtained were in good agreement with the generally accepted SDSA (synthesis-dependent strand annealing) model. Specific features of P element excision in the presence of two tandemly repeated copies are presented. The pattern of P element excision depended on the sequences surrounding the insertion site and on the number of its additional copies present in the genome.
Standardization of Data Elements of Audiology Records: A Suitable Model for Iran
Directory of Open Access Journals (Sweden)
Seyed Mahmoud Latifi
2012-03-01
Full Text Available Background and Aim: Providing high quality health care is not possible without information related to the past and current condition of the patient. Records show which services, where, when and by whom was delivered. Documentation is referred to the process of precisely recording the information regarding patient care and treatment. The purpose of this study is to determine the essential data set required in audiology record keeping and designing a model for Iran.Methods: In an applied research of a descriptive-comparative type which was carried out in 2010, data elements of audiology records of domestic and foreign patient notes were used to compile a check list which was subjected to debate by Iranian audiologists in Delphi method. 110 audiologists and 17 faculty members responded to the opinion poll.Results: From 51 elements which were subjected to discussion, 37 elements by more than 75 percent of the participants, nine elements by 50 to 75 percent of the participants and five elements by less than 50 percent of the participants, were agreed upon. The only element to be considered more important by faculty members than audiologists was "Gender" (p=0.018. Seventy percent of the participants valued the effectiveness of information in patient records very high.Conclusion: The minimum data set for audiology records must include demographic information, past medical history, patient assessment and treatment plan. With reference to record design principles this information was used to develop amodel for patient audiology record which also included the necessary instructions for completing it.
Directory of Open Access Journals (Sweden)
K Sanusi
2016-09-01
Full Text Available This paper comprises an investigation using finite element analysis to study the behaviour of nanocrystalline grain structures during Equal Channel Angular Press (ECAP processing of metals. The effects of average grain size and misorientation angle on the deformation are examined in order to see how microstructural features might explain the observed increase in strength of nanocrsytalline metals. While this approach forms a convenient starting as it offers a simple way of including grain size effects and grain misorientation to which we could add additional phenomena through developing the material model used to describe the anisotropy and techniques that would automatically re-mesh the refined grain structure produced under severe plastic deformation. From this, it can be concluded that these additional techniques incorporated into the finite element model produced effects that correspond to observed behaviour in real polycrystals.
Three-dimensional Finite Element Modelling of Composite Slabs for High Speed Rails
Mlilo, Nhlanganiso; Kaewunruen, Sakdirat
2017-12-01
Currently precast steel-concrete composite slabs are being considered on railway bridges as a viable alternative replacement for timber sleepers. However, due to their nature and the loading conditions, their behaviour is often complex. Present knowledge of the behaviour of precast steel-concrete composite slabs subjected to rail loading is limited. FEA is an important tool used to simulate real life behaviour and is widely accepted in many disciples of engineering as an alternative to experimental test methods, which are often costly and time consuming. This paper seeks to detail FEM of precast steel-concrete slabs subjected to standard in-service loading in high-speed rail with focus on the importance of accurately defining material properties, element type, mesh size, contacts, interactions and boundary conditions that will give results representative of real life behaviour. Initial finite element model show very good results, confirming the accuracy of the modelling procedure
Zhang, Chao; Binienda, Wieslaw K.; Morscher, Gregory; Martin, Richard E.
2012-01-01
The microcrack distribution and mass change in PR520/T700s and 3502/T700s carbon/epoxy braided composites exposed to thermal cycling was evaluated experimentally. Acoustic emission was utilized to record the crack initiation and propagation under cyclic thermal loading between -55 C and 120 C. Transverse microcrack morphology was investigated using X-ray Computed Tomography. Different performance of two kinds of composites was discovered and analyzed. Based on the observations of microcrack formation, a meso-mechanical finite element model was developed to obtain the resultant mechanical properties. The simulation results exhibited a decrease in strength and stiffness with increasing crack density. Strength and stiffness reduction versus crack densities in different orientations were compared. The changes of global mechanical behavior in both axial and transverse loading conditions were studied. Keywords: Thermal cycles; Microcrack; Finite Element Model; Braided Composite
Parametric study of extended end-plate connection using finite element modeling
Mureşan, Ioana Cristina; Bâlc, Roxana
2017-07-01
End-plate connections with preloaded high strength bolts represent a convenient, fast and accurate solution for beam-to-column joints. The behavior of framework joints build up with this type of connection are sensitive dependent on geometrical and material characteristics of the elements connected. This paper presents results of parametric analyses on the behavior of a bolted extended end-plate connection using finite element modeling program Abaqus. This connection was experimentally tested in the Laboratory of Faculty of Civil Engineering from Cluj-Napoca and the results are briefly reviewed in this paper. The numerical model of the studied connection was described in detail in [1] and provides data for this parametric study.
Validation experiments on finite element models of an ostrich (Struthio camelus cranium
Directory of Open Access Journals (Sweden)
Andrew R. Cuff
2015-10-01
Full Text Available The first finite element (FE validation of a complete avian cranium was performed on an extant palaeognath, the ostrich (Struthio camelus. Ex-vivo strains were collected from the cranial bone and rhamphotheca. These experimental strains were then compared to convergence tested, specimen-specific finite element (FE models. The FE models contained segmented cortical and trabecular bone, sutures and the keratinous rhamphotheca as identified from micro-CT scan data. Each of these individual materials was assigned isotropic material properties either from the literature or from nanoindentation, and the FE models compared to the ex-vivo results. The FE models generally replicate the location of peak strains and reflect the correct mode of deformation in the rostral region. The models are too stiff in regions of experimentally recorded high strain and too elastic in regions of low experimentally recorded low strain. The mode of deformation in the low strain neurocranial region is not replicated by the FE models, and although the models replicate strain orientations to within 10° in some regions, in most regions the correlation is not strong. Cranial sutures, as has previously been found in other taxa, are important for modifying both strain magnitude and strain patterns across the entire skull, but especially between opposing the sutural junctions. Experimentally, we find that the strains on the surface of the rhamphotheca are much lower than those found on nearby bone. The FE models produce much higher principal strains despite similar strain ratios across the entirety of the rhamphotheca. This study emphasises the importance of attempting to validate FE models, modelling sutures and rhamphothecae in birds, and shows that whilst location of peak strain and patterns of deformation can be modelled, replicating experimental data in digital models of avian crania remains problematic.
Mapping the subcellular localization of Fe3O4@TiO2 nanoparticles by X-ray Fluorescence Microscopy
Yuan, Y.; Chen, S.; Gleber, S. C.; Lai, B.; Brister, K.; Flachenecker, C.; Wanzer, B.; Paunesku, T.; Vogt, S.; Woloschak, G. E.
2013-10-01
The targeted delivery of Fe3O4@TiO2 nanoparticles to cancer cells is an important step in their development as nanomedicines. We have synthesized nanoparticles that can bind the Epidermal Growth Factor Receptor, a cell surface protein that is overexpressed in many epithelial type cancers. In order to study the subcellular distribution of these nanoparticles, we have utilized the sub-micron resolution of X-ray Fluorescence Microscopy to map the location of Fe3O4@TiO2 NPs and other trace metal elements within HeLa cervical cancer cells. Here we demonstrate how the higher resolution of the newly installed Bionanoprobe at the Advanced Photon Source at Argonne National Laboratory can greatly improve our ability to distinguish intracellular nanoparticles and their spatial relationship with subcellular compartments.
Finite Element Modelling for Static and Free Vibration Response of Functionally Graded Beam
Directory of Open Access Journals (Sweden)
Ateeb Ahmad Khan
Full Text Available Abstract A 1D Finite Element model for static response and free vibration analysis of functionally graded material (FGM beam is presented in this work. The FE model is based on efficient zig-zag theory (ZIGT with two noded beam element having four degrees of freedom at each node. Linear interpolation is used for the axial displacement and cubic hermite interpolation is used for the deflection. Out of a large variety of FGM systems available, Al/SiC and Ni/Al2O3 metal/ceramic FGM system has been chosen. Modified rule of mixture (MROM is used to calculate the young's modulus and rule of mixture (ROM is used to calculate density and poisson's ratio of FGM beam at any point. The MATLAB code based on 1D FE zigzag theory for FGM elastic beams is developed. A 2D FE model for the same elastic FGM beam has been developed using ABAQUS software. An 8-node biquadratic plane stress quadrilateral type element is used for modeling in ABAQUS. Three different end conditions namely simply-supported, cantilever and clamped- clamped are considered. The deflection, normal stress and shear stress has been reported for various models used. Eigen Value problem using subspace iteration method is solved to obtain un-damped natural frequencies and the corresponding mode shapes. The results predicted by the 1D FE model have been compared with the 2D FE results and the results present in open literature. This proves the correctness of the model. Finally, mode shapes have also been plotted for various FGM systems.